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1. Introduction

∙ Unbalanced panel data sets often arise in practice. Estimating linear

models with unbalanced panels is relatively easy (by POLS, RE, FE,

and IV versions of these). The important question is: why are some

time periods missing for some units?

∙ An important issue in the presence of unbalanced data: some

estimators have advantages over others. For example, removing an

unobserved effect allows more sample selection than RE or correlated

RE approaches.
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∙ In some cases, such as when an entire year is skipped for everyone, or

when units are randomized out of a rotating panel, the sample selection

can be assumed to be exogenous.

∙ In other cases, such as a wage offer function – as we saw for cross

section data – selection might be fundamentally related to

unobservables in the equation of interest.

∙ Panel data brings the additional complication of attrition, especially

with disaggregated data (such as individuals, families, firms).
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2. Pooled OLS Estimation with Unbalanced Panels

∙We think about unbalanced panels as follows. Let t  1, . . . ,T be the

time periods that describe the population of interest. In practice, these

t  1 is the earliest time a unit can appear, and t  T is the latest time.

∙ A randomly drawn unit from the population results in “data”

xit,yit, sit : t  1, . . . ,T where sit is the selection indicator: sit  1 if

we observe (all of) xit,yit, and zero otherwise.

∙We will stay with large N (number of cross section draws), small T

asymptotics.
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∙ Start with the population model

yit  xit  vit
Exit′ vit  0, t  1, . . . ,T,

which we assume makes sense for all time periods. At this point, we

leave the nature of vit open.

∙ Because the sit are random, the number of time periods observed for

unit i, given by

Ti ∑
t1

T

sit,

is properly viewed as random. Ti takes a value in 0, 1, . . . ,T.
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∙ Pooled OLS using the selected data, that is, the data where we

observe xit,yit:

̂  N−1∑
i1

N

∑
t1

T

sitxit′ xit
−1

N−1∑
i1

N

∑
t1

T

sitxit′ yit

which we can write as

̂    N−1∑
i1

N

∑
t1

T

sitxit′ xit
−1

N−1∑
i1

N

∑
t1

T

sitxit′ vit .
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Consistency of POLS (T fixed, N → ) follows from

rank ∑
t1

T

Esitxit′ xit  K

and

Esitxit′ vit  0, t  1, . . . ,T.
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∙ The rank condition essentially means the rank condition holds in the

population and we do not select out “too little” of the population.

∙ The orthogonality condition is a kind of exogeneity requirement. If sit
is independent of xit,vit, that is, independent of xit,yit, then

Esitxit′ vit  EsitExit′ vit  0.

∙ If

Evit|xit, sit  0

then Esitxit′ vit  0. Sufficient for the zero conditional mean is

Evit|xit,wit  0
sit  htxit,wit
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∙ The condition Evit|xit,wit  0 means

Eyit|xit,wit  Eyit|xit  xit, so wit is properly excluded from the

conditional mean model.

∙ For example, if the conditional mean is dynamically complete,

Eyit|xit,yi,t−1,xi,t−1, . . .yi1,xi1  Eyit|xit  xit,

then sit can depend on any elements in xit,yi,t−1,xi,t−1, . . .yi1,xi1.

∙ Selection is allowed to be correlated with vir, r ≠ t, but this is not

especially helpful if vit  ci  uit.

∙ In general POLS inference should be made robust to arbitrary serial

correlation and heteroskedasticity, as in the balanced case.
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∙ In Stata, the command

reg y x1 ... xK, cluster(csid)

where “csid” is the cross section identifier, does not care if the panel is

unbalanced. Of course, it is up to us to determine whether selection

might be endogenous, that is, Esitxit′ vit ≠ 0.

∙ Because of the panel structure, simple tests for certain kinds of

selection bias are possible, but they are indirect tests. By definition, sit
is always unity when data are actually used. So we cannot use sit as an

added regressor.
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∙ But we can add functions of sir : r  1, . . . ,T , such as Ti, and use a

robust t test. Remember, this is effectively testing whether vit is

uncorrelated with sir, r ≠ t, and consistency of POLS does not rely on

their being uncorrelated.

