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1. The Linear Model with Cluster Effects

∙ For each group or cluster g, let ygm,xg,zgm : m  1, . . . ,Mg be

the observable data, where Mg is the number of units in cluster or group

g, ygm is a scalar response, xg is a 1  K vector containing explanatory

variables that vary only at the cluster or group level, and zgm is a 1  L

vector of covariates that vary within (as well as across) groups.
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∙Without a cluster identifier, a cluster sample looks like a cross section

data set. Statistically, the key difference is that the sample of clusters

has been drawn from a “large” population of clusters.

∙ The clusters are assumed to be independent of each other, but

outcomes within a cluster should be allowed to be correlated.
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∙ An example is randomly drawing fourth-grade classrooms from a

large population of classrooms (say, in the state of Michigan). Each

class is a cluster and the students within a class are the invididual units.

Or we draw industries and then we have firms within an industry. Or

we draw hospitals and then we have patients within a hospital.

∙ If higher-level explanatory variables are included in any modeling,

we should consider the data as a cluster sample to ensure valid

inference.
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∙ The linear model with an additive error is

ygm    xg  zgm  vgm     (1.1)

for m  1, . . . ,Mg, g  1, . . . ,G.

∙ The observations are independent across g.
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∙ Key questions:

(1) Are we primarily interested in  or ?

(2) Does vgm contain a common group effect, as in

vgm  cg  ugm,m  1, . . . ,Mg,     (1.2)

where cg is an unobserved group (cluster) effect and ugm is the

idiosyncratic component?
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(3) Are the regressors xg,zgm appropriately exogenous?

(4) How big are the group sizes (Mg) and number of groups (G)? For

now, we are assuming “large” G and “small” Mg, but we cannot give

specific values.
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∙ The theory with G →  and the group sizes, Mg, fixed is well

developed [White (1984), Arellano (1987)]. How should one use these

methods? If

Evgm|xg,zgm  0     (1.3)

then pooled OLS estimator of ygm on

1,xg,zgm,m  1, . . . ,Mg;g  1, . . . ,G, is consistent for  ≡ ,′,′′

(as G →  with Mg fixed) and G -asymptotically normal.
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∙ Robust variance matrix is needed to account for correlation within

clusters or heteroskedasticity in Varvgm|xg,zgm, or both. Write Wg as

the Mg  1  K  L matrix of all regressors for group g. Then the

1  K  L  1  K  L variance matrix estimator is

∑
g1

G

Wg
′ Wg

−1

∑
g1

G

Wg
′ v̂gv̂g′ Wg ∑

g1

G

Wg
′ Wg

−1

,     (1.4)

where v̂g is the Mg  1 vector of pooled OLS residuals for group g.

This “sandwich” estimator is now computed routinely using “cluster”

options.
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∙ In State, used “cluster” option with standard regression command:

reg y x1 ... xK z1 ... zL, cluster(clusterid)

∙ These standard errors are, as in the panel data case, robust to

unknown heteroskedasticity, too.

∙ Structure is identical to panel data case, and so is asymptotics

(because G →  plays the role of N → . The fixed Mg setting is like

fixed T in panel data case.)

∙ Cluster samples are usuall “unbalanced,” that is, theMg vary across g.
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∙ Generalized Least Squares: Strengthen the exogeneity assumption to

Evgm|xg,Zg  0,m  1, . . . ,Mg;g  1, . . . ,G,     (1.5)

where Zg is the Mg  L matrix of unit-specific covariates. Condition

(1.5) is “strict exogeneity” for cluster samples (without a time

dimension).

∙ If zgm includes only unit-specific variables, (1.5) rules out “peer

effects.” But one can include measures of peers in zgm – for example,

the fraction of friends living in poverty or living with only one parent.
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∙ Full RE approach: the Mg  Mg variance-covariance matrix of

vg  vg1,vg2, . . . ,vg,Mg′ has the “random effects” form,

Varvg  c2jMg
′ jMg  u

2IMg ,     (1.6)

where jMg is the Mg  1 vector of ones and IMg is the Mg  Mg identity

matrix.
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∙ The usual assumptions include the “system homoskedasticity”

assumption,

Varvg|xg,Zg  Varvg.     (1.7)

∙ The random effects estimator ̂RE is asymptotically more efficient

than pooled OLS under (1.5), (1.6), and (1.7) as G →  with the Mg

fixed. The RE estimates and test statistics for cluster samples are

computed routinely by popular software packages (sometimes by

making it look like a panel data set).
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∙ An important point is often overlooked: one can, and in many cases

should, make RE inference completely robust to an unknown form of

Varvg|xg,Zg even in the cluster sampling case.

∙ The motivation for using the usual RE estimator when Varvg|xg,Zg

does not have the RE structure is the same as that for GEE: the RE

estimator may be more efficient than POLS.
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∙ Example: Random coefficient model,

ygm    xg  zgmg  vgm.     (1.8)

By estimating a standard random effects model that assumes common

slopes , we effectively include zgmg −  in the idiosyncratic error:

ygm    xg  zgm  cg  ugm  zgmg − 

∙ The usual RE transformation does not remove the correlation across

errors due to zgmg − , and the conditional correlation depends on Zg

in general.
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∙ If only  is of interest, fixed effects is attractive. Namely, apply

pooled OLS to the equation with group means removed:

ygm − ȳg  zgm − z̄g  ugm − ūg.     (1.9)

∙ FE allows arbitrary correlation between cg and

zgm : m  1, . . . ,Mg.
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∙ Can be important to allow Varug|Zg to have arbitrary form,

including within-group correlation and heteroskedasticity. Using the

argument for the panel data case, FE can consistently estimate the

average effect in the random coefficient case. But zgm − z̄gg − 

appears in the error term:

ygm − ȳg  zgm − z̄g  ugm − ūg  zgm − z̄gg − 
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∙ A fully robust variance matrix estimator of ̂FE is

∑
g1

G

Z̈g
′ Z̈g

−1

∑
g1

G

Z̈g
′ üg


üg
′
Z̈g ∑

g1

G

Z̈g
′ Z̈g

−1

,     (1.10)

where Z̈g is the matrix of within-group deviations from means and

üg

is the Mg  1 vector of fixed effects residuals. This estimator is justified

with large-G asymptotics.
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∙ Can also use pooled OLS or RE on

ygm    xg  zgm  z̄g  egm,     (1.11)

which allows inclusion of xg and a simple test of H0 :   0. Again,

fully robust inference.

