
SYSTEMS OF EQUATIONS: INSTRUMENTAL VARIABLES

Econometric Analysis of Cross Section and Panel Data, 2e
MIT Press

Jeffrey M. Wooldridge

1. Examples of Systems with IVs
2. The System IV Estimator
3. Generalized Method of Moments
4. The Generalized IV Estimator
5. Testing
6. More on Efficiency
7. Summary

1



1. EXAMPLES OF SYSTEMS WITH IVS

∙ As in the OLS and GLS case, carry along two examples: a system that

looks like a SUR setup, but where some explanatory variables are

endogenous in their own equation (at least), and the panel data case,

where some explanatory variables are contemporaneously endogenous.

∙ The sampling environment is the same as before. We assume random

sampling of units from a well-defined population.

∙ Generally, the analysis is similar to estimation by SOLS and GLS, but

we must distinguish explanatory variables from instruments.
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The SUR Case with Endogenous Explanatory Variables

∙ As before, write the population model as

y1  x11  u1

y2  x22  u2



yG  xGG  uG

    (1.1)

where yg is a response variable, g  1, . . . ,G. The explanatory

variables, xg, can be different across equations.

∙ Now we want to allow Exg
′ ug ≠ 0 for at least some equations g.
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∙ EXAMPLE: Individual Labor Supply. Consider a labor supply

function and a wage offer (inverse labor demand) function:

hsw  1w  z11  u1

woh  2h  z22  u2

    (1.2)
    (1.3)

Equation (1.2) is the labor supply function, which shows how much

each unit in the population would work at any given wage, w. Once we

hold fixed the observed characteristics z1 and unobserved

characteristics u1, we can trace out the (linear) supply curve as a

function of w.

∙ The labor supply function stands on its own, representing the

individual side of the market.
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∙ If we could run the right experiment, we could use OLS to estimate

the labor supply function: randomly assign wages, wi, to individuals,

and record the resulting labor supply, hi.

∙We bring in the wage offer function to recognize that, for

retrospective data, we observe the pair hi,wi, with wi not being

randomly assigned. What is a sensible assumption about how hi,wi

are generated? A standard approach is to assume that we observe

equalibrium hours and wages for each individual. That is, the data are

generated as

hi  1wi  zi11  ui1

wi  2hi  zi22  ui2

    (1.4)
    (1.5)
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∙ In the usual case, we assume that the elements of z1 and z2 are

exogenous to both equations, but we will consider other cases.

∙ The labor supply-wage offer example is a simultaneous equations

model (SEM). We will talk more about identification of SEMs later.
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EXAMPLE: Effects of Head Start on Student Peformance. Suppose for

a population of disadvantaged students we postulate the equation

scorei  1HeadStarti  zi11  ui1,     (1.6)

where HeadStarti  1 means that the student participated in the Head

Start program as a child.

7



∙ There is no “simultaneity” here because Head Start participation is

determined in advance of the standardized test score. But there could be

a self-selection problem: participation in Head Start may be related to

unobserved factors – such as parental involvement – that affect test

scores. In other words, HeadStarti might be correlated with ui1.

∙ As we know from single equation analysis, we can write a linear

projection for HeadStarti as

HeadStarti  zi2  ui2,     (1.7)

where zi includes some other exogenous variables in addition to zi1.
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∙ There is nothing “structural” about (1.7). In the terminology of

Chapter 5, it is a “reduced form.” We could just estimate (1.6) by

2SLS. But for some purposes – mainly efficiency considerations – it is

useful to consider (1.6) and (1.7) together as a system.
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∙ The previous examples can be written as

yi1  xi11  ui1

yi2  xi22  ui2

    (1.8)

    (1.9)

where we now need IVs for one or both equations.

∙ In many cases, the same instruments can be used for each equation,

but in other cases the instruments will differ across equations.
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Panel Data Models with Endogenous Explanatory Variables

∙Write a panel data model as

yit  xit  uit

Ezit
′ uit  0, t  1, . . . ,T,

    (1.10)
    (1.11)

where xit is 1  K. In the general case, the dimension of the instruments

zit can change with t, so 1  Lt. (We will see specific examples with

unobserved effects models.)

∙ In many cases, elements of zit might be correlated with the errors in

other time periods, so care is used in choosing zit for each t.)
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EXAMPLE: Estimating a Passenger Demand Function. Suppose

passenger demand for flights is given by

logpassenit  t  1 logfareit

 2 logdisti  3logdisti2  uit

    (1.13)

where lfareit  logfareit is generally correlated with uit. If fares are

generally higher with a higher concentration ratio, use concenit as an

instrument for lfareit. Then

zit  1,d2t, . . . ,dTt,concenit, ldisti, ldisti
2     (1.14)

which recognizes that a fully set of period dummies has been included.
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∙ Suppose that lfareit is also correlated with past concenit, and

Euit|concenit,conceni,t−1, . . . ,conceni1, ldisti  0.     (1.15)

Then we could take

zit  1,d2t, . . . ,dTt,concenit,conceni,t−1, . . . ,conceni1,disti, ldisti
2,     (1.16)

which has dimension increasing in t. Have to think about how to use all

of this information.
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∙ As before, the SUR and panel data cases can both be written as

yi  Xi  ui     (1.17)

where yi is G  1 (or T  1 and Xi is G  K or T  K, and  is the K  1

vector of parameters to be estimated.

∙ How do we choose the matrix of instruments, Zi?

SUR: Assume that for each equation g, the moment conditions are

Ezig
′ uig  0,     (1.18)

for a 1  Lg vector zig, written for a random draw.
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Then the G  L matrix of instruments is

Zi 

zi1 0 0 0
0 zi2 0 

0 0  0
0  0 ziG

,     (1.19)

where L  L1  L2 . . .LG.

∙ Of course, we get the system OLS setup when zig  xig for all g.
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Panel Data: The instrument matrix that gives us the moment conditions

Ezit
′ uit  0 looks just like (1.19) with the small notational change of

replacing G with T. Then

Zi
′ui 

zi1
′ 0 0 0
0 zi2

′ 0 

0 0  0
0  0 ziT

′

ui1

ui2



uiT



zi1
′ ui1

zi2
′ ui2



ziT
′ uiT

and so EZi
′ui  0 is the same as

Ezit
′ uit  0, t  1, 2, . . . ,T.
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∙When the dimension of the instruments is the same for all t, Lt  L,

another choice is possible:

Zi 

zi1

zi2



ziT

.     (1.20)

17



∙ The IV matrix in (1.20) uses only a linear combination of the original

moment conditions, namely,

EZi
′ui ∑

t1

T

Ezit
′ uit  0.

