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1. RANDOM TREND MODELS

∙ Consider an extension of the usual unobserved effects model:

yit  ci  git  xit  uit, t  1, . . . ,T,

where gi is an individual-specific linear trend. This model explicitly

allows for two sources of heterogeneity: an intercept effect and a trend

effect.

∙ Somewhat unfortunately, this is often called a random trend model.

For us, the “random” is redundant because all heterogeneity is treated

as random outcomes. “Heterogeneous trend” model would be better.
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∙ Ideally, we can let the covariates, xit : t  1, . . . ,T, be arbitrarily

correlated with both sources of heterogeneity. This puts us in a “fixed

effects” environment. “Random effects” approaches are also available,

where we treat both sources of heterogeneity as uncorrelated with

xit : t  1, . . . ,T.
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∙ For interpretative purposes, a useful assumption is

Eyit|xi1,xi2, . . . ,xiT,ci,gi  Eyit|xit,ci,gi  ci  git  xit

which means

Euit|xi1,xi2, . . . ,xiT,ci,gi  0, t  1, . . . ,T.

∙ Although we are controlling for two sources of unit-specific

heterogeneity, this is still a strict exogeneity assumption on xit with

respect to the uit.

∙ In an RE framework, we would assume Eci|xi  Eci and

Egi|xi  Egi, and so

Eyit|xi  Eyit|xit  c  gt  xit.
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∙ But the RE assumption rules out policy analysis where the

intervention is related to unobserved heterogeneity. If we allow

Dci,gi|xi to be unrestricted, then the analysis is usually more

convincing.

∙ The FE setup is useful for estimating economic relationships, too. In a

production function environment, git captures firm-specific trends in

productivity, uit is shocks to output, and xit contains inputs.

∙When yit is a natural log, say logqit, the model is often called the

“random growth” model. (Holding xit and uit fixed, gi is the

proportionate increase in qit from one period to the next.)
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∙ Under strict exogeneity and sufficient variation in xit, there are a

variety of estimation methods. A simple one is to first difference the

equation to remove ci:

Δyit  gi  Δxit  Δuit, t  2, . . . ,T,

using git − git − 1  gi. This is now a standard unobserved effects

model but where all variables are changes.

∙ To remove gi, we can difference again or apply FE to the FD

equation.

∙ Either approach requires T ≥ 3 time periods.

∙ If uit has strong, positive serial correlation, FD followed by FE has

appeal. If uit is a random walk, then Δuit is serially uncorrelated.
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∙ If uit contains little serial correlation, differencing can be

inefficient. An alternative is to use unit-specific linear detrending.

Write the equations for all time periods as

yi  WTai  Xi  ui

where

WT 

1 1
1 2
 

1 T

, ai 
ci

gi
.
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∙ Let

QT  IT −WTWT
′WT−1WT

′

QTyi  QTWTai  QTXi  QTui

or

ÿi  Ẍi  üi

because QTWT  0. This is now an equation in unit-specific linearly

detrended variables.
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∙ In particular, the SOLS estimator is a pooled OLS estimator of

ÿit on ẍit, t  1, . . . ,T; i  1, . . . ,N,

where now the “double-dot” variables denote unit-specific detrending.

For example, for each i, run the regression

yit on 1, t, t  1, . . . ,T

and obtain the residuals, ÿit. And similarly for each element of ẍit. (This

is called the “fixed effects” estimator for the random trend model.)
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∙ Fully robust inference looks the same as before. Let

ü i  ÿi − Ẍi̂FE

be the residuals. The fully robust variance matrix estimator is

Avar̂FE  ∑
i1

N

Ẍi
′Ẍi

−1

∑
i1

N

Ẍi
′ü i

ü i
′
Ẍi ∑

i1

N

Ẍi
′Ẍi

−1

with sometimes with a df adjustment.
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∙ For estimating u
2, we have effectively NT − 2 − K

degrees-of-freedom: we lose df two for each i.

∙ If

Euiui
′|xi,ci,gi  u

2IT,

then

̂u
2  NT − 2 − K−1∑

i1

N

∑
t1

T 
üit

2 p
→ u

2

and N → .
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∙ Then,

Avar̂FE  ̂u
2 ∑

i1

N

Ẍi
′Ẍi

−1

 ̂u
2 ∑

i1

N

∑
t1

T

ẍit
′ ẍit

−1

∙ Similar results go through for IV approaches. In effect, the IVs,

regressors, and response variable are linearly detrended at the unit

level, followed by pooled 2SLS.

