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1. INTRODUCTION

∙We consider the case with a corner at zero and a continuous

distribution for strictly positive values.

∙Why should we move beyond Tobit? It can be too restrictive because

a single mechanism governs the “participation decision” (y  0 versus

y  0) and the “amount decision” (how much y is if it is positive).

∙ Recall that, in a Tobit model, for a continuous variable xj, the partial

effects on Py  0|x and Ey|x,y  0 have the same signs (different

multiples of j. So, it is impossible for xj to have a positive effect on

Py  0|x and a negative effect on Ey|x,y  0. A similar comment

holds for discrete covariates.
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∙ Furthermore, for continuous variables xj and xh,

∂Py  0|x/∂xj

∂Py  0|x/∂xh


j
h


∂Ey|x,y  0/∂xj

∂Ey|x,y  0/∂xh

∙ So, if xj has twice the effect as xh on the participation decision, xj

must have twice the effect on the amount decision, too.

∙ Two-part models allow different mechanisms for the participation and

amount decisions. Often, the economic argument centers around fixed

costs from participating in an activity. (For example, labor supply.)
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2. A GENERAL FORMULATION

∙ Useful to have a general way to think about two-part models without

specif distributions. Let s be a binary variable that determines whether y

is zero or strictly positive. Let w∗ be a nonnegative, continuous random

variable. Assume y is generated as

y  s  w∗.

∙ Other than s being binary and w∗ being continuous, there is another

important difference between s and w∗: we effectively observe s

because s is observationally equivalent to the indicator 1y  0

(Pw∗  0). But w∗ is only observed when s  1, in which case

w∗  y.
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∙ Generally, we might want to allow s and w∗ to be dependent, but that

is not as easy as it seems. A useful assumption is that s and w∗ are

independent conditional on explanatory variables x, which we can write

as

Dw∗|s,x  Dw∗|x.

∙ This assumption typically underlies two-part or hurdle models.

∙ One implication is that the expected value of y conditional on x and s

is easy to obtain:

Ey|x, s  s  Ew∗|x, s  s  Ew∗|x.
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∙ Sufficient is conditional mean independence,

Ew∗|x, s  Ew∗|x.

∙When s  1, we can write

Ey|x,y  0  Ew∗|x,

so that the so-called “conditional” expectation of y (where we condition

on y  0) is just the expected value of w∗ (conditional on x).

∙ The so-called “unconditional” expectation is

Ey|x  Es|xEw∗|x  Ps  1|xEw∗|x.
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∙ A different class of models explicitly allows correlation between the

participation and amount decisions Unfortunately, called a selection

model. Has led to considerable conclusion for corner solution

responses.

∙Must keep in mind that we only observe one variable, y (along with

x. In true sample selection environments, the outcome of the selection

variable (s in the current notation) does not logically restrict the

outcome of the response variable. Here, s  0 rules out y  0.

∙ In the end, we are trying to get flexible models for Dy|x.
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3. TRUNCATED NORMAL HURDLE MODEL

∙ Cragg (1971) proposed a natural two-part extension of the type I

Tobit model. The conditional independence assumption is assumed to

hold, and the binary variable s is assumed to follow a probit model:

Ps  1|x  x.

∙ Further, w∗ is assumed to have a truncated normal distribution with

parameters that vary freely from those in the probit. Can write

w∗  x  u

where u given x has a truncated normal distribution with lower

truncation point −x.
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∙ Because y  w∗ when y  0, we can write the truncated normal

assumption in terms of the density of y given y  0 (and x):

fy|x,y  0  x/−1y − x//, y  0,

where the term x/−1 ensures that the density integrates to unity

over y  0.

∙ The density of y given x can be written succinctly as

fy|x  1 − x1y0xx/−1y − x//1y0,

where we must multiply fy|x,y  0 by Py  0|x  x.
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∙ Called the truncated normal hurdle (TNH) model. Cragg (1971)

directly specified the density.

