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1. Introduction

∙What kinds of questions can we answer using a “modern” approach to

treatment effect estimation? Here are some examples:

1. What are the effects of a job training program on employment or

labor earnings?

2. What are the effects of a school voucher program on student

performance?

3. Does a certain medical intervention increase the likelihood of

survival?

∙ The main issue in program evaluation concerns the assignment of the

binary intervention, or “treatment.”
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∙ For example, is the “treatment” randomly assigned? (Hardly ever in

business and economics, and problematical even in clinical trials

because those chosen to be eligible can and do opt out.)

∙ A more reasonable possibility is that the treatment is effectively

randomly assigned conditional on observable covariates.

(“Ignorability” of treatment, “unconfoundedness,” or “selection on

observables.” Sometimes called “exogenous treatment.”)
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∙ Or, does assignment depend fundamentally on unobservables, where

the dependence cannot be broken by controlling for observables?

(“Nonignorable” treatment, “confounded” assignment, “selection on

unobservables,” or “endogenous treatment.”)

∙ Often there is a component of self-selection in program evaluation.
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∙ Nevertheless, start with unconfoundedness because it is often all we

have (and is a good starting point in any case). A key point is that,

under the ignorability or unconfoundedness assumption, regression

methods with the covariates as controls have the same ability – at least

in theory – of identifying the treatment effect parameters. Therefore,

propensity score methods and/or matching methods are not a panacea

for the self-selection problem.
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2. Basic Concepts

Counterfactual Outcomes and Parameters of Interest

∙ For each population unit, two possible outcomes: y0 (the outcome

without treatment) and y1 (the outcome with treatment). The binary

“treatment” indicator is w, where w  1 denotes “treatment.” The

nature of y0 and y1 – discrete, continuous, some mix – is, for now,

unspecified. (The generality this affords is one of the attractions of the

Rubin Causal Model.)

∙ The gain from treatment is

y1 − y0.     (1)
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∙ For a particular unit i, the gain from treatment is

yi1 − yi0.

If we could observe these gains for a random sample, the problem

would be easy: just average the gain across the random sample.

∙ Problem: For each unit i, only one of yi0 and yi1 is observed.

∙ In effect, we have a missing data problem (even though we will

eventually assume a random sample of units).
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∙ Two parameters are of primary interest. The average treatment

effect (ATE) is

ate  Ey1 − y0.     (2)

The expected gain for a randomly selected unit from the population.

This is sometimes called the average causal effect.

∙ The average treatment effect on the treated (ATT) is the average

gain from treatment for those who actually were treated:

att  Ey1 − y0|w  1     (3)
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∙With heterogeneous treatment effects, (2) and (3) can be very

different. The ATE might average across the gain from units that would

be very unlikely to be subject to treatment (but this depends how the

population is defined).

∙ ate has “external validity” in that it tells us something about a

randomly drawn unit from the population. att is specific to the

particular program assignment mechanism.
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∙ Important point: ate and att are defined without reference to a model

or a discussion of the nature of the treatment. In particular, these

definitions hold when whether assignment is randomized,

unconfounded, or endogenous.

∙ Not suprisingly, how we estimate ate and att depends on what we

assume about treatment assignment.
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Sampling Assumptions

∙ Assume independent, identically distributed observations from the

underlying population. The data we would like to have is

yi0,yi1 : i  1, . . . ,N, but we only observe wi and

yi  1 − wiyi0  wiyi1.     (4)

∙ Random sampling rules out treatment status of one unit having an

effect on other units.

∙ Also implies that the outcome for unit i does not affect the outcome

for other members of the population.
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Estimation under Random Assignment

∙With y  1 − wy0  wy1 we can always write

Ey|w  1 − wEy0|w  wEy1|w

∙ Strongest form of random assignment: y0,y1 is independent of w.

Then Ey0|w  Ey0 and Ey1|w  Ey1, and so

Ey|w  1 − wEy0|w  wEy1|w.
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∙ It follows that Ey|w  1  Ey1 and Ey|w  0  Ey0, and so

Ey|w  1 − Ey|w  0  Ey1 − Ey0  ate  att.     (5)

∙ An unbiased and consistent estimator of Ey|w  1 is the sample

average on the treated subsample and similarly for Ey|w  0. The

estimator ̂ate is just the simple difference-in-means estimator.

∙ The randomization of treatment needed for the simple

comparison-of-means estimator to consistently estimate the ATE is rare

in practice but not unheard of. (Eligibility is sometimes randomly

assigned, but actual participation need not be.)
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3. The Key Assumptions: Ignorability and Overlap

∙ Rather than assume random assignment, for each unit i we also draw

a vector of covariates, xi. Let x be the random vector with a distribution

in the population.

A.1. Ignorability (Unconfoundedness): Conditional on a set of

covariates x, the pair of counterfactual outcomes, y0,y1, is

independent of w, which is often written as

y0,y1  w ∣ x,     (6)

where the symbol “” means “independent of” and “∣” means

“conditional on.”
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∙ w and y0,y1 might be correlated but not once we control for

characteristics x. For example, the probability of being chosen for a job

training program differs by education levels but is the same at a given

level of education.

∙ A useful way to express ignorability (conditional on x):

Dw|y0,y1,x  Dw|x, where D| denotes conditional distribution.
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∙ Unconfoundedness is controversial. In effect, it underlies standard

regression methods to estimating treatment effects (via a “kitchen sink”

regression that includes covariates, the treatment indicator, and possibly

interactions).
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∙ Can show unconfoundedness is generally violated if x includes

variables that are themselves affected by the treatment. For example, in

evaluating a job training program, x should not include post-training

schooling because that might have been chosen in response to being

assigned or not assigned to the program. We would not want to hold

post-training schooling fixed.
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∙ In fact, suppose y0,y1 is independent of w but Dx|w ≠ Dx. In

other words, assignment is randomized with respect to y0,y1 but not

with respect to x. (Think of random assignment but then x is defined to

include other outcomes affected by w.) Then ignorability generally fails

unless Eyg|x  Eyg, j  0, 1.

18



∙ To see this, by iterated expectations,

Eyg|w  EEyg|w,x|w, g  0, 1

But, because w is independent of yg, the left-hand-side does not depend

on w, and Eyg|w,x does not depend on w if unconfoundedness is

supposed to hold.
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∙Write gx ≡ Eyg|x, g  0, 1. Then, if Eyg|w  Eyg and

Eyg|w,x  gx we must have

Eyg  Egx|w,

which is impossible if the right-hand-side depends on w.

