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1. INTRODUCTION

∙ Traditionally, maximum likelihood estimation, usually conditional on

a set of explanatory variables, is studied under the assumption that the

underlying density function is correctly specified.

∙ In econometrics, White (1982, Econometrica) popularized the notion

that the underlying density might be completely misspecified, resulting

in the notion of quasi-maximum likelihood (sometimes

pseudo-maximum likelihood). This raises several questions.
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∙ (1) If the model is generally misspecified, how to we interpret our

estimates? (Technically, how do we interpret the probability limits of

the quasi-MLEs?)

∙ (2) If we admit that our model is likely to be misspecified, how do we

perform statistical inference?
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∙ (3) How might we detect whether a particular density is misspecified?

(Generally, we can nest a particular model in a more general model and

perform Wald and Lagrange Multiplier tests.)

∙ (4) If we maintain the notion that all models are, at best,

approximations, are there ways to choose between competing models

that are nonnested? This leads tomodel selection tests.
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∙ In some cases, maximizing a log-likelihood function that is not

correct in its entirety can nevertheless consistently estimate parameters

in a feature that is correctly specified, usually the condition mean but

sometimes the conditonal mean and conditional variance. The work of

Gourieroux, Monfort, and Trognon (1984a, Econometrica) was very

influential.
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∙ The same ideas can be applied to cross section and panel data. For

panel data, we already studied partial maximum likelihood where, say,

a density for Dyit|xit, t  1, . . . ,T is assumed to be correct, but the

joint distribution is left unspecified. But the model for Dyit|xit might

be wrong, or maybe Eyit|xit is correctly specified but other features of

Dyit|xit are wrong.
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2. GENERAL MISSPECIFICATION

∙We assume standard regularity conditions that make the asymptotic

analysis simple, namely, that the quasi-log-likelihood function, log

fyi|xi;, is twice continuously differentiable in .

∙ The key difference now is that we do not assume a “true” value of

theta, which we called o. Instead, we postulate the existence of a

unique solution to the population problem

max
∈Θ

Elog fyi|xi;,     (1)

which we denote this value by ∗. Often called the pseudo-true value.
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∙White (1982, 1994) discusses the interpretation of ∗ as providing the

best approximation to the true density in the parametric class fy|x;,

where closeness is measured in terms of the Kullback-Leibler

information criterion; see also the appendix to Chapter 13.

∙ Still let ̂ denote the solution to

max
∈Θ
∑
i1

N

log fyi|xi;.     (2)

Now call this the quasi-maximum likelihood estimator (QMLE) (or

sometimes “pseudo” replaces “quasi”).
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∙ Consistency of ̂ for ∗ follows in the same way as when the model is

correctly specified, provided ∗ is unique, the objective function is

continuous in  (and we can relax to that continuity “with probability

one”), and other regularity conditions hold.

∙ Asymptotic inference concerning ∗ is more interesting. For one, the

information matrix equality would only hold by fluke. Second, except

in cases where particular features of the distribution are correctly

specified, calulations of expected Hessians (conditional on covariates)

are generally incorrect.
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∙ In the absense of further information, there is only one legitimate

estimator of Avar̂:

Avar̂  ∑
i1

N

Hi̂
−1

∑
i1

N

s i̂s i̂′ ∑
i1

N

Hi̂
−1

,     (3)

where, as before, s i is the P  1 score vector and Hi is the P  P

Hessian.

∙ As usual, this estimator is “legitimate” in the sense that, when divided

by N, the right hand side converges in probability to

Avar N ̂ − ∗  A∗−1B∗A∗−1, where A∗ ≡ −EHi∗ and

B∗ ≡ Es i∗s i∗′.
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∙ Asymptotic t statistics for testing hypotheses about the j∗ are easily

obtained because the asymptotic standard errors of the ̂j are the square

roots of the diagonal elements of the estimated asymptotic variance

matrix.

∙ Score tests also need to use the sandwich form, where ̂ is replaced by

̃, the restricted estimate. Fortunately, even though Ã might not be

positive definite, the sandwich estimator is always at least positive

semidefinite because because B̃ is always at least positive semidefinite.
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∙ Inference based on the quasi-likelihood ratio statistic is not tractable:

the LR statistic no longer has a limiting chi-square distribution and its

limiting distribution depends on unknown parameters.

∙ As an example, consider the probit model but where

Pyi  1|xi ≠ xi for all K  1 vectors , so the probit model is

misspecified. Let ̂ be obtained by maximizing the probit

log-likelihood.

∙ Under weak conditions ̂ converges in probability to ∗ ∈ K where

x∗ provides the “best” approximation to Pyi  1|xi  x in the

sense of minimizing the Kullback-Leibler distance.
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∙ For a continuous explanatory variable, say xj, we would estimate the

partial effect of xj on Pyi  1|xi  x as the partial derivative ̂jx̂,

which consistently estimates j∗x∗.

∙ To get valid confidence intervals for j∗ and partial effects such as

x∗, we need to use the fully robust sandwich estimator (along with

the delta method). Or, use the nonparametric bootstrap.

∙ Viewing the probit model as an appoximation to the true response

probability is really no different than thinking of the linear probability

model as an approximation. Probit might be a better approximation.
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∙ In Stata:

probit y x1 x2 ... xK, robust

∙ Need to understand that this command does not produce valid

inference of the index parameters in a “heteroskedastic probit.” That is,

if we write

yi  1xio  ei  0
Dei|xi  Normal0,hxi,

    (4)
    (5)

but then use standard probit, ∗ ≠ o. (In fact, in many cases ∗ would

not be very close to o.)
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∙ As far as we know, the only interpretation of ∗ is as the “best”

approximation to Py  1|x using the misspecified model

Py  1|x  x.

∙Whether probit provides a good approximation is generally difficult

to say. But we can do inference on the pseudo-true parameters and

partial effects.
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∙We can also allow for complete density misspecification in the

context of partial (pooled) MLE. We must allow for a general estimate

of the Hessian: for each i,

Hi̂ ∑
t1

T

Hit̂     (6)

∙Without assuming that ftyt|xt; is correctly specified for each t it

makes little sense to discuss dynamic completeness, and the scores are

generally serially correlated (when evaluated now at ∗).
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∙Without further analysis one should use, in the sandwich,

s i̂ ∑
t1

T

s it̂     (7)

so that terms s it̂s ir̂′ for t ≠ r are accounted for, as in pooled MLE

with correctly specified marginal densities.
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∙ Packages such as Stata properly compute the asymptotic variance

estimate when the “cluster” option is used. For example, for panel data,

the command

probit y x1 x2 ... xK, cluster(id)

can be used to make inference robust not just to incomplete dynamics,

but also to misspecification of the marginal distribution.

18



∙ Exercise: If Pyit  1|xit  xito, but this model is not

dynamically complete, provide an estimator of Avar̂ (for the pooled

MLE) that is valid and uses only first derivatives.

∙ Similar comments hold for other models estimated by pooled MLE.
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3. MODEL SELECTION TESTS

∙ Properties of MLE under general misspecification can be used to

derive a model selection test due to Vuong (1988).

