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1. INTRODUCTION

∙ Now turn to the problem of using only a subset of a random sample

obtained from a well-defined population (presumably, the one of

interest).

∙ Obvious but important point: There cannot be an issue of nonrandom

sample selection if a random sample has been obtained from a given

population. The population is not immutable. We can choose a

population of interest from a bigger population.
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∙ For example, if we are interested in the effect of a job training

program on a population of men with poor labor market histories, we

can define the population based on observed past labor market

outcomes, such as unemployment status or labor earnings. If we can

collect a random sample from the defined population, we just apply

standard methods.

∙ Sample selection becomes an issue when the sample we can obtain

are not representative of the population of interest.
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∙ As an example, suppose we are interested in a wealth equation,

wealth  0  1plan  2educ  3age  4income  u

which describes the population of all families in the United States

(where educ and age are for the self-described “household head”). If we

assume that u has zero mean and is uncorrelated with each explanatory

variable, we would use OLS if we have a random sample from the

population.

∙ Suppose, though, that only people less than 65 years old were

sampled. What if we use OLS on the selected sample?
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∙ As we will see, OLS on the nonrandom sample nevertheless

consistently estimates the j provided

Eu|plan,educ,age, income  0.

∙ Zero correlation is not enough! Must have the conditional mean

correctly specified. This falls under “exogenous sampling.”

5



∙ Next suppose that only families with wealth greater than zero are

included in the sample. Now, the data are selected on the basies of the

response variable, wealth. As we will see, using standard methods

(including OLS) on such as sample leads to biased and inconsistent

estimators of the j, even under the zero conditional mean assumption.
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∙ A different setup is when sample selection is not a deterministic

function of either they xj or y, but it may be related to them. This

includes the problem of missing data, where data are missing on one

ore more elements of x,y for some units drawn randomly from the

population.

∙ Another example is when y is observed only when a certain event is

true. A leading example is when y is logwageo, the log of the “wage

offer” – the hourly wage someone could get paid if in the work force.

We observe wageo only if the person decides to enter the work force.

7



∙ Generally called the problem of incidental truncation.

∙ The hallmark of the incidental truncation problem is the notion of

“self-selection.” For example, we only observe the wage offer if the

person “self-selects” into the workforce.

∙Whether someone chooses to report, say, their annual income has a

self-selection component.
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2. WHEN CAN SAMPLE SELECTION BE IGNORED?

Linear Model

∙ Assume there is a population represented by the random vector

x,y,z, where x is a 1  K vector of explanatory variables, y is the

scalar response variable, and z is a 1  L vector of instrumental

variables.

∙ Standard linear model with (possibly) endogenous explanatory

variables:

y  1  2x2 . . .KxK  u  x  u
Ez′u  0,

with x1 ≡ 1 (so z1 is almost certainly equal to unity, too).
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∙ Given a random sample from the population, we can, under a rank

condition, use 2SLS to consistently estimate .

∙ Unfortunately, the rank condition (essentially rank Ez′x  K) and

Ez′u  0 are not usually enough to consistently estimate  with a

selected sample.

∙ A leading special case is z  x, in which case the explanatory

variables are assumed to be uncorrelated with the error.
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∙ Analysis is simplified by thinking of drawing units randomly from the

population, but now the random draw for unit i, xi,yi,zi, is

supplemented by drawing a selection indicator, si. By definition,

si  1 if unit i is used in the estimation, and si  0 if we do not use

random draw i.

∙ Therefore, our “data” consists of xi,yi,zi, si : i  1, . . . ,N, where

the value of si determines whether we observe all of xi,yi,zi.

∙ Because identification is properly studied in the population, let s

denote a random variable with the distribution of si for all i. In other

words, x,y,z, s now represents the population.
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∙ To determine the properties of any estimation procedure using the

selected sample, we need to know about the distribution of s and its

dependence on x,y,z.

∙ Consider the algebraically simpler case of just identification (in the

population!), that is, L  K. Let xi,yi,zi, si : i  1, . . . ,N be a

random sample from the population.
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∙ The IV estimator using the selected sample can be written as

̂IV  N−1∑
i1

N

sizi′xi
−1

N−1∑
i1

N

sizi′yi

   N−1∑
i1

N

sizi′xi
−1

N−1∑
i1

N

sizi′ui .
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∙ In the statistics literature, often called the “complete case” estimator.

∙ By the law of larger numbers for random samples,

plimN→̂IV    Esz′x−1Esz′u.

∙Weak assumptions sufficient for consistency are

rank Ez′x|s  1  K

and

Esz′u  0,
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∙ For the general 2SLS case, the conditions are only slightly more

complicated. Regularity conditions, such as finite second moments, are

assumed to hold. Then the conditions are

Esz′u  0
rank Ez′z|s  1  L
rank Ez′x|s  1  K

∙ These ensure also that the 2SLS estimator using the selected sample

is N −asymptotically normal.
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∙ Practically, for the rank condition to hold on the subpopulation, we

should have it holding in the population and then the subpopulation not

being “to small.”

∙More interesting is Esz′u  0. Holds is when s is independent of

z,u along with zero correlation n the population:

Ez′u  0.

Why? If s is independent of z,u then

Esz′u  EsEz′u    0  0

where   Es is the (unconditional) probability that a randomly draw

observation is kept.
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∙ In statistics, if s is independent of x,y,z, the data are said to be

missing completely at random.

∙ Another sufficient condition is

Eu|z, s  Eu|z  0,

where the second equality would be a strengthening of the exogeneity

requirement on the instruments. The first equality rules out correlation

between s and u.

∙ Sufficient for this latter condition is Eu|z  0 and s is a

deterministic function of z, say s  hz. Then

Eu|z, s  Eu|z,hz  Eu|z. This is the case of exogenous

sampling.
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∙With z  x, a sufficient condition is

Ey|x, s  Ey|x  x,

which means s can be an abitrary function of the exogenous variables.

The rank condition is that Ex′x|s  1 has rank K.

∙ Generally, though, linear projections are not consistently estimated

using a selected sample when s is a function of x. In other words, even

with exogenous sampling we must use a conditional mean assumption

in the underlying population.
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∙ If y  x  u, Ex′u  0, and s is independent of x,y, then OLS

using si  1 is consistent for .

