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1. SUR, REVISITED
e Consider again the SUR system, written for a random draw i as
Vig = X,-ngJrul-g,g =1,...,.G
where B, Is K x 1. We have considered two estimators of the B,: OLS

equation-by-equation and GLS using Q as the estimated G x G variance

matrix.



1.1. OLS versus SUR for Systems
¢ Algebraic/Asymptotic Equivalences:
(1) If the same regressors appear in each equation, that is, X, = X;,
g =1,...,G, the OLS equation-by-equation is numerically the same as
FGLS for any structure of Q.
e The matrix of regressors can be written as X; = lg ® X;.
e The algebra is tedious. When the data are stacked differently — by
equation, not observation — the algebra is easy, but the asymptotic

analysis is unnatural.



(2) If Qs diagonal, FGLS = OLS equation by equation for any choice

of explanatory variables, x;,. Again, this is an algebraic result, which

can be shown by writing
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(2") If Qis diagonal, and Q 5 Q, then FGLS and OLS EBE are
asymptotically equivalent. Why? By (2), OLS EBE and GLS would be

Identical, and we know FGLS and GLS are asymptotically equivalent:

\/N(ﬁGLS B ﬁSOLS) =0
«/N(ﬁFGLS - ﬁGLS) = 0,(1)

SO

\/N(BFGLS - ﬁSOLS) = 0p(1).



e Important implication of (1) and (2) [or (2')]: FGLS is
(asymptotically) more efficient the OLS EBE only when at least some
exclusion restrictions have been made and there is some correlation in
the errors across equations. Therefore, there is a tradeoff between
efficiency and robustness.

e |f we are interested in, say, the first equation, then E(X;;u;1) = 0 is
sufficient for OLS on that equation to be consistent. SUR generally

requires E(xﬁ-gul-h) = 0 for all g and 4. Therefore, if we have improperly

omitted, say, an explanatory variable from the second equation, the

FGLS estimates of B, (and B,) are generally inconsistent.



e FGLS gains efficiency over OLS (under system homoskedasticity)
only when it is valid to use the orthogonality condition

E[(Q1X)'u;] = 0 and some variables omitted from an equation, say,
g, are assumed to be uncorrelated with at least one explanatory variable
omitted from that equation.

e Can test the null hypothesis Ho : og, = 0, all g # h. Have

G(G — 1)/2 restrictions, with 62, g = 1,..., G unrestricted.

e The Breusch-Pagan test assumes normality (actually, that the first
four moments of the multivariate distribution are the same as

multivariate normal, with independence between u; and X;.



e The B-P statistic uses the OLS residuals for each equation because it
IS a Lagrange Multiplier test, which is based on estimation under the
null.

e The outcome of the B-P test is rarely in doubt: one almost always
strongly rejects the null. A robust test that uses only SGLS.1 and
SGLS.2 could be derived, using

N N
N2 Z UIU; = N712 Z UiU;- + Op(l)
i=1 i=1

without restricting the fourth moments of u;.



e EXAMPLE: A two equation SUR system for hourly earnings and
benefits. N = 606.

. sureg (hrearn educ exper expersq union married white male)
(hrbens educ exper expersqg union married white male), corr

Seemingly unrelated regression

Equation Obs Parms RMSE R-sq' chi2 P
hrearn 616 7 4.332039 0.1965 150.68 0.0000
hrbens 616 7 .5417217 0.3353 310.77  0.0000
| Coef Std. Err z P>|z] [95% Conf. Interval]
_____________ +________________________________________________________________
hrearn |
educ | .4645619 -0672265 6.91 0.000 -3328004 -5963234
exper | .0530683 .0522106 1.02 0.309 -.1553992 -0492627
expersq | .0033981 -0011129 3.05 0.002 -0012168 -0055794
union | .7685325 -3905196 1.97 0.049 .003128 1.533937
married | .6222725 -413202 1.51 0.132 -.1875886 1.432134
white | 1.107492 .605861 1.83 0.068 -.0799737 2.294958
male | 1.735931 -3939833 4.41 0.000 -9637374 2.508124
_cons | -3.078173 1.076508 2.86 0.004 -5.18809 -.9682564
+



hrbens

educ

exper
expersq
union
married
white

male

_cons

.0739853
.0431919
-0007348
.4442268
-0889692
.0866399
.2400792
-.8888685

.0084067
.0065289
.0001392
.0488345
.0516709
.0757629
.0492676
.1346174

ORRRPPFLPOOTIO O

eololojooloNe]

