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1. Introduction

∙ Now move the the case where unconfoundedness, or selection on

observables, does not hold. Allow units to select into treatment based

on unobservables that affect the response.

∙ Even if eligibility is randomly assigned, actual enrollment in

programs may suffer from self selection. But randomized eligibility can

often be used as an IV.

∙ Identification and estimation are very simple in the constant treatment

effect case. Contemporary interest is often in the heterogeneous

treatment effect case.

2



∙ Three general approaches: (i) Study simple IV estimators to see if

they estimate anything of value under fairly weak assumptions; (ii) Add

more assumptions and try to estimate a parameter such as ate; (iii) Use

“structural” economic models without parametric assumptions, and try

to identify interesting policy or structural parameters.

3



2. Homogeneous Treatment Effect and Treatment Effects a
Function of Obervables

∙ In the simplest case we assume y1 − y0 is constant. Then

y  y0  wy1 − y0  y0  w
≡ 0  w  v0

where 0 ≡ Ey0 and v0 ≡ y0 − 0. So, we have a simple regression

model with a constant slope.

4



∙ Suppose we have a single instrumental variable, z. (At this point, z

could be binary, continuous, or anything in between.) Recall the two

requirments for an instrument:

Covz,w ≠ 0
Covz,v0  Covz,y0  0
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∙ The first requirement (relevance) is fairly easily tested checked. The

second (exogeneity) is maintained. Note that having z predetermined or

randomly assigned does not guarantee its exogeneity. The value of z

could affect y0 through other channels.

∙ Conveniently, the nature of y is not restricted, and the ate  att is

consistently estimated by the IV estimator. [Remember, IV not usually

unbiased.]

∙ Even if we restrict attention to consistency, it is not true that one

should use a “slightly” endogenous instrument rather than OLS.
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∙Why? It is easy to show:

plim ̂OLS    v0
w  Corrw,v0

and

plim ̂IV    v0
w 

Corrz,v0
Corrz,w

So, if Corrz,w is small – that is, z is a “weak” instrument – then even

a small correlation between z and v0 can produce a larger asymptotic

bias than OLS.
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∙ In economics, very common to see IV estimates that are larger in

magnitude than OLS estimates. Usually, other explanations are given

other than bad IV. Measurement error and heterogeneous treatment

effect (later) are among them.

∙Weak instruments lead to large asymptotic standard errors, too:

Avar N ̂IV −  
v0

2

w2z,w2 .

When z,w2 is small, the asymptotic variance can be very large. The

formula for the OLS estimator omits z,w2 .
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Adding Other Covariates and Instruments

∙ Suppose we need to add covariates before our instruments are

appropriately exogenous:

yg  g  x − xg  ug,g  0,1

where g  Eyg and x  Ex.

∙We have made a functional form assumption once we assume vg has a

zero mean, conditional on x. We also assume that netting out x makes z

exogenous. Easiest way to impose both:

Eug|x,z  0,g  0,1.
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∙ In effect, we have made the standard exclusion restrictions plus a

linear functional form. Write

y  y0  wy1 − y0  0  x − x0  u0

 w1 − 0  wx − x  wu1 − u0

 0  w  x0  wx − x  u0  wu1 − u0

where   1 − 0 and 0  0 − x0.

∙ The last term – the interaction of the treatment and the unobserved

gain from treatment, e ≡ u1 − u0, causes difficulties.
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∙ In the simplest case, there is no heterogeneity except in the intercept:

  0,u1  u0.Then

y  0  w  x0  u0,

and we can estimate the parameters by 2SLS using instruments 1,x,z.

∙ How might we exploit the binary nature of w?

