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1. INTRODUCTION

∙ So-called “censored regression models” are applied to two very

different kinds of situations: (1) data censoring, such as top coding of

wealth or censoring of a duration (survival time); (2) corner solution

outcomes, where the variable we would like to explain piles up at one

or two corners.

∙Most applications are to the latter case, where we always observe the

response, but it takes on values at a corner (often zero, sometimes one,

and occasionally other values). It is continuous (or roughly so) over

strictly positive values.
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∙ Examples include annual charitable contributions, annual labor

supply, amount of life insurance.

∙ Count variables (number of crimes committed, annual medical

appointments, patents awarded) are not examples because, while they

take on the value zero, they are not roughly continuous over strictly

postive values. (Typically, they take on small positive integer values.)

We have used the Poisson MLE as an example for count data; count

data models are covered in detail in Chapter 18.
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∙ Before applying any limited dependent variable model we should ask,

“Do I always observe the response variable of interest?” For variables

such as charitable contributions and annual hours worked, the answer is

usually “yes” because an observed zero means zero.

∙ In true data censoring cases, the answer is “no,” even though

unobserved values are often assigned to a censoring value.
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∙We will cover censored data, where we have a linear model for the

response variable we would like to explain but the data have been

censored, in Chapter 19.

∙More subtle situations arise. For example, we might think charitable

contributions follows a particular population model that allows a corner

at zero – such as the Type I Tobit model in Section 4 – but also have

data censoring (say, top coding).
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∙ Little confusion arises if one first specifies the model for the

underlying population and separately describes the mechanism

generating the data. The latter can be data censoring or where we

cannot randomly sample units from the population of interest.

∙ Here we are interested only in specifying population models that are

logically consistent with the population distribution of corner solution

responses.
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∙When we turn to two-part or hurdle models, we also need to be aware

that there is confusion between cases where we always observe the

response of interest and where we do not for some subset of the

population. Nonrandom sample selection from the underlying

population are covered in Chapter 19.
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∙ Consider the leading case where we want to determine factors that

affect y, where y ≥ 0 with Py  0  0 but y is (roughly) continuous

over strictly positive values. So y is neither discrete nor continuous.

∙ Is there anything necessarily wrong with a linear model for Ey|x? In

fact, if we are interested in estimating partial effects of the xj on Ey|x,

a linear model is a reasonable starting point.
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∙ The drawbacks of a linear model when y is a corner solution are

similar to those for the linear probability model: (1) Some of the fitted

values can be negative; (2) the partial effects are unlikely to be constant

througout the range of x; (3) Vary|x is unlikely to be constant. The

second is the most important.

∙ Just as with other limited dependent variable, when y is a corner

solution response we should view the linear model as representing the

linear projection, Ly|x  x. Whether the the LP is a good

approximation to Ey|x is an important question.
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∙ Alternative functional forms might provide a better approximation. It

is not crazy to use, say, Ey|x  expx and apply nonlinear least

squares (or a quasi-MLE of the type covered in Chapter 18). But the

exponential functional form does not fall out of standard models for

corners. We study similar possibilities under two-part models.

∙ Another issue with corner solution responses (which does not arise

with binary responses) is that there are more features of Dy|x that we

can be interested in, such as Ey|x,y  0 or Py  0|x.
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2. A GENERAL FORMULATION

∙ Consider the case where y ≥ 0 has a corner at zero. A useful starting

point is

y  max0,x  u

where x  1,x2, . . . ,xK,  is K  1, and u is an unobserved error with

a continuous distribution.

∙ If the range of u is unrestricted, this setup generates a pile up at zero

and then continuous strictly positive outcomes.

∙ Benefit of this approach: it keeps the focus on y. The question is what

this model implies about Dy|x.

11



∙ The phrase “y is censored at zero” is common, but not ideal.

Censoring implies a missing data problem, but there is none here. “y

has a corner at zero” is more descriptive of this situation.

∙What can we say about Dy|x in general? Not much until we restrict

Du|x in some way. For example, assume

Medu|x  0,

which holds in common parametric models. Then, because

gz ≡ max0, z is a nondecreasing function on R, we can pass the

median through:

Medy|x  max0,x  Medu|x  max0,x.
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∙ This result is the basis for so-called censored least absolute

deviations (CLAD) estimation of  – later.

∙ Generally, we cannot find Ey|x without much stronger assumptions,

even if we make the standard assumption Eu|x  0. However,

because gz  max0, z is convex, we can use Jensen’s inequality:

Ey|x  Emax0,x  u|x ≥ max0,x  Eu|x  max0,x.

So

Ey|x ≥ max0,x.

∙ Even if we could estimate  this inequality is not helpful for

estimating partial effects on Ey|x.
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∙ Sometimes a latent variable formulation is helpful, where y∗ is the

latent variable:

y∗  x  u
y  max0,y∗

But usually y∗ is not the variable of interest. (“Desired” charitable

contributions or “desired” labor supply are not what policy makers care

about. It is the actual outcomes.)

∙ If Eu|x  0, j  ∂Ey∗|x/∂xj, but we are more interested in

Ey|x.
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3. THE TYPE I TOBIT MODEL

∙ By far the most popular model for corners at zero assumes normality

of the latent error:

y  max0,x  u

u|x ~ Normal0,2

∙ So, if we write y∗  x  u, then Dy∗|x follows a classical linear

model.
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Quantities of Interest and Partial Effects

∙ Under these assumptions, we have fully characterized Dy|x. Let

w  1y  0 be the binary indicator for whether y is positive or at the

corner. Then

Pw  1|x  Px  u  0|x  Pu/  −x/|x
 1 − −x/  x/.

∙ So w given x follows a probit with parameter vector /, so we

already know how to obtain partial effects on Py  0|x. If xj is

continuous,

Py  0|x
∂xj

 j/x/.
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∙ Fact: If z ~ Normal0,1 then Ez|z  c  c/1 − c. So

Ey|x,y  0  x  Eu|u  −x
 x  Eu/|u/  −x/

 x   −x/
1 − −x/

 x   x/
x/

≡ x  x/

where z ≡ z/z is called the inverse Mills ratio.
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∙  is strictly decreasing, and looks linear over much of its range.

∙ Because z → 0 and z → 1 as z → , limz→ z  0. Further,

using L’Hôspital’s rule it is easy to show that

limz→−z  .

∙ The proof uses

d
dz z  −zz and ddz z  z.
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∙ The IMR appears often in models with LDVs and, later, in data

censoring and sample selection contexts.

∙ Ey|x,y  0 is called the “conditional” expectation because it is

conditional on y  0. Of course, it is also conditional on x.
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∙ Now we can use

Ey|x  Py  0|x  0  Py  0|xEy|x,y  0
 x/x  x/
 x/x  x/.

∙ Called the “unconditional” expectation (but, as always, we are

conditioning on x).
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∙ Partial effects on Py  0|x already known from probit:

∂Py  0|x
∂xj

 j/x/

∙ Partiel effects on Ey|x,y  0: uses dc/dc  −cc  c.

