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1. CROSS EQUATION RESTRICTIONS

∙Most applications of pure SEMs have restrictions within each

equation but not across equation. In the labor supply/wage offer

example, when could we justify assume that parameters in the supply

and offer functions are related? Probably never.

∙ But some applications of the statistical model with endogenous

explanatory variables are not to SEMs, and in some cases there are

cross-equation restrictions.
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∙ Consider a simple example just to show how such restrictions can

help with identification:

y1  12y2  11z1  12z2  13z3  u1

y2  21y1  21z1  22z2  u2

where, as usual, each zj is uncorrelated with each ug. Without further

restrictions, the first equation is unidentified and the second is (just)

identified if and only if 13 ≠ 0.

∙ Suppose now that 12  22. Because 22 is identified without this

restriction, we can treat 22  12 as known for determining

identification of the second equation.
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∙Write the first equation as

y1 − 12z2  12y2  11z1  13z3  u1

where we can treat the LHS variable as known. This equation is

identified now because we can use z2 as an IV for y2 provided 22 ≠ 0.

∙We can even imagine a two-step procedure. First, estimate 22 by IV

on the second equation; assume that we can reject 22  0. Then,

estimate

y1 − ̂22z2  12y2  11z1  13z3  error

using z1, z2, z3 as IVs. Would have to account for sampling error in

̂22 for proper inference.
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∙ Once we know both equations are identified, better to use a system

method. Define the vector of unrestricted parameters as

  12,11,12,13,21,21′.

Then we can write, for a random draw i,

yi1
yi2


yi2 zi1 zi2 zi3 0 0
0 0 zi2 0 yi1 zi1

 
ui1
ui2

or

yi  Xi  ui
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∙ The instruments are

Zi  I2 ⊗ zi 
zi1 zi2 zi3 0 0 0
0 0 0 zi1 zi2 zi3

.

∙ The system is just identified, so system IV is the only estimator.
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2. COVARIANCE RESTRICTIONS

∙ Another source of identifying information that is occasionally used is

zero covariance restrictions. (Restrictions on the variances themselves

are almost unheard of.)

∙ As just one simple example, suppose the system is

y1  12y2  11z1  13z3  u1

y2  21y1  21z1  22z2  23z3  u2
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Without further restrictions, the second equation is not identified and

the first equation is just identified if and only if 22 ≠ 0; assume this is

the case.

∙ Suppose, however, that

Covu1,u2  Eu1u2  0,

so that the 2  2 matrix  is diagonal. This assumption serves to

identify the second equation.

8



∙ Here is a way to see how. Because the first equation is identified, we

can treat all of the parameters of the first equation as known for

identification of the second equation. But then

u1  y1 − 12y2 − 11z1 − 13z3

becomes an observable variable.

∙ Normally, being able to effectively observe u1 would not help with

equation 2. But if we assume u1 is uncorrelated with u2, u1 becomes a

potential instrument for y1. By assumption, u1 is exogenous to the

second equation and clearly it would be correlated with y1.

y2  21y1  21z1  22z2  23z3  u2
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∙ Can use a two-step procedure: (1) Estimate the first equation by IV

with instruments z1, z2, z3, get the residuals, û1. (2) Estimate the

second equation by IV using instruments û1, z1, z2, z3. In this case, we

cannot ignore estimation of the IVs in performing inference.
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∙ A better approach is to use all of the moment conditions at once. Let

1 and 2 be the structural parameters in the first and second equations

with the restrictions already imposed. Then the moment restrictions we

have are

Ez′u11  0

Ez′u22  0

Eu11u22  0,

where the first two sets of restrictions are the standard ones and the

third is the zero covariance assumption. (The notation is used to

emphasize the moment conditions depend on the parameters.)
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∙ Now, 1 has three unknown elements and 2 has four, so there are

seven unknown parameters. But there are also seven total restrictions.

∙Method of moments estimation is now nonlinear in the parameters

because of Eu11u22  0. We will discuss nonlinear GMM

later.

∙ Again, in good SEM applications, such as supply and demand, it is

rare in cross section settings to impose zero covariance restrictions.

12



∙ A recursive system has a sequential decision making structure:

y1  z1  u1

y2  21y1  z2  u2

y3  31y1  32y2  z3  u3



yG  G1y1  G2y2 . . .G,G−1yG−1  zG  uG

so that all exogenous variables show up in each equation.
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∙ The first equation is always identified, but that would be the only

identified equation without more assumptions. A fully recursive system

adds the assumption

Euguh  0, g ≠ h,

which adds more than enough conditions to identify all parameters.

