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1. INTRODUCTION AND EXAMPLES

e Up until now, all estimators we have studied can be written as “closed
form” functions of the data. That is, given the observed data, we have a

mathematical rule for obtaining the estimate. For example, the OLS

i N 17N
Borg = (Z x;-xl) (Z x;-yl).
i=1 i=1

e Such estimators do not cover all cases of interest, particularly when

estimator IS

we turn to nonlinear models.



e Even If the underlying model is linear, special asymptotic methods

are sometimes needed for certain estimators. Suppose that

Med(y|x) = xP = B1 + Pox2 +...+fxxk

IS the conditional median of y given x. Without additional assumptions,
OLS does not consistently estimate the ;. But least absolute deviations
(LAD) does. The LAD estimator solves

N
min > ly; — x;b),
i=1

beRK 4

that Is, it minimizes the sum of absolute deviations (or residuals).



e For large-sample analysis, a key point is that the LAD estimate

cannot generally be written in closed form.
e Suppose that a solution to the problem does exist; call it B, , . Then

we know

BLAD — g(X11y11X21y21 e 1XN1yN)

for some function g(-). But we do not know g(-).
e Question: If we do not know g(-), how do we study the large-sample
(asymptotic) properties of f} an?

e Answer: Indirectly, through the properties of the objective function.



e |n particular, for each (dummy argument) b,
N
N1 i - xbl
i=1

IS an average of independent, identically distributed random variables,
qi:(b) = [v; — x;b|, and so we can apply the law of large numbers if
Elgi(b)] < oo.



e As another example, suppose for y > 0 we specify an exponential

conditional mean model:

E(y[x) = exp(xB) = exp(B1 + fox2 +...+Bxxx).
e \Without further assumptions, we cannot “linearize” the model by

using log(y) as the dependent variable. (In fact, log(y) may not even be

well defined.)



e [nstead, we can directly estimate B by nonlinear least squares (NLS):

N
min > [yi — exp(x;b)]2.
i=1

becRK 4

¢ As in the case of LAD, we cannot present the solution in closed form.
But the estimator minimizes a function that is an average of 1.1.d.
random functions of b.

e [For our purposes, “nonlinear” means any situation where an estimator
cannot be obtained in closed form. This requires a new set of tools for

asymptotic analysis.



2. CONSISTENCY OF M-ESTIMATORS

e \We first cover a class of estimation problems estimators known as
M-estimation. (The “M” refers, for us, to “minimization.” Originally,
M-estimators we defined as maximization problems.)

e \We will carry along the example of nonlinear least squares for a
general regression function. Because we will require a separate notation
for the value of the parameters describing the population, and the set of

candidates for those values, we Introduce a new convention.



e Consider a linear regression model where we know the population

values, say
EQlx,z) =3.26+0.75x—-1.84 z.
This population regression is a particular version of the model
m(x,z) = 01+ 02x + 03z

for E(y|x,z), where each 6; can range across all real numbers.

e [t is helpful to let (01,02,03) denote a generic candidate for the actual
population parameters. The actual population parameters are denoted
001,602, and Oo3. That is, 81 = 3.26, 82 = 0.75, and o3 = —1.84.



e In practice, of course, we do not know the vector of values, 0,,
actually describing the population. But it is these constants that we
hope to estimate. In order to state assumptions that allow us to do so in
general nonlinear contexts, we need to distinguish between 0, and a
generic vector, 0.

e For NLS, we specify a model for the conditional mean, E(y|x), where
y Is a scalar response and x is a vector. We focus on parametric models,
which means the function is known up to the unknown parameters. Let

m(x, 0) represent this function forall x € Xand @ € ® < R”, where P

IS a positive integer.
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e S0 0 isa P x 1 vector. The parameter space @ is the set of all
parameters values that could be the population value.
e As an example, m(x,0) = exp(x0) = exp(01 + O2x2 +...+0gxk)
where x = (1,x2,...,xx) contains unity for convenience. The parameter
space is probably ® = R because it is unlikely we would restrict it
ahead of time.
¢ \We can have more of fewer parameters than covariates. For example,
if

m(x,0) = exp[xp +51(xP)? + 52(xP)?]
then® = (B',51,52) .

11



e [f 0 <y < 1-sometimes called a fractional response — a sensible

model is

exp(x0)

m(x,9) = 1 + exp(x0)

= A(x0).

e For much of our development, we assume the model correctly

specified for the conditional mean.

12



ASSUMPTION NLS.1: For some 6, € 0,

E(lx) = m(x,0,). L
e Remember, 0, is just the P x 1 vector of numbers we are trying to
learn about. Sometimes, 0, is called the “true value of the parameters.”

e |t seems almost certain that models we use are misspecified. We will

discuss that situation later.

13



e For some purposes, it is useful to write the equation in error form:

y=m(x,0,) +u
E(ulx) = 0,
where the zero conditional mean holds by construction.
e Generally, other features of D(u|x) are unrestricted. For example, if
y > 0thenu > -m(x,0,). If 0 <y <1, then we must also have
u<l-m(x,0,).
e Generally, we should avoid thinking of situations where u Is

Independent of x, and we should not even think Var(ulx) = Var(u).

14



e Assuming a correctly specified model, and the availability of a
random sample, how should we estimate 0,? It helps to know an
optimization feature of a conditional mean. Generally, let
E(|x) = po(x). Assume E(3?) < oo. Then among all functions u(x)
with E[u(x)?] < oo,

E{ly — 1o(x)]%} < E{[y - p(x)]?}.
That Is, the conditional mean is the minimum mean square predictor of

V.
e Therefore, If m(x,0) is a correctly specified model of E(y|x), then

E{[y — m(x,0,)]?} < E{[y —m(x,0)]%},all 6 € ©.

