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A Mathematical Preliminaries

A.1 Notation

P
summation

Xn
i¼1

ai ¼ a1 þ a2 þ � � � þ an:

Q
product (multiplication)

Yn
i¼1

ai ¼ a1a2 . . . an:

E for every

b there exists

) implies

, if and only if (implies and is implied by)

iff if and only if

U union (of sets)

V intersection (of sets)

Ac the complement of (the set) A

H a subset of

A belongs to, member of

B doesn’t belong to, not a member of

q the empty set

f : A ! B a function from the set A to the set B

A� B the product set



R the set of real numbers

Rn the n-dimensional Euclidean space

½a; b� a closed interval fx A R j aa xa bg
ða; bÞ an open interval fx A R j a < x < bg
k � k norm, length of a vector

a, j � j cardinality of a set; if the set is denoted A, thenaA ¼ jAj
denotes its cardinality.

A.2 Sets

A set is a primitive notion. Sets are often denoted by capital letters, A,

B, C, . . . and indicated by braces f g. Inside these braces are listed the

elements of the set. For instance, A ¼ f0; 1g refers to the set consisting

of 0 and 1. Sets can also be described without listing all elements

explicitly inside the braces. For instance,

N ¼ f1; . . . ; ng

denotes the set of all natural numbers from 1 to n. Similarly, we define

N ¼ f1; 2; 3; . . .g

and

Z ¼ f. . . ;�1; 0; 1; . . .g

to be the set of natural numbers and the set of integer numbers,

respectively.

The notation a A A means that a is a member of the set A or that a

belongs to A. a B A is the negation of a A A.

The symbolHdesignates a relation between sets, meaning ‘‘is a sub-

set of.’’ Explicitly, AHB means that A is a subset of B, that is, for all

x A A, it is true that x A B. Thus, x A A iff fxgHA.

The symbol q denotes the empty set, the set that has no elements.

Sets are also defined by a certain condition that elements should sat-

isfy. For instance,

A ¼ fn A N j n > 3g

denotes all the natural numbers greater than 3, that is, A ¼ f4; 5; 6; . . .g.
R denotes the set of real numbers. I don’t define them here formally,

although they can be defined using the rationals, which are, in turn,

defined as the ratios of integer numbers.
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When we use mathematics to model reality, we also refer to sets

whose elements need not be mathematical objects. For instance,

A ¼ fhumansg;

B ¼ fmammalsg:

Such sets are viewed as sets of some mathematical objects interpreted

as humans or mammals, respectively. Thus, when we discuss a set of

individuals, alternatives, strategies, or states of the world, we mean a

set whose elements are interpreted as individuals, alternatives, and

so on.

The basic set operations are as follows.

Union ðUÞ. A binary operation on sets, resulting in a set containing all

the elements that are in at least one of the sets. Or, for sets A and B,

AUB ¼ fx j x A A or x A Bg:

Here and elsewhere, or is inclusive, that is, ‘‘p or q’’ means ‘‘p, or q, or

possibly both.’’

Intersection ðVÞ. A binary operation resulting in elements that are in

both sets. That is,

AVB ¼ fx j x A A and x A Bg

Two sets A and B are disjoint if they have an empty intersection, that

is, if AVB ¼ q.

Complement (c). A unary operation containing all elements that are

not in the set. To define it, we need a reference set. That is, if S is the

entire universe,

Ac ¼ fx j x B Ag:

You may verify that

ðAcÞc ¼ A;

AVBHA;BHAUB;

AVAc ¼ q;

ðAUBÞc ¼ Ac VBc;

ðAVBÞc ¼ Ac UBc;

and
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AV ðBUCÞ ¼ ðAVBÞU ðAVCÞ;

AU ðBVCÞ ¼ ðAUBÞV ðAUCÞ:

Given two sets A and B, we define their (Cartesian) product A� B to

be all the ordered pairs whose first element is from A and whose sec-

ond element is from B. In formal notation,

A� B ¼ fðx; yÞ j x A A and y A Bg:

