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Preface

This document contains selected solutions to exercises and problems in Introduc-

tion to Algorithms, Fourth Edition, by Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, and Clifford Stein. These solutions are posted publicly on the
MIT Press website.

We have numbered the pages using the format CC-PP, where CC is a chapter

number of the text and PP is the page number within that chapter. The PP num-
bers restart from 1 at the beginning of each chapter. We chose this form of page

numbering so that if we add or change material, the only pages whose numbering

is affected are those for that chapter. Moreover, if we add material for currently

uncovered chapters, the numbers of the existing pages will remain unchanged.

The solutions

As of the third edition, we have publicly posted a few solutions on the book’s web-

site. These solutions also appear here with the notation “This solution is also

posted publicly” after the exercise or problem number. The set of publicly posted

solutions might increase over time, and so we encourage you to check whether a

particular solution is posted on the website before you assign an exercise or prob-

lem to your students. The index lists all the exercises and problems for the included

solutions, along with the number of the page on which each solution starts.

Asides appear in a handful of places throughout the solutions. Also, we are less

reluctant to use shading in figures within solutions, since these figures are more

likely to be reproduced than to be drawn on a board.

Source files

For several reasons, we are unable to publish or transmit source files for this docu-

ment. We apologize for this inconvenience.

You can use the clrscode4e package for LATEX 2" to typeset pseudocode in the

same way that we do. You can find it at https://mitp-content-server.mit.edu/books/

content/sectbyfn/books pres 0/11599/clrscode4e.sty and its documentation at

https://mitp-content-server.mit.edu/books/content/sectbyfn/books pres 0/11599/

clrscode4e.pdf. Make sure to use the clrscode4e package, not the clrscode or

clrscode3e packages, which are for earlier editions of the book.



P-2 Preface

Reporting errors and suggestions

Undoubtedly, this document contains errors. Please report errors by sending email

to clrs-manual-bugs@mit.edu.

As usual, if you find an error in the text itself, please verify that it has not already

been posted on the errata web page, https://mitp-content-server.mit.edu/books/

content/sectbyfn/books pres 0/11599/e4-bugs.html, before you submit it. You also
can use the MIT Press web site for the text, https://mitpress.mit.edu/books/

introduction-algorithms-fourth-edition, to locate the errata web page and to submit

an error report.

We thank you in advance for your assistance in correcting errors in both this docu-

ment and the text.

THOMAS H. CORMEN

Lebanon, New Hampshire

March 2022



Selected Solutions for Chapter 2:

Getting Started

Solution to Exercise 2.2-2

SELECTION-SORT.A; n/

for i D 1 to n � 1

smallest D i

for j D i C 1 to n

if AŒj � < AŒsmallest�

smallest D j

exchange AŒi� with AŒsmallest�

The algorithm maintains the loop invariant that at the start of each iteration of the

outer for loop, the subarray AŒ1 W i � 1� consists of the i � 1 smallest elements in

the array AŒ1 W n�, and this subarray is in sorted order. After the first n�1 elements,

the subarray AŒ1 W n � 1� contains the smallest n � 1 elements, sorted, and therefore

element AŒn� must be the largest element.

The running time of the algorithm is ‚.n2/ for all cases.

Solution to Exercise 2.2-4

Modify the algorithm so that it first checks the input array to see whether it is
already sorted, taking ‚.n/ time for an n-element array. If the array is already

sorted, then the algorithm is done. Otherwise, sort the array as usual. The best-

case running time is generally not a good measure of an algorithm’s efficiency.

Solution to Exercise 2.3-6

Procedure BINARY-SEARCH takes a sorted array A, a value x, and a range

Œlow W high� of the array, in which we search for the value x. The procedure com-

pares x to the array entry at the midpoint of the range and decides to eliminate half

the range from further consideration. We give both iterative and recursive versions,

each of which returns either an index i such that AŒi� D x, or NIL if no entry of
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AŒlow W high� contains the value x. The initial call to either version should have the

parameters A; x; 1; n.

ITERATIVE-BINARY-SEARCH.A; x; low; high/

while low � high

mid D b.low C high/=2c
if x == AŒmid�

return mid

elseif x > AŒmid�

low D mid C 1

else high D mid � 1

return NIL

RECURSIVE-BINARY-SEARCH.A; x; low; high/

if low > high

return NIL

mid D b.low C high/=2c
if x == AŒmid�

return mid

elseif x > AŒmid�

return RECURSIVE-BINARY-SEARCH.A; x; mid C 1; high/

else return RECURSIVE-BINARY-SEARCH.A; x; low; mid � 1/

Both procedures terminate the search unsuccessfully when the range is empty (i.e.,

low > high) and terminate it successfully if the value x has been found. Based

on the comparison of x to the middle element in the searched range, the search

continues with the range halved. The recurrence for these procedures is therefore

T .n/ D T .n=2/ C ‚.1/, whose solution is T .n/ D ‚.lg n/.

Solution to Problem 2-4

a. The inversions are .1; 5/; .2; 5/; .3; 4/; .3; 5/; .4; 5/. (Remember that inversions

are specified by indices rather than by the values in the array.)

b. The array with elements drawn from f1; 2; : : : ; ng with the most inversions is

hn; n � 1; n � 2; : : : ; 2; 1i. For all 1 � i < j � n, there is an inversion .i; j /.

The number of such inversions is
�

n

2

�

D n.n � 1/=2.

c. Suppose that the array A starts out with an inversion .k; i/. Then k < i and

AŒk� > AŒi�. At the time that the outer for loop of lines 1–8 sets key D AŒi�,

the value that started in AŒk� is still somewhere to the left of AŒi�. That is,

it’s in AŒj �, where 1 � j < i , and so the inversion has become .j; i/. Some

iteration of the while loop of lines 5–7 moves AŒj � one position to the right.

Line 8 will eventually drop key to the left of this element, thus eliminating

the inversion. Because line 5 moves only elements that are greater than key,

it moves only elements that correspond to inversions. In other words, each

iteration of the while loop of lines 5–7 corresponds to the elimination of one

inversion.
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d. We follow the hint and modify merge sort to count the number of inversions in

‚.n lg n/ time.

To start, let us define a merge-inversion as a situation within the execution of

merge sort in which the MERGE procedure, after copying AŒp W q� to L and

AŒq C 1 W r� to R, has values x in L and y in R such that x > y. Consider an

inversion .i; j /, and let x D AŒi� and y D AŒj �, so that i < j and x > y.

We claim that if we were to run merge sort, there would be exactly one merge-

inversion involving x and y. To see why, observe that the only way in which

array elements change their positions is within the MERGE procedure. More-

over, since MERGE keeps elements within L in the same relative order to each

other, and correspondingly for R, the only way in which two elements can
change their ordering relative to each other is for the greater one to appear in L

and the lesser one to appear in R. Thus, there is at least one merge-inversion

involving x and y. To see that there is exactly one such merge-inversion, ob-

serve that after any call of MERGE that involves both x and y, they are in the

same sorted subarray and will therefore both appear in L or both appear in R

in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-inversion. In fact, the

correspondence between inversions and merge-inversions is one-to-one. Sup-

pose we have a merge-inversion involving values x and y, where x originally

was AŒi� and y was originally AŒj �. Since we have a merge-inversion, x > y.

And since x is in L and y is in R, x must be within a subarray preceding the

subarray containing y. Therefore x started out in a position i preceding y’s

original position j , and so .i; j / is an inversion.

Having shown a one-to-one correspondence between inversions and merge-

inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involving y in R. Let ´ be the smallest value in L

that is greater than y. At some point during the merging process, ´ and y will

be the “exposed” values in L and R, i.e., we will have ´ D LŒi� and y D RŒj �

in line 13 of MERGE. At that time, there will be merge-inversions involving y

and LŒi�; LŒi C 1�; LŒi C 2�; : : : ; LŒnL � 1�, and these nL � i merge-inversions

will be the only ones involving y. Therefore, we need to detect the first time

that ´ and y become exposed during the MERGE procedure and add the value

of nL � i at that time to the total count of merge-inversions.

The following pseudocode, modeled on merge sort, works as we have just de-

scribed. It also sorts the array A.
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MERGE-INVERSIONS.A; p; q; r/

nL D q � p C 1

nR D r � q

let LŒ0 W nL � 1� and RŒ0 W nR � 1� be new arrays

for i D 0 to nL � 1

LŒi� D AŒp C i � 1�

for j D 0 to nR � 1

RŒj � D AŒq C j �

i D 0

j D 0

k D p

inversions D 0

while i < nL and j < nR

if LŒi� � RŒj �

inversions D inversions C nL � i

AŒk� D LŒi�

i D i C 1

else AŒk� D RŒj �

j D j C 1

k D k C 1

while i < nL

AŒk� D LŒi�

i D i C 1

k D k C 1

while j < nR

AŒk� D RŒj �

j D j C 1

k D k C 1

return inversions

COUNT-INVERSIONS.A; p; r/

inversions D 0

if p < r

q D b.p C r/=2c
inversions D inversions C COUNT-INVERSIONS.A; p; q/

inversions D inversions C COUNT-INVERSIONS.A; q C 1; r/

inversions D inversions C MERGE-INVERSIONS.A; p; q; r/

return inversions

The initial call is COUNT-INVERSIONS.A; 1; n/.

In MERGE-INVERSIONS, whenever RŒj � is exposed and a value greater than

RŒj � becomes exposed in the L array, we increase inversions by the number of

remaining elements in L. Then because RŒj C 1� becomes exposed, RŒj � can

never be exposed again.

Since we have added only a constant amount of additional work to each pro-
cedure call and to each iteration of the last for loop of the merging procedure,

the total running time of the above pseudocode is the same as for merge sort:

‚.n lg n/.
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Characterizing Running Times

Solution to Exercise 3.2-2

Since O-notation provides only an upper bound, and not a tight bound, the state-

ment is saying that the running of time of algorithm A is at least a function whose

rate of growth is at most n2.

Solution to Exercise 3.2-3

2nC1 D O.2n/, but 22n ¤ O.2n/.

To show that 2nC1 D O.2n/, we must find constants c; n0 > 0 such that

0 � 2nC1 � c � 2n for all n � n0 :

Since 2nC1 D 2 � 2n for all n, we can satisfy the definition with c D 2 and n0 D 1.

To show that 22n 6D O.2n/, assume there exist constants c; n0 > 0 such that

0 � 22n � c � 2n for all n � n0 :

Then 22n D 2n � 2n � c � 2n ) 2n � c. But no constant is greater than all 2n, and

so the assumption leads to a contradiction.

Solution to Exercise 3.3-5

dlg neŠ is not polynomially bounded, but dlg lg neŠ is.

Proving that a function f .n/ is polynomially bounded is equivalent to proving that

lg f .n/ D O.lg n/ for the following reasons.

� If f .n/ is polynomially bounded, then there exist positive constants c, k, and n0

such that 0 � f .n/ � cnk for all n � n0. Without loss of generality, assume

that c � 1, since if c < 1, then f .n/ � cnk implies that f .n/ � nk . Assume

also that n0 � 2, so that n � n0 implies that lg c � .lg c/.lg n/. Then, we have

lg f .n/ � lg c C k lg n

� .lg c C k/ lg n ;

which, since c and k are constants, means that lg f .n/ D O.lg n/.
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� Now suppose that lg f .n/ D O.lg n/. Then there exist positive constants c

and n0 such that 0 � lg f .n/ � c lg n for all n � n0. Then, we have

0 � f .n/ D 2lg f .n/ � 2c lg n D .2lg n/c D nc

for all n � n0, so that f .n/ is polynomially bounded.

In the following proofs, we will make use of the following two facts:

1. lg.nŠ/ D ‚.n lg n/ (by equation (3.28)).

2. dlg ne D ‚.lg n/, because

� dlg ne � lg n, and
� dlg ne < lg n C 1 � 2 lg n for all n � 2.

We have

lg.dlg neŠ/ D ‚.dlg ne lg dlg ne/

D ‚..lg n/.lg lg n//

D !.lg n/ :

Therefore, lg.dlg neŠ/ is not O.lg n/, and so dlg neŠ is not polynomially bounded.

We also have

lg.dlg lg neŠ/ D ‚.dlg lg ne lg dlg lg ne/

D ‚..lg lg n/.lg lg lg n//

D o..lg lg n/2/

D o.lg2.lg n//

D o.lg n/ :

The last step above follows from the property that any polylogarithmic function

grows more slowly than any positive polynomial function, i.e., that for constants

a; b > 0, we have lgb n D o.na/. Substitute lg n for n, 2 for b, and 1 for a, giving

lg2.lg n/ D o.lg n/.

Therefore, lg.dlg lg neŠ/ D O.lg n/, and so dlg lg neŠ is polynomially bounded.
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Divide-and-Conquer

Solution to Exercise 4.2-3

If you can multiply 3 � 3 matrices using k multiplications, then you can multiply
n � n matrices by recursively multiplying n=3 � n=3 matrices, in time T .n/ D
kT .n=3/ C ‚.n2/.

Using the master method to solve this recurrence, consider the ratio of nlog3 k

and n2:

� If log3 k D 2, case 2 applies and T .n/ D ‚.n2 lg n/. In this case, k D 9 and
T .n/ D o.nlg 7/.

� If log3 k < 2, case 3 applies and T .n/ D ‚.n2/. In this case, k < 9 and

T .n/ D o.nlg 7/.

� If log3 k > 2, case 1 applies and T .n/ D ‚.nlog3 k/. In this case, k > 9.

T .n/ D o.nlg 7/ when log3 k < lg 7, i.e., when k < 3lg 7 � 21:85. The largest

such integer k is 21.

Thus, k D 21 and the running time is ‚.nlog3 k/ D ‚.nlog3 21/ D O.n2:80/ (since

log3 21 � 2:77).

Solution to Exercise 4.4-4

T .n/ D T .˛n/ C T ..1 � ˛/n/ C cn

We saw the solution to the recurrence T .n/ D T .n=3/ C T .2n=3/ C cn in the text.

This recurrence can be similarly solved.

Without loss of generality, let ˛ � 1�˛, so that 0 < 1�˛ � 1=2 and 1=2 � ˛ < 1.
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…

…
log1=.1�˛/ n log1=˛ n

cn

cn

cn

cn

Total: O.n lg n/

c˛n c.1 � ˛/n

c˛2n c˛.1 � ˛/nc˛.1 � ˛/n c.1 � ˛/2n

The recursion tree is full for log1=.1�˛/ n levels, each contributing cn, so we guess

�.n log1=.1�˛/ n/ D �.n lg n/. It has log1=˛ n levels, each contributing � cn, so

we guess O.n log1=˛ n/ D O.n lg n/.

