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1. INTRODUCTION AND EXAMPLES

∙ Up until now, all estimators we have studied can be written as “closed

form” functions of the data. That is, given the observed data, we have a

mathematical rule for obtaining the estimate. For example, the OLS

estimator is

̂OLS  ∑
i1

N

xi′xi
−1

∑
i1

N

xi′yi .

∙ Such estimators do not cover all cases of interest, particularly when

we turn to nonlinear models.
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∙ Even if the underlying model is linear, special asymptotic methods

are sometimes needed for certain estimators. Suppose that

Medy|x  x  1  2x2 . . .KxK

is the conditional median of y given x. Without additional assumptions,

OLS does not consistently estimate the j. But least absolute deviations

(LAD) does. The LAD estimator solves

min
b∈RK
∑
i1

N

|yi − xib|,

that is, it minimizes the sum of absolute deviations (or residuals).
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∙ For large-sample analysis, a key point is that the LAD estimate

cannot generally be written in closed form.

∙ Suppose that a solution to the problem does exist; call it ̂LAD. Then

we know

̂LAD  gx1,y1,x2,y2, . . . ,xN,yN

for some function g. But we do not know g.

∙ Question: If we do not know g, how do we study the large-sample

(asymptotic) properties of ̂LAD?

∙ Answer: Indirectly, through the properties of the objective function.
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∙ In particular, for each (dummy argument) b,

N−1∑
i1

N

|yi − xib|

is an average of independent, identically distributed random variables,

qib ≡ |yi − xib|, and so we can apply the law of large numbers if

Eqib  .
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∙ As another example, suppose for y ≥ 0 we specify an exponential

conditional mean model:

Ey|x  expx  exp1  2x2 . . .KxK.

∙Without further assumptions, we cannot “linearize” the model by

using logy as the dependent variable. (In fact, logy may not even be

well defined.)
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∙ Instead, we can directly estimate  by nonlinear least squares (NLS):

min
b∈RK
∑
i1

N

yi − expxib2.

∙ As in the case of LAD, we cannot present the solution in closed form.

But the estimator minimizes a function that is an average of i.i.d.

random functions of b.

∙ For our purposes, “nonlinear” means any situation where an estimator

cannot be obtained in closed form. This requires a new set of tools for

asymptotic analysis.
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2. CONSISTENCY OF M-ESTIMATORS

∙We first cover a class of estimation problems estimators known as

M-estimation. (The “M” refers, for us, to “minimization.” Originally,

M-estimators we defined as maximization problems.)

∙We will carry along the example of nonlinear least squares for a

general regression function. Because we will require a separate notation

for the value of the parameters describing the population, and the set of

candidates for those values, we introduce a new convention.
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∙ Consider a linear regression model where we know the population

values, say

Ey|x, z  3.26  0.75 x − 1.84 z.

This population regression is a particular version of the model

mx, z  1  2x  3z

for Ey|x, z, where each j can range across all real numbers.

∙ It is helpful to let 1,2,3 denote a generic candidate for the actual

population parameters. The actual population parameters are denoted

01,02, and 03. That is, 01  3.26, 02  0.75, and 03  −1.84.
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∙ In practice, of course, we do not know the vector of values, o,

actually describing the population. But it is these constants that we

hope to estimate. In order to state assumptions that allow us to do so in

general nonlinear contexts, we need to distinguish between o and a

generic vector, .

∙ For NLS, we specify a model for the conditional mean, Ey|x, where

y is a scalar response and x is a vector. We focus on parametric models,

which means the function is known up to the unknown parameters. Let

mx, represent this function for all x ∈ X and  ∈ Θ ⊂ RP, where P

is a positive integer.
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∙ So  is a P  1 vector. The parameter space Θ is the set of all

parameters values that could be the population value.

∙ As an example, mx,  expx  exp1  2x2 . . .KxK

where x  1,x2, . . . ,xK contains unity for convenience. The parameter

space is probably Θ  RK because it is unlikely we would restrict it

ahead of time.

∙We can have more of fewer parameters than covariates. For example,

if

mx,  expx  1x2  2x3

then   ′,1,2′.
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∙ If 0 ≤ y ≤ 1 – sometimes called a fractional response – a sensible

model is

mx,  expx
1  expx ≡ x.

∙ For much of our development, we assume the model correctly

specified for the conditional mean.
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ASSUMPTION NLS.1: For some o ∈ Θ,

Ey|x  mx,o. 

∙ Remember, o is just the P  1 vector of numbers we are trying to

learn about. Sometimes, o is called the “true value of the parameters.”

∙ It seems almost certain that models we use are misspecified. We will

discuss that situation later.
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∙ For some purposes, it is useful to write the equation in error form:

y  mx,o  u
Eu|x  0,

where the zero conditional mean holds by construction.

∙ Generally, other features of Du|x are unrestricted. For example, if

y ≥ 0 then u ≥ −mx,o. If 0 ≤ y ≤ 1, then we must also have

u ≤ 1 − mx,o.

∙ Generally, we should avoid thinking of situations where u is

independent of x, and we should not even think Varu|x  Varu.
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∙ Assuming a correctly specified model, and the availability of a

random sample, how should we estimate o? It helps to know an

optimization feature of a conditional mean. Generally, let

Ey|x  ox. Assume Ey2  . Then among all functions x

with Ex2  ,

Ey − ox2 ≤ Ey − x2.

That is, the conditional mean is the minimum mean square predictor of

y.

∙ Therefore, if mx, is a correctly specified model of Ey|x, then

Ey − mx,o2 ≤ Ey − mx,2, all  ∈ Θ.
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∙ A direct proof is constructive. Write y  mx,o  u and plug in:

y − mx,2  mx,o  u − mx,2

 u2  2mx,o − mx,u  mx,o − mx,2

Then

Ey − mx,2  Eu2  E2mx,o − mx,u
 Emx,o − mx,2

 Eu2  Emx,o − mx,2

because Eu|x  0.
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∙ Now Eu2 does not depend on  and Emx,o − mx,2 is

smallest when   o.