Note that ðx; yÞ is an ordered pair because the order matters. That is,

ðx; yÞ0 ðy; xÞ unless x ¼ y. This is distinct from the set containing x

and y, in which the order does not matter. That is, fx; yg ¼ fy; xg.
The notation A2 means A� A. Thus, it refers to the set of all the

ordered pairs each element of which is in A. Similarly, we define

An ¼ A� � � � � A ¼ fðx1; . . . ; xnÞ j xi A A; ia ng:

The power set of a set A is the set of all subsets of A. It is denoted

2A ¼ PðAÞ ¼ fB jBHAg:

A.3 Relations and Functions

A binary relation is a subset of ordered pairs. Specifically, if R is a bi-

nary relation from a set A to a set B, we mean that

RHA� B:

This is an extensional definition. The relation R is defined by a list of all

pairs of elements in A and in B such that the former relates to the latter.

For instance, consider the relation R, ‘‘located in,’’ from the set of build-

ings A to the set of cities B. Then, if we have

R ¼
ðEmpire_State_Building,New_YorkÞ;

ðLouvre,ParisÞ;
ðBig_Ben,LondonÞ; . . .

8><
>:

9>=
>;

we wish to say that the Empire State Building relates to New York by

the relation ‘‘located in,’’ that is, it is in New York; the building of the

Louvre is in Paris; and so forth.

For a relation RHA� B we can define the inverse relation, R�1 H
B� A by

R�1 ¼ fðy; xÞ j ðx; yÞHRg:
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Of particular interest are relations between elements of the same set.

For a set A, a binary relation on A is a relation RHA2ð¼ A� AÞ. For
instance, if A is the set of people, then ‘‘child_of’’ is a relation given by

R ¼
ðCain,AdamÞ;
ðCain,EveÞ;

ðAbel,AdamÞ; . . .

8><
>:

9>=
>;;

and the relation ‘‘parent_of’’ will be

R�1 ¼
ðAdam,CainÞ;
ðEve,CainÞ;

ðAdam,AbelÞ; . . .

8><
>:

9>=
>;:

A function f from A to B, denoted

f : A ! B;

is a binary relation RHA� B such that for every x A A, there exists

precisely one y A B such that ðx; yÞ A R. We then write

f ðxÞ ¼ y

or

f : x 7! y:

The latter is also used to specify the function by a formula. For in-

stance, we can think of the square function f : R ! R defined by

f ðxÞ ¼ x2

or write

f : x 7! x2:

A function f : A ! B is 1–1 (one-to-one) if it never attaches the same

y A B to different x1; x2 A A, that is, if

f ðx1Þ ¼ f ðx2Þ ) x1 ¼ x2:

A function f : A ! B is onto if every y A B has at least one x A A such

that f ðxÞ ¼ y.

If f : A ! B is both one-to-one and onto, we can define its inverse

f�1 : B ! A
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by

f�1ðyÞ ¼ x , y ¼ f ðxÞ:

Observe that the notation f�1 is consistent with the notation R�1 for

relations. Recalling that a function is a relation, one can always define

f�1 as

f�1 ¼ fðy; xÞ j y ¼ f ðxÞg;

and if f is one-to-one and onto, this relation is indeed a function, and it

coincides with the inverse function of f.

We often also use the notation

f�1ðxÞ ¼ fy A B j y ¼ f ðxÞg:

With this notation, to say that f is one-to-one is equivalent to saying

that f�1ðxÞ has at most one element for every x. To say that it is onto is

equivalent to saying that f�1ðxÞ is nonempty. And if f is both one-to-

one and onto (a bijection), f�1ðxÞ has exactly one element for each x.

Then, according to the set notation, for a particular y,

f�1ðxÞ ¼ fyg;

and according to the inverse function notation,

f�1ðxÞ ¼ y:

Using f�1 both for the element y and for the set containing only y

seems problematic when one is just starting to deal with formal

models, but it becomes more common as one advances. This is called

an abuse of notation, and it is often acceptable as long as readers

know what is meant by it.

Interesting properties of binary relations on a set RHA2 include the

following.

R is reflexive if Ex A A, xRx, that is, every x relates to itself. For in-

stance, the relations ¼ andbon R are reflexive, but > isn’t.

