

Functional Differential Geometry

Functional Differential Geometry

Gerald Jay Sussman and Jack Wisdom

with Will Farr

The MIT Press
Cambridge, Massachusetts
London, England

c� 2013 Massachusetts Institute of Technology

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a
copy of this license, visit creativecommons.org.

Other than as provided by this license, no part of this book may be
reproduced, transmitted, or displayed by any electronic or mechanical means
without permission from the MIT Press or as permitted by law.

MIT Press books may be purchased at special quantity discounts for
business or sales promotional use. For information, please email
special sales@mitpress.mit.edu or write to Special Sales Department, The
MIT Press, 55 Hayward Street, Cambridge, MA 02142.

This book was set in Computer Modern by the authors with the LATEX
typesetting system and was printed and bound in the United States of
America.

Library of Congress Cataloging-in-Publication Data

Sussman, Gerald Jay.
Functional Differential Geometry / Gerald Jay Sussman and Jack Wisdom;
with Will Farr.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-262-01934-7 (hardcover : alk. paper)
1. Geometry, Differential. 2. Functional Differential Equations.
3. Mathematical Physics.
I. Wisdom, Jack. II. Farr, Will. III. Title.

QC20.7.D52S87 2013
516.3'6—dc23

2012042107

10 9 8 7 6 5 4 3 2 1

“The author has spared himself no pains in his endeavour to
present the main ideas in the simplest and most intelligible form,
and on the whole, in the sequence and connection in which they
actually originated. In the interest of clearness, it appeared to
me inevitable that I should repeat myself frequently, without pay-
ing the slightest attention to the elegance of the presentation. I
adhered scrupulously to the precept of that brilliant theoretical
physicist L. Boltzmann, according to whom matters of elegance
ought be left to the tailor and to the cobbler.”

Albert Einstein, in Relativity, the Special and General Theory,
(1961), p. v

Contents

Preface xi

Prologue xv

1 Introduction 1

2 Manifolds 11

2.1 Coordinate Functions 12

2.2 Manifold Functions 14

3 Vector Fields and One-Form Fields 21

3.1 Vector Fields 21

3.2 Coordinate-Basis Vector Fields 26

3.3 Integral Curves 29

3.4 One-Form Fields 32

3.5 Coordinate-Basis One-Form Fields 34

4 Basis Fields 41

4.1 Change of Basis 44

4.2 Rotation Basis 47

4.3 Commutators 48

5 Integration 55

5.1 Higher Dimensions 57

5.2 Exterior Derivative 62

5.3 Stokes’s Theorem 65

viii Contents

5.4 Vector Integral Theorems 67

6 Over a Map 71

6.1 Vector Fields Over a Map 71

6.2 One-Form Fields Over a Map 73

6.3 Basis Fields Over a Map 74

6.4 Pullbacks and Pushforwards 76

7 Directional Derivatives 83

7.1 Lie Derivative 85

7.2 Covariant Derivative 93

7.3 Parallel Transport 104

7.4 Geodesic Motion 111

8 Curvature 115

8.1 Explicit Transport 116

8.2 Torsion 124

8.3 Geodesic Deviation 125

8.4 Bianchi Identities 129

9 Metrics 133

9.1 Metric Compatibility 135

9.2 Metrics and Lagrange Equations 137

9.3 General Relativity 144

10 Hodge Star and Electrodynamics 153

10.1 The Wave Equation 159

10.2 Electrodynamics 160

11 Special Relativity 167

11.1 Lorentz Transformations 172

11.2 Special Relativity Frames 179

Contents ix

11.3 Twin Paradox 181

A Scheme 185

B Our Notation 195

C Tensors 211

References 217

Index 219

Preface

Learning physics is hard. Part of the problem is that physics is
naturally expressed in mathematical language. When we teach
we use the language of mathematics in the same way that we
use our natural language. We depend upon a vast amount of
shared knowledge and culture, and we only sketch an idea using
mathematical idioms. We are insufficiently precise to convey an
idea to a person who does not share our culture. Our problem
is that since we share the culture we find it difficult to notice
that what we say is too imprecise to be clearly understood by a
student new to the subject. A student must simultaneously learn
the mathematical language and the content that is expressed in
that language. This is like trying to read Les Misérables while
struggling with French grammar.

This book is an effort to ameliorate this problem for learn-
ing the differential geometry needed as a foundation for a deep
understanding of general relativity or quantum field theory. Our
approach differs from the traditional one in several ways. Our cov-
erage is unusual. We do not prove the general Stokes’s Theorem—
this is well covered in many other books—instead, we show how it
works in two dimensions. Because our target is relativity, we put
lots of emphasis on the development of the covariant derivative,
and we erect a common context for understanding both the Lie
derivative and the covariant derivative. Most treatments of differ-
ential geometry aimed at relativity assume that there is a metric
(or pseudometric). By contrast, we develop as much material as
possible independent of the assumption of a metric. This allows
us to see what results depend on the metric when we introduce
it. We also try to avoid the use of traditional index notation for
tensors. Although one can become very adept at “index gymnas-
tics,” that leads to much mindless (though useful) manipulation
without much thought to meaning. Instead, we use a semantically
richer language of vector fields and differential forms.

But the single biggest difference between our treatment and
others is that we integrate computer programming into our expla-
nations. By programming a computer to interpret our formulas
we soon learn whether or not a formula is correct. If a formula
is not clear, it will not be interpretable. If it is wrong, we will
get a wrong answer. In either case we are led to improve our

xii Preface

program and as a result improve our understanding. We have
been teaching advanced classical mechanics at MIT for many years
using this strategy. We use precise functional notation and we
have students program in a functional language. The students
enjoy this approach and we have learned a lot ourselves. It is the
experience of writing software for expressing the mathematical
content and the insights that we gain from doing it that we feel is
revolutionary. We want others to have a similar experience.

Acknowledgments

We thank the people who helped us develop this material, and
especially the students who have over the years worked through
the material with us. In particular, Mark Tobenkin, William
Throwe, Leo Stein, Peter Iannucci, and Micah Brodsky have suf-
fered through bad explanations and have contributed better ones.

Edmund Bertschinger, Norman Margolus, Tom Knight, Re-
becca Frankel, Alexey Radul, Edwin Taylor, Joel Moses, Kenneth
Yip, and Hal Abelson helped us with many thoughtful discussions
and advice about physics and its relation to mathematics.

We also thank Chris Hanson, Taylor Campbell, and the com-
munity of Scheme programmers for providing support and advice
for the elegant language that we use. In particular, Gerald Jay
Sussman wants to thank Guy Lewis Steele and Alexey Radul for
many fun days of programming together—we learned much from
each other’s style.

Matthew Halfant started us on the development of the Scmutils
system. He encouraged us to get into scientific computation, using
Scheme and functional style as an active way to explain the ideas,
without the distractions of imperative languages such as C. In the
1980s he wrote some of the early Scheme procedures for numerical
computation that we still use.

Dan Zuras helped us with the invention of the unique organi-
zation of the Scmutils system. It is because of his insight that the
system is organized around a generic extension of the chain rule
for taking derivatives. He also helped in the heavy lifting that was
required to make a really good polynomial GCD algorithm, based
on ideas we learned from Richard Zippel.

A special contribution that cannot be sufficiently acknowledged
is from Seymour Papert and Marvin Minsky, who taught us that

Preface xiii

the practice of programming is a powerful way to develop a deeper
understanding of any subject. Indeed, by the act of debugging we
learn about our misconceptions, and by reflecting on our bugs and
their resolutions we learn ways to learn more effectively. Indeed,
Turtle Geometry [2], a beautiful book about discrete differential
geometry at a more elementary level, was inspired by Papert’s
work on education. [13]

We acknowledge the generous support of the Computer Sci-
ence and Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. The laboratory provides a stimulating
environment for efforts to formalize knowledge with computational
methods. We also acknowledge the Panasonic Corporation (for-
merly the Matsushita Electric Industrial Corporation) for support
of Gerald Jay Sussman through an endowed chair.

Jack Wisdom thanks his wife, Cecile, for her love and support.
Julie Sussman, PPA, provided careful reading and serious criticism
that inspired us to reorganize and rewrite major parts of the text.
She has also developed and maintained Gerald Jay Sussman over
these many years.

Gerald Jay Sussman & Jack Wisdom
Cambridge, Massachusetts, USA

August 2012

Prologue

Programming and Understanding

One way to become aware of the precision required to unam-
biguously communicate a mathematical idea is to program it for
a computer. Rather than using canned programs purely as an
aid to visualization or numerical computation, we use computer
programming in a functional style to encourage clear thinking.
Programming forces us to be precise and unambiguous, without
forcing us to be excessively rigorous. The computer does not toler-
ate vague descriptions or incomplete constructions. Thus the act
of programming makes us keenly aware of our errors of reasoning
or unsupported conclusions.1

Although this book is about differential geometry, we can show
how thinking about programming can help in understanding in a
more elementary context. The traditional use of Leibniz’s notation
and Newton’s notation is convenient in simple situations, but in
more complicated situations it can be a serious handicap to clear
reasoning.

A mechanical system is described by a Lagrangian function of
the system state (time, coordinates, and velocities). A motion of
the system is described by a path that gives the coordinates for
each moment of time. A path is allowed if and only if it satisfies
the Lagrange equations. Traditionally, the Lagrange equations are
written

d

dt

∂L

∂q̇
−

∂L

∂q
= 0.

What could this expression possibly mean?
Let’s try to write a program that implements Lagrange equa-

tions. What are Lagrange equations for? Our program must take
a proposed path and give a result that allows us to decide if the
path is allowed. This is already a problem; the equation shown
above does not have a slot for a path to be tested.

1The idea of using computer programming to develop skills of clear thinking
was originally advocated by Seymour Papert. An extensive discussion of this
idea, applied to the education of young children, can be found in Papert [13].

xvi Prologue

So we have to figure out how to insert the path to be tested.
The partial derivatives do not depend on the path; they are deriva-
tives of the Lagrangian function and thus they are functions with
the same arguments as the Lagrangian. But the time derivative
d/dt makes sense only for a function of time. Thus we must
be intending to substitute the path (a function of time) and its
derivative (also a function of time) into the coordinate and velocity
arguments of the partial derivative functions.

So probably we meant something like the following (assume
that w is a path through the coordinate configuration space, and
so w(t) specifies the configuration coordinates at time t):

d

dt

⎛⎜⎝ ∂L(t, q, q̇)

∂q̇

∣∣∣∣ q = w(t)

q̇ = dw(t)
dt

⎞⎟⎠− ∂L(t, q, q̇)

∂q

∣∣∣∣ q = w(t)

q̇ = dw(t)
dt

= 0.

In this equation we see that the partial derivatives of the La-
grangian function are taken, then the path and its derivative
are substituted for the position and velocity arguments of the
Lagrangian, resulting in an expression in terms of the time.

This equation is complete. It has meaning independent of the
context and there is nothing left to the imagination. The earlier
equations require the reader to fill in lots of detail that is implicit
in the context. They do not have a clear meaning independent of
the context.

By thinking computationally we have reformulated the La-
grange equations into a form that is explicit enough to specify
a computation. We could convert it into a program for any sym-
bolic manipulation program because it tells us how to manipulate
expressions to compute the residuals of Lagrange’s equations for
a purported solution path.2

2The residuals of equations are the expressions whose value must be zero if
the equations are satisfied. For example, if we know that for an unknown x,
x3 − x = 0 then the residual is x3 − x. We can try x = −1 and find a residual
of 0, indicating that our purported solution satisfies the equation. A residual
may provide information. For example, if we have the differential equation
df(x)/dx − af(x) = 0 and we plug in a test solution f(x) = Aebx we obtain

the residual (b− a)Aebx, which can be zero only if b = a.

Prologue xvii

Functional Abstraction

But this corrected use of Leibniz notation is ugly. We had to
introduce extraneous symbols (q and q̇) in order to indicate the ar-
gument position specifying the partial derivative. Nothing would
change here if we replaced q and q̇ by a and b.3 We can sim-
plify the notation by admitting that the partial derivatives of the
Lagrangian are themselves new functions, and by specifying the
particular partial derivative by the position of the argument that
is varied

d

dt
((∂2L)(t, w(t),

d

dt
w(t))) − (∂1L)(t, w(t),

d

dt
w(t)) = 0,

where ∂iL is the function which is the partial derivative of the
function L with respect to the ith argument.4

Two different notions of derivative appear in this expression.
The functions ∂2L and ∂1L, constructed from the Lagrangian
L, have the same arguments as L. The derivative d/dt is an
expression derivative. It applies to an expression that involves
the variable t and it gives the rate of change of the value of the
expression as the value of the variable t is varied.

These are both useful interpretations of the idea of a derivative.
But functions give us more power. There are many equivalent
ways to write expressions that compute the same value. For
example 1/(1/r1 + 1/r2) = (r1r2)/(r1 + r2). These expressions
compute the same function of the two variables r1 and r2. The
first expression fails if r1 = 0 but the second one gives the right
value of the function. If we abstract the function, say as Π(r1, r2),
we can ignore the details of how it is computed. The ideas become
clearer because they do not depend on the detailed shape of the
expressions.

3That the symbols q and q̇ can be replaced by other arbitrarily chosen non-
conflicting symbols without changing the meaning of the expression tells us
that the partial derivative symbol is a logical quantifier, like forall and exists
(∀ and ∃).

4The argument positions of the Lagrangian are indicated by indices starting
with zero for the time argument.

xviii Prologue

So let’s get rid of the expression derivative d/dt and replace it
with an appropriate functional derivative. If f is a function then
we will write Df as the new function that is the derivative of f :5

(Df)(t) =
d

dx
f(x)

∣∣∣∣
x=t

.

To do this for the Lagrange equation we need to construct a
function to take the derivative of.

Given a configuration-space path w, there is a standard way
to make the state-space path. We can abstract this method as a
mathematical function Γ:

Γ[w](t) = (t, w(t),
d

dt
w(t)).

Using Γ we can write:

d

dt
((∂2L)(Γ[w](t))) − (∂1L)(Γ[w](t)) = 0.

If we now define composition of functions (f ◦ g)(x) = f(g(x)),
we can express the Lagrange equations entirely in terms of func-
tions:

D((∂2L) ◦ (Γ[w])) − (∂1L) ◦ (Γ[w]) = 0.

The functions ∂1L and ∂2L are partial derivatives of the func-
tion L. Composition with Γ[w] evaluates these partials with coor-
dinates and velocites appropriate for the path w, making functions
of time. Applying D takes the time derivative. The Lagrange
equation states that the difference of the resulting functions of
time must be zero. This statement of the Lagrange equation is
complete, unambiguous, and functional. It is not encumbered
with the particular choices made in expressing the Lagrangian.
For example, it doesn’t matter if the time is named t or τ , and it
has an explicit place for the path to be tested.

This expression is equivalent to a computer program:6

5An explanation of functional derivatives is in Appendix B, page 202.

6The programs in this book are written in Scheme, a dialect of Lisp. The
details of the language are not germane to the points being made. What is
important is that it is mechanically interpretable, and thus unambiguous. In
this book we require that the mathematical expressions be explicit enough

Prologue xix

(define ((Lagrange-equations Lagrangian) w)
(- (D (compose ((partial 2) Lagrangian) (Gamma w)))

(compose ((partial 1) Lagrangian) (Gamma w))))

In the Lagrange equations procedure the parameter Lagrangian

is a procedure that implements the Lagrangian. The derivatives
of the Lagrangian, for example ((partial 2) Lagrangian), are
also procedures. The state-space path procedure (Gamma w) is
constructed from the configuration-space path procedure w by the
procedure Gamma:

(define ((Gamma w) t)
(up t (w t) ((D w) t)))

where up is a constructor for a data structure that represents a
state of the dynamical system (time, coordinates, velocities).

The result of applying the Lagrange-equations procedure to
a procedure Lagrangian that implements a Lagrangian function
is a procedure that takes a configuration-space path procedure w

and returns a procedure that gives the residual of the Lagrange
equations for that path at a time.

For example, consider the harmonic oscillator, with Lagrangian

L(t, q, v) = 1
2mv2 − 1

2kq
2,

for mass m and spring constant k. This Lagrangian is imple-
mented by

(define ((L-harmonic m k) local)
(let ((q (coordinate local))

(v (velocity local)))
(- (* 1/2 m (square v))

(* 1/2 k (square q)))))

We know that the motion of a harmonic oscillator is a sinusoid
with a given amplitude a, frequency ω, and phase ϕ:

x(t) = a cos(ωt+ ϕ).

that they can be expressed as computer programs. Scheme is chosen because
it is easy to write programs that manipulate representations of mathematical
functions. An informal description of Scheme can be found in Appendix A.
The use of Scheme to represent mathematical objects can be found in Ap-
pendix B. A formal description of Scheme can be obtained in [10]. You can
get the software from [21].

xx Prologue

Suppose we have forgotten how the constants in the solution relate
to the physical parameters of the oscillator. Let’s plug in the
proposed solution and look at the residual:

(define (proposed-solution t)
(* ’a (cos (+ (* ’omega t) ’phi))))

(show-expression
(((Lagrange-equations (L-harmonic ’m ’k))

proposed-solution)
’t))

cos (ωt+ ϕ) a
(
k −mω2

)
The residual here shows that for nonzero amplitude, the only
solutions allowed are ones where (k −mω2) = 0 or ω =

√
k/m.

But, suppose we had no idea what the solution looks like. We
could propose a literal function for the path:

(show-expression
(((Lagrange-equations (L-harmonic ’m ’k))

(literal-function ’x))
’t))

kx (t) +mD2x (t)

If this residual is zero we have the Lagrange equation for the
harmonic oscillator.

Note that we can flexibly manipulate representations of math-
ematical functions. (See Appendices A and B.)

We started out thinking that the original statement of La-
grange’s equations accurately captured the idea. But we really
don’t know until we try to teach it to a naive student. If the
student is sufficiently ignorant, but is willing to ask questions, we
are led to clarify the equations in the way that we did. There
is no dumber but more insistent student than a computer. A
computer will absolutely refuse to accept a partial statement, with
missing parameters or a type error. In fact, the original statement
of Lagrange’s equations contained an obvious type error: the
Lagrangian is a function of multiple variables, but the d/dt is
applicable only to functions of one variable.

1
Introduction

Philosophy is written in that great book which
ever lies before our eyes—I mean the
Universe—but we cannot understand it if we do
not learn the language and grasp the symbols in
which it is written. This book is written in the
mathematical language, and the symbols are
triangles, circles, and other geometrical figures
without whose help it is impossible to comprehend
a single word of it, without which one wanders in
vain through a dark labyrinth.

Galileo Galilei [8]

Differential geometry is a mathematical language that can be used
to express physical concepts. In this introduction we show a typ-
ical use of this language. Do not panic! At this point we do not
expect you to understand the details of what we are showing. All
will be explained as needed in the text. The purpose is to get the
flavor of this material.

At the North Pole inscribe a line in the ice perpendicular to
the Greenwich Meridian. Hold a stick parallel to that line and
walk down the Greenwich Meridian keeping the stick parallel to
itself as you walk. (The phrase “parallel to itself” is a way of
saying that as you walk you keep its orientation unchanged. The
stick will be aligned East-West, perpendicular to your direction of
travel.) When you get to the Equator the stick will be parallel to
the Equator. Turn East, and walk along the Equator, keeping the
stick parallel to the Equator. Continue walking until you get to
the 90◦E meridian. When you reach the 90◦E meridian turn North
and walk back to the North Pole keeping the stick parallel to itself.
Note that the stick is perpendicular to your direction of travel.
When you get to the Pole note that the stick is perpendicular to
the line you inscribed in the ice. But you started with that stick
parallel to that line and you kept the stick pointing in the same
direction on the Earth throughout your walk—how did it change
orientation?

2 Chapter 1 Introduction

The answer is that you walked a closed loop on a curved sur-
face. As seen in three dimensions the stick was actually turning as
you walked along the Equator, because you always kept the stick
parallel to the curving surface of the Earth. But as a denizen of
a 2-dimensional surface, it seemed to you that you kept the stick
parallel to itself as you walked, even when making a turn. Even
if you had no idea that the surface of the Earth was embedded in
a 3-dimensional space you could use this experiment to conclude
that the Earth was not flat. This is a small example of intrinsic
geometry. It shows that the idea of parallel transport is not sim-
ple. For a general surface it is necessary to explicitly define what
we mean by parallel.

If you walked a smaller loop, the angle between the starting ori-
entation and the ending orientation of the stick would be smaller.
For small loops it would be proportional to the area of the loop
you walked. This constant of proportionality is a measure of the
curvature. The result does not depend on how fast you walked,
so this is not a dynamical phenomenon.

Denizens of the surface may play ball games. The balls are
constrained to the surface; otherwise they are free particles. The
paths of the balls are governed by dynamical laws. This motion
is a solution of the Euler-Lagrange equations1 for the free-particle
Lagrangian with coordinates that incorporate the constraint of
living in the surface. There are coefficients of terms in the Euler-
Lagrange equations that arise naturally in the description of the
behavior of the stick when walking loops on the surface, connecting
the static shape of the surface with the dynamical behavior of the
balls. It turns out that the dynamical evolution of the balls may
be viewed as parallel transport of the ball’s velocity vector in the
direction of the velocity vector. This motion by parallel transport
of the velocity is called geodesic motion.

So there are deep connections between the dynamics of particles
and the geometry of the space that the particles move in. If we un-
derstand this connection we can learn about dynamics by studying
geometry and we can learn about geometry by studying dynam-
ics. We enter dynamics with a Lagrangian and the associated
Lagrange equations. Although this formulation exposes many im-
portant features of the system, such as how symmetries relate to

1It is customary to shorten “Euler-Lagrange equations” to “Lagrange equa-
tions.” We hope Leonhard Euler is not disturbed.

Chapter 1 Introduction 3

conserved quantities, the geometry is not apparent. But when we
express the Lagrangian and the Lagrange equations in differential
geometry language, geometric properties become apparent. In the
case of systems with no potential energy the Euler-Lagrange equa-
tions are equivalent to the geodesic equations on the configuration
manifold. In fact, the coefficients of terms in the Lagrange equa-
tions are Christoffel coefficients, which define parallel transport
on the manifold. Let’s look into this a bit.

Lagrange Equations

We write the Lagrange equations in functional notation2 as fol-
lows:

D(∂2L ◦ Γ[q])− ∂1L ◦ Γ[q] = 0.

In SICM [19], Section 1.6.3, we showed that a Lagrangian de-
scribing the free motion of a particle subject to a coordinate-
dependent constraint can be obtained by composing a free-particle
Lagrangian with a function that describes how dynamical states
transform given the coordinate transformation that describes the
constraints.

A Lagrangian for a free particle of mass m and velocity v is just
its kinetic energy, mv2/2. The procedure Lfree implements the
free Lagrangian:3

(define ((Lfree mass) state)
(* 1/2 mass (square (velocity state))))

For us the dynamical state of a system of particles is a tuple of
time, coordinates, and velocities. The free-particle Lagrangian
depends only on the velocity part of the state.

For motion of a point constrained to move on the surface of
a sphere the configuration space has two dimensions. We can
describe the position of the point with the generalized coordi-
nates colatitude and longitude. If the sphere is embedded in 3-
dimensional space the position of the point in that space can be

2A short introduction to our functional notation, and why we have chosen it,
is given in the prologue: Programming and Understanding. More details can
be found in Appendix B.

3An informal description of the Scheme programming language can be found
in Appendix A.

4 Chapter 1 Introduction

given by a coordinate transformation from colatitude and longi-
tude to three rectangular coordinates.

For a sphere of radius R the procedure sphere->R3 implements
the transformation of coordinates from colatitude θ and longitude
φ on the surface of the sphere to rectangular coordinates in the
embedding space. (The ẑ axis goes through the North Pole, and
the Equator is in the plane z = 0.)

(define ((sphere->R3 R) state)
(let ((q (coordinate state)))
(let ((theta (ref q 0)) (phi (ref q 1)))

(up (* R (sin theta) (cos phi)) ; x
(* R (sin theta) (sin phi)) ; y
(* R (cos theta)))))) ; z

The coordinate transformation maps the generalized coordi-
nates on the sphere to the 3-dimensional rectangular coordinates.
Given this coordinate transformation we construct a correspond-
ing transformation of velocities; these make up the state trans-
formation. The procedure F->C implements the derivation of a
transformation of states from a coordinate transformation:

(define ((F->C F) state)
(up (time state)

(F state)
(+ (((partial 0) F) state)

(* (((partial 1) F) state)
(velocity state)))))

A Lagrangian governing free motion on a sphere of radiusR is then
the composition of the free Lagrangian with the transformation of
states.

(define (Lsphere m R)
(compose (Lfree m) (F->C (sphere->R3 R))))

So the value of the Lagrangian at an arbitrary dynamical state is:

((Lsphere ’m ’R)
(up ’t (up ’theta ’phi) (up ’thetadot ’phidot)))

(+ (* 1/2 m (expt R 2) (expt thetadot 2))
(* 1/2 m (expt R 2) (expt (sin theta) 2) (expt phidot 2)))

Chapter 1 Introduction 5

or, in infix notation:

1

2
mR2θ̇2 +

1

2
mR2 (sin (θ))2 φ̇2. (1.1)

The Metric

Let’s now take a step into the geometry. A surface has a metric
which tells us how to measure sizes and angles at every point on
the surface. (Metrics are introduced in Chapter 9.)

The metric is a symmetric function of two vector fields that
gives a number for every point on the manifold. (Vector fields are
introduced in Chapter 3). Metrics may be used to compute the
length of a vector field at each point, or alternatively to compute
the inner product of two vector fields at each point. For example,
the metric for the sphere of radius R is

g(u, v) = R2dθ(u)dθ(v) +R2(sin θ)2dφ(u)dφ(v), (1.2)

where u and v are vector fields, and dθ and dφ are one-form fields
that extract the named components of the vector-field argument.
(One-form fields are introduced in Chapter 3.) We can think of
dθ(u) as a function of a point that gives the size of the vector field
u in the θ direction at the point. Notice that g(u, u) is a weighted
sum of the squares of the components of u. In fact, if we identify

dθ(v) = θ̇

dφ(v) = φ̇,

then the coefficients in the metric are the same as the coefficients
in the value of the Lagrangian, equation (1.1), apart from a factor
of m/2.

We can generalize this result and write a Lagrangian for free
motion of a particle of mass m on a manifold with metric g:

L2(x, v) =
∑
ij

1
2mgij(x) v

ivj . (1.3)

This is written using indexed variables to indicate components
of the geometric objects expressed with respect to an unspecified
coordinate system. The metric coefficients gij are, in general, a

6 Chapter 1 Introduction

function of the position coordinates x, because the properties of
the space may vary from place to place.

We can capture this geometric statement as a program:

(define ((L2 mass metric) place velocity)
(* 1/2 mass ((metric velocity velocity) place)))

This program gives the Lagrangian in a coordinate-independent,
geometric way. It is entirely in terms of geometric objects, such as
a place on the configuration manifold, the velocity at that place,
and the metric that describes the local shape of the manifold.
But to compute we need a coordinate system. We express the
dynamical state in terms of coordinates and velocity components
in the coordinate system. For each coordinate system there is
a natural vector basis and the geometric velocity vectors can be
constructed by contracting the basis with the components of the
velocity. Thus, we can form a coordinate representation of the
Lagrangian.

(define ((Lc mass metric coordsys) state)
(let ((x (coordinates state)) (v (velocities state))

(e (coordinate-system->vector-basis coordsys)))
((L2 mass metric) ((point coordsys) x) (* e v))))

The manifold point m represented by the coordinates x is given
by (define m ((point coordsys) x)). The coordinates of m in a
different coordinate system are given by ((chart coordsys2) m).
The manifold point m is a geometric object that is the same point
independent of how it is specified. Similarly, the velocity vector ev
is a geometric object, even though it is specified using components
v with respect to the basis e. Both v and e have as many compo-
nents as the dimension of the space so their product is interpreted
as a contraction.

Let’s make a general metric on a 2-dimensional real manifold:4

(define the-metric (literal-metric ’g R2-rect))

4The procedure literal-metric provides a metric. It is a general symmetric
function of two vector fields, with literal functions of the coordinates of the
manifold points for its coefficients in the given coordinate system. The quoted
symbol ’g is used to make the names of the literal coefficient functions. Literal
functions are discussed in Appendix B.

Chapter 1 Introduction 7

The metric is expressed in rectangular coordinates, so the coordi-
nate system is R2-rect.5 The component functions will be labeled
as subscripted gs.

We can now make the Lagrangian for the system:

(define L (Lc ’m the-metric R2-rect))

And we can apply our Lagrangian to an arbitrary state:

(L (up ’t (up ’x ’y) (up ’vx ’vy)))
(+ (* 1/2 m (g 00 (up x y)) (expt vx 2))

(* m (g 01 (up x y)) vx vy)
(* 1/2 m (g 11 (up x y)) (expt vy 2)))

Compare this result with equation (1.3).

Euler-Lagrange Residuals

The Euler-Lagrange equations are satisfied on realizable paths.
Let γ be a path on the manifold of configurations. (A path is a
map from the 1-dimensional real line to the configuration mani-
fold. We introduce maps between manifolds in Chapter 6.) Con-
sider an arbitrary path:6

(define gamma (literal-manifold-map ’q R1-rect R2-rect))

The values of γ are points on the manifold, not a coordinate repre-
sentation of the points. We may evaluate gamma only on points of
the real-line manifold; gamma produces points on the R2 manifold.
So to go from the literal real-number coordinate ’t to a point
on the real line we use ((point R1-rect) ’t) and to go from
a point m in R2 to its coordinate representation we use ((chart

R2-rect) m). (The procedures point and chart are introduced in
Chapter 2.) Thus

5R2-rect is the usual rectangular coordinate system on the 2-dimensional real
manifold. (See Section 2.1, page 13.) We supply common coordinate systems
for n-dimensional real manifolds. For example, R2-polar is a polar coordinate
system on the same manifold.

6The procedure literal-manifold-map makes a map from the manifold im-
plied by its second argument to the manifold implied by the third argument.
These arguments must be coordinate systems. The quoted symbol that is the
first argument is used to name the literal coordinate functions that define the
map.

8 Chapter 1 Introduction

((chart R2-rect) (gamma ((point R1-rect) ’t)))
(up (qˆ0 t) (qˆ1 t))

So, to work with coordinates we write:

(define coordinate-path
(compose (chart R2-rect) gamma (point R1-rect)))

(coordinate-path ’t)
(up (qˆ0 t) (qˆ1 t))

Now we can compute the residuals of the Euler-Lagrange equa-
tions, but we get a large messy expression that we will not show.7

However, we will save it to compare with the residuals of the
geodesic equations.

(define Lagrange-residuals
(((Lagrange-equations L) coordinate-path) ’t))

Geodesic Equations

Now we get deeper into the geometry. The traditional way to
write the geodesic equations is

∇vv = 0 (1.4)

where ∇ is a covariant derivative operator. Roughly, ∇vw is a
directional derivative. It gives a measure of the variation of the
vector field w as you walk along the manifold in the direction of v.
(We will explain this in depth in Chapter 7.) ∇vv = 0 is intended
to convey that the velocity vector is parallel-transported by itself.
When you walked East on the Equator you had to hold the stick so
that it was parallel to the Equator. But the stick is constrained to
the surface of the Earth, so moving it along the Equator required
turning it in three dimensions. The ∇ thus must incorporate the
3-dimensional shape of the Earth to provide a notion of “paral-
lel” appropriate for the denizens of the surface of the Earth. This
information will appear as the “Christoffel coefficients” in the co-
ordinate representation of the geodesic equations.

The trouble with the traditional way to write the geodesic equa-
tions (1.4) is that the arguments to the covariant derivative are

7For an explanation of equation residuals see page xvi.

Chapter 1 Introduction 9

vector fields and the velocity along the path is not a vector field.
A more precise way of stating this relation is:

∇γ
∂/∂tdγ(∂/∂t) = 0. (1.5)

(We know that this may be unfamiliar notation, but we will ex-
plain it in Chapter 7.)

In coordinates, the geodesic equations are expressed

D2qi(t) +
∑
jk

Γi
jk(γ(t))Dqj(t)Dqk(t) = 0, (1.6)

where q(t) is the coordinate path corresponding to the manifold
path γ, and Γi

jk(m) are Christoffel coefficients. The Γi
jk(m) de-

scribe the “shape” of the manifold close to the manifold point m.
They can be derived from the metric g.

We can get and save the geodesic equation residuals by:

(define geodesic-equation-residuals
(((((covariant-derivative Cartan gamma) d/dt)

((differential gamma) d/dt))
(chart R2-rect))
((point R1-rect) ’t)))

where d/dt is a vector field on the real line8 and Cartan is a
way of encapsulating the geometry, as specified by the Christoffel
coefficients. The Christoffel coefficients are computed from the
metric:

(define Cartan
(Christoffel->Cartan
(metric->Christoffel-2 the-metric

(coordinate-system->basis R2-rect))))

The two messy residual results that we did not show are related
by the metric. If we change the representation of the geodesic
equations by “lowering” them using the mass and the metric, we
see that the residuals are equal:

8We established t as a coordinate function on the rectangular coordinates of
the real line by

(define-coordinates t R1-rect)

This had the effect of also defining d/dt as a coordinate vector field and dt as
a one-form field on the real line.

10 Chapter 1 Introduction

(define metric-components
(metric->components the-metric

(coordinate-system->basis R2-rect)))

(- Lagrange-residuals
(* (* ’m (metric-components (gamma ((point R1-rect) ’t))))

geodesic-equation-residuals))
(down 0 0)

This establishes that for a 2-dimensional space the Euler-Lagrange
equations are equivalent to the geodesic equations. The Christof-
fel coefficients that appear in the geodesic equation correspond to
coefficients of terms in the Euler-Lagrange equations. This anal-
ysis will work for any number of dimensions (but will take your
computer longer in higher dimensions, because the complexity in-
creases).

Exercise 1.1: Motion on a Sphere

The metric for a unit sphere, expressed in colatitude θ and longitude φ,
is

g(u, v) = dθ(u)dθ(v) + (sin θ)2dφ(u)dφ(v).

Compute the Lagrange equations for motion of a free particle on the
sphere and convince yourself that they describe great circles. For exam-
ple, consider motion on the equator (θ = π/2) and motion on a line of
longitude (φ is constant).

2
Manifolds

A manifold is a generalization of our idea of a smooth surface
embedded in Euclidean space. For an n-dimensional manifold,
around every point there is a simply-connected open set, the coor-
dinate patch, and a one-to-one continuous function, the coordinate
function or chart, mapping every point in that open set to a tuple
of n real numbers, the coordinates. In general, several charts are
needed to label all points on a manifold. It is required that if a
region is in more than one coordinate patch then the coordinates
are consistent in that the function mapping one set of coordinates
to another is continuous (and perhaps differentiable to some de-
gree). A consistent system of coordinate patches and coordinate
functions that covers the entire manifold is called an atlas.

An example of a 2-dimensional manifold is the surface of a
sphere or of a coffee cup. The space of all configurations of a planar
double pendulum is a more abstract example of a 2-dimensional
manifold. A manifold that looks locally Euclidean may not look
like Euclidean space globally: for example, it may not be simply
connected. The surface of the coffee cup is not simply connected,
because there is a hole in the handle for your fingers.

An example of a coordinate function is the function that maps
points in a simply-connected open neighborhood of the surface
of a sphere to the tuple of latitude and longitude.1 If we want
to talk about motion on the Earth, we can identify the space of
configurations to a 2-sphere (the surface of a 3-dimensional ball).
The map from the 2-sphere to the 3-dimensional coordinates of a
point on the surface of the Earth captures the shape of the Earth.

Two angles specify the configuration of the planar double pen-
dulum. The manifold of configurations is a torus, where each
point on the torus corresponds to a configuration of the double
pendulum. The constraints, such as the lengths of the pendu-
lum rods, are built into the map between the generalized coordi-

1The open set for a latitude-longitude coordinate system cannot include either
pole (because longitude is not defined at the poles) or the 180◦ meridian (where
the longitude is discontinuous). Other coordinate systems are needed to cover
these places.

12 Chapter 2 Manifolds

nates of points on the torus and the arrangements of masses in
3-dimensional space.

There are computational objects that we can use to model man-
ifolds. For example, we can make an object that represents the
plane2

(define R2 (make-manifold R^n 2))

and give it the name R2. One useful patch of the plane is the one
that contains the origin and covers the entire plane.3

(define U (patch ’origin R2))

2.1 Coordinate Functions

A coordinate function χ maps points in a coordinate patch of a
manifold to a coordinate tuple:4

x = χ(m), (2.1)

where x may have a convenient tuple structure. Usually, the co-
ordinates are arranged as an “up structure”; the coordinates are
selected with superscripts:

xi = χi(m). (2.2)

The number of independent components of x is the dimension of
the manifold.

Assume we have two coordinate functions χ and χ′. The coor-
dinate transformation from χ′ coordinates to χ coordinates is just
the composition χ ◦ χ′−1, where χ′−1 is the functional inverse of
χ′ (see figure 2.1). We assume that the coordinate transformation
is continuous and differentiable to any degree we require.

2 The expression R^n gives only one kind of manifold. We also have spheres
S^n and SO3.

3The word origin is an arbitrary symbol here. It labels a predefined patch in
R^n manifolds.

4In the text that follows we will use sans-serif names, such as f, v, m, to refer
to objects defined on the manifold. Objects that are defined on coordinates
(tuples of real numbers) will be named with symbols like f , v, x.

2.1 Coordinate Functions 13

χ’

χ’χ −1
o

Rn
Rn

χ

Mm

Figure 2.1 Here there are two overlapping coordinate patches that are
the domains of the two coordinate functions χ and χ′. It is possible to
represent manifold points in the overlap using either coordinate system.
The coordinate transformation from χ′ coordinates to χ coordinates is
just the composition χ ◦ χ′−1.

Given a coordinate system coordsys for a patch on a manifold
the procedure that implements the function χ that gives coordi-
nates for a point is (chart coordsys). The procedure that imple-
ments the inverse map that gives a point for coordinates is (point
coordsys).

We can have both rectangular and polar coordinates on a patch
of the plane identified by the origin:5,6

;; Some charts on the patch U
(define R2-rect (coordinate-system ’rectangular U))
(define R2-polar (coordinate-system ’polar/cylindrical U))

For each of the coordinate systems above we obtain the coordi-
nate functions and their inverses:

5The rectangular coordinates are good for the entire plane, but the polar
coordinates are singular at the origin because the angle is not defined. Also,
the patch for polar coordinates must exclude one ray from the origin, because
of the angle variable.

6We can avoid explicitly naming the patch:

(define R2-rect (coordinate-system-at ’rectangular ’origin R2))

14 Chapter 2 Manifolds

(define R2-rect-chi (chart R2-rect))
(define R2-rect-chi-inverse (point R2-rect))
(define R2-polar-chi (chart R2-polar))
(define R2-polar-chi-inverse (point R2-polar))

The coordinate transformations are then just compositions. The
polar coordinates of a rectangular point are:

((compose R2-polar-chi R2-rect-chi-inverse)
(up ’x0 ’y0))

(up (sqrt (+ (expt x0 2) (expt y0 2))) (atan y0 x0))

And the rectangular coordinates of a polar point are:

((compose R2-rect-chi R2-polar-chi-inverse)
(up ’r0 ’theta0))

(up (* r0 (cos theta0)) (* r0 (sin theta0)))

And we can obtain the Jacobian of the polar-to-rectangular trans-
formation by taking its derivative:7

((D (compose R2-rect-chi R2-polar-chi-inverse))
(up ’r0 ’theta0))

(down (up (cos theta0) (sin theta0))
(up (* -1 r0 (sin theta0)) (* r0 (cos theta0))))

2.2 Manifold Functions

Let f be a real-valued function on a manifold M: this function
maps points m on the manifold to real numbers.

This function has a coordinate representation fχ with respect
to the coordinate function χ (see figure 2.2):

fχ = f ◦ χ−1. (2.3)

Both the coordinate representation fχ and the tuple x depend
on the coordinate system, but the value fχ(x) is independent of
coordinates:

fχ(x) = (f ◦ χ−1)(χ(m)) = f(m). (2.4)

7See Appendix B for an introduction to tuple arithmetic and a discussion of
derivatives of functions with structured input or output.

2.2 Manifold Functions 15

χ

χf

f

f(m)

M
m

Rn

Figure 2.2 The coordinate function χ maps points on the manifold
in the coordinate patch to a tuple of coordinates. A function f on the
manifold M can be represented in coordinates by a function fχ = f ◦χ−1.

The subscript χ may be dropped when it is unambiguous.
For example, in a 2-dimensional real manifold the coordinates

of a manifold point m are a pair of real numbers,

(x, y) = χ(m), (2.5)

and the manifold function f is represented in coordinates by a
function f that takes a pair of real numbers and produces a real
number

f : R2 → R

f : (x, y) �→ f(x, y). (2.6)

We define our manifold function

f : M→ R

f : m �→ (f ◦ χ)(m). (2.7)

Manifold Functions Are Coordinate Independent

We can illustrate the coordinate independence with a program.
We will show that an arbitrary manifold function f, when defined
by its coordinate representation in rectangular coordinates, has
the same behavior when applied to a manifold point independent
of whether the point is specified in rectangular or polar coordi-
nates.

16 Chapter 2 Manifolds

We define a manifold function by specifying its behavior in rect-
angular coordinates:8

(define f
(compose (literal-function ’f-rect R2->R) R2-rect-chi))

where R2->R is a signature for functions that map an up structure
of two reals to a real:

(define R2->R (-> (UP Real Real) Real))

We can specify a typical manifold point using its rectangular co-
ordinates:

(define R2-rect-point (R2-rect-chi-inverse (up ’x0 ’y0)))

We can describe the same point using its polar coordinates:

(define corresponding-polar-point
(R2-polar-chi-inverse
(up (sqrt (+ (square ’x0) (square ’y0)))

(atan ’y0 ’x0))))

(f R2-rect-point) and (f corresponding-polar-point) agree,
even though the point has been specified in two different coordi-
nate systems:

(f R2-rect-point)
(f-rect (up x0 y0))

(f corresponding-polar-point)
(f-rect (up x0 y0))

Naming Coordinate Functions

To make things a bit easier, we can give names to the individual
coordinate functions associated with a coordinate system. Here we
name the coordinate functions for the R2-rect coordinate system
x and y and for the R2-polar coordinate system r and theta.

(define-coordinates (up x y) R2-rect)
(define-coordinates (up r theta) R2-polar)

8Alternatively, we can define the same function in a shorthand

(define f (literal-manifold-function ’f-rect R2-rect))

2.2 Manifold Functions 17

This allows us to extract the coordinates from a point, indepen-
dent of the coordinate system used to specify the point.

(x (R2-rect-chi-inverse (up ’x0 ’y0)))
x0

(x (R2-polar-chi-inverse (up ’r0 ’theta0)))
(* r0 (cos theta0))

(r (R2-polar-chi-inverse (up ’r0 ’theta0)))
r0

(r (R2-rect-chi-inverse (up ’x0 ’y0)))
(sqrt (+ (expt x0 2) (expt y0 2)))

(theta (R2-rect-chi-inverse (up ’x0 ’y0)))
(atan y0 x0)

We can work with the coordinate functions in a natural manner,
defining new manifold functions in terms of them:9

(define h (+ (* x (square r)) (cube y)))

(h R2-rect-point)
(+ (expt x0 3) (* x0 (expt y0 2))

(expt y0 3))

We can also apply h to a point defined in terms of its polar coor-
dinates:

(h (R2-polar-chi-inverse (up ’r0 ’theta0)))
(+ (* (expt r0 3) (expt (sin theta0) 3))

(* (expt r0 3) (cos theta0)))

Exercise 2.1: Curves

A curve may be specified in different coordinate systems. For example, a
cardioid constructed by rolling a circle of radius a around another circle
of the same radius is described in polar coordinates by the equation

r = 2a(1 + cos(θ)).

