
Supporting	Materials	for:	Working	with	Data	using	Filtering	and	State	
Resetting	

This archive contains the models and other files necessary to replicate the results in the chapter
on filtering and state resetting. The material herein, with the exception of the ExternalFunction
archive (which has its own license) is released under the following license:

The models contained here are all Vensim models and were developed using Vensim DSS.
They have been saved in a binary format so that it will be possible to open them in the Vensim
Model Reader. Not all of the results can be obtained in this way however as the model reader
does not directly support some of the operations used in creating the results.

Figure	1	
This graph is from a simulation of the model ProductionDistributionAppendixK.vmf in the
ProductionDistribution directory simulated with the constant NOISE SEED set to 0 and 8.

Figure	2	
This graph was created by running a sensitivity simulation with the constant “noise stream”
varying between 1 and 2,000,000 by 100. This results in 20,001 simulations which is larger than

Copyright (c) 2013 Robert Eberlein

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

needed to see the spread so can be reduced. The .vsc and .lst files for this are also contained in
the directory.

Figure	3	
Using the model DampedPendulum00.vmf in the directory Pendulum this is run with the default
parameters and NOISE SEED changed to 0. The latter run was called NoiseSeed0

Figure	4	(and	parameter	estimates)	
Again using DampedPendulum00.vmf it is calibrated against NoiseSeed0 using the payoff file
DampedPendulum01.vpd and the optimization control file DampedPendulum01.voc. The weight
file PayoffWeights.cin is created by first calibrating without the changes file, then executing the
program in err2weight.exe contained in the ExternalFunction archive. This file requires a .err file
(so that payoff report needs to be checked) and uses the command line

err2weight calibrate_1step.err PayoffWeights.cin

to create the file. All this program does is create a weight equal to 1/standard deviation of error
term (the sample standard deviation). You can also make the same computation other ways.

If you want to use the err2weight program on a Mac you will need to recompile the source code
err2weight.c. After doing this the calibration is repeated using PayoffWeights.cin. The results
are the same (since there is only one variable in the payoff), but the computed confidence
bounds using Payoff Sensitivity of 4 now represent 95% confidence bounds. Note that in this
case, because the fit is so poor, the confidence bounds are not very meaningful. This general
technique can be used elsewhere – for example the regression results are computed using this
(and also a linear regression in R for comparison).

Regression	Results	
There are two ways to compute these. One is with Vensim using the model
DampedPendulumRegression02.vmf in exactly the same way as described in Figure 4 but with
a different payoff definition file (DampedPendulumRegress.vpd). The file PayoffWeights.cin will
need to be constructed again – it uses acceleration and not position for calibration.

To perform a linear regression using R the .Excel file ComputedVelocityAcceleration.xlsx uses
the position measurement to compute velocity and acceleration. A truncated version of this (the
last rows are missing otherwise) ComputedVelocityAcceleration.txt is the used by the R file
Regression.R (you will need to change the directory for the file to load to use this). The R
regression is linear and you will need to transform the resulting coefficients to the drag and
length values (actually drag is just a sign change). You could also run a nonlinear regression but
this is more complicated to set up.

Figure	5	(and	parameter	estimates)	
This time using DampedPendulumResetting05.vmf we repeat the same steps as for figure 4.
Note that this model will not run unless the run NoiseSeed0 exists.

Figure	6	(and	parameter	estimates)	
This run is created by turning on Kalman filtering. To do this you will need to use the file
kalman.prm which contains

:DEBUG 1
Angular Velocity/2.44/1
Angular Position/0/1

The first line causes the file kalman.err to be created which reports (among other things) the
Kalman Gain. The other lines have the state name, driving variance and initial variance. The
driving variance is all against velocity and 2.44 = (50 * 0.03125)^2 where 50 is the standard
deviation of the driving noise and 0.03125 is TIME STEP. There is no driving noise for position.
The initial values of 1 are arbitrary but relatively small. The payoff definition
DampedPendulumKalman01.vpd is used there. The “weight” element of the payoff is the
variance of the error term – since no measurement error was explicitly introduced here a small
number is used.

To run the model with Kalman filtering active check the box for Kalman filtering in the advanced
tab of the simulation control dialog. To do the parameter estimates optimize with the same
settings. Note that the computation of the confidence bounds should have the Payoff Value
sensitivity set to 2, and not 4. Use 4 for non Kalman Filtering calibration.

Figure	7	
This is the model Project08.vmf in the directory Project. A number of elements have been
hidden to make this easier to read. The model with all hidden elements showing appears as:

Nate
Inserted Text
,

Nate
Inserted Text
,

Figure	8	
This is the model Project08.vmf run with “reference work quality” set to 1 and 0.85

Figure	9	and	calibration	
This is a run of Project08.vmf with FINAL TIME set to 30 and NOISE SEED set to 0. Note that
when NOISE SEED is < 0 the model is set to run without any noise terms. Once that run has
been made it us used as the data source.

