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1. Introduction

∙ Some response variables come in the form of a duration, or the time

elapsed until a certain event occurs. Unemployment duration (measured

in, say, weeks) is an important example.

∙ Duration methods have their history in survival analysis, where the

duration is the survival time of a subject.

∙ Sometimes interested is in how observed covariates affect the mean

or median duration, but interest often centers on the hazard function.
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∙We must deal with the problem of censored data, how to include

covariates, including those that change over time.

∙ Another important issue concerns the introduction of heterogeneity

into duration models. Even when heterogeneity is assumed independent

of covariates – as it almost always is – the presence of heterogeneity

can lead to wrong conclusions about the nature of the duration

distribution.
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2. Hazard Functions

Hazard Functions without Covariates

∙ Let T ≥ 0 now denote a random variable, which is the amount of time

elapsed before an event occurs. It is helpful to distinguish between the

random variable T and a generic possible value, t.

∙ T has some distribution in the relevant population. Let its cdf be

Ft  PT ≤ t, t ≥ 0.

∙ The survivor function is

St  1 − Ft  PT  t.
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∙ Typical to assume that the underlying duration is a continuous

random variable. In fact, assume that Ft is continuously

differentiable, with density

ft  dF
dt t.

∙ For h  0 and t ≥ 0, we can define the conditional probability

Pt ≤ T  t  h|T ≥ t,

which is the probability of leaving the intial state during the interval

t, t  h given “survival” up through time t.
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∙ The hazard function of T is defined as

t  lim
h↓0

Pt ≤ T  t  h|T ≥ t
h ,

which is the instantaneous rate of leaving the state per unit of time. For

“small” h,

Pt ≤ T  t  h|T ≥ t ≈ th,

so the hazard function can be used to approximate a conditional

probability much as the height of the density of T can be used to

approximate an unconditional probability. [Pt ≤ T  t  h ≈ fth.]
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∙ As an example, if T is the number of weeks unemployed, then 20

is approximately the probability of becoming employed between weeks

20 and 21. “Becoming employed” entails having been unemployed

through week 20 (which is why it is a conditional probability.)

∙ Can write the hazard in terms of the density and survivor function:

Pt ≤ T  t  h|T ≥ t  Ft  h − Ft
1 − Ft

and, dividing by h and taking the limit as h ↓ 0, gives

t  ft
St .
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∙ Other useful representations:

ft  − d logSt
dt

and, using F0  0,

Ft  1 − exp −
0

t
rdr .

∙ Differentiating this last expression gives

ft  texp −
0

t
rdr .
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∙ All probabilities can be obtained from the hazard function, such as

Pa1 ≤ T  a2|T ≥ a1  1 − exp −
a1

a2
rdr

∙ The shape of t, t ≥ 0, is important in applications. Simplest case is

a constant hazard:

t  , all t ≥ 0.

Such a process is memoryless because the probability of exiting the

state in the next interval does not depend on how much time has been

spent in the initial state.

∙ The cdf of such a process is Ft  1 − exp−t, which is the cdf of

an exponential distribution.
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∙When t is not constant, the process exhibits duration dependence.

If dt/dt  0 then there is positive duration dependence at t; if

dt/dt  0 there is negative duration dependence.

EXAMPLE: Weibull Distribution. If T has cdf

Ft  1 − exp−t

where , ≥ 0, then ft  t−1 exp−t and so

t  t−1 exp−t
exp−t  t−1.

∙   1 is the exponential distribution.   1 is positive duration

dependence (for all t);   1 is negative duration dependence.
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EXAMPLE: Log-Logistic Hazard. Here we state the hazard function:

t  t−1
1  t

∙ Allows a variety of shapes. For example, if   1, t increases until

t   − 1/1− after which it declines to zero.

∙ Can show the density is

ft  t−11  t−1.

Can use this to show that logT has a logistic distribution with mean

−−1 log and variance 2/32.
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Hazard Functions Conditional on Time-Invariant Covariates

∙ Very rarely interested in an unconditional hazard function. Generally,

we want to know how the hazard function changes with observed

explanatory variables.

∙With covariates that do not change over time – so, we observe them

prior to entering the initial state – the extensions of the previous

definitions are straightforward.
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∙ For example, the survivor function conditional on x is

St|x  1 − Ft|x  PT  t|x

and the hazard function is

t;x  lim
h↓0

Pt ≤ T  t  h|T ≥ t,x
h ,

∙ It is easily shown that

t;x  ft|x
1 − Ft|x  ft|x

St|x .
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∙ An important class of hazards with covariates: proportional hazard

models. These have the form

t;x  x0t

for k  0. The function 0t is called the baseline hazard; it is the

part of the hazard common to all units in the population. Each

individuals hazard function is proportional to 0t based on a function

of the observed covariates.
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∙Most commonly, parameterize x as expx where x contains

unity. Then

logt;x  x  log0t,

so j measures the proportionate increase in the hazard when xj

increases by one unit. If xj  logzj, j is the elasticity of the hazard

with respect to zj.

∙ Turns out that  can be estimated without specifying 0t, but, in

practice, the shape of the baseline hazard is of interest, along with how

the covariates shift the hazard.
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Hazard Functions Conditional on Time-Varying Covariates

∙ The case with time-varying covariates is more difficult to handle,

both conceptually and technically.

∙ Let xt denote the set of covariates at time t; we think of these as

being defined at any time, even though we do not collecte data that

often. Let Xt be the covariate path up through time t, so

Xt  xr : 0 ≤ r ≤ t.

∙ Now define the hazard conditional on covariates as

t;Xt  lim
h↓0

Pt ≤ T  t  h|T ≥ t,Xt  h
h
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∙ There are technical issues about when this limit is well defined.