∙ Can also use lags or leads, si,t−1 or si,t1, and test their significance.

(Lose the first or last time period in doing so.) But, again, consistency

of POLS does not directly require vit to be uncorrelated with sir, r ≠ t,

once xit has been controlled for.
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3. FE and RE Estimation with Unbalanced Panels

∙ Now explicitly include an additive, unobserved effect model for

random draw i:

yit  xit  ci  uit, t  1, . . . ,T.

∙ Before we discuss FE and RE, when would POLS be consistent?

Assuming the rank condition, we effectively need to assume

Esitxit′ ci  0, Esitxit′ uit,

which rules out selection as a function of the unobserved heterogeneity,

ci, or the idiosyncratic error, uit.
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Fixed Effects

∙ Fixed effects is now applied to the unbalanced sample. The

time-demeaned data now uses different time periods for different i. Let

ÿit  yit − Ti−1∑
r1

T

siryir

ẍit  xit − Ti−1∑
r1

T

sirxir
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∙ The FE estimator is then

̂  N−1∑
i1

N

∑
t1

T

sitẍit′ ẍit
−1

N−1∑
i1

N

∑
t1

T

sitẍit′ ÿit ,

We can write

ÿit  xit  ci  uit − Ti−1∑
r1

T

sirxir  ci  Ti−1∑
r1

T

siruir

 ẍit  üit, t  1, . . . ,T,

which looks like the balanced case.
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∙ Algebra gives

̂    N−1∑
i1

N

∑
t1

T

sitẍit′ ẍit
−1

N−1∑
i1

N

∑
t1

T

sitẍit′ uit

∙ Consistency of FE on the selected sample follows from the POLS

analysis:

rank ∑
t1

T

Esitẍit′ ẍit  K

and

Esitẍit′ uit  0, t  1, . . . ,T.
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∙ Note that ẍit depends on xi  xi1, . . . ,xiT and s i  si1, . . . , siT, so it

is not enough to assume, say, sit is independent of xit,uit.

∙ A sufficient condition is an extension of the usual strict exogeneity

assumption:

Euit|xi, s i,ci  0, t  1, . . . ,T.

∙ This rules out selection in any time period depending on the shocks in

any time period. That is, this condition is generally violated if

Covsir,uit ≠ 0 for any r, t pair.

∙ Importantly, both conditions allow for sit to depend on ci in an

unrestricted way.
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∙ Using unbalanced panels with FE is straightforward in practice. The

usual “xtreg” command in Stata allows for unbalanced panels and

properly computes standard errors and test statistics.

∙ Note that any cross-sectional unit with only a single time period plays

no role in the estimation; it drops out. Some say this leads to a

“selection bias” using FE, but it does not provided the exogeneity

condition holds. For example, some values of ci may be associated with

dropping out after one period, and FE removes the source of the

selection bias.
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∙ For the usual, nonrobust inference to be valid, one needs

Euiui′|xi, s i,ci  u2IT,

or something very close to it. (Obvious extension of FE.3.) The

estimate of u2 is now

̂u2  ∑
i1

N

Ti − 1 − K
−1

∑
i1

N

∑
t1

T

sit

üit

2
,

where the

üit are the usual FE residuals (computed only when sit  1).
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∙ Since fixed effects is inconsistent if sample selection is not strictly

exogenous, the sample selection indicator from other time periods

should be insignificant at time t.

∙We may be particular concerned with a shock today (change in uit)

makes it more likely the data are missing at t  1.
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∙ Suggests a simple test: add si,t1 to the equation at time t (so that the

last time period is lost), estimate the model by fixed effects (using the

unbalanced panel), and compute the (robust) t statistic on si,t1. This

works quite generally, including for attrition when it is an absorbing

state. We need T ≥ 3 (and at least three time periods for some units).

∙ Can check for strict exogeneity of the covariates at the same time: add

xi,t1, st1 and use a joint test.
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∙ In some cases, can use si,t−1, but this does not work in the attrition

case because if sit  1 – that is, we use the time t observation for

individual i – then si,t−1  1, too.

