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1. INTRODUCTION

∙We now study a linear set of equations that determines jointly a set of

G outcomes, where endogenous variables may appear on the right hand

side with exogenous variables.

∙ Actually, only the statistical structure is important for identification

and estimation; the system could have omitted variables, for example.

But we are mostly interested in simultaneous equations models.

∙ The leading cases are demand and supply systems, which jointly

determine quantities and prices.
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EXAMPLE: Labor Supply-Wage Offer system for married women. In

equilibrium, write the system as

h  1w  11exper  12exper2  13othinc  14kids  u1

w  2h  21exper  22exper2  23educ  u2,

so other sources of income and number of children affect labor supply

but not the wage offer, and education affects the wage offer but not

labor supply. (Omit intercepts for simplicity.)

∙ In this system, h and w are endogenous. Traditional SEM analysis

would take everything else as exogenous. Nonlinearity in exper

requires no special treatment.
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∙ The idea of an underlying counterfactual is critical to sensible

applications of SEMs. It makes sense to think of a demand function in

isolation, and similarly with a supply function. They are brought

together as a way of determining the observed data.

EXAMPLE: City Crime Rates and Size of Police Force:

crime  1police  11age  12unem  13wage  u1

police  2crime  21age  22unem  23wage  24election  u2

∙ These two equations form a legitimate SEM: each equation stands on

its own. In effect, they describe two different sides of a “market.” They

come together as a system under assumptions about how the observed

outcomes, crimei,policei.

4



∙ The next example is a poor application of SEMs. Suppose the

population is all families in a particular country.

EXAMPLE: Joint Determination of Family Retirement Saving and

Housing Expenditure:

retirement  1housing  11inc  12educ  13age  u1

housing  2retirement  21inc  22educ  32age  u2

∙ Neither of these equations stands on its own. What would it mean, in

the first equation, to study the effect of changing income on retirement

holding housing expenditure fixed? Even if one wants to model the

joint determination of y1 and y2 in this way, the parameters are not

interesting. There is no interesting counterfactual.
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∙ Suppose we now have a binary variable, class, which indicates

whether an adult has taken a course in financial planning. Does not

make sense to add this just to the retirement equation.

∙ Instead, should just analyze

retirement  11inc  12educ  13age  14class  u1.

Maybe we need an instrument for class (perhaps via randomization),

but this has nothing to do with a simultaneous equations model.

∙What do you think of the following? For a firm operating in a foreign

country, y1  R&D spending, y2  foreign technology purchases.
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2. IDENTIFICATION

∙ Identification is a feature of a population. Sampling is a separate

issue.

∙ It is true that certain sampling schemes can cause a lack of

identification, but the population is always the best starting point.

∙With random sampling (as we assume here – remember, in the cross

section), it always makes sense to study the population model.
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Two-Equation System

∙ General two-equation structural system (in the population):

y1  1y2  z11  u1

y2  2y1  z22  u2

where z1 is 1  M1 and z2 is 1  M2. Let z be 1  M contain all

(nonredundant) exogenous variables

Ez′u1  Ez′u2  0

where in almost all applications z1 and z2 (and therefore z) include

unity. We act as if that is true here, so that the structural errors u1 and

u2 have zero means.
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∙ 1, 1, 2, 2 are the structural parameters.

∙ The moment conditions imply that if a variable is exogenous in any

equation, it is exogenous in all equations; this is the traditional starting

point.

∙ Although we do not need them to study identification, we can obtain

reduced forms for y1 and y2 if

12 ≠ 1.
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∙ Generally, a reduced form expresses an endogenous variable as a

function of exogenous variables and unobserved errors.

∙ In this case, solve the two equations for y1 and y2:

y1  12y1  z22  u2  z11  u1

 12y1  z11  z212  u1  1u2.

∙ Therefore, if 12 ≠ 1,

y1  1 − 12−1z11  z212  u1  1u2

≡ z1  v1

where 1 is the M  1 vector of reduced form parameters and

v1  1 − 12−1u1  1u2 is a reduced form error.
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∙We can do the same for y2, so we have

y1  z1  v1

y2  z2  v2.

Both reduced form errors satisfy

Ez′v1  Ez′v2  0,

which means 1 and 2 can be consistently estimated by OLS on a

random sample provided Ez′z is nonsingular. (SUR estimation would

not improve estimation of the RF parameters. Why?)
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∙We can always consistently estimate the RF parameters. When are the

structural parameters identified

∙ Identification in the two-equation case is straightforward. Consider

identification of the first structural equation. Write it with the RF of y2:

y1  1y2  z11  u1

y2  z2  v2
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∙ Because y2 is the only endogenous explanatory variable, we need at

least one instrument for it. That means we must have something in z in

the RF with a nonzero coefficient that is not also in z1.