∙ If used properly, the instrument matrix in (1.19) will give an

asymptotically more efficient estimator than that in (1.20). (But using

many extra moment conditions can cause the finite-sample properties to

be worse.)
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2. THE SYSTEM IV ESTIMATOR

∙Write the system as in the system OLS/GLS case:

yi  Xi  ui.

Assumption SIV.1 (Moment Conditions): For a G  L matrix Zi,

EZi
′ui  0.      (2.1)

∙ The assumption is weaker, often in important ways, than the

assumption that all elements of Zi are uncorrelated with all elements in

ui: EZi ⊗ ui  0. We return to this distinction later.
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Assumption SIV.2 (Rank Condition):

rank EZi
′Xi  K.      (2.2)

∙ Looks like the key rank condition for 2SLS except that Zi and Xi are

matrices.

∙ A necessary conditon for SIV.2 to hold is the order condition, L ≥ K.

∙ Later it is useful to define C  EZi
′Xi.
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∙ In the SUR case

EZi
′Xi 

Ezi1
′ xi1 0 0 0
0 Ezi2

′ xi2 0 

0 0  0
0  0 EziG

′ xiG

and so SIV.2 holds if and only if

rank Ezig
′ xig  Kg, g  1, . . . ,G.     (2.3)

This is the same as saying the rank condition holds for each equation g.

(The nonsingularity requirement on Ezig
′ zig will come later.)
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∙ In the panel data case, if

Zi 

zi1 0 0 0
0 zi2 0 

0 0  0
0  0 ziT

    (2.4)

then

EZi
′Xi 

Ezi1
′ xi1

Ezi2
′ xi2



EziT
′ xiT

.     (2.5)
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∙ If

Zi 

zi1

zi2



ziT

    (2.6)

then

EZi
′Xi ∑

t1

T

Ezit
′ xit.     (2.7)
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∙ Estimation proceeds from the method of moments. The moment

condition in Assumption SIV.1 can be written as

EZi
′yi − Xi  0     (2.7)

or

EZi
′Xi  EZi

′yi.     (2.8)

∙ If the rank condition is violated (for example, if L  K), the system

EZi
′Xib  EZi

′yi has more than one solution for b, and  is not

identified.
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∙ Suppose L  K. Then

  EZi
′Xi−1EZi

′yi     (2.9)

∙ From here, there is only one thing to do: replace population averages

with sample averages to get the system instrumental variables (SIV)

estimator:

̂SIV  N−1∑
i1

N

Zi
′Xi

−1

N−1∑
i1

N

Zi
′yi .     (2.10)

Consistency is immediate by the usual WLLN argument.
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∙ Alternative, we can write

̂SIV    N−1∑
i1

N

Zi
′Xi

−1

N−1∑
i1

N

Zi
′ui     (2.11)

and use N−1∑i1
N Zi

′ui
p
→ EZi

′ui  0.

∙ Equation (2.11) is more convenient for studying the asymptotic

distribution.
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∙ The SIV estimator for the SUR system where we have Lg  Kg for all

g is IV equation-by-equation. The algebra is straightforward.

∙ The SIV estimator for the panel data system with IVs stacked as in

(2.6) with L  K is a pooled IV estimator:

̂PIV  ∑
i1

N

∑
t1

T

zit
′ xit

−1

∑
i1

N

∑
t1

T

zit
′ yit .     (2.12)

∙ Inference is covered generally in the next section.
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3. GENERALIZED METHOD OF MOMENTS ESTIMATION

∙We now turn to a general treatment with (potential)

overidentification, that is, L  K.
3.1 A General Weighting Matrix

∙ Though we assume the population moment conditions

EZi
′Xi  EZi

′yi uniquely determine , the sample analog,

∑
i1

N

Zi
′Xi ̂  ∑

i1

N

Zi
′yi ,     (3.1)

generally has no solution when L  K (L equations in K unknowns).
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∙We could choose ̂ to make the Euclidean length of the vector

∑i1
N Zi

′yi − Xi̂ as small as possible, that is, choose ̂ to solve

min
b∈RK
∑
i1

N

Zi
′yi − Xib

′

∑
i1

N

Zi
′yi − Xib .     (3.2)

∙ This estimator is consistent and is sometimes used as an initial

estimator, but it is essentially never efficient.

∙ Consider a general class of estimators that use a weighted Euclidean

length.
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∙ Let Ŵ be an L  L symmetric, positive semi-definite matrix, which

can be random (and usually depends on the same random sample of

data). Consider now the problem

min
b∈RK
∑
i1

N

Zi
′yi − Xib

′

Ŵ ∑
i1

N

Zi
′yi − Xib .     (3.3)

∙ The solution to (3.3) is called a generalized method of moments

(GMM) estimator.

∙ Can solve this problem using multivariable calculus.
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∙ Let Z be the NG  L matrix of instruments stacked by observation,

and similarly for X (NG  K) and Y (NG  1. Can show that

̂  X′ZŴZ′X−1X′ZŴZ′Y,     (3.4)

where

Z′X ∑
i1

N

Zi
′Xi, Z′Y ∑

i1

N

Zi
′yi.     (3.5)
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Assumption SIV.3 (Positive Definite Limit): For an L  L nonrandom

positive definite matrixW,

Ŵ
p
→ W as N → .      (3.6)

∙ Positive definiteness is stonger than needed. As will be clear, having

C′WC full rank (nonsigular) is sufficient, where C  EZi
′Xi.

∙ Usually the law of large numbers, combined with consistency of a

first-stage estimator, is used to establish SIV.3.
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Theorem (Consistency): Under SIV.1 to SIV.3, ̂
p
→ .

Proof: Write

̂    N−1∑
i1

N

Xi
′Zi Ŵ N−1∑

i1

N

Zi
′Xi

−1

 N−1∑
i1

N

Xi
′Zi Ŵ N−1∑

i1

N

Zi
′ui

plimN→̂    C′WC−1C′W plimN→ N−1∑
i1

N

Zi
′ui

   C′WC−1C′W  0  .

