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1. ASYMPTOTIC PROPERTIES OF GLS

∙ By “generalized least squares,” we mean exploiting different

unconditional variances across equation (time, in the panel data case)

and nonzero unconditional covariances across equations. We do not

exploit situations where the variance-covariance matrix is a function of

Xi.

∙Write the equation in system form (for a random draw i) as

yi  Xi  ui     (1.1)

where yi is G  1, Xi is G  K, and ui is G  1. Remember, in panel

data case, G  T.
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∙ The G  G unconditional variance-covariance matrix plays a key role.

 ≡ Euiui
′ 

1
2 12  1G

12 2
2  2G

   

1G 2G  G
2

.     (1.2)

∙ The following language is as if Eui  0, which is maintained in

virtually all applications and is no assumption at all when the various

equations contain an intercept. If ui does not have a zero mean, then 

is not the V-C matrix, but everything goes through.
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∙We already discussed system OLS. What else might we do? Without

additional assumptions, suppose we use “generalized least squares.”

Assume, for now, that we know .

∙ Transform the equation to remove correlations in errors and make

variances constant (actually, unity):

−1/2yi  −1/2Xi  −1/2ui,     (1.3)

where  is assumed to be nonsingular and −1/2 is a symmetric matrix

such that −1/2−1/2  −1 and −1/2−1/2  IG. Let Xi
∗  −1/2Xi

and similarly for yi
∗, ui

∗. Then Eui
∗ui
∗′  −1/2Euiui

′−1/2  IG.
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∙ Apply System OLS to yi
∗  Xi

∗  ui
∗. The GLS estimator is

∗  N−1∑
i1

N

Xi
∗′Xi

∗

−1

N−1∑
i1

N

Xi
∗′yi
∗

 N−1∑
i1

N

Xi
′−1Xi

−1

N−1∑
i1

N

Xi
′−1yi

   N−1∑
i1

N

Xi
′−1Xi

−1

N−1∑
i1

N

Xi
′−1ui

    (1.4)
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∙ The K  K matrix average converges in probability to EXi
′−1Xi;

assume this is nonsingular. Then, consistency of ∗ holds if

EXi
′−1ui  0.     (1.5)

∙ In general, (1.5) is not implied by SOLS.1,

EXi
′ui  0.     (1.6)

GLS transforms the orthogonality conditions; it may not be consistent

when SOLS is.
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∙ Rather than assume (1.5), use

Assumption SGLS.1 (Exogeneity):

EXi ⊗ ui  0.      (1.7)

∙ The Kronecker product is used so that every element of Xi is

uncorrelated with every element of ui, so any linear combination of Xi

is uncorrelated with ui. In particular, (1.5) holds.
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∙ In some special cases EXi
′−1ui  0 can hold when

EXi ⊗ ui  0, but the latter assumption implies that a variety of GLS

estimators, even with a misspecified variance matrix, will be consistent.

Plus, in the next section we rely on (1.7) to justify ignoring estimation

of .

Assumption SGLS.2 (Rank Condition):  is nonsingular and

EXi
′−1Xi is nonsingular. 

THEOREM: Under SGLS.1 and SGLS.2, ∗ is consistent for  as

N → . 
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∙Must take the distinction between SGLS.1 and SOLS.1 seriously. If

only EXi
′ui  0 holds, GLS is generally inconsistent.

EXAMPLE: Suppose G  2, so that in the SUR case we can write

−1 
11 12

12 22

−1Xi 
11 12

12 22

xi1 0
0 xi2


11xi1 12xi2

12xi1 22xi2
.     (1.8)
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Then

E−1Xi′ui 
11Exi1

′ ui1  12Exi1
′ ui2

12Exi2
′ ui1  22Exi2

′ ui2
.     (1.9)

Unless 12  0, which is true if and only if 12  0, we need the

covariates in each equation to be uncorrelated with the errors in each

equation.