∙ Other choices:∑
r1

t−1
sir and∑

rt1

T
sir; the latter works for attrition,

too.

∙ To check for bias caused by selection in the context of a random

coefficient model, add 1Ti  2  xit, . . . , 1Ti  T − 1  xit, estimate

the augmented model by FE, and obtain a joint Wald test. (The Ti  T

group is the base group.) This is like a Chow test where the slopes are

allowed to differ by the number of available time periods for each unit.
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Random Effects

∙Mechanically, RE is fairly simple to modify. As in the balanced case,

it can be obtained as the POLS estimator on quasi-time-demeaned data.

But now the fraction of the mean we remove depends on Ti:

̂i  1 − 1
1  Ti̂c2/̂u2

1/2

.

Now define

y̆it  yit − ̂iȳi

where ȳi  Ti−1∑r1
T siryir, and similarly for x̆it. Then, POLS of y̆it on

x̆it using the sit  1 data points.
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∙ Ignore estimation of c2 and u2 in ̂i:

yit − iȳi  xit − ix̄i  1 − ici  uit − iūi.

∙ ci is not eliminated, and so we need a stronger assumption about

selection being unrelated to ci, as in POLS case. But we also need strict

exogeneity of selection, as in FE case. Sufficient are

Euit|xi, s i,ci  0, t  1, . . . ,T
Eci|xi, s i  Eci

which explicitly rules out selection that depends on ci.
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∙ If use RE on the unbalanced panel, should still obtain robust

inference.

∙ Stata labels ̂i as “theta.” The command

xtreg y x1 ... xK, re cluster(csid) theta

allows you to see the range of the ̂i.

∙ Because time-constant variables can be included in RE, can add Ti to

test for selection bias, and use interactions with xit, as with FE.
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∙ Differencing methods across different pairs of time periods works

under the FE assumptions. As a practical matter, helps to have T rows

for each i in storing the data. (We will use this below for the special

case of attrition.)

∙ If you use FD, lose more data than with FE: a time period is used with

FE only if the previous time period is also available. (It does work well

for attrition, where sit  1 means sir  1, r  t.)

∙ For IV estimation, can show that fixed effects 2SLS (and any other

IV method that first eliminates ci) IV is consistent under

Euit|zi, s i,ci  0, t  1, . . . ,T.

25



4. Tests for Selection Based on Inverse Mills Ratio

∙ Tests above for FE (and RE) do not allow for direct tests of whether

sit is correlated with uit.

∙ Now consider the incidental truncation problem, where we can derive

such tests. We assume that we always observe xit, but yit is observed

only when sit  1. Wage offer/LFP example.

∙Write the linear unobserved effects model with sample selection as

yit1  xit11  ci1  uit1
sit2  1xit2  2  x̄i2  vit2 ≥ 0, t  1, . . . ,T

where the second equation is a reduced form selection equation that

uses the Chamberlain-Mundlak device.
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∙ To make the approach believable, have imposed an exclusion

restriction: something in xit not in xit1, and that something should vary

over time.

∙ It is possible to make the selection model more general. Would have a

full set of time dummies in xit (and xit1), but we might want more than

the intercept to change with time. For example,

sit2  1xitt2  t2  x̄it2  vit2 ≥ 0

or even

sit2  1t2  xit2  vit2 ≥ 0,

where xi is 1  TK (without time period dummies).
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∙ To estimate the selection model, we make a standard probit

assumption

vit2|xi~Normal0, 1, t  1, . . . ,T,

so that, say,

Psit2  1|xi  xit2  2  x̄i2, t  1, . . . ,T.

and we can estimate the parameters using pooled probit.

∙ For more flexibility, we can estimate the selection model separately

for each t.
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∙ Define the inverse Mills ratios:

̂it2 ≡ xit̂2  ̂2  x̄i̂2 all i, t.

Then a valid test is based on FE estimation using the selected sample,

but adding ̂it2 as an additional regressor. Under the null of no sample

selection, we can use the usual t statistic, made robust to serial

correlation and heteroskedasticity.