∙ POLS and RE of (1.11) both give the FE estimate of .

∙ Example: Estimating the Salary-Benefits Tradeoff for Elementary

School Teachers in Michigan.

∙ Clusters are school districts. Units are schools within a district.
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. des

Contains data from C:\mitbook1_2e\statafiles\benefits.dta
obs: 1,848

vars: 18 15 Mar 2009 11:25
size: 155,232 (99.9% of memory free)

-------------------------------------------------------------------------------
storage display value

variable name type format label variable label
-------------------------------------------------------------------------------
distid float %9.0g district identifier
schid int %9.0g school identifier
lunch float %9.0g percent eligible, free lunch
enroll int %9.0g school enrollment
staff float %9.0g staff per 1000 students
exppp int %9.0g expenditures per pupil
avgsal float %9.0g average teacher salary, $
avgben int %9.0g average teacher non-salary

benefits, $
math4 float %9.0g percent passing 4th grade math

test
story4 float %9.0g percent passing 4th grade

reading test
bs float %9.0g avgben/avgsal
lavgsal float %9.0g log(avgsal)
lenroll float %9.0g log(enroll)
lstaff float %9.0g log(staff)
-------------------------------------------------------------------------------
Sorted by: distid schid
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. reg lavgsal bs lstaff lenroll lunch

Source | SS df MS Number of obs  1848
------------------------------------------- F( 4, 1843)  429.78

Model | 48.3485452 4 12.0871363 Prob  F  0.0000
Residual | 51.8328336 1843 .028124164 R-squared  0.4826

------------------------------------------- Adj R-squared  0.4815
Total | 100.181379 1847 .054240054 Root MSE  .1677

------------------------------------------------------------------------------
lavgsal | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
bs | -.1774396 .1219691 -1.45 0.146 -.4166518 .0617725

lstaff | -.6907025 .0184598 -37.42 0.000 -.7269068 -.6544981
lenroll | -.0292406 .0084997 -3.44 0.001 -.0459107 -.0125705

lunch | -.0008471 .0001625 -5.21 0.000 -.0011658 -.0005284
_cons | 13.72361 .1121095 122.41 0.000 13.50374 13.94349

------------------------------------------------------------------------------
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. reg lavgsal bs lstaff lenroll lunch, cluster(distid)

(Std. Err. adjusted for 537 clusters in distid)
------------------------------------------------------------------------------

| Robust
lavgsal | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
bs | -.1774396 .2596214 -0.68 0.495 -.6874398 .3325605

lstaff | -.6907025 .0352962 -19.57 0.000 -.7600383 -.6213666
lenroll | -.0292406 .0257414 -1.14 0.256 -.079807 .0213258

lunch | -.0008471 .0005709 -1.48 0.138 -.0019686 .0002744
_cons | 13.72361 .2562909 53.55 0.000 13.22016 14.22707

------------------------------------------------------------------------------

. reg lavgsal bs, cluster(distid)

Linear regression Number of obs  1848
F( 1, 536)  2.36
Prob  F  0.1251
R-squared  0.0049
Root MSE  .23238

(Std. Err. adjusted for 537 clusters in distid)
------------------------------------------------------------------------------

| Robust
lavgsal | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
bs | -.5034597 .3277449 -1.54 0.125 -1.147282 .1403623

_cons | 10.64757 .1056538 100.78 0.000 10.44003 10.85512
------------------------------------------------------------------------------
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. xtreg lavgsal bs lstaff lenroll lunch, re

Random-effects GLS regression Number of obs  1848
Group variable: distid Number of groups  537

R-sq: within  0.5453 Obs per group: min  1
between  0.3852 avg  3.4
overall  0.4671 max  162

Random effects u_i ~Gaussian Wald chi2(4)  1890.56
corr(u_i, X)  0 (assumed) Prob  chi2  0.0000

------------------------------------------------------------------------------
lavgsal | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
bs | -.3812698 .1118678 -3.41 0.001 -.6005267 -.162013

lstaff | -.6174177 .0153587 -40.20 0.000 -.6475202 -.5873151
lenroll | -.0249189 .0075532 -3.30 0.001 -.0397228 -.0101149

lunch | .0002995 .0001794 1.67 0.095 -.0000521 .0006511
_cons | 13.36682 .0975734 136.99 0.000 13.17558 13.55806

-----------------------------------------------------------------------------
sigma_u | .12627558
sigma_e | .09996638

rho | .61473634 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. xtreg lavgsal bs lstaff lenroll lunch, re cluster(distid)

Random-effects GLS regression Number of obs  1848
Group variable: distid Number of groups  537

R-sq: within  0.5453 Obs per group: min  1
between  0.3852 avg  3.4
overall  0.4671 max  162

Random effects u_i ~Gaussian Wald chi2(4)  316.91
corr(u_i, X)  0 (assumed) Prob  chi2  0.0000

(Std. Err. adjusted for 537 clusters in distid)
------------------------------------------------------------------------------

| Robust
lavgsal | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
bs | -.3812698 .1504893 -2.53 0.011 -.6762235 -.0863162

lstaff | -.6174177 .0363789 -16.97 0.000 -.688719 -.5461163
lenroll | -.0249189 .0115371 -2.16 0.031 -.0475312 -.0023065

lunch | .0002995 .0001963 1.53 0.127 -.0000852 .0006841
_cons | 13.36682 .1968713 67.90 0.000 12.98096 13.75268

-----------------------------------------------------------------------------
sigma_u | .12627558
sigma_e | .09996638

rho | .61473634 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. xtreg lavgsal bs lstaff lenroll lunch, fe

Fixed-effects (within) regression Number of obs  1848
Group variable: distid Number of groups  537

R-sq: within  0.5486 Obs per group: min  1
between  0.3544 avg  3.4
overall  0.4567 max  162

F(4,1307)  397.05
corr(u_i, Xb)  0.1433 Prob  F  0.0000

------------------------------------------------------------------------------
lavgsal | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
bs | -.4948449 .133039 -3.72 0.000 -.7558382 -.2338515

lstaff | -.6218901 .0167565 -37.11 0.000 -.6547627 -.5890175
lenroll | -.0515063 .0094004 -5.48 0.000 -.0699478 -.0330648

lunch | .0005138 .0002088 2.46 0.014 .0001042 .0009234
_cons | 13.61783 .1133406 120.15 0.000 13.39548 13.84018