R is symmetric if Ex; y A A, xRy implies yRx, that is, if x relates y, then

the converse also holds. For instance, the relation ¼ (on R) is symmet-

ric, butb and > aren’t. Notice that > does not allow any pair x, y to

have both x > y and y > x, that is,

>V>�1 ¼ >V< ¼ q;
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whereasbdoes because if x ¼ y, it is true that xb y and yb x. Butb is

not symmetric because it is not always the case that xRy implies yRx.

R is transitive if Ex; y; z A A, xRy and yRz imply xRz, that is, if x

relates to z through y, then x relates to z also directly. For example, ¼,

b, and > on R are all transitive, but the relation ‘‘close to’’ defined by

xRy , jx� yj < 1

is not transitive.

A relation that is reflexive, symmetric, and transitive is called an

equivalence relation. Equality ¼ is such a relation. Also, ‘‘having the

same square,’’ that is,

xRy , x2 ¼ y2;

is an equivalence relation.

In fact, a relation R on a set A is an equivalence relation if and only if

there exist a set B and a function f : A ! B such that

xRy , f ðxÞ ¼ f ðyÞ:

A.4 Cardinalities of Sets

The cardinality of a set A, denotedaA or jAj, is a measure of its size. If

A is finite, the cardinality is simply the number of elements in A. If A is

finite and jAj ¼ k, then the number of subsets of A is

jPðAÞj ¼ 2k:

If we have also jBj ¼ m, then

jA� Bj ¼ km:

Applied to the product of a set with itself,

jAnj ¼ kn:

For infinite sets the measurement of the size, or cardinality, is more

complicated. The notation y denotes infinity, but it does not distin-

guish among infinities. And it turns out that there are meaningful

ways in which infinities may differ.

How do we compare the sizes of infinite sets? The basic idea is this.

Suppose we are given two sets A and B, and a one-to-one function

f : A ! B. Then we want to say that B is at least as large as A, that is,
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jBjb jAj:

If the converse also holds, that is, there also exists a one-to-one func-

tion g : B ! A, then we also have jAjb jBj, and together these imply

that A and B have the same cardinality, jAj ¼ jBj. (In this case it is also

true that there is a one-to-one and onto function from A to B.) Other-

wise, we say that the cardinality of B is larger than that of A, jBj > jAj.
For example, if

A ¼ f1; 2; . . .g;

B ¼ f2; 3; . . .g;

we find that the function f : A ! B defined by f ðnÞ ¼ nþ 1 is one-to-

one and onto between A and B. Thus, the two sets are just as large.

There is something counterintuitive here. A contains all of B plus one

element, 1. So it feels like A should be strictly larger than B. But there

is no interesting definition of the size of a set that distinguishes be-

tween A and B. The reason is that the bijection f suggests that we think

of B as identical to A, with a renaming of the elements. With a bijection

between two sets, it’s hopeless to try to assign them different sizes.

By the same logic, the intervals

½0; 1� ¼ fx A R j 0a xa 1g

and

½0; 2� ¼ fx A R j 0a xa 2g

are of the same cardinality because the function f ðxÞ ¼ 2x is a bijection

from the first to the second. This is even more puzzling because these

intervals have lengths, and the length of ½0; 2� is twice as large as that

of ½0; 1�. Indeed, there are other concepts of size in mathematics that

would be able to capture that fact. But cardinality, attempting to count

numbers, doesn’t.

The cardinality of ð�1; 1Þ is identical to that of the entire real line, R,

even though the length of the former is finite and of the latter infinite.

(Use the functions tag/arctag to switch between the two sets.)

Combining these arguments, we see that R has the same cardinality

as ½0; 1�, or ½0; 0:1�, or ½0; e� for any e > 0.

Continuing with the list of counterintuitive comparisons, we find

that the naturals N ¼ f1; 2; 3; . . .g and the integers Z ¼ f. . . ;�1; 0;

1; . . .g are of the same cardinality even though the integers include all
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the naturals, their negatives, and zero. Clearly, we can have a one-to-

one function from N to Z: the identity ð f ðnÞ ¼ nÞ. But we can also map

Z to N in a one-to-one way. For instance, consider the following enu-

meration of Z:

Z ¼ f0; 1;�1; 2;�2; 3;�3; . . .g;

that is,

0 7! 1

1 7! 2

�1 7! 3

..