∙Most often, x includes variables that are measured prior to treatment

assignment, such as previous labor market history. Of course, gender,

race, and other demographic variables can be included.
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∙ A weaker version of ignorability (but still pretty strong) is

A.1′. Ignorability in Conditional Mean:

Eyg|w,x  Eyg|x, g  0, 1.     (7)

∙ Seems unlikely that this weaker version of the assumption holds

without the stronger version, but, technically, (7) allows things like

variances depending on w.

∙ From above discussion, have to think about what should be included

in x. Use the same reasoning as in multiple regression analysis in

deciding whether to “hold something fixed.”
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A.2. Overlap: For all x in its support X,

0  Pw  1|x  1.     (8)

In other words, each unit in the defined population has some chance of

being treated and some chance of not being treated.

∙We define the propensity score as

px  Pw  1|x, x ∈ X.     (9)

∙ Strong Ignorability [Rosenbaum and Rubin (1983)]  Ignorability 

Overlap.
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∙We now turn to identification of ate and att. It turns out that, under

strong ignorability, we can identify the ATE conditional on x and

therefore ate and att.

∙ In fact, for att we can get by with a weaker version of ignorability,

y0  w ∣ x,     (6′)

which allows w to be correlated with the (unobserved) gain, y1 − y0.

∙ A weaker overlap assumption suffices, too:

px  1, x ∈ X.
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4. Identification of Average Treatment Effects

∙ Use two ways to show the treatment effects are identified under

ignorability.

∙ First is based on regression functions. Define the average treatment

effect conditional on x as

x  Ey1 − y0|x  Ey1|x − Ey0|x  1x − 0x.

∙ The function x is of interest in its own right, as it provides the

mean effect for different segments of the population described by the

observables, x.
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∙ By iterated expectations,

ate  Ey1 − y0  Ex  E1x − 0x

It follows that ate is identified if 0 and 1 are identified because

we observe a random sample on x and can average across its

distribution.
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∙ To see 0 and 1 are identified under ignorability,

Ey|x,w  1 − wEy0|x,w  wEy1|x,w
 1 − wEy0|x  wEy1|x
≡ 1 − w0x  w1x,     (10)

where the second equality holds by ignorability and gx ≡ Eyg|x,

g  0, 1. So

Ey|x,w  0  0x
Ey|x,w  1  1x
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∙ The functions Ey|x,w  0, Ey|x,w  1 are consistently estimable

from the data because we have a random sample on y,x,w. But

overlap is critical. We need to estimate 0x and 1x for all x ∈ X.

But by defintion Ey|x,w  0 will be estimated only using the control

group and Ey|x,w  1 will be estimated only using the treatment

group. (More on the overlap issue when we consider estimation.)
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∙ For ATT note that

Ey1 − y0|w  EEy1 − y0|x,w|w  EEy1 − y0|x|w
 E1x − 0x|w,

where the second equality holds by ignorability (in the mean), that is,

Ey1 − y0|x,w  Ey1 − y0|x.

∙ So

att  E1x − 0x|w  1,

and we know 0 and 1 are identified.
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∙ Define the estimable regression functions for the control and

treatment groups as

m0x  Ey|x,w  0, m1x  Ey|x,w  1.     (11)

∙ Under ignorability, m1x  1x and m0x  0x. (If

ignorability fails, mgx ≠ gx, so it is important to generally keep

these means separate.)
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∙ In terms of the estimable mean functions,

ate  Em1x − m0x.     (12)

att  Em1x − m0x|w  1.     (13)

∙ See the text for verification that (13) still holds under the weaker

ignorability assumption Ey0|x,w  Ey0|x.
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∙We can also establish identification using propensity score weighting.

Ignorability implies that w and yg are uncorrelated conditional on x, and

so, by iterated expectations,

E wy
px  E wy1

px  E wy1
px x

 E Ew|xEy1|x
px  EEy1|x  Ey1

    (14)

A similar argument shows

E 1 − wy
1 − px  Ey0.     (15)
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∙ Putting the two expressions together gives

ate  E
wy
px −

1 − wy
1 − px  E w − pxy

px1 − px .     (16)

∙ Clear from (16) that the overlap assumption is needed: px and

1 − px must both be different from zero for all x.

∙ Intuitively, if we want an average effect over the stated population,

then at each x there must be units in the control and treatment groups.

∙ The text contains a more general result concerning conditional

treatment effects.
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∙ Can also show

att  E
w − pxy
1 − px ,     (17)

where   Pw  1 is the unconditional probability of treatment.

∙ Now, we only need to keep px away from unity. Makes intuitive

sense because att is an average effect for those eventually treated.

Therefore, it does not matter if some units have no chance of being

treated; they are excluded from the averaging anyway.
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5. Estimating ATEs

∙When we assume ignorable treatment and overlap, there are three

general approaches to estimating the treatment effects (although they

can be combined): (i) regression-based methods; (ii) propensity score

methods; (iii) matching methods.

∙ Sometimes regression or matching are done on the propensity score.

We will discuss the pros and cons of such methods.
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∙Why do many have a preference for PS methods over regression

methods?

1. Estimating the PS requires only a single parametric or nonparametric

estimation. Regression methods require estimation of Ey|w  0,x and

Ey|w  1,x as well as accounting for the nature of y (continuous,

discrete, some mixture?)

2. We have good binary response models for estimating Pw  1|x.

Do not need to worry about the nature of y.
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3. Simple propensity score methods have been developed that are

asymptotically efficient (although the estimators may not be practically

the best, or need some adjustment).

4. PS methods seem more exotic compared with regression.
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Regression Adjustment

∙ First step is to obtain m̂0x from the “control” subsample, wi  0,

and m̂1x from the “treated” subsample, wi  1. Can be as simple as

(flexible) linear regression or full nonparametric regression.