∙ If 12  0, only need Exig
′ uig  0, g  1, 2. The GLS estimator in

this case is OLS equation-by-equation. (More general result later.)
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∙ Asymptotic normality is also straightforward:

N ∗ −   N−1∑
i1

N

Xi
′−1Xi

−1

N−1/2∑
i1

N

Xi
′−1ui

 A−1 N−1/2∑
i1

N

Xi
′−1ui

 N−1∑
i1

N

Xi
′−1Xi

−1

− A−1 N−1/2∑
i1

N

Xi
′−1ui

 A−1 N−1/2∑
i1

N

Xi
′−1ui  op1
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Now

A  EXi
′−1Xi.     (1.11)

∙ Using the same argument as for SOLS,

N ∗ − 
d
→ Normal0,A−1BA−1     (1.12)

B  VarXi
′−1ui  EXi

′−1uiui
′−1Xi     (1.13)

∙ Important: At this point, we cannot simplify B further. We are not

assuming Xi is nonrandom, and we do not have enough assumptions

about the distribution of ui given Xi to reduce B.

∙ One consequence of the complicated expression for B: under SGLS.1,

SOLS.2, and SGLS.2, GLS need not be more efficient than SOLS!
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2. FEASIBLE GLS
2.1. The Estimator and Asymptotic Properties

∙ Now we study the estimator from the previous section but were an

estimator of  is used in place of . Generally, let ̂ be a G  G matrix

such that

plimN→̂  .     (2.1)

∙ This only makes sense when  has fixed dimension. (In the panel

data case, T is fixed.)

13



∙ In SUR analysis, we almost always use

̂  N−1∑
i1

N

u iu i
′     (2.2)

where u i ≡ yi − Xi are the G  1 SOLS residuals ( is the SOLS

estimator).

∙ Same ̂ can be used for panel data.
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∙Write

u i  yi − Xi − Xi −   ui − Xi − 

u iu i
′  uiui

′ − ui − ′Xi
′ − Xi − ui

′

 Xi −  − ′Xi
′

    (2.3)

can show that

̂  N−1∑
i1

N

uiui
′  op1.     (2.4)
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∙ In fact, can even show under SGLS.1 and SOLS.2,

N ̂ − N−1∑
i1

N

uiui
′  op1,     (2.5)

so, for performing inference about the elements of , we can ignore the

estimation error in  (in large samples). Very useful for testing zero

covariances, constant variances, and no serial correlation.

∙ (2.5) does not go through under SOLS.1, even though (2.4) does.
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∙ The FGLS estimator is

̂  N−1∑
i1

N

Xi
′̂
−1Xi

−1

N−1∑
i1

N

Xi
′̂
−1yi

   N−1∑
i1

N

Xi
′̂
−1Xi

−1

N−1∑
i1

N

Xi
′̂
−1ui

    (2.6)

Write

N−1∑
i1

N

Xi
′̂
−1Xi − N−1∑

i1

N

Xi
′−1Xi  N−1∑

i1

N

Xi
′̂

−1
− −1Xi.
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∙ Fact from matrix algebra: for conformable matrices A, B, and C,

vecABC  C′ ⊗ AvecB

where “vec” is the vectorization of a matrix (stacking the columns).
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∙ Under SGLS.1, SGLS.2, and ̂  N−1∑i1
N uiui

′  op1,

vec N−1∑
i1

N

Xi
′̂

−1
− −1Xi  N−1∑

i1

N

Xi
′ ⊗ Xi

′ vec̂−1
− −1

 Op1  op1

and

N−1/2∑
i1

N

Xi
′̂
−1ui − Xi

′−1ui  N−1/2∑
i1

N

Xi
′̂

−1
− −1ui

 N−1/2∑
i1

N

ui ⊗ Xi′ vec̂−1
− −1

 Op1  op1.
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∙ Combining the above two results gives

N ̂ −   N−1∑
i1

N

Xi
′−1Xi

−1

N−1/2∑
i1

N

Xi
′−1ui  op1

 N ∗ −   op1.

    (2.7)

    (2.8)

By the asymptotic equivalence lemma, the asymptotic distribution of

N ̂ −  is the same as that of N ∗ − .
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∙When

N ̂ − ∗  op1     (2.9)

we say that ̂ and ∗ are “asymptotically equivalent” or, more

precisely, “ N −equivalent,” which is much stronger than saying that

they are both consistent. (Under SGLS.1, SOLS.2, and SGLS.2, FGLS

and SOLS are both consistent but they are not asymptotically

equivalent.)
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∙ It is not always true that first-stage estimation of population

parameters can be ignored in a second stage (for example, see the

control function notes). But, in this case, for N −asymptotics, we can

treat FGLS as if it is GLS.