    (3.7)

    (3.8)
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Theorem (Asymptotic Normality): Under SIV.1, SIV.2, and SIV.3,

N ̂ −  is asymptotically normal with mean zero and variance

matrix

Avar N ̂ −   C′WC−1C′WWCC′WC−1.     (3.9)

where

  VarZi
′ui  EZi

′uiui
′Zi.     (3.10)

∙ Consistent estimation of Avar N ̂ −  uses Ĉ  N−1∑i1
N Zi

′Xi,

Ŵ and a consistent estimator ̂ of  (more later).

34



3.2. System 2SLS

∙ The System 2SLS estimator uses weight matrix

Ŵ  N−1∑
i1

N

Zi
′Zi

−1

,     (3.11)

and the estimator can be written as

̂S2SLS  X′ZZ′Z−1Z′X−1X′ZZ′Z−1Z′Y     (3.12)

∙ Assumption SIV.3 is equivalent to

rank EZi
′Zi  L,     (3.13)

which extends the single equation assumption, S2SLS.2(a), in the

obvious way.
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∙ Inference with S2SLS is possible without further assumptions.

∙ In the SUR case, the S2SLS estimator is 2SLS

equation-by-equation.

∙ In the panel data case with Zi  zi1
′ , . . . ,ziT

′ ′, can show that S2SLS

is the pooled 2SLS estimator:

Z′X ∑
i1

N

∑
t1

T

zit
′ xit, Z′Z ∑

i1

N

∑
t1

T

zit
′ zit, Z′Y ∑

i1

N

∑
t1

T

zit
′ yit.     (3.14)
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∙When Zi is block diagonal as in (2.4), the system 2SLS estimator is

different. It can be obtained as follows. (1) For each t, estimate a

reduced from from a cross section regression

xit on zit, i  1, . . . ,N,     (3.15)

and obtain the fitted values,

x̂it  zit̂t,     (3.16)

where ̂t is Lt  K in general. Note that x̂it is always 1  K. (2)

Estimate  via pooled IV in the equation
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yit  xit  uit, t  1, . . . ,T; i  1, . . . ,N     (3.17)

using x̂it as instruments (not regressors!).

̂S2SLS  ∑
i1

N

∑
t1

T

x̂it
′ xit

−1

∑
i1

N

∑
t1

T

x̂it
′ yit     (3.18)

∙ Can use “cluster robust” inference in the pooled IV, ignoring

estimation of the ̂t in the first stage.

∙ The pooled 2SLS estimator estimates a common ̂ by pooling the

regression in (3.15) across t and i.

∙ There is a set of no serial correlation and homoskedasticity

assumptions that justifies use of the usual statistics.
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3.3. Optimal Weighting Matrix

∙ Given an infinite number of choices forW, can we choose the best?

Yes. (And then it is obvious how to estimate the optimalW.)

∙ Recall that  is defined by

EZi
′yi − Xi  EZi

′ui  0.     (3.19)

∙ The optimal weighting matrix is the inverse of the variance matrix of

Zi
′ui,   VarZi

′ui.
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Assumption SIV.4 (Optimal Weighting Matrix):

W  −1.     (3.20)

∙With this choice ofW, the asymptotic variance collapses to

C′−1C−1C′−1−1CC′−1C−1  C′−1C−1.     (3.21)

∙ It can be shown that C′−1C is the “smallest” possible by showing

C′−1C − C′WCC′WWC−1C′WC     (3.22)

is positive semi-definite for any L  L positive definite matrixW.
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∙ Let D  1/2WC and show the difference can be expressed as

C′−1/2IL − DD′D−1D′−1/2C     (3.23)

and note that IL − DD′D−1D′ is symmetric and idempotent (and

hence positive semi-definite).
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∙ To obtain an actual GMM estimator using an efficient weighting

matrix, use a two-step procedure.

(1) Let  be an initial consistent estimator of , usually the system

2SLS estimator or the estimator using Ŵ  IL. Obtain the G  1

residual vectors, u i  yi − Xi , i  1, . . . ,N, and compute

̂  N−1∑
i1

N

Zi
′u iu i

′Zi
p
→ .     (3.24)

(2) Choose

Ŵ  N−1∑
i1

N

Zi
′u iu i

′Zi

−1

.     (3.25)
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∙We call such an estimator an optimal GMM estimator. It is

sometimes called aminimum chi-square estimator (reason will be

clear later).

∙ Important: the optimal weighting matrix provides an asymptotically

efficient estimator in the class of estimators based on

EZi
′yi − Xi  0.     (3.26)

In other words, the estimator is asymptotically efficient for the given

set of moment conditions (instruments).

∙ It is possible we can find additional moment conditions that can

enhance efficiency.
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∙When L  K the weighting matrix is irrelevant. There is only one

estimator consistent under (3.26), and that is the system IV estimator.

∙ If ̂ is now an optimal GMM estimator and ûi  yi − Xi̂ are the

optimal GMM residuals,

Avar̂  N−1 X′Z/N N−1∑
i1

N

Zi
′ûiûi

′Zi

−1

Z′X/N

−1

 X′Z ∑
i1

N

Zi
′ûiûi

′Zi

−1

Z′X

−1

.     (3.27)
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∙ There is usually more than one way to estimate , and so the optimal

GMM estimator is not unique. But all are N -asymptotically

equivalent.

∙ Recent research has focused on the small-sample properties of

optimal GMM estimators. While replacing  with ̂ does not affect the

N -asymptotic distribution of ̂, it can have deleterious effects on the

actual (finite sample) distribution. (More sophisticated asymptotic

analysis picks this up.)
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∙ It is using a first-stage estimate of  that causes finite-sample

problems for two-step optimal GMM. System S2SLS does not have the

same problems, but it is asymptotically inefficient.

∙ Empirical likelihood has been proposed as an alternative to GMM.

See Imbens and Wooldridge (2007, NBER lecture notes).
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3.4. The GMM Three Stage Least Squares Estimator

∙Mainly for historical reasons, but also because it can have better small

sample properties, we can consider a restricted version of the optimal

weighting matrix.

Assumption SIV.5 (System Homoskedasticity): Let   Euiui
′.

