Contents

Preface xxvii

1 Introduction 1

1.1 What is machine learning? 1

1.2 Supervised learning 1

1.2.1 Classification 2

1.2.2 Regression 8

1.2.3 Overfitting and generalization 12

1.2.4 No free lunch theorem 13

1.3 Unsupervised learning 14

1.3.1 Clustering 14

1.3.2 Discovering latent “factors of variation” 15

1.3.3 Self-supervised learning 16

1.3.4 Evaluating unsupervised learning 16

1.4 Reinforcement learning 17

1.5 Data 19

1.5.1 Some common image datasets 19

1.5.2 Some common text datasets 21

1.5.3 Preprocessing discrete input data 23

1.5.4 Preprocessing text data 24

1.5.5 Handling missing data 26

1.6 Discussion 27

1.6.1 The relationship between ML and other fields 27

1.6.2 Structure of the book 28

1.6.3 Caveats 28

I Foundations 29

2 Probability: Univariate Models 31

2.1 Introduction 31

2.1.1 What is probability? 31
3 Probability: Multivariate Models 75
3.1 Joint distributions for multiple random variables 75
3.1.1 Covariance 75
3.1.2 Correlation 76
3.1.3 Uncorrelated does not imply independent 77
3.1.4 Correlation does not imply causation 77
3.1.5 Simpson’s paradox 78
3.2 The multivariate Gaussian (normal) distribution 79
3.2.1 Definition 79
3.2.2 Mahalanobis distance 81
3.2.3 Marginals and conditionals of an MVN * 82
3.2.4 Example: conditioning a 2d Gaussian 83
3.2.5 Example: Imputing missing values * 83
3.3 Linear Gaussian systems * 84
3.3.1 Bayes rule for Gaussians 85
3.3.2 Derivation * 85
3.3.3 Example: Inferring an unknown scalar 86
3.3.4 Example: inferring an unknown vector 88
3.3.5 Example: sensor fusion 89
3.4 The exponential family * 90
3.4.1 Definition 90
3.4.2 Example 91
3.4.3 Log partition function is cumulant generating function 92
3.4.4 Maximum entropy derivation of the exponential family 92
3.5 Mixture models 93
3.5.1 Gaussian mixture models 94
3.5.2 Bernoulli mixture models 95
3.6 Probabilistic graphical models * 96
3.6.1 Representation 97
3.6.2 Inference 99
3.6.3 Learning 100
3.7 Exercises 100

4 Statistics 103
4.1 Introduction 103
4.2 Maximum likelihood estimation (MLE) 103
4.2.1 Definition 103
4.2.2 Justification for MLE 104
4.2.3 Example: MLE for the Bernoulli distribution 106
4.2.4 Example: MLE for the categorical distribution 107
4.2.5 Example: MLE for the univariate Gaussian 107
4.2.6 Example: MLE for the multivariate Gaussian 108
4.2.7 Example: MLE for linear regression 110
4.3 Empirical risk minimization (ERM) 111
4.3.1 Example: minimizing the misclassification rate 111
4.3.2 Surrogate loss 112

4.4 Other estimation methods
 4.4.1 The method of moments 112
 4.4.2 Online (recursive) estimation 114

4.5 Regularization 116
 4.5.1 Example: MAP estimation for the Bernoulli distribution 117
 4.5.2 Example: MAP estimation for the multivariate Gaussian 118
 4.5.3 Example: weight decay 119
 4.5.4 Picking the regularizer using a validation set 120
 4.5.5 Cross-validation 121
 4.5.6 Early stopping 123
 4.5.7 Using more data 123

4.6 Bayesian statistics
 4.6.1 Conjugate priors 125
 4.6.2 The beta-binomial model 125
 4.6.3 The Dirichlet-multinomial model 133
 4.6.4 The Gaussian-Gaussian model 137
 4.6.5 Beyond conjugate priors 140
 4.6.6 Credible intervals 141
 4.6.7 Bayesian machine learning 143
 4.6.8 Computational issues 147

4.7 Frequentist statistics
 4.7.1 Sampling distributions 150
 4.7.2 Gaussian approximation of the sampling distribution of the MLE 151
 4.7.3 Bootstrap approximation of the sampling distribution of any estimator 151
 4.7.4 Confidence intervals 153
 4.7.5 Caution: Confidence intervals are not credible 154
 4.7.6 The bias-variance tradeoff 155

