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1. CONTROL FUNCTION APPROACHES TO ENDOGENEITY

∙Most models that are linear in parameters are estimated using two

stage least squares (2SLS).

∙ An alternative, the control function (CF) approach, relies on the same

kinds of identification conditions.

∙ Let y1 be the response variable, y2 the single endogenous explanatory

variable (EEV), and z the 1  L vector of exogenous variables (with

z1  1:

y1  z11  1y2  u1,     (1)

where z1 is a 1  L1 strict subvector of z.
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∙ Consider the (weakest) exogeneity assumption

Ez′u1  0.     (2)

Reduced form for y2:

y2  z2  v2, Ez′v2  0     (3)

where 2 is L  1. Write the linear projection of u1 on v2, in error form,

as

u1  1v2  e1,     (4)

where 1  Ev2u1/Ev2
2 is the population regression coefficient. By

construction, Ev2e1  0 and Ez′e1  0.
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∙ Plug (4) into (1):

y1  z11  1y2  1v2  e1,     (5)

where v2 is an explanatory variable in the equation. The new error, e1,

is uncorrelated with y2 as well as with v2 and z.

∙ Two-step procedure: (i) Regress yi2 on zi and obtain the reduced form

residuals, v̂i2; (ii) Regress

yi1 on zi1,yi2, and v̂i2.     (6)
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∙ Because we can write

yi1  zi11  1yi2  1v̂i2  ei1  1zi̂2 − 2,

the error implicit in (6) is ei1  1zi̂2 − 2, which depends on the

sampling error in ̂2 unless 1  0.

∙ Using results from Chapter 6 on two-step estimation, OLS estimators

from (6) will be consistent for 1,1, and 1. Sometimes

v̂i2  yi2 − zi̂2 is called a generated regressor.
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∙ The OLS estimates from (6) are control function estimates.

∙ Using the Frisch-Waugh Theorem from OLS mechanics, the OLS

estimates of 1 and 1 from (6) can be shown to be identical to the

2SLS estimates starting from (1).

∙Where does the CF estimator use the fact that zi must contain at least

one more element than zi1? Think of perfect collinearity in

yi1  zi11  1yi2  1v̂i2  errori
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∙ Now extend the model so that the EEV is in quadratic form:

y1  z11  1y2  1y2
2  u1

Eu1|z  0.
    (7)
    (8)

∙ Very difficult to get by without (8) once we include nonlinear

functions in the model.

∙ Let z2 be a non-binary scalar not also in z1. Under the (8) we can use,

say nonlinear functions as IVs, say z2
2 as an instrument for y2

2. So the

IVs would be z1, z2, z2
2 for z1,y2,y2

2.
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∙What does CF approach entail? We really need to impose much more

on the reduced form; it is no longer just defined as a linear projection:

y2  z2  v2

Ev2|z  0

which puts strong restrictions on Ey2|z.
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∙ Further, assume

Eu1|z,y2  Eu1|v2  1v2.     (9)

This has two parts. First, that z drops out of Eu1|z,y2. Independence

of u1,v2 and z is sufficient. Second, linearity of Eu1|v2 is a real

restriction.

∙ Under (9),

Ey1|z,y2  Ey1|z,v2  z11  1y2  1y2
2  Eu1|z,v2

 z11  1y2  1y2
2  1v2.     (10)
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∙ A CF approach is immediate: OLS of

yi1 on zi1,yi2, yi2
2 , and v̂i2.     (11)

∙ Not equivalent to a 2SLS estimate. If we use, say, IVs zi1, zi2, zi2
2 

then the IV estimator is consistent under Eu1|z  0.