∙ The test is intended to allow one to choose between competing

models. Here we treat the case where the two models are, in a sense to

be made precise, nonnested. (When one model is a special case of the

other, the score approach provides a much simpler way to test an

attractive null model against a more general alternative.)
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∙ If we are content with just choosing the model with the “best fit”

given the data at hand, then it is legitimate to choose the model with the

largest value of the log-likelihood.

∙ Having the largest log likelihood – more precisly, the largest expected

log-likelihood – is necessary but not sufficient for a model to be

correctly specified. (Cannot compare all possible models.) A density

model cannot be correctly specified if it delivers (asymptotically) a

lower average log-likelihood than another model.

∙ Comparing log-likelihood values is analogous to comparing

R-squareds in a regression context.
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∙ As suggested by Vuong (1988), it is useful to attach statistical

significance to the difference in log likelihoods. For nonnested models,

this turns out to be very easy.

∙ Let f1y|x;1 and f2y|x;2 be competing models for the density of

Dyi|xi, where both may be misspecified. Let ̂1 and ̂2 be the

quasi-maximum likelihood estimators converging to 1
∗ and 2

∗,

respectively. Let ℒm  ∑i1
N ℓim̂m be the quasi-log likelihood

evaluated at the relevant estimate for m  1, 2. Then

ℒ1 − ℒ2/N
p
→ Elog f1yi|xi;1

∗ − Elog f2yi|xi;2
∗,     (8)

where the expected values are over the joing distribution xi,yi.

22



∙We can actually say more. Using a mean value expansion and the

N -consistency of ̂m
∗ for m∗ , it can be shown that

N−1/2ℒ1 − ℒ2  N−1/2∑
i1

N

ℓi1̂1 − ℓi2̂2

 N−1/2∑
i1

N

ℓi11
∗ − ℓi22

∗  op1.     (9)

(See Problem 13.13.)

∙ Key to obtaining a simple model specification test because it shows

that the estimators ̂1 and ̂2 do not affect that asymptotic distribution

of N−1/2ℒ1 − ℒ2.
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∙ Therefore, we can obtain an asymptotic normal distribution for

N−1/2ℒ1 − ℒ2 under the null hypothesis

H0 : Eℓi11
∗  Eℓi22

∗.     (10)

∙ Under this null,

N−1/2∑
i1

N

ℓi11
∗ − ℓi22

∗
d
→ Normal0,2     (11)

where 2  Varℓi11
∗ − ℓi22

∗.
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∙ A consistent estimator of 2 is just the sample variance of the

individual differences, d̂i ≡ ℓi1̂1 − ℓi2̂2:

̂2 ≡ N−1∑
i1

N

d̂i − d̂2.     (12)

∙ Voung’s model selection (VMS) statistic is

N−1/2ℒ1 − ℒ2/̂ 
N−1/2∑i1

N d̂i

N−1∑i1
N d̂i − d̂2

1/2
d
→ Normal0, 1,     (13)

where the limiting standard normal distribution holds under H0.
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∙ If we use N − 1−1 in place of N−1 in computing ̂2 we get the

standard t statistic for testing a zero mean for d̂i. (But we act as if

d̂i  di, which is justified asymptotically.)

∙ To make thecomputations simple, compute d̂i for each i and then

regress d̂ion 1, i  1, . . . ,N, to test that the mean is different from zero.
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∙ Need to understand the scope of its application, including the

underlying null hypothesis. Cannot use the VMS statistic and its

limiting standard normal distribution for testing nested models under

correct specification. Recall that the LR statistic is simply

LR  2ℒur − ℒr, and, under the null, LR has a limiting Q2

distribution, where Q is the number of restrictions. The important point

is that, if the models are nested and correctly specified, then

ℓi11
∗ − ℓi22

∗  ℓio − ℓio  0.

∙ This degeneracy, namely, that 2  0, makes the VMS statistic

useless.
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∙ The sense in which the models must be nonnested to apply Vuong’s

approach is that

Pℓi11
∗ ≠ ℓi22

∗  0.     (14)

In other words, the log-likelihoods evaluated at the psuedo true values

1
∗ and 2

∗ must differ for a nontrivial set of outcomes on xi,yi. This

not only rules out models that are obviously nested, but it rules out

other degeneracies, too.
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∙ For example, if yi is a count variable, xi  1,xi2, . . . ,xiK, and we

specify different Poisson distributions – the first with mean function

expxi and the second with mean function xi2 – these models are

nonnested provided that the mean of yi given xi actually depends on the

nonconstant elements in xi.

∙ But if Eyi|xi  Eyi, then f1y|x;1
∗ and f2y|x;2

∗ are Poisson

distributions with the same (constant) means, and the limiting standard

normal distribution for Vuong’s statistic fails.
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∙ On the other hand, if the cpmpeting models are Poisson and

geometric, even with the same mean function, say expxi, the models

are nonnested no matter what because the Poisson and geometric

distributions differ even if they both have constant means.

∙ Because the models must be nonnested, Eℓi11
∗  Eℓi22

∗ can

only hold if both models are misspecified. If one model were correctly

specified, yet the densities differed, then we would have a strict

inequality in favor of the correctly specified model.
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∙ Summary: Vuong’s test: it applies to nonnested models where the null

hypothesis is that both models are misspecified yet fit equally well.

∙ If we reject model 2 in favor of model 1 because VSM is statistically

greater than zero, then we can only conclude that model 1 fits better in

the sense that Eℓi11
∗  Eℓi22

∗. It does not mean that model 1 is

correctly specified (although it could be).

∙ There are many models that can fit better than a given model, and

clearly not all can be correct.
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Example: Probit versus Logit for Labor Force Participation
. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Probit regression Number of obs  753
LR chi2(7)  227.14
Prob  chi2  0.0000

Log likelihood  -401.30219 Pseudo R2  0.2206

------------------------------------------------------------------------------
inlf | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096 -.0025378

educ | .1309047 .0252542 5.18 0.000 .0814074 .180402
exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311

expersq | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111
age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376

kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029
kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179

_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901
------------------------------------------------------------------------------

. predict phat_p
(option pr assumed; Pr(inlf))

. gen ll_p  inlf*log(phat_p)  (1 - inlf)*log(1 - phat_p)
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. logit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Logistic regression Number of obs  753
LR chi2(7)  226.22
Prob  chi2  0.0000

Log likelihood  -401.76515 Pseudo R2  0.2197

------------------------------------------------------------------------------
inlf | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0213452 .0084214 -2.53 0.011 -.0378509 -.0048394

educ | .2211704 .0434396 5.09 0.000 .1360303 .3063105
exper | .2058695 .0320569 6.42 0.000 .1430391 .2686999

expersq | -.0031541 .0010161 -3.10 0.002 -.0051456 -.0011626
age | -.0880244 .014573 -6.04 0.000 -.116587 -.0594618

kidslt6 | -1.443354 .2035849 -7.09 0.000 -1.842373 -1.044335
kidsge6 | .0601122 .0747897 0.80 0.422 -.086473 .2066974

_cons | .4254524 .8603696 0.49 0.621 -1.260841 2.111746
------------------------------------------------------------------------------

. predict phat_l
(option pr assumed; Pr(inlf))

. gen ll_l  inlf*log(phat_l)  (1 - inlf)*log(1 - phat_l)
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. gen diffll  ll_p - ll_l

. reg diffll

Source | SS df MS Number of obs  753
------------------------------------------- F( 0, 752)  0.00

Model | 0 0 . Prob  F  .
Residual | .128152988 752 .000170416 R-squared  0.0000

------------------------------------------- Adj R-squared  0.0000
Total | .128152988 752 .000170416 Root MSE  .01305

------------------------------------------------------------------------------
diffll | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
_cons | .0006148 .0004757 1.29 0.197 -.0003191 .0015487

------------------------------------------------------------------------------

. * Probit fits better than logit, but not in a statistically

. * significant sense.