∙ Sequential estimation is possible, starting with OLS on the first

equation and using the residuals, û1, to instrument for y1 in the second

equation – and so on.

∙ Joint GMM can be used but moment conditions are nonlinear in

parameters.
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3. A SUBTLE POINT ABOUT IDENTIFICATION

∙ In the general SEM written as

y1  z1  u1  0

y2  z2  u2  0



yG  zG  uG  0

we used the weakest exogeneity requirement on z:

Ez′ug  0, g  1, . . . ,G.
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∙ This means that we can only use z as the instruments in each

equation, not nonlinear functions of z.

∙ If the entire system is structural, we are often willing to assume

correct functional forms in the exogenous variables, which means we

assume

Eug|z  0, g  1, . . . ,G.
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∙ Aha! With a zero conditional mean assumption, any functions of z,

say zj2, zjzk, zj/1  |zk|, and infinitely other functions are uncorrelated

with ug (under the assumption of finite second moments for ug and the

chosen functions of z).

∙ Question: How come we have not solved the identification problem

without making any restrictions on the structural parameters?

17



∙ Answer: If we assume Eug|z  0 then the reduced forms satisfy

yg  zg  vg
Evg|z  0, g  1,2, . . . ,G,

because vg is a linear function of u1,u2, ...,uG.

∙ But then for any (vector) function hgz, the linear projection of yg on

z,hgz is just zg; it does not depend on hgz.
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∙ Thus, for identification, adding nonlinear functions of the orginal

instruments is useless. Our original identification analysis holds under

the stronger form of exogeneity.

∙ Eug|z  0 can have relevance for efficiency. In particular, if

Varu|z is a function of z, then GMM using an efficient weighting

matrix and an expanded list of IVs is generally more efficient than

3SLS on the orginal system of GMM on the original system. It is rare

in practice to try to exploit such efficiency gains.
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4. SEMS NONLINEAR IN ENDOGENOUS VARIABLES

∙ Consider a version of the labor supply/wage offer example, written in

equilibrium:

h  12 logw  13logw2  11z1  u1

logw  21h  22z2  u2

where z1 and z2 are exogenous. This is an SEM nonlinear in

endogenous variables.

∙ If 13  0, this would be a linear SEM for the purposes of

identification and estimation. It is the presence of the squared term,

logw2, that makes this a nonlinear model, not the presence of

logw.
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∙What about identification of this system? We cannot easily solve for

h and logw as functions of z  z1, z2 and u  u1,u2. (The

quadratic formula is needed, and then it might give a nonsensical

answer.)

∙ But we can count. The second equation passes the order condition

because we have an instrument for h, namely, z1.
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∙ At first glance, the first equation appears to be unidentified: logw

and logw2 are both endogenous and yet z2 is the only exogenous

variable in the second equation.

∙ Important: Concluding that the labor supply function is unidentified is

too pessimistic. In fact, if z2 truly appears in the wage offer function,

then, except in special cases, we have plenty of instruments for logw

and logw2.
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∙Write the system as

y1  12y2  13y2
2  11z1  u1

y2  21y1  22z2  u2

where y1  h and y2  logw. This is a nonlinear in endogenous

variables because there are only two endogenous variables but we have

a nonlinear function of one, y2, appearing in the system.
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∙ Once nonlinear functions appear, it makes sense to assume

Eug|z  0

for all g (g  1,2 in this example).
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∙ The zero conditional mean assumption gives us lots of possibilities

for instruments in addition to z1, z2. Once we have specified the IVs,

estimation is standard (although trying to mimic two stage least squares

can lead to trouble!) We can write the two equations as

y1  12y2  13y3  11z1  u1

y2  21y1  22z2  u2

where y3  y2
2. The only issue now is that this looks like a

two-equation system with three endogenous variables.
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∙We can use results on optimal instruments to get a start [with the

nominal assumption of constant Varu|z]. For the first equation, We

would have to find Ey2|z and Ey2
2|z, which is very difficult in

general.