Ey|x,y  0
∂xj

 j − jx/x/  x/

 j1 − x/x/  x/
≡ jx/

∙ If xj and xh are two continuous variables, the ratio of partial effects is

j/h, free of x.
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∙ Can show that c ≡ 1 − cc  c  Varz|z  −c where z is

standard normal, so 0  c  1 for all c.

∙ This implies that cc  c  0 for all c, and so the IMR, whose

slope is −cc  c, is strictly decreasing.

∙ j gives direction of effect, but must be scaled down. To compare

with the linear projection Ly|x estimated by a linear model, must scale

down the Tobit estimates to make them comparable to OLS.
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∙ For discrete changes, need to compare the expected values at two

different values of covariates. Because the conditional mean function

a  a/ is strictly increasing in a for any   0, sign of j gives

direction of ceteris paribus effect.
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∙ For the unconditional expectation, a generally useful experssion is

Ey|x
∂xj

 ∂Py  0|x
∂xj

 Ey|x,y  0  Py  0|x  Ey|x,y  0
∂xj

.

∙ Applied to the Tobit model, after some algebra, we get

∂Ey|x
∂xj

 x/j  Py  0|xj.

∙ So, to get partial effects on the unconditional mean, again the j are

scaled by a function between 0 and 1 (and which depends on x).
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∙ As Py  0|x → 1 the j become close to the actual partial effect. If

Py  0|x is large, the scale factor is small.

∙ Any comparison across models – linear, two-part, and so on – must

account for any scale factors (assuming the partial effects have such a

simple form).
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∙We can show that the expected value of ∂Ey|x/∂xj is simply

Py  0j because a probability (conditional or unconditional) can be

written as the expected value of an indicator function. Then we apply

iterated expectations:

EPy  0|x  EE1y  0|x  E1y  0  Py  0.
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∙ In other words, the APE on Ey|x for a continuous variable xj is just

APEj  Py  0j

We can always consistently estimate Pw  1  Py  0 as the

fraction of nonzero outcomes in the sample. (This is true more

generally; not just for the Tobit model.)
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Estimation of Parameters

∙ Suppose now we have a random sample xi,yi : i  1,2, . . . ,N

from the population. From the expressions for Ey|x,y  0 and Ey|x,

it is pretty clear that OLS regressions yi on xi, using either the full

sample or the sample with yi  0, does not consistently estimate .

There are some results about estimating these parameters up to a

common scale. However, when y is directly of interest, we are more

interested in the regression coefficients themselves (which approximate

the average partial effects).
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∙ These days, MLE (conditional on x) is the only way to go for Type I

Tobit. The log likelihood can be parameterized to be concave.

∙We need the density for y given x. But

f0|x  1 − x/.

For y  0, fy|x  f∗y|x, where f∗ is the density of the latent

variable. So we have

fy|x  1 − x/1y0−1y − x/1y0

(where y is just a dummy argument in the density).
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∙ The log likelihood for random draw i is

ℓi,  1yi  0 log1 − xi/
 1yi  0logyi − x/ − log

and, as usual, we sum across all i to get the log likelihood for the

sample.

∙ See the text for score and Hessian. It is a well-behaved maximization

problem, and software does this routinely without computational

difficulty.
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∙ In Stata:

tobit y x1 x2 ... xK, ll(0)

where the qualifier “ll(0)” means that the lower limit is at zero. (One

can specify a different lower limit and also an upper limit, but this

happens more often for data censoring rather than corner solution

responses.)

∙ If we use a “robust” option in Stata (and other packages) then – just

as with probit, logit, multinomial logit, and the ordered models – then

we are admitting that the model is misspecified. If the Tobit model is

correct for Dy|x we do not need a sandwich form of the asymptotic

variance.
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∙ If we use a sandwich form, we can perform inference on the

parameters in the misspecified model. (More precisely, on the plims of

the quasi-MLEs.)

∙ Another possible justification of a sandwich variance matrix estimator

is that it might produce better standard errors than the estimated inverse

of the expected Hessian. But this does not appear to be true for Tobit

models.
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Reporting the Results

∙We obtain estimates ̂j along with standard errors. We also obtain ̂

and its standard error. The latter parameter shows up in partial effects,

so it is not “ancillary.”

∙We can report estimated PEAs on, say, Ey|x, as

x̄̂/̂̂j

for continuous variables. (Unfortunately, the “mfx” command in Stata

simply reports the ̂j. ) Or, plug in other interesting values.
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∙ The estimated APEs are

N−1∑
i1

N

xi̂/̂ ̂j.

The scale factor is the average of P̂y  0|x across the sample.

(Unfortunately, the “margins” command in Stata reports the ̂j and not

the APEs.)

∙ Bootstrapping is convenient and feasible.

∙ Can compare the Tobit APEs on Ey|x to OLS estimates using entire

sample. Also, can average across a subset of the covariates, fixing

others at particular values.
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∙ For discrete explanatory variables or for large changes in continuous

ones, we can compute the difference in Ey|x at different values of x.

Suppose xK is a binary variable (such as a policy indicator), and define,

for each observation i, the two indices ŵi1  xiK̂K  ̂K and

ŵi0  xiK̂K, where xiK is the 1  K − 1 row vector with xiK

dropped.Then, the average difference

N−1∑
i1

N

ŵi1/̂ŵi1  ̂ŵi1/̂ − ŵi0/̂ŵi0  ̂ŵi0/̂

is the so-called average treatment effect.
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∙ Different ways to define goodness-of-fit statistics. If we focus on

Ey|x, a simple one is the squared correlation between yi and

Êyi|xi  xi̂/̂xi̂  ̂xi̂/̂. Or, can use a sum of squared

residuals-type R-squared. Both are comparable to OLS R-squared. Or,

we can use Êyi|xi,yi  0  xi̂  ̂xi̂/̂ to look at the fit for

nonlimit observations.

∙ If comparing different models with full distributions specified, can

use log likelihood for the full sample. This measures the fit of the entire

distribution. As always, we prefer the model with the highest

log-likelihood function.
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. sum hours

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

hours | 753 740.5764 871.3142 0 4950

. count if hours  0
325
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. tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)

Tobit regression Number of obs  753
LR chi2(7)  271.59
Prob  chi2  0.0000

Log likelihood  -3819.0946 Pseudo R2  0.0343

------------------------------------------------------------------------------
hours | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -8.814243 4.459096 -1.98 0.048 -17.56811 -.0603724

educ | 80.64561 21.58322 3.74 0.000 38.27453 123.0167
exper | 131.5643 17.27938 7.61 0.000 97.64231 165.4863

expersq | -1.864158 .5376615 -3.47 0.001 -2.919667 -.8086479
age | -54.40501 7.418496 -7.33 0.000 -68.96862 -39.8414

kidslt6 | -894.0217 111.8779 -7.99 0.000 -1113.655 -674.3887
kidsge6 | -16.218 38.64136 -0.42 0.675 -92.07675 59.64075

_cons | 965.3053 446.4358 2.16 0.031 88.88528 1841.725
-----------------------------------------------------------------------------