4.8 Exercises 160

5 Decision Theory 163

5.1 Bayesian decision theory 163
 5.1.1 Basics 163
 5.1.2 Classification problems 165
 5.1.3 ROC curves 167
 5.1.4 Precision-recall curves 170
 5.1.5 Regression problems 172
 5.1.6 Probabilistic prediction problems 173

5.2 Bayesian hypothesis testing 175
 5.2.1 Example: Testing if a coin is fair 176
 5.2.2 Bayesian model selection 177
 5.2.3 Occam’s razor 178
 5.2.4 Connection between cross validation and marginal likelihood 179
 5.2.5 Information criteria 180

5.3 Frequentist decision theory 182
Contents

5.3.1 Computing the risk of an estimator 182
5.3.2 Consistent estimators 185
5.3.3 Admissible estimators 185
5.4 Empirical risk minimization 186
5.4.1 Empirical risk 186
5.4.2 Structural risk 188
5.4.3 Cross-validation 189
5.4.4 Statistical learning theory * 189
5.5 Frequentist hypothesis testing * 191
5.5.1 Likelihood ratio test 191
5.5.2 Null hypothesis significance testing (NHST) 192
5.5.3 p-values 193
5.5.4 p-values considered harmful 193
5.5.5 Why isn’t everyone a Bayesian? 195
5.6 Exercises 197

6 Information Theory 199
6.1 Entropy 199
6.1.1 Entropy for discrete random variables 199
6.1.2 Cross entropy 201
6.1.3 Joint entropy 201
6.1.4 Conditional entropy 202
6.1.5 Perplexity 203
6.1.6 Differential entropy for continuous random variables * 204
6.2 Relative entropy (KL divergence) * 205
6.2.1 Definition 205
6.2.2 Interpretation 206
6.2.3 Example: KL divergence between two Gaussians 206
6.2.4 Non-negativity of KL 206
6.2.5 KL divergence and MLE 207
6.2.6 Forward vs reverse KL 208
6.3 Mutual information * 209
6.3.1 Definition 209
6.3.2 Interpretation 210
6.3.3 Example 210
6.3.4 Conditional mutual information 211
6.3.5 MI as a “generalized correlation coefficient” 212
6.3.6 Normalized mutual information 213
6.3.7 Maximal information coefficient 213
6.3.8 Data processing inequality 215
6.3.9 Sufficient Statistics 216
6.3.10 Fano’s inequality * 217
6.4 Exercises 218

7 Linear Algebra 221
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>221</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Notation</td>
<td>221</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Vector spaces</td>
<td>224</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Norms of a vector and matrix</td>
<td>226</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Properties of a matrix</td>
<td>228</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Special types of matrices</td>
<td>231</td>
</tr>
<tr>
<td>7.2</td>
<td>Matrix multiplication</td>
<td>234</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Vector–vector products</td>
<td>234</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Matrix–vector products</td>
<td>235</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Matrix–matrix products</td>
<td>235</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Application: manipulating data matrices</td>
<td>237</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Kronecker products</td>
<td>240</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Einstein summation</td>
<td>240</td>
</tr>
<tr>
<td>7.3</td>
<td>Matrix inversion</td>
<td>241</td>
</tr>
<tr>
<td>7.3.1</td>
<td>The inverse of a square matrix</td>
<td>241</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Schur complements</td>
<td>242</td>
</tr>
<tr>
<td>7.3.3</td>
<td>The matrix inversion lemma</td>
<td>243</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Matrix determinant lemma</td>
<td>243</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Application: deriving the conditionals of an MVN</td>
<td>244</td>
</tr>
<tr>
<td>7.4</td>
<td>Eigenvalue decomposition (EVD)</td>
<td>245</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Basics</td>
<td>245</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Diagonalization</td>
<td>246</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Eigenvalues and eigenvectors of symmetric matrices</td>
<td>247</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Geometry of quadratic forms</td>
<td>248</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Standardizing and whitening data</td>
<td>248</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Power method</td>
<td>250</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Deflation</td>
<td>251</td>
</tr>
<tr>
<td>7.4.8</td>
<td>Eigenvectors optimize quadratic forms</td>
<td>251</td>
</tr>
<tr>
<td>7.5</td>
<td>Singular value decomposition (SVD)</td>
<td>251</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Basics</td>
<td>251</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Connection between SVD and EVD</td>
<td>252</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Pseudo inverse</td>
<td>253</td>
</tr>
<tr>
<td>7.5.4</td>
<td>SVD and the range and null space of a matrix</td>
<td>254</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Truncated SVD</td>
<td>256</td>
</tr>
<tr>
<td>7.6</td>
<td>Other matrix decompositions</td>
<td>256</td>
</tr>
<tr>
<td>7.6.1</td>
<td>LU factorization</td>
<td>256</td>
</tr>
<tr>
<td>7.6.2</td>
<td>QR decomposition</td>
<td>257</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Cholesky decomposition</td>
<td>258</td>
</tr>
<tr>
<td>7.7</td>
<td>Solving systems of linear equations</td>
<td>258</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Solving square systems</td>
<td>259</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Solving underconstrained systems (least norm estimation)</td>
<td>259</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Solving overconstrained systems (least squares estimation)</td>
<td>261</td>
</tr>
<tr>
<td>7.8</td>
<td>Matrix calculus</td>
<td>261</td>
</tr>
<tr>
<td>7.8.1</td>
<td>Derivatives</td>
<td>262</td>
</tr>
<tr>
<td>7.8.2</td>
<td>Gradients</td>
<td>262</td>
</tr>
</tbody>
</table>
7.8.3 Directional derivative 263
7.8.4 Total derivative * 263
7.8.5 Jacobian 263
7.8.6 Hessian 264
7.8.7 Gradients of commonly used functions 265
7.9 Exercises 266