∙ The cases with x exogenous and with instruments are very important

for sample selection corrections. If we can obtain an equation where the

selection indicator is a function of the explanatory variables (or

instruments), we can apply OLS or 2SLS to that equation for consistent

estimation.
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∙ Application of previous results. Suppose the population model is

y  x  u
Eu|x  0

and s is correlated with u. But suppose s is a determinstic function of

x,v for a variable v. Further, suppose u,v is independent of x. Then

Ey|x,v  x  Eu|x,v  x  Eu|v

where the last equality follows by the independence assumption.
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∙ Suppose v also has zero mean, and

Eu|v  v.

Then

Ey|x,v  x  v.

Now, because s is a function of x,v, we can use OLS of yi on xi,vi
using the selected sample (si  1) to consistently estimate  and .

Notice that all variables, include vi, only need to be observed when

si  1.
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∙ In effect, controlling for v in the regression on the selected sample

solves the sample selection problem. We will use this result, and the IV

version of it, later.

∙ In practice, v depends on unknown parameters that have to be

estimated in a first stage.

∙ Notice that we could assume, say, Eu|v  1v  2v2 − v2, where

v2  Ev2, and use a very similar approach.
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Nonlinear Models

∙ Suppose we know, for a parametric function m, ,

Ey|x  mx,o,

and suppose that selection is exogenous in the sense that

Ey|x, s  Ey|x.

∙ The NLS estimator on the selected sample solves

min

N−1∑

i1

N

siyi − mx,2.
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∙ The expected value of the objective function is

Es  y − mx,2  Es  Ey − mx,2|x, s

and the conditional expectation can be expanded as

Ey − mx,2|x, s  Eu2|x, s  mx,o − mx,2

 2mx,o − mx,Eu|x, s

where u ≡ y − mx,o. Give the exogenous selection condition,

Eu|x, s  0 so that last term is zero.
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∙ The first term Eu2|x, s does not depend on  and the the second term

is minimized at   o (not usually uniquely for give x). The

unconditional expectation of the objective function is

Es  y − mx,2  Es  Eu2|x, s  Es  mx,o − mx,2

and we need to assume the second part is uniquely minimized at

  o, that is, the the selected subpopulation.
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∙ Argument generally fails if s is correlated with y even after

controlling for x.

∙MLE is similar. The log likelihood in the selected sample is

∑
i1

N

siℓyi,xi;.

If selection is exogenous in the sense that

Dyi|xi, si  Dyi|xi

then the population value, o, also maximizes the expected value of the

selected log likelihood:
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Es  ℓy,x;  Es  Eℓy,x;|x, s
 Es  Eℓy,x;|x

Because Eℓy,x;o|x ≥ Eℓy,x;|x for all  – the key result for

consistency of conditional MLE – and s ≥ 1, it follows that

Es  ℓy,x;o ≥ Es  ℓy,x;, all .

∙ Uniqueness of o as the maximizer must be established using the

structure of the problem (including the distribution of x and the nature

of selection).
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∙ Conditions for other methods, such as GMM, are similar. But zero

conditional mean assumptions of errors given exogenous variables play

a key role. Zero correlation orthogonality conditions in the population

are not enough even to consistently estimate the parameters on the

selected sample even when selection depends on exogenous variables.
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3. Selection on the Response Variable: Truncated
Regression

∙ Now consider the case where the rule for observing a data point

depends in a known, deterministic way on the response variable. Start

with the premise we are interested in Dy|x in a given population.

∙ For simplicity, assume y has a continuous distribution. Let xi,yi

denote a random draw from the population, but where we only observe

(or, at least, we only use) the data point if si  1.

∙ Assume the rule is that, for known constants a1 and a2,

si  1a1  yi  a2.
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∙ Allow for the cases a1  − and a2  .

∙While the analysis can be made much more general, assume we are

primarily interested in

Ey|x  x.

∙ But now using OLS on the selected sample, because selection is a

function of yi, results in an inconsistent estimator of .

∙ In a parametric context, assume that the population conditional

density is fy|x;,.
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∙ The density conditional on s  1 is

py|x, s  1  fy|x;,
Pa1  y  a2|x 

fy|x;,
Fa2|x;, − Fa1|x;,

where F|x;, is the cdf of f|x;,.

∙ Now that we have the density for the subpopulation with s  1, we

can use MLE. The log-likelihood function for a sample of size N from

the subpopulation with a1  yi  a2 is

∑
i1

N

logfyi|xi;, − logFa2|xi;, − Fa1|xi;,
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∙When Dy|x  Normalx,2, this is often called the “truncated

Tobit mode,” but a better name is the truncated normal regression

model.

∙ As with censoring, truncated the sample is costly. We are interested

in Ey|x  x in the entire population, but because of the truncated

sampling, we specify all of Dy|x.

∙ Differs from the censored normal regression model in that we observe

no information on units not in the subpopulation with a1  y  a2. In

the censored case, we have a random sample of units, which means we

observe xi, and we can use that in estimation.
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∙ For simplicity, consider the case a1  −. It is useful to reintroduce

the selection indicator si and let N be the number of random draws from

the population. The likelihood in the truncated case is


i1

N
−1yi − xi/
a2 − xi/

si
,

which emphasizes that we completely drop all units with si  0.
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∙ In the censored case, the likelihood is


i1

N

−1yi − xi/sia2 − xi/1−si


i1

N
−1yi − xi/
a2 − xi/

si
a2 − xi/sia2 − xi/1−si

∙ If we take the log of each likelihood and focus on observation i, we

can write
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ℓicensored  si log−1yi − xi/
 1 − si log1 − a2 − xi/

 silog−1yi − xi/ − loga2 − xi/
 si loga2 − xi/  1 − si log1 − a2 − xi/

 ℓitruncated

 si loga2 − xi/  1 − si log1 − a2 − xi/
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∙ ℓicensored uses additional information in the form of the model for

the binary selection indicator, si (yi uncensored or not), which depends

on the parameters  and . (Remember, we are not specifying a

separate model for si; it is implied by the underlying classical linear

model and the right censoring.) We can use this information in the

censored case because we observe xi even when si  0. In the

truncated case, we do not observe this information.

∙ The same can be shown in the general case with other forms of

censoring and other distributions.

∙ If you have a choice, you should use censored regression, not

truncated regression.
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∙ In Stata. Suppose we only observe a unit if y  50:

truncreg y x1 ... xK, ul(50)

∙ Again, we interpret the results as if we had run a linear regression

using a random sample from the entire population. This is much

different from applying Tobit to a corner solution.

∙ Easy to extend to case where limits change with i, so ai1,ai2. Must

assume

Dyi|xi,ai1,ai2  Dyi|xi,

which is always true if ai1 and ai2 are deterministic functions of xi.
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∙ The Hausman and Wise (1974) analysis of data from a negative

income tax experiment has this form. Eligibility depended on family

size in addition to income (where y  income).