/sigma | 1122.022 41.57903 1040.396 1203.647
------------------------------------------------------------------------------

Obs. summary: 325 left-censored observations at hours0
428 uncensored observations

0 right-censored observations
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. predict xbh, xb

. gen hoursh  normal(xbh/_b[/sigma])*xb  _b[/sigma]*normalden(xbh/_b[/sigma])

. sum hours hoursh

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

hours | 753 740.5764 871.3142 0 4950
hoursh | 753 721.4201 473.6053 3.496456 1993.885

. corr hours hoursh
(obs753)

| hours hoursh
-------------------------------

hours | 1.0000
hoursh | 0.5237 1.0000

. di .5237^2

.27426169

. * This squared correlation can be used as an R-squared to compare with other

. * models, including a linear model.
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. reg hours hoursh, nocons

Source | SS df MS Number of obs  753
------------------------------------------- F( 1, 752)  1031.68

Model | 569084372 1 569084372 Prob  F  0.0000
Residual | 414810722 752 551610.002 R-squared  0.5784

------------------------------------------- Adj R-squared  0.5778
Total | 983895094 753 1306633.59 Root MSE  742.7

------------------------------------------------------------------------------
hours | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
hoursh | 1.007564 .031369 32.12 0.000 .9459831 1.069146

------------------------------------------------------------------------------

. * Note how close the coefficient is to one; this at least suggests the Tobit

. * provides sensible estimates of the "unconditional" mean.
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. qui tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)

. gen scale  normal(xbh/_b[/sigma])

. sum scale

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

scale | 753 .5886634 .2426614 .0092704 .960908

. di .589*80.65
47.50285

. di .589*(-894.02)
-526.57778
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. do ex17_2_boot

. capture program drop tobit_boot

.

. program tobit_boot, rclass
1.

. tobit hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
2.

. predict xbh, xb
3. gen scale  normal(xbh/_b[/sigma])
4. gen pe1scale*_b[educ]
5. sum pe1
6. return scalar ape1r(mean)
7. gen xbh0  xbh - _b[kidslt6]*kidslt6
8. gen xbh1  xbh0  _b[kidslt6]
9. gen xbh2  xbh0  _b[kidslt6]*2

10. gen m2  normal(xbh2/_b[/sigma])*xbh2  _b[/sigma]*normalden(xbh2/_b[/sigma])
11. gen m1  normal(xbh1/_b[/sigma])*xbh1  _b[/sigma]*normalden(xbh1/_b[/sigma])
12. gen m0  normal(xbh0/_b[/sigma])*xbh0  _b[/sigma]*normalden(xbh1/_b[/sigma])
13. gen pe2  m1 - m0
14. sum pe2
15. return scalar ape2r(mean)
16. gen pe3  m2 - m1
17. sum pe3
18. return scalar ape3r(mean)
19.

. drop xbh scale xbh1 xbh0 xbh2 m2 m1 m0 pe1 pe2 pe3
20. end

.

. bootstrap r(ape1) r(ape2) r(ape3), reps(500) seed(123): tobit_boot
(running tobit_boot on estimation sample)

Bootstrap replications (500)
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------- 1 ------ 2 ------ 3 ------ 4 ------ 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500

Bootstrap results Number of obs  753
Replications  500

command: tobit_boot
_bs_1: r(ape1)
_bs_2: r(ape2)
_bs_3: r(ape3)

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
_bs_1 | 47.47311 13.04099 3.64 0.000 21.91324 73.03299
_bs_2 | -487.213 54.03773 -9.02 0.000 -593.125 -381.301
_bs_3 | -246.1717 12.31618 -19.99 0.000 -270.3109 -222.0324

------------------------------------------------------------------------------

.

. program drop tobit_boot

.
end of do-file
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. tab kidslt6

# kids  6 |
years | Freq. Percent Cum.

-----------------------------------------------
0 | 606 80.48 80.48
1 | 118 15.67 96.15
2 | 26 3.45 99.60
3 | 3 0.40 100.00

-----------------------------------------------
Total | 753 100.00

. di 29  118
147

. di 118/147

.80272109

. di .8*487.2  .2*246.2
439

48



. reg hours nwifeinc educ exper expersq age kidslt6 kidsge6, robust

Linear regression Number of obs  753
F( 7, 745)  45.81
Prob  F  0.0000
R-squared  0.2656
Root MSE  750.18

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

nwifeinc | -3.446636 2.240662 -1.54 0.124 -7.845398 .9521268
educ | 28.76112 13.03905 2.21 0.028 3.163468 54.35878

exper | 65.67251 10.79419 6.08 0.000 44.48186 86.86316
expersq | -.7004939 .3720129 -1.88 0.060 -1.430812 .0298245

age | -30.51163 4.244791 -7.19 0.000 -38.84481 -22.17846
kidslt6 | -442.0899 57.46384 -7.69 0.000 -554.9002 -329.2796
kidsge6 | -32.77923 22.80238 -1.44 0.151 -77.5438 11.98535

_cons | 1330.482 274.8776 4.84 0.000 790.8556 1870.109
------------------------------------------------------------------------------
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. * Linear regression coefficient on kidslt6 is very close to the weighted

. * average of the Tobit effects.

. * But the linear regression coefficient for educ (28.8) is well below the APE

. * from the Tobit model (47.5).

. * The R-squared, about .266, is slightly below that for Tobit, about .274. The

. * difference is perhaps not as great as we expect. Remember, though, that

. * the OLS chooses the parameters to maximize the R-squared (minimize the sum of

. * squared residuals) while the Tobit estimates are chosen to maximize the log

. * likelihood. Nevertheless, the MLEs are, of course, good estimates, so the

. * difference in using MLE versus nonlinear least squares is probably minor.
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4. SPECIFICATION ISSUES

Omitted Heterogeneity Independent of the Covariates

∙ The conclusions here are similar to the binary response case. If we

add, say, q as unobserved heterogeneity, y  max0,x  q  u,

u|x,q~Normal0,2, and q is also normally distributed and

independent of x, we can estimate  and 22  2. Fortunately, the

APEs only depend on 22  2.
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Heteroskedasticity

∙ Again, similar to probit. “Heteroskedastic Tobit” is a good way to

extend functional form. Typically, u|x~Normal0, exp2x or restrict

to a subset of x. But it makes the partial effects on Ey|x,y  0 and

Ey|x more difficult to estimate.

∙ As in the probit case, there is a way to argue that the partial effects on

the average structural function are the same sign as the j. See

Wooldridge (2005, Festschrift for Rothenberg).

∙ Again, using “robust” with Tobit estimation does not produce

consistent estimators of the  while somehow making the inference

robust to heteroskedsticity in the underlying model.
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Nonnormality

∙ Similar comments to heteroskedasticity. The usual Tobit MLE will

not consistently estimate  (or ), but it may yield reasonably close

partial effects.

