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1. INTRODUCTION AND EXAMPLES

∙ Let xi,yi denote a random draw from a population, where xi and yi

can both be vectors. Suppose we are interested in the distribution of yi

conditional on xi, Dyi|xi. If we use a parametric model for a density

describing Dyi|xi, maximimum likelihood estimation is natural.

∙ Some use the label conditional maximum likelihood estimation

(CMLE) because we are not modeling the distribution of xi. But CMLE

also has a special meaning in certain panel data contexts.
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∙ For panel data applications, where we have xit,yit : t  1, . . . ,T,

we can distinguish between modeling the joint distribution of

yi1,yi2, . . . ,yiT given xi1,xi2, . . . ,xiT and just modeling the

distributions Dyit|xit for each t. (These are sometimes called the

“marginal” distributions, but they are really “conditional marginals.”

The main point is that we are not modeling the joing dependence across

time, which can be difficult.)

∙ As before, with panel data we will use a “small T” setting, so that

asymptotic arguments are with independent, identically distributed

data.
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∙ First just start with the case where have a density for Dyi|xi  x for

other possible outcomes x. This fully describes the stochastic behavior

of yi. Contrast with NLS, where we model just the conditional mean.

Or LAD, where we model the conditional median. We can recover all

of these features, and more, by modeling the entire distribution.

∙ Let Θ be the parameter space, as before, as subset of RP. The model

of the density is denoted

fy|x;, y ∈ Y, x ∈ X,  ∈ Θ

where we assume this is a proper density for each . (That is, it is

nonnegative and “integrates” to one.)
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∙We want to allow yi to have any characteristic: continuous, discrete,

both features. A density can be defined on all cases of interest.

EXAMPLE (Probit): Suppose yi is a scalar binary response, so it takes

just two values, zero and one. Let xi be a 1  K vector with xi1  1 for

simplicity. Suppose yi is generated by a linear latent variable model:

yi
∗  xi  ei

ei|xi ~ Normal0,1
yi  1 if yi

∗  0
 0 if yi

∗ ≤ 0.

5



∙ A useful shorthand is

yi  1yi
∗  0

where 1 is the indicator function, equal to one if the statement in

brackets is true, zero otherwise.

∙ The data we observe are xi,yi, and we are usually interesting in the

effects of xi on yi.

Pyi  1|xi  Pyi
∗  0|xi  Pxi  ei  0|xi

 Pei  −xi|xi  1 − −xi  xi

where z  
−

z
vdv is the standard normal cdf and

v  2−1/2 exp−v2/2 is the standard normal pdf.
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∙We have now completely characterized the conditional distribution:

f1|x;  x
f0|x;  1 − x

or

fy|x;  1 − x1−yxy, y  0,1
 0 if y ∉ 0,1.
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EXAMPLE (Poisson): Let x  Ey|x where y ∈ 0,1, 2, . . . and

  0. Then the conditional distribution is Poisson if the density is

fy|x  exp−xxy/y!

where y!  1  2   y − 1  y and 0!  1. (The distribution is entirely

characterized by the mean.) If mx, is the model of the mean, then

the model of the density is

fy|x;  exp−mx,mx,y/y!

or, with mx,  expx,

fy|x;  exp−expxexpyx/y!
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∙ The Poisson distribution turns out to have a nice robustness property,

that we will use later. Namely, even if the Poisson distribution is

incorrect, mean parameters will be consistently estimated if the mean is

correctly specified. This leads us to quasi-maximum likelihood

estimation (QMLE) for the conditional mean.

EXAMPLE (Normal) Let mx, be the mean function and vx, the

variance function. Then

fy|x;  2vx,−1/2 exp−y − mx,2/2vx,, −   y  

∙ Often the mean and variance parameters are entire separate, but not

always.
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∙ As it turns out, like the Poisson distribution for estimating parameters

of a mean, the normal distribution identifies the first two moments even

if the distribution is not normal. That leads us to the notion of QMLE

for the conditional mean and conditional variance jointly. For now we

assume the density is correctly specified in its entirety.