Now we show that T .n/ D ‚.n lg n/ by substitution. To prove the upper bound,

we need to show that T .n/ � dn lg n for a suitable constant d > 0:

T .n/ D T .˛n/ C T ..1 � ˛/n/ C cn

� d˛n lg.˛n/ C d.1 � ˛/n lg..1 � ˛/n/ C cn

D d˛n lg ˛ C d˛n lg n C d.1 � ˛/n lg.1 � ˛/ C d.1 � ˛/n lg n C cn

D dn lg n C dn.˛ lg ˛ C .1 � ˛/ lg.1 � ˛// C cn

� dn lg n ;

if dn.˛ lg ˛ C .1 � ˛/ lg.1 � ˛// C cn � 0. This condition is equivalent to

d.˛ lg ˛ C .1 � ˛/ lg.1 � ˛// � �c :

Since 1=2 � ˛ < 1 and 0 < 1�˛ � 1=2, we have that lg ˛ < 0 and lg.1�˛/ < 0.

Thus, ˛ lg ˛ C .1 � ˛/ lg.1 � ˛/ < 0, so that when we multiply both sides of the

inequality by this factor, we need to reverse the inequality:

d �
�c

˛ lg ˛ C .1 � ˛/ lg.1 � ˛/

or

d �
c

�˛ lg ˛ C �.1 � ˛/ lg.1 � ˛/
:

The fraction on the right-hand side is a positive constant, and so it suffices to pick

any value of d that is greater than or equal to this fraction.

To prove the lower bound, we need to show that T .n/ � dn lg n for a suitable

constant d > 0. We can use the same proof as for the upper bound, substituting �
for �, and we get the requirement that

0 < d �
c

�˛ lg ˛ � .1 � ˛/ lg.1 � ˛/
:

Therefore, T .n/ D ‚.n lg n/.
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Probabilistic Analysis and Randomized

Algorithms

Solution to Exercise 5.2-1

Since HIRE-ASSISTANT always hires candidate 1, it hires exactly once if and only
if no candidates other than candidate 1 are hired. This event occurs when candi-

date 1 is the best candidate of the n, which occurs with probability 1=n.

HIRE-ASSISTANT hires n times if each candidate is better than all those who were
interviewed (and hired) before. This event occurs precisely when the list of ranks

given to the algorithm is h1; 2; : : : ; ni, which occurs with probability 1=nŠ.

Solution to Exercise 5.2-5

Another way to think of the hat-check problem is that we want to determine the

expected number of fixed points in a random permutation. (A fixed point of a

permutation � is a value i for which �.i/ D i .) We could enumerate all nŠ per-

mutations, count the total number of fixed points, and divide by nŠ to determine

the average number of fixed points per permutation. This would be a painstak-

ing process, and the answer would turn out to be 1. We can use indicator random

variables, however, to arrive at the same answer much more easily.

Define a random variable X that equals the number of customers that get back their

own hat, so that we want to compute E ŒX�.

For i D 1; 2; : : : ; n, define the indicator random variable

Xi D I fcustomer i gets back his own hatg :

Then X D X1 C X2 C � � � C Xn.

Since the ordering of hats is random, each customer has a probability of 1=n of get-

ting back their own hat. In other words, Pr fXi D 1g D 1=n, which, by Lemma 5.1,

implies that E ŒXi � D 1=n.



5-2 Selected Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms

Thus,

E ŒX� D E

"

n
X

iD1

Xi

#

D

n
X

iD1

E ŒXi � (linearity of expectation)

D

n
X

iD1

1=n

D 1 ;

and so we expect that exactly 1 customer gets back their own hat.

Note that this is a situation in which the indicator random variables are not inde-

pendent. For example, if n D 2 and X1 D 1, then X2 must also equal 1. Con-

versely, if n D 2 and X1 D 0, then X2 must also equal 0. Despite the dependence,

Pr fXi D 1g D 1=n for all i , and linearity of expectation holds. Thus, we can use

the technique of indicator random variables even in the presence of dependence.

Solution to Exercise 5.2-6

Let Xij be an indicator random variable for the event where the pair AŒi�; AŒj �

for i < j is inverted, i.e., AŒi� > AŒj �. More precisely, we define Xij D
I fAŒi� > AŒj �g for 1 � i < j � n. We have Pr fXij D 1g D 1=2, because

given two distinct random numbers, the probability that the first is bigger than the

second is 1=2. By Lemma 5.1, E ŒXij � D 1=2.

Let X be the the random variable denoting the total number of inverted pairs in the

array, so that

X D

n�1
X

iD1

n
X

j DiC1

Xij :

We want the expected number of inverted pairs, so we take the expectation of both

sides of the above equation to obtain

E ŒX� D E

"

n�1
X

iD1

n
X

j DiC1

Xij

#

:

We use linearity of expectation to get

E ŒX� D E

"

n�1
X

iD1

n
X

j DiC1

Xij

#

D

n�1
X

iD1

n
X

j DiC1

E ŒXij �

D

n�1
X

iD1

n
X

j DiC1

1=2
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D

 

n

2

!

1

2

D
n.n � 1/

2
�

1

2

D
n.n � 1/

4
:

Thus the expected number of inverted pairs is n.n � 1/=4.

Solution to Exercise 5.3-2

Along with the identity permutation, there are other permutations that PERMUTE-

WITHOUT-IDENTITY fails to produce. For example, consider its operation when

n D 3, when it should be able to produce the nŠ�1 D 5 non-identity permutations.

The for loop iterates for i D 1 and i D 2. When i D 1, the call to RANDOM

returns one of two possible values (either 2 or 3), and when i D 2, the call to

RANDOM returns just one value (3). Thus, PERMUTE-WITHOUT-IDENTITY can

produce only 2 � 1 D 2 possible permutations, rather than the 5 that are required.

Solution to Exercise 5.3-4

PERMUTE-BY-CYCLIC chooses offset as a random integer in the range 1 �
offset � n, and then it performs a cyclic rotation of the array. That is,

BŒ..i C offset � 1/ mod n/ C 1� D AŒi� for i D 1; 2; : : : ; n. (The subtraction

and addition of 1 in the index calculation is due to the 1-origin indexing. If we
had used 0-origin indexing instead, the index calculation would have simplied to

BŒ.i C offset/ mod n� D AŒi� for i D 0; 1; : : : ; n � 1.)

Thus, once offset is determined, so is the entire permutation. Since each value of
offset occurs with probability 1=n, each element AŒi� has a probability of ending

up in position BŒj � with probability 1=n.

This procedure does not produce a uniform random permutation, however, since
it can produce only n different permutations. Thus, n permutations occur with

probability 1=n, and the remaining nŠ � n permutations occur with probability 0.
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Heapsort

Solution to Exercise 6.1-1

Since a heap is an almost-complete binary tree (complete at all levels except pos-
sibly the lowest), it has at most 2hC1 � 1 elements (if it is complete) and at least

2h �1C1 D 2h elements (if the lowest level has just 1 element and the other levels

are complete).

Solution to Exercise 6.1-2

Given an n-element heap of height h, we know from Exercise 6.1-1 that

2h � n � 2hC1 � 1 < 2hC1 :

Thus, h � lg n < h C 1. Since h is an integer, h D blg nc (by definition of b c).

Solution to Exercise 6.2-7

If you put a value at the root that is less than every value in the left and right

subtrees, then MAX-HEAPIFY will be called recursively until a leaf is reached. To

make the recursive calls traverse the longest path to a leaf, choose values that make

MAX-HEAPIFY always recurse on the left child. It follows the left branch when

the left child is greater than or equal to the right child, so putting 0 at the root

and 1 at all the other nodes, for example, will accomplish that. With such values,

MAX-HEAPIFY will be called h times (where h is the heap height, which is the

number of edges in the longest path from the root to a leaf), so its running time

will be ‚.h/ (since each call does ‚.1/ work), which is ‚.lg n/. Since we have

a case in which MAX-HEAPIFY’s running time is ‚.lg n/, its worst-case running

time is �.lg n/.
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Solution to Exercise 6.4-1

(b) (c)

(d) (e) (f)

(g) (h) (i)

2 4 5 7 8 13 17 20 25

20

4

2 5

7 8 13 17

25

2

4 5

7 8 13 17

2520

5

4 2

171387

20 25

7

4 5

171382

20 25

13

58

2 7 4 17

2520

8

7 5

171342

20 25

17

13 5

2478

2520

20

13 17

2478

255

A

i
i

i i i

i

i i

(a)

25

13 20

21778

45
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Solution to Exercise 6.5-2

22

22

81 81

8

1 10

i

8

1 -∞

15

13 9

5 12 8 7

4 0 6

(a)

15

13 9

5 12 8 7

4 0 6

(b)

15

13 9

0

12 10 7

4

5

6

(c)

i

15

5

10

0

12 9 7

4

13

6

(d)

i

The running time is O.lg n/ plus the overhead for mapping priority queue objects

to array indices.

Solution to Problem 6-1

a. The procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP
0 do not always

create the same heap when run on the same input array. Consider the following

counterexample.

Input array A:

1 2 3A

BUILD-MAX-HEAP.A/:

1

32

3

12

3 2 1A

BUILD-MAX-HEAP
0.A/:

1

2

2

31

3

21

3 1 2A

3
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b. An upper bound of O.n lg n/ time follows immediately from there being n � 1

calls to MAX-HEAP-INSERT, each taking O.lg n/ time. For a lower bound

of �.n lg n/, consider the case in which the input array is given in strictly in-

creasing order. Each call to MAX-HEAP-INSERT causes HEAP-INCREASE-

KEY to go all the way up to the root. Since the depth of node i is blg ic, the

total time is
n
X

iD1

‚.blg ic/ �

n
X

iDdn=2e

‚.blg dn=2ec/

�

n
X

iDdn=2e

‚.blg.n=2/c/

D

n
X

iDdn=2e

‚.blg n � 1c/

� .n=2/ � ‚.lg n/

D �.n lg n/ :

In the worst case, therefore, BUILD-MAX-HEAP
0 requires ‚.n lg n/ time to

build an n-element heap.
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Solution to Exercise 7.2-3

Suppose that PARTITION is called on a subarray AŒp W r� whose elements are dis-

tinct and in decreasing order. PARTITION chooses the smallest element, in AŒr�, as

the pivot. Every test in line 4 comes up false, so that no elements are exchanged

during the execution of the for loop. Before PARTITION returns, line 6 finds that

i D p � 1, and so it swaps the elements in AŒp� and AŒr�. PARTITION returns p

as the position of the pivot. The subarray containing elements less than or equal

to the pivot is empty. The subarray containing elements greater than the pivot,

AŒp C 1 W r�, has all but the pivot and is in decreasing order except that the maxi-

mum element of this subarray is in AŒr�.

When QUICKSORT calls PARTITION on AŒp W q � 1�, nothing changes, as this sub-

array is empty. When QUICKSORT calls PARTITION on AŒq C 1 W r�, now the pivot

is the greatest element in the subarray. Although every test in line 4 comes up true,

the indices i and j are always equal in line 6, so that just as in the case where the

pivot is the smallest element, no elements are exchanged during the execution of

the for loop. Before PARTITION returns, line 6 finds that i D r �1, so that the swap

in line 6 leaves the pivot in AŒr�. PARTITION returns r as the position of the pivot.

Now the subarray containing elements less than or equal to the pivot has all but the

pivot and is in decreasing order, and the subarray containing elements greater than

the pivot is empty. The next call to PARTITION, therefore, is on a subarray that is

in decreasing order, so that it goes back to the first case above.

Therefore, each recursive call is on a subarray only one element smaller, giving

a recurrence for the running time of T .n/ D T .n � 1/ C ‚.n/, whose solution

is ‚.n2/.

Solution to Exercise 7.2-5

The minimum depth follows a path that always takes the smaller part of the par-

tition—i.e., that multiplies the number of elements by ˛. One level of recursion

reduces the number of elements from n to ˛n, and i levels of recursion reduce the

number of elements to ˛in. At a leaf, there is just one remaining element, and so

at a minimum-depth leaf of depth m, we have ˛mn D 1. Thus, ˛m D 1=n. Taking
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logarithms, we get m lg ˛ D � lg n, or m D � lg n= lg ˛. (This quantity is positive

because 0 < ˛ < 1 implies that lg ˛ < 0.)

Similarly, the maximum-depth path corresponds to always taking the larger part of

the partition, i.e., keeping a fraction ˇ of the elements each time. The maximum

depth M is reached when there is one element left, that is, when ˇM n D 1. Thus,

M D � lg n= lg ˇ. (Again, this quantity is positive because 0 < ˇ < 1 implies that

lg ˇ < 0.)

All these equations are approximate because we are ignoring floors and ceilings.
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Sorting in Linear Time

Solution to Exercise 8.1-3

If the sort runs in linear time for m input permutations, then the height h of the

portion of the decision tree consisting of the m corresponding leaves and their

ancestors is linear.

Use the same argument as in the proof of Theorem 8.1 to show that this is impos-

sible for m D nŠ=2, nŠ=n, or nŠ=2n.

We have 2h � m, which gives us h � lg m. For all the possible values of m given

here, lg m D �.n lg n/, hence h D �.n lg n/.

In particular, using equation (3.25):

lg
nŠ

2
D lg nŠ � 1 � n lg n � n lg e � 1 ;

lg
nŠ

n
D lg nŠ � lg n � n lg n � n lg e � lg n ;

lg
nŠ

2n
D lg nŠ � n � n lg n � n lg e � n :

Solution to Exercise 8.2-3

The following solution also answers Exercise 8.2-2.

Notice that the correctness argument in the text does not depend on the order in

which A is processed. The algorithm is correct whether A is processed front to

back or back to front.

But the modified algorithm is not stable. As before, in the final for loop an element

equal to one taken from A earlier is placed before the earlier one (i.e., at a lower
index position) in the output arrray B . The original algorithm was stable because

an element taken from A later started out with a lower index than one taken earlier.

But in the modified algorithm, an element taken from A later started out with a

higher index than one taken earlier.

In particular, the algorithm still places the elements with value k in positions

C Œk � 1� C 1 through C Œk�, but in the reverse order of their appearance in A.

Rewrite of COUNTING-SORT that writes elements with the same value into the

output array in order of increasing index and is stable:
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COUNTING-SORT.A; n; k/

let BŒ1 W n�, C Œ0 W k�, and LŒ0 W k� be new arrays

for i D 0 to k

C Œi � D 0

for j D 1 to n

C ŒAŒj �� D C ŒAŒj �� C 1

// C Œi� now contains the number of elements equal to i .

LŒ0� D 1

for i D 1 to k

LŒi� D LŒi � 1� C C Œi � 1�

// LŒi� now contains the index of the first element of A with value i

for j D 1 to n

BŒLŒAŒj ��� D AŒj �

LŒAŒj �� D LŒAŒj �� C 1

return B

Solution to Exercise 8.3-3

Basis: If d D 1, there’s only one digit, so sorting on that digit sorts the array.

Inductive step: Assuming that radix sort works for d � 1 digits, we’ll show that it

works for d digits.