∙ Using a more flexible distribution for Du|x might be a good idea,

but one should not only compare estimated coefficients.
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5. ESTIMATING PARAMETERS UNDER WEAKER
ASSUMPTIONS

∙When we assume y is generated as

y  max0,x  u,

modeling Du|x more flexibly than Normal0,2 is a natural way to

extend the model. At a minimum, it can be used to check the robustness

of Tobit partial effects. This includes the two possibilities mentioned

above: allow for heteroskedasticity in Varu|x or nonnormality in

Du|x.
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∙ Another direction is to use an estimation method that identifies 

without many restrictions on Du|x. We already saw that if

Medu|x  Medu  0 then Medy|x  max0,x. This includes the

Tobit model as a special case (even if we add heteroskedasticity, since

Du|x would still have median zero).

∙ Because LAD identifies the parameters of a correctly specified

conditional median, we can solve

min
b∈RK
∑
i1

n

|yi − max0,xib|
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∙ This estimator is called the censored least absolute deviations

(CLAD) estimator.

∙ The objective function is continuous in the parameters, so consistency

is relatively straightforward provided we can establish identification

(not always easy).
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∙ The non-smoothness in the median function max0,xib (as a

function of b) and of the LAD function make asymptotic normality

hard, but Powell (1984) show it under general conditions. At least one

xj with nonzero j should be continuous, and the density of the error is

continuous near zero and strictly positive at zero.

∙ Estimation of the asymptotic variance has been coded, too.

Sometimes bootstrapping is used.
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∙ The estimates of the ̂j give partial effects of continuous variables on

the median once x  0. Ignoring what happens when x  0 [because

he assumptions used to derive the asymptotic properties of LAD always

include Px  0], we have

∂Medy|x
∂xj

 j1x  0.

∙ Given ̂ we can compute ̂j1x̂  0 for any vector x.

∙ For a discrete change, must evaluate max0,x̂ at the different values

of x.
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∙ Honoré (2008) has recently shown that even when u and x are not

independent, the quantity

jPy  0

can be interpreted as an average partial effect when xj is continuous.

Given the CLAD estimate ̂j, as before we can easily estimate this

quantity by ̂j̂ where ̂ is the fraction of strictly positive yi.

∙ Unfortunately, this does not work for discrete changes in xj.

∙ Plus we cannot use it to evaluate partial effects across different values

of x.
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∙ One way to view the CLAD approach is that it identfies

Medy|x  max0,x for a variety of shapes of Du|x. But there is a

cost: other features of Dy|x, such as the mean, are not identified. So,

CLAD does not allow us to aggregate the effects of a policy or

program. We can get the median effect for groups indexed by the

observed covariates.

∙ The CLAD approach does not work for two-part models, as we will

see.
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. clad hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0) reps(500)

Initial sample size  753
Final sample size  504
Pseudo R2  .12643936

Bootstrap statistics

Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]
----------------------------------------------------------------------------
nwifeinc | 500 -6.083408 -1.02711 6.052369 -17.97468 5.807859 (N)
----------------------------------------------------------------------------

educ | 500 72.48654 -3.507613 32.45573 8.719817 136.2533 (N)
----------------------------------------------------------------------------

exper | 500 120.1826 3.870493 21.22486 78.48153 161.8837 (N)
----------------------------------------------------------------------------

expersq | 500 -1.403609 -.1508735 .7030393 -2.78489 -.0223267 (N)
----------------------------------------------------------------------------

age | 500 -59.7946 -.102942 9.315551 -78.09713 -41.49206 (N)
----------------------------------------------------------------------------

kidslt6 | 500 -1075.789 -14.31295 215.2858 -1498.767 -652.8106 (N)
----------------------------------------------------------------------------

kidsge6 | 500 -97.81434 -20.24035 47.63005 -191.3945 -4.234172 (N)
----------------------------------------------------------------------------

const | 500 1568.482 58.27831 589.2338 410.7975 2726.167 (N)
-----------------------------------------------------------------------------
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6. ENDOGENOUS EXPLANATORY VARIABLES

∙ Can use a linear model and view the 2SLS estimates (say) as (rough?)

estimates of average partial effects. Has the benefit of “working” for

any kind of y2.

∙ If we want to allow nonconstant partial effects, we need to turn to

nonlinear models.

∙With a single EEV (for simplicity), consider the model

y1  max0,1y2  z11  u1

u1|z ~ Normal0,1
2

where z is the vector of all endogenous variables.
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∙ Analysis goes through if we replace z1,y2 with any known function

x1 ≡ g1z1,y2. Might be useful to include squares and cross products,

y2
2 and y2z1, to make the functional form more flexible.

∙ The parameters 1,1,1
2 index the average structural function, and

so they index the APEs, too.

∙ The Smith-Blundell (1986) approach is a control function approach.

y2  z2  v2  z121  z222  v2, 22 ≠ 0
v2|z~Normal0,2

2
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∙ Can relax normality in two-step methods. In fact, sufficient is

u1  1v2  e1

where 1  Covv2,u1/2
2 and e1 given v2,z has a Normal0,1

2

distribution with 1
2  1

2 − 1
22

2.

64



∙ As before, the CF approach is a two-step method. Write

y1  max0,1y2  z11  1v2  e1

which follows a Tobit model with explanatory variables y2,z1,v2. It

is useful to write this as

Dy1|y2,z  Tobit1y2  z11  1y2 − z2,1
2

 Tobit1y2  z11  1v2,1
2
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∙ So (1) Run the OLS regression yi2 on zi and get the residuals, v̂i2. (2)

Run Tobit of yi1 on yi2,zi1,vi2.

∙ The second step gives ̂1, ̂1, ̂1, and ̂1
2. If we want to use the original

parameters to compute APEs, set ̂1
2  ̂1̂2

2  ̂1
2 where ̂2

2 is the

estimated reduced form variance.
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∙ As a useful shorthand, define the Tobit mean function as

ma,2 ≡ a/a  a/.

∙ Then the estimated partial effects can be obtained by computing

derivatives or differences of mz1̂1  ̂1y2, ̂1
2 with respect to

elements of z1,y2, just as we did in the case of exogenous explanatory

variables.

∙ Or, we can use

ASFy2,z1  N−1∑
i1

N

m̂1y2  z1̂1  ̂1v̂i2, ̂1
2

which is valid under weaker assumptions.
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∙ For example, the partial effect with respect to y2 is estimated as

N−1∑
i1

N

̂1y2  z1̂1  ̂1v̂i2/̂1 ̂1,

which depends on y2,z1. Can do a further averaging out. to get a

single number.