9This is actually a nasty, but traditional, abuse of notation. An expression
like cos(r) can either mean the cosine of the angle r (if r is a number), or the
composition cos ◦ r (if r is a function). In our system (cos r) behaves in this
way—either computing the cosine of r or being treated as (compose cos r)
depending on what r is.

18 Chapter 2 Manifolds

We can convert this to rectangular coordinates by evaluating the residual
in rectangular coordinates.

(define-coordinates (up r theta) R2-polar)

((- r (* 2 ’a (+ 1 (cos theta))))
((point R2-rect) (up ’x ’y)))

(/ (+ (* -2 a x)
(* -2 a (sqrt (+ (expt x 2) (expt y 2))))
(expt x 2) (expt y 2))

(sqrt (+ (expt x 2) (expt y 2))))

The numerator of this expression is the equivalent residual in rectangular
coordinates. If we rearrange terms and square it we get the traditional
formula for the cardioid

(x2 + y2 − 2ax)
2

= 4a2 (x2 + y2).

a. The rectangular coordinate equation for the Lemniscate of Bernoulli
is

(x2 + y2)2 = 2a2(x2 − y2).

Find the expression in polar coordinates.

b. Describe a helix space curve in both rectangular and cylindrical co-
ordinates. Use the computer to show the correspondence. Note that we
provide a cylindrical coordinate system on the manifold R3 for you to
use. It is called R3-cyl; with coordinates (r, theta, z).

Exercise 2.2: Stereographic Projection

A stereographic projection is a correspondence between points on the
unit sphere and points on the plane cutting the sphere at its equator.
(See figure 2.3.)

The coordinate system for points on the sphere in terms of rectan-
gular coordinates of corresponding points on the plane is S2-Riemann.10

The procedure (chart S2-Riemann) gives the rectangular coordinates
on the plane for every point on the sphere, except for the North Pole.
The procedure (point S2-Riemann) gives the point on the sphere given
rectangular coordinates on the plane. The usual spherical coordinate
system on the sphere is S2-spherical.

We can compute the colatitude and longitude of a point on the sphere
corresponding to a point on the plane with the following incantation:

10The plane with the addition of a point at infinity is conformally equivalent to
the sphere by this correspondence. This correspondence is called the Riemann
sphere, in honor of the great mathematician Bernard Riemann (1826–1866),
who made major contributions to geometry.

2.2 Manifold Functions 19

N

φ,λ

ρ,θ

Figure 2.3 For each point on the sphere (except for its north pole)
a line is drawn from the north pole through the point and extending to
the equatorial plane. The corresponding point on the plane is where the
line intersects the plane. The rectangular coordinates of this point on
the plane are the Riemann coordinates of the point on the sphere. The
points on the plane can also be specified with polar coordinates (ρ, θ)
and the points on the sphere are specified both by Riemann coordinates
and the traditional colatitude and longitude (φ, λ).

((compose
(chart S2-spherical)
(point S2-Riemann)
(chart R2-rect)
(point R2-polar))
(up ’rho ’theta))

(up (acos (/ (+ -1 (expt rho 2))
(+ +1 (expt rho 2))))

theta)

Perform an analogous computation to get the polar coordinates of the
point on the plane corresponding to a point on the sphere given by its
colatitude and longitude.

3
Vector Fields and One-Form Fields

We want a way to think about how a function varies on a mani-
fold. Suppose we have some complex linkage, such as a multiple
pendulum. The potential energy is an important function on the
multi-dimensional configuration manifold of the linkage. To un-
derstand the dynamics of the linkage we need to know how the
potential energy changes as the configuration changes. The change
in potential energy for a step of a certain size in a particular di-
rection in the configuration space is a real physical quantity; it
does not depend on how we measure the direction or the step size.
What exactly this means is to be determined: What is a step size?
What is a direction? We cannot subtract two configurations to
determine the distance between them. It is our job here to make
sense of this idea.

So we would like something like a derivative, but there are prob-
lems. Since we cannot subtract two manifold points, we cannot
take the derivative of a manifold function in the way described
in elementary calculus. But we can take the derivative of a co-
ordinate representation of a manifold function, because it takes
real-number coordinates as its arguments. This is a start, but it
is not independent of coordinate system. Let’s see what we can
build out of this.

3.1 Vector Fields

In multiple dimensions the derivative of a function is the multiplier
for the best linear approximation of the function at each argument
point:1

f(x+Δx) ≈ f(x) + (Df(x))Δx (3.1)

The derivative Df(x) is independent of Δx. Although the deriva-
tive depends on the coordinates, the product (Df(x))Δx is in-

1In multiple dimensions the derivative Df(x) is a down tuple structure of
the partial derivatives and the increment Δx is an up tuple structure, so the
indicated product is to be interpreted as a contraction. (See equation B.8.)

22 Chapter 3 Vector Fields and One-Form Fields

variant under change of coordinates in the following sense. Let
φ = χ ◦ χ′−1 be a coordinate transformation, and x = φ(y). Then
Δx = Dφ(y)Δy is the linear approximation to the change in x
when y changes by Δy. If f and g are the representations of a
manifold function in the two coordinate systems, g(y) = f(φ(y)) =
f(x), then the linear approximations to the increments in f and
g are equal:

Dg(y)Δy = Df(φ(y)) (Dφ(y)Δy) = Df(x)Δx.

The invariant product (Df(x))Δx is the directional derivative

of f at x with respect to the vector specified by the tuple of
components Δx in the coordinate system. We can generalize this
idea to allow the vector at each point to depend on the point,
making a vector field. Let b be a function of coordinates. We then
have a directional derivative of f at each point x, determined by b

Db(f)(x) = (Df(x))b(x). (3.2)

Now we bring this back to the manifold and develop a useful gen-
eralization of the idea of directional derivative for functions on a
manifold, rather than functions on Rn. A vector field on a man-

ifold is an assignment of a vector to each point on the manifold.
In elementary geometry, a vector is an arrow anchored at a point
on the manifold with a magnitude and a direction. In differential
geometry, a vector is an operator that takes directional deriva-
tives of manifold functions at its anchor point. The direction and
magnitude of the vector are the direction and scale factor of the
directional derivative.

Let m be a point on a manifold, v be a vector field on the man-
ifold, and f be a real-valued function on the manifold. Then v(f)
is the directional derivative of the function f and v(f)(m) is the
directional derivative of the function f at the point m. The vector
field is an operator that takes a real-valued manifold function and
a manifold point and produces a number. The order of arguments
is chosen to make v(f) be a new manifold function that can be
manipulated further. Directional derivative operators, unlike or-
dinary derivative operators, produce a result of the same type as
their argument. Note that there is no mention here of any coordi-
nate system. The vector field specifies a direction and magnitude
at each manifold point that is independent of how it is described
using any coordinate system.

3.1 Vector Fields 23

A useful way to characterize a vector field in a particular coor-
dinate system is by applying it to the coordinate functions. The
resulting functions biχ,v are called the coordinate component func-

tions or coefficient functions of the vector field; they measure how
quickly the coordinate functions change in the direction of the
vector field, scaled by the magnitude of the vector field:

biχ,v = v
(
χi
)
◦ χ−1. (3.3)

Note that we have chosen the coordinate components to be func-
tions of the coordinate tuple, not of a manifold point.

A vector with coordinate components bχ,v applies to a manifold
function f via

v(f)(m) = ((D(f ◦ χ−1) bχ,v) ◦ χ)(m) (3.4)

= D(f ◦ χ−1)(χ(m)) bχ,v(χ(m)) (3.5)

=
∑
i

∂i(f ◦ χ
−1)(χ(m)) biχ,v(χ(m)). (3.6)

In equation (3.4), the quantity f◦χ−1 is the coordinate representa-
tion of the manifold function f. We take its derivative, and weight
the components of the derivative with the coordinate components
bχ,v of the vector field that specify its direction and magnitude.
Since this product is a function of coordinates we use χ to extract
the coordinates from the manifold point m. In equation (3.5), the
composition of the product with the coordinate chart χ is replaced
by function evaluation. In equation (3.6) the tuple multiplication
is expressed explicitly as a sum of products of corresponding com-
ponents. So the application of the vector is a linear combination
of the partial derivatives of f in the coordinate directions weighted
by the vector components. This computes the rate of change of f
in the direction specified by the vector.

Equations (3.3) and (3.5) are consistent:

v(χ)(χ−1(x)) = D(χ ◦ χ−1)(x) bχ,v(x)

= D(I)(x) bχ,v(x)

= bχ,v(x). (3.7)

The coefficient tuple bχ,v(x) is an up structure compatible for
addition to the coordinates. Note that for any vector field v the co-
efficients bχ,v(x) are different for different coordinate functions χ.

24 Chapter 3 Vector Fields and One-Form Fields

In the text that follows we will usually drop the subscripts on b,
understanding that it is dependent on the coordinate system and
the vector field.

We implement the definition of a vector field (3.4) as:

(define (components->vector-field components coordsys)
(define (v f)
(compose (* (D (compose f (point coordsys)))

components)
(chart coordsys)))

(procedure->vector-field v))

The vector field is an operator, like derivative.2

Given a coordinate system and coefficient functions that map
coordinates to real values, we can make a vector field. For exam-
ple, a general vector field can be defined by giving components
relative to the coordinate system R2-rect by

(define v
(components->vector-field
(up (literal-function ’b^0 R2->R)

(literal-function ’b^1 R2->R))
R2-rect))

To make it convenient to define literal vector fields we provide
a shorthand: (define v (literal-vector-field ’b R2-rect))

This makes a vector field with component functions named b^0

and b^1 and names the result v. When this vector field is applied
to an arbitrary manifold function it gives the directional deriva-
tive of that manifold function in the direction specified by the
components bˆ0 and bˆ1:

((v (literal-manifold-function ’f-rect R2-rect)) R2-rect-point)
(+ (* (((partial 0) f-rect) (up x0 y0)) (bˆ0 (up x0 y0)))

(* (((partial 1) f-rect) (up x0 y0)) (bˆ1 (up x0 y0))))

This result is what we expect from equation (3.6).
We can recover the coordinate components of the vector field

by applying the vector field to the coordinate chart:

2An operator is just like a procedure except that multiplication is interpreted
as composition. For example, the derivative procedure is made into an oper-
ator D so that we can say (expt D 2) and expect it to compute the second
derivative. The procedure procedure->vector-field makes a vector-field op-
erator.

3.1 Vector Fields 25

((v (chart R2-rect)) R2-rect-point)
(up (bˆ0 (up x y)) (bˆ1 (up x y)))

Coordinate Representation

The vector field v has a coordinate representation v:

v(f)(m) = D(f ◦ χ−1)(χ(m)) b(χ(m))

= Df(x) b(x)

= v(f)(x), (3.8)

with the definitions f = f ◦ χ−1 and x = χ(m). The function b is
the coefficient function for the vector field v. It provides a scale
factor for the component in each coordinate direction. However, v
is the coordinate representation of the vector field v in that it takes
directional derivatives of coordinate representations of manifold
functions.

Given a vector field v and a coordinate system coordsys we can
construct the coordinate representation of the vector field.3

(define (coordinatize v coordsys)
(define ((coordinatized-v f) x)
(let ((b (compose (v (chart coordsys))

(point coordsys))))
(* ((D f) x) (b x)))))

(make-operator coordinatized-v))

We can apply a coordinatized vector field to a function of coordi-
nates to get the same answer as before.

(((coordinatize v R2-rect) (literal-function ’f-rect R2->R))
(up ’x0 ’y0))

(+ (* (((partial 0) f-rect) (up x0 y0)) (bˆ0 (up x0 y0)))
(* (((partial 1) f-rect) (up x0 y0)) (bˆ1 (up x0 y0))))

Vector Field Properties

The vector fields on a manifold form a vector space over the field
of real numbers and a module over the ring of real-valued manifold
functions. A module is like a vector space except that there is no
multiplicative inverse operation on the scalars of a module. Man-
ifold functions that are not the zero function do not necessarily

3The make-operator procedure takes a procedure and returns an operator.

26 Chapter 3 Vector Fields and One-Form Fields

have multiplicative inverses, because they can have isolated zeros.
So the manifold functions form a ring, not a field, and vector fields
must be a module over the ring of manifold functions rather than
a vector space.

Vector fields have the following properties. Let u and v be
vector fields and let α be a real-valued manifold function. Then

(u+ v)(f) = u(f) + v(f) (3.9)

(αu)(f) = α(u(f)). (3.10)

Vector fields are linear operators. Assume f and g are functions
on the manifold, a and b are real constants.4 The constants a and
b are not manifold functions, because vector fields take derivatives.
See equation (3.13).

v(af + bg)(m) = av(f)(m) + bv(g)(m) (3.11)

v(af)(m) = av(f)(m) (3.12)

Vector fields satisfy the product rule (Leibniz rule).

v(fg)(m) = v(f)(m) g(m) + f(m) v(g)(m) (3.13)

Vector fields satisfy the chain rule. Let F be a function on the
range of f.

v(F ◦ f)(m) = DF (f(m)) v(f)(m) (3.14)

3.2 Coordinate-Basis Vector Fields

For an n-dimensional manifold any set of n linearly independent
vector fields5 form a basis in that any vector field can be expressed
as a linear combination of the basis fields with manifold-function

4If f has structured output then v(f) is the structure resulting from v being
applied to each component of f.

5 A set of vector fields, {vi}, is linearly independent with respect to manifold
functions if we cannot find nonzero manifold functions, {ai}, such that∑
i

aivi(f) = 0(f),

where 0 is the vector field such that 0(f)(m) = 0 for all f and m.

3.2 Coordinate-Basis Vector Fields 27

coefficients. Given a coordinate system we can construct a ba-
sis as follows: we choose the component tuple bi(x) (see equa-
tion 3.5) to be the ith unit tuple ui(x)—an up tuple with one
in the ith position and zeros in all other positions—selecting the
partial derivative in that direction. Here ui is a constant function.
Like b, it formally takes coordinates of a point as an argument,
but it ignores them. We then define the basis vector field Xi by

Xi(f)(m) = D(f ◦ χ−1)(χ(m)) ui(χ(m))

= ∂i(f ◦ χ
−1)(χ(m)). (3.15)

In terms of Xi the vector field of equation (3.6) is

v(f)(m) =
∑
i

Xi(f)(m) bi(χ(m)). (3.16)

We can also write

v(f)(m) = X(f)(m) b(χ(m)), (3.17)

letting the tuple algebra do its job.
The basis vector field is often written

∂

∂xi
= Xi, (3.18)

to call to mind that it is an operator that computes the directional
derivative in the ith coordinate direction.

In addition to making the coordinate functions, the procedure
define-coordinates also makes the traditional named basis vec-
tors. Using these we can examine the application of a rectangular
basis vector to a polar coordinate function:

(define-coordinates (up x y) R2-rect)
(define-coordinates (up r theta) R2-polar)

((d/dx (square r)) R2-rect-point)
(* 2 x0)

More general functions and vectors can be made as combinations
of these simple pieces:

(((+ d/dx (* 2 d/dy)) (+ (square r) (* 3 x))) R2-rect-point)
(+ 3 (* 2 x0) (* 4 y0))

28 Chapter 3 Vector Fields and One-Form Fields

Coordinate Transformations

Consider a coordinate change from the chart χ to the chart χ′.

X(f)(m) = D(f ◦ χ−1)(χ(m))

= D(f ◦ (χ′)−1 ◦ χ′ ◦ χ−1)(χ(m))

= D(f ◦ (χ′)−1)(χ′(m))(D(χ′ ◦ χ−1))(χ(m))

= X′(f)(m)(D(χ′ ◦ χ−1))(χ(m)). (3.19)

This is the rule for the transformation of basis vector fields. The
second factor can be recognized as “∂x′/∂x,” the Jacobian.6

The vector field does not depend on coordinates. So, from
equation (3.17), we have

v(f)(m) = X(f)(m) b(χ(m)) = X′(f)(m) b′(χ′(m)). (3.20)

Using equation (3.19) with x = χ(m) and x′ = χ′(m), we deduce

D(χ′ ◦ χ−1)(x) b(x) = b′(x′). (3.21)

Because χ′ ◦χ−1 is the inverse function of χ ◦ (χ′)−1, their deriva-
tives are multiplicative inverses,

D(χ′ ◦ χ−1)(x) = (D(χ ◦ (χ′)−1)(x′))−1, (3.22)

and so

b(x) = D(χ ◦ (χ′)−1)(x′) b′(x′), (3.23)

as expected.7

It is traditional to express this rule by saying that the basis
elements transform covariantly and the coefficients of a vector in

6This notation helps one remember the transformation rule:

∂f

∂xi
=

∑
j

∂f

∂x′j

∂x′j

∂xi
,

which is the relation in the usual Leibniz notation. As Spivak pointed out in
Calculus on Manifolds, p.45, f means something different on each side of the
equation.

7For coordinate paths q and q′ related by q(t) = (χ◦(χ′)−1)(q′(t)) the velocities
are related by Dq(t) = D(χ ◦ (χ′)−1)(q′(t))Dq′(t). Abstracting off paths, we
get v = D(χ ◦ (χ′)−1)(x′)v′.

3.3 Integral Curves 29

terms of a basis transform contravariantly; their product is invari-
ant under the transformation.

3.3 Integral Curves

A vector field gives a direction and rate for every point on a mani-
fold. We can start at any point and go in the direction specified by
the vector field, tracing out a parametric curve on the manifold.
This curve is an integral curve of the vector field.

More formally, let v be a vector field on the manifold M. An
integral curve γvm : R→ M of v is a parametric path onM satisfying

D(f ◦ γvm)(t) = v(f)(γvm(t)) = (v(f) ◦ γvm)(t) (3.24)

γvm(0) = m, (3.25)

for arbitrary functions f on the manifold, with real values or struc-
tured real values. The rate of change of a function along an inte-
gral curve is the vector field applied to the function evaluated at
the appropriate place along the curve. Often we will simply write
γ, rather than γvm. Another useful variation is φv

t (m) = γvm(t).
We can recover the differential equations satisfied by a coor-

dinate representation of the integral curve by letting f = χ, the
coordinate function, and letting σ = χ ◦ γ be the coordinate path
corresponding to the curve γ. Then the derivative of the coordi-
nate path σ is

Dσ(t) = D(χ ◦ γ)(t)

= (v(χ) ◦ γ)(t)

= (v(χ) ◦ χ−1 ◦ χ ◦ γ)(t)

= (b ◦ σ)(t), (3.26)

where b = v(χ) ◦χ−1 is the coefficient function for the vector field
v for coordinates χ (see equation 3.7). So the coordinate path σ
satisfies the differential equations

Dσ = b ◦ σ. (3.27)

Differential equations for the integral curve can be expressed
only in a coordinate representation, because we cannot go from
one point on the manifold to another by addition of an increment.

30 Chapter 3 Vector Fields and One-Form Fields

However, we can do this by adding the coordinates to an increment
of coordinates and then finding the corresponding point on the
manifold.

Iterating the process described by equation (3.24) we can com-
pute higher-order derivatives of functions along the integral curve:

D(f ◦ γ) = v(f) ◦ γ

D2(f ◦ γ) = D(v(f) ◦ γ) = v(v(f)) ◦ γ

...

Dn(f ◦ γ) = vn(f) ◦ γ (3.28)

Thus, the evolution of f ◦ γ can be written formally as a Taylor
series in the parameter:

(f ◦ γ)(t)

= (f ◦ γ)(0) + tD(f ◦ γ)(0) +
1

2
t2 D2(f ◦ γ)(0) + · · ·

= (etD(f ◦ γ))(0)

= (etvf)(γ(0)). (3.29)

Using φ rather than γ

(f ◦ γvm)(t) = (f ◦ φv
t)(m), (3.30)

so, when the series converges,

(etvf)(m) = (f ◦ φv
t)(m). (3.31)

In particular, let f = χ, then

σ(t) = (χ ◦ γ)(t) = (etD(χ ◦ γ))(0) = (etvχ)(γ(0)), (3.32)

a Taylor series representation of the solution to the differential
equation (3.27).

For example, a vector field circular that generates a rotation
about the origin is:8

8In this expression d/dx and d/dy are vector fields that take directional deriva-
tives of manifold functions and evaluate them at manifold points; x and y are
manifold functions. define-coordinates was used to create these operators
and functions, see page 27.

Note that circular is an operator—a property inherited from d/dx and
d/dy.

3.3 Integral Curves 31

(define circular (- (* x d/dy) (* y d/dx)))

We can exponentiate the circular vector field, to generate an
evolution in a circle around the origin starting at (1, 0):

(series:for-each print-expression
(((exp (* ’t circular)) (chart R2-rect))
((point R2-rect) (up 1 0)))
6)

(up 1 0)
(up 0 t)
(up (* -1/2 (expt t 2)) 0)
(up 0 (* -1/6 (expt t 3)))
(up (* 1/24 (expt t 4)) 0)
(up 0 (* 1/120 (expt t 5)))

These are the first six terms of the series expansion of the coordi-
nates of the position for parameter t.

We can define an evolution operator EΔt,v using equation (3.31)

(EΔt,vf)(m) = (eΔtvf)(m) = (f ◦ φv
Δt)(m). (3.33)

We can approximate the evolution operator by summing the
series up to a given order:

(define ((((evolution order) delta-t v) f) m)
(series:sum
(((exp (* delta-t v)) f) m)
order))

We can evolve circular from the initial point up to the parame-
ter t, and accumulate the first six terms as follows:

((((evolution 6) ’delta-t circular) (chart R2-rect))
((point R2-rect) (up 1 0)))

(up (+ (* -1/720 (expt delta-t 6))
(* 1/24 (expt delta-t 4))
(* -1/2 (expt delta-t 2))
1)

(+ (* 1/120 (expt delta-t 5))
(* -1/6 (expt delta-t 3))
delta-t))

Note that these are just the series for cosΔt and sinΔt, so the
coordinate tuple of the evolved point is (cosΔt, sinΔt).

32 Chapter 3 Vector Fields and One-Form Fields

For functions whose series expansions have finite radius of con-
vergence, evolution can progress beyond the point at which the
Taylor series converges because evolution is well defined whenever
the integral curve is defined.

Exercise 3.1: State Derivatives

Newton’s equations for the motion of a particle in a plane, subject to
a force that depends only on the position in the plane, are a system
of second-order differential equations for the rectangular coordinates
(X,Y) of the particle:

D2X(t) = Ax(X(t), Y (t)) and D2Y (t) = Ay(X(t), Y (t)),

where A is the acceleration of the particle.
These are equivalent to a system of first-order equations for the coor-

dinate path σ = χ ◦ γ, where χ = (t, x, y, vx, vy) is a coordinate system
on the manifold R5. Then our equations are:

D(t ◦ γ) = 1

D(x ◦ γ) = vx ◦ γ

D(y ◦ γ) = vy ◦ γ

D(vx ◦ γ) = Ax(x ◦ γ, y ◦ γ)

D(vy ◦ γ) = Ay(x ◦ γ, y ◦ γ)

Construct a vector field on R5 corresponding to this system of differen-
tial equations. Derive the first few terms in the series solution of this
problem by exponentiation.

3.4 One-Form Fields

A vector field that gives a velocity for each point on a topographic
map of the surface of the Earth can be applied to a function, such
as one that gives the height for each point on the topographic
map, or a map that gives the temperature for each point. The
vector field then provides the rate of change of the height or tem-
perature as one moves in the way described by the vector field.
Alternatively, we can think of a topographic map, which gives the
height at each point, as measuring a velocity field at each point.
For example, we may be interested in the velocity of the wind or
the trajectories of migrating birds. The topographic map gives
the rate of change of height at each point for each velocity vec-
tor field. The rate of change of height can be thought of as the

3.4 One-Form Fields 33

number of equally-spaced (in height) contours that are pierced by
each velocity vector in the vector field.

Differential of a Function

For example, consider the differential 9 df of a manifold function
f, defined as follows. If df is applied to a vector field v we obtain

df(v) = v(f), (3.34)

which is a function of a manifold point.
The differential of the height function on the topographic map is

a function that gives the rate of change of height at each point for
a velocity vector field. This gives the same answer as the velocity
vector field applied to the height function.

The differential of a function is linear in the vector fields. The
differential is also a linear operator on functions: if f1 and f2 are
manifold functions, and if c is a real constant, then

d(f1 + f2) = df1 + df2

and

d(cf) = cdf.

Note that c is not a manifold function.

One-Form Fields

A one-form field is a generalization of this idea; it is something
that measures a vector field at each point.

One-form fields are linear functions of vector fields that produce
real-valued functions on the manifold. A one-form field is linear
in vector fields: if ω is a one-form field, v and w are vector fields,
and c is a manifold function, then

ω(v+ w) = ω(v) + ω(w) (3.35)

and

ω(cv) = cω(v). (3.36)

9The differential of a manifold function will turn out to be a special case of
the exterior derivative, which will be introduced later.

34 Chapter 3 Vector Fields and One-Form Fields

Sums and scalar products of one-form fields on a manifold have
the following properties. If ω and θ are one-form fields, and if f
is a real-valued manifold function, then:

(ω + θ)(v) = ω(v) + θ(v), (3.37)

(f ω)(v) = f ω(v). (3.38)

3.5 Coordinate-Basis One-Form Fields

Given a coordinate function χ, we define the coordinate-basis one-
form fields X̃i by

X̃i(v)(m) = v(χi)(m) (3.39)

or collectively

X̃(v)(m) = v(χ)(m). (3.40)

With this definition the coordinate-basis one-form fields are dual
to the coordinate-basis vector fields in the following sense (see
equation 3.15):10

X̃i(Xj)(m) = Xj(χ
i)(m) = ∂j(χ

i ◦ χ−1)(χ(m)) = δij . (3.41)

The tuple of basis one-form fields X̃(v)(m) is an up structure like
that of χ.

The general one-form field ω is a linear combination of coordinate-
basis one-form fields:

ω(v)(m) = a(χ(m)) X̃(v)(m) =
∑
i

ai(χ(m)) X̃i(v)(m), (3.42)

with coefficient-function tuple a(x), for x = χ(m). We can write
this more simply as

ω(v) = (a ◦ χ) X̃(v), (3.43)

because everything is evaluated at m.

10The Kronecker delta δij is one if i = j and zero otherwise.

3.5 Coordinate-Basis One-Form Fields 35

The coefficient tuple can be recovered from the one-form field:11

ai(x) = ω(Xi)(χ
−1(x)). (3.44)

This follows from the dual relationship (3.41). We can see this as
a program:12

(define omega
(components->1form-field
(down (literal-function ’a 0 R2->R)

(literal-function ’a 1 R2->R))
R2-rect))

((omega (down d/dx d/dy)) R2-rect-point)
(down (a 0 (up x0 y0)) (a 1 (up x0 y0)))

We provide a shortcut for this construction:

(define omega (literal-1form-field ’a R2-rect))

A differential can be expanded in a coordinate basis:

df(v) =
∑
i

ciX̃
i(v). (3.45)

The coefficients ci = df(Xi) = Xi(f) = ∂i(f◦χ
−1)◦χ are the partial

derivatives of the coordinate representation of f in the coordinate
system of the basis:

(((d (literal-manifold-function ’f-rect R2-rect))
(coordinate-system->vector-basis R2-rect))

R2-rect-point)
(down (((partial 0) f-rect) (up x0 y0))

(((partial 1) f-rect) (up x0 y0)))

However, if the coordinate system of the basis differs from the
coordinates of the representation of the function, the result is
complicated by the chain rule:

11The analogous recovery of coefficient tuples from vector fields is equa-
tion (3.3): biχ,v = v (χi) ◦ χ−1.

12The procedure components->1form-field is analogous to the procedure
components->vector-field introduced earlier.

36 Chapter 3 Vector Fields and One-Form Fields

(((d (literal-manifold-function ’f-polar R2-polar))
(coordinate-system->vector-basis R2-rect))

((point R2-polar) (up ’r ’theta)))
(down (- (* (((partial 0) f-polar) (up r theta)) (cos theta))

(/ (* (((partial 1) f-polar) (up r theta))
(sin theta))

r))
(+ (* (((partial 0) f-polar) (up r theta)) (sin theta))

(/ (* (((partial 1) f-polar) (up r theta))
(cos theta))

r)))

The coordinate-basis one-form fields can be used to find the
coefficients of vector fields in the corresponding coordinate vector-
field basis:

X̃i(v) = v(χi) = bi ◦ χ (3.46)

or collectively,

X̃(v) = v(χ) = b ◦ χ. (3.47)

A coordinate-basis one-form field is often written dxi. This
traditional notation for the coordinate-basis one-form fields is jus-
tified by the relation:

dxi = X̃i = d(χi). (3.48)

The define-coordinates procedure also makes the basis one-
form fields with these traditional names inherited from the coor-
dinates.

We can illlustrate the duality of the coordinate-basis vector
fields and the coordinate-basis one-form fields:

(define-coordinates (up x y) R2-rect)

((dx d/dy) R2-rect-point)
0

((dx d/dx) R2-rect-point)
1

We can use the coordinate-basis one-form fields to extract the
coefficients of circular on the rectangular vector basis:

3.5 Coordinate-Basis One-Form Fields 37

((dx circular) R2-rect-point)
(* -1 y0)

((dy circular) R2-rect-point)
x0

But we can also find the coefficients on the polar vector basis:

((dr circular) R2-rect-point)
0

((dtheta circular) R2-rect-point)
1

So circular is the same as d/dtheta, as we can see by applying
them both to the general function f:

(define f (literal-manifold-function ’f-rect R2-rect))
(((- circular d/dtheta) f) R2-rect-point)
0

Not All One-Form Fields Are Differentials

Although all one-form fields can be constructed as linear combi-
nations of basis one-form fields, not all one-form fields are differ-
entials of functions.

The coefficients of a differential are (see equation 3.45):

ci = Xi(f) = df(Xi) (3.49)

and partial derivatives of functions commute

Xi(Xj(f)) = Xj(Xi(f)). (3.50)

As a consequence, the coefficients of a differential are constrained

Xi(cj) = Xj(ci), (3.51)

but a one-form field can be constructed with arbitrary coefficient
functions. For example:

xdx+ xdy (3.52)

is not a differential of any function. This is why we started with
the basis one-form fields and built the general one-form fields in
terms of them.

38 Chapter 3 Vector Fields and One-Form Fields

Coordinate Transformations

Consider a coordinate change from the chart χ to the chart χ′.

X̃(v) = v(χ)

= v(χ ◦ (χ′)−1 ◦ χ′)

= (D(χ ◦ (χ′)−1) ◦ χ′) v(χ′)

= (D(χ ◦ (χ′)−1) ◦ χ′) X̃′(v), (3.53)

where the third line follows from the chain rule for vector fields.
One-form fields are independent of coordinates. So,

ω(v) = (a ◦ χ) X̃(v) = (a′ ◦ χ′) X̃′(v). (3.54)

Eqs. (3.54) and (3.53) require that the coefficients transform under
coordinate transformations as follows:

a(χ(m)) D(χ ◦ (χ′)−1)(χ′(m)) = a′(χ′(m)), (3.55)

or

a(χ(m)) = a′(χ′(m)) (D(χ ◦ (χ′)−1)(χ′(m)))−1. (3.56)

The coefficient tuple a(x) is a down structure compatible for
contraction with b(x). Let v be the vector with coefficient tuple
b(x), and ω be the one-form with coefficient tuple a(x). Then, by
equation (3.43),

ω(v) = (a ◦ χ) (b ◦ χ). (3.57)

As a program:

(define omega (literal-1form-field ’a R2-rect))

(define v (literal-vector-field ’b R2-rect))

((omega v) R2-rect-point)
(+ (* (bˆ0 (up x y)) (a 0 (up x0 y0)))

(* (bˆ1 (up x y)) (a 1 (up x0 y0))))

Comparing equation (3.56) with equation (3.23) we see that
one-form components and vector components transform oppo-
sitely, so that

a(x) b(x) = a′(x′) b′(x′), (3.58)

as expected because ω(v)(m) is independent of coordinates.

3.5 Coordinate-Basis One-Form Fields 39

Exercise 3.2: Verification

Verify that the coefficients of a one-form field transform as described in
equation (3.56). You should use equation (3.44) in your derivation.

Exercise 3.3: Hill Climbing

The topography of a region on the Earth can be specified by a manifold
function h that gives the altitude at each point on the manifold. Let
v be a vector field on the manifold, perhaps specifying a direction and
rate of walking at every point on the manifold.

a. Form an expression that gives the power that must be expended to
follow the vector field at each point.

b. Write this as a computational expression.

4
Basis Fields

A vector field may be written as a linear combination of basis
vector fields. If n is the dimension, then any set of n linearly
independent vector fields may be used as a basis. The coordinate
basis X is an example of a basis.1 We will see later that not every
basis is a coordinate basis: in order to be a coordinate basis,
there must be a coordinate system such that each basis element is
the directional derivative operator in a corresponding coordinate
direction.

Let e be a tuple of basis vector fields, such as the coordinate
basis X. The general vector field v applied to an arbitrary manifold
function f can be expressed as a linear combination

v(f)(m) = e(f)(m) b(m) =
∑
i

ei(f)(m) bi(m), (4.1)

where b is a tuple-valued coefficient function on the manifold.
When expressed in a coordinate basis, the coefficients that specify
the direction of the vector are naturally expressed as functions
bi of the coordinates of the manifold point. Here, the coefficient
function b is more naturally expressed as a tuple-valued function
on the manifold. If b is the coefficient function expressed as a
function of coordinates, then b = b ◦ χ is the coefficient function
as a function on the manifold.

The coordinate-basis forms have a simple definition in terms of
the coordinate-basis vectors and the coordinates (equation 3.40).
With this choice, the dual property, equation (3.41), holds without
further fuss. More generally, we can define a basis of one-forms ẽ
that is dual to e in that the property

ẽi(ej)(m) = δij (4.2)

is satisfied, analogous to property (3.41). Figure 4.1 illustrates
the duality of basis fields.

1We cannot say if the basis vectors are orthogonal or normalized until we
introduce a metric.

42 Chapter 4 Basis Fields

e1

e0

Figure 4.1 Let arrows e0 and e1 depict the vectors of a basis vector
field at a particular point. Then the foliations shown by the parallel
lines depict the dual basis one-form fields at that point. The dotted
lines represent the field ẽ0 and the dashed lines represent the field ẽ1.
The spacings of the lines are 1/3 unit. That the vectors pierce three
of the lines representing their duals and do not pierce any of the lines
representing the other basis elements is one way to see the relationship
ẽi(ej)(m) = δij .

To solve for the dual basis ẽ given the basis e, we express the
basis vectors e in terms of a coordinate basis2

ej(f) =
∑
k

Xk(f) c
k
j , (4.3)

and the dual one-forms ẽ in terms of the dual coordinate one-forms

ẽi(v) =
∑
l

dil X̃
l(v), (4.4)

2We write the vector components on the right and the tuple of basis vectors
on the left because if we think of the basis vectors as organized as a row and
the components as organized as a column then the formula is just a matrix
multiplication.

Chapter 4 Basis Fields 43

then

ẽi(ej) =
∑
l

dilX̃
l(ej)

=
∑
l

dilej(χ
l)

=
∑
l

dil

∑
k

Xk(χ
l)ckj

=
∑
kl

dilδ
l
kc

k
j

=
∑
k

dikc
k
j . (4.5)

Applying this at m we get

ẽi(ej)(m) = δij =
∑
k

dik(m)ckj (m). (4.6)

So the d coefficients can be determined from the c coefficents (es-
sentially by matrix inversion).

A set of vector fields {ei} may be linearly independent in the
sense that a weighted sum of them may not be identically zero over
a region, yet it may not be a basis in that region. The problem is
that there may be some places in the region where the vectors are
not independent. For example, two of the vectors may be parallel
at a point but not parallel elsewhere in the region. At such a point
m the determinant of the matrix c(m) is zero. So at these points
we cannot define the dual basis forms.3

The dual form fields can be used to determine the coefficients b
of a vector field v relative to a basis e, by applying the dual basis
form fields ẽ to the vector field. Let

v(f) =
∑
i

ei(f) b
i. (4.7)

Then

ẽj(v) = bj . (4.8)

3This is why the set of vector fields and the set of one-form fields are modules
rather than vector spaces.

44 Chapter 4 Basis Fields

Define two general vector fields:

(define e0
(+ (* (literal-manifold-function ’e0x R2-rect) d/dx)

(* (literal-manifold-function ’e0y R2-rect) d/dy)))

(define e1
(+ (* (literal-manifold-function ’e1x R2-rect) d/dx)

(* (literal-manifold-function ’e1y R2-rect) d/dy)))

We use these as a vector basis and compute the dual:

(define e-vector-basis (down e0 e1))
(define e-dual-basis

(vector-basis->dual e-vector-basis R2-polar))

The procedure vector-basis->dual requires an auxiliary coordi-
nate system (here R2-polar) to get the ckj coefficient functions

from which we compute the dik coefficient functions. However,
the final result is independent of this coordinate system. Then
we can verify that the bases e and ẽ satisfy the dual relationship
(equation 3.41) by applying the dual basis to the vector basis:

((e-dual-basis e-vector-basis) R2-rect-point)
(up (down 1 0) (down 0 1))

Note that the dual basis was computed relative to the polar coor-
dinate system: the resulting objects are independent of the coor-
dinates in which they were expressed!

Or we can make a general vector field with this basis and then
pick out the coefficients by applying the dual basis:

(define v
(* (up (literal-manifold-function ’b^0 R2-rect)

(literal-manifold-function ’b^1 R2-rect))
e-vector-basis))

((e-dual-basis v) R2-rect-point)
(up (bˆ0 (up x0 y0)) (bˆ1 (up x0 y0)))

4.1 Change of Basis

Suppose that we have a vector field v expressed in terms of one
basis e and we want to reexpress it in terms of another basis e′.
We have

4.1 Change of Basis 45

v(f) =
∑
i

ei(f)b
i =

∑
j

e′j(f)b
′j . (4.9)

The coefficients b′ can be obtained from v by applying the dual
basis

b′
j
= ẽ′j(v) =

∑
i

ẽ′j(ei)b
i. (4.10)

Let

J
j
i = ẽ′j(ei), (4.11)

then

b′
j
=

∑
i

J
j
ib

i, (4.12)

and

ei(f) =
∑
j

e′j(f)J
j
i . (4.13)

The Jacobian J is a structure of manifold functions. Using tuple
arithmetic, we can write

b′ = Jb (4.14)

and

e(f) = e′(f)J. (4.15)

We can write

(define (Jacobian to-basis from-basis)
(s:map/r (basis->1form-basis to-basis)

(basis->vector-basis from-basis)))

These are the rectangular components of a vector field:

(define b-rect
((coordinate-system->1form-basis R2-rect)
(literal-vector-field ’b R2-rect)))

The polar components are:

46 Chapter 4 Basis Fields

(define b-polar
(* (Jacobian (coordinate-system->basis R2-polar)

(coordinate-system->basis R2-rect))
b-rect))

(b-polar ((point R2-rect) (up ’x0 ’y0)))
(up
(/ (+ (* x0 (bˆ0 (up x0 y0))) (* y0 (bˆ1 (up x0 y0))))

(sqrt (+ (expt x0 2) (expt y0 2))))
(/ (+ (* x0 (bˆ1 (up x0 y0))) (* -1 y0 (bˆ0 (up x0 y0))))

(+ (expt x0 2) (expt y0 2))))

We can also get the polar components directly:

(((coordinate-system->1form-basis R2-polar)
(literal-vector-field ’b R2-rect))

((point R2-rect) (up ’x0 ’y0)))
(up
(/ (+ (* x0 (bˆ0 (up x0 y0))) (* y0 (bˆ1 (up x0 y0))))

(sqrt (+ (expt x0 2) (expt y0 2))))
(/ (+ (* x0 (bˆ1 (up x0 y0))) (* -1 y0 (bˆ0 (up x0 y0))))

(+ (expt x0 2) (expt y0 2))))

We see that they are the same.
If K is the Jacobian that relates the basis vectors in the other

direction

e′(f) = e(f)K (4.16)

then

KJ = I = JK (4.17)

where I is a manifold function that returns the multiplicative iden-
tity.

The dual basis transforms oppositely. Let

ω =
∑
i

aiẽ
i =

∑
i

a′iẽ
′i. (4.18)

4.2 Rotation Basis 47

The coefficients are4

ai = ω(ei) =
∑
j

a′j ẽ
′j(ei) =

∑
j

a′jJ
j
i (4.19)

or, in tuple arithmetic,

a = a′J. (4.20)

Because of equation (4.18) we can deduce

ẽ = Kẽ′. (4.21)

4.2 Rotation Basis

One interesting basis for rotations in 3-dimensional space is not a
coordinate basis.

Rotations are the actions of the special orthogonal group SO(3),
which is a 3-dimensional manifold. The elements of this group
may be represented by the set of 3 × 3 orthogonal matrices with
determinant +1.

We can use a coordinate patch on this manifold with Euler angle
coordinates: each element has three coordinates, θ, φ, ψ. A mani-
fold point may be represented by a rotation matrix. The rotation
matrix for Euler angles is a product of three simple rotations:
M(θ, φ, ψ) = Rz(φ)Rx(θ)Rz(ψ), where Rx and Rz are functions
that take an angle and produce the matrices representing rota-
tions about the x and z axes, respectively. We can visualize θ as
the colatitude of the pole from the ẑ-axis, φ as the longitude, and
ψ as the rotation around the pole.

Given a rotation specified by Euler angles, how do we change
the Euler angle to correspond to an incremental rotation of size
ε about the x̂-axis? The direction (a, b, c) is constrained by the
equation

Rx(ε)M(θ, φ, ψ) = M(θ + aε, φ+ bε, ψ + cε). (4.22)

4We see from equations (4.15) and (4.16) that J and K are inverses. We can

obtain their coefficients by: Jji = ẽ
′j(ei) and K

j
i = ẽ

j(e′i).

48 Chapter 4 Basis Fields

Linear equations for (a, b, c) can be found by taking the derivative
of this equation with respect to ε. We find

0 = c cos θ + b, (4.23)

0 = a sinφ− c cosφ sin θ, (4.24)

1 = c sinφ sin θ + a cosφ, (4.25)

with the solution

a = cosφ, (4.26)

b = −
sinφ cos θ

sin θ
, (4.27)

c =
sinφ

sin θ
. (4.28)

Therefore, we can write the basis vector field that takes directional
derivatives in the direction of incremental x rotations as

ex = a
∂

∂θ
+ b

∂

∂φ
+ c

∂

∂ψ

= cosφ
∂

∂θ
−

sinφ cos θ

sin θ

∂

∂φ
+

sinφ

sin θ

∂

∂ψ
. (4.29)

Similarly, vector fields for the incremental y and z rotations are

ey =
cosφ cos θ

sin θ

∂

∂φ
+ sinφ

∂

∂θ
−

cosφ

sin θ

∂

∂ψ
, (4.30)

ez =
∂

∂φ
. (4.31)

4.3 Commutators

The commutator of two vector fields is defined as

[v,w](f) = v(w(f)) − w(v(f)). (4.32)

In the special case that the two vector fields are coordinate basis
fields, the commutator is zero:

4.3 Commutators 49

[Xi,Xj](f) = Xi(Xj(f))− Xj(Xi(f))

= ∂i∂j(f ◦ χ
−1) ◦ χ− ∂j∂i(f ◦ χ

−1) ◦ χ

= 0, (4.33)

because the individual partial derivatives commute. The vanishing
commutator is telling us that we get to the same manifold point by
integrating from a point along first one basis vector field and then
another as from integrating in the other order. If the commutator
is zero we can use the integral curves of the basis vector fields to
form a coordinate mesh.