∙ Nice feature of the TNH model: it reduces to the type I Tobit model

when   /.

∙ The log-likelihood function for a random draw i is

ℓi  1yi  0 log1 − xi  1yi  0 logxi

 1yi  0− logxi/  logyi − xi/ − log.
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∙ Because the parameters , , and  are allowed to freely vary, the

MLE for , ̂, is simply the probit estimator from probit of

si ≡ 1yi  0 on xi. The MLEs of  and  (or  and 2 are the MLEs

from what is called a truncated normal regression.
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∙ The conditional expectation has the same form as the Type I Tobit

because Dy|x,y  0 is identical in the two models:

Ey|x,y  0  x  x/.

∙ In particular, the effect of xj has the same sign as j (for continous or

discrete changes).

∙ But now, the relative effect of two continuous variables on the

participation probabilities,  j/h, can be completely different from

j/h, the ratio of partial effects on Ey|x,y  0.
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∙ The unconditional expectation for the Cragg model is

Ey|x  xx  x/.

The partial effects no longer have a simple form, but they are not too

difficult to compute:

∂Ey|x
∂xj

  jxx  x/  xjx/,

where z  1 − zz  z.

∙ Note that

logEy|x  logx  logEy|x,y  0.
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∙ The semi-elasticity with respect to xj is 100 times

 jx  jx//x  x/

∙ If xj  logzj, then the above expression is the elasticity of Ey|x

with respect to zj.

∙We can insert the MLEs into any of the equations and average across

xi to obtain an average partial effect, average semi-elastisticity, or

average elasticity. As in many nonlinear contexts, the bootstrap is a

convienent method for obtaining valid standard errors.

∙ Can get goodness-of-fit measures as before. For example, the squared

correlation between yi and Êyi|xi  xi̂xi̂  ̂xi̂/̂.
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4. LOGNORMAL HURDLE MODEL

∙ Cragg (1971) also suggested the lognormal distribution conditional on

a positive outcome. One way to express y is

y  s  w∗  1x  v  0expx  u,

where u,v is independent of x with a bivariate normal distribution;

further, u and v are independent.

∙ w∗ has a lognormal distribution because

w∗  expx  u
u|x~Normal0,2.

Called the lognormal hurdle (LH) model.
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∙ The expected value conditional on y  0 is

Ey|x,y  0  Ew∗|x, s  1  Ew∗|x  expx  2/2.

∙ The semi-elasticity of Ey|x,y  0 with respect to xj is 100j. If

xj  logzj, j is the elasticity of Ey|x,y  0 with respect to zj.

∙ The “unconditional” expectation is

Ey|x  xexpx  2/2.

∙ The semi-elasticity of Ey|x with respect to xj is simply (100 times)

 jx  j where  is the inverse Mills ratio. If xj  logzj, this

expression becomes the elasticity of Ey|x with respect to zj.
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∙ Estimation of the parameters is particularly straightforward. The

density conditional on x is

fy|x  1 − x1y0xlogy − x//y1y0,

which leads to the log-likelihood function for a random draw:

ℓi  1yi  0 log1 − xi  1yi  0 logxi

 1yi  0loglogyi − xi/ − log − logyi.

∙ As with the truncated normal hurdle model, estimation of the

parameters can proceed in two steps. The first is probit of si on xi to

estimate , and then  is estimated using an OLS regression of logyi

on xi for observations with yi  0.
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∙ The usual error variance estimator (or without the degrees-of-freedom

adjustment), ̂2, is consistent for 2.

∙ In computing the log likelihood to compare fit across models, must

include the terms logyi. In particular, for comparing with the TNH

model.

∙ The second-part models can be formally compared using Vuong’s

(1988, Econometrica) model selection statistic.