-----------------------------------------------------------------------------
sigma_u | .15491886
sigma_e | .09996638

rho | .70602068 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i0: F(536, 1307)  7.24 Prob  F  0.0000
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. xtreg lavgsal bs lstaff lenroll lunch, fe cluster(distid)

Fixed-effects (within) regression Number of obs  1848
Group variable: distid Number of groups  537

R-sq: within  0.5486 Obs per group: min  1
between  0.3544 avg  3.4
overall  0.4567 max  162

F(4,536)  57.84
corr(u_i, Xb)  0.1433 Prob  F  0.0000

(Std. Err. adjusted for 537 clusters in distid)
------------------------------------------------------------------------------

| Robust
lavgsal | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
bs | -.4948449 .1937316 -2.55 0.011 -.8754112 -.1142785

lstaff | -.6218901 .0431812 -14.40 0.000 -.7067152 -.5370649
lenroll | -.0515063 .0130887 -3.94 0.000 -.0772178 -.0257948

lunch | .0005138 .0002127 2.42 0.016 .0000959 .0009317
_cons | 13.61783 .2413169 56.43 0.000 13.14379 14.09187

-----------------------------------------------------------------------------
sigma_u | .15491886
sigma_e | .09996638

rho | .70602068 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. xtreg lavgsal bs lstaff lenroll lunch, re cluster(distid) theta

Random-effects GLS regression Number of obs  1848
Group variable: distid Number of groups  537

Random effects u_i ~Gaussian Wald chi2(4)  316.91
corr(u_i, X)  0 (assumed) Prob  chi2  0.0000

------------------- theta --------------------
min 5% median 95% max

0.3793 0.3793 0.3793 0.7572 0.9379

(Std. Err. adjusted for 537 clusters in distid)
------------------------------------------------------------------------------

| Robust
lavgsal | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
bs | -.3812698 .1504893 -2.53 0.011 -.6762235 -.0863162

lstaff | -.6174177 .0363789 -16.97 0.000 -.688719 -.5461163
lenroll | -.0249189 .0115371 -2.16 0.031 -.0475312 -.0023065

lunch | .0002995 .0001963 1.53 0.127 -.0000852 .0006841
_cons | 13.36682 .1968713 67.90 0.000 12.98096 13.75268

-----------------------------------------------------------------------------
sigma_u | .12627558
sigma_e | .09996638

rho | .61473634 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. * Create within-district means of all covariates.

. egen bsbar  mean(bs), by(distid)

. egen lstaffbar  mean(lstaff), by(distid)

. egen lenrollbar  mean(lenroll), by(distid)

. egen lunchbar  mean(lunch), by(distid)
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. xtreg lavgsal bs lstaff lenroll lunch bsbar lstaffbar lenrollbar lunchbar,
re cluster(distid)

Random-effects GLS regression Number of obs  1848
Group variable: distid Number of groups  537

(Std. Err. adjusted for 537 clusters in distid)
------------------------------------------------------------------------------

| Robust
lavgsal | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
bs | -.4948449 .1939422 -2.55 0.011 -.8749646 -.1147252

lstaff | -.6218901 .0432281 -14.39 0.000 -.7066157 -.5371645
lenroll | -.0515063 .013103 -3.93 0.000 -.0771876 -.025825

lunch | .0005138 .000213 2.41 0.016 .0000964 .0009312
bsbar | .2998553 .3031961 0.99 0.323 -.2943981 .8941088

lstaffbar | -.0255493 .0651932 -0.39 0.695 -.1533256 .1022269
lenrollbar | .0657285 .020655 3.18 0.001 .0252455 .1062116

lunchbar | -.0007259 .0004378 -1.66 0.097 -.0015839 .0001322
_cons | 13.22003 .2556139 51.72 0.000 12.71904 13.72103

-----------------------------------------------------------------------------
sigma_u | .12627558
sigma_e | .09996638

rho | .61473633 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. test bsbar lstaffbar lenrollbar lunchbar

( 1) bsbar  0
( 2) lstaffbar  0
( 3) lenrollbar  0
( 4) lunchbar  0

chi2( 4)  20.70
Prob  chi2  0.0004
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2. Cluster-Robust Inference with Large Group Sizes

∙What if one applies robust inference when the fixed Mg, G → 

asymptotic analysis not realistic? Apply results of Hansen (2007,

Journal of Econometrics).

∙ Hansen (2007, Theorem 2) shows that with G and Mg both getting

large the usual inference based on the robust “sandwich” estimator is

valid with arbitrary correlation among the errors, vgm within each group

(but independence across groups).
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∙ For example, if we have a sample of G  100 schools and roughly

Mg  100 students per school cluster-robust inference for pooled OLS

should produce inference of roughly the correct size.
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∙ Unfortunately, in the presence of cluster effects with a small number

of groups (G) and large group sizes (Mg), cluster-robust inference with

pooled OLS falls outside Hansen’s theoretical findings. We should not

expect good properties of the cluster-robust inference with small groups

and large group sizes.
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∙ Example: Suppose G  10 hospitals have been sampled with several

hundred patients per hospital. If the explanatory variable of interest

varies only at the hospital level, tempting to use pooled OLS with

cluster-robust inference. But we have no theoretical justification for

doing so, and reasons to expect it will not work well.
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∙ If the explanatory variables of interest vary within group, FE is

attractive. First, allows cg to be arbitrarily correlated with the zgm.

Second, with large Mg, can treat the cg as parameters to estimate –

because we can estimate them precisely – and then assume that the

observations are independent across m (as well as g). This means that

the usual inference is valid, perhaps with adjustment for

heteroskedasticity.
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∙ For panel data applications, Hansen’s (2007) results, particularly

Theorem 3, imply that cluster-robust inference for the fixed effects

estimator should work well when the cross section (N) and time series

(T) dimensions are similar and not too small. If full time effects are

allowed in addition to unit-specific fixed effects – as they often should

– then the asymptotics must be with N and T both getting large.
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∙ Any serial dependence in the idiosyncratic errors is assumed to be

weakly dependent. Simulations in Bertrand, Duflo, and Mullainathan

(2004) and Hansen (2007) verify that the robust cluster-robust variance

matrix works well when N and T are about 50 and the idiosyncratic

errors follow a stable AR(1) model.
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3. Cluster Samples with Unit-Specific Panel Data

∙ Often, cluster samples come with a time component, so that there are

two potential sources of correlation across observations: across time

within the same individual and across individuals within the same

group.