∙ Compute fitted values in each case for all units in sample. (This is

made easy in Stata using the “predict” command because a fitted value

is computed for all units with nonmissing xi, even if a unit was not used

in estimation.)
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∙ The regression-adjustement estimates are

̂ate,reg  N−1∑
i1

N

m̂1xi − m̂0xi  N−1∑
i1

N

̂xi     (18)

̂att,reg  N1
−1∑

i1

N

wim̂1xi − m̂0xi  N1
−1∑

i1

N

wi̂xi     (19)

where N1  ∑i1
N wi is the number of treated units.
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∙ Notice that we must observe the same set of covariates for the treated

and untreated groups. While we can think of the counterfactual setting

as being a missing data problem on yi0,yi1, we assume we do not

have missing data on wi,xi.
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∙ How does overlap affect estimation of ate and att? Note that ̂ate,reg

requires two kinds of extrapolation: we must evaluate m̂0x at x  xi
for treated i and we must evaluate m̂1x at x  xi for untreated i.

∙When we use parametric models for mg, extrapolation is easy. But

it may be hiding a problem. The estimates of the mean functions where

data are scarce may be very sensitive to functional form.

∙ Nonparametric methods that use local averaging will reveal overlap

problems.
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∙ Because the ATE as a function of x is consistently estimated by

̂regx  m̂1x − m̂0x,

we can easily estimate the ATE for subpopulations described by

functions of x.

∙ If there is not sufficient overlap, ̂regx can be a poor estimator for

certain values of x.
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∙ Let R ⊂ X be a subset of the possible values of x. We can estimate

ate,R  Ey1 − y0|x ∈ R

as

̂ate,R  NR−1∑
xi∈R

m̂1xi − m̂0xi

where NR is the number of observations with xi ∈ R.
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∙ If both functions are linear, so m̂gx  ̂g  x̂g for g  0, 1, then

̂ate,reg  ̂1 − ̂0  x̄̂1 − ̂0,     (20)

where x̄ is the row vector of sample averages. (To get the ATE, average

any nonlinear functions in x, rather than inserting the averages into the

nonlinear functions.)
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∙ Easiest way to obtain standard error for ̂ate,reg is to ignore sampling

error in x̄ and use the coefficient on wi in the regression

yi on 1, wi, xi, wi  xi − x̄, i  1, . . . ,N.     (21)

̂ate,reg is the coefficient on wi.

∙ Accounting for the sampling error in x̄ [as an estimator of x  Ex]

is possible, too, but unlikely to matter much.
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∙ Note how xi is demeaned before forming interaction. This is critical

because we want to estimate ate  1 − 0  x1 − 0, not

1 − 0 (unless we impose 1  0).

∙ Demeaning the covariates before constructing the interactions is

known to “solve” the multicollinearity problem in regression. But it

“solves” the problem because it redefines the parameter we are trying

to estimate, and we can more easily estimate an ATE than the treatment

effect at x  0 which is only of interest in special cases.
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∙ The linear regression estimate of att is

̂att,reg  ̂1 − ̂0  x̄1̂1 − ̂0

where x̄1 is the average of the xi over the treated subsample. ̂att,reg can

be close to ̂ate,reg if (1) ̂1 ≈ ̂0 or (2) x̄ ≈ x̄1.
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∙More generally, if we want to use linear regression to estimate

̂ate,R  ̂1 − ̂0  x̄R̂1 − ̂0, where x̄R is the average over some

subset of the sample, then the regression

yi on 1, wi, xi, wi  xi − x̄R, i  1, . . . ,N

can be used. Note that it uses all the data to estimate the parameters; it

simply centers about x̄R rather than x̄.
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∙ If common slopes are imposed, ̂1  ̂0, ̂ate,reg  ̂att,reg is just the

coefficient on wi from the regression across all observations:

yi on 1, wi, xi, i  1, . . . ,N.     (22)

∙ If linear models do not seem appropriate for Ey0|x and Ey1|x, we

can exploit the specific nature of yg.
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∙ If y is a binary response, or a fractional response, estimate logit or

probit separately for the wi  0 and wi  1 subsamples and average

differences in predicted values:

̂ate,reg  N−1∑
i1

N

G̂1  xi̂1 − G̂0  xi̂0.     (23)
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∙ Each summand in (23) is the difference in estimate probabilities

under treatment and nontreatment for unit i, and the ATE just averages

those differences. Use the same approach even if ̂1  ̂0 is imposed.

∙ For general y ≥ 0, Poisson or gamma regression with exponential

mean is attractive:

̂ate,reg  N−1∑
i1

N

exp̂1  xi̂1 − exp̂0  xi̂0.     (24)

∙ In nonlinear cases, can use delta method or bootstrap to get

se̂ate,reg.
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∙ General formula for asymptotic variance of ̂ate,reg in the parametric

case. Let m0,0 and m1,1 be general parametric models of 0

and 1; as a practical matter, m0 and m1 would have the same

structure but with different parameters. Assuming that we have

consistent, N -asymptotically normal estimators ̂0 and ̂1,

̂ate,reg  N−1∑
i1

N

m1xi, ̂1 − m0xi, ̂0

will be such that Avar N ̂ate,reg − ate is asymptotically normal with

zero mean.
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∙ Using Wooldridge (2010, Problem 12.17), it can be shown that

Avar N ̂ate,reg − ate  Em1xi,1 − m0xi,0 − ate2

 E∇0m0xi,0V0E∇0m0xi,0 ′

 E∇1m1xi,1V1E∇1m1xi,1 ′,

where V0 is the asymptotic variance of N ̂0 − 0 and similarly for

V1.

∙ Clearly better to use more efficient estimators of 0 and 1 as that

makes the quadratic forms smaller.
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∙ Each of the quantities above is easy to estimate by replacing

expectations with sample averages and replacing unknown parameters

with estimates:

N  Avar̂ate,reg  N−1∑
i1

N

m1xi, ̂1 − m0xi, ̂0 − ̂ate,reg2

 N−1∑
i1

N

∇0m0xi, ̂0 V̂0 N−1∑
i1

N

∇0m0xi, ̂0

′

 N−1∑
i1

N

∇1m1xi, ̂1 V̂1 N−1∑
i1

N

∇1m1xi, ̂1

′
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∙ The first part of the asymptotic variance formula would result in the

naive standard error treating m̂i1 − m̂i0 : i  1, 2, . . . ,N as a random

sample of data, ignoring the estimation of ̂0 and ̂1. The second and

third terms account for the sampling errors in ̂0 and ̂1.
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∙ Regardless of the mean function, without good overlap in the

covariate distribution, we must extrapolate a parametric model – linear

or nonlinear – into regions where we do not have much or any data. For

example, suppose, after defining the population of interest for the

effects of job training, those with better labor market histories are

unlikely to be treated. Then, we have to estimate Ey|x,w  1 only

using those who participated – where x includes variables measuring

labor market history – and then extrapolate this function to those who

did not participate. This leads to sensitive estimates if nonparticipants

have very different values of x.
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∙ Nonparametric methods are not helpful in overcoming poor overlap

because they are either based on flexible parametric models (and so

require extrapolation) or use local averaging (in which case we cannot

estimate m1x for x values far away from those in the treated

subsample).

