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1. EQUIVALENCE BETWEEN GMM 3SLS AND STANDARD
ESTIMATORS

e Consider the standard UE model
vie =X +ci+uint =1,...,T,
which we write for all 7' time periods as
Y. = Xip+ciJr+UuU; = Xip+Vv..
e RE, FE, and FD still the most popular approaches to estimating g with

strictly exogenous explanatory variables. Or, can use GLS versions of
FE and FD.



e But what about the system IV procedures we discussed? We have lots
of moment conditions. Suppose we impose RE.1. Then the explanatory

variables are strictly exogenous with respect to the composite errors:
E(V,-|X,-) =0
where X; = (Xi1,Xi2,...,X;7), as usual.

e Consequently, any system FGLS estimator using a constant

variance-covariance matrix will be consistent.



e Alternatively, we can use all covariates across time as instruments in

all time periods. Let x¢ denote all nonredundant elements of x;, and

define
Zi =lr®Xx¢.
e Now we have
Yy, = XiB+V;
E(ZN;) =0

and we can use GMM-3SLS or GMM with an unrestricted optimal

weighting matrix.



e The GMM estimator using an optimal weighting matrix is generally
(asymptotically) more efficient than RE or GLS with Q unrestricted.

e There are many overidentifying restrictions in E(Zv;) = 0. Perhaps
too many?

e [f we impose system homoskedasticity then we do not improve over
FGLS because of the following algebraic result: if we apply
GMM-3SLS estimation with variance matrix Qand IVs Z; = 17 ® X,
we get the GLS estimator that uses O (for any structure of f2). [See Im,
Ahn, Schmidt, and Wooldridge (1999, Journal of Econometrics.)]



e In the presence of system heteroskedasticity, is there a way to
Improve on RE without using the many overidentifying restrictions
implied by Z; = 17 ® x9?

e Yes. Let
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e |_et W, be the submatrix of X; that includes only time-varying

variables, and consider the instruments

/)_(i Wit \

Xi Wjp

oy

Z; = (PrX;,QW;) =

e Under Assumption RE.1, E(Z}v;) = 0.



e |f all elements of X; are time-varying, Z; has 2K columns, so there

are K overidentifying restrictions.
e Algebraic Fact: If Q is estimated so it has the RE structure, the

GMM-3SLS using Z; as instruments and Q as the 7x T

variance-covariance matrix is identical to the RE estimator.



e Gives a different way to test overidentifying restrictions and also
shows we can improve on RE without using too many overidentifying
restrictions. If the true Q does not have the RE structure and system
homoskedasticity holds, E(v;vi|x;) = Q, then the GMM 3SLS
estimator that puts no restrictions on €is more efficient than RE.

e If we do not restrict E(v;v;|x;) at all, then we can apply an optimal
weighting matrix in GMM, using 1Vs Z; = (PrX;,Q W), and we
have a more efficient estimator than RE or GMM-3SLS.



e [f we Impose only Assumption FE.1, so that ¢; and X;; can be
arbitrarily correlated for all ¢, then we cannot use P 7X; as instruments.
Assume all elements of x;, are time-varying.

e Define a “differencing” matrix as the 7' x (7 — 1) matrix

/1 0 0 0 0 )

-1 1 0 - 0 O
0 -1 1 - 0 0
L: . .
0 0 -1 o
L 1

R
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e Can show that the valid Vs in the original equation are
Zl' =L (0% XZQ.
For 7' = 4,

[ x2 0 0

—x¢ x? 0
0 —x¢ x¢

\O O—xg?/
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x —x? 0 0 X¢'(viz — vi1)
/
ZVi = 0 x¢ —x¢ O X{' (vis = vi2)

/ / /
0 0 x¥ —x¢ X{ (Via —vi3)

\ v/
X% (Ui — uir)
= X?’(uig —U;2) = (I—1 ® X?)Au;

X (U4 — ui)

because Vit — Vii=] = (Ci + ul-t) — (Ci + ui,t_]_) = Ujr — Ujr-1.
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e The moment conditions E[(L ® x?)'v;] = 0 simply reproduce the

usable moment conditions implied by FE.1 (or FD.1):

E[X;Auy;] =0,t=2,....,T,r=1,...,T.
e Algebraic Fact: If we use instruments L ® x¢ in GMM-3SLS and Q
has the RE structure, the GMM-3SLS estimator equals the FE

estimator. In other words, if system homoskedasticity holds and the RE

variance matrix structure is correct, we cannot improve on FE.
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e \What if we relax the RE variance structure? Then the GMM-3SLS
estimator is the same as FEGLS (with any time period dropped) and
FDGLS. In other words (and not surprisingly), under system
homoskedasticity, GLS applied to an appropriately transformed system
(FE or FD transformation) is efficient.

e See Im, Ahn, Schmidt, and Wooldridge (1999) for other algebraic

equivalences.
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2. CHAMBERLAIN'S APPROACH TO UE MODELS

e |n the standard model
Vit = XitB+Ci+uil1t — 11---1T’

Chamberlain simply writes down a linear projection relating c; to the
entire history of the x;,. Assume no aggregate time effects for notational

simplicity (and no time-constant variables).

Ci = Y + Xi17\.1 + Xi27\.2 +.. .+X1'T7\.T + a;
E(a;) = 0, E(X:a;) = 0,

e Assuming finite second moments, this specification is definitional.
Mundlak assumed A, = & T forr =1,...,T.
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¢ Plugging in gives, for each ¢,

Vi = X + v + Xith1 + XppA2 +. X rAr + @i + uy

= XiP + ¥ + Xah + Xigh2 +. .. +XirAr + 7t

= X+ v + Xih + 7

Wite + 7}

where w;; = (1, X, Xi1, Xi2, ..., XiT) = (1, Xir, X;).
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e Write for all time periods as

/yil \ / 1 Xi Xa X o+ Xir \ B / ri1 \

Vi2 1 X Xa X2 - Xir A1 Vi

— . . . . . +
\yiT / \ 1 Xir Xa X2 o Xir / \ ViT /

\ A
Yi =Wl‘0+l"i

e \We can apply system OLS, FGLS, or method of moments procedures.
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e Algebraic Fact: If we apply RE to

Vie =W +Xip+XiA+a;+ui, t =1,...,T,
the estimate of B is the FE estimate, just as when we use the seemingly
more restrictive Mundlak version,

Vie =y +Xap+XE+a;i+ui,t =1,...,T.

