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1. INTRODUCTION

e A count variable is one that takes on nonnegative integer values. In
the leading case, there is no natural upper bound, so the support of y is
{0,1,2,...}. In other cases, there is an upper bound, and it can even
change by individual: (n;,y;) Is drawn with »; a positive integer and
theny; € {0,1,...,n;}. (For example, n; is number of employees and y;
IS the number who participate in an optional pension plan.)

e Focus here Is on count data, but the quasi-likelihood methods can be

applied to any nonnegative response.



e For the most part, count data are analyzed from one of two
perspectives:

(1) We are mainly interested in E(y[x) — and so we want consistent
estimators of the mean parameters without additional assumptions — but
we would like our estimators to at least recognize the count nature of y
and be efficient in some situations.

(2) We are interested in other features of D(y|x), and so we use various
models for D(y|x) and apply MLE.

e [or later: If the data are censored or truncated, MLE is independsable,

which means we should choose a flexible model for D(y|x).



e |f we our interest is in E(y[x) and we observe y over Its entire range,
then, as usual, a linear model might provide a good approximation to
the average partial effects. At a minimum, the linear model results can
be compared with APEs from other methods. Goodness-of-fit can also
be compared across different models of conditional means.

e The drawbacks of a linear model are that it will not ensure E(y|x) > 0
for all relevant vectors x and it may not give sensible partial effects for

extreme values of Xx.



¢ \We cannot use log(y) in interesting applications because y; IS
typically zero for a nontrivial fraction of the observations. Sometimes
log(1 + y) i1s used as the dependent variable in linear regression. But
this transformation has several shortcomings.

e First, log(1) = 0, so this transformation does not help with the
pile-up-at-zero problem. w = log(1 + y) is still a discrete, nonnegative

variable.



e Second, even If we assume
Eflog(1 +y)Ix] = xB (1)

— not a great assumption because log(1 + y) > 0 — how do we interpret

the 5,7 We cannot “undo” the log:
E(yx) # exp(xp) -1 (2)

(Note that the RHS could be negative for some values of x.) Generally,

we cannot find E(y|X), so we cannot find partial effects on E(y[x).



e As an exercise, suppose you are willing to assume

log(1 +y) = XB + v where D(v|x) = D(v) and E(v) = 0. (Independence
between v and X is questionable because v > —xp is required.) Show
that E(y|x) = nexp(xp) — 1 for some n > 1.

e Because y changes discretely, we cannot use the approximation that
the change in logs is roughly the proportionate change in y, especially
starting at y = 0. In other words, the ; need not be good

approximations to semi-elasticities or elasticities.



e One reason to use log(1 + y) rather than y in a linear regression is to
guard against outliers (large counts). But we still face the problem of

uncovering E(y[x).

e A better solution is to model E(y|x) directly. We will mainly use an

exponential function: E(y|x) = exp(xp) but other functional forms are

possible.



2. POISSON REGRESSION

Setup and Estimation

e |f we were to start with a distribution for D(y|x), when y is an
unbounded count variable, the Poisson is natural. Recall that the
distribution is completely characterized by its mean.

o Let u(x) = E(y|x) wherey € {0,1,2,...} and u(-) > 0. Then the

conditional distribution is Poisson if the density iIs

JOIX) = exp[-u()][n() 1y
whereyl =1+2..+(y—-1)-yand 0! = 1.

3)



o |f m(X,PB) Is the parametric model of the mean, then the model of the

density is

SOIX; B) = exp[-m(x,B)][m(x,B) "Iy (4)
or, with m(x, B) = exp(xp),

JIx;B) = exp[—exp(xP)]exp(yxB)/y! (5)

e The exponential is by far the most popular, and can be made flexible
by including nonlinear functions (such as logs, squares, and

Interactions) in X.
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e The Poisson distribution is a member of the linear exponential family.
So, for any y > 0 with E(y|x) = m(X,B,), where m(x,p) > 0 for all x
and B, the Poisson QMLE Is consistent for B_ regardless of arbitrary
misspecification of other distributional features.

e |t Is easily seen that the score of the quasi-log likelihood has zero

conditional mean when evaluated at f_:

(;(B) = —m(x;,B) +y:log[m(x;,B)] —log(y:") (6)
si(B) = —Vpm(x:i,B)' +yiVpm(X;, ) Im(x;,B)
= Vem(X:, B)'[yi — m(X:, B)Jm(X;, B) (7)
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e Therefore, when E(yx) = m(x,B,),

E[s;(B,)Ix:] = Vpm(Xi, B,) [EQilX:) — m(X;, B, )]/m(x;,B,) = O. (8)

e In the exponential case, the score is particularly simple:

si(B) = X;[yi — exp(Xip)] (9)
an so the FOC is

N
D Xy —exp(xiB)] =0.
i—1
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e |t follows that when x;; = 1 — by far the leading case — the residuals

d; = yi —exp(X:B) sum to zero.

e The fitted values are y, = exp(xiﬁ), and so in the exponential case
with a constant, the average of the fitted values equals j. (Recall this
also holds for a linear model estimated by OLS and a logit model

estimated by Bernoulli MLE.)
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e The Hessian in the exponential case is also simple and negative

semi-definite for any value of B:

H;(B) = —exp(X:B)x;X; (10)
e For other conditional mean choices, the Hessian depends on y; and is

not always negative semi-definite.

e From our MLE notation, in general,

AX;,B,) = —E[Hi(B,)IXi] = Vem(xi,B,) Vpm(Xi, B, )m(xi,B,)  (11)
Ao = E[A(X;,B,)] = —E[H:(B,)]. (12)
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e The Iinner part of the sandwich is

B, = E[s:(B,)si(B,)'] = E[usVem(x;,B,) Vem(x;, B, )m(x;,B,)?]  (13)
= E[z5(x:)Vpm(x:,B,) ' Vem(Xi, B, )m(x;,B,)*°] (14)

where
72(X;) = E(u?|X;) = Var(yi|x;) (15)

IS the frue variance of y; given Xx;.
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e Robust variance matrix if m(x;, B) Is correctly specified:

N 1/ N
(Zvﬁﬁqgvﬁﬁqi/ﬁa,) (Zﬁ,?vﬂﬁa;vﬂﬁa,-/ﬁﬁ)

i=1

N -1
. (Z vﬁﬁqgvﬁﬁq,—/m,) (16)

i=1

or with multiplication by a degrees-of-freedom adjustment, N/(N — P).
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e The usual Poisson MLE variance matrix estimator,
N -1
(Z vﬁﬁqgvﬂﬁai/ﬁqi>
=1
Is valid only under the Poisson variance assumption:
Var(y|X) = E(y|X).

(However, other features of the Poisson distribution may be

misspecified.)

17
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e The GLM variance assumption for the Poisson QMLE is
Var(y|X) = 62E(|X) (19)

for some o2 > 0. The case of overdispersion (relative to the Poisson
assumption), o2 > 1, is common in applications. But underdispersion,

o2 < 1, can occur.

e The Pearson residuals are ¢,/ /m; and the usual estimate of &2 is

N
62 = (N-P)L ) a2l (20)
i=1
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e The GLM asymptotic variance estimate is

N -1
52<Z vﬁﬁqgvﬁﬁqi/ﬁa,) . (21)

i=1
The GLM standard errors are the MLE standard errors multiplied by ¢
(and often 6 > 1).

e For multiple restrictions, Wald test is easy to compute using any of

the variance matrix estimates [preferably the fully robust form in (16).]
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e Under the GLM variance assumption a quasi-LR statistic is justified:
OLR = 2(L,, — £)I62, (22)
where 62 is from the unrestricted model, has an asymptotic %zQ

distribution under Ho.
e With overdispersion it is clear that the usual LR statistic, 2(£,, — £,),

will be too large on average.
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Estimation and Intepretation with an Exponential Mean
e The Stata command for Poisson regression with an exponential

function is one of the following (in order of decreasing robustness for

Inference):

glm y x1 ... xK, fam(poisson) link(log) robust
glm y x1 ... xK, fam(poisson) link(log)
scale(x2)

glm y x1 ... xK, fam(poisson) link(log)
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e The option “scale(x2)” means to use the Pearson estimate of o2
and to report those standard errors.

e The first command is equivalent to

poisson y x1 ... XK, robust

and the last gIm command is equivalent to

poisson y x1 ... xK

which means that the Poisson distribution (actually, the variance

assumption) is taken to be correct in inference.
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o If E(y|X) = exp(B1 + Poax2 +...+Pxxk) then
CE(X)

ax]'

= B, exp(xP). (23)

e The APE is consistently estimated as
A N A
Bj[Nl ZeXp(XiB)J = By (24)
i=1

because as shown earlier (from the first-order condition), ¥ = y.
e Consequently for (roughly) continuous x;, the Poisson coefficients
multiplied by the sample average is comparable to the OLS estimates y;

fromy;on1,xp,...,xik.
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e For most purposes, the [3,— are more interesting than the scaled

coefficients because

B, — olog E(y|x) | (25)

OX;
so 1004, is roughly the ceteris paribus percentage change in £(y|X)
when Ax; = 1.
e If x; = log(z,), then f; is the estimated elasticity of E(y|x) with
respect to z;.

e Should compute the fully robust standard errors. Also use the GLM

version of the standard errors to get an estimate of o.
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e Other functional forms are easily accomodated. For example, if

E(y[z) = exp(B1 + Paz1 + Pazf + 22B,), (26)
then
GIO%Z()AZ) = B2 +2B3z1 (27)

and so 100(B2 + 2B3z1) Is roughly the percentage change in E(y|z)
when Az, = 1. If B, and 3 have opposite signs, the turning point in
the quadratic is z7 = |B2/(2B3).
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e Goodness-of-Fit: To measure how well the mean predicts y;, can use
the squared correlation between y; and y; as an R-squared. (Basing it on
Poisson log likelihood is too restrictive.) Or, use 1 — SSR/SST.

e There are ways to test the Poisson variance assumption and the GLM
variance assumption; see Chapter 18. Why test? First, to see whether a
more efficient estimator might be available (see next section). Second,
to see whether, if the full distribution is of interest, whether the Poisson
IS obviously deficient.

e |f we want to estimate, say, P(y > j|x), then we should use a flexible

distribution, not the Poisson.
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Efficiency of Poisson QMLE

¢ A loose motivation for using Poisson QMLE for count responses is
that the Poisson distribution is traditionally used for modeling count
data. But the assumption that the variance equals the mean is too
restrictive across all applications.

e Nevertheless, it turns out the Poisson QMLE is the efficient estimator

In a certain class of estimators under the GLM assumption,

Var(yx) = o 5E([x) (28)
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e Precisely, consider any N -asymptotically normal estimator that is
JN -consistent under only the conditional mean assumption,

assumption
E@|x) = m(x,B,) forsome B e B. (29)

