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1. INTRODUCTION

∙We now consider estimation of standard (population) models where

the response variable has been censored in some way. This could be

severe censoring (we know only whether the outcome is above or

below a threshold) or less severe (we observe an outcome until it is

above a certain value).

∙We obtain a random sample of units from the population, but we do

not observe the entire range of the dependent variable.
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∙ Later, we will consider the case where we observe nothing about one

or more variables for part of the population.

∙ Some estimation methods are similar to those we have covered.

However, here they are used to correct missing data problems and not

to obtain better functional forms. Therefore, we now refer to “data

censoring,” as distinct from, say, “corner solution” responses. (We

could have both.)

∙While data censoring produces a pile up at certain values, it is not for

behavioral reasons. It is just the rule about how the data are collected.
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2. BINARY CENSORING

∙ Binary censoring is an extreme form of data censoring. Start with a

standard linear model for the population:

y  x  u
Eu|x  0

where x is 1  K with x1  1, as usual.

∙ The variable y might be willingness to pay (WTP) for a proposed

public project, y  wtp. When we draw family (say) i from the

population, we would like to observe xi,wtpi; if we did for all i, we

would estimate  by OLS.
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∙WTP can be difficult to elicit, and reported amounts might be noisy.

Instead, suppose that each family is presented with a cost of the project,

ri. The household either says it is in favor of the project or not.

∙ Along with xi and ri, we observe the binary response

wi  1yi  ri.

For now, assume that the chance that yi equals ri is zero.
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∙ Importantly,  contains the partial effects of interest. We are

interested in Ewtp|x  x, but  cannot be estimated by OLS because

wtp is not observed.

∙ If we impose some strong assumptions on the underlying population

and the nature of ri, then we can proceed with maximum likelihood.

Assume

ui|xi, ri ~ Normal0,2.

∙ So the underlying population model satisfies the classical linear

model (CLM) assumptions.
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∙We also require that, for a random draw, ri is independent of yi

conditional on xi, that is,

Dyi|xi, ri  Dyi|xi.

∙ This conditional independence assumption is satisfied if ri is

randomized – set independently of xi,yi – or if ri is chosen as a

function of xi. Or, conditional on xi, ri is randomized.

∙We can derive the expression for Pwi  1|xi, ri:

Pwi  1|xi, ri  Pyi  ri|xi, ri  Pui/  ri − xi/|xi, ri

 1 − ri − xi/  xi − ri/
 1/  2/xi2 . . .K/xiK  −1/ri.
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∙ Because we observe wi,xi, ri for random draws from the

population, probit of wi on xi, ri consistently estimates / as the vector

of coefficients on xi and −1/ as the coefficient on ri. (In almost all

applications xi would include an intercept, and we allow that here.)

∙ Let   / and   −1/. After probit, ̂j  −̂ j/̂. Standard errors

can be obtained via the delta method or bootstrapping.
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∙ Costs of binary censoring can be severe. If we could observe yi,

specifying Eyi|xi  xi would suffice for consistent estimation of ;

in fact, we could just specify a linear projection and use OLS. More

important to test homoskedasticity and normality assumptions with

censoring compared with modeling a binary response (because the

latter is a functional form issue).

∙ Can estimate parameters up to scale without placing strong

restrictions on Dui|xi, ri, but then could only get relative effects.
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∙What if the linear model for WTP is unrealistic? If we could observe

actual willingness to pay, we probably would observe wtp ≥ 0 with

wtp  0 for some fraction of the population.

∙What if the population model is Tobit?

y  wtp  max0,x  u
u|x, r ~ Normal0,2

∙ If we have binary censoring with ri  0 for all i, the estimation

procedure is identical to that outlined for a linear model for wtp.

Because we do not observe yi, we cannot distinguish between a linear

model and Tobit when all ri  0.
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∙ Nevertheless, if we believe that y is zero for a nontrivial fraction of

the population, any calculations should reflect that belief by using the

type I Tobit formulas for estimating partial effects.