.0575085
.0303954

-.0010076

.3485129
-.012304

-.0618527

.1435164

-1.152714

.0904621
.0559883

-.0004621

-5399406
.1902424
.2351326

.336642

-.6250233

Correlation matrix of residuals:

hrearn
1.0000

hrearn

hrbens

hrbens 0.3022 1.0000

Breusch-Pagan test of independence: chi2(1l) =

. test married

( 1) [hrearn]married
( 2) [hrbens]married

chi2( 2)
Prob > chi2

4.03
0.1331
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56.267, Pr = 0.0000



. reg hrearn educ exper expersqg union married white male, robust

Linear regression Number of obs = 616
FC 7, 608) = 37.08
Prob > F = 0.0000
R-squared = 0.1965
Root MSE = 4.3604

| Robust
hrearn | Coef Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
educ | .4645619 .0764839 6.07 0.000 .3143572 .6147665
exper | -.0530683 .2310098 -0.23 0.818 -.5067423 -4006058
expersq | .0033981 .005917 0.57 0.566 -.0082221 .0150183
union | .7685325 .2896582 2.65 0.008 -1996804 1.337385
married | .6222725 .3362197 1.85 0.065 -.0380204 1.282565
white | 1.107492 .4993442 2.22 0.027 .1268432 2.088141
male | 1.735931 .2734542 6.35 0.000 1.198901 2.27296
_cons | -3.078173 -8501402 -3.62 0.000 -4.747741  -1.408605
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1.2 Imposing Cross-Equation Restrictions

e Suppose a two-equation system in the population is

Y1 =710 +Y11X11 T Y12X12 + A1X13 + QA2X14 + U]

V2 = Y20 +Y21X21 T+ 001X22 + 02X23 + Y 24X24 + U2

Let the vector of all parameters be the 8 x 1 vector

B=(y10,711,712,Q1,02,720,Y21,724) -

Then we can define the matrix of regressors as

12



X 1 xi11 xn2 xi3 xina 0 0 0
l':
0O O O xi2 xi23 1 Xxio1 X4

e Stata has a feature that allows one to specify linear constraints on the
parameters, which is more natural.

e Cross-equation restrictions arise naturally in demand systems, cost
share equations, and so on.

e |n share equations, where the dependent variable is a fraction, can
question whether linearity seems reasonable. Almost certainly the

system homoskedasticity assumption fails.

13



1.3. Systems with Singular Variance-Covariance Matrices.

e [n expenditure and cost share systems, the G responses, if the
categories are exhaustive and mutually exclusive, sum to unity.

e For firm i let s, siz, and sy be the cost shares for capital, labor, and
materials, respectively, and assume that s;x + siz + sy = 1. A popular

cost share system is

sik = v10 +v11log(pix) + y12109(pir) + y13l0g(pirs) + uix
sie = ¥20 +v21109(pix) + y22log(pir) + y23109(pirs) + uir
siv = ¥30 +y31log(pix) + ya2109(pir) + v33l0g(pirr) + uing

14



e The restriction on the sum implies
Yio+y20+yo =1 yu+ya+yan =0 yo+y2+y2=0
Yis+y2s+vy33 =0, uix +uir +up =0

and that last restriction implies that Q = E(u;u}), a 3 x 3 matrix, has
rank two, not three.
e Can drop any of the equations. Make it the last one, and impose the

restrictions on the parameters. Can write

SiKk = Y10 + Y11 |09(piK/piM) + Y12 |09(piL/piM) + UiK
sie = v20 +y12100(pixlpiv) + Y22 l0Q(pirlpine) + uir

15



e This two-equation system has a cross equation restriction, too. But the

singularity in the variance matrix is gone, so can apply FGLS with
B = (y10,711,712,720,722)

X — 1 log(pixlpid) 109(pirlpine) O 0
| 0 0 log(pixlpis) 1 logwirlpins) |

e Can add firm characteristics to the share equations without essential
change.
e Current interesting question: What nonlinear systems are consistent

with production theory that respect the fractional nature of the shares?
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2. PANEL DATA

e \Write for a random draw i as
in:XitB+uit1t:11---1T' (21)

e Remember, X;, can contain all kinds of explanatory variables,
Including time period dummies and variables that do not change over

time.