∙ The most common local smoothing method, based on kernel

estimation, would at least let you know there is very little data to

estimate the regression function for values of x with poor overlap.
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∙ Using att has advantages because its estimation requires only one

extrapolation:

̂att,reg  N1
−1∑

i1

N

wim̂1xi − m̂0xi.

Therefore, we only need to estimate m1x for values of x taken on by

the treated group, which we can do well. Unlike with the ATE, we do

not need to estimate m1x for values of x in the untreated group. But

we need to estimate m̂0xi for treated individuals i, and this can be

difficult if we have units in the treated group very different from all

units in the control group.
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∙ A “solution” is to “balance” the sample by dropping observations that

are either very unlikely or very likely to receive treatment, based on the

values of x. This is often done based on the propensity score, which we

cover below. This effectively changes the population that we are

studying.

∙ It also makes sense to think more carefully about the population

ahead of time. If high earners are not going to be eligible for job

training, why include them in the analysis at all? The notion of a

population is not immutable.
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Should We use Regression Adjustment with Randomized

Assignment?

∙ If the treatment wi is independent of yi0,yi1, then we know that the

simply difference in means is an unbiased and consistent estimator of

ate  att. But if we have covariates, should we add them to the

regression?

∙ If we focus on large-sample analysis, the answer is yes, provided the

covariates help to predict yi0,yi1. Remember, randomized assignment

means wi is also independent of xi.
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∙ Consider the case where the treatment effect is constant, so

yi1 − yi0   for all i. Then we can write

yi  yi0  wi ≡ 0  wi  vi0

and wi is independent of yi0 and therefore vi0.

∙ Simple regression of yi on 1,wi is unbiased and consistent for .
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∙ But writing the linear projection

yi0  0  xi0  ui0
Eui0  0, Exi′ui0  0

we have

yi  0  wi  xi0  ui0

where, by randomized assignment, wi is uncorrelated with xi and ui0.

So multiple regression is consistent for . If 0 ≠ 0,

Varui0  Varvi0, and so adding xi reduces the error variance.
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∙ Under the constant treatment effect assumption and random

assignment, the asymptotic variances of the simple and multiple

regression estimators are, respectively,

Varvi0
N1 −  , Varui0

N1 − 

where   Pwi  1.

∙ The only caveat is that if Eyi0|x ≠ 0  xi0, the OLS estimator of

 is only guaranteed to be consistent, not unbiased. This distinction can

be relevant in small samples (as often occurs in true experiments).
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∙With nonconstant treament effect, add the linear projecton

yi1  1  xi1  ui1, so that ate    1 − 0  x1 − 0.

∙ Now we can write

yi  0  wi  xi0  xi − x1 − 0  ui0  wiui1 − ui0

≡ 0  wi  xi0  wi  xi − x  ui0  wiei

with  ≡ 1 − 0 and ei ≡ ui1 − ui0.
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∙ Under random assignment of treatment, ei,xi is independent of wi,

so wi is uncorrelated with all other terms in the equation. OLS is

consistent for  but it is generally biased unless the equation represents

Eyi|wi,xi.

∙ Further,

Exi′wiei  EwiExi′ei  0

and so xi and wi  xi − x are uncorrelated with ui0  wiei (and this

term has zero mean). So OLS consistently estimates all parameters: 0,

, 0, and .
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∙ As a bonus from including covariates interacted with the treatment,

we can estimate ATEs as a function of x:

̂x  ̂  x − x̄̂.

∙ If the Eyg|x are not linear, ̂x is not a consistent estimator of

x  Ey1 − y0|x, but it should be a reasonable approximation in

many cases.
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Propensity Score Weighting

∙ The formula that establishes identification of ate base on population

moments suggests an imediate estimator of ate:

̃ate,psw  N−1∑
i1

N
wiyi
pxi

− 1 − wiyi
1 − pxi

.     (25)

∙ ̃ate,psw is not feasible because it depends on the propensity score p.

∙ Interestingly, we would not use it if we could! Even if we know p,

̃ate,psw is not asymptotically efficient. It is better to estimate the

propensity score!
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∙ Two approaches: (1) Model p parametrically, in a flexible way.

Can show estimating the propensity score leads to a smaller asymptotic

variance when the parametric model is correctly specified. (2) Use an

explicit nonparametric approach, as in Hirano, Imbens, and Ridder

(2003, Econometrica) or Li, Racine, and Wooldridge (2009, JBES).

̂ate,psw  N−1∑
i1

N
wiyi
p̂xi

− 1 − wiyi
1 − p̂xi

 N−1∑
i1

N
wi − p̂xiyi
p̂xi1 − p̂xi

.     (26)

∙ Very simple to compute given p̂.
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∙ att is estimated using identical reasoning:

̂att,psw  N−1∑
i1

N
wi − p̂xiyi
̂1 − p̂xi

,     (27)

where ̂  N1/N is the fraction of treated in the sample.
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∙ To exploit estimation error in p̂x for reducing the asymptotic

variance of ̂ate,psw, write

̂ate,psw ≡ N−1∑
i1

N

k̂i     (28)

where

k̂i ≡
wi − p̂xiyi
p̂xi1 − p̂xi

.
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∙ The adjustment for estimating  by MLE is a regression “netting out”

of the score for the binary choice MLE. Let

d̂i  dwi,xi, ̂ 
∇pxi, ̂′wi − pxi, ̂
pxi, ̂1 − pxi, ̂

    (29)

be the score for the propensity score binary response estimation. Let êi
be the OLS residuals from the regression

k̂i on 1, d̂i
′, i  1, . . . ,N.     (30)

∙ Then the asymptotic standard error of ̂ate,psw is

N−1∑
i1

N

êi2
1/2

N .     (31)
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This follows from Wooldridge (2007, Journal of Econometrics).