∙ If y  0 always, a better model is

y  expx  u

so logy  x  u. Now, can apply previous analysis with logri

replacing ri (assuming ri  0):

Pwi  1|xi, ri  xi − logri/.
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∙ If the correct population model is y  x  u (with u independent of x

and normally distributed) then Pwi  1|xi, ri  xi − ri/. If the

correct population model is logy  x  u then

Pwi  1|xi, ri  xi − logri/. In principle, we can choose

between these two models by comparing log likelihoods. (Does using ri

or logri produce the largest value of the log-likelihood function?)

∙Might even use the Vuong model selection statistic.
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3. INTERVAL CODING

∙ Now consider the standard linear model where the response variable

is recorded as falling into certain intervals. The underlying variable, y,

is continuous.

∙We say we have interval-coded data (or interval-censored data).

We are still interested in the population regression Ey|x  x.

∙ Let r1  r2 . . . rJ denote the known interval limits; these are

specified as part of the survey design. For example, rather than asking

individuals to report actual annual income, they report the interval that

their income falls into.
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∙ Under the CLM assumptions for y, we can estimate  and 2 by

MLE. The structure of the problem is similar to the ordered probit

model.

∙ Define, in the population, an ordered variable w:

w  0 if y ≤ r1

w  1 if r1  y ≤ r2



w  J if y  rJ
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∙ The probabilities Pw  j|x for j  0,1, . . . ,J have the same form as

ordered probit. The log likelihood for a random draw i is

ℓi,  1wi  0 logr1 − xi/
 1wi  1 logr2 − xi/ − r1 − xi/

. . .1wi  J log1 − rJ − xi/.

∙ The maximum likelihood estimators, ̂ and ̂2, are often called

interval regression estimators, with the understanding that the

underlying population distribution is homoskedastic normal.
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∙ There are important differences from ordered probit. First, in ordered

probit, we are interested in the discrete response variable, which is

something like a credit rating. Here, we are interested in the underlying

continuous variable y, which has quantitative meaning.

∙ In OP, the cut points are parameters to estimate, and the parameters 

do not completely measure partial effects. With interval regression, the

interval endpoints are given (or are themselves data), and  contains the

partial effects of interest.
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∙ As in the case of binary censoring, when we obtain the interval

regression estimates, we interpret the ̂ as if we had been able to run the

regression yi on xi, i  1, . . . ,N.

∙ Imposing the assumptions of the classical linear model allows us to

estimate the parameters in the distribution Dy|x, even though they

data are interval-censored.

∙ Sometimes one sets the censored variable, w, to some value within

the interval that contains y. For example, might set w to the midpoint of

the interval that y falls into. (We need some other rule if y  r1 or

y  rJ.) If the definition of w determines the proper interval, the

maximum likelihood estimators of  and  will be the same.
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∙When w is defined to have the same units as y, it is tempting to ignore

the grouping of the data and just to run an OLS regression of wi on xi,

i  1, . . . ,N. Naturally, such a procedure is generally inconsistent for ,

but there are conditions under which the ratios of coefficients are

consistent.

∙ Sometimes the interval limits change across i, which causes no

problems if we assume the limits are exogenous in the following sense:

Dyi|xi, ri1, . . . , riJ  Dyi|xi.

This includes the special case of binary censoring.
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∙ In Stata, for each observation we specify variables lower and upper,

and these determine the interval that yi falls into. If yi is below the

smallest interval value, ri1, loweri is set to missing. If yi is above the

largest interval value, riJ, upperi is set to missing.

intreg lower upper x1 x2 ... xK
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EXAMPLE: Interval Coding for Net Financial Wealth
. use 401ksubs_intcode
. sum nettfa

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

nettfa | 975 14.87889 57.24609 -59.97 1134.098

. list nettfa lower upper in 1/10

------------------------
| nettfa lower upper |
|------------------------|

1. | 4.575 0 5 |
2. | 154 25 . |
3. | 18.45 10 25 |
4. | 29.6 25 . |
5. | 0 . 0 |

|------------------------|
6. | 9.687 5 10 |
7. | .13 0 5 |
8. | -21.02 . 0 |
9. | 24.999 10 25 |

10. | 2.999 0 5 |
------------------------

. * The intervals are y  0, 0  y  5, 5  y  10, 10  y  25, y  25.
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. tab lower

lower |
interval |

limit for |
nettfa | Freq. Percent Cum.