∙ So, we have shown that

o  argmin∈Θ Ey − mx,2.

∙ In other words, o solves a population minimization problem.

∙ The analogy principle says to solve the sample analog of the

population problem, which leads to

min
∈Θ

N−1∑
i1

N

yi − mx,2.

17



∙ The M-estimation principle generalizes this reasoning. We assume

that o ∈ Θ uniquely solves

min
∈Θ

Eqw,

where q : W  Θ → R is a real valued function of an observable vector

w and the parameter vector .

∙ An M-estimator of o solves the sample analog,

min
∈Θ

N−1∑
i1

N

qwi,.

∙ Does it seem reasonable that a solution, say ̂  gw1,w2, . . . ,wN is

consistent for o?
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∙ By the law of large numbers, for each ,

N−1∑
i1

N

qwi,
p
→ Eqw,

(sample average)
̂ minimizes

(population average)
o minimizes

So ̂
p
→ o (as N → , as always) seems reasonable.

∙ But pointwise convergence of the sample objective function is not

sufficient for consistency. A sufficient condition is uniform

convergence in probability:
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max
∈Θ

N−1∑
i1

N

qwi, − Eqw,
p
→ 0

∙Means that we can bound the distance between N−1∑i1
N qwi, and

its expected value by something that does not depend on .

∙ In “regular” cases, the pointwise law of large numbers translates into

the uniform law of large numbers. Sufficient is that qw,  is

continuous on Θ, Θ is closed and bounded (compact), and

|qw,|≤ bw for some function bw with Ebw  .
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∙ Other than “regularity conditions” – continuity of qw,  and finite

moments – the key consistency assumption is identification. Namely,

o is the unique solution to the population problem.

EXAMPLE: Suppose x  0 is a scalar, y ≥ 0, and

mx,1,2,3  1  2x3 , where the parameter spaces is

0,  0,  R. If o2  0, so that Ey|x  Ey  o1, then any 

of the form o1, 0,3′ minimizes the mean squared error. What would

NLS estimate for o3?
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∙ For NLS, we can write the identification as

ASSUMPTION NLS.2: Emx,o − mx,2  0 for all  ∈ Θ,

 ≠ o. 

∙ Assumption NLS.2 plays the role of the rank condition. In the linear

case, mx,  x, and then

mx,o − mx,  o − x2  o − ′x′xo − 
Emx,o − mx,2  o − ′Ex′xo − 

For the last expression to be positive for all  ≠ o, we need Ex′x to

have full rank K, which is exactly Assumption OLS.2.
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∙ Theorem 12.2 contains a formal consistency result for general

M-estimators. Practically important restriction is continuity of qw, .

Can be easily relaxed to “continuity with probability one.”

∙When qw,  is continuous on Θ and Θ is compact, there is always a

solution to

min
∈Θ
∑
i1

N

qwi,.

It need not be unique – least absolute deviations is sometimes not

unique – even though the solution to the population problem is unique.
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∙ Very useful result (Lemma 12.1): Under finite moment conditions, if

rw,  is continuous on Θ,

N−1∑
i1

N

rwi,
p
→ Erw,, all  ∈ Θ,

and ̂
p
→ o, then

N−1∑
i1

N

rwi, ̂
p
→ Erw,o

∙ This result is useful for estimating average partial effects (which we

will cover later) as well as asymptotic variance matrices.
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3. ASYMPTOTIC DISTRIBUTION

∙ In the previous section, we showed how consistency of M-estimators

can be established without having closed form solutions. Now we turn

to the question of approximating the sampling distribution of ̂.

∙We now add some smoothness assumptions. In particular, assume

qw,  is twice continuously differentiable on intΘ.

∙ Further, assume o is in the interior of the parameter space:

o ∈ intΘ.

∙ Finite moment conditions are used, too.
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∙ The gradient of qw,, defined on intΘ, is the 1  P row vector

∇qw,  ∂qw,
∂1

∂qw,
∂2

 ∂qw,
∂P

.

The score is the transpose of the gradient:

sw,  ∇qw,′.

∙ Now, because o is in the interior of Θ and ̂
p
→ o, we know

̂ ∈ intΘ with probability approaching one. We will ignore the

qualifier here.
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∙ Because ̂ minimizes the sample objective function and is an interior

solution, ̂ solves

∑
i1

N

swi, ̂  0,

a set of P equations in P unknowns. (Many algorithms to actually find ̂

are based on this first order condition.) Because qw,  is twice

continuously differentiable, each smw, , m  1, . . . ,P, is continuously

differentiable.
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∙ By the mean value theorem (for each element of the score),

∑
i1

N

smwi, ̂ ∑
i1

N

smwi,o  ∑
i1

N

∇smwi, ̈m ̂ − o

where ̈m is on the line segment between ̂ and o for m  1, . . . ,P.

Therefore, ̈m
p
→ o. (In effect, ̈m is “trapped” beween ̂ and o.)
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∙ Stack all P elements to get

∑
i1

N

swi, ̂ ∑
i1

N

swi,o  ∑
i1

N

Ḧi ̂ − o,

where Ḧi is the P  P Hessian of qw, – also the Jacobian of sw,

– but with rows evaluated at generally different mean values.

∙We will need the Hessian evaluated at a generic parameter vector:

Hw,  ∇2qw,  ∇sw,  ∂
2qw,
∂∂′

29



∙ Back to the score representation. Because ̂ solves the FOC,

0 ∑
i1

N

swi,o  ∑
i1

N

Ḧi ̂ − o

so

0  N−1/2∑
i1

N

swi,o  N−1∑
i1

N

Ḧi N ̂ − o.