Radix sort sorts separately on each digit, starting from digit 1. Thus, radix sort of

d digits, which sorts on digits 1; : : : ; d is equivalent to radix sort of the low-order

d � 1 digits followed by a sort on digit d . By our induction hypothesis, the sort of

the low-order d � 1 digits works, so just before the sort on digit d , the elements

are in order according to their low-order d � 1 digits.

The sort on digit d will order the elements by their d th digit. Consider two ele-

ments, a and b, with d th digits ad and bd respectively.

� If ad < bd , the sort will put a before b, which is correct, since a < b regardless

of the low-order digits.
� If ad > bd , the sort will put a after b, which is correct, since a > b regardless

of the low-order digits.
� If ad D bd , the sort will leave a and b in the same order they were in, because

it is stable. But that order is already correct, since the correct order of a and b

is determined by the low-order d � 1 digits when their d th digits are equal, and

the elements are already sorted by their low-order d � 1 digits.

If the intermediate sort were not stable, it might rearrange elements whose d th

digits were equal—elements that were in the right order after the sort on their
lower-order digits.

Solution to Exercise 8.3-5

Treat the numbers as 3-digit numbers in radix n. Each digit ranges from 0 to n � 1.

Sort these 3-digit numbers with radix sort.
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There are 3 calls to counting sort, each taking ‚.n C n/ D ‚.n/ time, so that the

total time is ‚.n/.

Solution to Problem 8-1

a. For a comparison algorithm A to sort, no two input permutations can reach the

same leaf of the decision tree, so that there must be at least nŠ leaves reached

in TA, one for each possible input permutation. Since A is a deterministic algo-

rithm, it must always reach the same leaf when given a particular permutation

as input, so at most nŠ leaves are reached (one for each permutation). Therefore
exactly nŠ leaves are reached, one for each input permutation.

These nŠ leaves will each have probability 1=nŠ, since each of the nŠ possible

permutations is the input with the probability 1=nŠ. Any remaining leaves will
have probability 0, since they are not reached for any input.

Without loss of generality, we can assume for the rest of this problem that paths

leading only to 0-probability leaves aren’t in the tree, since they cannot affect
the running time of the sort. That is, we can assume that TA consists of only the

nŠ leaves labeled 1=nŠ and their ancestors.

b. If k > 1, then the root of T is not a leaf. All of T ’s leaves must be leaves in

LT and RT . Since every leaf at depth h in LT or RT has depth h C 1 in T ,

D.T / must be the sum of D.LT /, D.RT /, and k, the total number of leaves.

To prove this last assertion, let dT .x/ D depth of node x in tree T . Then,

D.T / D
X

x2 leaves.T /

dT .x/

D
X

x2 leaves.LT /

dT .x/ C
X

x2 leaves.RT /

dT .x/

D
X

x2 leaves.LT /

.dLT .x/ C 1/ C
X

x2 leaves.RT /

.dRT .x/ C 1/

D
X

x2 leaves.LT /

dLT .x/ C
X

x2 leaves.RT /

dRT .x/ C
X

x2 leaves.T /

1

D D.LT / C D.RT / C k :

c. To show that d.k/ D min fd.i/ C d.k � i/ C k W 1 � i � k � 1g, we will

show separately that d.k/ � min fd.i/ C d.k � i/ C k W 1 � i � k � 1g and

d.k/ � min fd.i/ C d.k � i/ C k W 1 � i � k � 1g.

� We show that d.k/ � min fd.i/ C d.k � i/ C k W 1 � i � k � 1g by show-
ing that d.k/ � d.i/Cd.k�i/Ck for i D 1; 2; : : : ; k�1. By Exercise B.5-4,

there are full binary trees with i leaves for any i from 1 to k � 1. Therefore,

we can create decision trees LT with i leaves and RT with k � i leaves such

that D.LT / D d.i/ and D.RT / D d.k � i/. Construct T such that LT

and RT are the left and right subtrees of T ’s root, respectively. Then

d.k/

� D.T / (by definition of d as minimum D.T / value)
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D D.LT / C D.RT / C k (by part (b))

D d.i/ C d.k � i/ C k (by choice of LT and RT ) .

� We show that d.k/ � min fd.i/ C d.k � i/ C k W 1 � i � k � 1g by show-

ing that d.k/ � d.i/ C d.k � i/ C k, for some i in f1; 2; : : : ; k � 1g. Take

the tree T with k leaves such that D.T / D d.k/, let LT and RT be T ’s

left and right subtree, respectively, and let i be the number of leaves in LT .

Then k � i is the number of leaves in RT and

d.k/

D D.T / (by choice of T )

D D.LT / C D.RT / C k (by part (b))

� d.i/ C d.k � i/ C k (by definition of d as minimum D.T / value) .

Neither i nor k � i can be 0 (and hence 1 � i � k � 1), since if one of

these were 0, either LT or RT would contain all k leaves of T . The root

of T would have only one child, so that T would not be a full binary tree and

hence not a decision tree.

d. Let fk.i/ D i lg i C .k � i/ lg.k � i/. To find the value of i that minimizes fk,

find the i for which the derivative of fk with respect to i is 0:

f 0
k.i/ D

d

di

�

i ln i C .k � i/ ln.k � i/

ln 2

�

D
ln i C 1 � ln.k � i/ � 1

ln 2

D
ln i � ln.k � i/

ln 2
is 0 at i D k=2. To verify that this is indeed a minimum (not a maximum),

check that the second derivative of fk is positive at i D k=2:

f 00
k .i/ D

d

di

�

ln i � ln.k � i/

ln 2

�

D
1

ln 2

�

1

i
C

1

k � i

�

:

f 00
k .k=2/ D

1

ln 2

�

2

k
C

2

k

�

D
1

ln 2
�

4

k
> 0 (since k > 1) :

Now we use substitution to prove d.k/ D �.kb lg k/. The base case of the

induction is satisfied because d.1/ � 0 D c � 1 � lg 1 for any constant c. For the

inductive step, assume that d.i/ � ci lg i for 1 � i � k � 1, where c is some

constant to be determined:

d.k/ D min fd.i/ C d.k � i/ C k W 1 � i � k � 1g

� min fc.i lg i C .k � i/ lg.k � i// C k W 1 � i � k � 1g

D c

�

k

2
lg

k

2
C

�

k �
k

2

�

lg

�

k �
k

2

��

C k
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D ck lg

�

k

2

�

C k

D c.k lg k � k/ C k

D ck lg k C .k � ck/

� ck lg k if c � 1 ;

and so d.k/ D �.k lg k/.

e. Using the result of part (d) and the fact that TA (as modified in our solution to

part (a)) has nŠ leaves, we can conclude that

D.TA/ � d.nŠ/ D �.nŠ lg.nŠ// :

D.TA/ is the sum of the decision-tree path lengths for sorting all input per-

mutations, and the path lengths are proportional to the run time. Since the nŠ

permutations have equal probability 1=nŠ, the expected time to sort n random
elements (one input permutation) is the total time for all permutations divided

by nŠ:

�.nŠ lg.nŠ//

nŠ
D �.lg.nŠ// D �.n lg n/ :

f. We will show how to modify a randomized decision tree (algorithm) to define a

deterministic decision tree (algorithm) that is at least as good as the randomized

one in terms of the average number of comparisons.

At each randomized node, pick the child with the smallest subtree (the subtree

with the smallest average number of comparisons on a path to a leaf). Delete all

the other children of the randomized node and splice out the randomized node

itself.

The deterministic algorithm corresponding to this modified tree still works, be-

cause the randomized algorithm worked no matter which path was taken from

each randomized node.

The average number of comparisons for the modified algorithm is no larger

than the average number for the original randomized tree, since we discarded

the higher-average subtrees in each case. In particular, each time we splice out
a randomized node, we leave the overall average less than or equal to what it

was, because

� the same set of input permutations reaches the modified subtree as before, but

those inputs are handled in less than or equal to average time than before, and
� the rest of the tree is unmodified.

The randomized algorithm thus takes at least as much time on average as the

corresponding deterministic one. (We’ve shown that the average-case running

time for a deterministic comparison sort is �.n lg n/, hence the expected time

for a randomized comparison sort is also �.n lg n/.)
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Solution to Exercise 9.3-1

For groups of 7, the algorithm still works in linear time. The number g of groups is

at most n=7. There are at least 4.bg=2c C 1/ � 2g elements greater than or equal

to the pivot, and at least 4 dg=2e � 2g elements less than or equal to the pivot.

That leaves at most 7g � 2g D 5g � 5n=7 elements in the recursive call. The
recurrence becomes T .n/ � T .n=7/ C T .5n=7/ C O.n/, which you can show by

substitution has the solution T .n/ D O.n/.

In fact, any odd group size � 5 works in linear time.

Solution to Exercise 9.3-3

A modification to quicksort that allows it to run in O.n lg n/ time in the worst

case uses the deterministic PARTITION-AROUND procedure that takes an element

to partition around as an input parameter.

SELECT takes an array A, the bounds p and r of the subarray in A, and the rank i

of an order statistic, and in time linear in the size of the subarray AŒp W r� it returns

the i th smallest element in AŒp W r�.

BEST-CASE-QUICKSORT.A; p; r/

if p < r

i D b.r � p C 1/=2c
x D SELECT.A; p; r; i/

q D PARTITION-AROUND.A; p; r; x/

BEST-CASE-QUICKSORT.A; p; q � 1/

BEST-CASE-QUICKSORT.A; q C 1; r/

For an n-element array, the largest subarray that BEST-CASE-QUICKSORT re-

curses on has n=2 elements. This situation occurs when n D r � p C 1 is even;
then the subarray AŒq C 1 W r� has n=2 elements, and the subarray AŒp W q � 1� has

n=2 � 1 elements.

Because BEST-CASE-QUICKSORT always recurses on subarrays that are at most

half the size of the original array, the recurrence for the worst-case running time is

T .n/ � 2T .n=2/ C ‚.n/ D O.n lg n/.



9-2 Selected Solutions for Chapter 9: Medians and Order Statistics

Solution to Exercise 9.3-6

Let the procedure MEDIAN take as parameters an array A and subarray indices p

and r and return the value of the median element of AŒp W r� in O.n/ time in the

worst case.

Given MEDIAN, here is a linear-time algorithm SELECT
0 for finding the i th small-

est element in AŒp W r�. This algorithm uses the deterministic PARTITION-AROUND

procedure that takes an element to partition around as an input parameter.

SELECT
0.A; p; r; i/

if p == r

return AŒp�

x D MEDIAN.A; p; r/

q D PARTITION-AROUND.A; p; r; x/

k D q � p C 1

if i == k

return AŒq�

elseif i < k

return SELECT
0.A; p; q � 1; i/

else return SELECT
0.A; q C 1; r; i � k/

Because x is the median of AŒp W r�, each subarray AŒp W q �1� and AŒq C 1 W r� has

at most half the number of elements of AŒp W r�. The recurrence for the worst-case

running time of SELECT
0 is T .n/ � T .n=2/ C O.n/ D O.n/.

Solution to Problem 9-1

Assume that the numbers start out in an array.

a. Sort the numbers using merge sort or heapsort, which take ‚.n lg n/ worst-case

time. (Don’t use quicksort or insertion sort, which can take ‚.n2/ time.) Put
the i largest elements (directly accessible in the sorted array) into the output

array, taking ‚.i/ time.

Total worst-case running time: ‚.n lg n C i/ D ‚.n lg n/ (because i � n).

b. Implement the priority queue as a heap. Build the heap using BUILD-HEAP,

which takes ‚.n/ time, then call HEAP-EXTRACT-MAX i times to get the i

largest elements, in ‚.i lg n/ worst-case time, and store them in reverse order

of extraction in the output array. The worst-case extraction time is ‚.i lg n/

because

� i extractions from a heap with O.n/ elements takes i � O.lg n/ D O.i lg n/

time, and
� half of the i extractions are from a heap with � n=2 elements, so those i=2

extractions take .i=2/�.lg.n=2// D �.i lg n/ time in the worst case.
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Total worst-case running time: ‚.n C i lg n/.

c. Use the SELECT algorithm of Section 9.3 to find the i th largest number in ‚.n/

time. Partition around that number in ‚.n/ time. Sort the i largest numbers in

‚.i lg i/ worst-case time (with merge sort or heapsort).

Total worst-case running time: ‚.n C i lg i/.

Note that method (c) is always asymptotically at least as good as the other two

methods, and that method (b) is asymptotically at least as good as (a).
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Hash Tables

Solution to Exercise 11.2-1

For each pair of keys k; l , where k ¤ l , define the indicator random variable Xkl D
I fh.k/ D h.l/g. Since we assume independent uniform hashing, Pr fXkl D 1g D
Pr fh.k/ D h.l/g D 1=m, and so E ŒXkl � D 1=m.

Now define the random variable Y to be the total number of collisions, so that
Y D

P

k¤l Xkl . The expected number of collisions is

E ŒY � D E
�
X

k¤l

Xkl

�

D
X

k¤l

E ŒXkl � (linearity of expectation)

D

 

n

2

!

1

m

D
n.n � 1/

2
�

1

m

D
n.n � 1/

2m
:

Solution to Exercise 11.2-4

The flag in each slot will indicate whether the slot is free.

� A free slot is in the free list, a doubly linked list of all free slots in the table.

The slot thus contains two pointers.

� A used slot contains an element and a pointer (possibly NIL) to the next element

that hashes to this slot. (Of course, that pointer points to another slot in the
table.)

Operations

� Insertion:
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� If the element hashes to a free slot, just remove the slot from the free list and

store the element there (with a NIL pointer). The free list must be doubly

linked in order for this deletion to run in O.1/ time.
� If the element hashes to a used slot j , check whether the element x already

there “belongs” there (its key also hashes to slot j ).

� If so, add the new element to the chain of elements in this slot. To do

so, allocate a free slot (e.g., take the head of the free list) for the new

element and put this new slot at the head of the list pointed to by the

hashed-to slot (j ).
� If not, x is part of another slot’s chain. Move it to a new slot by allocating

one from the free list, copying the old slot’s (j ’s) contents (element x

and pointer) to the new slot, and updating the pointer in the slot that

pointed to j to point to the new slot. Then insert the new element in the

now-empty slot as usual.

To update the pointer to j , it is necessary to find it by searching the chain
of elements starting in the slot x hashes to.

� Deletion: Let j be the slot the element x to be deleted hashes to.

� If x is the only element in j (j doesn’t point to any other entries), just free

the slot, returning it to the head of the free list.
� If x is in j but there’s a pointer to a chain of other elements, move the first

pointed-to entry to slot j and free the slot it was in.
� If x is found by following a pointer from j , just free x’s slot and splice it out

of the chain (i.e., update the slot that pointed to x to point to x’s successor).

� Searching: Check the slot the key hashes to, and if that is not the desired

element, follow the chain of pointers from the slot.