∙ But suppose we act as if 13  0. Notice then that each equation in

the system would be just identified by our previous identification

analysis (assuming 11 ≠ 0, 22 ≠ 0, which we do).
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∙We can use the linear version of the system to determine sensible

instruments. When 13  0, we can solve for linear reduced forms:

y1  z1  v1

y2  z2  v2

and v1 and v2 have zero conditional means give z. Therefore, the

optimal instrument for y2 is z2.
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∙ Further, we can write

y2
2  z22  2z2v2  v2

2

Ey2
2|z  z22  2z2Ev2|z  Ev2

2|z
 z22  2

2

because Ev2|z  0 and Ev2
2|z is (nominally) assumed to be constant.
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∙ In practice, using z22 is restrictive: it is derived under the linear

version of the model and homoskedasticity of the structural errors. But

it suggests a generally sensible approach: use squares, z1
2, z2

2 and the

cross product, z1z2 in the list of IVs for BOTH equations. So

z1, z2, z1
2, z2

2, z1z2.

In any application, we would add an intercept to both equations and, of

course, it would act as its own instrument.
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∙When 13 ≠ 0, the linear projection of both y1 and y2 on

z1, z2, z1
2, z2

2, z1z2 would generally depend on the nonlinear functions,

too.

∙We would use the full set of instruments in each equation, whether

we use a single equation method or a system method. It is

(asymptotically) no less efficient to use the unrestricted vector

z1, z2, z1
2, z2

2, z1z2 even though the optimal IV for y2
2 is z22.
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∙ Question: If we apply 2SLS to the equation

y1  12y2  13y2
2  11z1  u1

using instruments z1, z2, z1
2, z2

2, z1z2, what do the first stage regressions

look like?
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∙ Answer: The linear projections underlying the first-stage regressions

are

y2  21z1  22z2  23z1
2  24z2

2  25z1z2  v2

y2
2  31z1  32z2  33z1

2  34z2
2  35z1z2  v3

where v2 and v3 are uncorrelated with all RHS variables.

∙ So the correct procedure regresses each of y2 and y2
2 on

z1, z2, z1
2, z2

2, z1z2, giving fitted values ŷ2 and y2
2.
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∙ The following procedure does not work (except in special cases):

(1) Run the regression yi2 on zi1, zi2 to get the fitted values, y i2.

(2) Run the regression yi1 on y i2, y i22 , zi1.

∙ Inserting fitted values into nonlinear functions is often called the

“forbidden regression.”

∙ A modification does work: in step (2), use y i2, y i22 , zi1 as IVs, not

regressors!
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∙ How can we study identification more generally? To get an idea,

write an expanded system as

y1  12y2  13y3  11z1  u1

y2  21y1  22z2  u2

y3  31z1  32z2  33z1
2  34z2

2  35z1z2  u3

where y3  y2
2.

∙ The third equation is a “reduced form,” but it is useful to add it as part

of the system to emphasize that y3  y2
2 comes with its own

instruments.
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∙ This is now a G  3 equation system. If we use rank analysis on the

first equation, we have

R1 

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

,

where the parameter vector is

1  −1,12,13,11,12,13,14,15′
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∙When we apply R1 to this expanded system, we get

R1B 

0 22 32

0 0 33

0 0 34

0 0 35

,

and the key for identification is 22 ≠ 0. We also need at least one of

33, 34, and 35 different from zero, but that follows except by fluke if

either z1 or z2 appears somewhere in the system.
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∙ Simple approach that does not require us to expand the system in an

essentially arbitrary way:

1. In the original system, label all nonredundant nonlinear functions as

endogenous variables; y3  y2
2 in the previous example.

2. Apply the rank condition to the this system without increasing the

number of equations. If the equation satisfies the rank condition, it is

generally identified.
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∙ Now when we define R1, we do not include additional parameters on

any new nonlinear functions of exogenous variables. In the previous

example

y1  12y2  13y3  11z1  u1

y2  21y1  22z2  u2

1  −1,12,13,11,12′,

R1   0 0 0 0 1 .
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∙ Then

R1B  0,22

and we need this matrix to have rank G − 1  2 − 1  1. (Note that we

are back to G  2, the original number of equations in the system.) The

new rank condition holds if and only if 22 ≠ 0.

∙ Technically, the rank condition in nonlinear models is not necessary

for identification, but we should think of it as such.
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∙ Suppose we have

y1  12y2  13y2
2  11z1  12z2  u1

y2  21y1  21z1  u2

The first equation fails the modified rank condition because if fails the

order condition. However, suppose 13 ≠ 0 and 21 ≠ 0. Then Ey2|z

is generally a nonlinear function of z (as is, of course, Ey2
2|z).