∙ Vuong’s approach applies to models that are nonnested. The null

hypothesis is that, in the population, each model fits the data equally

well, and therefore both models are necessarily misspecified.
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∙ Let 1
∗ be the plim of the quasi-MLE from the first model and 2

∗ the

plim of the QMLE from the second model. Then the null is

H0 : Eℓi11
∗  Eℓi22

∗

∙ Of course, if model 1 is correctly specified, Eℓi11
∗  Eℓi22

∗

(and we usually denote 1
∗ as o1).

∙ Importantly, the Vuong test allows us to only reject one model against

another; we cannot conclude we have the correct model.
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∙ The statistic is based on the asymptotic distribution of

N−1/2ℒ1 − ℒ2  N−1/2∑
i1

N

ℓi1̂1 − ℓi2̂2

Assuming standard regularity conditions, it can be shown via a standard

mean-value expansion that

N−1/2∑
i1

N

ℓi1̂1 − ℓi2̂2  N−1/2∑
i1

N

ℓi11
∗ − ℓi22

∗  op1.

(See Problem 13.13.)
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∙ This representation is useful when the models are nonnested because

then Pℓi11
∗ ≠ ℓi22

∗  0, and so ℓi11
∗ − ℓi22

∗ is not

identically equal to zero. Under H0, it does have a zero mean.

∙We can apply the CLT directly:

N−1/2∑
i1

N

ℓi11
∗ − ℓi22

∗
d
→ Normal0,2

2 ≡ Vardi
∗

where di
∗ ≡ ℓi11

∗ − ℓi22
∗.
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∙ One version of the test statistic is

VMS 
N−1/2∑i1

N ℓi1̂1 − ℓi2̂2

N−1∑i1
N ℓi1̂1 − ℓi2̂22

1/2
d
→ Normal0,1

∙ An easier calculation is to define, for each i

d̂i  ℓi1̂1 − ℓi2̂2,

the difference in estimated log likelihoods for each i. Then, just do a

test that the mean is zero: under the null, the estimation of 1
∗ and 2

∗

has no effect asymptotically. We can use regress d̂i on 1 and use a

standard t test.
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∙ For the current application, we only use the nonlimit observations,

that is, yi  0.
. use mroz

. * Compute Vuong test for truncated normal versus lognormal. Because the

. * probit parts are the same, it does not play a role in the test. It does

. * for computing partial effects on the unconditional mean and for

. * comparing the log-likelihoods with other models.

. probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Probit regression Number of obs  753
LR chi2(7)  227.14
Prob  chi2  0.0000

Log likelihood  -401.30219 Pseudo R2  0.2206

------------------------------------------------------------------------------
inlf | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0120237 .0048398 -2.48 0.013 -.0215096 -.0025378

educ | .1309047 .0252542 5.18 0.000 .0814074 .180402
exper | .1233476 .0187164 6.59 0.000 .0866641 .1600311

expersq | -.0018871 .0006 -3.15 0.002 -.003063 -.0007111
age | -.0528527 .0084772 -6.23 0.000 -.0694678 -.0362376

kidslt6 | -.8683285 .1185223 -7.33 0.000 -1.100628 -.636029
kidsge6 | .036005 .0434768 0.83 0.408 -.049208 .1212179

_cons | .2700768 .508593 0.53 0.595 -.7267473 1.266901
------------------------------------------------------------------------------
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. * Do LH model first:

. reg lhours nwifeinc educ exper expersq age kidslt6 kidsge6

Source | SS df MS Number of obs  428
------------------------------------------- F( 7, 420)  11.90

Model | 66.3633428 7 9.48047755 Prob  F  0.0000
Residual | 334.513835 420 .796461511 R-squared  0.1655

------------------------------------------- Adj R-squared  0.1516
Total | 400.877178 427 .93882243 Root MSE  .89245