Then the Poisson QMLE has a smaller asymptotic variance if the

Poisson GLM variance assumption holds.
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e |t IS Important to understand that there are more efficient estimators

than the Poisson QMLE if we use the mean specification along with
Var(yx) = o3m(x,B,) (30)

because this adds additional information useful for estimating B_. But

then such estimators generally would be inconsistent if the GLM
variance assumption does not hold.
e Generally one needs to be specific about the comparison class of

estimators when discussing efficiency.
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3. NEGATIVE BINOMIAL MODELS

e A useful alternative to Poisson regression Is the class of Negative
Binomial regression models.

e Two useful approaches are what have been dubbed the NegBing | and
NegBin Il models (Cameron and Trivedi (1986)).
e [t Is Important to distinguish between cases where the full distribution
IS assumed correctly specified, with parameters estimated by MLE, and
a QMLE two-step framework. The latter only requires correct

specification of the conditional mean.
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MLE Estimation of NegBin I
e One way to derive NegBin Il is to add an unobservable to the

standard Poisson model:

vil(Xi,ci;) ~ Poisson[cim(X;,B)] (31)
cilX; ~ Gamma(n=,n7?) (32)
E(c)) = 1, Var(c:) = n? (33)

e Adding c; is one device to obtain a more flexible distribution for

D(y:i|x;). We need the density of y; conditional on X;.
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e Can show the log-likelihood function for each i is

| i n? | m(X;, B)
LBun®) = Iog[ n~2 + m(X;, B) } i Iog[ N2+ m(X;, B) } (59

+log[T' (i + n72)IT(17%)]

where I'(+) is the gamma function: for » > 0,

I'(r) = I: u"texp(—u)du (35)
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e MLE is relatively straightfoward. Technically, it has no known
robustness properties for estimating B if the density is misspecified, but
It often seems to give similar estimates to the Poisson QMLE.

e |n Stata with an exponential mean:

nbreg vy x1 ... XK, disp(mean)

e Stata labels ¢ = n?.

e NegBin Il implies that there must be overdispersion, and it must be a

function of the mean.
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e To see this, we can find the mean and variance of y; conditional only

on X; (and we do not even need to assume a Gamma distribution for ¢;):
E(yilx:) = E[EQilXi,ci)X:] = E(cilxi)m(X;, B) = m(Xi, B) (36)
and
Var(y,-|X,-) = E[Var(y,-|xl-,c,-)|xi] + Var[E(yl-|X,-,c,-)|Xl-] (37)
= E[cim(xi,ﬁ)|xi] + Var[cim(xi,B)|Xi]
= E(cilx)m(x:,B) + Var(ci|x;)[m(x;, p)]*
= m(X;, B) +n?[m(x;, B)]° (38)
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¢ S0, the variance for NegBin 1l does not allow underdisperion because
Var(yi|x;) > E(yi|X;), with strict inequality if n% > 0. Plus, it rules out
the GLM variance assumption, Var(y|X) = o’m(x,B), unless n? =

and o2 =

35



e Generally, the dispersion of D(y;|X;) Is defined as

Var(yilxl-)
E(yilx:)

Disperson(X;) =

and is a function of x;.
e For the GLM variance assumption, the dispersion is constant and

equal to o2. For NegBin 11, the dispersion is linear in the mean:

Disperson(X;) = 1+ n?m(X;,B)

36
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Two-Step QMLE for NegBin |1
e The variance expression in (38) suggests a two-step approach.
Estimate B by, say, Poisson regression. Letting u; = y; — E(y:|X;), note
that E(u?|x;) = m(X;,B) + n?[m(x;, B)]?. Therefore,
2
2 _ E U; —WI(XZ',B) i| (41)
! [ [m(x:, B)]2

so, letting u; be the Poisson residuals, define

N .

e [ = m(xB)]

2 = N1 E = 42
! =~ [m(xi, P12 #2)
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e Importantly, for fixed n?, say 72, the log likelihood

. — B- 7_7_2 , m(xi!B)
® -t ey [ e | @

Is in the LEF. (Term depending on gamma function no longer needed.)

e Exercise: Show that the score evaluated at “true” B (call it B_) has

zero conditional mean whenever the mean is correctly specified (with

arbitrary misspecification of other aspects of the distribution).

38



¢ \Whether or not the variance function is correct,
72 5 E{[u? — m(x;,B))/[m(x:, B)]%}. The two-step QMLE is like using
a fixed value of n2. In effect, we just take
° = plimy-«(H?)
and apply the LEF results.

e Can also show that plugging in /2 for n? does not affect the
JN -asymptotic distribution of the 2SQMLE. (Verify that key result

holds for two-step M-estimation.)
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e The two-step NeBin Il QMLE is asymptotically equivalent to
weighted NLS using estimated variance function

m(Xi, B) + 72 [m(x:, B)]%.

e Can also fix n? at given value, such as n® = 1 for Geometric
distribution.

e Using two or more different QMLESs in the LEF with the same mean
function (Poisson, Geometric, two-step NegBin, NLS) can provide

evidence of conditional mean misspecification.
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MLE Estimation of NegBin |
e A different parameterization of the NegBin distribution, called

NegBin I, has the same mean function m(X;, ) but variance
(L +n*)m(x;,B) (44)

so the dispersion is contant, 1 + n?.

e |_ike NegBin Il, NegBin | allows only overdispersion.
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o |f, for example, the mean is correctly specified and

Var(yi|X;) = o’m(x;,B) with 2 < 1, neither NegBin | nor NegBin Il
estimated by MLE is consistent (although the two-step NegBin Il
estimator would be). A practical issue is how much the estimates differ

from Poisson regression.
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e [n Stata with an exponential mean, NegBin | is estimated as

nbreg y x1 x2 ... XK, disp(const)

e The reported estimates are interpreted just as with Poisson regression,
since the mean is exponential (just like NegBin I1). Stata uses a = n?.
e For NegBin I and I1, need to average exp(B1 + Baxi +...+Bxxix) t0

get APEs. The average of fitted values is not .
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e Goodness-of-Fit just like in Poisson case. Use squared correlation
between actual and fitted values or an SSR version.

e Remember, only OLS (or NLS, if we used a nonlinear mean function)
chooses the parameters to maximize the R-squared. The other

estimators maximize the (quasi-) log likelihood function.

44



e Example: GROGGER.DTA. Data on men in California born in 1960
or 1961. All had been arrested at least once previously. Data from

1986.
¢ narr86 Is the number of times the man was arrested during 1986. Are

there deterrent effects to prior convictions or sentence lengths? What is

the effect of incarceration? What about labor market opportunities?
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. des

Contains data from crimel.dta

obs: 2,725
vars: 19 6 Nov 1996 10:54

size: 155,325 (98.5% of memory free)

storage display value

variable name type  format label variable label
narr86 byte  %9.0g # times arrested, 1986
nfarr86 byte  %9.0g # felony arrests, 1986
nparr86 byte %9.0g # property crme arr., 1986
pcnv float %9.0g proportion of prior convictions
avgsen float %9.0g avg sentence length, mos.
tottime float %9.0g time iIn prison since 18 (mos.)
ptime86 byte  %9.0g mos. in prison during 1986
qemp86 float %9.0g # quarters employed, 1986
inc86 float %9.0g legal income, 1986, $100s
durat float %9.0g recent unemp duration
black byte  %9.0g =1 if black
hispan byte  %9.0g =1 1f Hispanic
born60 byte  %9.0g =1 1f born in 1960
pcnvsq float %9.0g pcnv/2
pt86sq int %9.0g ptime86.2
1INc86sq float %9.0g Inc86”2
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. tab narr86

# times |
arrested, |
1986 | Freq Percent
____________ +_________________________
0 | 1,970 72.29
1] 559 20.51
2 | 121 4.44
3] 42 1.54
4 | 12 0.44
5 ] 13 0.48
6 | 4 0.15
7 | 1 0.04
9 | 1 0.04
10 | 1 0.04
12 | 1 0.04
____________ +_________________________
Total | 2,725 100.00

. sSum pcnv avgsen ptime86 iInc86

Std. Dev.

_____________ +________________________________________________________

Variable | Obs Mean
pcnv | 2725 .3577872
avgsen | 2725 .6322936
ptime86 | 2725 .387156
inc86 | 2725 54_.96705

-395192
3.508031
1.950051
66.62721
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. reg narr86 pcnv avgsen tottime ptime86 Inc86 gemp86 black hispan born60, robust

Linear regression Number of obs = 2725
FC 9, 2715) = 25.93
Prob > F = 0.0000
R-squared = 0.0725
Root MSE = .82873

| Robust
narr86 | Coef Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
pcnv | -.131886 .0335876 -3.93 0.000 -.1977458 -.0660262
avgsen | .0113316 -0141409 -0.80 0.423 -0390595 -0163963
tottime | .0120693 .0131776 0.92 0.360 -0137699 -0379084
ptime86 | .0408735 -0067985 -6.01 0.000 -0542043  -.0275426
inc86 | .0014617 -0002289 -6.38 0.000 -.0019106  -.0010128
qemp86 | -0513099 -014205 -3.61 0.000 -0791636  -.0234562
black | .3270097 .0584381 5.60 0.000 .2124221 .4415973
hispan | -1938094 -0401625 4.83 0.000 -1150572 .2725616
born60 | -.022465 .032094 -0.70 0.484 .0853961 -0404661
_cons | -576566 -0426021 13.53 0.000 -4930302 .6601019
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. glm narr86 pcnv avgsen tottime ptime86 Inc86 gemp86 black hispan born60,
fam(poisson)

Generalized linear models

Optimization

Deviance

Pearson

Variance function: V(u)
Link function

Log likelihood

- ML

2822.184873
4118.079859

u
- g(u) In(u)

= -2248.761092

avgsen
tottime
ptime86

gemp86

hispan
born60

OIM

Coef. Std. Err.