¢ [n the Chamberlain equation, to account for system heteroskedasticity
or a non RE unconditional variance matrix, we can use a GMM

approach with IV matrix Z; = I ® X;. If we use GMM-3SLS with

variance matrix Q, this is identical to FGLS using the same Q.
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3. RE AND FE INSTRUMENTAL VARIABLES METHODS

e \\e start with the usual unobserved effects model,
Vit = XitB+Ci+uit1 [ = 11---1T1

but now we think some elements of x;, are correlated with u;, (or maybe
even with u;. for » = ). Let z;, be a set of 1 x L (possible) instrumental

variables, L > K. (Intercept in X;; S0 E(c;) = 0 can be assumed.)
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e Pooled 2SLS will be consistent if

E(Z;tci) =0
E(Z;tuit) =0,r=1,...,T.
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e In principle, this can be applied to models with lagged dependent
variables, although in a model with only a lagged dependent variable, it
would be hard to find a convincing instrument.

e Generally, assuming the instruments are uncorrelated with ¢; is a
strong assumption. If we are willing to make it, we probably are willing
to assume strict exogeneity conditional on ¢;. So, we can use an RE
approach. Assumptions parallel those for exogenous x;;. Let

z; = (21,Z2,...,2ir);, Some of these elements may be time-constant,

and aggregate time variables act as their own IVs.
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ASSUMPTION REIV.1:

(@) E(uil|zi,ci) =0,t=1,...,T
(b) E(cilzi) =0
e For simplicity, assumes that X;; contains an overall intercept (and
probably a separate intercept in each time period), so we can take
E(c;) = 0.
e As usual, we could relax the assumptions to zero correlation without
changing consistency.

e Define Q = Var(v;), where v; = ¢;j » + U;.
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oletX;beT'xKandZ; beTx L.
ASSUMPTION REIV.2: Q is nonsingular, and
(@) rank E(Z/\Q7'Z) =L
(b) rank E(Z/Q'X;) = K
e This is just the usual rank condition for GIV estimation.
e The REIV estimator is just the GIV estimator where Q is assumed to
have the RE form.

e Without further assumptions, fully robust inference is warranted, as

usual.
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ASSUMPTION REIV.3:

(@) E(u;uilz;,c;) = o2lr
(b) E(cflzi) = o?

e Under REIV.3, the nonrobust variance matrix estimator is valid:

(Z Xz, > (Zl z le,)l (ﬁl z;.lex,) —

where O has the RE structure.

-1
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e In Stata, the command “xtivreg” with the “re” option produces this
estimator and the nonrobust variance matrix estimator.

e The REIV estimator is also called the random effects 2SLS estimator.
By similar reasoning for the usual RE estimator, the REIV estimator

can be obtained as pooled 2SLS on the equation

Vit — i)'/,- = (Xir — i)'(,)B + error;;
using 1Vs z;, — A2..
e As in the case of RE, the estimation in A does not affect
JN -inference.
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e \We can test the null that a set of variables is endogenous. Write the

model as
YVie = Zind1 +Y,,01 + YizYq T Cit + Ui,

where y,, and y., are the potential endogenous explanatory variables.
Under Ho, we allow y., to be endogenous, and test the null thaty ., is

exogenous. We maintain strict exogeneity of the instruments z;;:
E(Vitllzi) = 01 [ = 11 sy T

where vin = ¢ci1 + uisn.

e Reduced form fory ,:

Yis = Zillz + V3.
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e Estimate each reduced form by POLS or RE on each equation, and
get the residuals, Vi3 =y, 3 — z,113. Then, estimate the augmented

model
Vit = Zind1 + Y000 +Y,3Y, + Vizp, +errory

by REIV and test Ho : p, = 0. If y, 5 has dimension 1 x Ji, then the

test has J; dfs. Because we are using RE, we are actually testing strict

exogeneity of {y ., : ¢t =1,...,T}:
Ho : E(Y,3vin) = 0, all 5,¢

e As usual, a fully robust test is attractive. Note that a test rejection is

hard to intepret if {z;} is not strictly exogenous.
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e To test overidentifying restrictions, write
Vit = Zinnd1 + Y01 + Ci1 + Ui,

where z;» (the omitted exogenous variables) has dimension L, and y
has dimension G1. The number of restrictions is Q1 = L, — G1. Write
Zi» = (9,,,Niz) Where g.,, also has dimension G1. Form the augmented

model
Vie = Z2innd1 + Y001 + Niph1 + cit + uin,

estimate by REIV, and test Ho : A1 = 0 (using a robust test).
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e With REIV, can have time-constant explanatory variables and
time-constant instruments. With lots of good controls, or an exogenous
Intervention in an initial time period, the analysis can be convincing.
But time-constant Vs in panel data are often unconvincing.

e A more robust analysis uses fixed effects and instrumental variables
(FEIV). This requires time-varying instruments.

ASSUMPTION FEIV.1: Same as REIV.1(a):

E(u,-z|zl~,c,~) =0,r=1,...,T.
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e Now apply pooled 2SLS to the time-demeaned equation:
Vie— Vi = XKie = X)B + (uir — i)
using instruments (z;; — ;).
e This can be very convincing: the IVs can be arbitrarily correlated

with ¢; as long as there is exogenous time variation in the instruments.
ASSUMPTION FEIV.2:

(a) rankE(Zi-Z) =L
(b) mnkE(Zi-)"(i) =K
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e As usual, make inference fully robust to serial correlation and
heteroskedasticity in, unless the following assumption holds:
ASSUMPTION FEIV.3: Same as REIV.3(a), that is,

E(Ul‘U;lZi, Cl') = GE,IT
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e Under FE.1, FE.2, and FE.3, the asymptotic variance matrix of ﬁFEW

IS estimated as

/N N -1, N 7
52 (sz><zzz> (sz>
i1 i1 i1

N T
62 = [N(T-1) - K] (ZZut>

=1 =1

where

32



e The tests for endogeneity and overidentification are based on the
same equations but use the within transformation. So, for

overidentification, estimate
Vie = 2in®1 + Y001 + Niph1 + it + uin

by FEIV and test Hy : A1 = 0.

e For endogeneity, estimate
Yis = Zillz + Vi

by FE and obtain the FE residuals, V.
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Then estimate
Vit = Z2in01 +Y,;p01 +Y,;3Y, + Vip, + errory

by FEIV and test Ho : p, = 0. As with the other tests, the first-stage

estimation does not affect the asymptotic distribution under the null.
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More Specification Tests

e Can use a simple regression form of the Hausman test comparing
REIV and FEIV. FEIV is equivalent to the REIV and pooled 1V
estimators that add the time average of the 1Vs, Z;, as regressors.

