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1. Introduction

∙ Long history dating back to 1960s in Psychology (Thistlewait and

Cook, 1960). Key work in econometrics by Van der Klaauw (2001),

Hahn, Todd, and Van der Klaauw (2001). Application by Lee (2007).

∙ Regression discontinuity (RD) designs exploit discontinuities in

policy assignment. For example, there might be an age threshold at

which one becomes eligible for a buyout plan, or an income threshold

at which one becomes eligible for financial aid.
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∙ General idea: Assume that units on different sides of the discontinuity

are similar. Their treatment status differs because of the institutional

setup, and differences in outcomes can be attributed to the different

treatment status.

∙We consider the sharp design – where assignment follows a

deterministic rule – and the fuzzy design, where the probability of

being treated is discontinuous at a known point.
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2. The Sharp RD Design

∙ Usual setup, yi0, yi1 as counterfactuals, treatment status wi. For now,

assume a single covariate, xi, determining treatment (sometimes called

the forcing variable). In the sharp regression discontinuity (SRD)

design case, treatment is determined as

wi  1xi ≥ c.

∙ Along with the forcing variable xi, we observe wi (of course) and the

outcome yi  1 − wiyi0  wiyi1.
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∙ Define the counterfactual conditional means as gx  Eyg|x,

g  0,1.

∙Maintain the assumption that g, g  0,1, are both continuous at c.

Because c is usually pretty arbitrary, practically assuming g is

continuous on its domain X.
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∙ Because w is a deterministic function of x, unconfoundedness of

treated necessarily holds. Stated for the means,

Eyg|x,w  Eyg|x, g  0,1.

∙ But the overlap assumption necessarily fails. By construction,

px  0 for all x  c and px  1 for x ≥ c. Clearly we cannot use

propensity score weighting.

∙ Technically, we can use regression adjustment with parametric

regression functions, but we would be relying on extreme forms of

extrapolation.
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∙ How can we use the SRD to identify and estimate average treatment

effects?

∙ First suppose first that the treatment effect is constant, yi1 − yi0  ,

so that

yi  yi0  yi1 − yi0wi  yi0  wi.

∙ It follows that 1x  0x   for all x.

∙ Easy to see that  is identified provided 0x  Ey0|x is continuous

at c. Why?

Ey|x  Ey0  w|x  Ey0|x  Ew|x
 0x  1x ≥ c.
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∙Write the mean function for the observed variable y as mx ≡ Ey|x.

Then, if 0 is continuous at c

m−c ≡ lim
x↑c

mx  lim
x↑c

0x   lim
x↑c

1x ≥ c  0c

mc ≡ lim
x↓c

mx  lim
x↓c

0x   lim
x↓c

1x ≥ c  0c  

because 1x ≥ c  0 for all x  c and 1x ≥ c  1 for all x  c.
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∙ It follows that

  mc − m−c.

∙We can estimate Ey|x quite generally in a neighborhood of c, and so

 is identified.

∙ As an important technical matter, if we want to use nonparametric

estimation (in order to avoid extrapolation of parametric functions),

then we are estimating two regression functions at a boundary. That is,

we estimate Ey|x for x  c and Ey|x for x ≥ c at the boundary value,

c.
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∙ Under parametric assumptions, estimation is easy – and we can use

all of the data.

∙ For example, if

Ey0|x  0  0x

then

Ey|x  Ey0|x  w  0  0x  w

So, the OLS regression

yi on 1, xi, wi, i  1,2, . . . ,N

consistently estimates  as the coefficient on wi.
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∙ Even if we use polynomials, or other smooth functions of x, the

discontinuity of w  1x ≥ c in x identifies .

∙ If we maintain parametric models over the entire range of x, allowing

a nonconstant treatment effect is also easy.

∙ Let 0x  m0x,0 and 1x  m1x,1 be the counterfactual,

correctly specified mean functions.
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∙ Because Ey|x,w  0  m0x,0 we can consistently estimate 0

using nonlinear least squares, or a QMLE for the control sample,

wi  0. For NLS, ̂0 is from

min
d0
∑
i1

N

1 − wiyi − m0xi,d02

∙ Similarly, we estimate 1 using the treated subsample.
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∙ Because we have a random sample on x, ate is estimated as before:

̂ate,reg  N−1∑
i1

N

m1xi, ̂1 − m0xi, ̂0.