. * Even if it did, would the partial effects at interesting values be

. * much affected?
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Example: Lognormal versus Truncated Normal for Positive Hours
. use mroz

. tab inlf

1 if in |
lab frce, |

1975 | Freq. Percent Cum.
-----------------------------------------------

0 | 325 43.16 43.16
1 | 428 56.84 100.00

-----------------------------------------------
Total | 753 100.00

. * Compute Vuong test for truncated normal versus lognormal.

. gen lhours  log(hours)
(325 missing values generated)
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. reg lhours nwifeinc educ exper expersq age kidslt6 kidsge6

Source | SS df MS Number of obs  428
------------------------------------------- F( 7, 420)  11.90

Model | 66.3633428 7 9.48047755 Prob  F  0.0000
Residual | 334.513835 420 .796461511 R-squared  0.1655

------------------------------------------- Adj R-squared  0.1516
Total | 400.877178 427 .93882243 Root MSE  .89245

------------------------------------------------------------------------------
lhours | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0019676 .0044436 -0.44 0.658 -.0107021 .0067668

educ | -.0385626 .0202098 -1.91 0.057 -.0782876 .0011624
exper | .073237 .0179004 4.09 0.000 .0380514 .1084225

expersq | -.001233 .0005378 -2.29 0.022 -.0022902 -.0001759
age | -.0236706 .007248 -3.27 0.001 -.0379175 -.0094237

kidslt6 | -.585202 .1186066 -4.93 0.000 -.8183386 -.3520654
kidsge6 | -.0694175 .0373355 -1.86 0.064 -.1428053 .0039703

_cons | 7.896267 .4260789 18.53 0.000 7.058755 8.73378
------------------------------------------------------------------------------

. predict xb1
(option xb assumed; fitted values)

. predict u1, resid
(325 missing values generated)
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. di sqrt(421/428)*.89245

.88512184

. * It is important to make sure we compute the LLF for the lognormal

. * distribution, which means subtracting log(hours):

. gen llf1  log(normalden(u1/.88512184)) - log(.88512184) - lhours
(325 missing values generated)

. sum llf1

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

llf1 | 428 -8.162678 .8146383 -12.79851 -6.26466

. di 428*-8.162678
-3493.6262

. * So the log likelihood for the positive part is -3,493.63
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. truncreg hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
(note: 325 obs. truncated)

Truncated regression
Limit: lower  0 Number of obs  428

upper  inf Wald chi2(7)  59.05
Log likelihood  -3390.6476 Prob  chi2  0.0000

------------------------------------------------------------------------------
hours | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
eq1 |

nwifeinc | .1534399 5.164279 0.03 0.976 -9.968361 10.27524
educ | -29.85254 22.83935 -1.31 0.191 -74.61684 14.91176

exper | 72.62273 21.23628 3.42 0.001 31.00039 114.2451
expersq | -.9439967 .6090283 -1.55 0.121 -2.13767 .2496769

age | -27.44381 8.293458 -3.31 0.001 -43.69869 -11.18893
kidslt6 | -484.7109 153.7881 -3.15 0.002 -786.13 -183.2918
kidsge6 | -102.6574 43.54347 -2.36 0.018 -188.0011 -17.31379

_cons | 2123.516 483.2649 4.39 0.000 1176.334 3070.697
-----------------------------------------------------------------------------
sigma |

_cons | 850.766 43.80097 19.42 0.000 764.9177 936.6143
------------------------------------------------------------------------------
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. predict xb2, xb

. gen u2  hours - xb2

. gen llf2  log(normalden(u2/850.766 )) - log(850.766 )
- log(norm(xb2/ 850.766))

. replace llf2  . if ~inlf
(325 real changes made, 325 to missing)

. sum llf2

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

llf2 | 428 -7.922074 .7561236 -15.55169 -6.853047

. di 428*-7.922074
-3390.6477
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. gen diff  llf2 - llf1
(325 missing values generated)

. reg diff

Source | SS df MS Number of obs  428
------------------------------------------- F( 0, 427)  0.00

Model | 0 0 . Prob  F  .
Residual | 203.606866 427 .476831069 R-squared  0.0000

------------------------------------------- Adj R-squared  0.0000
Total | 203.606866 427 .476831069 Root MSE  .69053

------------------------------------------------------------------------------
diff | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
_cons | .2406037 .033378 7.21 0.000 .1749981 .3062094

------------------------------------------------------------------------------

. * The truncated normal fits substantially better, and we can reject the

. * lognormal.
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. * Compute fitted values.

. * Truncated normal:

. gen yh2  xb2  850.766*(normden(xb2/ 850.766)/norm(xb2/ 850.766))

. replace yh2  . if hours  0
(325 real changes made, 325 to missing)

. * lognormal:

. gen yh1  exp(xb1  (.88512184)^2/2)

. replace yh1  . if hour  0
(325 real changes made, 325 to missing)
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. corr hours yh1
(obs428)

| hours yh1
-------------------------------

hours | 1.0000
yh1 | 0.3579 1.0000

. di .3579^2

.12809241

. corr hours yh2
(obs428)

| hours yh2
-------------------------------

hours | 1.0000
yh2 | 0.3723 1.0000

. di .3723^2

.13860729

. * So the truncated normal fits the conditional mean, E(hours|x,hours  0),

. * somewhat better, too.
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Panel Data

∙ Voung’s approach applies directly to panel data methods when two

complete densities have been specified for Dyi1, . . . ,yiT|xi1, . . . ,xiT.

After all, the previous approach applies for any situation with random

sampling in the cross section and completely specified densities.

∙ It may be computationally hard because estimation of models for

Dyi1, . . . ,yiT|xi1, . . . ,xiT can be computationally hard (for example,

CRE probit versus CRE logit).
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∙ Can also be extended to partial (pooled) MLEs, provided we properly

account for the time series dependence. For each t, let ft1yt|xt;1 and

ft2yt|xt;2 be competing models of the conditional density in each

time period. The partial log likelihoods are

ℓimm ∑
t1

T

log ftmyit|xit;m ∑
t1

T

ℓitmm, m  1, 2.     (15)
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∙ The same null hypothesis, Eℓi11
∗  Eℓi22

∗, makes sense in

the PMLE setting (and is the weakest sense in which the models fit

equally well).