∙ Because each ̈m
p
→ o, N−1∑i1

N Ḧi
p
→ EHw,o ≡ Ao ≡ Ao

by Lemma 12.1
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∙ An assumption related to identification is that

Ao is positive definite

∙ Can show that N−1∑i1
N Ḧi is nonsingular w.p.a.1. because it is

getting “close” to Ao, which is nonsingular.
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∙ It follows that, w.p.a.1.,

N ̂ − o  N−1∑
i1

N

Ḧi
−1

−N−1/2∑
i1

N

swi,o

∙ Further, very generally the score has zero mean when evaluated at o:

Esw,o  0.

(Important: Esw, ≠ 0 for  ≠ o.)
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∙ Can show Esw,o  0 if the derivative and expected value can

be interchanged. By FOC in the population,

∇Eqw,o  0,

and so Esw,o  0 if ∇ can pass through the expected value.

(This is shown generally in some analysis books.)
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∙ Similar argument can be used to show Ao is positive definite. Why?

Because o uniquely solves the population minimization problem,

∇2Eqw,o

is positive definite. Now interchange the partial derivatives with respect

to  and the expected value and we get Ao.
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∙ In other cases, such as NLS, can show directly the score has zero

expected value at   o.

∙Why is Esw,o  0 important? Because then, by the central limit

theorem,

N−1/2∑
i1

N

swi,o
d
→ Normal0,Bo

Bo  Varswi,o  Eswi,oswi,o′.

∙ In particular, N−1/2∑i1
N swi,o  Op1.
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∙ Now,

N ̂ − o  Ao−1 −N−1/2∑
i1

N

swi,o

 N−1∑
i1

N

Ḧi
−1

− Ao−1 −N−1/2∑
i1

N

swi,o

 Ao−1 −N−1/2∑
i1

N

swi,o  op1  Op1

 Ao−1 −N−1/2∑
i1

N

swi,o  op1.
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∙ If we define rio  −Ao−1swi,o, then we can write

N ̂ − o  N−1/2∑
i1

N

rio  op1,

which is called the influence function representation.

∙ Notice that Erio  0 and

Varrio  Ao−1Varswi,oAo−1  Ao−1BoAo−1.
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∙ By the asymptotic equivalence lemma,

N ̂ − o
d
→ Normal0,Ao−1BoAo−1.

∙ Generally, the asymptotic variance of N ̂ − o depends on the

expected value of the Hessian and the variance of the score (both

evaluated at o).
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∙ The expression for Avar N ̂ − o is of the “sandwich” form

(although in some cases it simplifies).

∙We write

Avar̂  Ao−1BoAo−1/N,

so that Ao−1BoAo−1/N is intended to approximate the actual sampling

variation in ̂ for a give sample size, N.

∙ Note that, as with simple estimators, such as sample averages,

Avar̂ is of order 1/N.
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4. ESTIMATING THE ASYMPTOTIC VARIANCE

∙ Technically, we must talk about consistent estimation of

Avar N ̂ − o, as this is the quantity that does not depend on N. So

we must consistently estimate Ao and Bo.

∙ There are sometimes several different ways to estimate Ao. An

estimator that is always available is simply

N−1∑
i1

N

Hwi, ̂  N−1∑
i1

N

Hî,

the average of the Hessians evaluated at the estimates.
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∙When wi partitions as xi,yi, and we are correctly modeling a

feature of Dyi|xi, we can often find

Axi,o  EHwi,o|xi.

By iterated expectations, Ao  EAxi,o. So a second consistent

estimator of Ao is sometimes available:

N−1∑
i1

N

Axi, ̂  N−1∑
i1

N

Âi.

∙ This is the estimator based on the “expected Hessian,” although

emphasizing the conditioning on x is more precise.
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∙ It is rarely possible to find the unconditional expected value of

Hwi,o when there are conditioning variables because we are not

usually modeling Dxi.

∙ A natural consistent estimator of Bo  Eswi,oswi,o′ is

B̂  N−1∑
i1

N

swi, ̂swi, ̂′  N−1∑
i1

N

s îs î′

 N−1∑
i1

N

ŝ iŝ i′

∙ Called the outer product of the score.
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∙ Therefore,

Avar̂  N−1 N−1∑
i1

N

Ĥi

−1

N−1∑
i1

N

ŝ iŝ i′ N−1∑
i1

N

Ĥi

−1

 ∑
i1

N

Ĥi

−1

∑
i1

N

ŝ iŝ i′ ∑
i1

N

Ĥi

−1

∙ As with all other procedures, the divions by N disappear in Avar̂.
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∙ If we can compute Axi,o  EHwi,o|xi then we can use

Avar̂  ∑
i1

N

Âi
−1

∑
i1

N

ŝ iŝ i′ ∑
i1

N

Âi
−1

∙When the inverses exist, both estimators are always at least positive

semidefinite, and usually positive definite unless the underlying model

is poorly specified.
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Nonlinear Least Squares

∙Write qw,  y − mx,2/2. Then

∇qw,  −∇mx,y − mx,
sw,  −∇mx,′y − mx,

assuming mx,  is twice continuously differentiable on intΘ.

∙ The NLS estimator satisfies∑i1
N ∇mxi, ̂′yi − mxi, ̂  0. In

the linear case, mxi, ̂  xî and ∇mxi, ̂  xi, and we obtain the

FOC for the OLS estimator.
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∙We can directly show the conditional mean of the score is zero at o:

Esw,o|x  −∇mx,o′Ey|x − mx,o
 −∇mx,o′  0  0.

(In fact, can write sw,o  −∇mx,o′u where u ≡ y − mx,o.)