All the operations take expected O.1/ times for the same reason they do with

the version in the book: The expected time to search the chains is O.1 C ˛/

regardless of where the chains are stored, and the fact that all the elements are

stored in the table means that ˛ � 1. If the free list were singly linked, then

operations that involved removing an arbitrary slot from the free list would not
run in O.1/ time.

Solution to Problem 11-3

a. A particular key is hashed to a particular slot with probability 1=n. Suppose

we select a specific set of k keys. The probability that these k keys are inserted

into the slot in question and that all other keys are inserted elsewhere is
�

1

n

�k �

1 �
1

n

�n�k

:

Since there are
�

n

k

�

ways to choose our k keys, we get

Qk D

�

1

n

�k �

1 �
1

n

�n�k
 

n

k

!

:
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b. For i D 1; 2; : : : ; n, let Xi be a random variable denoting the number of keys

that hash to slot i , and let Ai be the event that Xi D k, i.e., that exactly k keys

hash to slot i . From part (a), we have Pr fAg D Qk . Then,

Pk D Pr fM D kg

D Pr fmax fXi W 1 � i � ng D kg

D Pr fthere exists i such that Xi D k and that Xi � k for i D 1; 2; : : : ; ng

� Pr fthere exists i such that Xi D kg

D Pr fA1 [ A2 [ � � � [ Ang

� Pr fA1g C Pr fA2g C � � � C Pr fAng (by inequality (C.21))

D nQk :

c. We start by showing two facts. First, 1 � 1=n < 1 and n � k � 0, which

imply that .1 � 1=n/n�k � 1. Second, nŠ=.n � k/Š D n � .n � 1/ � .n � 2/

� � � .n � k C 1/ < nk. Using these facts, along with the simplification kŠ >

.k=e/k of equation (3.25), we have

Qk D

�

1

n

�k �

1 �
1

n

�n�k
nŠ

kŠ.n � k/Š

�
nŠ

nkkŠ.n � k/Š
(.1 � 1=n/n�k < 1)

<
1

kŠ
(nŠ=.n � k/Š < nk)

<
ek

kk
(kŠ > .k=e/k) .

d. Notice that when n D 2, lg lg n D 0, so to be precise, we need to assume that

n � 3.

In part (c), we showed that Qk < ek=kk for any k; in particular, this inequality
holds for k0. Thus, it suffices to show that ek0=k0

k0 < 1=n3 or, equivalently,

that n3 < k0
k0=ek0 .

Taking logarithms of both sides gives an equivalent condition:

3 lg n < k0.lg k0 � lg e/

D
c lg n

lg lg n
.lg c C lg lg n � lg lg lg n � lg e/ :

Dividing both sides by lg n gives the condition

3 <
c

lg lg n
.lg c C lg lg n � lg lg lg n � lg e/

D c

�

1 C
lg c � lg e

lg lg n
�

lg lg lg n

lg lg n

�

:



11-4 Selected Solutions for Chapter 11: Hash Tables

Let x be the last expression in parentheses:

x D

�

1 C
lg c � lg e

lg lg n
�

lg lg lg n

lg lg n

�

:

We need to show that there exists a constant c > 1 such that 3 < cx.

Noting that limn!1 x D 1, we see that there exists n0 such that x � 1=2 for all

n � n0. Thus, any constant c > 6 works for n � n0.

We handle smaller values of n—in particular, 3 � n < n0—as follows. Since

n is constrained to be an integer, there are a finite number of n in the range

3 � n < n0. We can evaluate the expression x for each such value of n and

determine a value of c for which 3 < cx for all values of n. The final value of c

that we use is the larger of

� 6, which works for all n � n0, and
� max fc W 3 < cx and 3 � n < n0g, i.e., the largest value of c that we chose

for the range 3 � n < n0.

Thus, we have shown that Qk0
< 1=n3, as desired.

To see that Pk < 1=n2 for k � k0, we observe that by part (b), Pk � nQk

for all k. Choosing k D k0 gives Pk0
� nQk0

< n � .1=n3/ D 1=n2. For

k > k0, we will show that we can pick the constant c such that Qk < 1=n3 for

all k � k0, and thus conclude that Pk < 1=n2 for all k � k0.

To pick c as required, we let c be large enough that k0 > 3 > e. Then e=k < 1

for all k � k0, and so ek=kk decreases as k increases. Thus,

Qk < ek=kk

� ek0=kk0

D Qk0

< 1=n3

for k � k0.

e. The expectation of M is

E ŒM � D

n
X

kD0

k � Pr fM D kg

D

k0
X

kD0

k � Pr fM D kg C

n
X

kDk0C1

k � Pr fM D kg

�

k0
X

kD0

k0 � Pr fM D kg C

n
X

kDk0C1

n � Pr fM D kg

� k0

k0
X

kD0

Pr fM D kg C n

n
X

kDk0C1

Pr fM D kg

D k0 � Pr fM � k0g C n � Pr fM > k0g ;

which is what we needed to show, since k0 D c lg n= lg lg n.

To show that E ŒM � D O.lg n= lg lg n/, note that Pr fM � k0g � 1 and
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Pr fM > k0g D

n
X

kDk0C1

Pr fM D kg

D

n
X

kDk0C1

Pk

<

n
X

kDk0C1

1=n2 (by part (d))

< n � .1=n2/

D 1=n :

We conclude that

E ŒM � � k0 � 1 C n � .1=n/

D k0 C 1

D O.lg n= lg lg n/ :
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Binary Search Trees

Solution to Exercise 12.1-2

In a heap, a node’s key is greater than or equal to both of its children’s keys. In a

binary search tree, a node’s key is greater than or equal to its left child’s key, but

less than or equal to its right child’s key.

The heap property, unlike the binary-search-tree property, doesn’t help print the

nodes in sorted order because it doesn’t tell which subtree of a node contains the

element to print before that node. In a heap, the largest element smaller than the

node could be in either subtree.

Note that if the heap property could be used to print the keys in sorted order in

O.n/ time, we would have an O.n/-time algorithm for sorting, because building
the heap takes only O.n/ time. But we know from Theorem 8.1 that a comparison

sort must take �.n lg n/ time.

Solution to Exercise 12.2-7

Note that a call to TREE-MINIMUM followed by n � 1 calls to TREE-SUCCESSOR

performs exactly the same inorder walk of the tree as does the procedure INORDER-

TREE-WALK. INORDER-TREE-WALK prints the TREE-MINIMUM first, and by

definition, the TREE-SUCCESSOR of a node is the next node in the sorted order

determined by an inorder tree walk.

This algorithm runs in ‚.n/ time because:

� It requires �.n/ time to do the n procedure calls.

� It traverses each of the n � 1 tree edges at most twice, which takes O.n/ time.

To see that each edge is traversed at most twice (once going down the tree and once

going up), consider the edge between any node u and either of its children, node v.

By starting at the root, the walk must traverse .u; v/ downward from u to v, before

traversing it upward from v to u. The only time the tree is traversed downward is

in code of TREE-MINIMUM, and the only time the tree is traversed upward is in

code of TREE-SUCCESSOR when looking for the successor of a node that has no

right subtree.

Suppose that v is u’s left child.
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� Before printing u, the walk must print all the nodes in its left subtree, which is

rooted at v, guaranteeing the downward traversal of edge .u; v/.

� After all nodes in u’s left subtree are printed, u must be printed next. Procedure

TREE-SUCCESSOR traverses an upward path to u from the maximum element

(which has no right subtree) in the subtree rooted at v. This path clearly includes

edge .u; v/, and since all nodes in u’s left subtree are printed, edge .u; v/ is

never traversed again.

Now suppose that v is u’s right child.

� After u is printed, TREE-SUCCESSOR.u/ is called. To get to the minimum

element in u’s right subtree (whose root is v), the edge .u; v/ must be traversed
downward.

� After all values in u’s right subtree are printed, TREE-SUCCESSOR is called on

the maximum element (again, which has no right subtree) in the subtree rooted

at v. TREE-SUCCESSOR traverses a path up the tree to an element after u,

since u was already printed. Edge .u; v/ must be traversed upward on this path,

and since all nodes in u’s right subtree have been printed, edge .u; v/ is never

traversed again.

Hence, no edge is traversed twice in the same direction.

Therefore, this algorithm runs in ‚.n/ time.

Solution to Exercise 12.3-3

Here’s the algorithm:

TREE-SORT.A/

let T be an empty binary search tree

for i D 1 to n

TREE-INSERT.T; AŒi �/

INORDER-TREE-WALK.T:root/

Worst case: ‚.n2/, which occurs when a linear chain of nodes results from the

repeated TREE-INSERT operations.

Best case: ‚.n lg n/, which occurs when a binary tree of height ‚.lg n/ results

from the repeated TREE-INSERT operations.

Compared with TREE-INSERT in the text, this version omits assigning to ´:p, but

it must maintain the succ attributes correctly. The new node ´ becomes a child

of node y. If ´ becomes y’s left child, then y should be ´’s successor. The code

also needs to find y’s predecessor w and set w’s successor to be ´. If ´ becomes

y’s right child, things are a little easier. We just need to set ´’s successor as y’s
successor and then make y’s successor be ´.

The TRANSPLANT procedure replaces values of the p attribute by the node re-

turned by calling TREE-PARENT.
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TRANSPLANT.T; u; v/

´ D TREE-PARENT.T; u/

if ´ == NIL

T:root D v

elseif u == ´: left

´: left D v

else ´:right D v

Finally, TREE-DELETE omits references to the p attribute and also makes the pre-

decessor of the node ´ being deleted have its successor become ´’s successor.

TREE-DELETE.T; ´/

x D TREE-PREDECESSOR.T; ´/

if x ¤ NIL

x:succ D ´:succ

if ´: left == NIL

TRANSPLANT.T; ´; ´:right/

elseif ´:right == NIL

TRANSPLANT.T; ´; ´: left/

else y D TREE-MINIMUM.´:right/

if y ¤ ´:right

TRANSPLANT.T; y; y:right/

y:right D ´:right

TRANSPLANT.T; ´; y/

y: left D ´: left

Because each call of TREE-PREDECESSOR and TREE-PARENT takes O.h/ time,

both TREE-INSERT and TREE-DELETE take O.h/ time.

Solution to Problem 12-2

To sort the strings of S , first insert them into a radix tree and then use a preorder tree

walk to extract them in lexicographically sorted order. The tree walk outputs strings

only for nodes that indicate the existence of a string (i.e., those that correspond to

tan nodes in Figure 12.5 of the text).

Correctness

The preorder ordering is the correct order because:

� Any node’s string is a prefix of all its descendants’ strings and hence belongs

before them in the sorted order (rule 2).

� A node’s left descendants belong before its right descendants because the corre-

sponding strings are identical up to that parent node, and in the next position the

left subtree’s strings have 0 whereas the right subtree’s strings have 1 (rule 1).
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Time

‚.n/.

� Insertion takes ‚.n/ time, since the insertion of each string takes time propor-

tional to its length (traversing a path through the tree whose length is the length

of the string), and the sum of all the string lengths is n.

� The preorder tree walk takes O.n/ time. It prints the current node and calls

itself recursively on the left and right subtrees, so that it takes time proportional

to the number of nodes in the tree. The number of nodes is at most 1 plus the

sum (n) of the lengths of the binary strings in the tree, because a length-i string

corresponds to a path through the root and i other nodes, but a single node may

be shared among many string paths.

Here is pseudocode for the preorder tree walk. It assumes that each node has

attributes left and right, pointing to its children (NIL for children that are not
present), and a boolean attribute string to indicate whether the node indicates

an actual string (i.e., a tan node in Figure 12.5 of the text). The initial call

is PREORDER-RADIX-TREE-WALK.T:root; "/, where " denotes an empty string.

The symbol k denotes the concatenation of strings.

PREORDER-RADIX-TREE-WALK.x; string-so-far/

if x:string == TRUE

print string-so-far

if x: left ¤ NIL

PREORDER-RADIX-TREE-WALK.x: left; string-so-far k 0/

if x:right ¤ NIL

PREORDER-RADIX-TREE-WALK.x: left; string-so-far k 1/
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Red-Black Trees

Solution to Exercise 13.1-4

After absorbing each red node into its black parent, the degree of each node black

node is

� 2, if both children were already black,
� 3, if one child was black and one was red, or
� 4, if both children were red.

All leaves of the resulting tree have the same depth.

Solution to Exercise 13.1-5

In the longest path, at least every other node is black. In the shortest path, at most

every node is black. Since the two paths contain equal numbers of black nodes, the

length of the longest path is at most twice the length of the shortest path.

We can say this more precisely, as follows:

Since every path contains bh.x/ black nodes, even the shortest path from x to a

descendant leaf has length at least bh.x/. By definition, the longest path from x

to a descendant leaf has length height.x/. Since the longest path has bh.x/ black

nodes and at least half the nodes on the longest path are black (by property 4),

bh.x/ � height.x/=2, so that

length of longest path D height.x/ � 2 � bh.x/ � twice length of shortest path :

Solution to Exercise 13.3-3

Note: In the figures below, nodes with a heavy outline are black, and nodes with a

regular outline are red.

In Figure 13.5, nodes A, B , and D have black-height k C 1 in all cases, because

each of their subtrees has black-height k and a black root. Node C has black-

height k C 1 on the left (because its red children have black-height k C 1) and

black-height kC2 on the right (because its black children have black-height kC1).
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In Figure 13.6, nodes A, B , and C have black-height k C 1 in all cases. At left and

in the middle, each of A’s and B’s subtrees has black-height k and a black root,

while C has one such subtree and a red child with black-height k C 1. At the right,

each of A’s and C ’s subtrees has black-height k and a black root, while B’s red

children each have black-height k C 1.
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Property 5 is preserved by the transformations. We have shown above that the

black-height is well-defined within the subtrees pictured, so property 5 is preserved

within those subtrees. Property 5 is preserved for the tree containing the subtrees

pictured, because every path through these subtrees to a leaf contributes kC2 black

nodes.

Solution to Problem 13-1

a. When inserting a node, all nodes on the path from the root to the added node
(a new leaf) must change, since the need for a new child pointer propagates up

from the new node to all of its ancestors.

When deleting node ´, three possibilities may occur:

� If ´ has at most one child, then ´ will be spliced out, so that all ancestors
of ´ must be changed. (As with insertion, the need for a new child pointer

propagates up from the removed node.)
� If ´ has two children and its successor y is ´’s right child, then replace ´

by y, so that all ancestors of ´ must be changed (i.e., the same as if ´ has at

most one child).
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� If ´ has two children and its successor y is not ´’s right child, then replace ´

by y and replace y by y’s right child x. Since y and ´ are ancestors of x, all

ancestors of y must be changed.

Since there is no parent attribute, no other nodes need to be changed.

b. Here are two ways to write PERSISTENT-TREE-INSERT. The first is a version

of TREE-INSERT, modified to create new nodes along the path to where the

new node will go without using parent attributes.

