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1. ASYMPTOTIC RESULTS FOR THE LINEAR MODEL

∙ The workhorse in empirical research of all kinds is still a model linear

in parameters. The model stated in terms of a (well-defined) population

is

y  0  1x1 . . .KxK  u
 0  x  u,

    (1)

where x is 1  K and observed, and  is the K  1 vector of unknown

“slope” parameters.

∙ Equation (1) is fairly general, as x can include nonlinear functions of

underlying variables, such as logarithms, squares, reciprocals, log-odds,

and interactions.
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∙ Example:

logwage  0  1educ  2exper  3educ  exper

 4exper
2  5female  u.

Violations: (i) A model nonlinear in parameters may be more

appropriate (for example, when the range of y is restricted, such as

binary, fractional, or nonnegative). (ii) Perhaps the coefficients on the

independent variables should also be viewed as random variables

(although this does not prevent us from writing (1) with a complicated

error term).
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∙ In what follows, we assume that we can collect a random sample –

that is, independent and identically distributed outcomes – from the

underlying population.Given randomly sampled observations

xi,yi : i  1, . . . ,N satisfying the population model (1), we can

write for the random draws

yi  0  1xi1 . . .KxiK  ui, i  1, . . . ,N,     (2)

where N is the sample size.
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∙ Later we will discuss violations of random sampling, including (i)

stratified sampling; (ii) missing data (sample- or self-selection?); (iii)

cluster sampling.

∙ For panel data applications we will explicitly allow a time dimension

and discuss how random sampling applies.
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∙ For notational convenience, it is often useful to absorb the intercept

into the vector x and write

y  x  u     (3)

where x is 1  K, with the convention that the first element x1 is (almost

always) unity.

∙ None of the main large-sample results rely on x1 ≡ 1, but it is almost

always true in practice.

∙ For a random draw i we write yi  xi  ui.
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∙With random sampling, the remaining assumptions can (and should)

be stated in terms of the population.

Assumption OLS.1 (Zero Correlation): The error has a zero

mean and is uncorrelated with each explanatory variables:

Ex′u  0.     (4)

with the last equality a normalization (with an intercept in the model).

∙ (4) is sometimes called “orthogonality conditions.”
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∙ Because x almost always has an intercept, (4) is practically the same

as

Eu  0, Covxj,u  0, j  2, . . . ,K.     (5)

Violations: This is subtle, because one can use (3) and (4) to simply

define , as we will see. Nevertheless, when we begin with an

underlying “structural” model, (4) is often violated by (i) omitted

variables; (ii) measurement error; (iii) simultaneity.
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∙ Sufficient for (4) [or (5)] is the stronger zero conditional mean

assumption,

Eu|x  Eu  0.     (6)

∙ Under (3) and (6), we have specified Ey|x:

Ey|x  x  1  2x2 . . .KxK.     (7)

∙ The difference between (4) and (6) is substantive: under (4),

discussions of “functional form misspecification” is meaningless, while

(6) means that all functions of the covariates affecting the population

regression Ey|x have been accounted for in our choices of x2, . . . , xK.
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∙ In most cases we hope to have (6) when the explanatory variables are

“exogenous” – typically, if a nonlinear function of a regressor is

statistically and practically significant, we leave it in the model – but in

reality we should probably settle for (4). For example, when y has

discreteness, or its range is limited in some important way – say

y ∈ 0, 1, 0 ≤ y ≤ 1, y  0 – the linear model for Ey|x cannot hold

over a wide range of xj, but it might provide a useful approximation.
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∙ How might a linear model “approximate” a general regression

function? Let x  Ey|x denote the true regression function. For

emphasis we separate out the intercept. The linear projection of y on

1,x, denoted

Ly|1,x    x,

is such that the parameters solve

min
a,b

Ey − a − xb2.

It is easily shown (later) that  and  also solve

min
a,b

Ex − a − xb2.
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∙ In other words, the parameters in the linear projection Ly|1,x

provide the best (population) mean square error approximation to the

true regression function.

