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1. INTRODUCTION

e Suppose y is a fractional response, thatis, 0 < y < 1.

e Allow the possibility that y iIs a corner solution at zero, one, or both. It
could also be an essentially continuous variable strictly between zero
and one in the population.

e y can be a proportion computed from the fraction of events occuring
In a given number of trials. [For example, it could be the fraction of
workers participating in a 401(k) pension plan.] But it could also be
fundamentally continuous, such as the proportion of county land zoned

for agriculture.



e For now, no problem of missing data, so we avoid the phrase
“censored at zero” or “censored at one.”

e |f a variable is initially measured as a percentage, divide it by 100 to
turn it into a proportion.

e Makes sense to start with linear models; at a minimum, estimated
partial effects can be compared with those from more complicated
nonlinear models.

e Remember a general rule: issues such as endogenous explanatory
variables and unobserved heterogeneity are more easily handled with
linear models. To allow nonlinear functional forms, we will impose

extra assumptions.



2. POSSIBLE APPROACHES TO FRACTIONAL RESPONSES
e |n the case where y has corners at zero and one, a two-limit Tobit
model is logically consistent. But it uses a full set of distributional
assumptions [which, of course, has the benefit of allowing us to
estimate any feature of D(y|x)]. Plus, it is logically inconsistent if we
have only one corner.

e Can use other logically consistent distributions. If y; Is a continuous
on (0,1), a conditional Beta distribution makes sense.

e The Beta distribution is not in the LEF, so, like the Tobit approach,
MLE using the Beta distribution is inconsistent for the parameters in a

correctly specified conditional mean.



e \We focus mainly on models for estimating the conditonal mean.
Later, discuss two-part models.

e L_inear model has essentially same drawbacks as for binary response:

E(yX) = XB = B1 + Pax2 +...+Prxk

can hold over all potential values of x only in rare circumstances (such

as mutually exclusive and exhaustive dummy variables).



e As with other limited dependent variables, we should view the linear
model as the best linear approximation to £(y|x) (which we can
potentially improve by using quadratics, interactions, and other
functional forms such as logarithms).

e As always, the OLS estimators are consistent for the linear projection

parameters, which approximate (we hope) average partial effects.



e A common approach when 0 < y < 1 is to use the so-called log-odds
transformation of y, log[y/(1 — y)], in a linear regression. Define

w = log[y/(1 - y)] and assume
E(w|X) = xB.

¢ The log-odds approach is simple and, because w can range over all

real values, the linear conditional mean is attractive.



e Drawbacks to the log-odds approach: First, it cannot be applied to
corner solution responses unless we make some arbitrary adjustments.
Because log[y/(1 —y)] - —wasy — 0and log[y/(1 —-y)] — oo as

y — 1, our estimates might be sensitive to the adjustments at the
endpoints.

e Second, even if y is strictly in the unit interval, B is difficult to
Interpret: without further assumptions, it is not possible to estimate
E(y|x) from a model for E{log[y/(1 — y)]|X}.



e One possibility is to assume the log-odds transformation yields a

linear model with an additive error independent of X:

log[y/(1-y)] =XB+e, D(ex) = D(e),

where we take E£(e) = 0 (and assume that x; = 1). Then, we can write

y =exXp(Xp + e)/[1 +exp(Xp +e)].



e |[f ¢ and x are independent,
EGx) = [ exp( + e)/[1 + exp(xB + e)]dF(e),

where F(-) Is the distribution function of e.

e Duan’s (JA4SA4, 1983) “smearing estimate” can be used without

specifying D(e):

N
EGIX) = N2~ exp(xB + é)I[1 + exp(xB + )],
i=1

where B is the OLS estimator from w; on x; and é; = w; — X, are the
OLS residuals.
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e Estimated partial effects are obtained by taking derivatives with
respect to the x;, or discrete differences.

e A similar analysis applies if we replace the log-odds transformation
with ®-1(y), where ®-1(-) is the inverse function of the standard
normal cdf, in which case we average CD(xﬁ + €;) across i to estimate
E@|X).

e Can use the delta method for standard errors, or the bootstrap.

e Question: If we are mainly interested in E(y|X), why not just model it

directly?
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3. FRACTIONAL LOGIT AND PROBIT

e | et y be aresponse in [0, 1], possibly including the endpoints. We can

model Its mean as

E(yx) = exp(xB)/[1 +exp(xp)],

or as a probit function,

E(yx) = ©(xB).
e [n each case the fitted values will be in (0, 1) and each allows y to

take on any values in [0, 1], including the endpoints zero and one.
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e Partial effects are obtained just as in standard logit and probit, but
these are on the mean and not the response probability.
e The above functional forms do not, of course, exhaust the

possibilities. For example,

E(y[x) = exp[—exp(xB)]
allows a different shape. (The function G(z) = exp(—exp(z)) is the

cumulative distribution function of an asymmetric random variable.)
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e Generally, let the mean function be G(xB). We could estimate 8 by
nonlinear least squares. NLS is consistent and inference is
straightforward, provided we use the fully robust sandwich variance
matrix estimator that does not restrict Var(y|x).

e As in estimating models of conditional means for unbounded,
nonnegative responses, NLS is unlikely to be efficient for fractional
responses because common distributions for a fractional response imply
heteroskedasticity.

e Could use a two-step weighted NLS if we model Var(y|x).
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e A simpler, one-step strategy Is to use a QMLE approach. We know

the Bernoulli log likelihood is in the linear exponential family.

Therefore, the QMLE that solves
N
max > {(1-y:)log[1~G(xib)] +y;log[G(x;b)]}
i=1

IS consistent for B whenever the conditional mean is correctly specified.

¢ Notice that the quasi-LLF is well defined for any y; in [0, 1] and

functions 0 < G(-) < 1. Plus, it is a standard estimation problem

because it is identical to estimating binary response models.
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e Call the QMLE fractional logit regression or fractional probit
regression.

e These are just as robust as the NLS estimators.

e Fully robust inference is straightforward for QMLE. When the mean

IS correctly specified, estimate the asymptotic variance of f3 as

-1 -1
S ax; zN: 282X/ = ax;
—~ Gi(1-G)) =~ [G:/(1-G)]? —~ G:/(1-G))

where

i = yi — G(xP).
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e |f we allow the mean to be misspecified, we replace the outer part of
the sandwich with the estimated Hessian, not expected Hessian
conditional on Xx;.

e The Bernoulli GLM variance assumption is

Var(yIx) = o*EQX)[1 - EQ/[X)].
e \When this assumption holds it is often with 6% < 1; in this case

Inference based on the usual binary response statistics will be too

conservative — often, much too conservative.