∙ One could apply GLS methods, too, or GMM.
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EXAMPLE: Random Trend Model for Airfares
. do rantrend1

. use airfare, clear

.

. xtset id year
panel variable: id (strongly balanced)

time variable: year, 1997 to 2000
delta: 1 unit

.

. gen lfare_dt  .
(4596 missing values generated)

. gen concen_dt  .
(4596 missing values generated)

. gen y99_dt  .
(4596 missing values generated)

. gen y00_dt  .
(4596 missing values generated)
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local i  1
while ‘i’  1149 {

qui reg lfare year if id  ‘i’
predict lfare_t, xb
qui replace lfare_dt  lfare - lfare_t if id  ‘i’

qui reg concen year if id  ‘i’
predict concen_t, xb
qui replace concen_dt  concen - concen_t if id  ‘i’

qui reg y99 year if id  ‘i’
predict y99_t, xb
qui replace y99_dt  y99 - y99_t if id  ‘i’

qui reg y00 year if id  ‘i’
predict y00_t, xb
qui replace y00_dt  y00 - y00_t if id  ‘i’

drop lfare_t concen_t y99_t y00_t

local i  ‘i’  1

}
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. reg lfare_dt concen_dt y99_dt y00_dt, nocons cluster(id)

Linear regression Number of obs  4596
F( 3, 1148)  33.64
Prob  F  0.0000
R-squared  0.0459
Root MSE  .05894

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare_dt | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen_dt | .1590414 .0463449 3.43 0.001 .0681113 .2499715

y99_dt | -.0095344 .0058903 -1.62 0.106 -.0210914 .0020226
y00_dt | .0289026 .0100883 2.86 0.004 .0091089 .0486962

------------------------------------------------------------------------------
.
end of do-file
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2. GENERAL MODELS WITH UNIT-SPECIFIC SLOPES

∙ Consider now a model written as

yit  witai  xit  uit

where wit is 1  J, xit is 1  K. Here, ai is a J  1 vector of unobserved

heterogeneity. We can hope to estimate  and   Eai (and maybe

other features of the distribution of ai).

∙Write as

yi  Wiai  Xi  ui

Eui|wi,xi,ai  0.
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∙ DefineMi  IT −WiWi
′Wi−1Wi

′ and so

Miyi  MiWiai MiXi Miui

so

ÿi  Ẍi  üi

becauseMiWi  0.

∙ Again, we can now use system OLS, which is a pooled OLS estimator

on unit-specific residuals. The ÿit are from the unit-specific regression

yit on wit, t  1, . . . ,T

and similarly for ẍit.
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∙ This gives us the fixed effects estimator of , with fully robust

inference straightforward. We need the standard rank condition

rank EẌi
′Ẍi  K

Because rankMi  T − J, a necessary condition is T  J.

∙ Under

Euiui
′|wi,xi,ai  u

2IT,

use

̂u
2  NT − J − K−1∑

i1

N

∑
t1

T 
üit

2
,

and so on.
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∙What about estimating ? For example, perhaps a policy indicator has

a unit-specific effect, and we want to estimate the average effect in the

population (average partial effect).

∙ Pre-multiply the equation by Wi
′Wi−1Wi

′ assuming thatWi
′Wi is

nonsingular with probability one:

Wi
′Wi−1Wi

′yi  ai  Wi
′Wi−1Wi

′Xi − Wi
′Wi−1Wi

′ui

Solving for ai gives

ai  Wi
′Wi−1Wi

′yi − Xi − Wi
′Wi−1Wi

′ui.
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∙ Now take the expected value

 ≡ Eai  EWi
′Wi−1Wi

′yi − Xi.

∙ Replace population means with sample averages and replace  with

̂FE:

̂  N−1∑
i1

N

Wi
′Wi−1Wi

′yi − Xi̂FE ≡ N−1∑
i1

N

âi.
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∙ Can get an expression for the asymptotic variance matrix estimator of

̂.

Ĉ  N−1∑
i1

N

Wi
′Wi−1Wi

′Xi

Â  N−1∑
i1

N

Ẍi
′Ẍi

Avar̂ ∑
i1

N

âi − ̂ − ĈÂ
−1Ẍi

′ü iâi − ̂ − ĈÂ
−1Ẍi

′ü i ′.