15



e A direct proof is constructive. Write y = m(x,0,) + u and plug in:

[y —m(x,0)]° = [m(x,0,) + u — m(x,0)]?
= u® + 2[m(x,0,) — m(x,0)u + [m(x,0,) — m(x,0)]?

Then

E{[y - m(x,0)]?} = E(u?) + E{2[m(x,0,) — m(x,0)]u}
+ E{[m(x,0,) — m(x,0)]%
= E(u?) + E{[m(x,0,) — m(x,0)]%}

because E(u|x) = 0.

16



e Now E(u?) does not depend on 0 and E{[m(x,0,) — m(x,0)]%} is
smallest when 6 = 0,.

e S0, we have shown that

0, = argming_q E{[y — m(x,0)]°}.
e [n other words, 0, solves a population minimization problem.

e The analogy principle says to solve the sample analog of the

population problem, which leads to

17



e The M-estimation principle generalizes this reasoning. We assume

that 0, € ® uniquely solves

min £lg(w,0)]

where g : YW x ® - R is areal valued function of an observable vector
w and the parameter vector 0.

e An M-estimator of 8, solves the sample analog,
N
- _1 .
rgyg N ,'21 qg(w;,0).

e Does it seem reasonable that a solution, say 8 = g(w1,wa,...,wy) is

consistent for 9,?

18



e By the law of large numbers, for each 0,

N
N1Y " q(wi,0) 5 E[g(w,0)]
i=1

0 minimizes 6, minimizes

(sample average)  (population average)
So6 50, (as N - oo, as always) seems reasonable.
e But pointwise convergence of the sample objective function is not
sufficient for consistency. A sufficient condition Is uniform

convergence in probability:
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N
1 o) _ LN
max N ;q(w,,e) E[g(w,0)]| 50

e Means that we can bound the distance between N1 ZZ ,9(w;,0) and

Its expected value by something that does not depend on 6.

e [n “regular” cases, the pointwise law of large numbers translates into
the uniform law of large numbers. Sufficient is that g(w, <) is
continuous on ®, O is closed and bounded (compact), and

lg(w,0)|< b(w) for some function b(w) with E[b(w)] < oo.
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e Other than “regularity conditions” — continuity of ¢(w, -) and finite
moments — the key consistency assumption is identification. Namely,

0, Is the unigue solution to the population problem.

EXAMPLE: Suppose x > 0 is a scalar, y > 0, and

m(x,01,02,03) = 01 + 0,x%, where the parameter spaces is

[0,00) x [0,00) x R. If 0,2 = 0, so that E(y|x) = E(y) = 0,1, then any 0
of the form (0,1,0,03)’ minimizes the mean squared error. What would

NLS estimate for 6,37
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e For NLS, we can write the identification as

ASSUMPTION NLS.2: E{[m(x,0,) — m(x,0)]?} > 0 forall 8 € ®,
0+0, [

e Assumption NLS.2 plays the role of the rank condition. In the linear
case, m(x,0) = x0, and then

m(x,0,) — m(x,0) = [(08, —0)x]* = (0, —0)'x'x(0, — 0)
E{[m(x,0,) - m(x,0)]°} = (0, -0)'Ex'x)(0, — 0)

For the last expression to be positive for all 8 = 0,, we need E(x'x) to

have full rank K, which is exactly Assumption OLS.2.
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e Theorem 12.2 contains a formal consistency result for general
M-estimators. Practically important restriction is continuity of g(w, -).
Can be easily relaxed to “continuity with probability one.”

e \When ¢(w, -) Is continuous on ® and ® is compact, there is always a

solution to
N
min ;q(wi,e)-

It need not be unique — least absolute deviations is sometimes not

unique — even though the solution to the population problem is unique.

23



e Very useful result (Lemma 12.1): Under finite moment conditions, if

r(w, +) IS continuous on G,
N
N1Y " r(w;,0) > E[r(w,0)],all 6 € O,
i=1
and § 5 0,, then
N
N1 Z r(w;,0) L& Elr(w,0,)]
i=1

e This result is useful for estimating average partial effects (which we

will cover later) as well as asymptotic variance matrices.
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3. ASYMPTOTIC DISTRIBUTION

e |[n the previous section, we showed how consistency of M-estimators
can be established without having closed form solutions. Now we turn
to the question of approximating the sampling distribution of 6.

¢ \We now add some smoothness assumptions. In particular, assume
g(w, +) 1s twice continuously differentiable on int#(®).
e Further, assume 0, Is in the interior of the parameter space:
0, € int(®).

e Finite moment conditions are used, too.

25



e The gradient of ¢g(w, 0), defined on in#(®), Is the 1 x P row vector

Voq(w, 0) :( dgwh) 3w  g(wH) )

001 00> o0 p
The score Is the transpose of the gradient:
s(w,0) = Vgg(w,0)".

e Now, because 8, is in the interior of ® and 6 5 0, we know
0 € int(®) with probability approaching one. We will ignore the

qualifier here.

26



e Because § minimizes the sample objective function and is an interior

solution, @ solves
N
D s(wi,0) =0,
=1

a set of P equations in P unknowns. (Many algorithms to actually find 6
are based on this first order condition.) Because g(w, +) Is twice
continuously differentiable, each s,,(w,+), m = 1,..., P, Is continuously

differentiable.

27



e By the mean value theorem (for each element of the score),

N N N
Zsm(wi,é) — Zsm(wian)—l_ (ZVOSM(WZ1§I’11)>(§_OO)
i=1 i=1 i=1

where 8,, is on the line segment between 6 and 0, for m = 1,...,P.

Therefore, 8,, 5 0,. (In effect, ©,, is “trapped” beween § and 9,.)