∙ If the variance as taken as constant, say 2, then the Gaussian

(normal) MLE is the NLS estimator, and we know it is consistent if just

the conditional mean is correctly specified. Therefore, we already know

that the Gaussian MLE is robust to certain kinds of distributional

misspecification.
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2. CONSISTENCY OF MLE

∙ The motivation for MLE in introductory statistics is intuitively

appealing, but it does not directly lead to a verification of consistency.

In fact, we will apply the M-estimation results to the objective function

qwi,  − log fyi|xi;

∙ ℓi ≡ log fyi|xi, called the log-likelihood function for

observation i. It is random because it depends on xi,yi, but we are

interested in it as a function of .

∙ Again, for the theory we should be careful about using o for the

“true value” (but drop later for applications).
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∙ So fy|x;o is the true density of yi given xi  x for all x ∈ X.

∙ The (Conditional) Maximum Likelihood Estimator of o, ̂

max
∈Θ

N−1∑
i1

N

log fyi|xi;.

∙ Note that this is the starting point. The key is to show that the log

likelihood identifies o. This follows by the Kullback-Leibler

Information Inequality. For our purposes, it implies that

Elog fyi|xi;o|xi ≥ Elog fyi|xi;|xi, all  ∈ Θ

and so

Elog fyi|xi;o ≥ Elog fyi|xi;, all  ∈ Θ
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∙ For identification, we assume o is the unique solution. The key is

that it is always a solution. Then, we have to rely on the functional form

of the density and the distribution of xi to ensure uniqueness. (For

example, in the probit and Poisson cases, perfect collinearity in xi will

violated identification, just as in linear regression.)

∙ Provided ℓi ≡ log fyi|xi; is continuous in  and that enough

moments of the log likelihood are bouned across , the MLE is

generally consistent. Just apply the M-estimation consistency result

directly.
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∙ Discontinuity in the parameter is rare, but happens if, say, the support

of the distribution depends on  (as in the case of a Uniform0,

distribution). The MLE is often consistent, but other arguments are

needed. And the large-sample inference changes. In the case of a

Uniform0, model, ̂  maxy1, . . .yN does not have a standard

normal limiting distribution when properly standardized. The same is

true of models of auctions where the unknown parameters include the

support of the price offer distribution.
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3. ASYMPTOTIC DISTRIBUTION

∙ Denote the score of the log likelihood as the P  1 vector

s i  sxi,yi,  ∇ log fyi|xi;′  ∇ℓi′

Further, the Hessian is still the Jacobian of the score:

Hi  Hxi,yi,  ∇s i

∙ A slight notational change from M-estimation:

Ao  −EHio

Axi,o  −EHio|xi

so that Axi,o is postive semi-definite and Ao is pd.
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∙ As before, let

Bo  Es ios io′.

∙ It is useful to verify certain features of the score. First, because o

solves

max
∈Θ

Elog fyi|xi;|xi,

the score generally satisfies

Es io|xi  0

and so

Es io  0.
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∙ This condition is sometimes referred to as Fisher consistency: the

MLE solves a population maximization problem, and then we use the

sample analog.

∙ Further, under regularity conditions, the conditional information

matrix equality (CIME) holds. Namely,

− EHio|xi  Es ios io′|xi

which implies the unconditional information matrix equality (UIME):

− EHio  Es ios io′.

∙ In the notation of M-estimation,

Ao  Bo.
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∙ Therefore, for correctly specified (conditional) maximum likelihood

problems,

Avar N ̂ − o  Ao
−1  Bo

−1.

∙ So, generally, one chooses among three estimators of Avar̂:

∑
i1

N

−Hi̂
−1

, ∑
i1

N

Ai̂
−1

, ∑
i1

N

s i̂s i̂
′
−1

.
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∙ The outer product of the score formulation, while computationally

simple, can have severe finite-sample bias; usually the standard errrors

are too small on average.

∙ The Hessian and expected Hessian forms tend to work well. In

leading cases, the expected Hessian form depends only on first

derivatives.

