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1. THE INSTRUMENTAL VARIABLES ESTIMATOR IN THE
SIMPLE MODEL

∙ Simple linear model in the population:

y  0  1x  u     (1)

where u is thought to be correlated with x (which can have any kind of

features – discrete, continuous, or hybrid). If Covx,u ≠ 0 (x is

“endogenous”) then ordinary least squares (OLS) will be inconsistent

for 1.

∙ If we have a rich set of controls, we might be aboe to break the link

between u and x – but that is an OLS solution.
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∙ An instrumental variable, z, for w has two properties:

Covz,u  0 (exogeneity)     (2)

Covz,x ≠ 0 (relevance)     (3)

A key difference is that we must take (2) on faith (or have other ways

of checking it); we can always test the null that z and x are uncorrelated

given a sample of data (and hope to reject the null).
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∙ Under (2) and (3), we can show

1 
Covz,y
Covz,x ,     (4)

which establishes that 1 is identified. Replacing the population

covariances with the sample covariances gives us the so-called

instrumental variables estimator for the simple regression model.

̂1,IV 
∑i1

N zi − z̄yi − ȳ

∑i1
N zi − z̄xi − x̄

.

∙ IV estimator is not unbiased when it is actually needed.
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∙ Even if we restrict attention to consistency, it is not true that one

should use a “slightly” endogenous instrument rather than OLS.

It is easy to show:

plim ̂1,OLS  1 
u
x

 Corrx,u     (5)

and

plim ̂1,IV  1 
u
x


Corrz,u
Corrz,x     (6)
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∙ If Corrz,x is small – that is, z is a “weak” instrument – then even a

small correlation between z and u can produce a larger asymptotic bias

than OLS. [In economics, very common to see IV estimates that are

larger in magnitude than OLS estimates.] And weak instruments lead

to large asymptotic standard errors, too.
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Under a homoskedasticity assumption (to be made precise later),

Avar N ̂1,IV − 1 
u

2

x
2z,x

2 .     (7)

When z,w
2 is small, the asymptotic variance can be very large. The

formula for the OLS estimator omits z,w
2 .

∙Weak instruments also make the usual asymptotic approximations

highly suspect, even with large sample sizes. [See Bound, Jaeger, Baker

(1995); Staiger and Stock (1997).]
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∙ EXAMPLE: Estimating the return to schooling via simple regression:

logwage  0  1educ  u     (8)

Suggestions for z:

(i) mother’s education

(ii) number of siblings

(iii) distance to the nearest college at age 16

(iv) last digit of Social Security Number

(v) z binary, z  1 if born in first quarter of year
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2. IV ESTIMATION OF A GENERAL EQUATION

∙ Start again with the population model

y  x  u,     (9)

where x is 1  K,  is K  1, and in the vast majority of cases, x1  1.

This is the same model that we estimated by OLS.

∙ No such thing as an OLS “model” or IV “model.” OLS and IV are

different estimation methods that can be applied to the same model.

They are consistent under different assumptions.
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∙ Let z  z1, z2, . . . , zL be a 1  L vector, where z1  1 almost always.

Further, z contains all exogenous elements of x. But, if one or more

elements of x is correlated with u, z must contain some outside

variables.

∙ z is exogenous;

Ez′u  0.     (10)

How does this assumption – these moment or orthogonality conditions

– allow us to identify ?
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∙ Suppose L  K. For example, x  1,x2, . . . ,xK−1,xK and

z  1,x2, . . . ,xK−1, z1, so that only xK is (possibly endogenous) and z1

as an IV for xK. Using (2.1) and (2.2),

Ez′y  Ez′x  Ez′u
 Ez′x by (10).     (11)
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If we assume the rank condition

rank Ez′x  K     (12)

then

  Ez′x−1Ez′y,     (13)

which extends the moment condition for OLS (which is the special case

z  x).
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∙ Give a random sample,

̂IV  N−1∑
i1

N

zi
′xi

−1

N−1∑
i1

N

zi
′yi

 Z′X−1Z′Y,

    (14)

    (15)

and plim̂IV   under (10) and (12).
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∙ How can we test the rank condition? Difficult in general, but with a

single endogenous explanatory variable, easy. Write the reduced form

of xK as

xK  1  2x2 . . .K−1xK−1  1z1  rk     (16)

where, by definition,

ErK  0, Covxj, rK  0, j  2, . . . ,K − 1, Covz1, rK  0.     (17)
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∙ In other words, the linear projection of xk on 1,x2, . . . ,xK−1, z1 is

LxK|1,x2, . . . ,xK−1, z1  1  2x2 . . .K−1xK−1  1z1.     (18)

∙ Can show: the rank condition (12) holds if and only if

1 ≠ 0.     (19)

∙ OLS consistently estimates the parameters of a linear projection (not

necessarily unbiased).

