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1. Overview

∙What does “nonparametric” mean? Traditionally, it means without

specifying a parametric distribution for a random variable (or

variables). For example, suppose we want to estimate   Ey for a

random variable y. One can think of the sample average (from, say, a

random sample) as a nonparametric estimator because it is unbiased

and consistent for a wide range of distributions: those with E|y|  .

(It is also the MLE for some common distributions: Bernoulli, Poisson,

normal, exponential.)

∙ In current usage, one rarely thinks of the sample average as a

“nonparametric” estimator.

2



∙ As a practical matter, “nonparametric” now is synonymous with

estimating an “infinite dimensional” feature, such as an unconditional

density or a conditional mean function. (In other words, without

assuming the density or regression function is in a class described by a

finite number of parameters.)

∙ Pure nonparametric methods are still used rarely in economics, partly

because the dimension of economics problems is usually “large.” (For

example, many explanatory variables in regression analysis.)
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∙ Also not clear how useful a multi-dimensional graph is in describing

relationships, or have essentially unrestricted slopes in all directions.

∙We usually want summary numbers, such as (average) partial effects.

Flexible parametric approaches often do nicely. (We have seen several

examples where average partial effects from different nonlinear models

are similar.)
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∙ Nonparametric methods are useful as descriptive devices for looking

at distributions of a single variable, or a relationship between two

variables.

∙ For example, if y and x are scalars, we can estimate Ey|x without

assuming a specific functional form. But such a description rarely has a

causal interpretation.

∙ Can even plot Ey|x1,x2 in three dimensions. But what about, say,

Ey|x1,x2,x3? Visualizing is difficult and even summary measures are

difficult to decide on.
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∙ Semiparametric methods are more promising and used more often.

Part of the problem is parametric – depends on a finite number of

parameters, but some critical feature that needs to be estimated is

allowed to be “infinite dimensional.”

∙Most useful semiparametric methods are for estimating a finite set of

population parameters but relaxing some key assumptions.
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EXAMPLE

∙ Suppose y is a binary response and we have exogenous covariates x.

Consider three situations.

Py  1|x    x where  is the standard normal cdf: parametric
Py  1|x  G  x for unknown G:: RK → 0,1: semiparametric
Py  1|x  Hx where H: RK → 0,1: nonparametric
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∙ The term “seminonparametric” has been used, too. It often looks a lot

like nonparametric or semiparametric analysis in that there is either an

infinite-dimensional function to estimate or a finite dimensional

parameter vector and also something that is infinite dimensional.

∙ If there is no finite-dimensional parameter, seminonparametric is

really nonparametric. If there is a finite-dimensional parameter, one

needs to decide whether the finite-dimensional parameter is if interest –

and has estimators with the usual “nice” properties – or whether one is

just trying to achieve flexibility.
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2. Nonparametric Methods

∙ Some nonparametric estimators are “automatic,” the leading example

being an estimator of a cumulative distribution function.

∙ But density and regression estimators use various “smoothing”

methods. Broadly speaking, these can be put into two categories: global

smoothing and local smoothing.

∙ Global smoothing is usually implemented via series estimation

(sometimes called sieve estimation), which is simply a flexible

parametric model where the approximation gets better as the sample

size increases.
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∙ Local smoothing is implemented as a local averaging, or at least

averaging where observations far away receive little weight. Kernel

estimation of densities and regression functions falls into this category.

∙ Both global smoothing and local smoothing require the choice of

either the number of terms in the series or the amount of local

averaging. These must be chosen by the researcher (sometimes using

established rules), or a data driven method.
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Estimating the Cumulative Distribution Function

∙ Let x denote a random variable with cdf F, so that

Fa  Px ≤ a. Notice that

Px ≤ a  E1x ≤ a

so that an unbiased and consistent estimator (with random sampling) is

F̂a  N−1∑
i1

N

1xi ≤ a,

which is simply the fraction of the N observations that are less than or

equal to a.
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∙ F̂a is usually called the empirical cdf. Notice that F̂ is

nondecreasing but discontinuous at points represented by the data. It is

a step function, continuous from the right.

∙Write

N F̂a − Fa  N−1/2∑
i1

N

1xi ≤ a − Fa.

∙ By the CLT,

N F̂a − Fa d
→ Normal0,Var1xi ≤ a
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∙ But wi ≡ 1xi ≤ a is just a binary variable, so

Varwi  Fa1 − Fa.