∙ If we entertain the possibility that the conditional density is

misspecified, then a sandwich form from M-estimation is required. In

econometrics, this notion was popularized by White (1982,

Econometrica).
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∙ EXAMPLE (Probit): The log likelihood for a random draw i is

ℓi  1 − yi log1 − xi  yi logxi

∇ℓi  −1 − yixixi/1 − xi

 yixixi/xi

 xixi
−1 − yixi  yi1 − xi

xi1 − xi

 xixi
yi − xi

xi1 − xi
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∙ Therefore, the score is

s i  xixi
′ yi − xi
xi1 − xi

and

Es io|xi  xioxi
′ Eyi|xi − xio
xio1 − xio

 0

because Eyi|xi  Pyi  1|xi  xio.

∙ Note that Es io|xi  0 whenever Eyi|xi  xio, even if yi is

not binary. For example, yi could be a fractional response. (More later

with quasi-MLE.)
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∙ The Hessian has the form

Hi  ∇s i 
−xi2xi

′xi

xi1 − xi
 Lxi,yi − xi

where Lxi, is the Jacobian of

xixi
′

xi1 − xi
.

Under correct specification, we can use

Axi,o  −EHio|xi 
xio2xi

′xi

xio1 − xio
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∙ Then,

Â  N−1∑
i1

N
xi̂2xi

′xi

xi̂1 − xi̂
p
→ Ao.

So the “usual” asymptotic variance estimator is

∑
i1

N
xi̂2xi

′xi

xi̂1 − xi̂

−1

,

which is easily seen to be positive definite when the inverse exists.
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∙We can verify the conditional information matrix equality. Write

ui  yi − xi and ui  yi − xio. Then

s is i′  xi2xi
′xi

ui2

xi1 − xi2

so

Es ios io′|xi  xio2xi
′xi

Eui
2|xi

xio1 − xio2

 xio2xi
′xi

Varyi|xi
xio1 − xio2

assuming Eyi|xi  xio.
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∙ For a binary response yi, Varyi|xi  xio1 − xio, and so

Es ios io′|xi 
xio2xi

′xi

xio1 − xio
 −EHio|xi,

which is easily seen to be psd for any xi.
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∙ EXAMPLE (Poisson Regression): The log likelihood for random

draw i is

log fyi|xi;  −expxi  yixi − logyi!

and we drop the term logyi! for computational purposes. (When

comparing different models for Dyi|xi based on the value of the

log-likelihood function, this term should be added back in.)

∙ The score is

s i  −xi
′ expxi  yixi

′

 xi
′yi − expxi
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∙ Therefore,

Es io|xi  xi
′Eyi|xi − expxio  0

because Eyi|xi  expxio.

∙ For future reference, note how Fisher consistency holds whenever

Eyi|xi  expxio, that is, when the mean is correctly specified.

Nothing else about the Poisson distribution needs to be correct.

∙ The Hessian is particularly easy to compute:

Hi − expxixi
′xi,

and there is no difference between the Hessian and the expected

Hessian given xi.
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∙ Under the Poisson distributional assumption, the estimated

asymptotic variance is

Avar̂  ∑
i1

N

expxi̂xi
′xi

−1

.

We can verify the CIME:

Es ios io′|xi  Eui
2|xixi

′xi

 expxioxi
′xi

where ui  yi − expxio.

∙ All that is used from the Poisson distribution is Varyi|xi  Eyi|xi.
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∙ If we allow a general mean function, the formulas are more

complicated. But the expected Hessian still has a simple form:

− EHio|xi 
∇mxi,o′∇mxi,o

mxi,o

and a valid estimated asymptotic variance, under the Poisson variance

assumption, is

∑
i1

N
∇mxi, ̂′∇mxi, ̂

mxi, ̂

−1

∙ Looks like the expression for weighted least squares under correct

variance specification when hxi,  mxi,.
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∙ Aside: When mxi,  expxi, A WNLS approach, with

hxi,  expxi adds more flexibility, as the mean and variance

need not be equal. And, can allow for fully robust inference. Can obtain

fully robust inference for Poisson regression, too. (This topic is covered

explicitly in Chapter 18.)
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4. MLE TESTING

∙We can apply the same three statistics, Wald, LM (score), and LR

statistics.