-----------------------------------------------
0 | 264 41.31 41.31
5 | 90 14.08 55.40

10 | 133 20.81 76.21
25 | 152 23.79 100.00

-----------------------------------------------
Total | 639 100.00

. * Note that 336 observations have nettfa  0.
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. intreg lower upper inc incsq age agesq male e401k

Interval regression Number of obs  975
LR chi2(6)  274.90

Log likelihood  -1446.7593 Prob  chi2  0.0000

------------------------------------------------------------------------------
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
inc | .6263831 .0885805 7.07 0.000 .4527684 .7999977

incsq | -.0028399 .0008818 -3.22 0.001 -.0045683 -.0011116
age | -.13666 .3724458 -0.37 0.714 -.8666404 .5933204

agesq | .0056804 .0043551 1.30 0.192 -.0028554 .0142163
male | -.6346241 1.00675 -0.63 0.528 -2.607818 1.33857

e401k | 6.577516 1.044148 6.30 0.000 4.531023 8.62401
_cons | -16.37731 7.627359 -2.15 0.032 -31.32666 -1.427963

-----------------------------------------------------------------------------
/lnsigma | 2.626524 .0368932 71.19 0.000 2.554215 2.698834

-----------------------------------------------------------------------------
sigma | 13.82563 .5100724 12.8612 14.86239

------------------------------------------------------------------------------

Observation summary: 336 left-censored observations
0 uncensored observations

152 right-censored observations
487 interval observations
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. * How does this compare if we use the uncensored data in standard OLS

. * regression?

. reg nettfa inc incsq age agesq male e401k

Source | SS df MS Number of obs  975
------------------------------------------- F( 6, 968)  15.74

Model | 283681.821 6 47280.3036 Prob  F  0.0000
Residual | 2908228.37 968 3004.36815 R-squared  0.0889

------------------------------------------- Adj R-squared  0.0832
Total | 3191910.19 974 3277.11518 Root MSE  54.812

------------------------------------------------------------------------------
nettfa | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
inc | 1.109313 .3183536 3.48 0.001 .4845707 1.734056

incsq | -.0041516 .0031799 -1.31 0.192 -.0103919 .0020888
age | -1.946907 1.337097 -1.46 0.146 -4.570849 .6770356

agesq | .0335103 .0156526 2.14 0.033 .0027935 .0642272
male | 2.754853 3.618632 0.76 0.447 -4.346415 9.856121

e401k | 7.51211 3.778518 1.99 0.047 .0970803 14.92714
_cons | 3.15536 27.31521 0.12 0.908 -50.44849 56.75921

------------------------------------------------------------------------------
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. * The OLS estimates are not especially close to the interval regression

. * estimates, quite likely because nettfa is

. * neither homoskedastic nor conditionally normally distributed. Of course,

. * the conditional mean may be misspecified, too. And it is just one sample of

. * data. But the interval regression estimates are less sensitive to extreme

. * values of nettfa. But then we are admitting the underlying distribution

. * cannot be homoskedastic normal.
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Violations of the Assumptions

∙ Unlike with ordered probit or logit, allowing for a nonnormal

distribution or heteroskedasticity is no longer just allowing for more

flexible functional forms for the observed response. In OP and OL, we

might still get decent estimates of partial effects even if we do not have

the correct model.

∙ Now, we are worried that violations of the underlying CLM result in

inconsistent estimation of , which is what we want to estimate. It

makes to test for heteroskedasticity and even extend the estimation to

allow for a flexible form, say Vary|x  expx.
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∙ Nonnormality could be allowed, in principle, by using something like

the Pearson family of distributions.

∙ Simple way to check robustness of the results: with many intervals,

can combine some intervals and reestimate the parameters using

interval regression. If the underlying population model holds, the

estimates should differ only by sampling error.