∙ Generally, ̂ is not the asymptotically efficient estimator.
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3. ROBUSTNESS OF STANDARD FIXED EFFECTS
ESTIMATORS

∙ To apply the previous results, need T  J, and so if we have many

covariates relative to time periods, we have to (arbitrarily) set some

coefficients to constants, allow others to be random.

∙ Now we study what happens if we mistakenly treat some random

slopes as if they are fixed and apply standard fixed effects methods. We

might ignore some heterogeneity because we are ignorant of scope of

heterogeneity in the model or because we simply do not have enough

time periods to proceed with a general analysis.
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∙ Start with the basic model but where all slopes allowed to vary by

unit:

yit  ci  xitbi  uit

Euit|xi,ci,bi  0, t  1, . . . ,T,

where bi is K  1. We now ignore the heterogeneity in the slopes and

act as if bi is constant all i. We think ci might be correlated with at least

some elements of xit.

∙ Question: If we apply the usual fixed effects estimator (that only

eliminates ci), when does it consistently estimate the average partial

effect (population average effect),   Ebi?
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∙We need the usual rank condition, FE.2, but we also need more than

just strict exogeneity of xit conditional on ci,bi. Write bi    di

where the unit-specific deviation from the average, di, necessarily has a

zero mean. Then

yit  ci  xit  xitdi  uit ≡ ci  xit  vit

where vit ≡ xitdi  uit. A sufficient condition for consistency of the FE

estimator (along with Assumption FE.2) is

Eẍit
′ v̈it  0, t  1, . . . ,T.
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But v̈it  ẍitdi  üit and Eẍit
′ üit  0. The extra assumption is

Eẍit
′ ẍitdi  0, all t.

A sufficient condition, and one that is easier to interpret, is

Ebi|ẍit  Ebi  , t  1, . . . ,T.

∙ This condition allows the slopes, bi, to be correlated with the

regressors xit through permanent components. What it rules out is

correlation between idiosyncratic movements in xit.
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∙ For example, suppose xit  f i  rit, t  1, . . . ,T where f i is the

unit-specific “level” of the process and rit are the deviations from

this level. Because ẍit  r̈it it suffices that

Ebi|ri1,ri2, . . . ,riT  Ebi. Note that any kind of serial correlation

and changing variances/covariances are allowed in rit.
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∙ Extension to random trend settings. Write

yit  wtai  xitbi  uit, t  1, . . . ,T

where wt is a set of deterministic functions of time. Now the “fixed

effects” estimator sweeps away ai by netting out wt from xit. In

particular, now let ẍit denote the residuals from the regression xit on

wt, t  1, . . . ,T.

∙ In the random trend model, wt  1, t, and so the elements of xit

have unit-specific linear trends removed in addition to a level effect.
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∙ Removing even more of the heterogeneity from xit makes it even

more likely that Ebi|ẍit  Ebi. For example, if xit  f i  hit  rit,

then bi can be arbitrarily correlated with f i,hi. Of course, adding to

wt – such as polynomials in t – requires more time periods, and it

decreases the variation in ẍit compared to the usual FE estimator.

Cannot do it at all unless dimwt  T.

∙ If we first difference followed by the within transformation, a

condition sufficient for consistency of the resulting estimator for  is

Ebi|Δẍit  Ebi, t  2, . . . ,T,

where Δẍit  Δxit − Δxi are the demeaned first differences.
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∙ Can apply to models with time-varying “factor loads”:

yit  xit   tci  uit, t  1, . . . ,T

Because ̈ t is just a function of the parameters 1, . . . ,T, a sufficient

condition for the usual FE estimator (that ignores the  t) is

Exit − x̄i′ci  0.

∙ Often want to estimate the  t, with 1  1 as a normalization.

Requires nonlinear GMM.
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∙ Similar results hold for FEIV methods. In yit  wtai  xitbi  uit, let

z̈it be the unit-specific detrended IVs (zit on wt, t  1, . . . ,T, and

assume

Ebi|z̈it  Ebi  , t  1, . . . ,T.

This turns out not to be enough for the FEIV estimator to identify the

APE. An additional sufficient condition is

Covẍit,bi|z̈it  Covẍit,bi, t  1, . . . ,T.