∙ Assume here that there is a natural nesting. Each unit belongs to a

cluster and the cluster identification does not change over time.

∙ For example, we might have annual panel data at the firm level, and

each firm belongs to the same industry (cluster) for all years. Or, we

have panel data for schools that each belong to a district.
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∙ Special case of hierarchical linear model (HLM) setup or mixed

models or multilevel models.

∙ Now we have three data subscripts on at least some variables that we

observe. For example, the response variable is ygmt, where g indexes the

group or cluster, m is the unit within the group, and t is the time index.

∙ Assume we have a balanced panel with the time periods running from

t  1, . . . ,T. (Unbalanced case not difficult, assuming exogenous

selection.) Within cluster g there are Mg units, and we have sampled G

clusters. (In the HLM literature, g is usually called the first level and m

the second level.)
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∙We assume that we have many groups, G, and relatively few

members of the group. Asymptotics: fixedMg and T fixed with G

getting large. For example, if we can sample, say, several hundred

school districts, with a few to maybe a few dozen schools per district,

over a handful of years, then we have a data set that can be analyzed in

the current framework.
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∙ A standard linear model with constant slopes can be written, for

t  1, . . . ,T, m  1, . . . ,Mg, and a random draw g from the population

of clusters as

ygmt   t  wg  xgm  zgmt  hg  cgm  ugmt,

where, say, hg is the industry or district effect, cgm is the firm effect or

school effect (firm or school m in industry or district g), and ugmt is the

idiosyncratic effect. In other words, the composite error is

vgmt  hg  cgm  ugmt.
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∙ Generally, the model can include variables that change at any level.

∙ Some elements of zgmt might change only across g and t, and not by

unit. This is an important special case for policy analysis where the

policy applies at the group level but changes over time.

∙With the presence of wg, or variables that change across g and t, need

to recognize hg.
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∙ If assume the error vgmt is uncorrelated with wg,xgm,zgmt, pooled

OLS is simple and attractive. Consistent as G →  for any cluster or

serial correlation pattern.

∙ The most general inference for pooled OLS – still maintaining

independence across clusters – is to allow any kind of serial correlation

across units or time, or both, within a cluster.
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∙ In Stata:

reg y w1 ... wJ x1 ... xK z1 ... zL,

cluster(industryid)

∙ Compare with inference robust only to serial correlation:

reg y w1 ... wJ x1 ... xK z1 ... zL,

cluster(firmid)

∙ In the context of cluster sampling with panel data, the latter is no

longer “fully robust” because it ignores possible within-cluster

correlation.
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∙ Can apply a generalized least squares analysis that makes

assumptions about the components of the composite error. Typically,

assume components are pairwise uncorrelated, the cgm are uncorrelated

within cluster (with common variance), and the ugmt are uncorrelated

within cluster and across time (with common variance).

∙ Resulting feasible GLS estimator is an extension of the usual random

effects estimator for panel data.

∙ Because of the large-G setting, the estimator is consistent and

asymptotically normal whether or not the actual variance structure we

use in estimation is the proper one.

45



∙ To guard against heteroskedasticity in any of the errors and serial

correlation in the ugmt, one should use fully robust inference that does

not rely on the form of the unconditional variance matrix (which may

also differ from the conditional variance matrix).

∙ Simpler strategy: apply random effects at the individual level,

effectively ignoring the clusters in estimation. In other words, treat the

data as a standard panel data set in estimation and apply usual RE. To

account for the cluster sampling in inference, one computes a fully

robust variance matrix estimator for the usual random effects estimator.
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∙ In Stata:

xtset firmid year

xtreg y w1 ... wJ x1 ... xK z1 ... zL, re

cluster(industryid)

∙ Again, compare with inference robust only to neglected serial

correlation:

xtreg y w1 ... wJ x1 ... xK z1 ... zL, re

cluster(firmid)
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∙ Formal analysis. Write the equation for each cluster as

yg  Rg  vg

where a row of Rg is 1,d2, . . . ,dT,wg,xgm,zgmt (which includes a full

set of period dummies) and  is the vector of all regression parameters.

For cluster g, yg contains MgT elements (T periods for each unit m).
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∙ In particular,

yg 

yg1
yg2


yg,Mg

, ygm 

ygm1

ygm2



ygmT

so that each ygm is T  1; vg has an identical structure. Now, we can

obtain g  Varvg under various assumptions and apply feasible

GLS.
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∙ RE at the unit level is obtained by choosing g  IMg ⊗ , where 

is the T  T matrix with the RE structure. If there is within-cluster

correlation, this is not the correct form of Varvg, and that is why

robust inference is generally needed after RE estimation.
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∙ For the case that vgmt  hg  cgm  ugmt where the terms have

variances h2, c2, and u2, respectively, they are pairwise uncorrelated,

cgm and cgr are uncorrelated for r ≠ m, and ugmt : t  1, . . . ,T is

serially uncorrelated, we can obtain g as follows:

Varvgm  h2  c2jTjT′  u2IT
Covvgm,vgr  h2jTjT′ , r ≠ m

g 

h2  c2jTjT′  u2IT  h2jTjT′

  

h2jTjT′  h2  c2jTjT′  u2IT
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∙ The robust asymptotic variance of ̂ is estimated as

Avar̂  ∑
g1

G

Rg
′ ̂g

−1Rg

−1

∑
g1

G

Rg
′ ̂g

−1v̂gv̂g′ ̂g
−1Rg

−1

 ∑
g1

G

Rg
′ ̂g

−1Rg

−1

,

where v̂g  yg − Rg̂.
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∙ Unfortunately, routines intended for estimating HLMs (or mixed

models) assume that the structure imposed on g is correct, and that

Varvg|Rg  Varvg. The resulting inference could be misleading,

especially if serial correlation in ugmt is not allowed.

