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1. Introduction

∙ The Heckman approach to sample selection can be applied easily to

linear models, and even to probit models and exponential regression, at

least under lots of normality.

∙ Plus, we require an exogenous variable that causes variation in

selection but does not have a direct affect on the response. This is

because it allows “selection on unobservables.” For example, in the

model y1  x11  u1, Eu1|x1  0, it allows selection to be

correlated with u1.
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∙ A different method for correcting for general missing data problems

is inverse probability weighting (IPW). Compared with

Heckman-type approaches, IPW applies generally to any estimation

problem that involves minimization or maximization.

∙ However, the assumptions under which IPW produces consistent

estimators of the population parameters are quite different from those

used in Heckman-type methods. It is easy to abuse IPW approaches,

and so one needs to understand their limitations.
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2. Unweighted and Weighted M-Estimation

∙ As in the standard M-estimation framework, we are interested in

estimating o, the solution to the population problem

min
∈Θ

Eqwi,,

where qw,  is the objective function for given w. As usual, we

assume o is unique: if o is not identified in the population, we have no

hope of identifying it in a selected subpopulation.

∙ Recall that M-estimation includes NLS, MLE, quasi-MLE, and many

other estimators.
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∙ Again, we characterize missing data using a binary selection

indicator, si. Therefore, a random draw from the population consists of

wi, si, and all or part of wi is not observed if si  0.

∙ If we use the selected sample to estimate o is to use M-estimation on

the observed sample we solve

min
∈Θ

N−1∑
i1

N

siqwi,.
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∙ The solution to the previous problem is the unweighted

M-estimator, ̂u, to distinguish it from the weighted estimator

introduced below. We have already seen examples, particularly for the

linear model, where ̂u is not consistent for o.

∙ In the statistics literature, the estimator is an example of a

complete-cases estimator.
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∙ Let zi be a set of predictors for selection, that is, variables that we

think predict si  1. In this sense, the setting is similar to the Heckman

approach. But we require different assumptions about zi.

∙ In particular, we assume

Psi  1|wi,zi  Psi  1|zi ≡ pzi,

so that pzi is defined to be the response probability.

∙ This assumption has been given various names (not entirely

consistently): ignorable selection (conditional on zi) and selection on

observables are two common ones. In the treatment effects literature it

is essentially the unconfoundedness assumption (later).
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∙ Consider a population regression model

y  xo  u

Ex′u  0

∙ Suppose that x is always observed, but y is not. In a Heckman

framework, we take z  x,r where r is a set of variables independent

of u such that

Ps  1|x,r ≠ Ps  1|x;

that is, some elements of r must help predict selection in addition to x.
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∙ In the current setting, we still expect r to predict selection but we

want r to contain good enough proxies for u, at least where selection is

concerned, so that

Ps  1|x,r,u  Ps  1|x,r,y  Ps  1|x,r.

∙ To satisfy this condition, often, r includes earlier outcomes on y and

x, as well as other variables (such as dummy variables for different

survey interviewers).
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∙ If we assume that Psi  1|wi,zi  Psi  1|zi, and that the latter is

known, or can be estimated when si  1, we can solve the missing data

problem using a weighted estimator. We must assume

pz  0, all z ∈ Z ⊂ RJ,

where Z is the support of z.
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∙ Key result underlying IPW: let gw be any scalar function such that

the mean,   Egwi, exists. Then, using iterated expectations,

Esigwi/pzi  EEsigwi/pzi|wi,zi

 EEsi|wi,zigwi/pzi

 EPsi  1|wi,zigwi/pzi

 Epzigwi/pzi  Egwi.

where the second-to-last equality follows from Psi  1|wi,zi  pzi.
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∙ In other words, weighting a function by 1/pzi in the context of

sample selection allows us to recover the population mean.

∙ It follows immediately that a consistent (actually, unbiased) estimator

of  is N−1∑i1
N sigwi/pzi.

∙ Actually, a somewhat more common estimator, based on the fact that

Esi/pzi  1, is

̂IPW  ∑
i1

N

si/pzi

−1

∑
i1

N

sigwi/pzi ,

which is a weighted average of the sampled data where the weights sum

to one.
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∙ This estimator is easily seen to be consistent:

N→
plim ̂IPW  N−1∑

i1

N

si/pzi

−1

N−1∑
i1

N

sigwi/pzi

 Esi/pzi−1Esigwi/pzi

 Egwi

because Esi/pzi  1.
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∙ ̂IPW does not require us to know N, the number of times the

population was sampled.

∙ The sampling weights implicit in ̂IPW are often reported in survey

data to obtain means in the presence of missing data. Often the reported

weight for observed unit i is

pzi−1 ∑
h1

N1

pzh−1
−1

,

where N1 is the number of observed data points.
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∙ Easy now to use IPW in the context of M-estimation. The IPW

estimator, ̃w, solves

min
∈Θ

N−1∑
i1

N

si/pziqwi,.