∙Moreover, the key result

N−1/2∑
i1

N

ℓi1̂1 − ℓi2̂2  N−1/2∑
i1

N

ℓi11
∗ − ℓi22

∗  op1     (16)

still holds under the null. Assuming Pℓi11
∗ ≠ ℓi22

∗  0 is

satisfied, the variance 2 is positive.
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∙ However, in estimating 2, we must account for the serial dependence

in

ℓit11
∗ − ℓit22

∗ : t  1, . . . ,T.     (17)

∙ Let d̂it  ℓit1̂1 − ℓit2̂2 denote the difference in estimated log

likelihoods for each t, and let ̂t  N−1∑i1
N d̂it. Then ̂2 is easily

obtained as

̂2  N−1∑
i1

N

∑
t1

T

d̂it − ̂t2 ∑
t1

T

∑
r≠t

T

d̂it − ̂td̂ir − ̂t .     (18)
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∙ This variance estimator allows for the possibility that the mean

difference in log likelihoods varies across t under the null, but that the

averages across t are the same.

∙ If the null hypothesis is the stronger version, Eℓit11
∗  Eℓit22

∗

for t  1, . . . ,T, then ̂t can be replaced with the average of d̂it across i

and t, say ̂. In this case, the test statistic is simply the t statistic

̂/se̂, where se̂ is the heteroskedasticity and serial correlation

robust standard error from the pooled regression d̂it on 1,

t  1, . . . ,T; i  1, . . . ,N.
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∙ Vuong’s model selection test is different from other tests in the

context of nonnested models. The Cox (1961, 1962) approach tests a

specified model against a nonnested alternative, and a key component

of the test is the average difference in log-likelihoods, ℒ1 − ℒ2/N .

But with Cox’s approach, one model is taken to be the correct model

under the null hypothesis.

∙ Usually the procedure is carried out with each model in turn assumed

to be true under H0.
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4. QMLE IN THE LINEAR EXPONENTIAL FAMILY

∙ In some cases, we are willing to believe some feature of a distribution

is correctly specified, but allow other features to be misspecified.

∙ Here we cover the case where the conditional mean, Ey|x, is

correctly specified, but other features of the distribution need not be.

∙ The main question is: For what set of density functions will a

quasi-MLE consistently estimate the parameters in a correctly specified

conditional mean? Another important issue concerns appropriate

inference.
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∙Motivation: Suppose Ey|x  mx,o for a known function m, 

for some o ∈ Θ. We know that, under identification and weak

regularity conditions, nonlinear least squares is consistent for o.

∙ The NLS estimator is easily seen to be the quasi-MLE if we specify,

say,

Dy|x  Normalmx,o, 1.     (19)

∙ The point is this: Dy|x may differ in essentially arbitrary ways from

normality with a unit variance, yet the QMLE under this assumption is

consistent for the parameters in Ey|x  mx,o.
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∙ The homoskedastic normal density (with variance fixed at some

value) is a member of the linear exponential family (LEF).

∙ It turns out that any member of the LEF has the feature that a

correctly specified mean is identified by the associated QMLE, even

when the rest of the distribution is misspecified. These results were

obtained by Gourieroux, Monfort, and Trognon (1984a), or GMT

(1984a).
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∙ A log-likelihood in the LEF written as a function of the mean as

log fy|  a  by  yc,     (20)

for functions a, b, and c.

∙ Notice in the last term y appears linearly.
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∙ Let M denote the set of possible values of the mean. GMT (1984a)

show that o ≡ Eyi solves

max
∈M

a  Eyic  max
∈M

a  oc.     (21)

∙ The functions a, b, and c are easily obtained for the normal,

Bernoulli, Poisson, exponential, and other cases; GMT (1984a)

contains a summary table.

∙ For the Bernoulli distribution,

log fy|  1 − y  log1 −   y  log
 log1 −   y  log/1 − , 0    1.     (22)

Therefore, a  log1 −  and by  0, and c  log/1 − .
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∙ For some distributions to fit into the LEF, notably the gamma and

negative binomial, a nuisance parameter must be fixed at a specific

value; see GMT (1984a) for details.

∙ In the most popular examples, it is easy to directly verify that o
maximizes a  oc.

∙ For now, focus on the meaning of the result.
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∙ Consider the Bernoulli case but where yi is any random variable with

support in the unit interval, 0, 1. yi can be discrete, continuous, or

have both features. For example, we could have Pyi  0  0 but

Pyi  y  0 for y ∈ 0, 1, or yi might take on values in

0, 1/mi, 2/mi, . . . , 1 for some positive integer mi.

∙ Key point: Regardless of the nature of yi – except that 0 ≤ yi ≤ 1 –

which means its mean o is in 0, 1, o, maximizes the expected value

of the Bernoulli log-likelihood.
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∙Maximizing the log-likelihood of a density in the LEF for a random

sample always leads to sample average as the estimate for 0. (This is

typically shown in basic statistics courses for the Bernoulli, geometric,

Poisson, exponential, and normal densities.)

∙ Under random sampling, we know the sample average is generally

consistent for 0  Ey for any distribution of y provided E|y|  .

So the QMLE in these cases is robust for estimating 0.
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∙ In practice, we are interested in conditional means, which we

parameterize as mx,. Then the conditional quasi-log-likelihood

function becomes

log fy|mx,  amx,  by  ycmx,.     (23)

Because the mean is now assumed to be correctly specified, we assume

there is o ∈ Θ such that Eyi|xi  mxi,o.
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∙ A simple iterated expectations argument shows that o solves

max
∈Θ

Eamxi,  yicmxi,,     (24)

regardless of the actual distribution Dyi|xi.

∙ For emphasis: The nature of yi need not even correspond to the

chosen density. For example, yi could be a nonnegative, continuous

variable, and we use the Poisson quasi-log-likelihood, which is in the

LEF. The Poisson QMLE is consistent for the conditional mean

parameters provided the mean – with the leading case being an

exponential function – is correctly specified.
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∙ A useful characterizations of QMLE in the LEF is based on the score.

It can be shown that the score has the form

s i  ∇mxi,′yi − mxi,/vmxi,     (25)

where ∇mxi, is the 1  P gradient of the mean function and,

importantly, v is the variance function associated with the chosen

LEF density. For the standard normal, v  1, for the Bernoulli,

v  1 − , for the Poisson v  , and for the exponential,

v  2.
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∙ The structure of the score shows immediately that the QMLE is

Fisher consistent if: Eyi|xi  mxi,o then Es io|xi  0, which in

turn implies that the unconditional mean of the score is zero.

∙We can also use the score to compute the expected Hessian

conditional on xi:

Axi,o  −EHio|xi  ∇mxi,o′∇mxi,o/vmxi,o.     (26)

Further,

Es ios io|xi  Eui2|xi∇mxi,o′∇mxi,o/vmxi,o2     (27)

where ui ≡ yi − mxi,o.
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∙ From the previous expressions, it follows immediately that the

conditional information matrix equality holds if

Eui2|xi  vmxi,o, that is

Varyi|xi  vmxi,o.     (28)

∙ In other words, if the chosen LEF density has has a conditional

variance equal to the actual Varyi|xi, then we can use the ususal MLE

standard errors and inference (even if features of the distribution other

than the first two conditional moments are misspecified).
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∙ In the Bernoulli case, vm  m1 − m, and in the Poisson case,

vm  m.