.

k 7! 2k

�k 7! 2k þ 1

This function from Z to N is one-to-one (and we also made it onto).

Similarly, the set of rational numbers

Q ¼ a

b

���� a A Z; b A N

� �

is of the same cardinality as N. As previously, it is easy to map N into

Q in a one-to-one way because NHQ. But the converse is also true.

We may list all the rational numbers in a sequence q1; q2; . . . such that

any rational will appear in a certain spot in the sequence, and no two

rational numbers will claim the same spot. For instance, consider the

table

0 1 �1 2 �2 . . .

1 q1 q2 q4 q7 . . .

2 q3 q5 q8 . . .

3 q6 q9 . . .

4 q10 . . .

. . . . . .

Note that different representations of the same rational number are

counted several times. For instance, q1 ¼ q3 ¼ � � � ¼ 0. Hence, define

the function from Q to N as follows: for q A Q, let f ðqÞ be the minimal
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n such that qn ¼ 9, where qn is defined by the table. Clearly, every q

appears somewhere in the list q1; q2; . . . ; hence this function is well de-

fined. It is one-to-one because each qn can equal only one number in Q.

It seems at this point that all infinite sets are, after all, of the same

size. But this is not the case. We concluded that the sets

N;Z;Q

are of the same cardinality, and so are

R; ½0; 1�; ½0; e�

for any e > 0. But the cardinality of the first triple is lower than the car-

dinality of the second.

Clearly, the cardinality of N cannot exceed that of R, because NHR,

and thus the identity function maps N into R in a one-to-one manner.

The question is, can we have the opposite direction, namely, can we

map R into N in a one-to-one way, or equivalently, can we count the

elements in R? The answer is negative. There are at least three insight-

ful proofs of this fact (not provided here). It suffices to know that there

are sets that are not countable, and any interval with a positive length

is such a set. Thus, in a well-defined sense, there are as many rational

numbers as there are natural numbers, and there are as many numbers

in any interval as there are in the entire real line (and, in fact, in any

Rn), but any interval (with a positive length) has more points than the

natural (or the rational) numbers.

A.5 Calculus

A.5.1 Limits of Sequences

The notion of a limit is intuitive and fundamental. What is the limit of 1
n

as n ! y? It is zero. We write this as

lim
n!y

1

n
¼ 0

or

1

n
!n!y 0:

Formally, we say that a sequence of real numbers fang converges to

a number b, denoted
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an !n!y b

or

lim
n!y

an ¼ b

if the following holds: for every e > 0 there exists N such that

nbN

implies

jan � bj < e:

Intuitively, fang converges to b if it gets closer and closer to b. How

close? As close as we wish. We decide how close to b we want the se-

quence to be, and we can then find a place in the sequence, N, such

that all numbers in the sequence from that place on are as close to b as

we requested.

If the sequence converges to y (or �y), we use a similar definition,

but we have to redefine the notion of ‘‘close to.’’ Being close to y
doesn’t mean having a difference of no more than e, but rather, being

large. Formally, an !n!y y if, for every M, there exists N such that

nbN ) an > M;

and a similar definition is used for convergence to �y.

A.5.2 Limits of Functions

Again, we intuitively understand what is the limit of a function at a

point. For instance, if x is a real-valued variable ðx A RÞ, we can agree

that

lim
x!y

1

x
¼ 0

and

lim
x!0

1

x2
¼ y:

The formal definition of a limit is the following. The statement

lim
x!a

f ðxÞ ¼ b
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or

f ðxÞ !x!a b

means that for every e > 0, there exists a d > 0 such that

jx� aj < d

implies

j f ðxÞ � bj < e:

That is, if we know that we want the value of the function to be close

to (within e of) the limit b, we just have to be close enough to (within d

of) the argument a.