17



e As we discussed in the general case, the Bernoulli QMLE has an
attractive efficiency property. If it turns out that the GLM variance
assumption holds, then the QMLE is efficient in the class of all
estimators that use only E(y[x) = G(xpB) for consistency. In particular,
the QMLE i1s more efficient than NLS.

e Of course, if, say, a Beta distribution were correct, and we use the
correct MLE, this would be more efficient than the QMLE. But the

MLE uses more assumptions for consistency.
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e |f the GLM variance assumption holds, the asymptotic variance

matrix estimator simplies to

N A2y -1
62@: [xP)I2xx ]>

= Gx:B)[L - G(xB)

with

N
62 = (N=K)™1 D (@),
i=1

b = GXB)[L - GxB)].
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e One case where Bernoulli GLM assumption holds. Suppose
yi = si/n;, where s; is the number of “successes” in n; Bernoulli draws.
Suppose that s; given (n;, X;) follows a Binomial[n;, G(X;B)]
distribution.
e Then E(yi|n;,X;) = G(X;B) and
Var(yilni, x;) = n;1G(x;B)[1 — G(x;B)]. If n; is independent of x;,
Var(yi|x;) = Varl[Ei|ni, X:)|Xi] + E[Var(yini, Xi)|X;]
= 0+ E(n;*[x)G(X:B)[1 — G(x:B)]
= o?G(x:B)[1 - G(X:B)],
where 62 = E(n;') < 1 (with strict inequality unless n; = 1 with

probability one).
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e |n practice, it is unlikely that »; and X; are independent, so fully
robust inference should be used.

e Further, within-group correlation — that s, If we write s; = > ' wy

for binary responses w;, the {w;. : r = 1,...,n;} are correlated
conditional on (n;,X;) — generally invalidates the GLM variance

assumption, as in the Binomial case.
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e |f we are given data on proportions but do not know #;, it makes
sense to use a fractional logit or probit analysis. If we observe the #;,
we might use binomial regression instead (which is fully robust
provided E(s;|n;, X;) = n;G(X;B)).
e [f we maintain E(s;|n;,X;) = n;G(X;B) and y; = s;/n;,

EWilni, X:) = E(si|ni, X)ni = GXiB) = E(ilX:)

This means that binomial regression using the counts s; and fractional

regression using y; should yield similar estimates of B.
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e |f the binomial distributional assumption is true, MLE using (s;, n;) IS
asymptotically more efficient than fractional regression. But the
variance in binomial regression often has overdispersion. The fractional
regression can actually be more efficient. (And, it is often more

resilient to outliers.)
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e Can compare the APEs to OLS estimates of a linear model. For a

continuous variable x;,
— N
APE; = [Nl Zg(xiﬁ):|ﬂj
i=1
e If x; Is binary,

APE; = N‘lz G(x"B) ~G(x3B)]
=1

where x ' has x; = 1and x(o) has x;; = 0.
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e \Whether (say) xx IS discrete or continuous, we can obtain an estimate

of APEx when xx changes from, say, aﬁf) to a%), without using a

calculus approximation, as in the previous equation but where

0 _ 5 7 - 5
XZ(K) = [31 + ﬁle-z +.. .+,BK_1x,-,K_1 + ,BKCZ}()
) a7 - >
XY = By + Boxio +.. . +Praxix1 + Bral’
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e |f, say, xx Is the key variable, and it is continuous, might plot the
response as a function of xg, inserting mean values (say) of the other

variables or averaging them out:
G(Bl + ,BZJ_CZ +.. -+,BK—1)_CK—1 + ,BKXK)
or
N
— 1 A A A A
ASFk(xk) = N Z G(B1 + PBoxio +...+Px-1xik-1 + Brxk)
i=1
e Can compare these response functions with linear model.

e Can put the usual functional forms in the index; makes partial effects

more difficult to compute.
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e Simple functional form test; After estimation of B, add powers of x;B,

such as (x;B)2, (x;B)3, use fractional QMLE on the expanded “model”
GOxiB + a1(xiB)? + a2(xiB)?).

and use a robust Wald test of joint significance for a1, a». (This test, an

extension of RESET for linear models, can be applied to any index

context, including count regression with an exponential mean.)

e This is an example of a variable addition test, which Is essentially a

score test but slightly easier to implement.
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e For goodness-of-fit of the mean, can compute an R-squared as

. Zi\zfl(yi _)91')2

R2 =1 ~ -
Zl‘:]_(yi _y)Z

where 3; = G(Xif).
e Another possibility is the squared correlation between y; and y;.

e Unlike OLS estimation of a linear model, these are not algebraically
the same.
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e GLM In Stata:

glmy x1 ... xK, fam(bin) link(logit) robust
glmy x1 ... xK, fam(bin) link(probit) sca(x2)
glmy x1 ... xK, fam(bin) link(loglog) robust

e Best to make inference fully robust, but the GLM variance
assumption often gives similar standard errors.

¢ The usual MLE standard errors are too conservative, often very
conservative.

e The “loglog” link implements the model E(y|x) = exp[—exp(XB)].
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e After any of the commands, fitted values are easy to get:
predict yhat

e To get the estimated indices, xl-f}, and powers of them:
predict xbhat, xb

gen xbhatsq = xbhat"2

gen xXbhatcu = xbhat”"3
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EXAMPLE: Participation rates in 401(k) pension plans.

. use 401k
. des

Contains data from \swbookl 4e\statafiles\401lk.dta

obs: 1,534
vars: 8 9 Jun 1998 08:20
size: 46,020 (99.9% of memory free)
storage display value

variable name type format label variable label

prate float %7.0g participation rate, percent
mrate float %7.0g 401k plan match rate

totpart float %7.0g total 401k participants

totelg float %7.0g total eligible for 401k plan
age byte %7 .0g age of 401k plan

totemp float %7.0g total number of firm employees
sole byte %7 .0g =1 1f 401k 1s firm’s sole plan
Itotemp float %9.0g log of totemp

Sorted by:
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- sSum

Variable | Obs Mean Std. Dev MiIn Max
_____________ +________________________________________________________
prate | 1534 87.36291 16.71654 3 100

mrate | 1534 .7315124 . 7795393 .01 4.91
totpart | 1534 1354.231 4629.265 50 58811
totelg | 1534 1628.535 5370.719 51 70429

age | 1534 13.18123 9.171114 4 51
_____________ +________________________________________________________
totemp | 1534 3568.495 11217.94 58 144387

sole | 1534 .4876141 -5000096 0 1

Itotemp | 1534 6.686034 1.453375 4.060443 11.88025

. count if mrate > 1
292

. count if mrate > 2
101

. replace prate = prate/100
(1534 real changes made)

32



. reg prate mrate age ltotemp sole, robust

Linear regression Number of obs = 1534
FC 4, 1529) = 73.36
Prob > F = 0.0000
R-squared = 0.1474
Root MSE = .15456
| Robust
prate | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
mrate | .0485354 -0043289 11.21 0.000 -0400443 -0570266
age | .0031704 -0004032 7.86 0.000 -0023795 -0039613
Itotemp | -.0240487 .0031777 -7.57 0.000 -.0302818 -.0178156
sole | .0217378 -0086932 2.50 0.013 -004686 -0387896
_cons | .9465254 .0218303 43.36  0.000 -9037049 -9893458

. * The nonrobust standard errors are similar, actually slightly larger.
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. glm prate mrate age ltotemp sole, fam(bin) link(logit) robust
note: prate has non-integer values

Generalized linear models No. of obs = 1534

Optimization - ML Residual df = 1529

Scale parameter = 1

Deviance = 314.528326 (1/df) Deviance = .2057085

Pearson = 367.9839977 (1/df) Pearson = .2406697
Variance function: V(u) = u*(1-u/1) [Binomial]

