Preface xiii
Glossary of Worked Examples xv

Part I Introduction and Fundamentals

Chapter 1
Introduction 3
1.1 What Is an Economic Model? 3
1.2 How to Use This Book 14
1.3 Conclusion 15

Chapter 2
Review of the Fundamentals 19
2.1 Sets and Subsets 19
2.2 Numbers 31
2.3 Beginning Topology: Point Sets and Distance in \mathbb{R}^n 39
2.4 Functions 52

Chapter 3
Sequences, Series, and Limits 75
3.1 Definition of a Sequence 75
3.2 Limit of a Sequence 78
3.3 Present-Value Calculations 83
3.4 Properties of Sequences 96
3.5 Series 100

Part II Univariate Calculus and Optimization

Chapter 4
Continuity of Functions 119
4.1 Continuity of a Function of One Variable 119
4.2 Economic Applications of Continuous and Discontinuous Functions 128
Chapter 5
The Derivative and Differential of Functions of One Variable 145
5.1 The Tangent Line and the Derivative 145
5.2 Definition of the Derivative and the Differential 152
5.3 Conditions for Differentiability 160
5.4 Rules of Differentiation 166
5.5 Higher Order Derivatives: Concavity and Convexity of a Function 194
5.6 Taylor Series Formula, Rolle’s Theorem, and the Mean-Value Theorem 207

Chapter 6
Optimization of Functions of One Variable 225
6.1 Necessary Conditions for Unconstrained Maxima and Minima 225
6.2 Second-Order Conditions for a Local Optimum 239
6.3 Optimization over an Interval 261

Part III Linear Algebra

Chapter 7
Linear Equations and Vector Spaces 287
7.1 Solving Systems of Linear Equations 287
7.2 Linear Systems in n Variables 294
7.3 Vectors in \(\mathbb{R}^n \) 305

Chapter 8
Matrices 333
8.1 General Notation 333
8.2 Basic Matrix Operations 338
8.3 Matrix Transposition 352
8.4 Some Special Matrices 357

Chapter 9
Determinants and the Inverse Matrix 365
9.1 Defining the Inverse 365
9.2 Obtaining the Determinant and Inverse of a 3 \times 3 Matrix 379
9.3 The Inverse of an n \times n Matrix and Its Properties 384
9.4 Cramer’s Rule 390
9.5 Rank of a Matrix 400

Chapter 10
Further Topics in Linear Algebra 407
10.1 The Eigenvalue Problem 407
10.2 Quadratic Forms 421
10.3 Hyperplanes 430
Part IV Multivariate Calculus

Chapter 11
Calculus for Functions of \(n \) Variables 443
11.1 Partial Differentiation 443
11.2 Second-Order Partial Derivatives 456
11.3 The First-Order Total Differential 462
11.4 Implicit Differentiation 465
11.5 Curvature Properties: Concavity and Convexity 481
11.6 Quasiconcavity and Quasiconvexity 496
11.7 More Properties of Functions with Economic Applications 501
11.8 Taylor Series Expansion 509

Chapter 12
Optimization of Functions of \(n \) Variables 519
12.1 First-Order Conditions 520
12.2 Second-Order Conditions 530
12.3 Direct Restrictions on Variables 541

Chapter 13
Constrained Optimization 551
13.1 Constrained Problems and Approaches to Solutions 551
13.2 Second-Order Conditions for Constrained Optimization 573
13.3 Existence, Uniqueness, and Characterization of Solutions 577
13.4 Problems, Problems 586

Chapter 14
Comparative Statics 597
14.1 Introduction to Comparative Statics 597
14.2 General Comparative Statics Analysis 603
14.3 The Envelope Theorem 623

Chapter 15
Nonlinear Programming and the Kuhn-Tucker Conditions 635
15.1 The Kuhn-Tucker Conditions 636
15.2 Hyperplane Theorems and Quasiconcavity 655

Part V Integration and Dynamic Methods

Chapter 16
Integration 681
16.1 The Indefinite Integral 681
16.2 The Riemann (Definite) Integral 689
Chapter 24
Simultaneous Systems of Differential and Difference Equations 885
24.1 Linear Differential Equation Systems 885
24.2 Stability Analysis and Linear Phase Diagrams 907
24.3 Systems of Linear Difference Equations 930

Chapter 25
Optimal Control Theory 949
25.1 The Maximum Principle 952
25.2 Optimization Problems Involving Discounting 964
25.3 Alternative Boundary Conditions on \(x(T) \) 975
25.4 Infinite-Time-Horizon Problems 990
25.5 Constraints on the Control Variable 1003
25.6 Free-Terminal-Time Problems (\(T \) Free) 1013

References and Further Reading 1025
Answers 1027
Index 1061