17



2.1. Assumptions for Pooled OLS (POLYS).

Assumption POLS.1 (Contemporaneous Exogeneity):
E(X,uy) =0,t=1,...,T. (2.2)

e Remember, POLS.1 allows for lagged dependent variables as well as
other non-strictly exogenous regressors.
Assumption POLS.2 (Rank Condition):

T
rank|:ZE(X;-tXit):| = K. (2.3)
=1

18



e Under POLS.1 and POLS.2 the asymptotic variance of
JN (ﬁPOLS -B)is

T ol T -1
|:ZE(XZ-IXZ-¢):| [Z ZE(uituisx;txis)J[ZE(XQ,XU)J . (24)
=1 =1

=1 s=1

e This expression simplifies if we appropriately restrict the conditional

variances and covariances.
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Assumption POLS.3 (Homoskedasticity and No Serial Correlation):

(a) E(u,-tiZ-tXit) — E(“%)E(X;’txit) (2-5)
= 02E(X}X;), where 62 = E(u?), all ¢
(b) E(uituisxi‘txis) =0, all ¢ + . (26)

e Under POLS.3, (2.4) becomes

T -1
o2 [ZE(xﬁ-txit) J .
=1

20



e POLS.3 implies that the “usual” asymptotic variance matrix estimator

of B, s IS valid:

-1
Avar(B ., ) = (ZZxeU) — 62(X'X) (2.7)

=1 =1
N
52 = (NT - K)~} Zzu% = SSRI(NT - K). (2.8)
=l =1

e Can use the usual ¢ and F' statistics as approximately valid for large V.

21



e Without POLS.3, generally need fully robust variance matrix. That is,

robust to arbitrary heteroskedasticity and serial correlation

(unconditional or conditional):

e This estimator in Stata is computed using a “cluster’” option, where

each unit 7 iIs a cluster of 7 time series observations.

22
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e [f we maintain the no serial correlation part of POLS.3, that s,
E(uiuisX;Xis) = 0, all # # s, then a heteroskedasticity-robust form is

valid:

=1 =1 =1 =1 =1 =1

(S5 ) (S5m0 ) (S50 )

e In Stata, this estimator is obtained with a “robust” option, but its

robustness is limited to heteroskedasticity, not serial correlation.
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EXAMPLE: Relationsip Between Air Fares and Concentration Ratio.
N=1149,T= 4.

. use airfare

. tab year
1997, 1998, |
1999, 2000 | Freq Percent Cum
____________ +___________________________________

1997 | 1,149 25.00 25.00

1998 | 1,149 25.00 50.00

1999 | 1,149 25.00 75.00

2000 | 1,149 25.00 100.00
____________ +___________________________________

Total | 4,596 100.00\pagebreak
. des fare concen
storage display value

variable name type format label variable label
fare int %9 .0g avg. one-way fare, $
concen float %9.0g market share, largest carrier

24



list id year fare concen dist in 1/16

+ __________________________________
| id year fare concen dist
e
1. ] 1 1997 106 .8386 528
2. ] 1 1998 106 .8133 528
3. ] 1 1999 113 8262 528
4. ] 1 2000 123 .8612 528
5. 1 2 1997 104 .5798 861
|-
6. | 2 1998 105 .5817 861
7.1 2 1999 115 .7319 861
8.1 2 2000 129 5386 861
9. | 3 1997 207 818 852
10. | 3 1998 188 8172 852
|-
11. ] 3 1999 229 .7998 852
12. | 3 2000 247 7097 852
13. | 4 1997 243 -4604 724
14. | 4 1998 226 .4614 724
15. | 4 1999 229 .4334 724
|-
16. | 4 2000 176 3716 724
+ __________________________________
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. sum fare concen

Variable | Obs Mean Std. Dev MiIn Max
_____________ +________________________________________________________
fare | 4596 178.7968 74.88151 37 522

concen | 4596 .6101149 -196435 1605 1

. reg Ifare concen ldist ldistsqg y98 y99 y00

26

Source | SS df MS Number of obs = 4596
————————————— e F(C 6, 4589) = 523.18
Model | 355.453858 6 59.2423096 Prob > F = 0.0000
Residual | 519.640516 4589 .113236112 R-squared = 0.4062
————————————— e et AdjJ R-squared = 0.4054
Total | 875.094374 4595 .190444913 Root MSE = .33651