Easiest to think of xt  h being constant for h in some neighborhood

of zero. As a practical matter, we have to assume this in estimation (as

we will see).

∙ Notice that xt is, by construction, sequentially exogenous because

we are defining the hazard conditional on Xt. But sometimes we need

to actually assume a kind of strict exogeneity. Lancaster (1990)

proposes

DXt  h|T ≥ t  h,Xt  DXt  h|Xt

for all t ≥ 0, h  0.
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∙ This means that, conditional on the past history of the covariates, the

future distribution does not depend on events involving T.

∙ Later, for estimation with grouped duration data (and especially with

heterogeneity), we will use a somewhat different notion of strict

exogeneity.
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3. Estimation with Time-Invariant Covariates

∙ Focus here on single-spell data: each unit starts in the initial state,

and we observe that unit until it leaves the state or the duration is

censored (more later).

∙ Need to carefully define the population. Individuals enter the initial

state during the interval 0,b where b  0 is known. For example, if

unemployment duration is measured in weeks, and we consider people

becoming unemployed during a particular calendar year, then b  52.

∙ For now, we ignore the discreteness of the measured durations and

treat them as continuous.
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Flow Sampling

∙ Here we sample units that enter the state at some point during 0,b,

and then we record the amount of time they are in the initial state.

Covariates are collected at the time they enter the state.

∙ For example, suppose we are interested in the population of workers

who become unemployed at some point during 2005. Initially, we

observe the population of people who are working at the beginning of

2005, and then we observe some of them “flowing” into the

unemployment state.
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∙ One way to collect the data: obtain a large sample from the large

population of people employed at the beginning of 2005. Some will

become unemployed during that year, and those who become

unemployed during the calendar year comprise our sample.

∙ Another way is to use retrospective sampling: in 2006 or later, we

have access to unemployment records in 2005. We can see who flowed

into unemployment during 2005.
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∙ Flow data are usually subject to right censoring: after a certain

amount of time, we stop following the units in the sample. We might

decide to follow each individual who becomes unemployed in 2005 for

two years. This means the censoring value is the same for all

individuals, 104.

∙ Alternatively, we might set a fixed calendar date at which point we

need to analyze the data – say, the end of 2006. In this case, the

censoring value varies with the date the individual enters the initial

state (unemployment): in this case, between one and two years.

22



MLE with Right Censored Flow Data

∙ For each i, let ai ∈ 0,b be the date at which unit i enters the initial

state. So, if b  52, ai  14 means person i became unemployed during

the 14th week if the year.

∙ Let ti∗ denote the length of time in the initial state. (As a shorthand,

we can call this the “true” duration or survival time.) Without right

censoring, we would observe random draws ai, ti∗,xi.

∙ Assume ti∗ has a continuous conditional density, ft|x;, t ≥ 0, where

 is the vector of unknown parameters.

∙ Let ci be the censoring time for individual i.
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∙ Then we observe

ti  minti∗,ci.

∙ If b  52 and we censor all units two years after the first date that

people can become unemployed, ci ranges from 52 to 104.

∙ Key assumption: conditional on xi, the true duration is independent of

the starting date and the censoring time:

Dti∗|xi,ai,ci  Dti∗|xi.
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∙Might need to include certain variables in xi to make this true. In an

unemployment duration example, xi might need to include seasonal

dummies to indicate the time of the year the person became

unemployed.

∙ Cannot have ci change with ti∗. So cannot extend the censoring time

when you see a duration is lasting a long time.

∙ To apply MLE, we need to have Dti|xi,ai,ci. First, if the duration is

not censored, so that ti  ti∗, then the density of ti given xi,ai,ci is

just ft|xi;. We covered this in censored regression.

25



∙ The conditional probability that ti  ci is just

Pti  ci|xi,ai,ci  Pti∗  ci|xi,ai,ci  1 − Fci|xi;.

∙ Now let di  1ti  ci, so di  1 for uncensored observations. Then

the log likelihood for observation i is

ℓi  di logfti|xi;  1 − di log1 − Fti|xi;
 di logfti|xi;  1 − di log1 − Fci|xi;
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∙ As usual, sum this across i  1, . . . ,N and maximize the resulting

function. The density function is usually very smooth, so MLE has its

usual properties of consistency and N -asymptotic normality.

Inference is straightforward.

∙ This is just like a censored regression model, except we may not be

primarily interested in estimating the conditional mean.
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∙ The log likelihood does not depend on ai or b. (And, these values are

often not reported in data sets.) But we need the conditional

independence assumption on the censoring time to justify this.

∙ The censoring values, ci, do appear, unless there are no uncensored

observations.

∙ Unlike with top coding, it is fairly common for ci to vary with i.

∙ Note that we only need to have data on ti. In particular, if ti  ti∗, we

do not need to know the censoring value, ci.
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∙ A common distribution in applications is the Weibull with covariates.

Its hazard is of the proportional hazard form:

t;x  expxt−1

∙ The value of  tells us whether there is postive   1, negative

  1, or no   1 duration dependence. Can easily test the null

H0 :   1.
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∙ The lognormal distribution is also used for ti∗ conditional on xi, which

is the same as saying that logti∗ given xi has the Normalxi,2

distribution. The hazard is not of the proportional hazard form:

t;x  hlogt − x//t

hz ≡ z
1 − z

∙ For fixed x and , this function is not monotonic in t. Therefore, the

lognormal may not work as well as other models when the hazard is

monotonically increasing or decreasing.
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∙ The parameters  are easy to interpret because we have the underlying

classical regression model

logti∗  xi  ei
ei|xi ~ Normal0,2

∙ The j are semielasticities or elasticities on the mean duration:

Eti∗|xi  expxi  2/2.