∙ If N is “small,” the statistical properties of ̂ and ∗ could be very

different (and we would not know, since ∗ is infeasible).

∙ FGLS is not unbiased under Eui|Xi  0, GLS is (if the moments

exist).
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∙ A fully robust sandwich variance matrix estimator can be used under

SGLS.1 and SGLS.2: let ûi ≡ yi − Xi̂ be the FGLS residuals. Then

Avar̂  ∑
i1

N

Xi
′̂
−1Xi

−1

∑
i1

N

Xi
′̂
−1ûiûi

′̂
−1Xi

−1

 ∑
i1

N

Xi
′̂
−1Xi

−1

,

    (2.10)

and sometimes with a degrees-of-freedom adjustment, N − K.

∙ This estimator is robust to “system heteroskedasticity.” Loosely, the

variance-covariance matrix of ui conditional on Xi does not depend on

Xi.
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2.2. When is the “Usual” Variance Matrix Estimator for FGLS Valid?

Assumption SGLS.3 (System Homoskedasticity):

EXi
′−1uiui

′−1Xi  EXi
′−1Xi.      (2.11)

∙ Effectively, all squares and cross products uig
2 , uiguih, are uncorrelated

with the squares and cross products of elements in Xi.

∙ This assumption simple says that B  A, which means we can use

Avar̂  ∑
i1

N

Xi
′̂
−1Xi

−1

,     (2.12)

which is the nonrobust (“usual”) FGLS variance matrix estimator.
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∙ Sufficient for SGLS.3:

Euiui
′|Xi  Euiui

′.     (2.13)

∙ Use the law of iterated expectations:

EXi
′−1uiui

′−1Xi  EEXi
′−1uiui

′−1Xi|Xi

 EXi
′−1Euiui

′|Xi−1Xi

 EXi
′−1−1Xi  EXi

′−1Xi.

∙Most straightforward, and traditional (essentially the same as the

fixed regressor assumption) are

Eui|Xi  Eui  0
Varui|Xi  Varui  

    (2.14)
    (2.15)
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∙ Given the zero conditional mean assumption, the key conditions are

Varuig|Xi  Varuig, g  1, . . . ,G
Covuig,uih|Xi  Covuig,uih, all g ≠ h.

    (2.16)
    (2.17)

∙ By the random sampling assumption, the unconditional

variance-covariance matrices Euiui
′ must be identical across i, and

equal to . The question is whether conditional variances and

covariances conditional on Xi are constant.

∙ Particularly in panel data applications without strict exogeneity it will

not make sense to condition on all of Xi.
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2.3 When is FGLS more efficient than SOLS?

∙ Suppose we start with SGLS.1, EXi ⊗ ui  0 (which, of course,

implies SOLS.1), add the two rank conditions, SOLS.2 and SGLS.2,

and this form of the system homoskedasticity assumption:

Euiui
′|Xi  Euiui

′.

Then

Avar̂FGLS  EXi
′−1Xi−1/N

Avar̂SOLS  EXi
′Xi−1EXi

′uiui
′XiEXi

′Xi−1

 EXi
′Xi−1EXi

′XiEXi
′Xi−1/N

    (2.18)

    (2.19)
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∙ Claim:

EXi
′Xi−1EXi

′XiEXi
′Xi−1 − EXi

′−1Xi−1     (2.20)

is positive semi-definite. Write the difference as C − D.