∙ The log likelihood just adds an i subscript on the truncation points:

∑
i1

N

logfyi|xi;, − logFai2|xi;, − Fai1|xi;,

and the general Stata command is

truncreg y x1 ... xK, ll(lower) ul(upper)

where “lower” and “upper” are variables defined in the data set (and

should be nonmissing, otherwise those observations will be dropped).
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EXAMPLE: Truncating the Wealth Distribution
. truncreg nettfac inc incsq age agesq male e401k, ul(50)
(note: 224 obs. truncated)

Truncated regression
Limit: lower  -inf Number of obs  751

upper  50 Wald chi2(6)  57.16
Log likelihood  -3351.6879 Prob  chi2  0.0000

------------------------------------------------------------------------------
nettfac | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
inc | .6447338 .1412821 4.56 0.000 .367826 .9216416

incsq | -.0034965 .0010597 -3.30 0.001 -.0055735 -.0014194
age | .1806256 .7896731 0.23 0.819 -1.367105 1.728356

agesq | .0032957 .0090657 0.36 0.716 -.0144727 .0210641
male | .1300546 3.379858 0.04 0.969 -6.494346 6.754455

e401k | 4.09938 2.224616 1.84 0.065 -.2607873 8.459548
_cons | -24.23088 16.15679 -1.50 0.134 -55.89761 7.435844

-----------------------------------------------------------------------------
/sigma | 25.12179 .9167748 27.40 0.000 23.32494 26.91863

------------------------------------------------------------------------------
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. truncreg nettfac inc incsq age agesq male e401k if ~cens, ul(50)
(note: 0 obs. truncated)

Truncated regression
Limit: lower  -inf Number of obs  751

upper  50 Wald chi2(6)  57.16
Log likelihood  -3351.6879 Prob  chi2  0.0000

------------------------------------------------------------------------------
nettfac | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
inc | .6447338 .1412821 4.56 0.000 .367826 .9216416

incsq | -.0034965 .0010597 -3.30 0.001 -.0055735 -.0014194
age | .1806256 .7896731 0.23 0.819 -1.367105 1.728356

agesq | .0032957 .0090657 0.36 0.716 -.0144727 .0210641
male | .1300546 3.379858 0.04 0.969 -6.494346 6.754455

e401k | 4.09938 2.224616 1.84 0.065 -.2607873 8.459548
_cons | -24.23088 16.15679 -1.50 0.134 -55.89761 7.435844

-----------------------------------------------------------------------------
/sigma | 25.12179 .9167748 27.40 0.000 23.32494 26.91863

------------------------------------------------------------------------------
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. * If underlying CLM is correct, truncated and censored regression should

. * give similar answers, with censored more efficient.

. cnreg nettfac inc incsq age agesq male e401k, cen(cens)

Censored-normal regression Number of obs  975
LR chi2(6)  301.64
Prob  chi2  0.0000

Log likelihood  -3774.6932 Pseudo R2  0.0384

------------------------------------------------------------------------------
nettfac | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
inc | .7225285 .1192285 6.06 0.000 .4885527 .9565043

incsq | -.0018362 .0008255 -2.22 0.026 -.0034562 -.0002162
age | -.1480192 .7230439 -0.20 0.838 -1.566932 1.270893

agesq | .0122743 .0081677 1.50 0.133 -.0037542 .0283028
male | -2.032747 3.123538 -0.65 0.515 -8.162425 4.096931

e401k | 7.496106 2.00374 3.74 0.000 3.563936 11.42828
_cons | -31.34548 15.02683 -2.09 0.037 -60.83437 -1.856601

-----------------------------------------------------------------------------
/sigma | 28.67045 .7756753 27.14825 30.19264

------------------------------------------------------------------------------
Observation summary: 0 left-censored observations

751 uncensored observations
224 right-censored observations
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4. Incidental Truncation: A Probit Selection Equation

Exogenous Explanatory Variables

∙Motivation: Interested in estimating Ewageo|x, where wageo is the

wage offer. But need to recognize that if we randomly sample adults,

some will not be working, so wageo is unoberved.
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∙ Simple utility maximization approach (with wo the wage offer) to

choosing weekly hours:

max
h
utiliwioh  ai,h subject to 0 ≤ h ≤ 168

Assume can rule out a solution at hi  168. Can show hat if

dsi0/dh ≤ 0, where sih  utiliwioh  ai,h, then hi  0 is the

optimum.
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∙ Equivalent to

wio ≤ −muihai, 0/mui
qai, 0

where muih,  is the marginal disutility of working and mui
q,  is the

marginal utility of income.

∙ Can think of the right hand side as the reservation wage, wir.

∙ Assume the person works only if

wio  wir

(where we can ignore ties under continuity).
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∙ This looks like censoring the wage offer from below, but there is a

key difference: we do not observe wir. Called incidental truncation.

(Perhaps “incidental censoring” would be a better name, as we can

generally draw a random sample from the population of working-age

adults, and then observe other attributes.)

∙Model the wage offer and reservation wages as

wio  expxi11  ui1

wir  expxi22  2ai  ui2
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∙We observe wio if logwio − logwir  0 or

xi11  ui1 − xi22 − 2ai − ui2  0

or

xi2  vi2  0,

where xi includes all nonredundant elements of xi1 and xi2 ans also ai,

nonwage income.

∙ Having ai (at least) affect the reservation wage, and therefore the

labor force participation decision, but having no affect on the wage

offer, is very important for identification.
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∙ In the population, we can write the Gronau-Heckman model as

logwageo  x11  u1

inlf  1x2  v2  0

where inlf is equal to unity if a person is in the labor force. We observe

wageo, and therefore logwageo, only if inlf  1.

∙We have some interest in estimating the factors that affect inlf, but we

are primarily interested in the wage offer equation.
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∙ Notation for the general population model

y1  x11  u1

y2  1x2  v2  0

where y1 is the response that is only partially observed, and now y2 is

the selection indicator.

∙ Assumptions: (a) x,y2 are always observed, y1 is observed only

when y2  1; (b) u1,v2 is independent of x with zero mean; (c) v2 ~

Normal0,1; (d) Eu1|v2  1v2.

∙ So, we can think of a random draw xi,yi1,yi2 from the population,

but we only observe yi1 if yi2  1.
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∙ This is sometimes called the Type II Tobit model, but it is important

to recognized it as a sample selection model. Not surprisingly, it has

some statistical similarities with the “selection model” for corner

solutions we discussed previously. But it does not make sense to set

y1  0, say, just because we do not observe it. (In the wage offer

example, it means we set wageo  1 whenever we do not observe it.)