∙ Estimation is the same as the censored normal regression model

applied to the log of the duration, with variable right censoring.
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Reporting the Results

∙ Is the shape of the hazard function of interest, or are the effect of

covariates on the mean duration?

∙ In the lognormal case, get the semi-elasticities (or elasticities) on the

mean duration directly.

∙ For the Weibull, can show that

 logti∗  −xi  ui

where ui is independent of xi with density gu  expuexpexp−u.

The mean of ui is not zero, but ui is independent of xi.
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∙ In Stata, the default is to report the estimates of . To get the effects

on the mean, namely −̂j/̂, easiest to use the “nohr” (“no hazard

ratio”) option.

∙ If j  0, an increase in xj increases the hazard (the “probability” of

exiting the initial state, conditional on still being in the state). But an

increase in xj decreases the expected time in the initial state.
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∙ In plotting the hazard for the proportional hazard case, plot

N−1∑
i1

N

expxi̂ ̂0t

or

expx̄̂̂0t

as functions of t. In the Weibull, case, ̂0t  ̂t̂−1.
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∙ In something like the lognormal case, can insert the mean values of

the covariates:

logt − x̄̂/̂
1 − logt − x̄̂/̂

 1
̂t

(which is what Stata does).

∙ One can also make a case for the average of the estimated hazards:

N−1∑
i1

N
logt − xi̂/̂

1 − logt − xi̂/̂
 1
̂t
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EXAMPLE: Effects of a North Carolina prison work program on

Criminal Recidivism.
. use recid

. des

Contains data from recid.dta
obs: 1,445

vars: 19 23 Sep 2002 13:37

variable name type format label variable label
-------------------------------------------------------------------------------
black byte %9.0g 1 if black
alcohol byte %9.0g 1 if alcohol problems
drugs byte %9.0g 1 if drug history
super byte %9.0g 1 if release supervised
married byte %9.0g 1 if married when incarc.
felon byte %9.0g 1 if felony sentence
workprg byte %9.0g 1 if in N.C. pris. work prg.
property byte %9.0g 1 if property crime
person byte %9.0g 1 if crime against person
priors byte %9.0g # prior convictions
educ byte %9.0g years of schooling
rules byte %9.0g # rules violations in prison
age int %9.0g in months
tserved int %9.0g time served, rounded to months
follow byte %9.0g length follow period, months
durat byte %9.0g min(time until return,follow)
cens byte %9.0g 1 if duration right censored
ldurat float %9.0g log(durat)
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. tab follow

length |
follow |

period, |
months | Freq. Percent Cum.

-----------------------------------------------
70 | 169 11.70 11.70
71 | 148 10.24 21.94
72 | 139 9.62 31.56
73 | 161 11.14 42.70
74 | 116 8.03 50.73
75 | 71 4.91 55.64
76 | 157 10.87 66.51
77 | 91 6.30 72.80
78 | 88 6.09 78.89
79 | 91 6.30 85.19
80 | 124 8.58 93.77
81 | 90 6.23 100.00

-----------------------------------------------
Total | 1,445 100.00

. tab cens

1 if |
duration |

right |
censored | Freq. Percent Cum.

-----------------------------------------------
0 | 552 38.20 38.20
1 | 893 61.80 100.00

-----------------------------------------------
Total | 1,445 100.00
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. gen nocens  1 - cens

. stset durat, failure(nocens)

failure event: nocens ! 0 & nocens  .
obs. time interval: (0, durat]

exit on or before: failure

------------------------------------------------------------------------------
1445 total obs.

0 exclusions
------------------------------------------------------------------------------

1445 obs. remaining, representing
552 failures in single record/single failure data

80013 total analysis time at risk, at risk from t  0
earliest observed entry t  0

last observed exit t  81
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. * Estimate the semi-elasticities on the mean duration, first using

. * the lognormal distribution. The default for the lognormal is

. * to report the semielasticities on the mean duration.

. streg workprg priors tserved felon alcohol drugs black married educ age,
d(logn)

failure _d: nocens
analysis time _t: durat

Log-normal regression -- accelerated failure-time form

No. of subjects  1445 Number of obs  1445
No. of failures  552
Time at risk  80013

LR chi2(10)  166.74
Log likelihood  -1597.059 Prob  chi2  0.0000

------------------------------------------------------------------------------
_t | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
workprg | -.0625714 .1200369 -0.52 0.602 -.2978394 .1726965

priors | -.1372528 .0214587 -6.40 0.000 -.179311 -.0951946
tserved | -.0193305 .0029779 -6.49 0.000 -.0251671 -.0134939

felon | .4439944 .1450865 3.06 0.002 .1596302 .7283586
alcohol | -.6349088 .1442165 -4.40 0.000 -.9175681 -.3522496

drugs | -.2981599 .1327355 -2.25 0.025 -.5583168 -.0380031
black | -.5427175 .1174427 -4.62 0.000 -.772901 -.312534

married | .3406835 .139843 2.44 0.015 .0665962 .6147707
educ | .0229195 .0253974 0.90 0.367 -.0268584 .0726975

age | .0039103 .0006062 6.45 0.000 .0027221 .0050984
_cons | 4.099386 .3475349 11.80 0.000 3.41823 4.780542
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-----------------------------------------------------------------------------
/ln_sig | .5935861 .0344122 17.25 0.000 .5261395 .6610327

-----------------------------------------------------------------------------
sigma | 1.810469 .0623022 1.692386 1.936791

------------------------------------------------------------------------------

. * The above is the same as applying censored normal regression to log(durat).

. * The default in Stata for the lognormal (and other distributions where the)

. * hazard does not have the proportional hazard form) is to evaluate the

. * covariates at mean values.