∙ If we make some strong assumptions we can say more about the

interpretation of the slope parameters, j.

∙ First, for a continuous variable xj, its partial effect is

∂x
∂xj

,

which is a function of x.
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∙ Its average partial effect (averaging across the distribution of x is)

APEj  Ex
∂x
∂xj

≡  j

∙ For a discrete change in, say, xK, we must specify two values (such as

zero and one for a binary variable), take the difference, and the average

out the other explanatory variables:

APEKxK
0,xK

1  ExK x1, . . . ,xK−1,xK
1 − x1, . . . ,xK−1,xK

0

where xK ≡ x1, . . . ,xK−1.
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∙ In any case, APEj is a constant (parameter).

∙ Is it possible that a linear regression consistently estimates the APEs?

Let  be the vector of slope parameters in Ly|1,x. Stoker (1986,

Econometrica) showed that if x has a multivariate normal distribution

then

j  APEj

for all j.
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∙ Of course, multivariate normality is very strong and usually

unrealistic, but it suggests that linear regression more generally

approximates quantities of interest: APEs.

∙We can allow nonconstant partial effects in regression by using

flexible functions of the covariates, so we need not settle for

approximating only estimate partial effects averaged across the

distribution of the covariates.

∙ Back to the population representation

y  x  u, Ex′u  0
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Assumption OLS.2 (No Perfect Collinearity): In the

population, there are no exact linear relationships among the covariates:

rank Ex′x  K.     (8)

Violations: None in interesting applications. High correlation among

regressors often cannot be avoided, but not a violation of assumptions.

Sometimes high correlation among regressors (multicollinearity) is the

researcher’s fault because parameterization has not been carefully

chosen. (Example later.)

∙When an intercept is included, (8) says the population

variance-covariance matrix of the regressors is invertible.
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∙ Under OLS.1 and OLS.2,  is identified, that is, we can write it as a

function of population moments in observable variables:

x′y  x′x  x′u
Ex′y  Ex′x  Ex′u
Ex′y  Ex′x by OLS.1

  Ex′x−1Ex′y by OLS.2
    (9)
    (10)

∙ This has nothing to do with data! A ≡ Ex′x is a K  K matrix of

variances and covariances in the population; Ex′y is essentially a

K  1 vector of population covariances.
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∙ Now apply the logic of method of moments given the random sample:

replace population means with sample means:

̂  N−1∑
i1

N

xi′xi
−1

N−1∑
i1

N

xi′yi

 X′X−1X′Y,

    (11)

    (12)

where X is N  K with ith row xi and Y is N  1 with ith entry yi.

∙ (12) is fine for computations and finite-sample analysis, but

large-sample properties are derived from (11).
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Key Result 1: Under Assumptions OLS.1 and OLS.2, OLS on a

random sample is consistent (as N → ) for : plimN→̂  .

∙ Can work directly off of (11):

̂  plim N−1∑
i1

N

xi′xi
−1

N−1∑
i1

N

xi′yi

 plim N−1∑
i1

N

xi′xi
−1

plim N−1∑
i1

N

xi′yi

 plim N−1∑
i1

N

xi′xi
−1

plim N−1∑
i1

N

xi′yi

 Ex′x−1Ex′y  
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∙ Or, work off of the error term:

̂    N−1∑
i1

N

xi′xi
−1

N−1∑
i1

N

xi′ui

and use a similar argument.

∙ Note: Under Eu|x  0, the OLS estimator is unbiased conditional

on X: E̂|X  . This is because, under random sampling,

Eui|X  0 for all i under OLS.1.
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∙ One way to discover our treatment of OLS so far. Define the linear

projection of y on x (where typically x1  1 as Ly|x  x, where

  Ex′x−1Ex′y is the solution to

min
b
Ey − xb2.

(Note where OLS.2 is used, and OLS.1 holds defintionally from this

view.) Then OLS consistently estimates .
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Assumption OLS.3 (Homoskedasticity): With 2  Eu2,

Eu2x′x  2Ex′x.     (13)

∙ Says that u2 is uncorrelated with each xj and all functions xjxh for all j

and h (including j  h).

