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1. INTRODUCTION

∙ Suppose y is a fractional response, that is, 0 ≤ y ≤ 1.

∙ Allow the possibility that y is a corner solution at zero, one, or both. It

could also be an essentially continuous variable strictly between zero

and one in the population.

∙ y can be a proportion computed from the fraction of events occuring

in a given number of trials. [For example, it could be the fraction of

workers participating in a 401(k) pension plan.] But it could also be

fundamentally continuous, such as the proportion of county land zoned

for agriculture.
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∙ For now, no problem of missing data, so we avoid the phrase

“censored at zero” or “censored at one.”

∙ If a variable is initially measured as a percentage, divide it by 100 to

turn it into a proportion.

∙Makes sense to start with linear models; at a minimum, estimated

partial effects can be compared with those from more complicated

nonlinear models.

∙ Remember a general rule: issues such as endogenous explanatory

variables and unobserved heterogeneity are more easily handled with

linear models. To allow nonlinear functional forms, we will impose

extra assumptions.
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2. POSSIBLE APPROACHES TO FRACTIONAL RESPONSES

∙ In the case where y has corners at zero and one, a two-limit Tobit

model is logically consistent. But it uses a full set of distributional

assumptions [which, of course, has the benefit of allowing us to

estimate any feature of Dy|x]. Plus, it is logically inconsistent if we

have only one corner.

∙ Can use other logically consistent distributions. If yi is a continuous

on 0,1, a conditional Beta distribution makes sense.

∙ The Beta distribution is not in the LEF, so, like the Tobit approach,

MLE using the Beta distribution is inconsistent for the parameters in a

correctly specified conditional mean.
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∙We focus mainly on models for estimating the conditonal mean.

Later, discuss two-part models.

∙ Linear model has essentially same drawbacks as for binary response:

Ey|x  x  1  2x2 . . .KxK

can hold over all potential values of x only in rare circumstances (such

as mutually exclusive and exhaustive dummy variables).
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∙ As with other limited dependent variables, we should view the linear

model as the best linear approximation to Ey|x (which we can

potentially improve by using quadratics, interactions, and other

functional forms such as logarithms).

∙ As always, the OLS estimators are consistent for the linear projection

parameters, which approximate (we hope) average partial effects.
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∙ A common approach when 0  y  1 is to use the so-called log-odds

transformation of y, logy/1 − y, in a linear regression. Define

w  logy/1 − y and assume

Ew|x  x.

∙ The log-odds approach is simple and, because w can range over all

real values, the linear conditional mean is attractive.
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∙ Drawbacks to the log-odds approach: First, it cannot be applied to

corner solution responses unless we make some arbitrary adjustments.

Because logy/1 − y → − as y → 0 and logy/1 − y →  as

y → 1, our estimates might be sensitive to the adjustments at the

endpoints.

∙ Second, even if y is strictly in the unit interval,  is difficult to

interpret: without further assumptions, it is not possible to estimate

Ey|x from a model for Elogy/1 − y|x.
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∙ One possibility is to assume the log-odds transformation yields a

linear model with an additive error independent of x:

logy/1 − y  x  e, De|x  De,

where we take Ee  0 (and assume that x1  1). Then, we can write

y  expx  e/1  expx  e.
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∙ If e and x are independent,

Ey|x   expx  e/1  expx  edFe,

where F is the distribution function of e.

∙ Duan’s (JASA, 1983) “smearing estimate” can be used without

specifying De:

Êy|x  N−1∑
i1

N

expx̂  êi/1  expx̂  êi,

where ̂ is the OLS estimator from wi on xi and êi  wi − xî are the

OLS residuals.
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∙ Estimated partial effects are obtained by taking derivatives with

respect to the xj, or discrete differences.

∙ A similar analysis applies if we replace the log-odds transformation

with −1y, where −1 is the inverse function of the standard

normal cdf, in which case we average x̂  êi across i to estimate

Ey|x.

∙ Can use the delta method for standard errors, or the bootstrap.

∙ Question: If we are mainly interested in Ey|x, why not just model it

directly?
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3. FRACTIONAL LOGIT AND PROBIT

∙ Let y be a response in 0,1, possibly including the endpoints. We can

model its mean as

Ey|x  expx/1  expx,

or as a probit function,

Ey|x  x.

∙ In each case the fitted values will be in 0,1 and each allows y to

take on any values in 0,1, including the endpoints zero and one.

12



∙ Partial effects are obtained just as in standard logit and probit, but

these are on the mean and not the response probability.

∙ The above functional forms do not, of course, exhaust the

possibilities. For example,

Ey|x  exp−expx

allows a different shape. (The function Gz  exp−expz is the

cumulative distribution function of an asymmetric random variable.)

13



∙ Generally, let the mean function be Gx. We could estimate  by

nonlinear least squares. NLS is consistent and inference is

straightforward, provided we use the fully robust sandwich variance

matrix estimator that does not restrict Vary|x.

∙ As in estimating models of conditional means for unbounded,

nonnegative responses, NLS is unlikely to be efficient for fractional

responses because common distributions for a fractional response imply

heteroskedasticity.

∙ Could use a two-step weighted NLS if we model Vary|x.
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∙ A simpler, one-step strategy is to use a QMLE approach. We know

the Bernoulli log likelihood is in the linear exponential family.

Therefore, the QMLE that solves

max
b
∑
i1

N

1 − yi log1 − Gxib  yi logGxib

is consistent for  whenever the conditional mean is correctly specified.

∙ Notice that the quasi-LLF is well defined for any yi in 0,1 and

functions 0  G  1. Plus, it is a standard estimation problem

because it is identical to estimating binary response models.
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∙ Call the QMLE fractional logit regression or fractional probit

regression.

∙ These are just as robust as the NLS estimators.

∙ Fully robust inference is straightforward for QMLE. When the mean

is correctly specified, estimate the asymptotic variance of ̂ as

∑
i1

N
ĝi2xi′xi

Ĝi1 − Ĝi

−1

∑
i1

N
ûi2ĝi2xi′xi

Ĝi1 − Ĝi2
∑
i1

N
ĝi2xi′xi

Ĝi1 − Ĝi

−1

where

ûi  yi − Gxî.

16



∙ If we allow the mean to be misspecified, we replace the outer part of

the sandwich with the estimated Hessian, not expected Hessian

conditional on xi.

∙ The Bernoulli GLM variance assumption is

Vary|x  2Ey|x1 − Ey|x.

∙When this assumption holds it is often with 2  1; in this case

inference based on the usual binary response statistics will be too

conservative – often, much too conservative.
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∙ As we discussed in the general case, the Bernoulli QMLE has an

attractive efficiency property. If it turns out that the GLM variance

assumption holds, then the QMLE is efficient in the class of all

estimators that use only Ey|x  Gx for consistency. In particular,

the QMLE is more efficient than NLS.

∙ Of course, if, say, a Beta distribution were correct, and we use the

correct MLE, this would be more efficient than the QMLE. But the

MLE uses more assumptions for consistency.
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∙ If the GLM variance assumption holds, the asymptotic variance

matrix estimator simplies to

̂2 ∑
i1

N
gxî2xi′xi

Gxî1 − Gxî

−1

with

̂2  N − K−1∑
i1

N

ûi2/v̂i,

v̂i  Gxî1 − Gxî.
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∙ One case where Bernoulli GLM assumption holds. Suppose

yi  si/ni, where si is the number of “successes” in ni Bernoulli draws.