-.4015713 .0849712
-.0237723 .019946

-0244904 .0147504
-.0985584 .0206946
-.0080807 .001041
-.0380187 .0290242

.6608376 .0738342

-4998133 .0739267
-.0510286 .0640518
-.5995888 .0672501

No. of obs = 2725

Residual df = 2715

Scale parameter = 1

(1/df) Deviance = 1.039479

(1/df) Pearson = 1.516788

[Poisson]

[Log]

AlIC = 1.657806

BIC = -18654.07
P>]z] [95% Conf. Interval]
0.000 -.5681117 -.2350308
0.233 -.0628658 .0153212
0.097 -.0044199 -0534006
0.000 -.1391192  -.0579977
0.000 -.010121 -.0060404
0.190 -.0949051 .0188677
0.000 .5161252 -80555
0.000 -3549196 .644707
0.426 -.1765678 -0745106
0.000 -.7313966 -.467781
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. glm narr86 pcnv avgsen tottime ptime86 Inc86 gemp86 black hispan
fam(poisson) robust

Generalized linear models
> ML

Optimization

Deviance

Pearson

2822.184873
4118.079859

Log pseudolikelihood = -2248.761092

No. of obs

Residual

df

Scale parameter
(1/df) Deviance
(1/df) Pearson

born60,

2725
2715
1

1.039479
1.516788

1.657806
-18654.07

ptime86
gemp86

hispan
born60

-4015713
.0237723
-0244904
.0985584
-0080807
.0380187
.6608376
-4998133
-0510286
.5995888

Robust

Std. Err.
.1011619
.0236078
.0205023
.0223035
.0012276
.0341509
.0994572
.0923874
.0811403
.0893463

50

AIC

BIC
P>]z]| [95% Conf.
0.000 -.5998449
0.314 -.0700427
0.232 -.0156934
0.000 -.1422724
0.000 -.0104867
0.266 -.1049532
0.000 -4659051
0.000 -3187374
0.529 -.2100606
0.000 -.7747044

Interval]

.2032976
.0224981
.0646741
.0548445
.0056747
.0289158

.85577

.6808892
.1080034
.4244732



. glm narr86 pcnv avgsen tottime ptime86 Inc86 gemp86 black hispan

fam(poisson) sca(x2)

Generalized linear models
- ML

Optimization

Deviance
Pearson

Log likelihood

2822.184873
4118.079859

= -2248.761092

No. of obs
Residual df
Scale parameter
(1/df) Deviance
(1/df) Pearson

AlIC
BIC

born60,

2725
2715
1

1.039479
1.516788

1.657806
-18654.07

pcnv
avgsen
tottime
ptime86
inc86
qemp86
black
hispan
born60
_cons

-4015713
.0237723
.0244904
-0985584
.0080807
.0380187
.6608376
-4998133
.0510286
.5995888

(Standard errors scaled using square root of Pearson X2-based dispersion)

.1046488
.0245651
.0181663
.0254871
.0012821
.0357456
.0909327
.0910466
.0788849
.0828238

ol

.6066791
.0719191
.0111149
.1485122
.0105935
.1080788
.4826127
.3213652
.2056401
.7619206

[95% Conf.

-.1964634

Interval]

.0243745
-.0600957

-.0486047
-.0055679

.0320414
.8390624
.6782614

-103583
-.437257



. di sqrt(1.5168)
1.2315843

. * The estimate of sigma is about 1.232.

. predict narr86h_p
(option mu assumed; predicted mean narr86)

. corr narr86 narr86h_p

(obs=2725)
| narr86 narr86-~p
_____________ +__________________
narr86 | 1.0000
narr86h_p | 0.2775 1.0000
. di .277572
-07700625

. * Somewhat better fit than linear model.
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. * Average marginal (or partial) effects:
. margeff

Average partial effects after glm
y = log(narr86)

variable | Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ +________________________________________________________________
pcnv | -.1623973 .0427474 -3.80 0.000 -.2461807 -.078614
avgsen | -.0096136 -0099407 -0.97 0.333 -.0290969 -0098697
tottime | -009904 .0073557 1.35 0.178 -.0045129 .024321
ptime86 | -.039922 -0104625 -3.82 0.000 -.0604282  -.0194158
inc86 | -.0032679 -0005325 -6.14 0.000 -.0043115 -.0022243
gemp86 | -.0153749 .014467 -1.06 0.288 -.0437298 -0129799
black | .3278389 .0601313 5.45 0.000 .2099838 -4456941
hispan | .2349835 -0535485 4.39 0.000 -1300302 -3399367
born60 | -.020474 .030841 -0.66  0.507 -.0809213 .0399732
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. * Marginal effects at averages:

. mfx

Marginal effects after gim
predicted mean narr86 (predict)

.32918187

I
+
pcnv |
avgsen |
tottime |
ptime86 |
inc86 |
qemp86 |
black*|
hispan*|
born60*|

-.13219
-.0078254
.0080618
-.0324437
-.00266
-.0125151
27712
.1914481
-.0166821

z  Pslzl [ 95% C.l. ]
-3.87 0.000 -.19907 -.06531
~0.97 0.333 -.02367 .008019

1.35 0.177 -.003655 .019779
-3.89 0.000  -.0488 -.016087
~6.81 0.000 -.003426 -.001894
-1.06 0.290 -.035691 .010661

5.85 0.000 .184332 .369908

4.79 0.000 .113184 .269713
~0.65 0.515 -.06688 .033516

.357787
.632294
.838752
.387156

54.967
2.30903
.161101
.217615
.362569

(*) dy/dx is for discrete change of

dummy variable from O to 1
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. * Now estimate NegBin Il model:

. nhbreg narr86 pcnv avgsen tottime ptime86 iInc86 gemp86 black hispan born60,
disp(mean)

Negative binomial regression Number of obs = 2725
LR chi2(9) = 266.12
Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -2157.628 Pseudo R2 = 0.0581
narr86 | Coef. Std. Err z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
pcnv | -.4770963 -1033295 -4.62 0.000 -.6796183  -.2745743
avgsen | -.0173385 .0261171 -0.66 0.507 -.0685272 .0338501
tottime | .0197394 -0192325 1.03 0.305 -.0179557 .0574344
ptime86 | -.1073997 .025074 -4.28 0.000 -.1565439 -.0582555
inc86 | -.0077126 -0011465 -6.73 0.000 -.0099596 -.0054656
gemp86 | -.0504884 .0351857 -1.43 0.151 -.1194511 .0184743
black | .6560406 -0923594 7.10 0.000 -4750195 -8370617
hispan | -5048465 .0895663 5.64 0.000 .3292998 .6803932
born60 | -.046412 .0776384 -0.60 0.550 -.1985804 -1057564
_cons | -.5637368 .0827121 -6.82 0.000 -.7258495 -.4016242
_____________ +________________________________________________________________
/lnalpha | -.0738912 1177617 -.3046999 1569175
_____________ +________________________________________________________________
alpha | .9287728 1093739 7373446 1.169899
Likelihood-ratio test of alpha=0: chibar2(01) = 182.27 Prob>=chibar2 = 0.000
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. margeff

Average partial effects after nbreg

y = E(narr86) (expected number of counts)

pcnv
avgsen
tottime
ptime86
inc86
qemp86
black
hispan
born60

-1933489
-0070266
-0079996
-0436086
.0031256
-.020461
.3256315
.2382802
.0186745

.0429863

.010587

.0078007

.010438

.0004821
.0143138

.061895

.0535439
.0305162

[95% Conf.
-.1090974
-0137235
.0232886
-0231504
-0021807
-0075935
-4469436
.3432244
.0411361

.2776004
.0277767
.0072894
.0640668
.0040705
.0485155
.2043195
.1333361
-.078485

Interval]
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. predict narr86h_nb2
(option n assumed; predicted number of events)

. corr narr86 narr86h_nb2

(obs=2725)
| narr86 narr86-~2
_____________ +__________________
narr86 | 1.0000
narr86h_nb2 | 0.2735 1.0000
. di .2735"2
.07480225

. corr narr86h_p narr86h_nb2
(0bs=2725)

| narr86~p narr86-~2

+
narr86h_p | 1.0000
narr86h_nb2 | 0.9982  1.0000

.* Compute proportionate change In mean if pcnv increases by .1:

. di .1*-.4015713
-.04015713
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. * NLS with exponential mean:

. glm narr86 pcnv avgsen tottime ptime86 Inc86 gemp86 black hispan
fam(normal) link(log) robust

Generalized linear models
- ML

Optimization

Deviance
Pearson

ptime86
inc86
qemp86
black
hispan
born60
_cons

1849.584158
1849.584158

-1869304
.0350896

.03202

.0783047
.0107211
-0051333
.6837919
.5239022
.0533576
.6944945

Log pseudolikelihood = -3338.628406

Robust

Std. Err.
.1079617
.0218319
.0209271
.0219865
.0018603
.0375761
.1104365
.1075846
.0973706
.0945734

o8

No. of obs
Residual df
Scale parameter
(1/df) Deviance
(1/df) Pearson

AlIC
BIC

.3985315
.0778793
.0089963
.1213974
.0143672
.0685146
.4673403
.3130403
.2442006
-.879855

born60,

2725
2715
.6812465
.6812465
.6812465

2.457709
-19626.67

.0246707
.0077001
.0730363
-.035212
-.0070749
.0787811
-9002434
. 7347641
.1374853
-.509134



. margeff

Average partial effects after glm
y = log(narr86)

variable | Coef. Std. Err z P>|z] [95% Conf. Interval]
_____________ +________________________________________________________________
pcnv | .0750057 .0367633 -2.04 0.041 -.1470604 -.002951
avgsen | -.0140797 -0071365 -1.97 0.049 -.028067 -.0000924
tottime | .012848 -0049705 2.58 0.010 -003106 -02259
ptime86 | .0314518 -008387 -3.75 0.000 -.04789 -.0150136
inc86 | .0043018 -0008093 -5.32 0.000 -.0058879 -.0027157
qemp86 | -0020597 -0141107 0.15 0.884 -.0255967 -.0297162
black | .3389282 .0523359 6.48 0.000 .2363517 -4415046
hispan | .2459323 -0501628 4.90 0.000 -147615 -3442495
born60 | .0212337 .0278328 -0.76  0.446 -.075785 .0333176

. * The big differences in Poisson and NLS suggests functional form

. * misspecification of the conditional mean (not variancel)
* Adding quadratics in pcinv, ptime86, and inc86 shows they are jointly
* significant but give some odd turning points.
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. * NLS minimizes the SSR, which is not the same as maximizing the correlation

. * between y and yhat. Still, NLS might actually fit the mean better (and it
. * does):

. predict narr86h_nls
(option mu assumed; predicted mean narr86)

. corr narr86 narr86h nls
(obs=2725)

| narr86 narr86-~s

_____________ +__________________
narr86 | 1.0000

narr86h_nls | 0.2829 1.0000

. di .28297"2
.08003241
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. * Now use Poisson QMLE to test for joint significance of quadratics in some
. * variables:

- glm narr86 pcnv avgsen tottime ptime86 Inc86 gemp86 black hispan born60
pcnvsq pt86sq inc86sq, Fam(poisson) robust

| Robust
narr86 | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
pcnv | 1.153133 .3721125 3.10 0.002 -4238059 1.88246
avgsen | -.025572 -0280475 -0.91 0.362 -.080544 .0294
tottime | -0121518 .0231558 0.52 0.600 -.0332328 .0575364
ptime86 | .6836811 -0975803 7.01 0.000 .4924273 -8749349
inc86 | -.0120712 -0017862 -6.76  0.000 -.0155721 -0085703
gemp86 | .0230132 -0362222 0.64 0.525 -.047981 -0940073
black | .5913914 -0993506 5.95 0.000 -3966677 .7861151
hispan | .4220377 -0924178 4.57 0.000 -2409021 .6031732
born60 | -.0929425 -0799599 -1.16 0.245 -.2496609 .063776
pcnvsq | -1.795063 .4297431 -4.18 0.000 -2.637344  -.9527822
pt86sq | --1034404 -0160526 -6.44 0.000 -.1349029 -.0719779
Inc86sq | -.0000207 5.03e-06 4.11 0.000 -0000108 -0000305
_cons | -.709866 .088544 -8.02 0.000 -.8834092  -.5363229
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. test pcnvsg pt86sqg Inc86sq

( 1) [narr86]pcnvsq
( 2) [narr86]pt86sq
( 3) [narr86]inc86sq = 0

0
0

78.31
0.0000

chi2( 3)
Prob > chi2

. * Compute the turning points for the variables iIn quadratics:

. di .6837/(2*.1034)
3.3060928

. * So the turning point for the ptime86 variable is at just over three months,
. * which is somewhat puzzling because the effect of prison time is positive

. * up until that point. It does imply the effect of ptime86 gets stronger

. * as 1t heads to 12.
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. di .0121/(2*.000021)

288.09524
. sSum Inc86

Variable | Obs Mean Std. Dev. MiIn Max
T inces ||| 2725 5406705 e6.62721 o0 541

. count if Inc86 > 288
14

. * The turning point for Inc86 iIs acceptable because only 14 observations
. * are to the right of the minimum value, 288.