1. (Not Recommended): Take the expected value conditional on all

exogenous variables:

Ey|x,z  0  Ew|x,z  x0  Eu0|x,z

 0  Pw  1|x,z  x0

because w is binary.
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∙ Two-step procedure: (i) Estimate Pw  1|x,z by probit (or logit)

and obtain the first-stage fitted probabilities, say

̂i  ̂0  xi̂1  zi̂2. Should be able to reject 2  0 fairly

strongly. (ii) Use the ̂i in place of wi:

yi on 1, ̂i,xi, i  1, . . . ,N.
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∙Why not recommended? (a) Inconsistent generally if model (probit in

this case) for Pw  1|x,z is wrong. Then

Ey|x,z ≠ 0  0  x1  z2  x0; (b) Need to adjust standard

errors for “generated regressor”; (c) No known efficiency properties;

(d) Tempting to achieve identification off of the nonlinearity in the

probit in the absense of instruments.
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2. (Recommended): Use ̂i as an IV, not a regressor. That is, estimate

yi  0  wi  xi0  ui0,

by IV using instruments 1, ̂i,xi.

∙ Not the same as using ̂i as a regressor! The first stage when ̂i is

used as an IV is

ŵi  ̂0  ̂1̂i  xi̂2

and ̂0 ≠ 0, ̂1 ≠ 1, ̂2 ≠ 0.
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∙Why recommended?

(a) Misspecification of probit model does not matter, provided w is

partially correlated with 0  x1  z2! So this method, like using

1,xi,zi as instruments, is robust to having the model for Pw  1|x,z

wrong.

(b) No need to account for generated instruments.in standard errors –

see Wooldridge (2002, Chapter 6).

(c) Estimator is efficient IV estimator if Varu0|x,z  Varu0 and

probit model for w is correct.
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∙ As a practical matter, there might not be much difference in the point

estimates between (1) and (2). Certainly not if the coefficients in the

regression wi on 1, ̂i,xi are close to 0,1, 0. But using the fitted values

as a regressor has no advantages.

∙ Easy to modify to allow treatment to interact with x. After first stage

probit, estimate

yi  0  wi  xi0  wixi − x̄  errori

by IV, using instruments 1, ̂i,xi, ̂i  xi − x̄. Benefits same as

without interaction.

∙ Can safely ignore estimation error in sample mean, x̄.
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∙ Note that we have now allowed heterogeneous treatment effects but

only as a function of x. In particular,

̂x  ̂  x − x̄̂,

and we can insert different values for x to see how the ATE varies with

observed characteristics.
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3. Heterogeneous Treatment Effect and LATE

The Local Average Treatment Effect

∙What does IV estimate, in general, if the gain from treatment, y1 − y0,

is not constant? Imbens and Angrist (1994): Now treatment is

counterfactual, too. Let z be the binary instrumental variable, which is

often randomized eligibility, so that z is zero or one. Let w0 be

treatment status if z  0 and let w1 be treatment status if z  1. (Some

eligibles may not choose to participate; some non-eligibles may find

other ways to “participate.”)
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∙We only observe one of the counterfactual treatments:

w  1 − zw0  zw1

Now write

y  1 − wy0  wy1  y0  w0y1 − y0  zw1 − w0y1 − y0

Assumptions:

LATE.1: z is independent of w0,w1,y0,y1

LATE.2: Pw  1|z  1 ≠ Pw  1|z  0

LATE.3: w1 ≥ w0 (no defiers, or monotonicity)

19



∙ This last condition means that if a unit would participates in the

program when not eligible, they would participate if made eligible.

(Vietnam draft lottery: a defier would be someone who would serve if

not drafted but would not serve if drafted. LATE.3 rules this out.)

∙ Imbens and Angrist define the local average treatment effect

(LATE) as

late  Ey1 − y0|w1 − w0  1

which is the average treatment effect for those induced into treatment

by assignment. (That is, w0  0 and w1  1.)
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∙ Imbens and Angrist call the subpopulation with w1  1, w0  0 the

compliers. These individuals comply with assignment no matter what

their eligibility. That is, if they are assigned to the control group, they

would not participate, and if they are assigned to the treatment, they do

participate.

∙ One criticism of late is that it is a treatment effect for an

unidentifiable segment of the population: we do not know, on the basis

of observing yi,wi, zi whether unit i is a complier.
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∙ Consequently, LATE may not have “external validity,” that is, it may

not apply to evaluations of other programs even if the population is the

same.

