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1. INTRODUCTION

∙ Classical minimum distance (CMD) estimation is useful for

combining different estimators of the same parameter. More generally,

for obtaining “structural” estimates from “reduced form” estimates

when a known relationship exists between the “structural” and “reduced

form” parameters.

∙ The relationship is sometimes linear, but need not be. Often the

restrictions are “separable” in a sense to be made precise, but they need

not be.
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∙ CMD is often an alternative to generalized method of moments

estimation.

∙ Often it is easy to estimate some “reduced form” parameters, which

we denote , and then use CMD to recover estimates of , the

parameters of interest (“structural” parameters). In interesting cases, the

dimension of  is strictly larger than that of .
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2. MOTIVATION

∙ Consider a simple example. We have two populations, with

distributions y1 ~ ,1
2 and y2 ~ ,2

2, that is, Ey1  Ey2  

but the populations may have different variances. Suppose we have

random samples of size N1 and N2 from each population, and let

̂1  ȳ1 and ̂2  ȳ2 be the sample averages.

∙ Question: How should we combine ̂1 and ̂2 in the most efficient

way to estimate   ?

4



∙We can think of the class of linear combinations,

a1ȳ1  a2ȳ2     (1)

where a1  a2  1 is needed for unbiasedness. So, write

̂a  aȳ1  1 − aȳ2     (2)

and then

Var̂a  a2Varȳ1  1 − a2Varȳ2

 a21
2/N1  1 − a22

2/N2 ≡ a21  1 − a22.     (3)
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∙ Can use calculus to minimize the variance as a function of a:

a∗  2
1  2

 2
2/N2

1
2/N1  2

2/N2
,     (4)

which simply says that the weight for each estimator depends on its

variance relative to the other estimator. Naturally, we should give more

weight to the estimator with the smallest variance (which, in turn,

depends on the population variance and the sample size).

∙ This simple example suggests that a general framework, which allows

nonlinear restrictions and correlation across estimators, is useful.
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3. GENERAL SETUP

∙ Let  denote a P  1 vector of parameters that we are ultimately

interested in estimating, and let  be S  1 with S  P. (If S  P the

problem is just one of solving P equations – possibly nonlinear – in P

unknowns.)

Separable Case

∙ For a function h : RP → RS, assume the population values satisfy

o  ho.     (5)

∙ Assume h is continuously differentiable on the interior of Θ, and that

o ∈ intΘ.

7



∙ This setup is actually too restrictive in some cases because it assumes

the restrictions are separable in the two sets of parameters.

∙ Let ̂ be a N -asymptotically normal estimator of o (which is often

easy to obtain):

N ̂ − o
a~ Normal0,o     (6)

and assume that o (S  S) is positive definite.

8



∙When S  P, there is generally no solution to the S equations

̂  h.     (7)

∙ The general idea is to estimate o by minimizing the “distance”

between ̂ and h. Essentially, we choose  to minimize the “length”

of the vector

̂ − h.     (8)
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∙ In the simple example above,   , 1  1, 2  2. That is, the

elements of  are estimated ignoring the restriction that they are the

same.

h 



,  − h 

1 − 
2 − 

    (9)

and

̂ − h 
̂1 − 
̂2 − 

.     (10)
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∙ In the general case, we can define a so-called classical minimum

distance (CMD) estimator for a wide class of weighting matrices, but

one almost always (eventually) uses the asymptotically efficient

version.

∙ Let ̂ be a consistent estimator of o, that is, plimN→̂  o.

∙ Then ̂ solves

min
∈Θ

̂ − h ′̂−1
̂ − h.     (11)
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∙ The objective function is effectively a weighted Euclidean distance,

with the weighting matrix the inverse of the estimated

Avar N ̂ − o.

∙ In the previous example,

o ≡ Avar N ̂ − o 
o1

2 /o1 0
0 o2

2 /o2
    (12)

where we define o1  limN→N1/N and o2  limN→N2/N and

N  N1  N2 (so o1  o2  1).
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∙ The minimum distance estimator in this case minimizes

̂ − h ′̂−1
̂ − h  N̂1 − 2N1/̂1

2  ̂2 − 2N2/̂2
2,     (13)

with solution

̂  ̂1
̂1  ̂2

̂1  ̂2
̂1  ̂2

̂2     (14)

where ̂1  N1/̂1
2 and ̂2  N2/̂2

2.