43



. stcurve, haz
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. * Now use the Weibull distribution. The coefficients must be transformed

. * to get the semielasticities on the mean.

. * In Stata, p is our alpha.

. streg workprg priors tserved felon alcohol drugs black married educ age,
d(weibull) nohr

failure _d: nocens
analysis time _t: durat

Weibull regression -- log relative-hazard form

No. of subjects  1445 Number of obs  1445
No. of failures  552
Time at risk  80013

LR chi2(10)  165.48
Log likelihood  -1633.0325 Prob  chi2  0.0000

------------------------------------------------------------------------------
_t | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
workprg | .0908893 .0906478 1.00 0.316 -.0867772 .2685558

priors | .0887867 .0134355 6.61 0.000 .0624535 .1151198
tserved | .0135625 .0016808 8.07 0.000 .0102682 .0168567

felon | -.2994775 .105974 -2.83 0.005 -.5071826 -.0917723
alcohol | .4473611 .1057353 4.23 0.000 .2401236 .6545985

drugs | .2814605 .0978644 2.88 0.004 .0896499 .4732711
black | .4537147 .0883037 5.14 0.000 .2806426 .6267867

married | -.1515864 .1092454 -1.39 0.165 -.3657035 .0625307
educ | -.0232984 .0194196 -1.20 0.230 -.0613601 .0147633

age | -.0037246 .000525 -7.09 0.000 -.0047536 -.0026956
_cons | -3.402094 .3010177 -11.30 0.000 -3.992077 -2.81211
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-----------------------------------------------------------------------------
/ln_p | -.2158398 .0389149 -5.55 0.000 -.2921115 -.1395681

-----------------------------------------------------------------------------
p | .8058644 .0313601 .7466852 .8697338

1/p | 1.240904 .0482896 1.149777 1.339252
------------------------------------------------------------------------------

∙ The estimate of  is about . 806, and so there is negative duration

dependence.
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. * Compute the semielasticity on the mean for workprg:

. di -.091/.806
-.11290323

. * This estimate of the effect of workprg is somewhat larger in magnitude than

. * the lognormal estimate, -.063.

. * Interestingly, the lognormal distribution fits substantially

. * better than the Weibull: -1,597.059 for lognormal versus -1,633.033

. * for the Weibull.

. * With some work, we could compute a Vuong model specification statistic.

. * We need to obtain the log likelihood values for each i.
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. * Now report the exp(betaj) for the Weibull.

. streg workprg priors tserved felon alcohol drugs black married educ age,
d(weibull)

failure _d: nocens
analysis time _t: durat

Weibull regression -- log relative-hazard form

No. of subjects  1445 Number of obs  1445
No. of failures  552
Time at risk  80013

LR chi2(10)  165.48
Log likelihood  -1633.0325 Prob  chi2  0.0000

------------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
workprg | 1.095148 .0992728 1.00 0.316 .9168814 1.308074

priors | 1.092848 .014683 6.61 0.000 1.064445 1.122008
tserved | 1.013655 .0017037 8.07 0.000 1.010321 1.017

felon | .7412054 .0785485 -2.83 0.005 .6021898 .9123128
alcohol | 1.564179 .165389 4.23 0.000 1.271406 1.92437

drugs | 1.325064 .1296765 2.88 0.004 1.093791 1.605237
black | 1.574149 .1390031 5.14 0.000 1.32398 1.871587

married | .8593436 .0938794 -1.39 0.165 .6937084 1.064527
educ | .9769709 .0189724 -1.20 0.230 .9404845 1.014873

age | .9962823 .000523 -7.09 0.000 .9952577 .997308
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-----------------------------------------------------------------------------
/ln_p | -.2158398 .0389149 -5.55 0.000 -.2921115 -.1395681

-----------------------------------------------------------------------------
p | .8058644 .0313601 .7466852 .8697338

1/p | 1.240904 .0482896 1.149777 1.339252
------------------------------------------------------------------------------

. * For example, for workprg, the 1.095 means that the hazard for workprg  1

. * is 1.095 times the hazard when workprg  0. That is, it is the ratio

. * of hazards with the other covariates fixed and xj

. * increased by one unit. The estimate 9.51% is a more accurate estimate in

. * the percentage increase in the hazard starting at workprg  0 and

. * then setting workprg  0. (Compare 9.01%.)

. * The shape of the Weibull hazard is notably different from the lognormal

. * (and we know the Weibull is either monotonically increasing,

. * monotonically decreasing, or flat).
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Unobserved Heterogeneity with Single-Spell Flow Data

∙We can easily add multiplicative unobserved heterogeneity to hazard

specifications. (Heterogeneity in this context is also called frailty.) Let

t;x be a hazard function that need not be of the proportional hazard

form. For a random draw i, let vi  0 be the unobserved heterogeneity.

Then we can specify

t;xi,vi  vit;xi

∙ Normalization is almost always Evi  1, so ;x is the average

hazard for an individual with observed characteristics x.
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∙ The hazard conditional on v is usually called the conditional hazard.

(The conditioning on x is always implicit.) Plots of the conditional

hazard set v  1 and then evaluate x at its sample mean value, x̄, and

then plots t; x̄ as a function of t.

∙We can find the cdf of ti∗ conditional on xi,vi as

Ft|xi,vi  1 − exp −vi 
0

t
r;xidr ≡ 1 − exp−vit;xi

where t;xi ≡ 0
t
r;xidr.
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∙ It is almost always assumed that vi is independent of xi, in which case

the cdf of ti∗ given xi can be found by “integrating out” the

heterogeneity using the the density of vi:

Gt|xi  
0


Ft|xi,vhvdv,

where hv is the density of vi. It is parametric versions of Gt|xi that

we use in standard MLE.