∙ For logit PS, estimation,

d̂i
′
 xiwi − p̂i     (32)

where xi is the 1  R vector of covariates (including unity) and

p̂i  xi̂  expxi̂/1  expxi̂.
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∙ As noted by Robins and Rotnitzky (1995, JASA), one never does

worse by adding functions of xi to the PS model, even if they do not

predict treatment! If the functions are correlated with

ki 
wi − pxiyi
pxi1 − pxi

,

including them in the logit reduces the error variance in ei.

∙ Hirano, Imbens, and Ridder (2003) show that the efficient estimator

keeps adding terms as the sample size grows – that is, when we think of

the PS estimation as being nonparametric.
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∙ A straightforward alternative is to use bootstrapping, where the binary

response estimation and averaging (to get ̂ate,psw) are included in each

bootstrap iteration.

∙ It is conservative to ignore the estimation error in the k̂i and simply

treat it as randomly sampled data. Then, just compute the standard error

for a sample average:

se̂ate,psw  N−1∑
i1

N

k̂i − ̂ate,psw2

1/2

N .

This is always larger than (31) and is gotten by the regression k̂i on 1.
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∙ Similar remarks hold for ̂att,psw; adjustment to standard error

somewhat different. See text.
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∙ Can see directly from ̂ate,psw and ̂att,psw that the inverse probability

weighted (IPW) estimators can be very sensitive to extreme values of

p̂xi. ̂att,psw is sensitive only to p̂xi ≈ 1, but ̂ate,psw is also sensitive

to p̂xi ≈ 0.

∙ Imbens and coauthors have provided a rule-of-thumb: only use

observations with . 10 ≤ p̂xi ≤. 90 (for ATE).

∙ Sometimes the problem is p̂xi “close” to zero for many units, which

suggests the original population was not carefully chosen.
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∙ After using the PS to choose a new “population,” redo the analysis

(regression, matching, or PS weighting) where all estimates are based

on the new, smaller sample. Of course, because the PS has been

estimated, our new “population” is depends on the sample from the

original population.
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Regression on the Propensity Score

∙ The motivation is that one can show, given ignorability, that

ignorability actually holds conditional only on px:

y0,y1  w ∣ px,

which, of course, implies

Eyg|px,w  Eyg|px, g  0, 1.

∙ In other words, it is sufficient to condition only on the propensity

score so break the dependence between w and y0,y1. We need not

condition on x.

77



∙ By iterated expectations,

ate  Ey1 − y0  EEy1|px − Ey0|px.

∙ Now we can obtain a conditional expectation for the observable y:

Ey|px,w  1 − wEy0|px,w  wEy1|px,w
 1 − wEy0|px  wEy1|px

where the second equality follows by the previous result.
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∙We have shown that

Ey|px,w  0  Ey0|px
Ey|px,w  1  Ey1|px

∙ So, after estimating px using, say, flexible logit, we estimate

Ey|px,w  0 and Ey|px,w  1 using the subsamples of

nontreated and treated, respectively. Could use nonparametric methods.
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∙ In the linear case, Eyg|px  g  1px, g  0, 1, and we use

yi on 1, p̂xi for wi  0 and yi on 1, p̂xi for wi  1,     (33)

which gives fitted values ̂0  ̂0p̂xi and ̂1  ̂1p̂xi, respectively.

∙ A consistent estimator of ate is

̂ate,regps  N−1∑
i1

N

̂1 − ̂0  ̂1 − ̂0p̂xi.     (34)
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∙ Conservative inference: ignore estimation of the propensity score.

Same as using usual statistics on wi in the regression

yi on 1,wi, p̂xi,wi  p̂xi − ̂ p̂, i  1, . . . ,N     (35)

where ̂ p̂  N−1∑i1
N p̂xi. Or, use bootstrap, which will provide the

smaller (valid) standard errors.

∙ Somewhat more common (and less desirable) is to drop the

interaction term.

yi on 1, wi, p̂xi, i  1, . . . ,N.     (36)
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∙ Because 0  px  1, linearity of Eyg|px can be unrealistic. For a

better fit, might use functions of the log-odds ratio,

r̂i ≡ log p̂xi
1 − p̂xi

,

as regressors when y has a wide range. So, regress yi on 1, r̂i, r̂i2, . . . , r̂i
Q

for some Q using both the control and treated samples, and then

average the difference in fitted values to obtain ̂ate,regprop.
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∙ On balance, regression on the propensity score (or functions of it) has

little to offer compared with weighting by the propensity score,

provided the overlap issue is attended to. The PS weighted estimator

does not require us to model Eyg|px, and PS weighting can be

asymptotically efficient.
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Matching

∙Matching estimators are based on imputing a value on the

counterfactual outcome for each unit. That is, for a unit i in the control

group, we observe yi0, but we need to impute yi1. For each unit i in the

treatment group, we observe yi1 but need to impute yi0.

∙ For ate, matching estimators take the general form

̂ate,match  N−1∑
i1

N

ŷi1 − ŷi0

∙ Looks like regression adjustment but the imputed values are not fitted

values from regression.
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∙ For att,

̂att,match  N1
−1∑

i1

N

wiyi − ŷi0

where this form uses the fact that yi1 is always observed for the treated

subsample. (In other words, we never need to impute yi1 for the treated

subsample.)
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∙ Abadie and Imbens (2006, Econometrica) consider several

approaches. The simplest is to find a single match for each observation.

Suppose i is a treated observation (wi  1). Then ŷi1  yi,ŷi0  yh for

h such that wh  0 and unit h is “closest” to unit i based on some

metric (distance) in the covariates. In other words, for the treated unit i

we find the “most similar” untreated observation, and use its response

as yi0. Similarly, if wi  0, ŷi0  yi, ŷi1  yh where now wh  1 and

xh is “closest” to xi.

∙ Abadie and Imbens matching has been programmed in Stata in the

command “nnmatch.” The default is to use the single nearest neighbor.
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∙ The default matrix in defining distance is the inverse of the diagonal

matrix with sample variances of the covariates on the diagonal. [That

is, diagonal Mahalanobis.]

∙More generally, we can impute the missing values using an average

of M nearest neighbors. If wi  1 then

ŷi1  yi
ŷi0  M−1 ∑

h∈ℵMi

yh

where ℵMi contains the M untreated nearest matches to observation i,

based on the covariates. So for all h ∈ ℵMi, wh  0.
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∙With ties, there can be more thanM elements in ℵMi, and then M is

replaced with the number of elements in ℵMi.