∙ By iterated expectations, of course, Esw,o  0.
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∙ The Hessian is

Hw,  ∇sw,  ∇mx,′∇mx, − ∇2mx,u

where u ≡ y − mx,. Note that ∇mx,′∇mx, and ∇2mx,

are P  P.
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∙We can use Hw, to estimate the asymptotic variance, or use

Eu|x  0:

Ax,o  EHw,o|x  ∇mx,o′∇mx,o − ∇2mx,oEuo|x
 ∇mx,o′∇mx,o.

∙ A typical estimator of Ao for NLS is

Â  N−1∑
i1

N

∇mxi, ̂′∇mxi, ̂  N−1∑
i1

N

∇m̂i′∇m̂i,

but it does assume correct specification of the conditional mean. (In

linear case, reduces to the usual estimator no matter what.)
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∙ For Bo, ŝ i  −∇mxi, ̂′yi − mxi, ̂ ≡ −∇m̂i′ûi where

ûi ≡ yi − mxi, ̂ are the NLS residuals.

B̂  N−1∑
i1

N

ŝ i′ŝ i  N−1∑
i1

N

ûi2∇m̂i′∇m̂i

∙ Combining gives the Huber-White heteroskedasticity-robust variance

matrix estimator:

Avar̂  ∑
i1

N

∇m̂i′∇m̂i
−1

∑
i1

N

ûi2∇m̂i′∇m̂i ∑
i1

N

∇m̂i′∇m̂i
−1

(under correct specification of the conditional mean).
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∙ Suppose we add a homoskedasticity assumption:

ASSUMPTION NLS.3: Vary|x  o2. 

∙With Assumption NLS.3, the expression simplifies, just as with OLS:

Esw,osw,o′|x  Eu2∇mx,o′∇mx,o|x
 Eu2|x∇mx,o′∇mx,o
 o2∇mx,o′∇mx,o

because Eu2|x  Varu|x  Vary|x when Eu|x  0.

∙ Aside: NLS.3 does not say that Vary|x  Vary.
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∙ So

Bo  Esw,osw,o′  o2E∇mx,o′∇mx,o
 o2Ao.

∙ A consistent estimator of o2 (with a degree-of-freedom adjustment) is

̂2  N − P−1∑
i1

N

ûi2

and then

Avar̂  ̂2 ∑
i1

N

∇m̂i′∇m̂i
−1

.
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5. LARGE-SAMPLE INFERENCE

∙ The asymptotic standard errors are obtained as the square roots of the

diagonal elements.

̂j − oj
sêj

d
→ Normal0,1.

∙ Therefore, to test H0 : oj  aj, use

t̂j,aj 
̂j − aj
sêj

as approximately Normal0,1. Obtain approximate confidence

intervals, too: ̂j  1.96  sêj for a large-sample 95% CI.
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∙We can test multiple, nonlinear restrictions. Let H0 be stated as

H0 : co  0

where c : Θ → RQ, so there are Q restrictions. Assume c is

continuously differentiable on intΘ and that o ∈ intΘ, as before.

Let C  ∇c be the Q  P Jacobian, and define Co ≡ Co.

∙ By the mean value theorem argument,

N ĉ − co  ∇co N ̂ − o  op1

 Co N ̂ − o  op1.
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∙ So, under H0,

N ĉ d
→ Normal0,CoAo−1BoAo−1Co′ 

N ĉ′CoAo−1BoAo−1Co′ −1 N ĉ d
→ Q2

∙ The Wald statistic is

W  Nĉ′ĈÂ−1B̂Â−1Ĉ
′
−1ĉ

 ĉ′Avarĉ−1ĉ

where Ĉ  Ĉ  ∇ĉ.
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∙ Under H0,

W d
→ Q2 .

∙ The Wald statistic is convenient when the unrestricted model is easy

to estimate. It is almost always available, and can be made robust by

using the sandwich form of the asymptotic variance estimate.

∙ Typically, the Wald statistic is the default when reported by

econometrics packages.
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∙ The score statistic or Lagrange multiplier statistic is based only on

the restricted estimate. Let ̃ be the estimator that solves

min
∈Θ
∑
i1

N

qwi,

subject to c  0

∙ The score principle is to insert the restricted estimates into the

unrestricted score, and then seeing “how far” the result is from zero.
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∙ Based on a mean value expansion, can show under H0 that

N−1/2∑
i1

N

swi, ̃  N−1/2∑
i1

N

swi,o  Ao N ̃ − o  op1.

∙ By another mean value expansion,

N c̃  N co  Co N ̃ − o  op1.

But co  0 under H0 and c̃  0 because ̃ is the restricted

estimator. So Co N ̃ − o  op1.

57



∙ Theforefore, under H0,

CoAo−1 N−1/2∑
i1

N

swi, ̃  CoAo−1 N−1/2∑
i1

N

swi,o  op1

so

CoAo−1 N−1/2∑
i1

N

swi, ̃
d
→ Normal0,CoAo−1BoAo−1Co′ 
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∙ The LM statistic is a quadratic form in N−1/2∑i1
N s̃ i:

LM  ∑
i1

N

s̃ i
′

Ã−1C̃′
C̃Ã−1B̃Ã−1C̃′

−1C̃′Ã−1 ∑
i1

N

s̃ i /N d
→ Q2 .

∙ All quantities are evaluated at ̃. For example,

B̃  N−1∑
i1

N

s̃ is̃ i′
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∙ Depending on the choice of Ã, it may not be positive definite

(particularly the Hessian form). But the LM statistic above is always

nonnegative.

∙ This is a fully robust LM statistic in that it only assumes o
minimizes Eqwi,o subject to co  0 (and, the regularity

conditions of o being in the interior under H0, differentiability, and

moment conditions).
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∙ If the generalized information matrix equality, that is, for some

o2  0,

Bo  o2Ao

then the LM statistic simplifies to

LM  ∑
i1

N

s̃ i
′

M̃−1 ∑
i1

N

s̃ i /̃2,

where ̃2 is a consistent estimator of o2.
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∙ The matrix M̃ can be one of the matrices

∑
i1

N

H̃i, ∑
i1

N

Ãi, ∑
i1

N

s̃ is̃ i′.