e Estimate
yie=a+ Xy +2E+a; +u;
by pooled 2SLS or REIV, using instruments (1,z;,2;). The estimator of
B is the FEIV estimator.
e Test Hy : & = 0, preferably using a fully robust test. (xtivreg2 does

not allow this with REIV). A rejection is evidence that the IVs are
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correlated with ¢;, and should use FEIV.
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e Other than the rank condition, the key condition for FEIV to be
consistent is that the instruments, {z;}, are strictly exogenous with
respect to {u; ;. With T > 3 time periods, this is easily tested — as in the
usual FE case.

e The augmented model is
Vit = Xl'tB-I—Zi,HlS-I-Ci-I-uit, [ = 1,...,T—1

and we estimate it by FEIV, using instruments (z;;,Z;/1).
e Use a fully robust Wald test of Hy : 6 = 0. Can be selected about

which leads to include.
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EXAMPLE: Estimating Passenger Demand

. * First, use pooled 1V, iInstrumenting Ifare with concen
. ivreg lIpassen ldist ldistsg y98 y99 y00 (Ifare = concen), cluster(id)

Instrumental variables (2SLS) regression Number of obs
F(C 6, 1148)
Prob > F
R-squared
Root MSE

4596
28.02
0.0000

_95062

(Std. Err. adjusted for 1149 clusters in id)

| Robust
Ipassen | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
Ifare | -1.776549 .4753368 -3.74 0.000 -2.709175  -.8439226
Idist | -2.498972 .831401 -3.01 0.003 -4.130207 -.8677356
Idistsq | .2314932 .0705247 3.28 0.001 .0931215 -3698649
yo8 | .0616171 .0131531 4.68 0.000 .0358103 .0874239
yo9 | -1241675 -0183335 6.77 0.000 -0881967 -1601384
y00 | .2542695 .0458027 5.55 0.000 .164403 .3441359
_cons | 21.21249  3.860659 5.49 0.000 13.63775 28.78722

Instrumented: [Ifare
Instruments: Idist ldistsg y98 y99 y00 concen
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. xtivreg lIpassen Idist Idistsqg y98 y99 y00 (lIfare

G2SLS random-effects IV regression

Group variable: id

R-sq: within = 0.4075
between = 0.0542
overall = 0.0641

corr(u_i, X)

0 (assumed)

theta = .91099494

concen), re theta

Ipassen | Coef Std. Err
_____________ +

Ifare | -.5078762 .229698

Idist | -1.504806 .6933147

Idistsq | .1176013 .0546255

yo8 | -0307363 -0086054

y99 | -0796548 -01038

y00 | -1325795 .0229831

cons | 13.29643 2.626949
_____________ +

39

Number of obs = 4596
Number of groups = 1149
Obs per group: min = 4

avg = 4.0

max = 4
Wald chi2(6) = 231.10
Prob > chi2 = 0.0000
P>|z] [95% Conf. Interval]
0.027 -.958076 -.0576763
0.030 -2.863678  -.1459338
0.031 .0105373 .2246652
0.000 -0138699 .0476027
0.000 .0593104 -0999992
0.000 -0875335 .1776255
0.000 8.147709 18.44516



sigma_ u | -.94920686
sigma_e | -16964171

rho | .96904799 (fraction of variance due to u_i)

Instrumented: Ifare
Instruments: Idist ldistsqg y98 y99 y00 concen

. * The quasi-time-demeaning parameter is quite large: .911 (“"theta'™), which
. * explains why REIV and pooled 1V are so different.
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. xtivreg lpassen y98 y99 y00 (Ifare = concen), fe

Fixed-effects (within) 1V regression Number of obs = 4596

Group variable: id Number of groups = 1149

R-sq: within = 0.2265 Obs per group: min = 4

between = 0.0487 avg = 4.0

overall = 0.0574 max = 4

Wald chi2(4) = 5.78e+06

corr(u_i, Xb) = 0.0708 Prob > chi2 = 0.0000

Ipassen | Coef. Std. Err z P>]z] [95% Conf. Interval]

_____________ +________________________________________________________________

Ifare | -.3015761 .2774005 -1.09 0.277 -.8452711 .242119

yo8 | .0257147 .0097819 2.63 0.009 .0065426 .0448869

yo9 | .0724166 -0120342 6.02 0.000 -04883 -0960031

y00 | .1127914 .0275332 4.10 0.000 .0588273 .1667556

cons | 7.501008 1.402758 5.35 0.000 4.751653 10.25036

_____________ +________________________________________________________________
sigma_u | .8493153
sigma_e | .16964171

rho | .96163479 (fraction of variance due to u_i)
F test that all u_i=0: F(1148,3443) = 99.70 Prob > F = 0.0000

Instrumented:
Instruments:

I fare

y98 y99 y00 concen
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. * Obtain the Hausman test comparing RE versus FE
. egen concenb = mean(concen), by(id)

. xtivreg lIpassen Idist Idistsqg y98 y99 y00 concenb (lfare = concen), re theta

G2SLS random-effects IV regression Number of obs = 4596

Group variable: id Number of groups = 1149

R-sq: within = 0.3188 Obs per group: min = 4

between = 0.0600 avg = 4.0

overall = 0.0669 max = 4

Wald chi2(7) = 218.80

corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
theta = .90084889

Ipassen | Coef. Std. Err z P>|z] [95% Conf. Interval]

_____________ +________________________________________________________________

Ifare | -.3015761 .2764376 -1.09 0.275 -.8433838 .2402316

Idist | -1.148781 .6970189 -1.65 0.099 -2.514913 .2173514

Idistsq | -.0772565 .0570609 1.35 0.176 -.0345808 .1890937

yo8 | .0257147 -0097479 2.64 0.008 -0066092 -0448203

y99 | .0724165 .0119924 6.04 0.000 .0489118 .0959213

y00 | .1127914 .0274377 4.11 0.000 -0590146 -1665682

concenb | -.5933022 .1926313 -3.08 0.002 -.9708527 -.2157518

_cons | 12.0578 2.735977 4.41 0.000 6.695384 17.42022

_____________ +________________________________________________________________
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sigma_u | .85125514
sigma_e | -16964171

rho | .96180277 (fraction of variance due to u_i)

Instrumented: Ifare
Instruments: Idist ldistsqg y98 y99 y00 concenb concen
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ivreg lpassen Idist Idistsqg y98 y99 y00 concenb (lfare = concen),

cluster(id)
Instrumental variables (2SLS) regression Number of obs = 4596
FC 7, 1148) = 20.28
Prob > F = 0.0000
R-squared = 0.0649
Root MSE = .85549