------------------------------------------------------------------------------
lhours | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
nwifeinc | -.0019676 .0044436 -0.44 0.658 -.0107021 .0067668

educ | -.0385626 .0202098 -1.91 0.057 -.0782876 .0011624
exper | .073237 .0179004 4.09 0.000 .0380514 .1084225

expersq | -.001233 .0005378 -2.29 0.022 -.0022902 -.0001759
age | -.0236706 .007248 -3.27 0.001 -.0379175 -.0094237

kidslt6 | -.585202 .1186066 -4.93 0.000 -.8183386 -.3520654
kidsge6 | -.0694175 .0373355 -1.86 0.064 -.1428053 .0039703

_cons | 7.896267 .4260789 18.53 0.000 7.058755 8.73378
------------------------------------------------------------------------------
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. predict xb1
(option xb assumed; fitted values)

. predict u1, resid
(325 missing values generated)

. di sqrt(421/428)*.89245

.88512184

. * It is important to make sure we compute the LLF for the lognormal

. * distribution, which means subtracting log(hours):

. gen llf1  log(normalden(u1/.88512184)) - log(.88512184) - lhours
(325 missing values generated)

. sum llf1

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

llf1 | 428 -8.162678 .8146383 -12.79851 -6.26466

. di 428*-8.162678
-3493.6262
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. * So the LH log likelihood for the positive part is -3,493.63

. * Now for the truncated normal:

. truncreg hours nwifeinc educ exper expersq age kidslt6 kidsge6, ll(0)
(note: 325 obs. truncated)

Truncated regression
Limit: lower  0 Number of obs  428

upper  inf Wald chi2(7)  59.05
Log likelihood  -3390.6476 Prob  chi2  0.0000

------------------------------------------------------------------------------
hours | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
eq1 |

nwifeinc | .1534399 5.164279 0.03 0.976 -9.968361 10.27524
educ | -29.85254 22.83935 -1.31 0.191 -74.61684 14.91176

exper | 72.62273 21.23628 3.42 0.001 31.00039 114.2451
expersq | -.9439967 .6090283 -1.55 0.121 -2.13767 .2496769

age | -27.44381 8.293458 -3.31 0.001 -43.69869 -11.18893
kidslt6 | -484.7109 153.7881 -3.15 0.002 -786.13 -183.2918
kidsge6 | -102.6574 43.54347 -2.36 0.018 -188.0011 -17.31379

_cons | 2123.516 483.2649 4.39 0.000 1176.334 3070.697
-----------------------------------------------------------------------------
sigma |

_cons | 850.766 43.80097 19.42 0.000 764.9177 936.6143
------------------------------------------------------------------------------
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. predict xb2, xb

. gen u2  hours - xb2

. gen llf2  log(normalden(u2/ 850.766 )) - log( 850.766 )
- log(normal(xb2/ 850.766))

. replace llf2  . if ~inlf
(325 real changes made, 325 to missing)

. sum llf2

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

llf2 | 428 -7.922074 .7561236 -15.55169 -6.853047

. di 428*-7.922074
-3390.6477
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. gen diff  llf2 - llf1
(325 missing values generated)

. reg diff

Source | SS df MS Number of obs  428
------------------------------------------- F( 0, 427)  0.00

Model | 0 0 . Prob  F  .
Residual | 203.606866 427 .476831069 R-squared  0.0000

------------------------------------------- Adj R-squared  0.0000
Total | 203.606866 427 .476831069 Root MSE  .69053

------------------------------------------------------------------------------
diff | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
_cons | .2406037 .033378 7.21 0.000 .1749981 .3062094

------------------------------------------------------------------------------

. * The truncated normal fits substantially better, and we can reject the

. * lognormal very strongly.
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. gen yh2  xb2  850.766*(normden(xb2/ 850.766)/norm(xb2/ 850.766))

. replace yh2  . if hours  0
(325 real changes made, 325 to missing)

. gen yh1  exp(xb1  ((.88512184)^2)/2)

. replace yh1  . if hour  0
(325 real changes made, 325 to missing)

. corr hours yh1
(obs428)

| hours yh1
-------------------------------

hours | 1.0000
yh1 | 0.3579 1.0000

. di .3579^2

.12809241
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. corr hours yh2
(obs428)

| hours yh2
-------------------------------

hours | 1.0000
yh2 | 0.3723 1.0000

. di .3723^2

.13860729

. * So the truncated normal fits the conditional mean,

. * E(hours|x,hours  0), somewhat better, too.