Link function :g(w) = In(u/(1-w) [Logit]
AlIC = .5589556
Log pseudolikelihood = -423.7189416 BIC = -10901.66
| Robust

prate | Coef. Std. Err. z P>]z] [95% Conf. Interval]

_____________ +________________________________________________________________

mrate | -9167158 -134119 6.84 0.000 .6538474 1.179584

age | .0322364 .0049561 6.50 0.000 .0225226 .0419502

Itotemp | --.2080024 -0258256 -8.05 0.000 -.2586195 -.1573852

sole | -.1676861 .0846774 1.98 0.048 .0017215 .3336507

_cons | 2.370495 .1921688 12.34 0.000 1.993851 2.747139
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. margeff

Average partial effects after glm
y = Pr(prate)

variable | Coef Std. Err z P>|z] [95% Conf. Interval]
_____________ +________________________________________________________________
mrate | .0969144 -0140539 6.90 0.000 -0693694 .1244595

age | -0034081 -0005304 6.43 0.000 -0023686 -0044477

Itotemp | -.0219898 .0027723 -7.93 0.000 -.0274233 -.0165562

sole | .0176176 -0083374 2.11 0.035 -0012766 -0339586

. * The APE for mrate is about double the linear model estimate.
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. predict prateh_lI

(option mu assumed; predicted mean prate)

. corr prate prateh_lI

(obs=1534)
| prate prateh_ I
_____________ +__________________
prate | 1.0000
prateh_1 | 0.4263 1.0000
. di .4263"2
.18173169
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. * The nonrobust standard errors are too large:

. glm prate mrate age ltotemp sole, fam(bin) link(logit)
note: prate has non-integer values

Generalized linear models No. of obs = 1534

Optimization - ML Residual df = 1529

Scale parameter = 1

Deviance = 314.528326 (1/df) Deviance = .2057085

Pearson = 367.9839977 (1/df) Pearson = .2406697

AlIC = _.5589556

Log likelihood = -423.7189416 BIC = -10901.66
| OIM

prate | Coef. Std. Err. z P>|z] [95% Conf. Interval]

_____________ +________________________________________________________________

mrate | .9167158 .2059862 4.45 0.000 .5129902 1.320441

age | .0322364 .010257 3.14 0.002 .012133 -0523398

Itotemp | -.2080024 .0551219 -3.77 0.000 -.3160393 -.0999654

sole | .1676861 .1716409 0.98 0.329 -.1687239 -5040961

_cons | 2.370495 .4263752 5.56 0.000 1.534815 3.206175
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- gen mratesq = mrate”2
. gen agesq = age”2
. gen ltotempsqg = ltotemp”2

. reg prate mrate mratesq age agesq ltotemp ltotempsq sole, robust

Linear regression Number of obs = 1534
F( 7, 1526) = 56.14
Prob > F = 0.0000
R-squared = 0.1883
Root MSE = .15095

| Robust
prate | Coef Std. Err t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
mrate | .137551 .0124891 11.01 0.000 .1130534 .1620487
mratesq | --0255695 -0029956 -8.54 0.000 -0314454  -.0196936
age | -0076809 -0015391 4.99 0.000 -0046619 -0106999
agesq | -.000129 -0000371 -3.48 0.001 -0002017  -.0000563
Itotemp | -.113806 .0218575 -5.21 0.000 -1566799 -.070932
Itotempsqg | .0061188 -0014904 4.11 0.000 -0031953 -0090423
sole | .0119101 .0087466 1.36 0.173 -0052465 -0290667
_cons | 1.2029 -0788964 15.25 0.000 1.048143 1.357657
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. * Now compute the APE for mrate:

. gen mrate_me_lin
. sum mrate_me_lin

Variable |

_b[mrate] + 2* b[mratesq]*mrate

Obs Mean

Std. Dev.

_____________ - e

mrate_me_lin |

1534 .1001422

.0398649

. * Obtain RESET using the square and cube:

. predict xbh_sqg lin
(option xb assumed; fitted values)

. gen xbh_sq_linsqg

. gen xbh_sq_lincu

xbh_sqg_lin"2

xbh_sq_l1in"3
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. reg prate mrate mratesq age agesq ltotemp ltotempsq sole xbh _sqg_linsqg
xbh_sq_lincu, robust

| Robust
prate | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ +________________________________________________________________
mrate | 5.612875 2.25341 2.49 0.013 1.192761 10.03299
mratesq | -1.042382 .4188927 -2.49 0.013 -1.864049 -.2207152
age | .3121919 -125702 2.48 0.013 -0656248 -5587591
agesq | --0052452 .0021126 -2.48 0.013 -.0093891 -.0011012
Itotemp | -4.634524 1.8645 -2.49 0.013 -8.291782  -.9772653
Itotempsq | .2492836 -1002737 2.49 0.013 .0525946 .4459725
sole | .4824868 -1956819 2.47 0.014 -0986524 -8663211
xbh_sq_linsq | -40.86979  17.93412 -2.28 0.023 -76.04795 -5.691631
xbh_sqg_lincu | 13.81167 6.515698 2.12 0.034 1.030992 26.59236
_cons | 36.28292  14.74269 2.46 0.014 7.364812 65.20104

. test xbh_sqg_linsq xbh_sqg_lincu

(1) xbh_sqg_ linsg =0

( 2) xbh_sq lincu =0
F(C 2, 1524) = 21.68
Prob > F = 0.0000

. * A strong statistical rejection of the linear model even with quadratics.
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. glm prate mrate mratesq age agesq ltotemp ltotempsq sole, fam(bin)
link(logit) robust
note: prate has non-integer values

Generalized linear models No. of obs = 1534

Optimization I ML Residual df = 1526

Scale parameter = 1

Deviance = 301.5717563 (1/df) Deviance = .1976224

Pearson = 318.2190643 (1/df) Pearson = .2085315

AlIC = .5544207

Log pseudolikelihood = -417.2406567 BIC = -10892.61
| Robust

prate | Coef. Std. Err. z P>]z]| [95% Conf. Interval]

_____________ +________________________________________________________________

mrate | 1.614381 .1675732 9.63 0.000 1.285943 1.942818

mratesq | --.2753789 .0435835 -6.32 0.000 -.360801  -.1899567

age | .0764414 -0158978 4.81 0.000 -0452823 -1076006

agesq | --0012815 -000386 -3.32 0.001 -.002038 -.000525

Itotemp | -1.199122 .2209129 -5.43 0.000 -1.632103 -.7661407

Itotempsq | -0650906 .0145924 4.46  0.000 -03649 .0936912

sole | -1015973 -0837603 1.21 0.225 -.0625698 .2657644

_cons | 5.535748 .833326 6.64 0.000 3.902459 7.169037
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. predict prateh_ 12

. corr prate prateh_ 12

(obs=1534)
| prate prateh~2
_____________ +__________________
prate | 1.0000
prateh_12 | 0.4602  1.0000
. di .460272
.21178404

. * Fits better than linear model with quadratics (R-squared = .188).