∙ But y2  2y1  z22  u2 and so 2 has a nonzero coefficient on

something not in z1 if and only if there is at least one element of z2 that

is not also in z1 with nonzero coefficient in 2.
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∙ So, we can read identification of each equation off of the structural

system:

y1  1y2  z11  u1

y2  2y1  z22  u2

The first equation is identified if and only if there is at least one

element in z2 not in z1 with a nonzero coefficient (element of 2) in the

second equation. Similarly, the second equation is identified if and only

if there is something in z1 not in z2 with a corresponding nonzero

element in 1.
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EXAMPLE: In the system

h  1w  11exper  12exper2  13othinc  14kids  u1

w  2h  21exper  22exper2  23educ  u2,

the labor supply function is identified if and only if 23 ≠ 0. The wage

offer function is identified if and only if at least one of 13 and 14 is

different from zero.

∙ Important: Our imposing of exclusion restrictions means that it must

be the case that educ is legitimately excluded from the supply equation

and othinc and kidsare properly excluded from the wage offer equation.
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∙ Estimation of each equation could proceed by 2SLS.

∙ Key Point: In general, identification of any particular equation of an

SEM depends on the structure of other equations in the SEM.
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General Linear System

∙ Up to us to make sure the system makes economic sense. From there,

identification analysis is purely mechanical.

∙ Notation: let y  y1,y2, . . . ,yG be a 1  G vector of endogenous

variables, z  z1, z2, . . . , zM be a 1  M vector of exogenous variables,

and u  u1,u2, . . . ,uG a 1  G vector of structural errors. Write the

system as
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y1  z1  u1  0

y2  z2  u2  0



yG  zG  uG  0

or

11y1  12y2 . . .1GyG  11z1  12z2 . . .1MzM  u1  0
21y1  22y2 . . .2GyG  21z1  22z2 . . .2MzM  u2  0



G1y1  G2y2 . . .GGyG  G1z1  G2z2 . . .GMzM  uG  0
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∙ Note that this setup allows for traditional specification of supply and

demand, where y1 (quantity, say) can be on the left hand side of both

equations with y2 (price) on the RHS in both equations (G  2).

∙ In each equation g, g is 1  G and g is 1  M.

∙ The vector z is exogenous in all equations:

Ez′ug  0, g  1, , . . . ,G,

and we assume that Ez′z is nonsingular.

∙ There are GG  M structural parameters, but we have only GM

moment conditions. We need a lot more information via restrictions on

the parameters.
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∙Write the system of all G equations as

yΓ  zΔ  u  0

GG
Γ  1 2  G

MG
Δ   1 2  G 

∙We assume that Γ is nonsingular, so that a reduced form exists.

Define the G  G variance-covariance matrix of the structural errors as

  Eu ′u.
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∙ The reduced form for all G endogenous variables is obtained as

yΓ  − zΔ − u
y  z−ΔΓ−1  u−Γ−1 ≡ z  v
 ≡ −ΔΓ−1

v ≡ u−Γ−1.

Define the G  G variance-covariance matrix of the reduced form

errors:

 ≡ Ev′v  Γ−1′Γ−1.

∙ Because Ez′v  0 and Ez′z is nonsingular,  and  are always

identified. That is, the reduced form parameters are identified.
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∙When can we recover the structural parameters, Γ, Δ, and  from the

RF parameters? (Sometimes  is of interest, but not usually. If we can

estimate all elements of Γ then we can estimate   Γ ′Γ.)

∙ Let F be any G  G nonsingular matrix. Postmultiply the structural

system by F:

yΓF  zΔF  uF  0

or

yΓ∗  zΔ∗  u∗  0
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∙ The RF of the new system is easily seen to be the same as the RF of

the original system:

yΓ∗  − zΔ∗ − u∗

y  z−Δ∗Γ∗−1  u∗−Γ∗−1
 z−ΔFF−1Γ−1  u−FF−1Γ−1
 z−ΔΓ−1  u−Γ−1

∙ The transformed system is called an equivalent structure because it is

indistinguishable from the original system.
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∙ Our only hope is to place restrictions on Γ,Δ, so that there are no

equivalent structures.