∙ Using a “robust” option with the MLE estimation is an admission that

the underlying population model is incorrect. Inference is robust, but it

is inference on the wrong parameters.
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. intreg lower upper inc incsq age agesq male e401k, robust

Interval regression Number of obs  975
Wald chi2(6)  238.01

Log pseudolikelihood  -1446.7593 Prob  chi2  0.0000

------------------------------------------------------------------------------
| Robust
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
inc | .6263831 .0927412 6.75 0.000 .4446136 .8081525

incsq | -.0028399 .0009492 -2.99 0.003 -.0047002 -.0009796
age | -.13666 .3872199 -0.35 0.724 -.8955971 .6222771

agesq | .0056804 .0045934 1.24 0.216 -.0033225 .0146834
male | -.6346241 1.018647 -0.62 0.533 -2.631136 1.361888

e401k | 6.577516 1.06679 6.17 0.000 4.486647 8.668386
_cons | -16.37731 7.820532 -2.09 0.036 -31.70527 -1.049351

-----------------------------------------------------------------------------
/lnsigma | 2.626524 .0405579 64.76 0.000 2.547032 2.706016

-----------------------------------------------------------------------------
sigma | 13.82563 .5607383 12.76915 14.96952

------------------------------------------------------------------------------

Observation summary: 336 left-censored observations
0 uncensored observations

152 right-censored observations
487 interval observations
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. reg nettfa inc incsq age agesq male e401k, robust

Linear regression Number of obs  975
F( 6, 968)  16.00
Prob  F  0.0000
R-squared  0.0889
Root MSE  54.812

------------------------------------------------------------------------------
| Robust

nettfa | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

inc | 1.109313 .3614363 3.07 0.002 .4000244 1.818602
incsq | -.0041516 .0037804 -1.10 0.272 -.0115704 .0032672

age | -1.946907 1.934885 -1.01 0.315 -5.743959 1.850146
agesq | .0335103 .0251003 1.34 0.182 -.0157469 .0827676

male | 2.754853 3.777354 0.73 0.466 -4.657894 10.1676
e401k | 7.51211 3.837661 1.96 0.051 -.0189842 15.0432
_cons | 3.15536 32.73283 0.10 0.923 -61.08013 67.39084

------------------------------------------------------------------------------
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Endogenous Explanatory Variables

∙ Because of the underlying normality assumption, we can use the

Rivers-Vuong (1988) and Smith-Blundell (1986) control function

approach to test and correct for endogeneity of continuous explanatory

variables.

∙ The underlying model is the standard linear model

y1  z11  1y2  u1,

and we observe the censored variable, w1.
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∙ Given the linear reduced form y2  z2  v2, we proceed as before:

just add the first-stage residuals, v̂2, to the interval regression model,

along with z1,y2. Of course, we are interested in 1 and 1, along

with the coefficient on v̂2 to determine whether y2 is in fact

endogenous.

∙ Unfortunately, such an approach only works when y2 is not censored.

It is very difficult to account for interval censoring of y2 along with that

for y1.

∙ Allowing binary y2 is possible but requires full MLE. No simple

two-step methods.
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Panel Data

∙Modifying interval regression for linear, unobserved effects panel

data models is straightforward, provided we are willing to rely on the

Chamberlain-Mundlak device. We would write

yit  xit  ci  uit, t  1, . . . ,T
ci    x̄i  ai

where all unobservables have normal distributions and the interval

limits, ritj : j  1,2, . . . ,J, can vary by i and t.
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∙ Estimation can be carried out using the equation

yit  xit  t  x̄i  ai  uit, t  1, . . . ,T

under serial independence in uit : t  1, . . . ,T (a random effects

structure). Easier to pooled interval regression.
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∙ In Stata,

intreg lower upper x1 x2 ... xK x1bar ... xKbar

d2 ... dT, cluster(id)

∙ Ideally we would always observe yit and then just use fixed effects,

which would require neither the Mundlak assumption nor

homoskedasticity and normality of ai  uit.

33



4. CENSORING FROM ABOVE AND BELOW

∙ Consider the case now where the underlying variable, y, follows a

classical linear model, but it is censored from above, or right censored.

For a random draw i,

yi  xi  ui

wi  minyi, ri

where ri is the right censoring variable that may change with i (but

sometimes it does not).
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∙ Top coding is a common example of right censoring, where, say,

income or wealth is recorded up to a certain amount, and then we just

know whether the value is above the amount.