Then

EZi
′uiui

′Zi  EZi
′Zi.     (3.28)

∙ SIV.5 means that all the squares and cross products uig
2 , uiguih are

uncorrelated with the squares and cross products in Zi ⊗ Zi.
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∙ Can use the vec and Kronecker product operators to show this:

vec EZi
′uiui

′Zi  EZi ⊗ Zi′vecuiui
′  EZi ⊗ Zi′Evecuiui

′

or

EZi ⊗ Zi′ri  EZi ⊗ Zi′Eri

where ri  vecuiui
′ contains the uig

2 , uiguih.
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∙ In the SUR case, can show SIV.5 is the same as

Euig
2 zig

′ zig  Euig
2 Ezig

′ zig

Euiguihzig
′ zih  EuiguihEzig

′ zih, g ≠ h.

    (3.29)

    (3.30)

∙ By the usual iterated expectations argument, a sufficient condition is

Euiui
′|Zi  Euiui

′     (3.31)

and sufficient for (3.31) (and Assumption SIV.1) are

Eui|Zi  0
Varui|Zi  Varui.

    (3.32)
    (3.33)
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∙ Under SIV.5, we can estimate   EZi
′Zi differently. First,

̂  N−1∑
i1

N

u iu i
′     (3.34)

and then

̂  N−1∑
i1

N

Zi
′̂Zi  Z′IN ⊗ ̂Z/N.     (3.35)

∙ Under SIV.1 to SIV.5, an optimal GMM estimator that uses the

inverse of (3.35) as the weighting matrix can be written

̂GMM3SLS  X′ZZ′IN ⊗ ̂Z−1Z′X−1X′ZZ′IN ⊗ ̂Z−1Z′Y.     (3.36)
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∙We call (3.36) the GMM three stage least squares (3SLS)

estimator. (One does not need three steps to obtain this estimator; more

later on the name.)

∙ For first-order asymptotics, there is no gain in using SIV.5. In other

words, the general weighting matrix gives the same N -asymptotic

distribution as the GMM-3SLS weighting matrix. And, of course, the

latter is inefficient in the presence of system heteroskedasticity.

∙ The argument for ̂GMM3SLS must come from finite-sample

considerations or, as we see in the next section, from a different kind of

efficiency argument.
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4. THE GENERALIZED IV ESTIMATOR
4.1 Derivation of the GIV Estimator and Its Asymptotic Properties

∙ Rather than estimating  using the moment conditions

EZi
′yi − Xi  0, an alternative is to transform the moment

conditions in a way analogous to generalized least squares. Let

  Euiui
′ as before, and assume  is positive definite. Consider the

transformed equation

−1/2yi  −1/2Xi  −1/2ui.     (4.1)

Apply the system 2SLS estimator to (4.1) with instruments −1/2Zi.
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∙ The resulting estimator can be written as sums of matrices across i as

̂GIV  ∑
i1

N

Xi
′−1Zi ∑

i1

N

Zi
′−1Zi

−1

∑
i1

N

Zi
′−1Xi

−1

 ∑
i1

N

Xi
′−1Zi ∑

i1

N

Zi
′−1Zi

−1

∑
i1

N

Zi
′−1yi

   ∑
i1

N

Xi
′−1Zi ∑

i1

N

Zi
′−1Zi

−1

∑
i1

N

Zi
′−1Xi

−1

 ∑
i1

N

Xi
′−1Zi ∑

i1

N

Zi
′−1Zi

−1

∑
i1

N

Zi
′−1ui

    (4.2
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Assumption GIV.1 (Exogeneity): EZi ⊗ ui  0. 

∙ GIV.1 implies

EZi
′−1ui  0     (4.3)

∙ Assumption GIV.1 is identical to the consistency condition for GLS

when Zi  Xi.
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Naturally, we also need a rank condition:

Assumption GIV.2 (Rank Condition): (a) rank EZi
′−1Zi  L; (b)

rank EZi
′−1Xi  K. 

∙When G  1, Assumption GIV.2 reduces to Assumption 2SLS.2.
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∙ Of course, to operationalize equation (4.2), we replace  with an

estimator ̂, probably based on the system 2SLS residuals – just as

with the GMM-3SLS estimator.

∙When  is replaced with a consistent estimator, ̂, we obtain the

generalized instrumental variables (GIV) estimator.
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∙ Implicit in GIV estimation is the first-stage regression ̂−1/2Xi on

̂
−1/2Zi which yields fitted values ̂−1/2Zi̂

∗, where, in terms of full

data matrices, ̂∗  Z′IN ⊗ ̂
−1
Z−1Z′IN ⊗ ̂

−1
X.

∙ In comparing GIV to other estimators, it can be useful to think of GIV

as system IV estmation of ̂−1/2yi  ̂
−1/2Xi  ̂

−1/2ui using IVs

̂
−1/2Zi̂

∗.

∙ As with SGLS.1, that is, EXi ⊗ ui  0, GIV.1 can impose

unintended restrictions on the relationships between instruments and

errors across equations or time or both. GMM estimators based on

EZi
′ui  0 are more robust in terms of consistency.
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∙ Fully robust inference is possible, but a version of the system

homoskedasticity assumption simplifies the variance matrix:

Assumption GIV.3 (System Homoskedasticity):

EZi
′−1uiui

′−1Zi  EZi
′−1Zi. 

∙ This condition can be shown to hold if every square and cross product

of ui, that is, uig
2 and uiguih, is uncorrelated with all elements of Zi ⊗ Zi

(which consists of levels, squares, and cross products of all IVs for all

equations.
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∙ −1ui is a linear combinationof the original errors, so −1ui is also

uncorrelated with all elements of Zi ⊗ Zi. Then

vec EZi
′−1uiui

′−1Zi  EZi ⊗ Zi′vec−1uiui
′−1

 EZi ⊗ Zi′Evec−1uiui
′−1

 EZi ⊗ Zi′vecE−1uiui
′−1

 EZi ⊗ Zi′vec−1Euiui
′−1

 EZi ⊗ Zi′vec−1  vecEZi
′−1Zi

∙ A sufficient conditon for GIV.3 is Euiui
′|Zi  Euiui

′.
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∙ Under Assumptions GIV.1, GIV.2, and GIV.3,

Avar N ̂GIV −   EXi
′−1ZiEZi

′−1Zi−1EZi
′−1Xi−1,     (4.4)

and this matrix is easily estimated by the usual process of replacing

expectations with sample averages and  with ̂.
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∙ As with FGLS, improperly imposing restrictions in estimating  does

not lead to inconsistency in the GIV estimator. More precisesly,

suppose ̂ is obtained by restricting the variances and covariances in

some way, and ̂
p
→  ≠ . Then, under GIV.1, EZi

′−1ui  0, and

this is the moment condition that implies consistency of the GIV

estimator that uses ̂ as the variance matrix estimator.