∙ Simple algebra shows that that this is the same estimator we derived

earlier (where we replace g
2 with ̂g

2, g  1, 2 .
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∙ Back to the general case. Let H  ∇h be the S  P Jacobian of

. Then the first order condition for ̂ is

H̂′̂−1
̂ − h̂  0,     (15)

which is P equations in the P unknowns, ̂.

∙ By a standard mean value expansion,

N h̂ − ho  Ho N ̂ − o  op1.     (16)

∙ Also, remember o  ho.
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∙ Therefore,

0  H̂′̂−1
 N ̂ − o − N h̂ − ho

 H̂′̂−1
 N ̂ − o − Ho N ̂ − o  op1.

    (17)

    (18)

∙ Now, H̂  Ho  op1 (because H is continuous) and we

assume ̂  o  op1.

∙ Therefore,

Ho′o
−1Ho N ̂ − o  Ho′o

−1 N ̂ − o  op1.     (19)
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∙ Because Avar N ̂ − o  o,

Ho′o
−1Ho N ̂ − o

d
→ Normal0,Ho′o

−1Ho     (20)

and so

N ̂ − o
d
→ Normal0, Ho

′ o
−1Ho−1     (21)

where Ho ≡ Ho.

∙ To get Avar̂ we divide Avar N ̂ − o by N, as usual:

Avar̂  Ho
′ o
−1Ho−1/N.     (22)
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∙We get same asymptotic variance whether we use o or estimate it

consistently. In other words, we can derive the limiting distribution of

N ̂ − o acting as if we know o, and then estimate the asymptotic

variance by plugging in ̂ for o.

∙We estimate the asymptotic variance as

Avar̂  Ĥ′
̂/N−1Ĥ−1  Ĥ′ Avar̂

−1
Ĥ

−1
    (23)

and use this to construct standard errors, confidence intervals, and Wald

tests of multiple hypotheses.

∙ Can also use a test based on the difference in criterion functions.
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∙ Can show that using a consistent estimator of o
−1 produces the

estimator with the smallest asymptotic variance in the class of all CMD

estimators.

∙ The efficient CMD estimator is often called theminimum

chi-square estimator. This name comes from the fact that the

objective function, properly scaled, has an asymptotic chi-square

distribution if o  ho.
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∙ Precisely,

N̂ − h̂ ′̂−1
̂ − h̂

  N ̂ − h̂ ′̂−1
 N ̂ − h̂

 ̂ − h̂ ′ Avar̂
−1
̂ − h̂ d

→ S−P
2 .

    (24)

    (25)

∙ (If do not multiply by N, the objective function converves in

probability to zero.)

∙ The statistic is conveniently used to test the S − P overidentifying

restrictions.

∙ If we have different choices for ̂, it is better to use the most efficient

estimator.
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Linear Case

∙ If the restrictions can be expressed as

o  Ho     (26)

for a known S  P known, nonrandom matrix H with rank P, then the

minimum chi-square estimator is obtained in closed form:

̂  H ′̂
−1H−1H′̂

−1
̂     (27)

∙ This has the form of a generalized least squares estimator of ̂ on H

using estimated variance matrix ̂.
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∙ Nothing changes of we replace ̂ with ̂/N, so it looks like GLS using

Avar̂ as the variance matrix.

∙ Sometimes, ̂ is diagonal, and then the MCS estimator looks like a

weighted least squares estimator.

∙ Running GLS of ̂ on H using variance matrix ̂/N also gives the

correct estimate of Avar̂.

∙ Viewing MCS as GLS or WLS is fine for computation, but it is

misleading for statistical inference. The number of rows in H, S, is

fixed. It is not growing with N. The MCS estimator inherits its

asymptotic distribution from that of ̂.

21



∙ Already saw one linear example. As another simple linear example,

suppose we have a single population described by y ≥ 0 where, for

some o  0,

Ey  o

Vary  o

    (28)
    (29)

o1  Ey, ̂1  ȳ

o2  Vary, ̂2  N − 1−1∑
i1

N

yi − ȳ2.