Suppose that si given ni,xi follows a Binomialni,Gxi

distribution.

∙ Then Eyi|ni,xi  Gxi and

Varyi|ni,xi  ni−1Gxi1 − Gxi. If ni is independent of xi,

Varyi|xi  VarEyi|ni,xi|xi  EVaryi|ni,xi|xi
 0  Eni−1|xiGxi1 − Gxi
≡ 2Gxi1 − Gxi,

where 2 ≡ Eni−1 ≤ 1 (with strict inequality unless ni  1 with

probability one).
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∙ In practice, it is unlikely that ni and xi are independent, so fully

robust inference should be used.

∙ Further, within-group correlation – that is, if we write si  ∑r1
ni wir

for binary responses wir, the wir : r  1, . . . ,ni are correlated

conditional on ni,xi – generally invalidates the GLM variance

assumption, as in the Binomial case.
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∙ If we are given data on proportions but do not know ni, it makes

sense to use a fractional logit or probit analysis. If we observe the ni,

we might use binomial regression instead (which is fully robust

provided Esi|ni,xi  niGxi).

∙ If we maintain Esi|ni,xi  niGxi and yi  si/ni,

Eyi|ni,xi  Esi|ni,xi/ni  Gxi  Eyi|xi

This means that binomial regression using the counts si and fractional

regression using yi should yield similar estimates of .
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∙ If the binomial distributional assumption is true, MLE using si,ni is

asymptotically more efficient than fractional regression. But the

variance in binomial regression often has overdispersion. The fractional

regression can actually be more efficient. (And, it is often more

resilient to outliers.)
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∙ Can compare the APEs to OLS estimates of a linear model. For a

continuous variable xj,

APEj  N−1∑
i1

N

gxî ̂j

∙ If xj is binary,

APEj  N−1∑
i1

N

Gxij
1̂ −Gxij

0̂

where xij
1 has xij  1 and xij

0 has xij  0.

24



∙Whether (say) xK is discrete or continuous, we can obtain an estimate

of APEK when xK changes from, say, aK
0 to aK

1, without using a

calculus approximation, as in the previous equation but where

xiK
0  ̂1  ̂2xi2 . . .̂K−1xi,K−1  ̂KaK

0

xiK
1  ̂1  ̂2xi2 . . .̂K−1xi,K−1  ̂KaK

1
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∙ If, say, xK is the key variable, and it is continuous, might plot the

response as a function of xK, inserting mean values (say) of the other

variables or averaging them out:

Ĝ1  ̂2x̄2 . . .̂K−1x̄K−1  ̂KxK

or

ASFKxK  N−1∑
i1

N

Ĝ1  ̂2xi2 . . .̂K−1xi,K−1  ̂KxK

∙ Can compare these response functions with linear model.

∙ Can put the usual functional forms in the index; makes partial effects

more difficult to compute.
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∙ Simple functional form test: After estimation of ̂, add powers of xî,

such as xî2, xî3, use fractional QMLE on the expanded “model”

Gxi  1xî2  2xî3,

and use a robust Wald test of joint significance for 1, 2. (This test, an

extension of RESET for linear models, can be applied to any index

context, including count regression with an exponential mean.)

∙ This is an example of a variable addition test, which is essentially a

score test but slightly easier to implement.
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∙ For goodness-of-fit of the mean, can compute an R-squared as

R2  1 −
∑i1

N yi − ŷi2

∑i1
N yi − ȳ2

where ŷi  Gxî.

∙ Another possibility is the squared correlation between yi and ŷi.

∙ Unlike OLS estimation of a linear model, these are not algebraically

the same.
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∙ GLM in Stata:

glm y x1 ... xK, fam(bin) link(logit) robust

glm y x1 ... xK, fam(bin) link(probit) sca(x2)

glm y x1 ... xK, fam(bin) link(loglog) robust

∙ Best to make inference fully robust, but the GLM variance

assumption often gives similar standard errors.

∙ The usual MLE standard errors are too conservative, often very

conservative.

∙ The “loglog” link implements the model Ey|x  exp−expx.
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∙ After any of the commands, fitted values are easy to get:

predict yhat

∙ To get the estimated indices, xî, and powers of them:

predict xbhat, xb

gen xbhatsq  xbhat^2

gen xbhatcu  xbhat^3
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EXAMPLE: Participation rates in 401(k) pension plans.
. use 401k

. des

Contains data from \swbook1_4e\statafiles\401k.dta
obs: 1,534

vars: 8 9 Jun 1998 08:20
size: 46,020 (99.9% of memory free)

-------------------------------------------------------------------------------
storage display value

variable name type format label variable label
-------------------------------------------------------------------------------
prate float %7.0g participation rate, percent
mrate float %7.0g 401k plan match rate
totpart float %7.0g total 401k participants
totelg float %7.0g total eligible for 401k plan
age byte %7.0g age of 401k plan
totemp float %7.0g total number of firm employees
sole byte %7.0g  1 if 401k is firm’s sole plan
ltotemp float %9.0g log of totemp
-------------------------------------------------------------------------------
Sorted by:
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. sum

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

prate | 1534 87.36291 16.71654 3 100
mrate | 1534 .7315124 .7795393 .01 4.91

totpart | 1534 1354.231 4629.265 50 58811
totelg | 1534 1628.535 5370.719 51 70429

age | 1534 13.18123 9.171114 4 51
---------------------------------------------------------------------

totemp | 1534 3568.495 11217.94 58 144387
sole | 1534 .4876141 .5000096 0 1

ltotemp | 1534 6.686034 1.453375 4.060443 11.88025

. count if mrate  1
292

. count if mrate  2
101

. replace prate  prate/100
(1534 real changes made)
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. reg prate mrate age ltotemp sole, robust

Linear regression Number of obs  1534
F( 4, 1529)  73.36
Prob  F  0.0000
R-squared  0.1474
Root MSE  .15456

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

mrate | .0485354 .0043289 11.21 0.000 .0400443 .0570266
age | .0031704 .0004032 7.86 0.000 .0023795 .0039613

ltotemp | -.0240487 .0031777 -7.57 0.000 -.0302818 -.0178156
sole | .0217378 .0086932 2.50 0.013 .004686 .0387896

_cons | .9465254 .0218303 43.36 0.000 .9037049 .9893458
------------------------------------------------------------------------------

. * The nonrobust standard errors are similar, actually slightly larger.
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. glm prate mrate age ltotemp sole, fam(bin) link(logit) robust
note: prate has non-integer values

Generalized linear models No. of obs  1534
Optimization : ML Residual df  1529

Scale parameter  1
Deviance  314.528326 (1/df) Deviance  .2057085
Pearson  367.9839977 (1/df) Pearson  .2406697

Variance function: V(u)  u*(1-u/1) [Binomial]
Link function : g(u)  ln(u/(1-u)) [Logit]

AIC  .5589556
Log pseudolikelihood  -423.7189416 BIC  -10901.66

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. z P|z| [95% Conf. Interval]
-----------------------------------------------------------------------------

mrate | .9167158 .134119 6.84 0.000 .6538474 1.179584
age | .0322364 .0049561 6.50 0.000 .0225226 .0419502

ltotemp | -.2080024 .0258256 -8.05 0.000 -.2586195 -.1573852
sole | .1676861 .0846774 1.98 0.048 .0017215 .3336507