∙ Similarly, if wi  0,

ŷi0  yi
ŷi1  M−1 ∑

h∈ℑMi

yh

where ℑMi contains the M treated nearest matches to observation i.
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∙ Remarkably, in the general M case can write the matching estimator

as

̂ate,match  N−1∑
i1

N

2wi − 11  KMiyi,

where KMi is the number of times observation i is used as a match.

(See Abadie and Imbens.)

∙ KMi is a function of the data on w,x, which is important for

variance calculations. Under ignorability, w,x are effectively

“exogenous.”
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∙ The conditional variance of the matching estimator is

Var̂ate,match|W,X  N−2∑
i1

N

2wi − 11  KMi2

 Varyi|,wi,xi.

∙ The unconditional variance is more complicated because of a

conditional bias (see Abadie and Imbens), but estimators are

programmed in nnmatch.
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∙ For the conditional variance, need to “estimate” Varyi|,wi,xi, but

they do not have to be good pointwise estimates. (Analagous to the

situation with heteroskedasticity-robust variance matrix estimator.)

∙ Could use models for Ey|w,x and Vary|w,x that exploit the nature

of y. This is against the spirit of matching, which does not require

parametric mean or variance assumptions. But we would only be doing

it to get a standard error; we still use the matching estimator.
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∙ AI suggest a nonparametric estimator:

Varyi|,wi,xi  yi − yhi2/2

where hi is the closest match to observation i with whi  wi. (That

is, we now match within treatment group.)
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∙ There is a subtle point in all this. The variance matrix estimator is

actually for the This is actually the variance estimator for the sample

average treatment effect, sate, which is

sate  N−1∑
i1

N

yi1 − yi0

∙ Notice that sate is not a population parameter; it changes across

random samples. But the estimator of ate and sate are the same. The

way we estimate the asymptotic variance depends on ate versus sate.
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∙ The matching estimators have a large-sample bias if xi has dimension

greater than one. The estimator is not N -consistent. Computation is

an issue when the dimension of xi is even moderate.

∙ It is also possible to match on the estimated propensity score. This is

computationally easier because it is a single variable with range in

0, 1.
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∙Matching without smoothing using estimated propensity scores does

not produce valid inference. The technical problem is that matching

(without smoothing) is not smooth in p̂xi. If p̂xi increases a little,

that can change the match.

∙ One can use kernel smoothing and then apply the bootstrap. Stata’s

command “psmatch2” allows this, along with a variety of other options.

∙ No optimality results are known for PS matching, but it is simple and

fairly common.
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6. Combining Regression Adjustment and PS Weighting

∙ First consider regression adjustment combined with PS weighting.

Why should we use a combined method?

∙ Answer: With x having large dimension, still common to rely on

parametric methods for regression and PS estimation. Even if we make

functional forms flexible, still might worry about misspecification.
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∙ Idea: Let m0,0 and m1,1 be parametric functions for

Eyg|x,g  0, 1. Let p, be a parametric model for the propensity

score. In the first step we estimate  by Bernoulli maximum likelihood

and obtain the estimated propensity scores as pxi, ̂ (probably logit or

probit).
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∙ In the second step, we use regression or a quasi-likelihood method,

where we weight by the inverse probability. For example, to estimate

1  1,1
′ ′, we might solve the weighted linear least squares

problem

min
1,1
∑
i1

N

wiyi − 1 − xi1
2/pxi, ̂;     (37)

for 0, we weight by 1/1 − p̂xi and use the wi  0 sample.
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∙ ATE is estimated as

̂ate,pswreg  N−1∑
i1

N

̂1  xi̂1 − ̂0  xi̂0.     (38)

∙ Same as regression adjustment, but different estimates of g,g!
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∙ Scharfstein, Rotnitzky, and Robins (1999, JASA) showed that

̂ate,psreg has a “double robustness” property: only one of the models

[mean or propensity score] needs to be correctly specified provided the

the mean and objective function are properly chosen [see Wooldridge

(2007, Journal of Econometrics)].

∙ yg continuous, negative and positive values: linear mean, least

squares objective function, as above.

∙ yg binary or fractional: logit mean (not probit!), Bernoulli quasi-log

likelihood.
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min
1,1
∑
i1

N

wi1 − yi log1 − 1  xi1

 yi log1  xi1/pxi, ̂.

    (39)

∙ That is, probably use logit for wi and yi (for each subset, wi  0 and

wi  1).

∙ The ATE is estimated as before:

̂ate,pswreg  N−1∑
i1

N

̂1  xi̂1 − ̂0  xi̂0.

If Eyg|x  g  xg, g  0, 1 or Pw  1|x  px,, then

̂ate,pswreg
p
→ ate.
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∙ Of course, if we want x  1x − 0x, then the conditional

mean models must be correctly specified. But the approximation may

be good under misspecification.
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∙ yg nonnegative, including count, continuous, or corners at zero:

exponential mean, Poisson QLL.

∙ In each case, must include a constant in the index models for

Ey|w,x!

∙ Asymptotic standard error for ̂ate,pswreg: bootstrapping is easiest.
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∙ How does the double robustness result work? Consider the linear case

where mgx,g  g  xg. Now, if we write

yg  g  xg  ug

Eug  0,Ex′ug  0

then we know

g ≡ Eyg  g  Exg ≡ g  xg
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∙ If we have consistent estimators of g and g then a consistent

estimator of g is

̂g ≡ N−1∑
i1

N

̂g  x̄̂g.

∙ Of course, if Eyg|x  g  xg then Lyg|1,x  g  xg.
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∙ So, the key is determining why combining regression and PSW

allows us to consistently estimate g,g, g  0, 1 when

Eyg|x  g  xg, g  0, 1

or

Pw  1|x  px,

(or, of course, both).
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∙ Suppose first that the conditional means are indeed linear. Then we

know from our general treatment of PS weighting that we can weight

by any positive function of xi and the estimator is still consistent for

g,g. It does not matter that our model for Pw  1|x is

misspecified; we just need to ensure that px,∗  0 for all x ∈ X
where ∗ ≡ plim̂. This is the first half of “double robustness.”
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∙ Now suppose that Pw  1|x  px, but the conditional means are

not linear: Eyg|x ≠ g  xg. We know that with the selection

probabilities correctly specified that IPW consistently estimates the

linear projection parameters in Lyg|1,x  g  xg (because these

parameters solve the population least squares problem).