. di 1.614/(2*.275)
2.9345455

. count if mrate > 2.93
52

. * So only 52 out of 1,534 observations are to the right of the turning
- -
. point.
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. * Using margeff with the quadratics doesn’t make much sense.
. * Compute APE "by hand.™

. predict xbh_12, xb
. gen scale = exp(xbh_I12)/(1 + exp(xbh_12))"2

. sum scale
Variable | Obs Mean Std. Dev. MiIn Max
_____________ +________________________________________________________
scale | 1534 .104565 .0540043 .0071288 .2364579

. gen mrate_me = (_b[mrate] + 2* b[mratesq]*mrate)*scale

. sum mrate_me
Variable | Obs Mean Std. Dev. MiIn Max
_____________ +________________________________________________________
mrate_me | 1534 -1414986 -.0902254 -.0718435 .3778262

. * About 40% higher than the linear model estimated APE, .100.
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. predict xbh_sqg log, xb

. gen xbh _sq logsq = xbh_sq log”™2

. gen xbh _sq logcu = xbh_sq log”"3

. glm prate mrate mratesq age agesq ltotemp ltotempsq sole xbh _sqg_logsq

xbh_sq_logcu, fam(bin) link(logit) robust
note: prate has non-integer values

| Robust
prate | Coef. Std. Err. z P>|z] [95% Conf. Interval]
_____________ +________________________________________________________________
mrate | 4.065386 1.356546 3.00 0.003 1.406605 6.724167
mratesq | -.697588 .2330727 -2.99 0.003 -1.154402 -.2407738
age | .1928297 .0648958 2.97 0.003 -0656361 .3200232
agesq | --0032323 -0011257 -2.87 0.004 -.0054387 -.0010259
Itotemp | -3.050577 1.057474 -2.88 0.004 -5.123189 -.9779661
Itotempsqg | .1659176 -0585484 2.83 0.005 .0511647 .2806704
sole | .2623277 .1261936 2.08 0.038 -0149928 -5096626
xbh_sq_logsq | -.8103757  .4117121 -1.97 0.049 -1.617317 -.0034348
xbh_sq_logcu | .129453 .0625514 2.07 0.038 -0068545 .2520515
_cons | 13.20982  4.311299 3.06 0.002 4.759834 21.65981
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. test xbh_sqg logsqg xbh_sqg logcu

( 1) [prate]xbh_sq logsq = 0
( 2) [prate]xbh_sqg_logcu = 0
chi2( 2) = 4.51

Prob > chi2 = 0.1048

. * So we do not reject the fractional logit at the 10% significance level.

. * Can plot the mean function as a function of mrate, with other
. * variables fTixed at specific values.
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4. ENDOGENOUS EXPLANATORY VARIABLES

e The fractional probit model can easily handle certain kinds of
continuous endogenous explanatory variables.

e As before, model endogeneity as an omitted variable:

E(1|z,y2,c1) = E(vi|z1,y2,c1) = ®(Z2101 + y1y2 + c1)

V2 = IM2 +Vvy = Z1To1 + Z2T22 + V2,

where ¢ 1s an omitted factor thought to be correlated with y, but

Independent of the exogenous variables z.
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e |deally, could assume the linear equation for y, represents a linear
projection. But we need to assume more.

e Sufficient is
c1 = p1v2 +e1, ez, vy ~ Normal(O,Ggl),

where a sufficient, though not necessary, condition is that (c1,v2) IS

bivariate normal and independent of z.
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e Then

EWi|z,y2) = E(v1|z,y2,v2) = ®(Z10e1 + Ye1V2 + pe1V2),

where the “e” subscript denotes multiplication by the scale factor
1/(1 + 62,)12,

e Fortunately, the scaled coefficients index the average partial effects.
e Two-step method: (1) Obtain the OLS residuals v;» from the
regression y;» on z;. Next, use fractional probit of y;1 on z;1,y2, V2 t0

estimate the scaled coefficients.
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e Simple test of the null hypothesis that y, Is exogenous is the fully
robust 7 statistic on v;2; the first-step estimation can be ignored under
the null.

e [f p1 + 0, then the robust sandwich variance matrix estimator of the
scaled coefficients is not valid because it does not account for the first
step estimation. Can adjust for the two-step M-estimation results or use

the bootstrap.

49



e The average structural function is consistently estimated as

— 1 N Pl A A A
ASF(z1,y2) = N~ Z D(Z10c1 + YelV2 + PelViz),
i—1

and this can be used to obtain APEs with respect to y, or z;.

e Bootstrapping the standard errors and test statistics is a sensible way

to proceed with inference.
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e Basic model can be extended in many ways. For example, can replace

y2 = ZT2 + v2 With

h(yz) = ZIT2 + V2

where A(-) is strictly monotonic. (This is for the case where we want y»
In the structural model yet it is unlikely to have a linear reduced form
with additive, independent error.)

e [fy, > 0then Z2(y2) = log(yz) Is natural; iIf 0 < y> < 1, might use
the log-odds transformation, /2(y2) = log[y2/(1 — y2)].
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e Unfortunately, if y, has a mass point — such as a binary response, or
corner response, or count variable — a transformation yielding an
additive, independent error probably does not exist.

¢ Allowing flexible functional forms for y, Is easy. For example, if the
structural model contains y3 and interactions, say y»z1, the estimating

equation could look like

E(y1|z,y2,v2) = (2181 + Ye1V2 + WelV5 + V2Z10e1 + Pe1V2),

so that a single control function, v,, corrects the endogeneity of y».
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e After the two-step QMLE, the ASF Is estimated as
N
T 1 A A A 2 A A A
ASF(z1,y2) = N Z D(Z10e1 + Ye1yV2 + Wery5 + V221061 + Pe1Vi2),
i=1
and now derivatives or changes with respect to (z1,y2) can be obtained.

e Further, we might allow D(c1|v2) to be more flexible, such as
c1 = p11v2 + p12vs + p13vs + e, e1|z,v2 ~ Normal(0,02;).

e Notice that ¢; cannot have an unconditional normal distribution,

particular if v2 1s normal. This bothers some people.

53



e |n the second stage, we would add a cubic in v, to the fractional

probit. In the model just above,

ASF(z1,y2) = N- E D(Z10e1 + Ye1V2 + WelV5 + V2Z10e1
i=1

+ Pe11Vi2 + Pe12Vs + Pei3vn),
that Is, we again just average out the control function. The bootstrap

would be very convenient for standard errors.
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e Recent work by Blundell and Powell (2004, Review of Economic
Studies) goes even further. Just allow E(y1|z1,y2,v2) to be a flexible
function of its arguments, say
E(yilz1,y2,v2) = g1(21,y2,v2)
e To obtain the control function, assume
y2 = g2(2) + v, v2 independent of z,

where g2(+) Is only assumed to be a smooth function. Estimate g»(-)
nonparametrically, obtain v, = y,» — g2(z;). Then use nonparametric

regression of y;1 on z;1,yi2, Vio
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e The ASF is consistently estimated as

N

T

ASF(z1,y2) = N1 E 81(Z1,y2,Vi2).
i=1

e Can approximate this approach by using flexible parametric models.
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¢ \We can accomodate multiple continuous endogenous varaibles. Let
X1 = ki(z,,y,) for a vector of functions k1(-, +), and allow a set of
reduced forms for strictly monotonic functions 42,(y2,), g = 1,...,G1,
where G Is the dimension of y,.