∙ Allows Covẍit,bi, a K  K matrix, to be any function of t, but not

z̈it.
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∙Why is this condition sufficient? From Ebi|z̈it  Ebi,

Covẍit,di|z̈it  Eẍitdi
′|z̈it, and so Eẍitdi|z̈it  Eẍitdi ≡  t under

the previous assumptions. Write ẍitdi   t  rit where

Eriti|z̈it  0, t  1, . . . ,T. Write the transformed equation as

ÿit  ẍit  ẍitdi  üit  ÿit  ẍit   t  rit  üit.

∙ If xit contains a full set of time period dummies, then we can absorb

 t into ẍit, and we assume that here. Then the sufficient condition for

consistency of IV estimators applied to the transformed equations is

Ez̈it
′ rit  üit  0,.and this condition is met under the maintained

assumptions.
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∙ Provides further justification for including a full set of time period

dummies, even if we have flexible unit-specific trends in wt.

∙ Can also use GMM to obtain a more efficient estimator. If bi truly

depends on i, then the composite error rit  üit is likely serially

correlated and heteroskedastic.

∙ Covẍit,bi|z̈it  Covẍit,bi cannot really be expected to hold for

discrete endogenous xit.
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4. TESTING FOR CORRELATED RANDOM SLOPES

∙ Recall in the basic model

yit  ci  xit  uit,

the standard test for the presence of ci is based on an estimate of c
2. In

the standard setup, all serial correlation in vit  ci  uit is assumed to

come from ci. Can and should allow for serial correlation in uit, but it

is rarely done.
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∙ Now we want to test for the presence of bi in

yit  ci  xitbi  uit.

First, consider the null hypothesis

H0 : Varbi  0.

Under this null, must have Ebi|xi  Ebi. For now, maintain

Varbi|xi  Varbi ≡ ,
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∙We still do not have enough to proceed. We need to restrict the

conditional variance matrix of the idiosyncratic errors, and the simplest

(and most common) assumption is

Varui|xi,ci,bi  u
2IT.

∙Write the time-demeaned equation as ÿi  Ẍi  v̈i, where

Ev̈i|xi  ẌiEdi|xi  Eüi|xi  0,

Varv̈i|xi  ẌiẌi
′  u

2MT,

andMT  IT − jTjT′ jT−1jT.
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∙ So Varv̈i|xi does not depend on Ẍi if   0. If  ≠ 0, then the

composite error in the time-demeaned equation generally exhibits

heteroskedasticity and serial correlation that are quadratic functions of

the time-demeaned regressors. So, the method would be to estimate 

by standard fixed effects, obtain the FE residuals, and then test whether

the variance matrix is a quadratic function of the ẍit.

∙ Problem with this test is that it associates system heteroskedasticity –

that is, variances and covariances depending on the regressors – with

the presence of “random” coefficients. But if bi   and Varui|xi,ci

depends on xi, Varv̈i|xi generally depends on xi.
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∙ Rather than try to test whether Varbi ≠ 0, we can instead test

whether bi varies with observable variables. That is, we can test

H0 : Ebi|xi  Ebi.

A sensible alternative is that Ebi|xi depends with the time averages,

something we can capture with

bi    Γx̄i −  x̄
′  di.

The null hypothesis is H0 : Γ  0.
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∙ Explicitly allowing for aggregate time effects gives, after algebra,

yit  t  ci  xit  xitΓx̄i −  x̄
′  xitdi  uit

 t  ci  xit  x̄i −  x̄ ⊗ xitvecΓ  xitdi  uit

≡ t  ci  xit  x̄i −  x̄ ⊗ xit  vit,

where vit  xitdi  uit and   vecΓ.
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∙ The test of H0 :   0 is simple to carry out. Create interactions

x̄i − x̄ ⊗ xit

where x̄ is the vector of overall averages, x̄  N−1∑i1
N x̄i. (Or, one can

choose a subset of x̄i to interact with a subset of xit. Obtain a fully

robust test of joint significance in the context of fixed effects

estimation.
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∙ A failure to reject means that, if the bi vary by i, they apparently do

not do so in a way that depends on the time averages of the covariates.

∙ Test cannot detect heterogeneity in bi that is uncorrelated with x̄i.

(Like the previous test, this test is not intended to determine whether

FE is consistent for   Ebi.)

∙ If we reject the null, can use the expanded equation as a way to model

random slopes.
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∙We can also allow bi to depend on time constant observable

variables:

bi    Γx̄i −  x̄
′  hi − h

′  di

where hi is a row vector of time-constant variables that we think might

influence bi.