More generally, the commutator of two vector fields is a vector
field. Let v be a vector field with coefficient function c = c ◦ χ,
and u be a vector field with coefficient function b = b ◦ χ, both
with respect to the coordinate basis X. Then

[u, v](f) = u(v(f)) − v(u(f))

= u(
∑
i

Xi(f)c
i)− v(

∑
j

Xj(f)b
j)

=
∑
j

Xj(
∑
i

Xi(f)c
i)bj −

∑
i

Xi(
∑
j

Xj(f)b
j)ci

=
∑
ij

[Xj,Xi](f)c
ibj

+
∑
i

Xi(f)
∑
j

(Xj(c
i)bj − Xj(b

i)cj)

=
∑
i

Xi(f)a
i, (4.34)

where the coefficient function a of the commutator vector field is

ai =
∑
j

(
Xj(c

i)bj − Xj(b
i)cj

)
= u(ci)− v(bi). (4.35)

We used the fact, shown above, that the commutator of two co-
ordinate basis fields is zero.

50 Chapter 4 Basis Fields

We can check this formula for the commutator for the general
vector fields e0 and e1 in polar coordinates:

(let* ((polar-basis (coordinate-system->basis R2-polar))
(polar-vector-basis (basis->vector-basis polar-basis))
(polar-dual-basis (basis->1form-basis polar-basis))
(f (literal-manifold-function ’f-rect R2-rect)))

((- ((commutator e0 e1) f)
(* (- (e0 (polar-dual-basis e1))

(e1 (polar-dual-basis e0)))
(polar-vector-basis f)))

R2-rect-point))
0

Let e be a tuple of basis vector fields. The commutator of two
basis fields can be expressed in terms of the basis vector fields:

[ei, ej](f) =
∑
k

dkijek(f), (4.36)

where dkij are functions of m, called the structure constants for the
basis vector fields. The coefficients are

dkij = ẽk([ei, ej]). (4.37)

The commutator [u, v] with respect to a non-coordinate basis ei
is

[u, v](f) =
∑
k

ek(f)

(
u(ck)− v(bk) +

∑
ij

cibjdkji

)
. (4.38)

Define the vector fields Jx, Jy, and Jz that generate rotations
about the three rectangular axes in three dimensions:5

(define Jz (- (* x d/dy) (* y d/dx)))
(define Jx (- (* y d/dz) (* z d/dy)))
(define Jy (- (* z d/dx) (* x d/dz)))

5Using

(define R3-rect (coordinate-system-at ’rectangular ’origin R3))
(define-coordinates (up x y z) R3-rect)
(define R3-rect-point ((point R3-rect) (up ’x0 ’y0 ’z0)))
(define g (literal-manifold-function ’g-rect R3-rect))

4.3 Commutators 51

(((+ (commutator Jx Jy) Jz) g) R3-rect-point)
0
(((+ (commutator Jy Jz) Jx) g) R3-rect-point)
0
(((+ (commutator Jz Jx) Jy) g) R3-rect-point)
0

We see that

[Jx, Jy] = −Jz

[Jy, Jz] = −Jx

[Jz, Jx] = −Jy. (4.39)

We can also compute the commutators for the basis vector fields
ex, ey, and ez in the SO(3) manifold (see equations 4.29–4.31) that
correspond to rotations about the x, y, and z axes, respectively:6

(((+ (commutator e x e y) e z) f) SO3-point)
0
(((+ (commutator e y e z) e x) f) SO3-point)
0
(((+ (commutator e z e x) e y) f) SO3-point)
0

You can tell if a set of basis vector fields is a coordinate basis by
calculating the commutators. If they are nonzero, then the basis
is not a coordinate basis. If they are zero then the basis vector
fields can be integrated to give the coordinate system.

Recall equation (3.31)

(etvf)(m) = (f ◦ φv
t)(m). (4.40)

Iterating this equation, we find

(eswetvf)(m) = (f ◦ φv
t ◦ φ

w
s)(m). (4.41)

6Using

(define Euler-angles (coordinate-system-at ’Euler ’Euler-patch SO3))
(define Euler-angles-chi-inverse (point Euler-angles))
(define-coordinates (up theta phi psi) Euler-angles)
(define SO3-point ((point Euler-angles) (up ’theta ’phi ’psi)))
(define f (literal-manifold-function ’f-Euler Euler-angles))

52 Chapter 4 Basis Fields

Notice that the evolution under w occurs before the evolution
under v.

To illustrate the meaning of the commutator, consider the evo-
lution around a small loop with sides made from the integral
curves of two vector fields v and w. We will first follow v, then w,
then −v, and then −w:

(eεveεwe−εve−εwf)(m). (4.42)

To second order in ε the result is7

(eε
2[v,w]f)(m). (4.43)

This result is illustrated in figure 4.2.
Take a point 0 in M as the origin. Then, presuming [ei, ej] = 0,

the coordinates x of the point m in the coordinate system corre-
sponding to the e basis satisfy8

m = φxe
1 (0) = χ−1(x), (4.44)

where χ is the coordinate function being defined. Because the
elements of e commute, we can translate separately along the in-
tegral curves in any order and reach the same point; the terms
in the exponential can be factored into separate exponentials if
needed.

Exercise 4.1: Alternate Angles

Note that the Euler angles are singular at θ = 0 (where φ and ψ become
degenerate), so the representations of ex, ey, and ez (defined in equa-

7 For non-commuting operators A and B,

eAeBe−Ae−B

=

(
1 +A+

A2

2
+ · · ·

)(
1 +B +

B2

2
+ · · ·

)

×

(
1− A+

A2

2
+ · · ·

)(
1−B +

B2

2
+ · · ·

)

= 1 + [A,B] + · · · ,

to second order in A and B. All higher-order terms can be written in terms
of higher-order commutators of A and B. An example of a higher-order com-
mutator is [A, [A,B]].

8Here x is an up-tuple structure of components, and e is down-tuple structure
of basis vectors. The product of the two contracts to make a scaled vector,
along which we translate by one unit.

4.3 Commutators 53

ε
2[v,w]

−εw

−εv

m

εv

εw

Figure 4.2 The commutator of two vector fields computes the residual
of a small loop following their integral curves.

tions 4.29–4.31) have problems there. An alternate coordinate system
avoids this problem, while introducing a similar problem elsewhere in
the manifold.

Consider the “alternate angles” (θa, φa, ψa) which define a rotation
matrix via M (θa, φa, ψa) = Rz (φa)Rx (θa)Ry (ψa).

a. Where does the singularity appear in these alternate coordinates?
Do you think you could define a coordinate system for rotations that
has no singularities?

b. What do the ex, ey, and ez basis vector fields look like in this coor-
dinate system?

Exercise 4.2: General Commutators

Verify equation (4.38).

Exercise 4.3: SO(3) Basis and Angular Momentum Basis

How are Jx, Jy, and Jz related to ex, ey, and ez in equations (4.29–4.31)?

5
Integration

We know how to integrate real-valued functions of a real variable.
We want to extend this idea to manifolds, in such a way that the
integral is independent of the coordinate system used to compute
it.

The integral of a real-valued function of a real variable is the
limit of a sum of products of the values of the function on subinter-
vals and the lengths of the increments of the independent variable
in those subintervals:∫ b

a
f =

∫ b

a
f(x) dx = lim

Δxi→0

∑
i

f (xi)Δxi. (5.1)

If we change variables (x = g(y)), then the form of the integral
changes:∫ b

a
f =

∫ b

a
f(x) dx

=

∫ g−1(b)

g−1(a)
f(g(y))Dg(y)dy

=

∫ g−1(b)

g−1(a)
(f ◦ g)Dg. (5.2)

We can make a coordinate-independent notion of integration in
the following way. An interval of the real line is a 1-dimensional
manifold with boundary. We can assign a coordinate chart χ to
this manifold. Let x = χ(m). The coordinate basis is associated
with a coordinate-basis vector field, here ∂/∂x. Let ω be a one-
form on this manifold. The application of ω to ∂/∂x is a real-
valued function on the manifold. If we compose this with the
inverse chart, we get a real-valued function of a real variable. We
can then write the usual integral of this function

I =

∫ b

a
ω(∂/∂x) ◦ χ−1. (5.3)

56 Chapter 5 Integration

It turns out that the value of this integral is independent of the
coordinate chart used in its definition. Consider a different coor-
dinate chart x′ = χ′(m), with associated basis vector field ∂/∂x′.
Let g = χ′ ◦ χ−1. We have∫ b′

a′
ω (∂/∂x′) ◦ χ′−1

=

∫ b′

a′
ω
(
∂/∂x

(
D

(
χ ◦ χ′−1

)
◦ χ′

))
◦ χ′−1

=

∫ b′

a′

(
ω(∂/∂x)D

(
χ ◦ χ′−1

)
◦ χ′

)
◦ χ′−1

=

∫ b′

a′

(
ω(∂/∂x) ◦ χ′−1

)
D

(
χ ◦ χ′−1

)
=

∫ b

a

(((
ω(∂/∂x) ◦ χ−1

)
D

(
χ ◦ χ′−1

))
◦ g

)
Dg

=

∫ b

a
ω(∂/∂x) ◦ χ−1, (5.4)

where we have used the rule for coordinate transformations of
basis vectors (equation 3.19), linearity of forms in the first two
lines, and the rule for change-of-variables under an integral in the
last line.1

Because the integral is independent of the coordinate chart, we
can write simply

I =

∫
M

ω, (5.5)

whereM is the 1-dimensional manifold with boundary correspond-
ing to the interval.

We are exploiting the fact that coordinate basis vectors in dif-
ferent coordinate systems are related by a Jacobian (see equa-
tion 3.19), which cancels the Jacobian that appears in the change-
of-variables formula for integration (see equation 5.2).

1 Note (D (χ ◦ χ′−1) ◦ (χ′ ◦ χ−1))D(χ′ ◦ χ−1) = 1. With g = χ′ ◦ χ−1 this is
(D(g−1) ◦ g) (Dg) = 1.

5.1 Higher Dimensions 57

5.1 Higher Dimensions

We have seen that we can integrate one-forms on 1-dimensional
manifolds. We need higher-rank forms that we can integrate on
higher-dimensional manifolds in a coordinate-independent man-
ner.

Consider the integral of a real-valued function, f : Rn → R, over
a region U in Rn. Under a coordinate transformation g : Rn → Rn,
we have2∫
U

f =

∫
g−1(U)

(f ◦ g) det (Dg) . (5.6)

A rank n form field takes n vector field arguments and produces
a real-valued manifold function: ω (v,w, . . . , u) (m). By analogy
with the 1-dimensional case, higher-rank forms are linear in each
argument. Higher-rank forms must also be antisymmetric under
interchange of any two arguments in order to make a coordinate-
free definition of integration analogous to equation (5.3).

Consider an integral in the coordinate system χ:∫
χ(U)

ω (X0,X1, . . .) ◦ χ
−1. (5.7)

Under coordinate transformations g = χ ◦ χ′−1, the integral be-
comes∫
χ′(U)

ω (X0,X1, . . .) ◦ χ
′−1 det (Dg) . (5.8)

Using the change-of-basis formula, equation (3.19):

X(f) = X′(f)(D(χ′ ◦ χ−1)) ◦ χ = X′(f)
(
D

(
g−1

))
◦ χ. (5.9)

If we let M = (D (g−1)) ◦ χ then

(ω (X0,X1, . . .) ◦ χ
′−1) det (Dg)

= (ω (X′M0,X
′M1, . . .) ◦ χ

′−1) det (Dg)

= (ω (X′
0,X

′
1, . . .) ◦ χ

′−1)α (M0,M1, . . .) det (Dg) , (5.10)

2The determinant is the unique function of the rows of its argument that i) is
linear in each row, ii) changes sign under any interchange of rows, and iii) is
one when applied to the identity multiplier.

58 Chapter 5 Integration

using the multilinearity of ω, where Mi is the ith column of M .
The function α is multilinear in the columns of M . To make a
coordinate-independent integration we want the expression (5.10)
to be the same as the integrand in

I ′ =

∫
χ′(U)

ω (X′
0,X

′
1, . . .) ◦ χ

′−1. (5.11)

For this to be the case, α (M0,M1, . . .) must be (det (Dg))−1 =
det(M). So α is an antisymmetric function, and thus so is ω.

Thus higher-rank form fields must be antisymmetric multilinear
functions from vector fields to manifold functions. So we have a
coordinate-independent definition of integration of form fields on
a manifold and we can write

I = I ′ =

∫
U

ω. (5.12)

Wedge Product

There are several ways we can construct antisymmetric higher-
rank forms. Given two one-form fields ω and τ we can form a
two-form field ω ∧ τ as follows:

(ω ∧ τ)(v,w) = ω(v)τ (w)− ω(w)τ (v). (5.13)

More generally we can form the wedge of higher-rank forms. Let
ω be a k-form field and τ be an l-form field. We can form a
(k + l)-form field ω ∧ τ as follows:

ω ∧ τ =
(k + l)!

k! l!
Alt(ω ⊗ τ) (5.14)

where, if η is a function on m vectors,

Alt(η)(v0, . . . , vm−1)

=
1

m!

∑
σ∈Perm(m)

Parity(σ)η(vσ(0), . . . , vσ(m−1)), (5.15)

and where

ω ⊗ τ (v0, . . . , vk−1, vk, . . . , vk+l−1)

= ω(v0, . . . , vk−1)τ (vk, . . . , vk+l−1). (5.16)

5.1 Higher Dimensions 59

m
v(m)

u(m) A(u, v)(m)

Figure 5.1 The area of the parallelogram in the (x, y) coordinate
plane is given by A (u, v) (m).

The wedge product is associative, and thus we need not specify
the order of a multiple application. The factorial coefficients of
these formulas are chosen so that

(dx ∧ dy ∧ . . .) (∂/∂x, ∂/∂y, . . .) = 1. (5.17)

This is true independent of the coordinate system.
Equation (5.17) gives us∫

U

dx ∧ dy ∧ . . . = Volume(U) (5.18)

where Volume(U) is the ordinary volume of the region correspond-
ing to U in the Euclidean space of Rn with the orthonormal coor-
dinate system (x, y, . . .).3

An example two-form (see figure 5.1) is the oriented area of
a parallelogram in the (x, y) coordinate plane at the point m

spanned by two vectors u = u0∂/∂x + u1∂/∂y and v = v0∂/∂x +
v1∂/∂y, which is given by

A (u, v) (m) = u0 (m) v1 (m)− v0 (m) u1 (m) . (5.19)

3By using the word “orthonormal” here we are assuming that the range of
the coordinate chart is an ordinary Euclidean space with the usual Euclidean
metric. The coordinate basis in that chart is orthonormal. Under these con-
ditions we can usefully use words like “length,” “area,” and “volume” in the
coordinate space.

60 Chapter 5 Integration

Note that this is the area of the parallelogram in the coordinate
plane, which is the range of the coordinate function. It is not the
area on the manifold. To define that, we need more structure—the
metric. We will put a metric on the manifold in Chapter 9.

3-Dimensional Euclidean Space

Let’s specialize to 3-dimensional Euclidean space. Following equa-
tion (5.18) we can write the coordinate-area two-form in another
way: A = dx ∧ dy. As code:

(define-coordinates (up x y z) R3-rect)

(define u (+ (* ’u^0 d/dx) (* ’u^1 d/dy)))
(define v (+ (* ’v^0 d/dx) (* ’v^1 d/dy)))

(((wedge dx dy) u v) R3-rect-point)
(+ (* uˆ0 vˆ1) (* -1 uˆ1 vˆ0))

If we use cylindrical coordinates and define cylindrical vector
fields we get the analogous answer in cylindrical coordinates:

(define-coordinates (up r theta z) R3-cyl)

(define a (+ (* ’a^0 d/dr) (* ’a^1 d/dtheta)))
(define b (+ (* ’b^0 d/dr) (* ’b^1 d/dtheta)))

(((wedge dr dtheta) a b) ((point R3-cyl) (up ’r0 ’theta0 ’z0)))
(+ (* aˆ0 bˆ1) (* -1 aˆ1 bˆ0))

The moral of this story is that this is the area of the parallelogram
in the coordinate plane. It is not the area on the manifold!

There is a similar story with volumes. The wedge product of the
elements of the coordinate basis is a three-form that measures our
usual idea of coordinate volumes in R3 with a Euclidean metric:

(define u (+ (* ’u^0 d/dx) (* ’u^1 d/dy) (* ’u^2 d/dz)))
(define v (+ (* ’v^0 d/dx) (* ’v^1 d/dy) (* ’v^2 d/dz)))
(define w (+ (* ’w^0 d/dx) (* ’w^1 d/dy) (* ’w^2 d/dz)))

5.1 Higher Dimensions 61

(((wedge dx dy dz) u v w) R3-rect-point)
(+ (* uˆ0 vˆ1 wˆ2)

(* -1 uˆ0 vˆ2 wˆ1)
(* -1 uˆ1 vˆ0 wˆ2)
(* uˆ1 vˆ2 wˆ0)
(* uˆ2 vˆ0 wˆ1)
(* -1 uˆ2 vˆ1 wˆ0))

This last expression is the determinant of a 3× 3 matrix:

(- (((wedge dx dy dz) u v w) R3-rect-point)
(determinant
(matrix-by-rows (list ’u^0 ’u^1 ’u^2)

(list ’v^0 ’v^1 ’v^2)
(list ’w^0 ’w^1 ’w^2))))

0

If we did the same operations in cylindrical coordinates we would
get the analogous formula, showing that what we are computing
is volume in the coordinate space, not volume on the manifold.

Because of antisymmetry, if the rank of a form is greater than
the dimension of the manifold then the form is identically zero.
The k-forms on an n-dimensional manifold form a module of di-
mension

(n
k

)
. We can write a coordinate-basis expression for a

k-form as

ω =
n∑

i0,...,ik−1=0

ωi0,...,ik−1
dxi0 ∧ . . . ∧ dxik−1 . (5.20)

The antisymmetry of the wedge product implies that

ωiσ(0),...,iσ(k−1)
= Parity(σ)ωi0,...,ik−1

, (5.21)

from which we see that there are only
(n
k

)
independent components

of ω.

Exercise 5.1: Wedge Product

Pick a coordinate system and use the computer to verify that

a. the wedge product is associative for forms in your coordinate system;

b. formula (5.17) is true in your coordinate system.

62 Chapter 5 Integration

5.2 Exterior Derivative

The intention of introducing the exterior derivative is to capture
all of the classical theorems of “vector analysis” into one unified
Stokes’s Theorem, which asserts that the integral of a form on the
boundary of a manifold is the integral of the exterior derivative of
the form on the interior of the manifold:4∫
∂M

ω =

∫
M

dω. (5.22)

As we have seen in equation (3.34), the differential of a function
on a manifold is a one-form field. If a function on a manifold is
considered to be a form field of rank zero,5 then the differential
operator increases the rank of the form by one. We can generalize
this to k-form fields with the exterior derivative operation.

Consider a one-form ω. We define6

dω(v1, v2) = v1(ω(v2))− v2(ω(v1))− ω([v1, v2]). (5.23)

More generally, the exterior derivative of a k-form field is a k+1-
form field, given by:7

dω(v0, . . . , vk) = (5.24)
k∑

i=0

{
((−1)ivi(ω(v0, . . . , vi−1, vi+1, . . . , vk))+

k∑
j=i+1

(−1)i+j ω([vi, vj], v0, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk))} .

This formula is coordinate-system independent. This is the way
we compute the exterior derivative in our software.

4This is a generalization of the Fundamental Theorem of Calculus.

5A manifold function f induces a form field f̂ of rank 0 as follows:

f̂()(m) = f(m).

6The definition is chosen to make Stokes’s Theorem pretty.

7See Spivak, Differential Geometry, Volume 1, p.289.

5.2 Exterior Derivative 63

If the form field ω is represented in a coordinate basis

ω =
n−1∑

i0=0,...,ik−1=0

ai0,...,ik−1
dxi0 ∧ · · · ∧ dxik−1 (5.25)

then the exterior derivative can be expressed as

dω =
n−1∑

i0=0,...,ik−1=0

dai0,...,ik−1
∧ dxi0 ∧ · · · ∧ dxik−1 . (5.26)

Though this formula is expressed in terms of a coordinate basis,
the result is independent of the choice of coordinate system.

Computing Exterior Derivatives

We can test that the computation indicated by equation (5.24)
is equivalent to the computation indicated by equation (5.26) in
three dimensions with a general one-form field:

(define a (literal-manifold-function ’alpha R3-rect))
(define b (literal-manifold-function ’beta R3-rect))
(define c (literal-manifold-function ’gamma R3-rect))

(define theta (+ (* a dx) (* b dy) (* c dz)))

The test will require two arbitrary vector fields

(define X (literal-vector-field ’X-rect R3-rect))
(define Y (literal-vector-field ’Y-rect R3-rect))

(((- (d theta)
(+ (wedge (d a) dx)

(wedge (d b) dy)
(wedge (d c) dz)))

X Y)
R3-rect-point)

0

We can also try a general two-form field in 3-dimensional space:
Let

ω = ady ∧ dz+ bdz ∧ dx+ cdx ∧ dy, (5.27)

where a = α ◦ χ, b = β ◦ χ, c = γ ◦ χ, and α, β, and γ are
real-valued functions of three real arguments. As a program,

64 Chapter 5 Integration

(define omega
(+ (* a (wedge dy dz))

(* b (wedge dz dx))
(* c (wedge dx dy))))

Here we need another vector field because our result will be a
three-form field.

(define Z (literal-vector-field ’Z-rect R3-rect))

(((- (d omega)
(+ (wedge (d a) dy dz)

(wedge (d b) dz dx)
(wedge (d c) dx dy)))

X Y Z)
R3-rect-point)

0

Properties of Exterior Derivatives

The exterior derivative of the wedge of two form fields obeys the
graded Leibniz rule. It can be written in terms of the exterior
derivatives of the component form fields:

d(ω ∧ τ) = dω ∧ τ + (−1)kω ∧ dτ , (5.28)

where k is the rank of ω.
A form field ω that is the exterior derivative of another form

field ω = dθ is called exact. A form field whose exterior derivative
is zero is called closed.

Every exact form field is a closed form field: applying the exte-
rior derivative operator twice always yields zero:

d2ω = 0. (5.29)

This is equivalent to the statement that partial derivatives with
respect to different variables commute.8

It is easy to show equation (5.29) for manifold functions:

d2f(u, v) = d(df)(u, v)

= u(df(v)) − v(df(u)) − df([u, v])

= u(v(f)) − v(u(f)) − [u, v](f)

= 0 (5.30)

8See Spivak, Calculus on Manifolds, p.92

5.3 Stokes’s Theorem 65

Consider the general one-form field θ defined on 3-dimensional
rectangular space. Taking two exterior derivatives of θ yields a
three-form field. It is zero:

(((d (d theta)) X Y Z) R3-rect-point)
0

Not every closed form field is an exact form field. Whether a
closed form field is exact depends on the topology of a manifold.

5.3 Stokes’s Theorem

The proof of the general Stokes’s Theorem for n-dimensional ori-
entable manifolds is quite complicated, but it is easy to see how
it works for a 2-dimensional region M that can be covered with a
single coordinate patch.9

Given a coordinate chart χ(m) = (x(m), y(m)) we can obtain a
pair of coordinate-basis vectors ∂/∂x = X0 and ∂/∂y = X1.

The coordinate image of M can be divided into small rectan-
gular areas in the (x, y) coordinate plane. The union of the rect-
angular areas gives the coordinate image of M. The clockwise
integrals around the boundaries of the rectangles cancel on neigh-
boring rectangles, because the boundary is traversed in opposite
directions. But on the boundary of the coordinate image of M
the boundary integrals do not cancel, yielding an integral on the
boundary of M. Area integrals over the rectangular areas add to
produce an integral over the entire coordinate image of M.

So, consider Stokes’s Theorem on a small patch P of the mani-
fold for which the coordinates form a rectangular region (xmin <
x < xmax and ymin < y < ymax). Stokes’s Theorem on P states∫
∂P

ω =

∫
P

dω. (5.31)

The area integral on the right can be written as an ordinary mul-
tidimensional integral using the coordinate basis vectors (recall

9We do not develop the machinery for integration on chains that is usually
needed for a full proof of Stokes’s Theorem. This is adequately done in other
books. A beautiful treatment can be found in Spivak, Calculus on Manifolds
[17].

66 Chapter 5 Integration

that the integral is independent of the choice of coordinates):∫
χ(P)

dω (∂/∂x, ∂/∂y) ◦ χ−1 (5.32)

=

∫ xmax

xmin

∫ ymax

ymin

(∂/∂x(ω(∂/∂y)) − ∂/∂y(ω(∂/∂x))) ◦ χ−1.

We have used equation (5.23) to expand the exterior derivative.
Consider just the first term of the right-hand side of equa-

tion (5.32). Then using the definition of basis vector field ∂/∂x
we obtain∫ xmax

xmin

∫ ymax

ymin

(
∂/∂x(ω(∂/∂y)) ◦ χ−1

)
=

∫ xmax

xmin

∫ ymax

ymin

(
X0(ω(∂/∂y)) ◦ χ−1

)
=

∫ xmax

xmin

∫ ymax

ymin

∂0
(
(ω(∂/∂y)) ◦ χ−1

)
. (5.33)

This integral can now be evaluated using the Fundamental The-
orem of Calculus. Accumulating the results for both integrals∫
χ(P)

dω (∂/∂x, ∂/∂y) ◦ χ−1

=

∫ xmax

xmin

(
(ω(∂/∂x)) ◦ χ−1

)
(x, ymin)dx∫ ymax

ymin

(
(ω(∂/∂y)) ◦ χ−1

)
(xmax, y)dy

−

∫ xmax

xmin

(
(ω(∂/∂x)) ◦ χ−1

)
(x, ymax)dx

−

∫ ymax

ymin

(
(ω(∂/∂y)) ◦ χ−1

)
(xmin, y)dy

=

∫
∂P

ω, (5.34)

as was to be shown.

5.4 Vector Integral Theorems 67

5.4 Vector Integral Theorems

Green’s Theorem states that for an arbitrary compact setM ⊂ R2,
a 2-dimensional Euclidean space:∫
∂M

((α ◦ χ) dx+ (β ◦ χ) dy) =

∫
M
((∂0β − ∂1α) ◦ χ) dx ∧ dy.(5.35)

We can test this. By Stokes’s Theorem, the integrands are related
by an exterior derivative. We need some vectors to test our forms:

(define v (literal-vector-field ’v-rect R2-rect))
(define w (literal-vector-field ’w-rect R2-rect))

We can now test our integrands:10

(define alpha (literal-function ’alpha R2->R))
(define beta (literal-function ’beta R2->R))

(let ((dx (ref (basis->1form-basis R2-rect-basis) 0))
(dy (ref (basis->1form-basis R2-rect-basis) 1)))

(((- (d (+ (* (compose alpha (chart R2-rect)) dx)
(* (compose beta (chart R2-rect)) dy)))

(* (compose (- ((partial 0) beta)
((partial 1) alpha))

(chart R2-rect))
(wedge dx dy)))

v w)
R2-rect-point))

0

We can also compute the integrands for the Divergence Theo-
rem: For an arbitrary compact set M ⊂ R3 and a vector field w∫
M

div(w) dV =

∫
∂M

w · n dA (5.36)

where n is the outward-pointing normal to the surface ∂M . Again,
the integrands should be related by an exterior derivative, if this
is an instance of Stokes’s Theorem.

10Using (define R2-rect-basis (coordinate-system->basis R2-rect)).
Here we extract dx and dy from R2-rect-basis to avoid globally installing

coordinates.

68 Chapter 5 Integration

Note that even the statement of this theorem cannot be made
with the machinery we have developed at this point. The con-
cepts “outward-pointing normal,” area A, and volume V on the
manifold are not definable without using a metric (see Chapter 9).
However, for orthonormal rectangular coordinates in R3 we can
interpret the integrands in terms of forms.

Let the vector field describing the flow of stuff be

w = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z
. (5.37)

The rate of leakage of stuff through each element of the bound-
ary is w · n dA. We interpret this as the two-form

a dy ∧ dz+ b dz ∧ dx+ c dx ∧ dy, (5.38)

because any part of the boundary will have y-z, z-x, and x-y
components, and each such component will pick up contributions
from the normal component of the flux w. Formalizing this as
code we have

(define a (literal-manifold-function ’a-rect R3-rect))
(define b (literal-manifold-function ’b-rect R3-rect))
(define c (literal-manifold-function ’c-rect R3-rect))

(define flux-through-boundary-element
(+ (* a (wedge dy dz))

(* b (wedge dz dx))
(* c (wedge dx dy))))

The rate of production of stuff in each element of volume is
div(w) dV . We interpret this as the three-form(

∂

∂x
a+

∂

∂y
b+

∂

∂z
c

)
dx ∧ dy ∧ dz. (5.39)

or:

(define production-in-volume-element
(* (+ (d/dx a) (d/dy b) (d/dz c))

(wedge dx dy dz)))

Assuming Stokes’s Theorem, the exterior derivative of the leak-
age of stuff per unit area through the boundary must be the rate of
production of stuff per unit volume in the interior. We check this

5.4 Vector Integral Theorems 69

by applying the difference to arbitrary vector fields at an arbitrary
point:

(define X (literal-vector-field ’X-rect R3-rect))
(define Y (literal-vector-field ’Y-rect R3-rect))
(define Z (literal-vector-field ’Z-rect R3-rect))

(((- production-in-volume-element
(d flux-through-boundary-element))

X Y Z)
R3-rect-point)

0

as expected.

Exercise 5.2: Graded Formula

Derive equation (5.28).

Exercise 5.3: Iterated Exterior Derivative

We have shown that the equation (5.29) is true for manifold functions.
Show that it is true for any form field.

6
Over a Map

To deal with motion on manifolds we need to think about paths on
manifolds and vectors along these paths. Tangent vectors along
paths are not vector fields on the manifold because they are de-
fined only on the path. And the path may even cross itself, which
would give more than one vector at a point. Here we introduce
the concept of a vector field over a map.1 A vector field over a
map assigns a vector to each image point of the map. In general
the map may be a function from one manifold to another. If the
domain of the map is the manifold of the real line, the range of
the map is a 1-dimensional path on the target manifold. One pos-
sible way to define a vector field over a map is to assign a tangent
vector to each image point of a path, allowing us to work with
tangent vectors to paths. A one-form field over the map allows us
to extract the components of a vector field over the map.

6.1 Vector Fields Over a Map

Let μ be a map from points n in the manifold N to points m in the
manifold M. A vector over the map μ takes directional derivatives
of functions on M at points m = μ(n). The vector over the map
applied to the function on M is a function on N.

Restricted Vector Fields

One way to make a vector field over a map is to restrict a vector
field on M to the image of N over μ, as illustrated in figure 6.1.

Let v be a vector field on M, and f a function on M. Then

vμ(f) = v(f) ◦ μ, (6.1)

is a vector over the map μ. Note that vμ(f) is a function on N,
not M:

vμ(f)(n) = v(f)(μ(n)). (6.2)

1See Bishop and Goldberg, Tensor Analysis on Manifolds [3].

72 Chapter 6 Over a Map

N

μ

μ(N)

M

Figure 6.1 The vector field v on M is indicated by arrows. The solid
arrows are vμ, the restricted vector field over the map μ. The vector
field over the map is restricted to the image of N in M.

We can implement this definition as:

(define ((vector-field->vector-field-over-map mu:N->M) v-on-M)
(procedure->vector-field
(lambda (f-on-M)
(compose (v-on-M f-on-M) mu:N->M))))

Differential of a Map

Another way to construct a vector field over a map μ is to trans-
port a vector field from the source manifold N to the target man-
ifold M with the differential of the map

dμ(v)(f)(n) = v(f ◦ μ)(n), (6.3)

which takes its argument in the source manifold N. The differen-
tial of a map μ applied to a vector field v on N is a vector field
over the map. A procedure to compute the differential is:

(define (((differential mu) v) f)
(v (compose f mu)))

6.2 One-Form Fields Over a Map 73

The nomenclature of this subject is confused. The “differential
of a map between manifolds,” dμ, takes one more argument than
the “differential of a real-valued function on a manifold,” df, but
when the target manifold of μ is the reals and I is the identity
function on the reals,

dμ(v)(I)(n) = (v(I ◦ μ))(n) = (v(μ))(n) = dμ(v)(n). (6.4)

We avoid this problem in our notation by distinguishing d and d.
In our programs we encode d as differential and d as d.

Velocity at a Time

Let μ be the map from the time line to the manifold M, and ∂/∂t
be a basis vector on the time line. Then dμ(∂/∂t) is the vector
over the map μ that computes the rate of change of functions on
M along the path that is the image of μ. This is the velocity
vector. We can use the differential to assign a velocity vector to
each moment, solving the problem of multiple vectors at a point
if the path crosses itself.

6.2 One-Form Fields Over a Map

Given a one-form ω on the manifold M, the one-form over the
map μ : N→ M is constructed as follows:

ωμ(vμ)(n) = ω(u)(μ(n)), where u(f)(m) = vμ(f)(n). (6.5)

The object u is not really a vector field on M even though we have
given it that shape so that the dual vector can apply to it; u(f) is
evaluated only at images m = μ(n) of points n in N. If we were
defining u as a vector field we would need the inverse of μ to find
the point n = μ−1(m), but this is not required to define the object
u in a context where there is already an m associated with the n

of interest. To extend this idea to k-forms, we carry each vector
argument over the map.

The procedure that constructs a k-form over the map from a
k-form is:

74 Chapter 6 Over a Map

(define ((form-field->form-field-over-map mu:N->M) w-on-M)
(define (make-fake-vector-field V-over-mu n)
(define ((u f) m)

((V-over-mu f) n))
(procedure->vector-field u))

(procedure->nform-field
(lambda vectors-over-map
(lambda (n)

((apply w-on-M
(map (lambda (V-over-mu)

(make-fake-vector-field V-over-mu n))
vectors-over-map))

(mu:N->M n))))
(get-rank w-on-M)))

The internal procedure make-fake-vector-field counterfeits a
vector field u on M from the vector field over the map μ : N→ M.
This works here because the only value that is ever passed as m is
(mu:N->M n).

6.3 Basis Fields Over a Map

Let e be a tuple of basis vector fields, and ẽ be the tuple of basis
one-forms that is dual to e:

ẽi(ej)(m) = δij . (6.6)

The basis vectors over the map, eμ, are particular cases of vectors
over a map:

eμ(f) = e(f) ◦ μ. (6.7)

And the elements of the dual basis over the map, ẽμ, are particular
cases of one-forms over the map. The basis and dual basis over
the map satisfy

ẽiμ(e
μ
j)(n) = δij . (6.8)

6.3 Basis Fields Over a Map 75

Walking on a Sphere

For example, let μ map the time line to the unit sphere.2 We use
colatitude θ and longitude φ as coordinates on the sphere:

(define S2 (make-manifold S^2 2 3))
(define S2-spherical

(coordinate-system-at ’spherical ’north-pole S2))
(define-coordinates (up theta phi) S2-spherical)
(define S2-basis (coordinate-system->basis S2-spherical))

A general path on the sphere is:3

(define mu
(compose (point S2-spherical)

(up (literal-function ’theta)
(literal-function ’phi))

(chart R1-rect)))

The basis over the map is constructed from the basis on the sphere:

(define S2-basis-over-mu
(basis->basis-over-map mu S2-basis))

(define h
(literal-manifold-function ’h-spherical S2-spherical))

(((basis->vector-basis S2-basis-over-mu) h)
((point R1-rect) ’t0))

(down
(((partial 0) h-spherical) (up (theta t0) (phi t0)))
(((partial 1) h-spherical) (up (theta t0) (phi t0))))

The basis vectors over the map compute derivatives of the function
h evaluated on the path at the given time.

2We execute (define-coordinates t R1-rect) to make t the coordinate func-
tion of the real line.

3We provide a shortcut to make literal manifold maps:

(define mu (literal-manifold-map ’mu R1-rect S2-spherical))

But if we used this shortcut, the component functions would be named mu^0
and mu^1. Here we wanted to use more mnemonic names for the component
functions.

76 Chapter 6 Over a Map

We can check that the dual basis over the map does the correct
thing:

(((basis->1form-basis S2-basis-over-mu)
(basis->vector-basis S2-basis-over-mu))

((point R1-rect) ’t0))
(up (down 1 0) (down 0 1))

Components of the Velocity

Let χ be a tuple of coordinates on M, with associated basis vectors
Xi, and dual basis elements dxi. The vector basis and dual basis
over the map μ are X

μ
i and dxiμ. The components of the velocity

(rates of change of coordinates along the path μ) are obtained by
applying the dual basis over the map to the velocity

vi(t) = dxiμ(dμ(∂/∂t))(t), (6.9)

where t is the coordinate for the point t.
For example, the coordinate velocities on a sphere are

(((basis->1form-basis S2-basis-over-mu)
((differential mu) d/dt))

((point R1-rect) ’t0))
(up ((D theta) t0) ((D phi) t0)))

as expected.

6.4 Pullbacks and Pushforwards

Maps from one manifold to another can also be used to relate
the vector fields and one-form fields on one manifold to those
on the other. We have introduced two such relations: restricted
vector fields and the differential of a function. However, there are
other ways to relate the vector fields and form fields on different
manifolds that are connected by a map.

Pullback and Pushforward of a Function

The pullback of a function f on M over the map μ is defined as

μ∗f = f ◦ μ. (6.10)

6.4 Pullbacks and Pushforwards 77

This allows us to take a function defined on M and use it to define
a new function on N.

For example, the integral curve of v evolved for time t as a
function of the initial manifold point m generates a map φv

t of
the manifold onto itself. This is a simple currying4 of the integral
curve of v from m as a function of time: φv

t (m) = γvm(t). The
evolution of the function f along an integral curve, equation (3.33),
can be written in terms of the pullback over φv

t :

(Et,vf)(m) = f(φv
t (m)) = ((φv

t)
∗f)(m). (6.11)

This is implemented as:

(define ((pullback-function mu:N->M) f-on-M)
(compose f-on-M mu:N->M))

A vector field over the map that was constructed by restric-
tion (equation 6.1) can be seen as the pullback of the function
constructed by application of the vector field to a function:

vμ(f) = v(f) ◦ μ = μ∗(v(f)). (6.12)

A vector field over the map that was constructed by a differen-
tial (equation 6.3) can be seen as the vector field applied to the
pullback of the function:

dμ(v)(f)(n) = v(f ◦ μ)(n) = v(μ∗f)(n). (6.13)

If we have an inverse for the map μ we can also define a push-

forward of the function g, defined on the source manifold of the
map:5

μ∗g = g ◦ μ−1. (6.14)

4A function of two arguments may be seen as a function of one argument whose
value is a function of the other argument. This can be done in two different
ways, depending on which argument is supplied first. The general process of
specifying a subset of the arguments to produce a new function of the others
is called currying the function, in honor of the logician Haskell Curry (1900–
1982) who, with Moses Schönfinkel (1889–1942), developed combinatory logic.

5Notation note: superscript asterisk indicates pullback, subscript asterisk indi-
cates pushforward. Pullbacks and pushforwards are tightly binding operators,
so, for example μ∗f(n) = (μ∗f)(n).

78 Chapter 6 Over a Map

Pushforward of a Vector Field

We can also define the pushforward of a vector field over the map μ.
The pushforward takes a vector field v defined on N. The result
takes directional derivatives of functions on M at a place deter-
mined by a point in M:

μ∗v(f)(m) = v(μ∗f)(μ−1(m)) = v(f ◦ μ)(μ−1(m)), (6.15)

or

μ∗v(f) = μ∗(v(μ
∗f)). (6.16)

Here we expressed the pushforward of the vector field in terms of
pullbacks and pushforwards of functions. Note that the pushfor-
ward requires the inverse of the map.

If the map is from time to some configuration manifold and
represents the time evolution of a process, we can think of the
pushforward of a vector field as a velocity measured at a point
on the trajectory in the configuration manifold. By contrast, the
differential of the map applied to the vector field gives us the
velocity vector at each moment in time. Because a trajectory may
cross itself, the pushforward is not defined at any point where the
crossing occurs, but the differential is always defined.

Pushforward Along Integral Curves

We can push a vector field forward over the map generated by an
integral curve of a vector field w, because the inverse is always
available.6

((φw
t)∗v)(f)(m) = v((φw

t)
∗f)(φw

−t(m)) = v(f ◦ φw
t)(φ

w
−t(m)). (6.17)

This is implemented as:

(define ((pushforward-vector mu:N->M mu^-1:M->N) v-on-N)
(procedure->vector-field
(lambda (f)
(compose (v-on-N (compose f mu:N->M)) mu^-1:M->N))))

6The map φw
t is always invertible: (φw

t)
−1 = φw

−t because of the uniqueness of
the solutions of the initial-value problem for ordinary differential equations.

6.4 Pullbacks and Pushforwards 79

Pullback of a Vector Field

Given a vector field v on manifold M we can pull the vector field
back through the map μ : N→ M as follows:

μ∗v(f)(n) = (v(f ◦ μ−1))(μ(n)) (6.18)

or

μ∗v(f) = μ∗(v(μ∗f)). (6.19)

This may be useful when the map is invertible, as in the flow
generated by a vector field.

This is implemented as:

(define (pullback-vector-field mu:N->M mu^-1:M->N)
(pushforward-vector mu^-1:M->N mu:N->M))

Pullback of a Form Field

We can also pull back a one-form field ω defined on M, but an
honest definition is rarely written. The pullback of a one-form
field applied to a vector field is intended to be the same as the
one-form field applied to the pushforward of the vector field.

The pullback of a one-form field is often described by the rela-
tion

μ∗ω(v) = ω(μ∗v), (6.20)

but this is wrong, because the two sides are not functions of points
in the same manifold. The one-form field ω applies to a vector
field on the manifold M, which takes a directional derivative of a
function defined on M and is evaluated at a point on M, but the
left-hand side is evaluated at a point on the manifold N.

A more precise description would be

μ∗ω(v)(n) = ω(μ∗v)(μ(n)) (6.21)

or

μ∗ω(v) = μ∗(ω(μ∗v)). (6.22)

80 Chapter 6 Over a Map

Although this is accurate, it may not be effective, because com-
puting the pushforward requires the inverse of the map μ. But
the inverse is available when the map is the flow generated by a
vector field.

In fact it is possible to compute the pullback of a one-form
field without having the inverse of the map. Instead we can use
form-field->form-field-over-map to avoid needing the inverse:

μ∗ω(v)(n) = ωμ(dμ(v))(n). (6.23)

The pullback of a k-form generalizes equation 6.21:

μ∗ω(u, v, . . .)(n) = ω(μ∗u, μ∗v, . . .)(μ(n)). (6.24)

This is implemented as follows:7

(define ((pullback-form mu:N->M) omega-on-M)
(let ((k (get-rank omega-on-M)))
(if (= k 0)

((pullback-function mu:N->M) omega-on-M)
(procedure->nform-field
(lambda vectors-on-N
(apply ((form-field->form-field-over-map mu:N->M)

omega-on-M)
(map (differential mu:N->M) vectors-on-N)))

k))))

Properties of Pullback

The pullback through a map has many nice properties: it dis-
tributes through addition and through wedge product:

μ∗(θ + φ) = μ∗θ + μ∗φ, (6.25)

μ∗(θ ∧ φ) = μ∗θ ∧ μ∗φ. (6.26)

The pullback also commutes with the exterior derivative:

d(μ∗θ) = μ∗(dθ), (6.27)

for θ a function or k-form field.

7There is a generic pullback procedure that operates on any kind of manifold
object. However, to pull a vector field back requires providing the inverse
map.