∙ Can interact ̂it2 with time dummies to get at joint test with T

degrees-of-freedom.
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∙ (Potentially) Important: Adding the IMR to fixed effects estimation

on the unbalanced panel does not generally produce a consistent

estimate of 1 if there is a sample selection problem. (See text, pages

582-583 for discussion.)

∙ As usual with small T, do not try to estimate the fixed effects inside

the probit in forming the IMR.
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5. Heckman Approaches to Correcting for Sample Selection
Bias

∙ Approach: Use the Chamberlain-Mundlak device in the structural

equation, too. Write the equation as

yit1  xit11  1  x̄i1  vit1,

where the composite error is vit1  ai1  uit1 and ci1  1  x̄i1  ai1.

∙ Note that we have the time average of all elements of xit in this

equation.

∙ As usual, the C-M device is more restrictive than not specifying

Dci1|xi at all. That is why using FE for the test is preferred.
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∙ Assume

Evit1|xi,vit2  Evit1|vit2  1vit2, t  1, . . . ,T.

(Sufficient for the first equality is that vit1,vit2 is independent of

xi  xi1, . . . ,xiT, which is fairly standard.) Now we can write

yit1  xit11  1  x̄i1  1Evit2|xi, sit2  eit1

where, by construction,

Eeit1|xi, sit2  0, t  1, . . . ,T.
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∙We can find Evit2|xi, sit2 from the probit model for sit2 (which has

error vit2). Call this function ht2xi, sit2. Then we have, by definition,

yit1  xit11  1  x̄i1  1ht2xi, sit2  eit1,

Eeit1|xi, sit2  0, t  1, . . . ,T.

∙ From earlier result, can applied pooled OLS to the augmented

equation using the selected sample, to consistently estimate all the

parameters.
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∙ In particular, if we know ht2xi, sit2 whenever sit2  1, then we can

consistently estimate 1,1,1 and 1 from the pooled OLS regression

yit1 on 1,xit1, x̄ii,ht2xi, 1

using the observed data; that is, for all i, t with sit2  1. But

ht2zi, 1  xitt2  t2  x̄it2

is just the IMR, which we can estimate from the first-stage probits. (As

specified, separately for each t.)
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∙ So, we estimate the equation

yit1  xit11  1  x̄i1  1̂it2  errorit1

by pooled OLS on the selected sample.

∙ Can use the delta method to correct for two-step estimation. Easier is

the panel bootstrap. Again, we draw units when resampling, and we

keep whatever time periods are available for each unit.

∙ In practice, using a valid t statistic for ̂1 is likely to be similar to

using the FE version of the test. Under the null, can use robust FE

standard error.
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∙ Can allow more flexibility by allowing a different coefficient on ̂it2

for each t; just add interactions d2t  ̂it2,d3t  ̂it2, . . . ,dTt  ̂it2. This

is gotten by using Evit1|vit2   t1vit2.

∙ As in cross section case, can make the functional form more general:

Evit1|vit2   t1vit2   t1vit22 − 1

or assume constant coeffients.
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∙ Extending to the IV case is fairly straightforward. (Semykina and

Wooldridge (2010, Journal of Econometrics)). The structural equation

looks like

yit1  xit11  ci1  uit1

but now uit1 might be correlated with some elements of xit1. Plus, we

now allow elements of xit1 to also be missing, provided we have

instruments for them.

∙ Let zit be the set of all exogenous variables that are always observed.

(Some are exogenous regressors, if always observed, some are external

instruments.)
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∙ Ideally the IVs are time-varying to avoid making strong assumptions.
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∙We assume strict exogeneity of zit : t  1, . . . ,T conditional on ci1,

that is,

Euit1|zi  0, t  1, . . . ,T.

∙We allow correlation of zit : t  1, . . . ,T with ci1 via the C-M

device, now expressed as

ci1  1  z̄i1  ai1
Eai1|zi  0.

Again, time averages of all exogenous variables are in z̄i. But this

excludes endogenous elements of xit1 or elements of xit1 we do not

always observe.
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∙ Under assumptions similar to those above, we can write

yit1  1  xit11  z̄i1  1Evit2|zi, sit2  eit1

where, by construction,

Eeit1|zi, sit2  0, t  1, . . . ,T.

