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A0 Documentation Overview 
Table A1. Documents, R-scripts, and data included in the online appendix 

 
Documen
t 

Contents Main R-
script 

Subordinate R-scripts used Data 

Main 
document 

Theory 
Applicatio
n 
Challenge 

CH1_MLE_B
OOT_ 
Application.R  

CH1_MLE_Functions.R 
CH1_BOOT_Functions.R 
CH1_LR_Interval_Functions.
R 

ServiceQualit
yData2.csv 

Appendix  Further 
detailing 
of MLE 
theory, 
using 
linear 
model as 
an 
example 

CH1_MLE_B
OOT_ 
LinEx.R  

CH1_LinEx_Functions.R - 

Challenge 
Solutions 

Solutions 
to the 
challenge 
in the 
main 
document 

CH1_MLE_B
OOT_CHALL
ENGE.R 

CH1_MLE_Functions.R 
CH1_BOOT_Functions.R 
CH1_LR_Interval_Functions.
R 
CH1_Challenge_Functions.R 
 

Beer Game 
Subject 1.csv 

Required folder to 
save: 

Scripts Scripts Data 

 
All documents except the main document are provided in the electronic supplement on the 

publishers’ handbook website. The electronic documents can also be requested from one of the 
authors (jeroen.struben@mcgill.ca). 

 
Start instructions:  

1. Create a work folder for your analysis. (You may use different work folders for the 
application and the challenge).  

2. Within the work folder create three subfolders: “Scripts”, “Data”, and “BookChapterOutput”.  
3. Save the provided documents, listed above, in the appropriate subfolders (“Scripts” or 

“Data”). Save any of your R-script files in the “Script” folder.  
Note: Figures will be saved in the folder “BookChapterOutput”.  
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A1 Derivation of the Likelihood function 
Suppose, for a function y, there is a vector u of k random variables, u = [u1, . . . , uk]⊤ and 

that we know the joint density function g(u) of vector u. If a function y= [y1,...,yk] ⊤ is 
monotonic in u , we can find the joint density function for y by multiplying the density function 
g(u) in y, with the Jacobian of the transformation . The Jacobian matrix, often used 
in optimization problems, provides the first order partial derivatives of u with respect to y, ∂ui/∂yj. 

Hence, the pdf of yi is , or 

   
    (A1) 

  

where the second term on the right-hand side is the absolute value of the Jacobian matrix of 
u=f(y) (Wilks 1943).  
 

Thus, to derive the density function for y as a function of the parameters we seek to 
transform (the unobservable) error distribution ri into the observable yi, through the monotone 
relation. If the error terms are independent, then the Jacobian is simply equal to one 

because  while . Then the distribution we are looking for, 
f(y)=g(u)=g(y-f(x, )).  

If we further impose the common assumptions of: (i) homoscedaskicity, i.e. the variance of 
the errors is constant for all xi; (ii) the explanatory variable is measured without error; and (iii) 
normally distributed errors, then the error terms ri are identically, independently and normally 
distributed. The pdf of yi is then: 

 
with the likelihood function: 
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  (A2) 
which becomes the log-likelihood (LL, or l): 

J ui → yj( )
f (yi ) = f (ui ) J

f y( ) = g u y( )( ) ∂ui y( )
∂yj

J ui → yj( )
∂ui ∂ yi = 1 ∂ui ∂ yj = 0∀i ≠ j

θ

f (yi ) =
1
2πσ

J e
− 1
2σ 2 ui

2

= 1
2πσ

e
− 1
2σ 2 yi− f xi ,θ( )( )2
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l µ,σ 2;x1,..., xn( ) = ln L µ,σ 2;x1,..., xn( )( )
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 (A3) 
 

A2 Likelihood function for a linear model with normal iid errors 
In the case of models that are linear in parameters, and under the standard assumptions of 

iid normally distributed errors, the MLE is equivalent to traditional ordinary least squares (OLS) 
estimation. In fact, because of the linearity, we can actually solve the unconstrained maximization 
problem of the MLE using calculus and simple linear algebra.  Solving this is identical to solving 
the first order equations for the MLE.  