It suffices to show D−1 − C−1 is p.s.d., that is

EXi
′−1Xi − EXi

′XiEXi
′Xi−1EXi

′Xi     (2.21)

is p.s.d.
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∙ Use the following trick. Let Zi ≡ −1/2Xi andWi ≡ 1/2Xi. Then

EZi
′Zi  EXi

′−1Xi, EWi
′Wi  EXi

′Xi, and

EZi
′Wi  EXi

′Xi. Therefore, the difference in (2.21) is

EZi
′Zi − EZi

′WiEWi
′Wi−1EZi

′Wi,     (2.22)

which looks like a matrix sum of squared residuals in the population. In

fact, if we define the matrix residuals Ri  Zi −Wi with

 ≡ EWi
′Wi−1EZi

′Wi, then it is easily seen that (2.22) is

ERi
′Ri, which is necessarily p.s.d.
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3. FGLS WITH INCORRECT RESTRICTIONS ON THE
VARIANCE MATRIX

∙ Suppose that, rather than estimate  in an unrestricted fashion, so that

plimN→̂  , we impose restrictions on the estimated matrix. This is

very common for panel data, as we will see later. Let ̂ denote an

estimator that may be inconsistent for . Nevertheless, ̂ usually has a

well-defined, nonsingular probability limit:  ≡ plimN→ ̂.

∙ The FGLS estimator of  using ̂ as the variance matrix estimator is

consistent if

EXi
′−1ui  0     (3.1)

(along with the obvious modification of the rank condition SGLS.2).

30



∙ Condition (3.1) always holds if Assumption SGLS.1 holds. Therefore,

exogeneity of each element of Xi in each equation (time period)

ensures that using an inconsistent estimator of  does not result in

inconsistency of FGLS.

∙ The N −asymptotic equivalence between the estimators that use ̂

and  continues to hold under Assumption SGLS.1, and so we can

conduct asymptotic inference ignoring the first stage estimation of .

∙ The analog of SGLS.3, namely, EXi
′−1uiui

′−1Xi  EXi
′−1Xi,

generally fails, even under the system homoskedasticity assumption

Euiui
′|Xi  Euiui

′.
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∙ Therefore, the sandwich estimator can be needed under system

homoskedasticity if incorrect restrictions are imposed on the

unconditional variance-covariance matrix.

∙We will use this observation later for unobserved effects panel data

models, as well as more traditional time series models for the errors.

∙ Question: When might we want to use a specific form of ̂ even if we

know it is inconsistent for ? (Think about panel data without strictly

exogenous regressors.)
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4. TESTING USING FGLS

∙ Let the restrictions be given by

H0 : R  r,     (4.1)

where R is Q  K, r is Q  1, Q ≤ K. A generally available statistic is

theWald statistic:

W  R̂ − r′RV̂R′
−1R̂ − r′ a~ Q

2     (4.2)

under H0, where V̂ is the fully robust form of Avar̂ or the nonrobust

form under SGLS.3.
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∙ Under SGLS.1 through SGLS.3, can use a statistic based on sums of

squared residuals. Given ̂ – usually from the unrestricted SOLS

estmation – let ̃ denote the restricted FGLS estimator:

̃  argminb∈RK∑
i1

N

yi − Xib′̂
−1
yi − Xib

subject to Rb  r

    (4.3)

and let ̂ be the unrestricted estimator. Then

∑
i1

N

ũi
′̂
−1ũi ≥ ∑

i1

N

ûi
′̂
−1ûi     (4.4)

where ũi  yi − Xi̃ and ûi  yi − Xi̂.
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∙ Under SGLS.1 to SGLS.3, can show under H0 that

∑
i1

N

ũi
′̂
−1ũi −∑

i1

N

ûi
′̂
−1ûi

a~ Q
2 .     (4.5)

∙ A small sample adjustment (with justification only via simulations), is

F 
∑i1

N ũi
′̂
−1ũi − ∑i1

N ûi
′̂
−1ûi

∑i1
N ûi

′̂
−1ûi


NG − K

Q ,     (4.6)

treated as having an approximate FQ,NG−K distribution. Why?

FQ,NG−K
q~ Q

2 /Q as NG − K → , so the division by Q makes it roughly

valid to use the F distribution.
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The other terms are based on

Eui
′−1ui  Etrui

′−1ui

 Etr−1uiui
′  trE−1uiui

′

 tr−1Euiui
′  trIG  G.

    (4.7)

∙ It follows that

NG−1∑
i1

N

ui
′−1ui

p
→ 1,     (4.8)

and then insert ̂ and subtract off K from NG as a degrees-of-freedom

adjustment.
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