Ifare | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ +________________________________________________________________
concen | -3601203 -0300691 11.98 0.000 -3011705 -4190702

Idist | -.9016004 .128273 -7.03 0.000 -1.153077 -.6501235
Idistsq | -1030196 -0097255 10.59 0.000 -0839529 -1220863

yo8 | .0211244 .0140419 1.50 0.133 -.0064046 .0486533

y99 | -0378496 -0140413 2.70 0.007 -010322 .0653772

y00 | -09987 .0140432 7.11 0.000 .0723385 .1274015

cons | 6.209258 .4206247 14.76 0.000 5.384631 7.033884



. reg Ifare concen ldist ldistsq y98 y99 y00, robust

Linear regression

Number of obs
F(C 6, 4589)
Prob > F
R-squared
Root MSE

4596
558.39
0.0000
0.4062
.33651

Robust

|

|

+

| .3601203 .0318147
Idist | -.9016004 .1406543
i | .1030196  .0104402

| .0211244 0141734

| .0378496  .0144012

I .09987  .0143821

| 6.209258  .4711359

Coef. Std. Err.

[95% Conf.

.2977482
-1.177351
.0825518
-.0066623
.0096162
.0716742
5.285605

Interval]

.4224925
-.6258503
.1234875
.048911
.0660829
.1280658
7.132911
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. reg Ifare concen ldist ldistsq y98 y99 y00, cluster(id)

Linear regression Number of obs = 4596
F(C 6, 1148) = 205.63
Prob > F = 0.0000
R-squared = 0.4062
Root MSE = .33651

(Std. Err. adjusted for 1149 clusters in id)

| Robust
Ifare | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ +________________________________________________________________
concen | .3601203 .058556 6.15 0.000 .2452315 -4750092
Idist | -.9016004 .2719464 -3.32 0.001 -1.435168 -.3680328
Idistsq | .1030196 -0201602 5.11 0.000 -0634647 -1425745
yo8 | .0211244 -0041474 5.09 0.000 -0129871 -0292617
yo9 | .0378496 -0051795 7.31 0.000 .0276872 -048012
y00 | .09987 -0056469 17.69 0.000 -0887906 -1109493
cons | 6.209258 -9117551 6.81 0.000 4._.420364 7.998151
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2.2. Dynamic Completeness and Time Series Persistence
¢ [n an important case, there can be no serial correlation in the errors in
the sense that POLS.3(b) must hold. If X, has been chosen such that

EdXe, yee1, X1, .y ¥1,X1) = E(veXe) (2.10)
then the errors {u,} can have no serial correlation, and neither can

{X;ut L= 1,...,]—}.
e \WWhen (2.10) holds, we say the model is dynamically complete (in its

mean). In the context of the linear model, it is the same as

E(Utht,Ut—]_,Xt—l,---,U:I_,X]_) — O (211)

29



o lets < ¢ s0that (X, us,Xs) < (X¢y4s-1,X-1,...,u1,X1). By Iterated

expectations,
E(uusXXs) = E
=F
=F

:E(uquX;‘XSlxl" uS1 XS):I
:E(utlxt; Us, XS)MSX;‘XS:I

[0« ugX;Xy]

because E(u|X;,us,Xs) = 0 under dynamic completeness.
e A weaker sufficient conditon for POLS.3(b) is

E(uugX,Xs) =0, all £ # s.

® F(umus) = 0for ¢ + s 1s not enough with random regressors.

30
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e Dynamic completeness (DC) is a very strong assumption in static

models. Suppose
Vi =N+ 2y + uy, (2.13)
where z, is dated contemporaneously with y,. DC requires
EQydznye1,2ia,...,1,21) = E(ilzy), (2.14)

that is, once z, is controlled for, neither past values of y or z help to

predict y;,.
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e Also for finite distributed lags, say
Vi =N+ 2o+ ZeaY, +Ze-2Y, + U, (2.15)
It may be reasonable to assume the distributed lag dynamics are correct:
EWizi2i-1,242) = EGil2, 201,242, ...,21). (2.16)

But dynamic completeness as stated in (2.10) requires much more: no

lagged outcomes on y help to predict y;:

Eydznvet,2e1,..0,91,21) = EWilz4,221,24-2). (2.17)
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e One way to interpret the presence of serial correlation in the errors of
panel data models is that the model has misspecified dynamics.