_cons | 2.370495 .1921688 12.34 0.000 1.993851 2.747139
------------------------------------------------------------------------------
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. margeff

Average partial effects after glm
y  Pr(prate)

------------------------------------------------------------------------------
variable | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
mrate | .0969144 .0140539 6.90 0.000 .0693694 .1244595

age | .0034081 .0005304 6.43 0.000 .0023686 .0044477
ltotemp | -.0219898 .0027723 -7.93 0.000 -.0274233 -.0165562

sole | .0176176 .0083374 2.11 0.035 .0012766 .0339586
------------------------------------------------------------------------------

. * The APE for mrate is about double the linear model estimate.
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. predict prateh_l
(option mu assumed; predicted mean prate)

. corr prate prateh_l
(obs1534)

| prate prateh_l
-------------------------------

prate | 1.0000
prateh_l | 0.4263 1.0000

. di .4263^2

.18173169
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. * The nonrobust standard errors are too large:

. glm prate mrate age ltotemp sole, fam(bin) link(logit)
note: prate has non-integer values

Generalized linear models No. of obs  1534
Optimization : ML Residual df  1529

Scale parameter  1
Deviance  314.528326 (1/df) Deviance  .2057085
Pearson  367.9839977 (1/df) Pearson  .2406697

AIC  .5589556
Log likelihood  -423.7189416 BIC  -10901.66

------------------------------------------------------------------------------
| OIM

prate | Coef. Std. Err. z P|z| [95% Conf. Interval]
-----------------------------------------------------------------------------

mrate | .9167158 .2059862 4.45 0.000 .5129902 1.320441
age | .0322364 .010257 3.14 0.002 .012133 .0523398

ltotemp | -.2080024 .0551219 -3.77 0.000 -.3160393 -.0999654
sole | .1676861 .1716409 0.98 0.329 -.1687239 .5040961

_cons | 2.370495 .4263752 5.56 0.000 1.534815 3.206175
------------------------------------------------------------------------------
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. gen mratesq  mrate^2

. gen agesq  age^2

. gen ltotempsq  ltotemp^2

. reg prate mrate mratesq age agesq ltotemp ltotempsq sole, robust

Linear regression Number of obs  1534
F( 7, 1526)  56.14
Prob  F  0.0000
R-squared  0.1883
Root MSE  .15095

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

mrate | .137551 .0124891 11.01 0.000 .1130534 .1620487
mratesq | -.0255695 .0029956 -8.54 0.000 -.0314454 -.0196936

age | .0076809 .0015391 4.99 0.000 .0046619 .0106999
agesq | -.000129 .0000371 -3.48 0.001 -.0002017 -.0000563

ltotemp | -.113806 .0218575 -5.21 0.000 -.1566799 -.070932
ltotempsq | .0061188 .0014904 4.11 0.000 .0031953 .0090423

sole | .0119101 .0087466 1.36 0.173 -.0052465 .0290667
_cons | 1.2029 .0788964 15.25 0.000 1.048143 1.357657

------------------------------------------------------------------------------
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. * Now compute the APE for mrate:

. gen mrate_me_lin  _b[mrate]  2*_b[mratesq]*mrate

. sum mrate_me_lin

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------
mrate_me_lin | 1534 .1001422 .0398649 -.1135418 .1370397

. * Obtain RESET using the square and cube:

. predict xbh_sq_lin
(option xb assumed; fitted values)

. gen xbh_sq_linsq  xbh_sq_lin^2

. gen xbh_sq_lincu  xbh_sq_lin^3
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. reg prate mrate mratesq age agesq ltotemp ltotempsq sole xbh_sq_linsq
xbh_sq_lincu, robust

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

mrate | 5.612875 2.25341 2.49 0.013 1.192761 10.03299
mratesq | -1.042382 .4188927 -2.49 0.013 -1.864049 -.2207152

age | .3121919 .125702 2.48 0.013 .0656248 .5587591
agesq | -.0052452 .0021126 -2.48 0.013 -.0093891 -.0011012

ltotemp | -4.634524 1.8645 -2.49 0.013 -8.291782 -.9772653
ltotempsq | .2492836 .1002737 2.49 0.013 .0525946 .4459725

sole | .4824868 .1956819 2.47 0.014 .0986524 .8663211
xbh_sq_linsq | -40.86979 17.93412 -2.28 0.023 -76.04795 -5.691631
xbh_sq_lincu | 13.81167 6.515698 2.12 0.034 1.030992 26.59236

_cons | 36.28292 14.74269 2.46 0.014 7.364812 65.20104
------------------------------------------------------------------------------

. test xbh_sq_linsq xbh_sq_lincu

( 1) xbh_sq_linsq  0
( 2) xbh_sq_lincu  0

F( 2, 1524)  21.68
Prob  F  0.0000

. * A strong statistical rejection of the linear model even with quadratics.
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. glm prate mrate mratesq age agesq ltotemp ltotempsq sole, fam(bin)
link(logit) robust

note: prate has non-integer values

Generalized linear models No. of obs  1534
Optimization : ML Residual df  1526

Scale parameter  1
Deviance  301.5717563 (1/df) Deviance  .1976224
Pearson  318.2190643 (1/df) Pearson  .2085315

AIC  .5544207
Log pseudolikelihood  -417.2406567 BIC  -10892.61

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. z P|z| [95% Conf. Interval]
-----------------------------------------------------------------------------

mrate | 1.614381 .1675732 9.63 0.000 1.285943 1.942818
mratesq | -.2753789 .0435835 -6.32 0.000 -.360801 -.1899567

age | .0764414 .0158978 4.81 0.000 .0452823 .1076006
agesq | -.0012815 .000386 -3.32 0.001 -.002038 -.000525

ltotemp | -1.199122 .2209129 -5.43 0.000 -1.632103 -.7661407
ltotempsq | .0650906 .0145924 4.46 0.000 .03649 .0936912

sole | .1015973 .0837603 1.21 0.225 -.0625698 .2657644
_cons | 5.535748 .833326 6.64 0.000 3.902459 7.169037

------------------------------------------------------------------------------
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. predict prateh_l2

. corr prate prateh_l2
(obs1534)

| prate prateh~2
-------------------------------

prate | 1.0000
prateh_l2 | 0.4602 1.0000

. di .4602^2

.21178404

. * Fits better than linear model with quadratics (R-squared  .188).

. di 1.614/(2*.275)
2.9345455

. count if mrate  2.93
52

. * So only 52 out of 1,534 observations are to the right of the turning

. * point.
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. * Using margeff with the quadratics doesn’t make much sense.

. * Compute APE "by hand."

. predict xbh_l2, xb

. gen scale  exp(xbh_l2)/(1  exp(xbh_l2))^2

. sum scale

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

scale | 1534 .104565 .0540043 .0071288 .2364579

. gen mrate_me  (_b[mrate]  2*_b[mratesq]*mrate)*scale

. sum mrate_me

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

mrate_me | 1534 .1414986 .0902254 -.0718435 .3778262

. * About 40% higher than the linear model estimated APE, .100.