∙ As with all control function procedures, we can easily allow more

general functional forms in both the exogenous and endogenous

variables (such as squares and interactions). In fact, if we replace

x1  z1,y2 with x1  g1z1,y2, then the estimation procedure and

calculation of the ASF are unchanged.
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∙ Some additional flexibility is gained by allowing Eu1|v2 to be

nonlinear – for example, a quadratic function,

Eu1|v2  1v2  1v2
2 − 2

2 (where the variance of v2 is subtracted

from v2
2 to ensure Eu1  0). Then we can write

u1  1v2  1v2
2 − 2

2  e1

and, if we maintain that e1 is independent of v2 and normally

distributed, we can easily extend the two-step procedure: the second

step of the procedure adds v̂2 and v̂2
2 − ̂2

2 as the control functions in the

Tobit estimation.
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∙ The easiest way to obtain APEs in this case is to use derivatives and

changes with respect to elements of x1 of

N−1∑
i1

N

mx1̂1  ̂1v̂i2  ̂1v̂i22 − ̂2
2, ̂1

2,
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∙ In the case where u1,v2 is independent of z with a bivariate normal

distribution, we can use MLE. Again, we use

fy1,y2|z  fy1|y2,zfy2|z, and note that

Dy1|y2,z  Tobit1y2  z11  1/2
2y2 − z2,1

2 − 1
2/2

2

Dy2|z  Normalz2,2
2

where 1  Covv2,u1.
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∙ In Stata, the command for joint MLE is “ivtobit.”

∙ Even if you use MLE, might want bootstrap standard errors for partial

effects; otherwise the delta method is complicated.

∙ Clearly need an exclusion restriction for identification

, just as in the linear case.
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. * Labor supply with nwifeinc potentially endogenous.

. * First estimate reduced form, where husband’s education

. * is the IV for nwifeinc:

. reg nwifeinc huseduc educ exper expersq age kidslt6 kidsge6

Source | SS df MS Number of obs  753
------------------------------------------- F( 7, 745)  27.13

Model | 20676.7705 7 2953.82436 Prob  F  0.0000
Residual | 81120.3451 745 108.886369 R-squared  0.2031

------------------------------------------- Adj R-squared  0.1956
Total | 101797.116 752 135.368505 Root MSE  10.435

------------------------------------------------------------------------------
nwifeinc | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
huseduc | 1.178155 .1609449 7.32 0.000 .8621956 1.494115

educ | .6746951 .2136829 3.16 0.002 .2552029 1.094187
exper | -.3129877 .1382549 -2.26 0.024 -.5844034 -.0415721

expersq | -.0004776 .0045196 -0.11 0.916 -.0093501 .008395
age | .3401521 .0597084 5.70 0.000 .2229354 .4573687

kidslt6 | .8262719 .8183785 1.01 0.313 -.7803305 2.432874
kidsge6 | .4355289 .3219888 1.35 0.177 -.1965845 1.067642

_cons | -14.72048 3.787326 -3.89 0.000 -22.15559 -7.285383
------------------------------------------------------------------------------
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. predict v2h, resid

. tobit hours nwifeinc v2h educ exper expersq age kidslt6 kidsge6, ll(0)

Tobit regression Number of obs  753
LR chi2(8)  273.76
Prob  chi2  0.0000

Log likelihood  -3818.0118 Pseudo R2  0.0346

------------------------------------------------------------------------------
hours | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -31.48215 16.0376 -1.96 0.050 -62.96641 .0021189

v2h | 24.41832 16.58452 1.47 0.141 -8.139637 56.97628
educ | 116.7814 32.75978 3.56 0.000 52.46891 181.0939

exper | 124.3488 17.87502 6.96 0.000 89.25736 159.4402
expersq | -1.8972 .5371614 -3.53 0.000 -2.95173 -.8426702

age | -46.89244 8.957672 -5.23 0.000 -64.47773 -29.30716
kidslt6 | -867.9131 112.9024 -7.69 0.000 -1089.558 -646.2684
kidsge6 | -6.32605 39.16561 -0.16 0.872 -83.21414 70.56204

_cons | 722.1032 475.689 1.52 0.129 -211.7472 1655.954
-----------------------------------------------------------------------------

/sigma | 1119.844 41.49319 1038.387 1201.302
------------------------------------------------------------------------------

Obs. summary: 325 left-censored observations at hours0
428 uncensored observations

0 right-censored observations
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. * Some, but not strong, evidence of endogeneity of nwifeinc: p-value  .141.

. * Now use MLE. Should get same estimates because

. * just identified.

. ivtobit hours educ exper expersq age kidslt6 kidsge6 (nwifeinc  huseduc),
ll(0)

Tobit model with endogenous regressors Number of obs  753
Wald chi2(7)  248.26

Log likelihood  -6648.3509 Prob  chi2  0.0000

------------------------------------------------------------------------------
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
hours |

nwifeinc | -31.48201 16.37719 -1.92 0.055 -63.58071 .6166817
educ | 116.7812 33.45288 3.49 0.000 51.21473 182.3476

exper | 124.3488 18.21246 6.83 0.000 88.65303 160.0446
expersq | -1.8972 .5482816 -3.46 0.001 -2.971812 -.8225878

age | -46.89249 9.135658 -5.13 0.000 -64.79805 -28.98692
kidslt6 | -867.9132 114.6915 -7.57 0.000 -1092.705 -643.1219
kidsge6 | -6.326111 39.96683 -0.16 0.874 -84.65966 72.00744

_cons | 722.1047 485.6203 1.49 0.137 -229.6936 1673.903
-----------------------------------------------------------------------------

/alpha | 24.41818 16.91313 1.44 0.149 -8.730942 57.5673
/lns | 7.020945 .0370527 189.49 0.000 6.948323 7.093567
/lnv | 2.339812 .0257684 90.80 0.000 2.289307 2.390317

-----------------------------------------------------------------------------
s | 1119.844 41.49329 1041.401 1204.195
v | 10.37929 .2674576 9.868095 10.91696

------------------------------------------------------------------------------
Instrumented: nwifeinc
Instruments: educ exper expersq age kidslt6 kidsge6 huseduc
------------------------------------------------------------------------------
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Wald test of exogeneity (/alpha  0): chi2(1)  2.08 Prob  chi2  0.1488

Obs. summary: 325 left-censored observations at hours0
428 uncensored observations

. * Clearly some rounding error, but the same.

. * Should compute APEs, compare with linear IV.
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7. PANEL DATA

∙ Guess what? It is not crazy to use a linear unobserved effects model

when yit is the response variable of interest.

∙ Drawbacks are the functional form for Eyit|xit,ci, but we need not

restrict Dci|xi – just as in any limited dependent variable context.

∙ Start with the unobserved effects Tobit model

yit  max0,xit  ci  uit
Duit|xit,ci  Normal0,u2
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∙ Ideally, we could proceed without further assumptions, although that

would leave open the question of values to insert for c in, say, partial

effects on Eyit|xit  xt,ci  c, or how to average out across the

distribution of ci.

∙ If the ci are treated as parameters to estimate along with  and u2, for

“small” T an incidental parameters problem arises with for estimating 

and u2. It is possible the average partial effects are better behaved than

the estimates themselves, but I have no evidence on that.
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∙What parametric assumptions are sufficient for estimating , u2, and

the APEs?

∙ Not surprisingly, the same assumptions that come up in UE probit

models arise here as well.

∙ Strict exogeneity conditional on ci:

Duit|xi,ci  Duit|xit,ci

∙ Conditional independence (conditional on xi  xi1, . . . ,xiT and ci:

Dui1, . . . ,uiT|xi,ci  Dui1|xi,ciDuiT|xi,ci
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∙Model for Dci|xi (Mundlak special case of Chamberlain approach):

ci    x̄i  ai, ai|xi~Normal0,a2.