6.4 Pullbacks and Pushforwards 81

We can verify this by computing an example. Let μ map the
rectangular plane to rectangular 3-space:

(define mu (literal-manifold-map ’MU R2-rect R3-rect))

First, let’s compare the pullback of the exterior derivative of a
function with the exterior derivative of the pullback of the func-
tion:

(define f (literal-manifold-function ’f-rect R3-rect))
(define X (literal-vector-field ’X-rect R2-rect))

(((- ((pullback mu) (d f)) (d ((pullback mu) f))) X)
((point R2-rect) (up ’x0 ’y0)))

0

More generally, we can consider what happens to a form field. For
a one-form field the result is as expected:

(define theta (literal-1form-field ’THETA R3-rect))
(define Y (literal-vector-field ’Y-rect R2-rect))

(((- ((pullback mu) (d theta)) (d ((pullback mu) theta))) X Y)
((point R2-rect) (up ’x0 ’y0)))

0

Pushforward of a Form Field

By symmetry, it is possible to define the pushforward of a one-
form field as

μ∗ω(v) = μ∗(ω(μ∗v)), (6.28)

but this is rarely useful.

Exercise 6.1: Velocities on a Globe

We can use manifold functions, vector fields, and one-forms over a map
to understand how paths behave.

a. Suppose that a vehicle is traveling east on the Earth at a given rate
of change of longitude. What is the actual ground speed of the vehicle?

b. Stereographic projection is useful for navigation because it is confor-
mal (it preserves angles). For the situation of part a, what is the speed
measured on a stereographic map? Remember that the stereographic
projection is implemented with S2-Riemann.

7
Directional Derivatives

The vector field was a generalization of the directional derivative
to functions on a manifold. When we want to generalize the direc-
tional derivative idea to operate on other manifold objects, such
as directional derivatives of vector fields or of form fields, there
are several useful choices. In the same way that a vector field ap-
plies to a function to produce a function, we will build directional
derivatives so that when applied to any object it will produce an-
other object of the same kind. All directional derivatives require
a vector field to give the direction and scale factor.

We will have a choice of directional derivative operators that
give different results for the rate of change of vector and form
fields along integral curves. But all directional derivative oper-
ators must agree when computing rates of change of functions
along integral curves. When applied to functions, all directional
derivative operators give:

Dv(f) = v(f). (7.1)

Next we specify the directional derivative of a vector field u

with respect to a vector field v. Let an integral curve of the vector
field v be γ, parameterized by t, and let m = γ(t). Let u′ be a
vector field that results from transporting the vector field u along
γ for a parameter increment δ. How u is transported to make u′

determines the type of derivative. We formulate the method of
transport by:

u′ = F v
δ u. (7.2)

We can assume without loss of generality that F v
δ u is a linear trans-

formation over the reals on u, because we care about its behavior
only in an incremental region around δ = 0.

Let g be the comparison of the original vector field at a point
with the transported vector field at that point:

g(δ) = u(f)(m) − (F v
δ u) (f)(m). (7.3)

84 Chapter 7 Directional Derivatives

So we can compute the directional derivative operator using only
ordinary derivatives:

Dvu(f)(m) = Dg(0). (7.4)

The result Dvu is of type vector field.
The general pattern of constructing a directional derivative op-

erator from a transport operator is given by the following schema:1

(define (((((F->directional-derivative F) v) u) f) m)
(define (g delta)
(- ((u f) m) (((((F v) delta) u) f) m)))

((D g) 0))

The linearity of transport implies that

Dv(αO+ βP) = αDvO+ βDvP, (7.5)

for any real α and β and manifold objects O and P.
The directional derivative obeys superposition in its vector-field

argument:

Dv+w = Dv +Dw. (7.6)

The directional derivative is homogeneous over the reals in its
vector-field argument:

Dαv = αDv, (7.7)

for any real α.2 This follows from the fact that for evolution along
integral curves: when α is a real number,

φαv
t (m) = φv

αt(m). (7.8)

When applied to products of functions, directional derivative
operators satisfy Leibniz’s rule:

Dv(fg) = f (Dvg) + (Dvf) g. (7.9)

1The directional derivative of a vector field must itself be a vector field. Thus
the real program for this must make the function of f into a vector field.
However, we leave out this detail here to make the structure clear.

2For some derivative operators α can be a real-valued manifold function.

7.1 Lie Derivative 85

The Leibniz rule is extended to applications of one-form fields to
vector fields:

Dv(ω(y)) = ω (Dvy) + (Dvω) (y). (7.10)

The extension of the Leibniz rule, combined with the choice of
transport of a vector field, determines the action of the directional
derivative on form fields.3

7.1 Lie Derivative

The Lie derivative is one kind of directional derivative operator.
We write the Lie derivative operator with respect to a vector field
v as Lv.

Functions

The Lie derivative of the function f with respect to the vector field
v is given by

Lvf = v(f). (7.11)

The tangent vector v measures the rate of change of f along inte-
gral curves.

Vector Fields

For the Lie derivative of a vector field y with respect to a vector
field v we choose the transport operator F v

δ y to be the pushforward
of y along the integral curves of v. Recall equation (6.15). So the
Lie derivative of y with respect to v at the point m is

(Lvy) (f)(m) = Dg(0), (7.12)

where

g(δ) = y(f)(m) − ((φv
δ)∗ y)(f)(m). (7.13)

We can construct a procedure that computes the Lie derivative
of a vector field by supplying an appropriate transport operator

3The action on functions, vector fields, and one-form fields suffices to define
the action on all tensor fields. See Appendix C.

86 Chapter 7 Directional Derivatives

(F-Lie phi) for F in our schema F->directional-derivative.
In this first stab at the Lie derivative, we introduce a coordinate
system and we expand the integral curve to a given order. Because
in the schema we evaluate the derivative of g at 0, the dependence
on the order and the coordinate system disappears. They will not
be needed in the final version.

(define (Lie-directional coordsys order)
(let ((Phi (phi coordsys order)))
(F->directional-derivative (F-Lie Phi))))

(define (((F-Lie phi) v) delta)
(pushforward-vector ((phi v) delta) ((phi v) (- delta))))

(define ((((phi coordsys order) v) delta) m)
((point coordsys)
(series:sum (((exp (* delta v)) (chart coordsys)) m)

order)))

Expand the quantities in equation (7.13) to first order in δ:

g(δ) = y(f)(m) − (φv
δ∗y)(f)(m)

= y(f)(m) − y(f ◦ φv
δ)(φ

v
−δ(m))

= (y(f) − y(f + δv(f) + · · ·) + δv(y(f + δv(f) + · · ·)))(m) + · · ·

= (−δy(v(f)) + δv(y(f)))(m) + · · ·

= δ [v, y] (f)(m) +O
(
δ2
)
. (7.14)

So the Lie derivative of a vector field y with respect to a vector
field v is a vector field that is defined by its behavior when applied
to an arbitrary manifold function f:

(Lvy) (f) = [v, y] (f) (7.15)

Verifying this computation

(let ((v (literal-vector-field ’v-rect R3-rect))
(w (literal-vector-field ’w-rect R3-rect))
(f (literal-manifold-function ’f-rect R3-rect)))

((- ((((Lie-directional R3-rect 2) v) w) f)
((commutator v w) f))

((point R3-rect) (up ’x0 ’y0 ’z0))))
0

7.1 Lie Derivative 87

Although this is tested to second order, evaluating the derivative
at zero ensures that first order is enough. So we can safely define:

(define ((Lie-derivative-vector V) Y)
(commutator V Y))

We can think of the Lie derivative as the rate of change of the
manifold function y(f) as we move in the v direction, adjusted to
take into account that some of the variation is due to the variation
of f:

(Lvy) (f) = [v, y] (f)

= v(y(f)) − y(v(f))

= v(y(f)) − y (Lv(f)) . (7.16)

The first term in the commutator, v(y(f)), measures the rate of
change of the combination y(f) along the integral curves of v. The
change in y(f) is due to both the intrinsic change in y along the
curve and the change in f along the curve; the second term in
the commutator subtracts this latter quantity. The result is the
intrinsic change in y along the integral curves of v.

Additionally, we can extend the product rule, for any manifold
function g and any vector field u:

Lv(gu)(f) = [v, gu](f)

= v(g)u(f) + g[v, u](f)

= (Lvg)u(f) + g(Lvu)(f). (7.17)

An Alternate View

We can write the vector field

y(f) =
∑
i

yi ei(f). (7.18)

By the extended product rule (equation 7.17) we get

Lvy(f) =
∑
i

(v(yi)ei(f) + yiLvei(f)). (7.19)

88 Chapter 7 Directional Derivatives

Because the Lie derivative of a vector field is a vector field, we can
extract the components of Lvei using the dual basis. We define
Δi

j(v) to be those components:

Δi
j(v) = ẽi (Lvej) = ẽi([v, ej]). (7.20)

So the Lie derivative can be written

(Lvy) (f) =
∑
i

(
v(yi) +

∑
j

Δi
j(v)y

j

)
ei(f). (7.21)

The components of the Lie derivatives of the basis vector fields
are the structure constants for the basis vector fields. (See equa-
tion 4.37.) The structure constants are antisymmetric in the lower
indices:

ẽi (Lekej) = ẽi([ek, ej]) = dikj. (7.22)

Resolving v into components and applying the product rule, we
get

(Lvy) (f) =
∑
k

(
vk[ek, y](f) − y(vk)ek(f)

)
. (7.23)

So Δi
j is related to the structure constants by

Δi
j(v) = ẽi (Lvej)

=
∑
k

(
vk ẽi([ek, ej])− ej(v

k)ẽi(ek)
)

=
∑
k

(
vkdikj − ej(v

k)δik
)

=
∑
k

vkdikj − ej(v
i). (7.24)

Note: Despite their appearance, the Δi
j are not form fields because

Δi
j(fv)
= fΔi

j(v).

7.1 Lie Derivative 89

Form Fields

We can also define the Lie derivative of a form field ω with respect
to the vector field v by its action on an arbitrary vector field y,
using the extended Leibniz rule (see equation 7.10):

(Lv(ω)) (y) ≡ v (ω(y))− ω (Lvy) . (7.25)

The first term computes the rate of change of the combination
ω(y) along the integral curve of v, while the second subtracts ω

applied to the change in y. The result is the change in ω along
the curve.

The Lie derivative of a k-form field ω with respect to a vec-
tor field v is a k-form field that is defined by its behavior when
applied to k arbitrary vector fields w0, . . . ,wk−1. We generalize
equation (7.25):

Lvω(w0, . . . ,wk−1) (7.26)

= v(ω(w0, . . . ,wk−1))−
k−1∑
i=0

ω(w0, . . . ,Lvwi, . . . ,wk−1).

Uniform Interpretation

Consider abstracting the equations (7.16), (7.25), and (7.27). The
Lie derivative of an object, a, that can apply to other objects, b,
to produce manifold functions, a(b) : M→ Rn, is

(Lva) (b) = v (a(b))− a (Lvb) . (7.27)

The first term in this expression computes the rate of change of
the compound object a(b) along integral curves of v, while the
second subtracts the change in a due to the change in b along the
curves. The result is a measure of the “intrinsic” change in a along
integral curves of v, with b held “fixed.”

Properties of the Lie Derivative

As required by properties 7.7–7.5, the Lie derivative is linear in
its arguments:

Lαv+βw = αLv + βLw, (7.28)

90 Chapter 7 Directional Derivatives

and

Lv (αa+ βb) = αLva+ βLvb, (7.29)

with α, β ∈ R and vector fields or one-form fields a and b.
For any k-form field ω and any vector field v the exterior deriva-

tive commutes with the Lie derivative with respect to the vector
field:

Lv(dω) = d(Lvω). (7.30)

If ω is an element of surface then dω is an element of volume.
The Lie derivative computes the rate of change of its argument
under a deformation described by the vector field. The answer
is the same whether we deform the surface before computing the
volume or compute the volume and then deform it.

We can verify this in 3-dimensional rectangular space for a gen-
eral one-form field:4

(((- ((Lie-derivative V) (d theta))
(d ((Lie-derivative V) theta)))

X Y)
R3-rect-point)

0

and for the general two-form field:

4In these experiments we need some setup.

(define a (literal-manifold-function ’alpha R3-rect))
(define b (literal-manifold-function ’beta R3-rect))
(define c (literal-manifold-function ’gamma R3-rect))

(define-coordinates (up x y z) R3-rect)

(define theta (+ (* a dx) (* b dy) (* c dz)))

(define omega
(+ (* a (wedge dy dz))

(* b (wedge dz dx))
(* c (wedge dx dy))))

(define X (literal-vector-field ’X-rect R3-rect))
(define Y (literal-vector-field ’Y-rect R3-rect))
(define Z (literal-vector-field ’Z-rect R3-rect))
(define V (literal-vector-field ’V-rect R3-rect))
(define R3-rect-point

((point R3-rect) (up ’x0 ’y0 ’z0)))

7.1 Lie Derivative 91

(((- ((Lie-derivative V) (d omega))
(d ((Lie-derivative V) omega)))

X Y Z)
R3-rect-point)

0

The Lie derivative satisfies a another nice elementary relation-
ship. If v and w are two vector fields, then

[Lv,Lw] = L[v,w]. (7.31)

Again, for our general one-form field θ:

((((- (commutator (Lie-derivative X) (Lie-derivative Y))
(Lie-derivative (commutator X Y)))

theta)
Z)

R3-rect-point)
0

and for the two-form field ω:

((((- (commutator (Lie-derivative X) (Lie-derivative Y))
(Lie-derivative (commutator X Y)))

omega)
Z V)

R3-rect-point)
0

Exponentiating Lie Derivatives

The Lie derivative computes the rate of change of objects as they
are advanced along integral curves. The Lie derivative of an object
produces another object of the same type, so we can iterate Lie
derivatives. This gives us Taylor series for objects along the curve.

The operator etLv = 1+ tLv +
t2

2!L
2
v + . . . evolves objects along

the curve by parameter t. For example, the exponential of a Lie
derivative applied to a vector field is

etLvy = y+ tLvy +
t2

2
Lv

2y+ · · ·

= y+ t[v, y] +
t2

2
[v, [v, y]] + · · · . (7.32)

92 Chapter 7 Directional Derivatives

Consider a simple case. We advance the coordinate-basis vector
field ∂/∂y by an angle a around the circle. Let Jz = x ∂/∂y −
y ∂/∂x, the circular vector field. We recall

(define Jz (- (* x d/dy) (* y d/dx)))

We can apply the exponential of the Lie derivative with respect to
Jz to ∂/∂y. We examine how the result affects a general function
on the manifold:

(series:for-each print-expression
((((exp (* ’a (Lie-derivative Jz))) d/dy)
(literal-manifold-function ’f-rect R3-rect))
((point R3-rect) (up 1 0 0)))
5)

(((partial 0) f-rect) (up 1 0))
(* -1 a (((partial 1) f-rect) (up 1 0)))
(* -1/2 (expt a 2) (((partial 0) f-rect) (up 1 0)))
(* 1/6 (expt a 3) (((partial 1) f-rect) (up 1 0)))
(* 1/24 (expt a 4) (((partial 0) f-rect) (up 1 0)))
;Value: ...

Apparently the result is

exp
(
aL(x ∂/∂y−y ∂/∂x)

) ∂

∂y
= − sin(a)

∂

∂x
+ cos(a)

∂

∂y
. (7.33)

Interior Product

There is a simple but useful operation available between vector
fields and form fields called interior product. This is the substitu-
tion of a vector field v into the first argument of a p-form field ω

to produce a p− 1-form field:

(ivω)(v1, . . . vp−1) = ω(v, v1, . . . vp−1). (7.34)

There is a mundane identity corresponding to the product rule
for the Lie derivative of an interior product:

Lv (iyω) = iLvyω + iy (Lvω) . (7.35)

And there is a rather nice identity for the Lie derivative in terms
of the interior product and the exterior derivative, called Cartan’s

formula:

Lvω = iv(dω) + d(ivω). (7.36)

7.2 Covariant Derivative 93

We can verify Cartan’s formula in a simple case with a program:

(define X (literal-vector-field ’X-rect R3-rect))
(define Y (literal-vector-field ’Y-rect R3-rect))
(define Z (literal-vector-field ’Z-rect R3-rect))

(define a (literal-manifold-function ’alpha R3-rect))
(define b (literal-manifold-function ’beta R3-rect))
(define c (literal-manifold-function ’gamma R3-rect))

(define omega
(+ (* a (wedge dx dy))

(* b (wedge dy dz))
(* c (wedge dz dx))))

(define ((L1 X) omega)
(+ ((interior-product X) (d omega))

(d ((interior-product X) omega))))

((- (((Lie-derivative X) omega) Y Z)
(((L1 X) omega) Y Z))

((point R3-rect) (up ’x0 ’y0 ’z0)))
0

Note that iv ◦ iu + iu ◦ iv = 0. One consequence of this is that
iv ◦ iv = 0.

7.2 Covariant Derivative

The covariant derivative is another kind of directional derivative
operator. We write the covariant derivative operator with respect
to a vector field v as ∇v. This is pronounced “covariant derivative
with respect to v” or “nabla v.”

Covariant Derivative of Vector Fields

We may also choose our F v
δ u to define what we mean by “parallel”

transport of the vector field u along an integral curve of the vector
field v. This may correspond to our usual understanding of parallel
in situations where we have intuitive insight.

The notion of parallel transport is path dependent. Remember
our example from the Introduction, page 1: Start at the North
Pole carrying a stick along a line of longitude to the Equator,
always pointing it south, parallel to the surface of the Earth. Then

94 Chapter 7 Directional Derivatives

proceed eastward for some distance, still pointing the stick south.
Finally, return to the North Pole along this new line of longitude,
keeping the stick pointing south all the time. At the pole the stick
will not point in the same direction as it did at the beginning of the
trip, and the discrepancy will depend on the amount of eastward
motion.5

So if we try to carry a stick parallel to itself and tangent to the
sphere, around a closed path, the stick generally does not end up
pointing in the same direction as it started. The result of carrying
the stick from one point on the sphere to another depends on the
path taken. However, the direction of the stick at the endpoint
of a path does not depend on the rate of transport, just on the
particular path on which it is carried. Parallel transport over a
zero-length path is the identity.

A vector may be resolved as a linear combination of other vec-
tors. If we parallel-transport each component, and form the same
linear combination, we get the transported original vector. Thus
parallel transport on a particular path for a particular distance is
a linear operation.

So the transport function F v
δ is a linear operator on the com-

ponents of its argument, and thus

F v
δ u(f)(m) =

∑
i,j

(Ai
j(δ)(u

j ◦ φv
−δ)ei(f))(m) (7.37)

for some functions Ai
j that depend on the particular path (hence

its tangent vector v) and the initial point. We reach back along the
integral curve to pick up the components of u and then parallel-
transport them forward by the matrix Ai

j(δ) to form the compo-
nents of the parallel-transported vector at the advanced point.

As before, we compute

∇vu(f)(m) = Dg(0), (7.38)

where

g(δ) = u(f)(m) − (F v
δ u) (f)(m). (7.39)

5In the introduction the stick was always kept east-west rather than pointing
south, but the phenomenon is the same!

7.2 Covariant Derivative 95

Expanding with respect to a basis {ei} we get

g(δ) =
∑
i

(
uiei(f)−

∑
j

Ai
j(δ)(u

j ◦ φv
−δ)ei(f)

)
(m). (7.40)

By the product rule for derivatives,

Dg(δ) = (7.41)∑
ij

(
Ai

j(δ)((v(u
j)) ◦ φv

−δ)ei(f)−DAi
j(δ)(u

j ◦ φv
−δ)ei(f)

)
(m).

So, since Ai
j(0)(m) is the identity multiplier, and φv

0 is the identity
function,

Dg(0) =
∑
i

(
v(ui)(m)ei(f)−

∑
j

DAi
j(0)u

j(m)ei(f)

)
(m). (7.42)

We need DAi
j(0). Parallel transport depends on the path, but

not on the parameterization of the path. From this we can deduce
thatDAi

j(0) can be written as one-form fields applied to the vector
field v, as follows.

Introduce B to make the dependence of As on v explicit:

Ai
j(δ) = Bi

j(v)(δ). (7.43)

Parallel transport depends on the path but not on the rate along
the path. Incrementally, if we scale the vector field v by ξ,

d

dδ
(B(v)(δ)) =

d

dδ
(B(ξv)(δ/ξ)). (7.44)

Using the chain rule

D(B(v))(δ) =
1

ξ
D(B(ξv))(

δ

ξ
), (7.45)

so, for δ = 0,

ξD(B(v))(0) = D(B(ξv))(0). (7.46)

The scale factor ξ can vary from place to place. So DAi
j(0) is

homogeneous in v over manifold functions. This is stronger than
the homogeneity required by equation (7.7).

96 Chapter 7 Directional Derivatives

The superposition property (equation (7.6)) is true of the ordi-
nary directional derivative of manifold functions. By analogy we
require it to be true of directional derivatives of vector fields.

These two properties imply that DAi
j(0) is a one-form field:

DAi
j(0) = −�

i
j(v), (7.47)

where the minus sign is a matter of convention.
As before, we can take a stab at computing the covariant deriva-

tive of a vector field by supplying an appropriate transport opera-
tor for F in F->directional-derivative. Again, this is expanded
to a given order with a given coordinate system. These will be
unnecessary in the final version.

(define (covariant-derivative-vector omega coordsys order)
(let ((Phi (phi coordsys order)))
(F->directional-derivative

(F-parallel omega Phi coordsys))))

(define ((((((F-parallel omega phi coordsys) v) delta) u) f) m)
(let ((basis (coordinate-system->basis coordsys)))
(let ((etilde (basis->1form-basis basis))

(e (basis->vector-basis basis)))
(let ((m0 (((phi v) (- delta)) m)))
(let ((Aij (+ (identity-like ((omega v) m0))

(* delta (- ((omega v) m0)))))
(ui ((etilde u) m0)))

(* ((e f) m) (* Aij ui)))))))

So

Dg(0) =
∑
i

(
v(ui)(m) +

∑
j

�i
j(v)(m)uj(m)

)
ei(f)(m). (7.48)

Thus the covariant derivative is

∇vu(f) =
∑
i

(
v(ui) +

∑
j

�i
j(v)u

j

)
ei(f). (7.49)

The one-form fields �i
j are called the Cartan one-forms, or the

connection one-forms. They are defined with respect to the ba-
sis e.

7.2 Covariant Derivative 97

As a program, the covariant derivative is:6

(define ((((covariant-derivative-vector Cartan) V) U) f)
(let ((basis (Cartan->basis Cartan))

(Cartan-forms (Cartan->forms Cartan)))
(let ((vector-basis (basis->vector-basis basis))

(1form-basis (basis->1form-basis basis)))
(let ((u-components (1form-basis U)))
(* (vector-basis f)

(+ (V u-components)
(* (Cartan-forms V) u-components)))))))

An important property of ∇vu is that it is linear over manifold
functions g in the first argument

∇gvu(f) = g∇vu(f), (7.50)

consistent with the fact that the Cartan forms �i
j share the same

property.
Additionally, we can extend the product rule, for any manifold

function g and any vector field u:

∇v(gu)(f) =
∑
i

(
v(gui) +

∑
j

�i
j(v) gu

j

)
ei(f)

=
∑
i

v(g)uiei(f) + g∇v(u)(f)

= (∇vg)u(f) + g∇v(u)(f). (7.51)

An Alternate View

As we did with the Lie derivative (equations 7.18–7.21), we can
write the vector field

u(f)(m) =
∑
i

ui(m)ei(f)(m). (7.52)

By the extended product rule, equation (7.51), we get:

∇vu(f) =
∑
i

(v(ui)ei(f) + ui∇vei(f)). (7.53)

6This program is incomplete. It must construct a vector field; it must make a
differential operator; and it does not apply to functions or forms.

98 Chapter 7 Directional Derivatives

Because the covariant derivative of a vector field is a vector field
we can extract the components of ∇vei using the dual basis:

�i
j(v) = ẽi (∇vej) . (7.54)

This gives an alternate expression for the Cartan one forms. So

∇vu(f) =
∑
i

(
v(ui) +

∑
j

�i
j(v)u

j

)
ei(f). (7.55)

This analysis is parallel to the analysis of the Lie derivative, except
that here we have the Cartan form fields �i

j and there we had Δi
j,

which are not form fields.
Notice that the Cartan forms appear here (equation 7.53) in

terms of the covariant derivatives of the basis vectors. By contrast,
in the first derivation (see equation 7.42) the Cartan forms appear
as the derivatives of the linear forms that accomplish the parallel
transport of the coefficients.

The Cartan forms can be constructed from the dual basis one-
forms:

�i
j(v)(m) =

∑
k

Γi
jk(m) ẽk(v)(m). (7.56)

The connection coefficient functions Γi
jk are called the Christoffel

coefficients (traditionally called Christoffel symbols).7 Making use
of the structures,8 the Cartan forms are

�(v) = Γ ẽ(v). (7.57)

Conversely, the Christoffel coefficients may be obtained from the
Cartan forms

Γi
jk = �i

j(ek). (7.58)

7This terminology may be restricted to the case in which the basis is a coor-
dinate basis.

8The structure of the Cartan forms � together with this equation forces the
shape of the Christoffel coefficient structure.

7.2 Covariant Derivative 99

Covariant Derivative of One-Form Fields

The covariant derivative of a vector field induces a compatible
covariant derivative for a one-form field. Because the application
of a one-form field to a vector field yields a manifold function, we
can evaluate the covariant derivative of such an application. Let
τ be a one-form field and w be a vector field. Then

∇v(τ (w)) = v

(∑
j

τ jw
j

)
=

∑
j

(
v(τ j)w

j + τ jv(w
j)
)

=
∑
j

(
v(τ j)w

j + τ j

(
ẽj(∇vw)−

∑
k

�
j
k(v)w

k

))

=
∑
j

(
v(τ j)w

j − τ j

∑
k

�
j
k(v)w

k

)
+ τ (∇vw)

=
∑
j

(
v(τ j)ẽ

j − τ j

∑
k

�
j
k(v)ẽ

k

)
(w) + τ (∇vw).

So if we define the covariant derivative of a one-form field to be

∇v(τ) =
∑
k

(
v(τ k)−

∑
j

τ j�
j
k(v)

)
ẽk, (7.59)

then the generalized product rule holds:

∇v (τ (u)) = (∇vτ) (u) + τ (∇vu) . (7.60)

Alternatively, assuming the generalized product rule forces the
definition of covariant derivative of a one-form field.

As a program this is

(define ((((covariant-derivative-1form Cartan) V) tau) U)
(let ((nabla V ((covariant-derivative-vector Cartan) V)))
(- (V (tau U)) (tau (nabla V U)))))

100 Chapter 7 Directional Derivatives

This program extends naturally to higher-rank form fields:

(define ((((covariant-derivative-form Cartan) V) tau) vs)
(let ((k (get-rank tau))

(nabla V ((covariant-derivative-vector Cartan) V)))
(- (V (apply tau vs))

(sigma (lambda (i)
(apply tau

(list-with-substituted-coord vs i
(nabla V (list-ref vs i)))))

0 (- k 1)))))

Change of Basis

The basis-independence of the covariant derivative implies a re-
lationship between the Cartan forms in one basis and the equiv-
alent Cartan forms in another basis. Recall (equation 4.13) that
the basis vector fields of two bases are always related by a linear
transformation. Let J be the matrix of coefficient functions and
let e and e′ be down tuples of basis vector fields. Then

e(f) = e′(f)J. (7.61)

We want the covariant derivative to be independent of basis.
This will determine how the connection transforms with a change
of basis:

∇vu(f) =
∑
i

ei(f)

(
v(ui) +

∑
j

�i
j(v)u

j

)

=
∑
ijk

e′i(f)J
i
j

(
v
(
(J−1)jk(u

′)k
)
+

∑
l

�
j
k(v)(J

−1)kl(u
′)l

)

=
∑
i

e′i(f)

(
v((u′)i) +

∑
jk

Jijv
(
(J−1)jk

)
(u′)k

+
∑
jkl

Jij�
j
k(v)(J

−1)kl(u
′)l

)

=
∑
i

e′i(f)

(
v((u′)i) +

∑
j

(�′)ij(v)(u
′)j

)
. (7.62)

7.2 Covariant Derivative 101

The last line of equation (7.62) gives the formula for the covariant
derivative we would have written down naturally in the primed
coordinates; comparing with the next-to-last line, we see that

�′(v) = Jv
(
J−1

)
+ J�(v)J−1. (7.63)

This transformation rule is weird. It is not a linear transformation
of � because the first term is an offset that depends on v. So it
is not required that �′ = 0 when � = 0. Thus � is not a tensor
field. See Appendix C.

We can write equation (7.61) in terms of components

ei(f) =
∑
j

e′j(f)J
j
i. (7.64)

Let K = J−1, so
∑

j K
i
j(m)Jjk(m) = δik. Then

�′i
l (v) =

∑
j

Jij v(K
j
l) +

∑
jk

Jij �
j
k(v)K

k
l. (7.65)

The transformation rule for � is implemented in the following
program:

(define (Cartan-transform Cartan basis-prime)
(let ((basis (Cartan->basis Cartan))

(forms (Cartan->forms Cartan))
(prime-dual-basis (basis->1form-basis basis-prime))
(prime-vector-basis (basis->vector-basis basis-prime)))

(let ((vector-basis (basis->vector-basis basis))
(1form-basis (basis->1form-basis basis)))

(let ((J-inv (s:map/r 1form-basis prime-vector-basis))
(J (s:map/r prime-dual-basis vector-basis)))

(let ((omega-prime-forms
(procedure->1form-field
(lambda (v)

(+ (* J (v J-inv))
(* J (* (forms v) J-inv)))))))

(make-Cartan omega-prime-forms basis-prime))))))

The s:map/r procedure constructs a tuple of the same shape as
its second argument whose elements are the result of applying
the first argument to the corresponding elements of the second
argument.

102 Chapter 7 Directional Derivatives

We can illustrate that the covariant derivative is independent of
the coordinate system in a simple case, using rectangular and polar
coordinates in the plane.9 We can choose Christoffel coefficients
for rectangular coordinates that are all zero:10

(define R2-rect-Christoffel
(make-Christoffel
(let ((zero (lambda (m) 0)))
(down (down (up zero zero)

(up zero zero))
(down (up zero zero)

(up zero zero))))
R2-rect-basis))

With these Christoffel coefficients, parallel transport preserves the
components relative to the rectangular basis. This corresponds to
our usual notion of parallel in the plane. We will see later in
Chapter 9 that these Christoffel coefficients are a natural choice
for the plane. From these we obtain the Cartan form:11

(define R2-rect-Cartan
(Christoffel->Cartan R2-rect-Christoffel))

And from equation (7.63) we can get the corresponding Cartan
form for polar coordinates:

(define R2-polar-Cartan
(Cartan-transform R2-rect-Cartan R2-polar-basis))

9We will need a few definitions:

(define R2-rect-basis (coordinate-system->basis R2-rect))
(define R2-polar-basis (coordinate-system->basis R2-polar))
(define-coordinates (up x y) R2-rect)
(define-coordinates (up r theta) R2-polar)

10Since the Christoffel coefficients are basis-dependent they are packaged with
the basis.

11The code for making the Cartan forms is as follows:

(define (Christoffel->Cartan Christoffel)
(let ((basis (Christoffel->basis Christoffel))

(Christoffel-symbols (Christoffel->symbols Christoffel)))
(make-Cartan
(* Christoffel-symbols (basis->1form-basis basis))
basis)))

7.2 Covariant Derivative 103

The vector field ∂/∂θ generates a rotation in the plane (the
same as circular). The covariant derivative with respect to ∂/∂x
of ∂/∂θ applied to an arbitrary manifold function is:

(define circular (- (* x d/dy) (* y d/dx)))

(define f (literal-manifold-function ’f-rect R2-rect))
(define R2-rect-point ((point R2-rect) (up ’x0 ’y0)))

(((((covariant-derivative R2-rect-Cartan) d/dx)
circular)
f)

R2-rect-point)
(((partial 1) f-rect) (up x0 y0))

Note that this is the same thing as ∂/∂y applied to the function:

((d/dy f) R2-rect-point)
(((partial 1) f-rect) (up x0 y0))

In rectangular coordinates, where the Christoffel coefficients are
zero, the covariant derivative ∇uv is the vector whose coefficents
are obtained by applying u to the coefficients of v. Here, only one
coefficient of ∂/∂θ depends on x, the coefficient of ∂/∂y, and it
depends linearly on x. So ∇∂/∂x∂/∂θ = ∂/∂y. (See figure 7.1.)

Note that we get the same answer if we use polar coordinates
to compute the covariant derivative:

(((((covariant-derivative R2-polar-Cartan) d/dx) J) f)
R2-rect-point)

(((partial 1) f-rect) (up x0 y0))

In rectangular coordinates the Christoffel coefficients are all zero;
in polar coordinates there are nonzero coefficients, but the value
of the covariant derivative is the same. In polar coordinates the
basis elements vary with position, and the Christoffel coefficients
compensate for this.

Of course, this is a pretty special situation. Let’s try something
more general:

104 Chapter 7 Directional Derivatives

’ν

d/dy

d/dx

ν

Δν

Figure 7.1 If v and v′ are “arrow” representations of vectors in the
circular field and we parallel-transport v in the ∂/∂x direction, then
the difference between v′ and the parallel transport of v is in the ∂/∂y
direction.

(define V (literal-vector-field ’V-rect R2-rect))
(define W (literal-vector-field ’W-rect R2-rect))

(((((- (covariant-derivative R2-rect-Cartan)
(covariant-derivative R2-polar-Cartan))

V)
W)
f)

R2-rect-point)
0

7.3 Parallel Transport

We have defined parallel transport of a vector field along integral
curves of another vector field. But not all paths are integral curves
of a vector field. For example, paths that cross themselves are not
integral curves of any vector field.

Here we extend the idea of parallel transport of a stick to make
sense for arbitrary paths on the manifold. Any path can be written
as a map γ from the real-line manifold to the manifold M. We

7.3 Parallel Transport 105

construct a vector field over the map uγ by parallel-transporting
the stick to all points on the path γ.

For any path γ there are locally directional derivatives of func-
tions on M defined by tangent vectors to the curve. The vector
over the map wγ = dγ(∂/∂t) is a directional derivative of functions
on the manifold M along the path γ.

Our goal is to determine the equations satisfied by the vector
field over the map uγ . Consider the parallel-transport F

wγ

δ uγ .
12

So a vector field uγ is parallel-transported to itself if and only
if uγ = F

wγ

δ uγ . Restricted to a path, the equation analogous to
equation (7.40) is

g(δ) =
∑
i

(
ui(t)−

∑
j

Ai
j(δ)u

j(t− δ)

)
e
γ
i (f)(t), (7.66)

where the coefficient function ui is now a function on the real-line
parameter manifold and where we have rewritten the basis as a
basis over the map γ.13 Here g(δ) = 0 if uγ is parallel-transported
into itself.

Taking the derivative and setting δ = 0 we find

0 =
∑
i

(
Dui(t) +

∑
j

γ�i
j(wγ)(t)u

j(t)

)
e
γ
i (f)(t). (7.67)

But this implies that

0 = Dui(t) +
∑
j

γ�i
j(wγ)(t)u

j(t), (7.68)

an ordinary differential equation in the coefficients of uγ .

12The argument wγ makes sense because our parallel-transport operator never
depended on the vector field tangent to the integral curve existing off of the
curve. Because the connection is a form field (see equation 7.47), it does not
depend on the value of its vector argument anywhere except at the point where
it is being evaluated.

The argument uγ is more difficult. We must modify equation (7.37):

F
wγ

δ uγ(f)(t) =
∑
i,j

Ai
j(δ)u

j(t− δ)eγi (f)(t).

13You may have noticed that t and t appear here. The real-line manifold point
t has coordinate t.

106 Chapter 7 Directional Derivatives

We can abstract these equations of parallel transport by invent-
ing a covariant derivative over a map. We also generalize the time
line to a source manifold N.

∇γ
vuγ(f)(n)

=
∑
i

(
v(ui)(n) +

∑
j

γ�i
j(dγ(v))(n)u

j(n)

)
e
γ
i (f)(n), (7.69)

where the map γ : N→ M, v is a vector on N, uγ is a vector over
the map γ, f is a function on M, and n is a point in N. Indeed,
if w is a vector field on M, f is a manifold function on M, and if
dγ(v) = wγ then

∇γ
vuγ(f)(n) = ∇wu(f)(γ(n)). (7.70)

This is why we are justified in calling ∇γ
v a covariant derivative.

Respecializing the source manifold to the real line, we can write
the equations governing the parallel transport of uγ as

∇γ
∂/∂tuγ = 0. (7.71)

We obtain the set of differential equations (7.68) for the coordi-
nates of uγ , the vector over the map γ, that is parallel-transported
along the curve γ:

Dui(t) +
∑
j

γ�i
j(dγ(∂/∂t))(t)u

j (t) = 0. (7.72)

Expressing the Cartan forms in terms of the Christoffel coefficients
we obtain

Dui(t) +
∑
j,k

Γi
jk(γ(t))Dσk(t)uj(t) = 0 (7.73)

where σ = χM ◦ γ ◦ χ
−1
R are the coordinates of the path (χM and

χR are the coordinate functions for M and the real line).

On a Sphere

Let’s figure out what the equations of parallel transport of uγ , an
arbitrary vector over the map γ, along an arbitrary path γ on a
sphere are. We start by constructing the necessary manifold.

7.3 Parallel Transport 107

(define sphere (make-manifold S^2 2 3))
(define S2-spherical

(coordinate-system-at ’spherical ’north-pole sphere))
(define S2-basis

(coordinate-system->basis S2-spherical))

We need the path γ, which we represent as a map from the real
line to M, and w, the parallel-transported vector over the map:

(define gamma
(compose (point S2-spherical)

(up (literal-function ’alpha)
(literal-function ’beta))

(chart R1-rect)))

where alpha is the colatitude and beta is the longitude.
We also need an arbitrary vector field u gamma over the map

gamma. To make this we multiply the structure of literal compo-
nent functions by the vector basis structure.

(define basis-over-gamma
(basis->basis-over-map gamma S2-basis))

(define u gamma
(* (up (compose (literal-function ’u^0)

(chart R1-rect))
(compose (literal-function ’u^1)

(chart R1-rect)))
(basis->vector-basis basis-over-gamma)))

We specify a connection by giving the Christoffel coefficients.14

(define S2-Christoffel
(make-Christoffel
(let ((zero (lambda (point) 0)))
(down (down (up zero zero)

(up zero (/ 1 (tan theta))))
(down (up zero (/ 1 (tan theta)))

(up (- (* (sin theta) (cos theta))) zero))))
S2-basis))

(define sphere-Cartan (Christoffel->Cartan S2-Christoffel))

14We will show later that these Christoffel coefficients are a natural choice for
the sphere.

108 Chapter 7 Directional Derivatives

Finally, we compute the residual of the equation (7.71) that gov-
erns parallel transport for this situation:15

(define-coordinates t R1-rect)

(s:map/r
(lambda (omega)

((omega
(((covariant-derivative sphere-Cartan gamma)

d/dt)
u gamma))

((point R1-rect) ’tau)))
(basis->1form-basis basis-over-gamma))

(up (+ (* -1
(sin (alpha tau))
(cos (alpha tau))
((D beta) tau)
(uˆ1 tau))

((D uˆ0) tau))
(/ (+ (* (uˆ0 tau) (cos (alpha tau)) ((D beta) tau))

(* ((D alpha) tau) (cos (alpha tau)) (uˆ1 tau))
(* ((D uˆ1) tau) (sin (alpha tau))))

(sin (alpha tau))))

Thus the equations governing the evolution of the components of
the transported vector are:

Du0(τ) = sin(α(τ)) cos(α(τ))Dβ(τ)u1(τ),

Du1(τ) = −
cos(α(τ))

sin(α(τ))

(
Dβ(τ)u0(τ) +Dα(τ)u1(τ)

)
. (7.74)

These equations describe the transport on a sphere, but more
generally they look like

Du(τ) = f(σ(τ),Dσ(τ))u(τ), (7.75)

where σ is the tuple of the coordinates of the path on the manifold
and u is the tuple of the components of the vector. The equation
is linear in u and is driven by the path σ, as in a variational
equation.

15If we give covariant-derivative an extra argument, in addition to the
Cartan form, the covariant derivative treats the extra argument as a map and
transforms the Cartan form to work over the map.

7.3 Parallel Transport 109

We now set this up for numerical integration. Let s(t) =
(t, u(t)) be a state tuple, combining the time and the coordinates
of uγ at that time. Then we define g:

g(s(t)) = Ds(t) = (1,Du(t)), (7.76)

where Du(t) is the tuple of right-hand sides of equation (7.72).

On a Great Circle

We illustrate parallel transport in a case where we should know
the answer: we carry a vector along a great circle of a sphere.
Given a path and Cartan forms for the manifold we can produce
a state derivative suitable for numerical integration. Such a state
derivative takes a state and produces the derivative of the state.

(define (g gamma Cartan)
(let ((omega

((Cartan->forms
(Cartan->Cartan-over-map Cartan gamma))

((differential gamma) d/dt))))
(define ((the-state-derivative) state)

(let ((t ((point R1-rect) (ref state 0)))
(u (ref state 1)))

(up 1 (* -1 (omega t) u))))
the-state-derivative))

The path on the sphere will be the target of a map from the real
line. We choose one that starts at the origin of longitudes on the
equator and follows the great circle that makes a given tilt angle
with the equator.

(define ((transform tilt) coords)
(let ((colat (ref coords 0))

(long (ref coords 1)))
(let ((x (* (sin colat) (cos long)))

(y (* (sin colat) (sin long)))
(z (cos colat)))

(let ((vp ((rotate-x tilt) (up x y z))))
(let ((colatp (acos (ref vp 2)))

(longp (atan (ref vp 1) (ref vp 0))))
(up colatp longp))))))

110 Chapter 7 Directional Derivatives

(define (tilted-path tilt)
(define (coords t)
((transform tilt) (up :pi/2 t)))

(compose (point S2-spherical)
coords
(chart R1-rect)))

A southward pointing vector, with components (up 1 0), is trans-
formed to an initial vector for the tilted path by multiplying by
the derivative of the tilt transform at the initial point. We then
parallel transport this vector by numerically integrating the dif-
ferential equations. In this example we tilt by 1 radian, and we
advance for π/2 radians. In this case we know the answer: by
advancing by π/2 we walk around the circle a quarter of the way
and at that point the transported vector points south:

((state-advancer (g (tilted-path 1) sphere-Cartan))
(up 0 (* ((D (transform 1)) (up :pi/2 0)) (up 1 0)))
pi/2)

(up 1.5707963267948957
(up .9999999999997626 7.376378522558262e-13))

However, if we transport by 1 radian rather than π/2, the numbers
are not so pleasant, and the transported vector no longer points
south:

((state-advancer (g (tilted-path 1) sphere-Cartan))
(up 0 (* ((D (transform 1)) (up :pi/2 0)) (up 1 0)))
1)

(up 1. (up .7651502649360408 .9117920272006472))

But the transported vector can be obtained by tilting the orig-
inal southward-pointing vector after parallel-transporting along
the equator:16

(* ((D (transform 1)) (up :pi/2 1)) (up 1 0))
(up .7651502649370375 .9117920272004736)

16A southward-pointing vector remains southward-pointing when it is parallel-
transported along the equator. To do this we do not have to integrate the
differential equations, because we know the answer.

7.4 Geodesic Motion 111

7.4 Geodesic Motion

In geodesic motion the velocity vector is parallel-transported by
itself. Recall (equation 6.9) that the velocity is the differential of
the vector ∂/∂t over the map γ. The equation of geodesic motion
is17

∇γ
∂/∂tdγ(∂/∂t) = 0. (7.78)

In coordinates, this is

D2σi(t) +
∑
jk

Γi
jk(γ(t))Dσj(t)Dσk(t) = 0, (7.79)

where σ(t) is the coordinate path corresponding to the manifold
path γ.