However, we may not want a model to satisfy the DC assumption

E(ytlxz,yH, Xi—1yeoey V1, X1) = E()/z|xt)

We may be happy estimating, say, E(yv/z;), E(ydz:,24-1,2+-2,...,21), Or
even E(y:|z;,y.1) without having any of these represent the fully
dynamic conditional mean.

e Remember that the presence of serial correlation is entirely different
from strict exogeneity. Strict exogeneity always fails in models with a

lagged dependent variable.
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e An important point for inference is that all statistics we have
discussed are valid for large N and small T without restricting the time

series dependence in the data. So, for example, suppose our model is
yt=m+2t7+pyt—1+ut,t=1,---,T- (2.18)

If this were a pure time series problem, we would need to worry about
the time series properties of {z,}-, and we would have to use different
Inference methods if p > 1. But with a large cross section and small T,
the statistical properties of the estimators are invariant to the time series

properties of the series.
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2.3. Testing for Serial Correlation and Heteroskedasticity

e Recall under strict exogeneity that we can ignore estimation of B — in
this case, estimation by POLS - in testing assumptions about the
unconditional variance-covariance matrix.

e Therefore, testing for serial correlation, or for constant variances
across time, is straightforward.

e Consider testing for AR(1) serial correlation:

Uy = pus-1 + é; (219)
Ho : p=0 (2.20)
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¢ The natural steps for testing (2.20) (with strictly exogenous
regressors) are (1) Run pooled OLS of y;,; on X, t = 1,..., T,
i =1,...,N, and obtain the POLS residuals (and one lag). (2) Run the
POLS regression z;; onii;.1;t = 2,...,T; i = 1,...,N, and use either

the usual ¢ statistic or that made robust to heteroskedasticity.
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e The heteroskedasticity-robust form is robust to changes in the
unconditional variance of u;, as well as dynamic heteroskedasticit in
Var(uiui-1). (ARCH)

e |f the X;, are not strictly exogenous, the test needs to be adjusted. Can

use the (heteroskedasticity-robust) ¢ statistic for p from the regression
ﬁiton ﬁi,t—].’Xit; t:211Tyl: 11---1N- (221)

e |n effect, this accounts for the possibility that u;,1 is correlated with
X, Which must happen when Xx;; contains lagged dependent variables

but could happen other times, too.
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e To test for constant variance over time, regress the squared OLS

residuals on time period dummies:
nsonl,d2;,....dT,t=1,....T:i=1,...,N (2.22)

and use a joint £ test.

e Can show under E(y«|Xi1) = X;p that the asymptotic distribution of

the test statistic does not depend on that of the POLS estimator, f .

But, there might be serial correlation in the squared errors (ARCH), or
the fourth moment of u;; might not line up with the normal, so the joint

test from (2.21) should be made “cluster robust.”
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e Can add functions of x;, to the regression in (2.21), too, such as the
POLS fitted values and their squares.

¢ \What do we do with the information? If we reject constant variances,
maybe just use fully robust inference. But it could be used as

motivation for GLS.
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AIRFARE data:

. predict uh, resid
. sort i1d year

. gen uh_1 = uh[_n-1] 1f year > 1997
(1149 missing values generated)

. reg uh uh_1
Source | SS df MS
_____________ +______________________________
Model | 322.9744 1 322.9744
Residual | 51.149214 3445 .014847377
_____________ +______________________________

Number of obs
FC 1, 3445)
Prob > F
R-squared
Adj R-squared
Root MSE

3447
~21752.96
0.0000
0.8633
0.8632
.12185

uh Coef. Std. Err. t
uh_1 .9072729 .0061515 147 .49
cons -1.33e-10 .0020754 -0.00

0.000
1.000

[95% Conf.