From the previous argument, the mean of each summand is Eqwi,,

which is minimized at o, and so, under the mild conditions of the

uniform weak law of large, ̃w is consistent for o; see Theorem 12.2.

∙ Sometimes, pzi is actually known, as in certain stratified sampling

schemes (later), although zi is not itself always observed.
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∙ In most cases where the selection probabilities pzi are not known, zi

is assumed to be always observed, so that a model for Psi  1|zi can

be estimated by binary response maximum likelihood. Here we

consider the case where we use a binary response model for

Psi  1|zi, which requires that zi is always observed:

Ps  1|z  pz  Gz,o

for some o.

∙ Assume Gz,  is twice continuously differentiable, along with other

regularity conditions. Let

di ≡ ∇Gz,′si − Gz,/Gz,1 − Gz,.
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Given ̂, we can form Gzi, ̂ for all i with si  1, and then obtain the

inverse probability weighted (IPW) M-estimator, ̂w, by solving

min
∈Θ

N−1∑
i1

N

si/Gzi, ̂qwi,.

Replacing the unknown probability pz  Gz,o with Gzi, ̂ does

not affect consistency of ̂w under the general conditions for

consistency of two-step estimators.
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∙More interesting is finding the asymptotic distribution of N ̂w−o.

∙ Assume that the objective function qw,  is twice continuously

differentiable on the interior of Θ, as in Section 13.10.2. Write

rwi, ≡ ∇qwi,′

as the P  1 score of the unweighted objective function,

Hw, ≡ ∇2qw,

as the P  P Hessian of qwi,.
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∙ Because of the sample selection, the selected, weighted score (with

respect to ) is key:

ksi,zi,wi,, ≡ si/Gzi,rwi,

∙ Note that ksi,zi,wi,, is zero whenever si  0.

∙ Given that ̂ is an MLE, we can use the information matrix equality to

write

N ̂ − o  Do
−1 N−1/2∑

i1

N

di  op1

where di is evaluated at o.
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∙ Using a generalized information matrix equality, can show that

N ̂w − o
a Normal0,Ao

−1DoAo
−1,

where

Ao ≡ EHwi,o  Esi/Gzi,oHwi,o

Do ≡ Eeiei
′

ei ≡ ki − Ekidi
′Edidi

′−1di

and ki is evaluated at o,o.
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∙ Consistent estimators of Ao and Do:

Â ≡ N−1∑
i1

N

si/Gzi, ̂Hwi, ̂w

and

D̂ ≡ N−1∑
i1

N

êiêi
′,

where the êi ≡ k̂i − N−1∑i1
N k̂id̂i

′ N−1∑i1
N d̂id̂i

′ −1
d̂i are the

P  1 residuals from the multivariate regression of k̂i on d̂i,

i  1, . . . ,N, and all hatted quantities are evaluated at ̂ or ̂w.
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∙ As always, the asymptotic variance of ̂w is consistently estimated as

Â−1D̂Â−1/N.

∙We can compare the asymptotic variance of ̂w with the one obtained

by using the known value o in place of the conditional MLE, ̂. Call

this ̃w. Then

N ̃w − o
a Normal0,Ao

−1BoAo
−1,

where Bo ≡ Ekiki
′.

∙ East to show Bo − Do is positive semi-definite; therefore,

Avar N ̃w − o − Avar N ̂w − o

is positive semi-definite.
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∙ Consider the linear regression model y  xo  u, Ex′u  0, and

suppose the estimated probabilities are from a logit estimatino,

p̂i  zi̂.

∙ The gradient for the logit estimaton is

d̂i
′
 zisi − zi̂

a 1  M vector.

∙ The weighted gradient for the linear regression problem is

k̂i
′
 sixiûi/p̂i

where ûi  yi − xi̂w are the residuals after the IPW estimation.
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∙ Adjustment: Perform a multivariate regression of

sixiûi/p̂i on zisi − zi, ̂, i  1, . . . ,N

and get the residuals. (This can be done as a set of K univariate

regressions to get the êij to form êi.) Then

D̂ ≡ N−1∑
i1

N

êiêi
′

Â ≡ N−1∑
i1

N

si/p̂ixi
′xi.
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∙ Avar̂w is

∑
i1

N

si/p̂ixi
′xi

−1

∑
i1

N

êiêi
′ ∑

i1

N

si/p̂ixi
′xi

−1

.

∙ The conservative estimate would replace êi with sixi
′ûi/p̂i, in which

case the estimator looks just like a “heteroskedasticity”-robust

sandwich estimator in the context of weighted least squares:

∑
i1

N

si/p̂ixi
′xi

−1

∑
i1

N

siûi
2xi

′xi/p̂i
2 ∑

i1

N

si/p̂ixi
′xi

−1

.
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∙Must remember the weighting here has nothing to do with

heteroskedasticity in Vary|x. In fact, even if Ey|x  xo and

Vary|x  o
2, the IPW weighting is generally needed for consistency

if Ps  1|x,y ≠ Ps  1|x.

