1.3 The Principle of Stationary Action
1.5 The Euler–Lagrange Equations
1.5.1 Derivation of the Lagrange Equations
1.5.2 Computing Lagrange’s Equations
1.6.1 Coordinate Transformations
1.6.2 Systems with Rigid Constraints
1.6.3 Constraints as Coordinate Transformations
1.6.4 The Lagrangian Is Not Unique
1.7 Evolution of Dynamical State
1.8.3 Central Forces in Three Dimensions
1.8.4 The Restricted Three-Body Problem
1.9 Abstraction of Path Functions
2.5 Principal Moments of Inertia
2.8 Motion of a Free Rigid Body
2.8.1 Computing the Motion of Free Rigid Bodies
2.11.1 Development of the Potential Energy
2.11.2 Rotation of the Moon and Hyperion
2.12 Nonsingular Coordinates and Quaternions
2.12.1 Motion in Terms of Quaternions
3.1.1 The Legendre Transformation
3.1.2 Hamilton’s Equations from the Action Principle
3.5.1 Phase-Space Description Is Not Unique
3.6.1 Periodically Driven Systems
3.6.2 Computing Stroboscopic Surfaces of Section
3.6.4 Computing Hénon–Heiles Surfaces of Section
4.1 Emergence of the Divided Phase Space
4.2.1 Equilibria of Differential Equations
4.2.3 Relations Among Exponents
4.3.1 Computation of Stable and Unstable Manifolds
4.5.1 Computing the Poincaré–Birkhoff Construction
4.6.1 Finding Invariant Curves
4.6.2 Dissolution of Invariant Curves
5.2 General Canonical Transformations
5.2.1 Time-Dependent Transformations
5.2.2 Abstracting the Canonical Condition
5.3 Invariants of Canonical Transformations
5.4.1 F1 Generates Canonical Transformations
5.4.2 Generating Functions and Integral Invariants
5.4.3 Types of Generating Functions
5.5.1 Poincaré–Cartan Integral Invariant
6.1.2 Hamilton–Jacobi Solution of the Kepler Problem
6.1.4 The Action Generates Time Evolution
6.2 Time Evolution is Canonical
6.2.1 Another View of Time Evolution
6.2.2 Yet Another View of Time Evolution
7 Canonical Perturbation Theory
7.1 Perturbation Theory with Lie Series
7.2 Pendulum as a Perturbed Rotor
7.2.2 Eliminating Secular Terms
7.3.1 Driven Pendulum as a Perturbed Rotor
7.4.3 Resonance-Overlap Criterion
7.4.4 Higher-Order Perturbation Theory