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Parameter and Confidence Interval Estimation in Dynamic Models: 
Maximum Likelihood and Bootstrapping Methods 

Jeroen Struben, John Sterman, David Keith 

 

Solutions to the Challenge 

 

In this challenge you will explore how to estimate the parameters for a decision rule for orders in 
the beer distribution game (Sterman 1989).  This challenge involves a problem with moderate 
non-linearity in variables and parameters. For the R-code to replicate the solutions, see 
“CH1_MLE_Boot_Challenge.R”. Below we summarize the steps and explain the results. As with 
the service quality example in the main paper we follow the process map of Figure 3.1. 
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CS.1 Data and Model 
First we read in the data, develop the model and attempt to reproduce the Beer Game estimation 
results in Dogan (2007). The function bg.model is developed to replicate the hypothesized model 
structure for the decision rule using R. Next we plot the results: the actual order rate data, the 
Dogan (2007) estimates (provided in the excel spreadsheet), and the estimated order rate using 
Dogan (2007) parameters reproduced in R with our model (Figure CS.1.1). 

*** FIGURE CS.1.1*** 

CS.1.1 Replicating the Dogan model  
The model replicated in R produces results that are very close to the Dogan estimates. 

There is a single discrepancy in the estimated orders, in week 21, but without the source code for 
Dogan (2007) we could not explain the difference. Note that in the MLE estimation we do not 
impose rounding of orders to integers (whereas in the game they are). Doing so would make it 
difficult to use various estimation procedures. Other than that the results are exact and we can 
have confidence that we have developed an appropriate model.  

CS.1.2 Observation of the data and implications for estimation 
Because of the nonnegativity constraint on orders, the estimation function f(θ ,x) is non-

linear in parameters and cannot be solved analytically. Figure CS.1 reveals that the nonnegativity 
constraint on the participant’s actual orders is binding for a substantial time.  Further, the large 
range of orders, from 0 to 20 case/week, and the cycle in orders suggest the possibility of 
heteroscedasticity. Specifically, the model errors are likely to be smaller when actual orders are 
smaller and larger when orders are larger. Finally, autocorrelation is likely as order decisions may 
be anchored on past decisions. These likely violations of standard assumptions suggest least 
squares and asymptotic confidence interval methods may not be appropriate. We explore these 
issues below. 

CS.2 Estimation 
CS.2.1 Estimation and Standard Statistics 

CS.2.1.1 Estimation 
To produce our estimates we follow the OLS approach, which was the estimation procedure in 
Dogan (2007).  We do not yet have to worry about the likelihood function at this point, though it 
is fine to do so; the results should be identical. R offers a standard non-linear least squares 
function nls that is appropriate for the least squares estimation. 

Following the theory, we constrain the lower and upper bounds for the parameters to their 
natural limits, specifically, 0 ≤ S’ and 0 ≤ α, β, γ ≤ 1 (Sterman 1989; Dogan (2007). 

In general, one must consider the possibility of multiple local optima. To test for this 
possibility we carry out the estimation using multiple starting points in the parameter space, 
including some close to and others far from the expected estimates. Most converged to the same 
values, specifically, α = 0.45760, β = 0*,γ = 1*, S’ = 2.80418, and none had lower RSS (or, 
similarly, SER), suggesting a single global optimum for the likelihood function.  Figure CS.2.1 
replicates Figure CS.1.1 but includes also our nls estimates, showing the estimated parameters 
and orders are nearly identical to the original Dogan (2007) values. This suggests that the minor 
deviations in the reproduction of the model are not important. 
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*** FIGURE CS.2.1*** 

CS.2.2 Summary Statistics 
Next we summarize the estimation results. We use the function nls to provide the default 

statistics by running summary(bg.nls.est). We use our custom-defined function to generate 
additional statistics on the residuals (RSS, SER, and ESS).  See Table CS.2.1.  

***TABLE CS.2.1 AROUND HERE*** 

CS.2.3 Interpreting results 
 We can carry out basic hypothesis tests using the standard statistics. The main parameters 
of interest in this model are α, the strength of the response to inventory discrepancies, and β, the 
fraction of the supply line taken into account. The null hypothes that the true value of α given the 
data is zero is convincingly rejected (t(44) = 6.4, p < 0.0000).  However, the best estimate of β is 
zero, so the null hypothesis that β = 0 cannot be rejected at any confidence level.  Note, however, 
that the estimated standard error for β, 0.047, is small, indicating that the value of β is highly 
likely to be close to zero.  In particular, we can strongly reject the hypothesis that the true value 
of β equals the optimal value of one (t(44) = 21.2, p < 0.0000). Similarly, the hypothesis that the 
true value of α given the data is the optimal value of one is also strongly rejected (t(44) = 7.6, p < 
0.0000).  