. di 1.153/(2*1.795)

.32116992
. sum pcnv

Variable | Obs Mean Std. Dev. MiIn Max
______ ponv | 2725 .a577872  .ses102 o 1

. count if pcnv > .32
1316

. * pcnv has a puzzling turning point.
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. * Now NLS on expanded model:

. glm narr86 pcnv avgsen tottime ptime86 iInc86 gemp86 black hispan born60
pcnvsqg pt86sq iInc86sq, fam(normal) link(log) robust

| Robust
narr86 | Coef Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
pcnv | 1.20703 .424864 2.84 0.004 -3743119 2.039748
avgsen | -.0569116 -0438451 -1.30 0.194 -.1428464 -0290233
tottime | -0249159 -02692 0.93 0.355 -.0278463 .0776781
ptime86 | .6230321 -1264642 4.93 0.000 -3751668 -8708975
inc86 | -.012419 -0022894 -5.42 0.000 -.0169061 -.007932
gemp86 | -.0170401 -0406964 0.42 0.675 -.0627234 -0968036
black | .5397976 -1196815 4.51 0.000 -3052261 . 7743691
hispan | .4398227 -1086155 4.05 0.000 .2269403 .6527051
born60 | -.0994788 -0988655 -1.01 0.314 -.2932516 -094294
pcnvsq | -1.659975 -5038294 -3.29 0.001 -2.647463  -.6724878
pt86sq | --.0923192 -0220002 -4.20 0.000 -.1354389  -.0491996
Inc86sq | -.0000196  5.14e-06 3.82 0.000 9.56e-06 -0000297
_cons | -.7030874 -0950016 -7.40 0.000 -.8892871  -.5168877

. * NLS and Poisson estimates now seem closer. Could compute APEs.
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4. HURDLE MODELS
e As with a corner solution that is continuous over positive values, we
can specify hurdle models for count data.
e The idea again is that the mechanisms determining y; = 0 versus
yi > 0 may be different (but related to some common factors).
e |f /1(+|X,8) denotes a count density conditional on x, and G(X,y) Is a

model for P(y = 0|x), then a general density for a hurdle model is
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f(O|X,0) — G(X!'Y) (45)

f8) = [1= GO e v = 1.2,.... (46)

e To nest common models (Poisson, NegBin | & II), choose
G(X,v) = h(0|X,y), (47)
so that wheny = 9, f()|x,0) = h(y[x,8),y = 0,1,2,....

e Suppose A(y|X,d) Is the Poisson distribution with mean exp(xp). Then
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h(Ox,B) = exp[—exp(xp)]

and so choose

G(X,y) = exp[—exp(xy)]

The density is then

J(0[x,8) = exp[—exp(xy)]

fx,0) = {1 —exp[—exp(xy)]}

y=12,....
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exp[—exp(xp)] exp(xB)*/y!

{1 —exp[—exp(xB)]}

(48)

(49)

(50)
(52)



e The MLE of y Is easily seen to be the MLE for a binary response,
defining w; = 1[y; > 0], so that

P(w; = 1|x;) = 1 —exp[—exp(X;y)] (53)

e Then, B can be estimated by MLE using the truncated Poisson
distribution (that is, conditional on y; > 1).

e For more flexibility, use, say, NegBin Il for 4(-) and G(-).
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5. BINOMIAL REGRESSION

e Now suppose y; Is a count variable taking values in {0,1,...,n;} for
an integer n; > 0. A random draw consists of (y;, n;,X;) and, as usual,

the sample size is V.

e For example, n; = 30 for all i and y; Is the number of days in the last
30 that a person has smoked marijuana. Or, n; Is number of adult

children in a family and y; is the number of who attended college.

69



e A natural starting point is to view y; as the number of “successes” out

of n; independent Bernoulli (zero-one) trials, with chance of success
0 < p(xi,B) < 1. Typically, p(xi,B) = @(X:iB) or p(Xi, B) = A(XiB).
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e Under the previous assumptions, y; given (n;,X;) has a
Binomial[n;,p(X;,B)] distribution.
e The mean and variance are
E(yilni,Xi) = nip(Xi, B) (54)
Var(yilni, x:) = nip(X;, )[1 — p(X:, B)]. (55)
e Given standard functional forms for p(X;,B), it is easy to obtain

partial effects on the mean.
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e The Binomial log likelihood is

li(B) = yilog[p(Xi,B)] + (ni —yi)log[1l —p(xi,B)] +log<{n:!/[y:it(ni —y)'l}
and we drop the last term.
e MLE estimation is straightforward.
e [mportantly, the Binomial density is in the linear exponential family,
so only E(y:|n:,X;) needs to be correctly specified to consistently

estimate B.
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e |t IS easy to devise cases — particularly when the underlying Bernoulli
trials for each i are correlated (so y; = wi + wi2 +...+w;,,) — Where the
binomial variance function is incorrect.

e |_ater we will discuss so-called “cluster sampling,” which is more
appropriate if we actually observe the individual w;- along with
covariates X;;.

e Fully robust inference is straightforward.

e The GLM variance assumption Is

Var(yilni,X;) = onip(Xi, p)[1 — p(Xi, B)] (57)

for o2 > 0.
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e As before, a consistent estimator of o2 is based on the sum of squared

weighted residuals,

N
62 = (N-P)L ) a2l (58)
i=1
G = yi —nip(Xi, B) (59)
D = nip(Xi, B)[1 — p(X;, B)] (60)

e There can be overdispersion (62 > 1) or underdispersion (c? < 1).
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e |n Stata:

glmy x1 ... xK, fam(binomial n) link(logit)
robust
glm y x1 ... xK, fam(binomial n) link(probit)
sca(x2)
glmy x1 ... xK, fam(binomial n) link(logit)

The last command produces the MLE standard errors and inference.
The variable » must be defined by you as the number of “trials,” such

as nkids for the number of children in a family.
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e To estimate the APE for a continuous x;,

N A
@j = N‘lzni 8p(g;,-,[3)
i1 J

If p(X;, ﬁ) = G(x,-f}) (by far the most common case, where usually
G(s) = @(:) or A(+)),

N
- | v S et |
i—1

where g(-) Is the derivative of G(-).
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e [or a discrete change in one or more elements of X,
T N
APE = N1 Y~ nG(x"B) —G(x”B)]
i=1
e When margefT is used in Stata after GLM estmation, it computes

the APEs on G(x;B), the response probability for the underlying binary

outcomes. It does not compute the APEs on E(y|n, X).
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6. ENDOGENOUS EXPLANATORY VARIABLES

e An exponential regression function is very convenient for
nonnegative responses. IV methods and control function methods have
been worked out to handle endogeneity. (In the CF cases, we will cover
the continuous and binary cases.)

e \With a single EEV, write

E(1|z,v2,c1) = exXp(z101 + a1y2 + c1), (61)

where c1 Is the omitted variable. (Extensions to general nonlinear
functions of (z1,y2) are immediate; we just add those functions with

linear coefficients. Leading cases are polynomials and interactions.)
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e Suppose first that y, has a standard linear reduced form with an

additive, independent error:

Y2 = IM2 + V2 = Z1M21 + Z2T22 + V2 (62)
D(c1,v2|2) = D(c1,v2), (63)

so that (c1,v2) iIs independent of z. As in linear and probit models, for
Identification we need w22 + 0.
¢ The independence of v, and z effectively rules out discrete y».

e \\We can write

E(il|z,y2) = E(1|z,v2) = E[exp(c1)[v2]exp(z181 + a1y2). (64)
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e Suppose we can write c1 = p1v2 + e1 Where e Is independent of v;;
always holds if (c1,v2) are jointly normal. Then

Elexp(c1)|v2] = exp(n1 + p1v2) wWhere exp(n1) = E[exp(e1)]. Then

E(1lz,v2) = E(vi|z,v2) = exp(n1 + 21061 + a1y2 + p1v2). (65)

e Because z; should always contain an intercept, a two-step procedure
based on this mean identifies only n1 + d11. But this is fine because the
average partial effects depend on n1 + 011. To see this, the average

structural function Is
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ASF(z,y2) = E. [exp(z101 + a1y2 + c1)] (66)
= E. [exp(c1)] exp(z101 + a1y2 + c1)
= E(,ep)[€XP(p1v2 + €1)] €Xp(Z101 + a1y2)
= FE,,[exp(p1v2)] exp(n1 + 2101 + a1y2) (67)
where E,, ., [exp(p1v2 + e1)] = Ey,[exp(p1v2)exp(n1)] follows from
Iterated expectations and independence of e; and va.
e \We will be able to estimate the scale term out front via sample
averages. So, the APEs depend on the intercept 1 + d11. In what

follows, absorb 71 into d11.
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e Two-step CF estimation procedure. (1) Estimate the reduced form for
y2 and obtain the residuals. (2) Include v», along with z; and y», ina
QMLE in the LEF. Especially if y; Is a count variable, Poisson QMLE
IS attractive, or the two-step NegBin Il. For a continuous y1, might use

the Exponential distribution (special case of Gamma).
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e A (fully robust) ¢ test of Hp : p1 = O Isvalid as a test that y Is

exogenous. Average partial effects on the mean are obtained from
i=1

N
[N‘l Z exp(p1vi2) J exp(z181 + a1y2).

e Can use bootstrap for standard errors.
e Proportionate effects on the expected value, that is elasticities and

semi-elasticities, do not depend on the scale factor out front in [-].
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EXAMPLE: Data in FERTIL2.DTA. Effects of schooling on fertility
In Botswana. Treat education as a continuous variable. As an 1V for
education, use a dummy variable for being born in the first half of the

year. (Of course, must first establish partial correlation with education.)
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. tab children

number of
living
children

I
I
I
+
I
I
I
I
I
I
I
I
I
I
I
I
I
I
+
I

Freq Percent Cum
1,132 25.96 25.96
907 20.80 46.76
696 15.96 62.71
528 12.11 74.82
392 8.99 83.81
255 5.85 89.66
197 4.52 94.18
134 3.07 97.25
68 1.56 98.81
32 0.73 99.54
13 0.30 99.84

3 0.07 99.91
3 0.07 99.98
1 0.02 100.00

4,361 100.00
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. tab educ

years of
education

Freq Percent Cum
906 20.78 20.78
60 1.38 22.15
104 2.38 24 .54
142 3.26 27.79
194 4.45 32.24
234 5.37 37.61
298 6.83 44 .44
1,162 26.65 71.08
184 4.22 75.30
232 5.32 80.62
527 12.08 92.71
33 0.76 93.46
165 3.78 97.25
19 0.44 97.68

36 0.83 98.51
25 0.57 99.08

17 0.39 99 .47

15 0.34 99.82

3 0.07 99.89
4 0.09 99.98
1 0.02 100.00

4,361 100.00
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. * First use OLS and Poisson regression assuming educ exogenous.