∙ Notation here assumes vi is continuous. Not critical, but common.

∙ The hazard function associated with Gt|xi us often called the

unconditional hazard because we are not conditioning on v.
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∙ A leading case is when vi has a Gamma, distribution – so

Evi  /  1 and Varvi  /2  1/ ≡ . Then then Gt|xi has a

fairly simple form. Namely,

Gt|xi  1 − 1  t;xi−1/

∙ Once we have a parametric form for t;x, MLE is relatively

straightforward (though we must still account for right censoring).
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∙ Suppose we use the Weibull hazard with gamma heterogeneity. Then

the conditional hazard has the form

t;x,v  v  expxt−1

∙ Because of the proportional hazard form, the shape of ;x,v for

given x,v is the shape of the baseline hazard, 0t  t−1.
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∙ Then t;xi  expxi 0
t
r−1dr  expxit and so

Gt|xi;,  1 − 1  expxit−1/,

which is known as the Burr distribution. The Burr cdf without

covariates is 1 − 1  t−1/. (As   Varvi → 0 the Burr cdf

converges to 1 − exp−t, which is the Weibull.)

∙ This leads to a very tractable analysis, and is pretty common.

∙ A key focus is the nature of duration dependence conditional on

xi,vi. Is  greater than, less than, or equal to unity?
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∙ But the idea of trying to learn about state dependence conditional on

heterogeneity is questionable. One can simply start with, say, the Burr

distribution as the correct duration distribution without ever introducing

heterogeneity.

∙ Consider a regression model with a random slope, written as

Eyi|xi,vi  0  1xi  vixi and suppose vi and xi are independent

with Evi  0. Then

Eyi|xi  0  1xi  Evi|xixi  0  1xi
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∙ How can we tell if there is heterogeneity in the partial effect of xi? If

we also assume Varyi|xi,vi  u2, then

Varyi|xi  u2  v2xi2

and so heteroskedasticity in Varyi|xi is a consequence of the random

slope. But heteroskedasticity can arise for many reasons, and a finding

that Varyi|xi depends on xi2 essentially tells us nothing about random

coefficients.
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∙ Importantly, the shape of the hazard for the Burr distribution is often

quite different from the Weibull. In fact, the survivor function for the

Burr distribution is

St  1  t−1/

and the hazard is

t  t−1
1  t
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∙When   0, Weibull. When   1, log-logistic.

∙With covariates, the hazard for the Burr distribution – that is, a

Weibull hazard with gamma multiplicative heterogeneity – is

expxt−1
1  expxt

This is the unconditional hazard, which we contrast with the

conditional hazard with v set to one:

expxt−1.
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∙ For fixed x, the conditional hazard is either flat (  1), monotically

increasing (  1), or monotonically decreasing (  1). By contrast,

the sign of derivative of the unconditional hazard generally changes

with t.

∙ General problem with interpreting hazard models with unobserved

heterogeneity: cannot distinguish between the existence of

heterogeneity and a functional form for the hazard that is not flexible

enough. A Weibull hazard at the individual level with gamma

heterogeneity is observationally equivalent to a Burr hazard without

heterogeneity.
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. streg workprg priors tserved felon alcohol drugs black married educ age,
d(weibull) fr(gamma) nohr

failure _d: nocens
analysis time _t: durat

Weibull regression -- log relative-hazard form
Gamma frailty

No. of subjects  1445 Number of obs  1445
No. of failures  552
Time at risk  80013

LR chi2(10)  143.82
Log likelihood  -1584.9172 Prob  chi2  0.0000

------------------------------------------------------------------------------
_t | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
workprg | .0073827 .2038775 0.04 0.971 -.3922099 .4069753

priors | .2431142 .0421543 5.77 0.000 .1604933 .3257352
tserved | .0349363 .0070177 4.98 0.000 .0211818 .0486908

felon | -.7909533 .2666084 -2.97 0.003 -1.313496 -.2684104
alcohol | 1.173558 .2805222 4.18 0.000 .6237451 1.723372

drugs | .2847665 .2233072 1.28 0.202 -.1529074 .7224405
black | .7715762 .2038289 3.79 0.000 .372079 1.171073

married | -.8057042 .2578214 -3.13 0.002 -1.311025 -.3003834
educ | -.0271193 .044901 -0.60 0.546 -.1151237 .060885

age | -.0052162 .0009974 -5.23 0.000 -.0071711 -.0032613
_cons | -5.393658 .720245 -7.49 0.000 -6.805312 -3.982004
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-----------------------------------------------------------------------------
/ln_p | .5352553 .0951206 5.63 0.000 .3488225 .7216882

/ln_the | 1.790243 .1788498 10.01 0.000 1.439703 2.140782
-----------------------------------------------------------------------------

p | 1.707884 .1624549 1.417398 2.057904
1/p | .5855198 .055695 .4859312 .7055184

theta | 5.990906 1.071472 4.219445 8.506084
------------------------------------------------------------------------------
Likelihood-ratio test of theta0: chibar2(01)  96.23 Probchibar2  0.000
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∙ The (conditional) Weibull hazard, with heterogeneity (vi in our

notation, i in Stata’s notation) set to unity:
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∙ The (unconditional) Burr hazard, evaluated at the mean value of the

covariates:
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∙ The unconditional hazard has the same shape as the lognormal hazard

obtained earlier, but its peak is at around 12 months, rather than six

months.