e See Wooldridge (2005, “Unobserved Heterogeneity and Estimation of
Average Partial Effects,” Rothenberg Festschrift)
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e Recent (unpublished) work: If y, is binary and follows a probit
model, can have y; fractional with a probit conditional mean and apply
“bivariate probit” to (y1,y2), even though y1 Is not binary. (Not

currently allowed in Stata.)
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5. TWO-PART MODELS

e |f have cornersat y = O or y = 1 (or, occasionally at both values),
might want to use a two-part (hurdle) model.

e [For concreteness, assume P(y = 0) > 0 but y is continuous in (0, 1),
so there is no pile-up at one.

e [n addition to modeling P(y = 0|x), could model D(y|x,y > 0). But

more robust to model E(y|X,y > 0) using fractional response.
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o | et
P(y =0|x) = 1 - F(Xa)
EQIX,y > 0) = G(xB)
ol etw =1y > 0], sothat P(w = 1|x) = F(Xa).

e Now the “unconditional” expectation is
E(X) = F(xa)G(xB),

which complicates partial effects.
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e Estimation is straightforward. (1) Estimate o by binary response (say,
logit or probit) of w; on x;. (2) Use QMLE (fractional logit or probit, or
some other functional form) of y; on x; using data for y; > 0 to estimate
B.

e Can compute an R-squared for the overall mean (and the mean
conditional on y > 0) to compare with one-part models. Can test the
functional forms of the two parts, too, using RESET and other tests
(such as for “heteroskedasticity™).

e Open (?) question: How to combine two-part models and

endogeneity?
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6. PANEL DATA METHODS

e |[f no interest in explicitly including unobserved heterogeneity, can
use pooled versions of methods discussed. Of course, should allow for
arbitrary serial dependence in inference as well as variance
misspecification in the LEF distribution.

e Might have dynamic completeness in the mean if lagged dependent
variables have been included. (What is the best functional form for
doing so?) As usual, if E(yi|zit,visr1,2Zir-1,...) has been properly

specified, then serial correlation cannot be an issue.
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e [n Stata, we just use the “glm” command with a clustering option:
glmy x1 ... xK, fam(bin) link(logit)
cluster(id)

¢ \With complete dynamics in the mean:

gIm y x1 ... xK, fam(bin) link(logit) robust

or replace the logit link with another.
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Models and Partial Effects with Heterogeneity
e Consider, for0 < y; < 1,
EQilXi,ci) = DX +ci),t =1,...,T.
¢ As with an endogenous explanatory variable in a cross section setting,

with unobserved heterogeneity the fractional probit approach has

advantages over other functional forms.

e Elements of B give the directions of the partial effects. For example, if

x4 IS continuous, then

GE()/;|X¢, C)
8xtj

= Bio(XP + ¢).
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For discrete changes, we compute

O(XVB +¢) — D(X{VB + )

for two different settings of the covariates, x§1) and XEO).

e Partial effects depend on X, and ¢. What should we plug in for ¢?

e Instead, focus on the average partial effects (APES):

Ec[BioXP+ci)] = BiEclo(XP +ci)],
which depends on X; (and B) but not on c¢. (Or discrete differences.) As
before, essentially the same as the “average structural function,”

ASF(X;) = E . [D(X:P + ci)].
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e \When are the APEs identified? More generally than the parameters,
but more assumptions are needed.

e Strict exogeneity conditional on ¢;: If X;i= (X,1,X;2,...,X;7),
EiulXi,ci) = EQulXir,ci), t = 1,...,T.

As always, rules out lagged dependent variables, feedback, and
contemporaneous endogeneity.

e Need to restrict D(c;|x;). Enough would be, say,
D(cilxi) = D(cil%:),

where X; is the time average.
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e Altonji and Matzkin (2005, Econometrica) use general
exchangeability. Could allow the distribution to depend on other

features of {x;; : t = 1,..., T}, such as time trends or average growth
rates.

e \\/e assume more;
cil(Xi1, Xip, ... s Xi7) ~ Normal(y + X:E,62).

Write ¢; = v + X;& + a; where a;|x;,~Normal(0, ¢2).
e Do not impose additional distributional assumptions on D(v|X;, ¢;).

Leave the serial dependence in {y;} across time unrestricted.
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e B is identified up to a positive scale factor, and the APEs are
Identified:

EQulxi,ai) = Oy + XiP + Xi& + a:)
and so

EQilx:) = E[®(y + XiP + X:& + ai)|X/]
= O[(y + XiP + X:E)/(1 + 62)1?]
= (I)(l//a + Xitﬁa + )-(i&-'a)’

where the “a” subscript denotes division by (1 + ¢2)2.
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* v, B, and & are identified if there Is time variation in X;.

Chamberlain device: replace X; with X;.
e Coneniently, the APEs can be obtained by differentiating or

differencing

Ex[O(ya +X:B, +Ri€,)]

with respect to the elements of x,. The average structural function is

consistently estimated by
— N n A A
ASF(X;) = N7 Zi=1 O(y o+ XP, +XiE,)

where v, B_, & are consistent estimators.
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e As usual, APEs for continuous and discrete variables can be obtained
—

from ASF(X,).

e |[n practice, we would have time dummies, which we could just

Indicate with v ,.

e \We can always include time constant variables, say r;, along with X;.

It Is then up to us to interpret the partial effects with respect to r;.
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Estimation Methods Under Strict Exogeneity
e Many consistent estimators of the scaled parameters. Define
w; = (1, X, X;) (or with time dummies and time constant variables)

and © = (v.,B,& ). Then 6 can be estimated using pooled nonlinear

least squares (NLS), with regression function ®(w;0).
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e Pooled NLS estimator is consistent and /N -asymptotically normal
(with fixed 7), but is likely to be inefficient.

e First, it ignores the serial dependence in the y;;, which is likely to be
substantial even after conditioning on X;. Second, Var(yi|X;) Is very
unlikely to be homoskedastic. Could ignore serial correlation, model

Var(yi|X;), and use weighted least squares.
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e \We already know that we can used pooled fractional probit (or logit,
for that matter), with explanatory variables (1, x;,X;) (and, likely, year
dummies).

¢ The “working variance” assumption for pooled FP is
Var(yulx:) = t?2®(w;0)[1 — O(w;0)],

where 0 < 72 < 1.
e Still need to cluster to obtain standard errors robust to serial

correlation, even if the variance function is correct.
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e In Stata, with year dummies explicit:

glmy x1 ... XK xlbar ... xKbar d2 ... dT,
fam(bin) link(probit) cluster(id)
margeff

¢ The “margeff” command gives APEs and appropriate standard errors.

e Can add time-constant variables to the list of explanatory variables.
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e Random effects approaches — that is, that attempt to obtain a joint
distribution D(ya,...,vir|X;) by modeling and then integrating out
unobserved heterogeneity — would require additional distributional
assumptions while being computationally demanding. A nice middle
ground is the GEE approach. We already have the working variance
assumption for fractional probit.

e \We need to specify a “working” correlation matrix, too. Define the

Errors as

uir = Yir — EQulXi) = yir — ®(Wi0) = O(yo + X, + X ), 1 =1,...
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e Define standardized errors as

iy = u,t/‘/CI)(WltO)[l — (I)(lee)] .

under, Var(e;y|X;) = 72. Exchangeability is that the pairwise
correlations between pairs of standardized errors Is contant, say p.
e To estimate a common correlation parameter, let & be a preliminary

estimator of 6 — probably the pooled Bernoulli QMLE.
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e Define residuals i = yi — @ (w;0) and the standardized (Pearson)

residuals &; = it/ | O(w;8)[1 — ©(w,8)] . Then,

N T

p=INT(T-DID D D éuci.