. * What we have not verified is whether the estimated partial effects on

. * E(hours|x,hours  0) are much different across the models.
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∙ If we are mainly interested in Py  0|x, Ey|x,y  0, and Ey|x,

then we can relax the lognormality assumption in the TNH.

∙ If in w∗  expx  u we assume that u is independent of x, can use

Duan’s (1983) smearing estimate.

∙ Uses Ew∗|x  Eexpu expx ≡ expx where

 ≡ Eexpu.

∙ Let ûi be OLS residuals from logyi on xi using the yi  0 data.

Suppose the yi observations are the first N1 observations.
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∙ Let

̂  N1
−1∑

i1

N1

expûi.

Then, Êy|x,y  0  ̂expx̂, where ̂ is the OLS estimator of

logyi on xi using the yi  0 subsample.

33



∙ A more direct approach is to just specify

Ey|x,y  0  expx,

which contains w∗  expx  u, with u independent of x, as a special

case.

∙ Use nonlinear least squares or a quasi-MLE in the linear exponential

family (such as the Poisson or gamma, which we will cover in EC

821B).
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∙ Given probit estimates of Py  0|x  x and NLS or QMLE

estimates of Ey|x,y  0  expx, can easily estimate

Ey|x  xexpx without additional distributional assumptions.

Computation of semi-elasticities and elasticities follows along the same

lines as under the homoskedastic lognormality assumption.

35



5. EXPONENTIAL TYPE II TOBIT MODEL

∙ Now allow s and w∗ to be dependent after conditioning on observed

covariates, x. Seems natural – for example, unobserved factors that

affect labor force participation can affect amount of hours.

∙ Can modify the lognormal hurdle model to allow conditional

correlation between s and w∗. Call the resulting model the exponential

type II Tobit (ET2T) model.

∙ Traditionally, the type II Tobit model has been applied to missing

data problems – that is, where we truly have a sample selection issue.

Here, we use it as a way to obtain a flexible corner solution model.
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∙ As with the lognormal hurdle model,

y  1x  v  0expx  u

We use the qualifier “exponential” to emphasize that the latent variable

is w∗  expx  u.

∙ Later we will see why it makes no sense to have w∗  x  u, as is

often the case in the study of type II Tobit models of sample selection.

∙ Because v has variance equal to one, Covu,v  , where  is the

correlation between u and v and 2  Varu.
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∙ Obtaining the log likelihood in this case is a bit tricky. Let

m∗  logw∗, so that Dm∗|x is Normalx,2. Then

logy  m∗when y  0. We still have Py  0|x  1 − x.

∙ To obtain the density of y (conditional on x) over strictly positive

values, we find fy|x,y  0 and multiply it by Py  0|x  x.

∙ To find fy|x,y  0, we use the change-of-variables formula

fy|x,y  0  glogy|x,y  0/y, where g|x,y  0 is the density of

m∗ conditional on y  0 (and x).
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∙ Use Bayes’ rule to write

gm∗|x, s  1  Ps  1|m∗,xhm∗|x/Ps  1|x where hm∗|x is

the density of m∗ given x. Then,

Ps  1|xgm∗|x, s  1  Ps  1|m∗,xhm∗|x.