∙ In Stata, the command is xtmixed.
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∙ Because of the nested data structure, we have available different

versions of fixed effects estimators. Subtracting cluster averages from

all observations within a cluster eliminates hg; when wgt  wg for all t,

wg is also eliminated. But the unit-specific effects, cmg, are still part of

the error term. If we are mainly interested in , the coefficients on the

time-varying variables zgmt, then removing cgm (along with hg) is

attractive. In other words, use a standard fixed effects analysis at the

individual level.
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∙ If the units are allowed to change groups over time – such as children

changing schools – then we would replace hg with hgt, and then

subtracting off individual-specific means would not remove the

time-varying cluster effects.
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∙ Even if we use unit “fixed effects” – that is, we demean the data at the

unit level – we might still use inference robust to clustering at the

aggregate level. Suppose the model is

ygmt   t  wg  xgm  zgmtdmg  hg  cmg  ugmt
  t  wgt  xgm  zgmt  hg  cmg  ugmt  zgmtegm,

where dgm    egm is a set of unit-specific intercepts on the

individual, time-varying covariates zgmt.
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∙ The time-demeaned equation within individual m in cluster g is

ygmt − ȳgm   t  zgmt − z̄gm  ugmt − ūgm  zgmt − z̄gmegm.

∙ FE is still consistent if Edmg|zgmt − z̄gm  Edmg, m  1, . . . ,Mg,

t  1, . . . ,T, and all g, and so cluster-robust inference, which is

automatically robust to serial correlation and heteroskedsticity, makes

perfectly good sense.
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∙ Example: Effects of Funding on Student Performance
. use meap94_98

. des

Contains data from meap94_98.dta
obs: 7,150

vars: 26 13 Mar 2009 11:30
size: 893,750 (99.8% of memory free)

-------------------------------------------------------------------------------
storage display value

variable name type format label variable label
-------------------------------------------------------------------------------
distid float %9.0g district identifier
schid int %9.0g school identifier
lunch float %9.0g % eligible for free lunch
enrol int %9.0g number of students
exppp int %9.0g expenditure per pupil
math4 float %9.0g % satisfactory, 4th grade math

test
year int %9.0g 1992school yr 1991-2
cpi float %9.0g consumer price index
rexppp float %9.0g (exppp/cpi)*1.695: 1997 $
lrexpp float %9.0g log(rexpp)
lenrol float %9.0g log(enrol)
avgrexp float %9.0g (rexppp  rexppp_1)/2
lavgrexp float %9.0g log(avgrexp)
tobs byte %9.0g number of time periods
-------------------------------------------------------------------------------
Sorted by: schid year
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. * egen tobs  sum(1), by(schid)

. tab tobs if y98

number of |
time |

periods | Freq. Percent Cum.
-----------------------------------------------

3 | 487 29.28 29.28
4 | 254 15.27 44.56
5 | 922 55.44 100.00

-----------------------------------------------
Total | 1,663 100.00
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. xtreg math4 lavgrexp lunch lenrol y95-y98, fe

Fixed-effects (within) regression Number of obs  7150
Group variable: schid Number of groups  1683

R-sq: within  0.3602 Obs per group: min  3
between  0.0292 avg  4.2
overall  0.1514 max  5

------------------------------------------------------------------------------
math4 | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | 6.288376 2.098685 3.00 0.003 2.174117 10.40264

lunch | -.0215072 .0312185 -0.69 0.491 -.082708 .0396935
lenrol | -2.038461 1.791604 -1.14 0.255 -5.550718 1.473797

y95 | 11.6192 .5545233 20.95 0.000 10.53212 12.70629
y96 | 13.05561 .6630948 19.69 0.000 11.75568 14.35554
y97 | 10.14771 .7024067 14.45 0.000 8.770713 11.52471
y98 | 23.41404 .7187237 32.58 0.000 22.00506 24.82303

_cons | 11.84422 22.81097 0.52 0.604 -32.87436 56.5628
-----------------------------------------------------------------------------

sigma_u | 15.84958
sigma_e | 11.325028

rho | .66200804 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i0: F(1682, 5460)  4.82 Prob  F  0.0000
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. xtreg math4 lavgrexp lunch lenrol y95-y98, fe cluster(schid)

Fixed-effects (within) regression Number of obs  7150
Group variable: schid Number of groups  1683

(Std. Err. adjusted for 1683 clusters in schid)
------------------------------------------------------------------------------

| Robust
math4 | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | 6.288376 2.431317 2.59 0.010 1.519651 11.0571

lunch | -.0215072 .0390732 -0.55 0.582 -.0981445 .05513
lenrol | -2.038461 1.789094 -1.14 0.255 -5.547545 1.470623

y95 | 11.6192 .5358469 21.68 0.000 10.56821 12.6702
y96 | 13.05561 .6910815 18.89 0.000 11.70014 14.41108
y97 | 10.14771 .7326314 13.85 0.000 8.710745 11.58468
y98 | 23.41404 .7669553 30.53 0.000 21.90975 24.91833

_cons | 11.84422 25.16643 0.47 0.638 -37.51659 61.20503
-----------------------------------------------------------------------------

sigma_u | 15.84958
sigma_e | 11.325028

rho | .66200804 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. xtreg math4 lavgrexp lunch lenrol y95-y98, fe cluster(distid)

(Std. Err. adjusted for 467 clusters in distid)
------------------------------------------------------------------------------

| Robust
math4 | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | 6.288376 3.132334 2.01 0.045 .1331271 12.44363

lunch | -.0215072 .0399206 -0.54 0.590 -.0999539 .0569395
lenrol | -2.038461 2.098607 -0.97 0.332 -6.162365 2.085443

y95 | 11.6192 .7210398 16.11 0.000 10.20231 13.0361
y96 | 13.05561 .9326851 14.00 0.000 11.22282 14.8884
y97 | 10.14771 .9576417 10.60 0.000 8.26588 12.02954
y98 | 23.41404 1.027313 22.79 0.000 21.3953 25.43278

_cons | 11.84422 32.68429 0.36 0.717 -52.38262 76.07107
-----------------------------------------------------------------------------

sigma_u | 15.84958
sigma_e | 11.325028

rho | .66200804 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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∙ Can allow the slopes to depend on observed covariates and then use

various GLS approaches. An equation for unit m at time t in cluster g is

ygmt  zgmtdgm  vgmt

and then decompose the idiosyncratic error, vgmt, as

vgmt   t  cgm  ugmt,

where the  t are aggregate time effects. Absorb the group effect, hgt,

into ugmt, and allow cgm and ugmt do be correlated within group.
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∙ For each g,m define

r̄gm  wg, x̄g,xgm, z̄gm,

where x̄g  Mg
−1∑p1

Mg xgp and z̄gm  T−1∑s1
T zgms. In other words,

r̄gm includes the group-level covariates along with group averages of

the unit-specific covariates, the unit-specific covariates, and the time

averages of the covariates that change over time.
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∙ Assume

cgm    r̄gm  agm
dgm    r̄gm −  r̄

′  egm

insert these in the equation, and use basic algebra:

ygmt   t  r̄gm  zgmt  r̄gm −  r̄ ⊗ zgmt  agm  zgmtegm  ugmt,

where   vec.