Therefore, it is likely that z1
2, z2

2, z1z2 can be used to identify the first

equation.
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∙ The problem is that we are getting identification off of a nonlinearity:

if 13  0, the first equation would not be identified. It is called a

poorly identified equation. Achieving identification in this way is rarely

convincing (cannot test 13  0 because the equation is not identified

under the null).

∙ EXERCISE: Consider

y1  12y2  11z1  u1

y2  12 expy1  22z2  u2

(for example, y1  logwage, y2  hours). Propose a single-equation

IV estimator for the second equation.
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Estimation

∙ Once an equation is known to be identified, can use a standard

single-equation method. But do not try to mimic 2SLS by plugging in

fitted values into nonlinear functions in a second-stage OLS regression!

∙ Choosing instruments is challenging. If the first equation is

y1  q1y,z1  u1,

choose functions of z to approximate Eq1y,z|z. Case-by-case basis.

∙ For systems, easiest to add reduced form linear projections for the

extra nonlinear functions of endogenous varaibles.
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EXAMPLE (with intercept explicitly included):

y1  12y2  13y2
2  14z1y2  10  11z1  12z2  u1

y2  21y1  20  22z2  23z3  u2

∙ First equation is generally identified if 23 ≠ 0. If we estimate just

this equation, choose IVs, say

1, z1, z2, z3, z1
2, z2

2, z3
2, z1z2, z1z3, z2z3.

∙ After defining the RHS variables and the instruments, just list each.
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∙ In Stata:

. gen y2sq  y2^2

. gen z1y2  z1*y2

. gen z1sq  z1^2

. gen z2sq  z2^2

. gen z3sq  z3^2

. gen z1z2  z1*z2

. gen z1z3  z1*z3

. gen z2z3  z2*z3

. ivreg y1 z1 z2 (y2 y2sq z1y2  z1 z2 z3 z1sq z2sq z3sq z1z2 z1z3 z2z3)

The above command implements the correct version of 2SLS.
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∙ For 3SLS, would specific the full system. But there must be

heteroskedasticity in at least the reduced forms!

reg3 (y1 y2 y2sq z1y2 z1 z2) (y2 y1 z2 z3)
(y2sq z1 z2 z3 z1sq z2sq z3sq z1z2 z1z3 z2z3)
(z1y2 z1 z2 z3 z1sq z2sq z3sq z1z2 z1z3 z2z3)

∙ Because the last two equations are just identified, the estimates of the

first two equations are as if we estimate the first two equations by

3SLS.

∙Would not hurt to do efficient GMM to allow system

heteroskedasticity throughout.
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∙ Labor Supply Example: Add lwage2, age  lwage to the equation.
. ivreg hours educ nwifeinc age kidslt6 kidsge6 (lwage lwagesq agelwage 

exper expersq educsq agesq ageeduc ageexper educexper nwifeincsq), robust

Instrumental variables (2SLS) regression Number of obs  428

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

lwage | -118.8399 1450.236 -0.08 0.935 -2969.485 2731.805
lwagesq | -515.1494 347.704 -1.48 0.139 -1198.611 168.312

agelwage | 52.92906 25.35424 2.09 0.037 3.091703 102.7664
educ | -87.16321 57.42158 -1.52 0.130 -200.0335 25.70704

nwifeinc | -7.329748 4.456165 -1.64 0.101 -16.08897 1.429477
age | -72.57273 33.17705 -2.19 0.029 -137.7869 -7.358534

kidslt6 | -147.618 186.3906 -0.79 0.429 -513.9951 218.7591
kidsge6 | -79.28874 45.54577 -1.74 0.082 -168.8154 10.23793

_cons | 4198.667 1742.77 2.41 0.016 773.0052 7624.329
------------------------------------------------------------------------------
Instrumented: lwage lwagesq agelwage
Instruments: educ nwifeinc age kidslt6 kidsge6 exper expersq educsq agesq

ageeduc ageexper educexper nwifeincsq
------------------------------------------------------------------------------
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. * The lwage coefficient looks strange because it is the slope when age  0.

. sum age if lwage ! .