∙ The Burr distribution fits better than the lognormal: −1,584.92 versus

−1,597.06. I suspect a Vuong test would reject the lognormal in favor

of the Burr, but the calculation needs to be done.
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. stcurve, haz at1(drugs  0) at2(drugs  1)
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∙ One advantage of the Weibull compared with the lognormal is that

the latter forces a turning point in the hazard; it cannot be

monotomically decreasing. By contrast, if negative duration

dependence is the best description, the Weibull allows that.
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Stock Sampling

∙ The population is still the same: individuals entering the initial state

during the interval 0,b.

∙ Unlike flow sampling, where we essentially sample individuals when

they enter the intial state, stock sampling obtains a random sample of of

individuals that are in the initial state at time b. In other words, we have

a random sample from the “stock” of people unemployed at time b.
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∙ For example, suppose we measure unemployment durations dailay,

and we are interested in people who become unemployed at some point

in the year 2005. However, we only obtain a random sample of people

who are actually unemployed on the last day of 2005.

∙ Stock sampling introduces a clear sample selection bias: for a given

start date ai ∈ 0,b, we are more likely to see someone unemployed on

the last day of 2005 the longer they have been unemployed.
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∙ The sample selection problem induced by stock sampling is is

sometimes called length-biased sampling. The label left truncation

also fits because, given ai, we do not see someone in our sample if their

duration, ti∗, is less than b − ai. (Even if we observe the ai for the

people we sample at time b, we still have a truncation problem.)

72



∙ First assume that ai is observed for eveyone we sample at time b. Let

ai,ci,xi, ti denote a random draw, where ti  minti∗,ci is the right

censored duration, as before.

∙ To obtain the MLE, we need to account for the truncated sampling.

∙ The condition for being observed in our sample is

ti∗ ≥ b − ai

and, under Dti∗|ai,ci,xi  Dti∗|xi,

Pti∗ ≥ b − ai|ai,ci,xi  1 − Fb − ai|xi;.
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∙We can apply estimation for truncated samples. Recall that the

density that accounts for right censoring is

ft|xi;d1 − Fci|xi;1−d.

To account for the left truncation, we divide it by 1 − Fb − ai|xi;.
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∙ Plugging in the data and taking logs gives, for a raw i satisfying

ti∗ ≥ b − ai,

di logfti|xi;  1 − di log1 − Fti|xi; − log1 − Fb − ai|xi;

∙ As before, this log likelihood depends on ci because ti  ci when

di  0. But it also depends explicitly on b and the starting date, ai
(actually, only b − ai).

∙ Estimation is again straightforward. So, provided that when we

sample the units at time b we find out the starting dates ai, it is fairly

easy to use stock data.
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∙ Notice that if ti∗ is right censored at calendar data b – which means

the censoring time is ci  b − ai – the log likelihood is zero: di  0 and

ti  ci  b − ai, and so

ℓi  log1 − Fb − ai|xi; − log1 − Fb − ai|xi;  0.

∙ Because the log likelihood does not depend on , observations that

are right censored at the calendar date when the data are collected

provide no information for estimating .
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∙ If we sample from the units in the initial state at time b and do not

follow any of the units after this time then ti  ci  b − ai for all i.

Consequently,  is not identified by the previous log likelihood.

∙ Intuitively, the log likelihood is conditional on ai,xi, but ti and ci
are deterministic functions of ai: there is no randomness conditional on

ai,xi.
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∙ If we are willing to make assumptions about the distribution of

starting times, Dai|xi, we can generally identify . Denote its density

ka|xi; for parameters .

∙ Now let si be the selection indicator: we observe an observation from

those entering the intial state in 0,b if si  1 where

si  1ti∗ ≥ b − ai. Estimation of  (and ) can proceed by obtaining

the density of ai conditional on xi and si  1. (This is the only density

we can hope to estimate, as we observe ai,xi only when si  1.)

∙ The density is informative for estimating  even though  is not

functionally related to .
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∙ It can be shown (see Problem 22.6) that

pa|xi, si  1  ka|xi;1 − Fb − a|xi;/Psi  1|xi;,

Psi  1|xi;,  
0

b
1 − Fb − u|xi;ku|xi;du

∙ So the log likelihood for an observation actually in the sample is

logkai|xi;  log1 − Fb − ai|xi; − logPsi  1|xi;,

and this generally depends on  and .
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∙ Another situation sometimes arises with stock sampling: the ai are

not observed. That is, when we sample at time b, we know people who

are in the initial state (such as being unemployed) but we do not know

where in 0,b the spell started. This is known as the problem of left

censoring.
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∙ To get anywhere, we have to follow some units after the initial

sampling at time b. If there were no right censoring, this means we can

follow the length of time in the state after date b. If we call this ri, we

have

ri  ti∗  ai − b.

We observe ri but, even without right censoring, we do not observe ti∗

and ai separately.

∙ If we also allow for right censoring, and account for the left

truncation problem, we can obtain a likelihood that identifies . See

Problem 22.8.
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4. Grouped Duration Data

∙ In the previous sections we have acted as if we observe the duration

continuously, even if this is only a rough approximation.

∙ Alternatively, we can recognize that, even though time in principal

can be measured continuously, our observations are always in discrete

intervals. When we approach the problem from this perspective, we say

we have grouped duration data.

∙ For example, the recidivism duration in the previous example is

reported monthly. In effect, we only know that recidivism occurred at

some time during the month.
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∙ Assume that the nonnegative real line, 0,, is divided into intervals:

0,a1, a1,a2, … , aM−1,aM, aM,,

where the am are known constants. For example, it is common to have

a1  1, a2  2, … , aM  M. (For example, a duration is measured in

months and we only know which monthly interval the initial state was

exited.)
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∙ For a generic unit in the population, let ym be a binary variable

ym  1am−1 ≤ T  am for m ≤ M, where we again use T to denote the

random duration. Therefore, ym is one if and only if the unit left the

initial state in the interval am−1,am.