∙ Of course, we will not have the simple expression for the asymptotic

variance in equation (4.4), but we can easily compute a fully robust

variance matrix estimator.

∙We will use this for unobserved effects panel data models.
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4.2 Comparison of GMM, GIV, and the Traditional 3SLS Estimator

∙ The traditional 3SLS estimator is typically motivated as follows.

The first-stage uses untransformed Xi and Zi, giving fitted values

X̂i  Zi̂, where ̂  Z′Z−1Z′X is the matrix of first-stage

regression coefficients. Then, −1/2yi  −1/2Xi  −1/2ui is

estimated by system IV, but with instruments −1/2X̂i. When we

replace  with its estimate, we arrive at the estimator

̂T3SLS  ∑
i1

N

X̂i
′
̂
−1Xi

−1

∑
i1

N

X̂i
′
̂
−1yi .     (4.5)
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∙ Substituting yi  Xi  ui and rearranging shows that the

orthogonality condition needed for consistency is

EZi′−1ui  ′EZi
′−1ui  0     (4.6)

where   plim̂. It is easily seen that (4.6) is implied by

Assumption GIV.1 [although not by condition (4.3)]. Like the GIV

estimator, the consistency of the traditional 3SLS estimator does not

follow from EZi
′ui  0.
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∙We have three different estimators of systems of equations based on

first estimating   Euiui
′. Question: Why have seemingly different

estimators all been given the label “three stage least squares”? Answer:

In the setting that the traditional 3SLS estimator was proposed – the

SUR system with the same instruments used in every equation – all

estimates are identical.

∙ In fact, the equivalence of all estimates holds if we just impose the

common instrument assumption in the general system yi  Xi  ui.

Let wi denote a vector assumed to be exogenous in every equation in

the sense that Ewi
′uig  0 for g  1, . . . ,G and choose
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Zi  IG ⊗ wi.     (4.7)

∙ Im, Ahn, Schmidt, and Wooldridge (1999) show that the GMM 3SLS

estimator and the GIV estimator (using the same ̂) are identical.

∙ The GIV estimator and the traditional 3SLS estimator are also

identical: The first stage regressions involve the same set of

explanatory variables, wi, in each equation, and so it does not matter

whether the matrix of first stage regression coefficients is obtained via

FGLS (used by GIV) or system OLS (used by T3SLS).
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∙ In many modern applications of system IV methods, to both

simultaneous equations and panel data, instruments that are exogenous

in one equation are not exogenous in all other equations. In such cases

it is important to use the GMM 3SLS estimator once Zi has been

properly chosen.

∙Warning: Packages such as Stata, which have built-in 3SLS

commands, maintain that a variable assumed to be exogenous in one

equation is exogenous in every equation. Plus, inference cannot be

made robust to system heteroskedasticity.
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∙ Of course, the minimum chi square estimator that does not impose

SIV.5 is always available, too, and often desirable. The GIV estimator

and the traditional 3SLS estimator generally induce correlation between

the transformed instruments and the structural errors.

∙Most applications of method of moments tend to focus on GMM

methods based on the original orthogonality conditions. Nevertheless,

for unobserved effects models we will see that the GIV approach can

provide insights into the workings of certain panel data estimators.
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5. TESTING

∙ Consider linear hypotheses of the form

H0 : R  r,     (5.1)

where R is Q  K, r is Q  1, Q ≤ K. We can always use the Wald

statistic,

W  R̂ − r′RV̂R′
−1R̂ − r′ a~ Q

2     (5.2)

where V̂ is an appropriate estimate of Avar̂.

∙ If we are using a minimum chi-square estimator, we can use a test

based on the change in objective function when the restrictions are

imposed.
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∙ Let ̃ be the restricted estimator using the same weighting matrix, Ŵ.

Then, under H0, it can be shown that

N−1 ∑
i1

N

Zi
′ũi

′

Ŵ ∑
i1

N

Zi
′ũi − ∑

i1

N

Zi
′ûi

′

Ŵ ∑
i1

N

Zi
′ûi

d
→ Q

2

    (5.3)
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∙ For GMM 3SLS, the statistic is

∑
i1

N

Zi
′ũi

′

∑
i1

N

Zi
′̂
−1Zi ∑

i1

N

Zi
′ũi

− ∑
i1

N

Zi
′ûi

′

∑
i1

N

Zi
′̂
−1Zi ∑

i1

N

Zi
′ûi .

    (5.4)

If system homoskedasticity fails, (5.4) does not have a limiting

chi-square distribution.
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∙ A test of the overidentifying restrictions, if L  K, is also based on

the value of the objective function. Under H0: EZi
′ui  0,

N−1/2∑
i1

N

Zi
′ûi

′

Ŵ N−1/2∑
i1

N

Zi
′ûi

d
→ L−K

2     (5.5)

where Ŵ is an optimal weighting matrix.
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6. MORE ON EFFICIENCY
6.1. Adding Instruments to Enhance Efficiency

∙We first show that adding more instruments – that are exogenous, of

course – can never hurt asymptotic efficiency provided an optimal

weighting matrix is used.

∙ Let Zi1 be a G  L1, L1 ≥ K, submatrix of Zi, which is G  L. It can

be shown that

C1
′ 1
−1C1−1 − C′−1C−1     (6.1)

is p.s.d., where C1  EZi1
′ Xi, 1  EZi1

′ uiui
′Zi1 and C and  are

defined for the entire matrix of instruments, Zi.
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∙ In other words, we can never do worse – using first-order asymptotics

– by adding more IVs and using optimal GMM. (Caution: Recent

research has shown that adding lots of poor IVs can seriously

deteriorate the asymptotic approximations of GMM estimators.)
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∙ Are there cases when asymptotic efficiency does not improve by

adding more moment conditions? Generally, difficult to characterize.

When G  1 and the system homoskedasticity assumption

Eui
2zi

′zi  Eui
2Ezi

′zi holds, the condition for no gain reduces to

Ezi2 − zi1D1′xi  0     (6.2)

where

D1  Ezi1
′ zi1−1Ezi1

′ zi2 L1  L2     (6.3)
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∙ For a single endogenous explanatory variable xiK, the condition is

LxiK|zi1,zi2  LxiK|zi1,     (6.4)

that is, zero coefficients on zi2 in the reduced form for xiK:

xiK  zi11  zi22  riK, 2  0.     (6.5)

∙ This means that, given zi1, zi2 does not helpt to predict xiK (in a linear

sense).
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∙ In the G  1 case, if 2SLS.3 does not hold, so there is

heteroskedasticity, 2SLS is generally inefficient if L  K. Should use

GMM with a weighting matrix that allows Eui
2zi

′zi to be unrestricted.