=1 =1 s+t

e Given the estimated T x 7 working correlation matrix, R(p), which
has unity down its diagonal and p everywhere else, we can construct

the estimated “working” variance matrix:
V(x,.8) "RAVx,. 6,
where V(X 0) is the 7 x T diagonal matrix with ®(w;0)[1 — ®(w;:0)]

down its diagonal.
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e Now apply multivariate WNLS, which is asymptotically the same as
GEE. Naturally, use a fully robust variance matrix estimator.

e Can allow an “unstructured” correlation matrix, too, but the
correlations never depend on X;.

xtgee y x1 ... xK xlbar ... xKbar, fam(bin)
Link(probit) corr(exch) robust
xtgee y x1 ... xK xlbar ... xKbar, fam(bin)
Link(probit) corr(uns) robust
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e Can apply the “margeff” command in Stata to get APEs averaged
across the cross section and time. For continuous explanatory variables,

the common scale factor Is

(NT) 122¢(wa+xzzﬁ +R:E,).

=1l =1

e Can compare APEs with linear model estimated by fixed effects.
e As with previous models, can add X; .1 (or a subset of variables) as a

test of strict exogeneity. Estimation can be pooled QMLE or GEE.
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Models with Endogenous Explanatory Variables
¢ Represent endogeneity as an omitted, time-varying variable, in
addition to unobserved heterogeneity:

EWyinlzi,yin,cit,vin) = EQinl|Zia,yie,cit, vin)

= D(Z;101 + a1yie + ci + vin),

where c;1 1S the time-constant unobserved effect and v Is a
time-varying omitted factor that can be correlated with y;».
e Elements of z;; are assumed strictly exogenous, and we have at least

one exclusion restriction: z;; = (Zin, Zi2).
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e Use a Chamberlain-Mundlak approach, but only relating the
heterogeneity to all strictly exogenous variables:
cii = y1+2,§ +an, D(an|z;) = D(an).

e Even before we specify D(a;1), this is restrictive because it assumes,
In particular, E(c;|z;) is linear in Z; and that Var(c;|z;) Is constant. More
recent work has shown how we can get by with less, such as

D(calzi) = D(ci1|Z)).
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e Need to obtain an estimating equation. First, note that

E(yinlziyie,ai1,vin) = ®(Zind1 + aryie + w1 +2:&, +ain +vin)

= O(Z;n01 + a1yin + W1+ 2:§, +1in).
e Assume a linear reduced form for y:

yie = W2 +2i302+2,§, +vip,t =1,...,T
D(vin|zi)) = D(vie)

(and we might allow for time-varying coefficients).
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e Rather than assume (a;1, vi) 1S Independent of z;, we can get by with

a weaker assumption, but we imposed normality:
rin|(Zi, vie) ~ Normal(niviz, %)t = 1,...,T.

[Easy to allow n; to change over time.]

e Either way, the assumptions effectively rule out discreteness in y;..
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e \Write

Vil = N1Vip + eéin

where e;;1 1S independent of (z;,vi2) (and, therefore, of y;») and
normally distributed. Again, using a standard mixing property of the

normal distribution,
EQinlziyie,vie) = P(Zindk1 + ax1yie + W1 + 2:&  + Nk1Vir)

where the “x™ denotes division by (1 + «$)/2.
e |dentification comes off of the exclusion of the time-varying

exogenous variables z;..
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e Two step procedure:

(1) Estimate the reduced form for y;» (pooled or for each ¢
separately). Obtain the residuals, vis.

(2) Use the probit QMLE to estimate 8«1, a«1,W«1,&,, and nx1.
(GEE would require strict exogeneity of {vo}1)
e How do we interpret the scaled estimates? They give directions of
effects. Conveniently, they also index the APEs. For given z; and yo,

average out Z; and v;» (for each 7):

N
Okl * |:N1 Z O(Z10x1 + A1y + Wil + 2:& | + N1Vir) :|

i=1
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e Applying “margeff” in the second stage consistently estimates the
APEs averaged across ¢, but the standard errors do not account for the
two-step estimation. Use panel bootstrap for standard errors to allow
for serial dependence and the two-step estimation.

e Of course, we can also compute discrete changes for any of the

elements of (za,yn).
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EXAMPLE: Effects of Spending on Test Pass Rates

e Reform occurs between 1993/94 and 1994/95 school year; its passage
was a surprise to almost everyone.

e Since 1994/95, each district receives a foundation allowance, based
on revenues in 1993/94.

e [ntially, all districts were brought up to a minimum allowance —
$4,200 in the first year. The goal was to eventually give each district a
basic allowance ($5,000 in the first year).

e Districts divided into three groups in 1994/95 for purposes of initial
foundation allowance. Subsequent grants determined by statewide
School Aid Fund.
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e Catch-up formula for districts receiving below the basic. Initially,
more than half of the districts received less than the basic allowance.
By 1998/99, it was down to about 36%. In 1999/00, all districts began
receiving the basic allowance, which was then $5,700. Two-thirds of all
districts now receive the basic allowance.

e From 1991/92 to 2003/04, in the 10th percentile, expenditures rose
from $4,616 (2004 dollars) to $7,125, a 54 percent increase. In the 50th
percentile, it was a 48 percent increase. In the 90th percentile, per pupil
expenditures rose from $7,132 in 1992/93 to $9,529, a 34 percent

Increase.
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e Response variable: math4, the fraction of fourth graders passing the
MEAP math test at a school.

e Spending variable is log(avgrexppp), where the average is over the
current and previous three years.

e The linear model is
math4;, = 0, + B1log(avgrexp,.) + B2lunchi; + Bslog(enrolli;) + ci1 + uin

Estimating this model by fixed effects is identical to adding the time
averages of the three explanatory variables and using pooled OLS.