∙ Need to reject

H0 : 1  0     (20)

in favor of (19) convincingly. Heteroskedasticity-robust inference can

be used.
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∙ Do not care about the j in (18), but x2, . . . ,xK−1 must be partialled

out. (z1 could be correlated with xK, but it must be partially correlated.)

∙ xK can be discrete, continuous, some mixture. Regardless of the

nature of xK, the linear projection is well-defined. The IV estimator is

consistent under Ez′u  0 if

LxK|1,x2, . . . ,xK−1, z1 ≠ LxK|1,x2, . . . ,xK−1.

This last condition is just another way to say that, in a linear sense, z1

helps to predict xK controlling for the other exogenous variables.
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∙ Regressing xk on 1,x2, . . . ,xK−1, z1 using the data is often called the

first-stage regression. It should be done to establish sufficient partial

correlation between xK and z1.

∙ A reduced form also exists for y, and can be written

y  1  2x2 . . .K−1xK  Kz1  v

The j can be consistently estimated by OLS.

∙ If xK is participation in a program and z1 is eligibility, the reduced

form for y estimates the effect of eligibility on y. The “structural”

equation, y  1  2x2 . . .KxK  u, estimated by IV, attempts to

get at the causal effect of the program itself.
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3. TWO STAGE LEAST SQUARES

∙ In some cases, we have more instruments than we need. For example,

if we can use mother’s education as an IV, why not father’s education,

too?

∙ Again write

y  x  u
Ez′u  0

    (21)
    (22)

where L  dimz ≥ dimx  K.
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∙When L  K, have more than one IV estimator. We say the model

(21) is (potentially) overidentified.

∙When L  K and the rank condition holds, the model is just

identified.

∙ Suppose z1 and z2 are IVs for xK. Which should we use? Under a

homoskedasticity assumption, the best IV for xK is the linear

combination of all exogenous variables defined by the linear projection.
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∙ In general, the best vector of IVs for x is the vector of linear

projections of each element of x on z. We can write

1K
x 

1L
z

LK
 

1K
r

where  is the L  K matrix

 
LL

Ez′z−1

LK
Ez′x

and

Ez′r  0.
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∙ For each xj we can write

xj  zj  rj ≡ xj
∗  rj

where j L  1 is the jth column of .

∙ For any xj ∈ z, xj
∗  xj, so exogenous variables act as their own

instruments.

∙ In the general case, use

x∗  z

as the 1  K vector of instruments for x.
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∙ Because z is exogenous, so is x∗:

Ex∗′u  0.

∙ The rank condition becomes

rank Ex∗′x  K.

But

Ex∗′x  ′Ez′x  Ex′zEz′z−1Ez′x.
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∙ Formally, here are the first two assumptions for 2SLS, stated in the

population. (We will assume access to a random sample).

Assumption 2SLS.1 (Exogenous Instruments): Ez′u  0.

Assumption 2SLS.2 (Rank Condition): (a) rank Ez′z  L; (b) rank

Ez′x  K.

∙ Part (a) rules out perfect collinearity among the exogenous variables

(which means we cannot use linear combinations of exogenous

variables as additional instruments). Part (b) is the practically important

restriction, and requires L ≥ K.
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∙ Deriving 2SLS: With

  Ex∗′x−1Ex∗′y,

need to worry about unknown  because xi
∗  zi. Two-step

estimation:

(1) Run the regression xi on zi, i  1, . . . ,N to obtain ̂  Z′Z−1Z′X.

Obtain the vector fitted values,

x̂i  zi̂, i  1, . . . ,N.

(This is the same as regressing each element of xi not in zi on zi, and

obtaining the fitted values. Any element of xi in zi is used as its own

fitted value.)
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(2) Use x̂i as the vector of IVs for xi:

̂IV  N−1∑
i1

N

x̂i
′xi

−1

N−1∑
i1

N

x̂i
′yi .

∙We can write this differently. Because

xi  x̂i  r̂i

∑
i1

N

x̂i
′r̂i  0 (by OLS FOCs).
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So

∑
i1

N

x̂i
′xi ∑

i1

N

x̂i
′x̂i

and then the IV estimator can be written as a two stage least squares

estimator:

̂2SLS  N−1∑
i1

N

x̂i
′x̂i

−1

N−1∑
i1

N

x̂i
′yi .
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∙ The first-stage regression is xi on zi to get the fitted values, x̂i. The

second-stage regression is yi on x̂i.