∙ Under correct specification of the entire distribution, we do not need a

fully robust statistic. The LR statistic is

LR  2ℒur − ℒr  2 ∑
i1

N

ℓi̂ −∑
i1

N

ℓi̃

where ̂ is the unrestricted estimator and ̃ is the estimator with Q

smooth restrictions imposed. Under H0,

LR d
→ Q

2 .
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∙ The Wald statistic has a disadvantage compared with the score and

LR statistics in this (and other) nonlinear context: the Wald statistic is

not invariant to how the model is parameterized.

∙ An asymptotic t statistic,

t  ̂j − aj
se̂j

.

is a Wald statistic. Suppose we want to test H0 : o  1 against

H1 : o  0. We can use

̂ − 1
se̂
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∙ Can also define   log and test H0 : o  0. Then ̂  log̂.

By the delta method, N log̂ − logo  o
−1 N ̂ − o  op1,

or

N ̂ − o  o
−1 N ̂ − o  op1.

∙ It follows that

Avar̂  Avar̂/o
2

so

se̂  se̂/̂.
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∙ An alternative t statistic is

̂
se̂  ̂ log̂

se̂
≠ ̂ − 1

se̂
.

∙ So we have shown that the Wald test is not invariant to nonlinear

transformations of the parameters (and corresponding estimators).
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∙ Can show that the score test, if based on the outer product (not a good

idea) or the expected Hessian (a better idea) is invariant to

reparameterization. The LR statistic is because it only uses the

maximized values of the objective functions.

∙ In the framework of conditional MLE with conditioning variables, we

can apply a version of the parametric bootstrap. That is, do not

resample xi : i  1, . . . ,N. Simply draw from the distribution

described by f|xi; ̂ to get data xi,yi
b : i  1, . . . ,N. Or, first

resample indices to obtain xi
b : i  1, . . . ,N, and then draw from

f|xi
b; ̂ to get yi

b.
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5. TWO-STEP MLES

∙ Can apply the results for two-step M-estimation directly. Often, both

steps are MLEs, but sometimes the first step is relative easy (say, linear

regression) and the second step is nonlinear MLE. We will see this with

probit and Tobit models when we apply control function methods.
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∙When the first-stage estimator is a correctly specified CMLE, there is

a “surprsing” efficiency result when the the second-stage estimator

satisfies certain assumptions.

∙ The result is that it is actually more efficient to use a first-stage

estimator than if we could use the known value of the parameter in the

second stage.
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∙ Assume the first-step estimator, ̂, comes from a (conditional)

maximum likelihood estimation problem (that satisfies the appropriate

regularity conditions):

max
∈Γ
∑
i1

N

log hvi|zi;,

where h|z; is a model of the density underlying Dvi|zi; the

population value is o.
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∙ By the information matrix equality and the usual influence function

representation for MLE,

N ̂ − o  Ediodio
′−1N−1/2∑

i1

N

dio  op1,

where di ≡∇ log hvi|zi; is the J  1 score of the first-step

log-likeliood.
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∙ Assume that the second-step estimator, ̂, is a two-step M-estimator,

solving the problem

min
∈Θ
∑
i1

N

qvi,wi,zi,, ̂.

∙ This could be an MLE, but it could be, say, nonlinear least squares.

∙ Now add the key assumption:

Dvi|wi,zi  Dvi|zi,

which is often called a conditional independence assumption:

conditional on zi, vi and wi are independent.
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∙ In many missing data and treatment effect settings, a conditional

independence assumption holds. In those cases, vi is usually a binary

missing data or treatment indicator. It could also be a multiple set of

dummy variables indicator different “treatment” intensities.
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∙ Let s i, ≡ ∇qvi,wi,zi,,′ be the P  1 score of the

second-step objective function, but only with respect to , and let

Fo  E∇s io,o (a P  J matrix).

∙ Under the generalized conditional information matrix equality,

because s io, is a function of vi,wi,zi, we have

− E∇s io,o|wi,zi Es io,odio
′|wi,zi.