8 Optimization 269

8.1 Introduction 269
8.1.1 Local vs global optimization 269
8.1.2 Constrained vs unconstrained optimization 271
8.1.3 Convex vs nonconvex optimization 271
8.1.4 Smooth vs nonsmooth optimization 275

8.2 First-order methods 276
8.2.1 Descent direction 278
8.2.2 Step size (learning rate) 278
8.2.3 Convergence rates 280
8.2.4 Momentum methods 281

8.3 Second-order methods 283
8.3.1 Newton’s method 283
8.3.2 BFGS and other quasi-Newton methods 284
8.3.3 Trust region methods 285

8.4 Stochastic gradient descent 286
8.4.1 Application to finite sum problems 287
8.4.2 Example: SGD for fitting linear regression 287
8.4.3 Choosing the step size (learning rate) 288
8.4.4 Iterate averaging 291
8.4.5 Variance reduction * 291
8.4.6 Preconditioned SGD 292

8.5 Constrained optimization 295
8.5.1 Lagrange multipliers 296
8.5.2 The KKT conditions 297
8.5.3 Linear programming 299
8.5.4 Quadratic programming 300
8.5.5 Mixed integer linear programming * 301

8.6 Proximal gradient method * 301
8.6.1 Projected gradient descent 302
8.6.2 Proximal operator for ℓ_1-norm regularizer 303
8.6.3 Proximal operator for quantization 304
8.6.4 Incremental (online) proximal methods 305

8.7 Bound optimization * 306
8.7.1 The general algorithm 306
8.7.2 The EM algorithm 306
8.7.3 Example: EM for a GMM 309

8.8 Blackbox and derivative free optimization 313
II Linear Models 315

9 Linear Discriminant Analysis 317
 9.1 Introduction 317
 9.2 Gaussian discriminant analysis 317
 9.2.1 Quadratic decision boundaries 318
 9.2.2 Linear decision boundaries 319
 9.2.3 The connection between LDA and logistic regression 319
 9.2.4 Model fitting 320
 9.2.5 Nearest centroid classifier 322
 9.2.6 Fisher’s linear discriminant analysis * 322
 9.3 Naive Bayes classifiers 326
 9.3.1 Example models 326
 9.3.2 Model fitting 327
 9.3.3 Bayesian naive Bayes 328
 9.3.4 The connection between naive Bayes and logistic regression 329
 9.4 Generative vs discriminative classifiers 330
 9.4.1 Advantages of discriminative classifiers 330
 9.4.2 Advantages of generative classifiers 331
 9.4.3 Handling missing features 331
 9.5 Exercises 332