∙ Define the G  M  G matrix of structural parameters on

endogenous and exogenous variables:

GMG
B 

Γ

Δ
.

∙ A G  G nonsingular matrix F is an admissible linear structure if

1. BF satisfies all of the restrictions B does.

2. F′F satisfies all the restrictions  does.
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∙ Need enough restrictions on B and  so that the only admissible

linear structure is F  IG.

∙ In cross section settings,  is rarely restricted, and so for now we

ignore the second requirement. Proceed as if we only place restrictions

on B.

∙We consider identification of the first equation, assuming no

cross-equation restrictions (which are rare in true SEMs with

autonomous equations):

y1  z1  u1  0
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∙ First impose a normalization restriction that one of the elements in 1

equals −1. This defines the LHS variable. For example, if 11  −1,

y1  12y2 . . .1GyG  11z1 . . .1MzM  u1

∙ The normalization restriction means that we cannot get an admissible

structure by multiplying through by any nonzero constant.
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∙ Let

GM1
1 

1

1

and assume that we have imposed the normalization restriction. In

addition, we have restrictions on 1 of the form

R11  0,

where R1 is J1  G  M.
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∙ Often called homogeneous linear restrictions, but, because of the

normalization restriction, it actually allows nonhomogeneous

restrictions by choosing R1 appropriately.

EXAMPLE: G  3, M  4

y1  12y2  13y3  11z1  12z2  13z3  14z4  u1

12  0, 13  14  3

There are J1  2 restrictions (in addition to 11  −1.

R1 
0 1 0 0 0 0 0
3 0 0 0 0 1 1

1
′  −1,12,13,11,12,13,14
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∙When are the restrictions defined by R1, plus normalization, enough

to identify 1?

∙ Let F  f1 f2  fG be a potential admissible structure.

Then the first column of B∗  BF is 1
∗  Bf1. Now

R11
∗  R1Bf1  R1Bf1  0

holds if f1
′  e1

′   1 0  0  because Be1  1. And, the

restrictions hold for any scalar multiple of e1. But we will be able to

rule out scalar multiples of e1, other than e1 itself, by normalization.
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∙ Need to conclude that the dimension of the null space of R1B, that is,

the set of G vectors satisfying R1Bf1  0, is one. Because R1B has G

columns, its null space has rank one if and only if

rankR1B  G − 1.

∙ This is the important rank condition for identification. With the

normalization it is necessary and sufficient for identification of 1. We

must study how the restrictions for the first equation act on the rest of

the system.
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∙ Necessary but not sufficient is the order condition: the number of

rows of R1 is large enough so that R1B could have rank G − 1:

J1 ≥ G − 1.

If J1  G − 1, there is no need to check the rank condition. If

J1 ≥ G − 1, the rank condition might hold, but it needs to be checked.

∙ Go back to the equation without the normalization restrictions,

y1  z1  u1  0. Makes sense to express the order condition as

J1  1 ≥ G,

so that the total number of restrictions in the equation is as large as the

number of endogenous variables.
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∙ After we specify the entire system, we can find

R1B  R11 R12  R1G , which has G columns. The first

is, by definition, the zero vector. So, we must check to make sure the

last G − 1 columns are linearly independent.

EXAMPLE: Consider the three-equation system

y1  12y2  13y3  11z1  13z3  u1

y2  21y1  21z1  u2

y3  31z1  32z2  33z3  34z4  u3

where all restrictions have been imposed.
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∙We have G  3 and M  4, and the 2  7 matrix that imposes the

restrictions on the first equation is

R1 
0 0 0 0 1 0 0
0 0 0 0 0 0 1

If B is the 7  3 matrix without any restrictions yet imposed, then

R1B 
12 22 32

14 24 34
.
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∙ Now we impose all of the restrictions in the system:

R1B 
0 0 32

0 0 34
.