∙ Important to center r̄gm about its average before forming the

interactions to make  the APE.
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∙ Now can apply various GLS methods to this equation, using

cluster-robust inference at the g level.

∙ Similar discussion holds in the context of instrumental variables.

Suppose we start with the model

ygmt   t  rgmt  vgmt

where rgmt contains all covariates and vgmt is the composite error. If we

have exogenous variables, say qgmt, such that Eqgmt′ vgmt  0 and the

rank condition holds, then pooled 2SLS is attractive for its simplicity.
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∙ It does not matter whether elements of rgmt or qgmt contain elements

that change only across g, across g and m, across g and t, or across g,

m, and t, provided the rank condition holds. Without further

assumptions, the 2SLS variance matrix estimator, and inference

generally, should be robust to arbitrary serial correlation and cluster

correlation at the most aggregated level. For example, if g indexes

counties and m indexes manufacturing plants operating within a county,

then we should cluster at the county level.
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∙May have policy and instruments change only at the county level over

time, along with exogenous explanatory variables that change at the

plant level (either constant or over time). In evaluating whether the rank

condition holds – say, for a single endogenous variable wgmt – one can

use a pooled OLS regression wgmt on 1, d2t, . . . , dTt, qgmt (assuming

that qgmt contains all exogenous variables).

∙ Such a test should be made robust to arbitrary cluster and serial

correlation to be convincing.

∙ The test works even if wgmt does not change across m (or even t for

that matter), and the same with qgmt.
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∙ Again, cluster robust inference is valid with large G provided it is

made fully robust.

∙ In the previous scenario, if we apply, say, fixed effects 2SLS, where

we eliminate a time-constant, plant-level effect, then we need the

variables of interest to at least change over time (if not across m); the

same is true of the instruments.

∙ If we have instruments that change only by g, the FE2SLS estimator –

whether we remove a county-level or plant-level effect – does not

identify .
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4. Estimation with a Small Number of Groups

∙When G is small and each Mg is large, we might have a different

sampling scheme: large random samples are drawn from different

segments of a population. Except for the relative dimensions of G and

Mg, the resulting data set is essentially indistinguishable from a data set

obtained by sampling entire clusters.

∙ The problem of proper inference when Mg is large relative to G – the

“Moulton (1990) problem” – has been recently studied by Donald and

Lang (2007).
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∙ DL treat the problem as a small number of random draws from a large

number of groups (because they assume independence).

∙ Simplest case: a single regressor that varies only by group:

ygm    xg  cg  ugm
 g  xg  ugm.

In second equation, common slope, , but intercept, g, that varies

across g.

∙ DL focus on first equation, where cg is assumed to be independent of

xg with zero mean.
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∙ Note: Because cg is assumed independent of xg, the DL criticism of

standard pooled methods is not one of endogeneity. It is one of

inference.

∙ DL highlight the problems of applying standard inference leaving cg

as part of the error term, vgm  cg  ugm.

∙ Pooled OLS inference applied to

ygm    xg  cg  ugm

can be badly biased because it ignores the cluster correlation. Hansen’s

results do not apply. (And we cannot use fixed effects estimation here.)
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∙ DL propose studying the regression in averages:

ȳg    xg  v̄g,g  1, . . . ,G.

∙ Add some strong assumptions: Mg  M for all g,

cg|xg  Normal0,c2 and ugm|xg,cg  Normal0,u2. Then v̄g is

independent of xg and v̄g  Normal0,c2  u2/M. Then the model in

averages satisfies the classical linear model assumptions (we assume

independent sampling across g).

∙ So, we can just use the “between” regression

ȳg on 1,xg,g  1, . . . ,G.

∙ The estimates of  and  are identical to pooled OLS across g and m
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when Mg  M for all g.

∙ Conditional on the xg, ̂ inherits its distribution from

v̄g : g  1, . . . ,G, the within-group averages of the composite errors.

∙We can use inference based on the tG−2 distribution to test hypotheses

about , provided G  2.

∙ If G is small, the requirements for a significant t statistic using the

tG−2 distribution are much more stringent then if we use the

tM1M2...MG−2 distribution – which is what we would be doing if we use

the usual pooled OLS statistics.
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∙ Using the averages in an OLS regression is not the same as using

cluster-robust standard errors for pooled OLS. Those are not justified

and, anyway, we would use the wrong df in the t distribution.

∙We can apply the DL method without normality of the ugm if the

group sizes are large because Varv̄g  c2  u2/Mg so that ūg is a

negligible part of v̄g. But we still need to assume cg is normally

distributed.

∙ If zgm appears in the model, then we can use the averaged equation

ȳg    xg  z̄g  v̄g,g  1, . . . ,G,

provided G  K  L  1.
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∙ Inference can be carried out using the tG−K−L−1 distribution.

∙ Regressions on averages are reasonably common, at least as a check

on results using disaggregated data, but usually with larger G then just

a handful.

∙ If G  2 in the DL setting, we cannot do inference (there are zero

degrees of freedom).

∙ Suppose xg is binary, indicating treatment and control (g  2 is the

treatment, g  1 is the control). The DL estimate of  is the usual one:

̂  ȳ2 − ȳ1. But we cannot compute a standard error for ̂.
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∙ So according the the DL framework the traditional

comparison-of-means approach to policy analysis cannot be used.

Should we just give up when G  2?

∙ In a sense the problem is an artifact of saying there are three

group-level parameters. If we write

ygm  g  xg  ugm

where x1  0 and x2  1, then Ey1m  1 and Ey2m  2  .

There are only two means but three parameters.

77



∙ The usual approach simply defines 1  Ey1m, 2  Ey2m, and

then uses random samples from each group to estimate the means. Any

“cluster effect” is contained in the means.

∙ Remember, in the DL framework, the cluster effect is independent of

xg, so the DL criticism is not about systematic bias.
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∙ Applies to simple difference-in-differences settings. Let

ygm  wgm2 − wgm1 be the change in a variable w from period one to

two. So, we have a before period and an after period, and suppose a

treated group (x2  1) and a control group x1  0. So G  2.

∙ The estimator of  is the DD estimator:

̂  Δw2 − Δw1

where Δw2 is the average of changes for the treament group and Δw1 is

the average change for the control.
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∙ Card and Krueger (1994) minimum wage example: G  2 so,

according to DL, cannot put a confidence interval around the estimated

change in employment.