∙ If the state is not left prior to time aM, ym  0, m  1, . . . ,M and

yM1  1.

∙ In this sense, all durations are censored at time aM.
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∙ As before, units may enter the initial state at different calendar dates.

But with flow data, provide that date is exogenous – and we may have

to put date dummies in xi to ensure that – the starting dates play no

role. So we do not explicitly allow for them.

∙ Because we assume single spell data, ym1  1 if ym  1. Once a unit

exits, the unit is not longer followed.
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∙Without right censoring the log-likelihood is straightforward to

construct. What we need is the joint distribution (conditional on x),

Dy1, . . . ,yM,yM1|x.

∙ But the only possible outcomes are M  1 sequences of the form

0,0, . . . , 0, 1, 1, . . . , 1.

∙ Remember, yM1  1 always, with 0,0, . . . , 0, 0, 1 indicating that exit

occurs at time aM or later (and that is all we know).
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∙ If unity first appears in the mth position for m ≤ M then the spell ends

before time aM. The probability of observing an exit in interval m ≤ M

can be written using a standard relationship between conditional and

unconditional probabilities:

Pam−1 ≤ T  am|x  Pam−1 ≤ T  am|T ≥ am−1,x  PT ≥ am−1,x.

By recursive subsitution, and using PT ≥ a0|x  PT ≥ 0|x  1,

PT ≥ am−1,x 
h1

m−1

PT ≥ ah|T ≥ ah−1,x.
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Now use

PT ≥ ah|T ≥ ah−1,x  1 − Pah−1 ≤ T  ah|T ≥ ah−1,x,

and so


h1

m−1

PT ≥ ah|T ≥ ah−1,x 
h1

m−1

1 − Pah−1 ≤ T  ah|T ≥ ah−1,x.
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∙We have shown that Pam−1 ≤ T  am|x is

Pam−1 ≤ T  am|T ≥ am−1,x
h1

m−1

1 − Pah−1 ≤ T  ah|T ≥ ah−1,x

∙ For m  1, . . . ,M, we use the relationship between conditional

probabilities and the hazard function from earlier:

Pam−1 ≤ T  am|T ≥ am−1,x

 1 − exp −
am−1

am
r;x,dr ≡ 1 − mx,

and so

1 − Pam−1 ≤ T  am|T ≥ am,x  mx,.
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∙ It follows that, for a spell that ends in an interval m ∈ 1,2, . . . ,M,

Pam−1 ≤ T  am|x  1 − mx, 
h1

m−1

hx, .

∙ For spells not finished by time aM – that is, ym  0, m ≤ M, we need

PT ≥ aM|x 
h1

M

hx,
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∙ Therefore, the log likelihood for a random draw i where the transition

occurs in interval mi ≤ M is

∑
h1

mi−1

loghxi,  log1 − mix,,

and for incompleted spells it is

∑
h1

M

loghxi,.
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∙ Now bring back censoring that can happen before time aM. Define a

sequence of censoring dummies, censoring dummies, c1, . . . ,cM,

where cm  1 if the duration was censored in interval am−1,am. Spells

not completed by time aM are censored, so cM1  yM1  1.

∙ A sufficient condition for exogeneity of the censoring mechanism is

exogenous

DT|c1, . . . ,cM,x  DT|x
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∙ If censoring occurs in interval mi, we only know the duration lasted at

least to time ami−1, so the log likelihood for a censored duration is

simply

∑
h1

mi−1

loghxi,
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∙ Let di be a dummy variable equal to unity for an uncensored

observation. Then the log likelihood for observation i is

∑
h1

mi−1

loghxi,  di log1 − mix,

∙ As a practical matter, any mi  1 observations do not contribute to

the log likelihood. They are uninformative because all they imply is

T ≥ 0, which we already know.
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∙ mi  M  1 corresponds to observations censored in the last interval.

But observations can be censored before then, too.

∙ The log likelihood for the entire sample is

∑
i1

N

∑
h1

mi−1

loghxi,  di log1 − mixi,
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∙ To use this for estimation, we need to specify a hazard function. A

convenient formulation (and flexible if there are many intervals) is a

piecewise-constant proportional hazard: for m  1, . . . ,M,

t;x,  x,m, am−1 ≤ t  am

where, typically, x,  expx.

∙When we allow the hazard to be unrestricted across intervals, we

cannot estimate the hazard for t ≥ aM (because there is no way to

extrapolate).
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∙With x,  expx,

mx,  exp −expx 
am−1

am
mdr

 exp−expxmam − am−1

∙ Usually, am  m and so mx,  exp−expxm . With

unrestricted m, x does not include a constant.

∙With this specification, the hazard is discontinuous at the endpoints of

the intervals. The theory easily extends to handle this case.
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∙ A different way to look at the piecewise-constant proportional hazard

case is that we estimate  along with parameters

m  
am−1

am
0rdr

∙ Either way, the estimation is the same, and it is easier to think of

estimating the baseline hazard directly.

∙ Given the ̂m, can plot these as a function of m; usually plot ̂m at the

midpoints of the intervals am−1,am, and then smooth the graph.

∙ Of course, the ̂j are often of interest, too.
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∙What if there are no covariates? The MLEs ̂m lead to a well-known

estimate of the survivor function. For m  1, . . . ,M,

Sam  PT  am 
r1

m

PT  ar|T  ar−1.

∙ For r  1, . . . ,M, let Nr denote the number of units in the risk set:

they have neither left the initial state nor been censored at time ar−1.