∙ Generally, the optimal GMM estimator is more efficient than 2SLS.

The optimal weighting matrix has the form

N−1∑
i1

N

u i
2zi

′zi

−1

,     (6.6)

where u i are the 2SLS residuals.
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∙ If heteroskedasticity is present, we can keep adding instruments that

would otherwise be redundant in order to improve efficiency.

∙ This finding for GMM has surprising efficiency implications for

OLS. Suppose

y  x  u, Eu|x  0.     (6.7)

Under the zero conditional mean assumption, we can choose as

instruments

z  x,hx     (6.8)

for any (row) vector of functions hx.
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∙ Of course, with this choice of z,

Lx|z  Lx|x,hx  Lx|x  x,     (6.9)

and so, if

Eu2|x  Varu|x  2,     (6.10)

we cannot improve efficiency over OLS by adding nonlinear functions

of x to the instrument list.
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∙ But if heteroskedasticity is present, the GMM estimator that uses the

extended instrument list and a heteroskedasticity-robust weighting

matrix is generally more efficient, asymptotically, than OLS!

∙ This result is due to Cragg (1983).

∙ In practice, the Cragg result is hardly used. For one, how should we

choose hx? And we might just be interested in the linear projection
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6.2. Finding the Optimal Instruments

∙ So far, we know (i) how to obtain an optimal weighting matrix given

Zi; (ii) adding valid instruments can improve efficiency, provided the

optimal weighting matrix is used; (iii) in some cases, adding more

instruments does not help.

∙ Now: Is there a way to choose a small number of instruments in an

optimal way?
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∙ The easiest case to describe is when we have a common set of

exogenous variables for each equation, call these wi. Then

Euig|wi  0, g  1, . . . ,G.     (6.11)

or Eui|wi  0.
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∙ Under (6.11), any function of wi is uncorrelated with uig for all g.

Therefore, we can define a matrix of instruments Zi and G  L matrix,

L ≥ K, that has any function of wi as elements. But where would we

stop? L could be very large (leading to poor small-sample properties).

∙ Question: Is there a way to reduce the functions of wi we should

consider? Yes.

∙ It turns out the optimal instruments, call them Zi
∗, are

Zi
∗  Varui|wi−1EXi|wi,     (6.12)

which is a function of wi only. Note that Zi
∗ is G  K, just like Xi.
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∙ If Zi
∗ were available, we would have no reason to try other functions

of wi as instruments: once we have Zi
∗, all other functions of wi are

redundant.

∙ The optimal instruments depend on a matrix of conditional means and

a conditional variance-covariance matrix, and is generally unknown.

Some have suggested “nonparametric” estimation of them.

∙ Suppose that EXi|wi  IG ⊗ wi ≡ Zi and

Euiui
′|wi  Euiui

′  . Then the optimal instruments are simply

Zi
∗  −1Zi.
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∙ The choice Zi
∗  −1Zi leads directly to the traditional 3SLS

estimator when  and  are replaced by estimates. Because the same

IVs show up in each equation, this estimator is the same as GIV and

GMM-3SLS.
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∙ The proof of efficiency for the general case is not difficult. Let

Xi
∗ ≡ EXi|wi and i ≡ Euiui

′|wi, where it is important to

remember that these are both functions of wi. Then Zi
∗  i

−1Xi
∗. Let

∗ be the (generally infeasible) SIV estimator using instruments Zi
∗

Then

V1 ≡ Avar N ∗ −   EZi
∗′Xi−1EZi

∗′uiui
′Zi
∗EXi

′Zi
∗−1.     (6.13)
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Now, by iterated expectations and using the fact that Zi
∗ is a function of

wi, EZi
∗′Xi  EEZi

∗′Xi|wi

 EZi
∗′EXi|wi  EZi

∗′Xi
∗  EXi

∗′i
−1Xi

∗. Similarly,

EZi
∗′uiui

′Zi
∗  EEZi

∗′uiui
′Zi
∗|wi

 EZi
∗′Euiui

′|wiZi
∗  EZi

∗′iZi
∗  EXi

∗′i
−1Xi

∗. Therefore, we

have shown that V1 simplifies to EXi
∗′i

−1Xi
∗−1.
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∙ Next, let Zi be any other G  K function of wi and let ̂ be the SIV

estimator that uses these instruments. Then

V2 ≡ Avar N ̂ −   EZi
′Xi−1EZi

′uiui
′ZiEXi

′Zi−1

 EZi
′Xi
∗−1EZi

′iZiEXi
∗′Zi−1     (6.14)

where we again use iterated expectations and the fact that Zi is a

function of wi.
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To show V2 − V1 is positive semi-definite, we assume that V2 is

nonsingular and show that V1
−1 − V2

−1 is p.s.d. But

V1
−1 − V2

−1  EXi
∗′i

−1Xi
∗ − EXi

∗′ZiEZi
′iZi−1EZi

′Xi
∗     (6.15)

which we can show is equal to ERi
′Ri, where Ri is the matrix of

population residuals from the regression i
−1/2Xi

∗ on i
1/2Zi. Therefore,

V1
−1 − V2

−1 is p.s.d. and so is V2 − V1.
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∙ EXAMPLE: Consider the linear model y  x  u under Eu|x  0.

The optimal instruments are

z∗  −2xx,     (6.16)

where 2x  Varu|x  Vary|x. The optimal IV estimator is the

weighted least squares estimator,

∗  ∑
i1

N

−2xixi
′xi

−1

∑
i1

N

−2xixi
′yi .     (6.17)

∙ Of course, we would need to estimate Vary|x to operationalize this

estimator.
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7. SUMMARY

∙ Generally, if we start with moment conditions of the form

EZi
′ui  0, GMM estimation based on this set of moment conditions

will be more robust than estimators based on a transformed set of

moment conditions, such as GIV. If we decide to use GMM, we can use

the unrestricted weighting matrix.

∙ Under Assumption SIV.5, which is a system homoskedasticity

assumption, the GMM 3SLS estimator is an asymptotically efficient

GMM estimator.