∙ Censoring of duration data is also common.

∙ Left censoring or censoring from below occurs with minimum wages

when we are interested in the value of marginal product.
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∙We are interested in features of the population distribution Dy|x. In

the current case, under Eu|x  0, that means we are primarily

interested in the population regression Ey|x  x, which is

completely characterized by .

∙ As we will see, we can estimate  under fewer assumptions if instead

we assume Medu|x  0, in which case Medy|x  x (and this may

or may not equal Ey|x.

∙ Traditional parametric approaches specify Dy|x up to a (finite) set

of unknown parameters, and then uses maximum likelihood estimation.
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∙ Semiparametric approaches attempt to estimate  by placing few

restrictions on Dy|x.

∙ In both parametric and semiparametric approaches, some sort of

conditional independence is assumed between ui and ri. The most

restrictive form is Dui|xi, ri  Dui|xi, but this can be relaxed in

some cases.

∙ For semiparametric estimation, we can sometimes get by with

Eui|xi, ri  Eui|xi  0 or Medui|xi, ri  Medui|xi  0.
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∙With parametric approaches, we model the entire population

distribution, Dy|x. Focus here on case where distribution of yi is

continuous. Let fy|x; denote the conditional density.

∙ Under Dyi|xi, ri  Dyi|xi, can easily obtain the density of wi

conditional on xi, ri because, for w  ri,

Pwi ≤ w|xi, ri  Pyi ≤ w|xi  Fw|xi;, where F|xi; is the cdf

of yi conditional on xi. Therefore, the probability density of wi given

xi, ri is simply fw|xi; for w  ri, that is, for values strictly less than

the censoring point.
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∙ Further, Pwi  ri|xi, ri  Pyi ≥ ri|xi, ri  1 − Fri|xi;.

∙ The probability density of wi given xi, ri is

gw|xi, ri;  fw|xi;1wri1 − Fri|xi;1wri.

∙ The log likelihood function for a random draw i (where we do not

bother to distinguish between the “true” value of theta and a generic

value) is

loggwi|xi, ri;  1wi  ri logfwi|xi;
 1wi  ri log1 − Fri|xi;,

and we sum this expression across all i to obtain the log likelihood for

the entire sample.
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∙ In the vast majority of cases, the conditions sufficient for MLE to be

well behaved (consistent, N -asymptotically normal) hold for censored

estimation because the model fy|x; is smooth in .

∙ Interesting feature of the log likelihood: we only need to observe the

censoring point, ri, for censored observations. (We also need to know

which observations are censored and which are not.) Useful for

duration applications when the censoring value is reported only for

observations that are actually censored.
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∙ In the leading case, y follows a classical linear model in the

population of interest, that is,

Dy|x  Normalx,2,

which gives use the censored normal regression model.

∙ Easy to confuse censored normal regression with Type I Tobit, but

they serve different purposes.

∙ The log likelihood for the censored normal regression model is

li  1wi  ri log−1wi − xi/
 1wi  ri log1 − wi − xi/.

41



∙ Easy to compute. Often a transformation, such as taking the natural

log, is needed to make normality and homoskedasticity reasonable.

∙ Or, can apply the general censored density log likelihood directly.

∙ In Stata, the variable that is used is w, and an indicator is needed for

whether the data are censored or not.

cnreg w x1 x2 ... xK, cen(cens)

where “cens” is the dummy variable equal to one of the observation is

censored.

∙ For left censoring, cens is −1 for censored, zero for uncensored.

Allows both right and left censoring within the same data set.
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EXAMPLE: Top Coding of Net Financial Wealth
. use 401ksubs_topcode
. * Censoring is at nettfa  50.