∙ CF accounts for endogeneity of y2 and y2
2 using a single control

function, v̂2. CF is likely more efficient but definitely less robust.
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2. CORRELATED RANDOM COEFFICIENT MODELS

∙Modify the original equation as

y1  1  z11  a1y2  u1,     (12)

where a1, the “random coefficient” on y2. Heckman and Vytlacil

(1998) call (12) a correlated random coefficient (CRC) model. For

emphasis,

yi1  1  zi11  ai1yi2  ui1     (13)

∙ ai1 contains “ability” and “motivation”; yi2 is schooling. Return to

schooling is individual-specific.
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∙ In the population, write a1  1  v1 where 1  Ea1 is the object

of interest: the average partial effect (APE). We can rewrite the

equation as

y1  1  z11  1y2  v1y2  u1

≡ 1  z11  1y2  e1.
    (14)
    (15)

where e1  v1y2  u1. Generally, Ee1  Ev1y2  Covv1,y2. Just

having a nonzero unconditional mean is not much of a problem.
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∙ The potential problem with applying instrumental variables is that the

error term e1  v1y2  u1 is not necessarily uncorrelated with the

instruments z, even with our maintained assumptions

Eu1|z  Ev1|z  0.     (16)

∙We want to allow y2 and v1 to be correlated, Covv1,y2 ≡ 1 ≠ 0. A

condition that still allows for any amount of unconditional correlation

is

Covv1,y2|z  Covv1,y2,     (17)

and this is sufficient for 2SLS to consistently estimate 1,1.
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∙Why is (17) sufficient? Because Ev1|z  0,

Covv1,y2|z  Ev1y2|z. Therefore, if (17) holds, we can write

v1y2  1  r1

Er1|z  0.
    (18)
    (19)

So, the equation we estimate by usual 2SLS can be written as

y1  1  1  z11  1y2  r1  u1,     (20)

where by (16) and (19), Er1  u1|z  0. Thus, the parameters in (20)

are consistently estimated by 2SLS using IVs z, which includes a

constant.

∙ The original intercept, 1, cannot be estimated.
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∙What would a control function approach look like? Write

y2  z2  v2

Ev2|z  0.
    (21)
    (22)

Add

Eu1|z,v2  1v2, Ev1|z,v2  1v2.     (23)
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Then

Ey1|z,y2  1  z11  1y2  1v2y2  1v2.     (24)

∙ Two-step method: (1) Regress y2 on z to get v̂2 (residuals). (2) Run

the OLS regression y1 on 1,z1,y2, v̂2y2, v̂2. Due to Garen (1984). Under

the maintained assumptions, Garen’s method consistently estimates 1

and 1.
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∙ Because the second step uses generated regressors, the standard errors

should be adjusted for the estimation of 2 in the first stage.

∙ Garen relies on a linear model for Ey2|z. Further, Garen adds the

assumptions that Eu1|v2 and Ev1|v2 are linear functions, something

not needed by the IV approach.
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3. TESTING FOR ENDOGENEITY

∙ In the general equation y  x  u with instruments z, the

Durbin-Wu-Hausman (DWH) test is based on the difference

̂2SLS − ̂OLS. If all elements of x are exogenous (and z is also

exogenous – a maintained assumption), then 2SLS and OLS should

differ only due to sampling error.

∙ Do not just blindly compute a test statistic. Are the differences in

OLS and 2SLS practically important?
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∙ The general approach suggested by Hausman (1978, Econometrica)

maintains that one of the estimators is relatively (asymptotically)

efficient under the null. In this case, under the null that x is exogenous

(and z, too), OLS is asymptotically efficient provided we add the

homoskedasticity assumption

Eu2w′w  2Ew′w

where w is all nonredundant elements of x,z.

∙ But it is important to know that the approach makes sense whenever

both estimators are consistent under the null and at least on is

inconsistent under the alternative.
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∙ It makes no sense to make inference on  using, say, OLS robust to

general heteroskedasticity and then assume homoskedasticity when

obtaining a Hausman test. The traditional Hausman test that compares

2SLS and OLS does not have a limiting chi-square distribution when

heteroskedasticity is present. Yet it has no systematic power for

detecting heteroskedasticity.
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∙ If in addition to Ex′u  0, Ez′u  0, the rank conditions for OLS

and 2SLS, and the homoskedasticity assumption

Eu2w′w  2Ew′w (under the null), then

Avar N ̂2SLS − ̂OLS  2Ex∗′x∗−1 − 2Ex′x−1,     (25)

which is simply the difference between the asymptotic variances.