PERSISTENT-TREE-INSERT.T; ´/

create a new persistent binary search tree T 0

T 0:root D COPY-NODE.T:root/

y D NIL

x D T 0:root

while x ¤ NIL

y D x

if ´:key < x:key

x D COPY-NODE.x: left/

y: left D x

else x D COPY-NODE.x:right/

y:right D x

if y == NIL

new-root D ´

elseif ´:key < y:key

y: left D ´

else y:right D ´

return T 0

The second uses a recursive subroutine, PERSISTENT-SUBTREE-INSERT.r; ´/

that inserts node ´ into the subtree rooted at node r in T , copying nodes as

needed, and returning either node ´ or the copy in T 0 of node r .

PERSISTENT-TREE-INSERT.T; ´/

create a new persistent binary search tree T 0

T 0:root D PERSISTENT-SUBTREE-INSERT.T:root; ´/

return T 0

PERSISTENT-SUBTREE-INSERT.r; ´/

if r == NIL

x D ´

else x D COPY-NODE.r/

if ´:key < r:key

x: left D PERSISTENT-SUBTREE-INSERT.r: left; ´/

else x:right D PERSISTENT-SUBTREE-INSERT.r:right; ´/

return x

c. Like TREE-INSERT, PERSISTENT-TREE-INSERT does a constant amount of

work at each node along the path from the root to the new node. Since the

length of the path is at most h, it takes O.h/ time.
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Since it allocates a new node (a constant amount of space) for each ancestor of

the inserted node, it also needs O.h/ space.

d. If there were parent attributes, then because of the new root, every node of the

tree would have to be copied when a new node is inserted. To see why, observe

that the children of the root would change to point to the new root, then their

children would change to point to them, and so on. Since there are n nodes, this

change would cause insertion to create �.n/ new nodes and to take �.n/ time.

e. From parts (a) and (c), we know that insertion into a persistent binary search

tree of height h, like insertion into an ordinary binary search tree, takes worst-

case time O.h/. A red-black tree has h D O.lg n/, so that insertion into an

ordinary red-black tree takes O.lg n/ time. We need to show that if the red-
black tree is persistent, insertion can still be done in O.lg n/ time. (We’ll look

at deletion a little later.) To do so, we will need to show two things:

� How to still find the parent pointers that are needed in O.1/ time without

using a parent attribute. We cannot use a parent attribute because a persistent

tree with parent attributes requires �.n/ time for insertion (by part (d)).
� That the additional node changes made during red-black tree operations (by

rotation and recoloring) don’t cause more than O.lg n/ additional nodes to

change.

Here is how to find each parent pointer needed during insertion in O.1/ time

without having a parent attribute. To insert into a red-black tree, we call RB-

INSERT, which in turn calls RB-INSERT-FIXUP. Make the same changes to

RB-INSERT as we made to TREE-INSERT for persistence. Additionally, as
RB-INSERT walks down the tree to find the place to insert the new node, have

it build a stack of the nodes it traverses and pass this stack to RB-INSERT-

FIXUP. RB-INSERT-FIXUP needs parent pointers to walk back up the same

path, and at any given time it needs parent pointers only to find the parent and

grandparent of the node it is working on. As RB-INSERT-FIXUP moves up

the stack of parents, it needs only parent pointers that are at known locations a

constant distance away in the stack. Thus, the parent information can be found

in O.1/ time, just as if it were stored in a parent attribute.

Rotation and recoloring change nodes as follows:

� RB-INSERT-FIXUP performs at most two rotations, and each rotation up-

dates the child pointers in three nodes (the node being rotated around, that

node’s parent, and one of the children of the node being rotated around).

Thus, at most six nodes are directly modified by rotation during RB-INSERT-

FIXUP. In a persistent tree, all ancestors of a changed node are copied, so

that RB-INSERT-FIXUP’s rotations take O.lg n/ time to change nodes due

to rotation. (Actually, the changed nodes in this case share a single O.lg n/-

length path of ancestors.)
� RB-INSERT-FIXUP recolors some of the inserted node’s ancestors, which

are being changed anyway in persistent insertion, and some children of an-

cestors (the “uncles” referred to in the algorithm description). There are

O.lg n/ ancestors, hence O.lg n/ color changes of uncles. Recoloring un-

cles doesn’t cause any additional node changes due to persistence, because
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the ancestors of the uncles are the same nodes (ancestors of the inserted

node) that are being changed anyway due to persistence. Thus, recoloring

does not affect the O.lg n/ running time, even with persistence.

We could show similarly that deletion in a persistent tree also takes worst-case

time O.h/.

� We already saw in part (a) that O.h/ nodes change.
� We could write a persistent RB-DELETE procedure that runs in O.h/ time,

analogous to the changes we made for persistence in insertion. But to do so

without using parent pointers, the procedure needs to walk down the tree to

the deepest node being changed, to build up a stack of parents as discussed

above for insertion. This walk relies on keys being distinct.

Then the problem of showing that deletion needs only O.lg n/ time in a persis-

tent red-black tree is the same as for insertion.

� As for insertion, we can show that the parents needed by RB-DELETE-

FIXUP can be found in O.1/ time (using the same technique as for insertion).
� Also, RB-DELETE-FIXUP performs at most three rotations, which as dis-

cussed above for insertion requires O.lg n/ time to change nodes due to
persistence. It also makes O.lg n/ color changes, which (as for insertion)

take only O.lg n/ time to change ancestors due to persistence, because the

number of copied nodes is O.lg n/.
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Dynamic Programming

Solution to Exercise 14.2-5

Each time the l-loop executes, the i-loop executes n � l C 1 times. Each time the
i-loop executes, the k-loop executes j � i D l � 1 times, each time referencing

m twice. Thus the total number of times that an entry of m is referenced while

computing other entries is
Pn

lD2 2.n � l C 1/.l � 1/. Thus,
n
X

iD1

n
X

j Di

R.i; j / D

n
X

lD2

2.n � l C 1/.l � 1/

D 2

n�1
X

lD1

.n � l/l

D 2

n�1
X

lD1

nl � 2

n�1
X

lD1

l2

D 2
n.n � 1/n

2
� 2

.n � 1/n.2n � 1/

6

D n3 � n2 �
2n3 � 3n2 C n

3

D
n3 � n

3
:

Solution to Exercise 14.3-1

Running RECURSIVE-MATRIX-CHAIN is asymptotically more efficient than enu-

merating all the ways of parenthesizing the product and computing the number of

multiplications for each.

Consider the treatment of subproblems by the two approaches.

� For each possible place to split the matrix chain, the enumeration approach

finds all ways to parenthesize the left half, finds all ways to parenthesize the

right half, and looks at all possible combinations of the left half with the right

half. The amount of work to look at each combination of left- and right-half
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subproblem results is thus the product of the number of ways to do the left half

and the number of ways to do the right half.

� For each possible place to split the matrix chain, RECURSIVE-MATRIX-CHAIN

finds the best way to parenthesize the left half, finds the best way to parenthesize

the right half, and combines just those two results. Thus the amount of work to

combine the left- and right-half subproblem results is O.1/.

Section 14.2 argued that the running time for enumeration is �.4n=n3=2/. We will

show that the running time for RECURSIVE-MATRIX-CHAIN is O.n3n�1/.

To get an upper bound on the running time of RECURSIVE-MATRIX-CHAIN, we’ll

use the same approach used in Section 14.2 to get a lower bound: derive a recur-

rence of the form T .n/ � : : : and solve it by substitution. For the lower-bound
recurrence, the book assumed that the execution of lines 1–2 and 6–7 each take at

least unit time. For the upper-bound recurrence, we’ll assume those pairs of lines

each take at most constant time c. Thus, we have the recurrence

T .n/ �

�
c if n D 1 ;

c C

n�1
X

kD1

.T .k/ C T .n � k/ C c/ if n � 2 :

This is just like the book’s � recurrence except that it has c instead of 1, and so we

can be rewrite it as

T .n/ � 2

n�1
X

iD1

T .i/ C cn :

We will prove that T .n/ D O.n3n�1/ using the substitution method. (Note: Any

upper bound on T .n/ that is o.4n=n3=2/ will suffice. You might prefer to prove one

that is easier to think up, such as T .n/ D O.3:5n/.) Specifically, we will show that

T .n/ � cn3n�1 for all n � 1. The basis is easy, since T .1/ � c D c � 1 � 31�1.

Inductively, for n � 2 we have

T .n/ � 2

n�1
X

iD1

T .i/ C cn

� 2

n�1
X

iD1

ci3i�1 C cn

D c �

 

2

n�1
X

iD1

i3i�1 C n

!

D c �

�

2 �

�

n3n�1

3 � 1
C

1 � 3n

.3 � 1/2

�

C n

�

(see below)

D cn3n�1 C c �

�

1 � 3n

2
C n

�

D cn3n�1 C
c

2
.2n C 1 � 3n/

� cn3n�1 for all c > 0, n � 1 :
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Running RECURSIVE-MATRIX-CHAIN takes O.n3n�1/ time, and enumerating all

parenthesizations takes �.4n=n3=2/ time, and so RECURSIVE-MATRIX-CHAIN is

more efficient than enumeration.

Note: The above substitution uses the following fact:

n�1
X

iD1

ixi�1 D
nxn�1

x � 1
C

1 � xn

.x � 1/2
:

This equation can be derived from equation (A.6) by taking the derivative. Let

f .x/ D

n�1
X

iD1

xi D
xn � 1

x � 1
� 1 :

Then

n�1
X

iD1

ixi�1 D f 0.x/ D
nxn�1

x � 1
C

1 � xn

.x � 1/2
:

Solution to Exercise 14.4-4

When computing a particular row of the c table, no rows before the previous row
are needed. Thus only two rows—2n entries—need to be kept in memory at a time.

(Note: Each row of c actually has n C 1 entries, but we don’t need to store the

column of 0s—instead we can make the program “know” that those entries are 0.)

With this idea, we need only 2 �min fm; ng entries if we always call LCS-LENGTH

with the shorter sequence as the Y argument.

We can thus do away with the c table as follows:

� Use two arrays of length min fm; ng, previous-row and current-row, to hold the

appropriate rows of c.

� Initialize previous-row to all 0 and compute current-row from left to right.

� When current-row is filled, if there are still more rows to compute, copy

current-row into previous-row and compute the new current-row.

Actually only a little more than one row’s worth of c entries—min fm; ng C 1

entries—are needed during the computation. The only entries needed in the table

when it is time to compute cŒi; j � are cŒi; k� for k � j � 1 (i.e., earlier entries in

the current row, which will be needed to compute the next row), and cŒi � 1; k� for
k � j � 1 (i.e., entries in the previous row that are still needed to compute the rest

of the current row). This is one entry for each k from 1 to min fm; ng except that

there are two entries with k D j � 1, hence the additional entry needed besides the

one row’s worth of entries.

We can thus do away with the c table as follows:

� Use an array a of length min fm; ng C 1 to hold the appropriate entries of c. At

the time cŒi; j � is to be computed, a holds the following entries:

� aŒk� D cŒi; k� for 1 � k < j � 1 (i.e., earlier entries in the current “row”),
� aŒk� D cŒi � 1; k� for k � j � 1 (i.e., entries in the previous “row”),
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� aŒ0� D cŒi; j � 1� (i.e., the previous entry computed, which couldn’t be put

into the “right” place in a without erasing the still-needed cŒi � 1; j � 1�).

� Initialize a to all 0 and compute the entries from left to right.

� Note that the three values needed to compute cŒi; j � for j > 1 are in aŒ0� D
cŒi; j � 1�, aŒj � 1� D cŒi � 1; j � 1�, and aŒj � D cŒi � 1; j �.

� When cŒi; j � has been computed, move aŒ0� (cŒi; j � 1�) to its “correct”

place, aŒj � 1�, and put cŒi; j � in aŒ0�.

Solution to Problem 14-4

We start by defining some quantities so that we can state the problem more uni-

formly. Special cases about the last line and worries about whether a sequence of

words fits in a line will be handled in these definitions, so that we can forget about

them when framing our overall strategy.

� Define extrasŒi; j � D M � j C i �
Pj

kDi lk to be the number of extra spaces

at the end of a line containing words i through j . Note that extras may be

negative.

� Now define the cost of including a line containing words i through j in the sum
we want to minimize:

lcŒi; j � D

�
1 if extrasŒi; j � < 0 (i.e., words i; : : : ; j don’t fit) ;

0 if j D n and extrasŒi; j � � 0 (last line costs 0) ;

.extrasŒi; j �/3 otherwise :

By making the line cost infinite when the words don’t fit on it, we prevent such

an arrangement from being part of a minimum sum, and by making the cost 0

for the last line (if the words fit), we prevent the arrangement of the last line

from influencing the sum being minimized.

We want to minimize the sum of lc over all lines of the paragraph.

Our subproblems are how to optimally arrange words 1; : : : ; j , where j runs from

1 to n.

Consider an optimal arrangement of words 1; : : : ; j . Suppose we know that the

last line, which ends in word j , begins with word i . The preceding lines, therefore,

contain words 1; : : : ; i � 1. In fact, they must contain an optimal arrangement of

words 1; : : : ; i � 1. (The usual type of cut-and-paste argument applies.)

Let cŒj � be the cost of an optimal arrangement of words 1; : : : ; j . If we know that

the last line contains words i; : : : ; j , then cŒj � D cŒi �1�C lcŒi; j �. As a base case,

when we’re computing cŒ1�, we need cŒ0�. If we set cŒ0� D 0, then cŒ1� D lcŒ1; 1�,

which is what we want.

But of course we have to figure out which word begins the last line for the sub-

problem of words 1; : : : ; j . So we try all possibilities for word i , and we pick the

one that gives the lowest cost. Here, i ranges from 1 to j . Thus, we can define cŒj �

recursively by



Selected Solutions for Chapter 14: Dynamic Programming 14-5

cŒj � D

(

0 if j D 0 ;

min fcŒi � 1� C lcŒi; j � W 1 � i � j g if j > 0 :

Note that the way we defined lc ensures that

� all choices made will fit on the line (since an arrangement with lc D 1 cannot

be chosen as the minimum), and

� the cost of putting words i; : : : ; j on the last line cannot be 0 unless this really

is the last line of the paragraph (j D n) or words i : : : j fill the entire line.

We can compute a table of c values from left to right, since each value depends

only on earlier values.

To keep track of what words go on what lines, we can keep a parallel p table that

points to where each c value came from. When cŒj � is computed, if cŒj � is based

on the value of cŒk � 1�, set pŒj � D k. Then after cŒn� is computed, we can trace

the pointers to see where to break the lines. The last line starts at word pŒn� and

goes through word n. The previous line starts at word pŒpŒn�� and goes through

word pŒn� � 1, etc.

