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1. The Basic Methodology

∙ Typically, with stratified sampling, some segments of the population

are overrepresented or underrepresented by the sampling scheme. If we

know enough information about the stratification scheme, we can

modify standard econometric methods and consistently estimate

population parameters.

∙ There are two common types of stratified sampling, standard

stratified (SS) sampling and variable probability (VP) sampling. A third

type of sampling, typically called multinomial sampling, is practically

indistinguishable from SS sampling, but it generates a random sample

from a modified population.
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∙ SS Sampling: Partition the sample space, sayW, into G

non-overlapping, exhaustive groups, Wg : g  1, . . .G. A random

sample is taken from each group g, say wgi : i  1, . . . ,Ng, where Ng

is the number of observations drawn from stratum g and

N  N1  N2 . . .NG is the total number of observations.

∙ Let w be a random vector representing the population. Each each

random draw from stratum g has the same distribution as w conditional

on w belonging to Wg:

Dwgi  Dw|w ∈ Wg, i  1, . . . ,Ng.     (1.1)

∙We only know we have an SS sample if we are told.
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∙What if we want to estimate the mean of w from an SS sample? Let

g  Pw ∈Wg be the probability that w falls into stratum g; the g,

which are population frequencies, are often called the “aggregate

shares.” If we know the g (or can consistently estimate them), then

w  Ew is identified by a weighted average of the expected values

for the strata:

w  1Ew|w ∈ W1 . . .GEw|w ∈ WG.     (1.2)

∙ Sometimes the g are obtained from census data.
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∙ An unbiased estimator of w is obtained by replacing each

Ew|w ∈ Wg with its unbiased estimator, the sample average from

stratum g:

̂w  1w̄1  2w̄2. . .Gw̄G,     (1.3)

where w̄g is the sample average from stratum g.
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∙ As the strata sample sizes grow, ̂w is also a consistent estimator of

w. It is sufficient to assume Ng/N → g  0 for g  1, . . . ,G.

∙ The variance is easy to calculate because the sample averages are

independent across strata and the sampling is random within each

stratum:

Var̂w  1
2Varw̄1 . . .G

2 Varw̄G

 1
21

2/N1 . . .G
2 G

2 /NG

    (1.4)
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∙ Each g
2 can be estimated using the usual unbiased variance

estimator:

̂g
2  Ng − 1−1∑

i1

Ng

wgi − w̄g2     (1.5)

Thus,

Var̂w  1
2̂1

2/N1 . . .G
2 ̂G

2 /NG

and so the standard error of ̂w is

se̂w  1
2̂1

2/N1 . . .G
2 ̂G

2 /NG1/2.     (1.6)
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∙ Useful to have a formula for ̂w as a weighted average across all

observations:

̂w  1/h1N−1∑
i1

N1

w1i . . .G/hGN−1∑
i1

NG

wGi

 N−1∑
i1

N

gi /hgiwi     (1.7)

where hg  Ng/N is the fraction of observations in stratum g and in

(1.7) we drop the stratum index on the observations.
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∙ Variable Probability Sampling: Often used where little, if anything,

is known about respondents ahead of time. Still partition the sample

space, but an observation is drawn at random. However, if the

observation falls into stratum g, it is kept with (nonzero) sampling

probability, pg. That is, random draw wi is kept with probability pg if

wi ∈ Wg.

∙ The population is sampled N times (often N is not reported with VP

samples). We always know how many data points were kept; call this

M – a random variable. Let si be a selection indicator, equal to one if

observation i is kept. So M  ∑i1
N si.

9



∙ Let zi be a G-vector of stratum indicators for draw i, that is, zig  1 if

and only if wi ∈ Wg. Because each draw is in one and only one

stratum, zi1  zi2 . . .ziG  1.

∙We can define

pzi  p1zi1 . . .pGziG     (1.8)

as the function that delivers the sampling probability for any random

draw i.
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∙ Key assumption for VP sampling: Conditional on being in stratum g,

the chance of keeping an observation is pg.

∙ Statistically, conditional on zi (knowing the stratum), si and wi are

independent:

Psi  1|zi,wi  Psi  1|zi     (1.9)

∙ Using the same argument for IPW estimation with missing data, we

can show

Esi/pziwi  Ewi.     (1.10)
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∙ Equation (1.10) is the key result for VP sampling. It says that

weighting a selected observation by the inverse of its sampling

probability allows us to recover the population mean. It is a special case

of IPW estimation for general missing data.