N F̂a − Fa d
→ Normal0,Fa1 − Fa

∙ An asymptotic 95% CI for Fa is

F̂a  1.96 F̂a1 − F̂a/N
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Density Estimation

∙ Suppose the underlying density is continuous. Can nevertheless use a

histogram estimator. Given a set of bins – usually gotten by

specifying the number of bins, obtaining the range of the data, and then

dividing up the line into bins of equal size – use the fraction of

observations falling into each bin as the estimated density. Can

superimpose a parametric density to see how simple models fit.

∙ To smooth out the estimated density, generally use a kernel

estimator.
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f̂x  1
Nh ∑

i1

N

k xi − x
h

where h  0 is called the bandwidth and k is the kernel function.

∙ Typically, k ≥ 0 and


R

kvdv  1

kv  k−v


R

v2kvdv  0.

In other words, k is a symmetric density about zero with nonzero

variance.
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∙ Some examples are

kv  1
2 1−1  v  1 (rectangular or uniform)

kv  1 − |v|, − 1  v  1 (triangular)

kv  3
4 1 − v2, − 1  v  1 (Epanechnikov)
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∙ If h → 0 and Nh → , can show the kernel density estimator is

consistent (pointwise), that is,

f̂x
p
→ fx

for all x in the interior of the support of the distribution. See Li and

Racine (2007, Nonparametric Econometrics).

∙ How to choose the bandwidth? (1) Guess and experiment; (2) Use

rules based on experience or optimality for common distributions (say,

suppose f is normal and minimize the mean squared error); (3) Use

various data-driven methods, such as cross validation.
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∙ For a broad class of densities, the “optimal” bandwidth has the form

h  c0N−1/5

for c0  0.

∙ Optimality is based on integrated mean squared error:

 Ef̂x − fx2dx.

For each x, Ef̂x − fx2  Biasf̂x2  Varf̂x, so the optimal h

trades off bias and variance over the range of x.
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∙ The normal reference rule-of-thumb is

h  1.06N−1/5,

which is optimal for the normal density. Have to replace   sdxi

with its usual estimate. This is the default in Stata.

∙ If population density is highly skewed or multimodal, normal

reference ROT can oversmooth. Look at a histogram first.
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∙ However, using h  1.06N−1/5 when the distribution is nonnormal

does not cause inconsistency because it satisfies the rule for

consistency. We use it because it is optimal for the leading case, but the

rule does not cause inconsistency across a wide class of densities.
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. use htv

. hist wage, normal
(bin30, start1.0235294, width3.009523)
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. hist lwage, normal
(bin30, start.02325686, width.14969983)
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. kdensity lwage, kernel(epan) normal
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Regression Estimation

∙ Consider a simple regression model where xi,yi are random draws,

and we hope to estimate mx  Eyi|xi  x.

∙ Kernel estimators are weighted averages of the yi. For a given value

x, observations with xi closer to x receive greater weight.

m̂x 
∑i1

N k xi−x
h yi

∑i1
N k xi−x

h 
≡ ∑

i1

N

wN,ixyi

where
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wN,ix 
k xi−x

h 

∑r1
N k xr−x

h 

∙ These weights are nonnegative and sum to unity. Typically, k is a

unimodal, symmetric density about zero, so the largest weight is at for i

with xi  x (if there are any such i).

∙ Can choose k so that observations far enough away receive no

weight. Rectangular and triangular densities have this feature.

∙ Kernel regression is called “local smoothing” because most of the

weight is on nearby observations; what is happening far from x receives

little or no weight.
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. kernreg lwage abil, b(.5) k(3) np(100) gen(lwageh_p5 abilg_p5)

Kernel regression, bw = .5, k = 3

Grid points
-5.63146 6.26374

1.38438

2.82169
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. list lwage abil lwageh_p5 abilg_p5 in 1/10

---------------------------------------------
| lwage abil lwageh~5 abilg_p5 |
|---------------------------------------------|

1. | 1.857899 -5.631463 1.779906 -5.631463 |
2. | 1.301366 -5.468668 1.801753 -5.51131 |
3. | 2.30092 -5.344852 1.799685 -5.391156 |
4. | 1.277095 -4.91838 1.740911 -5.271002 |
5. | 1.311393 -4.729329 1.67767 -5.150849 |

|---------------------------------------------|
6. | 2.358675 -4.686911 1.71085 -5.030695 |
7. | 1.756499 -4.671546 1.724063 -4.910542 |
8. | 1.965497 -4.572411 1.656987 -4.790388 |
9. | .3856625 -4.354986 1.599717 -4.670234 |

10. | 1.585721 -4.337047 1.504929 -4.550081 |
---------------------------------------------

. * Note: Data have been sorted by ability.

