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A0 Documentation Overview

DRAFT — Not for Distribution

Table Al. Documents, R-scripts, and data included in the online appendix

Documen | Contents | Main R- Subordinate R-scripts used | Data
t script
Main Theory CH1_MLE_B | CH1_MLE_Functions.R ServiceQualit
document | Applicatio | OOT_ CH1_BOOT_Functions.R yData2.csv
n Application.R .
CH1_LR Interval_Functions.
Challenge R
Appendix | Further CH1_MLE_B | CH1_LinEx_Functions.R -
detailing OO0T_
of MLE LinEx.R
theory,
using
linear
model as
an
example
Challenge | Solutions | CH1_MLE_B | CH1_MLE_Functions.R Beer Game
Solutions | to the OOT_CHALL | cH1 BOOT Functions.R Subject 1.csv
f:hallenge ENGE.R CH1_LR_Interval_Functions.
in the R
main _
document CH1_Challenge_Functions.R
Required folder to Scripts Scripts Data

save:

All documents except the main document are provided in the electronic supplement on the
publishers’ handbook website. The electronic documents can also be requested from one of the
authors (jeroen.struben@mcgill.ca).

Start instructions:

1. Create a work folder for your analysis. (You may use different work folders for the
application and the challenge).
2.  Within the work folder create three subfolders: “Scripts”, “Data”, and “BookChapterOutput”.
3. Save the provided documents, listed above, in the appropriate subfolders (“Scripts” or
“Data”). Save any of your R-script files in the “Script” folder.
Note: Figures will be saved in the folder “BookChapterOutput”.
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A1 Derivation of the Likelihood function

Suppose, for a function y, there is a vector # of k random variables, # = [u,, . . ., u;/ " and

that we know the joint density function g(u) of vector u. If a function y= [ ViseesYk ] Tis
monotonic in # , we can find the joint density function for y by multiplying the density function
g(u) in y, with the Jacobian of the transformation J (ui -y j) . The Jacobian matrix, often used

in optimization problems, provides the first order partial derivatives of u with respect to y, du,/dy;.

Hence, the pdf of y; is o= f(u,-)|J| , OF
£(3)=g(u(y))
(AD)

where the second term on the right-hand side is the absolute value of the Jacobian matrix of
u=f{y) (Wilks 1943).

du, (y)

8yj

Thus, to derive the density function for y as a function of the parameters we seek to
transform (the unobservable) error distribution r; into the observable y;, through the monotone

relation. If the error terms are independent, then the Jacobian J (u,. -y j) is simply equal to one
because du, /dy, =1 while du;/dy; =0Vi# j.Then the distribution we are looking for,
J0)=gm)=gy-/(x.0 )).

If we further impose the common assumptions of: (i) homoscedaskicity, i.e. the variance of
the errors is constant for all x;; (ii) the explanatory variable is measured without error; and (iii)
normally distributed errors, then the error terms r; are identically, independently and normally
distributed. The pdf of y; is then:
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(A2)
which becomes the log-likelihood (LL, or /):
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l(‘u,O'Z;xl’__‘,xn) :ln(L(y,O'z;xl,_“,xn))

=In

A2 Likelihood function for a linear model with normal iid errors

In the case of models that are linear in parameters, and under the standard assumptions of
iid normally distributed errors, the MLE is equivalent to traditional ordinary least squares (OLS)
estimation. In fact, because of the linearity, we can actually solve the unconstrained maximization
problem of the MLE using calculus and simple linear algebra. Solving this is identical to solving
the first order equations for the MLE.

A2.1 Deriving the likelihood function
To illustrate, consider a true relationship between independent and dependent variables as
follows: y, = a+bx; + €, with true parameters: =20, b=0.2 and independently, identically and

normally distributed errors & ~ N(0, o '), with o =1

The likelihood function L(a,b,02|y1wyn) is defined as the joint pdf over all yi’s, f(y;.... yi ..
v,). Because the y;-s are independent, this joint pdf is equal to their product f(y,)... f(v)... f(7n)
(equation 1). To obtain the Log likelihood function we take the logarithm of this product
(equation 2), which yields:

nL=-21m27-"mo?-
2 2

2;2 Z(yi—&—l;xi)z (A4)

Finding the MLE consists of finding the parameters that maximize the log likelihood,

aboc”

max lnL(a,b,0'2|yl,...,yn)