But the extrapolation here is extreme: we obtain ̂0 using only data with

xi  c and ̂1 using only data with xi ≥ c. To obtain, say, m1xi, ̂1

when wi  0, we are plugging in a value for x that was excluded when

obtaining ̂1.

13



∙ In the linear case with two different mean functions we can write

Ey|x,w  0  w  0x  w  x − x

∙ Again, if we believe the linear conditional means hold over all x, the

regression

yi on 1, wi, xi, wi  xi − x̄, i  1, . . . ,N

consistently estimates   ate. (Naturally, we replace x with the

sample average, x̄.)

∙ This is exactly what we do in the case of unconfounded treatment, but

here we have a severe extrapolation problem.
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∙Without parametric assumptions we cannot estimate 0x for x ≥ c

and cannot estimate 1x for x  c. Therefore, in general, ate is

nonparametrically unidentified (unless we assume a constant treatment

effect or parametric functional forms over the range of x.)

∙ Consequently, the focus in the SRD setting us usually on a very

specific parameter, the ATE at x  c:

c ≡ Ey1 − y0|x  c  1c − 0c.
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∙ For the constant treatment effect case, of course c  . Generally,

we can only estimate the ATE for those at the margin of receiving the

treatment.

∙ Thus, even in the SRD case there are issues of external validity. We

cannot generally claim to identify the ATE for other subgroups or the

population overall.
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∙ It turns out that c is nonparametrically identified by the SRD design.

How? Write y  1 − wy0  wy1  1x  cy0  1x ≥ cy1, and so

Ey|x  1x  c0x  1x ≥ c1x

∙ Then, using continuity of 0 and 1 at c,

m−c ≡ lim
x↑c

mx  0c

mc ≡ lim
x↓c

mx  1c

and so

c  mc − m−c
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∙ Several approaches have been proposed for estimating m−c and

mc. A simple approach is local linear regression.

∙ Define 0c  0c and 1c  1c, so that c  1c − 0c. Write

y0  0c  0x − c  u0

y1  1c  1x − c  u1

∙ Plugging in and rearranging gives

y  0c  cw  0x − c  w  x − c  r,

where r  u0  wu1 − u0.
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∙ The estimate of c is just the jump in the linear function at x  c. We

could use the entire data set to run the regression

yi on 1, wi, xi − c, wi  xi − c

and obtain ̂c as the coefficient on wi. But then it would be global

estimation.

∙ This differs from the earlier regression in that xi is centered about c

rather than x̄.
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∙ Instead, choose a “small” value h  0 and only use the data satisfying

c − h  xi  c  h. This gives us a “local” method: it ignores data

where xi is sufficiently far from c.

∙ Equivalently, estimate two separate regressions, yi on 1, xi − c for

c − h  xi  c and then yi on 1, xi − c for c ≤ xi  c  h, and then

̂c  ̂1c − ̂0c, the difference in the two intercepts.
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∙ Can see how sensitive estimates are to h. Tradeoff between bias and

variance: as h decreases (we use less data), the bias shrinks but the

variance increases.

∙ Can use quadratic or cubic in xi − c, too, also interacted with wi.

∙ Inference is standard when h is viewed as fixed: use a

heteroskedasticity-robust t statistic.
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∙ Imbens and Lemieux (2008, Journal of Econometrics) show that if h

shrinks to zero quickly enough, the usual inference is still valid.

∙ Adding regressors is no problem: if the regressors are ri, just run

yi on 1, wi, xi − c, wi  xi − c, ri

again only using data c − h  xi  c  h.
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∙ Using extra regressors is likely to have more of an impact when h is

large; it might help reduce the bias from arising from the deteoration of

the linear approximation.

∙ If ri helps explain a lot of the variation in yi, adding ri can shrink the

error variance and improve the precision of ̂c.
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∙ For response variables with special characteristics, can use local

versions of other estimation methods.