∙ Contrast the sample selection setup with a hurdle model for a corner

solution. If, say, y1 is charitable contributions, and we define

y2  1y1  0, then of course it makes sense that y1  0 when y2  0;

it holds by definition.
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∙ Joint normality of u1,v2 is not necessary for a two-step estimation

method, but it is often imposed for a (partial) MLE analysis.

∙ Because v2 is independent of x and standard normal, y2 follows a

probit: Py2  1|x  x2.

∙ Because x,y2 is assumed to always be observed, 2 is identified,

and so we can treat it as known for the purposes of deriving an

estimating equation for 1.
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∙ How can we obtain an estimating equation for 1? Under the previous

assumptions,

Ey1|x,v2  x11  Eu1|x,v2

 x11  Eu1|v2  x11  1v2.

∙ If we could observe (or, in effect, estimate) v2, we could solve the

selection problem by adding v2 as a regressor and using OLS on the

selected sample.
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∙ But we only observe y2  1x2  v2  0. So we need to obtain

Ey1|x,y2. But x,y2 is a function of x,v2, so we can apply iterated

expectations:

Ey1|x,y2  EEy1|x,v2|x,y2  x11  1Ev2|x,y2.

∙When y2  1x2  v2  0 and v2|x ~ Normal0,1, Ev2|x,y2 has a

well-known form: it is the inverse Mills ratio. (Actually, its form

depends on whether y2  1 or y2  0, and we only need the y2  1

expression here.)
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∙ For completeness (and because it is useful later for treatment effect

estimation),

Ev2|x,y2  y2x2 − 1 − y2−x2 ≡ ry2,x2

where

 



is the IMR. The function ry2,x2 is sometimes called a generalized

residual. Note that Ery2,x2|x  0 necessarily follows by iterated

expectations because Ev2|x  0, but it can also be shown directly.
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∙ Therefore, on the selected sample we have

Ey1|x,y2  1  x11  1x2

∙ If we just regress yi1 on xi1 using the yi2  1 sample, then, in effect,

we omit the variable xi2 from the regression. (It is possible that, in

the subpopulation with y2  1, x2 is uncorrelated with x1, in which

case OLS would be consistent for the slopes in 1. But this would be a

fluke and cannot be relied on.)

∙ The equation for Ey1|x,y2  1 is properly viewed as an estimating

equation, not a model that we begin with!
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∙ The expression for Ey1|x,y2  1 suggests a simple two-step

estimation method. (i) Estimate probit of yi2 on xi using all of the data,

i  1, . . . ,N, to obtain ̂2 and

̂i2  xi̂2.

(ii) Run OLS of yi1 on xi1, ̂i2, i  1, . . . ,N1 where the data have been

ordered so that yi2  1 for i  1, . . . ,N1.

∙ This has been called the Heckit method after Heckman (1976).
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Comments

∙When we write y1  x11  u1 and y2  1x2  v2  0, we call the

first equation the “regression equation” and the second the “selection

equation.”

∙We are using this procedure to solve a missing data problem, or a

sample selection problem. Thus, we are interested in estimating 1. In

the case of two-part models, the partial effects we want are much more

complicated.

∙ Should adjust our standard errors and inference for two-step

estimation. Many packages, including Stata, make the adjustment

routinely. Bootstrapping is also valid.
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∙ If 1  0, it turns out no adjustment to the asymptotic variance of

̂1, ̂1 is necessary. In particular, under the null H0 : 1  0 – which

means there is no sample selection problem – we can ignore estimation

of 2. So, we can use the usual OLS t statistic on ̂i2 or the

heteroskedastic-robust version.
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∙ Technically, the procedure goes through with x1  x, that is, without

an exclusion restriction. But then identification of 1 is possible only

because  is a nonlinear function.

∙ Generally, should be hesitant to achieve identification “off of a

nonlinearity.” Cannot really tell if xi̂2 is statistically significant

because selection is an issue or the functional form Ey|x  x1 is

misspecified (in the population).
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∙ If we write x  x1,x2, we are assuming Ey1|x (the population

regression) does not depend on x2. The only reason Ey1|x,y2  1

depends on x2 is because x2 predicts selection and selection is

correlated with u1.

∙ Often, over the range of xi̂2 in the data,  is pretty close to linear.

Very high collinearity is usually present unless xi contains something

not in xi1 that is useful for predicting selection.
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∙ If we allowed  to be replaced by an unknown function, say

Ey|x,y2  1  x1  1hx2,

as in semiparametric approaches, then 1 would not be identified: we

would have to allow h to be arbitrarily close to a linear function. We

say that 1 is “nonparametrically unidentified” without an exclusion

restriction.

∙ There exist semiparametric methods that allow h to be a generally

smooth function.
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∙ Bottom line: the Heckit approach is not believable unless one has at

least one exclusion restriction in the regression equation. And, if we

write x  x1,x2, so that

Py2  1|x  x121  x222,

then we must be able to reject H0 : 22  0 at some low significance

level. (Just like with instrumental variables.) What we cannot generally

test is whether excluding x2 from the regression equation is appropriate

(just like with IV).
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∙ Sometimes one sees exclusion restrictions in the selection probit. This

is not usually advised. Now let x1 and x2 both be subsets of x, which

generally overlap but where x1 is not a subset of x2. If we use

y2  1x22  v2  0

then we are assuming

Py2  1|x  Py2  1|x2.

∙ But, as in the Gronau-Heckman example, the selection equation is

usually a reduced form. (So, nonlabor income appears in the selection

equation, as do all other characteristics that affect the wage offer or the

reservation wage.)
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∙ Exclusion restrictions are not needed in the probit selection equation.

So, if it makes a difference for estimating 1, one must always include

all of x in the selection equation. Making exclusion restrictions in the

selection equation is tantatmount to making exclusion restrictions in a

reduced form. In special cases, this might be warranted, but it is less

robust than allowing an unrestricted reduced form. (Think 2SLS

estimation of a single equation versus 3SLS of two equations where the

second is a restricted reduced form.)

∙ Better to treat missing explanatory variables as endogenous, provided

we have extra instrumental variables.
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∙ If we assume u1,v2 is bivariate normal, then we can apply partial

MLE. It is “partial” because we can only use yi1 when yi2  1. See text

for log likelihood function. The MLE is more efficient if joint

normality holds, and the standard errors are readily available.