∙ Regardless of the values of 32 and 34, rankR1B is at most one, yet

G − 1  2. Therefore, the first equation fails the order condition (even

though the order condition just holds: J1  2).
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∙ The matrix imposing the restrictions of the second equation,

23  0,22  0,23  0, and 24  0, is

R2 

0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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∙With all restrictions on the entire system imposed,

R2B 

13 0 −1
0 0 32

13 0 33

0 0 34

.
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∙ A sufficient condition for this matrix to have rank two is 13 ≠ 0 and

at least one of 32 and 34 different from zero. The rank condition fails

if 13  13  0, in which case y1 and y2 form a two equation system

with only one exogenous variable, z1, appearing in both equations

∙ The third equation is identified because it contains no endogenous

explanatory variables.
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∙ The most common situation is like in the previous example, where all

restrictions are exclusion restrictions, in which case the restriction

matrix consistst of zeros and ones. For the first equation, the number of

rows in R1 is the number of endogenous variables excluded from the

right hand side, G − G1 − 1, where G1 is the number of included

endogenous variables on the RHS, plus the number of excluded

exogenous variables from the first equation, M − M1. So

J1  G − G1 − 1  M − M1.
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∙ Consequently, the order condition is

G − G1 − 1  M − M1 ≥ G − 1

or

M − M1 ≥ G1.

∙ In other words, the number of exogenous variables not appearing in

the first equation must be at least as large as the number of included

RHS endogenous variables. We know this just from counting to see if

we have enough potential instrumental variables. But even if we do,

they partial correlations with the RHS endogenous variables may not be

sufficient (rank condition).
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Unidentified, Just Identified, and Overidentified

∙ If rankR1B  G − 1 the first equation is unidentified or

underidentified. This always happens if the order condition fails.

∙ If J1  G − 1 and the rank condition holds, we say equation one is

just identified: we have just enough of the right restrictions to estimate

1.

∙ If J1  G − 1 and the rank condition holds, equation one is

(potentially) overidentified, and J1 − G − 1 is the number of

overidentifying restrictions. (We say “potentially” because we might

not really have overidentifying restrictions.)

40



EXAMPLE: Consider the G  2, M  4 system

y1  12y2  11z1  12z2  13z3  14z4  u1

y2  21y1  21z1  22z2  u2

The first equation fails the order condition, and is unidentified. The

second equation satisfies the rank condition if at least one of 13 ≠ 0 or

14 ≠ 0. If 13 and 14 are both different from zero, there is one

overidentifying restriction in equation two. But if, say, 13  0, the

second equation is only just identified because there is only one

instrument for y1, z4.
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3. ESTIMATION AFTER IDENTIFICATION

∙We can write the system as before

yi  Xi  ui

with IV matrix

Zi  IG ⊗ zi.

∙ Therefore, there is no distinction between GMM 3SLS, GIV, and

traditional 3SLS.

∙We can, if we think there is system heteroskedasticity, use efficient

GMM instead.
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∙ As with estimating any system, there is a tradeoff between robustness

and efficiency. Any identified equation can be estimated by 2SLS or

single-equation efficient GMM. In general, a system procedure such as

3SLS or GMM on the system requires that all equations are correctly

specified.

∙What if we want to use a system procedure but some equations are

unidentified? Can replace them with reduced forms.

∙ Easy algebraic equivalances for identified systems: 2SLS on each

equation is the same as 3SLS if (i) Each equation is just identified or

(ii) ̂ (the estimated variance-covariance matrix) used in 3SLS, is

diagonal.
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∙More difficult to show : If only one equation in a system is

overidentified, and the other equations are just identified, 2SLS on the

overidentified equation is the same as the 3SLS estimates when 3SLS is

applied to the system.

∙ In particular, since RFs are just identified, if only one equation is an

overidentified structural equation and the remaining equations are RFs,

2SLS  3SLS on the overidentified equation.
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∙ Suppose for an identified system we put each equation into two

groups, just identified and overidentified. For the overidentified set of

equations, the 3SLS estimates based on the entire system are identical

to the 3SLS estimates using only the overidentified subset. But 3SLS

estimation on the whole system for the just identified set of equations is

generally more efficient than just applying 3SLS on the just identified

set (which is equivalent to 2SLS on each equation). See Schmidt (1976,

Theorem 5.2.13)

∙ Equivalances do not hold – except when all equations are just

identified – with efficient GMM. Accounting for system

heteroskedasticity could be more efficient.
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∙ An important point that is somewhat subtle is that if an equation in a

system has only exogenous variables on the right hand side, but some

exogenous variables are excluded, then it is those exclusion restrictions

that deliver increased efficiency of 3SLS (say) relative to 2SLS. The

latter uses unrestricted reduced forms.

∙ To evaluate specific policies, but not to get estimates of “deep”

(structural) parameters, we can just directly estimate the RFs.

Simulations of the effects of policy changes on equilibrium values use

the reduced form, whether they are estimated directly or obtained from

the structural parameter estimates: ̂  −Δ̂Γ̂
−1
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EXAMPLE: Labor Supply/Wage Offer System

∙ Only consider women who worked positive hours during the year

(because we only observe an hourly wage for working women).