A2.1 Deriving the likelihood function  
To illustrate, consider a true relationship between independent and dependent variables as 

follows:  with true parameters: a=20, b=0.2 and independently, identically and 
normally distributed errors εi ~ N(0,σ2), with σ2 =1.  

The likelihood function L(a,b,σ2|y1,…,yn) is defined as the joint pdf over all yi’s, f(y1,…, yi,… 
yn). Because the yi’s are independent, this joint pdf is equal to their product f(y1)... f(yi)… f(yn) 
(equation 1). To obtain the Log likelihood function we take the logarithm of this product 
(equation 2), which yields: 

   (A4) 

Finding the MLE consists of finding the parameters that maximize the log likelihood, 

.   
The maximization can be performed analytically if the system of equations is twice differentiable 
using the standard first- and second-order conditions. In the linear case, one can derive the results 

in two steps. First, solving the first order condition for  produces exactly the sum of 

square errors, . Further, the first order condition dlnL/dθ  = 0 reduces 

to minimizing . In more detail:  

 

yi = a + bxi + ε i

lnL = − n
2
ln2π − n

2
lnσ 2 − 1

2σ 2 yi − â − b̂xi( )2
i
∑

max
a,b,σ 2

lnL a,b,σ 2 y1,..., yn( )

 ∂lnL ∂σ
2

 
SSE = 1n yi − a − bxi( )i∑

 
yi − a − bxi( )i∑



Likelihood and Bootstrapping Methods  DRAFT – Not for Distribution 

                                                                                                                                                          A5 

 

max
µ ,σ 2

l θ ,σ 2;x1,..., xn( ) ⇒ ∂l
∂a

= 0∧ ∂l
∂b

= 0∧ ∂l
∂σ 2 = 0

∂l
∂a

= 1
σ 2 yj − a − bxj( )

j=1

n

∑ = 0 ⇒ a! = 1
n

yj − bxj( )
j=1

n

∑ = y − b! x

∂l
∂b

= 1
σ 2 x j yj − a − bxj( )

j=1

n

∑ = 0 ⇒ using  a! = y − b! x ⇒

1
σ 2 x j yj − y⎡⎣ ⎤⎦ − b

! x j − x⎡⎣ ⎤⎦( )
j=1

n

∑ = 0 ⇒ b! =
x j yj − y⎡⎣ ⎤⎦

j=1

n

∑

x j x j − x⎡⎣ ⎤⎦
j=1

n

∑

∂l
∂σ 2 = 1

2σ 2
1
σ 2 yj − a! − b!x j( )2

j=1

n

∑ − n
⎛

⎝⎜
⎞

⎠⎟
⇒
=0iff

σ 2" = 1
n

yj − a! − b!x j( )2

j=1

n

∑

  

 (A5) 

Thus, a! ,  b!  and  σ!
2

 are equal to the sample intercept, slope, and variance. To estimate a 
and b we can use standard linear OLS regression. 

 
The OLS estimator minimizes the residual sum of squares (RSS, or, sum of squared errors, 

SSE), across all data points. The residual of a datapoint is then . Then, 

. For the linear regression the OLS is simply: 

. Hence, in this case, under linearity and with iid-distributed normal errors, the 

OLS is an efficient estimator. That is, in this case, least squares then corresponds exactly to 
maximizing the likelihood or probability that the parameters have been chosen correctly, given 
the data in the sample.  

 
Further, because the model is linear we can derive the estimates "manually" using core 

statistics (sumY^2, sumY, sumX^2, sumX, sumXY). First we calculate (XY)T*XY. Next we need 
to get the corrected sums (SSX, SSY, SSXY) which we can derive from the MLE estimate of 
b=SSXY/SSX. In the R-scripts we provide an example with a=20 and b=0.2. Given the sample 
we use, the manual estimation yields a= 20.0453134, b= 0.1956545, identical to the automated 
OLS result.  