∙ Using iterated expectations, we conclude that

Fo  −Es io,odio
′.
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∙ So, we have shown

N ̂ − o  −Ao
−1N−1/2∑

i1

N

s i
o − Es i

odi
o ′Edi

odi
o ′−1di

o  op1

≡ −Ao
−1N−1/2∑

i1

N

gi
o  op1,

where Ao ≡ E∇s io,o is the P  P Hessian of the objective

function with respect to , gi
o ≡ s i

o − Es i
odi

o ′Edi
odi

o ′−1di
o are the

population residuals from the population system regression of s i
o on di

o′,

and the “o” superscript denotes evaluation at o and o or just o.
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∙ Therefore,

Avar N ̂ − o  Ao
−1DoAo

−1

where

Do  Egi
ogi

o′  Vargi
o.

If we knew o rather than estimating it by CMLE, the asymptotic

variance of the estimator, say ̃, would be

Avar N ̃ − o  Ao
−1BoAo

−1 where Bo  Es i
os i

o ′ – the usual

expected outer product of the score without accounting for the first-step

estimation (because there is none).
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∙ But Bo − Do is positive semi-definite, and so the two-step

M-estimator is generally more (asymptotically) efficient than the

one-step M-estimator that uses knowledge of o.

∙ An immediately implication of the improvement in efficiency in

estimating o is that if we do use ̂ but then ignore the estimation in the

second stage, our inference will be conservative. In particular, the

standard errors computed from Â−1B̂Â−1/N are larger than they could

be.
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∙ Let ĝi
′ be the 1  P residuals from the multivariate regression of ŝ i

′ on

d̂i
′, i  1, . . . ,N. Then, we obtain

D̂  N−1∑
i1

N

ĝiĝi
′.

and form the sandwich Â−1D̂Â−1/N as Avar̂.
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6. PARTIAL (POOLED) MLES FOR PANEL DATA

∙With a panel data structure, it is often much easier to specify models

for Dyit|xit than for Dyi|xi. For one, the latter usually requires a

form of strict exogeneity of (some elements of) xit : t  1, . . . ,T.

∙ For each t, let

ftyt|xt;

be a model for the density of Dyit|xit. The vector  includes all

parameters showing up in any time periods. Usually there is some

overlap, if not complete overlap.

∙We can easily allow xit to include lagged dependent variables or other

non-strictly exogenous variables.
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∙ Assume that, for each t, the density is correctly specified. As usual,

let o denote the actual population value. Then, by the KLII for each t,

Elog fyit|xit;o ≥ Elog fyit|xit;, all  ∈ Θ

In some cases, o will not be the unique solution for each t, but only

when we pool across t.

∙ So, assume that o is the unique solution to

max
∈Θ
∑
t1

T

Elog fyit|xit;
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∙ The partial log likelihood (or pooled log likelihood) for cross section

observation i is

ℓi ∑
t1

T

log fyit|xit; ≡ ∑
t1

T

ℓit

∙ The partial or pooled MLE solves

max
∈Θ
∑
i1

N

∑
t1

T

log fyit|xit;  max
∈Θ
∑
i1

N

ℓi
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∙ The PMLE, ̂, inherits its large sample properties from the score of

ℓi, the partial log likelihood. Generally, though, we need to account

for the panel structure.

∙ Consistency follows immediately from M-estimation results with

qi  −ℓi. Because we are fixing T, random sampling (in the cross

section) is the appropriate framework.

∙ Define the score for observation i as

s i ∑
t1

T

s it ∑
t1

T

s it ∑
t1

T

∇ℓit′

50



∙With smoothness (twice continuously differentiable log likelihood)

and o in the interior of Θ, we can apply the standard M-estimation

results:

Avar N ̂ − o  Ao
−1BoAo

−1

where
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Ao  −∑
t1

T

EHito ∑
t1

T

EAito

Bo  Es ios io′  E ∑
t1

T

s ito ∑
t1

T

s ito

′

∑
t1

T

Es itos ito′ ∑
t1

T

∑
r≠t

T

Es itos iro′.
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∙ For each t, the CIME holds, that is,

− EHito|xit  Es itos ito′|xit.

∙ But Bo is generally different from Ao because of the second term in

Bo.