∙ For example, suppose yg are count variables. Then use the

observations with c − h  xi  c to estimate a Poisson regression

Ey|x,w  0  exp0  0x and use c ≤ xi  c  h to estimate a

Poisson regression Ey|x,w  1  exp1  1x.

∙ If these regression functions are correctly specified for x near c,

c  exp1  1c − exp0  0c and so

̂c  exp̂1  ̂1c − exp̂0  ̂0c.
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∙ In the linear regression case, Imbens and Lemieux summarize

cross-validation methods for choosing the bandwidth, h. (In principle,

one could allow two bandwidths, hL and hU and then the data used in

local estimation satisfies c − hL  xi  c  hU, but of course this

complicates the problem.)

∙ The key is that typical methods of cross validation focus on

estimating Ey|x over the entire range of x, whereas here one is

interested in Ey|x,x  c and Ey|x,x ≥ c for x  c.

∙ Of course, can try different rules to check sensitivity of results for c.
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∙ Imbens and Kalraynaram (2008) explicitly look at minimizing

E̂0c − 0c2  ̂1c − 1c2

a mean squared error for the two regression functions at the jump point.

Not the same as the MSE for the actual estimand, which would be

E̂c − c2  E̂1c − ̂0c − 1c − 0c2.
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∙ Optimal bandwidth choice depends on second derivatives of the

regression functions at x  c, the density of xi at x  c, the conditional

variances, and the kernel used in local linear regression. But IK have

shown how to make the choice of h data-dependent.

27



3. The Fuzzy RD Design

∙ In the FRD case, the probability of treatment changes discontinuously

at x  c. It need not change from zero to one.

∙ Define the propensity score as

Pw  1|x ≡ Fx.

∙ In addition to assuming 0 and 1 are continuous at c, the key

assumption for the FRD design is that F is discontinuous at c, so that

there is a discrete jump in the probability of treatment at the cutoff.
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∙ To identify c, we assume that y1 − y0 is independent of w,

conditional on x. This allows treatment, w, to be correlated with y0

(after conditioning on x) but not with the unobserved gain from

treatment. (Note: The unconfoundedness assumption for estimating

ATT is that w is unconfounded with respect to y0.)

∙ It is possible to relax y1 − y0  w ∣ x and estimate a different

parameter, but here consider c, as before.
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∙ Again write y  y0  wy1 − y0 and use conditional independence –

which implies Ewy1 − y0|x  Ew|xEy1 − y0|x:

Ey|x  Ey0|x  Ew|xEy1 − y0|x
 0x  Ew|x  x.

∙ As before, take limits from the right and left and use continuity of

0 and  at c:

mc  0c  Fcc

m−c  0c  F−cc
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∙ It follows that, if Fc ≠ F−c, then

c 
mc − m−c
Fc − F−c .

∙ So, to identify c in the FRD case, continuity of 0 and 1 are

needed, and conditional independence between y1 − y0 and w are

used.
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∙We can estimate m−c and mc by, say, local linear regression.

Imbens and Lemieux suggest estimating F−c and Fc in the same

way. In other words, use

̂c 
m̂c − m̂−c
F̂c − F̂−c

,

where m̂c  ̂1c, m̂−c  ̂0c, F̂c  ̂1c, and F̂−c  ̂0c are the

intercepts from four local linear regressions. For example, ̂1c is from

yi on 1, xi − c, c ≤ xi  c  h and ̂1c is from wi on 1, xi − c,

c ≤ xi  c  h.
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∙ Conveniently, Hahn, Todd, and Van der Klaauw (2001) show that the

IV estimator of

y  0c  cw  0x − c  1x ≥ c  x − c  e

using z ≡ 1x ≥ c as the IV for w produces ̂c as the coefficient on w.

(In other words, this is an algebraic equivalance.) One uses the data

such that h − c  xi  c  h.

∙ Obtaining ̂c as a standard IV estimator is helpful in performing

inference: if h is fixed or is decreasing “fast enough,” can use the usual

heteroskedasticity-robust IV standard error.

33



∙ An alternative IV estimator is the one we discussed under control

function estimation. Under linearity of the conditional means (which

we eventually only need to hold locally), we can write

y  0c  cw  0x − c  w  x − c  u0  wu1 − u0.