43



. predict xbh_sq_log, xb

. gen xbh_sq_logsq  xbh_sq_log^2

. gen xbh_sq_logcu  xbh_sq_log^3

. glm prate mrate mratesq age agesq ltotemp ltotempsq sole xbh_sq_logsq
xbh_sq_logcu, fam(bin) link(logit) robust

note: prate has non-integer values

------------------------------------------------------------------------------
| Robust

prate | Coef. Std. Err. z P|z| [95% Conf. Interval]
-----------------------------------------------------------------------------

mrate | 4.065386 1.356546 3.00 0.003 1.406605 6.724167
mratesq | -.697588 .2330727 -2.99 0.003 -1.154402 -.2407738

age | .1928297 .0648958 2.97 0.003 .0656361 .3200232
agesq | -.0032323 .0011257 -2.87 0.004 -.0054387 -.0010259

ltotemp | -3.050577 1.057474 -2.88 0.004 -5.123189 -.9779661
ltotempsq | .1659176 .0585484 2.83 0.005 .0511647 .2806704

sole | .2623277 .1261936 2.08 0.038 .0149928 .5096626
xbh_sq_logsq | -.8103757 .4117121 -1.97 0.049 -1.617317 -.0034348
xbh_sq_logcu | .129453 .0625514 2.07 0.038 .0068545 .2520515

_cons | 13.20982 4.311299 3.06 0.002 4.759834 21.65981
------------------------------------------------------------------------------
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. test xbh_sq_logsq xbh_sq_logcu

( 1) [prate]xbh_sq_logsq  0
( 2) [prate]xbh_sq_logcu  0

chi2( 2)  4.51
Prob  chi2  0.1048

. * So we do not reject the fractional logit at the 10% significance level.

. * Can plot the mean function as a function of mrate, with other

. * variables fixed at specific values.
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4. ENDOGENOUS EXPLANATORY VARIABLES

∙ The fractional probit model can easily handle certain kinds of

continuous endogenous explanatory variables.

∙ As before, model endogeneity as an omitted variable:

Ey1|z,y2,c1  Ey1|z1,y2,c1  z11  1y2  c1

y2  z2  v2  z121  z222  v2,

where c1 is an omitted factor thought to be correlated with y2 but

independent of the exogenous variables z.
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∙ Ideally, could assume the linear equation for y2 represents a linear

projection. But we need to assume more.

∙ Sufficient is

c1  1v2  e1, e1|z,v2 ~ Normal0,e12 ,

where a sufficient, though not necessary, condition is that c1,v2 is

bivariate normal and independent of z.
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∙ Then

Ey1|z,y2  Ey1|z,y2,v2  z1e1  e1y2  e1v2,

where the “e” subscript denotes multiplication by the scale factor

1/1  e1
2 1/2.

∙ Fortunately, the scaled coefficients index the average partial effects.

∙ Two-step method: (1) Obtain the OLS residuals v̂i2 from the

regression yi2 on zi. Next, use fractional probit of yi1 on zi1,yi2, v̂i2 to

estimate the scaled coefficients.
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∙ Simple test of the null hypothesis that y2 is exogenous is the fully

robust t statistic on v̂i2; the first-step estimation can be ignored under

the null.

∙ If 1 ≠ 0, then the robust sandwich variance matrix estimator of the

scaled coefficients is not valid because it does not account for the first

step estimation. Can adjust for the two-step M-estimation results or use

the bootstrap.
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∙ The average structural function is consistently estimated as

ASFz1,y2  N−1∑
i1

N

z1̂e1  ̂e1y2  ̂e1v̂i2,

and this can be used to obtain APEs with respect to y2 or z1.

∙ Bootstrapping the standard errors and test statistics is a sensible way

to proceed with inference.
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∙ Basic model can be extended in many ways. For example, can replace

y2  z2  v2 with

hy2  z2  v2

where h is strictly monotonic. (This is for the case where we want y2

in the structural model yet it is unlikely to have a linear reduced form

with additive, independent error.)

∙ If y2  0 then h2y2  logy2 is natural; if 0  y2  1, might use

the log-odds transformation, h2y2  logy2/1 − y2.
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∙ Unfortunately, if y2 has a mass point – such as a binary response, or

corner response, or count variable – a transformation yielding an

additive, independent error probably does not exist.

∙ Allowing flexible functional forms for y2 is easy. For example, if the

structural model contains y2
2 and interactions, say y2z1, the estimating

equation could look like

Ey1|z,y2,v2  z1e1  e1y2  e1y2
2  y2z1e1  e1v2,

so that a single control function, v2, corrects the endogeneity of y2.
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∙ After the two-step QMLE, the ASF is estimated as

ASFz1,y2  N−1∑
i1

N

z1̂e1  ̂e1y2  ̂e1y2
2  y2z1̂e1  ̂e1v̂i2,

and now derivatives or changes with respect to z1,y2 can be obtained.

∙ Further, we might allow Dc1|v2 to be more flexible, such as

c1  11v2  12v2
2  13v2

3  e1, e1|z,v2 ~ Normal0,e12 .

∙ Notice that c1 cannot have an unconditional normal distribution,

particular if v2 is normal. This bothers some people.
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∙ In the second stage, we would add a cubic in v̂2 to the fractional

probit. In the model just above,

ASFz1,y2  N−1∑
i1

N

z1̂e1  ̂e1y2  ̂e1y2
2  y2z1̂e1

 ̂e11v̂i2  ̂e12v̂i22  ̂e13v̂i23 ,

that is, we again just average out the control function. The bootstrap

would be very convenient for standard errors.
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∙ Recent work by Blundell and Powell (2004, Review of Economic

Studies) goes even further. Just allow Ey1|z1,y2,v2 to be a flexible

function of its arguments, say

Ey1|z1,y2,v2  g1z1,y2,v2

∙ To obtain the control function, assume

y2  g2z  v2, v2 independent of z,

where g2 is only assumed to be a smooth function. Estimate g2

nonparametrically, obtain v̂i2  yi2 − ĝ2zi. Then use nonparametric

regression of yi1 on zi1,yi2, v̂i2
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∙ The ASF is consistently estimated as

ASFz1,y2  N−1∑
i1

N

ĝ1z1,y2, v̂i2.

∙ Can approximate this approach by using flexible parametric models.
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∙We can accomodate multiple continuous endogenous varaibles. Let

x1  k1z1,y2 for a vector of functions k1, , and allow a set of

reduced forms for strictly monotonic functions h2gy2g, g  1, . . . ,G1,

where G1 is the dimension of y2.

∙ See Wooldridge (2005, “Unobserved Heterogeneity and Estimation of

Average Partial Effects,” Rothenberg Festschrift)
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∙ Recent (unpublished) work: If y2 is binary and follows a probit

model, can have y1 fractional with a probit conditional mean and apply

“bivariate probit” to y1,y2, even though y1 is not binary. (Not

currently allowed in Stata.)
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5. TWO-PART MODELS

∙ If have corners at y  0 or y  1 (or, occasionally at both values),

might want to use a two-part (hurdle) model.

∙ For concreteness, assume Py  0  0 but y is continuous in 0,1,

so there is no pile-up at one.