10 Logistic Regression 333
 10.1 Introduction 333
 10.2 Binary logistic regression 333
 10.2.1 Linear classifiers 333
 10.2.2 Nonlinear classifiers 334
 10.2.3 Maximum likelihood estimation 336
 10.2.4 Stochastic gradient descent 339
 10.2.5 Perceptron algorithm 340
 10.2.6 Iteratively reweighted least squares 340
 10.2.7 MAP estimation 342
 10.2.8 Standardization 343
 10.3 Multinomial logistic regression 344
 10.3.1 Linear and nonlinear classifiers 345
 10.3.2 Maximum likelihood estimation 345
 10.3.3 Gradient-based optimization 347
 10.3.4 Bound optimization 347
 10.3.5 MAP estimation 349
 10.3.6 Maximum entropy classifiers 350
 10.3.7 Hierarchical classification 351
 10.3.8 Handling large numbers of classes 352
10.4 Robust logistic regression * 353
 10.4.1 Mixture model for the likelihood 353
 10.4.2 Bi-tempered loss 354
10.5 Bayesian logistic regression * 357
 10.5.1 Laplace approximation 357
 10.5.2 Approximating the posterior predictive 358
10.6 Exercises 361

11 Linear Regression 365
 11.1 Introduction 365
 11.2 Least squares linear regression 365
 11.2.1 Terminology 365
 11.2.2 Least squares estimation 366
 11.2.3 Other approaches to computing the MLE 370
 11.2.4 Measuring goodness of fit 374
 11.3 Ridge regression 375
 11.3.1 Computing the MAP estimate 376
 11.3.2 Connection between ridge regression and PCA 377
 11.3.3 Choosing the strength of the regularizer 378
 11.4 Lasso regression 379
 11.4.1 MAP estimation with a Laplace prior (ℓ1 regularization) 379
 11.4.2 Why does ℓ1 regularization yield sparse solutions? 380
 11.4.3 Hard vs soft thresholding 381
 11.4.4 Regularization path 383
 11.4.5 Comparison of least squares, lasso, ridge and subset selection 384
 11.4.6 Variable selection consistency 386
 11.4.7 Group lasso 387
 11.4.8 Elastic net (ridge and lasso combined) 390
 11.4.9 Optimization algorithms 391
 11.5 Regression splines * 393
 11.5.1 B-spline basis functions 393
 11.5.2 Fitting a linear model using a spline basis 395
 11.5.3 Smoothing splines 395
 11.5.4 Generalized additive models 395
 11.6 Robust linear regression * 396
 11.6.1 Laplace likelihood 396
 11.6.2 Student-t likelihood 398
 11.6.3 Huber loss 398
 11.6.4 RANSAC 398
 11.7 Bayesian linear regression * 399
 11.7.1 Priors 399
 11.7.2 Posteriors 399
 11.7.3 Example 400
 11.7.4 Computing the posterior predictive 400
 11.7.5 The advantage of centering 402
CONTENTS

11.7.6 Dealing with multicollinearity 403
11.7.7 Automatic relevancy determination (ARD) * 404
11.8 Exercises 405

12 Generalized Linear Models * 409
12.1 Introduction 409
12.2 Examples 409
 12.2.1 Linear regression 410
 12.2.2 Binomial regression 410
 12.2.3 Poisson regression 411
12.3 GLMs with non-canonical link functions 411
12.4 Maximum likelihood estimation 412
12.5 Worked example: predicting insurance claims 413

III Deep Neural Networks 417

13 Neural Networks for Structured Data 419
13.1 Introduction 419
13.2 Multilayer perceptrons (MLPs) 420
 13.2.1 The XOR problem 421
 13.2.2 Differentiable MLPs 422
 13.2.3 Activation functions 422
 13.2.4 Example models 423
 13.2.5 The importance of depth 428
 13.2.6 The “deep learning revolution” 429
 13.2.7 Connections with biology 429
13.3 Backpropagation 432
 13.3.1 Forward vs reverse mode differentiation 432
 13.3.2 Reverse mode differentiation for multilayer perceptrons 434
 13.3.3 Vector-Jacobian product for common layers 436
 13.3.4 Computation graphs 438
13.4 Training neural networks 440
 13.4.1 Tuning the learning rate 441
 13.4.2 Vanishing and exploding gradients 441
 13.4.3 Non-saturating activation functions 442
 13.4.4 Residual connections 445
 13.4.5 Parameter initialization 446
 13.4.6 Parallel training 447
13.5 Regularization 448
 13.5.1 Early stopping 448
 13.5.2 Weight decay 449
 13.5.3 Sparse DNNs 449
 13.5.4 Dropout 449
 13.5.5 Bayesian neural networks 451
CONTENTS

13.5.6 Regularization effects of (stochastic) gradient descent * 451
13.6 Other kinds of feedforward networks * 453
 13.6.1 Radial basis function networks 453
 13.6.2 Mixtures of experts 454
13.7 Exercises 457