(Std. Err. adjusted for 1149 clusters in id)

| Robust
Ipassen | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
Ifare | -.3015769 .6131465 -0.49 0.623 -1.50459 -9014366
Idist | -1.148781 -8809895 -1.30 0.193 -2.877312 .5797488
Idistsq | .0772566 .0811787 0.95 0.341 -.0820187 .2365319
y98 | .0257148 -0164291 1.57 0.118 -.0065196 -0579491
yo9 | .0724166 .0251272 2.88 0.004 .0231163 .1217169
y00 | .1127915 -0620858 1.82 0.070 -.0090228 .2346058
concenb | -.5933019 .2963723 -2.00 0.046 -1.174794  -.0118099
_cons | 12.05781 4.360868 2.77 0.006 3.50164 20.61397

Instrumented: Ifare
Instruments: Idist ldistsqg y98 y99 y00 concenb concen
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. * Original form of the Hausman test breaks down, even with ‘“sigmamore” or
. * “sigmaless” option. Thinks there are 4 df in test when there is only

. * one.

. qui xtivreg2 lIpassen y98 y99 y00 (Ifare = concen), fe

. estimates store b_feiv

. qui xtivreg lpassen y98 y99 y00 (Ifare = concen), re

. estimates store b_reiv

. hausman b_feiv b_reiv

--—- Coefficients --—--
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| b feiv b reiv Difference S.E.
_____________ +________________________________________________________________
Ifare | -.3015761 -.6540984 .3525224
yo8 | .0257147 .0342955 -.0085808
yo9 | .0724166 .0847852 -.0123686
y00 | .1127914 -146605 -.0338136

b = consistent under Ho and Ha; obtained from xtivreg2
B = iInconsistent under Ha, efficient under Ho; obtained from xtivreg

Test: Ho: difference in coefficients not systematic

(b-B)” [(V_b-V_B)*(-1)](b-B)

-1.47 chi2<0 ==> model fitted on these
data fails to meet the asymptotic
assumptions of the Hausman test;
see suest for a generalized test

chi2(4)
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. * Using the same variance-covariance matrix solves problem of negative
. * statistic, but not incorrect df:

. hausman b_feiv b_reiv, sigmamore

-—-- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| b feiv b reiv Difference S.E.

_____________ +________________________________________________________________

Ifare | -.3015761 -.6540984 .3525224 1.465766

yo8 | .0257147 .0342955 -.0085808 .0523018

y99 | .0724166 .0847852 -.0123686 .0640888

y00 | .1127914 .146605 -.0338136 .1457034

b = consistent under Ho and Ha; obtained from xtivreg2
B = Inconsistent under Ha, efficient under Ho; obtained from xtivreg

Test: Ho: difference in coefficients not systematic
(b-B)” [(V_b-V_B)"*(-1)](b-B)
0.06
0.9996

chi2(4)

Prob>chi2
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. * Now test whether instrument (concen) is strictly exogenous using FEIV:

. xtivreg lIpassen y98 y99 concen_pl (Ifare = concen), fe

Fixed-effects (within) 1V regression Number of obs = 3447
Group variable: id Number of groups = 1149
R-sq: within = 0.4474 Obs per group: min = 3
between = 0.0496 avg = 3.0
overall = 0.0564 max = 3
Wald chi2(4) = 7.64e+06
corr(u_i, Xb) = -0.2111 Prob > chi2 = 0.0000
Ipassen | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
Ifare | -.8520992 -15393 -5.54  0.000 -1.153796 -.550402
yo8 | -0416985 .0064586 6.46 0.000 .0290398 .0543571
yo9 | -0948286 -0074973 12.65 0.000 -0801343 -109523
concen_p1l | -1555725 .0482045 3.23 0.001 .0610935 .2500516
_cons | 10.18819 .7852193 12.97 0.000 8.649187 11.72719
_____________ +________________________________________________________________
sigma_u | .8600387
sigma_e | .12748791
rho | .97849882 (fraction of variance due to u_i)
F test that all u_i1=0: F(1148,2294) = 128.42 Prob > F = 0.0000
Instrumented: Ifare
Instruments: y98 y99 concen_pl concen
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. xtivreg2 lIpassen y98 y99 concen_pl (lfare = concen), fe cluster(id)

FIXED EFFECTS ESTIMATION

Number of groups = 1149 Obs per group: min = 3
avg = 3.0
max = 3
IV (25LS) estimation
Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity and clustering on id
Number of clusters (id) = 1149 Number of obs = 3447
FC 4, 1148) = 33.41
Prob > F = 0.0000
Total (centered) SS = 67.47207834 Centered R2 = 0.4474
Total (uncentered) SS = 67.47207834 Uncentered R2 = 0.4474
Residual SS = 37.28476721 Root MSE = .1274
| Robust
Ipassen | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
Ifare | -.8520992 .3211832 -2.65 0.008 -1.481607  -.2225917
yo8 | -0416985 -0098066 4.25 0.000 .0224778 .0609192
yo9 | -0948286 -014545 6.52 0.000 -066321 .1233363
concen_p1l | -1555725 .0814452 1.91 0.056 -.0040571 .3152021
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Instrumented: I fare
Included instruments: y98 y99 concen_pl
Excluded instruments: concen

. * Fully robust test gives a marginal rejection; down to three time periods
. * for the test.
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. * What if we just use fixed effects without 1V?
. Xtreg lIpassen Ifare y98 y99 y00, fe cluster(id)

4596
1149

Fixed-effects (within) regression Number of obs
Group variable: id Number of groups

(Std. Err. adjusted for 1149 clusters in id)

| Robust
Ipassen | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
Ifare | -1.155039 .1086574 -10.63 0.000 -1.368228 -.9418496
yo8 | .0464889 -0049119 9.46 0.000 -0368516 -0561262
yo9 | .1023612 .0063141 16.21 0.000 -0899727 .1147497
y00 | .1946548 -0097099 20.05 0.000 -1756036 .213706
cons | 11.81677 .55126 21.44 0.000 10.73518 12.89836
_____________ +________________________________________________________________
sigma_u | -89829067
sigma_e | -14295339
rho | .9753002 (fraction of variance due to u_i)
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4. HAUSMAN AND TAYLOR MODELS

e The previous IV methods require us to find I\VVs from outside the
model. This is often difficult (just as in the cross section case).
Hausman and Taylor (1981) proposed assuming that certain variables
are appropriately exogenous, and using these as IVs.

e \Write the HT model as

Vit =W,-'y+X,-tB+cl-+u,-;, tr=1,...,T

where w; are time-constant variables (including an intercept) and x;; are

time-varying variables.
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e Maintain the strict exogeneity assumption conditional on ¢;, RE.1(a):
E(ui|lWi, Xi1, ..., Xit,ci) = 0.