    (30)

    (31)
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∙ Now, the 2  2 asymptotic variance of N ̂ − o is diagonal only

in the special case Ey − o3  0 (symmetric distribution). For the

Poisson distribution, where the mean and variance are the same, the

central third moment is not zero.

∙ Generally, can show

Avar N ̂ − o 
o

2 o

o o
    (32)

where o
2  Vary, o  Ey − o3, and o  Ey − o4 − o

4. Of

course, these are all easily estimable using the sample counterparts.
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∙ The resulting minimum chi-square estimator is not necessarily more

efficient than just the sample average. (For example, in the Poisson

case the MLE is the sample average.)
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Nonseparable Case

∙ Sometimes the relationship between o and o cannot be written in

separable form. Instead, suppose Q restrictions can be written as

go,o  0.     (33)

∙ Chamberlain (Harvard lecture notes) has shown that the optimal

weighting matrix in this case is (a consistent estimator of)

∇go,oo∇go,o
′−1,     (34)

where ∇g, is the Q  S Jacobian of g, with respect to . (In

the separable case, ∇g, is IS.)
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∙ So, we need to obtain a prelimary estimator of o, say ̆. Likely this is

obtained using ̂ with the Q  Q identity matrix as the weighting

matrix. Then the MCS estimator solves

min
∈Θ

g̂,′∇g̂, ̆̂∇g̂, ̆′−1g̂,.     (35)

∙ Useful for estimation with pseudo panel data, where independent

cross sections are turned into pseudo panels by grouping units (say,

individuals by birth year).
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4. APPLICATIONS
4.1. Chamberlain’s Approach to Unobserved Effects Models

∙ Consider the usual unobserved effects panel data model under strict

exogeneity:

yit  t  xit  ci  uit

Euit|xi,ci  0, t  1, . . . ,T
    (36)
    (37)

where no restrictions are put on Dci|xi. We know fixed effects, first

differencing, or FGLS versions of these are consistent for , assuming

time-varying xit.
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∙ Explicitly including different intercepts makes the setup more

realistic, but, of course, does not change the main point.

∙ Drop “o” subscript on parameters for simplicity.

∙ FE, FD efficient under different assumptions. Both are inefficient

under general serial correlation patterns in uit : t  1, . . . ,T.
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∙ FEGLS and FDGLS are equally efficient under the system

homoskedasticity requirement

Varui|xi,ci  Varui  .     (38)

∙ But FEGLS and FDGLS are not generally efficient if system

homoskedasticity does not hold. Rather than model, say, Varüi|Ẍi,

can do better than FE or FD by using minimum distance.
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∙ Use the linear projection of ci on xi  xi1, . . . ,xiT:

Lci|1,xi    xi11  xi22 . . .xiTT     (39)

or

ci    xi11  xi22 . . .xiTT  ai

Eai  0, Exi
′ai  0.

    (40)
    (41)
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∙ Absorb  into the t:

yit  t  xit  xi11  xi22 . . .xiTT  ai  uit

≡ t  xit  xi  vit

Evit  0, Exi
′vit  0.

    (42)
    (43)
    (44)

∙We could estimate all parameters by pooled OLS. Turns out, as in the

Mundlak approach, this delivers the FE estimate for . Same for

random effects.
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∙ Instead, use minimum distance. Write the equation as

yit  t  xi11  xi22 . .xit  t . . .xiTT  vit     (45)

  1, . . . ,T,1
′ , . . . ,T

′ ,′′     (46)

for T  K  TK parameters.

∙Write an unrestricted system as

yit  t0  xit  vit, t  1, . . . ,T     (47)

∙  has dimension T  T2K.
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∙ The restrictions are linear. When T  2, the restrictions can be written

as

10  1, 11    1, 12  2

20  2, 21  1, 22    2

    (48)
    (49)

or
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10

11

12

20

21

22



1 0 0 0 0
0 0 IK 0 IK

0 0 0 IK 0
0 1 0 0 0
0 0 IK 0 0
0 0 0 IK IK

1

2

1

2



    (50)

∙ So the matrix H is 4K  2  3K  2 in this case. (There are K

overidentifying restrictions, where K is the dimension of xit.)
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∙ Generally, estimate t0,t by OLS of yit on 1,xi, i  1, . . . ,N,

separately for each t. A GLS approach does not help with efficiency

because the set of regressors is the same in each time period.