∙ Sufficient is

Eu2|x  2.     (14)

∙ If we start with Eu|x  0, then (14) is the same as

Varu|x  Varu ≡ 2,     (15)

which essentially gets us to the Gauss-Markov assumptions for cross

section data.
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Violations: Whether OLS.3 is satisfied is always an empirical issue.

Homoskedasticity is often violated, especially if the range of y is

limited in some way (especially discrete).

∙ If x represents a linear projection and Ey|x ≠ x,

heteroskedasticity (violation of Assumption OLS.3) is almost certain:

even if Vary|x is constant, Eu2|x  Vary|x  x − x2, and the

second term is a function of x if x ≠ x. (Write y  x  e and

u  y − x  e  x − x, square both sides, and then condition on

x. Note that Ee|x  0 and so e is uncorrelated with any function of x.)
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∙ To get the limiting distribution of OLS:

N ̂ −   N−1∑
i1

N

xi′xi
−1

N−1/2∑
i1

N

xi′ui .     (16)

∙ Now, by the central limit theorem for i.i.d. random vectors,

N−1/2∑
i1

N

xi′ui
d
→ Normal0,B     (17)

B  Varxi′ui  Eui2xi′xi.     (18)
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∙ An implication of (17) is N−1/2∑i1
N xi′ui  Op1. After a little

algebra, and using Op1  op1  op1,

N ̂ −   A−1 N−1/2∑
i1

N

xi′ui  op1     (19)

where

A  Exi′xi     (20)

is K  K and nonsingular by OLS.2. Therefore, from (17) and (19),

N ̂ −  d
→ Normal0,A−1BA−1.
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∙ This variance matrix, A−1BA−1, is a “robust sandwich” form: it does

not assume homoskedasticity.

∙ Roughly, we act as if

“Var̂  A−1BA−1/N”

which shrinks to zero at rate 1/N, just like the variance of a sample

average.

∙ If we add OLS.3, then

B  2A,     (21)

and the usual OLS inference is asymptotically valid.
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Key Result 2: Under Assumptions OLS.1, OLS.2, and OLS.3,

N ̂ −  d
→ Normal0,2A−1.     (22)

̂2  N − K−1∑
i1

N

ûi2
p
→ 2

Â  N−1∑
i1

N

xi′xi
p
→ A,

    (23)

    (24)

where ûi ≡ yi − xi̂ are the OLS residuals.
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∙ Our estimate of 2A−1/N is

̂2X′X/N−1/N  ̂2X′X−1,

the usual formula for estimating Var̂ under the Gauss-Markov

assumptions.

∙ The Gauss-Markov assumptions imply Var̂|X  2X′X−1 and

E̂2|X  2. Under the assumptions we have made, ̂ is not even

unbiased in general. But the same formula works for estimating its

asymptotic variance.
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∙Where is normality used? Not for large-sample analysis. The

assumption

u|x1, . . . ,xK ~ Normal0,2,     (25)

which implies Eu|x  0 and Varu|x  2, does imply that the MLE

is the best linear unbiased estimator (conditonal on X), but this is very

strong. Normality underlies exact inference: with random sampling,

(25) gives us the classical linear model assumptions. But normality is

needed for large-sample inference.
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∙ Note: The CLT does not say anything about the population

distribution of u. The distribution of u in the population is fixed and has

nothing to do with the size of the sample we draw. The CLT implies

that standardized sample averages, such as N ū  N−1/2∑i1
N ui, has

an approximate Normal0,2 distribution for large N.
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∙ To make inference robust to arbitrary heteroskedasticity, just drop

OLS.3. Then

B̂  N − K−1∑
i1

N

ûi2xi′xi
p
→ B     (26)

whether or not OLS.3 holds.