. sum nettfa nettfac

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

nettfa | 975 35.55443 81.435 -409 1003.126
nettfac | 975 17.80794 26.73529 -409 50

. tab cens

1 if |
nettfa |

censored | Freq. Percent Cum.
-----------------------------------------------

0 | 751 77.03 77.03
1 | 224 22.97 100.00

-----------------------------------------------
Total | 975 100.00

. * So about 23% of the observations are right censored.
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. * First, linear regression using the actual data on nettfa:

. reg nettfa inc incsq age agesq male e401k, robust

Linear regression Number of obs  975
F( 6, 968)  38.66
Prob  F  0.0000
R-squared  0.2588
Root MSE  70.326

------------------------------------------------------------------------------
| Robust

nettfa | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

inc | -.4726794 .6361378 -0.74 0.458 -1.721048 .7756887
incsq | .0116774 .0054104 2.16 0.031 .0010599 .0222948

age | -1.527668 1.838973 -0.83 0.406 -5.1365 2.081165
agesq | .0354728 .0221191 1.60 0.109 -.0079341 .0788797

male | -9.332761 4.586691 -2.03 0.042 -18.33377 -.3317568
e401k | 10.70226 4.673405 2.29 0.022 1.531087 19.87343
_cons | 8.342726 33.27078 0.25 0.802 -56.94843 73.63389

------------------------------------------------------------------------------
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. cnreg nettfac inc incsq age agesq male e401k, cen(cens)

Censored-normal regression Number of obs  975
LR chi2(6)  301.64
Prob  chi2  0.0000

Log likelihood  -3774.6932 Pseudo R2  0.0384

------------------------------------------------------------------------------
nettfac | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
inc | .7225285 .1192285 6.06 0.000 .4885527 .9565043

incsq | -.0018362 .0008255 -2.22 0.026 -.0034562 -.0002162
age | -.1480192 .7230439 -0.20 0.838 -1.566932 1.270893

agesq | .0122743 .0081677 1.50 0.133 -.0037542 .0283028
male | -2.032747 3.123538 -0.65 0.515 -8.162425 4.096931

e401k | 7.496106 2.00374 3.74 0.000 3.563936 11.42828
_cons | -31.34548 15.02683 -2.09 0.037 -60.83437 -1.856601

-----------------------------------------------------------------------------
/sigma | 28.67045 .7756753 27.14825 30.19264

------------------------------------------------------------------------------
Observation summary: 0 left-censored observations

751 uncensored observations
224 right-censored observations
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∙ It is possible that the estimates from the censored regression are

“better” (that is, closer to the population values). The uncensored

estimates are likely very sensitive to extremely high values of wealth.

Some researchers intentionally right censor variables such as wealth to

avoid outliers, and then use censored normal regression. Unfortunately,

important differences tell us the underlying CLM assumptions are false.

We cannot know which estimates are “better.”

∙ Remember, in most applications of censored regression, we do not

have the luxury of running a regression with the actual yi.
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∙ As in the interval censoring case, violations of normality or

homoskedasticity can be very costly, and it makes sense to test these

assumptions (probably via the score principle). More flexible

population distributions might be warranted. for example, allow

asymmetry in Dy|x if, say, y is wealth, and also allow Vary|x to be

nonconstant, say expx.

∙ For right censoring, can always choose to censor at a smaller value

and check robustness of restimates.
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∙ Example of how corner solution and censoring are different. Suppose

a survey records annual family charitable contributions up to $10,000,

but the amount is top coded. The reported variable, w  miny, 10000

will clearly have a pile up at 10,000 due to the top coding. It is proper

to say that charitable contributions is “censored from above at

$10,000.”
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∙ But we would also likely see a pile up at zero because some fraction

of the population will have zero charitable contributions. An

appropriate course of action is to treat charitable contributions in the

population as a corner solution response, with a corner at zero. Unlike

the censoring from above at $10,000, it makes no sense to say

charitable contributions is also “censored from below at zero.” There is

a corner at zero, but it is not due to data censoring.
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∙ If charitable contributions follows a Tobit model in the population,

but is also being top coded at $10,000, the estimation method is

identical to two-limit Tobit, with limits zero and 10,000. But partial

effects are computed based on the standard Type I Tobit model because

we are interested in Dy|x, not Dw|x.