The proximity of the argument is defined a little differently when we

approach infinity. Being close to y doesn’t mean being within d of it,

but being above some value. Explicitly, the statement

lim
x!y

f ðxÞ ¼ b

or

f ðxÞ !x!y b

means that for every e > 0, there exists M such that

x > M

implies

j f ðxÞ � bj < e:

Similarly, if we wish to say that the function converges to y as x

converges to a, we say that for every M, there exists a d > 0 such that

jx� aj < d

implies

f ðxÞ > M:

Similar definitions apply to limx!y f ðxÞ ¼ y and to the case in

which x or f ðxÞ is �y.

A.5.3 Continuity

A function f : R ! R is continuous at a point a if it equals its own

limit, that is, if
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lim
x!a

f ðxÞ ¼ f ðaÞ:

The same definition applies to multiple variables. If we have

f : Rn ! R, we say that f is continuous at x if f ðxÞ ! f ðaÞ whenever

x ! a. Specifically, f is continuous at a A Rn if for every e > 0, there

exists d > 0 such that kx� ak < d implies j f ðxÞ � f ðaÞj < e.

A.5.4 Derivatives

The derivative of a real-valued function of a single variable, f : R ! R,

at a point a, is defined as

f 0ðaÞ ¼ df

dx
ðaÞ ¼ lim

x!a

f ðxÞ � f ðaÞ
x� a

:

If we draw the graph of the function and let x0 a be close to a,
f ðxÞ� f ðaÞ

x�a is the slope of the string connecting the point on the graph cor-

responding to a, ða; f ðaÞÞ and the point corresponding to x, ðx; f ðxÞÞ.
The derivative of f at the point a is the limit of this slope. Thus, it is

the slope of the graph at the point a, or the slope of the tangent to the

function.

When we say that a function has a derivative at a point a, we mean

that this limit exists. It may not exist if, for instance, the function has a

kink at a (for instance, f ðxÞ ¼ jx� aj), or if the function is too wild to

have a limit even when x approaches a from one side.

The geometric interpretation of the derivative f 0 is therefore the

slope of the function, or its rate of increase, that is, the ratio between

the increase (positive or negative) in the value of the function relative

to a small change in the variable x. If x measures time, and f ðxÞ mea-

sures the distance from a given point, f 0ðxÞ is the velocity. If x mea-

sures the quantity of a good, and uðxÞ measures the utility function,

then u 0ðxÞ measures the marginal utility of the good.

A function that always has a derivative is called differentiable. At

every point a, we can approximate it by the linear function that is its

tangent,

gðxÞ ¼ f ðaÞ þ ðx� aÞ f 0ðaÞ;

and for values of x close to a, this approximation will be reasonable.

Specifically, by definition of the derivative, the difference between the

approximation, gðxÞ, and the function, f ðxÞ, will converge to zero faster

than x converges to a:
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gðxÞ � f ðxÞ
x� a

¼ f ðaÞ � f ðxÞ � ðx� aÞ f 0ðaÞ
x� a

¼ f ðaÞ � f ðxÞ
x� a

� f 0ðaÞ;

where the definition of the derivative means that the latter converges

to zero as x ! a.

Thus, the zero-order approximation to the function f around a is

the constant f ðaÞ. The first-order approximation is the linear func-

tion f ðaÞ þ ðx� aÞ f 0ðaÞ. Using higher-order derivatives (derivatives of

derivatives of . . . the derivative), one can get higher-order approxima-

tions of f by higher-order polynomials in x.

A.5.5 Partial Derivatives

When we have a function of several variables,

f : Rn ! R

we can consider the rate of the change in the function relative to each

of the variables. If we wish to see what is the impact (on f ) of chang-

ing, say, only the first variable x1, we can fix the values of the other

variables x2; . . . ; xn and define

fx2;...;xnðx1Þ ¼ f ðx1; x2; . . . ; xnÞ:

Focusing on the impact of x1, we can study the derivative of fx2;...;xn .