∙ Equation (25) is also the basis for showing 2SLS is asymptotically

less efficient than OLS under OLS.1, OLS.2, OLS.3, and the

corresponding 2SLS assumptions.
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∙ One version of the DWH statistic uses the OLS estimate for 2:

̂2SLS − ̂OLS
′X̂′X̂−1 − X′X−1−̂2SLS − ̂OLS/̂OLS

2 ,     (26)

where we must use a generalized inverse, except in the very unusual

case that all elements of x are allowed to be endogenous under the

alternative.

∙ The rank of Avar N ̂2SLS − ̂OLS is equal to the number of

elements of x allowed to be endogenous under the alternative. The

singularity of the matrix in (26) makes computing the statistic

cumbersome.
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∙ Not surprising, the statistic in (26) is not robust to heteroskedasticity.

A robust variance matrix estimator for Avar N ̂2SLS − ̂OLS can be

obtained, but not easily.

∙With only a single suspected endogenous explanatory variable y2, a

Hausman t statistic can be used to determine whether y2 is endogenous:

̂1,2SLS − ̂1,OLS/se̂1,2SLS2 − se̂1,OLS21/2     (27)

Under the null hypothesis, the t statistic has an asymptotically standard

normal distribution.

∙ Unfortunately, there is no simple correction if one allows

heteroskedasticity: the asymptotic variance of the difference is no

longer the difference in asymptotic variances.
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∙ A regression-based Hausm test uses the control function approach.

Write

y1  z11  y21  u1,     (28)

where z1 is 1  L1, y2 is 1  G1, and the entire vector of all instruments

is z  z1,z2, where z2 is 1  L2 with L2 ≥ G1. The two-step

procedure is
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(i) Regress yi2 on zi to obtain the 1  G1 reduced form residuals, v̂i2

(one vector for each observation).

(ii) Run the regression

yi1 on zi1,yi2, v̂i2     (29)

and use a joint Wald test of H0 : 1  0, where 1 is the vector of

coefficients on v̂i2. (This is often computed as an approximate F

statistic by dividing the Wald statistic by G1, the number of restrictions

being tested.)

∙ The test need not be adjusted for the first-stage estimation (generated

regressors, v̂i2), and it is easily made robust to heteroskedasticity of

unknown form.
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∙ Sometimes we may want to test the null hypothesis that a subset of

explanatory variables is exogenous while allowing another set of

variables to be endogenous. Write an expanded model as

y1  z11  y21  y31  u1,     (30)

where 1 is G1  1 and 1 is J1  1. We allow y2 to be endogenous and

test H0 : Ey3
′ u1  0. The relevant equation is now

y1  z11  y21  y31  v31  e1, or, when we operationalize it,

yi1  zi11  yi21  yi31  v̂i31  errori.     (31)
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∙ Because y2 is allowed to be endogenous under H0, we cannot

estimate (31) by OLS in order to test H0 : 1  0. Instead, we apply

2SLS to (31) with instruments zi,yi3, v̂i3; remember, y3,v3 are

exogenous in the augmented equation. In effect, we still instrument for

yi2 but yi3 and v̂i3 act as their own instruments.

∙ The usual Wald statistic for 2SLS (possibly implemented as an F-type

statistic) for testing H0 : 1  0 is asymptotically valid under H0. As

usual, it may be prudent to allow heteroskedasticity of unknown form

under H0, which is easily done in many software packages.
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Question: What would a test for the null of y2 exogenous look like for

the CRC model? Remember, under

y2  z2  v2

Ev2|z  0.

Eu1|z,v2  1v2, Ev1|z,v2  1v2

we derived

Ey1|z,v2  1  z11  1y2  1v2y2  1v2.
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Solution: First, regress yi2 on zi and get the OLS residuals, v̂i2. Then,

test H0 : 1  0,1  0 using OLS on

yi1  1  zi11  1yi2  1v̂i2yi2  1v̂i2  errori

∙ Under the null hypothesis, the generated regressors problem does not

matter asymptotically. Can use a heteroskedasticity-robust Wald test.