∙ If Ey|x  xo and WLS on a random sample is used, any WLS

estimator using weights that are functions of xi is consistent (subject to

regularity conditions), whether or not there is heteroskedasticity.
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∙ Can obtain conservative inference in Stata using the “pweight” option

with various estimation methods.

logit select z1 ... zM

predict phat

reg y x1 x2 ... xK [pweight  1/phat]

∙ A little more work is required to obtain the more accurate analytical

standard errors.

∙ Bootstrapping the two-step method does provide proper standard

errors and inference.
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∙ Other commands work, too, such as standard MLEs and the “glm”

command:

tobit y x1 ... xK [pweight  1/phat], ll(0)

glm y x1 x2 ... xK [pweight  1/phat],

fam(poisson)

∙ The standard errors are automatically of the sandwich form, but they

are the conservative ones that do not account for the estimation of

Ps  1|z.
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∙ Sometimes there is no efficiency gain to estimating the probability

weights, that is, the asymptotic variance is the same whether the

weights are known or estimated. One case is with an exogenous

missing data mechanism.

∙ Consider

y  xo  u

Eu|x,z  0
Ps  1|x,y,z  Ps  1|z

which implies Ey|x,z  Ey|x  xo.
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∙ In this setup, the asymptotic variances with estimated and know

weights are the same, and the probability weights can come from a

misspecified estimation problem without affecting consistency of the

IPW estimator.

∙ This is an example of “exogenous selection”: the probability of

selection depends only on factors, z, that are exogenous in y  xo  u.
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∙ A special case is when

Ey|x  xo

Ps  1|x,y  Ps  1|x

∙ The unweighted and weighted estimators are both consistent. The

selection model – with z  x – can be misspecified, and it does not

matter whether we use estimated or known weights for the asymptotic

variance.
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∙ Further, in this regression example, weighting is less efficient than

weighting if we add

Vary|x  o
2.

∙ There is a similar result for MLE. If we have correctly specified

Dy|x as fy|x; and Ps  1|x,y  Ps  1|x, we can only do

worse by weighting: the unweighted estimator is more efficient.
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∙ However, even if selection is based on the conditioning variables, x,

one might still want to weight. For example, for linear regression, if we

have Ps  1|x correctly specified, the weighted estimator consistently

estimates o under

y  xo  u

Ex′u  0
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∙ The unweighted estimator requires Eu|x  0, that is, that we

actually have the conditional mean, Ey|x  xo. Further, if

Ey|x  xo, the weighted estimator is still consistent if Gx, is

misspecified for Ps  1|x. That is, the weighted estimator is just as

robust as the unweighted estimator.

∙ If we combine the two cases for the weighted estimator, we get a

“double robustness” result: we consistently estimate the linear

projection parameters, o, if either Gx, is correctly specified or the

linear projection is the conditional mean.
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∙ The cost of double robustness is a possibly inefficient estimator

compared with the unweighted estimator.

∙ This double robustness result of inverse probability weighted

estimators plays a role in estimating average treatment effects.
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3. General Treatment of Exogenous Selection

∙ The idea here is to show that, when a feature of Dy|x is correctly

specified, and qw, is appropriately chosen, any weighted

M-estimator that uses weights that are a positive function of x is

consistent when selection is exogenous. (These do not even need to be

IPW weights, but we assume they have that form because that is the

practically relevant case.)
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∙ First, we need to recall an important fact about many estimation

methods when a feature of Dy|x is correctly specified and we choose

q,  appropriately. The population value, o, satisfies

Eqw,o|x ≤ Eqw,|x

for all possible x ∈ X and  ∈ Θ. (For NLS,

Ey − mx,o2|x ≤ Ey − mx,2|x, and for conditional MLE,

Elog fy|x;o|x ≥ Elog fy|x;|x. Can show this for QMLE in the

LEF, too. Even holds for LAD.)
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∙ Two-step estimation does not affect the consistency argument. We

could carefully work through the case that Fx, is a misspecified

parametric model with ̂
p
→ ∗, but it does not change the basic

argument. So, let 0  Fx ≤ 1 denote a candidate for Ps  1|x. The

weighted M-estimator solves

min
∈Θ

N−1∑
i1

N

si/Fxiqwi,.

∙ If we show o minimizes Esi/Fxiqwi, then we have

effectively proven consistency of the IPW M-estimator even when

Ps  1|xi is misspecified.
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∙ Remember, the two key assumptions are

Eqwi,o|xi ≤ Eqwi,|xi, all xi and , and

Psi  1|xi,yi  Psi  1|xi.