28



e Stack all P elements to get

N N N
D s(wi,0) = D> s(wi,0,) + (Z I"L)(@ —8,),
i=1 i=1 i=1

where H; is the P x P Hessian of ¢(w, 8) — also the Jacobian of s(w, 8)
— but with rows evaluated at generally different mean values.

e We will need the Hessian evaluated at a generic parameter vector:

0%q(w,0)
0000’

H(w,0) = Vig(w,0) = Vgs(w,0) =

29



e Back to the score representation. Because 8 solves the FOC,

N N
0= s(w;0,)+ (Z ﬁl)(é - 0,)
i=1 i=1

SO

N N
0= N2 s(wi;,0)+ (Nl Zﬁ,) JN(@©-6,).
i=1 =1

e Because each §,, 5 0,, N1 ZZ 1}"Ii 5 E[H(w,0,)] =A(0,) = A,

by Lemma 12.1

30



e An assumption related to identification is that
A, Is positive definite

e Can show that N1 ZL H; is nonsingular w.p.a.1. because it is

getting “close” to A,, which is nonsingular.
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e |t follows that, w.p.a.1.,

N -1 N
‘/N(@ —-0,) = (Nl Z Hl> |:—N1’2 Z s(Ww;, 00):|
i=1 i=1

e Further, very generally the score has zero mean when evaluated at 0,
E[S(W,Oo)] = 0.

(Important: E[s(w,0)] + 0for0 + 0,.)

32



e Can show E[s(w,0,)] = 0 if the derivative and expected value can

be interchanged. By FOC in the population,
VGEI:q(W’Oo)] — 0;

and so E[s(w,0,)] = 0 if Vg can pass through the expected value.

(This i1s shown generally in some analysis books.)

33



e Similar argument can be used to show A, Is positive definite. Why?

Because 0, uniquely solves the population minimization problem,
V5E[g(w,8,)]

IS positive definite. Now interchange the partial derivatives with respect

to 6 and the expected value and we get A,.

34



e In other cases, such as NLS, can show directly the score has zero
expected value at 6 = 0,.
e Why is E[s(w,0,)] = 0 important? Because then, by the central limit

theorem,

N
N12 Z s(w;,0,) 4 Normal(0,B,)
i=1

B, = Var[s(w;,0,)] = E[s(w;,0,)s(w;,0,)'].

e In particular, N-12 le s(w;,0,) = 0,(1).

35



36

B N
[—NW D " s(wi,0,) J
i=1

+0p(1) - 0p(1)

+0,(1).



e |If we define r;(0,) = —A,'s(w;,0,), then we can write
N
IN®-0,) = N2> " ri(8,) + 0,(1),
i=1

which is called the influence function representation.
e Notice that £[r;(0,)] = 0 and
Var[ri(0,)] = A Var[s(w;,0,)]A; = AJIB,AL.

37



e By the asymptotic equivalence lemma,
JN®-0,) 4 Normal(0,A;*B,AZL).

e Generally, the asymptotic variance of N (6 — 0,) depends on the
expected value of the Hessian and the variance of the score (both

evaluated at 9,).

38



e The expression for Avar[J/N (6 — 0,)] is of the “sandwich” form
(although in some cases it simplifies).

e \We write

Avar(®) = A;'B,AZYN,
so that A;'B,A;/N is intended to approximate the actual sampling
variation in 8 for a give sample size, N.

e Note that, as with simple estimators, such as sample averages,
Avar(9) is of order 1/N.

39



4. ESTIMATING THE ASYMPTOTIC VARIANCE
e Technically, we must talk about consistent estimation of
Avar[JN (6 — 0,)], as this is the quantity that does not depend on N. So
we must consistently estimate A, and B,.
e There are sometimes several different ways to estimate A,. An

estimator that is always available is simply
N N
N1 H(w;,0) = N1 HiB),
i=1 i=1

the average of the Hessians evaluated at the estimates.

40



e \When w; partitions as (x;,y;), and we are correctly modeling a

feature of D(y,|x;), we can often find
A(x;,0,) = E[H(w,,0,)[x;].

By iterated expectations, A, = E[A(x;,0,)]. SO a second consistent

estimator of A, is sometimes available:
N N
N1 A, 0) = N1 A,
i=1 =1

e This Is the estimator based on the “expected Hessian,” although

emphasizing the conditioning on x IS more precise.

41



e |t is rarely possible to find the unconditional expected value of

H(w;,0,) when there are conditioning variables because we are not
usually modeling D(x;).

e A natural consistent estimator of B, = E[s(w;,0,)s(w;,0,)'] is

N N
B = N1 Z S(Wi,é)S(Wi,é)’ = Nt Z s,—(é)si(@)’
i=1 =1

N
= N1 88
i=1

e Called the outer product of the score.

42



e Therefore,

e As with all other procedures, the divions by N disappear in A/vEf(G).

43



e If we can compute A(x;,0,) = E[H(w,,0,)|x;] then we can use

o N N N -1
Avar(é) —(Z Ai) ( SiS; > (Z Ai)
i=1 i=1 i=1

¢ \WWhen the inverses exist, both estimators are always at least positive
semidefinite, and usually positive definite unless the underlying model

IS poorly specified.

44



Nonlinear Least Squares

o \Write g(w,0) = [y — m(x,0)]%/2. Then

Vog(w,0) = —Vom(x,0)[y — m(x,0)]
s(w,0) = —Vem(x,0)'[y — m(x,0)]

assuming m(x, -) 1s twice continuously differentiable on int#(®).
e The NLS estimator satisfies > Vem(x;,8)'[y: — m(x;,8)] = 0. In

the linear case, m(x;,0) = x,0 and Vem(x;,0) = x;, and we obtain the
FOC for the OLS estimator.