∙ But the two-step method does have some robustness because it only

uses

Eu1|x,v2  Eu1|v2  1v2

v2|x ~ Normal0,1
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∙ Can pretty easily relax the linear conditional mean:

Eu1|v2  1v2  1v2
2 − 1.

∙ Can show

Ev2
2 − 1|x,y2  1  −x2x2

so

Ey1|x,y2  1  x11  1x2 − 1x2x2
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∙ The estimating equation has changed, but the underlying population

model, Ey1|x  x11, has not!

∙ Two step procedure. Start with probit, as usual, and then regression

yi1 on xi1, ̂i2, ̂i2  xi̂2, i  1, . . . ,N1.

∙ Bootstrapping very attractive here for standard errors and inference.

∙MLE would be much more cumbersome.

66



EXAMPLE: Wage Offer for Married Women
. use mroz

. des lwage inlf nwifeinc

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------
lwage float %9.0g log(wage)
inlf byte %9.0g 1 if in lab frce, 1975
nwifeinc float %9.0g (faminc - wage*hours)/1000
. sum lwage inlf educ kidslt6 nwifeinc

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

lwage | 428 1.190173 .7231978 -2.054164 3.218876
inlf | 753 .5683931 .4956295 0 1
educ | 753 12.28685 2.280246 5 17

kidslt6 | 753 .2377158 .523959 0 3
nwifeinc | 753 20.12896 11.6348 -.0290575 96
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. reg lwage educ exper expersq

Source | SS df MS Number of obs  428
------------------------------------------- F( 3, 424)  26.29

Model | 35.0222967 3 11.6740989 Prob  F  0.0000
Residual | 188.305144 424 .444115906 R-squared  0.1568

------------------------------------------- Adj R-squared  0.1509
Total | 223.327441 427 .523015084 Root MSE  .66642

------------------------------------------------------------------------------
lwage | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
educ | .1074896 .0141465 7.60 0.000 .0796837 .1352956

exper | .0415665 .0131752 3.15 0.002 .0156697 .0674633
expersq | -.0008112 .0003932 -2.06 0.040 -.0015841 -.0000382

_cons | -.5220406 .1986321 -2.63 0.009 -.9124667 -.1316144
------------------------------------------------------------------------------
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. heckman lwage educ exper expersq, select(inlf  educ exper expersq nwifeinc
age kidslt6 kidsge6) twostep

Heckman selection model -- two-step estimates Number of obs  753
(regression model with sample selection) Censored obs  325

Uncensored obs  428

Wald chi2(6)  180.10
Prob  chi2  0.0000

------------------------------------------------------------------------------
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lwage |

educ | .1090655 .015523 7.03 0.000 .0786411 .13949
exper | .0438873 .0162611 2.70 0.007 .0120163 .0757584

expersq | -.0008591 .0004389 -1.96 0.050 -.0017194 1.15e-06
_cons | -.5781032 .3050062 -1.90 0.058 -1.175904 .019698

-----------------------------------------------------------------------------
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inlf |
educ | .1309047 .0252542 5.18 0.000 .0814074 .180402

exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311
expersq | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111

nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096 -.0025378
age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376

kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029
kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179

_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901
-----------------------------------------------------------------------------
mills |

lambda | .0322619 .1336246 0.24 0.809 -.2296376 .2941613
-----------------------------------------------------------------------------

rho | 0.04861
sigma | .66362875

lambda | .03226186 .1336246
------------------------------------------------------------------------------

70



. heckman lwage educ exper expersq, select(inlf educ exper expersq nwifeinc age
kidslt6 kidsge6)

Heckman selection model Number of obs  753
(regression model with sample selection) Censored obs  325

Uncensored obs  428

Wald chi2(3)  59.67
Log likelihood  -832.8851 Prob  chi2  0.0000

------------------------------------------------------------------------------
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lwage |

educ | .1083502 .0148607 7.29 0.000 .0792238 .1374767
exper | .0428369 .0148785 2.88 0.004 .0136755 .0719983

expersq | -.0008374 .0004175 -2.01 0.045 -.0016556 -.0000192
_cons | -.5526973 .2603784 -2.12 0.034 -1.06303 -.0423651

-----------------------------------------------------------------------------
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inlf |
educ | .1313415 .0253823 5.17 0.000 .0815931 .1810899

exper | .1232818 .0187242 6.58 0.000 .0865831 .1599806
expersq | -.0018863 .0006004 -3.14 0.002 -.003063 -.0007095

nwifeinc | -.0121321 .0048767 -2.49 0.013 -.0216903 -.002574
age | -.0528287 .0084792 -6.23 0.000 -.0694476 -.0362098

kidslt6 | -.8673988 .1186509 -7.31 0.000 -1.09995 -.6348472
kidsge6 | .0358723 .0434753 0.83 0.409 -.0493377 .1210824

_cons | .2664491 .5089578 0.52 0.601 -.7310898 1.263988
-----------------------------------------------------------------------------

/athrho | .026614 .147182 0.18 0.857 -.2618573 .3150854
/lnsigma | -.4103809 .0342291 -11.99 0.000 -.4774687 -.3432931

-----------------------------------------------------------------------------
rho | .0266078 .1470778 -.2560319 .3050564

sigma | .6633975 .0227075 .6203517 .7094303
lambda | .0176515 .0976057 -.1736521 .2089552

------------------------------------------------------------------------------
LR test of indep. eqns. (rho  0): chi2(1)  0.03 Prob  chi2  0.8577
------------------------------------------------------------------------------
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∙ Olsen (1980) proposed an alternative two-step estimator that enforces

discipline by requiring an exclusion restriction. It can be derived by

assuming, in y2  1x2  v2  0, that v2 has a Uniform−c,c

distribution for any contant c  0 (rather than standard normal). Then

y2  1−v2 ≤ x2 and e2  −v2 also has a Uniform−c,c distribution.

For concreteness, choose c  1/2. Then

Py2  1|x  Pe2 ≤ x2|x  x2  1/2 ≡ x2

where 2 is 2 but with 1/2 added to the intercept.
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∙ Further, the distribution of e2 conditional on e2 ≤ x2 is

Uniform−1/2,x2, and so, using the usual formula for the expected

value of a uniform random variable,

Ee2|x,e2 ≤ x2  Ee2|x,y2  1  x2 − 1/2/2  x2 − 1/2.

∙ As before, make a linearity assumption relating u1 and e2:

Eu1|e2  1e2.