∙ So the estimator of  based on   1  x1 − 0  x0, given

earlier as

̂ate,pswreg  ̂1  x̄̂1 − ̂0  x̄̂0  ̂1 − ̂0  x̄̂1 − ̂0

is consistent. This is the second half of “double robustness.”
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7. Assessing Ignorability

∙ As mentioned earlier, ignorability is not directly testable. So any

assessment of this key assumption is necessarily via indirect means.

∙ There are several possibilities. With multiple control groups, can

establish that a “treatment effect” comparing two different control

groups, say, is not statistically different from zero.

109



∙ For example, as in Heckman, Ichimura, and Todd (1997), we ,might

have ineligibles and eligible nonparticipants. If there is no treatment

effect using, say, ineligibles as the “control” and eligible

nonparticipants as the “treatment,” we have more faith in

unconfoundedness for the actual treatment. (We can conclude there is

no self-selection into eligibility.)

∙ But, of course, unconfoundeness of treatment and of eligibility are

potentially different.
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∙ Formalize by having three treatment values, wi ∈ −1, 0, 1, with

wi  −1, wi  0 representing two different controls. (For example,

wi  −1 means ineligible, wi  0 means eligible nonparticipants,

wi  1 means treated.) If ignorability holds with respect to wi, that is,

Dyi,−1,yi0,yi1|xi,wi  Dyi,−1,yi0,yi1|xi,

and Dyi,−1||xi  Dyi0|xi – then

yi  wi ∣ xi,wi ∈ −1, 0.
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∙ Easy to see for conditional means:

Eyi|xi,wi  1wi  −1Eyi,−1|xi,wi  1wi  0Eyi0|xi,wi
 1wi  1Eyi1|xi,wi

 1wi  −1Eyi,−1|xi  1wi  0Eyi0|xi
 1wi  1Eyi1|xi

and so

Eyi|xi,wi ∈ −1, 0  1wi  −1Eyi,−1|xi  1wi  0Eyi0|xi.
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∙ It follows that if Eyi,−1|xi  Eyi0|xi – conditional on x there is no

difference, on average, between the ineligibles and eligible

nonparticipants – then

Eyi|xi,wi  −1  Eyi|xi,wi  0.

∙ This is a testable restriction. It says that, if we focus on the two

nontreated groups, we should not see any systematic difference in the

observed response conditional on xi.
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∙We can estimate separate regression models for wi  −1 and wi  0

and test whether they are the same (like a Chow test). Another

implication is that if wi  −1 is the “control” group and wi  0 is the

“treated” group, the estimated ATE should not be statistically different

from zero.

∙ Problem is that the implication only goes one way. It could be that yi
and wi are independent conditional on xi when we restrict attention to

wi ∈ −1, 0, but selection into actual treatment (wi  1 versus

wi ∈ −1, 0) need not be ignorable.

114



∙ If have several pre-treatment outcomes, can construct a treatment

effect on a pseudo outcome and establish that it is not statistically

different from zero.

∙ For concreteness, suppose controls consist of time-constant

characteristics, zi, and three pre-assignment outcomes on the response,

yi,−1,yi,−2, and yi,−3. Let the counterfactuals be for time period zero,

yi00 and yi01, where the term in  represents control or tretment.

Suppose we are willing to assume unconfoundedness given two lags:

yi00,yi01  wi ∣ yi,−1,yi,−2,zi
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∙ If the process generating yisg is appropriately stationary and

exchangeable, it can be shown that

yi,−1  wi,∣ yi,−2,yi,−3,zi,

and this of course is testable. (Again, one can use a Chow type test

where the nature of yi is appropriately accounted for; or a

nonparametric test is used.) Conditional on yi,−2,yi,−3,zi, yi,−1 should

not differ systematically for the treatment and control groups.
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∙ Alternatively, can try to assess sensitivity to failure of ignorability by

using a specific alternative mechanism. For example, suppose

unconfoundedness holds conditional on an unobservable, v, in addition

to x:

yi0,yi1  wi ∣ xi,vi

If we parametrically specify Eyig|xi,vi, g  0, 1, specify

Pwi  1|xi,vi, and assume (typically) that vi and xi are independent,

then ate can be obtained in terms of the parameters of all

specifications.

117



∙ In practice, we consider the version of ATE conditional on the

covariates in the sample, cate – the “conditional” ATE – so that we

only have to integrate out vi. Often, vi is assumed to be very simple,

such as a binary variable (indicating two “types” of individuals, say).

∙ Even for rather simple schemes, approach is complicated. One set of

parameters are “sensitivity” parameters, other set is estimated. Then,

evaluate how cate changes with the sensitivity parameters.

∙ See Imbens (2003, REStat) or Imbens and Wooldridge (2009, JEL)

for details.
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∙ Altonji, Elder, and Taber (2005, JPE) propose a different strategy. In

a constant treatment effect case, write the observed response as

yi    wi  xi  ui
Eui  0, Exi′ui  0.

So wi is potentially endogenous.
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∙ Linearly project a latent variable wi∗ determining wi onto the

observables part, xi, and unobservable part, ui:

wi∗    xi  ui  ei
Eei  0, Covxi,ei  Covui,ei  0.
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∙ Suppose ,  ≥ 0. AET argue that  ≤  is reasonable: the

observables are at least as important as the unobservables in

determining assignment. They view estimates with    as a lower

bound on  (assuming positive selection and   0) and estimates with

  0 (OLS in this case) as an upper bound. In a counterfactual setting,

yi0    xi  ui and the variable determining treatment status, wi∗, is

related to xi and ui.
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∙ How do we use the restriction   ? Here is one possibility, used by

AET. Write the linear outcome equation with a binary selection

equation:

yi    wi  xi  ui
wi  1  xi  vi ≥ 0  1wi∗ ≥ 0

where Dvi|xi  Normal0, 1. Then we have

wi∗    xi  vi
wi∗    xi  ui  ei

where we impose    in the linear projection.
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∙ The two equations for wi∗ imply

vi   −   xi − xi  ui  ei

Now use the fact that ui has zero mean and is uncorrelated with xi and

ei:

Covui,vi  Varu
uv  u2

But  is the slope from regressing wi∗    xi  vi on 1, xi. Because

vi is uncorrelated with xi, this is the same as regressing xi on 1, xi.
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Therefore,

 
Covxi,xi
Varxi

∙ Using uv  u2, we have an extra restriction,

uv 
u2Covxi,xi
Varxi
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∙ The AET estimation with    imposes

yi    wi  xi  ui
wi  1  xi  vi ≥ 0

uv 
u2Covxi,xi
Varxi

where ui,vi has zero mean, is normally distributed (with v2  1), and

is independent of xi.