29



4. TESTING OVERIDENTIFYING RESTRICTIONS

∙ If we have more instruments than we need we can, in a (weak) sense,

test whether some of them are exogenous. Write the equation as

y1  z11  y21  u1     (32)

where z1 is 1  L1 and y2 is 1  G1. The entire vector of instruments is

z  z1,z2, where z2 is 1  L2. the equation is overidentified if

L2  G1.

∙ The 2SLS estimator uses L1  G1 moment conditions, so L2 − G1

overidentifying restrictions can be tested.
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∙ A traditional version of the Hausman test, under the 2SLS

homoskedasticity assumption, directly compares the 2SLS estimator

using all instruments to a just identified IV estimator. Turns out not to

matter which just identified IV estimator we use.

∙ In the case of, say, a scalar y2 and two elements in z2  z21, z22, can

directly compare the two IV estimators using each IV in turn (but

neither is relatively efficient, so computation is not straightforward).

EXAMPLE: y2  educ and z2  motheduc, fatheduc. Problem is the

test will have weak power if the two IV estimators are biased in a

similar way (likely in this example).
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∙ In other words, a failure to reject should not make us too confident. A

rejection indicates that one or both IVs fail the exogeneity requirement;

we do not know which one or whether it is both.

∙ Again, regression-based tests are convenient. Under

homoskedasticity, 2SLS.3, obtain NRu
2 (generally, the uncentered

R-squared, but almost always the usual R-squared) from

ûi1 on zi,     (33)

where ûi1 are the 2SLS residuals and z is the vector of all exogenous

variables.
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∙ The motivation for (33) is the sample moment conditions

N−1∑
i1

N

zi
′ûi1 ≈ 0     (34)

under the null. But we also know K1  L1  G1 exact moment

conditions hold in the sample,

N−1∑
i1

N

zi̂1′ûi1  0,     (35)

where ̂1 is the L  K1 matrix from x1 on z, so there are not as many

degrees-of-freedom as (34) seems to suggest.
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∙ Under the null hypothesis

Ez′u  0
Eu2z′z  2Ez′z

    (36)
    (37)

it can be shown

NRu
2 a~ L2−G1

2 .     (38)

∙ Easy to compute, but not robust to heteroskedasticity.

∙ The test has the wrong asymptotic size if (37) fails, but the test has no

systematic power for detecting failure of (37).
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∙ A heteroskedasticity-robust form requires a little more work. Separate

the instrumental variables into two groups. Let z2 be the 1  L2 vector

of exogenous variables excluded from (32) and write z2  g2,h2,

where g2 is 1  G1 – the same dimension as y2 – and h2 is 1  Q1 – the

number of overidentifying restrictions.

∙ Provided h2 has Q1 elements it matters not how it is chosen.

∙ Now, we need the 2SLS residuals, û1, as before, but we also need the

fitted values ŷ2 from the first-stage regression.
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∙We partial out ŷ2 from each element of h2. So, run a multivariate

regression of h2 on ŷ2 and obtain the residuals, r̂2 (so Q1 residuals for

each observation).

∙ Run the regression

û1 on r̂2

(without a constant) and compute a heteroskedasticity-robust Wald test

that all coefficients on r̂2 are zero.
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5. LABOR SUPPLY APPLICATION
. use C:\mitbook1_2e\statafiles\labsup.dta

. * data are for black or Hispanic females

. des hours nonmomi kids educ age black hispan samesex

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------
hours byte %8.0g hours of work per week, mom
nonmomi float %9.0g ’non-mom’ income, $1000s
kids byte %8.0g number of kids
educ byte %8.0g mom’s years of education
age byte %8.0g age of mom
black byte %8.0g 1 of black
hispan byte %8.0g 1 if hispanic
samesex byte %8.0g first two kids are of same sex
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. sum hours nonmomi kids educ age black hispan