. corr lwage lwageh_p5
(obs100)

| lwage lwageh~5
-------------------------------

lwage | 1.0000
lwageh_p5 | 0.3062 1.0000

. di .3062^2

.09375844
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. reg lwage abil

Source | SS df MS Number of obs  1230
------------------------------------------- F( 1, 1228)  190.21

Model | 58.1036671 1 58.1036671 Prob  F  0.0000
Residual | 375.115595 1228 .305468726 R-squared  0.1341

------------------------------------------- Adj R-squared  0.1334
Total | 433.219262 1229 .352497365 Root MSE  .55269

------------------------------------------------------------------------------
lwage | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
abil | .0995388 .0072173 13.79 0.000 .0853792 .1136984

_cons | 2.234976 .0204078 109.52 0.000 2.194938 2.275014
------------------------------------------------------------------------------

. gen lwageh_lin  _b[_cons]  _b[abil]*abilg_p5
(1130 missing values generated)
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. corr lwage lwageh_lin
(obs100)

| lwage lwageh~n
-------------------------------

lwage | 1.0000
lwageh_lin | 0.3181 1.0000

. di .3181^2

.10118761

. * This R-squared looks at the fit of the linear model at the grid points chosen

. * for the kernel estimation, so it is a fair comparison. The OLS estimates

. * are not chosen to minimize the SSR at the grid points.
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. kernreg lwage abil, b(4) k(3) np(100) gen(lwageh_4 abilg_4)

Kernel regression, bw = 4, k = 3

Grid points
-5.63146 6.26374

1.77349

2.62358
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. kernreg lwage abil, b(2) k(3) np(100) gen(lwageh_2 abilg_2)

Kernel regression, bw = 2, k = 3

Grid points
-5.63146 6.26374

1.60114

2.73999
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. corr lwage lwageh_2
(obs100)

| lwage lwageh_2
-------------------------------

lwage | 1.0000
lwageh_2 | 0.3030 1.0000

. di .3030^2

.091809
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Global Smoothing of Regression

∙ Can use flexible linear models if the range of y is essentially

unrestricted – such as logwage.
. sum abil

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

abil | 1230 1.796596 2.184406 -5.631463 6.263742

. gen sabil  (abil - 1.8)/2.2

. gen sabilsq  sabil^2

. gen sabilcu  sabil^3

. gen sabilqu  sabil^4
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. reg lwage sabil sabilsq sabilcu

Source | SS df MS Number of obs  1230
------------------------------------------- F( 3, 1226)  64.37

Model | 58.9534459 3 19.6511486 Prob  F  0.0000
Residual | 374.265816 1226 .305273912 R-squared  0.1361

------------------------------------------- Adj R-squared  0.1340
Total | 433.219262 1229 .352497365 Root MSE  .55252

------------------------------------------------------------------------------
lwage | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
sabil | .1889656 .0266104 7.10 0.000 .1367586 .2411726

sabilsq | -.0051833 .0190512 -0.27 0.786 -.0425598 .0321933
sabilcu | .0085218 .0096005 0.89 0.375 -.0103134 .027357

_cons | 2.425275 .0213327 113.69 0.000 2.383422 2.467127
------------------------------------------------------------------------------

. test sabilsq sabilcu

( 1) sabilsq  0
( 2) sabilcu  0

F( 2, 1226)  1.39
Prob  F  0.2490
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. reg lwage sabil

Source | SS df MS Number of obs  1230
------------------------------------------- F( 1, 1228)  190.21

Model | 58.103667 1 58.103667 Prob  F  0.0000
Residual | 375.115595 1228 .305468726 R-squared  0.1341

------------------------------------------- Adj R-squared  0.1334
Total | 433.219262 1229 .352497365 Root MSE  .55269

------------------------------------------------------------------------------
lwage | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
sabil | .2189854 .015878 13.79 0.000 .1878343 .2501364
_cons | 2.414146 .0157591 153.19 0.000 2.383228 2.445063

------------------------------------------------------------------------------

. reg lwage sabil sabilsq, robust

Linear regression Number of obs  1230
F( 2, 1227)  89.72
Prob  F  0.0000
R-squared  0.1355
Root MSE  .55247

------------------------------------------------------------------------------
| Robust

lwage | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

sabil | .2061115 .0183971 11.20 0.000 .1700183 .2422047
sabilsq | -.0178432 .0127278 -1.40 0.161 -.0428138 .0071274

_cons | 2.431703 .019943 121.93 0.000 2.392576 2.470829
------------------------------------------------------------------------------
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3. Semiparametric Methods

∙ Some estimators that do not involve estimating an infinite

dimensional object (along with a finite-dimensional parameter) have

been dubbed “semiparametric.” Powell’s (1984) censored LAD

estimator is an example.