∙ Avar̂ is estimated with a “sandwich” form:

Avar̂  Â−1B̂Â−1/N

 N
N − K ∑

i1

N

xi′xi
−1

∑
i1

N

ûi2xi′xi ∑
i1

N

xi′xi
−1

    (27)
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∙ The factor N/N − K is a finite-sample correction. There are others.

∙ Remember, ̂ is still the OLS estimator. We are adjusting the

inference for OLS.

∙ Note: R-squared is perfectly valid as a goodness-of-fit measure under

heteroskedasticity: R2 is a consistent estimate of 2  1 − u2/y2, which

is a function of the unconditional variances. Whether Varu|x is

constant is irrelevant for estimating 2.
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∙ Question: Suppose in the equation y  x  u, OLS.1 holds, that is,

Ex′u  0. Suppose we think Varu|x  x, where x is a known

function (and this may or may not be the correct variance function). Is

the weighted least squares estimator, that is, the solution to

min
b
∑
i1

N

yi − xib2/xi

generally consistent for ? What if Eu|x  0?
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2. PRACTICAL REGRESSION HINTS

∙ Do not always attempt to maximize R-squared, adjusted R-squared, or

some other goodness-of-fit measure. Might include in x factors that

should not be held fixed.

EXAMPLE: y is individual or family demand for a product, x1, . . . ,xk−1

include various product prices, income, and demographics. Should we

include the demand for a competing product as xk? Usually does not

make sense to hold a quantity demanded fixed and change the price of

any good.
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∙ It is possible to obtain a convincing estimate of a causal effect with a

low R-squared. For example, under random assignment, a simple

regression estimate consistently estimates the causual effect, but the

“treatment” may not explain much of the variation in y.

∙More precisely, in the equation

y    w  u,     (28)

the question of whether u is correlated with w is very different from the

relative sizes of Vary and Varu.
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∙ Include covariates that help predict the outcome if they are

uncorrelated (in the population) with the covariate(s) of interest. So, if

w is the explanatory variable of interest, and it has been randomized

with respect to the response and controls, say z, then estimate

y    w  z  u.     (29)

Because Covz,w  0, adding z will not cause collinearity (except

slightly in any sample), but it will generally reduce the error variance.
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∙ In large samples,

Var̂ ≈ u2

nw2
.     (30)

As more (relevant) covariates are added to z, u2 gets smaller. (And, of

course, maximizing the variance of w in a designed experiment helps,

too.)

∙ A control that can substantially reduce the error variance is a lagged

value of y.
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∙ Be careful in using models nonlinear in explanatory variables,

especially with interactions.

Coefficients on level terms may become essentially meaningless.

EXAMPLE: 401(k) pension plan contributions:

contribs  0  1match  2income  3female
 4match  income  5match  female  u     (31)

The coefficient on match, 1, measures the sensitivity of contributions

to the match rate for a male worker with zero income!
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∙ For prediction purposes, unimportant. But centering can make

coefficients more interesting:

contribsi  0  1matchi  2incomei  3femalei
 4matchi  incomei − income  5matchi  femalei  u

Now, 1 is the effect of the match rate for women at the average

income level.

∙ 2 is still the effect of income on contribs when mrate  0. Because

many 401(k) plans offer a zero match rate, this is not a crazy parameter.

If we center match also, we can write
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contribsi  0  1matchi  2incomei  3femalei
 4matchi − match  incomei − income
 5matchi  femalei  u,

and 2 measures the partial effect of income on contribs at the average

match rate. (Note that we could do a similar centering before

interacting match with female.)