The maximization can be performed analytically if the system of equations is twice differentiable

using the standard first- and second-order conditions. In the linear case, one can derive the results
~2

in two steps. First, solving the first order condition for dln L/ 00 produces exactly the sum of

square errors, SSE = % i( yi— 21 — l;xl.) . Further, the first order condition dinL/d@ = 0 reduces

A A

to minimizing Z ( y,—a-— bxl.) . In more detail:
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ol ol ol
Iililxl(ea X x) a—azO/\a—b:O/\ao_zzO
_:_i( —a-— bx)zO:az%i(yj—bx)=<y>—l;<x>

L ([y’ ] [;[xj_<x>]):0:>13= =

812 = %(%2(% —2’—’;";)2 ‘”j:ﬁ‘? = lZ(yf “A’";x/)z

Joc”~ 20 P
(A5)

PPN ~2
Thus,a, b and o are equal to the sample intercept, slope, and variance. To estimate a
and b we can use standard linear OLS regression.

The OLS estimator minimizes the residual sum of squares (RSS, or, sum of squared errors,

SSE), across all data points. The residual of a datapoint is then 7, =y, =y, =y, — f (x,é) . Then,

RSS = 2’?2 _ Z(yi _3, )2 _ Z(y’_ _f(xl_,é))z . For the linear regression the OLS is simply:

A~ 2
Z(yi —a-— bx[) . Hence, in this case, under linearity and with iid-distributed normal errors, the
i
OLS is an efficient estimator. That is, in this case, least squares then corresponds exactly to
maximizing the likelihood or probability that the parameters have been chosen correctly, given
the data in the sample.

Further, because the model is linear we can derive the estimates "manually" using core
statistics (sumY”2, sumY, sumX”2, sumX, sumXY). First we calculate (XY)T*XY. Next we need
to get the corrected sums (SSX, SSY, SSXY) which we can derive from the MLE estimate of
b=SSXY/SSX. In the R-scripts we provide an example with a=20 and b=0.2. Given the sample
we use, the manual estimation yields a= 20.0453134, b= 0.1956545, identical to the automated
OLS result.

2.1.1 Univariate likelihood intervals (LR-univariate)

The univariate likelihood is equivalent to taking a slice of the LL function along the
dimensions of the parameter of interest. The univariate method requires no new optimizations
once the MLE has been found. The critical parameter value for 8, is then simply:

LL(Gk;é,k) = LL(@) = X11—o » Where 6_, is the vector of MLE estimates for all parameter but
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k' A disadvantage of univariate confidence interval estimation, however, is that the parameter
space is not fully explored, hence the effect of any interactions among parameters on LL is
ignored.

2.1.2  Surface likelihood (LR-surface)

The surface likelihood makes full use of the actual curvature of the inverted
multidimensional bowl to estimate the uncertainty in the estimates due to sampling error. As in
the univariate case this method requires no new optimizations. The likelihood function surface is

simply the k-dimensional likelihood function LL(B) , while the confidence region is defined by

the curve that satisfies LL(6)= LL(@) — Xt1-o - The confidence interval for each parameter is

then the widest range of parameter values that is contained within the enclosed regions.

2.1.3 Profile likelihood (LR-profile)

Following the same logic one can construct the confidence region for individual parameters
(Cox and Snell 1989). In this profile likelihood method one reduces the log likelihood to a single-
parameter function of the parameter of interest, j, by treating the others, ~j, as “nuisance
parameters” over which the likelihood function is to be maximized for each value 6 . Hence the

profile likelihood function is L(Q ; ) = ngax L(O ; .0 j) . The method therefore requires new

optimizations for each parameter, once the MLE has been found.

The ratio of the profile likelihood function and the likelihood function of the estimate L(6)
again follows a y” distribution (Equation 3).” Increasing the number of parameters must expand
the parameter region that falls within a given confidence level. Indeed, since the mass of the ¥’
distribution shifts to right as the degrees of freedom increase (with the distribution approaching
the normal distribution for large k), the confidence interval narrows when constraining the
number of parameters.

! For univariate confidence intervals, the x” test has one degree of freedom. Formally, the degrees of freedom are given
by the number of restrictions of the alternative, “constrained” model compared to the “unconstrained” null. In
univariate contexts, the optimizations in the interval construction occur over all the other k-1 parameters, being
constrained only by the parameter for which the interval is constructed. Hence, the degrees of freedom are n-k-1. Then
for the X2 test, df =(n-k)-(n-k-1)= 1; when finding the confidence region for two parameters jointly, df = 2, and so on.