∙Write s  1x  v  0  1x  /u  e  0, where

v  /u  e and e|x,u~Normal0, 1 − 2. Because u  m∗ − x,

we have

Ps  1|m∗,x  x  /m∗ − x1 − 2−1/2.
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∙ Further, we have assumed that hm∗|x is Normalx,2. Therefore,

the density of y given x over strictly positive y is

fy|x  x  /m∗ − x1 − 2−1/2logy − x//y.

40



∙ Combining this expression with the density at y  0 gives the log

likelihood as

li  1yi  0 log1 − xi

 1yi  0logxi  /logyi − xi1 − 2−1/2

 loglogyi − xi/ − log − logyi.

∙Many econometrics packages have this estimator programmed,

although the emphasis is on sample selection problems, and one must

define logyi as the variable where the data are missing (when yi  0).

When   0, we obtain the log likelihood for the lognormal hurdle

model from the previous subsection.
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∙ For a true missing data problem, the last term in the log likelihood,

logyi, is not included. That is because in sample selection problems

the log-likelihood function is only a partial log likelihood. Inclusion of

logyi does not affect the estimation problem, but it does affect the

value of the log-likelihood function, which is needed to compare across

different models.)

∙ The ET2T model contains the conditional lognormal model from the

previous subsection. But the ET2T model with unknown  can be

poorly identified if the set of explanatory variables that appears in

w∗  expx  u is the same as the variables in s  1x  v  0.
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∙ Various ways to see the potential problem. First, can show that

Elogy|x,y  0  x  x

where  is the inverse Mills ratio and   . We know we can

consistently estimate  by probit, so this equation nominally identifies 

and . But identification is possible only because  is a nonlinear

function.

∙ The identification is tenuous because  is roughly linear over much

of its range.
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∙ The expression for Elogy|x,y  0 suggests a two-step procedure,

usually called Heckman’s method or Heckit. (Usually used for

nonrandom sampling.) (1) Obtain ̂ from probit of si on xi. (2) Obtain ̂

and ̂ from OLS of logyi on xi, xi̂ using only observations with

yi  0.

∙ The correlation between ̂i can often be very large, resulting in

imprecise estimates of  and .
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∙ In fact, it can be shown that if we replace the probit model for s with

a linear probability model then identification of  and  is lost. Then

s  x  v

and a natural assumption is Eu|x,v  Eu|v  v. The Heckman

equation becomes

Elogy|x, s  1  x  v  x  1 − x
 x   − x

which shows that  and  are not identified because x contains an

intercept and x is perfectly collinear with x.

46



∙ Can be shown that the unconditional expectation is

Ey|x  x  expx  2/2,

which is exactly of the same form as in the LH model (with   0

except for the presence of   . Because x always should include a

constant,  is not separately identified by Ey|x (and neither is 2/2).

∙ If we based identification entirely on Ey|x, there would be no

difference between the lognormal hurdle model and the ET2T model

when the same set of regressors appears in the participation and amount

equations.
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∙ Technically, the parameters are identified, and so we can try to

estimate the full model with the same vector x appearing in the

participation and amount equations. In practice it usually does not work

very well. Like other instances of achieving identification off of

nonlinearities, it is viewed with skepticism
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∙ Partial effects can be hard to even sign. For the conditional

expectation of logy,

∂Elogy|x,y  0
∂xj

 j  1x j

where 1  0 is the first derivative of the IMR. The sign of  is

the same as   Corru,v.

∙ The partial effects on the unconditional expectation of y are

∂Ey|x
∂xj

  jx  expx  2/2  jx  expx  2/2,

which is easy to sign if j and  j have the same sign, but not otherwise.
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∙ The semi-elasticity is

∂ logEy|x
∂xj

  jx    j

which is positive if  j, j  0 and negative if  j, j  0. Otherwise,

the sign can depend on x.
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. gen lhours  log(hours)
(325 missing values generated)

. heckman lhours nwifeinc educ exper expersq age kidslt6 kidsge6,
select(nwifeinc educ exper expersq age kidslt6 kidsge6)

Heckman selection model Number of obs  753
(regression model with sample selection) Censored obs  325