∙ Then

Ey1|x,y2  1  x11  1/2x2 − 1
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∙ Two-step method is now clear. (1) Estimate a linear probability

model by OLS, regressing yi2 on xi, using all of the data, to get the

fitted values, ŷi2  xi̂2. (As always, xi should include a constant.) (2)

Using the selected sample, run the regression yi1 on xi1, ŷi2 − 1.

∙ The test for the null of no sample selection bias is the t statistic on

ŷi2 − 1.

∙ Standard errors should account for the two-step estimation.
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∙ Unlike with Heckman’s approach, one cannot apply Olsen’s method

unless xi1 is a strict subset of xi. That is because ŷi2 − 1  xi̂2 − 1 is a

linear combination of xi.

∙Might carry this idea further. Model Eu1|e2 as a polynomial in e2,

imposing the restriction Eu1  0. Or just add polynomials in xi̂2, for

example,

yi1 on xi1, ŷi2, ŷi22 , ŷi23 using yi2  1.

∙ The intercept in y1  x11  u1 is generally unidentified using this

approach. Not very important for sample selection, but is for

“self-selection” and treatment effects later on.
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∙ Can use the same trick with probit fitted probabilities because  is

a strictly monotonic function. In particular, note that we can always

write the IMR as a function of :

z  hz

where

ha  −1a.

So, approximate h by polynomials. Then

Ey1|x,y2  1 ≈ x11  0  1x2  2x22 . . .qx2q.

∙ As before, lose identification of the intercept because 0 gets

absorbed in the intercept.

77



Endogenous Explanatory Variables

∙ Let y1 be the response variable, as before. Let y2 be the endogenous

explanatory variable. (Easy to extend to a vector.) Now, y3 is the binary

selection indicator.

∙ Think of the model and selection mechanism as follows:

y1  z11  1y2  u1

y2  z22  v2

y3  1z3  v3  0
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∙ If we are careful, we only need the equation for y2 to be a linear

projection, so that y2 can be any kind of variable (discrete, continuous,

some combination).

∙ As in the case of standard 2SLS applied to random sampling contexts,

the equation for y2 is a reduced form, and so z1 should be a subset of

z2.

∙ Even if y2 is always observed, get some robustness by acting as if it is

not.

∙ For reasons we will see, z should include all elements of z2, and at

least one more element.
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∙ Assumptions: (a) z,y3 is always observed, y1,y2 is observed

when y3  1; (b) u1,v3 is independent of z; (c) v3~Normal0,1; (d)

Eu1|v3  1v3; (e) Ez′v2  0 and 22 ≠ 0, where

z22  z121  z2222.

∙ Notice that (e) assumes z2  z1,z22, that is, z1 is contained in z2.

As we will see, (e) is technically not quite right. But the point is that

identification should hold in the population or there is no hope of its

holding in the selected subpopulation.
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∙ Estimating equation: in the population, write gz,y3 ≡ Eu1|z,y3 so

that

y1  z11  1y2  gz,y3  e1

Ee1|z,y3  0.

∙ z1 and gz,y3 are, by construction, exogenous in this equation, but y2

is generally endogenous. So, we will have to apply IV.
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∙ From earlier results on applying IV to a selected sample, IV applied

to the yi3  1 subsample consistently estimates the parameters. We

only need gz,y3, which can act as its own instrument, when y3  1:

gz, 1  1z3.

∙ Two-step procedure: (i) Probit of yi3 on zi (all exogenous variables)

using the full sample. Obtain ̂i3  zi̂3.
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(ii) Apply 2SLS to

yi1  zi11  i1yi2  1̂i3  errori

using instruments zi2, ̂i3.

∙ The first-stage regression in the 2SLS estimation makes it clear that

z22 actually needs to appear in the linear projection of y2 on

z1,z22,z3 in the subpopulation with y3  1. Can test this (account

for two-step estimation).

∙ Simple test for H0 : 1  0 (no selection bias) without taking a stand

on endogeneity of y2: use the usual 2SLS or heteroskedasticity-robust t

statistic on ̂i3.
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Comments

∙ Practically speaking, z should have at least two elements not in z1. It

is helpful to force oneself to include one at least more element in z2 not

in z1, and then one more element in z not in z2. The idea is that we

need something to predict y2 (in the absense of sample selection) and

something else to predict selection, y3.

∙ In the wage offer equation, we might use parents’ education as IVs

for educ, and then other income and number of children as variables

largely predicting workforce participation. The selection equation

should include all such variables.
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∙ Because only fitted values are used for 2SLS, one can use as IVs

zi, ̂i3 rather than zi2, ̂i3. We must include in the instruments at

least all exogenous elements in the estimating equation – zi1,i3 –

and then some additional instruments for yi2.

∙ The first stage regression using zi, ̂i3 likely will suffer from

multicollinearity but we only use the fitted values as IVs for yi2.
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∙ Even if y2 is exogenous in the population model, we usually need an

IV for it if it is sometimes missing. In effect, the missingness of y2

when y3  0 can cause it to be endogenous in the subpopulation.

∙ A different, less robust approach is possible. Suppose y2 is always

observed. Then can estimate 2 from the OLS regression yi2 on zi2
using all of the observations.

∙We can write

y1  z11  1z22  1v2  u1

≡ z11  1z22  v1.

Because we can insert ̂2 for 2, we might just apply the usual Heckit to

this equation.
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∙Why is this less robust than the previous method? Because it requires

something like v1 independent of z, which essentially means v2 should

be independent of z. This severely restricts the nature of y2 because

y2  z22  v2 where v2 is independent of z effectively rules out

discreteness in y2.

∙ Suppose y2  benefitso/wageo. This is zero for some job offers. It is

unlikely we can write y2  z22  v2 with v2 independent of z.

∙ It is more robust to leave y2 in the equation, add ̂i3, and then use IV

(probably 2SLS) on the resulting equation.
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∙ In addition, the first approach outlined applies easily to more

complicated models, such as when y2
2 or interactions enter. We need to

simply specify instruments for these. Plugging fitted values into the

nonlinear function, as always, leads to trouble (even if we did not have

a sample selection problem).
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∙ For example, suppose the structural equation is

y1  z11  1y2  1y2
2  y2z11  u1,

and y1,y2 are observed when y3  1.

∙ Before we estimate the selection equation, it makes sense to decide

what the IVs would be if we did not have a selection problem. Suppose

they are z2,gz2 where gz2 consists of nonlinear functions of z2,

such as squares and cross products.
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∙ Then, use probit of yi3 on zi,gzi2 to get the IMRs, ̂i3. Then, on the

selected sample, use IV (2SLS) on

yi1  zi11  1yi2  1yi22  y2zi11  1̂i3  errori1,

using instruments zi2,gzi2, ̂i3.