For example, let’s consider geodesic motion on the surface of
a unit sphere. We let gamma be a map from the real line to the
sphere, with colatitude alpha and longitude beta, as before. The
geodesic equation is:

(show-expression
(((((covariant-derivative sphere-Cartan gamma)

d/dt)
((differential gamma) d/dt))
(chart S2-spherical))
((point R1-rect) ’t0)))⎛⎜⎝− cos (α (t0)) sin (α (t0)) (Dβ (t0))2 +D2α (t0)

2Dβ (t0) cos (α (t0))Dα (t0)

sin (α (t))
+D2β (t0)

⎞⎟⎠

17The equation of a geodesic path is often said to be

∇vv = 0, (7.77)

but this is nonsense. The geodesic equation is a constraint on the path, but
the path does not appear in this equation. Further, the velocity along a path
is not a vector field, so it cannot appear in either argument to the covariant
derivative.

What is true is that a vector field v all of whose integral curves are geodesics
satisfies equation (7.77).

112 Chapter 7 Directional Derivatives

The geodesic equation is the same as the Lagrange equation for
free motion constrained to the surface of the unit sphere. The
Lagrangian for motion on the sphere is the composition of the
free-particle Lagrangian and the state transformation induced by
the coordinate constraint:18

(define (Lfree s)
(* 1/2 (square (velocity s))))

(define (sphere->R3 s)
(let ((q (coordinate s)))
(let ((theta (ref q 0)) (phi (ref q 1)))

(up (* (sin theta) (cos phi))
(* (sin theta) (sin phi))
(cos theta)))))

(define Lsphere
(compose Lfree (F->C sphere->R3)))

Then the Lagrange equations are:

(show-expression
(((Lagrange-equations Lsphere)

(up (literal-function ’alpha)
(literal-function ’beta)))

’t))

[− (Dβ (t))2 sin (α (t)) cos (α (t)) +D2α (t)

2Dα (t)Dβ (t) sin (α (t)) cos (α (t)) +D2β (t) (sin (α (t)))2

]

The Lagrange equations are true of the same paths as the geodesic
equations. The second Lagrange equation is the second geodesic
equation multiplied by (sin(α(t)))2, and the Lagrange equations
are arranged in a down tuple, whereas the geodesic equations are
arranged in an up tuple.19 The two systems are equivalent unless
α(t) = 0, where the coordinate system is singular.

18The method of formulating a system with constraints by composing a free
system with the state-space coordinate transformation that represents the
constraints can be found in [19], Section 1.6.3. The procedure F->C takes
a coordinate transformation and produces a corresponding transformation of
Lagrangian state.

19The geodesic equations and the Lagrange equations are related by a con-
traction with the metric.

7.4 Geodesic Motion 113

Exercise 7.1: Hamiltonian Evolution

We have just seen that the Lagrange equations for the motion of a free
particle constrained to the surface of a sphere determine the geodesics
on the sphere. We can investigate this phenomenon in the Hamiltonian
formulation. The Hamiltonian is obtained from the Lagrangian by a
Legendre transformation:

(define Hsphere
(Lagrangian->Hamiltonian Lsphere))

We can get the coordinate representation of the Hamiltonian vector field
as follows:

((phase-space-derivative Hsphere)
(up ’t (up ’theta ’phi) (down ’p theta ’p phi)))

(up 1
(up p theta

(/ p phi (expt (sin theta) 2)))
(down (/ (* (expt p phi 2) (cos theta))

(expt (sin theta) 3))
0))

The state space for Hamiltonian evolution has five dimensions: time, two
dimensions of position on the sphere, and two dimensions of momentum:

(define state-space
(make-manifold R^n 5))

(define states
(coordinate-system-at ’rectangular ’origin state-space))

(define-coordinates
(up t (up theta phi) (down p theta p phi))
states)

So now we have coordinate functions and the coordinate-basis vector
fields and coordinate-basis one-form fields.

a. Define the Hamiltonian vector field as a linear combination of these
fields.

b. Obtain the first few terms of the Taylor series for the evolution of
the coordinates (θ, φ) by exponentiating the Lie derivative of the Hamil-
tonian vector field.

Exercise 7.2: Lie Derivative and Covariant Derivative

How are the Lie derivative and the covariant derivative related?

a. Prove that for every vector field there exists a connection such that
the covariant derivative for that connection and the given vector field is
equivalent to the Lie derivative with respect to that vector field.

b. Show that there is no connection that for every vector field makes
the Lie derivative the same as the covariant derivative with the chosen
connection.

8
Curvature

If the intrinsic curvature of a manifold is not zero, a vector parallel-
transported around a small loop will end up different from the
vector that started. We saw the consequence of this before, on
page 1 and on page 93. The Riemann tensor encapsulates this
idea.

The Riemann curvature operator is

R(w, v) = [∇w,∇v]−∇[w,v]. (8.1)

The traditional Riemann tensor is1

R(ω, u,w, v) = ω((R(w, v))(u)), (8.2)

where ω is a one-form field that measures the incremental change
in the vector field u caused by parallel-transporting it around the
loop defined by the vector fields w and v. R allows us to compute
the intrinsic curvature of a manifold at a point.

The Riemann curvature is computed by

(define ((Riemann-curvature nabla) w v)
(- (commutator (nabla w) (nabla v))

(nabla (commutator w v))))

The Riemann-curvature procedure is parameterized by the rel-
evant covariant-derivative operator nabla, which implements ∇.
The nabla is itself dependent on the connection, which provides
the details of the local geometry. The same Riemann-curvature

procedure works for ordinary covariant derivatives and for covari-
ant derivatives over a map. Given two vector fields, the result
of ((Riemann-curvature nabla) w v) is a procedure that takes a
vector field and produces a vector field so we can implement the
Riemann tensor as

1 [11], [4], and [14] use our definition. [20] uses a different convention for the
order of arguments and a different sign. See Appendix C for a definition of
tensors.

116 Chapter 8 Curvature

(define ((Riemann nabla) omega u w v)
(omega (((Riemann-curvature nabla) w v) u)))

So, for example,2

(((Riemann (covariant-derivative sphere-Cartan))
dphi d/dtheta d/dphi d/dtheta)

((point S2-spherical) (up ’theta0 ’phi0)))
1

Here we have computed the φ component of the result of carrying
a ∂/∂θ basis vector around the parallelogram defined by ∂/∂φ and
∂/∂θ. The result shows a net rotation in the φ direction.

Most of the sixteen coefficients of the Riemann tensor for the
sphere are zero. The following are the nonzero coefficients:

R

(
dθ,

∂

∂φ
,
∂

∂θ
,
∂

∂φ

)
(χ−1(qθ, qφ)) =

(
sin(qθ)

)2
,

R

(
dθ,

∂

∂φ
,
∂

∂φ
,
∂

∂θ

)
(χ−1(qθ, qφ)) = −

(
sin(qθ)

)2
,

R

(
dφ,

∂

∂θ
,
∂

∂θ
,
∂

∂φ

)
(χ−1(qθ, qφ)) = −1,

R

(
dφ,

∂

∂θ
,
∂

∂φ
,
∂

∂θ

)
(χ−1(qθ, qφ)) = 1. (8.3)

8.1 Explicit Transport

We will show that the result of the Riemann calculation of the
change in a vector, as we traverse a loop, is what we get by ex-
plicitly calculating the transport. The coordinates of the vector
to be transported are governed by the differential equations (see
equation 7.72)

Dui(t) = −
∑
j

�i
j(v)(χ

−1(σ(t)))uj(t) (8.4)

2The connection specified by sphere-Cartan is defined on page 107.

8.1 Explicit Transport 117

and the coordinates as a function of time, σ = χ ◦ γ ◦ χ−1
R , of the

path γ, are governed by the differential equations3

Dσ(t) = v(χ)(χ−1(σ(t))). (8.5)

We have to integrate these equations (8.4, 8.5) together to trans-
port the vector over the map uγ a finite distance along the vector
field v.

Let s(t) = (σ(t), u(t)) be a state tuple, combining σ the coor-
dinates of γ, and u the coordinates of uγ . Then

Ds(t) = (Dσ(t),Du(t)) = g(s(t)), (8.6)

where g is the tuple of right-hand sides of equations (8.4, 8.5).
The differential equations describing the evolution of a function

h of state s along the state path are

D(h ◦ s) = (Dh ◦ s)(g ◦ s) = Lgh ◦ s, (8.7)

defining the operator Lg.
Exponentiation gives a finite evolution:4

h(s(t+ ε)) = (eεLgh)(s(t)). (8.8)

The finite parallel transport of the vector with components u is

u(t+ ε) = (eεLgU)(s(t)), (8.9)

where the selector U(σ, u) = u, and the initial state is s(t) =
(σ(t), u(t)).

Consider parallel-transporting a vector u around a parallelo-
gram defined by two coordinate-basis vector fields w and v. The
vector u is really a vector over a map, where the map is the para-
metric curve describing our parallelogram. This map is implicitly
defined in terms of the vector fields w and v. Let gw and gv be the
right-hand sides of the differential equations for parallel transport

3The map γ takes points on the real line to points on the target manifold.
The chart χ gives coordinates of points on the target manifold while χR gives
a time coordinate on the real line.

4The series may not converge for large increments in the independent variable.
In this case it is appropriate to numerically integrate the differential equations
directly.

118 Chapter 8 Curvature

along w and v respectively. Then evolution along w for interval
ε, then along v for interval ε, then reversing w, and reversing v,
brings σ back to where it started to second order in ε.

The state s = (σ, u) after transporting s0 around the loop is5

(e−εLgv I) ◦ (e−εLgw I) ◦ (eεLgv I) ◦ (eεLgw I)(s0)

= (eεLgw eεLgv e−εLgw e−εLgv I)(s0)

= (eε
2[Lgw ,Lgv]+···I)(s0). (8.10)

So the lowest-order change in the transported vector is

ε2U(([Lgw , Lgv]I)(s0)), (8.11)

where U(σ, u) = u.
However, if w and v do not commute, the indicated loop does

not bring σ back to the starting point, to second order in ε. We
must account for the commutator. (See figure 4.2.) In the general
case the lowest order change in the transported vector is

ε2U((([Lgw , Lgv]− Lg[w,v]
)I)(s0)). (8.12)

This is what the Riemann tensor computation gives, scaled by ε2.

Verification in Two Dimensions

We can verify this in two dimensions. We need to make the struc-
ture representing a state:

(define (make-state sigma u) (vector sigma u))

(define (Sigma state) (ref state 0))

(define (U-select state) (ref state 1))

5 The parallel-transport operators are evolution operators, and therefore de-
scend into composition:

eA(F ◦G) = F ◦ (eAG),

for any state function G and any compatible F . As a consequence, we have
the following identity:

eAeBI = eA((eBI) ◦ I) = (eBI) ◦ (eAI),

where I is the identity function on states.

8.1 Explicit Transport 119

And now we get to the meat of the matter: First we find the rate
of change of the components of the vector u as we carry it along
the vector field v.6

(define ((Du v) state)
(let ((CF (Cartan->forms general-Cartan-2)))
(* -1

((CF v) (Chi-inverse (Sigma state)))
(U-select state))))

We also need to determine the rate of change of the coordinates
of the integral curve of v.

(define ((Dsigma v) state)
((v Chi) (Chi-inverse (Sigma state))))

Putting these together to make the derivative of the state vector

(define ((g v) state)
(make-state ((Dsigma v) state) ((Du v) state)))

gives us just what we need to construct the differential operator
for evolution of the combined state:

(define (L v)
(define ((l h) state)
(* ((D h) state) ((g v) state)))

(make-operator l))

So now we can demonstrate that the lowest-order change re-
sulting from explicit parallel transport of a vector around an in-
finitesimal loop is what is computed by the Riemann curvature.

6 The setup for this experiment is a bit complicated. We need to make a
manifold with a general connection.

(define Chi-inverse (point R2-rect))
(define Chi (chart R2-rect))

We now make the Cartan forms from the most general 2-dimensional
Christoffel coefficient structure:

(define general-Cartan-2
(Christoffel->Cartan

(literal-Christoffel-2 ’Gamma R2-rect)))

120 Chapter 8 Curvature

(let ((U (literal-vector-field ’U-rect R2-rect))
(W (literal-vector-field ’W-rect R2-rect))
(V (literal-vector-field ’V-rect R2-rect))
(sigma (up ’sigma0 ’sigma1)))

(let ((nabla (covariant-derivative general-Cartan-2))
(m (Chi-inverse sigma)))

(let ((s (make-state sigma ((U Chi) m))))
(- (((- (commutator (L V) (L W))

(L (commutator V W)))
U-select)
s)
(((((Riemann-curvature nabla) W V) U) Chi) m)))))

(up 0 0)

Geometrically

The explicit transport above was done with differential equations
operating on a state consisting of coordinates and components of
the vector being transported. We can simplify this so that it is
entirely built on manifold objects, eliminating the state. After a
long algebraic story we find that

((R(w, v))(u))(f)

= e(f) {(w(�(v))− v(�(w)) −�([w, v]))ẽ(u)

+�(w)�(v)ẽ(u)−�(v)�(w)ẽ(u)} (8.13)

or as a program:

(define ((((curvature-from-transport Cartan) w v) u) f)
(let* ((CF (Cartan->forms Cartan))

(basis (Cartan->basis Cartan))
(fi (basis->1form-basis basis))
(ei (basis->vector-basis basis)))

(* (ei f)
(+ (* (- (- (w (CF v)) (v (CF w)))

(CF (commutator w v)))
(fi u))

(- (* (CF w) (* (CF v) (fi u)))
(* (CF v) (* (CF w) (fi u))))))))

This computes the same operator as the traditional Riemann cur-
vature operator:

8.1 Explicit Transport 121

(define (test coordsys Cartan)
(let ((m (typical-point coordsys))

(u (literal-vector-field ’u-coord coordsys))
(w (literal-vector-field ’w-coord coordsys))
(v (literal-vector-field ’v-coord coordsys))
(f (literal-manifold-function ’f-coord coordsys)))

(let ((nabla (covariant-derivative Cartan)))
(- (((((curvature-from-transport Cartan) w v) u) f) m)

(((((Riemann-curvature nabla) w v) u) f) m)))))

(test R2-rect general-Cartan-2)
0

(test R2-polar general-Cartan-2)
0

Terms of the Riemann Curvature

Since the Riemann curvature is defined as in equation (8.1),

R(w, v) = [∇w,∇v]−∇[w,v], (8.14)

it is natural7 to identify these terms with the corresponding terms
in

(([Lgw , Lgv]− Lg[w,v]
)U)(s0). (8.15)

Unfortunately, this does not work, as demonstrated below:

(let ((U (literal-vector-field ’U-rect R2-rect))
(V (literal-vector-field ’V-rect R2-rect))
(W (literal-vector-field ’W-rect R2-rect))
(nabla (covariant-derivative general-Cartan-2))
(sigma (up ’sigma0 ’sigma1)))

(let ((m (Chi-inverse sigma)))
(let ((s (make-state sigma ((U Chi) m))))

(- (((commutator (L W) (L V)) U-select) s)
((((commutator (nabla W) (nabla V)) U) Chi)
m)))))

a nonzero mess

7People often say “Geodesic evolution is exponentiation of the covariant
derivative.” But this is wrong. The evolution is by exponentiation of Lg .

122 Chapter 8 Curvature

The obvious identification does not work, but neither does the
other one!

(let ((U (literal-vector-field ’U-rect R2-rect))
(V (literal-vector-field ’V-rect R2-rect))
(W (literal-vector-field ’W-rect R2-rect))
(nabla (covariant-derivative general-Cartan-2))
(sigma (up ’sigma0 ’sigma1)))

(let ((m (Chi-inverse sigma)))
(let ((s (make-state sigma ((U Chi) m))))

(- (((commutator (L W) (L V)) U-select) s)
((((nabla (commutator W V)) U) Chi)
m)))))

a nonzero mess

Let’s compute the two parts of the Riemann curvature operator
and see how this works out. First, recall

∇vu(f) =
∑
i

ei(f)

(
v(ẽi(u)) +

∑
j

�i
j(v)ẽ

j(u)

)
(8.16)

= e(f) (v(ẽ(u)) +�(v)ẽ(u)) , (8.17)

where the second form uses tuple arithmetic. Now let’s consider
the first part of the Riemann curvature operator:

[∇w,∇v] u

= ∇w∇vu−∇v∇wu

= e {w(v(ẽ(u)) +�(v)ẽ(u)) +�(w)(v(ẽ(u)) +�(v)ẽ(u))}

− e {v(w(ẽ(u)) +�(w)ẽ(u)) +�(v)(w(ẽ(u)) +�(w)ẽ(u))}

= e {[w, v]ẽ(u)

+ w(�(v))ẽ(u)− v(�(w))ẽ(u)

+�(w)�(v)ẽ(u)−�(v)�(w)ẽ(u)} . (8.18)

The second term of the Riemann curvature operator is

∇[w,v]u = e {[w, v]ẽ(u) +�([w, v])ẽ(u)} . (8.19)

The difference of these is the Riemann curvature operator. No-
tice that the first term in each cancels, and the rest gives equa-
tion (8.13).

8.1 Explicit Transport 123

Ricci Curvature

One measure of the curvature is the Ricci tensor, which is com-
puted from the Riemann tensor by

R(u, v) =
∑
i

R(ẽi, u, ei, v). (8.20)

Expressed as a program:

(define ((Ricci nabla basis) u v)
(contract (lambda (ei wi) ((Riemann nabla) wi u ei v))

basis))

Einstein’s field equation (9.27) for gravity, which we will encounter
later, is expressed in terms of the Ricci tensor.

Exercise 8.1: Ricci of a Sphere

Compute the components of the Ricci tensor of the surface of a sphere.

Exercise 8.2: Pseudosphere

A pseudosphere is a surface in 3-dimensional space. It is a surface of
revolution of a tractrix about its asymptote (along the ẑ-axis). We can
make coordinates for the surface (t, θ) where t is the coordinate along the
asymptote and θ is the angle of revolution. We embed the pseudosphere
in rectangular 3-dimensional space with

(define (pseudosphere q)
(let ((t (ref q 0)) (theta (ref q 1)))

(up (* (sech t) (cos theta))
(* (sech t) (sin theta))
(- t (tanh t)))))

The structure of Christoffel coefficients for the pseudosphere is

(down
(down (up (/ (+ (* 2 (expt (cosh t) 2) (expt (sinh t) 2))

(* -2 (expt (sinh t) 4)) (expt (cosh t) 2)
(* -2 (expt (sinh t) 2)))

(+ (* (cosh t) (expt (sinh t) 3))
(* (cosh t) (sinh t))))

0)
(up 0

(/ (* -1 (sinh t)) (cosh t))))
(down (up 0

(/ (* -1 (sinh t)) (cosh t)))
(up (/ (cosh t) (+ (expt (sinh t) 3) (sinh t)))

0)))

Note that this is independent of θ.
Compute the components of the Ricci tensor.

124 Chapter 8 Curvature

8.2 Torsion

There are many connections that describe the local properties
of any particular manifold. A connection has a property called
torsion, which is computed as follows:

T (u, v) = ∇uv −∇vu− [u, v]. (8.21)

The torsion takes two vector fields and produces a vector field.
The torsion depends on the covariant derivative, which is con-
structed from the connection.

We account for this dependency by parameterizing the program
by nabla.

(define ((torsion-vector nabla) u v)
(- (- ((nabla u) v) ((nabla v) u))

(commutator u v)))

(define ((torsion nabla) omega u v)
(omega ((torsion-vector nabla) u v)))

The torsion for the connection for the 2-sphere specified by the
Christoffel coefficients S2-Christoffel above is zero. We demon-
strate this by applying the torsion to the basis vector fields:

(for-each
(lambda (x)

(for-each
(lambda (y)

(print-expression
((((torsion-vector (covariant-derivative sphere-Cartan))

x y)
(literal-manifold-function ’f S2-spherical))
((point S2-spherical) (up ’theta0 ’phi0)))))

(list d/dtheta d/dphi)))
(list d/dtheta d/dphi))

0
0
0
0

Torsion Doesn’t Affect Geodesics

There are multiple connections that give the same geodesic curves.
Among these connections there is always one with zero torsion.
Thus, if you care about only geodesics, it is appropriate to use a
torsion-free connection.

8.3 Geodesic Deviation 125

Consider a basis e and its dual ẽ. The components of the torsion
are

ẽk(T(ei, ej)) = Γk
ij − Γk

ji + dkij , (8.22)

where dkij are the structure constants of the basis. See equa-
tions (4.37, 4.38). For a commuting basis the structure constants
are zero, and the components of the torsion are the antisymmetric
part of Γ with respect to the lower indices.

Recall the geodesic equation (7.79):

D2σi(t) +
∑
jk

Γi
jk(γ(t))Dσj(t)Dσk(t) = 0. (8.23)

Observe that the lower indices of Γ are contracted with two copies
of the velocity. Because the use of Γ is symmetrical here, any
asymmetry of Γ in its lower indices is irrelevant to the geodesics.
Thus one can study the geodesics of any connection by first sym-
metrizing the connection, eliminating torsion. The resulting equa-
tions will be simpler.

8.3 Geodesic Deviation

Geodesics may converge and intersect (as in the lines of longitude
on a sphere) or they may diverge (for example, on a saddle). To
capture this notion requires some measure of the convergence or
divergence, but this requires metrics (see Chapter 9). But even
in the absence of a metric we can define a quantity, the geodesic

deviation, that can be interpreted in terms of relative acceleration
of neighboring geodesics from a reference geodesic.

Let there be a one-parameter family of geodesics, with param-
eter s, and let T be the vector field of tangent vectors to those
geodesics:

∇TT = 0. (8.24)

We can parameterize travel along the geodesics with parameter t:
a geodesic curve γs(t) = φT

t (ms) where

f ◦ φT
t (ms) = (etT f)(ms). (8.25)

126 Chapter 8 Curvature

Let U = ∂/∂s be the vector field corresponding to the dis-
placement of neighboring geodesics. Locally, (t, s) is a coordinate
system on the 2-dimensional submanifold formed by the family of
geodesics. The vector fields T and U are a coordinate basis for
this coordinate system, so [T,U] = 0.

The geodesic deviation vector field is defined as:

∇T(∇TU). (8.26)

If the connection has zero torsion, the geodesic deviation can
be related to the Riemann curvature:

∇T(∇TU) = −R(U,T)(T), (8.27)

as follows, using equation (8.21),

∇T(∇TU) = ∇T(∇UT), (8.28)

because both the torsion is zero and [T,U] = 0. Continuing

∇T(∇TU) = ∇T(∇UT)

= ∇T(∇UT) +∇U(∇TT)−∇U(∇TT)

= ∇U(∇TT)−R(U,T)(T)

= −R(U,T)(T). (8.29)

In the last line the first term was dropped because T satisfies the
geodesic equation (8.24).

The geodesic deviation is defined without using a metric, but
it helps to have a metric (see Chapter 9) to interpret the geodesic
deviation. Consider two neighboring geodesics, with parameters
s and s + Δs. Given a metric we can assume that t is propor-
tional to path length along each geodesic, and we can define a
distance δ(s, t,Δs) between the geodesics at the same value of the
parameter t. So the velocity of separation of the two geodesics is

(∇TU)Δs = ∂1δ(s, t,Δs)ŝ (8.30)

where ŝ is a unit vector in the direction of increasing s. So ∇TU

is the factor of increase of velocity with increase of separation.
Similarly, the geodesic deviation can be interpreted as the factor
of increase of acceleration with increase of separation:

∇T(∇TU)Δs = ∂1∂1δ(s, t,Δs)ŝ. (8.31)

8.3 Geodesic Deviation 127

Longitude Lines on a Sphere

Consider longitude lines on the unit sphere.8 Let theta be co-
latitude and phi be longitude. These are the parameters s and
t, respectively. Then let T be the vector field d/dtheta that is
tangent to the longitude lines.

We can verify that every longitude line is a geodesic:

((omega (((covariant-derivative Cartan) T) T)) m)
0

where omega is an arbitrary one-form field.
Now let U be d/dphi, then U commutes with T:

(((commutator U T) f) m)
0

The torsion for the usual connection for the sphere is zero:

(let ((X (literal-vector-field ’X-sphere S2-spherical))
(Y (literal-vector-field ’Y-sphere S2-spherical)))

((((torsion-vector nabla) X Y) f) m))
0

So we can compute the geodesic deviation using Riemann

((+ (omega ((nabla T) ((nabla T) U)))
((Riemann nabla) omega T U T))

m)
0

confirming equation (8.29).
Lines of longitude are geodesics. How do the lines of longi-

tude behave? As we proceed from the North Pole, the lines of
constant longitude diverge. At the Equator they are parallel and
they converge towards the South Pole.

Let’s compute ∇TU and ∇T(∇TU). We know that the distance
is purely in the φ direction, so

8The setup for this example is:

(define-coordinates (up theta phi) S2-spherical)
(define T d/dtheta)
(define U d/dphi)
(define m ((point S2-spherical) (up ’theta0 ’phi0)))
(define Cartan (Christoffel->Cartan S2-Christoffel))
(define nabla (covariant-derivative Cartan))

128 Chapter 8 Curvature

((dphi ((nabla T) U)) m)
(/ (cos theta0) (sin theta0))

((dphi ((nabla T) ((nabla T) U))) m)
-1

Let’s interpret these results. On a sphere of radius R the dis-
tance at colatitude θ between two geodesics separated by Δφ is
d(φ, θ,Δφ) = R sin(θ)Δφ. Assuming that θ is uniformly increas-
ing with time, the magnitude of the velocity is just the θ-derivative
of this distance:

(define ((delta R) phi theta Delta-phi)
(* R (sin theta) Delta-phi))

(((partial 1) (delta ’R)) ’phi0 ’theta0 ’Delta-phi)
(* Delta-phi R (cos theta0))

The direction of the velocity is the unit vector in the φ direction:

(define phi-hat
(* (/ 1 (sin theta)) d/dphi))

This comes from the fact that the separation of lines of longitude
is proportional to the sine of the colatitude. So the velocity vector
field is the product.

We can measure the φ component with dφ:

((dphi (* (((partial 1) (delta ’R))
’phi0 ’theta0 ’Delta-phi)
phi-hat))

m)
(/ (* Delta-phi R (cos theta0)) (sin theta0))

This agrees with ∇TUΔφ for the unit sphere. Indeed, the lines
of longitude diverge until they reach the Equator and then they
converge.

Similarly, the magnitude of the acceleration is

(((partial 1) ((partial 1) (delta ’R)))
’phi0 ’theta0 ’Delta-phi)

(* -1 Delta-phi R (sin theta0))

and the acceleration vector is the product of this result with φ̂.
Measuring this with dφ we get:

8.4 Bianchi Identities 129

((dphi (* (((partial 1) ((partial 1) (delta ’R)))
’phi0 ’theta0 ’Delta-phi)
phi-hat))

m)
(* -1 Delta-phi R)

And this agrees with the calculation of ∇T∇TUΔφ for the unit
sphere. We see that the separation of the lines of longitude are
uniformly decelerated as they progress from pole to pole.

8.4 Bianchi Identities

There are some important mathematical properties of the Rie-
mann curvature. These identities will be used to constrain the
possible geometries that can occur.

A system with a symmetric connection, Γi
jk = Γi

kj, is torsion

free.9

(define nabla
(covariant-derivative
(Christoffel->Cartan

(symmetrize-Christoffel
(literal-Christoffel-2 ’C R4-rect)))))

(((torsion nabla) omega X Y)
(typical-point R4-rect))

0

The Bianchi identities are defined in terms of a cyclic-summation
operator, which is most easily described as a Scheme procedure:

(define ((cyclic-sum f) x y z)
(+ (f x y z)

(f y z x)
(f z x y)))

9Setup for this section:

(define omega (literal-1form-field ’omega-rect R4-rect))
(define X (literal-vector-field ’X-rect R4-rect))
(define Y (literal-vector-field ’Y-rect R4-rect))
(define Z (literal-vector-field ’Z-rect R4-rect))
(define V (literal-vector-field ’V-rect R4-rect))

130 Chapter 8 Curvature

The first Bianchi identity is

R(ω, x, y, z) + R(ω, y, z, x) + R(ω, z, x, y) = 0, (8.32)

or, as a program:

(((cyclic-sum
(lambda (x y z)
((Riemann nabla) omega x y z)))

X Y Z)
(typical-point R4-rect))

0

The second Bianchi identity is

∇xR(ω, v, y, z) +∇yR(ω, v, z, x) +∇zR(ω, v, x, y) = 0 (8.33)

or, as a program:

(((cyclic-sum
(lambda (x y z)
(((nabla x) (Riemann nabla))
omega V y z)))

X Y Z)
(typical-point R4-rect))

0

Things get more complicated when there is torsion. We can
make a general connection, which has torsion:

(define nabla
(covariant-derivative
(Christoffel->Cartan

(literal-Christoffel-2 ’C R4-rect))))

(define R (Riemann nabla))
(define T (torsion-vector nabla))

(define (TT omega x y)
(omega (T x y)))

8.4 Bianchi Identities 131

The first Bianchi identity is now:10

(((cyclic-sum
(lambda (x y z)

(- (R omega x y z)
(+ (omega (T (T x y) z))

(((nabla x) TT) omega y z)))))
X Y Z)

(typical-point R4-rect))
0

and the second Bianchi identity for a general connection is

(((cyclic-sum
(lambda (x y z)

(+ (((nabla x) R) omega V y z)
(R omega V (T x y) z))))

X Y Z)
(typical-point R4-rect))

0

10The Bianchi identities are much nastier to write in traditional mathematical
notation than as Scheme programs.

9
Metrics

We often want to impose further structure on a manifold to allow
us to define lengths and angles. This is done by generalizing the
idea of the Euclidean dot product, which allows us to compute
lengths of vectors and angles between vectors in traditional vector
algebra.

For vectors �u = uxx̂+ uyŷ + uzẑ and �v = vxx̂ + vyŷ + vz ẑ the
dot product is �u · �v = uxvx + uyvy + uzvz. The generalization is
to provide coefficients for these terms and to include cross terms,
consistent with the requirement that the function of two vectors is
symmetric. This symmetric, bilinear, real-valued function of two
vector fields is called a metric field.

For example, the natural metric on a sphere of radius R is

g(u, v) = R2(dθ(u)dθ(v) + (sin θ)2dφ(u)dφ(v)), (9.1)

and the Minkowski metric on the 4-dimensional space of special
relativity is

g(u, v) = dx(u)dx(v)+dy(u)dy(v)+dz(u)dz(v)−c2dt(u)dt(v).(9.2)

Although these examples are expressed in terms of a coordinate
basis, the value of the metric on vector fields does not depend on
the coordinate system that is used to specify the metric.

Given a metric field g and a vector field v the scalar field g(v, v)
is the squared length of the vector at each point of the manifold.

Metric Music

The metric can be used to construct a one-form field ωu from a
vector field u, such that for any vector field v we have

ωu(v) = g(v, u). (9.3)

The operation of constructing a one-form field from a vector field
using a metric is called “lowering” the vector field. It is sometimes
notated as

ωu = g�(u). (9.4)

134 Chapter 9 Metrics

There is also an inverse metric that takes two one-form fields.
It is defined by the relation

δik =
∑
j

g−1(ẽi, ẽj)g(ej , ek), (9.5)

where e and ẽ are any basis and its dual basis.
The inverse metric can be used to construct a vector field vω

from a one-form field ω, such that for any one-form field τ we
have

τ (vω) = g−1(ω, τ). (9.6)

This definition is implicit, but the vector field can be explicitly
computed from the one-form field with respect to a basis as fol-
lows:

vω =
∑
i

g−1(ω, ẽi)ei. (9.7)

The operation of constructing a vector field from a one-form field
using a metric is called “raising” the one-form field. It is some-
times notated

vω = g�(ω). (9.8)

The raising and lowering operations allow one to interchange
the vector fields and the one-form fields. However they should not
be confused with the dual operation that allows one to construct a
dual one-form basis from a vector basis or construct a vector basis
from a one-form basis. The dual operation that interchanges bases
is defined without assigning a metric structure on the space.

Lowering a vector field with respect to a metric is a simple
program:

(define ((lower metric) u)
(define (omega v) (metric v u))
(procedure->1form-field omega))

But raising a one-form field to make a vector field is a bit more
complicated:

9.1 Metric Compatibility 135

(define (raise metric basis)
(let ((gi (metric:invert metric basis)))
(lambda (omega)

(contract (lambda (e i w^i)
(* (gi omega w^i) e i))

basis))))

where contract is the trace over a basis of a two-argument func-
tion that takes a vector field and a one-form field as its arguments.1

(define (contract proc basis)
(let ((vector-basis (basis->vector-basis basis))

(1form-basis (basis->1form-basis basis)))
(s:sigma/r proc

vector-basis
1form-basis)))

9.1 Metric Compatibility

A connection is said to be compatible with a metric g if the co-
variant derivative for that connection obeys the “product rule”:

∇X(g(Y,Z)) = g(∇X(Y),Z) + g(Y,∇X(Z)). (9.9)

For a metric there is a unique torsion-free connection that is com-
patible with it. The Christoffel coefficients of the first kind are
computed from the metric by the following:

Γ̄ijk = 1
2(ek(g(ei, ej)) + ej(g(ei, ek))− ei(g(ej , ek))), (9.10)

for the coordinate basis e. We can then construct the Christoffel
coefficients of the second kind (the ones used previously to define
a connection) by “raising the first index.” To do this we define a
function of three vectors, with a weird currying:

Γ̃(v,w)(u) =
∑
ijk

Γ̄ijkẽ
i(u)ẽj(v)ẽk(w). (9.11)

1Notice that raise and lower are not symmetrical. This is because vector
fields and form fields are not symmetrical: a vector field takes a manifold
function as its argument, whereas a form field takes a vector field as its ar-
gument. This asymmetry is not apparent in traditional treatments based on
index notation.

136 Chapter 9 Metrics

This function takes two vector fields and produces a one-form field.
We can use it with equation (9.7) to construct a new function that
takes two vector fields and produces a vector field:

Γ̂(v,w) =
∑
i

g−1(Γ̃(v,w), ẽi)ei. (9.12)

We can now construct the Christoffel coefficients of the second
kind:

Γi
jk = ẽi(Γ̂(ej , ek)) =

∑
m

Γ̄mjkg
−1(ẽm, ẽi). (9.13)

The Cartan forms are then just

�i
j =

∑
k

Γi
jkẽ

k =
∑
k

ẽi(Γ̂(ej , ek))ẽ
k. (9.14)

So, for example, we can compute the Christoffel coefficients for
the sphere from the metric for the sphere. First, we need the
metric:

(define ((g-sphere R) u v)
(* (square R)

(+ (* (dtheta u) (dtheta v))
(* (compose (square sin) theta)

(dphi u)
(dphi v)))))

The Christoffel coefficients of the first kind are a complex structure
with all three indices down:

((Christoffel->symbols
(metric->Christoffel-1 (g-sphere ’R) S2-basis))

((point S2-spherical) (up ’theta0 ’phi0)))
(down
(down (down 0 0)

(down 0 (* (* (cos theta0) (sin theta0)) (expt R 2))))
(down (down 0 (* (* (cos theta0) (sin theta0)) (expt R 2)))

(down (* (* -1 (cos theta0) (sin theta0)) (expt R 2))
0)))

And the Christoffel coefficients of the second kind have the inner-
most index up:

9.2 Metrics and Lagrange Equations 137

((Christoffel->symbols
(metric->Christoffel-2 (g-sphere ’R) S2-basis))

((point S2-spherical) (up ’theta0 ’phi0)))
(down (down (up 0 0)

(up 0 (/ (cos theta0) (sin theta0))))
(down (up 0 (/ (cos theta0) (sin theta0)))

(up (* -1 (cos theta0) (sin theta0)) 0)))

Exercise 9.1: Metric Compatibility

The connections constructed from a metric by equation (9.13) are “met-
ric compatible,” as described in equation (9.9). Demonstrate that this
is true for a literal metric, as described on page 6, in R4. Your program
should produce a zero.

9.2 Metrics and Lagrange Equations

In the Introduction (Chapter 1) we showed that the Lagrange
equations for a free particle constrained to a 2-dimensional surface
are equivalent to the geodesic equations for motion on that surface.
We illustrated that in detail in Section 7.4 for motion on a sphere.

Here we expand this understanding to show that the Christof-
fel symbols can be derived from the Lagrange equations. Specifi-
cally, if we solve the Lagrange equations for the acceleration (the
highest-order derivatives) we find that the Christoffel symbols are
the symmetrized coefficients of the quadratic velocity terms.

Consider the Lagrange equations for a free particle, with La-
grangian

L2(t, x, v) =
1
2g(x)(v, v). (9.15)

If we solve the Lagrange equations for the accelerations, the ac-
celerations can be expressed with the geodesic equations (7.79):

D2qi +
∑
jk

(Γi
jk ◦ χ

−1 ◦ q)DqjDqk = 0. (9.16)

We can verify this computationally. Given a metric, we can
construct a Lagrangian where the kinetic energy is the metric
applied to the velocity twice: The kinetic energy is proportional
to the squared length of the velocity vector.

138 Chapter 9 Metrics

(define (metric->Lagrangian metric coordsys)
(define (L state)
(let ((q (ref state 1)) (qd (ref state 2)))

(define v
(components->vector-field (lambda (m) qd) coordsys))

((* 1/2 (metric v v)) ((point coordsys) q))))
L)

The following code compares the Christoffel symbols with the
coefficients of the terms of second order in velocity appearing in
the accelerations, determined by solving the Lagrange equations
for the highest-order derivative.2 We extract these terms by taking
two partials with respect to the structure of velocities. Because the
elementary partials commute we get two copies of each coefficient,
requiring a factor of 1/2.

(let* ((metric (literal-metric ’g R3-rect))
(q (typical-coords R3-rect))
(L2 (metric->Lagrangian metric R3-rect)))

(+ (* 1/2
(((expt (partial 2) 2) (Lagrange-explicit L2))
(up ’t q (corresponding-velocities q))))

((Christoffel->symbols
(metric->Christoffel-2 metric

(coordinate-system->basis R3-rect)))
((point R3-rect) q))))

(down (down (up 0 0 0) (up 0 0 0) (up 0 0 0))
(down (up 0 0 0) (up 0 0 0) (up 0 0 0))
(down (up 0 0 0) (up 0 0 0) (up 0 0 0)))

We get a structure of zeros, demonstrating the correspondence be-
tween Christoffel symbols and coefficients of the Lagrange equa-
tions.

Thus, if we have a metric specifying an inner product, the
geodesic equations are equivalent to the Lagrange equations for

2The procedure Lagrange-explicit produces the accelerations of the coordi-
nates. In this code the division operator (/) multiplies its first argument on
the left by the inverse of its second argument.

(define (Lagrange-explicit L)
(let ((P ((partial 2) L))

(F ((partial 1) L)))
(/ (- F (+ ((partial 0) P) (* ((partial 1) P) velocity)))

((partial 2) P))))

9.2 Metrics and Lagrange Equations 139

the Lagrangian that is equal to the inner product of the general-
ized velocities with themselves.

Kinetic Energy or Arc Length

A geodesic is a path of stationary length with respect to variations
in the path that keep the endpoints fixed. On the other hand, the
solutions of the Lagrange equations are paths of stationary action
that keep the endpoints fixed. How are these solutions related?

The integrand of the traditional action is the Lagrangian, which
is in this case the Lagrangian L2, the kinetic energy. The integrand
of the arc length is

L1(t, x, v) =
√
g(x)(v, v) =

√
2L2(t, x, v) (9.17)

and the path length is

τ =

∫ t2

t1

L1(t, q(t),Dq(t))dt. (9.18)

If we compute the Lagrange equations for L2 we get the La-
grange equations for L1 with a correction term. Since

L2(t, x, v) =
1
2(L1(t, x, v))

2, (9.19)

and the Lagrange operator for L2 is3

E[L2] = Dt∂2L2 − ∂1L2,

we find

E[L2] = L1E[L1] + ∂2L1DtL1. (9.20)

L2 is the kinetic energy. It is conserved along solution paths,
since there is no explicit time dependence. Because of the relation
between L1 and L2, L1 is also a conserved quantity. Let L1 take
the constant value a on the geodesic coordinate path q we are

3
E is the Euler-Lagrange operator, which gives the residuals of the Lagrange
equations for a Lagrangian. Γ extends a configuration-space path q to make a
state-space path, with as many terms as needed: Γ[q](t) = (t, q(t), Dq(t), · · ·)
The total time derivative Dt is defined by DtF ◦ Γ[q] = D(F ◦ Γ[q]) for any
state function F and path q. The Lagrange equations are E[L] ◦ Γ[q] = 0.
See [19] for more details.

140 Chapter 9 Metrics

considering. Then τ = a(t2 − t1). Since L1 is conserved, (DtL1) ◦
Γ[q] = 0 on the geodesic path q, and both E[L1] ◦ Γ[q] = 0 and
E[L2] ◦ Γ[q] = 0, as required by equation (9.20).

Since L2 is homogeneous of degree 2 in the velocities, L1 is ho-
mogeneous of degree 1. So we cannot solve for the highest-order
derivative in the Lagrange-Euler equations derived from L1: The
Lagrange equations of the Lagrangian L1 are dependent. But al-
though they do not uniquely specify the evolution, they do specify
the geodesic path.

On the other hand, we can solve for the highest-order derivative
in E[L2]. This is because L1E[L1] is homogeneous of degree 2.
So the equations derived from L2 uniquely determine the time
evolution along the geodesic path.

For Two Dimensions

We can show this is true for a 2-dimensional system with a general
metric. We define the Lagrangians in terms of this metric:

(define L2
(metric->Lagrangian (literal-metric ’m R2-rect)

R2-rect))

(define (L1 state)
(sqrt (* 2 (L2 state))))

Although the mass matrix of L2 is nonsingular

(determinant
(((partial 2) ((partial 2) L2))
(up ’t (up ’x ’y) (up ’vx ’vy))))

(+ (* (m 00 (up x y)) (m 11 (up x y)))
(* -1 (expt (m 01 (up x y)) 2)))

the mass matrix of L1 has determinant zero

(determinant
(((partial 2) ((partial 2) L1))
(up ’t (up ’x ’y) (up ’vx ’vy))))

0

showing that these Lagrange equations are dependent.
We can show this dependence explicitly, for a simple system.

Consider the simplest possible system, a geodesic (straight line)
in a plane:

9.2 Metrics and Lagrange Equations 141

(define (L1 state)
(sqrt (square (velocity state))))

(((Lagrange-equations L1)
(up (literal-function ’x) (literal-function ’y)))

’t)
(down
(/ (+ (* (((expt D 2) x) t) (expt ((D y) t) 2))

(* -1 ((D x) t) ((D y) t) (((expt D 2) y) t)))
(expt (+ (expt ((D x) t) 2) (expt ((D y) t) 2)) 3/2))

(/ (+ (* -1 (((expt D 2) x) t) ((D x) t) ((D y) t))
(* (expt ((D x) t) 2) (((expt D 2) y) t)))

(expt (+ (expt ((D x) t) 2) (expt ((D y) t) 2)) 3/2)))

These residuals must be zero; so the numerators must be zero.4

They are:

D2x (Dy)2 = DxDyD2y

D2xDxDy = (Dx)2 D2y

Note that the only constraint is D2xDy = DxD2y, so the result-
ing Lagrange equations are dependent.

This is enough to determine that the result is a straight line,
without specifying the rate along the line. Suppose y = f(x), for
path (x(t), y(t)). Then

Dy = Df(x)Dx and D2y = D2f(x)Dx+Df(x)D2x.

Substituting, we get

Df(x)DxD2x = Dx(D2f(x)Dx+Df(x)D2x)

or

Df(x)D2x = D2f(x)Dx+Df(x)D2x,

so D2f(x) = 0. Thus f is a straight line, as required.

Reparameterization

More generally, a differential equation system F [q](t) = 0 is said
to be reparameterized if the coordinate path q is replaced with a

4We cheated: We hand-simplified the denominator to make the result more
obvious.

142 Chapter 9 Metrics

new coordinate path q ◦ f . For example, we may change the scale
of the independent variable. The system F [q ◦ f] = 0 is said to be
independent of the parameterization if and only if F [q] ◦ f = 0.
So the differential equation system is satisfied by q ◦ f if and only
if it is satisfied by q.