∙ This leads naturally to a 2SLS procedure: After obtaining the ̂it2
from probits Psit2  1|zi  zitt2  t2  z̄it2, apply pooled 2SLS

to

yit1  xit11  1  z̄i1  1̂it2  errorit1

using IVs 1,zit, z̄i, ̂it2.
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∙ Again, can bootstrap the standard errors or use delta method.

∙ Under H0 : 1  0, can use a serial

correlation/heteroskedasticity-robust t statistic.

∙ But, for testing H0 : 1  0, it is better to use FE2SLS on the

equation

yit1  xit11  1̂it2  errorit1

using IVs zit, ̂it2. It maintains fewer assumptions under the null.

yit1  xit11  1  z̄i1  1̂it2  errorit1
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by FE-2SLS on the selected sample, using as instruments zit, z̄i, ̂it2.
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∙ Can also accomodate a Tobit selection equation. Consider the case of

exogenous covariates always observed:

yit2  max0,2  xit2  x̄i2  vit2, t  1, . . . ,T

or one of the extensions where the parameters can vary across t.

Assume

vit2|xi ~ Normal0,2
2, t  1, . . . ,T.

∙ If we also assume Evit1|xi,vit2  Evit1|vit2  1vit2, then we get

the same expectation Eyit1|xi,vit2 as before. But now we can

effectively observe vit2 whenever sit2  1. So, we use the basic fact

that
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Eyit1|xi,vit2, sit2  xit11  1  x̄i1  1vit2, t  1, . . . ,T.

∙ Let ̂2, ̂2, and ̂2 be the Tobit estimates, and define

v̂it2  yit2 − ̂2 − xit̂2 − x̄i̂2 if sit2  1.

Then, we just use v̂it2 in place of ̂it2:

yit1  xit11  1  x̄i1  1v̂it2  errorit1

using the selected sampl. Of course, we can do a t test, as usual, to test

for sample selection bias in this framework.
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6. Heckman Corrections for Attrition

∙ Again start with the UE model

yit  xit  ci  uit, t  1, . . . ,T,     (31)

and again let sit be the selection indicator.

∙ Assume a random sample from the population at time t  1. In other

words, si1 ≡ 1 for all i. With attrition, some units leave the sample in

subsequent time periods.
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∙ Assume that once a unit attrits from the sample, we we observe

nothing about them; in other words, attrition is an absorbing state. (Can

always arrange this by simply ignoring any information on returning

units.)

∙ Conceptually, this setup can be problematical. It assumes that we are

interested in a population defined at t  1. But what if it is a population

of firms, and some firms close or merge? What is the “right”

population?
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∙ Under attrition as an absorning state,

sit  1  sir  1, r  t.

∙ Now differencing is attractive as a way of removing ci:

Δyit  Δxit  Δuit, t  2, . . . ,T.

∙We observe Δyit and Δxit whenever sit  1; we do not have to

separately worry about si,t−1, as in cases with general missing data

patterns.
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∙ A natural starting point is to assume xit : t  1, . . . ,T is strictly

exogenous, conditional on ci (in the population, as always). At a

minimum, Δxit is uncorrelated with Δuit.

∙ Let wit be a set of variables that we always observe when si,t−1  1

such that wit is a good predictor of selection – in a sense soon to be

made precise.

∙Model the selection in time period t conditional on si,t−1  1 as

sit  1witt  vit  0
vit|wit,Δxit, si,t−1  1 ~ Normal0, 1, t  2, 3, . . . ,T.
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∙ Importantly, at least some elements of xit are not observed at time t

for those who attrit in time t, so xit is not (fully) contained in wit.

∙ Specify sequential probit models:

Psit  1|wit, si,t−1  1  witt, t  2, . . . ,T.