∙ Of course, it is possible that gzi2 is not needed in the selection

probit – that is a functional form issue – or some other nonlinear

functions of z2 should be used. But a safe approach is to use the same

functions in both places.
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EXAMPLE: Education Endogenous in the Wage Offer Equation
. probit inlf educ exper expersq nwifeinc age kidslt6 kidsge6 motheduc fatheduc

Probit regression Number of obs  753
LR chi2(9)  227.43
Prob  chi2  0.0000

Log likelihood  -401.1592 Pseudo R2  0.2209

------------------------------------------------------------------------------
inlf | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
educ | .1260833 .0279019 4.52 0.000 .0713965 .1807701

exper | .123625 .018729 6.60 0.000 .0869167 .1603332
expersq | -.0018905 .0006005 -3.15 0.002 -.0030674 -.0007136

nwifeinc | -.0120713 .0048593 -2.48 0.013 -.0215953 -.0025472
age | -.0520759 .0086085 -6.05 0.000 -.0689483 -.0352035

kidslt6 | -.8663033 .1185224 -7.31 0.000 -1.098603 -.6340038
kidsge6 | .0371177 .0436089 0.85 0.395 -.0483541 .1225896

motheduc | .0099308 .0191914 0.52 0.605 -.0276837 .0475452
fatheduc | -.0018494 .0181487 -0.10 0.919 -.0374201 .0337214

_cons | .217918 .519246 0.42 0.675 -.7997853 1.235621
------------------------------------------------------------------------------

. predict xd3h, xb

. gen phi3  normalden(xd3h)

. gen PHI3  normal(xd3h)

. gen lambda3  phi3/PHI3
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. ivreg lwage exper expersq lambda3 (educ  nwifeinc age kidslt6 kidsge6
motheduc fatheduc)

Instrumental variables (2SLS) regression

Source | SS df MS Number of obs  428
------------------------------------------- F( 4, 423)  16.15

Model | 35.018841 4 8.75471025 Prob  F  0.0000
Residual | 188.3086 423 .445173995 R-squared  0.1568

------------------------------------------- Adj R-squared  0.1488
Total | 223.327441 427 .523015084 Root MSE  .66721

------------------------------------------------------------------------------
lwage | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
educ | .1044079 .0175683 5.94 0.000 .0698759 .13894

exper | .0435482 .0164173 2.65 0.008 .0112785 .0758178
expersq | -.0008552 .000442 -1.93 0.054 -.0017241 .0000136
lambda3 | .0241612 .136629 0.18 0.860 -.244395 .2927175

_cons | -.5113313 .3331186 -1.53 0.126 -1.166105 .1434426
------------------------------------------------------------------------------
Instrumented: educ
Instruments: exper expersq lambda3 nwifeinc age kidslt6 kidsge6 motheduc

fatheduc
------------------------------------------------------------------------------

. * Virtually no evidence of sample selection.
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. * Estimated effect ignoring sample selection is similar:

. ivreg lwage exper expersq (educ  nwifeinc age kidslt6 kidsge6 motheduc fatheduc)

Instrumental variables (2SLS) regression

Source | SS df MS Number of obs  428
------------------------------------------- F( 3, 424)  11.20

Model | 34.6262515 3 11.5420838 Prob  F  0.0000
Residual | 188.701189 424 .445049975 R-squared  0.1550

------------------------------------------- Adj R-squared  0.1491
Total | 223.327441 427 .523015084 Root MSE  .66712

------------------------------------------------------------------------------
lwage | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
educ | .0941307 .0266148 3.54 0.000 .0418172 .1464441

exper | .0423212 .0132503 3.19 0.002 .0162766 .0683657
expersq | -.0008366 .000396 -2.11 0.035 -.001615 -.0000583

_cons | -.3567989 .3423923 -1.04 0.298 -1.029796 .3161987
------------------------------------------------------------------------------
Instrumented: educ
Instruments: exper expersq nwifeinc age kidslt6 kidsge6 motheduc fatheduc
------------------------------------------------------------------------------
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. reg educ exper expersq nwifeinc age kidslt6 kidsge6 motheduc fatheduc lambda3
if inlf

Source | SS df MS Number of obs  428
------------------------------------------- F( 9, 418)  216.68

Model | 1836.5383 9 204.059811 Prob  F  0.0000
Residual | 393.657965 418 .941765465 R-squared  0.8235

------------------------------------------- Adj R-squared  0.8197
Total | 2230.19626 427 5.22294206 Root MSE  .97045

------------------------------------------------------------------------------
educ | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
exper | -.7855876 .0304343 -25.81 0.000 -.8454109 -.7257644

expersq | .012524 .0006945 18.03 0.000 .0111588 .0138892
nwifeinc | .0904503 .0047679 18.97 0.000 .0810784 .0998223

age | .3109581 .0120253 25.86 0.000 .2873205 .3345957
kidslt6 | 5.666308 .1891528 29.96 0.000 5.294499 6.038117
kidsge6 | -.2643391 .0406855 -6.50 0.000 -.3443127 -.1843655

motheduc | -.0307841 .018222 -1.69 0.092 -.0666022 .0050341
fatheduc | .0573622 .0165472 3.47 0.001 .0248361 .0898883

lambda3 | -12.00563 .3367136 -35.66 0.000 -12.66749 -11.34376
_cons | 10.89935 .4296475 25.37 0.000 10.05482 11.74389

------------------------------------------------------------------------------
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Binary Response with Sample Selection

∙ The selection problem with a binary response can be solved by partial

MLE. Write

y1  1x11  u1  0

y2  1x2  v2  0

where x,y2 is always observed, x1 ⊂ x, and y1 is observed when

y2  1.

∙ Assume that u1,v2 is independent of x with a bivariate normal

distribution, where the variance of each is unity and Corru1,v2  1.
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∙ Similar to probit with an endogenous binary explanatory variable.

Note that y2 does not appear in the equation for y1 (it cannot, and it

makes no sense in most sample selection contexts).

∙ Estimate by partial MLE. Not believable without an exclusion

restriction in x1, even though parameters are technically identified.