∙ Recall the setup:

Medwi|xi  xi

but the data are, say, top coded. So we observe

yi  minyi,c
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∙ Now

Medyi|xi  minxi,c

and so LAD can be applied to this median function.

∙ Notice that the only parameter to estimate is the K  1 vector . This

was labeled “semiparametric” because its main competitors are to

specify a full distribution, Dwi|xi – usually normal – and then apply

MLE.
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∙ Powell’s approach might be thought of as “clever” parametric

estimation: he found an estimating equation that can be used in a

standard procedure, LAD. (However, the nonsmoothness in minxi,c

and the LAD function make the asymptotics nonstandard.) Remember

that Powell’s approach does not generally identify Ewi|xi.

∙ Certain approaches to estimating coefficients in corner-solution panel

data models – in particular, Honoré (1992, Econometrica) are similar:

they are based on clever objective functions or moment conditions that

depend on the finite-dimensional parameter of interest.
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Partial Linear Model

∙ Consider a different kind of semiparametric problem, often known as

a partial linear model (PLM):

Ey|x,z  x  gz

where x is 1  K and z is 1  M. Here, g is an unkown function, and

x does not include a constant.

∙ Is  of interest, or g : RM → R? They both might be.

∙ This setup excludes the possibility of interactions between x and z.

(The vector x may include nonlinear functions of variables not in z.)
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∙What if z is discrete taking on a finite number of values, say

c1,c2, . . . ,cR. Then, with enough data, the problem is easy: just

saturate the model with dummy variables for the different outcomes on

z – probably an intercept and R − 1 dummies.

∙ Robinson (1988, Econometrica) showed how to estimate  assuming

z is continuous. Usually, z is actually a scalar, but the theory is not

much easier.

∙ Identification is the most interesting aspect. Write

y  x  gz  u
Eu|x,z  0
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∙ Of course, Eu|z  0, and so

Ey|z  Ex|z gz.

Subtract this from y  x  gz  u to get

y − Ey|z  x − Ex|z  u

∙ This is the population version of the well-known “partialling out”

result from linear regression. Here, we partial out the general mean

functions, Ey|z and Ex|z.
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∙ The technical issue is now estimating Ey|z and Exj|z, j  1, . . . ,K.

Robinson and others consider kernel estimation. Attractive especially

when we have just one variable in z. Could use series estimation, too.

∙ Given estimates, define nonparametric residuals,

ÿi  yi − Êyi|zi

ẍi  xi − Êxi|zi

∙ Then ̂ is just the OLS estimator (without an intercept) of ÿi on ẍi,

i  1, . . . ,N:

̂  ∑
i1

N

ẍi
′ẍi

−1

∑
i1

N

ẍi
′ÿi
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∙ Robinson shows ̂ is consistent and N -asymptotically normal. As in

the case where g is parametric, the asymptotic variance of

N ̂ −  is as if ÿi and ẍi are obtained using the (unknown) Eyi|zi

and Exi|zi. In other words, we can just act as if our random sample is

ẍi,ÿi : i  1, . . . ,N and then use usual OLS inference (probably

robust to heteroskedasticity).

∙ If we use the same series estimation for all conditional means – for

example, polynomials of degree P, collected in rz, which includes an

intercept – then we just do the usual inference in the regression

yi on xi, rzi, i  1, . . . ,N.
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∙ In other words, the naive approach of just approximating g by

some flexible functional form, and then using the usual inference, leads

to the right place.

∙ Define

vi  yi − xi.