∙ For example, in a Poisson regression analysis, if Varyi|xi  Eyi|xi

and the mean function is correctly specified, we can act as if we are

using MLE rather than quasi-MLE, even if higher-order conditional

moments of yi do not match up with the Poisson distribution.

∙ If Varyi|xi is unrestricted, the information matrix equality will not

hold, and then the fully robust sandwich estimator

Avar̂  ∑
i1

N

Axi, ̂
−1

∑
i1

N

s i̂s i̂′ ∑
i1

N

Axi, ̂
−1

.     (29)
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∙ The above formula is allowed because we are assuming correct

specification of the conditional mean. Here

Axi, ̂  ∇mxi, ̂′∇mxi, ̂/vmxi, ̂.     (30)

∙ If we did not want to assume correct specification of the conditional

mean we would be in setup of QMLE with general misspecification.
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∙ Quasi-MLE in the LEF is closely related to the so-called generalized

linear model (GLM) literature in statistics. The terminology and some

particulars differ, and the early GLM literature did not recognize the

robustness of the approach for estimating conditional mean parameters.

∙ In modern applications the key feature is that they both use

quasi-MLE to estimate parameters of a conditional mean.
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∙ The GLM approach is more restrictive in that the conditional mean is

assumed to have an index structure. In particular, the mean is assumed

to have the form mx,  rx where the “index” x is linear in

parameters and r is a function of the index.
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∙ An important component of the GLM apparatus is the link function,

which implicitly defines the mean function. If we let  denote the index

x, then the link function g is such that   g. The link function

is strictly monotonic and therefore has an inverse, and so   g−1

or, in the notation of conditional mean functions, mx,  g−1x.

∙ The name “generalized linear model” comes from the underlying

linearity of the index function, and then the link function introduces

nonlinearity.
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∙ In most applications, it is more natural to specify the conditional

mean function because we want the mean function to be consistent with

the nature of yi, and yi is the outcome we hope to explain.

∙ Directly specifying mx, does not wed one to the the index

structure, although, in most applications, mx, has an index form. If,

say, mx,  expx then the link function is g  log for

  0. If mx,  expx/1  expx then g  log/1 − 

for 0    1. See McCullagh and Nelder.
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∙ The GLM literature recognizes that assuming Varyi|xi corresponds

to the LEF assumption is too restrictive for many applications.

∙Middle ground between Varyi|xi conforming to LEF and Varyi|xi

unrestricted is

Varyi|xi  o2vmxi,o     (31)

for some o2  0, which is often called the dispersion parameter.

∙ Call this the GLM variance assumption (because this assumption

was key in the original GLM literature).

68



∙When o2  1 then we say there is overdispersion (relative to the

chosen density); underdispersion is when o2  1, and both cases arise

in practice.

∙ Under the GLM variance assumption, it is straightforward to estimate

o2. Let ui ≡ yi − mxi,o be the additive “errors,” so that Eui|xi  0

and Varui|xi  Varyi|xi. Because

Eui2|xi  o2vmxi,o ≡ o2vi,

Eui2/vi  EEui2/vi|xi  EEui2|xi/vi  Eo2vi/vi  o2.     (32)

69



∙ By the usual analogy principle argument,

̂2  N − P−1∑
i1

N

ûi2/v̂i     (33)

is consistent for o2, where ûi ≡ yi − mxi, ̂ are the residuals,

v̂i ≡ vmxi, ̂ are the estimated conditional variances from the LEF

density.
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∙ Degrees-of-freedom adjustment is common (but, of course, does not

affect consistency). In the GLM literature, the standardized residuals

ûi/ v̂i are called the Pearson residuals and the estimate based on

ûi/ v̂i 2 is the Pearson dispersion estimator.

∙ Under the GLM variance assumption, it is easily seen that the

generalized information matrix equality is satisfied. In fact, a

conditional version holds, which we can called the generalized

conditional information matrix equality (GCIME):

Es ios io′|xi  −o2EHio|xi  o2Axi,o.     (34)
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∙ Can use M-estimation results to obtain

Avar̂  ̂2 ∑
i1

N

Axi, ̂
−1

 ̂2 ∑
i1

N

∇mi̂′∇mi̂/vi̂
−1

.     (35)

∙ Packages that have GLM commands usually allow this estimator as

an option, along with a fully robust version or the “MLE” version. In

Stata, the command is “glm.”

∙ Structure essentially the same as weighted NLS estimator. In fact, can

show that the QMLE is asymptotically equivalent to the WNLS

estimator using the weight function 1/vmxi, ̆ for a preliminary

consistent estimator ̆.
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∙ For example, suppose yi is a binary response that follows a probit

model. Rather than use probit we could first estimate o by NLS to

obtain ̆. Then, estimate o by WNLS using weighting function

1/xi̆1 − xi̆. The WNLS estimator is N -equivalent to the

MLE. (Of course, there is no reason to take such an approach; it is

computationally more difficult than MLE.)

∙ The binary response case is the one LEF situation where it makes no

sense to talk about Eyi|xi  Pyi  1|xi being correctly specified but

some other feature of Dyi|xi being misspecified.
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∙ Under the GLM variance assumption, the QMLE has an important

efficiency property: it is the efficient estimator in the class of estimators

that use only

Ey|x  mx,o.     (36)

∙ If we use the assumption Varyi|xi  o2vmxi,o to provide more

information on o then we can get more efficient estimators, but those

would be less robust because they would generally be inconsistent

under the conditional mean assumption only.
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∙ The LEF can be extended to multiple responses. That is, yi can be a

G  1 vector. A particularly useful log likelihood in the LEF is the

multinomial. The multinomial quasi-log likelihood can be used for

estimating multiple fractional response models (such as expenditure or

cost shares).

∙ For modeling the mean and variance together, say mxi, and

vxi, (or multivariate versions), the normal QMLE is attractive. The

QMLE in this case is consistent when the mean and variance are

correctly specified with arbitrary misspecification of the rest of the

distribution.
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5. POOLED QMLE IN THE LEF FOR PANEL DATA

∙We can extend the QMLE in the LEF to panel data. The simplest

approach is to specify conditional mean functions mtxt,,

t  1, . . . ,T, along with an LEF density, and then to proceed with

estimation by ignoring any time dependence.

∙ The pooled quasi-likelihood is

ℓi ∑
t1

T

logftyit|xit;     (37)

where ftyt|xt; is in the LEF.

76



∙Most of the time the mean would depend on time by allowing certain

parameters to change over time, such as mtxt,  expt  xt.

∙ Correct specification of the mean for each t means that, for some o,

Eyit|xit  mtxit,o, t  1, . . . ,T.     (38)

∙ This does not imply strict exogeneity of xit : t  1, . . . ,T.

∙ The score for each t is:

s it  ∇mtxit,′yit − mtxit,/vmtxit,.     (39)
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∙ The pooled QMLE (or partial QMLE) is generally found by solving

∑i1
N ∑t1

T s it̂  0.