∙ Need to estimate the variance-covariance matrix of the entire vector,

̂, using a fully robust variance matrix (that allows heteroskedasticity

and serial correlation in vit : t  1, . . . ,T):

∑
i1

N

Xi
′Xi

−1

∑
i1

N

Xi
′v̂iv̂i

′Xi ∑
i1

N

Xi
′Xi

−1

    (51)

where Xi  IT ⊗ 1,xi and v̂i is the T  1 vector of OLS residuals for

each i.
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4.2. Models with Time-Varying Factor Loads

∙ Now consider the model

yit  t  xit   tci  uit

Euit|xi,ci  0
    (52)
    (53)

∙ Normalize 1  1.

∙ Use Mundlak:

Eci|xi  Eci|x̄i    x̄i     (54)

(or could use linear projection).
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∙ Now plug in and absorb  t into time intercepts:

Eyit|xi  t  xit   t  x̄i ≡ t  xit  x̄i t     (55)

Now, we can write the conditional expectation without imposing the

restrictions:

Eyit|xit, x̄i  t  xitt  x̄it, t  1, . . . ,T.     (56)

∙ Let t  t,t,t. Use OLS for each t to estimate t, t, and t, and

then impose the restrictions using CMD.
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∙ The “structural” parameters are

  1, . . . ,T,′, ′,2, . . . ,T, ′.     (57)

∙ The mapping from  to  is nonlinear. There are T  2TK elements of

, and 2T − 1  2K elements of .

∙ Estimation of the  t along with the other parameters requires some

sort of nonlinear estimation. One could try pooled nonlinear least

squares, but that is generally less efficient than minimum chi-square

estimation.

∙ Recall that the usual FE estimator is consistent for  if Eẍit
′ ci  0

even if the  t vary.
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∙ It is easier to test H0 : 2  3 . . . T  1. Write t   t − 1,

t  2, . . . ,T, so we have, in error form,

yit  t  xit  x̄i  tx̄i  vit, t  1, . . . ,T.     (58)

∙ Under the null, t  0, t  2, . . . ,T. The estimator under the null, if

we use either pooled OLS or RE, is the FE estimator of ; we also get

̂t, ̂.
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∙ Applying the score principle, the gradient of the mean function, with

parameters written as 1, . . . ,T,′, ′,′′, is

d1t, . . . ,dTt,xit, x̄i  tx̄i,d2tx̄i, . . . ,dTtx̄i     (59)

Evaluated at the null this becomes

d1t, . . . ,dTt,xit, x̄i,d2tx̄i̂, . . . ,dTtx̄i̂     (60)
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∙ Therefore, the score test is a variable addition test, where we add the

T − 1 regressors

d2tx̄i̂, . . . ,dTtx̄i̂     (61)

which is just the T − 1 time dummies interacted with the scalar x̄i̂.

∙ So, first use the Mundlak regression

yit on 1, d2t, . . . , dTt, xit, x̄i     (62)

to get ̂. Then use POLS or RE of

yit on 1, d2t , . . . , dTt, xit, x̄i, d2tx̄i̂, . . . , dTtx̄i̂     (63)

and test the last T − 1 regressors for joint significance.
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∙ Even if RE is used in (63), a fully robust test should be used.

∙ If the test rejects can then use minimum distance estimation.

Alternatively, hope that FE is consistent for estimating  (assuming the

 t are not of interest).

∙ Adding time-constant regressors zi causes no important changes.

Also, note that some elements of xit might be interactions with the time

dummies. It is the significance of the terms drtx̄i̂ that signals

time-varying factor loads.

∙ Under the Mundlak approach, x̄i̂ is an estimated proxy of ci, and the

idea is to see whether the coefficients on x̄i̂.
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4.3. Pseudo Panel Data

∙ Following is excerpted from Imbens and Wooldridge (2007, NBER

Lectures).