∙ Use a sequence of probits starting with t  2. For t  2, we use the

entire sample to estimate a probit for still being in the sample in the

second period. For t  3, we estimate a probit for those units still in

the sample as of t  2. At t  T, we have the smallest group of

observations because we only use units still in the sample as of T − 1.
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∙Where might the wit come from? Since they have to be observed at

time t for the entire subgroup with si,t−1  1, wit generally cannot

contain variables dated at time t (unless some information is known at

time t on people who attrit at time t). When the xit are strictly

exogenous, we can always include in wit elements of

xi,t−1,xi,t−2, . . . ,xi1.

∙ The potential dimension of wit grows as we move ahead through

time, which is why a separate selection model should be estimated at

each t.
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∙ yi,t−1 cannot be in wit because yi,t−1 is necessarily correlated with Δuit.

∙ Nevertheless, if we assume dynamic completeness of the form

Euit|xi,yi,t−1, . . . ,yi1,ci  0, t  2, . . . ,T,

then elements from yi,t−2,yi,t−3, . . . ,yi1 can be in wit.

∙ Dynamic completeness in this context is very restrictive because if we

impose strict exogeneity on xit then it cannot include lagged yit, and

that makes dynamic completeness unlikely.
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∙ In what sense do we need the wit to be good predictors of attrition? A

sufficient condition is, given si,t−1  1,

Δuit,vit is independent of Δxit,wit.

∙ Δuit independent of Δxit,wit: true if wit contains only lags of xit
because xit is strictly exogenous.

∙ vit independent of Δxit,wit: can be very restrictive because Δxit
cannot be included in wit in interesting cases (because xit is not

observed for everyone with si,t−1  1. In other words, the (reduced

form) selection equation cannot include Δxit, which means we are

assuming
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Psit  1|Δxit,wit, si,t−1  1  Psit  1|wit, si,t−1  1
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∙ In practice, wit includes xi,t−1, but we cannot allow attrition to depend

on the changes Δxit.

∙ Important point: If

Psit  1|Δxit,Δuit, si,t−1  1  Psit  1|Δxit, si,t−1  1

then the pooled OLS estimator from

Δyit on Δxit, i  1, . . .N; t  2, . . . ,T using sit  1

is consistent because EΔuit|Δxit  0. It would be better to ignore

attrition!
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∙ For the sake of argument, assume Δuit,vit is independent of

Δxit,wit, and also linearity:

EΔuit|vit, si,t−1  1  tvit, t  2, . . . ,T.

Under the maintained assumptions we have

EΔyit|Δxit,wit, sit  1  Δxit  twitt, t  2, . . . ,T.
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∙ Two-step procedure: (1) Starting with t  2, estimate a sequence of

probit models for the group of units in the sample at time t − 1: probit

of

sit on wit for the subsample with si,t−1  1.

The vector wit grows as t increases. Obtain the inverse Mills ratios,

̂it ≡ wit̂t

(2) Using the selected sample (sit  1), run the pooled OLS regression

Δyit on Δxit,d2t̂it,d3t̂it, . . . ,dTt̂it,

where allowing a different coefficient on ̂it in each time period is

required because of the nature of the sequential procedure.
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∙ A joint test of significance of the IMR terms (T − 1 restrictions) –

made robust to serial correlation and heteroskedasticity – is a valid test

of the null of no attrition bias.

∙ As usual, if there is evidence of attrition bias, the asymptotic variance

matrix of ̂ needs to be adusted for the first-stage estimation of the ̂t,

possibly via bootstrapping.

∙ The fundamental problem here is that, because Δxit cannot always be

a subset of wit, a large difference between pooled OLS and the

Heckman procedure does not mean the Heckman procedure is

preferred.
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∙ Can partly overcome the problems with the previous method and at

the same time relax the strict exogeneity assumption (at least for some

of the regressors).

∙ Still start with

Δyit  Δxit  Δuit, t  2, . . . ,T.

∙ Now assume we have a vector of instrumental variables for Δxit; call

this vector zit. The minimal requirement is that we observe zit
whenever sit  1.
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∙ Like wit, zit can include elements from xi,t−1, . . . ,xi1, at least under

the sequential exogeneity assumption

Euit|xit,xi,t−1, . . . ,xi1,ci  0, t  1, . . . ,T.