∙ As in the previous equation, and unlike in the SRD design, w can be

“endogenous” in this equation because it can be correlated with u0 or

wu1 − u0.

∙ This means w and w  x − c are generally endogenous in the

equation.
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∙ Nevertheless, if the treatment is unconfounded with respect to the

gain u1 − u0, that is,

Eu1 − u0|x,w  Eu1 − u0|x  0,

then wu1 − u0 is uncorrelated with any function of x.

∙ That means any function of x is exogenous in this equation.

Therefore, we can use z ≡ 1x ≥ c as an IV for w and

1x ≥ c  x − c  z  x − c as an IV for w  x − c. The entire IV

list is

1, z, x − c, z  x − c

or, equivalently, 1, z,x, z  x.
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∙ Using either approach, could estimate Fc and F−c by local logit

or probit rather than local linear regression. For example,

Pw  1|x  c0  0x − c, x  c
Pw  1|x  c1  1x − c, x ≥ c

and then use

F̂c − F̂−c  ̂c1 − ̂c0

where ̂c0, ̂0 are from a logit of wi on 1, xi − c using

h − c  xi  c, and similarly for ̂c1, ̂1.
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∙ Estimation of F would necessarily recognize the jump at c. For logit,

Fx  1  21x ≥ c  3x − c  41x ≥ cx − c
 1  2z  3x − c  4z  x − c

Then,

Fc  1  2, F−c  1,

so can test H0 : 2  0 to see if the jump in treatment probability is

really there.
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∙ Now have two choices of bandwidths because need to estimate Ew|x

for x  c and x ≥ c (and assume this results in a single bandwidth

choice) in addition to Ey|x for x  c and x ≥ c. Could just, say,

choose one based on Ey|x and use it for both, or choose them

separately using, say, Imbens and Kalraynaram (2008)
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4. Unconfoundedness versus FRD

∙ In the FRD case, overlap can hold (although it might be weak in

practice). We can compare regression adjustment to the methods of the

previous section.

∙ Useful to return to the linear formulation:

y  c  cw  0x − c  w  x − c  u0  wu1 − u0.
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∙ Under unconfoundedness, composite error u0  wu1 − u0 has zero

mean conditional on w,x, and so OLS (or local regression) would

consistently estimate c. In fact, if we believe unconfoundedness and

the linear functional form, we can use all of the data and average across

xi to estimate ate.
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∙ Using regression adjustment, the estimator of c using

Eyg|x,w  Eyg|x, g  0, 1, can be written as

̃c  m̃1c − m̃0c,

where m̃1x is estimated using the wi  1 observations and m̃0x is

estimated using the wi  0 observations. In other words, the

discontinuity in the treatment probability at Pw  1|x at x  c is

essentially ignored.
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∙ If we assume the less restrictive version of unconfoundedness, that is,

Dy1 − y0|w,x  Dy1 − y0|x – but allow u0 to be correlated with w –

then the OLS estimator is inconsistent.

∙ But the IV method developed above is consistent:

̂c 
m̂c − m̂−c
F̂c − F̂−c

.

The IV estimator exploits the jumps in the means and treatment

probabilities at x  c. Namely, the “” quantities use data only with

xi ≥ c and the “−” quantities use data only with xi  c.
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∙ Another benefit of the IV estimator is that it is consistent for the ATE

for compliers at x  c without unconfoundedness, provided we add a

monotonicity assumption. Let wa denote treatment status if the cutoff

point were a, and think of this as a function of potential cutoff points at

least over some interval that includes c. The monotonicity assumption

is that w is nonincreasing at a  c.
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∙ Suppose that the cutoff is determined by age, so that, initially, those

with age  x ≥ c are eligible. Now suppose the eligibility age is

lowered to c − 1. The monotonicity assumption is (a local version of)

wc − 1 ≥ wc, which rules out the possibility that a person would

participate if eligible at age c, wc  1, but would refuse to participate

if the eligibility age were lowered , wc − 1  0.