45



e \We can directly show the conditional mean of the score is zero at 0,:

E[s(w,0,)|x] = —Vom(x,0,) TE(VX) — m(x,0,)]
= —Vem(x,0,) -0 = 0.

(In fact, can write s(w,0,) = —Vgm(x,0,)'u where u = y — m(x,0,).)

¢ By iterated expectations, of course, E[s(w,0,)] = 0.

46



e The Hesslan IS
H(w,0) = Vgs(w,0) = Vem(x,0)'Vem(x,0) — Vim(x,0)u(0)

where u(0) = y — m(x,0). Note that Vem(x,0)'Vem(x,0) and Vim(x, 0)
are P x P.

47



e \We can use H(w, 0) to estimate the asymptotic variance, or use
E(ulx) = 0:

A(x,0,) = E[H(w,0 )|x] = Vom(x,0,) Vem(x,0,) — Vem(x,0,)E[u(0,)|x]
= Vem(x,0,)'Vem(x,0,).
e A typical estimator of A, for NLS Is
N N
A = N1 Vom(x;,0)'Vem(x;, 0) = N1 ) VernVern;,
i=1 i=1
but it does assume correct specification of the conditional mean. (In

linear case, reduces to the usual estimator no matter what.)
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* For B,, §; = —Vom(x:,0)'[v: — m(x;,0)] = —Vem'i; where
G; = y; — m(x;,0) are the NLS residuals.
N N
B=N1) 88 =Nt i?Vemn Ve,
i=1 i=1
e Combining gives the Huber-White heteroskedasticity-robust variance

matrix estimator:

N 1/ N N -1
Avar(®) = (Z vm;vm) (Z ﬁgveﬁa;veﬁai> (Z veﬁagveﬁai>
i=1 =1

i=1

(under correct specification of the conditional mean).
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e Suppose we add a homoskedasticity assumption:
ASSUMPTION NLS.3: Var(y|x) = ¢2.

e With Assumption NLS.3, the expression simplifies, just as with OLS:

E[s(w,0,)s(w,0,)|x] = E[u?*Vem(x,0,) Vem(x,0,)|x]
= E(u?|x)Vem(x,0,) Vem(x,0,)
— G(z)vem(xa OO)IVOm(X’ 90)
because E(u?|x) = Var(u|x) = Var(y|x) when E(u|x) = 0.
e Aside: NLS.3 does not say that Var(y|x) = Var(y).
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B, = E[s(w,0,)s(w,0,)'] = 62E[Vom(x,0,) Vem(x,0,)]

= 02A,.

e A consistent estimator of o2 (with a degree-of-freedom adjustment) is

and then
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5. LARGE-SAMPLE INFERENCE

e The asymptotic standard errors are obtained as the square roots of the

diagonal elements.

0, = 94) 4 — Normal(0,1).
Se(H )

e Therefore, to test Hy : 0, = aj, Use

(@ —a;)
Se(H )

t(Hj,a]) =

as approximately Normal(0, 1). Obtain approximate confidence

intervals, too: §; + 1.96 - se(8,) for a large-sample 95% CI.
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e \We can test multiple, nonlinear restrictions. Let Hy be stated as
Ho:¢©,)=0

where ¢ : ® - RY, so there are Q restrictions. Assume ¢(-) is
continuously differentiable on in#(®) and that 0, € int#(®), as before.
Let C(0) = Vee(0) be the O x P Jacobian, and define C, = C(0,).

e By the mean value theorem argument,

JN[e(®) —c®,)] =Vee(® ) /N®O-0,)+0,(1)
— C,yN(©®-6,) +0,(1).
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e SO, under Ho,
mc(@)) 4 Normal(0,C,A;'B,A;C))
INe(®)'[C, A B, AL, N e(®) S 12
e The Wald statistic 1S
W = Ne(®) (CABA ¢ )1c(d)
= ¢(®)' {Avarlc®)]} 1e(d)
where C = C(0) = Vgc(D).
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e Under Hy,
d
W - %é
e The Wald statistic is convenient when the unrestricted model is easy
to estimate. It is almost always available, and can be made robust by
using the sandwich form of the asymptotic variance estimate.

e Typically, the Wald statistic is the default when reported by

econometrics packages.
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e The score statistic or Lagrange multiplier statistic 1S based only on

the restricted estimate. Let 8 be the estimator that solves
N
min Z} g(w:,0)

subject to ¢(0) = 0

e The score principle is to insert the restricted estimates into the

unrestricted score, and then seeing “how far” the result is from zero.
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e Based on a mean value expansion, can show under Hy that
N N

N2 " s(wi,0) = N2 " s(wi,0,) + Ao /N (8- 0,) +0,(1).
i=1 =1

e By another mean value expansion,

JNc@®) = /Nc® )+ Co/N®-8,) +0,(L).
But ¢(8 ) = 0 under Ho and ¢(8) = 0 because 0 is the restricted
estimator. So C,/N (0 —0,) = 0,(1).

o



e Theforefore, under Hy,

N N
C,A} (NUZ Z s(w;, 6)) = C,At (N”z Z s(w;, 90)> +0,(1)
i=1 =1

SO

N
COAgl (N_llz Z S(W,‘, 6)) i NOVmaZ(O, CoAngoAglclo)
i=1
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e The LM statistic is a quadratic form in N-¥2 3"

59
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e Depending on the choice of A, it may not be positive definite
(particularly the Hessian form). But the LM statistic above is always
nonnegative.

e This is a fully robust LM statistic in that it only assumes 0,
minimizes E[q(w;,0,)] subject to ¢(8,) = 0 (and, the regularity
conditions of 6, being in the interior under Ho, differentiability, and

moment conditions).
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o |f the generalized information matrix equality, that is, for some

o2 > 0,
B, = 02A,

then the LM statistic simplifies to

N / N
LM = <Z§> M‘1<Z§i>/&2,
i=1 i=1

where 62 is a consistent estimator of ¢2.
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e The matrix M can be one of the matrices

e These lead to the “Hessian,” “expected Hessian,” and “outer product”
of the LM or score statistics. This Is a nonrobust statistic because it uses

the GIME.
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e When o5 = 1 (as in correctly specified maximum likelihood, as we
will see), the outer product statistic is N — SSRo = NRj from the

regression (without a constant),
lons§;,i=1,...,N.