(Recall that this condition does allow for lagged dependent variables in

xit). Now the key independence assumption is

Δuit,vit is independent of zit,wit

conditional on si,t−1  1.
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∙Much more palatable than Δuit,vit conditionally independent of

Δxit,wit because we can choose zit to be a subset of wit, which we

should do. Then it is sufficient that Δuit,vit is independent of wit

given si,t−1  1.

∙ If we include in zit some elements of Δxit, then the procedure can

suffer from the same problems as before.

∙ On the other hand, if we are forced to use only elements of

xi,t−1, . . . ,xi1 in both zit and wit, might have weak instruments (as in

case without attrition).
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∙ Really should have something in wit that affects selection that is not

needed in zit; it is unclear how to go about ensuring this in general.

∙ Can consistently estimate  by applying pooled 2SLS, on the selected

sample, to

Δyit  Δxit  2d2t̂it  3d3t̂it . . .TdTt̂it  errorit

with instruments zit,d2t̂it,d3t̂it, . . . ,dTt̂it.
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7. IPW for Attrition

∙ Previous methods do not extend easily to nonlinear models, except in

special cases.

∙ As in cross section case, IPW weighting uses different assumptions

about the nature of selection. “Ignorability of selection” or “selection

on observables.”

∙ Again, general M-estimation framework. The population problem is

somewhat abstract, but applies to many cases. Let o uniquely solve

the problem

min
∈Θ
∑
t1

T

Eqtwit,.
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∙ Again, think of drawing wi1, si1, wi2, si2, . . . , wiT, siT

∙ Least squares is simply qtwit,  yit − mxit,2. With linear

model, may apply to level or FD data.

∙ General MLE allowed, too.

∙ Assume si1  1 for all i, and sit  1  si,t−1  1 (attrition as an

absorbing state).

∙ Estimation ignoring attrition means that we solve the estimation

problem

min
∈Θ

N−1∑
i1

N

∑
t1

T

sitqtwit,.
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Call this the unweighted M-estimator, ̂u.
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∙ For consistency of this estimator we need for o to uniquely solve

min
∈Θ
∑
t1

T

Esitqtwit,.

When we break wit into endogenous and exogenous variables, o does

not generally solve the minimization problem over the selected

subpopulation when sit is “correlated” with yit after conditioning on xit.

65



∙ For nonlinear least squares, or quasi-MLE in the LEF, where we have

Eyit|xit  mtxit,o, t  1, . . . ,T,

the unweighted estimator is consistent when

Psit  1|xit,yit  Psit  1|xit, but not usually otherwise.

∙ To allow for endogenous selection, adopt a weighting scheme.

∙ Generally, at time t, let rit be a set of variables such that

Psit  1|wit,rit  Psit  1|rit ≡ pit  0, t  1, . . . ,T.

(The “obvious” set of variables rit  wit is not usually available since

we will have to estimate the probabilities.)
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∙ Note how we assume the probabilities are strictly positive. The IPW

M-estimator, ̂w, solves

min
∈Θ
N−1∑

i1

N

∑
t1

T

sit/pitqtwit,,

∙ As before, the key step to show consistency is to show the expected

value of the weighted objective function equals the population

expectation:

Esit/pitqtwit,  Eqtwit,, t  1, . . . ,T.

∙ This follows from iterated espectations IF we make the ignorability

assumption (51):
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Esit/pitqtwit,  EEsit/pitqtwit,|wit,rit

 E Esit|wit,rit
pit qtwit,

 E Psit  1|rit
pit qtwit,

 E pit
pit qtwit,  Eqtwit,.

∙ Issues: (i) How do we choose the rit? (ii) How do we estimate the pit?

(iii) How do we do inference on ̂w?

∙ Two standard ways to choose rit : (1) Let zi1 be a vector of variables

that we observe for every cross sectional unit in the first time period.

Then rit  zi1 for all t ≥ 2. This requires the strong assumption
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Psit  1|wit,zi1  Psit  1|zi1, t  2, . . . ,T.
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∙ If this condition holds, estimation is fairly straightforward: In each

time period, estimate flexible probit or logit models, of Psit  1|zi1.