The simple calibration is done by using that as the data source with the payoff file Project02.vpd
and the optimization control file Project02.voc. Note that you will need to optimize once, create
PayoffWeights.cin and optimize again. This time the optimization results will be different.

The Kalman Filter optimization uses ProjectKalman.vpd as the payoff file. This file has
variances computed as supplementary variables in the model proper (and hidden in the diagram
for the model). You will also need the file Kalman.prm which contains

Undiscovered Rework/1.7/0.1
Work Force/0/0.1
Work to Do/0/0.1

The driving variance in undiscovered rework 1.7 = (0.2 * 26 * 0.25)^2 where 0.2 is the standard
deviation of the error on quality, 26 is an approximate average for the work completion rate and
0.25 is TIME STEP. There is no other driving variance, and the initial values are again small but
approximations.

Work to Do
work

completion

scheduled
completion date time remaining

target work
force

Work Force
net hire rate

time to adjust
work force

productivity

iniital work force

<Time>

min project
cleanup time

Total Project
Work

Undiscovered
Rework rework

discoverywork completion
with errors

work quality
time to

discover
rework

NOISE SEED

fraction complete

completion
effect

stdev work
quality

reference work
quality

measured work
force

stdev work force
me

measured work
to do

stdev work to
do me

<NOISE SEED>

<NOISE SEED>
weight for measured

work force
weight for measured

work to do

NOISE SEED 2

<Time>

mean adjustment

weight for measured
rework discovery

measured rework
discovery

stdev rework
discovery me

var work force me var rework
discovery me

var work to do me

Figure	10	
These are just values from the two previous calibration runs.

Figure	11	
This sensitivity run is created by setting NOISE SEED to 0 (so that noise is active) and then
varying NOISE SEED 2 which changes the trajectory after time 30. The sensitivity control file for
this is Project06.vsc, but you will need to change NOISE SEED to 0 before launching sensitivity.
The save list is in Project06.lst, but you can add to that.

Figure	12	and	averages	
This uses the model PortfolioValue00.vmf in the directory PortfolioValue. The deterministic run
uses a NOISE SEED of -1, and the noisy run 99999. Note that this particular noise seed ends
up demonstrating visibly volatile behavior toward the end of the simulation and this is why it was
chosen. Repeating the experiments discussed in the paper with other noise seeds will usually
results in estimates that are closer to one another for the different techniques.

Be sure to call the noisy run NoiseRun – this will be needed to run the 07 model.

The arithmetic average can be computed using Vensim’s stats tool, in Excel or by hand. The
geometric mean is simply the 100th root of final/initial.

Figure	13	
This is the model PortfolioValue07.vmf calibrated against the noise seed 99999 run (NoiseRun).
It uses the payoff definition PortfolioValueNoWeight.vpd and the optimization control file
PortfolioValue01.voc. Not that the noweight optimization control file uses 1 for a weight not a
weight based on the error standard deviation. Since we are not going to be computing
confidence intervals, this is all that is necessary.

Figure	14	and	optimization	
Zoomed in on the first 50 years for Figure 13.

The calibration with weights is done using the PortfolioValueWeight.vpd. The resetting
optimizations are done by setting the variable “reset switch” to 1 and then using the weight or
noweight payoff definition files.

Figure	15	
This compares the weighted and unweighted state resetting optimizations as described above
by zooming in on the last 15 years.

Figure	16	&	17	
This work uses the model BasicPopulationPhysics05.vmf in the Population directory. To use this
model you will need to load the external function file cohort_control08.dll that is contained in the
ExternalFunctions archive that is part of this archive. There is documentation in that archive
describing how to do this.

Before you can use the population model you will need to first run the model
DataPrepJapan06.vmf. This model reads data from the Excel spreadsheet
JapanDataOrganized01.xlsx and manipulates into a form useful for the population model. The
resulting dataset should be called JapanOrganizedData.vdf.

The payoff definition file is BasicPopulationPhysics01.vpd and the optimization control file is
BasicPopulationPhysics02.voc. This is again a 2 stage optimization in which the payoff weights
are computed using err2weight after the first stage as described above. The two opzimizations
are run by setting the constant “reset switch” to either 0 or 1.

Once the optimizations have been completed the projection is run by again setting the “reset
switch” to 0 or 1, then setting Final Time to 2050 and including runname.out as a changes file
where runname is the name of the optimization with or without state resetting. The .out file is the
output of the optimization process and this file is configured so that it can also be used directly
as a changes file.