∙ In addition to modeling Py  0|x, could model Dy|x,y  0. But

more robust to model Ey|x,y  0 using fractional response.
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∙ Let

Py  0|x  1 − Fx
Ey|x,y  0  Gx

∙ Let w  1y  0, so that Pw  1|x  Fx.

∙ Now the “unconditional” expectation is

Ey|x  FxGx,

which complicates partial effects.
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∙ Estimation is straightforward. (1) Estimate  by binary response (say,

logit or probit) of wi on xi. (2) Use QMLE (fractional logit or probit, or

some other functional form) of yi on xi using data for yi  0 to estimate

.

∙ Can compute an R-squared for the overall mean (and the mean

conditional on y  0) to compare with one-part models. Can test the

functional forms of the two parts, too, using RESET and other tests

(such as for “heteroskedasticity”).

∙ Open (?) question: How to combine two-part models and

endogeneity?
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6. PANEL DATA METHODS

∙ If no interest in explicitly including unobserved heterogeneity, can

use pooled versions of methods discussed. Of course, should allow for

arbitrary serial dependence in inference as well as variance

misspecification in the LEF distribution.

∙Might have dynamic completeness in the mean if lagged dependent

variables have been included. (What is the best functional form for

doing so?) As usual, if Eyit|zit,yi,t−1,zi,t−1, . . .  has been properly

specified, then serial correlation cannot be an issue.
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∙ In Stata, we just use the “glm” command with a clustering option:

glm y x1 ... xK, fam(bin) link(logit)

cluster(id)

∙With complete dynamics in the mean:

glm y x1 ... xK, fam(bin) link(logit) robust

or replace the logit link with another.
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Models and Partial Effects with Heterogeneity

∙ Consider, for 0 ≤ yit ≤ 1,

Eyit|xit,ci  xit  ci, t  1, . . . ,T.

∙ As with an endogenous explanatory variable in a cross section setting,

with unobserved heterogeneity the fractional probit approach has

advantages over other functional forms.

∙ Elements of  give the directions of the partial effects. For example, if

xtj is continuous, then

∂Eyt|xt,c
∂xtj

 jxt  c.
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For discrete changes, we compute

xt
1  c − xt

0  c

for two different settings of the covariates, xt
1 and xt

0.

∙ Partial effects depend on xt and c. What should we plug in for c?

∙ Instead, focus on the average partial effects (APEs):

Ecijxt  ci  jEcixt  ci,

which depends on xt (and ) but not on c. (Or discrete differences.) As

before, essentially the same as the “average structural function,”

ASFxt  Ecixt  ci.
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∙When are the APEs identified? More generally than the parameters,

but more assumptions are needed.

∙ Strict exogeneity conditional on ci: if xi≡ xi1,xi2, . . . ,xiT,

Eyit|xi,ci  Eyit|xit,ci, t  1, . . . ,T.

As always, rules out lagged dependent variables, feedback, and

contemporaneous endogeneity.

∙ Need to restrict Dci|xi. Enough would be, say,

Dci|xi  Dci|x̄i,

where x̄i is the time average.
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∙ Altonji and Matzkin (2005, Econometrica) use general

exchangeability. Could allow the distribution to depend on other

features of xit : t  1, . . . ,T, such as time trends or average growth

rates.

∙We assume more:

ci|xi1,xi2, . . . ,xiT ~ Normal  x̄i,a2.

Write ci    x̄i  ai where ai|xi~Normal0,a2.

∙ Do not impose additional distributional assumptions on Dyit|xi,ci.

Leave the serial dependence in yit across time unrestricted.
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∙  is identified up to a positive scale factor, and the APEs are

identified:

Eyit|xi,ai    xit  x̄i  ai

and so

Eyit|xi  E  xit  x̄i  ai|xi
   xit  x̄i/1  a21/2

≡ a  xita  x̄ia,

where the “a” subscript denotes division by 1  a21/2.
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∙ a,a, and a are identified if there is time variation in xit.

Chamberlain device: replace x̄i with xi.

∙ Coneniently, the APEs can be obtained by differentiating or

differencing

Ex̄ia  xta  x̄ia

with respect to the elements of xt. The average structural function is

consistently estimated by

ASFxt  N−1∑i1

N
̂a  xt̂a  x̄îa

where ̂a, ̂a, ̂a are consistent estimators.
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∙ As usual, APEs for continuous and discrete variables can be obtained

from ASFxt.

∙ In practice, we would have time dummies, which we could just

indicate with ̂at.

∙We can always include time constant variables, say ri, along with x̄i.

It is then up to us to interpret the partial effects with respect to ri.
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Estimation Methods Under Strict Exogeneity

∙Many consistent estimators of the scaled parameters. Define

wit ≡ 1,xit, x̄i (or with time dummies and time constant variables)

and  ≡ a,a
′ ,a

′ ′. Then  can be estimated using pooled nonlinear

least squares (NLS), with regression function wit.
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∙ Pooled NLS estimator is consistent and N -asymptotically normal

(with fixed T), but is likely to be inefficient.

∙ First, it ignores the serial dependence in the yit, which is likely to be

substantial even after conditioning on xi. Second, Varyit|xi is very

unlikely to be homoskedastic. Could ignore serial correlation, model

Varyit|xi, and use weighted least squares.
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∙We already know that we can used pooled fractional probit (or logit,

for that matter), with explanatory variables 1,xit, x̄i (and, likely, year

dummies).

∙ The “working variance” assumption for pooled FP is

Varyit|xi  2wit1 − wit,

where 0  2 ≤ 1.

∙ Still need to cluster to obtain standard errors robust to serial

correlation, even if the variance function is correct.
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∙ In Stata, with year dummies explicit:

glm y x1 ... xK x1bar ... xKbar d2 ... dT,

fam(bin) link(probit) cluster(id)

margeff

∙ The “margeff” command gives APEs and appropriate standard errors.

∙ Can add time-constant variables to the list of explanatory variables.
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∙ Random effects approaches – that is, that attempt to obtain a joint

distribution Dyi1, . . . ,yiT|xi by modeling and then integrating out

unobserved heterogeneity – would require additional distributional

assumptions while being computationally demanding. A nice middle

ground is the GEE approach. We already have the working variance

assumption for fractional probit.

∙We need to specify a “working” correlation matrix, too. Define the

errors as

uit ≡ yit − Eyit|xi  yit − wit  a  xita  x̄ia, t  1, . . . ,T.
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∙ Define standardized errors as

eit ≡ uit/ wit1 − wit ;

under, Vareit|xi  2. Exchangeability is that the pairwise

correlations between pairs of standardized errors is contant, say .

∙ To estimate a common correlation parameter, let  be a preliminary

estimator of  – probably the pooled Bernoulli QMLE.
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∙ Define residuals u it ≡ yit − wit and the standardized (Pearson)

residuals ěit ≡ u it/ wit1 − wit . Then,

̂  NTT − 1−1∑
i1

N

∑
t1

T

∑
s≠t

ěitěis.

∙ Given the estimated T  T working correlation matrix, R̂, which

has unity down its diagonal and ̃ everywhere else, we can construct

the estimated “working” variance matrix:

Vxi,
1/2R̂Vxi,

1/2,

where Vxi, is the T  T diagonal matrix with wit1 − wit

down its diagonal.
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∙ Now apply multivariate WNLS, which is asymptotically the same as

GEE. Naturally, use a fully robust variance matrix estimator.