Pooling does not make sense.

∙ (2) Build the pit up in a sequential fashion. At time t, zit is a set of

variables observed for the subpopulation with si,t−1  1. (si0 ≡ 1 by

convention). Let

it  Psit  1|zit, si,t−1  1, t  2, . . . ,T.

Typically, zit contains elements from wi,t−1, . . . ,wi1, and perhaps

variables dated at t − 1 or earlier that do not appear in the population

model.
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∙ Unfortunately, zit rarely can depend on time-varying variables that

are observed in period t (since we have to apply a binary response

model for the sample with si,t−1  1, and this includes units that have

left the sample at time t).

∙ Question: How do we obtain pit from the it? Not without some

assumptions. Let vit  wit,zit, t  2, . . . ,T. An ignorability

assumption that works is

Psit  1|vi1, . . . ,viT, si,t−1  1
 Psit  1|zit, si,t−1  1, t ≥ 2.

∙ That is, given the entire history vi  vi1, . . . ,viT, selection at time t

(given being still in the sample at t − 1) depends only on zit; in practice,
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this means only on variables observed at t − 1. In particular, changes in

variables from t − 1 to t cannot affect the conditional selection

probability.

∙ How do we use this (strong) assumption? By the law of conditional

probability,

Psit  1|vi  Psit  1|vi, si,t−1  1Psi2  1|vi, si1  1Psi1  1|vi,

so, under the conditional ignorability assumption,

pit ≡ Psit  1|vi  iti,t−1i2.
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∙Method:

(1) In each time period t ≥ 2, estimate a binary response model for

Psit  1|zit, si,t−1  1, which means on the group still in the sample at

t − 1. The fitted probabilities are the ̂it.

(2) Form p̂it  ̂it̂i,t−1̂i2. We are able to compute p̂it only for

units still in the sample at time t − 1.

(3) Solve the problem

min
∈Θ
N−1∑

i1

N

∑
t1

T

sit/p̂itqtwit,,

73



∙ Using the sequential approach, and assuming the sequence of binary

response models is correctly specified, can show that inference ignoring

estimation of the pit is conservative. So, can just obtain standard errors

that allow serial correlation and do not assume an information matrix

equality. (That is, a standard sandwich form.)

∙ In Stata, linear regression and probit would be

regress y x1 x2 ... xK [pweight  1/phat],

cluster(csid)

probit y x1 x2 ... xK [pweight  1/phat],

cluster(csid)
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∙Method suffers from similar drawback as Heckman approach based

on pooled OLS. If Psit  1|wit  Psit  1|xit for xit a subset of wit,

o solves

min
∈Θ

Eqtwit,|xit, all xit, t ≥ 1,

then the unweighted estimator is consistent:

Esitqtwit,  EpitxitEqtwit,|xit

and pitxit ≥ 0,Eqtwit,o|xit ≤ Eqtwit,|xit.

∙ Because the probability weights cannot depend on (all of) xit at time t,

IPW could cause inconsistency.
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∙ Related to the previous point: It would be rare that we would apply

IPW in the case of a model with completely specified dynamics. Why?

Suppose, for example, we have a model of Eyit|xit,yi,t−1, . . . ,xi1,yi0

and let o be the parameter vector. Then o would solve

min
∈Θ
Eyit − mit2|xit,yi,t−1, . . . ,xi1,yi0, t ≥ 1,

and by iterated expectations, the same is true if we condition on any

subset of xit,yi,t−1, . . . ,xi1,yi0. But, in practice, the elements of zit
must come from yi,t−1,xi,t−1. . . ,xi1,yi0, and so IPW would be

unecessary.
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∙ Further drawbacks: Do not currently know how to apply IPW

estimators in “random effects” type models, with or without the

Chamberlain device, or for dynamic models with unobserved effects.

The sequential nature of the modeling seems crucial.

∙With a large T, the p̂it  ̂it̂i,t−1̂i1 can become very small, which

means a lot of weight is given to units still in the sample in the late time

periods. Makes the IPW estimator sensitive to the ̂it.
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