∙ These lead to the “Hessian,” “expected Hessian,” and “outer product”

of the LM or score statistics. This is a nonrobust statistic because it uses

the GIME.
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∙When o2  1 (as in correctly specified maximum likelihood, as we

will see), the outer product statistic is N − SSR0  NR0
2 from the

regression (without a constant),

1 on s̃ i′, i  1, . . . ,N.

(Ro2 is the “uncentered” R-squared, that is, the dependent variable is not

centered about its sample mean.)
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∙ The nonrobust form of the statistic need not be positive if∑i1
N H̃i is

used because the Hessian at the restricted estimates need not be positive

definite. Usually the estimated expected Hessian is positive definite

(more later), and the outer product form is always nonnegative.

∙ The outer product form, while computationally simple, has been

shown sometimes to have serious size distortions even in pretty large

samples.

∙ In some leading cases, the expected Hessian depends only on first

derivatives and is always nonnegative.
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EXAMPLE: Nonlinear Least Squares. Suppose that   ′,′′ where

 is Q  1, and the mean is correctly specified. State H0 : o  ̄ for a

specified set of values ̄. Let ̃ be the NLS estimator subject to   ̄.

Then ̃  ̃
′, ̄′′ and the 1  P gradient of the mean function is

∇mxi, ̃  ∇mxi, ̃,∇mxi, ̃.

∙ If we make NLS.3 (homoskedasticty) under the null, the expected

Hessian form of the statistic is NRu2 from the auxiliary regression

ũi on ∇m̃i,∇m̃i, i  1, . . . ,N

where ũi  yi − mxi, ̃ are the restricted NLS residuals and Ru2 is the

uncentered R-squared.
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∙ Notice that even though∑i
N ∇m̃i′ũi  0 by the FOC for the

constrained NLS estimator, ∇m̃i needs to be included because it is

generally correlated with ∇m̃i.

∙ A regression form of the robust test: (1) Regress ∇m̃i on ∇m̃i and

obtain the 1  Q residuals, r̃i. (2) Use the usual heteroskedastic-robust

Wald statistic of joint significance in the regression ũi on r̃i,

i  1, . . . ,N. (Or, use N − SSR0  NR0
2 from the regression 1 on ũir̃i,

i  1, . . . ,N.)
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∙ Under the GIME, a statistic based on the change in the criterion

function is available. This requires estimation of both the restricted and

unrestricted models but no matrix algebra for computation.

∙We know that

∑
i1

N

qwi, ̃ ≥ ∑
i1

N

qwi, ̂

because ̃ is the restricted estimator.
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∙ Define the quasi-likelihood ratio (QLR) statistic as

QLR  2 ∑
i1

N

qwi, ̃ −∑
i1

N

qwi, ̂ /̂2,

where ̂2 is a consistent estimator of o2 typically obtained without the

restrictions imposed.

∙ Under H0 : co  0 and Bo  o2Ao,

QLR d
→ Q2
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∙ The QLR name comes from its application to maximum likelihood

estimation. But it is also related to the usual F statistic from linear

regression. In fact, if qwi,  yi − xi2/2 and

̂2  N − P−1∑i1
N ûi2, then QLR  Q  F, where F is the usual F

statistic for testing the Q restrictions.
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∙ Generally, for NLS under NLS.3, we can use

F  SSRr − SSRur
SSRur


N − P
Q

as approximately FQ,N−P under H0. No theoretical reason not to use

QLR as approximate Q2 , but the “F” statistic has been shown to

sometimes have better size in not-so-large samples.
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Choosing Among the Statistics

∙ Under the null, the robust versions of the Wald and LM statistics have

the same limiting chi-square distribution. The QLR statistic does under

the GIME, and, of course, there are nonrobust versions of the Wald and

LM statistics.

∙ Can we use power considerations to choose among the statistics?

Against fixed alternatives, all three statistics reject with probability

approaching one. That is, they are consistent tests.
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∙ Instead, use a local alternatives approach. Suppose the sequence of

“true” parameters is o,N : N  1,2, . . . and these satisfy

co,N  o/ N

for some Q  1 vector o. So, the null is violated for each N, but it is

closer to being true as the sample size grows. We can derive the

asymptotic local power of each of the statistics. The Wald statistic is

easiest to study. Let o denote the limit of o,N. Then a mean value

expansion gives

N ĉ  o  Co N ̂ − o,N  op1.
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∙ Assume the GIME for simplicity. Then

N ĉ d
→ Normalo,CoAo−1Co′ 

and so the Wald statistic has a limting chi-square distribution with

noncentrality parameter

o′ CoAo−1Co′ −1o.

∙ Turns out to be the same for the LM and QLR statistics, so we cannot

choose among the tests based on local power analysis.
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∙ Given o, we can estimate the noncentrality parameter as

o′ ĈÂ
−1Ĉ′

−1o and then do (local) power analysis.

∙ Same conclusions for Wald and LM when we look at the robust

versions of the statistics.

∙ Typically, the choice is based on computational simplicity and

evidence of finite-sample peformance.

∙ Local power analysis is useful when comparing different estimation

methods. A more (asymptotically) efficient estimator leads to a larger

noncentrality parameter and higher local power.
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6. TWO-STEP ESTIMATION

∙ Let ̂ be an estimator of a set of parameters J  1 from a preliminary

estimation problem. A two-step M-estimator solves

min
∈Θ

N−1∑
i1

N

qwi,; ̂.

∙ Assume that ̂
p
→ ∗, where ∗ is a fixed set of values. We use this

notation to emphasize the possibility that ̂ comes from a

“misspecified” estimation problem.
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∙ Under regularity conditions (continuity of q in  and , finite

moments) the key condition for consistency is that o uniquely solves

min
∈Θ

Eqwi,;∗.