∙ Can allow an “unstructured” correlation matrix, too, but the

correlations never depend on xi.

xtgee y x1 ... xK x1bar ... xKbar, fam(bin)

link(probit) corr(exch) robust

xtgee y x1 ... xK x1bar ... xKbar, fam(bin)

link(probit) corr(uns) robust
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∙ Can apply the “margeff” command in Stata to get APEs averaged

across the cross section and time. For continuous explanatory variables,

the common scale factor is

NT−1∑
i1

N

∑
t1

T

̂a  xit̂a  x̄îa.

∙ Can compare APEs with linear model estimated by fixed effects.

∙ As with previous models, can add xi,t1 (or a subset of variables) as a

test of strict exogeneity. Estimation can be pooled QMLE or GEE.
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Models with Endogenous Explanatory Variables

∙ Represent endogeneity as an omitted, time-varying variable, in

addition to unobserved heterogeneity:

Eyit1|zi,yit2,ci1,vit1  Eyit1|zit1,yit2,ci1,vit1
 zit11  1yit2  ci1  vit1,

where ci1 is the time-constant unobserved effect and vit1 is a

time-varying omitted factor that can be correlated with yit2.

∙ Elements of zit are assumed strictly exogenous, and we have at least

one exclusion restriction: zit  zit1,zit2.
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∙ Use a Chamberlain-Mundlak approach, but only relating the

heterogeneity to all strictly exogenous variables:

ci1  1  z̄i1  ai1, Dai1|zi  Dai1.

∙ Even before we specify Dai1, this is restrictive because it assumes,

in particular, Eci|zi is linear in z̄i and that Varci|zi is constant. More

recent work has shown how we can get by with less, such as

Dci1|zi  Dci1|z̄i.
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∙ Need to obtain an estimating equation. First, note that

Eyit1|zi,yit2,ai1,vit1  zit11  1yit2  1  z̄i1  ai1  vit1

≡ zit11  1yit2  1  z̄i1  rit1.

∙ Assume a linear reduced form for yit2:

yit2  2  zit2  z̄i2  vit2, t  1, . . . ,T

Dvit2|zi  Dvit2

(and we might allow for time-varying coefficients).
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∙ Rather than assume ai1,vit2 is independent of zi, we can get by with

a weaker assumption, but we imposed normality:

rit1|zi,vit2 ~ Normal1vit2,1
2, t  1, . . . ,T.

[Easy to allow 1 to change over time.]

∙ Either way, the assumptions effectively rule out discreteness in yit2.
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∙Write

rit1  1vit2  eit1

where eit1 is independent of zi,vit2 (and, therefore, of yit2) and

normally distributed. Again, using a standard mixing property of the

normal distribution,

Eyit1|zi,yit2,vit2  zit11  1yit2  1  z̄i1  1vit2

where the “” denotes division by 1  1
21/2.

∙ Identification comes off of the exclusion of the time-varying

exogenous variables zit2.
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∙ Two step procedure:

(1) Estimate the reduced form for yit2 (pooled or for each t

separately). Obtain the residuals, v̂it2.

(2) Use the probit QMLE to estimate 1,1,1,1 and 1.

(GEE would require strict exogeneity of vit2!)

∙ How do we interpret the scaled estimates? They give directions of

effects. Conveniently, they also index the APEs. For given z1 and y2,

average out z̄i and v̂it2 (for each t):

̂1  N−1∑
i1

N

zt1̂1  ̂1yt2  ̂1  z̄î1  ̂1v̂it2 .
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∙ Applying “margeff” in the second stage consistently estimates the

APEs averaged across t, but the standard errors do not account for the

two-step estimation. Use panel bootstrap for standard errors to allow

for serial dependence and the two-step estimation.

∙ Of course, we can also compute discrete changes for any of the

elements of zt1,yt2.
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EXAMPLE: Effects of Spending on Test Pass Rates

∙ Reform occurs between 1993/94 and 1994/95 school year; its passage

was a surprise to almost everyone.

∙ Since 1994/95, each district receives a foundation allowance, based

on revenues in 1993/94.

∙ Intially, all districts were brought up to a minimum allowance –

$4,200 in the first year. The goal was to eventually give each district a

basic allowance ($5,000 in the first year).

∙ Districts divided into three groups in 1994/95 for purposes of initial

foundation allowance. Subsequent grants determined by statewide

School Aid Fund.

87



∙ Catch-up formula for districts receiving below the basic. Initially,

more than half of the districts received less than the basic allowance.

By 1998/99, it was down to about 36%. In 1999/00, all districts began

receiving the basic allowance, which was then $5,700. Two-thirds of all

districts now receive the basic allowance.

∙ From 1991/92 to 2003/04, in the 10th percentile, expenditures rose

from $4,616 (2004 dollars) to $7,125, a 54 percent increase. In the 50th

percentile, it was a 48 percent increase. In the 90th percentile, per pupil

expenditures rose from $7,132 in 1992/93 to $9,529, a 34 percent

increase.
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∙ Response variable: math4, the fraction of fourth graders passing the

MEAP math test at a school.

∙ Spending variable is logavgrexppp, where the average is over the

current and previous three years.

∙ The linear model is

math4it  t  1 logavgrexpit  2lunchit  3 logenrollit  ci1  uit1

Estimating this model by fixed effects is identical to adding the time

averages of the three explanatory variables and using pooled OLS.

∙ The “fractional probit” model:

Emath4it|xi1,xi2, . . . ,xiT  at  xita  x̄ia.
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∙ Allowing spending to be endogenous. Controlling for 1993/94

spending, foundation grant should be exogenous. Exploit

nonsmoothness in the grant as a function of initial spending.

math4it  t  1 logavgrexpit  2lunchit  3 logenrollit

 4t logrexpppi,1994  1lunchi  2logenrolli  vit1

∙ And, fractional probit version of this.
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. use meap92_01

. xtset distid year
panel variable: distid (strongly balanced)

time variable: year, 1992 to 2001
delta: 1 unit

. des math4 avgrexp lunch enroll found

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------
math4 double %9.0g fraction satisfactory, 4th

grade math
avgrexp float %9.0g (rexppp  rexppp_1  rexppp_2 

rexppp_3)/4
lunch float %9.0g fraction eligible for free lunch
enroll float %9.0g district enrollment
found int %9.0g foundation grant, $: 1995-2001

. sum math4 rexppp lunch

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

math4 | 5010 .6149834 .1912023 .059 1
rexppp | 5010 6331.99 1168.198 3553.361 15191.49

lunch | 5010 .2802852 .1571325 .0087 .9126999
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. xtreg math4 lavgrexp lunch lenroll y96-y01, fe cluster(distid)

Fixed-effects (within) regression Number of obs  3507
Group variable: distid Number of groups  501

R-sq: within  0.4713 Obs per group: min  7
between  0.0219 avg  7.0
overall  0.2049 max  7