(R2 is the “uncentered” R-squared, that is, the dependent variable is not

centered about its sample mean.)
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e The nonrobust form of the statistic need not be positive if ZZ . H; is

used because the Hessian at the restricted estimates need not be positive
definite. Usually the estimated expected Hessian iIs positive definite
(more later), and the outer product form is always nonnegative.

e The outer product form, while computationally simple, has been
shown sometimes to have serious size distortions even in pretty large
samples.

¢ [n some leading cases, the expected Hessian depends only on first

derivatives and is always nonnegative.
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EXAMPLE: Nonlinear Least Squares. Suppose that @ = (B',8")" where
§ is O x 1, and the mean is correctly specified. State Hy : 8, = & fora

specified set of values §. Let B be the NLS estimator subject to & = §.
Then 6 = (B', S')’ and the 1 x P gradient of the mean function is

Vem(x;,0) = [Vpm(x,,0), Vsm(x;,0)].

e |f we make NLS.3 (homoskedasticty) under the null, the expected

Hessian form of the statistic is NR2 from the auxiliary regression
7; on Vﬁﬁ’li,vy’;li, i=1,... N
where i; = y; — m(x;,0) are the restricted NLS residuals and R? is the

uncentered R-squared.
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e Notice that even though Z?VB%&I- = (0 by the FOC for the

constrained NLS estimator, Vgr; needs to be included because it is
generally correlated with Vgm;.

e A regression form of the robust test: (1) Regress Vsm; on Vgm,; and
obtain the 1 x Q residuals, ¥;. (2) Use the usual heteroskedastic-robust
Wald statistic of joint significance in the regression #; on ¥,
i=1,...,N. (Or, use N — SSRo = NRj from the regression 1 on #;F;,
i=1,...,N)
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e Under the GIME, a statistic based on the change in the criterion
function is available. This requires estimation of both the restricted and
unrestricted models but no matrix algebra for computation.

¢ \We know that

N . N A
D qwi,8) =D q(w;,b)
i=1 i=1

because 0 is the restricted estimator.
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e Define the quasi-likelihood ratio (OLR) statistic as

N N
OLR = 2[2 g(w;,0) — Zq(wi,é)J/&z,
i=1 =1

where 62 is a consistent estimator of o2 typically obtained without the
restrictions imposed.
e Under Hp : ¢(0,) = 0 and B, = 03A,,

d -
QLR—’%Q

68



e The QLR name comes from its application to maximum likelihood
estimation. But it is also related to the usual F statistic from linear
regression. In fact, if g(w;,0) = (y; — x,0)?%/2 and

62 = (N-P)tY"" a?, then OLR = Q - F, where F is the usual F

statistic for testing the Q restrictions.
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e Generally, for NLS under NLS.3, we can use

_ (SSR,—SSR.w)  (N-P)

F SSR ., 0

as approximately Fo n-p under Hg. No theoretical reason not to use

QLR as approximate %é, but the “F” statistic has been shown to

sometimes have better size in not-so-large samples.
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Choosing Among the Statistics

e Under the null, the robust versions of the Wald and LM statistics have
the same limiting chi-square distribution. The QLR statistic does under
the GIME, and, of course, there are nonrobust versions of the Wald and
LM statistics.

e Can we use power considerations to choose among the statistics?
Against fixed alternatives, all three statistics reject with probability

approaching one. That is, they are consistent tests.
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e [nstead, use a local alternatives approach. Suppose the sequence of

“true” parametersis {0,y : N = 1,2,...} and these satisfy

c(0, ) = 8./VN

for some O x 1 vector 8,. So, the null is violated for each N, but it Is
closer to being true as the sample size grows. We can derive the
asymptotic local power 0f each of the statistics. The Wald statistic is
easiest to study. Let 0, denote the limit of 8, 5. Then a mean value

expansion gives

JNc®) = 8, + Co/N (O —0,x) +0,(1).
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e Assume the GIME for simplicity. Then

JN ¢(6) 4 Normal(8,,C,A;1C))

and so the Wald statistic has a limting chi-square distribution with

noncentrality parameter
5. (C,A;CL)15,.
e Turns out to be the same for the LM and QLR statistics, so we cannot

choose among the tests based on local power analysis.
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e Given d,, we can estimate the noncentrality parameter as

5. (CA™*C")15, and then do (local) power analysis.

e Same conclusions for Wald and LM when we look at the robust
versions of the statistics.

e Typically, the choice is based on computational simplicity and
evidence of finite-sample peformance.

e |_ocal power analysis is useful when comparing different estimation
methods. A more (asymptotically) efficient estimator leads to a larger

noncentrality parameter and higher local power.
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6. TWO-STEP ESTIMATION
e Let ¥ be an estimator of a set of parameters (J x 1) from a preliminary

estimation problem. A two-step M-estimator solves
N
: 1 ATEY
min N ;q(W,,O,y).

e Assume that§ 5 y*, where y* is a fixed set of values. We use this
notation to emphasize the possibility that y comes from a

“misspecified” estimation problem.
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e Under regularity conditions (continuity of ¢ in 6 and vy, finite

moments) the key condition for consistency is that 6, uniguely solves
min E[q(wi,8;7")].
e Sometimes, 0, solves the population problem for any y. That is, for
ally e T,
0, = argming_g E[g(w;,0;7)].