∙ Sometimes, o solves the population problem for any . That is, for

all  ∈ Γ,

o  argmin∈Θ Eqwi,;.

In effect, we can use any first-step estimator as long as it converges to

something.
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Weighted Nonlinear Least Squares

∙ Let hx,  0 be a model of the variance function Vary|x. For

now, do not assume it is correctly specified. But, generally, ̂
p
→ ∗ if

we use standard estimation approaches, such as two-step M-estimation.

If u i  yi − mxi,,where  is the NLS estimate, then ̂ might solve

min
∈Γ
∑
i1

N

u i2 − hxi,2.

There are other possibilities, too. (The normal quasi-MLE, for

example.)

77



∙ The weighted nonlinear least squares (WNLS) estimator solves

min
∈Θ
∑
i1

N

yi − mxi,2/hxi, ̂

∙ Generally, without more assumptions, we cannot conclude that this is

“better” than usual NLS, although it can be if hx, is a “good”

approximation to Vary|x.
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∙ Under weak regularity conditions,

N−1∑
i1

N

yi − mxi,2/hxi, ̂
p
→ Eyi − mxi,2/hxi,∗

∙ If the conditional mean is correctly specified, o solves the population

problem for any . To show this, use a stronger property of the

conditional mean: o solves, for any xi,

min
∈Θ

Eyi − mxi,2|xi.
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∙ Because hxi,  0 and is a function of xi,

Eyi − mxi,o2/hxi,|xi  Eyi − mxi,o2|xi/hxi,
≤ Eyi − mxi,2|xi/hxi,.

∙ By iterated expectations, for any  and any ,

Eyi − mxi,o2/hxi, ≤ Eyi − mxi,2/hxi,.

∙We just have to assume (or show) uniqueness of o.
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∙ It follows that WNLS identifies the conditional mean parameters for

essentially any positive weighting function that is a function of xi, and

possibly parameters estimated in the first stage. That weighting

function can be arbitrarily misspecified for the conditional variance

provided it satisfies standard regularity conditions.
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∙More generally, we can count on consistency of a two-step

M-estimator under weak conditions, the most important being

identification and continuity of the objective function over ,.

∙ In some cases, the objective function only identifies o when the

first-stage estimation problem is “correctly specified,” in which case we

would write ̂
p
→ o.

∙ Inference is more interesting. In general, we should expect to have to

adjust the asymptotic variance of ̂ to account for preliminary

estimation of ̂ (because they are obtained from the same set of data).
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∙ Assume ̂ has first-order representation

N ̂ − ∗  N−1/2∑
i1

N

ri∗  op1,

where Eri∗  0 and ri∗ often takes the formM∗ei∗ for a

constant matrixM∗, and we often have to estimateM∗.
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∙ To obtain the asymptotic variance of N ̂ − o, use mean value

expansion:

N ̂ − o  Ao−1 −N−1/2∑
i1

N

s io; ̂  op1

where s i, is the P  1 is the score with respect to  :

s i,  ∇qwi,;′.
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∙ Now use a second MV expansion:

N−1/2∑
i1

N

s io, ̂  N−1/2∑
i1

N

s io;∗

 E∇s io,∗ N ̂ − ∗  op1

 N−1/2∑
i1

N

s io;∗  Fori  op1

where Fo  E∇s io;∗ is the P  J expected Jacobian of s i,

with respect to , evaluated at o,∗.
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∙ Collecting terms,

N ̂ − o  Ao−1 −N−1/2∑
i1

N

s io;∗  Fori∗  op1

≡ Ao−1 −N−1/2∑
i1

N

gio;∗  op1

∙ Let Do  Vargio;∗. Then

Avar N ̂ − o  Ao−1DoAo−1

86



∙ If we ignore the estimation error in ̂, we would use

Bo  Vars io;∗ in place of Doand ignore Fori

∙ In some cases, Fo is equal to zero, and so it is legitimate to ignore

estimation of ∗.

∙ In other cases, s io;∗ and ri∗ are uncorrelated, in which case the

variance that ignores ̂ is too small:

Do  Bo  FoL∗Fo′

L∗ ≡ Eri∗ri∗′
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∙ There are even cases where Bo − Do is actually positive semidefinite,

in which case the correct formula is “smaller” than the incorrect one!

We will see this later when we cover stratified sampling and treatment

effect estimation.
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∙ To estimate the asymptotic variance of the two-step estimator, let

F̂  N−1∑
i1

N

∇s î; ̂
p
→ Fo.

∙ Sometimes, replace ∇s io;∗ with E∇s io;∗|xi where xi are

conditioning variables (such as in NLS and conditional MLE).

∙ Let

ĝi  ŝ i  F̂r̂i

where estimates are evaluated at ̂, ̂.
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∙ Notice that ĝi is an adjusted version of the score for the second-step

problem. Then

D̂  N−1∑
i1

N

ĝiĝi′
p
→ Do.

∙ Also,

Â  N−1∑
i1

N

Hî, ̂

where Hi,  ∇s i; is the P  P Hessian for the second-step

problem. Can replace this with a Hessian conditional on xi.
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∙ A valid estimator is then

Avar̂  Â−1D̂Â−1/N.