∙ A pseudo panel data set is created from repeated cross sections. Units

are grouped, often by birth year or geography or some other observable

feature.

∙ For example, we might have cross sections of individuals from 2000

through 2009, and suppose we have people born from 1931 through

1970. A pseudo panel data set computes averages for each birth cohort

in each year, resulting in G  40 groups and T  10 time periods. But

the underlying model is at the individual level.
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∙ Several different asymptotic frameworks have been proposed. Most

seem to be against the spirit of obtaining large random samples from

cross sections over time.

∙ Important to specify the underlying population model – specified at

the individual (more generally, unit) level. Then, study how

aggregation affects our ability to estimate population parameters.
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∙Write the standard, additive unobserved effects model, written for a

generic unit in the population:

yt   t  xt  f  ut, t  1, . . . ,T.     (64)

Notice how we assume that a model over T time periods. For this setup

to make sense, it must be the case that we can think of a stationary

population, so that the same units are represented in each time period.

(Deaton, 1985)

∙ Because of the presence of the  t, can set Ef  0.
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∙ The random quantities in (64) are the response variable, yt, the

covariates, xt (a 1  K vector), the unobserved effect, f, and the

unobserved idiosyncratic errors, ut : t  1, . . . ,T.

∙ Subsequent analysis is for “small” T, so the  t are parameters.

Consider case where all elements of xt have some time variation.

∙What restrictions should we make? Contemporaneous exogeneity

conditional on f, that is,

Eut|xt, f  0, t  1, . . . ,T     (65)

is one possibility.
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We will use an implication of (2):

Eut|f  0, t  1, . . . ,T.     (66)

Think of (64) as representing Eyt|xt, f where any time constant factors

are lumped into f.

∙With a (balanced) panel data set, we would have a random sample in

the cross section. Therefore, for a random draw i ,

xit,yit, t  1, . . . ,T, we would then write the model as

yit   t  xit  fi  uit, t  1, . . . ,T.     (67)
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∙ Deaton (1985): Assume that the population for which (64) holds is

divided into G groups (or cohorts). This designation cannot depend on

time. Birth year, or ranges of birth years, our county of residence, are

common.

∙ Condition (66) then implies

Euit|gi  0, t  1, . . . ,T.     (68)

The  t account for any change in the average unobservables over time

and fi accounts for any time-constant factors.
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∙ Take expected value of (67) conditional on group membership and

use only (68):

Eyit|gi  g   t  Exit|gi  g  Efi|gi  g, t  1, . . . ,T.     (69)

∙ Should we be suspicious that we do not even need Eut|xt, f  0 to

identify the parameters? (Yes.)

∙ Later we will see that the key assumption is that the structural model

(64) does not require a full set of group/time effects. If such effects are

required, then one way to think about the resulting misspecification is

that Euit|gi  g is not zero.
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∙ If we define the population means

g  Efi|gi  g
gt

y  Eyit|gi  g
gt
x  Exit|gi  g

    (70)

for g  1, . . . ,G and t  1, . . . ,T we have the moment equation

gt
y   t  gt

x   g, g  1, . . . ,G, t  1, . . . ,T.     (71)
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∙ No restriction on the dependence between xit and uir across t and r.

xit can contain lagged dependent variables, most commonly yi,t−1, or

contemporaneously endogenous variables (Angrist (1991),

measurement error).

∙ Taking (71) as starting point for estimating  (along with  t and g

makes the issues pretty clear. If we have sufficient observations in the

group/time cells, then the means gt
y and gt

x can be estimated fairly

precisely, and these can be used in a minimum distance estimation

framework to estimate , where  consists of , , and  (where, say,

we set 1  0 as the normalization).
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∙ Suppose we knew population means. How well does (71) identify ?

If we apply “pooled OLS” to the moments,

  ∑
g1

G

∑
t1

T

gt
x′gt

x

−1

∑
g1

G

∑
t1

T

gt
x′gt

y .     (72)
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∙ Now add in the group and time effects:

  ∑
g1

G

∑
t1

T

̈gt
x′̈gt

x

−1

∑
g1

G

∑
t1

T

̈gt
x′gt

y ,     (73)

where ̈gt
x is the vector of residuals from the pooled regression

gt
x on 1, d2, . . . ,dT, c2, ..., cG.     (74)
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∙ Key point: Equation (73) shows that underlying model cannot contain

a full set of group/time interactions. We could allow this feature with

individual-level data. This is the key identifying restriction.