Then

Evi|zi  gzi,

and so we can apply nonparametric regression. But we replace vi with

v̂i  yi − xi̂. See, for example, Li and Racine (2007, Nonparametric

Econometrics: Theory and Practice).
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∙ In some cases, zi actually depends on parameters that have to be

estimated. A good application of the PLM approach is to sample

selection corrections without full distributional assumptions. Recall we

start with

y1  x11  u1

y2  1x2  v2  0

∙Maintain independence of u1,v2 and x, so that

Eu1|v2,x  Eu1|v2 ≡ g1v2.
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∙ Then

Ey1|x,v2  x11  g1v2

and

Eg1v2|x,y2  1  Eg1v2|x,v2  −x2

 
−x2

R
g1v2f2v2dv2 ≡ h1x2

where we use the fact that the density of v2 given x does not depend on

x (and this density is f2).
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∙ So, we have shown that

Ey1|x,y2  1  x11  h1x2

where h1 is unknown. Now, we can apply the PLM methods on the

selected sample.

∙ Assume, for the moment, that we can estimate 2. Then the

semiparametric problem arises because we do not want to assume h1

is known (as we would under normality of v2, and then h1 would be

the proportional to the IMR).
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∙ Notice that our goal here is to estimate 1, a population parameter.

We are looking beyond the standard Heckman approach to achieve

robustness of estimation. (We can and did discuss this in a parametric

setting, for example, assume Eu1|v2 is a quadratic. But v2 was still

assumed standard normal.)

∙ If we have a suitable estimator ̂2 of 2, we can define ẑi ≡ xi̂2 and

then apply PLM methods. Notice how we must have something in x,

with a nonzero coefficient in 2, that is not in x1. This is why achieving

identification off of the nonlinearity of the IMR is very questionable.
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∙ If we use a Pth order polynomial, we would run the regression,

yi1 on xi1, 1, xi̂2, xi̂22, . . . , xi̂2P with yi2  1,

where xi1 no longer includes an intercept (and we cannot identify the

intercept).

∙ Newey (1988, Journal of Applied Econometrics) considers more

exotic possibilities. For example, first use a monotonic transformation,

such as the logistic, xi̂2, before including the powers in the

regression. (Less sensitive to outliers.)
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∙ How can we estimate 2?

∙ If v2 is independent of x, we have

Ey2|x  Py2  1|x  Gx2

where G is an unknown function.

∙ Ichimura (1993) shows how to estimate the slopes in 2 up to scale

without assuming a parametric model for G. Uses kernel smoothing

and a least squares approach.

∙ Klein and Spady (1993) use a log likelihood instead, but also use

local smoothing.
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Semiparametric Estimation of Index Models

∙ Ichimura’s approach is actually more general and does not require y

to be a binary response. In fact, start with a general index model for

Ey|x :

Ey|x  gxo

where it is now important to distinguish the true value from a generic

value. The function g is unknown but assumed smooth.
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∙ Because Ey|x depends only on xo, we know Ey|xo  Ey|x.

Recall a property of the conditional mean: for any (vector) function

qx of x,

Ey − Ey|x2 ≤ Ey − Ey|qx2.
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∙ Just says that one cannot do better for predicting y by throwing away

information.

∙ But for any value , x is a function of x. Further, the index

assumption implies Ey|x  Ey|xo, and so

Ey − Ey|xo
2 ≤ Ey − Ey|x2

for all  ∈ RK.

∙ Therefore, if we can find Ey|x for all , estimate o by solving

min

∑
i1

N

yi − Eyi|xi2.
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∙ Issues: (1) Identification; (2) Estimation.

∙ For identification, xi cannot include an intercept, and a normalization

is needed on , such as ′  1. (Note this rules out the possibility

Ey|x  Ey.)

∙ Ichimura shows in fact that x needs at least one continuous element,

say x1, with nonzero 1. Then a different normalization sets 1 ≡ 1.

∙ Ichimura uses kernel estimation for Eyi|xi. ̂ solves a problem

such as

min


′1

∑
i1

N

yi − Êyi|xi2.
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∙ Showing N -consistency of ̂, and deriving asymptotic properties of

the partial effects, is challenging but has been done.

∙ Another approach is to use a series-type estimator for Êyi|xi

followed by the least squares problem.

56



∙ Or, just make standard models more flexible in a series framework.

For example, if y is binary, use

Py  1|x ≈ x  2x2. . .PxP

where x contains a constant in this formulation. Then estimate

2, . . . ,P along with .

∙ Ideally, one can study the large-sample properties of partial effects (in

addition to those of ̂) as P increases with N, but this is a hard problem.