∙ Can include time dummies in xit but omit from x̄i. Can also include

time-constant elements (say wi) as controls. That is, write

ci    x̄i  wi  ai.

∙ If   0, get the traditional random effects Tobit model. Adding x̄i

allows a specific form of correlation.

∙MLE (conditional on xi) is relatively straightforward. It is based on

the joint distribution Dyi1, . . . ,yiT|xi.
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∙ As with CRE probit, get log likelihood by “integrating out” ci:

li,,,a2,u2  log 
−



t1

T

fyit|xit,c;,u2 hc|x̄i;,,a2dc

where fyt|xt,c;,u2 is the Tobitxt  c,u2 density and

hc|x̄;,,a2 is the Normal density.

81



∙ In Stata, called “xttobit” with the “re” option:

xttobit y x1 x2 ... xK x1bar ... xKbar, ll(0) re

∙ As in the probit case, we can estimate c and c2:

̂c  ̂  x̄̂

̂c2 ≡ ̂
′ N−1∑

i1

N

x̄i − x̄′x̄i − x̄ ̂  ̂a2
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∙ Then, we can evaluate the partial effects of the Tobit function,

mxt̂  c, ̂u2 at different values of c, including ̂c and ̂c  k̂c.

∙ Take derivatives or changes with respect to xt. For a continuous

variable,

̂jxt̂  c/̂u

∙ APEs can be estimated from the mean function for the Tobit:

ASFxt  N−1∑
i1

n

mxt̂  ̂  x̄i̂, ̂a2  ̂u2

∙ Take derivatives and differences with respect to elements of xt; can

further average. Panel bootstrap!
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∙ For a continuous xtj,

̂j N−1∑
i1

N

xt̂  ̂  x̄i̂/̂a2  ̂u21/2

∙ To estimate the APEs, note it suffices to estimate v2  a2  u2.

∙ Suppose we drop the conditional independence assumption and allow

and serial dependence in uit. then

Dyit|xi  Dyit|xit, x̄i  Tobitxit    x̄i,v2
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∙ So, we can apply pooled Tobit, ignoring the serial correlation, to

estimate ,,, and v2. We can then use the above formula for the

APEs. We cannot estimate PEAs because Eci is not identified; neither

is  nor u2.

∙ Adding time constant variables wi to the full MLE or the pooled

Tobit is straightforward. Interpreting the coefficients is more difficult.

Are they in the model because they are correalted with ci, or do they

appear directly? One cannot make this distinction.
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. use psid80_92

. tab year

80 to 92 | Freq. Percent Cum.
-----------------------------------------------

80 | 898 7.69 7.69
81 | 898 7.69 15.38
82 | 898 7.69 23.08
83 | 898 7.69 30.77
84 | 898 7.69 38.46
85 | 898 7.69 46.15
86 | 898 7.69 53.85
87 | 898 7.69 61.54
88 | 898 7.69 69.23
89 | 898 7.69 76.92
90 | 898 7.69 84.62
91 | 898 7.69 92.31
92 | 898 7.69 100.00

-----------------------------------------------
Total | 11,674 100.00

. * First, linear FE:

. xtreg hours nwifeinc ch0_2 ch3_5 ch6_17 marr y81-y92, fe cluster(id)

Fixed-effects (within) regression Number of obs  11674
Group variable (i): id Number of groups  898

R-sq: within  0.0719 Obs per group: min  13
between  0.0936 avg  13.0
overall  0.0855 max  13

F(17,11657)  15.72
corr(u_i, Xb)  -0.0945 Prob  F  0.0000
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(Std. Err. adjusted for 898 clusters in id)
------------------------------------------------------------------------------

| Robust
hours | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.7752375 .3429502 -2.26 0.024 -1.448316 -.1021593

ch0_2 | -342.3774 26.64763 -12.85 0.000 -394.6763 -290.0784
ch3_5 | -254.1283 25.87788 -9.82 0.000 -304.9165 -203.34

ch6_17 | -42.95787 14.88673 -2.89 0.004 -72.17475 -13.74099
marr | -634.8048 286.1714 -2.22 0.027 -1196.448 -73.1613

y81 | -4.819715 16.29731 -0.30 0.767 -36.80502 27.16559
y82 | -14.88765 21.1851 -0.70 0.482 -56.4658 26.69049
y83 | 6.612531 22.49192 0.29 0.769 -37.53039 50.75545
y84 | 93.79139 25.58646 3.67 0.000 43.5751 144.0077
y85 | 88.73714 25.97019 3.42 0.001 37.76773 139.7065
y86 | 82.66214 27.36886 3.02 0.003 28.94769 136.3766
y87 | 64.28464 27.83649 2.31 0.021 9.652411 118.9169
y88 | 63.79163 29.35211 2.17 0.030 6.184826 121.3984
y89 | 72.98518 30.60838 2.38 0.017 12.91279 133.0576
y90 | 71.24956 31.55331 2.26 0.024 9.322657 133.1765
y91 | 64.67996 32.47097 1.99 0.047 .9520418 128.4079
y92 | 16.01242 33.21255 0.48 0.630 -49.17093 81.19577

_cons | 1786.02 247.297 7.22 0.000 1300.672 2271.368
-----------------------------------------------------------------------------

sigma_u | 701.66249
sigma_e | 503.92334

rho | .65972225 (fraction of variance due to u_i)
------------------------------------------------------------------------------

. * Compute time averages:

. egen nwifeincb  mean(nwifeinc), by(id)

. egen ch0_2b  mean(ch0_2), by(id)
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. egen ch3_5b  mean(ch3_5), by(id)

. egen ch6_17b  mean(ch6_17), by(id)

. egen marrb  mean(marr), by(id)

. * Correlated RE Tobit:

. xttobit hours nwifeinc ch0_2 ch3_5 ch6_17 marr y81-y92 nwifeincb-marrb, ll(0)

Random-effects tobit regression Number of obs  11674
Group variable (i): id Number of groups  898