Uncensored obs  428

Wald chi2(7)  35.50
Log likelihood  -938.8208 Prob  chi2  0.0000

------------------------------------------------------------------------------
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
lhours |

nwifeinc | .0066597 .0050147 1.33 0.184 -.0031689 .0164882
educ | -.1193085 .0242235 -4.93 0.000 -.1667858 -.0718313

exper | -.0334099 .0204429 -1.63 0.102 -.0734773 .0066574
expersq | .0006032 .0006178 0.98 0.329 -.0006077 .0018141

age | .0142754 .0084906 1.68 0.093 -.0023659 .0309167
kidslt6 | .2080079 .1338148 1.55 0.120 -.0542643 .4702801
kidsge6 | -.0920299 .0433138 -2.12 0.034 -.1769235 -.0071364

_cons | 8.670736 .498793 17.38 0.000 7.69312 9.648352
-----------------------------------------------------------------------------
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select |
nwifeinc | -.0096823 .0043273 -2.24 0.025 -.0181637 -.001201

educ | .119528 .0217542 5.49 0.000 .0768906 .1621654
exper | .0826696 .0170277 4.86 0.000 .049296 .1160433

expersq | -.0012896 .0005369 -2.40 0.016 -.002342 -.0002372
age | -.0330806 .0075921 -4.36 0.000 -.0479609 -.0182003

kidslt6 | -.5040406 .1074788 -4.69 0.000 -.7146951 -.293386
kidsge6 | .0698201 .0387332 1.80 0.071 -.0060955 .1457357

_cons | -.3656166 .4476569 -0.82 0.414 -1.243008 .5117748
-----------------------------------------------------------------------------

/athrho | -2.131542 .174212 -12.24 0.000 -2.472991 -1.790093
/lnsigma | .1895611 .0419657 4.52 0.000 .1073099 .2718123

-----------------------------------------------------------------------------
rho | -.9722333 .0095403 -.9858766 -.9457704

sigma | 1.208719 .0507247 1.113279 1.312341
lambda | -1.175157 .0560391 -1.284991 -1.065322

------------------------------------------------------------------------------
LR test of indep. eqns. (rho  0): chi2(1)  34.10 Prob  chi2  0.0000
------------------------------------------------------------------------------
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. sum lhours

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

lhours | 428 6.86696 .9689285 2.484907 8.507143

. di -938.8208 - 428*( 6.86696)
-3877.8797

. * This value of the LLF is below the truncated normal hurdle model, which is

. * -3,791.95. Of course, it is above that for the lognormal hurdle model

. * because the ET2T model nests the LNH model (-3,894.93).
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∙ The ET2T model is more convincing when the covariates determining

the amount are a strict subset of those affecting participation. Then, the

model can be expressed as

y  1x  v ≥ 0  expx11  u,

where both x and x1 contain unity as their first elements but x1 is a

strict subset of x. If we write x  x1,x2, then we are assuming

2 ≠ 0.

∙ Given at least one exclusion restriction, we can see from

Elogy|x,y  0  x11  x that 1 and  are better identified

because x is not an exact function of x1.
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∙ Exclusion restrictions can be hard to come by. Need something

affecting the fixed cost of participating but not affecting the amount.

∙ Cannot use y rather than logy in the amount equation. In the TNH

model, the truncated normal distribution of u at the value −x ensures

that w∗  x  u  0.

∙ If we apply the type II Tobit model directly to y, we must assume

u,v is bivariate normal and independent of x. What we gain is that u

and v can be correlated, but this comes at the cost of not specifying a

proper density because the T2T model allows negative outcomes on y.

55



∙ If we apply the “selection” model to y we would have

Ey|x,y  0  x  x.

∙ Possible to get negative values for Ey|x,y  0, especially when

  0. It only makes sense to apply the T2T model to logy in the

context of two-part models.
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