∙We will revisit this example later and discuss how to deal with the

sample selection problem caused by dropping the hours  0

observations.
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. use mroz

. reg hours lwage educ nwifeinc age kidslt6 kidsge6

Source | SS df MS Number of obs  428
------------------------------------------- F( 6, 421)  5.04

Model | 17228385.3 6 2871397.55 Prob  F  0.0001
Residual | 240082635 421 570267.541 R-squared  0.0670

------------------------------------------- Adj R-squared  0.0537
Total | 257311020 427 602601.92 Root MSE  755.16

------------------------------------------------------------------------------
hours | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lwage | -17.40781 54.21544 -0.32 0.748 -123.9745 89.15887

educ | -14.44486 17.96793 -0.80 0.422 -49.76289 20.87317
nwifeinc | -4.245807 3.655815 -1.16 0.246 -11.43173 2.940117

age | -7.729976 5.52945 -1.40 0.163 -18.59874 3.138792
kidslt6 | -342.5048 100.0059 -3.42 0.001 -539.078 -145.9317
kidsge6 | -115.0205 30.82925 -3.73 0.000 -175.6189 -54.42208

_cons | 2114.697 340.1307 6.22 0.000 1446.131 2783.263
------------------------------------------------------------------------------

. * OLS gives essentially zero slope for the labor supply function.
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. * Use 2SLS, with instruments exper, expersq for lwage:

. ivreg hours educ nwifeinc age kidslt6 kidsge6 (lwage  exper expersq)

Instrumental variables (2SLS) regression

Source | SS df MS Number of obs  428
------------------------------------------- F( 6, 421)  3.41

Model | -456272250 6 -76045375 Prob  F  0.0027
Residual | 713583270 421 1694972.14 R-squared  .

------------------------------------------- Adj R-squared  .
Total | 257311020 427 602601.92 Root MSE  1301.9

------------------------------------------------------------------------------
hours | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lwage | 1544.819 480.7387 3.21 0.001 599.8713 2489.766

educ | -177.449 58.1426 -3.05 0.002 -291.7349 -63.16302
nwifeinc | -9.249121 6.481116 -1.43 0.154 -21.9885 3.490256

age | -10.78409 9.577347 -1.13 0.261 -29.60946 8.041289
kidslt6 | -210.8339 176.934 -1.19 0.234 -558.6179 136.9501
kidsge6 | -47.55708 56.91786 -0.84 0.404 -159.4357 64.3215

_cons | 2432.198 594.1719 4.09 0.000 1264.285 3600.111
------------------------------------------------------------------------------
Instrumented: lwage
Instruments: educ nwifeinc age kidslt6 kidsge6 exper expersq
------------------------------------------------------------------------------

. * Now very strong upward slope. Do we believe the exclusion restrictions

. * -- excluding exper, expersq -- in the labor supply function?
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. * The heteroskedasticity-robust standard error is substantially larger

. * on lwage, and so we should use robust inference:

. ivreg hours educ nwifeinc age kidslt6 kidsge6 (lwage  exper expersq), robust

Instrumental variables (2SLS) regression Number of obs  428
F( 6, 421)  2.53
Prob  F  0.0205
R-squared  .
Root MSE  1301.9

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

lwage | 1544.819 603.758 2.56 0.011 358.0628 2731.574
educ | -177.449 67.39857 -2.63 0.009 -309.9286 -44.96935

nwifeinc | -9.249121 5.274702 -1.75 0.080 -19.61715 1.118911
age | -10.78409 10.66514 -1.01 0.313 -31.74764 10.17947

kidslt6 | -210.8339 205.6 -1.03 0.306 -614.9643 193.2965
kidsge6 | -47.55708 56.94704 -0.84 0.404 -159.493 64.37887

_cons | 2432.198 616.2835 3.95 0.000 1220.822 3643.574
------------------------------------------------------------------------------
Instrumented: lwage
Instruments: educ nwifeinc age kidslt6 kidsge6 exper expersq
------------------------------------------------------------------------------
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. * Use 3SLS on system (but reg3 does not allow inference robust to

. * system heteroskedasticity):

. reg3 (hours lwage educ nwifeinc age kidslt6 kidsge6) (lwage hours
educ exper expersq )