F(9,500)  171.93
corr(u_i, Xb)  -0.1787 Prob  F  0.0000

(Std. Err. adjusted for 501 clusters in distid)
------------------------------------------------------------------------------

| Robust
math4 | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | .3770929 .0705668 5.34 0.000 .2384489 .5157369

lunch | -.0419467 .0731611 -0.57 0.567 -.1856877 .1017944
lenroll | .0020568 .0488107 0.04 0.966 -.0938426 .0979561

y96 | -.0155968 .0063937 -2.44 0.015 -.0281587 -.003035
y97 | -.0589732 .0095232 -6.19 0.000 -.0776837 -.0402628
y98 | .0781686 .0112949 6.92 0.000 .0559772 .1003599
y99 | .0642748 .0123103 5.22 0.000 .0400884 .0884612
y00 | .0895688 .0133223 6.72 0.000 .0633942 .1157434
y01 | .0630091 .014717 4.28 0.000 .0340943 .0919239

_cons | -2.640402 .8161357 -3.24 0.001 -4.24388 -1.036924
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-----------------------------------------------------------------------------
sigma_u | .1130256
sigma_e | .08314135

rho | .64888558 (fraction of variance due to u_i)
------------------------------------------------------------------------------

. des alavgrexp alunch alenroll

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------
alavgrexp float %9.0g time average lavgrexp, 1995-2001
alunch float %9.0g time average lunch, 1995-2001
alenroll float %9.0g time average lenroll, 1995-2001
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. reg math4 lavgrexp alavgrexp lunch alunch lenroll alenroll y96-y01,
cluster(distid)

Linear regression Number of obs  3507
F( 12, 500)  161.09
Prob  F  0.0000
R-squared  0.4218
Root MSE  .11542

(Std. Err. adjusted for 501 clusters in distid)
------------------------------------------------------------------------------

| Robust
math4 | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | .377092 .0705971 5.34 0.000 .2383884 .5157956

alavgrexp | -.286541 .0731797 -3.92 0.000 -.4303185 -.1427635
lunch | -.0419466 .0731925 -0.57 0.567 -.1857494 .1018562

alunch | -.3770088 .0766141 -4.92 0.000 -.5275341 -.2264835
lenroll | .0020566 .0488317 0.04 0.966 -.093884 .0979972

alenroll | -.0031646 .0491534 -0.06 0.949 -.0997373 .0934082
y96 | -.0155968 .0063965 -2.44 0.015 -.0281641 -.0030295
y97 | -.0589731 .0095273 -6.19 0.000 -.0776916 -.0402546
y98 | .0781687 .0112998 6.92 0.000 .0559678 .1003696
y99 | .064275 .0123156 5.22 0.000 .0400782 .0884717
y00 | .089569 .013328 6.72 0.000 .0633831 .1157548
y01 | .0630093 .0147233 4.28 0.000 .0340821 .0919365

_cons | -.0006233 .2450239 -0.00 0.998 -.4820268 .4807801
------------------------------------------------------------------------------
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. * Now use fractional probit.

. glm math4 lavgrexp alavgrexp lunch alunch lenroll alenroll y96-y01,
fa(bin) link(probit) cluster(distid)

note: math4 has non-integer values

Generalized linear models No. of obs  3507
Optimization : ML Residual df  3494

Scale parameter  1
Deviance  237.643665 (1/df) Deviance  .0680148
Pearson  225.1094075 (1/df) Pearson  .0644274

(Std. Err. adjusted for 501 clusters in distid)
------------------------------------------------------------------------------

| Robust
math4 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | .8810302 .2068026 4.26 0.000 .4757045 1.286356

alavgrexp | -.5814474 .2229411 -2.61 0.009 -1.018404 -.1444909
lunch | -.2189714 .2071544 -1.06 0.290 -.6249865 .1870437

alunch | -.9966635 .2155739 -4.62 0.000 -1.419181 -.5741465
lenroll | .0887804 .1382077 0.64 0.521 -.1821017 .3596626

alenroll | -.0893612 .1387674 -0.64 0.520 -.3613404 .1826181
y96 | -.0362309 .0178481 -2.03 0.042 -.0712125 -.0012493
y97 | -.1467327 .0273205 -5.37 0.000 -.20028 -.0931855
y98 | .2520084 .0337706 7.46 0.000 .1858192 .3181975
y99 | .2152507 .0367226 5.86 0.000 .1432757 .2872257
y00 | .3049632 .0399409 7.64 0.000 .2266805 .3832459
y01 | .2257321 .0439608 5.13 0.000 .1395705 .3118938

_cons | -1.855832 .7556621 -2.46 0.014 -3.336902 -.3747616
------------------------------------------------------------------------------
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. margeff

Average partial effects after glm
y  Pr(math4)

------------------------------------------------------------------------------
variable | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | .2968496 .0695326 4.27 0.000 .1605682 .433131

alavgrexp | -.1959097 .0750686 -2.61 0.009 -.3430414 -.0487781
lunch | -.0737791 .0698318 -1.06 0.291 -.2106469 .0630887

alunch | -.3358104 .0723725 -4.64 0.000 -.4776579 -.1939629
lenroll | .0299132 .0465622 0.64 0.521 -.061347 .1211734

alenroll | -.0301089 .0467477 -0.64 0.520 -.1217326 .0615149
y96 | -.0122924 .0061107 -2.01 0.044 -.0242692 -.0003156
y97 | -.0508008 .0097646 -5.20 0.000 -.069939 -.0316625
y98 | .0809879 .0100272 8.08 0.000 .0613349 .1006408
y99 | .0696954 .0111375 6.26 0.000 .0478662 .0915245
y00 | .0970224 .0115066 8.43 0.000 .0744698 .119575
y01 | .0729829 .0132849 5.49 0.000 .046945 .0990208

------------------------------------------------------------------------------

. * These standard errors are very close to bootstrapped standard errors.
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. xtgee math4 lavgrexp alavgrexp lunch alunch lenroll alenroll y96-y01,
fa(bin) link(probit) corr(exch) robust

GEE population-averaged model Number of obs  3507
Group variable: distid Number of groups  501
Link: probit Obs per group: min  7
Family: binomial avg  7.0
Correlation: exchangeable max  7

Wald chi2(12)  1815.43
Scale parameter: 1 Prob  chi2  0.0000

(Std. Err. adjusted for clustering on distid)
------------------------------------------------------------------------------

| Semi-robust
math4 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | .884564 .2060662 4.29 0.000 .4806817 1.288446

alavgrexp | -.5835138 .2236705 -2.61 0.009 -1.0219 -.1451277
lunch | -.2372942 .2091221 -1.13 0.256 -.6471659 .1725775

alunch | -.9754696 .2170624 -4.49 0.000 -1.400904 -.5500351
lenroll | .0875629 .1387427 0.63 0.528 -.1843677 .3594935

alenroll | -.0820307 .1393712 -0.59 0.556 -.3551933 .1911318
y96 | -.0364771 .0178529 -2.04 0.041 -.0714681 -.001486
y97 | -.1471389 .0273264 -5.38 0.000 -.2006976 -.0935801
y98 | .2515377 .0337018 7.46 0.000 .1854833 .317592
y99 | .2148552 .0366599 5.86 0.000 .143003 .2867073
y00 | .3046286 .0399143 7.63 0.000 .2263981 .3828591
y01 | .2256619 .0438877 5.14 0.000 .1396437 .3116801

_cons | -1.914975 .7528262 -2.54 0.011 -3.390487 -.4394628
------------------------------------------------------------------------------
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. margeff

Average partial effects after xtgee
y  Pr(math4)