∙ By iterated expectations,

Esi/Fxiqwi,  EEsi/Fxiqwi,|wi

 EEsi|wi/Fxiqwi,
 Epxi/Fxiqwi,

where we use Esi|wi  Psi  1|wi  Psi  1|xi  pxi.
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∙ Now use iterated expectations again:

Epxi/Fxiqwi,  EEpxi/Fxiqwi,|xi

 Epxi/FxiEqwi,|xi.

Now we use Eqwi,o|xi ≤ Eqwi,|xi, so that

pxi/FxiEqwi,o|xi ≤ pxi/FxiEqwi,|xi

because pxi/Fxi ≥ 0.
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∙ Taking expectations shows that

Epxi/Fxiqwi,o ≤ Epxi/Fxiqwi,

for all  ∈ Θ, which shows that o minimizes Esi/Fxiqwi,.

We do have to assume (or establish) uniqueness of o, but that typically

holds from uniqueness of o as the solution to

min
∈Θ

Eqwi,.
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∙ As we discussed in the linear model case, if we want to ensure that

we estimate the solution to the above population problem, without

making the stronger assumption that o also solves

min
∈Θ

Eqwi,|xi

for all xi, then we should use the weighted estimator even if

Psi  1|xi,yi  Psi  1|xi.
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∙Wooldridge (2007, Journal of Econometrics) shows that when we

have a correctly specified conditional model and selection is

exogenous, the asymptotic variance of any IPW M-estimator is the

same whether we initially estimate the weights or not (and the weights

may be misspecified), provided the usual regularity conditions hold for

the Bernoulli quasi-MLE for the selection model.
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∙ To derive the asymptotic variance of a general weighted estimator

when we have a correctly specified conditional model and selection is

exogenous, use the usual first-order (influence function) representation:

N ̂w − o  −Esi/FxiHio−1N−1/2∑
i1

N

si/Fxirio  op1

where ri  ∇qwi, and Hi  ∇2qwi,.

∙ So Avar N ̂w − o is

Esi/FxiHio−1Esi/Fxi2riorio′Esi/FxiHio−1
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∙ Under a generalized conditional information matrix equality in the

population, namely

Eriorio′|xi  o
2EHio|xi,

can show the unweighted estimator is the most efficient among all

weighted estimators; it is even more efficient than the weighted

estimator using the correctly specified form of Psi  1|xi. See

Wooldridge (2007, Journal of Econometrics).
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∙ The information matrix equality holds for NLS when Ey|x is

correctly specified and Vary|x  o
2; for CMLE when fy|x; is

correctly specified; and for QMLE in the LEF when the GLM variance

assumption holds.
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4. Comments on the Efficacy of Weighting

∙ If a feature of an unconditional distribution of w is of interest, such as

a population moment, unweighted estimators are consistent only if the

data are missing completely at random [Rubin (1976)]. For example,

if we want to estimate g  Egw, we need to assume

Ps  1|gw  Ps  1.

∙ Consistency of the IPW estimator for g requires the existence of

observable variables z such that

Ps  1|gw,z  Ps  1|z.

∙ Need not be a good assumption, but often our only recourse.
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∙ If we specify a set of variables z that do not result in ignorable

selection, weighting may be more harmful than not weighting.

∙ Decision to weight is subtle when we begin with the premise that

some feature of a conditional distribution, Dy|x, is of interest. A

potential problem arises if data are sometimes missing on elements of

x. Why? Suppose the data are missing exogenously, that is,

Ps  1|x,y  Ps  1|x. Then we know from the earlier analysis the

unweighted estimator is consistent.
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∙ Key point: If some of x is not observed, then applying IPW means we

must use variables variables z that do not include all of x (except in the

rare case we do not have to estimate Ps  1|z.)

∙ But if x is not in z and Ps  1|x,y  Ps  1|x, it almost certainly

follows that

Ps  1|x,y,z ≠ Ps  1|z.
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∙ If we want to weight, we should be using Ps  1|x, but the weights

we use are based on Ps  1|z. (This conclusion holds even if we

knew precisely the functional forms of the probabilities; this is not a

functional form issue.) The IPW estimator is generally inconsistent,

whereas the unweighted estimator would be consistent if the feature of

Dy|x is correctly specified and the objective function is properly

chosen.
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∙ Consequently, it is not always better to weight when z cannot include

all conditioning variables! Important differences in the unweighted and

weighted estimators could mean the unweighted estimator is

inconsistent, the weighted estimator is inconstent, or both.

∙ If x is always observed – and then it should be included in z – the

case for weighting is stronger. If Ps  1|z depends only on x, a

flexible binary response model will eventually pick this up. Weighting

may turn out to be inefficient, but it will not cause inconsistency if the

feature of Dy|x is correctly specified and the objective function is

properly chosen.
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