∙ If we go back to

ygm    xg  cg  ugm

when x1  0, x2  1, one can argue that cg should just be part of the

estimated mean for group g. It is assumed assignment is exogenous.

∙ In the traditional view, we are estimating 1    c1 and

2      c2 and so the estimated policy effect is   c2 − c1.
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∙ Even when DL approach applies, should we use it? Suppose G  4

with two control groups (x1  x2  0) and two treatment groups

(x3  x4  1). DL involves the OLS regression ȳg on 1,xg,

g  1, . . . , 4; inference is based on the t2 distribution. Can show

̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2,

which shows ̂ is approximately normal (for most underlying

population distributions) even with moderate group sizes Mg.
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∙ In effect, the DL approach rejects usual inference based on means

from large samples because it may not be the case that 1  2 and

3  4. Why not allow heterogeneous means?

∙ Could just define the treatment effect as, say,

  3  4/2 − 1  2/2,

and then plug in the unbiased, consistent, asymptotically normal

estimators of the g under random sampling within each g.
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∙ The expression ̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2 hints at a different way

to view the small G, large Mg setup. We estimated two parameters, 

and , given four moments that we can estimate with the data.

∙ The OLS estimates of  and  can be interpreted as minimum

distance estimates that impose the restrictions 1  2   and

3  4    . In the general MD notation,   1,2,3,4′ and

h 





  

  

.
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∙ Can show that if we use the 4  4 identity matrix as the weight

matrix, we get ̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2 and ̂  ȳ1  ȳ2/2.
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∙ In the general setting, with large group sizes Mg, and whether or not

G is especially large, we can put the problem into an MD framework,

as done by Loeb and Bound (1996), who had G  36 cohort-division

groups and many observations per group.

∙ Idea is to think of a set of G linear models at the invididual (m) level

with group-specific intercepts (and possibly slopes).
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∙ For each group g, write

ygm  g  zgmg  ugm

Eugm  0, Ezgm′ ugm  0.

Within-group OLS estimators of g and g are Mg -asymptotically

normal under random sampling within group.
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∙ The presence of aggregate features xg can be viewed as putting

restrictions on the intercepts:

g    xg,g  1, . . . ,G.

∙With K attributes (xg is 1  K) we must have G ≥ K  1 to determine

 and .

∙ In the first stage, obtain ̂g, either by group-specific regressions or

pooling to impose some common slope elements in g.

∙ If we impose some restrictions on the g, such as g   for all g, the

̂g are (asymptotically) correlated.
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∙ Let V̂ be the G  G estimated (asymptotic) variance of the G  1

vector ̂. Let X be the G  K  1 matrix with rows 1,xg. The MD

estimator is

̂  X′V̂−1X−1X′V̂−1
̂

The asymptotics are as each group size gets large, and ̂ has an

asymptotic normal distribution; its estimated asymptotic variance is

X′V̂−1X−1.

∙ Estimator looks like “GLS,” but inference is with G (number of rows

in X) fixed and Mg growing.
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∙When separate group regressions are used for each g, the ̂g are

independent and V̂ is diagonal, and ̂ looks like a weighted least

squares estimator. That is, treat the ̂g,xg : g  1, . . . ,G as the data

and use WLS of ̂g on 1,xg using weights 1/se̂g2.

∙ Can test the G − K  1 overidentification restrictions using the SSR

from the “weighted least squares” as approximately G−K−1
2 .
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∙What happens if the overidentifying restrictions reject?

(1) Can search for more features to include in xg. If G  K  1, no

restrictions to test.

(2) Think about whether a rejection is important. In the program

evaluation applications, rejection generally occurs if group means

within the control groups or within the treatment groups differ. For

example, in the G  4 case with x1  x2  0 and x3  x4  1, the test

will reject if 1 ≠ 2 or 3 ≠ 4. But why should we care? We might

want to allow heterogeneous policy effects and define the parameter of

interest as

  3  4/2 − 1  2/2.
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(3) Apply the DL approach on the group-specific intercepts. That is,

write

g    xg  cg,g  1, . . . ,G

and assume that this equation satisfies the classical linear model

assumptions.

∙With large group sizes, we can act as if

̂g    xg  cg,g  1, . . . ,G

because ̂g  g  OpMg
−1/2 and we can ignore the OpMg

−1/2 part.

But we must assume cg is homoskedastic, normally distributed, and

independent of xg.
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∙ Note how we only need G  K  1 because the zgm have been

accounted for in the first stage in obtaining the ̂g. But we are ignoring

the estimation error in the ̂g.
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5. Clustering and Stratification

∙ Survey data often characterized by clustering and VP sampling.

Suppose that g represents the primary sampling unit (say, city) and

individuals or families (indexed by m) are sampled within each PSU

with probability pgm. If ̂ is the pooled OLS estimator across PSUs and

individuals, its variance is estimated as
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∑
g1

G

∑
m1

Mg

xgm′ xgm/pgm

−1

 ∑
g1

G

∑
m1

Mg

∑
r1

Mg

ûgmûgrxgm′ xgr/pgmpgr

 ∑
g1

G

∑
m1

Mg

xgm′ xgm/pgm

−1

.

If the probabilities are estimated using retention frequencies, estimate is

conservative, as before.
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∙Multi-stage sampling schemes introduce even more complications.

Let there be S strata (e.g., states in the U.S.), exhaustive and mutually

exclusive. Within stratum s, there are Cs clusters (e.g., neighborhoods).

∙ Large-sample approximations: the number of clusters sampled, Ns,

gets large. This allows for arbitrary correlation (say, across households)

within cluster.
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∙Within stratum s and cluster c, let there be Msc total units (household

or individuals). Therefore, the total number of units in the population is

M ∑
s1

S

∑
c1

Cs

Msc.
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∙ Let z be a variable whose mean we want to estimate. List all

population values as zscmo : m  1, . . . ,Msc,c  1, . . . ,Cs, s  1, . . . ,S,

so the population mean is

  M−1∑
s1

S

∑
c1

Cs

∑
m1

Msc

zscmo .

Define the total in the population as

 ∑
s1

S

∑
c1

Cs

∑
m1

Msc

zscmo  M.
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Totals within each cluster and then stratum are, respectively,

sc ∑
m1

Msc

zscmo

s ∑
c1

Cs

sc

∙ Sampling scheme:

(i) For each stratum s, randomly draw Ns clusters, with replacement.