∙  is not identified if we can write

gt
x  t  g

for vectors t and g. Therefore, while we must exclude a full set of

group/time effects in the structural model, we need some interaction

between them in the distribution of the covariates across group/time.
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∙ Even if we accept identification strategy, variation in

̈gt
x : t  1, . . ,T, g  1, . . . ,G might not be sufficient to learn much

about : we may be removing almost all of the variation in the mean of

the covariates across group and time.
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Estimation

∙ Assume we have a random sample on xt,yt of size Nt, and we have

specified the G groups or cohorts. Write xit,yit : i  1, . . . ,Nt. For

each random draw i, it is useful to let ri  rit1, rit2, . . . , ritG be a vector

of group indicators, so ritg  1 if observation i is in group g (drawn at

time t).
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∙ The sample average on the response variable in group/time cell g, t

can be written as

̂gt
y  Ngt

−1∑
i1

Nt

ritgyit  Ngt/Nt−1Nt
−1∑

i1

Nt

ritgyit,     (75)

where Ngt  ∑i1
Nt ritg is properly treated as a random outcome.

57



∙ ̂gt
y is generally consistent for gt

y . First, ̂gt  Ngt/Nt converges in

probability to g  Pritg  1 – the fraction of the population in group

or cohort g. So

̂gt
−1Nt

−1∑
i1

Nt

ritgyit
p
→ g

−1Eritgyit  Eyit|ritg  1  gt
y .

∙ Let wit  yit,xit′. Then

Nt ̂gt
w − gt

w → Normal0,g
−1gt

w.

where ̂gt
w is the sample average for group/time cell g, t and

gt
w  Varwt|gis the K  1  K  1 variance matrix for group/time

cell g, t.
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∙When we stack the means across groups and time periods, it is helpful

to have the result

N ̂gt
w − gt

w → Normal0, gt−1gt
w,     (76)

where N  ∑t1
T Nt and t  limN→Nt/N is, essentially, the fraction

of all observations accounted for by cross section t.

∙ gt is consistently estimated by Ngt/N, and so the sample average for

cell g, t gets weighted by Ngt/N, the fraction of all observations

accounted for by cell g, t.
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∙ Need a consistent estimator of gt
w , and the group/time sample

variance serves that purpose:

̂gt
w
 Ngt

−1∑
i1

Nt

ritgwit − ̂gt
wwit − ̂gt

w′
p
→ gt

w .     (77)

∙ Let  be the vector of all cell means. For each g, t, there are K  1

means, and so  is a GTK  1  1 vector. Stack  starting with the

K  1 means for g  1, t  1, g  1, t  2, ..., g  1, t  T, ..., g  G,

t  1, ..., g  G, t  T. Now, the ̂gt
w are always independent across g

because we assume random sampling for each t.
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∙When xt does not contain lags or leads, the ̂gt
w are independent across

t, too. For now, assume this. Then,

N ̂ −  →Normal0,,     (78)

where  is the GTK  1  GTK  1 block diagonal matrix with

g, t block gt
w /gt. Note that  incorporates both different cell

variance matrices as well as the different frequencies of observations.

The set of equations in (8) constitute the restrictions on , , and . Let

 be the K  T  G − 1 vector of these parameters, written as

  ′, ′,′′.
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∙ There are GT restrictions in equations (71):

gt
y   t  gt

x   g, g  1, . . . ,G, t  1, . . . ,T;

there can be many overidentifying restrictions. Write these restrictions

as

h,  0,     (79)

where h,  is a GT  1 vector.

∙ In this MD problem, the parameters are not separable, but h, is

linear in each argument, which means MD estimators of  are in closed

form.
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∙ Do need an initial consistent estimator of . Straightforward is the

“fixed effects” estimator described above.