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

hours | 31857 21.22011 19.49892 0 99
nonmomi | 31857 31.7618 20.41241 -39.93675 157.438

kids | 31857 2.752237 .9771916 2 12
educ | 31857 11.00534 3.305196 0 20

age | 31857 29.74175 3.613745 21 35
---------------------------------------------------------------------

black | 31857 .4129705 .4923753 0 1
hispan | 31857 .593182 .4912481 0 1
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. * First use OLS to estimate the effects of children on hours worked:

. reg hours kids nonmomi educ age agesq black hispan, robust

Linear regression Number of obs  31857
F( 7, 31849)  377.87
Prob  F  0.0000
R-squared  0.0727
Root MSE  18.779

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

kids | -2.325836 .1155164 -20.13 0.000 -2.552253 -2.099419
nonmomi | -.0578328 .0053515 -10.81 0.000 -.068322 -.0473436

educ | .5860083 .0374881 15.63 0.000 .5125302 .6594865
age | 2.048793 .4483823 4.57 0.000 1.169946 2.927639

agesq | -.0277198 .0076957 -3.60 0.000 -.0428036 -.012636
black | 1.058285 1.35088 0.78 0.433 -1.589492 3.706063

hispan | -5.114147 1.35152 -3.78 0.000 -7.763179 -2.465116
_cons | -10.44695 6.588891 -1.59 0.113 -23.36143 2.467528

------------------------------------------------------------------------------
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. * Now use samesex and multi2nd as IVs for kids.

. * Estimate the reduced form:

. reg kids samesex multi2nd nonmomi educ age agesq black hispan, robust

Linear regression Number of obs  31857
F( 8, 31848)  410.77
Prob  F  0.0000
R-squared  0.1244
Root MSE  .91452

------------------------------------------------------------------------------
| Robust

kids | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

samesex | .07044 .0102481 6.87 0.000 .0503533 .0905267
multi2nd | .7632484 .0546856 13.96 0.000 .6560626 .8704342

nonmomi | -.0027879 .0002562 -10.88 0.000 -.0032901 -.0022858
educ | -.0853114 .0020267 -42.09 0.000 -.0892838 -.0813391

age | .0563395 .020282 2.78 0.005 .016586 .0960929
agesq | .0000436 .0003551 0.12 0.902 -.0006524 .0007396
black | .0105681 .0645589 0.16 0.870 -.1159698 .1371059

hispan | -.0420447 .0646128 -0.65 0.515 -.1686882 .0845988
_cons | 2.043467 .2924263 6.99 0.000 1.4703 2.616634

------------------------------------------------------------------------------
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. test samesex multi2nd

( 1) samesex  0
( 2) multi2nd  0

F( 2, 31848)  117.38
Prob  F  0.0000

. * Clearly the two IV candidates are partially correlated with kids,

. * both in the direction (positive) that we expect.

. * Get the reduced form residuals.

. predict v2h, resid
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. * Test the null that kids is exogenous in the hours equation:

. reg hours kids nonmomi educ age agesq black hispan v2h, robust

Linear regression Number of obs  31857
F( 8, 31848)  330.79
Prob  F  0.0000
R-squared  0.0727
Root MSE  18.779

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

kids | -2.986165 1.284302 -2.33 0.020 -5.503447 -.4688828
nonmomi | -.0596653 .0064263 -9.28 0.000 -.072261 -.0470696

educ | .5296332 .1154311 4.59 0.000 .3033839 .7558825
age | 2.08815 .4545537 4.59 0.000 1.197208 2.979093

agesq | -.0277261 .0076958 -3.60 0.000 -.0428101 -.0126422
black | 1.067778 1.350595 0.79 0.429 -1.57944 3.714995

hispan | -5.140945 1.352129 -3.80 0.000 -7.791169 -2.490721
v2h | .665256 1.290263 0.52 0.606 -1.86371 3.194222

_cons | -9.103833 7.093029 -1.28 0.199 -23.00644 4.798776
------------------------------------------------------------------------------

. * The test statistic is only about .52, so there is little evidence that kids

. * is endogenous.
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. * Now compute the 2SLS estimates:

. ivreg hours nonmomi educ age agesq black hispan (kids  samesex multi2nd),
robust

Instrumental variables (2SLS) regression Number of obs  31857
F( 7, 31849)  310.81
Prob  F  0.0000
R-squared  0.0717
Root MSE  18.789

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

kids | -2.986165 1.28219 -2.33 0.020 -5.499307 -.473022
nonmomi | -.0596653 .0064235 -9.29 0.000 -.0722555 -.0470751

educ | .5296332 .1152961 4.59 0.000 .3036484 .755618
age | 2.08815 .4545798 4.59 0.000 1.197156 2.979144

agesq | -.0277261 .0076979 -3.60 0.000 -.0428143 -.012638
black | 1.067778 1.355563 0.79 0.431 -1.589178 3.724733

hispan | -5.140945 1.357096 -3.79 0.000 -7.800906 -2.480985
_cons | -9.103834 7.092956 -1.28 0.199 -23.0063 4.798632

------------------------------------------------------------------------------
Instrumented: kids
Instruments: nonmomi educ age agesq black hispan samesex multi2nd
------------------------------------------------------------------------------

. * Note that these are the same as the CF estimates.
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. predict u1h, resid

. * Test the single overidentifying restriction using nonrobust test:

. reg u1h samesex multi2nd nonmomi educ age agesq black hispan

Source | SS df MS Number of obs  31857
------------------------------------------- F( 8, 31848)  0.06

Model | 176.258976 8 22.032372 Prob  F  0.9999
Residual | 11242898.1 31848 353.017398 R-squared  0.0000

------------------------------------------- Adj R-squared  -0.0002
Total | 11243074.3 31856 352.934277 Root MSE  18.789

------------------------------------------------------------------------------
u1h | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
samesex | -.1331695 .2105507 -0.63 0.527 -.5458569 .2795179

multi2nd | .357619 1.136161 0.31 0.753 -1.869301 2.584539
nonmomi | .0000221 .0053906 0.00 0.997 -.0105436 .0105879

educ | .0000136 .0353226 0.00 1.000 -.06922 .0692472
age | .0000577 .4481451 0.00 1.000 -.8783239 .8784393

agesq | -2.46e-06 .0077015 -0.00 1.000 -.0150978 .0150929
black | .0017749 1.3505 0.00 0.999 -2.645257 2.648807

hispan | .0037765 1.352616 0.00 0.998 -2.647404 2.654957
_cons | .0605262 6.5755 0.01 0.993 -12.82771 12.94876

------------------------------------------------------------------------------
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. * R-squared is zero to four decimal places, but N is large.

. di e(N)*e(r2)

.49942587

. di chi2tail(1,.499)

.47993984

. * So the p-value is about .48, showing little evidence against the

. * overidentifying restriction
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. * Now compute the heteroskedasticity-robust test.

. qui reg kids samesex multi2nd nonmomi educ age agesq black hispan

. predict kidsh
(option xb assumed; fitted values)

. qui reg samesex kidsh nonmomi educ age agesq black hispan

. predict r21h, resid

. qui reg multi2nd kidsh nonmomi educ age agesq black hispan

. predict r22h, resid

. reg u1h r21h, nocons robust

Linear regression Number of obs  31857
F( 1, 31856)  0.51
Prob  F  0.4767
R-squared  0.0000
Root MSE  18.786

------------------------------------------------------------------------------
| Robust

u1h | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

r21h | -.166174 .2335323 -0.71 0.477 -.6239062 .2915583
------------------------------------------------------------------------------
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. reg u1h r22h, nocons robust

Linear regression Number of obs  31857
F( 1, 31856)  0.51
Prob  F  0.4767
R-squared  0.0000
Root MSE  18.786

------------------------------------------------------------------------------
| Robust

u1h | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

r22h | 1.800574 2.530425 0.71 0.477 -3.159156 6.760305
------------------------------------------------------------------------------

. * Get the same answer since only the absolute value of the t matters.

. * Equivalently, use the F statistic reported in the upper right-hand

. * corner.
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