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1. EXAMPLES OF “SYSTEMS” OF EQUATIONS

∙ Carry along two examples: Seemingly Unrelated Regressions (SUR)

and panel data.

∙We assume random sampling of units from a well-defined population.

We may sample several different response variables along with

explanatory variables (SUR), or sample different time periods on the

same response and explanatory variables (panel data).

∙ In the panel data case, we assume a small number of time periods; to

apply standard limit theorems (law of large numbers, central limit

theorem), we can use results for independent, indentically distributed

observations.
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The SUR Case

∙ A G-equation SUR system is written in the population as

y1  x11  u1

y2  x22  u2



yG  xGG  uG

    (1.1)

where yg is a response variable, g  1, . . . ,G. The explanatory

variables, xg, can be different across equations. For now, think if the g

as being unrestricted across equations.
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∙What might we assume about exogeneity of the explanatory

variables? In terms of conditional means, two possibilities:

Eug|xg  0, g  1, . . . ,G,     (1.2)

which means

Eyg|xg  xgg, g  1, . . . ,G.     (1.3)

∙We could instead use the weaker condition

Exg
′ ug  0, g  1, . . . ,G.     (1.4)

Key point is that neither (1.2) nor (1.4) restricts the relationship

between xh and ug for g ≠ h.
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∙ A stronger assumption, implicitly or explicitly maintained by most

SUR analyses, is

Eug|x1,x2, . . . ,xg, . . . ,xG  0, g  1, . . . ,G,     (1.5)

which implies

Eyg|x1,x2, . . . ,xg, . . . ,xG  Eyg|xg  xgg, g  1, . . . ,G.     (1.6)

∙ This means that, if xh for h ≠ g includes elements not in xg, then

those elements of xh are assumed to have no partial effect on the

expected value of yg once xg is controlled for.
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∙ Unless xg  xh for all g and h,

Eug|x1,x2, . . . ,xg, . . . ,xG  0

imposes substantive exclusion restrictions. Treating the explanatory

variables as fixed in repeated samples is operationally the same as this

assumption (at least in terms of obtaining statistical properties).

∙ If xg  xh for all g and h, there is no difference between (1.2) and

(1.5).
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EXAMPLE: Suppose each worker in a population receives three kinds

of compensation: wage, pension, and health:

wage  10  11educ  12tenure  13age  14union  u1

pension  20  21educ  22tenure  23age  24union  u2

health  30  31educ  32tenure  33age  34union  u3

    (1.7)

Then G  3, and our random sample consists of workers from the

specified population. We have three response variables in our

population model.

∙ In some applications, especially to consumer and firm theory, the

coefficients are restricted across equations (later).
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The Panel Data Case

∙ Now suppose that, for each unit in the population, we have a (usually

short) time series, xt,yt : t  1, . . . ,T. A linear panel data model is

yt  xt  ut, t  1, . . . ,T.     (1.8)

∙ In this setup, there is a single response variable, yt, that we observe in

several time periods.

∙ Having the same  for all t is not restrictive because xt can be very

general. It can (and usually should) include time-period dummies to

allow a different intercept in each period. It can include interactions

between time-period dummies and other variables to allow partial

effects to change over time.
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∙We can write (1.8) in a way similar to a SUR system:

y1  x1  u1

y2  x2  u2



yT  xT  uT

    (1.9)

∙ Suggests that, even though the applications are very different, a

common statistical framework can be used for SUR and panel data.

∙ xt has the same dimension for all t. In SUR, the dimension of the

covariates generally changes across equation.
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EXAMPLE: Suppose that for the years 2000 through 2003 an annual

family saving equation is

savt  0  1d01t  2d02t  3d03t

 4inct  5sizet  6educt  7e401kt

 8d01t  e401kt  9d02t  e401kt  10d03t  e401kt  ut

    (1.10)

∙ A variable such as educt, education of the household head, might not

change over time for many of the units. Some variables, such as gender,

do not change over time for any units in the population.

∙ The general model allows variables that change only across time

(such as year dummies), only across unit (such as gender), and across

unit and time (typically, the most interesting variables).
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EXAMPLE: A distributed lag model for county-level poverty rates

might look like

povertyt  t  0welfaret  1welfaret−1  2welfaret−2

 1educt  2perc_childrent  3perc_elderlyt  ut,
    (1.11)

where welfaret is per-capital welfare spending. In deciding how to

estimate a model such as this, we must be very careful in stating

exogeneity assumptions for the explanatory variables.

∙ Education and age distribution variables are just a couple of possible

controls. The t are different period intercepts.