In effect, we can use any first-step estimator as long as it converges to

something.

76



Weighted Nonlinear Least Squares

e | et 4(x,y) > 0 be a model of the variance function Var(y|x). For
now, do not assume it is correctly specified. But, generally, ¥ 5 v if
we use standard estimation approaches, such as two-step M-estimation.

If it; = y; — m(x;,0),where 0 is the NLS estimate, then ¥ might solve

There are other possibilities, too. (The normal quasi-MLE, for

example.)

77



e The weighted nonlinear least squares (WNLS) estimator solves

N

min ;[yi — m(x;,0)]%/h(x;, )

e Generally, without more assumptions, we cannot conclude that this is
“better” than usual NLS, although it can be if 4(x,y) is a “good”

approximation to Var(y|x).
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e Under weak regularity conditions,

N
N3 i — mxi, 0)12/h(x17) & E{[yi — m(x;, 0))/h(xi,y*)}
i=1

e |f the conditional mean is correctly specified, 0, solves the population
problem for any y. To show this, use a stronger property of the

conditional mean: 0, solves, for any x;,

min E{[yi - m(X;,0)]%[x;}.

79



e Because /(x;,v) > 0 and is a function of x;,

E{[yi — m(x:,0,)141h(x;, y)Ixi} = E{[yi — m(Xi,00)]2|x; -/ h(X;,Y)
< E{[yi — m(x;,0)]%x;}/h(x:, 7).

¢ By iterated expectations, for any 6 and any v,

E{lyi —m(x:,00)1°/h(x;,v)} < E{[yi — m(x:,0)]°/h(x;,y)}.

e \We just have to assume (or show) uniqueness of 0,.
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e |t follows that WNLS identifies the conditional mean parameters for
essentially any positive weighting function that is a function of x;, and
possibly parameters estimated in the first stage. That weighting
function can be arbitrarily misspecified for the conditional variance

provided it satisfies standard regularity conditions.
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e More generally, we can count on consistency of a two-step
M-estimator under weak conditions, the most important being
Identification and continuity of the objective function over (0,y).

¢ [n some cases, the objective function only identifies 6, when the
first-stage estimation problem is “correctly specified,” in which case we
would write § 5 v .

e Inference is more interesting. In general, we should expect to have to
adjust the asymptotic variance of 6 to account for preliminary

estimation of y (because they are obtained from the same set of data).
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e Assume ¥ has first-order representation
N
ING-v9) = N2 ri(y") + 0p(D),
i=1

where E[r;(y*)] = 0 and r;(y*) often takes the form M*e;(y*) for a

constant matrix M*, and we often have to estimate M *.
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e To obtain the asymptotic variance of /N (6 — 0,), use mean value

expansion:
N
JN®O-0,) = A,! (—N‘l’z > si(Oo;?)> +0p(1)
i=1

where s;(0,v) Is the P x 1 is the score with respect to 0 :

si(0,7) = Voq(w;,0;7)".
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e Now use a second MV expansion:

N N
N—1/2 Z Si(eo,'?) _ N—1/2 Z Si(eo;'Y*)
i=1 =1
+ E[Vys:(80,Y*) VN F —v*) + 0,(1)

N
= N2 [5:(00;7%) + Fori] + 0,(1)
i=1

where F, = E[V,s:(0,;7*)] Is the P x J expected Jacobian of s;(0,7)

with respect to vy, evaluated at (0,,y*).
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e Collecting terms,

N
IN@©-6,) = A" (_Nm > [si@oiv") + Fori(v*)]> +0p(1)
i=1

N
= A (—N‘l’z 2. gi(Oo;v*)> +0,(1)

i=1
o LetD, = Var[g.(0,;7*)]. Then

Avar[‘/ﬁ(@ -0,)] = A;'D,Al
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e |f we ignore the estimation error in ¥, we would use

B, = Var[si(0,;v*)] in place of D,and ignore F,r;

¢ In some cases, F, is equal to zero, and so it is legitimate to ignore
estimation of y*.

e |n other cases, s;(0,;y*) and r} are uncorrelated, in which case the

variance that ignores ¥ is too small:

D, - B, + F,L*F.
L* = E[r;(y*)ri(y*)']
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e There are even cases where B, — D, Is actually positive semidefinite,
In which case the correct formula is “smaller” than the incorrect one!
We will see this later when we cover stratified sampling and treatment

effect estimation.
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e To estimate the asymptotic variance of the two-step estimator, let
N
F=N1Y Vysi0:9) > F,.
i=1
e Sometimes, replace Vys;(0,;y*) with E[V,s;(0,;7*)[x:] where x; are
conditioning variables (such as in NLS and conditional MLE).
o | et

A

where estimates are evaluated at (@,?).
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e Notice that g, Is an adjusted version of the score for the second-step

problem. Then

e Also,

where H;(0,y) = Ves;(0;7) is the P x P Hessian for the second-step

problem. Can replace this with a Hessian conditional on x;.
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e A valid estimator iIs then
—~ A N |
Avar(0) = A "DA "/N.
o [fF, = 0, then
—~ A P |
Avar(0) = A "BA “/N.

where B is the usual outer product of the score (with respect to 6):

N

B =N E §z§;

i=1
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e |f the scores from the two problems are uncorrelated,

where
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e |n the case of WNLS,
Vesi(0,y) = Vem(x;,0)' Veh(x:,v)u;(0)/[h(x;,7)?]
so for any v,

E[Vesi(8o,7)] = E{Vem(x:,0,) Voh(xi, )uil[h(xi,7)?]}
=0

because E(u;|x;) = 0. So F, = 0 and we do not need to adjust for

estimation of y*.
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e A robust variance matrix estimator that does not restrict Var(y|x) Is

N L/ N
A/VE”(@WNLS) = (Z VeﬁfléVeﬁfli/};i> (Z ﬁ?VeﬁfléVeﬁflﬂﬁ?)

i=1 i=1
N -1
. (Z VeﬁiéVelf’hi/};i>
=1

which looks like the robust NLS form except every appearance of ;

and Vs, is weighted by 1/,/7;
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7. BOOTSTRAPPING

e Sometimes for complicated estimation methods it is difficult to derive
analytic formulas for quantities of interest. One might rather let a
computer do the work. Resampling methods avoid applying the delta
method (or other asymptotic tools) to obtain valid inference for various
econometric procedures.