The Lagrangian L1 is homogeneous of degree 1 in the velocities;
so

E[L1] ◦ Γ[q ◦ f]− (E[L1] ◦ Γ[q] ◦ f)Df = 0. (9.21)

We can check this in a simple case. For two dimensions q = (x, y),
the condition under which a reparameterization f of the geodesic
paths with coordinates q satisfies the Lagrange equations for L1

is:

(let ((x (literal-function ’x))
(y (literal-function ’y))
(f (literal-function ’f))
(E1 (Euler-Lagrange-operator L1)))

((- (compose E1
(Gamma (up (compose x f)

(compose y f))
4))

(* (compose E1
(Gamma (up x y) 4)
f)

(D f)))
’t))

(down 0 0)

This residual is identically satisfied, showing that the Lagrange
equations for L1 are independent of the parameterization of the
independent variable.

The Lagrangian L2 is homogeneous of degree 2 in the velocities;
so

E[L2][q ◦ f]− (E[L2][q] ◦ f)(Df)2 = (∂2L2 ◦ Γ[q] ◦ f)(D
2f).(9.22)

Although the Euler-Lagrange equations for L1 are invariant under
an arbitrary reparameterization (Df
= 0), the Euler-Lagrange
equations for L2 are invariant only for a restricted set of f . The
conditions under which a reparameterization f of geodesic paths
with coordinates q satisfies the Lagrange equations for L2 are:

9.2 Metrics and Lagrange Equations 143

(let ((q (up (literal-function ’x) (literal-function ’y)))
(f (literal-function ’f)))

((- (compose (Euler-Lagrange-operator L2)
(Gamma (compose q f) 4))

(* (compose (Euler-Lagrange-operator L2)
(Gamma q 4)
f)

(expt (D f) 2)))
’t))

(down
(* (+ (* ((D x) (f t)) (m 00 (up (x (f t)) (y (f t)))))

(* ((D y) (f t)) (m 01 (up (x (f t)) (y (f t))))))
(((expt D 2) f) t))

(* (+ (* ((D x) (f t)) (m 01 (up (x (f t)) (y (f t)))))
(* ((D y) (f t)) (m 11 (up (x (f t)) (y (f t))))))

(((expt D 2) f) t)))

We see that if these expressions must be zero, then D2f = 0. This
tells us that f is at most affine in t: f(t) = at+ b.

Exercise 9.2: SO(3) Geodesics

We have derived a basis for SO(3) in terms of incremental rotations
around the rectangular axes. See equations (4.29, 4.30, 4.31). We can
use the dual basis to define a metric on SO(3).

(define (SO3-metric v1 v2)
(+ (* (e^x v1) (e^x v2))

(* (e^y v1) (e^y v2))
(* (e^z v1) (e^z v2))))

This metric determines a connection. Show that uniform rotation about
an arbitrary axis traces a geodesic on SO(3).

Exercise 9.3: Curvature of a Spherical Surface

The 2-dimensional surface of a 3-dimensional sphere can be embedded
in three dimensions with a metric that depends on the radius:

(define M (make-manifold S^2-type 2 3))
(define spherical
(coordinate-system-at ’spherical ’north-pole M))

(define-coordinates (up theta phi) spherical)
(define spherical-basis (coordinate-system->basis spherical))

(define ((spherical-metric r) v1 v2)
(* (square r)

(+ (* (dtheta v1) (dtheta v2))
(* (square (sin theta))

(dphi v1) (dphi v2)))))

144 Chapter 9 Metrics

If we raise one index of the Ricci tensor (see equation 8.20) by con-
tracting it with the inverse of the metric tensor we can further contract
it to obtain a scalar manifold function:

R =
∑
ij

g(ẽi, ẽj)R(ei, ej). (9.23)

The trace2down procedure converts a tensor that takes two vector fields
into a tensor that takes a vector field and a one-form field, and then it
contracts the result over a basis to make a trace. It is useful for getting
the Ricci scalar from the Ricci tensor, given a metric and a basis.

(define ((trace2down metric basis) tensor)
(let ((inverse-metric-tensor

(metric:invert metric-tensor basis)))
(contract
(lambda (v1 w1)

(contract
(lambda (v w)
(* (inverse-metric-tensor w1 w)

(tensor v v1)))
basis))

basis)))

Evaluate the Ricci scalar for a sphere of radius r to obtain a measure of
its intrinsic curvature. You should obtain the answer 2/r2.

Exercise 9.4: Curvature of a Pseudosphere

Compute the scalar curvature of the pseudosphere (see exercise 8.2).
You should obtain the value −2.

9.3 General Relativity

By analogy to Newtonian mechanics, relativistic mechanics has
two parts. There are equations of motion that describe how parti-
cles move under the influence of “forces” and there are field equa-
tions that describe how the forces arise. In general relativity the
only force considered is gravity. However, gravity is not treated as
a force. Instead, gravity arises from curvature in the spacetime,
and the equations of motion are motion along geodesics of that
space.

The geodesic equations for a spacetime with the metric

9.3 General Relativity 145

g(v1, v2) =− c2
(
1 +

2V

c2

)
dt(v1)dt(v2)

+ dx(v1)dx(v2)

+ dy(v1)dy(v2)

+ dz(v1)dz(v2) (9.24)

are Newton’s equations to lowest order in V/c2:

D2�x(t) = −gradV (�x(t)). (9.25)

Exercise 9.5: Newton’s Equations

Verify that Newton’s equations (9.25) are indeed the lowest-order terms
of the geodesic equations for the metric (9.24).

Einstein’s field equations tell how the local energy-momentum
distribution determines the local shape of the spacetime, as de-
scribed by the metric tensor g. The equations are traditionally
written

Rμν −
1

2
Rgμν + Λgμν =

8πG

c4
Tμν (9.26)

where Rμν are the components of the Ricci tensor (equation 8.20),
R is the Ricci scalar (equation 9.23),5 and Λ is the cosmological
constant.

Tμν are the components of the stress-energy tensor describing
the energy-momentum distribution. Equivalently, one can write

Rμν =
8πG

c4

(
Tμν −

1

2
Tgμν

)
− Λgμν (9.27)

where T = Tμνg
μν .6

5The tensor with components Gμν = Rμν − 1

2
Rgμν is called the Einstein

tensor. In his search for an appropriate field equation for gravity, Einstein
demanded general covariance (independence of coordinate system) and local
Lorentz invariance (at each point transformations must preserve the line el-
ement). These considerations led Einstein to look for a tensor equation (see
Appendix C).

6Start with equation (9.26). Raise one index of both sides, and then contract.
Notice that the trace gμμ = 4, the dimension of spacetime. This gets R =

−(8πG/c4)T , from which we can deduce equation (9.27).

146 Chapter 9 Metrics

Einstein’s field equations arise from a heuristic derivation by
analogy to the Poisson equation for a Newtonian gravitational
field:

Lap(V) = 4πGρ (9.28)

where V is the gravitational potential field at a point, ρ is the
mass density at that point, and Lap is the Laplacian operator.

The time-time component of the Ricci tensor derived from the
metric (9.24) is the Laplacian of the potential, to lowest order.

(define (Newton-metric M G c V)
(let ((a

(+ 1 (* (/ 2 (square c))
(compose V (up x y z))))))

(define (g v1 v2)
(+ (* -1 (square c) a (dt v1) (dt v2))

(* (dx v1) (dx v2))
(* (dy v1) (dy v2))
(* (dz v1) (dz v2))))

g))

(define (Newton-connection M G c V)
(Christoffel->Cartan
(metric->Christoffel-2 (Newton-metric M G c V)

spacetime-rect-basis)))

(define nabla
(covariant-derivative
(Newton-connection ’M ’G ’:c

(literal-function ’V (-> (UP Real Real Real) Real)))))

(((Ricci nabla (coordinate-system->basis spacetime-rect))
d/dt d/dt)

((point spacetime-rect) (up ’t ’x ’y ’z)))
mess

The leading terms of the mess are

(+ (((partial 0) ((partial 0) V)) (up x y z))
(((partial 1) ((partial 1) V)) (up x y z))
(((partial 2) ((partial 2) V)) (up x y z)))

which is the Laplacian of V . The other terms are smaller by V/c2.
Now consider the right-hand side of equation (9.27). In the

Poisson equation the source of the gravitational potential is the
density of matter. Let the time-time component of the stress-

9.3 General Relativity 147

energy tensor T 00 be the matter density ρ. Here is a program for
the stress-energy tensor:

(define (Tdust rho)
(define (T w1 w2)
(* rho (w1 d/dt) (w2 d/dt)))

T)

If we evaluate the right-hand side expression we obtain7

(let ((g (Newton-metric ’M ’G ’:c V)))
(let ((T ij ((drop2 g spacetime-rect-basis) (Tdust ’rho))))
(let ((T ((trace2down g spacetime-rect-basis) T ij)))

((- (T ij d/dt d/dt) (* 1/2 T (g d/dt d/dt)))
((point spacetime-rect) (up ’t ’x ’y ’z))))))

(* 1/2 (expt :c 4) rho)

So, to make the Poisson analogy we get

Rμν =
8πG

c4

(
Tμν −

1

2
Tgμν

)
− Λgμν (9.29)

as required.

Exercise 9.6: Curvature of Schwarzschild Spacetime

In spherical coordinates around a nonrotating gravitating body the met-
ric of Schwarzschild spacetime is given as:8

7The procedure trace2down is defined on page 144. This expression also uses
drop2, which converts a tensor field that takes two one-form fields into a tensor
field that takes two vector fields. Its definition is

(define ((drop2 metric-tensor basis) tensor)
(lambda (v1 v2)
(contract
(lambda (e1 w1)

(contract
(lambda (e2 w2)

(* (metric-tensor v1 e1) (tensor w1 w2) (metric-tensor e2 v2)))
basis))

basis)))

8The spacetime manifold is built from R
4 with the addition of appropriate

coordinate systems:

(define spacetime (make-manifold R^n 4))
(define spacetime-rect

(coordinate-system-at ’rectangular ’origin spacetime))
(define spacetime-sphere

(coordinate-system-at ’spacetime-spherical ’origin spacetime))

148 Chapter 9 Metrics

(define-coordinates (up t r theta phi) spacetime-sphere)

(define (Schwarzschild-metric M G c)
(let ((a (- 1 (/ (* 2 G M) (* (square c) r)))))

(lambda (v1 v2)
(+ (* -1 (square c) a (dt v1) (dt v2))

(* (/ 1 a) (dr v1) (dr v2))
(* (square r)

(+ (* (dtheta v1) (dtheta v2))
(* (square (sin theta))

(dphi v1) (dphi v2))))))))

Show that the Ricci curvature of the Schwarzschild spacetime is zero.
Use the definition of the Ricci tensor in equation (8.20).

Exercise 9.7: Circular Orbits in Schwarzschild Spacetime

Test particles move along geodesics in spacetime. Now that we have a
metric for Schwarzschild spacetime (page 147) we can use it to construct
the geodesic equations and determine how test particles move. Consider
circular orbits. For example, the circular orbit along a line of constant
longitude is a geodesic, so it should satisfy the geodesic equations. Here
is the equation of a circular path along the zero longitude line.

(define (prime-meridian r omega)
(compose (point spacetime-sphere)

(lambda (t) (up t r (* omega t) 0))
(chart R1-rect)))

This equation will satisfy the geodesic equations for compatible values
of the radius r and the angular velocity omega. If you substitute this
into the geodesic equation and set the residual to zero you will obtain a
constraint relating r and omega. Do it.

Surprise: You should find out that ω2r3 = GM—Kepler’s law!

Exercise 9.8: Stability of Circular Orbits

In Schwarzschild spacetime there are stable circular orbits if the coordi-
nate r is large enough, but below that value all orbits are unstable. The
critical value of r is larger than the Schwarzschild horizon radius. Let’s
find that value.

For example, we can consider a perturbation of the orbit of constant
longitude. Here is the result of adding an exponential variation of size
epsilon:

(define (prime-meridian+X r epsilon X)
(compose
(point spacetime-sphere)
(lambda (t)
(up (+ t (* epsilon (* (ref X 0) (exp (* ’lambda t)))))

(+ r (* epsilon (* (ref X 1) (exp (* ’lambda t)))))
(+ (* (sqrt (/ (* ’G ’M) (expt r 3))) t)

(* epsilon (* (ref X 2) (exp (* ’lambda t)))))
0))

(chart R1-rect)))

9.3 General Relativity 149

Plugging this into the geodesic equation yields a structure of residuals:

(define (geodesic-equation+X-residuals eps X)
(let ((gamma (prime-meridian+X ’r eps X)))

(((((covariant-derivative Cartan gamma) d/dtau)
((differential gamma) d/dtau))

(chart spacetime-sphere))
((point R1-rect) ’t))))

The characteristic equation in the eigenvalue lambda can be obtained as
the numerator of the expression:

(determinant
(submatrix (((* (partial 1) (partial 0))

geodesic-equation+X-residuals)
0
(up 0 0 0))
0 3 0 3))

Show that the orbits are unstable if r < 6GM/c2.

Exercise 9.9: Friedmann-Lemâıtre-Robertson-Walker

The Einstein tensor Gμν (see footnote 5) can be expressed as a program:

(define (Einstein coordinate-system metric-tensor)
(let* ((basis (coordinate-system->basis coordinate-system))

(connection
(Christoffel->Cartan
(metric->Christoffel-2 metric-tensor basis)))

(nabla (covariant-derivative connection))
(Ricci-tensor (Ricci nabla basis))
(Ricci-scalar
((trace2down metric-tensor basis) Ricci-tensor)))

(define (Einstein-tensor v1 v2)
(- (Ricci-tensor v1 v2)

(* 1/2 Ricci-scalar (metric-tensor v1 v2))))
Einstein-tensor))

(define (Einstein-field-equation
coordinate-system metric-tensor Lambda stress-energy-tensor)

(let ((Einstein-tensor
(Einstein coordinate-system metric-tensor)))

(define EFE-residuals
(- (+ Einstein-tensor (* Lambda metric-tensor))

(* (/ (* 8 :pi :G) (expt :c 4))
stress-energy-tensor)))

EFE-residuals))

One exact solution to the Einstein equations was found by Alexan-
der Friedmann in 1922. He showed that a metric for an isotropic and
homogeneous spacetime was consistent with a similarly isotropic and
homogeneous stress-energy tensor in Einstein’s equations. In this case

150 Chapter 9 Metrics

the residuals of the Einstein equations gave ordinary differential equa-
tions for the time-dependent scale of the universe. These are called the
Robertson-Walker equations. Friedmann’s metric is:

(define (FLRW-metric c k R)
(define-coordinates (up t r theta phi) spacetime-sphere)
(let ((a (/ (square (compose R t)) (- 1 (* k (square r)))))

(b (square (* (compose R t) r))))
(define (g v1 v2)
(+ (* -1 (square c) (dt v1) (dt v2))

(* a (dr v1) (dr v2))
(* b (+ (* (dtheta v1) (dtheta v2))

(* (square (sin theta))
(dphi v1) (dphi v2))))))

g))

Here c is the speed of light, k is the intrinsic curvature, and R is a length
scale that is a function of time.

The associated stress-energy tensor is

(define (Tperfect-fluid rho p c metric)
(define-coordinates (up t r theta phi) spacetime-sphere)
(let* ((basis (coordinate-system->basis spacetime-sphere))

(inverse-metric (metric:invert metric basis)))
(define (T w1 w2)
(+ (* (+ (compose rho t)

(/ (compose p t) (square c)))
(w1 d/dt) (w2 d/dt))

(* (compose p t) (inverse-metric w1 w2))))
T))

where rho is the energy density, and p is the pressure in an ideal fluid
model.

The Robertson-Walker equations are:(
DR(t)

R(t)

)2

+
kc2

(R(t))2
−

Λc2

3
=

8πG

3
ρ(t),

2
D2R(t)

R(t)
−

2

3
Λc2 = −8πG

(
ρ(t)

3
+

p(t)

c2

)
. (9.30)

Use the programs supplied to derive the Robertson-Walker equations.

Exercise 9.10: Cosmology

For energy to be conserved, the stress-energy tensor must be constrained
so that its covariant divergence is zero∑
μ

∇eμT(ẽ
μ, ω) = 0 (9.31)

for every one-form ω.

9.3 General Relativity 151

a. Show that for the perfect fluid stress-energy tensor and the FLRW
metric this constraint is equivalent to the differential equation

D(c2ρR3) + pD(R3) = 0. (9.32)

b. Assume that in a “matter-dominated universe” radiation pressure is
negligible, so p = 0. Using the Robertson-Walker equations (9.30) and
the energy conservation equation (9.32) show that the observation of an
expanding universe is compatible with a negative curvature universe, a
flat universe, or a positive curvature universe: k ∈ {−1, 0,+1}.

10
Hodge Star and Electrodynamics

The vector space of p-form fields on an n-dimensional manifold has
dimension n!/((n−p)!p!). This is the same dimension as the space
of (n − p)-form fields. So these vector spaces are isomorphic. If
we have a metric there is a natural isomorphism: for each p-form
field ω on an n-dimensional manifold there is an (n − p)-form
field g∗ω, called its Hodge dual.1 The Hodge dual should not
be confused with the duality of vector bases and one-form bases,
which is defined without reference to a metric. The Hodge dual is
useful for the elegant formalization of electrodynamics.

In Euclidean 3-space, if we think of a one-form as a foliation
of the space, then the dual is a two-form, which can be thought
of as a pack of square tubes, whose axes are perpendicular to the
leaves of the foliation. The original one-form divides these tubes
up into volume elements. For example, the dual of the basis one-
form dx is the two-form g∗dx = dy ∧ dz. We may think of dx
as a set of planes perpendicular to the x̂-axis. Then g∗dx is a
set of tubes parallel to the x̂-axis. In higher-dimensional spaces
the visualization is more complicated, but the basic idea is the
same. The Hodge dual of a two-form in four dimensions is a two-
form that is perpendicular to the given two-form. However, if the
metric is indefinite (e.g., the Lorentz metric) there is an added
complication with the signs.

The Hodge dual is a linear operator, so it can be defined by
its action on the basis elements. Let {∂/∂x0, . . . , ∂/∂xn−1} be an
orthonormal basis of vector fields2 and let {dx0, . . . , dxn−1} be
the ordinary dual basis for the one-forms. Then the (n− p)-form
g∗ω that is the Hodge dual of the p-form ω can be defined by its
coefficients with respect to the basis, using indices, as

(g∗ω)jp...jn−1

=
∑

i0...ip−1j0...jp−1

1

p!
ωi0...ip−1

gi0j0 . . . gip−1jp−1εj0...jn−1
, (10.1)

1The traditional notion is to just use an asterisk; we use g∗ to emphasize that
this duality depends on the choice of metric g.

2We have a metric, so we can define “orthonormal” and use it to construct
an orthonormal basis given any basis. The Gram-Schmidt procedure does the
job.

154 Chapter 10 Hodge Star and Electrodynamics

where gij are the coefficients of the inverse metric and εj0...jn−1
is

either −1 or +1 if the permutation {0 . . . n− 1} → {j0 . . . jn−1} is
odd or even, respectively.

Relationship to Vector Calculus

In 3-dimensional Euclidean space the traditional vector derivative
operations are gradient, curl, and divergence. If x̂, ŷ, ẑ are the
usual orthonormal rectangular vector basis, f a function on the
space, and �v a vector field on the space, then

grad(f) =
∂f

∂x
x̂ +

∂f

∂y
ŷ +

∂f

∂z
ẑ,

curl(�v) =

(
∂vz
∂y

−
∂vy
∂z

)
x̂ +

(
∂vx
∂z

−
∂vz
∂x

)
ŷ +

(
∂vy
∂x

−
∂vx
∂y

)
x̂,

div(�v) =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

.

Recall the meaning of the traditional vector operations. Tra-
ditionally we assume that there is a metric that allows us to de-
termine distances between locations and angles between vectors.
Such a metric establishes local scale factors relating coordinate in-
crements to actual distances. The vector gradient, grad(f), points
in the direction of steepest increase in the function with respect to
actual distances. By contrast, the gradient one-form, df, does not
depend on a metric, so there is no concept of distance built in to
it. Nevertheless, the concepts are related. The gradient one-form
is given by

df =

(
∂

∂x
f

)
dx+

(
∂

∂y
f

)
dy +

(
∂

∂z
f

)
dz. (10.2)

The traditional gradient vector field is then just the raised gradient
one-form (see equation 9.8). So

grad(f) = g�(df) (10.3)

is computed by

(define (gradient metric basis)
(compose (raise metric basis) d))

Chapter 10 Hodge Star and Electrodynamics 155

Let θ be a one-form field:

θ = θxdx+ θydy+ θzdz. (10.4)

We compute

dθ =

(
∂θz
∂y

−
∂θy
∂z

)
dy ∧ dz+

(
∂θx
∂z

−
∂θz
∂x

)
dz ∧ dx

+

(
∂θy
∂x

−
∂θx
∂y

)
dx ∧ dy. (10.5)

So the exterior-derivative expression corresponding to the vector-
calculus curl is:

g∗(dθ) =

(
∂θz
∂y

−
∂θy
∂z

)
dx+

(
∂θx
∂z

−
∂θz
∂x

)
dy

+

(
∂θy
∂x

−
∂θx
∂y

)
dz. (10.6)

Thus, the curl of a vector field v is

curl(v) = g�(g∗(d(g�(v)))), (10.7)

which can be computed with

(define (curl metric orthonormal-basis)
(let ((star (Hodge-star metric orthonormal-basis))

(sharp (raise metric orthonormal-basis))
(flat (lower metric)))

(compose sharp star d flat)))

Also, we compute

d(g∗θ) =

(
∂θx
∂x

+
∂θy
∂y

+
∂θz
∂z

)
dx ∧ dy ∧ dz. (10.8)

So the exterior-derivative expression corresponding to the vector-
calculus div is

g∗d(g∗θ) =
∂θx
∂x

+
∂θy
∂y

+
∂θz
∂z

. (10.9)

Thus, the divergence of a vector field v is

div(v) = g∗(d(g∗(g�(v)))). (10.10)

156 Chapter 10 Hodge Star and Electrodynamics

It is easily computed:

(define (divergence metric orthonormal-basis)
(let ((star (Hodge-star metric orthonormal-basis))

(flat (lower metric)))
(compose star d star flat)))

The divergence is defined even if we don’t have a metric, but
have only a connection. In that case the divergence can be com-
puted with

(define (((divergence Cartan) v) point)
(let ((basis (Cartan->basis Cartan))

(nabla (covariant-derivative Cartan)))
(contract
(lambda (ei wi)

((wi ((nabla ei) v)) point))
basis)))

If the Cartan form is derived from a metric these programs yield
the same answer.

The Laplacian is, as expected, the composition of the divergence
and the gradient:

(define (Laplacian metric orthonormal-basis)
(compose (divergence metric orthonormal-basis)

(gradient metric orthonormal-basis)))

Spherical Coordinates

We can illustrate these by computing the formulas for the vector-
calculus operators in spherical coordinates. We start with a
3-dimensional manifold, and we set up the conditions for spherical
coordinates.

(define spherical R3-rect)

(define-coordinates (up r theta phi) spherical)

(define R3-spherical-point
((point spherical) (up ’r0 ’theta0 ’phi0)))

The geometry is specified by the metric:

Chapter 10 Hodge Star and Electrodynamics 157

(define (spherical-metric v1 v2)
(+ (* (dr v1) (dr v2))

(* (square r)
(+ (* (dtheta v1) (dtheta v2))

(* (expt (sin theta) 2)
(dphi v1) (dphi v2))))))

We also need an orthonormal basis for the spherical coordinates.
The coordinate basis is orthogonal but not normalized.

(define e 0 d/dr)
(define e 1 (* (/ 1 r) d/dtheta))
(define e 2 (* (/ 1 (* r (sin theta))) d/dphi))

(define orthonormal-spherical-vector-basis
(down e 0 e 1 e 2))

(define orthonormal-spherical-1form-basis
(vector-basis->dual orthonormal-spherical-vector-basis

spherical))

(define orthonormal-spherical-basis
(make-basis orthonormal-spherical-vector-basis

orthonormal-spherical-1form-basis))

The components of the gradient of a scalar field are obtained
using the dual basis:

((orthonormal-spherical-1form-basis
((gradient spherical-metric orthonormal-spherical-basis)
(literal-manifold-function ’f spherical)))

R3-spherical-point)
(up (((partial 0) f) (up r0 theta0 phi0))

(/ (((partial 1) f) (up r0 theta0 phi0))
r0)

(/ (((partial 2) f) (up r0 theta0 phi0))
(* r0 (sin theta0))))

To get the formulas for curl and divergence we need a vector
field with components with respect to the normalized basis.

(define v
(+ (* (literal-manifold-function ’v^0 spherical) e 0)

(* (literal-manifold-function ’v^1 spherical) e 1)
(* (literal-manifold-function ’v^2 spherical) e 2)))

158 Chapter 10 Hodge Star and Electrodynamics

The curl is a bit complicated:

((orthonormal-spherical-1form-basis
((curl spherical-metric orthonormal-spherical-basis) v))

R3-spherical-point)
(up
(/ (+ (* (sin theta0)

(((partial 1) vˆ2) (up r0 theta0 phi0)))
(* (cos theta0) (vˆ2 (up r0 theta0 phi0)))
(* -1 (((partial 2) vˆ1) (up r0 theta0 phi0))))

(* r0 (sin theta0)))
(/ (+ (* -1 r0 (sin theta0)

(((partial 0) vˆ2) (up r0 theta0 phi0)))
(* -1 (sin theta0) (vˆ2 (up r0 theta0 phi0)))
(((partial 2) vˆ0) (up r0 theta0 phi0)))

(* r0 (sin theta0)))
(/ (+ (* r0 (((partial 0) vˆ1) (up r0 theta0 phi0)))

(vˆ1 (up r0 theta0 phi0))
(* -1 (((partial 1) vˆ0) (up r0 theta0 phi0))))

r0))

But the divergence and Laplacian are simpler

(((divergence spherical-metric orthonormal-spherical-basis) v)
R3-spherical-point)

(+ (((partial 0) vˆ0) (up r0 theta0 phi0))
(/ (* 2 (vˆ0 (up r0 theta0 phi0))) r0)
(/ (((partial 1) vˆ1) (up r0 theta0 phi0)) r0)
(/ (* (vˆ1 (up r0 theta0 phi0)) (cos theta0))

(* r0 (sin theta0)))
(/ (((partial 2) vˆ2) (up r0 theta0 phi0))

(* r0 (sin theta0))))

(((Laplacian spherical-metric orthonormal-spherical-basis)
(literal-manifold-function ’f spherical))

R3-spherical-point)
(+ (((partial 0) ((partial 0) f)) (up r0 theta0 phi0))

(/ (* 2 (((partial 0) f) (up r0 theta0 phi0)))
r0)

(/ (((partial 1) ((partial 1) f)) (up r0 theta0 phi0))
(expt r0 2))

(/ (* (cos theta0) (((partial 1) f) (up r0 theta0 phi0)))
(* (expt r0 2) (sin theta0)))

(/ (((partial 2) ((partial 2) f)) (up r0 theta0 phi0))
(* (expt r0 2) (expt (sin theta0) 2))))

10.1 The Wave Equation 159

10.1 The Wave Equation

The kinematics of special relativity can be formulated on a flat
4-dimensional spacetime manifold.

(define SR R4-rect)
(define-coordinates (up ct x y z) SR)
(define an-event ((point SR) (up ’ct0 ’x0 ’y0 ’z0)))

(define a-vector
(+ (* (literal-manifold-function ’v^t SR) d/dct)

(* (literal-manifold-function ’v^x SR) d/dx)
(* (literal-manifold-function ’v^y SR) d/dy)
(* (literal-manifold-function ’v^z SR) d/dz)))

The Minkowski metric is3

g(u, v) = (10.11)

−c2dt(u) dt(v) + dx(u) dx(v) + dy(u) dy(v) + dz(u) dz(v).

As a program:

(define (g-Minkowski u v)
(+ (* -1 (dct u) (dct v))

(* (dx u) (dx v))
(* (dy u) (dy v))
(* (dz u) (dz v))))

The length of a vector is described in terms of the metric:

σ = g(v, v). (10.12)

If σ is positive the vector is spacelike and its square root is the
proper length of the vector. If σ is negative the vector is timelike

and the square root of its negation is the proper time of the vector.
If σ is zero the vector is lightlike or null.

((g-Minkowski a-vector a-vector) an-event)
(+ (* -1 (expt (vˆt (up ct0 x0 y0 z0)) 2))

(expt (vˆx (up ct0 x0 y0 z0)) 2)
(expt (vˆy (up ct0 x0 y0 z0)) 2)
(expt (vˆz (up ct0 x0 y0 z0)) 2))

3The metric in relativity is not positive definite, so nonzero vectors can have
zero length.

160 Chapter 10 Hodge Star and Electrodynamics

As an example of vector calculus in four dimensions, we can
compute the wave equation for a scalar field in 4-dimensional
spacetime.

We need an orthonormal basis for the spacetime:

(define SR-vector-basis (coordinate-system->vector-basis SR))

We check that it is orthonormal with respect to the metric:

((g-Minkowski SR-vector-basis SR-vector-basis) an-event)
(down (down -1 0 0 0)

(down 0 1 0 0)
(down 0 0 1 0)
(down 0 0 0 1))

So, the Laplacian of a scalar field is the wave equation!

(define p (literal-manifold-function ’phi SR))

(((Laplacian g-Minkowski SR-basis) p) an-event)
(+ (((partial 0) ((partial 0) phi)) (up ct0 x0 y0 z0))

(* -1 (((partial 1) ((partial 1) phi)) (up ct0 x0 y0 z0)))
(* -1 (((partial 2) ((partial 2) phi)) (up ct0 x0 y0 z0)))
(* -1 (((partial 3) ((partial 3) phi)) (up ct0 x0 y0 z0))))

10.2 Electrodynamics

Using Hodge duals we can represent electrodynamics in an elegant
way. Maxwell’s electrodynamics is invariant under Lorentz trans-
formations. We use 4-dimensional rectangular coordinates for the
flat spacetime of special relativity.

In this formulation of electrodynamics the electric and magnetic
fields are represented together as a two-form field, the Faraday

tensor. Under Lorentz transformations the individual components
are mixed. The Faraday tensor is:4

(define (Faraday Ex Ey Ez Bx By Bz)
(+ (* Ex (wedge dx dct))

(* Ey (wedge dy dct))
(* Ez (wedge dz dct))
(* Bx (wedge dy dz))
(* By (wedge dz dx))
(* Bz (wedge dx dy))))

4This representation is from Misner, Thorne, and Wheeler, Gravitation, p.108.

10.2 Electrodynamics 161

The Hodge dual of the Faraday tensor exchanges the electric and
magnetic fields, negating the components that will involve time.
The result is called the Maxwell tensor:

(define (Maxwell Ex Ey Ez Bx By Bz)
(+ (* -1 Bx (wedge dx dct))

(* -1 By (wedge dy dct))
(* -1 Bz (wedge dz dct))
(* Ex (wedge dy dz))
(* Ey (wedge dz dx))
(* Ez (wedge dx dy))))

We make a Hodge dual operator for this situation:

(define SR-star (Hodge-star g-Minkowski SR-basis))

And indeed, it transforms the Faraday tensor into the Maxwell
tensor:

(((- (SR-star (Faraday ’Ex ’Ey ’Ez ’Bx ’By ’Bz))
(Maxwell ’Ex ’Ey ’Ez ’Bx ’By ’Bz))

(literal-vector-field ’u SR)
(literal-vector-field ’v SR))

an-event)
0

One way to get electric fields is to have charges; magnetic fields
can arise from motion of charges. In this formulation we combine
the charge density and the current to make a one-form field:

(define (J charge-density Ix Iy Iz)
(- (* (/ 1 :c) (+ (* Ix dx) (* Iy dy) (* Iz dz)))

(* charge-density dct)))

The coefficient (/ 1 :c) makes the components of the one-form
uniform with respect to units.

To develop Maxwell’s equations we need a general Faraday field
and a general current-density field:

(define F
(Faraday (literal-manifold-function ’Ex SR)

(literal-manifold-function ’Ey SR)
(literal-manifold-function ’Ez SR)
(literal-manifold-function ’Bx SR)
(literal-manifold-function ’By SR)
(literal-manifold-function ’Bz SR)))

162 Chapter 10 Hodge Star and Electrodynamics

(define 4-current
(J (literal-manifold-function ’rho SR)

(literal-manifold-function ’Ix SR)
(literal-manifold-function ’Iy SR)
(literal-manifold-function ’Iz SR)))

Maxwell’s Equations

Maxwell’s equations in the language of differential forms are

dF = 0, (10.13)

d(g∗ F) = 4π g∗ J. (10.14)

The first equation gives us what would be written in vector nota-
tion as

div �B = 0, (10.15)

curl �E = −
1

c

d �B

dt
. (10.16)

The second equation gives us what would be written in vector
notation as

div �E = 4πρ, (10.17)

curl �B =
1

c

d �E

dt
+

4π

c
�I. (10.18)

To see how these work out, we evaluate each component of
dF and d (g∗F) − 4π g∗ J. Since these are both two-form fields,
their exterior derivatives are three-form fields, so we have to pro-
vide three basis vectors to get each component. Each component
equation will yield one of Maxwell’s equations, written in coordi-
nates, without vector notation. So, the purely spatial component
dF(∂/∂x, ∂/∂y, ∂/∂z) of equation 10.13 is equation 10.15:

(((d F) d/dx d/dy d/dz) an-event)
(+ (((partial 1) Bx) (up ct0 x0 y0 z0))

(((partial 2) By) (up ct0 x0 y0 z0))
(((partial 3) Bz) (up ct0 x0 y0 z0)))

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0 (10.19)

10.2 Electrodynamics 163

The three mixed space and time components of equation 10.13
are equation 10.16:

(((d F) d/dct d/dy d/dz) an-event)
(+ (((partial 0) Bx) (up ct0 x0 y0 z0))

(((partial 2) Ez) (up ct0 x0 y0 z0))
(* -1 (((partial 3) Ey) (up ct0 x0 y0 z0))))

∂Ez

∂y
−

∂Ey

∂z
=

1

c

∂Bx

∂t
, (10.20)

(((d F) d/dct d/dz d/dx) an-event)
(+ (((partial 0) By) (up ct0 x0 y0 z0))

(((partial 3) Ex) (up ct0 x0 y0 z0))
(* -1 (((partial 1) Ez) (up ct0 x0 y0 z0))))

∂Ex

∂z
−

∂Ez

∂x
=

1

c

∂By

∂t
, (10.21)

(((d F) d/dct d/dx d/dy) an-event)
(+ (((partial 0) Bz) (up ct0 x0 y0 z0))

(((partial 1) Ey) (up ct0 x0 y0 z0))
(* -1 (((partial 2) Ex) (up ct0 x0 y0 z0))))

∂Ey

∂x
−

∂Ex

∂y
=

1

c

∂Bz

∂t
. (10.22)

The purely spatial component of equation 10.14 is equation 10.17:

(((- (d (SR-star F)) (* 4 :pi (SR-star 4-current)))
d/dx d/dy d/dz)

an-event)
(+ (* -4 :pi (rho (up ct0 x0 y0 z0)))

(((partial 1) Ex) (up ct0 x0 y0 z0))
(((partial 2) Ey) (up ct0 x0 y0 z0))
(((partial 3) Ez) (up ct0 x0 y0 z0)))

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
= 4πρ. (10.23)

164 Chapter 10 Hodge Star and Electrodynamics

And finally, the three mixed time and space components of
equation 10.14 are equation 10.18:

(((- (d (SR-star F)) (* 4 :pi (SR-star 4-current)))
d/dct d/dy d/dz)

an-event)
(+ (((partial 0) Ex) (up ct0 x0 y0 z0))

(* -1 (((partial 2) Bz) (up ct0 x0 y0 z0)))
(((partial 3) By) (up ct0 x0 y0 z0))
(/ (* 4 :pi (Ix (up ct0 x0 y0 z0))) :c))

∂By

∂z
−

∂Bz

∂y
= −

1

c

∂Ex

∂t
−

4π

c
Ix, (10.24)

(((- (d (SR-star F)) (* 4 :pi (SR-star 4-current)))
d/dct d/dz d/dx)

an-event)
(+ (((partial 0) Ey) (up ct0 x0 y0 z0))

(* -1 (((partial 3) Bx) (up ct0 x0 y0 z0)))
(((partial 1) Bz) (up ct0 x0 y0 z0))
(/ (* 4 :pi (Iy (up ct0 x0 y0 z0))) :c))

∂Bz

∂x
−

∂Bx

∂z
= −

1

c

∂Ey

∂t
−

4π

c
Iy, (10.25)

(((- (d (SR-star F)) (* 4 :pi (SR-star 4-current)))
d/dct d/dx d/dy)

an-event)
(+ (((partial 0) Ez) (up ct0 x0 y0 z0))

(* -1 (((partial 1) By) (up ct0 x0 y0 z0)))
(((partial 2) Bx) (up ct0 x0 y0 z0))
(/ (* 4 :pi (Iz (up ct0 x0 y0 z0))) :c))

∂Bx

∂y
−

∂By

∂x
= −

1

c

∂Ez

∂t
−

4π

c
Iz. (10.26)

Lorentz Force

The classical force on a charged particle moving in a electromag-
netic field is

�f = q
(
�E +

1

c
�v × �B

)
. (10.27)

We can compute this in coordinates. We construct arbitrary �E
and �B vector fields and an arbitrary velocity:

10.2 Electrodynamics 165

(define E
(up (literal-manifold-function ’Ex SR)

(literal-manifold-function ’Ey SR)
(literal-manifold-function ’Ez SR)))

(define B
(up (literal-manifold-function ’Bx SR)

(literal-manifold-function ’By SR)
(literal-manifold-function ’Bz SR)))

(define V (up ’V x ’V y ’V z))

The 3-space force that results is a mess:

(* ’q (+ (E an-event) (cross-product V (B an-event))))
(up (+ (* q (Ex (up ct0 x0 y0 z0)))

(* q V y (Bz (up ct0 x0 y0 z0)))
(* -1 q V z (By (up ct0 x0 y0 z0))))

(+ (* q (Ey (up ct0 x0 y0 z0)))
(* -1 q V x (Bz (up ct0 x0 y0 z0)))
(* q V z (Bx (up ct0 x0 y0 z0))))

(+ (* q (Ez (up ct0 x0 y0 z0)))
(* q V x (By (up ct0 x0 y0 z0)))
(* -1 q V y (Bx (up ct0 x0 y0 z0)))))

The relativistic Lorentz 4-force is usually written in coordinates
as

f ν = −
∑
α,μ

qUμFμαη
αν , (10.28)

where U is the 4-velocity of the charged particle, F is the Faraday
tensor, and ηαν are the components of the inverse of the Minkowski
metric. Here is a program that computes a component of the force
in terms of the Faraday tensor. The desired component is specified
by a one-form.

(define (Force charge F 4velocity component)
(* -1 charge

(contract (lambda (a b)
(contract (lambda (e w)

(* (w 4velocity)
(F e a)
(eta-inverse b component)))

SR-basis))
SR-basis)))

166 Chapter 10 Hodge Star and Electrodynamics

So, for example, the force in the x̂ direction for a stationary par-
ticle is

((Force ’q F d/dct dx) an-event)
(* q (Ex (up ct0 x0 y0 z0)))

Notice that the 4-velocity ∂/∂ct is the 4-velocity of a stationary
particle!

If we give a particle a more general timelike 4-velocity in the
x̂ direction we can see how the ŷ component of the force involves
both the electric and magnetic field:

(define (Ux beta)
(+ (* (/ 1 (sqrt (- 1 (square beta)))) d/dct)

(* (/ beta (sqrt (- 1 (square beta)))) d/dx)))

((Force ’q F (Ux ’v/c) dy) an-event)
(/ (+ (* -1 q v/c (Bz (up ct0 x0 y0 z0)))

(* q (Ey (up ct0 x0 y0 z0))))
(sqrt (+ 1 (* -1 (expt v/c 2)))))

Exercise 10.1: Relativistic Lorentz Force

Compute all components of the 4-force for a general timelike 4-velocity.

a. Compare these components to the components of the nonrelativistic
force given above. Interpret the differences.

b. What is the meaning of the time component? For example, consider:

((Force ’q F (Ux ’v/c) dct) an-event)
(/ (* q v/c (Ex (up ct0 x0 y0 z0)))

(sqrt (+ 1 (* -1 (expt v/c 2)))))

c. Subtract the structure of components of the relativistic 3-space force
from the structure of the spatial components of the 4-space force to show
that they are equal.

11
Special Relativity

Although the usual treatments of special relativity begin with the
Michelson-Morley experiment, this is not how Einstein began. In
fact, Einstein was impressed with Maxwell’s work and he was em-
ulating Maxwell’s breakthrough.

Maxwell was preceded by Faraday, Ampere, Oersted, Coulomb,
Gauss, and Franklin. These giants discovered electromagnetism
and worked out empirical equations that described the phenom-
ena. They understood the existence of conserved charges and
fields. Faraday invented the idea of lines of force by which fields
can be visualized.

Maxwell’s great insight was noticing and resolving the contra-
diction between the empirically-derived laws of electromagnetism
and conservation of charge. He did this by introducing the then ex-
perimentally undetectable displacement-current term into one of
the empirical equations. The modified equations implied a wave
equation and the propagation speed of the wave predicted by the
new equation turned out to be the speed of light, as measured
by the eclipses of the Galilean satellites of Jupiter. The experi-
mental confirmation by Hertz of the existence of electromagnetic
radiation that obeyed Maxwell’s equations capped the discovery.

By analogy, Einsten noticed that Maxwell’s equations were in-
consistent with Galilean relativity. In free space, where electro-
magnetic waves propagate, Maxwell’s equations say that the vec-
tor source of electric fields is the time rate of change of the mag-
netic field and the vector source of magnetic field is the time rate
of change of the electric field. The combination of these ideas
yields the wave equation. The wave equation itself is not invari-
ant under the Galilean transformation: As Einstein noted, if you
run with the propagation speed of the wave there is no time vari-
ation in the field you observe, so there is no space variation ei-
ther, contradicting the wave equation. But the Maxwell theory
is beautiful, and it can be verified to a high degree of accuracy,
so there must be something wrong with Galilean relativity. Ein-
stein resolved the contradiction by generalizing the meaning of the
Lorentz transformation, which was invented to explain the failure
of the Michelson-Morley experiment. Lorentz and his colleagues

168 Chapter 11 Special Relativity

decided that the problem with the Michelson-Morley experiment
was that matter interacting with the luminiferous ether contracts
in the direction of motion. To make this consistent he had to in-
vent a “local time” which had no clear interpretation. Einstein
took the Lorentz transformation to be a fundamental replacement
for the Galilean transformation in all of mechanics.

Now to the details. Before Maxwell the empirical laws of elec-
tromagnetism were as follows. Electric fields arise from charges,
with the inverse square law of Coulomb. This is Carl Friedrich
Gauss’s law for electrostatics:

div �E = 4πρ. (11.1)

Magnetic fields do not have a scalar source. This is Gauss’s law
for magnetostatics:

div �B = 0. (11.2)

Magnetic fields are produced by electric currents, as discovered by
Hans Christian Oersted and quantified by André-Marie Ampère:

curl �B =
4π

c
�I. (11.3)

Michael Faraday (and Joseph Henry) discovered that electric fields
are produced by moving magnetic fields:

curl �E =
−1

c

∂ �B

∂t
. (11.4)

Benjamin Franklin was the first to understand that electrical
charges are conserved:

div �I +
∂ρ

∂t
= 0. (11.5)

Although these equations are written in terms of the speed of
light c, these laws were originally written in terms of electrical
permittivity and magnetic permeability of free space, which could
be determined by measurement of the forces for given currents
and charges.