∙ If Fo  0, then

Avar̂  Â−1B̂Â−1/N.

where B̂ is the usual outer product of the score (with respect to ):

B̂  N−1∑
i1

N

ŝ iŝ i′.
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∙ If the scores from the two problems are uncorrelated,

Avar̂  Â−1B̂  F̂L̂F̂′Â−1

where

L̂  N−1∑
i1

N

r̂ir̂i′.
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∙ In the case of WNLS,

∇s i,  ∇mxi,′∇hxi,ui/hxi,2

so for any ,

E∇s io,  E∇mxi,o′∇hxi,ui/hxi,2

 0

because Eui|xi  0. So Fo  0 and we do not need to adjust for

estimation of ∗.
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∙ A robust variance matrix estimator that does not restrict Vary|x is

Avar̂WNLS  ∑
i1

N

∇m̂i′∇m̂i/ĥi
−1

∑
i1

N

ûi2∇m̂i′∇m̂i/ĥi2

 ∑
i1

N

∇m̂i′∇m̂i/ĥi
−1

which looks like the robust NLS form except every appearance of ûi

and ∇m̂i is weighted by 1/ ĥi .
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7. BOOTSTRAPPING

∙ Sometimes for complicated estimation methods it is difficult to derive

analytic formulas for quantities of interest. One might rather let a

computer do the work. Resampling methods avoid applying the delta

method (or other asymptotic tools) to obtain valid inference for various

econometric procedures.

∙ In some cases, resampling actually improves on the standard

N -asymptotics. In others, it does not provide a formal improvement

but often seems to work better in practice.
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∙ Still need to assume the estimation problem is has some smoothness

in the parameters. Easiest case is resampling under random sampling,

which is our standard setting

∙ The nonparametric bootstrap is the most straightforward resampling

scheme. The idea is to treat the observed data as a population, and

resample from the sample. Let wi : i  1, . . . ,N be the realized

sample, and suppose what we have an estimate, say ̂, based on this

sample. Assuming ̂ is a smooth function of the data, how can we

approximate a standard error for ̂?
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∙We repeatedly draw random samples from wi : i  1, . . . ,N of size

N, which means sampling with replacement. In practice, one randomly

draws N integers from 1,2, . . . ,N, with replacement, and these indices

define a bootstrap sample of data.

∙ In effect, we treat wi : i  1, . . . ,N as the population and draw

random samples from it.

∙ For a bootstrap sample b, denote the sample as w1
b,w2

b, . . . ,wN
b.

Unless we draw each integer exactly once – thereby getting the original

sample – a bootstrap sample will contain repeats of some observations

and exclude others entirely.
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∙ For bootstrap sample b, we use w1
b,w2

b, . . . ,wN
b to obtain a set of

estimates, say ̂b. The estimate from the orginal sample is ̂.

∙ For a scalar estimate ̂  ĝ for a continuously differentiable

function g : P → , we obtain its bootstrap standard error as

seB̂  B − 1−1∑
b1

B

̂b − ̂2

1/2

where ̂b  ĝb and ̂  B−1∑b1
B ̂b is the average estimate

across the bootstrap samples.
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∙We can use seB̂ to construct asymptotic hypotheses tests and

confidence intervals for o based on the original estimate ̂.

∙ Especially for computing average partial effects – a topic that will

arise repeatedly later – we often need to estimate a parameter that can

be written as o  Egwi,o. A natural, consistent estimator is

̂  N−1∑i1
N gwi, ̂. To estimate its asymptotic variance, we must

account for the randomness in wi as well as ̂. As before, we draw

bootstrap samples, and, for bootstrap sample b, the estimate of o is

̂b  N−1∑
i1

N

gwi
b, ̂b.
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∙ Using the bootstrap standard error to construct test statistics cannot be

shown to improve on the approximation provided by the usual

asymptotic theory. As it turns out, in many cases the bootstrap does

improve the approximation of the distribution of properly computed

test statistics. In other words, the bootstrap can provide an asymptotic

refinement compared with the usual asymptotic theory. But one must

use some care in computing the bootstrap test statistics.
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∙ In order to show that the bootstrap approximation of a distribution

converges more quickly than the usual rates associated with first-order

asymptotics, the notion of an asymptotically pivotal statistic is

critical. An asymptotically pivotal statistic is one whose limiting

distribution does not depend on unknown parameters.

∙ Asymptotic t statistics, Wald statistics, score statistics, and quasi-LR

statistics are all asymptotically pivotal when they converge to the

standard normal distribution (in the case of a t statistic) or the

chi-square distribution in the case of the other statistics.
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∙ One must be careful to ensure a statistic is asymptotically pivotal. For

example, for a t statistic to be asymptotically pivotal in the context of

nonlinear regression with heteroskedasticity, we must use a

heteroskedasticity-robust statistic. The Wald and score statistics should

use robust asymptotic variance estimators to generally deliver an

asymptotic chi-square distribution. The quasi-LR statistic is guaranteed

to be asymptotically pivotal only when the generalized information

matrix equality holds.
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∙ Consider testing H0 : o  c for some known value c. The t statistic,

t  ̂ − c/sê is asymptotically pivotal if sê is appropriately

chosen. In order to obtain a refinement using the bootstrap, we must

obtain the empirical distribution of the statistic

tb  ̂b − ̂/sêb

where ̂ is the estimate from the original sample, ̂b is the estimate for

bootstrap sample b, and sêb is the standard error estimated from

the same bootstrap sample. (So, for example, sêb could be a

heteroskedasticity-robust standard error for nonlinear least squares.)
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∙ Notice how the t statistic for each bootstrap replication is centered at

the original estimate, ̂, not the hypothesized value. As discussed by

Horowitz (2001, Handbook of Econometrics, Volume 5), centering at

the estimate is required to ensure asymptotic refinements of the testing

procedure.

∙ Using the bootstrapped t statistics, we can obtain bootstrap critical

values. We must decide on the nature of the alternative.
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∙ For a one-sided alternative, say H0 : o  c, we order the statistics

tb : b  1,2, . . . ,B, from smallest to largest, and we pick the value

representing the desired quantile of the list of ordered values. For

example, to obtain a 5% test against a greater than one-sided alternative

, we choose the critical value as the 95th percentile in the ordered list of

tb.
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∙ For a two-sided alternative, we must choose between a

nonsymmetrical test and a symmetrical test. For the former, a test

with size  chooses critical values as the lower and upper /2 quantiles

of the ordered bootstrap test statistics, and we reject H0 if t  cvu or

t  cvl. For the latter, we first order the absolute values of the statsitics,

|tb|, and then choose the upper  quantile as the critical value for a test

of size . Naturally, we compare |t| with the critical value. This

approach to choosing critical values from bootstrapping is called the

percentile-t method.
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∙We can use the percentile-t method to compute a bootstrap p-value.