14 Neural Networks for Images 461

14.1 Introduction 461
14.2 Common layers 462
 14.2.1 Convolutional layers 462
 14.2.2 Pooling layers 469
 14.2.3 Putting it all together 470
 14.2.4 Normalization layers 470
14.3 Common architectures for image classification 473
 14.3.1 LeNet 473
 14.3.2 AlexNet 475
 14.3.3 GoogLeNet (Inception) 476
 14.3.4 ResNet 477
 14.3.5 DenseNet 478
 14.3.6 Neural architecture search 479
14.4 Other forms of convolution * 479
 14.4.1 Dilated convolution 479
 14.4.2 Transposed convolution 481
 14.4.3 Depthwise separable convolution 482
14.5 Solving other discriminative vision tasks with CNNs * 482
 14.5.1 Image tagging 483
 14.5.2 Object detection 483
 14.5.3 Instance segmentation 484
 14.5.4 Semantic segmentation 484
 14.5.5 Human pose estimation 486
14.6 Generating images by inverting CNNs * 487
 14.6.1 Converting a trained classifier into a generative model 487
 14.6.2 Image priors 488
 14.6.3 Visualizing the features learned by a CNN 490
 14.6.4 Deep Dream 490
 14.6.5 Neural style transfer 491

15 Neural Networks for Sequences 497

15.1 Introduction 497
15.2 Recurrent neural networks (RNNs) 497
 15.2.1 Vec2Seq (sequence generation) 497
 15.2.2 Seq2Vec (sequence classification) 500
 15.2.3 Seq2Seq (sequence translation) 501
 15.2.4 Teacher forcing 503
15.2.5 Backpropagation through time 504
16.2.2 Deep metric learning 548
16.2.3 Classification losses 548
16.2.4 Ranking losses 549
16.2.5 Speeding up ranking loss optimization 550
16.2.6 Other training tricks for DML 553
16.3 Kernel density estimation (KDE) 554
16.3.1 Density kernels 554
16.3.2 Parzen window density estimator 555
16.3.3 How to choose the bandwidth parameter 556
16.3.4 From KDE to KNN classification 557
16.3.5 Kernel regression 557

17 Kernel Methods * 561
17.1 Mercer kernels 561
17.1.1 Mercer’s theorem 562
17.1.2 Some popular Mercer kernels 563
17.2 Gaussian processes 568
17.2.1 Noise-free observations 568
17.2.2 Noisy observations 569
17.2.3 Comparison to kernel regression 570
17.2.4 Weight space vs function space 571
17.2.5 Numerical issues 571
17.2.6 Estimating the kernel 572
17.2.7 GPs for classification 575
17.2.8 Connections with deep learning 576
17.2.9 Scaling GPs to large datasets 577
17.3 Support vector machines (SVMs) 579
17.3.1 Large margin classifiers 579
17.3.2 The dual problem 581
17.3.3 Soft margin classifiers 583
17.3.4 The kernel trick 584
17.3.5 Converting SVM outputs into probabilities 585
17.3.6 Connection with logistic regression 585
17.3.7 Multi-class classification with SVMs 586
17.3.8 How to choose the regularizer C 587
17.3.9 Kernel ridge regression 588
17.3.10 SVMs for regression 589
17.4 Sparse vector machines 591
17.4.1 Relevance vector machines (RVMs) 592
17.4.2 Comparison of sparse and dense kernel methods 592
17.5 Exercises 595

18 Trees, Forests, Bagging, and Boosting 597
18.1 Classification and regression trees (CART) 597
18.1.1 Model definition 597
18.1.2 Model fitting 599
18.1.3 Regularization 600
18.1.4 Handling missing input features 600
18.1.5 Pros and cons 600
18.2 Ensemble learning 602
18.2.1 Stacking 602
18.2.2 Ensembling is not Bayes model averaging 603
18.3 Bagging 603
18.4 Random forests 604
18.5 Boosting 605
18.5.1 Forward stagewise additive modeling 606
18.5.2 Quadratic loss and least squares boosting 606
18.5.3 Exponential loss and AdaBoost 607
18.5.4 LogitBoost 610
18.5.5 Gradient boosting 610
18.6 Interpreting tree ensembles 614
18.6.1 Feature importance 615
18.6.2 Partial dependency plots 617