Chapter 11 Special Relativity 169

It is easy to see that these equations are mutually contradictory.
Indeed, if we take the divergence of equation (11.3) we get

div curl �B = 0 =
4π

c
div �I, (11.6)

which directly contradicts conservation of charge (11.5).
Maxwell patched this bug by adding in the displacement cur-

rent, changing equation (11.3) to read

curl �B =
1

c

∂ �E

∂t
+

4π

c
�I. (11.7)

Maxwell proceeded by taking the curl of equation (11.4) to get

curl curl �E =
−1

c

∂

∂t
curl �B. (11.8)

Expanding the left-hand side

grad div �E − Lap �E =
−1

c

∂

∂t
curl �B, (11.9)

substituting from equations (11.7) and (11.1), and rearranging the
terms we get the inhomogeneous wave equation:

Lap �E −
1

c2
∂2 �E

∂t2
= 4π

(
grad ρ+

1

c2
�I
)
. (11.10)

We see that in free space (in the absence of any charges or currents)
we have the familiar homogeneous linear wave equation. A similar
equation can be derived for the magnetic field.

Lorentz, whom Einstein also greatly respected, developed a gen-
eral formula to describe the force on a particle with charge q mov-
ing with velocity �v in an electromagnetic field:

�F = q �E +
q

c
�v × �B. (11.11)

A crucial point in Einstein’s inspiration for relativity is, quoting
Einstein (in English translation), “During that year [1895–1896]
in Aarau the question came to me: If one runs after a light wave
with light velocity, then one would encounter a time-independent

170 Chapter 11 Special Relativity

wavefield. However, something like that does not seem to exist!”1

This was the observation of the inconsistency.
Let’s be more precise about this. Consider a plane sinusoidal

wave moving in the x̂ direction with velocity c in free space (ρ = 0

and �I = 0). This is a perfectly good solution of the wave equation.
Now suppose that an observer is moving with the wave in the
x̂ direction with velocity c. Such an observer will see no time
variation of the field. So the wave equation reduces to Laplace’s
equation. But a sinusoidal variation in space is not a solution of
Laplace’s equation.

Einstein believed that the Maxwell-Lorentz electromagnetic
theory was fundamentally correct, though he was unhappy with an
apparent asymmetry in the formulation. Consider a system con-
sisting of a conductor and a magnet. If the conductor is moved and
the magnet is held stationary (a stationary magnetic field) then
the charge carriers in the conductor are subject to the Lorentz
force (11.11), causing them to move. However, if the magnet is
moved past a stationary conductor then the changing magnetic
field induces an electric field in the conductor by equation (11.4),
which causes the charge carriers in the conductor to move. The
actual current which results is identical for both explanations if
the relative velocity of the magnet and the conductor are the same.
To Einstein, there should not have been two explanations for the
same phenomenon.

Invariance of the Wave Equation

Let u = (t, x, y, z) be a tuple of time and space coordinates that
specify a point in spacetime.2 If φ(t, x, y, z) is a scalar field over
time and space, the homogeneous linear wave equation is

∂2φ(u)

∂x2 +
∂2φ(u)

∂y2
+

∂2φ(u)

∂z2
−

1

c2
∂2φ(u)

∂t2
= 0. (11.12)

The characteristics for this equation are the “light cones.” If
we define a function of spacetime points and increments, length,

1The quote is from Pais [12], p. 131.

2Points in spacetime are often called events.

Chapter 11 Special Relativity 171

such that for an incremental tuple in position and time ξ =
(Δt,Δx,Δy,Δz) we have3

lengthu(ξ) =
√
(Δx)2 + (Δy)2 + (Δz)2 − (cΔt)2, (11.13)

then the light cones are the hypersurfaces, for which

lengthu(Δt,Δx,Δy,Δz) = 0. (11.14)

This “length” is called the interval.
What is the class of transformations of time and space coordi-

nates that leave the Maxwell-Lorentz theory invariant? The trans-
formations that preserve the wave equation are exactly those that
leave its characteristics invariant. We consider a transformation
u = A(u′) of time and space coordinates:

t = A0(t′, x′, y′, z′), (11.15)

x = A1(t′, x′, y′, z′), (11.16)

y = A2(t′, x′, y′, z′), (11.17)

z = A3(t′, x′, y′, z′). (11.18)

If we define a new field ψ(t′, x′, y′, z′) such that ψ = φ ◦A, or

ψ(t′, x′, y′, z′) = φ(A(t′, x′, y′, z′)), (11.19)

then ψ will satisfy the wave equation

∂2ψ(u′)

∂x′2
+

∂2ψ(u′)

∂y′2
+

∂2ψ(u′)

∂z′2
−

1

c2
∂2ψ(u′)

∂t′2
= 0, (11.20)

if and only if

lengthu′(ξ
′) = lengthA(u′)(DA ξ′) = lengthu(ξ). (11.21)

But this is just a statement that the velocity of light is invariant
under change of the coordinate system. The class of transforma-
tions that satisfy equation (11.21) are the Poincaré transforma-
tions.

3Here the length is independent of the spacetime point specified by u. In
General Relativity we find that the metric, and thus the length function needs
to vary with the point in spacetime.

172 Chapter 11 Special Relativity

11.1 Lorentz Transformations

Special relativity is usually presented in terms of global Lorentz
frames, with rectangular spatial coordinates. In this context the
Lorentz transformations (and, more generally, the Poincaré trans-
formations) can be characterized as the set of affine transforma-
tions (linear transformations plus shift) of the coordinate tuple
(time and spatial rectangular coordinates) that preserve the length
of incremental spacetime intervals as measured by

f(ξ) = −(ξ0)2 + (ξ1)2 + (ξ2)2 + (ξ3)2, (11.22)

where ξ is an incremental 4-tuple that could be added to the coor-
dinate 4-tuple (ct, x, y, z).4 The Poincaré-Lorentz transformations
are of the form

x = Λx′ + a, (11.23)

where Λ is the tuple representation of a linear transformation and
a is a 4-tuple shift. Because the 4-tuple includes the time, these
transformations include transformations to a uniformly moving
frame. A transformation that does not rotate or shift, but just
introduces relative velocity, is sometimes called a boost.

In general relativity, global Lorentz frames do not exist, and so
global affine transformations are irrelevant. In general relativity
Lorentz invariance is a local property of incremental 4-tuples at a
point.

Incremental 4-tuples transform as

ξ = Λξ′. (11.24)

This places a constraint on the allowed Λ

f(ξ′) = f(Λξ′), (11.25)

for arbitrary ξ′.
The possible Λ that are consistent with the preservation of the

interval can be completely specified and conveniently parameter-
ized.

4Incrementally, ξ = ξ0∂/∂ct + ξ1∂/∂x + ξ2∂/∂y + ξ3∂/∂z. The length of
this vector, using the Minkowski metric (see equation 10.11), is the Lorentz
interval, the right-hand side of equation (11.22).

11.1 Lorentz Transformations 173

Simple Lorentz Transformations

Consider the linear transformation, in the first two coordinates,

ξ0 = p(ξ′)0 + q(ξ′)1

ξ1 = r(ξ′)0 + s(ξ′)1. (11.26)

The requirement to preserve the interval gives the constraints

p2 − r2 = 1,

pq − rs = 0,

q2 − s2 = −1. (11.27)

There are four parameters to determine, and only three equations,
so the solutions have a free parameter. It turns out that a good
choice is β = q/p. Solve to find

p =
1√

1− β2
= γ(β), (11.28)

and also p = s and q = r = βp. This defines γ. Written out, the
transformation is

ξ0 = γ(β)((ξ′)0 + β(ξ′)1)

ξ1 = γ(β)(β(ξ′)0 + (ξ′)1). (11.29)

Simple physical arguments5 show that this mathematical result
relates the time and space coordinates for two systems in uniform
relative motion. The parameter β is related to the relative velocity.

Consider incremental vectors as spacetime vectors relative to an
origin in a global inertial frame. So, for example, ξ = (ct, x), ignor-
ing y and z for a moment. The unprimed coordinate origin x = 0
corresponds, in primed coordinates, to (using equations 11.29)

x = 0 = γ(β)(x′ + βct′), (11.30)

so

β = −
x′

ct′
= −

v′

c
, (11.31)

5See, for instance, Mermin, “Space and Time in Special Relativity.”

174 Chapter 11 Special Relativity

with the definition v′ = x′/t′. We see that β is minus 1/c times
the velocity (v′) of the unprimed system (which moves with its
origin) as “seen” in the primed coordinates.

To check the consistency of our interpretation, we can find the
velocity of the origin of the primed system (x′ = 0) as seen by the
unprimed system. Using both of equations (11.29), we find

β =
x

ct
=

v

c
. (11.32)

So v′ = −v.
A consistent interpretation is that the origin of the primed sys-

tem moves with velocity v = βc along the x̂-axis of the unprimed
system. And the unprimed system moves with the same velocity
in the other direction, when viewed in terms of the primed system.

What happened to the other coordinates: y and z? We did
not need them to find this one-parameter family of Lorentz trans-
formations. They are left alone. This mathematical result has a
physical interpretation: Lengths are not affected by perpendicular
boosts. Think about two observers on a collision course, each car-
rying a meter stick perpendicular to their relative velocity. At the
moment of impact, the meter sticks must coincide. The symmetry
of the situation does not permit one observer to conclude that one
meter stick is shorter than the other, because the other observer
must come to the same conclusion. Both observers can put their
conclusions to the test upon impact.

We can fill in the components of this simple boost:

ξ0 = γ(β)((ξ′)0 + β(ξ′)1)

ξ1 = γ(β)(β(ξ′)0 + (ξ′)1)

ξ2 = (ξ′)2

ξ3 = (ξ′)3. (11.33)

More General Lorentz Transformations

One direction was special in our consideration of simple boosts.
We can make use of this fact to find boosts in any direction.

Let cβ = (v0, v1, v2) be the tuple of components of the relative
velocity of the origin of the primed system in the unprimed system.
The components are with respect to the same rectangular basis
used to define the spatial components of any incremental vector.

11.1 Lorentz Transformations 175

An incremental vector can be decomposed into vectors parallel
and perpendicular to the velocity. Let ξ be the tuple of spatial
components of ξ, and ξ0 be the time component. Then,

ξ = ξ⊥ + ξ‖, (11.34)

where β · ξ⊥ = 0. (This is the ordinary dot product in three
dimensions.) Explicitly,

ξ‖ =
β

β
(
β

β
· ξ), (11.35)

where β = ‖β‖, the magnitude of β, and

ξ⊥ = ξ − ξ‖. (11.36)

In the simple boost of equation (11.33) we can identify ξ1 with

the magnitude |ξ‖| of the parallel component. The perpendicular
component is unchanged:

ξ0 = γ(β)((ξ′)0 + β|(ξ′)‖|),

|ξ‖| = γ(β)(β(ξ′)0 + |(ξ′)‖|),

ξ⊥ = (ξ′)⊥. (11.37)

Putting the components back together, this leads to

ξ0 = γ(β)
(
(ξ′)0 + β · ξ′

)
ξ = γ(β)β(ξ′)0 + ξ′ +

γ(β)− 1

β2
β(β · ξ′), (11.38)

which gives the components of the general boost B along velocity
cβ:

ξ = B(β)(ξ′). (11.39)

Implementation

We represent a 4-tuple as a flat up-tuple of components.

(define (make-4tuple ct space)
(up ct (ref space 0) (ref space 1) (ref space 2)))

176 Chapter 11 Special Relativity

(define (4tuple->ct v) (ref v 0))
(define (4tuple->space v)

(up (ref v 1) (ref v 2) (ref v 3)))

The invariant interval is then

(define (proper-space-interval 4tuple)
(sqrt (- (square (4tuple->space 4tuple))

(square (4tuple->ct 4tuple)))))

This is a real number for space-like intervals. A space-like interval
is one where spatial distance is larger than can be traversed by
light in the time interval.

It is often convenient for the interval to be real for time-like
intervals, where light can traverse the spatial distance in less than
the time interval.

(define (proper-time-interval 4tuple)
(sqrt (- (square (4tuple->ct 4tuple))

(square (4tuple->space 4tuple)))))

The general boost B is

(define ((general-boost beta) xi-p)
(let ((gamma (expt (- 1 (square beta)) -1/2)))
(let ((factor (/ (- gamma 1) (square beta))))

(let ((xi-p-time (4tuple->ct xi-p))
(xi-p-space (4tuple->space xi-p)))

(let ((beta-dot-xi-p (dot-product beta xi-p-space)))
(make-4-tuple
(* gamma (+ xi-p-time beta-dot-xi-p))
(+ (* gamma beta xi-p-time)

xi-p-space
(* factor beta beta-dot-xi-p))))))))

We can check that the interval is invariant:

(- (proper-space-interval
((general-boost (up ’vx ’vy ’vz))
(make-4tuple ’ct (up ’x ’y ’z))))

(proper-space-interval
(make-4tuple ’ct (up ’x ’y ’z)))))

0

It is inconvenient that the general boost as just defined does not
work if β is zero. An alternate way to specify a boost is through
the magnitude of v/c and a direction:

11.1 Lorentz Transformations 177

(define ((general-boost2 direction v/c) 4tuple-prime)
(let ((delta-ct-prime (4tuple->ct 4tuple-prime))

(delta-x-prime (4tuple->space 4tuple-prime)))
(let ((betasq (square v/c)))

(let ((bx (dot-product direction delta-x-prime))
(gamma (/ 1 (sqrt (- 1 betasq)))))

(let ((alpha (- gamma 1)))
(let ((delta-ct

(* gamma (+ delta-ct-prime (* bx v/c))))
(delta-x
(+ (* gamma v/c direction delta-ct-prime)

delta-x-prime
(* alpha direction bx))))

(make-4tuple delta-ct delta-x)))))))

This is well behaved as v/c goes to zero.

Rotations

A linear transformation that does not change the magnitude of
the spatial and time components, individually, leaves the interval
invariant. So a transformation that rotates the spatial coordinates
and leaves the time component unchanged is also a Lorentz trans-
formation. Let R be a 3-dimensional rotation. Then the extension
to a Lorentz transformation R is defined by

(ξ0, ξ) = R(R)((ξ′)0, ξ′) = ((ξ′)0, R(ξ′)). (11.40)

Examining the expression for the general boost, equation (11.38),
we see that the boost transforms simply as the arguments are ro-
tated. Indeed,

B(β) = (R(R))−1 ◦B(R(β)) ◦ R(R). (11.41)

Note that (R(R))−1 = R(R−1). The functional inverse of the
extended rotation is the extension of the inverse rotation. We
could use this property of boosts to think of the general boost as
a combination of a rotation and a simple boost along some special
direction.

The extended rotation can be implemented:

(define ((extended-rotation R) xi)
(make-4tuple
(4tuple->ct xi)
(R (4tuple->space xi))))

178 Chapter 11 Special Relativity

In terms of this we can check the relation between boosts and
rotations:

(let ((beta (up ’bx ’by ’bz))
(xi (make-4tuple ’ct (up ’x ’y ’z)))
(R (compose

(rotate-x ’theta)
(rotate-y ’phi)
(rotate-z ’psi)))

(R-inverse (compose
(rotate-z (- ’psi))
(rotate-y (- ’phi))
(rotate-x (- ’theta)))))

(- ((general-boost beta) xi)
((compose (extended-rotation R-inverse)

(general-boost (R beta))
(extended-rotation R))

xi)))
(up 0 0 0 0)

General Lorentz Transformations

A Lorentz transformation carries an incremental 4-tuple to an-
other 4-tuple. A general linear transformation on 4-tuples has
sixteen free parameters. The interval is a symmetric quadratic
form, so the requirement that the interval be preserved places only
ten constraints on these parameters. Evidently there are six free
parameters to the general Lorentz transformation. We already
have three parameters that specify boosts (the three components
of the boost velocity). And we have three more parameters in the
extended rotations. The general Lorentz transformation can be
constructed by combining generalized rotations and boosts.

Any Lorentz transformation has a unique decomposition as a
generalized rotation followed by a general boost. Any Λ that pre-
serves the interval can be written uniquely:

Λ = B(β)R. (11.42)

We can use property (11.41) to see this. Suppose we follow a
general boost by a rotation. A new boost can be defined to ab-
sorb this rotation, but only if the boost is preceded by a suitable
rotation:

R(R) ◦B(β) = B(R(β)) ◦ R(R). (11.43)

11.2 Special Relativity Frames 179

Exercise 11.1: Lorentz Decomposition

The counting of free parameters supports the conclusion that the gen-
eral Lorentz transformation can be constructed by combining general-
ized rotations and boosts. Then the decomposition (11.42) follows from
property (11.41). Find a more convincing proof.

11.2 Special Relativity Frames

A new frame is defined by a Poincaré transformation from a given
frame (see equation 11.23). The transformation is specified by
a boost magnitude and a unit-vector boost direction, relative to
the given frame, and the position of the origin of the frame being
defined in the given frame.

Points in spacetime are called events. It must be possible to
compare two events to determine if they are the same. This is
accomplished in any particular experiment by building all frames
involved in that experiment from a base frame, and representing
the events as coordinates in that base frame.

When one frame is built upon another, to determine the event
from frame-specific coordinates or to determine the frame-specific
coordinates for an event requires composition of the boosts that
relate the frames to each other. The two procedures that are
required to implement this strategy are6

(define ((coordinates->event ancestor-frame this-frame
boost-direction v/c origin)

coords)
((point ancestor-frame)
(make-SR-coordinates ancestor-frame
(+ ((general-boost2 boost-direction v/c) coords)

origin))))

(define ((event->coordinates ancestor-frame this-frame
boost-direction v/c origin)

event)
(make-SR-coordinates this-frame
((general-boost2 (- boost-direction) v/c)
(- ((chart ancestor-frame) event) origin))))

6The procedure make-SR-coordinates labels the given coordinates with the
given frame. The procedures that manipulate coordinates, such as (point
ancestor-frame), check that the coordinates they are given are in the appro-
priate frame. This error checking makes it easier to debug relativity proce-
dures.

180 Chapter 11 Special Relativity

With these two procedures, the procedure make-SR-frame con-
structs a new relativistic frame by a Poincaré transformation from
a given frame.

(define make-SR-frame
(frame-maker coordinates->event event->coordinates))

Velocity Addition Formula

For example, we can derive the traditional velocity addition for-
mula. Assume that we have a base frame called home. We can
make a frame A by a boost from home in the x̂ direction, with com-
ponents (1, 0, 0), and with a dimensionless measure of the speed
va/c. We also specify that the 4-tuple origin of this new frame
coincides with the origin of home.

(define A
(make-SR-frame ’A home

(up 1 0 0)
’va/c
(make-SR-coordinates home (up 0 0 0 0))))

Frame B is built on frame A similarly, boosted by vb/c.

(define B
(make-SR-frame ’B A

(up 1 0 0)
’vb/c
(make-SR-coordinates A (up 0 0 0 0))))

So any point at rest in frame B will have a speed relative
to home. For the spatial origin of frame B, with B coordinates
(up ’ct 0 0 0), we have

(let ((B-origin-home-coords
((chart home)
((point B)
(make-SR-coordinates B (up ’ct 0 0 0))))))

(/ (ref B-origin-home-coords 1)
(ref B-origin-home-coords 0)))

(/ (+ va/c vb/c) (+ 1 (* va/c vb/c)))

obtaining the traditional velocity-addition formula. (Note that
the resulting velocity is represented as a fraction of the speed of
light.) This is a useful result, so:

11.3 Twin Paradox 181

(define (add-v/cs va/c vb/c)
(/ (+ va/c vb/c)

(+ 1 (* va/c vb/c))))

11.3 Twin Paradox

Special relativity engenders a traditional conundrum: consider
two twins, one of whom travels and the other stays at home. When
the traveller returns it is discovered that the traveller has aged less
than the twin who stayed at home. How is this possible?

The experiment begins at the start event, which we arbitrarily
place at the origin of the home frame.

(define start-event
((point home)
(make-SR-coordinates home (up 0 0 0 0))))

There is a homebody and a traveller. The traveller leaves home
at the start event and proceeds at 24/25 of the speed of light in
the x̂ direction. We define a frame for the traveller, by boosting
from the home frame.

(define outgoing
(make-SR-frame ’outgoing ; for debugging

home ; base frame
(up 1 0 0) ; x direction
24/25 ; velocity as fraction of c
((chart home)
start-event)))

After 25 years of home time the traveller is 24 light-years out.
We define that event using the coordinates in the home frame.
Here we scale the time coordinate by the speed of light so that
the units of ct slot in the 4-vector are the same as the units in
the spatial slots. Since v/c = 24/25 we must multiply that by the
speed of light to get the velocity. This is multiplied by 25 years
to get the x̂ coordinate of the traveller in the home frame at the
turning point.

(define traveller-at-turning-point-event
((point home)
(make-SR-coordinates home
(up (* :c 25) (* 25 24/25 :c) 0 0))))

182 Chapter 11 Special Relativity

Note that the first component of the coordinates of an event is
the speed of light multiplied by time. The other components are
distances. For example, the second component (the x̂ component)
is the distance travelled in 25 years at 24/25 the speed of light.
This is 24 light-years.

If we examine the displacement of the traveller in his own frame
we see that the traveller has aged 7 years and he has not moved
from his spatial origin.

(- ((chart outgoing) traveller-at-turning-point-event)
((chart outgoing) start-event))

(up (* 7 :c) 0 0 0)

But in the frame of the homebody we see that the time has ad-
vanced by 25 years.

(- ((chart home) traveller-at-turning-point-event)
((chart home) start-event))

(up (* 25 :c) (* 24 :c) 0 0)

The proper time interval is 7 years, as seen in any frame, because
it measures the aging of the traveller:

(proper-time-interval
(- ((chart outgoing) traveller-at-turning-point-event)

((chart outgoing) start-event)))
(* 7 :c)

(proper-time-interval
(- ((chart home) traveller-at-turning-point-event)

((chart home) start-event)))
(* 7 :c)

When the traveller is at the turning point, the event of the
homebody is:

(define halfway-at-home-event
((point home)
(make-SR-coordinates home (up (* :c 25) 0 0 0))))

and the homebody has aged

(proper-time-interval
(- ((chart home) halfway-at-home-event)

((chart home) start-event)))
(* 25 :c)

11.3 Twin Paradox 183

(proper-time-interval
(- ((chart outgoing) halfway-at-home-event)

((chart outgoing) start-event)))
(* 25 :c)

as seen from either frame.
As seen by the traveller, home is moving in the −x̂ direction at

24/25 of the velocity of light. At the turning point (7 years by his
time) home is at:

(define home-at-outgoing-turning-point-event
((point outgoing)
(make-SR-coordinates outgoing
(up (* 7 :c) (* 7 -24/25 :c) 0 0))))

Since home is speeding away from the traveller, the twin at
home has aged less than the traveller. This may seem weird, but
it is OK because this event is different from the halfway event in
the home frame.

(proper-time-interval
(- ((chart home) home-at-outgoing-turning-point-event)

((chart home) start-event)))
(* 49/25 :c)

The traveller turns around abruptly at this point (painful!) and
begins the return trip. The incoming trip is the reverse of the
outgoing trip, with origin at the turning-point event:

(define incoming
(make-SR-frame ’incoming home

(up -1 0 0) 24/25
((chart home)
traveller-at-turning-point-event)))

After 50 years of home time the traveller reunites with the
homebody:

(define end-event
((point home)
(make-SR-coordinates home (up (* :c 50) 0 0 0))))

Indeed, the traveller comes home after 7 more years in the in-
coming frame:

184 Chapter 11 Special Relativity

(- ((chart incoming) end-event)
(make-SR-coordinates incoming
(up (* :c 7) 0 0 0)))

(up 0 0 0 0)

(- ((chart home) end-event)
((chart home)
((point incoming)
(make-SR-coordinates incoming

(up (* :c 7) 0 0 0)))))
(up 0 0 0 0)

The traveller ages only 7 years on the return segment, so his
total aging is 14 years:

(+ (proper-time-interval
(- ((chart outgoing) traveller-at-turning-point-event)

((chart outgoing) start-event)))
(proper-time-interval
(- ((chart incoming) end-event)

((chart incoming) traveller-at-turning-point-event))))
(* 14 :c)

But the homebody ages 50 years:

(proper-time-interval
(- ((chart home) end-event)

((chart home) start-event)))
(* 50 :c)

At the turning point of the traveller the homebody is at

(define home-at-incoming-turning-point-event
((point incoming)
(make-SR-coordinates incoming
(up 0 (* 7 -24/25 :c) 0 0))))

The time elapsed for the homebody between the reunion and
the turning point of the homebody, as viewed by the incoming
traveller, is about 2 years.

(proper-time-interval
(- ((chart home) end-event)

((chart home) home-at-incoming-turning-point-event)))
(* 49/25 :c)

Thus the aging of the homebody occurs at the turnaround, from
the point of view of the traveller.

A
Scheme

Programming languages should be designed not by
piling feature on top of feature, but by removing
the weaknesses and restrictions that make
additional features appear necessary. Scheme
demonstrates that a very small number of rules for
forming expressions, with no restrictions on how
they are composed, suffice to form a practical and
efficient programming language that is flexible
enough to support most of the major programming
paradigms in use today.

IEEE Standard for the Scheme Programming
Language [10], p. 3

Here we give an elementary introduction to Scheme.1 For a more
precise explanation of the language see the IEEE standard [10];
for a longer introduction see the textbook [1].

Scheme is a simple programming language based on expressions.
An expression names a value. For example, the numeral 3.14
names an approximation to a familiar number. There are primitive
expressions, such as a numeral, that we directly recognize, and
there are compound expressions of several kinds.

Procedure Calls

A procedure call is a kind of compound expression. A procedure
call is a sequence of expressions delimited by parentheses. The
first subexpression in a procedure call is taken to name a proce-
dure, and the rest of the subexpressions are taken to name the
arguments to that procedure. The value produced by the proce-
dure when applied to the given arguments is the value named by
the procedure call. For example,

1Many of the statements here are valid only assuming that no assignments are
used.

186 Appendix A Scheme

(+ 1 2.14)
3.14

(+ 1 (* 2 1.07))
3.14

are both compound expressions that name the same number as
the numeral 3.14.2 In these cases the symbols + and * name
procedures that add and multiply, respectively. If we replace any
subexpression of any expression with an expression that names
the same thing as the original subexpression, the thing named by
the overall expression remains unchanged. In general, a procedure
call is written

(operator operand-1 ... operand-n)

where operator names a procedure and operand-i names the ith
argument.3

Lambda Expressions

Just as we use numerals to name numbers, we use λ-expressions
to name procedures.4 For example, the procedure that squares its
input can be written:

(lambda (x) (* x x))

This expression can be read: “The procedure of one argument, x,
that multiplies x by x.” Of course, we can use this expression in
any context where a procedure is needed. For example,

((lambda (x) (* x x)) 4)
16

The general form of a λ-expression is

2In examples we show the value that would be printed by the Scheme system
using slanted characters following the input expression.

3In Scheme every parenthesis is essential: you cannot add extra parentheses
or remove any.

4The logician Alonzo Church [5] invented λ-notation to allow the specification
of an anonymous function of a named parameter: λx[expression in x]. This
is read, “That function of one argument that is obtained by substituting the
argument for x in the indicated expression.”

Appendix A Scheme 187

(lambda formal-parameters body)

where formal-parameters is a list of symbols that will be the names
of the arguments to the procedure and body is an expression that
may refer to the formal parameters. The value of a procedure
call is the value of the body of the procedure with the arguments
substituted for the formal parameters.

Definitions

We can use the define construct to give a name to any object.
For example, if we make the definitions5

(define pi 3.141592653589793)

(define square (lambda (x) (* x x)))

we can then use the symbols pi and square wherever the numeral
or the λ-expression could appear. For example, the area of the
surface of a sphere of radius 5 meters is

(* 4 pi (square 5))
314.1592653589793

Procedure definitions may be expressed more conveniently using
“syntactic sugar.” The squaring procedure may be defined

(define (square x) (* x x))

which we may read: “To square x multiply x by x.”
In Scheme, procedures may be passed as arguments and re-

turned as values. For example, it is possible to make a procedure
that implements the mathematical notion of the composition of
two functions:6

5The definition of square given here is not the definition of square in the
Scmutils system. In Scmutils, square is extended for tuples to mean the sum
of the squares of the components of the tuple. However, for arguments that
are not tuples the Scmutils square does multiply the argument by itself.

6The examples are indented to help with readability. Scheme does not care
about extra white space, so we may add as much as we please to make things
easier to read.

188 Appendix A Scheme

(define compose
(lambda (f g)
(lambda (x)

(f (g x)))))

((compose square sin) 2)
.826821810431806

(square (sin 2))
.826821810431806

Using the syntactic sugar shown above, we can write the defini-
tion more conveniently. The following are both equivalent to the
definition above:

(define (compose f g)
(lambda (x)
(f (g x))))

(define ((compose f g) x)
(f (g x)))

Conditionals

Conditional expressions may be used to choose among several ex-
pressions to produce a value. For example, a procedure that im-
plements the absolute value function may be written:

(define (abs x)
(cond ((< x 0) (- x))

((= x 0) x)
((> x 0) x)))

The conditional cond takes a number of clauses. Each clause has
a predicate expression, which may be either true or false, and a
consequent expression. The value of the cond expression is the
value of the consequent expression of the first clause for which the
corresponding predicate expression is true. The general form of a
conditional expression is

(cond (predicate-1 consequent-1)
· · ·
(predicate-n consequent-n))

For convenience there is a special predicate expression else that
can be used as the predicate in the last clause of a cond. The if

Appendix A Scheme 189

construct provides another way to make a conditional when there
is only a binary choice to be made. For example, because we have
to do something special only when the argument is negative, we
could have defined abs as:

(define (abs x)
(if (< x 0)

(- x)
x))

The general form of an if expression is

(if predicate consequent alternative)

If the predicate is true the value of the if expression is the value
of the consequent, otherwise it is the value of the alternative.

Recursive Procedures

Given conditionals and definitions, we can write recursive proce-
dures. For example, to compute the nth factorial number we may
write:

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

(factorial 6)
720

(factorial 40)
815915283247897734345611269596115894272000000000

Local Names

The let expression is used to give names to objects in a local
context. For example,

(define (f radius)
(let ((area (* 4 pi (square radius)))

(volume (* 4/3 pi (cube radius))))
(/ volume area)))

(f 3)
1

190 Appendix A Scheme

The general form of a let expression is

(let ((variable-1 expression-1)
· · ·
(variable-n expression-n))

body)

The value of the let expression is the value of the body expression
in the context where the variables variable-i have the values of
the expressions expression-i. The expressions expression-i may
not refer to any of the variables.

A slight variant of the let expression provides a convenient
way to express looping constructs. We can write a procedure that
implements an alternative algorithm for computing factorials as
follows:

(define (factorial n)
(let factlp ((count 1) (answer 1))
(if (> count n)

answer
(factlp (+ count 1) (* count answer)))))

(factorial 6)
720

Here, the symbol factlp following the let is locally defined to be
a procedure that has the variables count and answer as its formal
parameters. It is called the first time with the expressions 1 and 1,
initializing the loop. Whenever the procedure named factlp is
called later, these variables get new values that are the values of
the operand expressions (+ count 1) and (* count answer).

Compound Data—Lists and Vectors

Data can be glued together to form compound data structures. A
list is a data structure in which the elements are linked sequen-
tially. A Scheme vector is a data structure in which the elements
are packed in a linear array. New elements can be added to lists,
but to access the nth element of a list takes computing time pro-
portional to n. By contrast a Scheme vector is of fixed length, and
its elements can be accessed in constant time. All data structures
in this book are implemented as combinations of lists and Scheme
vectors. Compound data objects are constructed from compo-
nents by procedures called constructors and the components are
accessed by selectors.

Appendix A Scheme 191

The procedure list is the constructor for lists. The selector
list-ref gets an element of the list. All selectors in Scheme are
zero-based. For example,

(define a-list (list 6 946 8 356 12 620))

a-list
(6 946 8 356 12 620)

(list-ref a-list 3)
356

(list-ref a-list 0)
6

Lists are built from pairs. A pair is made using the constructor
cons. The selectors for the two components of the pair are car and
cdr (pronounced “could-er”).7 A list is a chain of pairs, such that
the car of each pair is the list element and the cdr of each pair is
the next pair, except for the last cdr, which is a distinguishable
value called the empty list and is written (). Thus,

(car a-list)
6

(cdr a-list)
(946 8 356 12 620)

(car (cdr a-list))
946

(define another-list
(cons 32 (cdr a-list)))

another-list
(32 946 8 356 12 620)

(car (cdr another-list))
946

Both a-list and another-list share the same tail (their cdr).

7These names are accidents of history. They stand for “Contents of the Ad-
dress part of Register” and “Contents of the Decrement part of Register” of
the IBM 704 computer, which was used for the first implementation of Lisp
in the late 1950s. Scheme is a dialect of Lisp.

192 Appendix A Scheme

There is a predicate pair? that is true of pairs and false on all
other types of data.

Vectors are simpler than lists. There is a constructor vector

that can be used to make vectors and a selector vector-ref for
accessing the elements of a vector:

(define a-vector
(vector 37 63 49 21 88 56))

a-vector
#(37 63 49 21 88 56)

(vector-ref a-vector 3)
21

(vector-ref a-vector 0)
37

Notice that a vector is distinguished from a list on printout by the
character # appearing before the initial parenthesis.

There is a predicate vector? that is true of vectors and false
for all other types of data.

The elements of lists and vectors may be any kind of data,
including numbers, procedures, lists, and vectors. Numerous
other procedures for manipulating list-structured data and vector-
structured data can be found in the Scheme online documentation.

Symbols

Symbols are a very important kind of primitive data type that we
use to make programs and algebraic expressions. You probably
have noticed that Scheme programs look just like lists. In fact,
they are lists. Some of the elements of the lists that make up
programs are symbols, such as + and vector.8 If we are to make
programs that can manipulate programs, we need to be able to
write an expression that names such a symbol. This is accom-
plished by the mechanism of quotation. The name of the symbol
+ is the expression ’+, and in general the name of an expression
is the expression preceded by a single quote character. Thus the
name of the expression (+ 3 a) is ’(+ 3 a).

8Symbols may have any number of characters. A symbol may not contain
whitespace or a delimiter character, such as parentheses, brackets, quotation
marks, comma, or #.

Appendix A Scheme 193

We can test if two symbols are identical by using the predicate
eq?. For example, we can write a program to determine if an
expression is a sum:

(define (sum? expression)
(and (pair? expression)

(eq? (car expression) ’+)))

(sum? ’(+ 3 a))
#t

(sum? ’(* 3 a))
#f

Here #t and #f are the printed representations of the boolean
values true and false.

Consider what would happen if we were to leave out the quote in
the expression (sum? ’(+ 3 a)). If the variable a had the value 4
we would be asking if 7 is a sum. But what we wanted to know
was whether the expression (+ 3 a) is a sum. That is why we
need the quote.

B
Our Notation

An adequate notation should be understood by at
least two people, one of whom may be the author.

Abdus Salam (1950).

We adopt a functional mathematical notation that is close to that
used by Spivak in his Calculus on Manifolds [17]. The use of
functional notation avoids many of the ambiguities of traditional
mathematical notation that can impede clear reasoning. Func-
tional notation carefully distinguishes the function from the value
of the function when applied to particular arguments. In func-
tional notation mathematical expressions are unambiguous and
self-contained.

We adopt a generic arithmetic in which the basic arithmetic
operations, such as addition and multiplication, are extended to
a wide variety of mathematical types. Thus, for example, the ad-
dition operator + can be applied to numbers, tuples of numbers,
matrices, functions, etc. Generic arithmetic formalizes the com-
mon informal practice used to manipulate mathematical objects.

We often want to manipulate aggregate quantities, such as the
collection of all of the rectangular coordinates of a collection of
particles, without explicitly manipulating the component parts.
Tensor arithmetic provides a traditional way of manipulating ag-
gregate objects: Indices label the parts; conventions, such as the
summation convention, are introduced to manipulate the indices.
We introduce a tuple arithmetic as an alternative way of manipu-
lating aggregate quantities that usually lets us avoid labeling the
parts with indices. Tuple arithmetic is inspired by tensor arith-
metic but it is more general: not all of the components of a tuple
need to be of the same size or type.

The mathematical notation is in one-to-one correspondence
with expressions of the computer language Scheme [10]. Scheme
is based on the λ-calculus [5] and directly supports the manipula-
tion of functions. We augment Scheme with symbolic, numerical,
and generic features to support our applications. For a simple

196 Appendix B Our Notation

introduction to Scheme, see Appendix A. The correspondence be-
tween the mathematical notation and Scheme requires that math-
ematical expressions be unambiguous and self-contained. Scheme
provides immediate feedback in verification of mathematical de-
ductions and facilitates the exploration of the behavior of systems.

Functions

The expression f(x) denotes the value of the function f at the
given argument x; when we wish to denote the function we write
just f . Functions may take several arguments. For example, we
may have the function that gives the Euclidean distance between
two points in the plane given by their rectangular coordinates:

d(x1, y1, x2, y2) =
√
(x2 − x1)2 + (y2 − y1)2. (B.1)

In Scheme we can write this as:

(define (d x1 y1 x2 y2)
(sqrt (+ (square (- x2 x1)) (square (- y2 y1)))))

Functions may be composed if the range of one overlaps the
domain of the other. The composition of functions is constructed
by passing the output of one to the input of the other. We write
the composition of two functions using the ◦ operator:

(f ◦ g) : x �→ (f ◦ g)(x) = f(g(x)). (B.2)

A procedure h that computes the cube of the sine of its argument
may be defined by composing the procedures cube and sin:

(define h (compose cube sin))

(h 2)
.7518269446689928

which is the same as

(cube (sin 2))
.7518269446689928

Arithmetic is extended to the manipulation of functions: the
usual mathematical operations may be applied to functions. Ex-
amples are addition and multiplication; we may add or multiply
two functions if they take the same kinds of arguments and if their

Appendix B Our Notation 197

values can be added or multiplied:

(f + g)(x) = f(x) + g(x),

(fg)(x) = f(x)g(x). (B.3)

A procedure g that multiplies the cube of its argument by the sine
of its argument is

(define g (* cube sin))

(g 2)
7.274379414605454

(* (cube 2) (sin 2))
7.274379414605454

Symbolic Values

As in usual mathematical notation, arithmetic is extended to al-
low the use of symbols that represent unknown or incompletely
specified mathematical objects. These symbols are manipulated
as if they had values of a known type. By default, a Scheme
symbol is assumed to represent a real number. So the expression
’a is a literal Scheme symbol that represents an unspecified real
number:

((compose cube sin) ’a)
(expt (sin a) 3)

The default printer simplifies the expression,1 and displays it in a
readable form. We can use the simplifier to verify a trigonometric
identity:

((- (+ (square sin) (square cos)) 1) ’a)
0

Just as it is useful to be able to manipulate symbolic numbers,
it is useful to be able to manipulate symbolic functions. The
procedure literal-function makes a procedure that acts as a
function having no properties other than its name. By default, a
literal function is defined to take one real argument and produce

1The procedure print-expression can be used in a program to print a sim-
plified version of an expression. The default printer in the user interface
incorporates the simplifier.

198 Appendix B Our Notation

one real value. For example, we may want to work with a function
f : R→ R:

((literal-function ’f) ’x)
(f x)

((compose (literal-function ’f) (literal-function ’g)) ’x)
(f (g x))

We can also make literal functions of multiple, possibly struc-
tured arguments that return structured values. For example, to
denote a literal function named g that takes two real arguments
and returns a real value (g : R×R→ R) we may write:

(define g (literal-function ’g (-> (X Real Real) Real)))

(g ’x ’y)
(g x y)

We may use such a literal function anywhere that an explicit func-
tion of the same type may be used.

There is a whole language for describing the type of a literal
function in terms of the number of arguments, the types of the
arguments, and the types of the values. Here we describe a func-
tion that maps pairs of real numbers to real numbers with the
expression (-> (X Real Real) Real). Later we will introduce
structured arguments and values and show extensions of literal
functions to handle these.

Tuples

There are two kinds of tuples: up tuples and down tuples. We
write tuples as ordered lists of their components; a tuple is de-
limited by parentheses if it is an up tuple and by square brackets
if it is a down tuple. For example, the up tuple v of velocity
components v0, v1, and v2 is

v =
(
v0, v1, v2

)
. (B.4)

The down tuple p of momentum components p0, p1, and p2 is

p = [p0, p1, p2] . (B.5)

A component of an up tuple is usually identified by a superscript.
A component of a down tuple is usually identified by a subscript.
We use zero-based indexing when referring to tuple elements. This
notation follows the usual convention in tensor arithmetic.

Appendix B Our Notation 199

We make tuples with the constructors up and down:

(define v (up ’v^0 ’v^1 ’v^2))

v
(up vˆ0 vˆ1 vˆ2)

(define p (down ’p 0 ’p 1 ’p 2))

p
(down p 0 p 1 p 2)

Note that v^0 and p 2 are just symbols. The caret and underline
characters are symbol constituents, so there is no meaning other
than mnemonic to the structure of these symbols. However, our
software can also display expressions using TeX, and then these
decorations turn into superscripts and subscripts.

Tuple arithmetic is different from the usual tensor arithmetic
in that the components of a tuple may also be tuples and different
components need not have the same structure. For example, a
tuple structure s of phase-space states is

s = (t, (x, y) , [px, py]) . (B.6)

It is an up tuple of the time, the coordinates, and the momenta.
The time t has no substructure. The coordinates are an up tuple
of the coordinate components x and y. The momentum is a down
tuple of the momentum components px and py. In Scheme this is
written:

(define s (up ’t (up ’x ’y) (down ’p x ’p y)))

In order to reference components of tuple structures there are
selector functions, for example:

I(s) = s

I0(s) = t

I1(s) = (x, y)

I2(s) = [px, py]

I1,0(s) = x

...

I2,1(s) = py. (B.7)

The sequence of integer subscripts on the selector describes the
access chain to the desired component.

200 Appendix B Our Notation

The procedure component is the general selector procedure that
implements the selector function Iz:

((component 0 1) (up (up ’a ’b) (up ’c ’d)))
b

To access a component of a tuple we may also use the selector
procedure ref, which takes a tuple and an index and returns the
indicated element of the tuple:

(ref (up ’a ’b ’c) 1)
b

We use zero-based indexing everywhere. The procedure ref can
be used to access any substructure of a tree of tuples:

(ref (up (up ’a ’b) (up ’c ’d)) 0 1)
b

Two up tuples of the same length may be added or subtracted,
elementwise, to produce an up tuple, if the components are com-
patible for addition. Similarly, two down tuples of the same length
may be added or subtracted, elementwise, to produce a down tu-
ple, if the components are compatible for addition.

Any tuple may be multiplied by a number by multiplying each
component by the number. Numbers may, of course, be mul-
tiplied. Tuples that are compatible for addition form a vector
space.

For convenience we define the square of a tuple to be the sum
of the squares of the components of the tuple. Tuples can be
multiplied, as described below, but the square of a tuple is not
the product of the tuple with itself.

The meaning of multiplication of tuples depends on the struc-
ture of the tuples. Two tuples are compatible for contraction if
they are of opposite types, they are of the same length, and cor-
responding elements have the following property: either they are
both tuples and are compatible for contraction, or at least one
is not a tuple. If two tuples are compatible for contraction then
generic multiplication is interpreted as contraction: the result is
the sum of the products of corresponding components of the tu-
ples. For example, p and v introduced in equations (B.4) and (B.5)
above are compatible for contraction; the product is

pv = p0v
0 + p1v

1 + p2v
2. (B.8)

Appendix B Our Notation 201

So the product of tuples that are compatible for contraction is an
inner product. Using the tuples p and v defined above gives us

(* p v)
(+ (* p 0 vˆ0) (* p 1 vˆ1) (* p 2 vˆ2))

Contraction of tuples is commutative: pv = vp. Caution: Mul-
tiplication of tuples that are compatible for contraction is, in gen-
eral, not associative. For example, let u = (5, 2), v = (11, 13), and
g = [[3, 5] , [7, 9]]. Then u(gv) = 964, but (ug)v = 878. The ex-
pression ugv is ambiguous. An expression that has this ambiguity
does not occur in this book.