∙ It follows that

N−1∑
i1

N

si/pziwi     (1.11)

is a consistent estimator of Ewi. We can also write (1.11) as

M/NM−1∑
i1

N

si/pziwi.     (1.12)
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If we define weights as v̂i  ̂/pzi where ̂  M/N is the fraction of

observations retained from the sampling scheme, then (1.12) is

M−1∑
i1

M

v̂iwi,     (1.13)

where only the observed points are included in the sum.

∙ So, can write the estimator as a weighted average of the observed data

points. If pg  ̂, the observations for stratum g are underpresented in

the eventual sample (asymptotically), and they receive weight greater

than one.
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2. Linear Regression Analysis

∙ Almost any estimation method can be used with SS or VP sampled

data: OLS, IV, MLE, quasi-MLE, nonlinear least squares, quantile

regression.

∙ Linear population model:

y  x  u.     (2.1)

Two assumptions on u are

Eu|x  0     (2.2)

Ex′u  0.     (2.3)
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∙ Ex′u  0 is enough for consistency, but Eu|x  0 has important

implications for whether or not to weight under exogenous sampling.

∙ SS Sampling: A consistent estimator ̂ is obtained from the

“weighted” least squares problem

min
b
∑
i1

N

vi  yi − xib2,     (2.4)

where vi  gi /hgi is the weight for observation i. (Remember, the

weighting used here is not to solve any heteroskedasticity problem; it is

to reweight the sample in order to consistently estimate the population

parameter .)
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∙ Key Question: How can we conduct valid inference using ̂? One

possibility: use the White (1980) “heteroskedasticity-robust” sandwich

estimator. When is this estimator the correct one? If two conditions

hold: (i) Ey|x  x, so that we are actually estimating a conditional

mean; and (ii) the strata are determined by the explanatory variables, x.

∙When the White estimator is not consistent, it is conservative.

∙ Correct asymptotic variance requires more detailed formulation of the

estimation problem:

min
b
∑
g1

G

g Ng
−1∑

i1

Ng

ygi − xgib2 .     (2.5)
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∙ Asymptotic variance estimator:

∑
i1

N

gi /hgixi
′xi

−1

 ∑
g1

G

g/hg2 ∑
i1

Ng

xgi
′ ûgi − xg

′ ûgxgi
′ ûgi − xg

′ ûg′

 ∑
i1

N

gi /hgixi
′xi

−1

.

    (2.6)
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∙ Usual White estimator ignores the information on the strata of the

observations, which is the same as dropping the within-stratum

averages, xg
′ ûg. The estimate in (2.6) is always smaller than the usual

White estimate.

∙ Econometrics packages, such as Stata, have survey sampling options

that will compute (2.6) provided stratum membership is included along

with the weights. If only the weights are provided, the larger

asymptotic variance is computed.
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∙ One case where there is no gain from subtracting within-strata means

is when Eu|x  0 and stratification is based on x.

∙ If we add the homoskedasticity assumption Varu|x  2 with

Eu|x  0 and stratification is based on x, the weighted estmator is less

efficient than the unweighted estimator. (Both are consistent.)
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∙ The debate about whether or not to weight centers on two facts: (i)

The efficiency loss of weighting when the population model satisfies

the classical linear model assumptions and stratification is exogenous.

(ii) The failure of the unweighted estimator to consistently estimate  if

we only assume

y  x  u, Ex′u  0,     (2.7)

even when stratification is based on x. The weighted estimator

consistently estimates  under (2.7).
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∙ Analogous results hold for maximum likelihood, quasi-MLE,

nonlinear least squares, instrumental variables. If one knows stratum

identification along with the weights, the appropriate asymptotic

variance matrix (which subtracts off within-stratum means of the score

of the objective function) is smaller than the form derived by White

(1982). For, say, MLE, if the density of y given x is correctly specified,

and stratification is based on x, it is better not to weight. (But there are

cases – including certain treatment effect estimators – where it is

important to estimate the solution to a misspecified population

problem.)
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∙ Findings for SS sampling have analogs for VP sampling, and some

additional results. First, the Huber-White sandwich matrix applied to

the weighted objective function (weighted by the 1/pg) is consistent

when the known pg are used. Second, an asymptotically more efficient

estimator is available when the retention frequencies, p̂g  Mg/Ng, are

observed, where Mg is the number of observed data points in stratum g

and Ng is the number of times stratum g was sampled. (Is Ng known?)
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The estimated asymptotic variance in that case is

∑
i1

M

xi
′xi/p̂gi

−1

 ∑
g1

G

p̂g
−2 ∑

i1

Mg

xgi
′ ûgi − xg

′ ûgxgi
′ ûgi − xg

′ ûg′

 ∑
i1

M

xi
′xi/p̂gi

−1

,

    (2.8)

where Mg is the number of observed data points in stratum g.