. reg children educ age agesq tv electric spirit protest catholic, robust

Linear regression

Number of obs
F(C 8,

Prob > F
R-squared
Root MSE

4349)

4358
725.54
0.0000
0.5727
1.4538

electric
spirit
protest
catholic
_cons

-.076893
.3382634
-.002683

-.2056831
-.2929425

-1297104
.0727998
.094514

-4 .355587

Robust

Std. Err.
.0064872
.0192102
.0003516
.0825702
.0740342

.056653
.066177

.0787555
.2484493
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.0896111
.3006016
.0033722
.3675628
.4380873
.0186417
.0569409
-.059887

-4.842674

.0641749
.3759252
.0019937
.0438035
.1477976
.2407791
.2025404

.248915
-3.8685



. glm children educ age agesq tv electric spirit protest catholic,
fam(poisson) robust

Generalized linear models
- ML

Optimization

Deviance
Pearson

4090.58415
3419.999356

Log pseudolikelihood = -6587.970483

No. of obs
Residual df
Scale parameter
(1/df) Deviance
(1/df) Pearson

AlIC
BIC

4358
4349

1
-9405804
. 7863875

3.027522
-32353.03

electric
spirit
protest
catholic
_cons

.0254056
.3663358
.0044562
-1136942
.1333479
.0310247
.0060793

0029979

_5.765003

[95% Conf.

.0306587
.3481773
-.004737
.1997847
.2069379
.0181969
.0521912
-0688065

-6.054387

Interval]
-0026802
.0092647
-0001433
-0439245
.0375466
.0251135
.0297304
-0366356
.1476478

.0201525
.3844944
.0041754
.0276037
.0597579
.0802463
.0643499

0748023

_5.475619
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. * The estimated variance-mean ratio is about .786, so there iIs underdisperion
. * 1n this application.

. margeff

Average partial effects after glm
y = log(children)

variable | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
educ | -.0576149 -0061909 -9.31 0.000 -.0697487 -.045481

age | .8493913 .0231569 36.68 0.000 -8040046 .894778

agesq | --0101047 .000328 -30.81 0.000 -.0107475  -.0094619

tv | -.2459013 .0897211 -2.74 0.006 -.4217514  -.0700513

electric | -.2878202 -0756018 -3.81 0.000 -.435997  -.1396435
spirit | .0705026 .05793 1.22 0.224 -.0430382 .1840433
protest | .0138084 .0677342 0.20 0.838 -.1189481 -146565
catholic | .0068061 .083297 0.08 0.935 -.156453 -1700652
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. glm children educ age agesq tv electric spirit protest catholic,
fam(poisson) sca(x2)

4358
4349

1
-9405804
. 7863875

3.027522
-32353.03

Interval]

-.0202712

.383074
-.004209

-.0320154
-.0672661

.0753703
.058378
-0709689

Generalized linear models No. of obs
Optimization - ML Residual df
Scale parameter
Deviance = 4090.58415 (1/df) Deviance
Pearson = 3419.999356 (1/df) Pearson
AIC
Log likelihood = -6587.970483 BIC
| OIM
children | Coef. Std. Err. z P>|z] [95% Conf.
_____________ +________________________________________________________________
educ | -.0254056 -0026197 -9.70 0.000 -.0305401
age | -3663358 -00854 42_.90 0.000 .3495977
agesq | --0044562 .0001261 -35.33 0.000 -.0047034
tv | -.1136942 .0416736 -2.73 0.006 -.195373
electric | -.1333479 .0337158 -3.96 0.000 -.1994297
spirit | .0310247 .0226257 1.37 0.170 -.0133209
protest | .0060793 .0266835 0.23 0.820 -.0462194
catholic | .0029979 -0346797 0.09 0.931 -.0649731
_cons | -5.765003 .1423751 -40.49 0.000 -6.044053

-5.485953

(Standard errors scaled using square root of Pearson X2-based dispersion)

. * The GLM standard errors are, generally, slightly less than the
. * fully robust ones.
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. * Reduced form for educ. Omitted IV from fertility equation is frsthalf

. reg educ frsthalf age agesq tv electric spirit protest catholic

Source | SS df MS Number of obs = 4358
————————————— e et T F(C 8, 4349) = 203.40
Model | 18293.8049 8 2286.72561 Prob > F = 0.0000
Residual | 48892.9866 4349 11.2423515 R-squared = 0.2723
————————————— i i e T AdjJ R-squared = 0.2709
Total | 67186.7914 4357 15.4204249 Root MSE = 3.353

educ | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
frsthalf | -.6881822 .1021737 -6.74 0.000 -.8884947  -.4878696

age | --1093716 -0380656 -2.87 0.004 -.1839997 -.0347436

agesq | --0006491 -0006275 -1.03 0.301 -.0018792 -000581

tv | 2.623495 .2077932 12.63 0.000 2.216115 3.030876

electric | 2.103403 .1733896 12.13 0.000 1.763471 2.443335
spirit | .6109302 .1287208 4.75 0.000 -3585718 -8632886
protest | 1.839693 .1480621 12.43 0.000 1.549416 2.12997
catholic | 2.188532 -1894826 11.55 0.000 1.81705 2.560015
_cons | 8.321511 .5515747 15.09 0.000 7.240143 9.402878

. * So frsthalf i1s strongly correlated with educ.

. predict v2h, resid
(3 missing values generated)
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ivreg children age agesq tv electric spirit protest catholic

(educ = frsthalf), robust
Instrumental variables (2SLS) regression Number of obs = 4358
F(C 8, 4349) = 695.91
Prob > F = 0.0000
R-squared = 0.5527
Root MSE = 1.4874
| Robust
children | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ +________________________________________________________________
educ | --1700919 -0646806 -2.63 0.009 -.2968988  -.0432849
age | .3279273 .0207317 15.82 0.000 .2872826 .3685721
agesq | --0027435 -0003533 -7.77 0.000 -.0034361 -.0020509
tv | .0419927 .1926421 0.22 0.827 -.335684 -4196695
electric | -.0931133 -1524638 -0.61 0.541 -.3920202 .2057935
spirit | .1865364 .0700722 2.66 0.008 .0491592 .3239136
protest | .2442842 .1367228 1.79 0.074 -.0237621 -5123305
catholic | .2980737 .1624449 1.83 0.067 -.0204011 .6165485
_cons | -3.611507 .5758888 -6.27 0.000 -4.740543  -2.482472
Instrumented: educ
Instruments: age agesq tv electric spirit protest catholic frsthalf
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. glm children educ v2h age agesq tv electric spirit protest catholic,
fam(poisson) robust

Generalized linear models

Optimization

Deviance
Pearson

- ML

4088.317584
3416.432176

Log pseudolikelihood = -6586.837199

No. of obs
Residual df
Scale parameter
(1/df) Deviance
(1/df) Pearson

AlIC
BIC

4358
4348

1
.9402754
. 785748

3.027461
-32346.92

electric
spirit
protest
catholic
_cons

.0447756
.3614873
-0044861
.0038535
.0376484
.0578503
.0875434
-0999684
-5.41201

.0281717
.0282491
.0098567
.0001433
.0881183
.0692252
.0304184
.0594771
.0719366
.2710455

[95% Conf.

.1249692
.0105917
.3421685
.0047669
.1688551
.1733274
.0017687
.0290296
.0410248
-5.94325

Interval]

-.0697537 -.0145381

-1001429
.3808061
.0042053
.1765621
-0980305
.1174693
.2041163

2409616

_4.880771
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. margeff

Average partial effects after glm
y = log(children)

electric
spirit
protest
catholic

.236228

.0641851
.0641333
.0243225
.0003292
.2005306
.1517847
.0712942
.1445524

.17872

z P>|z]
.47 0.014
58 0.113
44  0.000
90 0.000
04 0.965
.55 0.579
.85 0.065
.41 0.159
.32 0.186

[95% Conf.
.1582985
-1015305
-8376609
.0101725
-0087523
.0841601
.1317427
.2035704

.2840989
.0241685
. 7899896
.0108178
.3842804
.3816526
.0079913
.0797471
.1140568

Interval]

-.032498
.2272295
.8853322
.0095272

.401785
.2133324
.2714768
.4868879
.5865128

. * Only marginal evidence of endogeneity,

but estimated
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e In the case just treated, under similar assumptions can justify a
plug-in method: insert y, for y, and then use QMLE in the second
stage. But it has little to offer over the CF method (and does not yield a
very easy test).

e Now suppose y> IS binary,
y2 = 1[zm2 + v2 > 0], v2|z ~ Normal(0, 1). (69)

o With E(y1|z,y2,c1) = eXp(z161 + a1y2 + c1), It IS tempting to try the
following. First, estimate a probit model for y, and obtain the fitted
probabilities, ®(zw2). In a second stage, plug ®(zw2) in for y, and use,

say, Poisson regression of y1 on z1, ®(zx>).
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e This plug-in method does not consistently estimate the parameters or
average partial effects. It acts as if we can pass the expected value
through the exponential function. The (incorrect!) argument goes like
this:

E(y1|Z) = E[exp(zl81 + a1y + Cl)|Z]

= exp[z101 + a1E(y2|2) + E(c1|2)] (70)
= exp[2181 + 061(13(21'[:2) + O] =exp[2181 + alq)(Z'ltz)].

Unfortunately, the second equality is wrong.
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e As shown by Terza (1998), a control function method can be applied
when (c1,v2) has a joint normal distribution and is independent of z.

e In order to implement a CF approach, we need to find

E(y1lz,y2) = exp (X,B,)E[exp(c1)|z,y2], where X1 Is a function of
(z1,y2) which would almost certainly include y» linearly and possibly

Interacted with elements of z;.
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o Lett? = Var(c1) and p1 = Cov(va,c1), SO that c1 = p1vs + e1 Where

e1|z,v2 ~Normal(0, t$ — p%). Then

E(yi|z,v2) = E[exp(e1)] exp (X,B; + p1v2)
= exp((z] — p1)I2)exp (X, B, + p1v2) (71)
= exp ((z] — p1)/2 + x1B,) exp(p1va2).