∙ The two-stage least squares algorithm is not really the best way to

think about the estimator. For one, standard errors from second-stage

regression are not correct. Also, we will see that using the fitted values

as IVs is not the same as 2SLS approach for some panel data

applications. Finally, the two-step approach can lead to abuse for

simple nonlinear models.
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∙ Using full data matrices and some algebra, we can write

̂2SLS  X̂′X̂−1X̂′Y

 X′ZZ′Z−1Z′X−1X′ZZ′Z−1Z′Y
   X′Z/NZ′Z/N−1Z′X/N−1X′Z/NZ′Z/N−1Z′U/N

where the last expression can be used to show consistency by applying

the WLLN to each term, along with the rank condition and Ez′u  0

Key Result: Under 2SLS.1 and 2SLS.2, ̂2SLS on a random sample is

consistent for .
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∙ For inference, it is useful to show

N1/2̂2SLS −   N−1∑
i1

N

xi
∗′xi
∗

−1

N−1/2∑
i1

N

xi
∗′ui  op1

where the xi
∗  zi are the linear projections.

∙ It follows that

N1/2̂2SLS − 
d
→ Normal0,A−1BA−1

A  Exi
∗′xi
∗

B  Eui
2xi
∗′xi
∗.
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Assumption 2SLS.3 (Homoskedasticity):

Eu2z′z  Eu2Ez′z ≡ 2Ez′z.

Key Result: Under 2SLS.1, 2SLS.2, and 2SLS.3,

N1/2̂2SLS−
d
→ Normal0,2A−1

∙ 2SLS residuals:

ûi  yi − xi̂2SLS

(That is not x̂i in the definition of ûi. That is, these are not the OLS

residuals from the second stage.)
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∙ Consistent (not unbiased) estimators of 2 and A:

̂2  N − K−1∑
i1

N

ûi
2 p
→ 2

Â  N−1∑
i1

N

x̂i
′x̂i

Avar̂2SLS  ̂2Â−1/N  ̂2X̂′X̂−1
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∙ Heteroskedasticity-Robust Inference:

Â−1B̂Â−1/N  N
N − K ∑

i1

N

x̂i
′x̂i

−1

∑
i1

N

ûi
2x̂i

′x̂i ∑
i1

N

x̂i
′x̂i

−1

which is not the same as using the heteroskedasticity-robust inference

in the second stage regression yi on x̂i.

∙ Efficiency: 2SLS has the smallest asymptotic variance among all IV

estimators using linear functions of zi as instruments under 2SLS.1,

2SLS.2, and 2SLS.3. (Only meaningful when L  K.)
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∙ Potential pitfalls with 2SLS:

(1) A “little” endogeneity of one or more instruments can lead to large

inconsistency if the instruments are weak, that is, only slightly partially

correlated with the endogenous explanatory variables (EEVs).

(2) The standard errors of 2SLS can be large. Suppose xK is the only

EEV.
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Avar̂K ≈ 2

SSTK1 − R̂K
2 

where the denominator statistics are from the regression

x̂iK on 1,xi2, . . . ,xi,K−1.

∙ Do not get a perfect fit because of extra elements of zi. Still,

SSTK  SSTK, and SSTK is often much smaller.

∙ Plus, R̂K
2 can be close to unity with a poor instrument.
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4. APPLICATION: ENDOGENEITY OF CHILDREN IN LABOR
SUPPLY

Data are a subset from Angrist and Evans (AER, 1998).
. use C:\mitbook1_2e\statafiles\labsup.dta

. des hours nonmomi kids educ age black hispan samesex

storage display value
variable name type format label variable label
-------------------------------------------------------------------------------
hours byte %8.0g hours of work per week, mom
nonmomi float %9.0g ’non-mom’ income, $1000s
kids byte %8.0g number of kids
educ byte %8.0g mom’s years of education
age byte %8.0g age of mom
black byte %8.0g 1 of black
hispan byte %8.0g 1 if hispanic
samesex byte %8.0g first two kids are of same sex
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. sum hours nonmomi kids educ age black hispan

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

hours | 31857 21.22011 19.49892 0 99
nonmomi | 31857 31.7618 20.41241 -39.93675 157.438

kids | 31857 2.752237 .9771916 2 12
educ | 31857 11.00534 3.305196 0 20

age | 31857 29.74175 3.613745 21 35
---------------------------------------------------------------------

black | 31857 .4129705 .4923753 0 1
hispan | 31857 .593182 .4912481 0 1
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. tab kids

number of |
kids | Freq. Percent Cum.