Turning to the residuals, it is straightforward to examine the fit visually, for example, 
plotting predicted against actual orders, or the residuals (Figure C.2.2). The residuals suggest 
some trend associated with the order value (consistent with the discussion of the data in Figure 
C.1.1), rather than independence. We explore that possibility further below. 

*** Figure C.2.2.*** 

Note that we can also run standard statistics on Dogan (2007)’s results and compare those 
statistics with the ones produced in that paper. To do so, simply run the estimation forcing the 
parameters to take the values estimated by Dogan by using bounds identical to his estimates. We 
provide the nls estimate in the paper and leave further analysis to the reader.  

CS.3 MLE Confidence Intervals 
 We now estimate the confidence intervals for the estimated parameters via maximum 

likelihood methods, using both asymptotic (AS) and likelihood-ratio (LR) based intervals. 

CS.3.1 AS intervals 
Confidence intervals assuming asymptotic normality (AS Wald), based on the standard 

error, and implying a parabolic approximation of the likelihood function in the neighborhood of 
the best estimates, are produced by the default function overview() from the nls() estimate. The 
results are produced in Table CS3.1.  

We also use the manual AS method based on the Hessian, as discussed in the chapter. 
The statistics of the optim function allows calculation of the AS interval. To do so we now 
construct a likelihood function on which we can run optim.  

CS.3.1.1 Likelihood function 
We estimate the model assuming the error terms are iid normally distributed, in which 

case we can specify a convenient likelihood function. We know that under the assumption of iid 
normal errors the likelihood function corresponds with OLS. We will show here that results are 
identical. 



MLE vs Boostrapping   DRAFT – Not for Distribution 

MLE APPROACH TO SIMULATION - Challenge Solutions NOV30 dd 2013 
V3.docx 

4 

 Before examining the confidence intervals we need to specify the model in terms of the 
likelihood function.  The likelihood function is defined in bg.model.ll. Note that the optim 
function generates the minimum of the function, so to find the maximum of the likelihood, we 
minimize its negative.   

As expected, the results of the MLE estimation under the assumption of iid normal errors 
is identical to the estimate using nls, overview(bg.nls.est). 

CS.3.1.2 Manual AS 
Note that the asymptotic method, due to the assumption of normally distributed errors, 

yields confidence intervals that are symmetric around the estimate, even for a model that is 
nonlinear in parameters. 

CS.3.1.3 Likelihood Ratio 
To construct the LR confidence intervals we now explore the curvature of the LL surface.  

For the LR intervals we plot the LL function and identify the parameters for which 
with , as shown in the main paper. We can use our custom-made 

LL.multipar.plot function to study the univariate and profile likelihood intervals. Figure CS.3.1 
shows the univariate curvature and intervals. Intervals are reported in Table CS3.1 as well. Figure 
CS.3.2 shows the MLE’s and likelihood profile for the four parameters.  

**** FIGURE CS.3.1. ABOUT HERE **** 

**** TABLE CS.3.1 ABOUT HERE **** 

CS.3.1.4 Interpreting the results 
The example shows that LR methods, in contrast to AS methods, can handle more 

complex situations. Unlike the asymptotic method, the likelihood functions and resulting 
confidence intervals are not symmetric and, in some cases, not parabolic.  For example, the 
likelihood function for γ drops off steeply for γ < 0. Such values would, nonsensically, imply that 
recent orders are given negative weight in the demand forecast. Also note that, while the MLE is 
constrained to the admissible regions (0 ≤ S’ and 0 ≤ α, β, γ ≤ 1), the LR intervals are not. The 
example thus illustrates that the LR method can detect and correctly capture important non-
linearity in parameters that the AS method, which by construction assumes the symmetric 
parabolic approximation around the MLE, does not.  

Asymmetry in confidence regions is more likely when parameters interact. The surface of 
two parameters of particular interest, α and β, (Figure CS.3.3), also produced with the 
LL.multipar.plot function, shows how the confidence interval for α (the gain of the negative 
feedback that corrects inventory discrepancies) interacts with the value of β (the fraction of the 
supply line taken into account), increasing as β  moves further away from zero.  