(N1  N is the size of the initial random sample, N2 is the units who

did not leave the initial state during the first interval, less those who

were censored in a1,a2, and so on.)
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∙ Let Er denote the number of units observed to leave in ar−1,ar. A

consistent estimator of PT  ar|T  ar−1 is

Nr − Er/Nr, r  1, . . . ,M.

So

Ŝam 
r1

m

Nr − Er/Nr, m  1, . . . ,M.

∙ Called the Kaplan-Meier estimator. Lancaster (1990, Section 8.2)

shows the MLE of the m produces the KM estimator.

100



∙ If the intervals am−1,am are coarser than the data – for example,

unemployment duration is measured weekly but the intervals are four

weeks wide – then we can specify nonconstant hazards within each

interval. For example, could specify a Weibull within each interval.
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Time-Varying Covariates

∙ For a generic unit from the population, let xm denote the vector of

covariates for the mth interval, that is, am−1,am. Because we only

observed grouped durations, assume the covariates are constant within

each interval. So x1,x2, . . . ,xM be the sequence of covariates.

∙ In effect, we have a panel data set: ym,xm,cm : m  1, . . . ,M,

where cm  1 if the observation is censored in interval m (we only

know T ≥ am−1). Recall yM1  cM1  1.
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∙ Exogeneity of censoring is now stated as

DT|T ≥ am−1,xm,cm  DT|T ≥ am−1,xm, m  1, . . . ,M.

∙ The probabilities for the likelihood function are similar to before, but

now we condition on the covariates in the stated time interval:

Pym  1|ym−1  0,xm,cm  0

 1 − exp −
am−1

am
r;xm,dr  1 − mxm,
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∙ The log likelihood takes the same value as before, except we indicate

that the covariates might change across intervals:

∑
i1

N

∑
h1

mi−1

loghxh,  di log1 − mixmi ,

∙ Note that this is only a partial log likelihood. It is not necessarily

based on

Dy1, . . . ,yM|x1, . . . ,xM,c1, . . . ,cM

because, in particular, we are not assuming here that the xm are strictly

exogenous.
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∙ This is very similar to pooled binary response analysis that we

discussed before: we need only have the sequence of distributions

conditional on any set of covariates be correctly specified for partial

(pooled) MLE to work. The main difference here is the need to

distinguish between censored and uncensored observations.

∙ If the covariates are strictly exogenous in the sense that

DT|T ≥ am−1,x1, . . . ,xM DT|T ≥ am−1,xm

and the censoring is strictly exogenous, then the partial log likelihood is

a full log likelihood (conditional on x1, . . . ,xM,c1, . . . ,cM).
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∙ The proportional hazard specification is still attractive:

t;xm,  expxmm, am−1 ≤ t  am.

∙Meyer (1990, Econometrica) popularized this approach in economics,

applying it to estimate the effects of unemployment insurance on

unemployment spells.
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Unobserved Heterogeneity with Time-Varying Covariates

∙ The previous analysis is attractive because it does not require strictly

exogenous covariates. But it does not allow unobserved heterogeneity.

∙ Now the strict exogeneity assumption is conditional on the

unobserved heterogeneity, v:

DT|T ≥ am−1,x1, . . . ,xM,v  DT|T ≥ am−1,xm,v

and we assume the heterogeneity is independent of the covariates and

censoring:

Dv|x1, . . . ,xM,c1, . . . ,cM  Dv.
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∙ The hazard function is

t;xm,  vexpxmm, am−1 ≤ t  am.

in which case the density of yi1, . . . ,yiM given

vi,xi1, . . . ,xiM,ci1, . . . ,ciM is


h1

mi−1

hvi,xmi , 1 − mivi,xmi ,di

which is the same as before except for the presence of vi.

∙ If vi had the Gamma, distribution, the log likelihood has a closed

form; see Meyer (1990, Econometrica). McCall (1994, Journal of

Applied Econometrics) provides an extension.
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∙ Cox’s proportional hazard model is very similar to allowing an

unrestricted hazard function with grouped duration data. Here we

assume no heterogeneity.

∙ Cox’s original motivation was to estimate the parameters  without

specifying a baseline hazard. But it is effectively the same as using a

piecewise constant baseline hazard in a proportional hazard analysis.

109



. stcox workprg priors tserved felon alcohol drugs black married educ age,
nohr basehc(h)

failure _d: nocens
analysis time _t: durat

Cox regression -- Breslow method for ties

No. of subjects  1445 Number of obs  1445
No. of failures  552
Time at risk  80013

LR chi2(10)  155.60
Log likelihood  -3816.3799 Prob  chi2  0.0000

------------------------------------------------------------------------------
_t | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
workprg | .0840734 .090814 0.93 0.355 -.0939189 .2620656

priors | .0875916 .0134774 6.50 0.000 .0611764 .1140068
tserved | .0129505 .0016855 7.68 0.000 .009647 .016254

felon | -.2827356 .1061569 -2.66 0.008 -.4907992 -.0746719
alcohol | .4306549 .1057194 4.07 0.000 .2234487 .6378611

drugs | .2756129 .0978637 2.82 0.005 .0838036 .4674222
black | .432593 .0883817 4.89 0.000 .2593679 .605818

married | -.1548816 .1092132 -1.42 0.156 -.3689356 .0591724
educ | -.0213195 .019447 -1.10 0.273 -.0594348 .0167959

age | -.0035816 .0005223 -6.86 0.000 -.0046053 -.002558
------------------------------------------------------------------------------
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∙ A rectangular kernel (not much smoothing):
. stcurve, hazard kernel(rec)
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∙ A smoother version (the default in Stata):
. stcurve, hazard
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. * Note that the smoothed version is only graphed for a range of about 10 months

. * to 70 months. That’s because the smoother does not work well near the

. * endpoints where there is little or no data on the other side to average.
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