∙ See Imbens and Lemieux (2008) for derivations and further

discussion.
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5. Graphical Analyses

∙ As a supplement to formal estimation – and probably prior to

estimation – several graphs can be useful. First, put the forcing variable

x into bins and compute the average outcome in each bin.

∙ The bin choices should not smooth across the threshold. So, if the

threshold is c  5, choose bins such as . . . 4,4. 5, 4.5, 5, 5,5. 6, . . . .

∙ Should be able to detect a shift in the mean y at the threshold.
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∙ Can do the same for other covariates that should not be affected by

the threshold as a falsification check.

∙ A histogram of the forcing variable to verify it is not being

manipulated around the threshold.
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EXAMPLE: Generated Data. The data in REGDISC.DTA were

generated to follow an FRD design. The forcing variable is x (uniform

on 0,10), the rule that predicts treatment is z  1x ≥ 5, and w is the

actual treatment indicator. The outcome variable is y.
. des x z w y

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------
x float %9.0g forcing variable
z byte %9.0g 1 if x  5
w byte %9.0g 1 if treated
y float %9.0g response variable
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. tab w z

1 if | 1 if x  5
treated | 0 1 | Total

-------------------------------------------
0 | 727 111 | 838
1 | 273 889 | 1,162

-------------------------------------------
Total | 1,000 1,000 | 2,000

. gen x_5  x - 5

. gen zx_5  z*x_5

. gen wx_5  w*x_5
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. reg w z

Source | SS df MS Number of obs  2000
------------------------------------------- F( 1, 1998)  1275.71

Model | 189.728 1 189.728 Prob  F  0.0000
Residual | 297.15 1998 .148723724 R-squared  0.3897

------------------------------------------- Adj R-squared  0.3894
Total | 486.878 1999 .24356078 Root MSE  .38565

------------------------------------------------------------------------------
w | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
z | .616 .0172467 35.72 0.000 .5821767 .6498233

_cons | .273 .0121952 22.39 0.000 .2490833 .2969167
------------------------------------------------------------------------------
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. reg w x if ~z

Source | SS df MS Number of obs  1000
------------------------------------------- F( 1, 998)  96.61

Model | 17.5177744 1 17.5177744 Prob  F  0.0000
Residual | 180.953226 998 .181315857 R-squared  0.0883

------------------------------------------- Adj R-squared  0.0874
Total | 198.471 999 .19866967 Root MSE  .42581

------------------------------------------------------------------------------
w | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
x | .0916522 .0093244 9.83 0.000 .0733545 .1099499

_cons | .043984 .0269105 1.63 0.102 -.0088237 .0967917
------------------------------------------------------------------------------

. predict what0
(option xb assumed; fitted values)
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. reg w x if z

Source | SS df MS Number of obs  1000
------------------------------------------- F( 1, 998)  47.59

Model | 4.4914493 1 4.4914493 Prob  F  0.0000
Residual | 94.1875507 998 .094376303 R-squared  0.0455

------------------------------------------- Adj R-squared  0.0446
Total | 98.679 999 .098777778 Root MSE  .30721

------------------------------------------------------------------------------
w | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
x | .0464084 .0067272 6.90 0.000 .0332073 .0596095

_cons | .5408787 .0513891 10.53 0.000 .4400356 .6417218
------------------------------------------------------------------------------

. predict what1
(option xb assumed; fitted values)
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. gen what  what0 if ~z
(1000 missing values generated)

. replace what  what1 if z
(1000 real changes made)

. qui probit w x if ~z

. predict phat0
(option pr assumed; Pr(w))

. qui probit w x if z

. predict phat1
(option pr assumed; Pr(w))

. gen pshat  phat0 if ~z
(1000 missing values generated)

. replace pshat  phat1 if z
(1000 real changes made)
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. * Now estimate the ATE at x  5:

. ivreg y x zx_5 (w  z), robust

Instrumental variables (2SLS) regression Number of obs  2000
F( 3, 1996)  3588.42
Prob  F  0.0000
R-squared  0.8722
Root MSE  .5959

------------------------------------------------------------------------------
| Robust

y | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

w | 1.963177 .2046892 9.59 0.000 1.56175 2.364604
x | .263328 .0295197 8.92 0.000 .2054354 .3212206

zx_5 | -.0217891 .0214587 -1.02 0.310 -.0638729 .0202947
_cons | .9802505 .0363406 26.97 0.000 .908981 1.05152

------------------------------------------------------------------------------
Instrumented: w
Instruments: x zx_5 z
------------------------------------------------------------------------------

. * True value is 2, so 1.96 is very close.