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

age | 428 41.97196 7.721084 30 60

. gen age42lwage  (age - 42)*lwage
(325 missing values generated)
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. ivreg hours educ nwifeinc age kidslt6 kidsge6 (lwage lwagesq age42lwage
 exper expersq educsq agesq ageeduc ageexper educexper nwifeincsq), robust

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

lwage | 2104.181 858.9774 2.45 0.015 415.7388 3792.622
lwagesq | -515.1495 347.704 -1.48 0.139 -1198.611 168.312

age42lwage | 52.92906 25.35424 2.09 0.037 3.091702 102.7664
educ | -87.16321 57.42158 -1.52 0.130 -200.0335 25.70705

nwifeinc | -7.329747 4.456165 -1.64 0.101 -16.08897 1.429477
age | -72.57273 33.17705 -2.19 0.029 -137.7869 -7.358533

kidslt6 | -147.618 186.3906 -0.79 0.429 -513.9951 218.7591
kidsge6 | -79.28874 45.54577 -1.74 0.082 -168.8154 10.23793

_cons | 4198.667 1742.77 2.41 0.016 773.005 7624.328
------------------------------------------------------------------------------
Instrumented: lwage lwagesq age42lwage
Instruments: educ nwifeinc age kidslt6 kidsge6 exper expersq educsq agesq

ageeduc ageexper educexper nwifeincsq
------------------------------------------------------------------------------

48



. * Drop the quadratic; the turning point is pretty far out, anyway:

. di 2104.18/(2*515.15)
2.0422984

. count if lwage  2 & lwage ! .
45

. * Only 45 observations have lwage past the turning point.
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. ivreg hours educ nwifeinc age kidslt6 kidsge6 (lwage age42lwage 
exper expersq educsq agesq ageeduc ageexper educexper nwifeincsq), robust

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

lwage | 1192.105 393.4895 3.03 0.003 418.6511 1965.559
age42lwage | 57.21932 22.80467 2.51 0.012 12.39381 102.0448

educ | -137.7452 46.94343 -2.93 0.004 -230.0186 -45.4719
nwifeinc | -8.016031 4.569481 -1.75 0.080 -16.99793 .9658697

age | -78.6189 30.10629 -2.61 0.009 -137.7967 -19.44112
kidslt6 | -220.7256 162.3955 -1.36 0.175 -539.9348 98.4837
kidsge6 | -91.58226 45.43596 -2.02 0.044 -180.8925 -2.272062

_cons | 5218.437 1308.244 3.99 0.000 2646.915 7789.959
------------------------------------------------------------------------------
Instrumented: lwage age42lwage
Instruments: educ nwifeinc age kidslt6 kidsge6 exper expersq educsq agesq

ageeduc ageexper educexper nwifeincsq
------------------------------------------------------------------------------
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. * Now allow slope to depend on young children:

. gen kidslt6lwage  kidslt6*lwage

. gen kidslt6age  kidslt6*age

. gen kidslt6educ  kidslt6*educ

. gen kidslt6exper  kidslt6*exper
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. ivreg hours educ nwifeinc age kidslt6 kidsge6 (lwage age42lwage kidslt6lwage
 exper expersq educsq agesq ageeduc ageexper ageexpersq
educexper nwifeincsq kidslt6age kidslt6educ kidslt6exper ), robust

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

lwage | 1131.537 344.7533 3.28 0.001 453.8754 1809.198
age42lwage | 58.61914 25.2722 2.32 0.021 8.94304 108.2952

kidslt6lwage | 93.45248 694.575 0.13 0.893 -1271.833 1458.738
educ | -132.9736 42.82474 -3.11 0.002 -217.1517 -48.79551

nwifeinc | -7.827732 4.473806 -1.75 0.081 -16.62163 .9661676
age | -80.09144 32.32569 -2.48 0.014 -143.6322 -16.5507

kidslt6 | -333.7642 839.6618 -0.40 0.691 -1984.238 1316.71
kidsge6 | -94.00267 44.31191 -2.12 0.034 -181.104 -6.901314

_cons | 5291.99 1427.653 3.71 0.000 2485.736 8098.244
------------------------------------------------------------------------------
Instrumented: lwage age42lwage kidslt6lwage
Instruments: educ nwifeinc age kidslt6 kidsge6 exper expersq educsq agesq

ageeduc ageexper ageexpersq educexper nwifeincsq kidslt6age
kidslt6educ kidslt6exper

------------------------------------------------------------------------------

. * Not much interactive effect with young children.