∙ A related point is that two different binary instruments lead to

different groups of compliers in the same population. For example, if y

is log of earnings, w is college attendance, and z is living near a college,

the compliers are those who would attend college if one is nearby, but

not otherwise. But if z is whether a grant is offered, the compliers

consist of those who would not attend college if they do not receive a

grant, but would attend if they do.
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∙ The key result of IA is that, under the three LATE assumptions, the

usual IV estimator consistently estimates late. To see this, use the

independence assumption to write

Ey|z  Ey0  Ew0y1 − y0  zEw1 − w0y1 − y0

so that

Ey|z  1 − Ey|z  0  Ew1 − w0y1 − y0.
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Now

Ew1 − w0y1 − y0  1  Ey1 − y0|w1 − w0  1Pw1 − w0  1
 0  Ey1 − y0|w1 − w0  0Pw1 − w0  0

 −1  Ey1 − y0|w1 − w0  −1Pw1 − w0  −1
 Ey1 − y0|w1 − w0  1Pw1 − w0  1

− Ey1 − y0|w1 − w0  −1Pw1 − w0  −1
 Ey1 − y0|w1 − w0  1Pw1 − w0  1

because Pw1 − w0  −1  0 by the no defiers assumption.
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∙ Because Pw1 − w0  −1  0, w1 − w0 is a binary variable, and

Pw1 − w0  1  Ew1 − w0  Ew1 − Ew0.

∙ But, again, z is independent of w0,w1, and so

Ew|z  1 − zEw0  zEw1

which implies

Ew1 − Ew0  Ew|z  1 − Ew|z  0
 Pw  1|z  1 − Pw  1|z  0 ≠ 0

by LATE.2.
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∙We have shown that

Ey1 − y0|w1 − w0  1  Ey|z  1 − Ey|z  0
Pw  1|z  1 − Pw  1|z  0 ,

and this is the probability limit of the simple IV estimator when z and w

are both binary. In fact, the IV estimate is just the Wald estimate,

̂late 
N1
−1∑i1

N ziyi − N0
−1∑i1

N 1 − ziyi
N1
−1∑i1

N ziwi − N0
−1∑i1

N 1 − wiyi
,

where N1  ∑i1
N zi and N0  N − N1. (Sometimes called a “grouping

estimator.”)
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∙ The LATE interpretation of IV has had wide influence in the

treatment effect literature. It is probably relied on too much to explain

why IV estimate is larger than OLS. Sometimes one forgets the

possibility that the IV is not exogenous.

∙ Literature is vast on allowing covariates, x, in the analysis and when z

is not a binary scalar. Flavor of results carries through.
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4. Control Function Methods for Heterogeneous Treatment
Effects

∙ Suppose we think there are heterogeneous treatment effects but are

not satisfied with estimating LATE (or possibly the necessary

assumptions do not hold). The “old-fashioned” approach is to add more

assumptions and apply control function methods. This leads to the

so-called “switching regression” model, which is the same as a random

coefficient model.

∙ Recall that we can write

y  0  w  x0  w  x − x  u0  w  e

where e  u1 − u0. Note that the ATE is still the coefficient on w.
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∙We have to take seriously the underlying functional forms,

Eyg|x  g  xg, and we will further restrict the conditional

distribution of yg. In effect, this setup applies to yg continuous.

(Contrast the approaches based on unconfoundedness, particularly PS

weighting and matching.)

∙ Even if we add the exogeneity assumptions

Eu0|x,z  Ee|x,z  0,

it is generally not true that
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Ew  e|x,z  Ew  e.

and this is the condition for earlier IV estimators to be consistent for 

if the interaction term w  e is in the error term – see Wooldridge (2003,

Economics Letters).

∙ As it turns out, this condition can hold for continuous treatments, in

which case only 0 is estimated inconsistently. The IV estimator is

consistent for   ate.