To find E(v1|z,y2), we have

E(yilz,y2) = exp((zf — pD)/2) exp (x,B,)E[exp(p1v2)|z, y2]. (72)
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e Can show

Elexp(p1v2)|z,y2 = 1] = E[exp(p1v2)|z,v2 > —zm)]
= exp(p2/2)D(p1 + zm2)ID(zw>). (73)

Similarly,

E[exp(p1v2)lz,y2 = 0] = exp(pi/2)[1 - D(p1 + zm2)]/[1 — D(zn2)]

and so

E(yilz,y2) = exp (%12 + X1B,){P@(p1 + zm2)/D(zm2)} 2
« {[1-D(p1 + zm2)]/[1 — D(zm2)]} 2, (74)
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e |f x; contains unity, as it should, then only z2/2 + B11 is identified,
along with the other elements of B,, p1, and 2. This is just fine
because the average structural function is

ASF(z1,y2) = Ec,[exp(X1B, + c1)] = exp(z%/2 + X1B,)], and so the
Intercept that is identified is exactly what we want for computing APEs.
e So just absorb 74/2 into the intercept.

e Two-step CF method: (1) Estimate the probit model of y, on z to
obtain the MLE, &». (2) Estimate the above mean function, with 7> in
place of 2. We can use nonlinear least squares or a quasi-MLE, such

as the Poisson.
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e Inference should account for the two-step estimation, either using the
delta method or bootstrap.

e A simple test of Hp : p1 = 0 Is available. The derivative of the mean
function with respect to p1, evaluated at p; = 0, IS

exp (X,B,)[A(zr2)]"?[-A(—zm2)] 172, where A(+) is the IMR.

e Simple variable addition test of p; = 0: add the variable
y2log[A(zzm2)] — (1 —y2)log[A(—zR2)] to the exponential model
exp(x1B,). For each i define

rio = yrlog[A(z;n2)] — (1 —yn)log[A(-z;®2)] (called a generalized
residual) and then use a QMLE to estimate the artificial mean function

exp(XaP, + p17i2), and use a robust ¢ statistic for p;.
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e Unfortunately, adding 7,» to an exponential regression does not solve
the endogeneity problem; it is only justified as a test. For “small”
amounts of endogeneity, that is, p1 “close” to zero, it might be
approximately valid. But how “small” it needs to be is unclear, and then

maybe ignoring endogeneity is sufficient, anyway.
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e An alternative to CF approaches is an IV approach. It is nice because,
as In the linear case, it can be applied regardless of the nature of y».

e \Write X1 = g,(z1,Y,) as any function of exogenous and endogenous

variables. If we start with
E()/1|Z,y2,61) = eXp(X1B1 + Cl) (75)

then we can use a transformation due to Mullahy (1997) to consistently

estimate B, by method of moments.
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e Can write

y1 = exp(x1P; +c1)a1r = exp(X1B,)exp(ci)az
E(a1|z,y2,c1) = 1. (76)

e \\/e can write
exp(—X1B,)y1 = exp(ci)ai
e |If ¢4 Is Independent of z then
Elexp(=x1B,)y1|z] = E[exp(c1)lz] = E[exp(c1)] =1, (77)

where the last equality is just a normalization that defines the intercept

inp,.
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e Therefore, we have conditional moment conditions

Elexp(—x1B,)y1 — 1fz] = 0, (78)
which depends on the unknown parameters B, and observable data.
Any function of z can be used as instruments in a nonlinear GMM
procedure. An important issue in implementing the procedure is
choosing instruments.
e The CF methods are convenient for testing, but the IV method can

work for any kind of y, (continuous, binary, corner, count, fraction, and

SO on).
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7. PANEL DATA

o Let {(Xir,vir) : t=1,...,T} be arandom draw for cross section i,
where y;; > 0. We are thinking of cases where y;; Is a count variable,
but several methods can be applied for any nonnegative response.

e Can start with a standard linear unobserved effects model estimated
by FE!

e The most common model for the conditional mean allows

multiplicative in the heterogeneity:
EulXi, ci) = ciexp(Xip) (79)

where ¢; > 0 1s the unobserved effect and x;; would incude a full set of

year dummies in most cases.
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e There is no difficulty in replacing exp(x;p) with a general function
m:(Xi, ) > 0 but the exponential model is by far the most popular.

e Notice that if we start with
EyilXi, ri) = exp(XuP + gi) (80)

then we can take ¢; = exp(g;).
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e As in the linear case, many estimation methods assume strict

exogeneity of the covariates conditional on c;:
E()/itlxil; v ;XiTy Ci) — E()/itlxit, Ci)- (81)

e Adding independence between ¢; and X; — a random effects approach

—and using E(c;) = 1 as a normalization,

E(yulx:) = exp(XiB). (82)
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e \arious estimation methods can be used to account for the serial
dependence in {y;} conditional on Xx;.
e For example, a simple approach is the pooled Poisson quasi-MLE,

which only requires

E(ulxi) = exp(XiB), (83)
and so we do not even need to impose strict exogeneity (because we
have effectively dropped the heterogeneity).
e Pooled Poisson regression is likely to be inefficient. So, can apply
GEE with the Poisson family. Can specify the working correlation to be

exchangeable or unstructured.
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e The error term that we nominally apply the constant conditional

correlation assumption to is

o, = Wit = EXpXiP)]
T exp(xiBl2)

e Stata commands:

xtgee y x1 ... xK, fam(poisson) corr(exch)
robust
xtgee y x1 ... xK, fam(poisson) corr{(uns) robust
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e If one believes the first two moments of the Poisson distribution

conditional on ¢;,

EQilXi,ci) = ciexp(Xip)
Var(yu|Xi,ci) = ciexp(Xip)

along with D(c;|x;) = D(c;), and conditional uncorrelatedness:
COV(yit1yiS|Xi1Ci) — O’ [+ S,

then the GEE Poisson variance-covariance matrix is wrong.
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e The derivation of Var(y;|x;) follows the same argument as in the

derivation in the cross section case:

Var(yu|X;) = exp(Xip) + n?exp(2x;p) (86)

e [For the covariances conditional on X;:

Cov(yir,yis|Xi) = E[Cov(yir,yis|Xi,ci)|Xi] + Cov[EQulXi, ci), EQis|Xi, ¢i)|X]
= 0+ Var(ci|x;) exp(XiB) exp(X;sB)
= 1° exp(XuB) exp(X;sP)
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e Could use multivariate WNLS using this variance-covariance
structure. Use simple moment estimators for n>.

e The conditional correlations are not constant:

2 . :
CO”T()/it,yis|Xi) _ n exp(xlfﬁ) exp(XlSB) .

J[exp(xieB) + 1% exp(2xiB)1[exp(x:sB) + n? exp(2x;sB)]
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e Rather than just first and second moment assumptions, suppose we

maintain

D(yii|Xi,ci) ~ Poisson[c;exp(XiB)]
D(cilx;) ~ Gamma(6,9),

where E(c;) = 1 and Var(c;) = 1/6, and conditional independence:

T
Dyi1,...,yvir|Xi,ci) = H DilXi,ci)
=1

then we have the random effects Poisson model.
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e Can show that the log likelihood for observation i is (up to addive

factors)

T
0:(8) = D) yiXi + 5109(3) — log[I'(3)]
=1

T T
+ Iog[z exp(XuP) + n,-:| — (n; + ) Iog[z exp(XuP) + 5}
=1 =1

where I'(-) Is the gamma function and n; = y;1 +...+yir.

e Maximizing the sample log likelihood is relatively straightforward.
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Available In Stata as

xtpoisson y x1 ... XK, re

¢ This estimator has no known robustness properties if any of the
assumptions are violated. In particular, it, like RE probit, requires the

conditional independence assumption in (90). GEE is more robust but

less efficient if all of the RE assumptions hold.
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e In the pooled Poisson, GEE Poisson, and Poisson RE approaches, can
Implement a Chamberlain-Mundlak correlated random effects (CRE)

device by assuming
ci = exp(y +X;€)ai, (91)
where a; Is independent of x; with unit mean. Then
E(yiulX:) = exp(y + X + X.&). (92)

® S0, use any of the previous methods by adding X; as a set of

covariates. Can include time-constant covariates, say z;, if desired.
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e Stata commands (assuming time averages have been generated using,

say, egen)

glmy x1 ... XK xlbar ... xKbar, fam(poisson)
cluster(id)

xtgee y X1 ... XK xlbar ... xKbar, fam(poisson)

corr(exch) robust

xtpoisson y x1 ... XK xlbar ... xKbar, re

e Pooled Poisson and GEE only use E(y:|X;) = exp(y + X + X.&).
The Poisson RE method requires that D(yi|X;, c;) 1s Poisson, a; in (91)
has a Gamma(o,6) distribution, and conditional independence over

time.
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e An important estimator that can be used under just

E(ulXi,ci) = ciexp(Xip)
IS the conditional MLE derived under a Poisson distributional
assumption and the conditional independence assumption.
e |t is often called the fixed effects Poisson estimator. It is best
characterized as a conditional MLE (like fixed effects logit). But, in
this case, ﬁturns out to be identical to using pooled Poisson QMLE and
treating the c; as parameters to estimate (one for each 7). (This is a rare
case, like the linear model, where “estimating” the unobserved effects

does not result in an incidental parameters problem for estimating B.)
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e For FE Poisson, we nominally start with strict exogeneity and the

Poisson distributional assumptions,
Dyit|Xi,ci) ~ Poisson[c;exp(XiB)], (93)

and conditional independence,

T
D(yil, . ,y,-T|Xl-, Ci) = HD()/itlxi, Ci), (94)
=1

but put no restrictions on D(c;|x;).

e | etn; =y +...+y;r be the total number of counts.
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e Can show that the joint distribution of (y;1,...,v:r) conditional on

(n:,X;,c;) 1S multinomial with probabilities

t(Xh ﬁ) _ Ci exp(xifB) _ eXp(XitB) (95)
P ST cexpaB) X, exp(xup)

so that the heterogeneity c¢; has disappeared.

e Time-constant variables drop out, as in linear case. For example, yz;
would come out In front as exp(yz;) and cancel in the numerator and

demoninator.
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e The FE Poisson estimator maximimizes the resulting log-likelihood

function. For each i,

T
L(B) = D yiloglp:(x:, B)). (96)
=1
e |n Stata:
xtpoisson y x1 ... xK, fe
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e Important result: The Poisson distribution can be arbitrarily
misspecified, and any kind of serial correlation can be present, and the

the FEP estimator is consistent provided

EyulXi1, ..., Xir,ci) = EQulXi, ci) = ciexp(XiP).
e |n particular, y;; need not even be a count variable. It could be
continuous, or a corner. However, the mean c; exp(Xx;:) should make
logical sense.

e \We do require strict exogeneity.

e See Wooldridge (1999, Journal of Econometrics) for a general proof.
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e \Whether or not y;; Is a count, should make inference fully robust to
serial correlation and violation of the Poisson distribution.

e The score can be written as

si(B) = Vpp(Xi, B)' W(X:, B)Ly; — nip(Xi, B)]
where p(Xx;,B) is the T'x 1 vector with elements p,(X;, ) and W(x;,p) Is
the 7' x T diagonal matrix with elements 1/p,(X;,B).
e See text, Section 18.7.4, for verification that E[s;(B_)|x:] = 0 (when

one Is careful to indicate the true value).
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e As usual, the robust variance matrix estimator of /N (8 — B) has the

sandwich form, A ""BA " with

N

A = N1 niVpp(xi, B) WX, B)Vgp(xi, B) (99)
i=1

A N A A

B =N siB)si(P)’ (100)
i=1

e |f the Poisson distribution is correct and independence holds, both

conditional on (X;,c;), then A" can be used.
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e Fully robust form in Stata (as an “ado” file):

xtpgml y x1 ... xK, fe

e In effect, xtpgml has superceded xtpoisson.

e Can cluster at a higher level of aggregation (we will discuss later).
For example, if have a few firms per industry, and lots of industries,
might allow within-industry correlation:

xtset firmid year

xtpgml y x1 ... XK, fe cluster(industid)
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EXAMPLE: The patents-R&D relationship. 226 firms over 10 years.
Data compiled by NBER (update?). Need to allow for substantial lag.