2.1.1 Univariate likelihood intervals (LR-univariate) 
The univariate likelihood is equivalent to taking a slice of the LL function along the 

dimensions of the parameter of interest. The univariate method requires no new optimizations 
once the MLE has been found. The critical parameter value for  is then simply: 

, where is the vector of MLE estimates for all parameter but 

ri = yi − ŷi = yi − f x,θ̂( )
RSS = ri

2

i
∑ = yi − ŷi( )2

i
∑ = yi − f xi ,θ̂( )( )2

i
∑

yi − â − b̂xi( )2
i
∑

θk

 
LL θk;θ! −k( ) = LL θ!( )− χ1,1−α  θ! −k
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k.1  A disadvantage of univariate confidence interval estimation, however, is that the parameter 
space is not fully explored, hence the effect of any interactions among parameters on LL is 
ignored. 

2.1.2 Surface likelihood (LR-surface) 
The surface likelihood makes full use of the actual curvature of the inverted 

multidimensional bowl to estimate the uncertainty in the estimates due to sampling error. As in 
the univariate case this method requires no new optimizations. The likelihood function surface is 
simply the k-dimensional likelihood function , while the confidence region is defined by 

the curve that satisfies . The confidence interval for each parameter is 

then the widest range of parameter values that is contained within the enclosed regions. 

2.1.3 Profile likelihood (LR-profile) 
Following the same logic one can construct the confidence region for individual parameters 

(Cox and Snell 1989). In this profile likelihood method one reduces the log likelihood to a single-
parameter function of the parameter of interest, j, by treating the others, ~j, as “nuisance 
parameters” over which the likelihood function is to be maximized for each value . Hence the 

profile likelihood function is 
 
L θ j( ) = max

θ∼ j
L θ j ,θ∼ j( ) . The method therefore requires new 

optimizations for each parameter, once the MLE has been found.  

The ratio of the profile likelihood function and the likelihood function of the estimate L( ) 
again follows a χ2 distribution (Equation 3).2 Increasing the number of parameters must expand 
the parameter region that falls within a given confidence level. Indeed, since the mass of the χ2 
distribution shifts to right as the degrees of freedom increase (with the distribution approaching 
the normal distribution for large k), the confidence interval narrows when constraining the 
number of parameters.  

                                                        
1 For univariate confidence intervals, the χ2 test has one degree of freedom. Formally, the degrees of freedom are given 
by the number of restrictions of the alternative, “constrained” model compared to the “unconstrained” null. In 
univariate contexts, the optimizations in the interval construction occur over all the other k-1 parameters, being 
constrained only by the parameter for which the interval is constructed. Hence, the degrees of freedom are n-k-1. Then 
for the χ2 test, df =(n-k)-(n-k-1)= 1; when finding the confidence region for two parameters jointly, df = 2, and so on.  
2 Under profile confidence interval estimation the “null” involves maximizing all k parameters, while for the 
alternative we maximize over k-i parameters, with i the number of parameters of interest. Hence, Hence, df=i. If we 
seek the parameter region for all parameters jointly, df=i=k, while df=i=1 if we seek the profile for a single parameter.  