¢ In some cases, resampling actually improves on the standard

JN -asymptotics. In others, it does not provide a formal improvement

but often seems to work better in practice.
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e Still need to assume the estimation problem is has some smoothness
In the parameters. Easiest case is resampling under random sampling,
which is our standard setting

® The nonparametric bootstrap 1S the most straightforward resampling
scheme. The idea is to treat the observed data as a population, and
resample from the sample. Let {w; : i = 1,..., N} be the realized
sample, and suppose what we have an estimate, say y, based on this
sample. Assuming ¥ is a smooth function of the data, how can we

approximate a standard error for y?
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e \We repeatedly draw random samples from {w; : i = 1,..., N} of size
N, which means sampling with replacement. In practice, one randomly
draws N integers from {1, 2, ..., N}, with replacement, and these indices
define a bootstrap sample of data.

e [n effect, we treat {w, : i = 1,..., N} as the population and draw
random samples from it.

e [For a bootstrap sample b, denote the sample as {wgb),wg’), e ,w](é’)}.
Unless we draw each integer exactly once — thereby getting the original
sample — a bootstrap sample will contain repeats of some observations

and exclude others entirely.
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e [For bootstrap sample b, we use {wﬁb),wg’), . ,w](\?)} to obtain a set of

estimates, say 0'”. The estimate from the orginal sample is 6.
e For a scalar estimate 7 = g(8) for a continuously differentiable

function g : R” - R, we obtain its bootstrap standard error as

» 172
sep(7) = [(B DY (GO - ?)ZJ
b=1

where 7®) = g(é(b)) and 7 = B Zle 7 ®) is the average estimate

across the bootstrap samples.

98



e \We can use sep(y) to construct asymptotic hypotheses tests and
confidence intervals for y, based on the original estimate y.

e Especially for computing average partial effects — a topic that will
arise repeatedly later — we often need to estimate a parameter that can
be written as y, = E[g(w;,0,)]. A natural, consistent estimator is

y = N1 ZZ  &(wi, 0). To estimate its asymptotic variance, we must
account for the randomness in w; as well as 6. As before, we draw

bootstrap samples, and, for bootstrap sample b, the estimate of y, is

N
A . b) Ab)
§O = N1 g(w”,87),
=1
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e Using the bootstrap standard error to construct test statistics cannot be
shown to improve on the approximation provided by the usual
asymptotic theory. As it turns out, in many cases the bootstrap does
Improve the approximation of the distribution of properly computed
test statistics. In other words, the bootstrap can provide an asymptotic
refinement compared with the usual asymptotic theory. But one must

use some care in computing the bootstrap test statistics.
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e In order to show that the bootstrap approximation of a distribution
converges more quickly than the usual rates associated with first-order
asymptotics, the notion of an asymptotically pivotal statistic IS
critical. An asymptotically pivotal statistic is one whose limiting
distribution does not depend on unknown parameters.

e Asymptotic 7 statistics, Wald statistics, score statistics, and quasi-LR
statistics are all asymptotically pivotal when they converge to the
standard normal distribution (in the case of a ¢ statistic) or the

chi-square distribution in the case of the other statistics.
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e One must be careful to ensure a statistic is asymptotically pivotal. For
example, for a ¢ statistic to be asymptotically pivotal in the context of
nonlinear regression with heteroskedasticity, we must use a
heteroskedasticity-robust statistic. The Wald and score statistics should
use robust asymptotic variance estimators to generally deliver an
asymptotic chi-square distribution. The quasi-LR statistic is guaranteed
to be asymptotically pivotal only when the generalized information

matrix equality holds.
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e Consider testing Ho : 8, = ¢ for some known value c. The ¢ statistic,
t = (6 — ¢)lse(P) is asymptotically pivotal if se(6) is appropriately
chosen. In order to obtain a refinement using the bootstrap, we must

obtain the empirical distribution of the statistic
t® = (0® — 6)/se(0®)

where 6 is the estimate from the original sample, 6® is the estimate for
bootstrap sample b, and se(6®) is the standard error estimated from
the same bootstrap sample. (So, for example, se(6®) could be a

heteroskedasticity-robust standard error for nonlinear least squares.)
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e Notice how the ¢ statistic for each bootstrap replication is centered at
the original estimate, , not the hypothesized value. As discussed by
Horowitz (2001, Handbook of Econometrics, Volume 5), centering at
the estimate is required to ensure asymptotic refinements of the testing
procedure.

e Using the bootstrapped  statistics, we can obtain bootstrap critical

values. We must decide on the nature of the alternative.
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e [or a one-sided alternative, say Ho : 6, > ¢, we order the statistics
{® b =1,2,...,B}, from smallest to largest, and we pick the value
representing the desired quantile of the list of ordered values. For
example, to obtain a 5% test against a greater than one-sided alternative