-895212
-.0040692

Interval]

.9193338
.0040692
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. reg uh uh_1, robust

Linear regression

Robust
uh Coef Std. Err.
uh_1 .9072729 .0071015
cons -1.33e-10 .0020754

127.76
-0.00

0.000
1.000

Number of obs = 3447
F( 1, 3445) =16321.87
Prob > F = 0.0000
R-squared = 0.8633
Root MSE = .12185
[95% Conf. Interval]
.8933492 -9211966
-.0040692 .0040692

. * Very strong serial correlation. Using heteroskedasticity-robust version
. * does not change the outcome; with rhohat = .907, this should not

. * be surprising.
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. reg uhsq y98 y99 y00

Source | SS df MS Number of obs = 4596
————————————— e et T F(C 3, 4592) = 6.18
Model | .32784636 3 .10928212 Prob > F = 0.0003
Residual | 81.1617978 4592 .017674608 R-squared = 0.0040
————————————— i i e T AdjJ R-squared = 0.0034
Total | 81.4896441 4595 .017734417 Root MSE = .13295
uhsqg | Coef Std. Err t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
y98 | -.0232182 -0055466 -4.19 0.000 -.0340923 -.0123441
y99 | -.0152361 -0055466 -2.75 0.006 -.0261101 -.004362
y00 | -.0158774 -0055466 -2.86 0.004 -.0267515 -.0050033
cons | .1266466 -0039221 32.29 0.000 -1189574 -1343357

. * The F test, with p-value = .0003, assumes no serial correlation in the

. * squared errors and also that the fourth moments are constant over time.
. * Nevertheless, the rejection is strong.
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. reg uhsq y98 y99 y00, cluster(id)

Linear regression Number of obs = 4596
F( 3, 1148) = 35.42
Prob > F = 0.0000
R-squared = 0.0040
Root MSE = .13295

(Std. Err. adjusted for 1149 clusters in id)

| Robust
uhsq | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ +________________________________________________________________
y98 | -.0232182 -0024718 -9.39 0.000 -.028068 -.0183684
y99 | -.0152361 .0032039 -4.76  0.000 -.0215222 -.00895
yo0 | -.0158774 -0032599 -4.87 0.000 -.0222734  -.0094814
_cons | .1266466 .0045367 27.92  0.000 .1177453 .1355478

. * The above F test (given p = .0000) is robust to serial correlation in the
. * squared errors and nonconstant fourth moments of the errors. Its rejection
* 1S even stronger than the nonrobust test.
* Later, we will use the estimated variances for the different time periods:

. predict sigsgh
(option xb assumed; fTitted values)
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2.4. FGLS with Strictly Exogenous Regressors
e |f we detect serial correlation or heteroskedasticity, it is tempting to

use a FGLS method to try to improve over POLS in the model
Vit = XitB‘Fuiz, [ = 1,...,T.

(Remember, with large N we can do valid inference with POLS. So,
this is an efficiency issue.)

e |f we use FGLS to account for serial correlation, strict exogeneity is
key. If we make adjustments just for heteroskedasticity,
contemporaneous exogeneity sufficies provided our estimated variance

functions depend only on elements of x;.
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e S0, we might estimate a model for Var(u|X;;) without taking a stand
on the fully dynamic mean, which means we allow for the possibility of
serial correlation. If we use weighted least squares, with weights
1/h(x;;) (the estimated variance function), we should use the fully
robust variance matrix for two reasons: (i) There is likely to be serial
correlation; (it) Our model for Var(ui|x;;) might be wrong. If we can
rule out serial correlation, it suffices to use the “robust” option for
WLS.
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e Under strict exogeneity, we might use a simple AR(1) correction.
¢ A panel version of Prais-Winsten method uses the OLS residuals in

the regression
flitonfli,t_l;fzz,...,T;i:1,...,N (223)

to get p. Then, define the quasi-differenced data, y;; = yir — pyi .1 for
t> 2,91 = (1-p?)Y%y,4 (and similarly for X;;). Finally, use pooled
OLS to get FGLS:

j/iton)?l‘t,t:l,...;l.:1,...,N. (224)
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e \WWhy might we use a fully robust (“cluster” robust) variance matrix in
(2.24)? Not to account for the first-stage estimation of p. That does not
affect the large-sample distribution of B ., ¢; it is as if we know p.
Instead, it is because (i) The AR(1) model might be wrong and/or (ii)
The system homoskedasticity assumption fails.

e The FGLS estimator might be more efficient that POLS even if the
AR(1) model is not quite right. Maybe it accounts for “enough” of the

serial correlation. But we should make our inference robust.
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e The previous comment is the motivaton in the generalized
estimating equations (GEE) literature. GEE is essentially FGLS (and
certainly asymptotically equivalent to it) recognizing that our chosen
variance matrix — such as the homoskedasticity AR(1) — might be
Incorrect. It also allows for unrestricted system heteroskedasticity in
conducting inference.