∙Without centering: the variables matchi and matchi  incomei are

probably highly collinear because the partial effect of match at

income  0 is poorly identified and uninteresting.
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EXAMPLE: Firm participation rates in 401(k) plans and the firm match

rate.
. sum prate mrate age ltotemp sole

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

prate | 4075 .840607 .1874841 .0036364 1
mrate | 4075 .463519 .4187388 0 2

age | 4075 8.186503 9.257011 1 71
ltotemp | 4075 6.97439 1.539165 4.65396 13.00142

sole | 4075 .3693252 .4826813 0 1
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. reg prate mrate age ltotemp sole, robust

Linear regression Number of obs  4075
F( 4, 4070)  202.82
Prob  F  0.0000
R-squared  0.1755
Root MSE  .17033

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

mrate | .1072729 .0060035 17.87 0.000 .0955027 .1190432
age | .0037 .0002493 14.84 0.000 .0032113 .0041887

ltotemp | -.0281719 .0021148 -13.32 0.000 -.0323181 -.0240257
sole | .0177024 .0059192 2.99 0.003 .0060977 .0293072

_cons | .9505378 .0149728 63.48 0.000 .9211829 .9798927
------------------------------------------------------------------------------
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. gen mrateage  mrate*age

. gen mrateltotemp  mrate*ltotemp

. reg prate mrate age mrateage ltotemp mrateltotemp sole, robust

Linear regression Number of obs  4075
F( 6, 4068)  156.51
Prob  F  0.0000
R-squared  0.1940
Root MSE  .16845

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

mrate | -.0014222 .0275289 -0.05 0.959 -.055394 .0525496
age | .0066224 .0004247 15.59 0.000 .0057898 .007455

mrateage | -.0054106 .0005122 -10.56 0.000 -.0064148 -.0044065
ltotemp | -.0390588 .0032932 -11.86 0.000 -.0455153 -.0326023

mrateltotemp | .0240843 .0044453 5.42 0.000 .0153691 .0327995
sole | .0170137 .0058649 2.90 0.004 .0055153 .0285121

_cons | 1.001494 .0219434 45.64 0.000 .9584733 1.044515
------------------------------------------------------------------------------
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. gen mrateage0  mrate*(age - 8.19)

. gen mrateltotemp0  mrate*(ltotemp - 6.974)

. reg prate mrate age mrateage0 ltotemp mrateltotemp0 sole, robust

Linear regression Number of obs  4075
F( 6, 4068)  156.51
Prob  F  0.0000
R-squared  0.1940
Root MSE  .16845

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

mrate | .1222283 .0066737 18.32 0.000 .1091443 .1353124
age | .0066224 .0004247 15.59 0.000 .0057898 .007455

mrateage0 | -.0054106 .0005122 -10.56 0.000 -.0064148 -.0044065
ltotemp | -.0390588 .0032932 -11.86 0.000 -.0455153 -.0326023

mrateltot~p0 | .0240843 .0044453 5.42 0.000 .0153691 .0327995
sole | .0170137 .0058649 2.90 0.004 .0055153 .0285121

_cons | 1.001494 .0219434 45.64 0.000 .9584733 1.044515
------------------------------------------------------------------------------
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. corr mrate mrateltotemp
(obs4075)

| mrate mratel~p
-------------------------------

mrate | 1.0000
mrateltotemp | 0.9479 1.0000

. corr mrate mrateltotemp0
(obs4075)

| mrate mrate~p0
-------------------------------

mrate | 1.0000
mrateltot~p0 | -0.1918 1.0000

45



3. LINEAR REGRESSION AS THE BEST MEAN SQUARED
ERROR APPROXIMATION

∙ If we write

y  x  u
Ex′u  0,

then x  Ly|x is the best linear approximation to the true conditional

mean function, x  Ey|x, in mean squared error. Why? By

definition,  solves

min
b∈RK

Ey − xb2.
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But y  x  e where Ee|x  0. Write

y − xb2  x  e − xb2

 x − xb2  2x − xb  e  e2.

Now any function of x is uncorrelated with e, so

Ex − xb  e  0. It follows that, for any b ∈ RK,

Ey − xb2  Ex − xb2  Ee2

 Ex − xb2  e2.
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It follows immediately that because  minimizes the left hand size, it

also solves

min
b∈RK

Ex − xb2

(because e2 does not depend on b).

∙ Exercise: Show that  is the vector of coefficients from the population

regression of x on x. In other words, the j also measure the partial

effects of the true conditional mean with respect to the xj.

48