∙With the restrictions written as h,  0, Chamberlain (2007)

shows that the optimal weighting matrix is the inverse of

∇h,∇h,′,     (80)

where ∇h, is the GT  GTK  1 Jacobian of h, with respect

to . An estimator of  is just the cell averages. Can use the “fixed

effects” estimator  as the initial consistent estimator of .
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∙ Can show ∇h,∇h,′ is a block diagonal matrix with

blocks

−1,′gt−1gt
w −1,′′.     (81)

But

gt
2 ≡ −1,′gt

w −1,′′  Varyt − xt|g,     (82)

the error variance at time t of group g.
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∙ A consistent estimator is

̂gt
2  Ngt

−1∑
i1

Ngt

ritgyit − xit −  t −  g2,

which is just the residual variance estimated within cell g, t, using the

preliminary estimates of ,  t, and g.
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∙ Can show ∇h,  W, the GT  K  T  G − 1 matrix of

“regressors” in the FE estimation. That is, the rows ofW are

gt  gt
x′,dt,cg. The FOC for the optimal MD estimator is

Ŵ′Ĉ−1
Ŵ̂ − ̂y  0,

and so

̂  Ŵ′Ĉ−1Ŵ
−1Ŵ′Ĉ−1̂y.     (83)

Here, Ĉ is diagonal with entries ̂gt
2 /Ngt/N.
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∙ Efficient MD estimator looks like a “weighted least squares”

estimator. The estimated asymptotic variance of ̂ is Ŵ′Ĉ−1Ŵ
−1/N,

where Ĉ−1 is diagonal with entries Ngt/N/̂gt
2 . Easy to weight each cell

g, t and then compute both ̂ and its asymptotic standard errors via a

weighted regression.

∙Must compute the ̂gt
2 using the individual-level data. Or, assume gt

2

is constant, in which case the weight for cell g, t is simply Ngt/N.
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∙ It is easily seen that the so-called “fixed effects” estimator, , is

  Ŵ′Ŵ
−1Ŵ′̂y.     (84)

∙ It appears that we cannot get the correct asymptotic variance of  by

using “heteroskedasticity-robust” estimator in the regression ̂gt
y on ̂gt

x ,

dt, cg.

∙ Simulation study could see how these standard errors behave. Results

of Stock and Watson (Econometrica, 2008) seem to imply they cannot

be correct with “small” T.)

68



∙ (1) Several papers, including Deaton (1985), Verbeek and Nijman

(1993), and Collado (1998), use a different asymptotic analysis. In the

current notation, GT →  (Deaton) or G → , with the cell sizes fixed.

Seems unnatural. T →  makes conceptual sense but T is usually small.
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(2) McKenzie (2004) shows estimators derived under large G

asymptotics can have good properties under the MD asymptotics. Turns

out IV estimators proposed by Collado (1998), Verbeek and Vella

(2005), are just different ways of using the population moment

conditions.

∙ Inoue (2008) comes closer, but gets nonnormal limiting distribution.

(Asymmetry in treating moments of y and x.)
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∙ Application to models with lags relatively straightforward. The only

difference now is that the vectors of means,

gt
w : g  1, . . . ,G; t  1, . . . ,T contain redundancies, so modify the

moment conditions. Suppose

yt   t  yt−1  zt  f  ut

Eut|g  0, g  1, . . . ,G
    (85)

Original moments are still valid, but the vector of means would be

gt
y ,gt

z , and then appropriately pick off gt
y in defining the moment

conditions.
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∙MD approach exposes how pseudo panels identify population

parameters. Seems tenuous. Need a careful simulation study, where

individual-level data are generated from the population model, and

where gi – the group identifier – is randomly drawn, too. Underlying

model should have full time effects. Verbeek and Vella (2005) come

close, but omit aggregate time effects in the main model while

generating the explanatory variables to have means that differ by

group/time cell.
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∙ A key point is that even if we can get precise estimates of the cell

means – which is often the case with survey data – the nature of the

variation in gt
x across g and t might not be enough to precisely estimate

. At a minimum, if we write

gt
x  t  g  gt

then we need gt ≠ 0 for at least some pairs g, t.

∙ At the same time we cannot allow unrestricted group/time

interactions in the individual-level model.
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