Essentially the same as SS case in (2.6).
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∙ If we use the known sampling weights, we drop xg
′ ûg from (2.8). If

Eu|x  0 and the sampling is exogenous, we also drop this term

because Ex′u|w ∈ Wg  0 for all g, and this is whether or not we

estimate the pg.

∙ In Stata, use the “svyset” command, and then the “svy” prefix for

sample statistics and econometric methods.

∙ Following example is with 6 strata and variable probability sampling

in addition to different strata weights. (Within each stratum, VP

sampling is used.)
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. use http://www.stata-press.com/data/r10/nmihs

. des idnum stratan finwgt marital age race birthwgt

storage display value
variable name type format label variable label
-----------------------------------------------------------------------------
idnum long %10.0f ID number
stratan byte %8.0g Strata indicator 1-6
finwgt double %10.0g Adjusted sampling weight
marital byte %8.0g marital 0single, 1married
age byte %8.0g Mother’s age in years
race byte %8.0g race Race: 1black, 0white/other
birthwgt int %8.0g Birthweight in grams
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. svyset [pweight  finwgt] , strata(stratan)

pweight: finwgt
VCE: linearized

Single unit: missing
Strata 1: stratan

SU 1: observations
FPC 1: zero

. mean birthwgt

Mean estimation Number of obs  9946

--------------------------------------------------------------
| Mean Std. Err. [95% Conf. Interval]

-------------------------------------------------------------
birthwgt | 2845.094 9.861422 2825.764 2864.424

--------------------------------------------------------------
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. svy: mean birthwgt
(running mean on estimation sample)

Survey: Mean estimation

Number of strata  6 Number of obs  9946
Number of PSUs  9946 Population size  3895562

Design df  9940

--------------------------------------------------------------
| Linearized
| Mean Std. Err. [95% Conf. Interval]

-------------------------------------------------------------
birthwgt | 3355.452 6.402741 3342.902 3368.003

--------------------------------------------------------------
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. svyset [pweight  finwgt]

pweight: finwgt
VCE: linearized

Single unit: missing
Strata 1: one

SU 1: observations
FPC 1: zero

. svy: mean birthwgt
(running mean on estimation sample)

Survey: Mean estimation

Number of strata  1 Number of obs  9946
Number of PSUs  9946 Population size  3895562

Design df  9945

--------------------------------------------------------------
| Linearized
| Mean Std. Err. [95% Conf. Interval]

-------------------------------------------------------------
birthwgt | 3355.452 6.933529 3341.861 3369.044

--------------------------------------------------------------

. * So the standard error is, as expected, larger if we ignore the strata.
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∙ Next look at regression analysis:
. des race

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------
race byte %8.0g race Race: 1black, 0white/other

. gen black  race

. gen married  marital

. tab married

married | Freq. Percent Cum.
-----------------------------------------------

0 | 4,084 41.03 41.03
1 | 5,869 58.97 100.00

-----------------------------------------------
Total | 9,953 100.00

. gen agesq  age^2

. gen lbirthwgt  log(birthwgt)
(7 missing values generated)
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. svyset [pweight  finwgt], strata(stratan)

pweight: finwgt
VCE: linearized

Single unit: missing
Strata 1: stratan

SU 1: observations
FPC 1: zero

. svy: reg lbirthwgt age agesq black married
(running regress on estimation sample)

Survey: Linear regression

Number of strata  6 Number of obs  9946
Number of PSUs  9946 Population size  3895561.7

Design df  9940
F( 4, 9937)  300.19
Prob  F  0.0000
R-squared  0.0355

------------------------------------------------------------------------------
| Linearized

lbirthwgt | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

age | .0094712 .0034286 2.76 0.006 .0027504 .0161919
agesq | -.0001499 .0000634 -2.36 0.018 -.0002742 -.0000256
black | -.074903 .0039448 -18.99 0.000 -.0826356 -.0671703

married | .0377781 .0058039 6.51 0.000 .0264013 .0491548
_cons | 7.941929 .0442775 179.37 0.000 7.855136 8.028722

------------------------------------------------------------------------------

30



. svyset [pweight  finwgt]

pweight: finwgt
VCE: linearized

Single unit: missing
Strata 1: one

SU 1: observations
FPC 1: zero

. svy: reg lbirthwgt age agesq black married
(running regress on estimation sample)