. use patent

. des cusip year patents rnd Irnd

storage display value
variable name type format label variable label
cusip float %9.0g firm identifier
year byte  %9.0g 72 through 81
patents int %9.0g patents applied for
rnd float %9.0g R&D expend, current mill $
Irnd float %9.0g log(1+rnd)

. tab patents i1f year == 81

patents |

applied for | Freq Percent Cum

____________ +___________________________________
(O | 125 55.31 55.31
1] 37 16.37 71.68
2 | 8 3.54 75.22
3] 7 3.10 78.32
4 | 4 1.77 80.09
5 | 4 1.77 81.86
6 | 5 2.21 84 .07
7 | 5 2.21 86.28
8 | 1 0.44 86.73
9 | 2 0.88 87.61
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. Xtreg patents Irnd Irnd_ 1 Irnd_2 Irnd 3 Irnd 4 Irnd 5 Irnd_6 y79-y81,
fe cluster(cusip)

Fixed-effects (within) regression
Group variable: cusip

within
between
overall

R-sq:

0.1117
0.3831
0.2870

Number of obs
Number of groups

Obs per group: min

avg
max

. adjusted for 226 clusters

904
226

4
4.0
4

in cusip)

-4.891047
-8.770371
-1.399383
-3.218844
-8.89406
-4.574966
-13.7178
2.282507
.6192547
-9.543918
93.2246

Robust

Std. Err.

4_.487274
5.825649
3.024928
3.173328
4.729909
5.090455
6.755444
1.051129
1.261851
2.827286
18.58406

-13.73351
-20.25018
-7.360195
-9.472087
-18.21464
-14.60603
-27.02983

.2111897
-1.867302
-15.11526

56.60353

3.951412
2.70944
4.561428
3.034399
.4265244
5.456098
-.4057713
4.353824
3.105811
-3.972572
129.8457
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. gen Ipatents =

log(l + patents)

. xtreg Ipatents Irnd Irnd_1 Irnd 2 Irnd 3

fe cluster(cusip)

Fixed-effects (within) regression

Group variable: cusip

Irnd 4 Irnd 5 Irnd_6 y79-y81,

Number of obs
Number of groups

Obs per group: min

avg
max

904
226

4
4.0
4

. adjusted for 226 clusters iIn cusip)

R-sq: within = 0.4905
between = 0.7607
overall = 0.5018

I
Ipatents | Coef.
_____________ +
Irnd | -.2326016
Irnd_1 | -.2410225
Irnd_2 | -.1720482
Irnd_3 | -.0878612
Irnd_4 | -.1987401
Irnd_5 | -0657994
Irnd_6 | --.3073906
y79 | .042687
y80 | -.0160116
y81 | —-.727999
_cons | 3.638258
_____________ +
sigma_u | 3.034257
sigma_e | -50399388
rho | .97315113

Robust

Std. Err.

.1544488
.1543456

.135934
.1543296
.1446014
.1778924
.1660589
.0475658
.0593244
.0781183
.3846061

[95% ConfT.

.5369528
.5451702
.4399149
.3919775
.4836863
.2847489
.6346203
.0510444
-.132914
.8819359
2.880368

Interval]

.0717496
.0631252
.0958184
.2162552
.0862061
.4163477
.0198391
.1364183
-1008909
-.574062

4.396149
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. poisson patents Irnd Irnd_ 1 Irnd 2 Irnd 3 Irnd 4 Irnd 5 Irnd_6 y79-y81,

cluster(cusip)

Poisson regression Number of obs = 904
Wald chi2(10) = 878.50
Log pseudolikelihood = -7209.5811 Prob > chi2 = 0.0000
(Std. Err. adjusted for 226 clusters in cusip)

| Robust
patents | Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ +________________________________________________________________
Irnd | .7310869 .3421723 2.14 0.033 -0604416 1.401732
Irnd_1 | -.3529964 -3324251 -1.06 0.288 -1.004538 .2985449
Irnd_2 | -.2556217 -4482509 -0.57 0.568 -1.134177 .6229339
Irnd_3 | -5953963 -5041567 1.18 0.238 -.3927328 1.583525
Irnd_4 | .3925039 .2426363 1.62 0.106 -.0830545 .8680624
Irnd_ 5 ] -.0209466 -3541238 -0.06 0.953 -.7150165 .6731232
Irnd_6 | -.3143883 .436545 -0.72 0.471 -1.170001 .5412242
y79 | --1004726 .0618751 -1.62 0.104 -.2217455 -0208004
y80 | -.4389727 .0639321 -6.87 0.000 -.5642773 -.3136681
y81 | -1.871174 -0994861 -18.81 0.000 -2.066163 -1.676185
cons | .8720311 .2072225 4.21 0.000 .4658825 1.27818
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. test Irnd Irnd_1 Irnd 2 Irnd_3 Irnd 4 Irnd 5 Irnd_6

(1) [patents]lirnd =0

( 2) [patents]irnd_1 =0
( 3) [patents]irnd 2 =0
( 4) [patents]irnd 3 =0
( 5 [patents]irnd 4 =0
( 6) [patents]irnd 5 =0
( 7) [patents]irnd 6 =0

chi2( 7) = 224.78
Prob > chi2 = 0.0000

lincom Irnd + Irnd_1 + Irnd_2 + Irnd_3 + Irnd_4 + Irnd_ 5 + Irnd_6

( 1) [patents]irnd + [patents]lirnd_1 + [patents]irnd_2 + [patents]lrnd_3
+ [patents]irnd 4 + [patents]lrnd 5 + [patents]lrnd 6 = 0

patents | Coef. Std. Err. z P>]z] [95% Conf. Interval]
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. Xtpoisson patents Irnd Irnd_1 Irnd 2 Irnd_3 Irnd 4 Irnd 5 Irnd_6
note: 19 groups (76 obs) dropped because of all zero outcomes

Conditional fixed-effects Poisson regression
Group variable: cusip

Log likelithood

-1288.6346

Number of obs
Number of groups

Obs per group: min

avg
max

wald chi2(10)
Prob > chi2

y79-y81, fe

828
207

4
4.0
4

2588.77
0.0000

[95% Conf.

.0171501
.0147816
.1145972
.0886588
.0889191
-4899219
.2129892
-1165952

4133889

-1.785541

.0969203
.1171385
.0772455
.0812003
.1093972
.1348606
.1270982
.0283495
.0463611
.0709727
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.1728101
.2148056
.0368013
.2478084
.3033336

.2256
.0361188
.1721592
-.504255

-1.924645

Interval]

.2071103
.2443688
.2659956
-.0704909
.1254955
. 7542438
.4620972
-.0610312
-.3225228
-1.646437



. lincom Irnd + Irnd_ 1 + Irnd 2 + Irnd_3 + Irnd_4 + Irnd 5 + lrnd_6

( 1) [patents]lrnd + [patents]lrnd_1 + [patents]lrnd 2 + [patents]lirnd_3
+ [patents]lirnd_4 + [patents]lirnd_5 + [patents]lirnd_6 = O

patents | Coef. Std. Err. z P>|z] [95% Conf. Interval]

. * But the above standard errors assume the Poisson variance assumption and
. * conditional independence.
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. xtpgml patents Irnd Irnd_1 Irnd 2 Irnd 3 Irnd 4 Irnd 5 Irnd 6 y79-y81, fe
note: 19 groups (76 obs) dropped because of all zero outcomes

Conditional fixed-effects Poisson regression
Group variable: cusip

Number of obs
Number of groups

Obs per group: min

avg
max

828
207

[95% ConfT.

.0171501
.0147816
-1145972
.0886588
-0889191
-4899219
.2129892
-1165952

4133889

~1.785541

.1728101
.2148056
.0368013
.2478084
.3033336

.2256
.0361188
.1721592
-.504255
1.924645

Interval]
-0969203
-1171385
.0772455
-0812003
-1093972
-1348606
-1270982
-0283495
-0463611
-.0709727

.2071103
.2443688
.2659956
-.0704909
.1254955
. 7542438
.4620972
-.0610312
-.3225228
-1.646437
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Calculating Robust Standard Errors...

I
+
patents |
Irnd |

Irnd 1 |
Irnd_2 |
Irnd 3 |
Irnd_4 |
Irnd 5 |
Irnd_6 |

y79 |
y80 |
y8l |

-.0171501
.0147816
-1145972

-.0886588
-.0889191

-4899219
.2129892

-.1165952
-.4133889
-1.785541

.1362715

-149009

.0554412
.0889173
.1358352
.1846058
.2252369
.0386929
.0679516
.1304135

[95% Conf.

.2499372
.2772706
.0059344
.2629335
.3551512
.1281011
.2284671
.1924318
.5465717
-2.041147

Interval]

.2842374
-3068339
.2232599

.085616

.1773131
.8517427
.6544455
-.0407585
-.2802061
-1.529936

Wald chi2(10) =

472.12
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0.0000



lincom Irnd + Irnd_ 1 + Irnd_ 2 + Irnd_3 + Irnd 4 + Irnd 5 + Irnd_6

( 1) [patents]lrnd + [patents]lrnd_1 + [patents]lrnd 2 + [patents]lirnd_3
+ [patents]lirnd_4 + [patents]lrnd_5 + [patents]irnd_6 = O

patents | Coef. Std. Err. z P>|z] [95% Conf. Interval]

. * The robust 95% Cl for the long run elasticity is much wider than the CI that
. * maintains the Poisson distribution and serial independence. The LR elasticity
* 1s (barely) statistically different from zero at the 5% leve, but not
* statistically different from unity.
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e A simple test to detect violation of strict exogeneity is to add w; ;1 to
the FE Poisson estimation and test its joint significance, where w; ;1 IS

a subset of x; .1 that varies (at least somewhat) across i and ¢ and which
IS suspected of violating strict exogeneity. As usual, a fully robust

statistic should be used.
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. sort cusip year

. gen Irndpl = Irnd[_n+1] 1f year < 81

(226 missing values generated)

. xtpgml patents Irnd Irnd_1 Irnd 2 Irnd 3 Irnd 4 Irnd 5 Irnd_6 y79-y80 Irndpl, fe

note: 20 groups (60 obs) dropped because of all zero outcomes

Conditional fixed-effects Poisson regression
Group variable: cusip

Number of obs
Number of groups

618
206

[95% Conf.

.1164738
.1310983
.0791481
.0828895
.1372362

.14832

.1415702
.0325261
.0565806
.1032046

.1168286
-.239157
.0604763
.2303727
.2246532

.170626
.2116333
.1494727
.4857023
.6439883

Interval]
-3451131
-0177909
-0946511
.0679123
-0443248
.4613278
.0658392
.0857226
.3748064
.4417111

.5733977
.2747388
.2497785
.0945482
.3133029
. 7520296
.3433118
-.0219726
-.2639105
-.2394338
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Calculating Robust Standard Errors...