, we choose the critical value as the 95 percentile in the ordered list of
),
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e [or a two-sided alternative, we must choose between a
nonsymmetrical test and a symmetrical test. For the former, a test
with size o chooses critical values as the lower and upper /2 quantiles
of the ordered bootstrap test statistics, and we reject Ho if ¢ > cv,, Or

t < cvy. For the latter, we first order the absolute values of the statsitics,
1®)], and then choose the upper a quantile as the critical value for a test
of size a. Naturally, we compare |¢| with the critical value. This
approach to choosing critical values from bootstrapping is called the

percentile-t method.
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¢ \We can use the percentile- method to compute a bootstrap p-value.
For example, against a greater than one-sided alternative, we simply
find the fraction of bootstrap statistics #) that exceed . A symmetric

p-value for a two-sided alternative does the same for |¢()| and |¢.
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e Testing multiple hypotheses is similar. Suppose that for a O —vector

¢, we want to test 4, : ¢_ = r, where r is a vector of known
constants. The Wald statistic computed using the original sample is

W = ($ — r)’\A/_1 (J) —r). We compute a series of Wald statistics from

bootstrap samples as:
-1 A A
o — ¢ —§) (V"”) %, b=1,..,B

where we must take care so that the calculation of V (and V(b)) delivers
an asymptotic chi-square statistic. The bootstrap p-value is the fraction
of W® that exceed .
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e The nonparametric bootstrap applies directly to panel data settings
with large NV and small 7. A draw w; represents the data for all 7 time
periods for unit i. That is, the resampling is of cross section units.
Whenever we draw an index from {1, 2,..., N}, we take all 7'time
periods.

e Resampling cross section units with panel data is sometimes called
the panel bootstrap.

e Resampling different time periods, as is done with pure time series
applications and sometimes with panel data sets with small N and large

T, 1s much harder and not appropriate for our setting.
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APPLICATION: We use bootstrapping to obtain standard errors in the
context of nonlinear least squares with cross section data, and compare
the standard errors with those obtained from first-order asymptotics.

e Consider estimating a wage equation for hourly workers. We consider

the standard linear model approach

2
log(wage) = ao + aifemale + areduc + azexper + aasexper + u

110



e Alternatively, we can directly estimate the (approximate)

semi-elasticities on the conditional mean of wage:

E(wage|x) = exp(Bo + Bifemale + Breduc + Pzexper + ﬂ4exper2)

e |f we assume that « and x are independent in the log-level linear
model, then the slopes in the two formulations are the same. If « has,
say, heteroskedasticity, E(wagelx) is not generally of the simple form

above.
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¢ \We can turn that around, too. If we start with E(wage|x) as the object
of interest and specify it as an exponential form, there is no guarantee
that a linear regression with log(wage) as the dependent variable

consistently estimates the ;.

112



. use wagel

. reg lwage female educ exper expersqg, robust

Linear regression Number of obs = 526
F( 4, 521) = 81.97
Prob > F = 0.0000
R-squared = 0.3996
Root MSE = .41345

| Robust
lwage | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
female | -.3371868 .0361838 -9.32 0.000 -.4082709 -.2661026
educ | .0841361 -00769 10.94  0.000 -069029 -0992432
exper | .03891 -0046752 8.32 0.000 .0297253 -0480946
expersq | -.000686 -0001005 -6.83 0.000 -.0008834  -.0004887
_cons | -390483 .1085985 3.60 0.000 .1771383 .6038278

. * The estimates are pretty standard from log(wage) equations.
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. * Now use NLS with an exponential mean function, and fully
. * robust standard errors.

. glm wage female educ exper expersq, Ffam(normal) link(log) robust

Generalized linear models No. of obs = 526

Optimization - ML Residual df = 521

Scale parameter = 8.30647

Deviance = 4327.670955 (1/df) Deviance = 8.30647

Pearson = 4327.670955 (1/df) Pearson =  8.30647
Variance function: V(u) =1 [Gaussian]

Link function :g(uw) = In(u) [Log]
AlC = 4.964372
Log pseudolikelihood = -1300.629849 BIC = 1063.449
| Robust

wage | Coef. Std. Err. z P>]z] [95% Conf. Interval]

_____________ +________________________________________________________________

female | -.3683686 .0538735 -6.84 0.000 -.4739588 -.2627784

educ | .1034196 .0120236 8.60 0.000 .0798537 -1269855

exper | .0494462 -0065125 7.59 0.000 -036682 -0622105

expersq | --0008688 .0001415 -6.14 0.000 -.0011462 -.0005914

_cons | -137639 .1817583 0.76 0.449 -.2186007 .4938786
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. * Now bootstrap the standard errors for the female and educ coefficients:
. do nlsl

. capture program drop nls_boot

i program nls_boot, rclass
1. glm wage female educ exper expersq, Fam(normal) link(log)

2. return scalar bfemale = _b[female]
3. return scalar beduc = b[educ]
4.

. end

i bootstrap r(bfemale) r(beduc), reps(1000) seed(123): nls_boot
(running nls_boot on estimation sample)

Bootstrap replications (1000)
——t— 1 -+ 2 ———+--=- 3 ———4--= 4 ———+-—-5
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Bootstrap results

command: nls_boot
_bs 1: r(bfemale)
_bs 2: r(beduc)

Number of obs
Replications

526
1000

Observed

Coef.

_bs 1 -.3683686
_bs 2 -1034196

Bootstrap
Std. Err.

.054011
.0122406

Normal-based
P>]z]| [95% Conf. Interval]

0.000 -.4742282 -.262509
0.000 .0794285 .1274107

: program drop nls_boot

end of do-file
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e In this application, we see that taking the log and using linear
regression produces substantially smaller standard errors than using
NLS on an exponential function. (This comparison only makes sense if
we assume both methods are consistent for the parameters of interest.)
But there are different ways to estimate an exponential mean that are
more efficient than NLS. For example, later we will cover

quasi-maximum likelihood in the linear exponential family.

117