¢ In the AR(1) case, not too hard to implement (2.24) “by hand,” but
the “xtgee” command in Stata is convenient. If the “robust” option is
not included, the inference is the same as FGLS under SGLS.3. With
the “robust” option, the inference is robust to incorrect restrictions on Q

— If any are imposed — along with system heteroskedasticity.
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e Tradeoff between efficiency and consistency: The POLS estimator

only requires
E(X;tuﬁ) — O

while Prais-Winsten (and other methods that exploit serial correlation

In estimation) effectively requires
E(X;,qui) = 0, EXquir) = 0, E(X; quti) = 0

(except with some fluke cancellations).
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e Can use other forms for Q, too, or leave it fully unrestricted
(attractive with large ~, small T, to estimate 7(7 + 1)/2 separate
elements). In Stata, use an “unstructured” option in xtgee.

e Even with Q unrestricted (with {x;, : ¢ = 1,..., T strictly
exogenous), still can use a fully robust variance matrix estimator to
account for possible system heteroskedasticity.

AIRFARE EXAMPLE: Use weighted least squares to account for
different variances over time, but make inference robust to serial
correlation (and other kinds of heteroskedasticity). Then, use FGLS

with an AR(1) model, with and without robust inference.
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. * Use weighted least squares to adjust for different unconditional
. * variances over time. First, nonrobust inference.

. reg Ifare concen ldist ldistsq y98 y99 y00 [w =
(analytic weights assumed)
(sum of wgt i1s 4.0868e+04)

1/sigsqh]

Source | SS df MS Number of obs = 4596
————————————— e F(C 6, 4589) = 523.85
Model | 354.010324 6 59.0017206 Prob > F = 0.0000
Residual | 516.866129 4589 .112631538 R-squared = 0.4065
————————————— - AdjJ R-squared = 0.4057
Total | 870.876453 4595 .189526976 Root MSE = .33561

Ifare | Coef. Std. Err. t P>]t] [95% Conf. Interval]
_____________ +________________________________________________________________
concen | -3592068 -0300054 11.97 0.000 -3003817 -4180319

Idist | -.9008375 .1279271 -7.04 0.000 -1.151636 -.6500389
Idistsq | -1028932 -0096992 10.61 0.000 .0838781 -1219083

yo8 | .0211325 .0141639 1.49 0.136 -.0066355 -0489006

yo9 | -0378426 -0144068 2.63 0.009 -0095984 -0660868

y00 | -09986 .0143893 6.94 0.000 .0716501 .1280698

cons | 6.210433 -419516 14.80 0.000 5.38798 7.032886
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. * Make inference robust to any serial correlation and additional
. * heteroskedasticity.

. reg Ifare concen ldist ldistsq y98 y99 y00 [w = 1/sigsgh], cluster(id)
(analytic weights assumed)
(sum of wgt i1s 4.0868e+04)

Linear regression Number of obs = 4596
F(C 6, 1148) = 205.89
Prob > F = 0.0000
R-squared = 0.4065
Root MSE = .33561

(Std. Err. adjusted for 1149 clusters in id)

| Robust
Ifare | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
concen | .3592068 .0584782 6.14 0.000 .2444707 .4739428
Idist | -.9008375 .2710967 -3.32 0.001 -1.432738 -.3689368
Idistsq | .1028932 -0200969 5.12 0.000 .0634624 .142324
yo8 | .0211325 -0041453 5.10 0.000 -0129994 -0292657
yo9 | .0378426 .005181 7.30 0.000 .0276773 -0480079
y00 | -09986 -0056486 17.68 0.000 .0887772 .1109427
cons | 6.210433 -9088932 6.83 0.000 4.427155 7.993711
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. xtgee Ifare concen ldist ldistsq y98 y99 y00, corr(arl)

53

GEE population-averaged model Number of obs = 4596
Group and time vars: 1d year Number of groups = 1149
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: AR(D) max = 4
Wald chi2(6) = 1157.88