∙ Generally, the scores s ito : t  1, . . . ,T are serially correlated,

which means fully robust inference is needed. (That is, a sandwich

estimator Â−1B̂Â−1 with B̂ allowing any kind of serial dependence in

s it̂.

∙With pooled MLE, we saw an important case where the scores are not

serially correlated: the distribution Dyit|xit is dynamically complete in

the sense that it also equals Dyit|xit,yi,t−1,xi,t−1, . . . ,yi1,xi1.
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∙With QMLE in the LEF, we are only assuming a correctly specified

mean. If the conditional mean is dynamically complete in the sense that

Eyit|xit  Eyit|xit,yi,t−1,xi,t−1, . . . ,yi1,xi1,     (40)

then it is easily seen, using s ito  ∇mtxit,o′uit/vmtxit,o

with uit ≡ yit − mtxit,o, that

Es ito|xit,yi,t−1,xi,t−1, . . . ,yi1,xi1  0,     (41)

and so the scores evaluated at o are serially uncorrelated.
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∙We need not assume any other features of the LEF density, such as

the conditional variance, are correctly specified.

∙ Assuming the scores are serially uncorrelated but without any

assumptions on Varyit|xit, the appropriate asymptotic variance

estimator of the pooled QMLE is

∑
i1

N

∑
t1

T

∇m̂it′ ∇m̂it/v̂it
−1

∑
i1

N

∑
t1

T

ûit2∇m̂it′ ∇m̂it/v̂it2
−1

 ∑
i1

N

∑
t1

T

∇m̂it′ ∇m̂it/v̂it
−1

.     (42)

∙ The “glm” option in Stata is “robust.”
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∙ The estimate that allows unrestricted serial correlation, in addition to

any variances, is

∑
i1

N

∑
t1

T

∇m̂it′ ∇m̂it/v̂it
−1

∑
i1

N

∑
t1

T

∑
r1

T

ûitûir∇m̂it′ ∇m̂it/v̂itv̂ir
−1

 ∑
i1

N

∑
t1

T

∇m̂it′ ∇m̂it/v̂it
−1

.     (43)
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∙ The sandwich estimator in equation (43) can be computed using

“cluster” options – we will see specific examples later.

∙ This variance estimate still assumes the condtional mean is correctly

specified (for each t).

∙ Notice that, for QMLE in the LEF, the serial correlation issue

essentially comes down to (conditional) serial correlation in the errors,

uit : t  1, . . . ,T, where uit ≡ yit − Eyit|xit.
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6. GENERALIZED ESTIMATING EQUATIONS FOR PANEL
DATA

∙We can always used a pooled QMLE and make inference fully robust

to serial correlation, but the pooled estimator may be imprecise,

especially with lots of serial correlation. Can we do better?

∙ If we make the stronger assumption of strict exogeneity of the

regressors, it is possible to obtain a more efficient estimator than pooled

QMLE: multivariate weighted nonlinear least squares (MWNLS).

∙ But the relative efficiency of the MWNLS approach relies on being

able to properly find the T  T conditional variance matrix, Varyi|xi.
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∙ The generalized estimating equations (GEE) approach to panel data

is MWNLS where one explicitly recognizes that the chosen model for

Varyi|xi is incorrect.

∙ Once we maintain strict exogeneity of xit : t  1, 2, . . . ,T, think of

GEE as having the same starting point as QMLE in the LEF: the mean

function is chosen to be consistent with the nature of yit (for example,

nonnegative or fractional), and then the LEF density is chosen to be

well-defined when evaluated at yit.
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∙ As with pooled QMLE, the variance associated with the chosen LEF

is allowed to be misspecified. GEE uses the nominal (or “working”)

variance assumption in a multivariate weighted least squares procedure.

∙ But GEE takes a further step: rather than ignoring serial dependence

in the implied errors over time – as in pooled QMLE – it uses simple

correlation structures in implementing MWNLS, recognizing that these

structures are almost certainly wrong.
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∙ General GEE approach starts with

Eyi|xi  mxi,o, some o ∈ Θ,     (44)

where yi and mxi,o are T  1 and xi is the collection of all

regressors across all time periods.

∙ Notice that the vector Eyi|xi has elements Eyit|xi. In most cases,

we restrict how Eyit|xi depends on xi, for example,

Eyit|xi  Eyit|xit. In practice, this means that we assume

time-varying regressors are strictly exogenous.
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∙ In other words, like random effects (or general GLS) in a linear

model, GEE assumes strictly exogenous explanatory variables.

∙ Let Vxi, be the T  T diagonal matrix with the LEF variances

down the diagonal. So, for the Bernoulli, the tth diagonal element is

vtxi, ≡ mtxi,1 − mtxi,, where we need 0  mtxi,  1.

For the Poisson, the diagonal elements are vtxi,  mtxi,,

t  1, . . . ,T.

∙ In GEE, the working correlation matrix is typically chosen to be

constant (that is, not as a function of xi).
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∙ In other words, define the standardized errors as eit ≡ uit/ vit (the

population versions of the Pearson residuals), where

uit  yit − Eyit|xit, vit  vtxi,o. Note that as long as the mean is

correctly specified then Eeit|xi  0. Further, if the LEF variance is

correctly specified, then Vareit|xi  1 (or, under the GLM variance

assumption Varyit|xi  o2vtxi,o, Vareit|xi  o2).

∙ GEE nominally acts as if Correit,eis|xi  Correit,eis. Even if we

assume the GLM variance assumption, Correit,eis|xi is virtually

never constant when yit has discreteness, or if it is limited in some other

way say, yit ≥ 0.
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∙ In other words, GEE explicitly recognizes that the correlation matrix

we “work with” may not equal Correit,eis|xi.

∙ Further, if the GLM variance assumption is wrong, Correit,eis|xi

would depend on xi except by fluke because Vareit|xi would depend

on xi.

∙ If no restrictions are imposed on the constant correlations, it is an

unstructured working correlation matrix:
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R 

1 12 13  1T

12 1 23  2T

13 23   

   1 T−1,T

1T 2T  T−1,T 1

    (45)
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∙ Given an initial consistent estimator  (almost certainly the pooled

QMLE), we can estimate each ts as

̂ts  Sample Correlationu it/ v it ,u is/ v is 

≡ Sample Correlationěit,ěis

    (46)

where ěit ≡ u it/ v it are the standardized (Pearson) residuals.
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∙ Again, it is important to remember that we are not assuming the true

conditional correlation matrix is constant. It virtually never is in LEF

applications (except for linear models).

∙ Nevertheless, under general conditions, ̂st converges in probability

to, say, st∗ , the population correlation between eit  uit/ vtxi,o and

eis  uis/ vsxi,o .

∙ A common form of R in panel data settings is an exchangeable

working correlation matrix, which introduces a single correlation

parameter, , for all pairs: st  .
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∙ Given  and ̂, the working variance matrix estimates are

Ŵi  Vxi,
1/2R̂Vxi,

1/2.     (47)

∙ GEE is then essentially multivariate WNLS: ̂ solves

min

∑
i1

N

yi − mxi,
′Ŵi

−1
yi − mxi,.     (48)

∙ If the mean function is correctly specified,  and ̂ do not affect the

limiting distribution of N ̂ − o. (This is typically assumed in GEE.