∙ The new equation is

yit  t  ci  xit  x̄i − x̄ ⊗ xit  hi − h̄ ⊗ xit  errorit

and we can test H0 :   0,  0 or a subset, using the fixed effects

estimator (to remove ci).
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∙ Alternatively, add x̄i and hi as separate regressors (to allow

correlation with ci) and estimate the model by random effects. This is

common in the hierarchical linear models literature.

∙ In other words, estimate he following equation in an RE framework:

yit  t  xit  x̄i  hi  x̄i − x̄ ⊗ xit  hi − h̄ ⊗ xit  errorit
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EXAMPLE: Effects of Concentration on Airfares
. egen concenb  mean(concen), by(id)

. sum concenb ldist ldistsq

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

concenb | 4596 .6101149 .1888741 .1862 .9997
ldist | 4596 6.696482 .6593177 4.553877 7.909857

ldistsq | 4596 45.27747 8.726898 20.73779 62.56583

. gen cbconcen  (concenb - .61)*concen

. gen ldconcen  (ldist - 6.696)*concen

. gen ldsqconcen  (ldistsq - 45.277)*concen

43



. xtreg lfare concen concenb cbconcen ldconcen ldsqconcen ldist ldistsq
y98 y99 y00, re cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .1682492 .0496695 3.39 0.001 .0708988 .2655996

concenb | .157291 .2085049 0.75 0.451 -.2513711 .565953
cbconcen | .0635453 .3033809 0.21 0.834 -.5310704 .6581609
ldconcen | -.2994869 .9930725 -0.30 0.763 -2.245873 1.646899

ldsqconcen | .0112477 .0746874 0.15 0.880 -.135137 .1576324
ldist | -.4394368 .6713288 -0.65 0.513 -1.755217 .8763435

ldistsq | .0752147 .0494201 1.52 0.128 -.0216469 .1720764
y98 | .0229684 .0041542 5.53 0.000 .0148262 .0311105
y99 | .0358549 .0051298 6.99 0.000 .0258007 .0459091
y00 | .0976256 .005461 17.88 0.000 .0869221 .108329

_cons | 4.382552 2.272566 1.93 0.054 -.0715953 8.836699
-----------------------------------------------------------------------------
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. test concenb cbconcen ldconcen ldsqconcen

( 1) concenb  0
( 2) cbconcen  0
( 3) ldconcen  0
( 4) ldsqconcen  0

chi2( 4)  14.02
Prob  chi2  0.0072

. * If we test only the interactions, they are jointly insignificant:

. test cbconcen ldconcen ldsqconcen

( 1) cbconcen  0
( 2) ldconcen  0
( 3) ldsqconcen  0

chi2( 3)  5.47
Prob  chi2  0.1407
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. * Estimated coefficient on concen very close to omitting interations:

. xtreg lfare concen concenb ldist ldistsq y98 y99 y00, re cluster(id)

Random-effects GLS regression Number of obs  4596
Group variable: id Number of groups  1149

R-sq: within  0.1352 Obs per group: min  4
between  0.4216 avg  4.0
overall  0.4068 max  4

Random effects u_i ~Gaussian Wald chi2(7)  1273.17
corr(u_i, X)  0 (assumed) Prob  chi2  0.0000

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .168859 .0494749 3.41 0.001 .07189 .2658279

concenb | .2136346 .0816403 2.62 0.009 .0536227 .3736466
ldist | -.9089297 .2721637 -3.34 0.001 -1.442361 -.3754987

ldistsq | .1038426 .0201911 5.14 0.000 .0642688 .1434164
y98 | .0228328 .0041643 5.48 0.000 .0146708 .0309947
y99 | .0363819 .0051292 7.09 0.000 .0263289 .0464349
y00 | .0977717 .0055072 17.75 0.000 .0869777 .1085656

_cons | 6.207889 .9118109 6.81 0.000 4.420773 7.995006
-----------------------------------------------------------------------------
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∙We can take the representation for bi seriously and base a test for

unobserved heterogeneity on

H0 : Vardi  0

using FE estimation with the interactions.
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∙ Remember that Varbi and Vardi are not the same.

∙ Like the earlier test based on Varbi under the assumption

Ebi|xi  Ebi, a test based on Vardi  0 relies on a particular

structure for Varui|xi,ci,bi.

∙ As a testing strategy, it makes sense to first see if bi depends on

x̄i,hi, and then to test Vardi  0 (even though the latter imposes

strong assumptions).
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