LL θ( )

 
LL θ( ) = LL θ( )− χ k ,1−α

θ j

 θ
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A3 Additional output for the application in the paper 
 

 
Figure A1. Comparing estimates of time per order of OS01, D07, and our estimates with 

the actual time per order 
 

A4 Additional tests for normality and independence of the errors 
Additional plots of residual statistics (note shown here) suggest patterns consistent with the 

main conclusions: the quantile distribution plot suggests a median that is approximately equal to 
the mean, while the qq (quantile-quantile) plot, ranking samples from the distribution against a 
similar number of ranked quantiles from the normal distribution, points to tails that are fatter than 
normal, but only for the extreme points. Likewise, plotting residuals of adjacent times, r(t) vs 
r(t+1), does not suggest strong first-order autocorrelation. These tests are provided in the R-script. 
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A5 Using MLE LR for Hypothesis testing 
We can use the MLE LR ratio for hypothesis testing to examine whether, when comparing 

models, some can be rejected (model comparison). In the service quality example we can 
examine whether we can reject a simpler model that assumes the time constants for the 
adjustment of the standard time per task are equal.  We compared the model with asymmetric 
norm adjustment to one in which τd and τi are constrained to be equal. Thus, in equation 6 we 
simply estimate τo  (See the R-script). The resulting estimated τo =1.8e4, with LL=128.35. This 
LL value is very close to the MLE of the full model and, since with df=1 for a 95% confidence 
level the critical value is 3.8>2(LL0-LLalt), we cannot reject the simpler model that the time 
constants are equal. Similarly, we cannot reject a simpler model that assumes both time constants 
to be fixed and equal to our estimated decrease-time constant (τo=τd

*=19.76), for which 
LL=125.33. Note that since df=2, the critical value is 6<2(LL0-LLalt), so we can (just) reject this 
model. Any smaller values for τo are clearly rejected. 

 

A6 Beer Game Challenge  
The challenge involves a problem with moderate non-linearity in variables and parameters. 

Participants in the Beer Game choose how much beer to order each period in a simulated supply 
chain. The challenge is to estimate the parameters of a proposed decision rule for participant 
orders (Croson et al. 2014; Dogan 2007; Sterman 1989). Following the ordering decision rule 
proposed in Sterman (1989), orders Ot placed in week t are given by:3 

     (A6) 

where St is actual on-hand inventory, SLt is the supply line of on-order inventory, S’ is desired on-
hand and on-order inventory, and COe

t is expected customer orders (the order that participants 
expect to receive next period from their immediate customer).  Expected orders are given by 
exponential smoothing of actual incoming orders, IO: 

      (A7) 

The parameters to be estimated are , the weight on incoming orders in demand 
forecasting, S’, the net desired on-hand and on-order inventory, α, the fraction of the gap between 
desired and actual on-hand and on-order inventory ordered each week, and β, the fraction of the 
supply line the subject accounts for.  

Dogan (2007) illustrates the use of bootstrapping in the beer game using data for one 
participant in the experiment reported in Croson et al. (2014). We use the same data to compare 
MLE to bootstrapping. In the electronic supplement we provide the data set with the inventory 
position and ordering decision for 1 player of the beer distribution game (Appendix A0).   

The challenge is to estimate the values and confidence intervals for α, β , γ, and S’ for the 
subject for which data have been provided. Scripts are provided to help you in answering the 
questions. You can make use of the predefined functions provided in the electronic supplement. 

 

A6.1 Tips for the questions 
Question 1. Data and Replication Model and Estimation 
• The data and estimated orders by Dogan (2007) are provided in the electronic supplement. 

                                                        
3 Sterman (1989) estimates the parameter set for each individual independently. Since we work with a dataset for a 
single individual we omit here indices associated with individuals or teams. 

Ot = max 0,COt
e +α S ' − St − βSLt( ) + ε t⎡⎣ ⎤⎦

COt
e = γ IOt−1 + 1−γ( )COt−1

e

γ
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Question 2. Estimation 
• Do not yet produce a likelihood function. Consider what method to use. Can you use a linear 

optimization? 

Question 4. Validity of asymptotic assumptions 
• Hint for question c: if you do need to correct for autocorrelation, construct a “new” 

yactual.corrected , knowing that ypredicted = yactual – residuals. Then, to find the yactual.corrected you first 
have to construct residuals corrected for autocorrelation with an autoregressive (AR) model 
with appropriate time lags. 