∙ The last restriction recognizes that while uv is technically identified

without the restriction, it would only be identified off of the nonlinear

model for wi – a poor identification strategy.
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∙ If we ignore the last restriction and set uv  0, then we are just

estimating the first equation by OLS.

∙ If we replace the model for yi with a probit model, then

yi  1  wi  xi  ui ≥ 0
wi  1  xi  vi ≥ 0

and u2  v2  1, uv    Corrui,vi, and the additional restriction

is

 
Covxi,xi
Varxi

(which needs to be kept between −1 and 1).
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∙ A different kind of restriction would be to assume equality of the

population R-squareds from regressing wi∗ on 1, xi and from wi∗ on 1,

ui. (Because xi and ui are uncorrelated, the R-squared from regressing

wi∗ on 1, xi, ui is the sum of the separate R-squareds.)
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∙ A different approach to the problem under   , and one that could

be computationally simpler, is to use the two equations

yi    wi  xi  ui
wi  1  xi  ui  ei ≥ 0

where, without loss of generality, we take Varei  1. Now impose the

parametric model on Dwi|xi,ui – say, probit – and omit the model

for Dwi|xi entirely.

∙We can use a set of moment conditions that just identifies the

parameters. Write ui ≡ yi −  − wi − xi.

128



Eyi −  − wi − xi  0
Exi′yi −  − wi − xi  0

E   xi  uiwi −   xi  ui
  xi  ui1 −   xi  ui

 0

E xi  xi  uiwi −   xi  ui
  xi  ui1 −   xi  ui

 0

E ui  xi  uiwi −   xi  ui
  xi  ui1 −   xi  ui

 0
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∙ The first two sets of conditions – K  1 – are from Eui  0,

Exi′ui  0. The last three conditions are the first order conditions for a

probit with explanatory variables 1, xi,ui. The notation ui

makes it clear that all of the parameters in the outcome equation appear

also in the probit FOCs.

∙We have K  4 parameters to estimate and K  4 moments.
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8. Assessing Overlap

∙ Simple, first step is to compute normalized differences for each

covariate. Let x̄1j and x̄0j be the means of covariate j for the treated and

control subsamples, respectively, and let s1j and s0j be the estimated

standard deviations. Then the normalized difference is

normdiffj 
x̄1j − x̄0j

s1j
2  s0j

2

∙ Imbens and Rubin discuss rules-of-thumb. Normalized differences

above about . 25 should raise flags.
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∙ normdiffj is not the t statistic for comparing the means of the

distribution. The t statistic depends fundamentally on the sample size.

Here interested in difference in population distributions, not statistical

significance.

∙ Limitation of looking at the normalized differences: they only

consider each marginal distribution. There can still be areas of weak

overlap in the support X even if the normalized differences are all

similar.
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∙ Recall the key Rosenbaum and Rubin result that justifies both

matching and regression on the propensity score: ignorability holds

conditional on px if it holds conditional on x. Thus, we need overlap

in the distribution of px.

∙ Therefore, look directly at the distributions (histograms) of estimated

propensity scores for the treated and control groups. These histograms

should show sufficient overlap.
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EXAMPLE: Effects of Job Training

∙ The file JTRAIN3 contains nonexperimental data. For comparison,

the (much smaller) experimental data set, JTRAIN2 is also used.

Finally, go back to JTRAIN3 and drop all people with estimated

propensity score less than . 05. Then redo the analysis.
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. use jtrain3

. logit train age educ black hisp married re74 re75

Logistic regression Number of obs  2675
LR chi2(7)  872.82
Prob  chi2  0.0000

Log likelihood  -236.23799 Pseudo R2  0.6488

------------------------------------------------------------------------------
train | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
age | -.0840291 .014761 -5.69 0.000 -.1129601 -.055098

educ | -.0624764 .0513973 -1.22 0.224 -.1632134 .0382605
black | 2.242955 .3176941 7.06 0.000 1.620286 2.865624

hisp | 2.094338 .5584561 3.75 0.000 .9997841 3.188892
married | -1.588358 .2602448 -6.10 0.000 -2.098428 -1.078287

re74 | -.117043 .0293604 -3.99 0.000 -.1745882 -.0594977
re75 | -.2577589 .0394991 -6.53 0.000 -.3351758 -.1803421

_cons | 2.302714 .9112559 2.53 0.012 .5166853 4.088743
------------------------------------------------------------------------------
Note: 158 failures and 0 successes completely determined.

. predict phat
(option pr assumed; Pr(train))

. histogram phat, fraction by(train)
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. use jtrain2

. logit train age educ black hisp married re74 re75

Logistic regression Number of obs  445
LR chi2(7)  8.58
Prob  chi2  0.2840

Log likelihood  -297.80826 Pseudo R2  0.0142

------------------------------------------------------------------------------
train | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
age | .0107155 .014017 0.76 0.445 -.0167572 .0381882

educ | .0628366 .0558026 1.13 0.260 -.0465346 .1722077
black | -.3553063 .3577202 -0.99 0.321 -1.056425 .3458123

hisp | -.9322569 .5001292 -1.86 0.062 -1.912492 .0479784
married | .1440193 .2734583 0.53 0.598 -.3919492 .6799878

re74 | -.0221324 .0252097 -0.88 0.380 -.0715425 .0272777
re75 | .0459029 .0429705 1.07 0.285 -.0383177 .1301235

_cons | -.9237055 .7693924 -1.20 0.230 -2.431687 .5842759
------------------------------------------------------------------------------

. predict phat
(option pr assumed; Pr(train))

. histogram phat, fraction by(train)
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. use jtrain3

. qui logit train age educ black hisp married re74 re75

. predict phat
(option pr assumed; Pr(train))

. drop if phat  .05
(2253 observations deleted)

. drop phat

. qui logit train age educ black hisp married re74 re75

. predict phat
(option pr assumed; Pr(train))

. histogram phat, fraction by(train)
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