? Under profile confidence interval estimation the “null” involves maximizing all k parameters, while for the
alternative we maximize over k-i parameters, with i the number of parameters of interest. Hence, Hence, df=i. If we
seek the parameter region for all parameters jointly, df=i=k, while df=i=1 if we seek the profile for a single parameter.
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A3 Additional output for the application in the paper
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Estimation results compared to those of 0&S(2001) and D(2007)
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Figure A1l. Comparing estimates of time per order of OS01, D07, and our estimates with

the actual time per order

A4 Additional tests for normality and independence of the errors

Additional plots of residual statistics (note shown here) suggest patterns consistent with the
main conclusions: the quantile distribution plot suggests a median that is approximately equal to
the mean, while the qq (quantile-quantile) plot, ranking samples from the distribution against a
similar number of ranked quantiles from the normal distribution, points to tails that are fatter than
normal, but only for the extreme points. Likewise, plotting residuals of adjacent times, r(t) vs
r(t+1), does not suggest strong first-order autocorrelation. These tests are provided in the R-script.
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AS Using MLE LR for Hypothesis testing

We can use the MLE LR ratio for hypothesis testing to examine whether, when comparing
models, some can be rejected (model comparison). In the service quality example we can
examine whether we can reject a simpler model that assumes the time constants for the
adjustment of the standard time per task are equal. We compared the model with asymmetric
norm adjustment to one in which t4 and 7; are constrained to be equal. Thus, in equation 6 we
simply estimate T, (See the R-script). The resulting estimated T, =1.8e4, with LL=128.35. This
LL value is very close to the MLE of the full model and, since with df=1 for a 95% confidence
level the critical value is 3.8>2(LL(-LL,}), we cannot reject the simpler model that the time
constants are equal. Similarly, we cannot reject a simpler model that assumes both time constants
to be fixed and equal to our estimated decrease-time constant (1,=t4 =19.76), for which
LL=125.33. Note that since df=2, the critical value is 6<2(LL(-LL,j), so we can (just) reject this
model. Any smaller values for 1, are clearly rejected.

A6 Beer Game Challenge

The challenge involves a problem with moderate non-linearity in variables and parameters.
Participants in the Beer Game choose how much beer to order each period in a simulated supply
chain. The challenge is to estimate the parameters of a proposed decision rule for participant
orders (Croson et al. 2014; Dogan 2007; Sterman 1989). Following the ordering decision rule
proposed in Sterman (1989), orders O, placed in week ¢ are given by:’

0, =max[ 0.CO; +a(S -S, - BSL, )+, | (A6)

where S, is actual on-hand inventory, SL, is the supply line of on-order inventory, S’ is desired on-
hand and on-order inventory, and CO" is expected customer orders (the order that participants
expect to receive next period from their immediate customer). Expected orders are given by
exponential smoothing of actual incoming orders, 10:

CO =yI0,_, +(1-7)CO;, (A7)
The parameters to be estimated are ¥ , the weight on incoming orders in demand

forecasting, S, the net desired on-hand and on-order inventory, ¢, the fraction of the gap between
desired and actual on-hand and on-order inventory ordered each week, and S, the fraction of the
supply line the subject accounts for.

Dogan (2007) illustrates the use of bootstrapping in the beer game using data for one
participant in the experiment reported in Croson et al. (2014). We use the same data to compare
MLE to bootstrapping. In the electronic supplement we provide the data set with the inventory
position and ordering decision for 1 player of the beer distribution game (Appendix AO).

The challenge is to estimate the values and confidence intervals for o, 3, v, and S’ for the
subject for which data have been provided. Scripts are provided to help you in answering the
questions. You can make use of the predefined functions provided in the electronic supplement.

A6.1 Tips for the questions
Question 1. Data and Replication Model and Estimation

e The data and estimated orders by Dogan (2007) are provided in the electronic supplement.

Sterman (1989) estimates the parameter set for each individual independently. Since we work with a dataset for a
single individual we omit here indices associated with individuals or teams.
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Question 2. Estimation

e Do not yet produce a likelihood function. Consider what method to use. Can you use a linear
optimization?

Question 4. Validity of asymptotic assumptions

¢ Hint for question c: if you do need to correct for autocorrelation, construct a “new”
Yactual.corrected » knOWing that Vpredicted = Yactual — residuals. Then: to find the Yactual.corrected YOU first
have to construct residuals corrected for autocorrelation with an autoregressive (AR) model
with appropriate time lags.
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