e |f we want to estimate B, can just use FE without further assumptions.
What about estimation of y?

e Suppose we assume that w; Is uncorrelated with ¢;:
E(Wic;) = 0.
NOW, )_/i — Wiy — )_(iB = c; + Uu;, and so

E[w;(: —wiy - R;B)] = 0.

e Therefore,
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E(Ww,)y = E[W,(F; - %)),

So a consistent estimator of y Is

N -1 N
»? — (Nl ZW;W,) |:N1 ZW;()_/Z — X’ﬁFE) :|,
i=1 =1

which is the OLS coefficients from the cross section regression

)_/l'—)_(iBFE onw;,i=1,...,N.
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e In practice, xX;; would contain a set of year dummies and w; would
contain an overall intercept (which allows the mean of E(c;) to be
different from zero).

e Computing standard errors for ¥ must account for estimation of B by

B - Could stack the two sets of moment conditions and use system V.
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e More general assumptions. Partition w; = (w;1,W;2) and
Xir = (Xir1, Xirz) Where w1 1S 1 x J1, Wip 1S 1 x J2, Xin 1S 1 x K1, and X
IS 1 x K». Then assume

E(wjici) =0

E(X;qci) =0, t=1,...,T
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e \Write the system as
yi = W,’Y + XZB + V;

Let Q, be the 7' x T demeaning matrix. Then Q .X;, the 7' x K matrix

with rows X, Is a valid set of instruments because Q,J, = 0 and so
(QTXi)/Vi = (QTXi),Ui
and
E[(Q7X)'ui] = 0

under E(ul-tlxl-, Ci) = 0.
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e Under the assumptions given, w;; can act as its own IVs. But we need
Instruments for w,. If we define x4 = (Xi11,Xi21, ..., Xi71) then
E(x9c;) = 0; technically, we can use all of x4 as IVs in each time

period. Then, the matrix of IVs is

[QXi ] ® (Wi, X71)].
e But, it is probably misleading to think all of x% has explanatory
power for the time-constant w;,. For example, under certain

assumptions — i.1.d. is sufficient, but not necessary —

L(Wi|x%) = L(wi2|Xi1) where X;1 1s the 1 x K> vector of time averages.
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o I[f K1 > J, might only use X;1. (If K1 < J> the entire strategy Is

questionable.) In other words, at time 7 use 1Vs

(Xir,Wi1,Xi1)
and use REIV. (Again, should make inference robust. Original HT
paper assumes RE variance-covariance assumptions and system
homoskedasticity.)

e Given the instruments, can use GMM-3SLS with unrestricted Q or

even optimal GMM with general weighting matrix.
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e The bottom line Is that, If we have enough time-varying variables that
we think are uncorrelated with ¢; (as well as being strictly exogenous
with respect to {u;}), then we can allow a subset of the time-constant
variables to be correlated with c¢;.

e In HT example, w;1 = (nonwhite;, union;) and w; = educ; (which
did not change over time). X;;1 contains experience, an indicator for bad
health, and an indicator for being unemployed the previous year.

e In fact, in the HT example they effectively take x;; = X;1 because the
only other element in x; IS a time dummy, properly treated as

uncorrelated with ¢;. (The panel was 7" = 2 and several years apart.)
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5. FIRST DIFFERENCING AND IV

e Not suprisingly, can use FDIV, too. Useful to allow a general set of
IVs:

Ayit — AXitB+Ath, [ = 2,. ..,T
E(W;-tAu,-t) = O, [ = 2, Cey T.
e Choose as instruments

(wz 0 0 )

0 wig
0

e
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e As we discussed with system IV, if each w;, has, say, dimension

L > K, then we can take

/WiZ\

Wi3

S,

e Then, a pooled 2SLS approach is possible. Fully robust inference is

straightforward.
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e I[f W, has the general diagonal form, use full GMM. As an intial

estimator, can use a variation of pooled IV: (1) Foreach ¢ = 2,...T,
regress Ax; onwy, i = 1,..., N and obtain the fitted values, Z}it. (2)
Estimate the equation Ay;; = AX;p + Au;, using 1Vs AXiy (which are all

necessarily 1 x K). Again, use robust inference. (Use Ax; as IVs, not
regressors.)

e L evitt (1996) estimates a state-level crime equation in FD form:
Alog(crime;) = na + a1Alog(prison) + AZ;nd1 + Auin

with Vs dummies for whether final decisions were reached on prison

overcrowding litigation.
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. * First-stage regression (with year dummies suppressed in output):

. reg gpris finall final2 gpolpc gincpc cag0 14 cagl5 17 cagl8 24 cag25 34
cunem cblack cmetro y81 y82 y83 y84 y85 y86 y87 y88 y89 y90 y91 y92 y93,
cluster(state)

Linear regression

Number of obs

F( 24,

Prob > F
R-squared
Root MSE

714
9.27
0.0000
0.1522
.06237

adjusted for 51 clusters iIn state)

(Std. Err.
| Robust
gpris | Coef. Std. Err.
_____________ +

finall | -.077488 .0164372 -4.
final2 | -.0529558 .0160327 -3.
gpolpc | -.0286921 -0305312 -0.
gincpc | .2095521 .1597362 1.
cag0_14 | 2.617307 2.029707 1.
cagl5_17 | -1.608738 4.138375 -0.
cagl8 24 | .9533678  1.640538 0.
cag25_34 | -1.031684 1.945366 -0.
cunem | -1616595 .280673 0.
cblack | -.0044763 .0266392 -0.
cmetro | -1.418389 . 7425213 -1.

[95% Conf.