¢ The “fractional probit” model:

E(math4itlxi1; Xi21 v 1XiT) — (D(Qat + XiZBa + )_(l'ga)-
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e Allowing spending to be endogenous. Controlling for 1993/94
spending, foundation grant should be exogenous. Exploit

nonsmoothness in the grant as a function of initial spending.

math4; = 0, + B1log(avgrexp,,) + B2lunch;; + Bz log(enroll;)

+ Balog(rexppp; 1994) + E1lunch; + &210g(enroll;) + vin

¢ And, fractional probit version of this.
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. use meap92_ 01

. Xtset distid year
panel variable: distid (strongly balanced)
time variable: year, 1992 to 2001
delta: 1 unit

. des math4 avgrexp lunch enroll found

storage display value
variable name type  format label variable label
math4 double %9.0g fraction satisfactory, 4th
grade math
avgrexp float %9.0g (rexppp + rexppp_1 + rexppp_2 +
rexppp_3)74
lunch float %9.0g fraction eligible for free lunch
enroll float %9.0g district enrollment
found int %9 .0g foundation grant, $: 1995-2001
. sum math4 rexppp lunch
Variable | Obs Mean Std. Dev. MiIn Max
_____________ +________________________________________________________
math4 | 5010 .6149834 .1912023 -059 1
rexppp | 5010 6331.99 1168.198 3553.361 15191.49
lunch | 5010 .2802852 .1571325 .0087 -9126999
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. Xtreg math4 lavgrexp lunch lenroll y96-y0l1, fe cluster(distid)

Fixed-effects (within) regression
Group variable: distid

R-sq: within = 0.4713
between = 0.0219
overall = 0.2049
corr(u_i, Xb) = -0.1787
(Std. Err.
| Robust
math4 | Coef Std. Err.
_____________ +
lavgrexp | -3770929 -0705668
lunch | -0419467 .0731611
lenroll | -0020568 .0488107
yo6 | -0155968 .0063937
yo7 | -0589732 -0095232
yo8 | .0781686 .0112949
y99 | -0642748 .0123103
y00 | -0895688 .0133223
yo1l | -0630091 .014717
_cons | -2.640402 .8161357

Number of obs
Number of groups

Obs per group: min

F(9,500)
Prob > F

avg
max

3507
501

~
7.0
>

171.93
0.0000

adjusted for 501 clusters in distid)
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.2384489
.1856877
.0938426
.0281587
.0776837
.0559772
.0400884
.0633942
.0340943
-4.24388

.5157369
.1017944
.0979561
-.003035
.0402628
-1003599
.0884612
.1157434
.0919239
1.036924



+
sigma_u | -1130256
sigma_e | .08314135
rho | .64888558 (fraction of variance due to u_i)

. des alavgrexp alunch alenroll

storage display value
variable name type  format label variable label
alavgrexp float %9.0g time average lavgrexp, 1995-2001
alunch float %9.0g time average lunch, 1995-2001
alenroll float %9.0g time average lenroll, 1995-2001
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. reg math4 lavgrexp alavgrexp lunch alunch lenroll alenroll y96-y01,

cluster(distid)

Linear regression

lavgrexp
alavgrexp
lunch
alunch
lenroll
alenroll
y96

y97

y98

y99

y00

.377092
-.286541
-.0419466
-.3770088
-0020566
-.0031646
-.0155968
-.0589731
.0781687
.064275
-089569
-0630093
-.0006233

Number of obs
F(C 12, 500)
Prob > F
R-squared
Root MSE

3507
161.09
0.0000
0.4218
.11542

(Std. Err. adjusted for 501 clusters in distid)

Robust

Std. Err.
.0705971
.0731797
.0731925
.0766141
.0488317
.0491534
.0063965
.0095273
.0112998
.0123156

.013328

.0147233
.2450239

-0.
-2.
-6.

[95% Conf.

.2383884
-.4303185
.1857494
.5275341
-.093884
.0997373
.0281641
.0776916
.0559678
.0400782
.0633831
.0340821
-.4820268

Interval]

.5157956
-.1427635
.1018562
-.2264835
.0979972
.0934082
-.0030295
-.0402546
-1003696
.0884717
.1157548
.0919365
-4807801
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. * Now use fractional probit.

. glm math4 lavgrexp alavgrexp lunch alunch lenroll alenroll y96-y01,
fa(bin) link(probit) cluster(distid)
note: math4 has non-integer values

Generalized linear models No. of obs = 3507
Optimization I ML Residual df = 3494

Scale parameter = 1
Deviance =  237.643665 (1/df) Deviance = .0680148
Pearson = 225.1094075 (1/df) Pearson = .0644274

(Std. Err. adjusted for 501 clusters in distid)

| Robust
math4 | Coef Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
lavgrexp | -8810302 .2068026 4.26 0.000 .4757045 1.286356
alavgrexp | .5814474 .2229411 -2.61 0.009 -1.018404 -1444909
lunch | .2189714 .2071544 -1.06 0.290 -.6249865 .1870437
alunch | -9966635 .2155739 -4.62 0.000 -1.419181 -5741465
lenroll | -0887804 -1382077 0.64 0.521 -.1821017 -3596626
alenroll | .0893612 .1387674 -0.64 0.520 -.3613404 -1826181
yo6 | -0362309 .0178481 -2.03 0.042 -.0712125 -0012493
yo7 | -1467327 -0273205 -5.37 0.000 -.20028 -0931855
yo8 | -2520084 .0337706 7.46  0.000 .1858192 -3181975
yo9 | .2152507 -0367226 5.86 0.000 -1432757 .2872257
y00 | -3049632 -0399409 7.64 0.000 .2266805 -3832459
yo1l | .2257321 -0439608 5.13 0.000 -1395705 -3118938
cons | -1.855832 . 7556621 -2.46 0.014 -3.336902 .3747616
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. margeff

Average partial effects after glm
y = Pr(math4)

lavgrexp
alavgrexp
lunch
alunch
lenroll
alenroll
y96

y97

y98

y99

y00

y01

.0695326
.0750686
.0698318
.0723725
.0465622
.0467477
.0061107
.0097646
.0100272
.0111375
.0115066
.0132849

[95% Conf.
.2968496
-1959097
.0737791
.3358104
.0299132
.0301089
.0122924
-0508008
-0809879
-0696954
-0970224
-0729829

.1605682
.3430414
.2106469
4776579
-.061347
.1217326
.0242692
-.069939
.0613349
.0478662
.0744698

.046945

Interval]

-433131

.0487781
.0630887
-1939629
.1211734
.0615149
-0003156
.0316625
-1006408
.0915245

.119575

-0990208

. * These standard errors are very close to bootstrapped
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. xtgee math4 lavgrexp alavgrexp lunch alunch lenroll alenroll y96-y01,

fa(bin) link(probit) corr(exch) robust

GEE population-averaged model

Number of obs
Number of groups
Obs per group: min

avg
max

Wald chi2(12)

Prob > chi2

3507
501

7

7.0

Z
1815.43
0.0000

. adjusted for clustering on distid)

Group variable: distid
Link: probit
Family: binomial
Correlation: exchangeable
Scale parameter: 1
(Std. Err
| Semi-robust
math4 | Coef Std. Err.
_____________ +

lavgrexp | .884564 .2060662 4.
alavgrexp | -.5835138 .2236705 -2.
lunch | .2372942 .2091221 -1.
alunch | -9754696 .2170624 -4.

lenroll | .0875629 .1387427
alenroll | .0820307 .1393712 -0.
y96 | .0364771 .0178529 -2.
yo7 | -1471389 .0273264 -5.
yo8 | .2515377 .0337018 7
yo9 | .2148552 -0366599 5

y00 | -3046286 .0399143

yo1l | .2256619 .0438877
cons | -1.914975 . 7528262 -2.
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4806817
-1.0219
6471659

-1.400904

.1843677
.3551933
.0714681
.2006976
.1854833

-143003

.2263981

1396437

~3.390487

[95% Conf.