∙More subtle example: suppose by law individuals may contribute no

more than 15% of their income to retirement plans. In the population,

some individuals will contribute zero, some will contribute at the 15

percent upper limit, and many will contribute a percentage strictly

between zero and 15. Might use a two-limit Tobit.
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∙ If we are interested in the effect of explanatory variables on expected

percentage contribution under the current legal regime, we would use

the formulas for the two-limit Tobit model.

∙ However, one might want to know the effects of covariates on the

contribution percentage in the absense of institutional constraints. Then,

we would be back to the previous situation: the corner at zero is a

corner that arises from utility maximization, but the corner at 15 is

externally imposed.
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Endogenous Explanatory Variables

∙ Easy to handle continuous endogenous explanatory variables using a

control function approach.

∙ Suppose the population model is

y1  z11  1y2  u1

y2  z1  v2

where u1,v2 is independent of z and bivariate normal. The variable y1

is right censored.
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∙ Can apply the two-step Smith-Blundell (1986) control function

approach to account for the right censoring of y1. The first step is OLS

of y2 on z using a random sample. The residuals, v̂2, are added to the

censored normal regression in the second stage. Of course, because the

underlying population model is linear, we are interested in 1 and 1.

Joint MLE is possible, too, and would be more efficient and avoid the

problem of inference after two-step estimation.

∙ Bootstrap can be applied. We simply include the first-step estimation

and censored normal estimation within each bootstrap iteration.
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∙ As with all CF approaches, can allow a general functional form in

z1,y2, provided y2 has a linear reduced form with the normality

assumption given above.

∙ Allowing y2 to be censored is more difficult, but there are some

simple solutions after we cover general sample selection.
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∙With enough normality, the Chamberlain-Mundlak device can be

used in the context of right and left censoring. The population model is

the usual one:

yit  xit  ci  uit

∙ Right censoring is at rit, which can change across i and t. Strict

exogeneity assumptions, along with convenient distributional

assumptions, are

Duit|xi, ri1, . . . , riT,ci  Duit  Normal0,u
2, t  1, . . . ,T

Dci|xi, ri1, . . . , riT  Dci|xi  Normal  x̄i,a
2.
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∙ As usual, these assumptions mean we can write

yit    xit  x̄i  vit, Dvit|xi,ri  Normal0,a
2  u

2,

where ri  ri1, . . . , riT is the vector of censoring values for unit i.

∙ Apply pooled censored normal regression, with censoring points rit,

and consistently estimate , , , and v
2  a

2  u
2. Because this is a

partial likelihood method, we need to make inference robust to serial

correlation.

56



∙ Generally, we cannot separately identify a
2 and u

2 unless we make a

further assumption, such as uit : t  1, . . . ,T is serially independent.

Then can use a correlated random effects likelihood approach similar in

structure to the CRE Tobit model.

∙With the underlying population model linear, we are mainly

interested in  and appropriate inference concerning .
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∙ If the censoring points rit : t  1, . . . ,T actually vary over time,

could add the time average, r̄i, as a regressor to check for correlation

with ci. If Dci|xi, ri  Dci|x̄i, r̄i, adding r̄i along with x̄i can

actually solve the problem of the censoring value being related to ci, on

average.

∙ Something to think about. What if the model is yit  xitbi  ci  uit

and we are interested in estimating   Ebi. Even if we assume bi is

independent of xi, censoring has serious consequences. What approach

might we take?
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Censored Least Absolute Deviations

∙ How can we relax distributional assumptions? Focus on the cross

section case.

∙ A very useful estimator is Powell’s (1984) censored least absolute

deviations (CLAD) estimator. Now we start with a linear model for the

conditional median (which may or may not be the conditional mean).

Medy|x  x.

∙ The random sample consists of xi, ri,wi, wi  minyi, ri.

∙ Assume censoring is exogenous in the sense that

Medyi|xi, ri  Medyi|xi.
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∙ LAD can be applied to the censoring case because the median passes

throug the min function:

Medwi|xi, ri  Medminyi, ri|xi, ri  minMedyi|xi, ri, ri

 minMedyi|xi, ri  minxi, ri.

∙ Now apply LAD to the expression for Medwi|xi, ri:

min
b∈K
∑
i1

N

|wi − minxib, ri|.