Random effects u_i ~Gaussian Obs per group: min  13
avg  13.0
max  13

Wald chi2(22)  1501.20
Log likelihood  -70733.195 Prob  chi2  0.0000

------------------------------------------------------------------------------
hours | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -1.554228 .3816927 -4.07 0.000 -2.302332 -.8061243

ch0_2 | -472.088 23.03087 -20.50 0.000 -517.2277 -426.9483
ch3_5 | -329.3896 19.49411 -16.90 0.000 -367.5974 -291.1819

ch6_17 | -46.11619 10.89609 -4.23 0.000 -67.47213 -24.76024
marr | -784.1809 155.0133 -5.06 0.000 -1088.001 -480.3604

y81 | -7.060588 31.52257 -0.22 0.823 -68.84369 54.72251
y82 | -38.9034 31.70009 -1.23 0.220 -101.0344 23.22764
y83 | -9.719573 31.68694 -0.31 0.759 -71.82483 52.38569
y84 | 99.77618 31.61932 3.16 0.002 37.80345 161.7489
y85 | 89.15912 31.7439 2.81 0.005 26.94222 151.376
y86 | 82.60212 31.76385 2.60 0.009 20.34612 144.8581
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y87 | 48.59097 31.98439 1.52 0.129 -14.09729 111.2792
y88 | 53.52189 32.09804 1.67 0.095 -9.389108 116.4329
y89 | 68.69013 32.23667 2.13 0.033 5.507414 131.8728
y90 | 71.2654 32.3657 2.20 0.028 7.8298 134.701
y91 | 64.89096 32.48217 2.00 0.046 1.227067 128.5548
y92 | 4.334129 32.82961 0.13 0.895 -60.01072 68.67898

nwifeincb | -7.639696 .6815067 -11.21 0.000 -8.975424 -6.303967
ch0_2b | -143.4709 155.0915 -0.93 0.355 -447.4448 160.5029
ch3_5b | 531.2027 150.388 3.53 0.000 236.4475 825.9578

ch6_17b | 5.854889 28.04159 0.21 0.835 -49.10563 60.8154
marrb | 422.1631 161.491 2.61 0.009 105.6465 738.6796
_cons | 1646.362 45.26091 36.37 0.000 1557.652 1735.072

-----------------------------------------------------------------------------
/sigma_u | 756.4032 10.45016 72.38 0.000 735.9213 776.8851
/sigma_e | 621.7044 5.02536 123.71 0.000 611.8549 631.5539

-----------------------------------------------------------------------------
rho | .5968169 .0069011 .5832357 .6102823

------------------------------------------------------------------------------

Observation summary: 3071 left-censored observations
8603 uncensored observations

0 right-censored observations

. testparm nwifeincb-marrb

( 1) [hours]nwifeincb  0
( 2) [hours]ch0_2b  0
( 3) [hours]ch3_5b  0
( 4) [hours]ch6_17b  0
( 5) [hours]marrb  0

chi2( 5)  165.08
Prob  chi2  0.0000
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. gen xbhata  xbhat/sqrt(756.4032^2  621.7044^2)

. gen PHIhata  norm(xbhata)

. sum PHIhata if y92

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

PHIhata | 898 .8367103 .0953704 .0029178 .9654008

-----------------------------------------------------------------------------------------

. di (.837)*(-1.554)
-1.300698

. di (.837)*(-472.09)
-395.13933

. * Pooled Tobit with Time Averages:

. tobit hours nwifeinc ch0_2 ch3_5 ch6_17 marr y81-y92 nwifeincb-marrb, ll(0)

Tobit regression Number of obs  11674
LR chi2(22)  1352.20
Prob  chi2  0.0000

Log likelihood  -75313.315 Pseudo R2  0.0089

------------------------------------------------------------------------------
hours | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -1.796524 .6073205 -2.96 0.003 -2.986975 -.6060744

ch0_2 | -491.6069 38.36112 -12.82 0.000 -566.8011 -416.4127
ch3_5 | -347.5099 32.7817 -10.60 0.000 -411.7675 -283.2523

ch6_17 | -48.12398 18.14746 -2.65 0.008 -83.69604 -12.55191
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marr | -788.6605 257.0461 -3.07 0.002 -1292.514 -284.8071
y81 | -1.723103 52.74963 -0.03 0.974 -105.1212 101.675
y82 | -29.93459 52.90393 -0.57 0.572 -133.6352 73.76597
y83 | .1544965 52.88423 0.00 0.998 -103.5075 103.8165
y84 | 111.7593 52.84133 2.11 0.034 8.181439 215.3372
y85 | 98.8203 53.02693 1.86 0.062 -5.121366 202.762
y86 | 91.11779 53.07409 1.72 0.086 -12.91632 195.1519
y87 | 56.20641 53.35906 1.05 0.292 -48.38629 160.7991
y88 | 58.45143 53.59859 1.09 0.275 -46.61078 163.5136
y89 | 74.11085 53.83913 1.38 0.169 -31.42287 179.6446
y90 | 77.83721 54.05111 1.44 0.150 -28.11203 183.7865
y91 | 70.43439 54.27841 1.30 0.194 -35.96039 176.8292
y92 | 4.969863 54.81622 0.09 0.928 -102.4791 112.4188

nwifeincb | -7.248981 .7293248 -9.94 0.000 -8.678579 -5.819382
ch0_2b | 152.0109 124.2391 1.22 0.221 -91.51857 395.5403
ch3_5b | 151.7502 118.9341 1.28 0.202 -81.38056 384.881

ch6_17b | 44.11858 25.07548 1.76 0.079 -5.033552 93.27072
marrb | 471.4367 259.4683 1.82 0.069 -37.16466 980.0381
_cons | 1581.923 46.08447 34.33 0.000 1491.59 1672.256

-----------------------------------------------------------------------------
/sigma | 1079.331 8.836301 1062.01 1096.651

------------------------------------------------------------------------------
Obs. summary: 3071 left-censored observations at hours0

8603 uncensored observations
0 right-censored observations

. * These differ somewhat, but not in major ways, from the full MLEs.

. * Now drop the time averages, so RE Tobit:

. xttobit hours nwifeinc ch0_2 ch3_5 ch6_17 marr y81-y92, ll(0)

Random-effects tobit regression Number of obs  11674
Group variable (i): id Number of groups  898
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Random effects u_i ~Gaussian Obs per group: min  13
avg  13.0
max  13

Wald chi2(17)  1222.37
Log likelihood  -70782.086 Prob  chi2  0.0000

------------------------------------------------------------------------------
hours | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -2.25119 .3248083 -6.93 0.000 -2.887803 -1.614578

ch0_2 | -459.927 22.67389 -20.28 0.000 -504.3671 -415.487
ch3_5 | -313.4996 18.81897 -16.66 0.000 -350.3841 -276.6151

ch6_17 | -32.33052 9.819359 -3.29 0.001 -51.57611 -13.08493
marr | -657.5755 48.93306 -13.44 0.000 -753.4825 -561.6684

y81 | -6.015057 31.64666 -0.19 0.849 -68.04136 56.01125
y82 | -37.89952 31.82432 -1.19 0.234 -100.274 24.47499
y83 | -7.2714 31.78778 -0.23 0.819 -69.5743 55.0315
y84 | 104.3436 31.71544 3.29 0.001 42.18249 166.5047
y85 | 94.90622 31.82266 2.98 0.003 32.53496 157.2775
y86 | 89.38999 31.84555 2.81 0.005 26.97386 151.8061
y87 | 57.1533 32.03317 1.78 0.074 -5.630564 119.9372
y88 | 64.08813 32.11484 2.00 0.046 1.144192 127.0321
y89 | 81.55682 32.20542 2.53 0.011 18.43536 144.6783
y90 | 85.75216 32.26838 2.66 0.008 22.50728 148.997
y91 | 80.93763 32.36379 2.50 0.012 17.50576 144.3695
y92 | 22.68549 32.63686 0.70 0.487 -41.28158 86.65255

_cons | 1676.368 39.27514 42.68 0.000 1599.39 1753.346
-----------------------------------------------------------------------------

/sigma_u | 768.5483 12.40411 61.96 0.000 744.2367 792.8599
/sigma_e | 624.285 5.068197 123.18 0.000 614.3515 634.2185

-----------------------------------------------------------------------------
rho | .6024761 .0077085 .5872944 .6175041

------------------------------------------------------------------------------
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Observation summary: 3071 left-censored observations
8603 uncensored observations

0 right-censored observations

. predict xbhat, xb

. gen xbhata  xbhat/sqrt(768.5483^2  624.285^2)

. gen PHIhata  normal(xbhata)

. sum PHIhata if y92

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

PHIhata | 898 .8240658 .0724009 .3761031 .9578886

. * The scale factor is similar, but the coefficient estimates are somewhat different.
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∙ There is also a way to estimate dynamic Tobit models using RE

software.