Interval]

1.288446

-.1451277

1725775

-.5500351

.3594935
.1911318
-.001486

-.0935801

.317592
.2867073
.3828591
.3116801

-.4394628



. margeff

Average partial effects after xtgee

y = Pr(math4)

lavgrexp
alavgrexp
lunch
alunch
lenroll
alenroll
y96

y97

y98

y99

y00

y01

.0692519
.0752801
.0704803
.0728656
.0467283
.0469381
.0061106
.0097618

-010009

.0111192
.0115004
.0132624

[95% Conf.
.2979576
-.1965515
-.0799305
-.3285784
.0294948
-.0276313
-.012373
-.0509306
-0808226
-0695541
-0968972
.0729416

.1622263
.3440978
.2180693
.4713924
-0620909
-1196283
.0243497
.0700633
.0612054
.0477609
.0743568
.0469478

Interval]

-4336889
.0490052
.0582082
.1857644
.1210805
.0643656
-.0003964
.0317979
-1004399
.0913472
.1194376
.0989353



. * Now allow spending to be endogenous. Use foundation allowance, and
. * Interactions, as IVs.
. * First, linear model:

ivreg math4 lunch alunch lenroll alenroll y96-y01 lexppp94 1€94y96-1e94y01
(lavgrexp = Ifound 1fndy96-1fndy0l1l), cluster(distid)

Instrumental variables (2SLS) regression Number of obs = 3507
F(C 18, 500) = 107.05
Prob > F = 0.0000
R-squared = 0.4134
Root MSE = .11635

(Std. Err. adjusted for 501 clusters in distid)

| Robust
math4 | Coef Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
lavgrexp | .5545247 .2205466 2.51 0.012 .1212123 .987837
lunch | -.0621991 -0742948 -0.84 0.403 -.2081675 -0837693
alunch | -.4207815 .0758344 -5.55 0.000 -.5697749  -.2717882
lenroll | .0463616 -0696215 0.67 0.506 -.0904253 .1831484
alenroll | -.049052 .070249 -0.70 0.485 -.1870716 -0889676
y96 | -1.085453 .2736479 -3.97 0.000 -1.623095 -.5478119
y97 | -1.049922 .376541 -2.79 0.005 -1.78972 -.3101244
y98 | -.4548311 -4958826 -0.92 0.359 -1.429102 -5194394
y99 | -.4360973 .5893671 -0.74 0.460 -1.594038 .7218439
yoO0 | --3559283 -6509999 -0.55 0.585 -1.634961 .923104
yo1l | -.704579 .7310773 -0.96 0.336 -2.140941 .7317831
lexppp94 | -.4343213 .2189488 -1.98 0.048 -.8644944  -.0041482
1e94y96 | .1253255 .0318181 3.94 0.000 .0628119 .1878392
1€94y97 | .11487 .0425422 2.70 0.007 .0312865 .1984534
1e94y98 | .0599439 .0554377 1.08 0.280 -.0489757 .1688636
1e94y99 | .0557854 -0661784 0.84 0.400 -.0742367 -1858075
1e94y00 | -048899 .0727172 0.67 0.502 -.0939699 .1917678



1e94y01 | .0865874 .0816732 1.06 0.290 -.0738776 .2470524
_cons | -.334823 .2593105 -1.29 0.197 -.8442955 .1746496
Instrumented: lavgrexp
Instruments: lunch alunch lenroll alenroll y96 y97 y98 y99 y00 yO01
lexppp94 1e94y96 1e94y97 1e94y98 1e94y99 1e94y00 1e94y01
Ifound Ifndy96 I1fndy97 1fndy98 I1fndy99 Ifndy00 Ifndy0l

. * Estimate i1s substantially larger than when spending is treated as exogenous.
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. * Get reduced form residuals for fractional probit:

. reg lavgrexp Ifound Ifndy96-1fndy0l lunch alunch lenroll alenroll y96-y01
lexppp94 1e94y96-1e94y01, cluster(distid)

Linear regression Number of obs = 3507
F( 24, 500) = 1174.57
Prob > F = 0.0000
R-squared = 0.9327
Root MSE = .03987

(Std. Err. adjusted for 501 clusters in distid)

| Robust
lavgrexp | Coef Std. Err t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
Ifound | .2447063 .0417034 5.87 0.000 -1627709 .3266417
1fndy96 | .0053951 .0254713 0.21 0.832 -.044649 -0554391
1ndy97 | .0059551 -0401705 0.15 0.882 .0848789 .0729687
1fndy98 | -0045356 -0510673 0.09 0.929 -0957972 -1048685
I1fndy99 | .0920788 .0493854 1.86 0.063 -0049497 .1891074
1fndy00 | .1364484 -0490355 2.78 0.006 -0401074 .2327894
I1fndy01 | .2364039 .0555885 4.25 0.000 .127188 .3456198
cons | .1632959 -0996687 1.64 0.102 .0325251 .359117

. predict vZhat, resid
(1503 missing values generated)
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. glm math4 lavgrexp v2Zhat lunch alunch lenroll alenroll y96-y01 lexppp94
1€94y96-1e94y01, fa(bin) link(probit) cluster(distid)
note: math4 has non-integer values
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Generalized linear models No. of obs = 3507
Optimization I ML Residual df = 3487
Scale parameter = 1
Deviance = 236.0659249 (1/df) Deviance = .0676989
Pearson = 223.3709371 (1/df) Pearson = .0640582

Variance function: V(u) = u*(1-u/l) [Binomial]

Link function : g(u) = invnorm(u) [Probit]
(Std. Err. adjusted for 501 clusters in distid)
| Robust

math4 | Coef Std. Err. z P>|z] [95% Conf. Interval]
_____________ +________________________________________________________________
lavgrexp | 1.731039 .6541194 2.65 0.008 -4489886 3.013089
v2hat | -1.378126 .720843 -1.91 0.056 -2.790952 -0347007
lunch | -.2980214 .2125498 -1.40 0.161 -.7146114 .1185686
alunch | -1.114775 .2188037 -5.09 0.000 -1.543623 -.685928
lenroll | .2856761 .197511 1.45 0.148 -.1014383 .6727905
alenroll | -.2909903 .1988745 -1.46 0.143 -.6807771 -0987966
cons | -2.455592 7329693  -3.35 0.001  -3.892185 -1.018998



. margeff

Average partial effects after glm
y = Pr(math4)

variable |

Coef.

Std. Err.

[95% Conf.

Interval]

_____________ - e

lavgrexp |
vZhat |
lunch |
alunch |
lenroll |
alenroll |

.5830163
-4641533
-1003741
.3754579
.0962161
.0980059

.2203345

.242971
.0716361
.0734083
.0665257
.0669786

.1511686
.9403678
.2407782
.5193355
.0341719
.2292817

1.014864
.0120611
-04003
-.2315803
.2266041
.0332698

These standard errors do not account for the first-stage estimation. Should

use the panel bootstrap accounting for both stages.

Only marginal evidence that spending is endogenous, but the negative sign
fits the story that districts increase spending when performance is

(expected to be) worse, based on unobservables (to us).
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