Since the other variables are fixed, we call this a partial derivative,

denoted

qf

qx1
ðx1; x2; . . . ; xnÞ ¼

d fx2;...;xn
dx1

ðx1Þ:

A function f : Rn ! R is called differentiable if it can be approxi-

mated by a linear function. Specifically, at a point a, define

gðxÞ ¼ f ðaÞ þ
Xn
i¼1

ðxi � aiÞ
qf

qx1
ðxÞ

and require that

jgðxÞ � f ðxÞj
kx� ak

converge to 0, as kx� ak does.
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A.6 Topology

Topology is the study of the abstract notion of convergence. We only

need the standard topology here, and the definitions of convergence

are given with respect to this topology, as are the definitions that fol-

low. However, it is worthwhile to recall that there can be other topolo-

gies and, correspondingly, other notions of convergence.

A set AHRn is open if for every x A A, there exists e > 0 such that

kx� yk < e ) y A A:

That is, around every point in the set A we can draw a small ball, per-

haps very small but with a positive radius e (the more general concept

is an open neighborhood) such that the ball will be fully contained in A.

The set

ð0; 1Þ ¼ fx A R j 0 < x < 1g

is open (the open interval). Similarly, for n ¼ 2, the following sets are

open:

fðx; yÞ A R2 j x2 þ y2 < 1g

fðx; yÞ A R2 j 3xþ 4y < 17g

R2

A set AHRn is closed if for every convergent sequence of points in it,

ðx1; x2; . . .Þ with xn A A and xn !n!y x�, the limit point is also in the

set, that is, x� A A.

The set ½0; 1� ¼ fx A R j 0a xa 1g is closed in R. The following sub-

sets of R2 are closed (in R2):

fðx; yÞ A R2 j x2 þ y2 a 1g

fðx; yÞ A R2 j 3xþ 4ya 17g

R2

The set

½0; 1Þ ¼ fx A R j 0a x < 1g

is neither open nor closed. It is not open because 0 A ½0; 1Þ, but no open

neighborhood of 0 is (fully) contained in A. It is not closed because the
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sequence xn ¼ 1� 1=n is a convergent sequence of points in A, whose

limit (1) is not in A.

In Rn, the only two sets that are both open and closed are the entire

space (Rn itself) and the empty set. This is true in any space that we

call connected.

A.7 Probability

A.7.1 Basic Concepts

Intuitively, an event is a fact that may or may not happen, a proposi-

tion that may be true or false. The probability model has a set of states

of the world, or possible scenarios, often denoted by W or by S. Each

state s A S is assumed to describe all the relevant uncertainty. An event

is then defined as a subset of states, that is, as a subset AH S. When S

is infinite, we may not wish to discuss all subsets of S. But when S is fi-

nite, there is no loss of generality in assuming that every subset is an

event that can be referred to.

The set-theoretic operations of complement, union, and intersection

correspond to the logical operations of negation, disjunction, and con-

junction. For example, if we roll a die and

S ¼ f1; . . . ; 6g;

we can think of the events

A ¼ “The die comes up on an even number” ¼ f2; 4; 6g

B ¼ “The die comes up on a number smaller than 4” ¼ f1; 2; 3g

and then Ac ¼ f1; 3; 5g designates the event ‘‘the die comes up on an

odd number,’’ that is, the negation of the proposition that defines A,

and Bc ¼ f4; 5; 6g is the event described by ‘‘the die comes up on a

number that is not smaller than 4.’’ Similarly, AUB ¼ f1; 2; 3; 4; 6g
stands for ‘‘the die comes up on a number that is smaller than 4, or

even, or both,’’ and AVB ¼ f2g is defined by ‘‘the die comes up on a

number that is both even and smaller than 4.’’

Probability is an assignment of numbers to events, which is sup-

posed to measure their plausibility. The formal definition is simpler

when S is finite, and we can refer to all subsets of S. That is, the set of

events is

2S ¼ fA jAH Sg:
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A probability is a function

P : 2S ! R

that satisfies three properties:

1. PðAÞb 0 for every AH S;

2. Whenever A;BH S are disjoint (i.e., AVB ¼ q),

PðAUBÞ ¼ PðAÞ þ PðBÞ;

3. PðSÞ ¼ 1.

The logic behind these conditions is derived from two analogies.

First, we can think of a probability of an event as its relative frequency.