∙ The long run propensity is 0  1  2, which is often easier to

estimate than the individual j.
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∙ An attractive assumption in the general equation yt  xt  ut is

contemporaneous exogeneity:

Eut|xt  0, t  1, . . . ,T,     (1.12)

which implies

Eyt|xt  xt, t  1, . . . ,T.     (1.13)

∙ Rules out omitted variables, measurement error, and so on, but it does

not restrict correlation between xs and ut for s ≠ t.

∙ Stated as a zero conditional mean, it also implies correct functional

form of Eyt|xt.
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∙ An assumption that is stronger than (1.12), but can be justified when

we assume the dynamics (with respect to the elements of xt) are

completely specified, is sequential exogeneity:

Eut|xt,xt−1, . . . ,x1  0, t  1, . . . ,T,     (1.14)

∙ As we will see, (1.14) can be applied to distributed lag models and

models with lagged dependent variables.

∙ (1.14) implies

Eyt|xt,xt−1, . . . ,x1  Eyt|xt  xt,     (1.15)

which makes it clear that enough lags of whatever have been included

in xt so that no further lags are needed.
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∙ An even stronger assumption, both technically and practically, is

strict exogeneity:

Eut|x1, . . . ,xt−1,xt,xt1, . . . ,xT  0, t  1, . . . ,T.     (1.17)

This, of course, implies that xs and ut are uncorrelated for all s and t,

including s  t, s  t, and s  t.

∙ In the context of yt  xt  ut, (1.17) is the same as

Eyt|x1, . . . ,xt−1,xt,xt1, . . . ,xT  Eyt|xt  xt,     (1.18)

where the first equality is the critical one. It says that, given whatever is

in xt, the covariates from other time periods do not help explain yt.
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∙ The main concern with (1.18) is that it rules out feedback from

shocks to y at time t to future outcomes on x. In particular, ut and xt1

cannot be correlated.

∙ An individual might become married or divorced in year t  1

depending on the shock in time t. A school might adjust class size next

year based on shocks to student peformance this year.
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EXAMPLE: A firm-level production function might look like

logQt  t  1 logKt  2 logLt  3 logMt  ut,     (1.19)

where ut contains productivity and other shocks. The strict exogeneity

assumption rules out the possibility that firms adjust inputs (capital,

labor, materials) at, say, time t  1 in reaction to shocks at time t.

∙ This example shows why maintaining fixed regressors in economic

applications with panel data is a non-starter.

∙We may or may not think strict or contemporaneous exogeneity hold

for the production function, but at least the question makes sense when

we view xt as a random outcome along with ut.
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∙ In the poverty/welfare spending distributed lag example, we might be

worried about “feedback effects.” For example, it might make sense to

think of welfare payments being generated by something like

welfaret1   t  1povertyt  rt1,     (1.20)

which would violate strict exogeneity.

17



∙ Any model with a lagged dependent variable must violate strict

exogeneity. For example, for a population of students,

scoret  1scoret−1  1classizet  2faminct  ut

∙ The reason for putting in the lagged test score is to control for the

possibility that classroom assignment depends on prior performance.
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∙ In general, write a model with a single lag as

yt  1yt−1  zt  ut, t  1, 2, . . . ,T
Eut|yt−1,zt  0

Then xt  yt−1,zt and so

x1,x2, . . . ,xT  y0,y1, . . . ,yT−1,z1,z2, . . . ,zT

Thefore, for t  T,

Eyt|x1,x2, . . . ,xT  yt ≠ Eyt|xt
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∙ As with finite distributed lage models, for models with lagged y we

often want sequential exogeneity to hold – and that may or may not be

true. But strict exogeneity cannot hold.

∙We discuss dynamic models in more detail later.
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2. SYSTEM OLS ESTIMATION
2.1. Consistency

∙ First estimation method uses OLS on the system of equations. We

will be interested in what this entails for the SUR and panel data cases.

∙ It is notationally useful to use an i subscript when writing the system,

to distinguish between unit-specific observations and full data matrices.

We write the model for a random draw i as

yi  Xi  ui     (2.1)

where yi is G  1, Xi is G  K,  is K  1, and ui is G  1. The

observed data is Xi,yi : i  1, . . . ,N, where N is the sample size.

∙We want to estimate the population parameter vector .