**** FIGURE CS.3.3 ABOUT HERE **** 

Asymmetries in the confidence intervals illustrate the differences between LR and AS 
methods. These results highlight that relying solely on just AS or univariate LR intervals may be 
problematic.  

However, in this case, the differences in assumptions across methods have little impact 
on the confidence intervals (Table CS.3.1). Irrespective of the approaches, for example, we may 
conclude that the value of β is highly likely to be close to zero, and strongly reject the hypothesis 

2 lnR ≤ qk 1−α( )
 
R = L θ( ) L θ *( )
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that β = 1, that is, we can be highly confident that the subject in this example ignored the supply 
line of unfilled orders. Thus, at least in this example, the second order (parabolic) approximation 
of the likelihood function in the neighborhood of the best estimates is reasonable.  

CS.4 Validity of asymptotic assumptions 
So far we have, optimistically, assumed normality and independence of the errors (no 

autocorrelation in the errors). We now assess the appropriateness of these assumptions by 
analyzing the residuals. The R function nlsResiduals provides, by default, four classic plots of 
residuals (Delignette-Muller and Baty 2012): non-transformed residuals against fitted values, 
standardized residuals against fitted values, auto-correlation plot of residuals (i+1th residual 
against ith residual), and qq-plot of the residuals. Of particular interest are normality and 
autocorrelation.  

CS.4.1 Normality 
The histogram plot of the residuals (Figure CS.4.1), obtained by selecting nlsResiduals 

index 5, suggests a distribution that deviates from normality. 

**** FIGURE CS.4.1 ABOUT HERE **** 

Other basic residual statistics plots (Figure CS.4.1) indicate similar patterns: the quantile 
distribution plot suggests a median that is smaller than the mean, while the qq (quantile-quantile) 
plot, ranking samples from the distribution against a similar number of ranked quantiles from the 
normal distribution, points to tails that are fatter than normal. 

**** FIGURE CS.4.2 ABOUT HERE **** 

To confirm what the plots of the residuals suggest we carry out the standard tests for 
normality, specifically the Shapiro-Wilk test. The analysis strongly rejects the hypothesis that the 
residuals follow are normally distributed (p =  0.0007613 (in similar fashion we find p = 
0.0006047 for the Dogan (2007) model).  

CS.4.2 Autocorrelation 
The residual statistics (Figure CS.4.2. bottom left) also suggest autocorrelation. To assess 

whether the residuals show significant autocorrelation we plot the autocorrelation by lag (Figure 
CS.4.3). The autocorrelation in residuals with lag k = 1 is high. 

The test for any autocorrelation involves rejecting autocorrelation for any lag. This 
combined tests requires a smaller significance level that one desired for the overall multiple test 
(Barlas 1994). Following Dogan (2007), using 0.01 we can reject the null hypothesis that the 

residuals are not autocorrelated if ±z
(0.995)

 z(0.995) and  |t(k)| >2.58 for at least 1 of the lagged 
elements. The formal analysis shows that the autocorrelation is significant at the 5% level only 
for lag k = 1, suggesting a first-order autoregressive (AR[1]) error process (Hamilton 1994).  

CS.4.3 Preparing for bootstrapping 
To deal with the non-normality of the errors one could construct a more appropriate 

MLE, or use bootstrapping. We focus on bootstrapping. Given the characteristics of the error-
distribution (non-normality), we use non-parametric residual-based bootstrapping. Alternatively 
one could proceed with parametric bootstrapping, using an approximation to the empirical 
residual distribution to generate the errors (including the heteroscedasticity, and with a lower 
bound). Reshuffling the observed error-terms is inappropriate in the presence of autocorrelation 
unless that is also corrected.  
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To prepare for bootstrapping, we (i) remove the first-order autocorrelation from the 
observed error-terms; (ii) examine whether the standard deviation of the adjusted error-terms 
differs importantly from that of the observed error-terms; (iii) if needed, correct the standard 
deviation so that it is equal to that of the observed error-terms; (iv) test that autocorrelation is not 
significant in the corrected error-terms after the standard deviation correction; finally, (v) re-
estimate the model, as described above, with the y’s adjusted for the corrected but not-resampled 
error-terms and examine the new parameters and error-terms to test that the corrections above 
have worked.  The process is carefully described and tools to analyse this are provided in the R-
script.  

CS.4.4 Adjusting for autocorrelation 
We conclude that an AR[1] process is an appropriate correction. Figure CS.4.4 shows the 

histogram and autocorrelation for the adjusted process. More formally, we cannot now reject the 
hypothesis that there is no autocorrelation in the residuals.  The Shapiro-Wilk test, however, 
shows that we still must reject normality (p =  0.002).  