∙ For common binary response models for w, this mean independence

assumption is known not to hold.
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∙ Instead, use a control function approach, that is, find Ey|w,x,z:

Ey|w,x,z  0  w  x0  w  x − x

 Eu0|w,x,z  wEe|w,x,z

∙We can estimate the expectations if we model w. Probit is convenient,

and we now have to take the model seriously.

w  10  x1  z2  c ≥ 0

and

u0,u1,c|x,z ~ Multivariate Normal

∙ Can relax this a bit: Eu0|c,x,z and Eu1|c,x,z linear in c (and do

not depend on x,z) along with Dc|x,z standard normal.
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∙ Expectations have the well-known “inverse Mills ratio” form:

Ey|w,x,z  0  w  x0  w  x − x

 wr/r
 1 − wr/1 − r

where  is the standard normal pdf and  is the standard normal

cdf and r  1,x,z.

∙ This is an estimating equation for , and , too, when we want

x    x − x.
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∙ Two-Step Method (Heckman, but for “switching regression,” or

“endogenous treatment,” not sample selection):

(i) As before Run probit of wi on 1,xi,zi and obtain ̂i  ri̂ and

̂i  ri̂.

(2) Run the OLS regression

yi on 1,wi,xi,wi  xi − x̄,wi  ̂i/̂i, 1 − wi  ̂i/1 − ̂i

∙ There is a “generated regressor” problem. Need to adjust standard

errors and inference for first-stage estimation. Can use “heckit” in

Stata applied to treated and nontreated.
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∙ If, say, we estimate the coefficients ̂0, ̂0
′
′ and ̂1, ̂1

′
′ using

heckit on the wi  0 and wi  1 subgroups, important to form

̂x  ̂1 − ̂0  x̂1 − ̂0

and, as a special case,

̂  ̂ate  ̂1 − ̂0  x̄̂1 − ̂0.

It makes no sense to just look at ̂1 − ̂0 unless ̂1  ̂0 has been

imposed or x̄ is, coincidentally, close to zero.
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∙ The ATEs are never obtained by looking at

Êyi|wi  1,xi,zi − Êyi|wi  0,xi,zi and averaging these differences

across i. We already know how  and x depend on the parameters.

They do not depend on z!

∙ Again, we use the formual for Ey|w,x,z as an estimating equation

∙Whether separate estimations are carried out or the pooled regression

is used, can use the bootstrap for inference.
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∙ The Stata command “treatreg” (typically using MLE, but sometimes

using the CF approach) does not apply to the full switching regression

case. In fact, it seems to apply only to the simple model with

homogeneous effect,

y  0  w  x0  u0,

in which case more robust IV methods are available. The CF regression

in this case is

yi on 1,wi,xi,wi  ̂i/̂i  1 − wi  ̂i/1 − ̂i

∙ That is, treatreg imposes the restriction   .
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∙ As usual, need make sure z has at least one element that predicts

treatment. (Use the first-stage probit.)

∙ In the pooled estimation in the general case, can use a joint test of the

two terms wi  ̂i/̂i, 1 − wi  ̂i/1 − ̂i to test the null that w is

exogenous. Under the null, do not need to account for generated

regressors, so use a heteroskedasticity-robust Wald test.

37



∙ Can estimate att, too, but must be careful. First find attx,z and

then average out x,z. (Heckman, Tobias, Vytlacil).

∙ In general,

attx,z  Ey1 − y0|w  1,x,z
 Ey1|w  1,x,z − Ey0|w  1,x,z

∙ In the current context, Ey1|w  1,x,z is obtained directly from the

Heckit using wi  1:

Êy1|w  1,x,z  ̂1  x̂1  ̂1r̂

where ̂1 is the consistent estimator of Corru1,e  1 and

r  1,x,z.
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∙ For Ey0|w  1,x,z, we first run Heckit using wi  0. But we do not

want Ey0|w  0,x,z. Instead,

Êy0|w  1,x,z  ̂0  x̂0  ̂0r̂

It follows that

̂attx,z  ̂1 − ̂0  x̂1 − ̂0  ̂1 − ̂0r̂

Then ̂att can be obtained by averaging ̂attxi,zi across the wi  1

observations:

̂att  N1
−1∑

i1

N

wi̂1 − ̂0  xi̂1 − ̂0  ̂1 − ̂0ri̂.
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∙ If 1  0, attx,z  atex, which of course implies. att and ate

still generally differ in this case because att  Eatex|w  1 while

ate  Eatex.