∙ Recall that it is easy to test that the h are all zero using the score

approach.
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∙ Klein and Spady exploit the binary nature of yi, and solve

max


′1

∑
i1

N

1 − yi log1 − Êyi|xi  yi logÊyi|xi.

where Êyi|xi is again obtained using kernel estimation.

∙More efficient than using sum of squared residuals. Consistency

follows by the Kullback-Leibler inequality because Dy|x  Dy|xo.

∙ Need to worry about “trimming” in the kernel estimation (density

estimator in the denominator).
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∙ Can extend the KS idea to quasi-log likelihoods.

∙ Do not fall into the “inconsistent parameter estimates” trap. It is

common to hear of the perils of using an LPM, or probit, or logit, for

estimating  in

Py  1|x  Gx

when G is unknown. Whether LPM, probit or logit consistently

estimate  in a general specification is largely irrelevant. They can do a

good job of estimating the ratios of the coefficients (which is all we can

compare in terms of parameters across index specifications, anyway).

∙More importantly, how well are the partial effects estimated using

simpler models?
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∙ If we think, say, probit is not flexible enough, we can move beyond it

(logit, too) by using a series approach as mentioned earlier. Or, we can

use other extensions, such as the “heteroskedastic probit” model,

Py  1|x  exp−x1x

where x includes an intercept but x1 does not.

∙ The heteroskedastic probit model is is not even nested in the index

model,

Py  1|x  Gx.
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∙Manski (1975) proposed a different approach for binary response.

Write the index model as

y  1x  e  0

under the restriction

Mede|x  0

∙ The indicator function is monotonic (but not strictly!), and so

Medy|x  1x  0
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∙Manski’s maximum score estimator is a LAD estimator:

min

∑
i1

N

|yi − 1xi  0|

where some normalization is needed on  because multiplying xi by a

positive constant does not change the truth of the event in brackets.

∙ Like other semiparametric methods,  does not include an intercept.

And one element of x is needed to be continuous (and often its

coefficient is set to unity).
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∙ This problem is so “unsmooth” that ̂ is only consistent at the rate

N1/3, that is,

N1/3̂ −   Op1,

and its limiting distribution is nonnormal.

∙ Horowitz (1992, Econometrica) showed how to smooth the indicator

function to get asymptotic normality and faster convergence rate.

∙ By construction, Manski’s approach does not allow estimation of

average partial effects. The average structural function is

ASFx  Ee1x  e  0  1 − Fe−x
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∙ If e has a symmetric distribution with continuously differentiable

Fe, then

ASFx  Fex

and the APEs can be gotten by differentiating or differencing. For

continuous xj,

APEjx  fexj

where fe  0 is the density of e.

∙ So, being able to estimate the j up to the same scale factor allows us

to identify the ratios of APEs for continuous variables.
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∙ A puzzling situation. Suppose y given x follows a heteroskedastic

probit model:

y  1x  e  0

e|x ~ Normal0, exp2x11

Then Mede|x  0 and so Maximum Score can be used to estimate the

slopes up to scale. With MLE, we can estimate  (including an

intercept). But, again, these give us the relative effects.

∙ The partial effects obtained from differentiating

Py|x  exp−x1x

need not even be the same sign as the APEs.
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∙ If we knew the distribution of x1 we can, in principle, obtain Fe from

e|x ~ Normal0, exp2x11 by integrating out x1. Fe will not be

normal. Can consistently estimate Fe by averaging out xi1 in the

sample. In fact, its density is consistently estimated by

f̂ee  N−1∑
i1

N

2−1/2 exp−xi1̂exp−exp−2xi1̂e2/2.

∙What should we report as the partial effects? ∂Py|x/∂xj or fexj?

The APE approach argues for the latter, consistently estimated from

ASFx  N−1∑
i1

N

exp−xi1̂x̂.
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∙ But, if we started with a random slope model such as

Pyi  1|xi,bi  xibi

bi|xi~Normal,

then

Pyi  1|xi  xi/xi
′xi1/2

(A normalization is needed in , 11  1, so that the variance is unity

when the other parameters are zero.)
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∙ The ASF in this case is

ASFx  x/x′x1/2;

that is, the ASF and the response probability are the same.
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∙ The problem is that we can get the same Pyi  1|xi by starting with

a different heteroskedastic probit:

y1  1xi  ei  0
ei|xi~Normal0,xi

′xi

∙ Yet the APEs in this latter case are obtained from Fex, not

x/x′x1/2.

∙ There is a fundamental lack of identification, and seems to be no

resolution when the focus is on APEs.
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