Table CS.3.1. also shows the parameter estimates and AS/LR confidence intervals for the 
corrected dataset (ACT.ORD.corr). 

CS.5 Bootstrapping 

CS.5.1.1 Bootstrap results 
 In this analysis, because the solution can be found using nls, we can use a standard 

bootstrapping function, specifically designed for non-linear least-squares, nlsBoot. nlsBoot uses 
non-parametric bootstrapping with mean centered residuals. For each new data set the original 
non-linear regression model is fitted and the resulting parameters stored. Bootstrap estimate 
distributions of this function can be visualized using the function plot.nlsBoot either by plotting 
the bootstrap sample for each pair of parameters or by displaying the boxplot representation of 
the bootstrap sample for each parameter. Our Table CS3.1 reports the result (for reference we 
also report the uncorrected results).  

The nlsBoot approach, with 2000 iterations, did not converge 621 times. Mean estimated 
values for (α, β, γ, S') were (0.46, 0, 1, and 3.1) and (0.43, 0, 1, 3.49) for the uncorrected and 
corrected data respectively. We can also perform boot.ci (as in the application). All results are 
provided in Table CS.3.1 

CS.5.2 Suggestions for follow up 
As a follow up: (i) implement multiple starts in the automated boot; (ii) see if you can generate 
the same results with the manual boot (for both see the service quality example in the main 
chapter). 

CS.6 Interpreting the Results 
The differences in confidence intervals across the different methods are minor and have 

no impact on key questions such as whether the decision maker took the supply line into account. 
The largest differences across the methods are in the estimated confidence intervals for γ.  These 
differences are not surprising given that the likelihood function for γ (Figure 4.1) shows the 
greatest departure from the parabola assumed by AS methods, has the widest confidence 
intervals, and because the first-order smoothing used to form the expectation of incoming orders 
affects the degree of autocorrelation.	
  

**** TABLE 4.2 AROUND HERE **** 
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Overall, even though the model and data violate maintained hypotheses of MLE 
including independence and normality of the errors, MLE provides estimates of the parameters 
and confidence intervals around them consistent with the bootstrapping estimates.   

Regarding the procedures, while bootstrapping, including correction for autocorrelation, 
is fairly straightforward, the process involves several manual steps that require judgment, and can 
be tedious. In our case the reestimated parameters are close to the original values while the 
autocorrelation disappears. If bootstrapping were not feasible, and one concluded that it was 
necessary to deal with non-normality of the errors, one could construct a more appropriate MLE, 
and simulate with an error generation process that captures the observed distribution (Train, 
2003).  

Note: The beer game example, though nonlinear, is relatively simple and analogous to 
typical regression studies in that the estimation problem did not involve an explicit feedback 
system. The beer game is, of course, a complex system with multiple feedbacks, but because the 
data are collected in the context of an experiment, all the explanatory variables needed to estimate 
the decision rule for orders—incoming orders, inventory, the supply line—are directly measured.  
Few systems of interest in dynamic modeling offer such complete data.  
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Tables and Figures 
 

Table CS.2.1 – Estimation results, beer distribution game example (95% level) 

                  
 Parameter Estimate   Std. Error  t value Pr(>|t|)   Estimate (Dogan 2007) 
 α     0.45760       0.07130    6.418   8.2e-08 *** 0.5       
 β     0.00000       0.04724    0.000    1.0000      0.01 
 γ     1.00000       0.58425    1.712    0.0940 .    0.95 
 S’        2.80418       1.59008    1.764    0.0848 .   1.96 
 
 RSS/SSE   294.932 on 44 degrees of freedom  302.1 
 SER      2.5891      2.6202 
 ESS        573.0907     572.7023 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Table CS.3.1 Comparative confidence intervals, beer game example (95% level)1  

Method/Parameter             duration   α  β  γ   S’  
Uncorrected Error terms 

MLE Estimate      0.458     0  1  2.80 
Confidence Interval, AS 
• Wald test             negligible (0.31, 0.60)  (-0.10, 0.10)  (-0.18, 2.18)         (-0.4, 6.0) 
• Manual, Hessian-based  negligible (0.32, 0.59)  (-0.09, 0.09)  (0.31, 1.69)         (-0.25, 5.9) 