In pseudocode, here’s how we construct the tables:

PRINT-NEATLY.l; n; M /

let extrasŒ1 W n; 1 W n�, lcŒ1 W n; 1 W n�, cŒ0 W n�, and pŒ1 W n� be new tables
// Compute extrasŒi; j � for 1 � i � j � n.

for i D 1 to n

extrasŒi; i � D M � li

for j D i C 1 to n

extrasŒi; j � D extrasŒi; j � 1� � lj � 1

// Compute lcŒi; j � for 1 � i � j � n.

for i D 1 to n

for j D i to n

if extrasŒi; j � < 0

lcŒi; j � D 1
elseif j == n and extrasŒi; j � � 0

lcŒi; j � D 0

else lcŒi; j � D .extrasŒi; j �/3

// Compute cŒj � for 0 � j � n and pŒj � for 1 � j � n.
cŒ0� D 0

for j D 1 to n

cŒj � D 1
for i D 1 to j

if cŒi � 1� C lcŒi; j � < cŒj �

cŒj � D cŒi � 1� C lcŒi; j �

pŒj � D i

return c and p

Quite clearly, both the time and space are ‚.n2/.

In fact, we can do a bit better: we can get both the time and space down to ‚.nM /.

The key observation is that at most dM=2e words can fit on a line. (Each word is

at least one character long, and there’s a space between words.) Since a line with
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words i; : : : ; j contains j � i C 1 words, if j � i C 1 > dM=2e then we know

that lcŒi; j � D 1. We need compute and store only extrasŒi; j � and lcŒi; j � for

j � i C 1 � dM=2e. And the inner for loop header in the computation of cŒj �

and pŒj � can run from max f1; j � dM=2e C 1g to j .

We can reduce the space even further to ‚.n/. We do so by not storing the lc

and extras tables, and instead computing the value of lcŒi; j � as needed in the last

loop. The idea is that we could compute lcŒi; j � in O.1/ time if we knew the

value of extrasŒi; j �. And if we scan for the minimum value in descending order

of i , we can compute that as extrasŒi; j � D extrasŒi C 1; j � � li � 1. (Initially,

extrasŒj; j � D M � lj .) This improvement reduces the space to ‚.n/, since now

the only tables we store are c and p.

Here’s how we print the output. The call PRINT-LINES.p; j / prints all words from

word 1 through word j .

PRINT-LINES.p; j /

if j > 0

i D pŒj �

PRINT-LINES.p; i � 1/

print the line containing words i through j ,

with one space between each pair of words

The initial call is PRINT-LINES.p; n/. Since the value of j decreases in each

recursive call, PRINT-LINES takes a total of O.n C k/ time to print all n words,

where k is the total length of all the words. (Note that because each word contains

at least one character, even counting spaces and linefeeds as printed characters, the

total number of characters printed is at most 2k.)
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Greedy Algorithms

Solution to Exercise 15.1-4

Let S be the set of n activities.

The “obvious” solution of using GREEDY-ACTIVITY-SELECTOR to find a maxi-

mum-size set S1 of compatible activities from S for the first lecture hall, then using

it again to find a maximum-size set S2 of compatible activities from S � S1 for the
second hall, (and so on until all the activities are assigned), requires ‚.n2/ time

in the worst case. Moreover, it can produce a result that uses more lecture halls

than necessary. Consider activities with the intervals fŒ1; 4/; Œ2; 5/; Œ6; 7/; Œ4; 8/g.

GREEDY-ACTIVITY-SELECTOR would choose the activities with intervals Œ1; 4/

and Œ6; 7/ for the first lecture hall, and then each of the activities with intervals

Œ2; 5/ and Œ4; 8/ would have to go into its own hall, for a total of three halls used.

An optimal solution would put the activities with intervals Œ1; 4/ and Œ4; 8/ into one

hall and the activities with intervals Œ2; 5/ and Œ6; 7/ into another hall, for only two

halls used.

There is a correct algorithm, however, whose asymptotic time is just the time

needed to sort the activities by time—O.n lg n/ time for arbitrary times, or pos-

sibly as fast as O.n/ if the times are small integers.

The general idea is to go through the activities in order of start time, assigning

each to any hall that is available at that time. To do this, move through the set

of events consisting of activities starting and activities finishing, in order of event

time. Maintain two lists of lecture halls: Halls that are busy at the current event-

time t (because they have been assigned an activity i that started at si � t but

won’t finish until fi > t) and halls that are free at time t . (As in the activity-

selection problem in Section 15.1, we are assuming that activity time intervals are

half open—i.e., that if si � fj , then activities i and j are compatible.) When t

is the start time of some activity, assign that activity to a free hall and move the

hall from the free list to the busy list. When t is the finish time of some activity,

move the activity’s hall from the busy list to the free list. (The activity is certainly

in some hall, because the event times are processed in order and the activity must

have started before its finish time t , hence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick a hall that has already had

an activity assigned to it, if possible, before picking a never-used hall. (This can be

done by always working at the front of the free-halls list—putting freed halls onto
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the front of the list and taking halls from the front of the list—so that a new hall

doesn’t come to the front and get chosen if there are previously-used halls.)

This guarantees that the algorithm uses as few lecture halls as possible: The algo-

rithm will terminate with a schedule requiring m � n lecture halls. Let activity i

be the first activity scheduled in lecture hall m. The reason that i was put in the

mth lecture hall is that the first m � 1 lecture halls were busy at time si . So at this

time there are m activities occurring simultaneously. Therefore any schedule must

use at least m lecture halls, so the schedule returned by the algorithm is optimal.

Run time:

� Sort the 2n activity-starts/activity-ends events. (In the sorted order, an activity-
ending event should precede an activity-starting event that is at the same time.)

O.n lg n/ time for arbitrary times, possibly O.n/ if the times are restricted (e.g.,

to small integers).

� Process the events in O.n/ time: Scan the 2n events, doing O.1/ work for each

(moving a hall from one list to the other and possibly associating an activity

with it).

Total: O.n C time to sort/

Solution to Exercise 15.2-2

The solution is based on the optimal-substructure observation in the text: Let i

be the highest-numbered item in an optimal solution S for W pounds and items

1; : : : ; n. Then S 0 D S � fig must be an optimal solution for W � wi pounds

and items 1; : : : ; i � 1, and the value of the solution S is vi plus the value of the

subproblem solution S 0.

We can express this relationship in the following formula: Define cŒi; w� to be the

value of the solution for items 1; : : : ; i and maximum weight w. Then

cŒi; w� D

�
0 if i D 0 or w D 0 ;

cŒi � 1; w� if wi > w ;

max fvi C cŒi � 1; w � wi �; cŒi � 1; w�g if i > 0 and w � wi :

The last case says that the value of a solution for i items either includes item i ,

in which case it is vi plus a subproblem solution for i � 1 items and the weight

excluding wi , or doesn’t include item i , in which case it is a subproblem solution

for i � 1 items and the same weight. That is, if the thief picks item i , then vi value

is added, and the thief can choose from items 1; : : : ; i � 1 up to the weight limit

w � wi , gaining cŒi � 1; w � wi � additional value. On the other hand, if the thief

decides not to take item i , then choices remain from items 1; : : : ; i � 1 up to the

weight limit w, giving cŒi � 1; w� value. The better of these two choices should be

made.

The algorithm takes as inputs the maximum weight W , the number n of items, and

the two sequences v D hv1; v2; : : : ; vni and w D hw1; w2; : : : ; wni. It stores

the cŒi; j � values in a table cŒ0 W n; 0 W W � whose entries are computed in row-major
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order. (That is, the first row of c is filled in from left to right, then the second row,

and so on.) At the end of the computation, cŒn; W � contains the maximum value

the thief can take.

DYNAMIC-0-1-KNAPSACK.v; w; n; W /

let cŒ0 W n; 0 W W � be a new array

for w D 0 to W

cŒ0; w� D 0

for i D 1 to n

cŒi; 0� D 0

for w D 1 to W

if wi � w and vi C cŒi � 1; w � wi � > cŒi � 1; w�

cŒi; w� D vi C cŒi � 1; w � wi �

else cŒi; w� D cŒi � 1; w�

We can use the c table to deduce the set of items to take by starting at cŒn; W � and

tracing where the optimal values came from. If cŒi; w� D cŒi � 1; w�, then item i is

not part of the solution, and we continue tracing with cŒi � 1; w�. Otherwise item i

is part of the solution, and we continue tracing with cŒi � 1; w � wi �.

The above algorithm takes ‚.nW / time total:

� ‚.nW / to fill in the c table: .nC1/ � .W C1/ entries, each requiring ‚.1/ time

to compute.

� O.n/ time to trace the solution (since it starts in row n of the table and moves

up one row at each step).

Solution to Exercise 15.2-7

Sort A and B into monotonically decreasing order.

Here’s a proof that this method yields an optimal solution. Consider any indices i

and j such that i < j , and consider the terms ai
bi and aj

bj . We want to show that

it is no worse to include these terms in the payoff than to include ai
bj and aj

bi , i.e.,

that ai
bi aj

bj � ai
bj aj

bi . Since A and B are sorted into monotonically decreasing

order and i < j , we have ai � aj and bi � bj . Since ai and aj are positive

and bi � bj is nonnegative, we have ai
bi �bj � aj

bi �bj . Multiplying both sides by
ai

bj aj
bj yields ai

bi aj
bj � ai

bj aj
bi .

Since the order of multiplication doesn’t matter, sorting A and B into monotoni-

cally increasing order works as well.
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Amortized Analysis

Solution to Exercise 16.1-3

Let ci D cost of i th operation.

ci D

(

i if i is an exact power of 2 ;

1 otherwise :

Operation Cost

1 1

2 2

3 1

4 4

5 1

6 1

7 1

8 8

9 1
10 1
:::

:::

n operations cost

n
X

iD1

ci � n C

lg n
X

j D0

2j D n C .2n � 1/ < 3n :

(Note: Ignoring floor in upper bound of
P

2j .)

Average cost of operation D
Total cost

# operations
< 3 .

By aggregate analysis, the amortized cost per operation D O.1/.

Solution to Exercise 16.2-2

Let ci D cost of i th operation.
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ci D

(

i if i is an exact power of 2 ;

1 otherwise :

Charge each operation $3 (amortized cost yci ).

� If i is not an exact power of 2, pay $1, and store $2 as credit.

� If i is an exact power of 2, pay $i , using stored credit.

Operation Amortized cost Actual cost Credit remaining

1 3 1 2

2 3 2 3

3 3 1 5

4 3 4 4
5 3 1 6

6 3 1 8

7 3 1 10

8 3 8 5

9 3 1 7

10 3 1 9
:::

:::
:::

:::

Since the amortized cost is $3 per operation,

n
X

iD1

yci D 3n.

We know from Exercise 16.1-3 that

n
X

iD1

ci < 3n.

Then we have

n
X

iD1

yci �

n
X

iD1

ci ) credit D amortized cost � actual cost � 0.

Since the amortized cost of each operation is O.1/, and the amount of credit never
goes negative, the total cost of n operations is O.n/.

Solution to Exercise 16.2-3

We introduce a new field A:max to hold the index of the high-order 1 in A. Initially,

A:max is set to �1, since the low-order bit of A is at index 0 and there are initially

no 1s in A. The value of A:max is updated as appropriate when the counter is

incremented or reset, and this value limits how much of A must be looked at to

reset it. By controlling the cost of RESET in this way, we can limit it to an amount

that can be covered by credit from earlier INCREMENT operations.
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INCREMENT.A; k/

i D 0

while i < k and AŒi� == 1

AŒi� D 0

i D i C 1

if i < k

AŒi� D 1

// Additions to book’s INCREMENT start here.

A:max D max fA:max; ig
else A:max D �1

RESET.A/

for i D 0 to A:max

AŒi� D 0

A:max D �1

As for the counter in the book, we assume that it costs $1 to flip a bit. In addition,

we assume it costs $1 to update A:max.

Setting and resetting of bits by INCREMENT will work exactly as for the original

counter in the book: $1 pays to set one bit to 1, $1 is placed on the bit that is set

to 1 as credit, and the credit on each 1 bit pays to reset the bit during incrementing.

In addition, $1 pays for updating max, and if max increases, place an additional

$1 of credit on the new high-order 1. (If max doesn’t increase, we can just waste

that $1—it won’t be needed.) Since RESET manipulates bits at positions only up to

A:max, and since each bit up to there must have become the high-order 1 at some

time before the high-order 1 got up to A:max, every bit seen by RESET has $1 of

credit on it. So the zeroing of bits of A by RESET can be completely paid for by
the credit stored on the bits. We just need $1 to pay for resetting max.

Thus charging $4 for each INCREMENT and $1 for each RESET is sufficient, so

that the sequence of n INCREMENT and RESET operations takes O.n/ time.
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Augmenting Data Structures

Solution to Exercise 17.1-7

Let AŒ1 W n� be the array of n distinct numbers.

One way to count the inversions is to add up, for each element, the number of larger

elements that precede it in the array:

# of inversions D

n
X

j D1

jInv.j /j ;

where Inv.j / D fi W i < j and AŒi� > AŒj �g.

Note that jInv.j /j is related to AŒj �’s rank in the subarray AŒ1 W j � because the

elements in Inv.j / are the reason that AŒj � is not positioned according to its rank.

Let r.j / be the rank of AŒj � in AŒ1 W j �. Then j D r.j / C jInv.j /j, so that we can

compute

jInv.j /j D j � r.j /

by inserting AŒ1�; : : : ; AŒn� into an order-statistic tree and using OS-RANK to find

the rank of each AŒj � in the tree immediately after it is inserted into the tree. (This

OS-RANK value is r.j /.)

Insertion and OS-RANK each take O.lg n/ time, and so the total time for n ele-
ments is O.n lg n/.

Solution to Exercise 17.2-2

Yes, it is possible to maintain black-heights as attributes in the nodes of a red-black

tree without affecting the asymptotic performance of the red-black tree operations.

We appeal to Theorem 17.1, because the black-height of a node can be computed

from the information at the node and its two children. Actually, the black-height

can be computed from just one child’s information: the black-height of a node is

the black-height of a red child, or the black height of a black child plus one. The

second child does not need to be checked because of property 5 of red-black trees.

The RB-INSERT-FIXUP and RB-DELETE-FIXUP procedures change node colors,

and each color change can potentially cause O.lg n/ black-height changes. We’ll
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show that the color changes of the fixup procedures cause only local black-height

changes and thus are constant-time operations. Assume that the black-height of

each node x is kept in the attribute x:bh.

For RB-INSERT-FIXUP, there are three cases to examine.

Case 1: ´’s uncle is red.

C

DA

Bα

β γ

δ ε

(a)

C

DA

Bα

β γ

δ ε

C

DB

δ ε

C

DB

A

α β

γ δ ε

(b)

A

α β

γ

k+1

k+1

k+1

k+1 k+1

k+2

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+2

k+1z

y

z

y

� Before color changes, suppose that all subtrees ˛; ˇ; 
; ı; � have the same

black-height k with a black root, so that nodes A, B , C , and D have black-

heights of k C 1.
� After color changes, the only node whose black-height changed is node C .