∙ If we have no need for the full switching regression – in particular, if

u1  u0 – then the IMR does not appear in calculation of att.
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∙ If y has discreteness, we can try to exploit its nature. For example,

suppose yg are binary, and we are willing to assume, for g  0,1,

yg  1g  xg  ug  0

ug|x ~ Normal0,1

∙We know that the ATE as a function of x is

x  1  x1 − 0  x0,

which is easy to estimate given estimates of the parameters.
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∙ If we again assume

w  10  x1  z2  c ≥ 0

and

u0,u1,c|x,z ~ Multivariate Normal,

then estimation using standard software is straightforward: apply the

Heckman selection approach to the probit model for the control

wi  0 and treated wi  1 groups separately.
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∙ In Stata, “heckprob.” This gives ̂0, ̂0, ̂1, ̂1 and then we have

̂x  ̂1  x̂1 − ̂0  x̂0,

which we can study at various values of x, or average across

subpopulations. The estimate of

ate  Ex1  x1 − 0  x0

is

̂ate  N−1∑
i1

N

̂1  xi̂1 − ̂0  xi̂0.

∙ Estimation of att is more complicated.
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5. A Different Approach to Allowing Heterogeneous
Treatment Effects

∙ Based on Wooldridge (2007, Advances in Econometrics). Go back to

the linear model:

y  0  w  x0  w  x − x  u0  w  e

∙ Rather than find Eu0|w,x,z and Ee|w,x,z, now write

w  e  Ew  e|x,z  a, where Ea|x,z  0 by definition. Then

y  0  w  x0  w  x − x  Ew  e|x,z  u0  a,

where now the composite error, c  u0  a, has zero mean conditional

on x,z.
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∙ Turns out Ew  e|x,z is remarkably simple:

Ew  e|x,z  r  0  x1  z2

∙ The estimating equation is

y  0  w  x0  w  x − x  r  c

Ec|x,z  0.
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∙ But w is still endogenous in this equation, so we still need an

instrument. (This is why the method differs from standard control

function approach.)

∙ The added regressor, r, is exogenous, and acts as its own

instrument. The natural instrument for w is r.
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∙ Two-step procedure:

(i) As before, probit of w on 1,x,z. Obtain ̂i  ri̂ and

̂i  ri̂

(ii) Estimate

yi  0  wi  xi0  wi  xi − x̄  ̂i  errori

by IV, using instruments 1, ̂i,xi, ̂i  xi − x̄, ̂i.

∙ Generated regressor problem with ̂i, so use delta method or

bootstrap. (Do not need to worry about generated instruments.)
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∙ A test of whether w  u1 − u0 is needed is just the usual

(heteroskedasticity-robust) t statistic on ̂i, after IV estimation. Not a

test of endogeneity of w because w can still be correlated with u0.

∙ Drawback to this approach: Does not work with binary z without

covariates: 0  2z and 0  2z are perfectly collinear when z

is binary.

∙ Generally, might be sensitive to weak instruments. Need z to vary

sufficiently. Control function approach does work with binary z, at least

in some cases. But in CF case, test of interaction not robust to

nonnormality (endogeneity and functional form tied together).
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∙ Can learn other things by studying the estimating equation. Assume

we have no covariates, so drop x and write

y  0  w  0  2z  c
Ec|z  0.

Via simulations, Angrist (1990, NBER Technical Working Paper)

studied the properties of the usual IV estimator in the equation without

0  2z. In other words, the implicit error term is

0  2z  c. In general, the IV, z [which is what Angrist used, not

0  2z], is correlated with 0  2z. But not always. In fact, in

Angrist’s simulations, 0  2z  2z and z has a symmetric

distribution about zero.
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∙ Just like z and z2 are uncorrelated when z is symmetrically distributed

about 0,

Covz,2z  0

[because  is symmetric about zero]. We already know

Covz,c  0, and so z is uncorrelated with 0  2z  c.

∙ Likely explains why Angrist’s simulation results for the simple IV

estimator look so promising for estimating .
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