(Fine for “large” Cs.)

(ii) For each cluster c drawn in step (i), randomly sample Ksc
households with replacement.
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∙ For each pair s,c, define

̂sc  Ksc−1∑
m1

Ksc

zscm.

Because this is a random sample within s,c,

E̂sc  sc  Msc
−1∑
m1

Msc

zscmo .

∙ To continue up to the cluster level we need the total, sc  Mscsc.

So, ̂sc  Msc̂sc is an unbiased estimator of sc for all

s,c : c  1, . . . ,Cs, s  1, . . . ,S (even if we eventually do not use
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some clusters).
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∙ Next, consider randomly drawing Ns clusters from stratum s. Can

show that an unbiased estimator of the total s for stratum s is

Cs  Ns−1∑
c1

Ns

̂sc.

∙ Finally, the total in the population is estimated as

∑
s1

S

Cs  Ns−1∑
c1

Ns

̂sc ≡ ∑
s1

S

∑
c1

Ns

∑
m1

Ksc

sczscm

where the weight for stratum-cluster pair s,c is

sc ≡ Cs
Ns

 Msc
Ksc

.
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∙ Note how sc  Cs/NsMsc/Ksc accounts for under- or

over-sampled clusters within strata and under- or over-sampled units

within clusters.

∙ Appears in the literature on complex survey sampling, sometimes

without Msc/Ksc when each cluster is sampled as a complete unit, and

so Msc/Ksc  1.

∙ To estimate the mean , just divide by M, the total number of units

sampled.

̂  M−1 ∑
s1

S

∑
c1

Ns

∑
m1

Ksc

sczscm .
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∙ To study regression (and many other estimation methods), specify the

problem as

min

∑
s1

S

∑
c1

Ns

∑
m1

Ksc

scyscm − xscm2.

The asymptotic variance combines clustering with weighting to account

for the multi-stage sampling. Following Bhattacharya (2005), an

appropriate asymptotic variance estimate has a sandwich form,

∑
s1

S

∑
c1

Ns

∑
m1

Ksc

scxscm′ xscm
−1

B̂ ∑
s1

S

∑
c1

Ns

∑
m1

Ksc

scxscm′ xscm
−1

where B̂ is somewhat complicated:
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B̂ ∑
s1

S

∑
c1

Ns

∑
m1

Ksc

sc2 ûscm2 xscm′ xscm

∑
s1

S

∑
c1

Ns

∑
m1

Ksc

∑
r≠m

Ksc

sc2 ûscmûscrxscm′ xscr

−∑
s1

S

Ns−1 ∑
c1

Ns

∑
m1

Ksc

scxscm′ ûscm ∑
c1

Ns

∑
m1

Ksc

scxscm′ ûscm
′
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∙ The first part of B̂ is obtained using the White

“heteroskedasticity”-robust form. The second piece accounts for the

clustering. The third piece reduces the variance by accounting for the

nonzero means of the “score” within strata.
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∙ Suppose that the population is stratified by region, taking on values 1

through 8, and the primary sampling unit is zip code. Within each zip

code we obtain a sample of families, possibly using VP sampling.

∙ Stata command:

svyset zipcode [pweight  sampwght],

strata(region)

∙ Now we can use a set of econometric commands. For example,

svy: reg y x1 ... xK
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. use http://www.stata-press.com/data/r10/nhanes2f

. svyset psuid [pweight  finalwgt], strata(stratid)
pweight: finalwgt
VCE: linearized
Single unit: missing
Strata 1: stratid
SU 1: psuid
FPC 1: zero

. tab health

1excellent |
,..., |

5poor | Freq. Percent Cum.
-----------------------------------------------

poor | 729 7.05 7.05
fair | 1,670 16.16 23.21

average | 2,938 28.43 51.64
good | 2,591 25.07 76.71

excellent | 2,407 23.29 100.00
-----------------------------------------------

Total | 10,335 100.00

. sum lead

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

lead | 4942 14.32032 6.167695 2 80
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. svy: oprobit health lead female black age weight
(running oprobit on estimation sample)

Survey: Ordered probit regression

Number of strata  31 Number of obs  4940
Number of PSUs  62 Population size  56316764

Design df  31
F( 5, 27)  78.49
Prob  F  0.0000

------------------------------------------------------------------------------
| Linearized

health | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

lead | -.0059646 .0045114 -1.32 0.196 -.0151656 .0032364
female | -.1529889 .057348 -2.67 0.012 -.2699508 -.036027

black | -.535801 .0622171 -8.61 0.000 -.6626937 -.4089084
age | -.0236837 .0011995 -19.75 0.000 -.02613 -.0212373

weight | -.0035402 .0010954 -3.23 0.003 -.0057743 -.0013061
-----------------------------------------------------------------------------

/cut1 | -3.278321 .1711369 -19.16 0.000 -3.627357 -2.929285
/cut2 | -2.496875 .1571842 -15.89 0.000 -2.817454 -2.176296
/cut3 | -1.611873 .1511986 -10.66 0.000 -1.920244 -1.303501
/cut4 | -.8415657 .1488381 -5.65 0.000 -1.145123 -.5380083

------------------------------------------------------------------------------
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. oprobit health lead female black age weight

Iteration 0: log likelihood  -7526.7772
Iteration 1: log likelihood  -7133.9477
Iteration 2: log likelihood  -7133.6805

Ordered probit regression Number of obs  4940
LR chi2(5)  786.19
Prob  chi2  0.0000

Log likelihood  -7133.6805 Pseudo R2  0.0522

------------------------------------------------------------------------------
health | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lead | -.0011088 .0026942 -0.41 0.681 -.0063893 .0041718

female | -.1039273 .0352721 -2.95 0.003 -.1730594 -.0347952
black | -.4942909 .0502051 -9.85 0.000 -.592691 -.3958908

age | -.0237787 .0009147 -26.00 0.000 -.0255715 -.0219859
weight | -.0027245 .0010558 -2.58 0.010 -.0047938 -.0006551

-----------------------------------------------------------------------------
/cut1 | -3.072779 .1087758 -3.285975 -2.859582
/cut2 | -2.249324 .1057841 -2.456657 -2.041991
/cut3 | -1.396732 .1038044 -1.600185 -1.19328
/cut4 | -.6615336 .1028773 -.8631693 -.4598978

------------------------------------------------------------------------------
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