21



SUR

In the SUR case, yi  yi1,yi2, . . . ,yiG′, ui  ui1,ui2, . . . ,uiG′,

Xi 

xi1 0 0  0
0 xi2 0  0
0 0  0 

  0 xi,G−1 0
0 0  0 xiG

,  

1

2



G−1

G

.     (2.2)

If xig is 1  Kg, define K  K1  K2 . . .KG, and then Xi is G  K and

 is K  1.
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Panel Data

In the panel data case, G  T (number of time periods),

yi  yi1,yi2, . . . ,yiT′, ui  ui1,ui2, . . . ,uiT′, and

Xi 

xi1

xi2



xiT

,     (2.3)

where each xit is 1  K. (Contrast the SUR case, where the dimension

of the covariates can be different across equations. Remember, though,

that xit can be chosen quite flexibly.)
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Assumptions for System OLS (SOLS)

Assumption SOLS.1:

EXi
′ui  0.      (2.4)

∙ This is the weakest possible assumption without moving into

instrumental variables territory.

∙ Clearly (2.4) is implied by

Eui|Xi  0,     (2.5)

almost the strongest assumption we could make (short of independence

between ui and Xi.
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∙ In the SUR case,

Xi
′ui 

xi1
′ ui1

xi2
′ ui2



xiG
′ uiG

    (2.6)

and so SOLS.1 is equivalent to

Exig
′ uig  0, g  1, . . . ,G.     (2.7)

∙ SOLS.1 does not restrict relationship between uig and covariates in

other equations.
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∙ In the panel data case,

Xi
′ui ∑

t1

T

xit
′ uit     (2.8)

and so SOLS.1 is the same as

∑
t1

T

Exit
′ uit  0.     (2.9)

∙ It is unlikely we would assume (2.9) without just assuming

Exit
′ uit  0, t  1, . . . ,T.     (2.10)

∙ SOLS.1 for panel data is contemporaneous exogeneity.
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∙ The rank condition for system OLS is

Assumption SOLS.2:

rank EXi
′Xi  K.      (2.11)

SUR

∙ In the SUR case,

Xi
′Xi 

xi1
′ xi1 0  0
0 xi2

′ xi2 0 

0 0  0
0  0 xiG

′ xiG

    (2.12)
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∙ SOLS.2 holds if and only if

rank Exig
′ xig  Kg, g  1, . . . ,G,     (2.13)

which simply says that the single-equation OLS rank condition (OLS.2)

holds for each equation.

Panel Data

Xi
′Xi   xi1

′ xi2
′  xiT

′ 

xi1

xi2



xiT

∑
t1

T

xit
′ xit.     (2.14)
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∙ SOLS.2 holds if and only if

rank ∑
t1

T

Exit
′ xit  K.     (2.15)

∙ There are cases (later on) where, for each t, the rank condition would

not hold, but it does hold averaged across t.

Population Orthogonality Conditions

EXi
′yi − Xi  0 by SOLS.1

EXi
′Xi  EXi

′yi

  EXi
′Xi−1EXi

′yi by SOLS.2

    (2.16)
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∙ The SOLS estimator looks just like the single-equations OLS

estimator, but Xi is a matrix and yi is a vector:

̂SOLS  N−1∑
i1

N

Xi
′Xi

−1

N−1∑
i1

N

Xi
′yi ,     (2.17)

which can be written as ̂SOLS  X′X−1X′Y where X is NG  K and

Y is NG  1.

THEOREM: Under SOLS.1 and SOLS.2, OLS on a random sample is

consistent:

plimN→̂SOLS  .     (2.18)
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∙ In the SUR case, it is obvious that we think of G fixed equations and

collect more and more data on units (so N increases).

∙ In the panel data case, it is less obvious how to think of the

asymptotics. Here we assume fixed T (number of time periods) with N

growing. Reflects most micro panel data sets: many units (families,

firms), few time periods per unit.
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∙ The fixed T scenario is very convenient: it means the limit theorems

are for random sampling, the stuff of an introductory probability and

statistics course.

∙ Further, the results allow any kind of time series dependence in the

explanatory variables or errors.

∙ The case T →  is more in the realm of time series econometrics and

would require restricting the time series correlation to get unified

results.
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∙What is the SOLS estimator in the SUR case? Use

∑
i1

N

Xi
′Xi 

∑i1
N xi1

′ xi1 0  0

0 ∑i1
N xi2

′ xi2 0 

0 0  0

0  0 ∑i1
N xiG

′ xiG

∑
i1

N

Xi
′yi 

∑i1
N xi1

′ yi1

∑i1
N xi2

′ yi2



∑i1
N xiG

′ yiG

,     (2.19)
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̂ 

∑i1
N xi1

′ xi1 0  0

0 ∑i1
N xi2

′ xi2 0 

0 0  0

0  0 ∑i1
N xiG

′ xiG

−1
∑i1

N xi1
′ yi1

∑i1
N xi2

′ yi2



∑i1
N xiG

′ yiG



∑i1
N xi1

′ xi1
−1∑i1

N xi1
′ yi1

∑i1
N xi2

′ xi2
−1∑i1

N xi2
′ yi2



∑i1
N xiG

′ xiG−1∑i1
N xiG

′ yiG

≡

̂1

̂2



̂G
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∙ Each ̂g is just the OLS estimator on equation g.