. * Now system estimation for the age-lwage interactive model. Should have

. * standard errors robust to system heteroskedasticity.
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. reg3 (hours lwage age42lwage educ nwifeinc age kidslt6 kidsge6)
(lwage educ exper expersq) (age42lwage educ nwifeinc age kidslt6 kidsge6
exper expersq educsq agesq ageeduc ageexper ageexpersq educexper nwifeincsq)

Three-stage least-squares regression
----------------------------------------------------------------------

------------------------------------------------------------------------------
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
hours |

lwage | 1619.417 280.716 5.77 0.000 1069.224 2169.61
age42lwage | 41.47732 19.0728 2.17 0.030 4.095314 78.85933

educ | -192.5874 37.4431 -5.14 0.000 -265.9746 -119.2003
nwifeinc | -2.539116 3.995325 -0.64 0.525 -10.36981 5.291577

age | -64.94568 23.24058 -2.79 0.005 -110.4964 -19.39498
kidslt6 | -258.2699 106.2244 -2.43 0.015 -466.466 -50.0738
kidsge6 | -86.67123 33.38772 -2.60 0.009 -152.1099 -21.2325

_cons | 4729.413 1042.356 4.54 0.000 2686.433 6772.393
-----------------------------------------------------------------------------
lwage |

educ | .1077954 .014065 7.66 0.000 .0802286 .1353623
exper | .0396293 .0101335 3.91 0.000 .019768 .0594906

expersq | -.0007131 .0002934 -2.43 0.015 -.0012881 -.000138
_cons | -.5236813 .1925401 -2.72 0.007 -.9010531 -.1463096

-----------------------------------------------------------------------------
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age42lwage |
educ | -2.513084 1.110369 -2.26 0.024 -4.689368 -.3368002

nwifeinc | .0353513 .0589488 0.60 0.549 -.0801862 .1508888
age | -.3865226 .475865 -0.81 0.417 -1.319201 .5461558

kidslt6 | .2503764 .6957768 0.36 0.719 -1.113321 1.614074
kidsge6 | .1566072 .2251101 0.70 0.487 -.2846004 .5978149

exper | -1.433462 .5798369 -2.47 0.013 -2.569922 -.2970031
expersq | .0536639 .0213064 2.52 0.012 .0119041 .0954237

educsq | -.0719416 .0304118 -2.37 0.018 -.1315477 -.0123356
agesq | .0031755 .0049889 0.64 0.524 -.0066025 .0129535

ageeduc | .0952531 .0164616 5.79 0.000 .0629889 .1275173
ageexper | .017147 .0123111 1.39 0.164 -.0069823 .0412763

ageexpersq | -.0007993 .0004201 -1.90 0.057 -.0016227 .0000241
educexper | .0151728 .0149373 1.02 0.310 -.0141037 .0444494

nwifeincsq | -.0002933 .0008569 -0.34 0.732 -.0019729 .0013862
_cons | 5.541071 13.86928 0.40 0.690 -21.64222 32.72436

------------------------------------------------------------------------------
Endogenous variables: hours lwage age42lwage
Exogenous variables: educ nwifeinc age kidslt6 kidsge6 exper expersq educsq

agesq ageeduc ageexper ageexpersq educexper nwifeincsq
------------------------------------------------------------------------------
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5. DIFFERENT INSTRUMENTS FOR DIFFERENT
EQUATIONS

∙We discussed earlier how traditional 3SLS maintains that a variable

exogenous in any equation is exogenous in all equations. Can easily

relax this by using GMM approach.

∙ Identification is generally more difficult, but in practice, it is usually

straightforward.

hours  12lwage  10  11educ  12othinc  13kids  u1

lwage  23educ  20  21exper  22exper
2  u2

educ  30  31exper  32exper
2  33othinc  34kids

 35motheduc  36fatheduc  u3
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∙ Assume educ is uncorrelated with u1 but might be correlated with u2.

The available IVs for the first equation are

1,educ,othinc,kids,exper,exper2,motheduc, fatheduc

The IVs for the second and third equations are

1,othinc,kids,exper,exper2,motheduc, fatheduc

∙ No difficulty provided we can specify the IV matrix to reflect these

choices and then use GMM (whether 3SLS or more general weighting

matrix).
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