. * Verify this is the same as the ratio of difference

. * in estimated means at the cutoff, 5:
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. reg y x_5 if z

Source | SS df MS Number of obs  1000
------------------------------------------- F( 1, 998)  310.37

Model | 230.759468 1 230.759468 Prob  F  0.0000
Residual | 742.020178 998 .743507193 R-squared  0.2372

------------------------------------------- Adj R-squared  0.2365
Total | 972.779646 999 .973753399 Root MSE  .86227

------------------------------------------------------------------------------
y | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
x_5 | .3326468 .0188819 17.62 0.000 .295594 .3696997

_cons | 3.814271 .0545347 69.94 0.000 3.707255 3.921287
------------------------------------------------------------------------------
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. reg y x_5 if ~z

Source | SS df MS Number of obs  1000
------------------------------------------- F( 1, 998)  368.55

Model | 409.736839 1 409.736839 Prob  F  0.0000
Residual | 1109.52773 998 1.11175123 R-squared  0.2697

------------------------------------------- Adj R-squared  0.2690
Total | 1519.26457 999 1.52078535 Root MSE  1.0544

------------------------------------------------------------------------------
y | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
x_5 | .4432575 .0230891 19.20 0.000 .3979488 .4885663

_cons | 3.282887 .0666859 49.23 0.000 3.152026 3.413747
------------------------------------------------------------------------------
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. reg w x_5 if z

Source | SS df MS Number of obs  1000
------------------------------------------- F( 1, 998)  47.59

Model | 4.4914493 1 4.4914493 Prob  F  0.0000
Residual | 94.1875507 998 .094376303 R-squared  0.0455

------------------------------------------- Adj R-squared  0.0446
Total | 98.679 999 .098777778 Root MSE  .30721

------------------------------------------------------------------------------
w | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
x_5 | .0464084 .0067272 6.90 0.000 .0332073 .0596095

_cons | .7729209 .0194295 39.78 0.000 .7347935 .8110482
------------------------------------------------------------------------------
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. reg w x_5 if ~z

Source | SS df MS Number of obs  1000
------------------------------------------- F( 1, 998)  96.61

Model | 17.5177745 1 17.5177745 Prob  F  0.0000
Residual | 180.953226 998 .181315857 R-squared  0.0883

------------------------------------------- Adj R-squared  0.0874
Total | 198.471 999 .19866967 Root MSE  .42581

------------------------------------------------------------------------------
w | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
x_5 | .0916522 .0093244 9.83 0.000 .0733545 .1099499

_cons | .5022452 .0269307 18.65 0.000 .4493979 .5550926
------------------------------------------------------------------------------

. di ( 3.814271 - 3.282887)/( .7729209 - .5022452)
1.9631759

. * Same as IV estimate, subject to rounding.
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. * Alternative IV estimate:

. ivreg y x (w wx_5  z zx_5), robust

Instrumental variables (2SLS) regression Number of obs  2000
F( 3, 1996)  3591.72
Prob  F  0.0000
R-squared  0.8723
Root MSE  .59584

------------------------------------------------------------------------------
| Robust

y | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

w | 1.976194 .1989026 9.94 0.000 1.586116 2.366273
wx_5 | -.022558 .0222246 -1.01 0.310 -.0661438 .0210279

x | .2635112 .0296645 8.88 0.000 .2053346 .3216877
_cons | .9651471 .0472286 20.44 0.000 .8725245 1.05777

------------------------------------------------------------------------------
Instrumented: w wx_5
Instruments: x z zx_5
------------------------------------------------------------------------------

. * Very similar, slightly more efficient.
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. * Now do local versions:

. ivreg y x zx_5 (w  z) if x  4 & x  6, robust

Instrumental variables (2SLS) regression Number of obs  400
F( 3, 396)  62.45
Prob  F  0.0000
R-squared  0.6377
Root MSE  .73069