∙ As in the corner solution case, CLAD is generally consistent and

N -asymptotically normal.
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∙ Subtle point concerning the CLAD estimator when applied to

censored data is that it requires the censoring value, ri, to be available

even when the observation is not right censored. Not much of an issue

in top-coding cases, especially when the same value is used. (For

example, if wealth is top coded at $500,000, that information is known,

and ri  500,000 for all i.)

∙ In some duration problems (later) only wi is observed. That is, along

with a censoring indicator, we observe either yi or ri, but not both. The

previous MLE approach can be applied in situations where ri is not

always observed.
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∙ A CLAD routine has been written for Stata. Need to install it. (Use

“findit clad” in Stata.) Produces bootstrapped standard errors. Does not

appear to allow censoring points to change with i, so better suited to

corner solutions and fixed top or bottom coding. The command

clad y x1 ... xK, ul(10000) reps(500)

has top coding at 10,000 and uses 500 bootstrap replications.

∙ Can estimate other quantiles, too, by specifying the quantile option

qu().
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EXAMPLE: CLAD Estimation in Wealth Example
. use 401ksubs_topcode

. * First use LAD on uncensored data.

. qreg nettfa inc incsq age agesq male e401k

Median regression Number of obs  975
Raw sum of deviations 36071.98 (about 11.347)
Min sum of deviations 30122.46 Pseudo R2  0.1649

------------------------------------------------------------------------------
nettfa | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
inc | -.2663949 .0697594 -3.82 0.000 -.403292 -.1294978

incsq | .0084499 .0004627 18.26 0.000 .0075418 .009358
age | -1.139927 .4452454 -2.56 0.011 -2.013685 -.2661698

agesq | .0204523 .0050035 4.09 0.000 .0106333 .0302713
male | -3.041986 1.919948 -1.58 0.113 -6.809725 .7257536

e401k | 4.426652 1.225932 3.61 0.000 2.020861 6.832443
_cons | 12.98194 9.290818 1.40 0.163 -5.250526 31.21441

------------------------------------------------------------------------------
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. * Now use the top-coded variable, nettfac.

. clad nettfac inc incsq age agesq male e401k, ul(50) reps(500)

Initial sample size  975
Final sample size  895
Pseudo R2  .20014184

Bootstrap statistics

Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]
--------------------------------------------------------------------------

inc | 500 -.0972045 .1449356 .3886133 -.8607244 .6663155 (N)
| -.4645128 .8432961 (P)
| -.4985709 .8208665 (BC)

--------------------------------------------------------------------------
incsq | 500 .0064427 -.0013644 .0039651 -.0013476 .014233 (N)

| -.002531 .0107853 (P)
| -.0023081 .011053 (BC)

--------------------------------------------------------------------------
age | 500 -.9933933 .1564738 .5992066 -2.170672 .1838855 (N)

| -1.842628 .583323 (P)
| -2.147302 .1800248 (BC)

--------------------------------------------------------------------------
agesq | 500 .0186491 -.0017135 .0069791 .004937 .0323612 (N)

| .0009719 .0290646 (P)
| .0044846 .0325657 (BC)
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--------------------------------------------------------------------------
male | 500 -3.716023 .2681802 1.950435 -7.5481 .116053 (N)

| -7.132865 .021205 (P)
| -7.732491 -.4130837 (BC)

--------------------------------------------------------------------------
e401k | 500 4.762451 -.4150445 1.539838 1.737086 7.787817 (N)

| 1.273426 7.443191 (P)
| 1.920862 8.004879 (BC)

--------------------------------------------------------------------------
const | 500 7.161489 -6.526609 17.97376 -28.15208 42.47506 (N)

| -43.34412 27.76345 (P)
| -33.87548 30.85902 (BC)

---------------------------------------------------------------------------
N  normal, P  percentile, BC  bias-corrected
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∙ Something to think about. Suppose the model and data censoring

mechanisms are

yi  ai  xibi

wi  minyi, ri

Dai,bi|xi, ri  Dai,bi.

The population parameter are   Eai and   Ebi. When does

CLAD applied to

yi    xi  ui

consistently estimate ?
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