∙ Remember, we interpret the estimates as if we had been able to use a

random sample to estimate

Py1  1|x  Py1  1|x1  x11

directly.
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∙ In Stata, suppose healthins is a binary variable indicating whether

health insurance is included as part of a job offer. We only observe this

variable if the person is in the workforce.

heckprob healthins educ exper expersq,

select(inlf  educ exper expersq otherinc)

∙ Important: Some simple strategies for “correcting” for sample

selection cannot be justified. It is tempting to estimate the selection

equation by probit and then plug the estimated inverse Mills ratio into

the second stage probit, using only the observations with yi2  1. There

is no way to justify this as a sample selection correction.
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∙ Inserting the IMR into the second stage probit is a legitimate test of

the null hypothesis of no selection bias. Can show this by finding

Ey1|x,y2  1, as in the case of a probit model with a binary

endogenous variable. Under the null 1  0, the mean function is

probit, so we will just do probit on the selected sample in obtaining a

score-type test.

∙ Let mx,1,1;2 be the mean function. Can show

∇1
mx,1, 0;2  x11x1

∇1mx,1, 0;2  x11x2

where  is the IMR.
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∙ Therefore, a simple variable addition test is to obtain ̂2 by probit

MLE, and construct the IMRs, ̂i2  xi̂2. Next, using the

observations for which yi2  1 (that is, for which yi1 is observed), run

probit of yi1 on xi1, ̂i2 and use the usual t statistic on ̂i2 to test the

null hypothesis H0 : 1  0.

∙ Under the null, no need to adjust this t statistic for first-stage

estimation.
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Exponential Model with Sample Selection

∙ Start again with an omitted variable formulation, as in the

endogenous explanatory variable case:

Ey1|x,c1  Ey1|x1,c1  expx11  c1.

Here, we assume c1 is independent of x, so it would be harmless to

exclude it (because x1 contains unity) if we could obtain a random

sample.

∙ But again write

y2  1x2  v2  0

and we observe y1 only if y2  1.

101



∙ Assume c1,v2 is independent of x and jointly normally distributed,

with Varv2  1. The key expectation is

Ey1|x,y2  1  exp 1
2/2  x111  x2/x2

where 1
2  Varc1 and 1  Covc1,v2.

∙ So, estimate 2 by probit in the first stage. Then, estimate the above

mean function in the second stage. 1
2/2 gets absorbed in intercept. This

is actually what we want because it appears in the APEs. 1 is

estimated along with 1. Could use Poisson QMLE. with this more

complicated mean function.

∙ Interpret results as exponential regression on random sample.
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∙ Simple test of sample selection bias is obtained by adding the log of

the inverse Mills ratio, logxi̂2, to the exponential function, and

estimate the resulting “model” by, say, the Poisson QMLE using the

selected sample. The robust t statistic for logxi̂2 that allows the

likelihood to be misspecified is a valid test of the null hypothesis of no

selection bias.
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∙ In Stata:

probit y2 x1 ... xK

predict xd2hat, xb

gen lamda2h  normalden(xd2hat)/normal(xd2hat)

gen llamda2h  log(lamda2h)

glm y1 x11 ... x1K1 llamda2h, fam(poisson)
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5. Incidental Truncation: A Tobit Selection Equation

∙ Occasionally, we observe a partially continuous variable that

determines selection. For example, we might observe hours worked,

which implies we observe the wage offer if hours  0.

∙ If hours follows a Tobit model, can use that information.

∙ General model is

y1  x11  u1

y2  max0,x2  v2

s2  1y2  0
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∙ Selection is a function of the partially continuous variable y2.

∙ Under the same assumptions for the probit selection case, we can

derive

Ey1|x,v2  x11  1v2

∙ Therefore, we can apply OLS on the selected sample if we can

observe v2. Now, we effectively can observe v2 because v2  y2 − x2

whenever y2  0 – just when we need to.

∙ Two step procedure: (1) Estimate 2 by Tobit using the entire sample.

Construct v̂i2  yi2 − xi̂2 when yi2  0. (2) Use OLS on the selected

sample of yi1 on xi1, v̂i2.
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∙ As usual, correct for two-step estimation. Not needed to test

H0 : 1  0 using t statistic on v̂i2.

∙ Unlike in the binary selection case, an exclusion restriction is not

needed. That is, we can take x1  x. There is variation in

vi2  yi2 − xi2 that is not a deterministic function of xi because yi2 has

(some) continuous variation.

∙ Assumes y2 does not appear in y1 equation. If

y1  z11  1y2  u1

y2  max0,z2  v2

where s2  1y2  0, above approach works with x1  z1,y2.

107



∙ Including v̂2 simultaneous controls for the endogeneity of y2 and also

the sample selection problem. Now, we do need something appearing in

z (with nonzero coefficient in 2) that does not appear in z1.

∙ If y2 (the corner solution) is better described as following, say, a

Cragg Hurdle model, than the probit selection approach can be used

(because Py2  0|x is assumed to follow a probit.
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∙ One can use the previous approach to intentionally select on a corner

solution variable to obtain simple estimators. For example, suppose

y1  1z11  1y2  u1  0
y2  max0,z2  v2

and there is no selection problem: we observe a random sample on

y1,y2,z.

∙ Assume u1,v2 is independent of z. Under joint normality of u1,v2

with Varu1  1, can use MLE on all the data.
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∙ An alternative is a two-step method that uses only the yi2  0

observations in the second step. But must keep track of parameters.

∙Write

u1  1v2  e1

v2|z ~ Normal0,2
2

so that Vare1  1 − 1
22

2 ≡ 1
2.
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∙ Then

y1  1z11  1y2  1v2  e1  0

and so

Py1  1|z,v2  z11  1y2  1v2 ≡ x11  1v2

where 1  1/1.

∙ After Tobit to get ̂2 and ̂2
2, define the Tobit residuals,

v̂i2  yi2 − zi̂2 when yi2  0. Then, probit of yi1 on xi1, v̂i2 using only

yi2  0 observations to estimate the scaled parameters. Get ̂1, ̂1.

111



∙ Test for endogeneity is immediate. But need to recover 1  1
′ ,1′

to get APEs, so we need to be able to estimate 1. But

1  1
2 2

2  1  1
2/1

22
2

 1  1
2

1 − 1
22

2 2
2 

1 − 1
22

2  1
22

2

1 − 1
22

2

 1
1 − 1

22
2  1/1

2.

Therefore,

1/1  1  1
2 2

21/2.
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∙ So, after estimating the Tobit and then the probit with v̂i2 as a

regressor, we estimate the unscaled coefficients as

̂1  1  ̂1
2 ̂2

21/2̂1

∙ The unscaled estimates are too small (although this does not

necessarily mean that partial effects would be too small).

∙ Easy to bootstrap both stages to avoid using the delta method.
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