∙ In this case, system OLS is ordinary least squares

equation-by-equation.

∙ Of course, we already know that the conditions sufficient of

consistency of OLS on equation g with random sampling are

Exig
′ uig  0, rank Exig

′ xig  Kg.
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∙ For panel data,

̂  ∑
i1

N

∑
t1

T

xit
′ xit

−1

∑
i1

N

∑
t1

T

xit
′ yit ,     (2.20)

which we call the pooled OLS estimator.

∙ System OLS is not unbiased under SOLS.1 and SOLS.2. It is (under

some assumptions about moment conditions) if we use

Eui|Xi  0,     (2.21)

but this, as discussed before, is very strong.
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2.2. Asymptotic Normality and Inference

∙ The proof of asymptotic normality is similar to the single-equation

case, but we have to be more careful with the linear algebra. Write

N1/2̂ −   N−1∑
i1

N

Xi
′Xi

−1

N−1/2∑
i1

N

Xi
′ui .     (2.22)

∙ By the CLT for i.i.d. random vectors,

N−1/2∑
i1

N

Xi
′ui

d
→ Normal0,B     (2.23)

B  VarXi
′ui  EXi

′uiui
′Xi.     (2.24)
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∙ Define

A  EXi
′Xi.     (2.25)

N1/2̂ −   A−1 N−1/2∑
i1

N

Xi
′ui

 N−1∑
i1

N

Xi
′Xi

−1

− A−1 N−1/2∑
i1

N

Xi
′ui

 A−1 N−1/2∑
i1

N

Xi
′ui  op1  Op1.

    (2.26)
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∙ So

N1/2̂ − 
d
→ Normal0,A−1BA−1.     (2.27)

Â  N−1∑
i1

N

Xi
′Xi (a K  K matrix)     (2.28)

∙ The SOLS residuals are

ûi  yi − Xi̂ (each is G  1     (2.29)
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∙ A fully robust estimator of B – that is, an estimator valid under

SOLS.1 and SOLS.2, without any second moment assumptions on ui –

is

B̂  N − K−1∑
i1

N

Xi
′ûiûi

′Xi.     (2.30)

∙ The degrees-of-freedom adjustment is common but unecessary with

large N. The resulting sandwich estimator is

Avar̂  N
N − K ∑

i1

N

Xi
′Xi

−1

∑
i1

N

Xi
′ûiûi

′Xi ∑
i1

N

Xi
′Xi

−1

.     (2.31)
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∙ In the SUR case, (2.31) allows arbitrary covariances in the errors

across the different equations, different variances, and allows all

conditional variances and covariances to be unknown functions of Xi.

∙ In the panel data case, (2.31) allows the variances, Varut, and

covariances, Covut,us, to be unrestricted. Thus, it is robust to

arbitrary heteroskedasticity as a function of time and to any serial

correlation pattern in the errors, uit : t  1, . . . ,T. In addition, it is

robust to the conditional variances and covariances being any function

of xit : t  1, . . . ,T.
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Testing

∙ Obtain asymptotic standard errors from (2.31) to construct

large-sample t statistics (which converge to standard normal under the

null as N → ) and confidence intervals.

∙ Consider hypotheses

H0 : R  r,     (2.32)

where R is Q  K, r is Q  1, Q ≤ K. Most convenient is the Wald

statistic:

W  R̂ − r′RV̂R′
−1R̂ − r′ a~ Q

2     (2.33)

under H0, where V̂ is given in (2.31).
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3. EXTENSIONS

∙ Later we will cover SUR systems where the parameters are restricted

across equations. Then SOLS is not OLS equation-by-equation.

∙We can combine SUR and panel data models. For example, for a

random draw i, write

yitg  xitgg  uitg, g  1, . . . ,G; t  1, . . . ,T.     (3.1)

For each i, t, we have a G-equation SUR system:

yit  Xit  uit     (3.2)

where Xit is G  K where K  K1 . . .KG, as before.
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∙ Stack the data for a random draw i to get the TG  1 vector yi:

yi 

yi1



yit



yiT



yi11

yi12



yi1G



yiT1

yiT2



yiTG

    (3.3)
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and the TG  K matix Xi.

Xi 

Xi1



Xit



XiT



xi11 0  0
0 xi12 

  0
0 0  xi1G

   

xiT1 0  0
0 xiT2 

  0
0 0  xiTG

    (3.4)

∙ Exercise: Characterize the SOLS estimator in this case.
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