The standard errors are labeled “semi-robust” in Stata.)
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∙ The expression for the estimated asymptotic variance is the sandwich

form,

∑
i1

N

∇m̂ i
′Ŵi

−1∇m̂ i

−1

∑
i1

N

∇m̂ i
′Ŵi

−1ûiûi′Ŵi
−1∇m̂ i

 ∑
i1

N

∇m̂ i
′Ŵi

−1∇m̂ i

−1

    (49)

∙ This allows both the variances from the LEF density and the constant

correlation structure to be misspecified.
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∙Wald tests for joint restrictions are easily computed.

∙ In State, the command is “xtgee.” We will see specific examples later

with count data and fractional responses.

∙ GEE also applies to binary responses as a substitute for, say, pooled

probit and RE probit. GEE can be more efficient than pooled probit

while being more robust to serial correlation than RE probit.
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∙Why use MWNLS if we are admitting that the variance-covariance

matrix is misspecified? Experience (simulations) show that accounting

for serial correlation in a misspecified way is often better than ignoring

it entirely.

∙ Of course, MLE using the joint distribution Dyi|xi is best, but

usually not robust and often computationally demanding. (An example

is RE probit.)

∙ GEE tries to get back some of the efficiency lost by not using full

MLE, but it maintains the robustness of pooled methods (assuming

strict exogeneity). Remember, GEE is consistent whether or not the

model for Varyi|xi is correct.
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∙ For example, suppose we start with

Pyit  1|xi,ci  Pyit  1|xit,ci  xito  ci

and assume ci is independent of xi and normally distributed. For

average partial effects, we can used pooled probit, but this is likely to

be inefficient. We can use RE probit, but this uses conditional

independence, Dyi1, . . . ,yiT|xi,c  t1
T Dyit|xi,c. As a middle

ground, we can use GEE. If we maintain strict exogeneity, GEE uses

the same assumptions for consistency as pooled probit.
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∙ If we want to use GEE and allow mxi, to be misspecified for

Eyi|xi, it is tricky to obtain valid standard errors via the delta method

(but not impossible). These are sometimes called “fully robust”

standard errors in the GEE literature.

∙ An alternative way to obtain valid inference under misspecification of

the mean is to implement the panel bootstrap incorporating the

estimation in all three stages (namely, , ̂, and ̂).
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∙ Pooled QMLE and GEE methods are attractive for conditional mean

models with unobserved heterogeneity, say ci, and strictly exogenous

regressors conditional on ci: Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci. When

we combine strict exogeneity with a specific correlated random effects

assumptions, such as ci    x̄i  ai, where x̄i is the vector of time

averages and ai is independent of xi1, . . . ,xiT, then we can often find

Eyit|xi1, . . . ,xiT as a function of xit, x̄i.

∙ Or, we can just start with a model for Eyit|xit, x̄i.
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∙We will cover exponential and fractional regression later, where we

will derive

Eyit|xi1, . . . ,xiT  Eyit|xit, x̄i  expt  xit  x̄i     (50)

and, if we add normality of ai,

Eyit|xi1, . . . ,xiT  Eyit|xit, x̄i  t  xit  x̄i.     (51)
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Empirical Application: Labor Force Participation

∙ For binary responses, can apply GEE as an alternative to pooled

methods or random effects estimation. GEE is computationally much

simpler than, say, RE probit.

∙ GEE is also more robust than RE probit. Like pooled probit, we only

need the response probability at time t to be correctly specified. We do

need to maintain strict exogeneity of the covariates (as with RE probit).
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∙ If we start with the usual unobserved effects model and impose the

Chamberlain-Mundlak device,

yit  1xit  ci  rit  0
 1xit    w̄i  ai  rit  0

then both pooled probit and GEE estimate scaled coefficients if

ai  rit is independent of xi with the Normal0, 1  a2 distribution.

∙ RE probit, which imposes independence of rit : t  1, . . . ,T,

estimates the unscaled coefficients and a2.
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∙ If we define

eit 
yit − xita  a  w̄ia

xita  a  w̄ia1 − xita  a  w̄ia
1/2

it is very difficult to derive Correit,eis|xi even when

rit : t  1, . . . ,T is serially independent, and it is not constant unless

a  0, a  0.

∙ GEE uses the “working” assumption that

Correit,eis|xi  Correit,eis, and may further restrict the working

correlations to be the same for all t and s.
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. use lfp

. tab period

1 through |
5, each 4 |

months long | Freq. Percent Cum.
-----------------------------------------------

1 | 5,663 20.00 20.00
2 | 5,663 20.00 40.00
3 | 5,663 20.00 60.00
4 | 5,663 20.00 80.00
5 | 5,663 20.00 100.00

-----------------------------------------------
Total | 28,315 100.00

. tab lfp if per5

1 if in |
labor force | Freq. Percent Cum.
-----------------------------------------------

0 | 1,850 32.67 32.67
1 | 3,813 67.33 100.00

-----------------------------------------------
Total | 5,663 100.00

. egen kidsbar  mean(kids), by(id)

. egen lhincbar  mean(lhinc), by(id)
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. * First compute standard errors assuming probit model is correct and

. * no serial correlation

. probit lfp kids lhinc kidsbar lhincbar educ black age agesq per2-per5

Probit regression Number of obs  28315
LR chi2(12)  2385.17
Prob  chi2  0.0000

Log likelihood  -16516.436 Pseudo R2  0.0673

------------------------------------------------------------------------------
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
kids | -.1173749 .0372874 -3.15 0.002 -.1904569 -.044293

lhinc | -.0288098 .0248077 -1.16 0.246 -.077432 .0198125
kidsbar | -.0856913 .0380322 -2.25 0.024 -.160233 -.0111495

lhincbar | -.2501781 .0290625 -8.61 0.000 -.3071396 -.1932167
educ | .0841338 .0032539 25.86 0.000 .0777562 .0905114

black | .2030668 .0335069 6.06 0.000 .1373945 .268739
age | .1516424 .0062081 24.43 0.000 .1394748 .1638101

agesq | -.0020672 .0000762 -27.13 0.000 -.0022166 -.0019179
per2 | -.0135701 .0253864 -0.53 0.593 -.0633265 .0361862
per3 | -.0331991 .0253348 -1.31 0.190 -.0828544 .0164562
per4 | -.0390317 .0253325 -1.54 0.123 -.0886825 .010619
per5 | -.0552425 .0252773 -2.19 0.029 -.1047851 -.0056999

_cons | -.7260562 .14268 -5.09 0.000 -1.005704 -.4464086
------------------------------------------------------------------------------