For example, against a greater than one-sided alternative, we simply

find the fraction of bootstrap statistics tb that exceed t. A symmetric

p-value for a two-sided alternative does the same for |tb| and |t|.
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∙ Testing multiple hypotheses is similar. Suppose that for a Q −vector

o, we want to test Ho : o  r, where r is a vector of known

constants. The Wald statistic computed using the original sample is

W  ̂ − r′V̂−1̂ − r. We compute a series of Wald statistics from

bootstrap samples as:

Wb  ̂
b
− ̂′ V̂b −1

̂
b
− ̂, b  1, . . . ,B,

where we must take care so that the calculation of V̂ (and V̂b
 delivers

an asymptotic chi-square statistic. The bootstrap p-value is the fraction

of Wb that exceed W.
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∙ The nonparametric bootstrap applies directly to panel data settings

with large N and small T. A draw wi represents the data for all T time

periods for unit i. That is, the resampling is of cross section units.

Whenever we draw an index from 1,2, . . . ,N, we take all T time

periods.

∙ Resampling cross section units with panel data is sometimes called

the panel bootstrap.

∙ Resampling different time periods, as is done with pure time series

applications and sometimes with panel data sets with small N and large

T, is much harder and not appropriate for our setting.

109



APPLICATION: We use bootstrapping to obtain standard errors in the

context of nonlinear least squares with cross section data, and compare

the standard errors with those obtained from first-order asymptotics.

∙ Consider estimating a wage equation for hourly workers. We consider

the standard linear model approach

logwage  0  1female  2educ  3exper  4exper
2  u

110



∙ Alternatively, we can directly estimate the (approximate)

semi-elasticities on the conditional mean of wage:

Ewage|x  exp0  1female  2educ  3exper  4exper
2


∙ If we assume that u and x are independent in the log-level linear

model, then the slopes in the two formulations are the same. If u has,

say, heteroskedasticity, Ewage|x is not generally of the simple form

above.
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∙We can turn that around, too. If we start with Ewage|x as the object

of interest and specify it as an exponential form, there is no guarantee

that a linear regression with logwage as the dependent variable

consistently estimates the j.
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. use wage1

. reg lwage female educ exper expersq, robust

Linear regression Number of obs  526
F( 4, 521)  81.97
Prob  F  0.0000
R-squared  0.3996
Root MSE  .41345

------------------------------------------------------------------------------
| Robust

lwage | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

female | -.3371868 .0361838 -9.32 0.000 -.4082709 -.2661026
educ | .0841361 .00769 10.94 0.000 .069029 .0992432

exper | .03891 .0046752 8.32 0.000 .0297253 .0480946
expersq | -.000686 .0001005 -6.83 0.000 -.0008834 -.0004887

_cons | .390483 .1085985 3.60 0.000 .1771383 .6038278
------------------------------------------------------------------------------

. * The estimates are pretty standard from log(wage) equations.
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. * Now use NLS with an exponential mean function, and fully

. * robust standard errors.

. glm wage female educ exper expersq, fam(normal) link(log) robust

Generalized linear models No. of obs  526
Optimization : ML Residual df  521

Scale parameter  8.30647
Deviance  4327.670955 (1/df) Deviance  8.30647
Pearson  4327.670955 (1/df) Pearson  8.30647

Variance function: V(u)  1 [Gaussian]
Link function : g(u)  ln(u) [Log]

AIC  4.964372
Log pseudolikelihood  -1300.629849 BIC  1063.449

------------------------------------------------------------------------------
| Robust

wage | Coef. Std. Err. z P|z| [95% Conf. Interval]
-----------------------------------------------------------------------------

female | -.3683686 .0538735 -6.84 0.000 -.4739588 -.2627784
educ | .1034196 .0120236 8.60 0.000 .0798537 .1269855

exper | .0494462 .0065125 7.59 0.000 .036682 .0622105
expersq | -.0008688 .0001415 -6.14 0.000 -.0011462 -.0005914

_cons | .137639 .1817583 0.76 0.449 -.2186007 .4938786
------------------------------------------------------------------------------
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. * Now bootstrap the standard errors for the female and educ coefficients:

. do nls1

. capture program drop nls_boot

.

. program nls_boot, rclass
1. glm wage female educ exper expersq, fam(normal) link(log)
2. return scalar bfemale  _b[female]
3. return scalar beduc  _b[educ]
4.

. end

.

. bootstrap r(bfemale) r(beduc), reps(1000) seed(123): nls_boot
(running nls_boot on estimation sample)

Bootstrap replications (1000)
------- 1 ------ 2 ------ 3 ------ 4 ------ 5
.................................................. 50
...
.................................................. 950
.................................................. 1000
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Bootstrap results Number of obs  526
Replications  1000

command: nls_boot
_bs_1: r(bfemale)
_bs_2: r(beduc)

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
_bs_1 | -.3683686 .054011 -6.82 0.000 -.4742282 -.262509
_bs_2 | .1034196 .0122406 8.45 0.000 .0794285 .1274107

------------------------------------------------------------------------------

.

. program drop nls_boot

end of do-file
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∙ In this application, we see that taking the log and using linear

regression produces substantially smaller standard errors than using

NLS on an exponential function. (This comparison only makes sense if

we assume both methods are consistent for the parameters of interest.)

But there are different ways to estimate an exponential mean that are

more efficient than NLS. For example, later we will cover

quasi-maximum likelihood in the linear exponential family.
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