∙When the same instruments can be used in every equation, GMM

3SLS, GIV, and traditional 3SLS are identical.
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∙When GMM and GIV are both consistent but are not

N −asymptotically equivalent, they cannot generally be ranked in

terms of asymptotic efficiency.

∙ One can never do worse by adding instruments and using the efficient

weighting matrix in GMM. This has implications for panel data

applications. For example, if one has the option of choosing the

instruments as a block diagonal matrix or as a stacked matrix, it is

better in large samples to use the block diagonal form.
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∙What about System 2SLS and GMM 3SLS? Under system

homoskedasticity, 3SLS is generally more efficient. But there are

situations where they coincide. (1) If the system is just identified, that

is, L  K, all estimators reduce to the SIV estimator. In the case of the

SUR system, the system is just identified if and only if each equation is

just idenfied: Lg  Kg,g  1, . . . ,G and the rank condition holds for

each equation.
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∙When estimating the SUR system there is another case where S2SLS

– which is 2SLS estimation of each equation – coincides with 3SLS,

regardless of the degree of overidentification. The 3SLS estimator is

equivalent to 2SLS equation-by-equation when ̂ is a diagonal matrix,

that is, ̂  diag̂1
2, ̂2

2, . . . , ̂G
2 .

∙ Therefore, if  is diagonal, 2SLS and 3SLS are asymptotically

equivalent.
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∙ In cases where 2SLS on each equation is not algebraically or

asymptotically equivalent to 3SLS, it is not necessarily true that we

should prefer the 3SLS estimator (or the minimum chi-square estimator

more generally). Why? For estimation of any particular equation, the

system procedures generally require Ezg
′ ug  0 for all g, not just the

equation of interest.

∙ As with system OLS and FGLS, there is a trade-off between

robustness and efficiency.

∙When IVs are available that are exogenous in each equation in the

zero conditional mean sense, can characterize the optimal IVs (and then

no weighting matrix is needed.)
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8. PANEL DATA IV APPLICATION

∙ Apply pooled IV to estimate the passenger demand function,

lpassenit  t  1lfareit  2ldisti  3ldisti
2  uit,

first using concenit as an IV for lfareit and then using as many lags as is

available for each t.
. tab year

1997, 1998, |
1999, 2000 | Freq. Percent Cum.

-----------------------------------------------
1997 | 1,149 25.00 25.00
1998 | 1,149 25.00 50.00
1999 | 1,149 25.00 75.00
2000 | 1,149 25.00 100.00

-----------------------------------------------
Total | 4,596 100.00
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. * Reproduce the first-stage regression with fully robust inference:

. reg lfare concen ldist ldistsq y98 y99 y00, cluster(id)

Linear regression Number of obs  4596
F( 6, 1148)  205.63
Prob  F  0.0000
R-squared  0.4062
Root MSE  .33651

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .3601203 .058556 6.15 0.000 .2452315 .4750092

ldist | -.9016004 .2719464 -3.32 0.001 -1.435168 -.3680328
ldistsq | .1030196 .0201602 5.11 0.000 .0634647 .1425745

y98 | .0211244 .0041474 5.09 0.000 .0129871 .0292617
y99 | .0378496 .0051795 7.31 0.000 .0276872 .048012
y00 | .09987 .0056469 17.69 0.000 .0887906 .1109493

_cons | 6.209258 .9117551 6.81 0.000 4.420364 7.998151
------------------------------------------------------------------------------

.* Plenty of partial correlation between lfare and concen.
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. * Now pooled IV, usual, heteroskedasticity-robust, and fully robust

. * (heteroskedasticity and serial correlation) inference:

. ivreg lpassen ldist ldistsq y98 y99 y00 (lfare  concen)

Instrumental variables (2SLS) regression

Source | SS df MS Number of obs  4596
------------------------------------------- F( 6, 4589)  20.45

Model | -556.334915 6 -92.7224858 Prob  F  0.0000
Residual | 4147.02233 4589 .903687586 R-squared  .

------------------------------------------- Adj R-squared  .
Total | 3590.68741 4595 .781433605 Root MSE  .95062

------------------------------------------------------------------------------
lpassen | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lfare | -1.776549 .2358788 -7.53 0.000 -2.238985 -1.314113
ldist | -2.498972 .4058371 -6.16 0.000 -3.294607 -1.703336

ldistsq | .2314932 .0345468 6.70 0.000 .1637648 .2992216
y98 | .0616171 .0400745 1.54 0.124 -.0169481 .1401824
y99 | .1241675 .0405153 3.06 0.002 .044738 .2035971
y00 | .2542695 .0456607 5.57 0.000 .1647525 .3437865

_cons | 21.21249 1.891586 11.21 0.000 17.50407 24.9209
------------------------------------------------------------------------------
Instrumented: lfare
Instruments: ldist ldistsq y98 y99 y00 concen
------------------------------------------------------------------------------
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. ivreg lpassen ldist ldistsq y98 y99 y00 (lfare  concen), robust

Instrumental variables (2SLS) regression Number of obs  4596
F( 6, 4589)  18.23
Prob  F  0.0000
R-squared  .
Root MSE  .95062

------------------------------------------------------------------------------
| Robust

lpassen | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

lfare | -1.776549 .2500745 -7.10 0.000 -2.266815 -1.286283
ldist | -2.498972 .4233497 -5.90 0.000 -3.328941 -1.669002

ldistsq | .2314932 .0361533 6.40 0.000 .1606153 .3023711
y98 | .0616171 .0400086 1.54 0.124 -.016819 .1400532
y99 | .1241675 .0408092 3.04 0.002 .0441618 .2041733
y00 | .2542695 .0469737 5.41 0.000 .1621784 .3463606

_cons | 21.21249 1.997197 10.62 0.000 17.29702 25.12795
------------------------------------------------------------------------------
Instrumented: lfare
Instruments: ldist ldistsq y98 y99 y00 concen
------------------------------------------------------------------------------
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. ivreg lpassen ldist ldistsq y98 y99 y00 (lfare  concen), cluster(id)

Instrumental variables (2SLS) regression Number of obs  4596
F( 6, 1148)  28.02
Prob  F  0.0000
R-squared  .
Root MSE  .95062

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lpassen | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lfare | -1.776549 .4753368 -3.74 0.000 -2.709175 -.8439226
ldist | -2.498972 .831401 -3.01 0.003 -4.130207 -.8677356

ldistsq | .2314932 .0705247 3.28 0.001 .0931215 .3698649
y98 | .0616171 .0131531 4.68 0.000 .0358103 .0874239
y99 | .1241675 .0183335 6.77 0.000 .0881967 .1601384
y00 | .2542695 .0458027 5.55 0.000 .164403 .3441359

_cons | 21.21249 3.860659 5.49 0.000 13.63775 28.78722
------------------------------------------------------------------------------
Instrumented: lfare
Instruments: ldist ldistsq y98 y99 y00 concen
------------------------------------------------------------------------------
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. * Now estimate a reduced form separately for each year. First generate

. * the lags of concen.