Scale parameter: .1136252 Prob > chi2 = 0.0000
Ifare | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
concen | .2173983 -0279859 7.77 0.000 -1625469 .2722497

Idist | -.9000279 .2408907 -3.74 0.000 -1.372165 -.4278908
Idistsq | -1009652 .0182148 5.54 0.000 -0652649 -1366655

yo8 | .0223992 .0041045 5.46 0.000 .0143545 .0304439

yo9 | -0367543 -0056737 6.48 0.000 -0256341 .0478746

y00 | -0983042 .0068041 14.45 0.000 .0849684 .1116399

cons | 6.379169 .7915448 8.06 0.000 4.82777 7.930569



. xtgee Ifare concen ldist ldistsq y98 y99

GEE population-averaged model

Group and time vars: 1d year
Link: identity
Family: Gaussian
Correlation: AR(D)
Scale parameter: .1136252
(std

y00, corr(arl) robust

Number of obs
Number of groups
Obs per group: min

wald chi2(6)
Prob > chi?2

4596
1149

4

4.0

4
1200.79
0.0000

avg
max

. adjusted for clustering on id)

I
Ifare | Coef. Std. Err.

_____________ +

concen | .2173983 -0371709 5.

Idist | -.9000279 .2817608 -3.

Idistsq | .1009652 -0208502 4

y98 | .0223992 .0041428 5

yo9 | -0367543 -0051472 7.

y00 | -0983042 .0055529 17.

cons | 6.379169 -9472529 6

[95% Conf. Interval]

.1445446 .290252
-1.452269 -.347787
.0600995 -1418309
.0142795 -0305189
-026666 .0468427
.0874207 .1091877

4.522588 8.235751
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. xtgee Ifare concen ldist ldistsq y98 y99 y00, corr(uns)

GEE population-averaged model Number of obs = 4596
Group and time vars: 1d year Number of groups = 1149
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: unstructured max = 4
Wald chi2(6) = 1321.99

Scale parameter: .1135142 Prob > chi2 = 0.0000
Ifare | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
concen | .2364893 -0249533 9.48 0.000 .1875817 .2853969

Idist | -.8806104 .2457398 -3.58 0.000 -1.362252  -.3989693
Idistsq | -0992803 -0185775 5.34 0.000 -0628691 -1356915

yo8 | .0222287 -.003546 6.27 0.000 .0152787 .0291786

y99 | -0369008 -0040047 9.21 0.000 -0290518 -0447499

y00 | -0985136 .0046874 21.02 0.000 .0893264 -1077008

cons | 6.313734 -8076273 7.82 0.000 4.730813 7.896654

. * The above estimates allow omega to be unrestricted, but maintain
. * system homoskedasticity for inference.
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. xtgee Ifare concen ldist ldistsq y98 y99 y00, corr(uns) robust

GEE population-averaged model Number of obs = 4596
Group and time vars: 1d year Number of groups = 1149
Link: identity Obs per group: min = 4
Family: Gaussian avg = 4.0
Correlation: unstructured max = 4

Wald chi2(6) = 1246.97
Scale parameter: .1135142 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on id)

I
Ifare | Coef. Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
concen | .2364893 -0406545 5.82 0.000 -1568079 -3161706
Idist | -.8806104 -26696 -3.30 0.001 -1.403842  -.3573785
Idistsq | .0992803 .0197484 5.03 0.000 -0605741 -1379866
yo8 | -0222287 -0041432 5.37 0.000 -0141082 -0303492
yo9 | -0369008 -0051386 7.18 0.000 .0268293 .0469724
y00 | -0985136 -0055411 17.78 0.000 -0876533 -109374
cons | 6.313734 .8977898 7.03 0.000 4.554098 8.07337

. * The above inference is robust to system heteroskedasticity. The fully robust
. * confidence standard error for concen iIs quite a bit larger than the
. * nonrobust one: about .041 versus .025.
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e \When “robust” Is used as an option, Stata labels the standard errors
“semi-robust.” For linear models, there is no distinction between fully
robust and semi-robust. But for certain kinds of nonlinear models, one
distinguishes between standard errors that allow misspecification of the
conditional mean — given fully robust standard errors — and those that
only allow misspecification of the conditional variance — which are

dubbed “semi-robust.”
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