To fix that, add ´:p:p:bh D ´:p:p:bhC1 after lines 7 and 21 in RB-INSERT-

FIXUP.
� Since the number of black nodes between ´:p:p and ´ remains the same,

nodes above ´:p:p are not affected by the color change.

Case 2: ´’s uncle y is black, and ´ is a right child.

Case 3: ´0’s uncle y is black, and ´ is a left child.

C

A

Bα

β γ

δ

Case 2

B

A

α β

γ

δ

Case 3

A

B

C

α β γ δ

C

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+1

z

y

z

y

� With subtrees ˛; ˇ; 
; ı; � of black-height k, even with color changes and
rotations, the black-heights of nodes A, B , and C remain the same (k C 1).

Thus, RB-INSERT-FIXUP maintains its original O.lg n/ time.

For RB-DELETE-FIXUP, there are four cases to examine.

Case 1: x’s sibling w is red.
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A

B

D

C Eα β

γ δ ε ζ

x w

A

B

C

D

E

x new w

α β γ δ

ε ζ

Case 1

� Even though case 1 changes colors of nodes and does a rotation, black-
heights are not changed.

� Case 1 changes the structure of the tree, but waits for cases 2, 3, and 4 to

deal with the “extra black” on x.

Case 2: x’s sibling w is black, and both of w’s children are black.

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

D

C Eα β

γ δ ε ζ

cnew x
Case 2

� w is colored red, and x’s “extra” black is moved up to x:p.
� Add x:p:bh D x:bh after lines 10 and 31 in RB-DELETE-FIXUP.
� This is a constant-time update. Then, keep looping to deal with the extra

black on x:p.

Case 3: x’s sibling w is black, w’s left child is red, and w’s right child is black.

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

C

Dα β γ

δ

ε ζ

x

c

new w

Case 3

E

� Regardless of the color changes and rotation of this case, the black-heights

don’t change.
� Case 3 just sets up the structure of the tree, so it can fall correctly into case 4.

Case 4: x’s sibling w is black, and w’s right child is red.

A

B

D

C Eα β

γ δ

ε ζ

x w

c c

α β

A

B

C

D

E

new x = T.rootγ δ ε ζ

Case 4

c′ c′
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� Nodes A, C , and E keep the same subtrees, so their black-heights don’t

change.
� Add these two constant-time assignments in RB-DELETE-FIXUP after lines

21 and 42:

x:p:bh D x:bh C 1

x:p:p:bh D x:p:bh C 1

� The extra black is taken care of, and the loop terminates.

Thus, RB-DELETE-FIXUP maintains its original O.lg n/ time.

Therefore, we conclude that black-heights of nodes can be maintained as attributes
in red-black trees without affecting the asymptotic performance of red-black tree

operations.

For the second part of the question, no, we cannot maintain node depths without

affecting the asymptotic performance of red-black tree operations. The depth of a

node depends on the depth of its parent. When the depth of a node changes, the

depths of all nodes below it in the tree must be updated. Updating the root node

causes n � 1 other nodes to be updated, which would mean that operations on the

tree that change node depths might not run in O.n lg n/ time.

Solution to Exercise 17.3-6

General idea: Move a sweep line from left to right, while maintaining the set of

rectangles currently intersected by the line in an interval tree. The interval tree

will organize all rectangles whose x interval includes the current position of the

sweep line, and it will be based on the y intervals of the rectangles, so that any
overlapping y intervals in the interval tree correspond to overlapping rectangles.

Details:

1. Sort the rectangles by their x-coordinates. (Actually, each rectangle must ap-

pear twice in the sorted list—once for its left x-coordinate and once for its right

x-coordinate.)

2. Scan the sorted list (from lowest to highest x-coordinate).

� When an x-coordinate of a left edge is found, check whether the rectangle’s

y-coordinate interval overlaps an interval in the tree, and insert the rectangle

(keyed on its y-coordinate interval) into the tree.
� When an x-coordinate of a right edge is found, delete the rectangle from the

interval tree.

The interval tree always contains the set of “open” rectangles intersected by the

sweep line. If an overlap is ever found in the interval tree, there are overlapping

rectangles.

Time: O.n lg n/

� O.n lg n/ to sort the rectangles (use merge sort or heap sort).

� O.n lg n/ for interval-tree operations (insert, delete, and check for overlap).
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Data Structures for Disjoint Sets

Solution to Exercise 19.2-3

We want to show how to assign O.1/ charges to MAKE-SET and FIND-SET and an
O.lg n/ charge to UNION such that the charges for a sequence of these operations

are enough to cover the cost of the sequence—O.m C n lg n/, according to the

theorem. When talking about the charge for each kind of operation, it is helpful to

also be able to talk about the number of each kind of operation.

Consider the usual sequence of m MAKE-SET, UNION, and FIND-SET operations,

n of which are MAKE-SET operations, and let u < n be the number of UNION

operations. (Recall the discussion in Section 19.1 about there being at most n � 1

UNION operations.) Then there are n MAKE-SET operations, u UNION operations,

and m � n � u FIND-SET operations.

The theorem didn’t separately name the number u of UNION operations; rather,

it bounded the number by n. If you go through the proof of the theorem with u

UNION operations, you get the time bound O.m � u C u lg u/ D O.m C u lg u/

for the sequence of operations. That is, the actual time taken by the sequence of

operations is at most c.m C u lg u/, for some constant c.

Thus, we want to assign operation charges such that

(MAKE-SET charge) � n

C (FIND-SET charge) � .m � n � u/

C (UNION charge) � u

� c.m C u lg u/ ;

so that the amortized costs give an upper bound on the actual costs.

The following assignments work, where c 0 � c is some constant:

� MAKE-SET: c 0

� FIND-SET: c 0

� UNION: c 0.lg n C 1/

Substituting into the above sum gives

c 0n C c 0.m � n � u/ C c 0.lg n C 1/u D c 0m C c 0u lg n

D c 0.m C u lg n/

> c.m C u lg u/ :
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Solution to Exercise 19.2-6

Let’s call the two lists A and B , and suppose that the representative of the new list

will be the representative of A. Rather than appending B to the end of A, instead

splice B into A right after the first element of A. We have to traverse B to update

pointers to the set object anyway, so we can just make the last element of B point

to the second element of A.
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Elementary Graph Algorithms

Solution to Exercise 20.1-7

BBT.i; j / D
X

e2E

biebT
ej D

X

e2E

biebje :

� If i D j , then biebje D 1 (it is 1 � 1 or .�1/ � .�1/) whenever e enters or leaves

vertex i , and 0 otherwise.

� If i ¤ j , then biebje D �1 when e D .i; j / or e D .j; i/, and 0 otherwise.

Thus,

BBT.i; j / D

(

in-degree of iC out-degree of i if i D j ;

�(# of edges connecting i and j ) if i ¤ j :

Solution to Exercise 20.2-5

The correctness proof for the BFS algorithm shows that u:d D ı.s; u/, and the

algorithm doesn’t assume that the adjacency lists are in any particular order.

In Figure 20.3, if t precedes x in AdjŒw�, we can get the breadth-first tree shown

in the figure. But if x precedes t in AdjŒw� and u precedes y in AdjŒx�, we can get
edge .x; u/ in the breadth-first tree.

Solution to Exercise 20.3-12

The following pseudocode modifies the DFS and DFS-VISIT procedures to assign

values to the cc attributes of vertices.



20-2 Selected Solutions for Chapter 20: Elementary Graph Algorithms

DFS.G/

for each vertex u 2 G:V

u:color D WHITE

u:� D NIL

time D 0

counter D 0

for each vertex u 2 G:V

if u:color == WHITE

counter D counter C 1

DFS-VISIT.G; u; counter/

DFS-VISIT.G; u; counter/

u:cc D counter // label the vertex

time D time C 1

u:d D time

u:color D GRAY

for each vertex v in G:AdjŒu�

if v:color == WHITE

v:� D u

DFS-VISIT.G; v; counter/

time D time C 1

u: f D time

u:color D BLACK

This DFS increments a counter each time DFS-VISIT is called to grow a new tree

in the DFS forest. Every vertex visited (and added to the tree) by DFS-VISIT is

labeled with that same counter value. Thus u:cc D v:cc if and only if u and v are

visited in the same call to DFS-VISIT from DFS, and the final value of the counter

is the number of calls that were made to DFS-VISIT by DFS. Also, since every

vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by each call to DFS-VISIT

from DFS are exactly the vertices in one connected component of G.

� All vertices in a connected component are visited by one call to DFS-VISIT

from DFS:

Let u be the first vertex in component C visited by DFS-VISIT. Since a vertex

becomes non-white only when it is visited, all vertices in C are white when
DFS-VISIT is called for u. Thus, by the white-path theorem, all vertices in C

become descendants of u in the forest, which means that all vertices in C are

visited (by recursive calls to DFS-VISIT) before DFS-VISIT returns to DFS.

� All vertices visited by one call to DFS-VISIT from DFS are in the same con-

nected component:

If two vertices are visited in the same call to DFS-VISIT from DFS, they are in

the same connected component, because vertices are visited only by following

paths in G (by following edges found in adjacency lists, starting from some

vertex).
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Solution to Exercise 20.4-3

An undirected graph is acyclic (i.e., a forest) if and only if a DFS yields no back

edges.

� If there’s a back edge, there’s a cycle.

� If there’s no back edge, then by Theorem 20.10, there are only tree edges.

Hence, the graph is acyclic.

Thus, to determine whether an undirected graph contains a cycle, run DFS and

classify the edges: if any edge is a back edge, there’s a cycle.

� Time: O.V /.

Not O.V C E/: Once jV j distinct edges have been seen, at least one of them

must be a back edge because (by Theorem B.2 on page 1169) in an acyclic

(undirected) forest, jEj � jV j � 1.

Solution to Problem 20-1

a. 1. Suppose .u; v/ is a back edge or a forward edge in a BFS of an undirected
graph. Without loss of generality, let u be a proper ancestor of v in the

breadth-first tree. Since all edges of u are explored before exploring any

edges of any of u’s descendants, edge .u; v/ must be explored when explor-

ing from u. But then .u; v/ must be a tree edge.

2. In BFS, an edge .u; v/ is a tree edge when the procedure sets v:� D u.

But that occurs only when the procedure also sets v:d D u:d C 1. Since

neither u:d nor v:d ever changes thereafter, we have v:d D u:d C 1 when

BFS completes.

3. Consider a cross edge .u; v/ where, without loss of generality, u is visited

before v. When the edges incident on u are explored, vertex v must already

be on the queue, for otherwise .u; v/ would be a tree edge. Because v is on

the queue, we have v:d � u:d C 1 by Lemma 20.3. By Corollary 20.4, we

have v:d � u:d. Thus, either v:d D u:d or v:d D u:d C 1.

b. 1. Suppose .u; v/ is a forward edge. Then it would have been explored while

exploring from u, and it would have been a tree edge.

2. Same as for undirected graphs.

3. For any edge .u; v/, regardless of whether it’s a cross edge, we cannot

have v:d > u:d C 1, since the BFS visits v at the latest when it explores

edge .u; v/. Thus, v:d � u:d C 1.

4. Clearly, v:d � 0 for all vertices v. For a back edge .u; v/, v is an ancestor

of u in the breadth-first tree, which means that v:d � u:d. (Note that since

self-loops are considered to be back edges, we could have u D v.)
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Minimum Spanning Trees

Solution to Exercise 21.1-1

Theorem 21.1 shows this.

Let A be the empty set and S be any set containing u but not v.

Solution to Exercise 21.1-4

A triangle whose edge weights are all equal is a graph in which every edge is a
light edge crossing some cut. But the triangle is a cycle, so it is not a minimum

spanning tree.

Solution to Exercise 21.1-6

Suppose that for every cut of G, there is a unique light edge crossing the cut. Let us

consider two distinct minimum spanning trees, T and T 0, of G. Because T and T 0

are distinct, T contains some edge .u; v/ that is not in T 0. If .u; v/ is removed

from T , then T becomes disconnected, resulting in a cut .S; V � S/. The edge

.u; v/ is a light edge crossing the cut .S; V � S/ (by Exercise 21.1-3) and, by our

assumption, it’s the only light edge crossing this cut. Because .u; v/ is the only

light edge crossing .S; V � S/ and .u; v/ is not in T 0, each edge in T 0 that crosses

.S; V � S/ must have weight strictly greater than w.u; v/. As in the proof of

Theorem 21.1, we can identify the unique edge .x; y/ in T 0 that crosses .S; V �S/

and lies on the cycle that results if we add .u; v/ to T 0. By our assumption, we

know that w.u; v/ < w.x; y/. Then, we can then remove .x; y/ from T 0 and

replace it by .u; v/, giving a spanning tree with weight strictly less than w.T 0/.
Thus, T 0 was not a minimum spanning tree, contradicting the assumption that the

graph had two unique minimum spanning trees.

Here’s a counterexample for the converse:
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x

y

z

1

1

Here, the graph is its own minimum spanning tree, and so the minimum spanning

tree is unique. Consider the cut .fxg ; fy; ´g/. Both of the edges .x; y/ and .x; ´/

are light edges crossing the cut, and they are both light edges.
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Single-Source Shortest Paths

Solution to Exercise 22.1-3

If the greatest number of edges on any shortest path from the source is m, then the
path-relaxation property tells us that after m iterations of BELLMAN-FORD, every

vertex v has achieved its shortest-path weight in v:d. By the upper-bound property,

after m iterations, no d values will ever change. Therefore, no d values will change

in the .m C 1/st iteration. Because we do not know m in advance, we cannot make

the algorithm iterate exactly m times and then terminate. But if the algorithm just

stops when nothing changes any more, it will stop after m C 1 iterations.

BELLMAN-FORD-EARLY-TERMINATION.G; w; s/

INITIALIZE-SINGLE-SOURCE.G; s/

repeat

changes D FALSE

for each edge .u; v/ 2 G:E

if RELAX
0.u; v; w/

changes D TRUE

until changes == FALSE

RELAX
0.u; v; w/

if v:d > u:d C w.u; v/

v:d D u:d C w.u; v/

v:� D u

return TRUE

else return FALSE

Because the exercise specifies that G has no negative-weight cycles, the test for a

negative-weight cycle (based on there being a d value that would change if another

relaxation step was done) has been removed. If there were a negative-weight cycle,

this version of the algorithm would never get out of the repeat loop because some
d value would change in each iteration.
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Solution to Exercise 22.3-3

Yes, the algorithm still works. Let u be the leftover vertex that does not

get extracted from the priority queue Q. If u is not reachable from s, then

u:d D ı.s; u/ D 1. If u is reachable from s, then there is a shortest path

p D s ❀ x ! u. When the vertex x was extracted, x:d D ı.s; x/ and then the

edge .x; u/ was relaxed; thus, u:d D ı.s; u/.