I
+
patents |
Irnd |

Irnd 1 |
Irnd_2 |
Irnd 3 |
Irnd_4 |
Irnd 5 |
Irnd_6 |

I

I

I

.3451131
.0177909
-0946511
.0679123
.0443248
.4613278
-0658392
.0857226
.3748064
.4417111

.0998228
.1486163

.050323

.0822041
-1940994
.1864198
.1976914
.0461068
.0716907
.1257841

[95% Conf.

.149464

.2734917
.0039802
.2290293
.3361031
.0959517
.3216287
.1760902
.5153177
.6882434

Interval]

.5407623
.3090735
.1932823
.0932048
.4247527
.8267039
.4533072

.004645

-.2342951
-.1951787

Wald chi2(10) =

Prob > chi2 =

0.0000

¢ The rejection of strict exogeneity of the R&D variable is pretty

strong, although the sign is a bit hard to interpret.
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Estimation Under Sequential Exogeneity

e RE Poisson, FE Poisson, and GEE all assume strict exogeneity of
{Xi : t =1,2,...,T} conditional on ¢;. Pooled Poisson QMLE (or
other pooled methods) do not require strict exogeneity but they
effectively rule out correlation between ¢; and {x;; : t = 1,...,T} (as

do RE and GEE methods unless we included time averages)
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e Now we assume only sequential exogeneity of {x;; : t = 1,2,...

conditional on ¢; with an exponential regression function:
E()/iz|Xit, oy Xi1,Ci) = E()/it|xit, ci) = CieXp(Xitﬁ)-
e \We are silent on whether

EiulXir, ..., Xity ... Xi1,¢i) = EQilXir, ..., Xi1,¢:)

but we think it might not be true.

143



e As in the linear case, this setup applies to models with lagged
dependent variables — so, say, y; .1 IS in X, or functions of y; 1, such
as 1[y;~1 = 0] and 1[y;,~1 > 0]log(y:,1) —and also finite distributed
lag (FDL) models, where Xi; = (Zit,Zis-1,--.,Zist—0)-

¢ \We need to choose X;; appropriately so that no further lags of

elements In x;; matter.
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e By definition we can write

Vie = cieXPXiP)ri (101)

E(riulXity ..., Xi1,¢i) = 1. (102)
e Viewing {ri : t = 1,..., T} as multiplicative “shocks,” this setup
allows X; ;1 to be correlated with »;, which is necessarily true if x;
contains functions of y; 1. It can also can also be true when there Is

feedback in static or FDL models.
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e Generally, {r;} Is serially correlated, although when x;, contains lags

of y;, the intention is probably that
E(rielXits Vi1, Xig-1, .., Xit, ¢i) = E@iulXig, ..., Xir, i) = 1

In which case {r;/; would not be serially correlated. In finite distributed
lag models, with x;; = (i, Zi+1,...,Zi+—0), Would expect serial

correlation.
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e How do we obtain moments that can be used to estimate B? We can

write, forr=1,..., 7T—1,

exp(XiB)
exp(X;+1P)

Vit —yi,t+l|: } = c;eXp(XiP)ric — cieXp(XiP)ri1
= c; eXpXiP) (rie — rige1)

e Using only the condition E(7;|X;,...,Xi1,c;) = 1 we can show that

the RHS has zero mean conditional on (Xi,...,Xi1,¢;:):
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Elciexp(XiP) (i — rim1)[Xie, ..., Xi1, 4]
= ciexpXuP)E(ric — ripalXis, - .., Xit, €i)
= c;exp(Xip)(1-1) = 0;
note that E(7; +1|Xir, ..., Xi1,c;) = 1 by iterated expectations.
e Therefore,

E{|yit — vi1 eXp((Xis — Xi,t+1)[3)|xl—ﬂ . Xin] = 0.

e Because these moment conditions depend only on observed data and
the parameter vector B, GMM can be used to estimate 8, and fully

robust inference is straightforward.
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e Because the moment conditions depend on the change in the
explanatory variables, GMM approach might suffer from a weak
Instruments problem. [That is, X;; — X; 41 1S only weakly correlated with
functions of (Xi,...,Xi1).]

e Choice of instruments Is not obvious. What might be some good

approximations to the optimal instruments?
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e |f violation of strict exogeneity is due only to a lagged dependent

variable, can use a conditional MLE approach. For example, suppose

Dyilzi,vie1, ..., yi1,yio,ci) = Poisson[c;eXp(Xip)]

where, say, X;; can be any function of (z;,y:,1). (Adding lagsof z;, or
further lags of y;, Is relatively straightforward with several time
periods.). This assumption implies correct dynamics as well as strict

exogeneity of {z;; : t=1,...,T}.
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e As usual, the presence of dynamics and heterogeneity in nonlinear
models raises an “initial conditions” problem. A simple solution is to

model the dependence between ¢; and (z;,yi):

Ci = exp(l// + ZiY + /jyio)ai (110)
D(ailz;,yi0) = Gamma(o,0) (111)

where E(a;) = 1and § = 1/n? = UVar(a;).
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e As shown in Wooldridge (2005, Journal of Applied Econometrics),
the resulting likelihood function is identical to the Poisson RE

likelihood with explanatory variables

(ZityVir1,2ZiyVi0) (112)

In the case Xi; = (Zi, Vir1).
¢ S0, to implement the method, generate z; and y;o so that they appear

on every line (time period) of data for each i.
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Contemporaneous Endogeneity

e How can we handle heterogeneity and contemporaneously
endogenous explanatory variables? There are control function and
GMM approaches, with the former being more convenient but

Imposing more restrictions.
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e Papke and Wooldridge (2008, Journal of Econometrics) propose a
control function approach that allows contemporaneous endogeneity
and for heteroegeneity to be correlated with the instruments.

e \\Ve can start with an omitted variables formulation:

E()/it1|2i,yiz2,0i1,7”it1) = exp(z;101 + A1Vir +Ci1 + rirl),

where c;1 1S unobserved heterogeneity and ;1 IS a time-varying omitted
variable.
e The {z;} — including the excluded instruments — are assumed to be

strictly exogenous here. We must have at least one time-varying IV.
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e |f ;2 Is (roughly) continuous we might specify
Yie = W2 +Zim2 +2:&, + vin,

where we have imposed the Chamberlain-Mundlak device to allow
heterogeneity affecting y;» to be correlated with z; through the time
average, Z;.

e |[f we also specify
ci=w1+2,§ +an

then we can write
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EWinlzi,yvie,vin) = exp(y1 + 2,101 + 71'&1 + a1Yir + Vi),
where vin = an + riq.

e |t is reasonable (but not completely general) to assume (v, vi2) IS

Independent of z;.

o |f we specify E[exp(vin)|vin] = exp(n1 + p1vie) (as would be true

under joint normality), we obtain the estimating equation

E(inlzi,yie,vie) = eXp(k1 +Zinb1 + a1yie + 2:&, + p1vin).
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e Now we can apply a simple two-step method. (1) Obtain the residuals
viz from the pooled OLS estimation y;» on 1, z;, Z; across ¢ and i. (2)
Use a pooled NLS or QMLE (perhaps the Poisson or NegBin Il) to
estimate the exponential function, where (Z;, Vi) are explanatory
variables along with (z;1,yi2). (As usual, a fully set of time period
dummies is a good idea in the first and second steps).

e Note that y;» IS not strictly exogenous in the estimating equation. and
so GEE should not be used. GMM with carefully constructed moments

could be.
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e Estimating the ASF is straightforward:

— N A A A s A A
ASF(Za,yp) = N1 E ,eXp(Kl +2n01 + 01y + Zz‘&l + P1Vir);
=1

that is, we average out (Z;, V).
e Test the null of contemporaneous exogeneity of y;» by using a fully

robust ¢ statistic on v;,.
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e A GMM approach can be applied if the instruments satisfy a

sequential exogeneity assumption; we do not need strict exogeneity:

Vit = c,-exp(xl-tﬁ)rl-t (113)
E(rl'tlzil"--wzl'l’ci) — 1’ (114)

which contains the the case with sequentially exogenous {X;} as a

special case (z;; = Xi).
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e Now start with the transformation

Vit _ Vil P
xpOB) | expOap) U i) (115)

e In the sequential exogeneity case,

E(riulXit, ..., Xi1,¢i) = E(rig1lXi, ..., Xa,c;) = 1, and so multiplying the
moment conditions by any function of x; is allowed. We get the
previous moment conditions by multiplying through by exp(x;).

e Cannot multiply through by exp(x;B) If X;; Is contemporaneously

endogenous (correlated with ;).
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e Can easily show that E[c;(ri; — 7in1)|ci, Zisy ..., Zi1) = 0, which leads

to the moment conditions

E|: Vit _ Vit
exp(XiP) exp(X;~+1P)

Zit,...,Zili|=O,t=1,...,T—1. (116)

¢ Using these directly generally causes computational problems. For
example, If x;; > 0 for some j and all i and ¢, with strict inequality in
some cases — for example, if x;; Is a time dummy — then the moment
conditions can be made arbitarily close to zero by choosing B; larger

and larger.
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e \Windmeijer (2002, Economics Letters) suggested (effectively)
multiplying through by exp(u,B) where

T
e =T D E(xi). (117)
r=1

In other words, p, Is the average of the £(x;,) across ¢. Notice that
exp(p,B) Is a constant and so the orthogonality conditions are not

changed.
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e The modified moment conditions are

E|: Vit . Vil
exp[(Xie — 1, )B]  expl(Xiz1 — 1y )]

Zity.o.yZ } = 0. (118)

e As a practical matter, replace p, with the overall sample average,

7)1 Z Z X (119)

=1l =1

X
II

e The deviated variables, x;; — X, will always take on positive and
negative values, and this seems to solve the GMM computational
problem. (But more work could be done on this, especially in models

with time dummies.)
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e The sample moments look like

N T-1 ¥ y
it I+l
Z Z g”[ exp[(xi — X)B]  exp[(Xi 1 — X)B] }

= =

where g, = 9,(zi,...,Z;1) Is a function of the instruments up through
time ¢. Or, stack these over the time periods for more efficiency.
e As usual, we use GMM with an optimal weighting matrix to set the

sample moments as close to zero as possible.
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e For computing standard errors and conducting statistical inference,
we can probably ignore the sampling variation in X (it is an estimator of
u,) in computing standard errors. The sampling variation in f} given
that f} Is based on a kind of differencing, likely swamps that in X.

¢ The earlier moment conditions under sequential exogeneity replace X

with X;;.
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e An alternative approach Is to multiply through by exp(p, +p, ) to

Zit;---izili| — O’

and then replace p , r = ¢, ¢+ 1, with its sample analog,

N
)_(r — N_l ZXir.
i=1

e Results in demeaning the covariates within each time period.

get

E[ yieexp(p, B) Vi1 €xp(p, B)
exp[(Xir =, )Bl  expl(Xiea — By 41 )P
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