. xtset id year
panel variable: id (strongly balanced)

time variable: year, 1997 to 2000
delta: 1 unit

. gen concen_1  l.concen
(1149 missing values generated)

. gen concen_2  l2.concen
(2298 missing values generated)

. gen concen_3  l3.concen
(3447 missing values generated)
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. reg lfare concen ldist ldistsq if year  1997

Source | SS df MS Number of obs  1149
------------------------------------------- F( 3, 1145)  262.60

Model | 99.8444059 3 33.2814686 Prob  F  0.0000
Residual | 145.115611 1145 .126738525 R-squared  0.4076

------------------------------------------- Adj R-squared  0.4060
Total | 244.960016 1148 .213379805 Root MSE  .356

------------------------------------------------------------------------------
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .3950364 .0627179 6.30 0.000 .2719815 .5180914

ldist | -.9360734 .2718439 -3.44 0.001 -1.469441 -.4027054
ldistsq | .10807 .0206224 5.24 0.000 .0676079 .148532

_cons | 6.190051 .8898786 6.96 0.000 4.444075 7.936026
------------------------------------------------------------------------------

. predict lfareh97
(option xb assumed; fitted values)
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. reg lfare concen concen_1 ldist ldistsq if year  1998

Source | SS df MS Number of obs  1149
------------------------------------------- F( 4, 1144)  218.70

Model | 90.6172553 4 22.6543138 Prob  F  0.0000
Residual | 118.502855 1144 .103586411 R-squared  0.4333

------------------------------------------- Adj R-squared  0.4313
Total | 209.12011 1148 .182160374 Root MSE  .32185

------------------------------------------------------------------------------
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .1864114 .123059 1.51 0.130 -.0550353 .4278581

concen_1 | .2103054 .1205194 1.74 0.081 -.0261586 .4467693
ldist | -.9217479 .2457973 -3.75 0.000 -1.404012 -.4394837

ldistsq | .1053951 .0186503 5.65 0.000 .0688024 .1419878
_cons | 6.236879 .8045257 7.75 0.000 4.658368 7.815391

------------------------------------------------------------------------------

. predict lfareh98
(option xb assumed; fitted values)
(1149 missing values generated)
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. reg lfare concen concen_1 concen_2 ldist ldistsq if year  1999

Source | SS df MS Number of obs  1149
------------------------------------------- F( 5, 1143)  162.41

Model | 89.5585078 5 17.9117016 Prob  F  0.0000
Residual | 126.059565 1143 .110288333 R-squared  0.4154

------------------------------------------- Adj R-squared  0.4128
Total | 215.618073 1148 .187820621 Root MSE  .3321

------------------------------------------------------------------------------
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | -.1435733 .1477566 -0.97 0.331 -.4334778 .1463312

concen_1 | .3274273 .1685066 1.94 0.052 -.0031897 .6580444
concen_2 | .2672412 .1267665 2.11 0.035 .0185201 .5159624

ldist | -.8896912 .2538571 -3.50 0.000 -1.387769 -.391613
ldistsq | .1030365 .0192529 5.35 0.000 .0652615 .1408115

_cons | 6.104077 .8317747 7.34 0.000 4.4721 7.736054
------------------------------------------------------------------------------

. predict lfareh99
(option xb assumed; fitted values)
(2298 missing values generated)
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. reg lfare concen concen_1 concen_2 concen_3 ldist ldistsq if year  2000

Source | SS df MS Number of obs  1149
------------------------------------------- F( 6, 1142)  122.92

Model | 78.3465194 6 13.0577532 Prob  F  0.0000
Residual | 121.31513 1142 .106230412 R-squared  0.3924

------------------------------------------- Adj R-squared  0.3892
Total | 199.66165 1148 .173921298 Root MSE  .32593

------------------------------------------------------------------------------
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | -.4329714 .134417 -3.22 0.001 -.6967035 -.1692394

concen_1 | .1853204 .1781258 1.04 0.298 -.1641701 .5348108
concen_2 | .3333175 .1655192 2.01 0.044 .0085616 .6580735
concen_3 | .3429416 .1254792 2.73 0.006 .096746 .5891373

ldist | -1.135407 .2493245 -4.55 0.000 -1.624593 -.6462217
ldistsq | .1189046 .0189071 6.29 0.000 .0818079 .1560012

_cons | 7.103373 .8171934 8.69 0.000 5.500005 8.706742
------------------------------------------------------------------------------

. predict lfareh00
(option xb assumed; fitted values)
(3447 missing values generated)
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. gen lfareh  lfareh97

. replace lfareh  lfareh98 if year  1998
(1149 real changes made)

. replace lfareh  lfareh99 if year  1999
(1149 real changes made)

. replace lfareh  lfareh00 if year  2000
(1149 real changes made)
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. ivreg lpassen ldist ldistsq y98 y99 y00 (lfare  lfareh), cluster(id)

Instrumental variables (2SLS) regression Number of obs  4596
F( 6, 1148)  31.11
Prob  F  0.0000
R-squared  0.0242
Root MSE  .8738

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lpassen | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lfare | -1.082542 .358565 -3.02 0.003 -1.786058 -.3790258
ldist | -1.955129 .7552349 -2.59 0.010 -3.436925 -.4733338

ldistsq | .1691905 .0618604 2.74 0.006 .0478184 .2905625
y98 | .0447243 .0097519 4.59 0.000 .0255908 .0638577
y99 | .0998176 .0135394 7.37 0.000 .0732527 .1263824
y00 | .187701 .0337105 5.57 0.000 .1215598 .2538422

_cons | 16.88214 3.229308 5.23 0.000 10.54613 23.21815
------------------------------------------------------------------------------
Instrumented: lfare
Instruments: ldist ldistsq y98 y99 y00 lfareh
------------------------------------------------------------------------------
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