-----------------------------------------------
2 | 16,215 50.90 50.90
3 | 10,014 31.43 82.33
4 | 3,736 11.73 94.06
5 | 1,374 4.31 98.37
6 | 323 1.01 99.39
7 | 134 0.42 99.81
8 | 47 0.15 99.96
9 | 6 0.02 99.97

10 | 4 0.01 99.99
11 | 2 0.01 99.99
12 | 2 0.01 100.00

-----------------------------------------------
Total | 31,857 100.00

. tab samesex

first two |
kids are of |

same sex | Freq. Percent Cum.
-----------------------------------------------

0 | 15,840 49.72 49.72
1 | 16,017 50.28 100.00

-----------------------------------------------
Total | 31,857 100.00
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. * First use OLS:

. reg hours kids nonmomi educ age agesq black hispan, robust

Linear regression Number of obs  31857
F( 7, 31849)  377.87
Prob  F  0.0000
R-squared  0.0727
Root MSE  18.779

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

kids | -2.325836 .1155164 -20.13 0.000 -2.552253 -2.099419
nonmomi | -.0578328 .0053515 -10.81 0.000 -.068322 -.0473436

educ | .5860083 .0374881 15.63 0.000 .5125302 .6594865
age | 2.048793 .4483823 4.57 0.000 1.169946 2.927639

agesq | -.0277198 .0076957 -3.60 0.000 -.0428036 -.012636
black | 1.058285 1.35088 0.78 0.433 -1.589492 3.706063

hispan | -5.114147 1.35152 -3.78 0.000 -7.763179 -2.465116
_cons | -10.44695 6.588891 -1.59 0.113 -23.36143 2.467528

------------------------------------------------------------------------------

. * Each child beyond the first two reduces estimated hours by about 2.3 hours,

. * other things fixed.
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. * But what if kids is endogenous?

. * Assume "samesex" is exogenous to the labor supply equation.

. * Is samesex partially correlated with kids?

. * Estimate the reduced form for kids (first-stage regression):

. reg kids samesex nonmomi educ age agesq black hispan, robust

Linear regression Number of obs  31857
F( 7, 31849)  437.80
Prob  F  0.0000
R-squared  0.1191
Root MSE  .91724

------------------------------------------------------------------------------
| Robust

kids | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

samesex | .0703744 .0102783 6.85 0.000 .0502285 .0905202
nonmomi | -.0027871 .000257 -10.85 0.000 -.0032907 -.0022834

educ | -.0853676 .0020296 -42.06 0.000 -.0893457 -.0813895
age | .0589312 .0203278 2.90 0.004 .019088 .0987744

agesq | 1.98e-06 .0003559 0.01 0.996 -.0006956 .0006995
black | .0128681 .0644422 0.20 0.842 -.113441 .1391772

hispan | -.0424722 .0644997 -0.66 0.510 -.1688941 .0839498
_cons | 2.010258 .2930274 6.86 0.000 1.435913 2.584603

------------------------------------------------------------------------------

. * Yes: Having the first two children the same gender means the expected

. * number of children is estimated to be .07 higher.
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. * Now compute the IV (2SLS) estimates:

. ivreg hours nonmomi educ age agesq black hispan (kids  samesex), robust

Instrumental variables (2SLS) regression Number of obs  31857
F( 7, 31849)  304.81
Prob  F  0.0000
R-squared  0.0583
Root MSE  18.924

------------------------------------------------------------------------------
| Robust

hours | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

kids | -4.878903 3.013547 -1.62 0.105 -10.78557 1.027766
nonmomi | -.0649179 .0099359 -6.53 0.000 -.0843926 -.0454432

educ | .368042 .2595992 1.42 0.156 -.1407823 .8768664
age | 2.200964 .4845126 4.54 0.000 1.2513 3.150627

agesq | -.0277443 .007744 -3.58 0.000 -.042923 -.0125657
black | 1.094986 1.376742 0.80 0.426 -1.603482 3.793454

hispan | -5.217758 1.381364 -3.78 0.000 -7.925284 -2.510232
_cons | -5.253976 9.037541 -0.58 0.561 -22.9679 12.45995

------------------------------------------------------------------------------
Instrumented: kids
Instruments: nonmomi educ age agesq black hispan samesex
------------------------------------------------------------------------------

. * Much bigger effect using IV, but only marginally statistically significant.
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. corr kids samesex
(obs31857)

| kids samesex
-------------------------------

kids | 1.0000
samesex | 0.0358 1.0000

. * The partial correlation is even smaller. It’s not surprising the IV estimate

. * is much less precise than OLS.
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