The rule for multiplying two structures that are not compati-
ble for contraction is simple. If A and B are not compatible for
contraction, the product AB is a tuple of type B whose compo-
nents are the products of A and the components of B. The same
rule is applied recursively in multiplying the components. So if
B = (B0, B1, B2), the product of A and B is

AB =
(
AB0, AB1, AB2

)
. (B.9)

IfA and C are not compatible for contraction and C = [C0, C1, C2],
the product is

AC = [AC0, AC1, AC2] . (B.10)

Tuple structures can be made to represent linear transforma-
tions. For example, the rotation commonly represented by the
matrix[
cos θ − sin θ
sin θ cos θ

]
(B.11)

can be represented as a tuple structure:2[(
cos θ
sin θ

)(
− sin θ
cos θ

)]
. (B.12)

2To emphasize the relationship of simple tuple structures to matrix notation
we often format up tuples as vertical arrangements of components and down
tuples as horizontal arrangements of components. However, we could just as
well have written this tuple as [(cos θ, sin θ) , (− sin θ, cos θ)].

202 Appendix B Our Notation

Such a tuple is compatible for contraction with an up tuple that
represents a vector. So, for example:[(

cos θ
sin θ

)(
− sin θ
cos θ

)] (
x
y

)
=

(
x cos θ − y sin θ
x sin θ + y cos θ

)
. (B.13)

The product of two tuples that represent linear transformations—
which are not compatible for contraction—represents the compo-
sition of the linear transformations. For example, the product of
the tuples representing two rotations is[(cos θ

sin θ

)(− sin θ
cos θ

)] [(cosϕ
sinϕ

)(− sinϕ
cosϕ

)]
=

[(
cos(θ + ϕ)
sin(θ + ϕ)

)(
− sin(θ + ϕ)
cos(θ + ϕ)

)]
. (B.14)

Multiplication of tuples that represent linear transformations is as-
sociative but generally not commutative, just as the composition
of the transformations is associative but not generally commuta-
tive.

Derivatives

The derivative of a function f is a function, denoted by Df . Our
notational convention is that D is a high-precedence operator.
Thus D operates on the adjacent function before any other ap-
plication occurs: Df(x) is the same as (Df)(x). Higher-order
derivatives are described by exponentiating the derivative opera-
tor. Thus the nth derivative of a function f is notated as Dnf .

The Scheme procedure for producing the derivative of a function
is named D. The derivative of the sin procedure is a procedure that
computes cos:

(define derivative-of-sine (D sin))

(derivative-of-sine ’x)
(cos x)

The derivative of a function f is the function Df whose value
for a particular argument is something that can be multiplied by
an increment Δx in the argument to get a linear approximation
to the increment in the value of f :

f(x+Δx) ≈ f(x) +Df(x)Δx. (B.15)

Appendix B Our Notation 203

For example, let f be the function that cubes its argument
(f(x) = x3); then Df is the function that yields three times
the square of its argument (Df(y) = 3y2). So f(5) = 125 and
Df(5) = 75. The value of f with argument x+Δx is

f(x+Δx) = (x+Δx)3 = x3 + 3x2Δx+ 3xΔx2 +Δx3 (B.16)

and

Df(x)Δx = 3x2Δx. (B.17)

So Df(x) multiplied by Δx gives us the term in f(x+Δx) that is
linear in Δx, providing a good approximation to f(x+Δx)−f(x)
when Δx is small.

Derivatives of compositions obey the chain rule:

D(f ◦ g) = ((Df) ◦ g) ·Dg. (B.18)

So at x,

(D(f ◦ g))(x) = Df(g(x)) ·Dg(x). (B.19)

D is an example of an operator. An operator is like a function
except that multiplication of operators is interpreted as composi-
tion, whereas multiplication of functions is multiplication of the
values (see equation B.3). If D were an ordinary function, then
the rule for multiplication would imply that D2f would just be
the product of Df with itself, which is not what is intended. A
product of a number and an operator scales the operator. So, for
example

(((* 5 D) cos) ’x)
(* -5 (sin x))

Arithmetic is extended to allow manipulation of operators. A
typical operator is (D+I)(D−I) = D2−I, where I is the identity
operator, subtracts a function from its second derivative. Such an
operator can be constructed and used in Scheme as follows:

(((* (+ D I) (- D I)) (literal-function ’f)) ’x)
(+ (((expt D 2) f) x) (* -1 (f x)))

204 Appendix B Our Notation

Derivatives of Functions of Multiple Arguments

The derivative generalizes to functions that take multiple argu-
ments. The derivative of a real-valued function of multiple argu-
ments is an object whose contraction with the tuple of increments
in the arguments gives a linear approximation to the increment in
the function’s value.

A function of multiple arguments can be thought of as a func-
tion of an up tuple of those arguments. Thus an incremental ar-
gument tuple is an up tuple of components, one for each argument
position. The derivative of such a function is a down tuple of the
partial derivatives of the function with respect to each argument
position.

Suppose we have a real-valued function g of two real-valued
arguments, and we want to approximate the increment in the value
of g from its value at x, y. If the arguments are incremented by
the tuple (Δx,Δy) we compute:

Dg(x, y) · (Δx,Δy) = [∂0g(x, y), ∂1g(x, y)] · (Δx,Δy)

= ∂0g(x, y)Δx + ∂1g(x, y)Δy. (B.20)

Using the two-argument literal function g defined on page 198, we
have:

((D g) ’x ’y)
(down (((partial 0) g) x y) (((partial 1) g) x y))

In general, partial derivatives are just the components of the
derivative of a function that takes multiple arguments (or struc-
tured arguments or both; see below). So a partial derivative of a
function is a composition of a component selector and the deriva-
tive of that function.3 Indeed:

∂0g = I0 ◦Dg, (B.21)

∂1g = I1 ◦Dg. (B.22)

Concretely, if

g(x, y) = x3y5 (B.23)

3Partial derivative operators such as (partial 2) are operators, so (expt
(partial 1) 2) is a second partial derivative.

Appendix B Our Notation 205

then

Dg(x, y) =
[
3x2y5, 5x3y4

]
(B.24)

and the first-order approximation of the increment for changing
the arguments by Δx and Δy is

g(x+Δx, y +Δy)− g(x, y) ≈
[
3x2y5, 5x3y4

]
· (Δx,Δy)

= 3x2y5Δx+ 5x3y4Δy. (B.25)

Partial derivatives of compositions also obey a chain rule:

∂i(f ◦ g) = ((Df) ◦ g) · ∂ig. (B.26)

So if x is a tuple of arguments, then

(∂i(f ◦ g))(x) = Df(g(x)) · ∂ig(x). (B.27)

Mathematical notation usually does not distinguish functions
of multiple arguments and functions of the tuple of arguments.
Let h((x, y)) = g(x, y). The function h, which takes a tuple of
arguments x and y, is not distinguished from the function g that
takes arguments x and y. We use both ways of defining functions
of multiple arguments. The derivatives of both kinds of functions
are compatible for contraction with a tuple of increments to the
arguments. Scheme comes in handy here:

(define (h s)
(g (ref s 0) (ref s 1)))

(h (up ’x ’y))
(g x y)

((D g) ’x ’y)
(down (((partial 0) g) x y) (((partial 1) g) x y))

((D h) (up ’x ’y))
(down (((partial 0) g) x y) (((partial 1) g) x y))

A phase-space state function is a function of time, coordinates,
and momenta. Let H be such a function. The value of H is
H(t, (x, y) , [px, py]) for time t, coordinates (x, y), and momenta
[px, py]. Let s be the phase-space state tuple as in (B.6):

s = (t, (x, y) , [px, py]) . (B.28)

206 Appendix B Our Notation

The value of H for argument tuple s is H(s). We use both ways
of writing the value of H.

We often show a function of multiple arguments that include
tuples by indicating the boundaries of the argument tuples with
semicolons and separating their components with commas. If H
is a function of phase-space states with arguments t, (x, y), and
[px, py], we may write H(t;x, y; px, py). This notation loses the
up/down distinction, but our semicolon-and-comma notation is
convenient and reasonably unambiguous.

The derivative of H is a function that produces an object that
can be contracted with an increment in the argument structure to
produce an increment in the function’s value. The derivative is a
down tuple of three partial derivatives. The first partial derivative
is the partial derivative with respect to the numerical argument.
The second partial derivative is a down tuple of partial derivatives
with respect to each component of the up-tuple argument. The
third partial derivative is an up tuple of partial derivatives with
respect to each component of the down-tuple argument:

DH(s) = [∂0H(s), ∂1H(s), ∂2H(s)] (B.29)

= [∂0H(s), [∂1,0H(s), ∂1,1H(s)] , (∂2,0H(s), ∂2,1H(s))] ,

where ∂1,0 indicates the partial derivative with respect to the first
component (index 0) of the second argument (index 1) of the func-
tion, and so on. Indeed, ∂zF = Iz ◦ DF for any function F and
access chain z. So, if we let Δs be an incremental phase-space
state tuple,

Δs = (Δt, (Δx,Δy) , [Δpx,Δpy]) , (B.30)

then

DH(s)Δs = ∂0H(s)Δt

+ ∂1,0H(s)Δx+ ∂1,1H(s)Δy

+ ∂2,0H(s)Δpx + ∂2,1H(s)Δpy. (B.31)

Caution: Partial derivative operators with respect to different
structured arguments generally do not commute.

In Scheme we must make explicit choices. We usually assume
that phase-space state functions are functions of the tuple. For
example,

Appendix B Our Notation 207

(define H
(literal-function ’H
(-> (UP Real (UP Real Real) (DOWN Real Real)) Real)))

(H s)
(H (up t (up x y) (down p x p y)))

((D H) s)
(down
(((partial 0) H) (up t (up x y) (down p x p y)))
(down (((partial 1 0) H) (up t (up x y) (down p x p y)))

(((partial 1 1) H) (up t (up x y) (down p x p y))))
(up (((partial 2 0) H) (up t (up x y) (down p x p y)))

(((partial 2 1) H) (up t (up x y) (down p x p y)))))

Structured Results

Some functions produce structured outputs. A function whose
output is a tuple is equivalent to a tuple of component functions
each of which produces one component of the output tuple.

For example, a function that takes one numerical argument and
produces a structure of outputs may be used to describe a curve
through space. The following function describes a helical path
around the ẑ-axis in 3-dimensional space:

h(t) = (cos t, sin t, t) = (cos, sin, I)(t). (B.32)

The derivative is just the up tuple of the derivatives of each com-
ponent of the function:

Dh(t) = (− sin t, cos t, 1). (B.33)

In Scheme we can write

(define (helix t)
(up (cos t) (sin t) t))

or just

(define helix (up cos sin identity))

Its derivative is just the up tuple of the derivatives of each com-
ponent of the function:

((D helix) ’t)
(up (* -1 (sin t)) (cos t) 1)

208 Appendix B Our Notation

In general, a function that produces structured outputs is just
treated as a structure of functions, one for each of the components.
The derivative of a function of structured inputs that produces
structured outputs is an object that when contracted with an in-
cremental input structure produces a linear approximation to the
incremental output. Thus, if we define function g by

g(x, y) = ((x+ y)2, (y − x)3, ex+y), (B.34)

then the derivative of g is

Dg(x, y) =

[(
2(x+ y)
−3(y − x)2

ex+y

)
,

(
2(x+ y)
3(y − x)2

ex+y

)]
. (B.35)

In Scheme:

(define (g x y)
(up (square (+ x y)) (cube (- y x)) (exp (+ x y))))

((D g) ’x ’y)
(down (up (+ (* 2 x) (* 2 y))

(+ (* -3 (expt x 2)) (* 6 x y) (* -3 (expt y 2)))
(* (exp y) (exp x)))

(up (+ (* 2 x) (* 2 y))
(+ (* 3 (expt x 2)) (* -6 x y) (* 3 (expt y 2)))
(* (exp y) (exp x))))

Exercise B.1: Chain Rule

Let F (x, y) = x2y3, G(x, y) = (F (x, y), y), and H(x, y) = F (F (x, y), y),
so that H = F ◦G.

a. Compute ∂0F (x, y) and ∂1F (x, y).

b. Compute ∂0F (F (x, y), y) and ∂1F (F (x, y), y).

c. Compute ∂0G(x, y) and ∂1G(x, y).

d. Compute DF (a, b), DG(3, 5) and DH(3a2, 5b3).

Exercise B.2: Computing Derivatives

We can represent functions of multiple arguments as procedures in sev-
eral ways, depending upon how we wish to use them. The simplest idea
is to identify the procedure arguments with the function’s arguments.

For example, we could write implementations of the functions that
occur in exercise B.1 as follows:

(define (f x y)
(* (square x) (cube y)))

Appendix B Our Notation 209

(define (g x y)
(up (f x y) y))

(define (h x y)
(f (f x y) y))

With this choice it is awkward to compose a function that takes mul-
tiple arguments, such as f , with a function that produces a tuple of
those arguments, such as g. Alternatively, we can represent the function
arguments as slots of a tuple data structure, and then composition with
a function that produces such a data structure is easy. However, this
choice requires the procedures to build and take apart structures.

For example, we may define procedures that implement the functions
above as follows:

(define (f v)
(let ((x (ref v 0))

(y (ref v 1)))
(* (square x) (cube y))))

(define (g v)
(let ((x (ref v 0))

(y (ref v 1)))
(up (f v) y)))

(define h (compose f g))

Repeat exercise B.1 using the computer. Explore both implementa-
tions of multiple-argument functions.

C
Tensors

There are a variety of objects that have meaning independent
of any particular basis. Examples are form fields, vector fields,
covariant derivative, and so on. We call objects that are inde-
pendent of basis geometric objects. Some of these are functions
that take other geometric objects, such as vector fields and form
fields, as arguments and produce further geometric objects. We
refer to such functions as geometric functions. We want the laws
of physics to be independent of the coordinate systems. How we
describe an experiment should not affect the result. If we use only
geometric objects in our descriptions then this is automatic.

A geometric function of vector fields and form fields that is
linear in each argument with functions as multipliers is called a
tensor. For example, let T be a geometric function of a vector field
and form field that gives a real-number result at the manifold point
m. Then

T(fu+ gv,ω) = f T(u,ω) + gT(v,ω) (C.1)

T(u, fω + gθ) = f T(u,ω) + gT(u,θ), (C.2)

where u and v are vector fields, ω and θ are form fields, and f and
g are manifold functions. That a tensor is linear over functions
and not just constants is important.

The multilinearity over functions implies that the components
of the tensor transform in a particularly simple way as the basis
is changed. The components of a real-valued geometric function
of vector fields and form fields are obtained by evaluating the
function on a set of basis vectors and their dual form basis. In our
example,

Ti
j = T(ej , ẽ

i), (C.3)

for basis vector fields ej and dual form fields ẽi. On the left, Ti
j is

a function of place (manifold point); on the right, T is a function
of a vector field and a form field that returns a function of place.

212 Appendix C Tensors

Now we consider a change of basis, e(f) = e′(f) J or

ei(f) =
∑
j

e′j(f) J
j
i , (C.4)

where J typically depends on place. The corresponding dual basis
transforms as

ẽi(v) =
∑
j

Ki
j ẽ

′j(v), (C.5)

where K = J−1 or
∑

j K
i
j(m)Jjk(m) = δik.

Because the tensor is multilinear over functions, we can deduce
that the tensor components in the two bases are related by, in our
example,

Ti
j =

∑
kl

Ki
kT

′k
l J

l
j, (C.6)

or

T′i
j =

∑
kl

JikT
k
l K

l
j . (C.7)

Tensors are a restricted set of mathematical objects that are
geometric, so if we restict our descriptions to tensor expressions
they are prima facie independent of the coordinates used to rep-
resent them. So if we can represent the physical laws in terms of
tensors we have built in the coordinate-system independence.

Let’s test whether the geometric function R, which we have
called the Riemann tensor (see equation 8.2), is indeed a tensor
field. A real-valued geometric function is a tensor if it is linear
(over the functions) in each of its arguments. We can try it for
3-dimensional rectangular coordinates:

Appendix C Tensors 213

(let ((cs R3-rect))
(let ((u (literal-vector-field ’u-coord cs))

(v (literal-vector-field ’v-coord cs))
(w (literal-vector-field ’w-coord cs))
(x (literal-vector-field ’x-coord cs))
(omega (literal-1form-field ’omega-coord cs))
(nu (literal-1form-field ’nu-coord cs))
(f (literal-manifold-function ’f-coord cs))
(g (literal-manifold-function ’g-coord cs))
(nabla (covariant-derivative (literal-Cartan ’G cs)))
(m (typical-point cs)))

(let ((F (Riemann nabla)))
((up (- (F (+ (* f omega) (* g nu)) u v w)

(+ (* f (F omega u v w)) (* g (F nu u v w))))
(- (F omega (+ (* f u) (* g x)) v w)

(+ (* f (F omega u v w)) (* g (F omega x v w))))
(- (F omega v (+ (* f u) (* g x)) w)

(+ (* f (F omega v u w)) (* g (F omega v x w))))
(- (F omega v w (+ (* f u) (* g x)))

(+ (* f (F omega v w u)) (* g (F omega v w x)))))
m))))

(up 0 0 0 0)

Now that we are convinced that the Riemann tensor is indeed a
tensor, we know how its components change under a change of
basis. Let

Ri
jkl = R(ẽi, ej , ek, el), (C.8)

then

Ri
jkl =

∑
mnpq

Ki
mR′m

npqJ
n
j J

p
kJ

q
l , (C.9)

or

R′i
jkl =

∑
mnpq

JimRm
npqK

n
jK

p
kK

q
l . (C.10)

Whew!
It is easy to generalize these formulas to tensors with general

arguments. We have formulated the general tensor test as a pro-
gram tensor-test that takes the procedure T to be tested, a list of
argument types, and a coordinate system to be used. It tests each
argument for linearity (over functions). If the function passed as
T is a tensor, the result will be a list of zeros.

214 Appendix C Tensors

So, for example, Riemann proves to be a tensor

(tensor-test
(Riemann (covariant-derivative (literal-Cartan ’G R3-rect)))
’(1form vector vector vector)
R3-rect)

(0 0 0 0)

and so does the torsion (see equation 8.21):

(tensor-test
(torsion (covariant-derivative (literal-Cartan ’G R3-rect)))
’(1form vector vector)
R3-rect)

(up 0 0 0)

But not all geometric functions are tensors. The covariant deriva-
tive is an interesting and important case. The function F, defined
by

F(ω, u, v) = ω(∇uv), (C.11)

is a geometric object, since the result is independent of the coor-
dinate system used to represent the ∇. For example:

(define ((F nabla) omega u v)
(omega ((nabla u) v)))

(((- (F (covariant-derivative
(Christoffel->Cartan
(metric->Christoffel-2
(coordinate-system->metric S2-spherical)
(coordinate-system->basis S2-spherical)))))

(F (covariant-derivative
(Christoffel->Cartan
(metric->Christoffel-2
(coordinate-system->metric S2-stereographic)
(coordinate-system->basis S2-stereographic))))))

(literal-1form-field ’omega S2-spherical)
(literal-vector-field ’u S2-spherical)
(literal-vector-field ’v S2-spherical))

((point S2-spherical) (up ’theta ’phi)))
0

But it is not a tensor field:

Appendix C Tensors 215

(tensor-test
(F (covariant-derivative (literal-Cartan ’G R3-rect)))
’(1form vector vector)
R3-rect)

(0 0 MESS)

This result tells us that the function F is linear in its first two
arguments but not in its third argument.

That the covariant derivative is not linear over functions in the
second vector argument is easy to understand. The first vector
argument takes derivatives of the coefficients of the second vector
argument, so multiplying these coefficients by a manifold function
changes the derivative.

References

[1] Harold Abelson and Gerald Jay Sussman with Julie Suss-
man, Structure and Interpretation of Computer Programs,
MIT Press, Cambridge, MA, 1996.

[2] Harold Abelson and Andrea deSessa, Turtle Geometry, MIT
Press, Cambridge, MA, 1980.

[3] R. L. Bishop and S. I. Goldberg, Tensor Analysis on Mani-

folds, MacMillan, New York, 1968.

[4] S. Carroll, Spacetime and Geometry: An Introduction to Gen-

eral Relativity, Benjamin Cummings, 2003.

[5] Alonzo Church, The Calculi of Lambda-Conversion, Prince-
ton University Press, 1941.

[6] Harley Flanders, Differential Forms with Applications to the

Physical Sciences, Academic Press, New York, 1963, Dover,
New York, 1989.

[7] Theodore Frankel, The Geometry of Physics, Cambridge Uni-
versity Press, 1997.

[8] Galileo Galilei, Il Saggiatore (The Assayer), 1623.

[9] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure

of Space–Time, Cambridge University Press, 1973.

[10] IEEE Std 1178-1990, IEEE Standard for the Scheme Pro-
gramming Language, Institute of Electrical and Electronic En-
gineers, Inc., 1991.

[11] Charles W. Misner, Kip S. Thorne, and John Archibald
Wheeler, Gravitation, W. H. Freeman and Company, San
Francisco, 1973.

[12] Abraham Pais, Subtle is the Lord: The Science and the Life of
Albert Einstein, Oxford University Press, Oxford, UK, 1982.

[13] Seymour A. Papert, Mindstorms: Children, Computers, and
Powerful Ideas, Basic Books, 1980.

218 References

[14] B. Schutz A First Course in General Relativity, Cambridge
University Press, 1985.

[15] I. M. Singer and John A. Thorpe, Lecture Notes on Elemen-

tary Topology and Geometry, Scott, Foresman and Company,
Glenview, Illinois, 1967.

[16] Michael Spivak, A Comprehensive Introduction to Differen-

tial Geometry, Publish or Perish, Houston, Texas, 1970.

[17] Michael Spivak, Calculus on Manifolds, W. A. Benjamin,
New York, NY, 1965.

[18] Gerald Jay Sussman and Jack Wisdom, The Role of Pro-

gramming in the Formulation of Ideas, Artificial Intelligence
Laboratory memo AIM-2002-018, November 2002.

[19] Gerald Jay Sussman and Jack Wisdom with Mein-
hard E. Mayer, Structure and Interpretation of Classical Me-

chanics, MIT Press, Cambridge, MA, 2001.

[20] Robert M. Wald, General Relativity, University of Chicago
Press, 1984.

[21] Free software is available at:
groups.csail.mit.edu/mac/users/gjs/6946/linux-install.htm.

Index

Any inaccuracies in this index may be explained
by the fact that it has been prepared with the help
of a computer.

Donald E. Knuth, Fundamental Algorithms
(Volume 1 of The Art of Computer Programming)

Page numbers for Scheme procedure definitions are in italics.

Page numbers followed by n indicate footnotes.

◦ (composition), 196
�, 133
�, 134
D (derivative Rn → Rm), 202
∂ (partial derivative), 206
df (differential of manifold

function), 33, 35
dω (exterior derivative of form

field), 63
δij , 34n

∇ (nabla), 8
γv
m(t), 29

Ij (selector), 199
Lv (Lie derivative), 85
λ-calculus, 195
λ-expression, 186–187
λ-notation, 186n
φv
t(m), 29

�i
j , 96

’ (quote in Scheme), 192
, in tuple, 206
; in tuple, 206
in Scheme, 192
[] for down tuples, 198
() for up tuples, 198
() in Scheme, 185, 186n, 191
4tuple->ct, 176
4tuple->space, 176

Abuse of notation, 17n
Access chain, 199
Alternative in conditional, 189

Ampere, 167
Angular momentum, SO(3) and,

53 (ex. 4.3)
Arguments, in Scheme, 185
Arithmetic
generic, 195
on functions, 196
on operators, 203
on symbolic values, 197
on tuples, 195, 199–202

Associativity and
non-associativity of tuple
multiplication, 201, 202

Atlas, on manifold, 11

Basis fields, 41–53
change of basis, 44–47
dual forms, 41
general vector as linear
combination, 41

Jacobian, 45
linear independence, 43
over a map, 74
rotation basis, 47–48

basis->1form-basis, 45
basis->vector-basis, 45
Bianchi identity, 129–131
first, 130
second, 130

Boost, 172
general, 174
perpendicular, 174

220 Index

Boost (continued)
transformation under rotation,
177

Brackets for down tuples, 198

car, 191
Cardioid, 18 (ex. 2.1)
Cartan one-forms, 96
Christoffel coefficients and, 98
expression in terms of covariant
derivative, 98

linearity over functions, 97
parallel transport and, 96
transformation rule, 101

Cartan’s formula for Lie
derivative, 92

Cartan-transform, 101
cdr, 191
Chain rule
for derivatives, 203, 208 (ex.
B.1)

for partial derivatives, 205, 208
(ex. B.1)

for vector fields, 26
chart, 7, 14
Chart, on manifold, 11
Christoffel coefficients, 3, 8, 98
first kind, 135
from metric, 135
Lagrange equations and, 3, 138
metric and, 9
second kind, 136

Christoffel->Cartan, 9, 102 n
Church, Alonzo, 186n
circular, 31
Circular orbit in Schwarzschild

spacetime, 148 (ex. 9.7)
stability of, 148 (ex. 9.8)

Closed form field, 64
Coefficient functions
one-form field, 34
vector field, 23

Combinatory logic, 77n
Comma in tuple, 206
Commutativity of some tuple

multiplication, 201
Commutator, 48
for rotation basis, 50–51

meaning, 52
non-coordinate basis, 53 (ex.
4.2)

zero for coordinate basis fields,
48

component, 200
Components of the velocity, 76
components->1form-field, 35
components->vector-field, 24
compose, 188
Composition
of functions, 196, 209 (ex. B.2)
of linear transformations, 202
of operators, 203

Compound data in Scheme,
190–192

cond, 188
Conditionals in Scheme, 188–189
Confusion: differential of map

and of manifold function, 73
Connection
Cartan one-forms, 96
Christoffel coefficients and, 98
from Lagrange equations, 137
from metric, 135

cons, 191
Consequent in conditional, 188
Constraint, 3, 112
Constructors in Scheme, 190
contract, 135
Contraction of tuples, 200
Contravariant, 29
Coordinate basis
one-form field, 34
one-form field traditional
notation, 36

vector field, 26–29
vector field traditional notation,
27

Coordinate component functions
one-form field, 34
vector field, 23

Coordinate function, 11–14
Coordinate independence, 38
integration, 55
manifold functions, 15
one-form field, 38
vector field, 22, 28

Index 221

Coordinate patch, on manifold,
11

Coordinate representation
manifold functions, 14
one-form fields, 35
vector fields, 25

Coordinate transformations
one-form field, 38
vector field, 28

coordinate-system, 13
coordinate-system-at, 13n
coordinate-system->basis, 9,

46
coordinatize, 25
Cosmology, 149 (ex. 9.9), 150

(ex. 9.10)
Coulomb, 167
Covariant, 28
Covariant derivative, 8, 93–104
change of basis, 100
directional derivative and, 93
generalized product rule, 99
geodesic, 8
Lie derivative and, 113 (ex. 7.2)
nabla (∇) notation, 8
not a tensor, 214
of one-form field, 99
of vector field, 93
over a map, 106
parallel transport and, 93
product rule, 97

covariant-derivative, 9
covariant-derivative-form,

100
covariant-derivative-vector,

97
curl, 154
curl, 155
Curry, Haskell, 77n
Currying, 77
Curvature, 115–131
by explicit transport, 116
intrinsic, 115
pseudosphere, 123 (ex. 8.2), 144
(ex. 9.4)

Riemann curvature operator
and, 115

Schwarzschild spacetime, 147
(ex. 9.6)

spherical surface, 123 (ex. 8.1),
143 (ex. 9.3)

universe, 150 (ex. 9.10)

dω (exterior derivative of form
field), 63

D, D (derivative Rn → Rm),
202

define, 187
define-coordinates, 16, 27, 36
Definitions in Scheme, 187–188
Derivative, 202–207, See also

Covariant derivative;
Directional derivative;
Exterior derivative; Lie
derivative; Partial derivative;
Vector field

as best linear approximation, 21
as operator, 203
chain rule, 203, 208 (ex. B.1)
in Scheme programs: D, 202
notation: D, 202
of function of multiple
arguments, 204–207

of function with structured
inputs and outputs, 208

precedence of, 202
Determinant, 57n, 61
df (differential of manifold

function), 33, 35
Difference between points on

manifold, 21
Differential
in a coordinate basis, 35
of manifold function (df), 33
of map, 72
pullback and, 77

differential, 10, 72
Differential equation, integral

curve of, 29
Dimension of manifold, 12
Directional derivative, 83–114
all agree on functions, 83
covariant derivative, 93
extended Leibniz rule, 85

222 Index

Directional derivative (continued)
formulation of method of
transport, 83

general properties, 84
Leibniz rule, 84
Lie derivative, 85
of form field, 83
of manifold function, 22
of vector field, 22, 83
using ordinary derivative, 84

div, 154
divergence, 156
Divergence Theorem, 67
down, 199
Down tuple, 198
drop2, 147 n
Dual basis, 42
over a map, 74

Dual forms used to determine
vector field coefficients, 43

Duality, 41
Hodge, 153
illustrated, 36
one-form field, 34

Dust stress-energy tensor, 147

Einstein
field equations, 145
special relativity, 167
tensor, 145n

Einstein, 149 (ex. 9.9)
Einstein-field-equation, 149

(ex. 9.9)
Electrodynamics, 160–170
else, 188
Empty list, 191
eq?, 193
Euler angles, 47
alternate angles, 52 (ex. 4.1)

Euler-Lagrange equations, 2
Event, 179
Evolution
Hamiltonian, 113 (ex. 7.1)
integral curve, 30

Evolution operator, 31
Exact form field, 64
Exact forms are closed, 64

Exponentiating Lie derivatives,
91

Expressions in Scheme, 185
Extended rotation, 177
Exterior derivative, 33n, 62–65
Cartan’s formula and, 92
commutes with Lie derivative,
90

commutes with pullback, 80
coordinate-system independent,
62

general definition, 62
graded formula, 69 (ex. 5.2)
iterated, 69 (ex. 5.3)
obeys graded Leibniz rule, 64
of one-form, 62
Stokes’s Theorem and, 62

F->C, 4
Faraday, 167
Faraday, 160
Faraday tensor, 160
Field equations
Einstein, 145
Maxwell, 162

FLRW-metric, 150 (ex. 9.9)
Force, Lorentz, 164
relativistic, 166 (ex. 10.1)

Form field
closed, 64
exact, 64
pushforward, 81

form-field->form-field-over-
map, 74

Formal parameters of a
procedure, 187

Franklin, 167
Friedmann metric, 150 (ex. 9.9)
Friedmann-Lemâıtre-Robertson-

Walker, 149 (ex. 9.9)
Function(s), 196–197
arithmetic operations on, 196
composition of, 196, 209 (ex.
B.2)

operators vs., 203
selector, 199
tuple of, 207

Index 223

vs. value when applied, 195, 196
with multiple arguments, 204,
205, 208 (ex. B.2)

with structured arguments, 205,
208 (ex. B.2)

with structured output, 207,
208 (ex. B.2)

Functional mathematical
notation, 195

Fundamental Theorem of
Calculus, 66

g-Minkowski, 159
Galileo Galilei, 1
Gauss, 167
General relativity, 144–151, 172
general-boost, 176
general-boost2, 177
Generic arithmetic, 195
Geodesic deviation, 125–129
relative acceleration of
neighboring geodesics and, 125

Riemann curvature and, 126
vector field, 126

Geodesic motion, 2, 111
governing equation, 8, 111
governing equation, in
coordinates, 9, 111

Lagrange equations and, 2, 112
SO(3) on, 143 (ex. 9.2)

Geometric function, 211
Geometric object, 211
Global Lorentz frame, 172
grad, 154
gradient, 154
Green’s Theorem, 67

Hamiltonian Evolution, 113 (ex.
7.1)

Higher-rank forms, 57
linear and antisymmetric, 57

Hill climbing, power expended,
39 (ex. 3.3)

Hodge dual, 153
Hodge star, 153–158
Honest definition rare, 79

Ij (selector), 199
if, 188

Inner product of tuples, 201
Integral
coordinate-independent
definition, 58

higher dimensions, 57–58
higher-rank forms, 57
one-form, 56

Integral curve, 29–32
differential equation, 29
evolution, 30
Taylor series, 30

Integration, 55–69
coordinate-independent notion
of, 55

Interior product, 92
Iteration in Scheme, 190

Jacobian, 28
basis fields, 45

Knuth, Donald E., 219
Kronecker delta, 34n

Lv (Lie derivative), 85
Lagrange equations, 2n
Christoffel coefficients and, 138
geodesic equations and, 137

Lagrange-explicit, 138 n
Lagrangian, 2
constraint, 3
free particle, 3, 137
metric and, 137

lambda, 186
Lambda calculus, 195
Lambda expression, 186–187
Laplacian, 156
wave equation and, 160

Laplacian, 156
Leibniz rule (product rule) for

vector field, 26
Lemniscate of Bernoulli, 18 (ex.

2.1)
let, 189
Lie derivative, 85–93
alternate formulation, 88
as commutator, 86
commutes with exterior
derivative, 90

224 Index

Lie derivative (continued)
covariant derivative and, 113
(ex. 7.2)

directional derivative and, 85
exponentiation, 91
interpretation, 87
of form field, 89
of function, 85
of vector field, 85
properties, 89
transport operator is
pushforward, 85

uniform interpretation, 89
Lie-derivative-vector, 87
Linear independence and basis

fields, 43
Linear transformations as tuples,

201
Linearity
one-form field, 33
vector field, 26

Lisp, 191n
list, 191
list-ref, 191
Lists in Scheme, 190–192
Literal symbol in Scheme,

192–193
literal-1form-field, 35
literal-Christoffel-2, 119n
literal-function, 16, 197, 206
literal-manifold-function,

16n
literal-manifold-map, 7 n
literal-metric, 6 n
literal-vector-field, 24
Local names in Scheme, 189–190
Loops in Scheme, 190
Lorentz, 169
Lorentz decomposition, 179 (ex.

11.1)
Lorentz force, 164
relativistic, 166 (ex. 10.1)

Lorentz frame, global, 172
Lorentz interval, 172
Lorentz transformation, 172
general, 178
simple, 173
unique decomposition, 178

lower, 134
Lowering a vector field, 133

make-4tuple, 175
make-fake-vector-field, 74
make-manifold, 12
make-SR-coordinates, 179n
make-SR-frame, 180
Manifold, 11–19
atlas, 11
chart, 11
coordinate function, 11–14
coordinate patch, 11
coordinate-independence of
manifold functions, 15

difference between points, 21
dimension of, 12
motion and paths, 71
naming coordinate functions, 16

Manifold function, 14–17
coordinate representation, 14
directional derivative, 22

Matrix as tuple, 201
Maxwell, 167
Maxwell, 161
Maxwell tensor, 161
Maxwell’s equations, 162
Metric, 5, 133–151
Christoffel coefficients and, 9,
135

connection compatible with, 135
Friedmann, 150 (ex. 9.9)
Lagrangian and, 137
Minkowski, 133, 159

metric->Christoffel-2, 9
metric->Lagrangian, 138
Minkowski metric, 133, 159
Motion
geodesic in General Relativity,
144

on a sphere, 10 (ex. 1.1)
on manifolds, 71
Schwarzschild spacetime, 148
(ex. 9.7), 148 (ex. 9.8)

Multiplication of operators as
composition, 203

Multiplication of tuples, 200–202
as composition, 202
as contraction, 200

Index 225

Nabla (∇), 8
Newton-connection, 146
Newton-metric, 146
Newton’s equations, 32 (ex. 3.1)
Non-associativity and

associativity of tuple
multiplication, 201, 202

Non-commutativity
of some partial derivatives, 206
of some tuple multiplication,
202

Non-coordinate basis, 41, 47
commutator, 53 (ex. 4.2)

Notation, 195–209
∇, 8
() for up tuples, 198
[] for down tuples, 198
abuse of, 17n
ambiguities of traditional, 195
derivative, partial: ∂, 206
derivative: D, 202
functional, 195
selector function: Ij , 199

Notation for coordinate basis
one-form field, 36
vector field, 27

Oersted, 167
One-form field, 32–39
coefficient functions, 34
coordinate basis, 34
coordinate independence, 38
coordinate representation, 35
coordinate transformations, 38
differential, 33
duality, 34
general, 34
linearity, 33
not all are differentials, 37
over a map, 71, 73
raising, 134

Operator, 203
arithmetic operations on, 203
function vs., 203

Oriented area of a parallelogram,
59

Over a map, 71–81
basis fields, 74

covariant derivative, 106
dual basis, 74
one-form field, 73
vector field, 71

pair?, 192
Pairs in Scheme, 191
Parallel transport, 3, 93, 104–112
Cartan one-forms and, 96
equations similar to variational
equations, 108

for arbitrary paths, 104
geodesic motion and, 111
governing equations, 106
independent of rate of
transport, 94

numerical integration, 109
on a sphere, 106
path-dependent, 93

Parentheses
in Scheme, 185, 186n
for up tuples, 198

Partial derivative, 204–206
chain rule, 205, 208 (ex. B.1)
commutativity of, 37
notation: ∂, 206

patch, 12
Patch, on manifold, 11
Paths and manifolds, 71
Perfect-fluid stress-energy tensor,

150 (ex. 9.9)
Phase-space state function, 205
in Scheme, 206

Poincaré transformation, 172
point, 7, 14
Power expended in hill climbing,

39 (ex. 3.3)
Predicate in conditional, 188
print-expression, 31, 197n
Procedure calls, 185–186
procedure->vector-field, 24
Product rule (Leibniz rule) for

vector field, 26
Projection, stereographic, 19 (ex.

2.2)
Proper length, 159
proper-space-interval, 176
Proper time, 159

226 Index

proper-time-interval, 176
Pullback
commutes with exterior
derivative, 80

differential and, 77
of form field, 79
of function, 76
of vector field, 79
properties, 80
vector field over a map as, 77

pullback-form, 80
pullback-function, 77
pullback-vector-field, 79
Pushforward
along integral curves, 78
of form field, 81
of function, 76
of vector field, 78

pushforward-vector, 78

Quotation in Scheme, 192–193

Rx, Rz (rotations), 47
R2-polar, 7n
R2-polar-Cartan, 102
R2->R, 16
R2-rect, 7n, 13 n
R2-rect-Cartan, 102
R2-rect-Christoffel, 102
R2-rect-point, 16
R3-cyl, 18 (ex. 2.1)
raise, 135
Raising a one-form field, 134
Recursive procedures, 189
ref, 200
Reparameterization, 141
Residual, xvi
Restricted vector field, 71
Ricci, 123
Ricci scalar, 144 (ex. 9.3)
Ricci tensor, 123
Riemann, 116
Riemann curvature
in terms of Cartan one-forms,
120

way to compute, 120
Riemann-curvature, 115
Riemann curvature operator, 115

Riemann tensor, 115
by explicit transport, 116
for sphere, 116
is a tensor, 212

Robertson-Walker equations, 150
(ex. 9.9)

Rotation
extended to Lorentz
transformation, 177

as tuples, 201

S2-basis, 75
S2-Christoffel, 107
S2-spherical, 75
s:map/r, 45
Salam, Abdus, 195
Scheme, 185–193, 195
lists, 191
quotation, 192–193
vectors, 192

Schönfinkel, Moses, 77n
Schwarzschild-metric, 148 (ex.

9.6)
Schwarzschild spacetime
circular orbit, 148 (ex. 9.7)
circular orbit stability, 148 (ex.
9.8)

curvature, 147 (ex. 9.6)
Scmutils, 195–209
generic arithmetic, 195
simplification of expressions,
197

Selector functions, 190, 199
Semicolon in tuple, 206
series:for-each, 31
Simplification of expressions, 197
SO(3), 47
angular momentum and, 53 (ex.
4.3)

geodesics, 143 (ex. 9.2)
SO3-metric, 143 (ex. 9.2)
Spacelike, 159
Spacetime, 144
Special orthogonal

group—SO(3), 47
Special relativity, 167–184
electrodynamics, 160–170
frame, 179

Index 227

Minkowski metric, 159
twin paradox, 181
velocity addition, 180

sphere-Cartan, 107
sphere->R3, 4
spherical-metric, 143 (ex. 9.3)
Spherical surface, curvature, 143

(ex. 9.3)
Spivak, Michael, 195
on notation, 28n

square, 187
for tuples, 187n

Stability of circular orbits in
Schwarzschild spacetime, 148
(ex. 9.8)

State derivative, 32 (ex. 3.1)
Stereographic projection, 18 (ex.

2.2)
Stokes’s Theorem, 65–66
proof, 65
states, 65

Stress-energy tensor, 145
dust, 147
perfect fluid, 150 (ex. 9.9)

Structure constants, 50, 125
Subscripts
for down-tuple components, 198
for selectors, 199

Superscripts
for up-tuple components, 12,
198

Symbolic values, 197–198
Symbols in Scheme, 192–193
Syntactic sugar, 187

Taylor series of integral curve, 30
Tdust, 147
Tensor, 211–215
components, 211
linear over functions, 211
stress-energy, 145
transformation with change of
basis, 211

Tensor arithmetic vs. tuple
arithmetic, 195, 199

tensor-test, 213
Timelike, 159

Torsion, 124–125
components in a non-coordinate
basis, 125

is a tensor, 214
torsion, 124
Tperfect-fluid, 150 (ex. 9.9)
trace2down, 144 (ex. 9.3)
Traditional notation
coordinate-basis one-form field,
36

coordinate-basis vector field, 27
Tuples, 198–202
arithmetic on, 195, 199–202
commas and semicolons in, 206
component selector: Ij , 199
composition and, 202
contraction, 200
down and up, 198
of functions, 207
inner product, 201
linear transformations as, 201
matrices as, 201
multiplication of, 200–202
rotations as, 201
squaring, 187n, 200
up and down, 198

Twin paradox, 181–184

up, 199
Up tuple, 12, 198

Vector, in Scheme, 190–192
vector, 192
vector?, 192
vector-ref, 192
vector-basis->dual, 44
Vector calculus, 154–158
Vector field, 21–32
as linear combination of partial
derivatives, 23

chain rule, 26
coefficient functions, 23
commutator of, 48
coordinate basis, 26–29
coordinate independence, 22, 28
coordinate representation, 25
coordinate transformations, 28

228 Index

Vector field (continued)
directional derivative, 22
Leibniz rule, 26
linearity, 26
lowering, 133
module, 25
operator, 24
over a map, 71
product rule, 26
properties, 25–26
restricted, 71
traditional notation for
coordinate-basis vector fields,
27

Vector field over a map, 71–73
as pullback, 77

vector-field->vector-field-
over-map, 72

Vector integral theorems, 67–69
Divergence Theorem, 67
Green’s Theorem, 67

Vector space of tuples, 200
Velocity
addition of in special relativity,
180

at a time, 73
components, 76
differential and, 73
on a globe, 81 (ex. 6.1)

Volume, 59

Walking on a sphere, 75
Wave equation, 159
Laplacian and, 160

Wedge product, 58
antisymmetry, 61
associativity of, 59
construction of antisymmetric
higher-rank forms, 58

determinant and, 61
oriented area of a
parallelogram, 59

Zero-based indexing, 191, 198,
200

	Contents
	Preface
	Prologue
	1. Introduction
	2. Manifolds
	3. Vector Fields and One-Form Fields
	4. Basis Fields
	5. Integration
	6. Over a Map
	7. Directional Derivatives
	8. Curvature
	9. Metrics
	10. Hodge Star and Electrodynamics
	11. Special Relativity
	A. Scheme
	B. Our Notation
	C. Tensors
	References
	Index