Three-stage least-squares regression

------------------------------------------------------------------------------
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
hours |

lwage | 1676.933 431.169 3.89 0.000 831.8577 2522.009
educ | -205.0267 51.84729 -3.95 0.000 -306.6455 -103.4078

nwifeinc | .3678943 3.451518 0.11 0.915 -6.396957 7.132745
age | -12.28121 8.261529 -1.49 0.137 -28.47351 3.911094

kidslt6 | -200.5673 134.2685 -1.49 0.135 -463.7287 62.59414
kidsge6 | -48.63986 35.95137 -1.35 0.176 -119.1032 21.82352

_cons | 2504.799 535.8919 4.67 0.000 1454.47 3555.128
-----------------------------------------------------------------------------
lwage |

hours | .000201 .0002109 0.95 0.340 -.0002123 .0006143
educ | .1129699 .0151452 7.46 0.000 .0832858 .1426539

exper | .0208906 .0142782 1.46 0.143 -.0070942 .0488753
expersq | -.0002943 .0002614 -1.13 0.260 -.0008066 .000218

_cons | -.7051103 .3045904 -2.31 0.021 -1.302097 -.1081241
------------------------------------------------------------------------------
Endogenous variables: hours lwage
Exogenous variables: educ nwifeinc age kidslt6 kidsge6 exper expersq
------------------------------------------------------------------------------
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. * In the system, hourly wage offer does not appear to depend on hours.

. * Key difference between 3SLS and 2SLS estimation of labor supply equation:

. * the former maintains the exclusion restrictions in the wage offer

. * equation. 2SLS uses an unrestricted reduced form for lwage.

. * What if we try to estimate labor demand instead of wage offer?

. ivreg hours educ exper expersq (lwage  nwifeinc age kidslt6 kidsge6)

Instrumental variables (2SLS) regression

Source | SS df MS Number of obs  428
------------------------------------------- F( 4, 423)  6.55

Model | -188692851 4 -47173212.7 Prob  F  0.0000
Residual | 446003871 423 1054382.67 R-squared  .

------------------------------------------- Adj R-squared  .
Total | 257311020 427 602601.92 Root MSE  1026.8

------------------------------------------------------------------------------
hours | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lwage | 1000.535 805.4179 1.24 0.215 -582.5845 2583.655

educ | -130.1076 89.2759 -1.46 0.146 -305.5873 45.37201
exper | 13.88497 39.15248 0.35 0.723 -63.07268 90.84262

expersq | -.0257315 .8910653 -0.03 0.977 -1.777199 1.725736
_cons | 1584.152 520.0551 3.05 0.002 561.938 2606.366

------------------------------------------------------------------------------
Instrumented: lwage
Instruments: educ exper expersq nwifeinc age kidslt6 kidsge6
------------------------------------------------------------------------------
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. * The previous analysis shows that it matters for estimation whether we

. * specify a wage offer or labor demand function. The estimated labor

. * demand function gives nonsense. We can see the problem by looking at

. * the reduced form for lwage. The RF does not depend on the excluded

. * exogenous variables in the labor demand function:

. reg lwage educ exper expersq nwifeinc age kidslt6 kidsge6

Source | SS df MS Number of obs  428
------------------------------------------- F( 7, 420)  11.78

Model | 36.6476796 7 5.2353828 Prob  F  0.0000
Residual | 186.679761 420 .444475622 R-squared  0.1641

------------------------------------------- Adj R-squared  0.1502
Total | 223.327441 427 .523015084 Root MSE  .66669

------------------------------------------------------------------------------
lwage | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
educ | .0998844 .0150975 6.62 0.000 .0702084 .1295604

exper | .0407097 .0133723 3.04 0.002 .0144249 .0669946
expersq | -.0007473 .0004018 -1.86 0.064 -.0015371 .0000424

nwifeinc | .0056942 .0033195 1.72 0.087 -.0008307 .0122192
age | -.0035204 .0054145 -0.65 0.516 -.0141633 .0071225

kidslt6 | -.0558725 .0886034 -0.63 0.529 -.2300339 .1182889
kidsge6 | -.0176484 .027891 -0.63 0.527 -.0724718 .0371749

_cons | -.3579972 .3182963 -1.12 0.261 -.9836494 .2676551
------------------------------------------------------------------------------
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. test nwifeinc age kidslt6 kidsge6

( 1) nwifeinc  0
( 2) age  0
( 3) kidslt6  0
( 4) kidsge6  0

F( 4, 420)  0.91
Prob  F  0.4555
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