Solution to Exercise 22.3-7

To find the most reliable path between s and t , run Dijkstra’s algorithm with edge

weights w.u; v/ D � lg r.u; v/ to find shortest paths from s in O.ECV lg V / time.

The most reliable path is the shortest path from s to t , and that path’s reliability is

the product of the reliabilities of its edges.

Here’s why this method works. Because the probabilities are independent, the

probability that a path will not fail is the product of the probabilities that its edges

will not fail. We want to find a path s
p
❀ t such that

Q

.u;v/2p r.u; v/ is maximized.

This is equivalent to maximizing lg
�
Q

.u;v/2p r.u; v/
�

D
P

.u;v/2p lg r.u; v/,

which is in turn equivalent to minimizing
P

.u;v/2p � lg r.u; v/. (Note: r.u; v/

can be 0, and lg 0 is undefined. So in this algorithm, define lg 0 D �1.) Thus if

we assign weights w.u; v/ D � lg r.u; v/, we have a shortest-path problem.

Since lg 1 = 0, lg x < 0 for 0 < x < 1, and we have defined lg 0 D �1, all the

weights w are nonnegative, and we can use Dijkstra’s algorithm to find the shortest

paths from s in O.E C V lg V / time.

Alternative solution

You can also work with the original probabilities by running a modified version of

Dijkstra’s algorithm that maximizes the product of reliabilities along a path instead

of minimizing the sum of weights along a path.

In Dijkstra’s algorithm, use the reliabilities as edge weights and make the following

changes:

� In INITIALIZE-SINGLE-SOURCE, line 2 becomes

v:d D �1
� RELAX becomes

RELAX.u; v; r/

if v:d < u:d � r.u; v/

v:d D u:d � r.u; v/

v:� D u

� In DIJKSTRA, Q becomes a max-priority queue, line 7 becomes

u D EXTRACT-MAX.Q/

and lines 11–12 become
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if the call of RELAX increased v:d

INCREASE-KEY.Q; v; v:d/

This algorithm is isomorphic to the one above: it performs the same operations

except that it is working with the original probabilities instead of the transformed

ones.

Solution to Exercise 22.4-7

Observe that after the first pass, all d values are at most 0, and that relaxing

edges .v0; vi / will never again change a d value. Therefore, we can eliminate v0 by

running the Bellman-Ford algorithm on the constraint graph without the v0 vertex

but initializing all shortest path estimates to 0 instead of 1.

Solution to Exercise 22.5-4

Whenever RELAX sets � for some vertex, it also reduces the vertex’s d value.

Thus if s:� gets set to a non-NIL value, s:d is reduced from its initial value of 0 to
a negative number. But s:d is the weight of some path from s to s, which is a cycle

including s. Thus, there is a negative-weight cycle.

Solution to Problem 22-3

a. We can use the Bellman-Ford algorithm on a suitable weighted, directed graph

G D .V; E/, which we form as follows. There is one vertex in V for each

currency, and for each pair of currencies ci and cj , there are directed edges

.vi ; vj / and .vj ; vi /. (Thus, jV j D n and jEj D n.n � 1/.)

We are looking for a cycle hi1; i2; i3; : : : ; ik ; i1i such that

RŒi1; i2� � RŒi2; i3� � � � RŒik�1; ik � � RŒik; i1� > 1 :

Taking logarithms of both sides of this inequality gives

lg RŒi1; i2� C lg RŒi2; i3� C � � � C lg RŒik�1; ik � C lg RŒik; i1� > 0 :

If we negate both sides, we get

.� lg RŒi1; i2�/ C .� lg RŒi2; i3�/ C � � �

C .� lg RŒik�1; ik�/ C .� lg RŒik; i1�/ < 0 ;

and so we want to determine whether G contains a negative-weight cycle with

these edge weights.

We can determine whether there exists a negative-weight cycle in G by adding

an extra vertex v0 with 0-weight edges .v0; vi / for all vi 2 V , running

BELLMAN-FORD from v0, and using the boolean result of BELLMAN-FORD
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(which is TRUE if there are no negative-weight cycles and FALSE if there is a

negative-weight cycle) to guide our answer. That is, we invert the boolean result

of BELLMAN-FORD.

This method works because adding the new vertex v0 with 0-weight edges

from v0 to all other vertices cannot introduce any new cycles, yet it ensures

that all negative-weight cycles are reachable from v0.

It takes ‚.n2/ time to create G, which has ‚.n2/ edges. Then it takes O.n3/

time to run BELLMAN-FORD. Thus, the total time is O.n3/.

Another way to determine whether a negative-weight cycle exists is to create G

and, without adding v0 and its incident edges, run either of the all-pairs shortest-

paths algorithms. If the resulting shortest-path distance matrix has any negative

values on the diagonal, then there is a negative-weight cycle.

b. Note: The solution to this part also serves as a solution to Exercise 22.1-7.

Assuming that we ran BELLMAN-FORD to solve part (a), we only need to find

the vertices of a negative-weight cycle. We can do so as follows. Go through the

edges once again. Upon finding an edge .u; v/ for which u:d C w.u; v/ < v:d,

we know that either vertex v is on a negative-weight cycle or is reachable from

one. We can find a vertex on the negative-weight cycle by tracing back the �

values from v, keeping track of which vertices we’ve visited until we reach a
vertex x that we’ve visited before. Then we can trace back � values from x

until we get back to x, and all vertices in between, along with x, will constitute

a negative-weight cycle. We can use the recursive method given by the PRINT-

PATH procedure of Section 20.2, but stop it when it returns to vertex x.

The running time is O.n3/ to run BELLMAN-FORD, plus O.m/ to check all the

edges and O.n/ to print the vertices of the cycle, for a total of O.n3/ time.
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All-Pairs Shortest Paths

Solution to Exercise 23.1-3

The matrix L.0/ corresponds to the identity matrix

I D

�
1 0 0 � � � 0

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � 1

�
of regular matrix multiplication. Substitute 0 (the identity for C) for 1 (the iden-

tity for min), and 1 (the identity for �) for 0 (the identity for C).

Solution to Exercise 23.1-5

The all-pairs shortest-paths algorithm in Section 23.1 computes

L.n�1/ D W n�1 D L.0/ � W n�1 ;

where l
.n�1/
ij D ı.i; j / and L.0/ is the identity matrix. That is, the entry in the

i th row and j th column of the matrix “product” is the shortest-path distance from

vertex i to vertex j , and row i of the product is the solution to the single-source

shortest-paths problem for vertex i .

Notice that in a matrix “product” C D A � B , the i th row of C is the i th row of A

“multiplied” by B . Since all we want is the i th row of C , we never need more than

the i th row of A.

Thus the solution to the single-source shortest-paths from vertex i is L
.0/
i � W n�1,

where L
.0/
i is the i th row of L.0/—a vector whose i th entry is 0 and whose other

entries are 1.

Doing the above “multiplications” starting from the left is essentially the same

as the BELLMAN-FORD algorithm. The vector corresponds to the d values in

BELLMAN-FORD—the shortest-path estimates from the source to each vertex.

� The vector is initially 0 for the source and 1 for all other vertices, the same as

the values set up for d by INITIALIZE-SINGLE-SOURCE.



23-2 Selected Solutions for Chapter 23: All-Pairs Shortest Paths

� Each “multiplication” of the current vector by W relaxes all edges just as

BELLMAN-FORD does. That is, a distance estimate in the row, say the distance

to v, is updated to a smaller estimate, if any, formed by adding some w.u; v/ to

the current estimate of the distance to u.

� The relaxation/multiplication is done n � 1 times.

Solution to Exercise 23.2-4

With the superscripts, the computation is d
.k/
ij D min

˚

d
.k�1/
ij ; d

.k�1/

ik
C d

.k�1/

kj

	

.
If, having dropped the superscripts, the procedure were to compute and store dik

or dkj before using these values to compute dij , it might be computing one of the

following:

d
.k/
ij D min

˚

d
.k�1/
ij ; d

.k/

ik
C d

.k�1/

kj

	

;

d
.k/
ij D min

˚

d
.k�1/
ij ; d

.k�1/

ik
C d

.k/

kj

	

;

d
.k/
ij D min

˚

d
.k�1/
ij ; d

.k/

ik
C d

.k/

kj

	

:

In any of these scenarios, the code computes the weight of a shortest path from i

to j with all intermediate vertices in f1; 2; : : : ; kg. If we use d
.k/

ik
, rather than

d
.k�1/

ik
, in the computation, then we’re using a subpath from i to k with all in-

termediate vertices in f1; 2; : : : ; kg. But k cannot be an intermediate vertex on a
shortest path from i to k, since otherwise there would be a cycle on this shortest

path. Thus, d
.k/

ik
D d

.k�1/

ik
. A similar argument applies to show that d

.k/

kj
D d

.k�1/

kj
.

Hence, we can drop the superscripts in the computation.

Solution to Exercise 23.3-4

It changes shortest paths. Consider the following graph. V D fs; x; y; ´g, and

there are 4 edges: w.s; x/ D 2, w.x; y/ D 2, w.s; y/ D 5, and w.s; ´/ D �10.

So we’d add 10 to every weight to make yw. With w, the shortest path from s to y

is s ! x ! y, with weight 4. With yw, the shortest path from s to y is s ! y,

with weight 15. (The path s ! x ! y has weight 24.) The problem is that by just

adding the same amount to every edge, you penalize paths with more edges, even

if their weights are low.
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Solution to Exercise 24.2-11

For any two vertices u and v in G, we can define a flow network Guv consisting
of the directed version of G with s D u, t D v, and all edge capacities set to 1.

Because a flow network may not have antiparallel edges, for each edge in G, one of

the directed edges in Guv must be broken into two edges, with a new vertex added.

Therefore, Guv has jV j C jEj vertices and 3 jEj edges, so that it has O.V C E/

vertices and O.E/ edges, as required. Set all capacities in Guv to be 1 so that the

number of edges of G crossing a cut equals the capacity of the cut in Guv . Let fuv

denote a maximum flow in Guv .

We claim that the edge connectivity k equals min fjfuvj W v 2 V � fugg for any

vertex u 2 V . We’ll show below that this claim holds. Assuming that it holds, we

can find k as follows:

EDGE-CONNECTIVITY.G/

k D 1
select any vertex u 2 G:V

for each vertex v 2 G:V � fug
set up the flow network Guv as described above

find the maximum flow fuv on Guv

k D min fk; jfuvjg
return k

The claim follows from the max-flow min-cut theorem and how we chose capaci-

ties so that the capacity of a cut is the number of edges crossing it. We prove that

k D min fjfuvj W v 2 V � fugg, for any u 2 V by showing separately that k is at

least this minimum and that k is at most this minimum.

� Proof that k � min fjfuvj W v 2 V � fugg:

Let m D min fjfuvj W v 2 V � fugg. Suppose we remove only m � 1 edges

from G. For any vertex v, by the max-flow min-cut theorem, u and v are still

connected. (The max flow from u to v is at least m, hence any cut separating

u from v has capacity at least m, which means at least m edges cross any such

cut. Thus at least one edge is left crossing the cut when we remove m � 1

edges.) Thus every vertex is connected to u, which implies that the graph is
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still connected. So at least m edges must be removed to disconnect the graph—

i.e., k � min fjfuvj W v 2 V � fugg.

� Proof that k � min fjfuvj W v 2 V � fugg:

Consider a vertex v with the minimum jfuvj. By the max-flow min-cut the-

orem, there is a cut of capacity jfuvj separating u and v. Since all edge ca-

pacities are 1, exactly jfuvj edges cross this cut. If these edges are removed,

there is no path from u to v, and so our graph becomes disconnected. Hence

k � min fjfuvj W v 2 V � fugg.

� Thus, the claim that k D min fjfuvj W v 2 V � fugg, for any u 2 V is true.

Solution to Exercise 24.3-3

By definition, an augmenting path is a simple path s ❀ t in the residual net-

work G0
f

. Since G has no edges between vertices in L and no edges between

vertices in R, neither does the flow network G0 and hence neither does G0
f

. Also,

the only edges involving s or t connect s to L and R to t . Note that although edges

in G0 can go only from L to R, edges in G0
f

can also go from R to L.

Thus any augmenting path must go

s ! L ! R ! � � � ! L ! R ! t ;

crossing back and forth between L and R at most as many times as it can do

so without using a vertex twice. It contains s, t , and equal numbers of dis-

tinct vertices from L and R—at most 2 C 2 � min.jLj ; jRj/ vertices in all. The

length of an augmenting path (i.e., its number of edges) is thus bounded above by

2 � min.jLj ; jRj/ C 1.

Solution to Problem 24-4

a. Just execute one iteration of the Ford-Fulkerson algorithm. The edge .u; v/ in E

with increased capacity ensures that the edge .u; v/ is in the residual network.

So look for an augmenting path and update the flow if a path is found.

Time

O.V C E/ D O.E/ by finding the augmenting path with either depth-first or

breadth-first search.

To see that only one iteration is needed, consider separately the cases in which

.u; v/ is or is not an edge that crosses a minimum cut. If .u; v/ does not cross a

minimum cut, then increasing its capacity does not change the capacity of any

minimum cut, and hence the value of the maximum flow does not change. If

.u; v/ does cross a minimum cut, then increasing its capacity by 1 increases the

capacity of that minimum cut by 1, and hence possibly the value of the maxi-
mum flow by 1. In this case, there is either no augmenting path (in which case
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there was some other minimum cut that .u; v/ does not cross), or the augment-

ing path increases flow by 1. No matter what, one iteration of Ford-Fulkerson

suffices.

b. Let f be the maximum flow before reducing c.u; v/.

If f .u; v/ < c.u; v/, we don’t need to do anything.

If f .u; v/ D c.u; v/, we need to update the maximum flow. Because c.u; v/ is

an integer that decreases, it must be at least 1, so that f .u; v/ D c.u; v/ � 1.

Define f 0.x; y/ D f .x; y/ for all x; y 2 V , except that f 0.u; v/ D f .u; v/�1.

Although f 0 obeys all capacity contraints, even after c.u; v/ has been reduced,

it is not a legal flow, as it violates flow conservation at u (unless u D s) and at v

(unless v D t). f 0 has one more unit of flow entering u than leaving u, and it

has one more unit of flow leaving v than entering v.

The idea is to try to reroute this unit of flow so that it goes out of u and into v

via some other path. If that is not possible, we must reduce the flow from s to u

and from v to t by 1 unit.

Look for an augmenting path from u to v (note: not from s to t).

� If there is such a path, augment the flow along that path.
� If there is no such path, reduce the flow from s to u by augmenting the flow

from u to s. That is, find an augmenting path u ❀ s in Gf and augment

the flow along that path by 1. (There definitely is such a path, because there
is flow from s to u.) Similarly, reduce the flow from v to t by finding an

augmenting path t ❀ v in Gf and augmenting the flow along that path by 1.

Time

O.V C E/ D O.E/ by finding the paths with either DFS or BFS.
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