 Confidence Interval, LR    
• Univariate df=1  7 sec (0.34, 0.60)  (-0.07, 0.05)  (0.46, 1.72)         (0.69, 4.65) 
• Profile df=1  1 min (0.33, 0.76)  (-0.14, 0.07)  (0.48, 1.81)        (-1.31, 4.89) 
• Bivariate (α,β) df=2 15 sec (0.29, 0.70)  (-0.12, 0.09)  (0.46, 1.72)         (0.69, 4.65) 
Confidence Interval, Boot (2000 resamplings) 
• nlsBoot (mean-centered)     4.5 min (0.33, 0.71)  (0*, 0.09)  (0.02,1*)           (0.90, 6.03) 
• nlsBCI    4.5 min (0.34, 0.67)  (0*, 0.08)  (0.02,1*)           (0.93, 5.74) 

AR(1) Corrected 
MLE Estimate      0.429     0  1  3.12 
Confidence Interval, AS 
• Wald test  negligible  (0.30, 0.56)  (-0.1, 0.10)  (-0.18, 2.18)        (-0.12, 6.4) 
• Manual, Hessian-based negligible (0.31, 0.55)  (-0.09, 0.09)  (0.25, 1.75)          (0.10, 6.1)  

 Confidence Interval, LR    
• Univariate df=1  7 sec (0.31, 0.55)  (-0.07, 0.06)  (0.44, 1.74)         (1.14, 5.1) 
• Profile df=1  1 min (0.33, 0.90)  (-0.1, 0.12)  (0.60, 1.87)          (-0.04, 5.4) 
• Bivariate (α,β) df=2 15 sec (0.27, 0.82)  (-0.11, 0.13)  (0.44, 1.74)         (1.14, 5.1) 
Confidence Interval, Boot (2000 resamplings) 
• nlsBoot (mean-centered)   4.5 min    (0.32, 0.60)  (0*, 0.09)  (0.04,1*)           (1.12, 6.26)   
• normal    6 min    (0.26, 0.57)           (-0.07, 0.03)  (0.63,1.8)         (-0.06, 4.70) 
• percentile       6 min    (0.32, 0.62)  (0*, 0.09)  (0.01,1*)           (1.7, 6.50) 
• BCa      6 min    (0.30, 0.57)         (-)   (0.03, 1*)          (0.03, 4.65) 
• nlsBCI  4.5 min    (0.32, 0.63)  (0*, 0.09)  (0.016, 1*)        (1.17, 6.13) 

AR(1) Corr, Dogan (2007) 
OLS Estimate      0.5     0.01  0.95  1.96 

 Confidence Interval, Boot (1000 resamplings) 
• Percentile        NA (0.27, 0.92)  (0, 0.14)   (0.02, 1)            (0, 7.19) 
• BCI       NA (0.26, 1.00)  (0, 0.14)   (0.44, 1)            (0, 6.05) 
 
 

                                                        
1 Confidence bounds indicated by * means that the admissible values were reached and not overruled by the 

particular method.  
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Figure CS.1.1 – Model results using Dogan (2007) parameter estimates 
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Figure CS.2.1 Actual orders compared to estimated orders and to those in Dogan (2007). 
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Figure CS.2.2 Residuals for our best estimate using nls. 
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Figure CS.3.1. Log likelihood function for the four parameters (holding others at MLE) 

and 95% univariate confidence level for the beer game example.2 

                                                        
2 Where the MLE differs from the peak (as in beta and theta) the estimates were constrained to fall within the 

natural region of operation (being 0 and 1 for all parameters except desired inventory, which had an infinite upper-
limit. While the MLE is constrained, the likelihood profile is not so. 
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Figure CS.3.2. Profile likelihood for the four parameters and 95% confidence level for 
the beer game example. 
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Figure CS.3.3. Bivariate confidence interval for α and β. (Other parameters remain at 
their estimated value) 
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Figure CS.4.1. Quantile distribution of residuals 
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Figure CS.4.2 Standard plots of residuals using nlsResiduals 
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Figure CS.4.3. Autocorrelation, by lag 
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Figure CS.4.4. Quantile distribution of error terms and autocorrelation after AR(1) 
correction 
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Figure CS.4.5 Bivariate confidence interval for α and β for autocorrelation-corrected 
data (Other parameters remain at their estimated value) 
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Figure CS.5.1. Histogram and quantile distribution of α and β, for AR(1) corrected data. 
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Figure CS.5.2 Pairwise plotting for the mean-centered plot(nlsBoot) bootstrapped 
parameter estimates of the autocorrelation-corrected data 

 