Survey: Linear regression

Number of strata  1 Number of obs  9946
Number of PSUs  9946 Population size  3895561.7

Design df  9945
F( 4, 9942)  202.34
Prob  F  0.0000
R-squared  0.0355

------------------------------------------------------------------------------
| Linearized

lbirthwgt | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

age | .0094712 .0034294 2.76 0.006 .0027489 .0161935
agesq | -.0001499 .0000634 -2.36 0.018 -.0002743 -.0000256
black | -.074903 .0045443 -16.48 0.000 -.0838106 -.0659953

married | .0377781 .00582 6.49 0.000 .0263697 .0491864
_cons | 7.941929 .0443344 179.14 0.000 7.855024 8.028833

------------------------------------------------------------------------------
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. di .00947/(2*.00015)
31.566667

. reg lbirthwgt age agesq black married, robust

Linear regression Number of obs  9946
F( 4, 9941)  28.56
Prob  F  0.0000
R-squared  0.0114
Root MSE  .49611

------------------------------------------------------------------------------
| Robust

lbirthwgt | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

age | .0161755 .0074639 2.17 0.030 .0015448 .0308062
agesq | -.0003198 .000138 -2.32 0.020 -.0005902 -.0000493
black | -.0136733 .0116097 -1.18 0.239 -.0364307 .0090841

married | .0961381 .0129681 7.41 0.000 .0707181 .1215582
_cons | 7.615568 .0969574 78.55 0.000 7.425512 7.805624

------------------------------------------------------------------------------

. di .0168/(2*.00032)
26.25
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3. Nonlinear Models

∙ The same weighting ideas work for a large class of nonlinear models

(more precisly, nonlinear estimation methods). In Stata, logit, probit,

Tobit, GLM. Currently, not quantile regression.

∙ In the SS sampling case, the weighted M-estimator solves

min
∈Θ
∑
g1

G

g Ng
−1∑

i1

Ng

qwgi,     (3.1)

where, again, we use the fact that
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Eqw,  1Eqw,|w ∈ W1  2Eqw,|w ∈ W2

…GEqw,|w ∈ WG.
    (3.2)

∙ In practice, write as

min
∈Θ
∑
i1

N

gi /hgiqwgi,     (3.3)

where hg  Ng/N. Sometimes the reported weights are scaled

differently (without changing the estimation).

∙ Let sw, and Hw, be the score and Hessian, as usual.
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∙ Asymptotic variance estimator:

∑
i1

N

gi /hgiHwgi, ̂
−1

 ∑
g1

G

g/hg2 ∑
i1

Ng

swgi, ̂ − ŝgswgi, ̂ − ŝg ′

 ∑
i1

N

gi /hgiHwgi, ̂
−1

.

    (3.4)

where ŝg  Ng
−1∑i1

Ng swgi, ̂ is the within stratum g average of the

score.
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∙ In Stata, for many commands, use “svy” prefix after having done

“svyset.”

svy: logit y x1 ... xK

svy: glm y x1 ... xK, fam(poisson) robust
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4. General Treatment of Exogenous Stratification

∙ If we want to consistently estimate the solution to

min
∈Θ

Eqw,

then we should use the weights regardless of whether the stratificaiton

is based on conditioning variables x.

∙ But, if we assume that the feature of Dy|x is correctly specified, and

we have chosen an appropriate objective function, weighting – whether

for SS or VP sampling – can be harmful in terms of efficiency.
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∙ The general setting is very similar to the general missing data

problem. We assume that o solves

min
∈Θ

Eqw,|x     (4.1)

for all x, as holds for conditional MLE when fy|x; is correctly

specified and for QMLE in the LEF when Ey|x is correctly specified.
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∙ The unweighted and weighted estimators are both consistent for o

(for SS and VP sampling).

∙ Generally, we cannot rank the asymptotic variances of ̂u and ̂w. But

in one case we can, namely, when the generalized conditional

information matrix equality holds: for some o
2  0,

E∇qio′∇qio|xi  o
2E∇2qio|xi.     (4.2)

∙ For (conditional) MLE, o
2  1 [with qi  − log fyi|xi;].

∙ For NLS, (4.2) holds under Vary|x  o
2.

∙ For QMLE in LEF, holds under the GLM variance assumption.
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∙Without this generalized (conditional) information matrix equality,

cannot rank ̂u and ̂w. For example, in regression with

heteroskedasticity, the weighting for stratification might actually help

with heteroskedasticity, too.

40