105



. * Now allow probit model to be wrong but (for some reason) do not allow

. * serial correlation

. probit lfp kids lhinc kidsbar lhincbar educ black age agesq per2-per5, robust

Probit regression Number of obs  28315
Wald chi2(12)  2103.73
Prob  chi2  0.0000

Log pseudolikelihood  -16516.436 Pseudo R2  0.0673

------------------------------------------------------------------------------
| Robust

lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]
-----------------------------------------------------------------------------

kids | -.1173749 .0393598 -2.98 0.003 -.1945187 -.0402311
lhinc | -.0288098 .0263352 -1.09 0.274 -.0804259 .0228063

kidsbar | -.0856913 .0400968 -2.14 0.033 -.1642796 -.007103
lhincbar | -.2501781 .0306941 -8.15 0.000 -.3103375 -.1900187

educ | .0841338 .0033147 25.38 0.000 .0776371 .0906305
black | .2030668 .03372 6.02 0.000 .1369768 .2691568

age | .1516424 .0062405 24.30 0.000 .1394114 .1638735
agesq | -.0020672 .0000771 -26.82 0.000 -.0022183 -.0019162

per2 | -.0135701 .0253565 -0.54 0.593 -.063268 .0361277
per3 | -.0331991 .0252992 -1.31 0.189 -.0827847 .0163864
per4 | -.0390317 .0253413 -1.54 0.124 -.0886998 .0106364
per5 | -.0552425 .0252942 -2.18 0.029 -.1048182 -.0056668

_cons | -.7260562 .143069 -5.07 0.000 -1.006466 -.4456461
------------------------------------------------------------------------------
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. * Fully robust (misspecified model and serial correlation) inference below.

. * Standard errors are substantially smaller!

. probit lfp kids lhinc kidsbar lhincbar educ black age agesq per2-per5,
cluster(id)

Probit regression Number of obs  28315
Wald chi2(12)  538.09
Prob  chi2  0.0000

Log pseudolikelihood  -16516.436 Pseudo R2  0.0673

(Std. Err. adjusted for 5663 clusters in id)
------------------------------------------------------------------------------

| Robust
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
kids | -.1173749 .0269743 -4.35 0.000 -.1702435 -.0645064

lhinc | -.0288098 .014344 -2.01 0.045 -.0569234 -.0006961
kidsbar | -.0856913 .0311857 -2.75 0.006 -.146814 -.0245685

lhincbar | -.2501781 .0352907 -7.09 0.000 -.3193466 -.1810097
educ | .0841338 .0067302 12.50 0.000 .0709428 .0973248

black | .2030668 .0663945 3.06 0.002 .0729359 .3331976
age | .1516424 .0124831 12.15 0.000 .127176 .1761089

agesq | -.0020672 .0001553 -13.31 0.000 -.0023717 -.0017628
per2 | -.0135701 .0103752 -1.31 0.191 -.0339051 .0067648
per3 | -.0331991 .0127197 -2.61 0.009 -.0581293 -.008269
per4 | -.0390317 .0136244 -2.86 0.004 -.0657351 -.0123284
per5 | -.0552425 .0146067 -3.78 0.000 -.0838711 -.0266139

_cons | -.7260562 .2836985 -2.56 0.010 -1.282095 -.1700173
------------------------------------------------------------------------------
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. xtgee lfp kids lhinc kidsbar lhincbar educ black age agesq per2-per5,
fam(binomial) link(probit) corr(exch) robust

GEE population-averaged model Number of obs  28315
Group variable: id Number of groups  5663
Link: probit Obs per group: min  5
Family: binomial avg  5.0
Correlation: exchangeable max  5

Wald chi2(12)  536.66
Scale parameter: 1 Prob  chi2  0.0000

(Std. Err. adjusted for clustering on id)
------------------------------------------------------------------------------

| Semirobust
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
kids | -.1125361 .0281366 -4.00 0.000 -.1676828 -.0573894

lhinc | -.0276543 .014799 -1.87 0.062 -.0566598 .0013511
kidsbar | -.0892543 .0323884 -2.76 0.006 -.1527344 -.0257742

lhincbar | -.252001 .0360377 -6.99 0.000 -.3226337 -.1813684
educ | .0841304 .0066834 12.59 0.000 .0710312 .0972296

black | .205611 .0668779 3.07 0.002 .0745328 .3366893
age | .152809 .0125434 12.18 0.000 .1282245 .1773936

agesq | -.0020781 .0001565 -13.28 0.000 -.0023847 -.0017714
...

_cons | -.7532503 .285216 -2.64 0.008 -1.312263 -.1942373
------------------------------------------------------------------------------
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∙ Surprisingly, the GEE approach does not improve the precision of the

pooled probit estimators. The robust standard errors for GEE are

slightly above those for pooled probit. This finding is particularly

puzzling because there is substantial serial correlation in the

standardized residuals, written generally after pooled probit estimation

as

êit ≡
yit − xit̂a  ̂a  w̄i̂a

xit̂a  ̂a  w̄i̂a1 − xit̂a  ̂a  w̄i̂a
1/2 ,

where w̄i is the time average of variables that change across i and t

(kidsit and lhincit in this application). The first-order correlation in the

êit : t  2, . . . ,T; i  1, . . . ,N is about . 83.
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. qui probit lfp kids lhinc kidsbar lhincbar educ black age agesq per2-per5

. predict phat
(option pr assumed; Pr(lfp))

. gen eh  (lfp - phat)/sqrt(phat*(1 - phat))

. gen eh_1  l.eh
(5663 missing values generated)

. corr eh eh_1
(obs22652)

| eh eh_1
-------------------------------

eh | 1.0000
eh_1 | 0.8315 1.0000
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. * Now CRE probit estimated by joint MLE. Stata allows no robust inference.

. * Remember that the pooled probit coefficients are scaled versions of the

. * RE coefficients.

. xtprobit lfp kids lhinc kidsbar lhincbar educ black age agesq per2-per5, re

Random-effects probit regression Number of obs  28315
Group variable: id Number of groups  5663

Random effects u_i ~Gaussian Obs per group: min  5
avg  5.0
max  5

Wald chi2(12)  623.40
Log likelihood  -8609.9002 Prob  chi2  0.0000

------------------------------------------------------------------------------
lfp | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
kids | -.3970102 .0701298 -5.66 0.000 -.534462 -.2595584

lhinc | -.1003399 .0469979 -2.13 0.033 -.1924541 -.0082258
kidsbar | -.4085664 .0898875 -4.55 0.000 -.5847428 -.2323901

lhincbar | -.8941069 .1199703 -7.45 0.000 -1.129244 -.6589695
educ | .3189079 .024327 13.11 0.000 .2712279 .366588

black | .6388784 .1903525 3.36 0.001 .2657945 1.011962
age | .7282057 .0445623 16.34 0.000 .6408651 .8155462

agesq | -.0098358 .0005747 -17.11 0.000 -.0109623 -.0087094
...

_cons | -5.359375 1.000514 -5.36 0.000 -7.320346 -3.398404
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-----------------------------------------------------------------------------
/lnsig2u | 2.947234 .0435842 2.861811 3.032657

-----------------------------------------------------------------------------
sigma_u | 4.364995 .0951224 4.182484 4.55547

rho | .9501326 .002065 .945926 .9540279
------------------------------------------------------------------------------
Likelihood-ratio test of rho0: chibar2(01)  1.6e04 Prob  chibar2  0.000

. * This version of Stata (10 or 11) gives different estimates from those

. * in Table 15.3. The log likelihood is now substantially higher, too.
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