∙ Generally, we need a sandwich estimator of the form

Avar̂  Â−1B̂Â−1/N

where
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B̂  N−1∑
i1

N

s i̂s i̂′  N−1∑
i1

N

∑
t1

T

s it̂s it̂′

 N−1∑
i1

N

∑
t1

T

∑
r≠t

T

s it̂s ir̂′

∙ Â can be one of three estimators:

− N−1∑
i1

N

∑
t1

T

Hit̂, N−1∑
i1

N

∑
t1

T

Ait̂, or N−1∑
i1

N

∑
t1

T

s it̂s it̂′

where the last one (not recommended in general) uses the IME for each

t.
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∙ Here, Aito  −EHito|xit, that is, we condition only on xit at

time t.

∙ For “canned” applications, the fully robust sandwich form requires a

“cluster” option to allow unrestricted serial correlation in the scores

s ito : t  1, . . . ,T. (A “robust” option usually does not allow serial

correlation, but only violation of the information matrix equality for

each t.)
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∙ If we assume that the score (evaluated at o, of course) is serially

uncorrelated, that is,

Es itos iro′  0, all t ≠ r,

then Bo  Ao, and we can use

−∑
i1

N

∑
t1

T

Hit̂
−1

, ∑
i1

N

∑
t1

T

Ait̂
−1

, or ∑
i1

N

∑
t1

T

s it̂s it̂′
−1

as Avar̂.
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∙ Aside: For those interested in “large” T, note that we get the same

formulas whether we also divide by T when computing averages. The

challenge with large T is verifying the law of large numbers and central

limit theorem when T increases along with N.
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∙When will the scores be serially uncorrelated? Suppose the model is

dynamically complete in distribution, that is,

Dyit|xit,yi,t−1,xi,t−1, . . . ,yi1,xi1  Dyit|xit, t  1, . . . ,T.

In other words, whatever is included in xit is sufficient to capture

dynamics; no further lags are needed.

∙ Then

Es ito|xit,yi,t−1,xi,t−1, . . . ,yi1,xi1  Es ito|xit  0,

where the first equality follows because s ito is just a function of

xit,yit.
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∙ Now take r  t, so that s iro is necessarily a function of

xit,yi,t−1,xi,t−1, . . . ,yi1. It follows that

Es itos iro′|xit,yi,t−1,xi,t−1, . . . ,yi1,xi1

 Es ito|xit,yi,t−1,xi,t−1, . . . ,yi1,xi1s iro′

 0  s iro′  0.

∙ So the scores are serially uncorrelated, and we can use the statistics

reported from pooled MLE in the usual way, even though we have not

necessarily modeled a joint distribution.
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EXAMPLE (Pooled Bernoulli): Let Gxit be the model for

Pyit  1|xit and assume it is correctly specified, with 0  G  1

and g the derivative of G. Then

ℓi ∑
t1

T

1 − yit log1 − Gxit  yit logGxit

s i ∑
t1

T
gxitxit

′ yit − Gxit
Gxit1 − Gxit

∑
t1

T

s it

Aito 
gxito2xit

′ xit

Gxito1 − Gxito

Ao ∑
t1

T

EAito.
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∙ As long as Pyit  1|xit  Gxito, a valid asymptotic variance

estimator is

∑
i1

N

∑
t1

T

Ait̂
−1

∑
i1

N

s i̂s i̂′ ∑
i1

N

∑
t1

T

Ait̂
−1

Ait̂ 
gxit̂2xit

′ xit

Gxit̂1 − Gxit̂

∙ The middle term accounts for serial correlation. If

Pyit  1|xit,yi,t−1,xi,t−1, . . . ,yi1,xi1  Pyit  1|xit,

the score is serially uncorrelated, and just one of the outer parts of the

sandwich can be used.
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∙ For example, suppose xit  zit,yi,t−1,zi,t−1 then the condition is

Pyit  1|zit,yi,t−1,zi,t−1, . . . ,yi1,zi1  Pyit  1|zit,yi,t−1,zi,t−1,

which says that, in addition to controlling for contemporaneous

variables zit, one lag yi,t−1 and zi,t−1 are sufficient to capture the

dynamics.

∙ As with linear regression, dynamic completeness would be a strong

assumption if we take xit  zit or even xit a subset of

zit,zi,t−1,zi,t−2, . . . ,zi1. Usually, past outcomes on yit help to predict

yi,t−1, even after conditioning on current and past other variables.
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