------------------------------------------------------------------------------
variable | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | .2979576 .0692519 4.30 0.000 .1622263 .4336889

alavgrexp | -.1965515 .0752801 -2.61 0.009 -.3440978 -.0490052
lunch | -.0799305 .0704803 -1.13 0.257 -.2180693 .0582082

alunch | -.3285784 .0728656 -4.51 0.000 -.4713924 -.1857644
lenroll | .0294948 .0467283 0.63 0.528 -.0620909 .1210805

alenroll | -.0276313 .0469381 -0.59 0.556 -.1196283 .0643656
y96 | -.012373 .0061106 -2.02 0.043 -.0243497 -.0003964
y97 | -.0509306 .0097618 -5.22 0.000 -.0700633 -.0317979
y98 | .0808226 .010009 8.08 0.000 .0612054 .1004399
y99 | .0695541 .0111192 6.26 0.000 .0477609 .0913472
y00 | .0968972 .0115004 8.43 0.000 .0743568 .1194376
y01 | .0729416 .0132624 5.50 0.000 .0469478 .0989353

------------------------------------------------------------------------------
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. * Now allow spending to be endogenous. Use foundation allowance, and

. * interactions, as IVs.

. * First, linear model:

. ivreg math4 lunch alunch lenroll alenroll y96-y01 lexppp94 le94y96-le94y01
(lavgrexp  lfound lfndy96-lfndy01), cluster(distid)

Instrumental variables (2SLS) regression Number of obs  3507
F( 18, 500)  107.05
Prob  F  0.0000
R-squared  0.4134
Root MSE  .11635

(Std. Err. adjusted for 501 clusters in distid)
------------------------------------------------------------------------------

| Robust
math4 | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | .5545247 .2205466 2.51 0.012 .1212123 .987837

lunch | -.0621991 .0742948 -0.84 0.403 -.2081675 .0837693
alunch | -.4207815 .0758344 -5.55 0.000 -.5697749 -.2717882

lenroll | .0463616 .0696215 0.67 0.506 -.0904253 .1831484
alenroll | -.049052 .070249 -0.70 0.485 -.1870716 .0889676

y96 | -1.085453 .2736479 -3.97 0.000 -1.623095 -.5478119
y97 | -1.049922 .376541 -2.79 0.005 -1.78972 -.3101244
y98 | -.4548311 .4958826 -0.92 0.359 -1.429102 .5194394
y99 | -.4360973 .5893671 -0.74 0.460 -1.594038 .7218439
y00 | -.3559283 .6509999 -0.55 0.585 -1.634961 .923104
y01 | -.704579 .7310773 -0.96 0.336 -2.140941 .7317831

lexppp94 | -.4343213 .2189488 -1.98 0.048 -.8644944 -.0041482
le94y96 | .1253255 .0318181 3.94 0.000 .0628119 .1878392
le94y97 | .11487 .0425422 2.70 0.007 .0312865 .1984534
le94y98 | .0599439 .0554377 1.08 0.280 -.0489757 .1688636
le94y99 | .0557854 .0661784 0.84 0.400 -.0742367 .1858075
le94y00 | .048899 .0727172 0.67 0.502 -.0939699 .1917678
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le94y01 | .0865874 .0816732 1.06 0.290 -.0738776 .2470524
_cons | -.334823 .2593105 -1.29 0.197 -.8442955 .1746496

------------------------------------------------------------------------------
Instrumented: lavgrexp
Instruments: lunch alunch lenroll alenroll y96 y97 y98 y99 y00 y01

lexppp94 le94y96 le94y97 le94y98 le94y99 le94y00 le94y01
lfound lfndy96 lfndy97 lfndy98 lfndy99 lfndy00 lfndy01

------------------------------------------------------------------------------

. * Estimate is substantially larger than when spending is treated as exogenous.
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. * Get reduced form residuals for fractional probit:

. reg lavgrexp lfound lfndy96-lfndy01 lunch alunch lenroll alenroll y96-y01
lexppp94 le94y96-le94y01, cluster(distid)

Linear regression Number of obs  3507
F( 24, 500)  1174.57
Prob  F  0.0000
R-squared  0.9327
Root MSE  .03987

(Std. Err. adjusted for 501 clusters in distid)
------------------------------------------------------------------------------

| Robust
lavgrexp | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
lfound | .2447063 .0417034 5.87 0.000 .1627709 .3266417

lfndy96 | .0053951 .0254713 0.21 0.832 -.044649 .0554391
lfndy97 | -.0059551 .0401705 -0.15 0.882 -.0848789 .0729687
lfndy98 | .0045356 .0510673 0.09 0.929 -.0957972 .1048685
lfndy99 | .0920788 .0493854 1.86 0.063 -.0049497 .1891074
lfndy00 | .1364484 .0490355 2.78 0.006 .0401074 .2327894
lfndy01 | .2364039 .0555885 4.25 0.000 .127188 .3456198

...
_cons | .1632959 .0996687 1.64 0.102 -.0325251 .359117

------------------------------------------------------------------------------

. predict v2hat, resid
(1503 missing values generated)
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. glm math4 lavgrexp v2hat lunch alunch lenroll alenroll y96-y01 lexppp94
le94y96-le94y01, fa(bin) link(probit) cluster(distid)

note: math4 has non-integer values

Generalized linear models No. of obs  3507
Optimization : ML Residual df  3487

Scale parameter  1
Deviance  236.0659249 (1/df) Deviance  .0676989
Pearson  223.3709371 (1/df) Pearson  .0640582

Variance function: V(u)  u*(1-u/1) [Binomial]
Link function : g(u)  invnorm(u) [Probit]

(Std. Err. adjusted for 501 clusters in distid)
------------------------------------------------------------------------------

| Robust
math4 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | 1.731039 .6541194 2.65 0.008 .4489886 3.013089

v2hat | -1.378126 .720843 -1.91 0.056 -2.790952 .0347007
lunch | -.2980214 .2125498 -1.40 0.161 -.7146114 .1185686

alunch | -1.114775 .2188037 -5.09 0.000 -1.543623 -.685928
lenroll | .2856761 .197511 1.45 0.148 -.1014383 .6727905

alenroll | -.2909903 .1988745 -1.46 0.143 -.6807771 .0987966
...

_cons | -2.455592 .7329693 -3.35 0.001 -3.892185 -1.018998
------------------------------------------------------------------------------
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. margeff

Average partial effects after glm
y  Pr(math4)

------------------------------------------------------------------------------
variable | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lavgrexp | .5830163 .2203345 2.65 0.008 .1511686 1.014864

v2hat | -.4641533 .242971 -1.91 0.056 -.9403678 .0120611
lunch | -.1003741 .0716361 -1.40 0.161 -.2407782 .04003

alunch | -.3754579 .0734083 -5.11 0.000 -.5193355 -.2315803
lenroll | .0962161 .0665257 1.45 0.148 -.0341719 .2266041

alenroll | -.0980059 .0669786 -1.46 0.143 -.2292817 .0332698
...

------------------------------------------------------------------------------

. * These standard errors do not account for the first-stage estimation. Should

. * use the panel bootstrap accounting for both stages.

. * Only marginal evidence that spending is endogenous, but the negative sign

. * fits the story that districts increase spending when performance is

. * (expected to be) worse, based on unobservables (to us).
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