∙ Assume, as with dynamic probit and ordered probit,

Dyit|zi,yi,t−1, . . . ,yi0,ci  Dyit|zit,yi,t−1,ci, t  1, . . . ,T,

which combines correct dynamic specification with strict exogeneity of

zit.
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∙ Tobit model: We assume

yit  max0,zit  yi,t−1  ci  uit, t  1, . . . ,T

and

uit|zi,yi,t−1, . . . ,yi0,ci~Normal0,u2, t  1, . . . ,T.

∙Makes sense only for corner solutions. Even then, not clear how

lagged y should appear. Could define a dummy variable

wit  1yit  1 and use, say, 11 − wi,t−1  2yi,t−1. Can also interact

these with the zit.
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∙ A simple analysis is obtained from

ci|zi,yi0  Normal  0yi0  zi,a2

or by letting this depend more flexibly on the initial value, yi0, as with

the lags above. Then we have

yit  max0,zit  yi,t−1    0yi0  zi  ai  uit.

∙ The log-likelihood takes the same form as the RE Tobit model with

strictly exogenous variables, even though the explanatory variables are

not strictly exogenous.
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∙ As in the probit and OP cases, a pooled Tobit analysis, with the same

set of explanatory variables, is not consistent for the parameters.

∙ The APEs are again easy to compute:

N−1∑
i1

N

mzt̂  ̂yt−1  ̂  ̂oyi0  zi̂, ̂a2  ̂u2,

where all estimates are from the MLE procedure.

∙ For a continuous variable, the scale factor is

N−1∑
i1

N

zt̂  ̂yt−1  ̂  ̂oyi0  zi̂̂a2  ̂u2−1/2,

and one can further average across zt,yt−1.
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∙ Extensions along the lines of allowing heteroskedasticity in

Dci|yi0,zi, flexible conditional means, and even more flexible

distributions, seem worth exploring.

Honoré (1993) shows how to estimate  and  without distributional

assumptions for ci or uit. Partial effects at different values of zt,yt−1

are not available, and yt−1 must appear in linear, additive form. (It is

easy to extend the CMLE approach allow general functions of

zit,yi,t−1.)
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8. TWO-LIMIT TOBIT MODELS

∙ Now allow for two limits. These might be logical or institutional

constraints. Common are corners at 0 and 1 or 0 and 100.

∙ But suppose workers are allowed to contribute at most 15% of their

earnings to a tax-deferred pension plan, and yi is the percentage of

income contributed for worker i, then the corners are at zero and 15.

(The arbitrariness of the cap of 15 raises other interesting questions,

such as: what would happen if the cap were not there, or what would

happen if it is raised?)
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∙ Generally, let a1  a2 be the two limit values of y in the population.

Then the two-limit Tobit model is most easily defined in terms of an

underlying latent variable:

y∗  x  u, u|x ~ Normal(0,2

y  a1 if y∗ ≤ a1

y  y∗ if a1  y∗  a2

y  a2 if y∗ ≥ a2

∙ Not logically consistent if, say, 0 ≤ y  1 because the Tobit implies a

pile up at both endpoints. (In 821B we will cover other approaches to

fractional responses.)
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∙ Density of y is the same as y∗ for values in a1,a2, which as the

Normalx,2 form.

∙ The endpoint probabilities are

Py  a1|x  a1 − x/
Py  a2|x  −a2 − x/.

∙ The log likelihood for a random draw i is

logfyi|xi;  1yi  a1 loga1 − xi/
 1yi  a2 log−a2 − xi/
 1a1  yi  a2 log1/yi − xi/.
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∙Well behaved and standard asymptotic theory for MLE applies. Easy

to obtain Wald and LR statistics for exclusion restrictions.

∙Many econometrics packages that estimate the standard Tobit model

also allow specifying any lower and upper limit. In Stata,

tobit y x1 x2 ... xk, ll(a1) ul(a2)

∙ Can compute several expectations to obtain magnitudes of effects.

For example, the expectation conditional on not being at a limit point is
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Ey|x,a1  y  a2  x  a1 − x/ − a1 − x/
a2 − x/ − a1 − x/

where the term after x is the extension of the inverse Mills ratio.

∙ The so-called unconditional expectation can be gotten from

Ey|x  a1Py  a1|x  Pa1  y  a2|xEy|x,a1  y  a2

 a2Py  a2|x
 a1a1 − x/  Pa1  y  a2|xEy|x,a1  y  a2

 a2−a2 − x/.

∙ These equations are a bit cumbersome to work with, but they do

allow us to obtain predicted values for an vector x, once we have

obtained the MLES.
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∙ As with the single corner at zero, the partial effect of a continuous

variable xj on Ey|x simplifies to a remarkable degree:

∂Ey|x
∂xj

 a2 − x/ − a1 − x/j.

∙ Can compute partial effects at specific values of x, and average

partial effects, especially easy to compute for continuous explanatory

variables. For APEs we have

N−1∑
i1

N

a2 − xi̂/̂ − a1 − xi̂/̂ ̂j,

where the scale factor is between zero and one.
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∙ To determine how linear model estimates compare for estimating

APEs, we should compare the OLS estimates for continuous variables

directly to the scaled Tobit coefficients.

∙ If ̂ j is the OLS slope estimate on the continuous variable xj, from the

regression yi on xi using all of the data, then ̂ j is compared to the

scaled Tobit coefficient. (This is most meaningful for continuous xj,

and might not be especially useful for discrete covariates.)

∙ APEs for binary variables should be obtained from the conditional

mean equations, where we difference the two expected values at the

two settings of the binary variable, and then average the differences.
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∙ From the latent variable formulation of the model, should be clear

how to adapt the Smith-Blundell and Chamberlain-Mundlak

procedures. In the latter, still assume ci    x̄i  ri  uit where

ri|xi ~ Normal0,r2

Then we use a two-limit Tobit with explanatory variables 1,xit, x̄i

(and probably year dummies, and maybe even time constant variables

wi).

∙ Again can use the the RE two-limit Tobit that assumes uit is

serially uncorrelated with variance u2, or can use pooled two-limit

Tobit.
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