-.1105032
.0851585
-0900159
.1112875
-1.45948
-9.920908
-2.341749
-4.939067
-.4020888
-.0579828
-2.909787

Interval]

-.0444729
-.0207531
.0326316

.5303918

6.694094

6.703433

4.248485

2.8757

. 7254077

.0490301

.0730092
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(gpris = finall final2)

ivreg gcriv gpolpc gincpc cag0 14 cagl5 17 cagl8 24 cag25 34 cunem cblack
cmetro y81 y82 y83 y84 y85 y86 y87 y88 y89 y90 y91 y92 y93

geriv | Coef. Std. Err t P>]t] [95% Conf. Interval]
_____________ +________________________________________________________________
gpris | -1.031956 -3699628 2.79 0.005 -1.758344  -.3055684
gpolpc | .035315 .0674989 0.52 0.601 -.0972128 .1678428
gincpc | -9101992 .2143266 4.25 0.000 -4893885 1.33101
cag0_14 | 3.379384  2.634893 1.28 0.200 -1.793985 8.552753
cagl5 17 | 3.549945 5.766302 0.62 0.538 -7.771659 14.87155
cagl8 24 | 3.358348 2.680839 1.25 0.211 -1.905233 8.621929
cag25_34 | 2.319993 2.706345 0.86 0.392 -2.993667 7.633652
cunem | -5236958 .4785632 1.09 0.274 -.415919 1.46331
cblack | -.0158476 -0401044 0.40 0.693 -.0945889 -0628937
cmetro | -.591517 1.298252 0.46 0.649 -3.140516 1.957482
Instrumented: gpris
Instruments: gpolpc gincpc cag0_14 cagl5 17 cagl8 24 cag25 34 cunem cblack

cmetro y81 y82 y83 y84 y85 y86 y87 y88 y89 y90 y91l y92 y93
finall final2

. * Again, different year intercepts are suppressed.
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ivreg gcriv gpolpc gincpc cag0 14 cagl5 17 cagl8 24 cag25 34 cunem cblack
cmetro y81 y82 y83 y84 y85 y86 y87 y88 y89 y90 y91 y92 y93
(gpris = finall final2), cluster(state)

(Std. Err. adjusted for 51 clusters in state)

| Robust
geriv | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ +________________________________________________________________
gpris | -1.031956 .2134723 -4.83 0.000 -1.460728  -.6031845
gpolpc | -035315 -0549931 0.64 0.524 -.0751419 -1457719
gincpc | -9101992 .3375487 2.70 0.010 .2322128 1.588186
cag0_14 | 3.379384  2.445851 1.38 0.173 -1.533252 8.29202
cagl5_17 | 3.549945  5.458091 0.65 0.518 -7.412954 14.51284
cagl8 24 | 3.358348 3.246766 1.03 0.306 -3.162973 9.879669
cag25_34 | 2.319993  3.248509 0.71 0.478 -4.20483 8.844815
cunem | -5236958 .4749941 1.10 0.276 -.4303579 1.477749
cblack | -.0158476 .0306832 -0.52 0.608 -.0774766 .0457815
cmetro | -.591517 1.277895 -0.46 0.645 -3.158245 1.975211

Instrumented: gpris

Instruments: gpolpc gincpc cag0_14 cagl5 17 cagl8 24 cag25 34 cunem cblack
cmetro y81 y82 y83 y84 y85 y86 y87 y88 y89 y90 y91 y92 y93
finall final2
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. reg gcriv gpris gpolpc gincpc cag0_14 cagl5 17 cagl8 24 cag25 34 cunem

cblack cmetro y81 y82 y83 y84 y85 y86 y87 y88 y89 y90 y91 y92 y93,

Without instrumenting for grpis, the estimated prison effect i1s much smaller.

cluster(state)
|
geriv | Coef
_____________ +
gpris | -.1808974
gpolpc | .0514239
gincpc | .7383676
cag0_14 | -989306
cagl5 17 | 4.98384
cagl8 24 | 2.412758
cag25_34 | 2.879946
cunem | .41126
cblack | -.0147435
cmetro | .5383056

(Std. Err. adjusted for

Robust
Std. Err.

.0487909
.047601
.2457843
1.86767
4.758174
3.33858
2.61131
.3824013
.0147599
1.112491
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51 clusters iIn state)

[95% Conf.

-.2788967
-.0441854

.2446953
-2.762019
-4.573234
-4.292978
-2.365025
-.3568156
-.0443896
-1.696199

Interval]

-.082898
.1470333

1.23204
4.740631
14.54091
9.118493
8.124917
1.179335
.0149027

2.77281



6. MEASUREMENT ERROR

e Consider a simple UE model with measurement error:

Vie = Bxi+citup, t=1,...,T

Xit =x,+ri, r=1,...,T.
e Maintain a strict exogeneity assumption conditional on c;:
E(QilX7, Xi,¢i) = EQilxy, ci) = Bxjy + ¢

or

E(ul’t|X;-k,Xl',Cl’) = 0.
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e Substitute the observed measure, x;;, for x%: x} = x; — ri, SO
Vit = Bxit +ci +uir — Pri

e Let BpoLs be the pooled OLS estimator from y; on x;; across tand i. If

we make the classical errors-in-variables (CEV) assumption
Cov(x},ri) =0

and assume constant variances and covariances across ¢,
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Cov(xjs,ci + ujs — Pri)
Var(x;)

N Cov(xi,c;) — Bo?

plim(Brors) = f +

- p

G2 + 02

¢ Without an unobserved effect, or if Cov(x;,c;) = 0, we get the

standard attenuation bias:

plim(BPOLS):ﬁ( o )

G2 + 02

e If B > 0and Cov(x;,c;) > 0, the presence of ¢; can help reduced the

“blas.”
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¢ \What about removing ¢;? Suppose 7' = 2, and assume
Cov(x’,ri) = 0, all s,z
e Let Bp be the usual FD estimator. Then

Cov(Axis, Auiyy — BArir)

plim(Brp) = B+ Var(Axy)
~n p Cov(Axi, Arir)
=P-B Var(Ax;)
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e Now

Var(Ax;;) = Var(Ax}, + Ariy)) = Var(Ax}) + Var(Ari;)
= 2(7)%*(1 — py) +202(1 - p,)

where p+ = Corr(x},x;,_1) and p, = Corr(ri, risr1). Also,

Cov(Axis, Arit) = Var(Ary) = 262(1 - p,).
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Therefore,

. A - G)ZC*(]. —,Ox*)
plim(Brp) = ﬁ( 62.(1 - px)+02(1-p,) )

¢ The attenuation bias depends on the amount of serial correlation in
{x}} and {r;}. The usual formula as p,- = p, = 0.
e The attenuation is worse the larger is (1 — p,)/(1 — px+). AS py+ — 1,

plim(Brp) heads to zero regardless of .
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e Can solve the problem by have strictly exogenous instrumental

variables.

Vit = ZifY + OW}, + ¢i + Uy

E(uiz;,w;,w;, h;,c;) =0

where {h;; : t = 1,..., T} are the strictly exogenous instruments. Note

that {w7}} and {w;} are strictly exogenous, too.

Vit = Zit¥ + Owi + ci + (Ui — Orir)

*
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e Now we assume
E(I"l’t|Zi,W;-k,hl',Cl') =0,¢tr=1,...,T.

e Must also ensure {h;} has sufficient correlation with {w;}. Could

Include a second measure of w},. Estimate
wir = Zi& + humt + di + ey

by fixed effects, and reject Hp : = = 0.

e Or, we can use FDIV.