V Beyond Supervised Learning 619

19 Learning with Fewer Labeled Examples 621
19.1 Data augmentation 621
19.1.1 Examples 621
19.1.2 Theoretical justification 622
19.2 Transfer learning 622
19.2.1 Fine-tuning 623
19.2.2 Adapters 624
19.2.3 Supervised pre-training 625
19.2.4 Unsupervised pre-training (self-supervised learning) 626
19.2.5 Domain adaptation 631
19.3 Semi-supervised learning 632
19.3.1 Self-training and pseudo-labeling 632
19.3.2 Entropy minimization 633
19.3.3 Co-training 636
19.3.4 Label propagation on graphs 637
19.3.5 Consistency regularization 638
19.3.6 Deep generative models * 640
19.3.7 Combining self-supervised and semi-supervised learning 643
19.4 Active learning 644
19.4.1 Decision-theoretic approach 644
19.4.2 Information-theoretic approach 644
19.4.3 Batch active learning 645
19.5 Meta-learning 645
19.5.1 Model-agnostic meta-learning (MAML) 646
19.6 Few-shot learning 647
 19.6.1 Matching networks 648
19.7 Weakly supervised learning 649
19.8 Exercises 649

20 Dimensionality Reduction 651
 20.1 Principal components analysis (PCA) 651
 20.1.1 Examples 651
 20.1.2 Derivation of the algorithm 653
 20.1.3 Computational issues 656
 20.1.4 Choosing the number of latent dimensions 658
 20.2 Factor analysis * 660
 20.2.1 Generative model 661
 20.2.2 Probabilistic PCA 662
 20.2.3 EM algorithm for FA/PPCA 663
 20.2.4 Unidentifiability of the parameters 665
 20.2.5 Nonlinear factor analysis 667
 20.2.6 Mixtures of factor analysers 668
 20.2.7 Exponential family factor analysis 669
 20.2.8 Factor analysis models for paired data 670
 20.3 Autoencoders 673
 20.3.1 Bottleneck autoencoders 674
 20.3.2 Denoising autoencoders 676
 20.3.3 Contractive autoencoders 676
 20.3.4 Sparse autoencoders 677
 20.3.5 Variational autoencoders 677
 20.4 Manifold learning * 682
 20.4.1 What are manifolds? 683
 20.4.2 The manifold hypothesis 683
 20.4.3 Approaches to manifold learning 684
 20.4.4 Multi-dimensional scaling (MDS) 685
 20.4.5 Isomap 688
 20.4.6 Kernel PCA 689
 20.4.7 Maximum variance unfolding (MVU) 691
 20.4.8 Local linear embedding (LLE) 691
 20.4.9 Laplacian eigenmaps 692
 20.4.10 t-SNE 695
 20.5 Word embeddings 699
 20.5.1 Latent semantic analysis / indexing 699
 20.5.2 Word2vec 701
 20.5.3 GloVE 703
 20.5.4 Word analogies 704
 20.5.5 RAND-WALK model of word embeddings 705
 20.5.6 Contextual word embeddings 705
20.6 Exercises 706

21 Clustering 709

21.1 Introduction 709
21.1.1 Evaluating the output of clustering methods 709

21.2 Hierarchical agglomerative clustering 711
21.2.1 The algorithm 712
21.2.2 Example 714
21.2.3 Extensions 715

21.3 K means clustering 716
21.3.1 The algorithm 716
21.3.2 Examples 716
21.3.3 Vector quantization 718
21.3.4 The K-means++ algorithm 719
21.3.5 The K-medoids algorithm 719
21.3.6 Speedup tricks 720
21.3.7 Choosing the number of clusters K 720

21.4 Clustering using mixture models 723
21.4.1 Mixtures of Gaussians 724
21.4.2 Mixtures of Bernoullis 727

21.5 Spectral clustering * 728
21.5.1 Normalized cuts 728
21.5.2 Eigenvectors of the graph Laplacian encode the clustering 729
21.5.3 Example 730
21.5.4 Connection with other methods 731

21.6 Biclustering * 731
21.6.1 Basic biclustering 732
21.6.2 Nested partition models (Crosscat) 732

22 Recommender Systems 735

22.1 Explicit feedback 735
22.1.1 Datasets 735
22.1.2 Collaborative filtering 736
22.1.3 Matrix factorization 737
22.1.4 Autoencoders 739

22.2 Implicit feedback 741
22.2.1 Bayesian personalized ranking 741
22.2.2 Factorization machines 742
22.2.3 Neural matrix factorization 743

22.3 Leveraging side information 743

22.4 Exploration-exploitation tradeoff 744

23 Graph Embeddings * 747

23.1 Introduction 747
23.2 Graph Embedding as an Encoder/Decoder Problem 748