------------------------------------------------------------------------------
| Robust

y | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

w | 1.241897 .5772794 2.15 0.032 .1069813 2.376812
x | .5988192 .1930259 3.10 0.002 .2193356 .9783028

zx_5 | -.2123672 .2431103 -0.87 0.383 -.6903155 .2655811
_cons | -.1820881 .7057876 -0.26 0.797 -1.569647 1.205471

------------------------------------------------------------------------------
Instrumented: w
Instruments: x zx_5 z
------------------------------------------------------------------------------
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. ivreg y x (w wx_5  z zx_5) if x  4 & x  6, robust

Instrumental variables (2SLS) regression Number of obs  400
F( 3, 396)  61.13
Prob  F  0.0000
R-squared  0.6217
Root MSE  .74663

------------------------------------------------------------------------------
| Robust

y | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

w | 1.181874 .5767097 2.05 0.041 .0480781 2.315669
wx_5 | -.4146889 .4858873 -0.85 0.394 -1.36993 .5405521

x | .7815237 .34224 2.28 0.023 .1086892 1.454358
_cons | -1.071853 1.570893 -0.68 0.495 -4.160185 2.016479

------------------------------------------------------------------------------
Instrumented: w wx_5
Instruments: x z zx_5
------------------------------------------------------------------------------

. * There are clear costs of dropping 1,600 observations.
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. ivreg y x zx_5 (w  z) if x  3 & x  7, robust

Instrumental variables (2SLS) regression Number of obs  800
F( 3, 796)  351.50
Prob  F  0.0000
R-squared  0.7662
Root MSE  .61919

------------------------------------------------------------------------------
| Robust

y | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

w | 1.775465 .3267695 5.43 0.000 1.134033 2.416897
x | .3471895 .0726118 4.78 0.000 .2046563 .4897226

zx_5 | -.0991082 .0772654 -1.28 0.200 -.2507762 .0525599
_cons | .7060606 .1912344 3.69 0.000 .3306773 1.081444

------------------------------------------------------------------------------
Instrumented: w
Instruments: x zx_5 z
------------------------------------------------------------------------------
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. ivreg y x (w wx_5  z zx_5) if x  3 & x  7, robust

Instrumental variables (2SLS) regression Number of obs  800
F( 3, 796)  338.13
Prob  F  0.0000
R-squared  0.7601
Root MSE  .62716

------------------------------------------------------------------------------
| Robust

y | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

w | 1.805868 .3227892 5.59 0.000 1.17225 2.439487
wx_5 | -.1972305 .1552741 -1.27 0.204 -.5020255 .1075645

x | .4119783 .1144717 3.60 0.000 .1872763 .6366803
_cons | .3549284 .4503478 0.79 0.431 -.5290812 1.238938

------------------------------------------------------------------------------
Instrumented: w wx_5
Instruments: x z zx_5
------------------------------------------------------------------------------

. * Not suprisingly, the estimates for a given data set can be sensitive

. * to the bandwidth.
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. ivreg y x (w wx_5  z zx_5), robust

Instrumental variables (2SLS) regression Number of obs  2000
F( 3, 1996)  3591.72
Prob  F  0.0000
R-squared  0.8723
Root MSE  .59584

------------------------------------------------------------------------------
| Robust

y | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

w | 1.976194 .1989026 9.94 0.000 1.586116 2.366273
wx_5 | -.022558 .0222246 -1.01 0.310 -.0661438 .0210279

x | .2635112 .0296645 8.88 0.000 .2053346 .3216877
_cons | .9651471 .0472286 20.44 0.000 .8725245 1.05777

------------------------------------------------------------------------------
Instrumented: w wx_5
Instruments: x z zx_5
------------------------------------------------------------------------------

. replace muhat  _b[_cons]  _b[w]*z  _b[wx_5]*zx_5  _b[x]*x
(2000 real changes made)

. twoway (scatter y x, sort) (line muhat x, sort), ytitle(y)
xtitle(x (forcing variable)) xlabel(#10) legend(off)
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