76



e The above methods assume nothing about the serial correlation

properties in the measurement error, {r; ;. Suppose
E(ryris) = 0,all t # s.
e |f we assume
E(rylzizwt,c;)) =0,¢t=1,...,T.

then the addition of no serial correlation means w;, IS uncorrelated with

ri; for all s = ¢. But w;; 1S correlated with ;.
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e FD is useful now because strict exogeneity cannot hold, but other

forms do:
Ayit = AZit'Y + Awl-t + Au,-t — ﬁAI’i;

Valid Vs for Aw;, In this equation are, say, w2, w; .3, and even w; ,.1.

e Of course, as we add lags to the IV list, we lose time periods.
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/. ESTIMATION UNDER SEQUENTIAL EXOGENEITY

e \We now consider IV estimation of the model
Vie = XuPp+ci+up, t =1,...,T,
under the sequential exogeneity assumption
E(uilXi, Xir-1,...,X1,¢i) =0, =1,...,T.
e Actually, for consistency, we can get by with the weaker form

Cov(Xs,uir) = 0,all s < 1.
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e This leads to simple moment conditions after first differencing:

Ayit :AXitB-FAMit, [ = 2,...,T,

E(X:Auy) =0,s=1,...,t-1,t=2,...,T.

e Therefore, at time ¢, the available instruments in the FD equation are

In the vector X7, = (Xi1,Xi2, ..., Xi1), £ = 2,..., T.

1
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e The matrix of instruments Is
W, = diag(X%,X%, ... ,x;{T_l),

which has 7'— 1 rows. Fairly routine to apply GMM estimation with an
optimal weight matrix. With even moderate 7 there are lots of

overidentifying restrictions (at least nominally).
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e A simple strategy mentioned earlier is available: Estimate a reduced

form for Ax;, separately for each ¢. So, at time ¢, run the regression AX;

onx?, 4,7 =1,...,N, and obtain the fitted values, AX;;. Then, estimate

the FD equation

Ayit — AXiZB+AuiZ1 [ = 2’---’T

by pooled IV using instruments (not regressors) Z}it.
e Should probably be done even if using full GMM to confirm that the

Vs are sufficiently correlated with Ax;;.
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e Any of the IV approaches can suffer from a weak instrument problem

when AX; has little correlation with x¢,_;. In particular, if

Xit = @+ Xjp1+ T
E(ry|Xir1,Xir2,...,Xi0) =0

then E(AX;|x?,_1) = E(AXi) = o, and IV fails when a full set of year
Intercepts Is included in the equation.

e [f we add some assumptions, we can get more moment conditions.
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e Suppose we assume dynamic completeness in the mean:

E(uilXit, vie1Xir1, ..., vi1, Xi1,¢i) = 0.

e This condition rules out serial correlation in {u;}, which is often too
restrictive when Xx;; does not include y; 1. (If y; -1 € X;, there is no

difference between sequential exogenenity and dynamic completeness.)
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e Dynamic completeness means many more moment conditions are

available. Using linear functions only, for¢ = 3,..., T,
E[Au;1(ci +ui)] = E[(Ayir1 — AXi1B) (vie — XiP)] = 0.

e Drawback: We often do not want to assume dynamic completeness.

Plus, the extra conditions are nonlinear in parameters.
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e Arellano and Bover (1995) suggested instead the restrictions
Cov(AX},,c;)) =0, t=2,...,T

which allows the “level” of the sequence {x;; : t = 1,...,T} to be

correlated with ¢; but not the changes. Holds if
Xir = @;+h; +r;

where {r; : t = 1,2,...T} are uncorrelated with c;. Allows h; and ¢; to

be arbitrarily correlated.
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e Would fail if, say,
Xiit = @+ ;i +09,t+1

where g, and ¢; are correlated.
e To use the Arellano and Bover moment conditions, need to let

a = E(c;) to allow a nonzero mean. Then

E[AX,((ci—a) +ui)] =0,t=2,...,T.

87



e In terms of the parameters and observable data, we have the moment

conditions
E[AX;t()/l’t — o _XitB)] — O, [ = 2,...,T.

We can use these along with the moment conditions in the FD equation
that are implied by sequential exogeneity. Note that all moment
conditions are linear in .

e Because we are mixing moment conditions in FD and levels, if x;;
Includes year dummies (it should) then these must be differenced in
AXi.
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e The full set of moment conditions:

[ EXa(Avi - MxoB)] )

E[X?7 1 (Avir — AXirP)]
E[AX;(vi2 — & = Xi2P)]

\ E[AX;7(yir — a — XifP)] /

e Use GMM with a general weighting matrix to allow arbitrary
correlation across all time periods/equations. (Now called “system”
GMM.)
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e Simple AR(1) model:
Vit = pVir1+ci+uint=1,...,T.
e Typically, the minimal assumptions imposed are
Eisuy) =0,s=0,...,¢-1,t=1,...,T,
(implied by dynamic completeness) so, for¢ = 2,...,T,

Elyis(Ayis — pAyir1) = 0,5 < t - 2.
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e Again, can suffer from weak instruments when p is close to unity.
Blundell and Bond (1998) showed that if the condition

Cov(Ayi,ci) = Cov(yir —vio,ci) =0

Is added to E(uy|vis1,...,vi0,ci) = 0then the Arellano and Bover extra

moment conditions hold:

E[Ayi,t—l ()/it — 0 — Pyi,t—l)] =0
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e The condition

Cov(Ayi1,ci) =0
can be intepreted as a restriction on the initial condition, y;0. For |p|< 1,
write y;o as a deviation from its steady state: yio = ¢i/(1 — p) + ripo.
Then the extra condition is

Cov(ri,c;) = 0;

the deviation of y,o from its steady state is uncorrelated with the SS.
e Potential problem: As p approaches one, how realistic is it to assume

there Is a steady state?
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e Extensions of the AR(1) model:
Vit = PVir-1 +Ziy+ci+uy, t=1...,T
and use FD:
Avie = pAYi1 + AZiy + Auyy, t=2,...,T.

e Can use Az;; as own Vs if they are strictly exogenous, y; ., h > 2,
and can still add moment conditions in levels.
e Because y; .1 IS included as a control, z;; (perhaps program

assignment) is allowed to be correlated with y; .1 as well as with ¢;.
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e If {z;} Is not strictly exogenous, can use {z;,1,...,2;1} as Vs, along
with {y;.2,...,vi0} in the FD equation at time .
e And, we still might use, for ¢ = 2,..., T, the Arellano-Bover

moments:

E[Ayi,t—l (_)/it —Qa— PVir-1 — Zit'Y):I =0
E[Azét(yit — 0= PVir-1— Zit’y)] =0

e As usual, time dummies act as their own 1Vs.
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AR(1) Model for Airfare Example
e Use the original Arellano and Bond moment conditions (that is, in the

differenced equation only). Put a “d” to indicate the first differences (or

changes).

gen dlfare = d.lfare
(1149 missing values generated)

. gen dlfare_1 = I._.dlfare
(2298 missing values generated)

gen dconcen = d.concen
(1149 missing values generated)
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. reg dlfare dlfare_1 dconcen y99 y00, cluster(id)

Linear regression Number of obs = 2298
F(C 3, 1148) = 36.38
Prob > F = 0.0000
R-squared = 0.0651
Root MSE = .1168

(Std. Err. adjusted for 1149 clusters in id)

| Robust

difare | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ +________________________________________________________________
difare_1 | -.1264673 -0267104 -4.73 0.000 -.1788739 -.0740606
dconcen | .0762671 .0527226 1.45 0.148 -.0271763 .1797106
y99 | -.0473536 -0050308 -9.41 0.000 -.0572241 -.037483

y00 | (dropped)
cons | .0624434 -0032977 18.94  0.000 -0559732 -0689136

. * Pooled OLS on the differenced equation is very misleading. FE on the levels
. * does better, but is still downward biased.
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. xtreg Ifare Ilfare_1 concen y99 y00, fe cluster(id)

Fixed-effects (within) regression Number of obs = 3447
Group variable: id Number of groups = 1149
R-sq: within = 0.1605 Obs per group: min = 3
between = 0.8863 avg = 3.0
overall = 0.5014 max = 3
F(4,1148) = 98.81

corr(u_i, Xb) = 0.6597 Prob > F = 0.0000

(Std. Err. adjusted for 1149 clusters in id)

| Robust
Ifare | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ +________________________________________________________________
Ifare 1 | .0773594 .0318913 2.43 0.015 .0147877 -1399311
concen | -0579086 -0533893 1.08 0.278 -.0468428 -1626601
yo9 | -0098236 .0037176 2.64 0.008 -0025296 .0171177
y00 | -0700164 -0043967 15.92 0.000 -06139 -0786428
cons | 4.653928 -1628858 28.57 0.000 4.334341 4_973515
_____________ +________________________________________________________________
sigma_u | -38891209
sigma_e | -09055856
I

rho .94856899 (fraction of variance due to u_i)
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. * Try FDIV, generating instruments using first-stage

. gen Ifare_2 = 12_Ifare
(2298 missing values generated)

. gen Ifare_3 = 13_I1fare
(3447 missing values generated)

. reg dlfare_1 Ifare_2 dconcen if y99

Source | SS df

_____________ f+—-—————————ee e —— — —

Model | 3.63569369 2 1.81784684
Residual | 18.7948202 1146 .016400367

_____________ +________________________

Total | 22.4305139 1148 .019538775

regressions.

Number of obs
F( 2, 1146)
Prob > F
R-squared

Adj R-squared
Root MSE

1149
110.84
0.0000
0.1621
0.1606

-12806

difare_1 | Coef. Std. Err.

[95% Conf.

Interval]

_____________ - e =

Ifare_ 2 | -.1221207 .0082417
dconcen | -.1754244 .0544243
_cons | .6389637 .0417491

-.1382913
-.2822069
.5570504

-.1059502
-.068642
.7208769

. predict dlfare_1h99
(option xb assumed; fitted values)
(2298 missing values generated)
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. reg dlfare_1 Ifare_2 Ifare_3 dconcen if y00

Source | SS df MS Number of obs = 1149
------------- S F( 3, 1145) = 11.93
Model | .524236952 3 .174745651 Prob > F = 0.0000
Residual | 16.7684066 1145 .014644897 R-squared = 0.0303
————————————— i et LT T AdjJ R-squared = 0.0278
Total | 17.2926436 1148 .015063278 Root MSE = .12102
difare_1 | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
Ifare_ 2 | -.1027683 .0278186 -3.69 0.000 -.1573495 -.0481871
Ifare_3 | .0744738 .025707 2.90 0.004 -0240356 .124912
dconcen | -.1971475 .0483136 -4.08 0.000 -.2919407 -.1023543
_cons | -155675 -0429415 3.63 0.000 .0714222 .2399278

. * No evidence of weak instruments in either time period.
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. predict dlfare_1h00
(option xb assumed; fitted values)
(3447 missing values generated)

. gen dlfare_1h = dlfare_1h99 if y99
(3447 missing values generated)

. replace dlfare_1h = dlfare_1h00 if y0O0
(1149 real changes made)
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ivreg dlfare dconcen y00 (dlfare_1 = dlfare_1h), cluster(id)

Instrumental variables (2SLS) regression Number of obs = 2298
FC 3, 1148) = 24.03
Prob > F = 0.0000
R-squared = .
Root MSE = .12529

(Std. Err. adjusted for 1149 clusters in id)

| Robust
difare | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ +________________________________________________________________
difare_1 | .2190128 -0619844 3.53 0.000 -0973973 -3406283
dconcen | .1262854 .056415 2.24 0.025 .0155974 .2369735
y00 | -051385 -006324 8.13 0.000 .0389771 -0637929
cons | .0075111 .0042639 1.76 0.078 -.0008549 .0158771
Instrumented: dlfare 1
Instruments: dconcen y00 dlfare_1lh

. * With FDIV, both the lag and the concen variable are positive and
. * statistically significant.
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. * Now use the Arellano and Bond generalized method of moments approach.

. Xtabond Ifare concen y99 y00

Arellano-Bond dynamic panel-data estimation
Group variable:

id

Time variable: year

Number of instruments =

One-step results

Number of obs

Number of groups

Obs per group: min

Wald chi2(4)

avg
max

2298
1149

[95% ConfT.

concen
y99
y00
_cons

.3326355
-1519406
.0051715
.0629313
3.304619

.0548124
.0399507
.0041216
.0043475
.2820506

Prob > chi2
z P>|z]
6.07 0.000
3.80 0.000
1.25 0.210
14 .48 0.000
11.72 0.000

.2252051
.0736386

-.0029066

.0544103
2.75181

Interval]

-4400659
.2302425
.0132496

0714523

3.857428

Instruments for differenced equation
GMM-type: L(2/.).1fare

Standard: D.concen D.y99 D.y00

Instruments for level equation

Standard:

_cons
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