Relative frequencies are non-negative (property 1), and they are added

up when we discuss two disjoint events (property 2). The relative fre-

quency of S, the event that always occurs, is 1 (property 3).

The second analogy, which is particularly useful when an event is

not repeated in the same way and relative frequencies cannot be

defined, is the general notion of a measure. When we measure the

mass of objects or the length of line segments or the volume of bodies,

we use numerical functions on subsets (of matter, of space) that satisfy

the first two properties. For example, the masses of objects are never

negative, and they add up when we take together two objects that had

nothing in common. The last property is a matter of normalization, or

a choice of the unit of measurement so that the sure event will always

have the probability 1.

It is easy to verify that a function P satisfies the additivity condition

(property 2) if and only if it satisfies, for every A;BH S,

PðAUBÞ ¼ PðAÞ þ PðBÞ � PðAVBÞ:

These three properties imply that PðqÞ ¼ 0, so that the impossible

event has probability 0.

When S is finite, say, S ¼ f1; . . . ; ng, we say that p ¼ ðp1; . . . ; pnÞ is a
probability vector on S if

pi b 0; Eia n;

and

Xn
i¼1

pi ¼ 1:
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For every probability P : 2S ! ½0; 1�, there exists a probability vector

p such that

PðAÞ ¼
X
i AA

pi; EAH S;

and vice versa, every probability vector p defines a probability P by

this equation. Thus, the probabilities on all events are in a one-to-one

correspondence with the probability vectors on S.

A.7.2 Random Variables

Consider a probability model with a state space S and a probability on

it P, or equivalently, a probability vector p on S. In this model a ran-

dom variable is defined to be a function on S. For example, if X is a

random variable that assumes real numbers as values, we can write

it as

X : S ! R:

The point of this definition is that a state s A S contains enough infor-

mation to know anything of importance. If the focus is on a variable X,

each state should specify the value that X assumes. Thus, XðsÞ is a

well-defined value, about which there is no uncertainty. Any previous

uncertainty is incorporated into the uncertainty about which state s

obtains. But given such a state s, no uncertainty remains.

Observe that we can use a random variable X to define events. For

instance, ‘‘X equals a’’ is the name of the event

fs A S jXðsÞ ¼ ag;

and ‘‘X is no more than a’’ is

fs A S jXðsÞa ag;

and so forth.

Often, we are interested only in the probability that a random vari-

able will assume certain values, not at which states it does so. If X

takes values in some set X , we can then define the distribution of a ran-

dom variable X, as a function fX : X ! ½0; 1� by

fXðxÞ ¼ PðX ¼ xÞ ¼ Pðfs A S jXðsÞ ¼ xgÞ:

For real-valued random variables, there are several additional useful

definitions. The cumulative distribution of X, FX : R ! ½0; 1� is
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FXðxÞ ¼ PðXa xÞ ¼ Pðfs A S jXðsÞa xgÞ:

It is thus a nondecreasing function of x going from 0 (when x is below

the minimal value of X) to 1 (when x is greater than or equal to the

maximal value of X). This definition can also be used when the state

space is infinite and X may assume infinitely many real values.

Trying to summarize the information about a random variable X,

there are several central measures. The most widely used is the expecta-

tion, or the mean, which is simply a weighted average of all values of X,

where the probabilities serve as weights:

EX ¼
X
x

fXðxÞx

and (in a finite state space with generic element i),

EX ¼
Xn
i¼1

piXðiÞ:

The most common measure of dispersion around the mean is the

variance, defined by

varðXÞ ¼ E½ðX � EXÞ2�:

It can be verified that

varðXÞ ¼ E½X2� � ½EX�2:

Since the variance is defined as the expectation of squared deviations

from the expectation, its unit of measurement is not intuitive (it is the

square of the unit of measurement of X). Therefore, we can often use

the standard deviation, defined by

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞ

p
:

Expectation behaves in a linear way. If X, Y are real-valued random

variables, and a; b A R, then

E½aX þ bY� ¼ aEX þ bEY:

For the variance of sums (or of linear functions in general), we need

to take into account the relation between X and Y. The covariance of X

and Y is defined as

covðX;YÞ ¼ E½ðX � EXÞðY� EYÞ�:
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Intuitively, the covariance tries to measure whether X and Y go up and

down together, or whether they tend to go up and down in different

directions. If they do go up and down together, whenever X is rela-

tively high (above its mean, EX), Y will be relatively high (above its

mean, EY), and ðX � EXÞðY� EYÞ will be positive. And whenever X is

below its mean, Y will be also be below its mean, resulting in a positive

product ðX � EXÞðY� EYÞ. By contrast, if Y tends to be relatively high

(above EY) when X is relatively low (below EX), and vice versa, there

will be more negative values of ðX � EXÞðY� EYÞ. The covariance is

an attempt to summarize the values of this variable. If covðX;YÞ > 0,

then X and Y are positively correlated; if covðX;YÞ < 0, X and Y are neg-

atively correlated; and if covðX;YÞ ¼ 0, X and Y are uncorrelated.

Equipped with the covariance, we can provide a formula for the

variance of a linear combination of random variables:

var½aX þ bY� ¼ a2 varðXÞ þ 2ab covðX;YÞ þ b2 varðYÞ:

The formulas for expectation and variance also extend to more than

two random variables:

E
Xn
i¼1

aiXi

 !
¼
Xn
i¼1

aiEXi

and

var
Xn
i¼1

aiXi

 !
¼
Xn
i¼1

a2i varðXiÞ þ 2
Xn
i¼1

X
j0i

aiaj covðXi;XiÞ:

A.7.3 Conditional Probabilities

The unconditional probability of an event A, PðAÞ, is a measure of the

plausibility of A occurring a priori, when nothing is known. The condi-

tional probability of A given B, PðAjBÞ, is a measure of the likelihood of

A occurring once we know that B has already occurred.

Bayes suggested that this conditional probability be the ratio of the

probability of the intersection of the two events to the probability of

the event that is known to have occurred. That is, he defined the condi-

tional probability of A given B to be

PðAjBÞ ¼ PðAVBÞ
PðBÞ :

(This definition only applies if PðBÞ > 0.)
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The logic of this definition is as follows. Assume that event B has

occurred. What do we think about A? For A to occur now, the two

events, A and B, have to occur simultaneously. That is, we need their

intersection, AVB, to occur. The probability of this happening was esti-

mated (a priori) to be the numerator PðAVBÞ. However, if we just take

this expression, probabilities will not sum up to 1. Indeed, the sure

event will not have a probability higher than PðB). We have a conven-

tion that probabilities sum up to 1. It is a convenient normalization be-

cause when we say that an event has probability of, say, .45, we don’t

have to ask .45 out of how much. We know that the total has been nor-

malized to 1. To stick to this convention, we divide the measure of like-

lihood of A in the presence of B, PðAVBÞ, by the maximal value of

this expression (over all A’s), which is PðBÞ, and this results in Bayes’

formula.

Observe that this formula makes sense in extreme cases. If A is

implied by B, that is, if B is a subset of A (whenever B occurs, so does

A), then AVB ¼ B, and we have PðAVBÞ ¼ PðBÞ and PðAjBÞ ¼ 1; that

is, given that B has occurred, A is a certain event. At the other extreme,

if A and B are logically incompatible, then their intersection is the

empty set, AVB ¼ q and there is no scenario in which both material-

ize. Then PðAVBÞ ¼ PðqÞ ¼ 0 and PðAjBÞ ¼ 0; that is, if A and B are

incompatible, then the conditional probability of A given B is zero.

If two events are independent, the occurrence of one says nothing

about the occurrence of the other. In this case the conditional probabil-

ity of A given B should be the same as the unconditional probability of

A. Indeed, one definition of independence is

PðAVBÞ ¼ PðAÞPðBÞ;

which implies

PðAjBÞ ¼ PðAVBÞ
PðBÞ ¼ PðAÞPðBÞ

PðBÞ ¼ PðAÞ:

Rearranging the terms in the definition of conditional probability, for

any two events A and B (independent or not),

PðAVBÞ ¼ PðBÞPðAjBÞ

¼ PðAÞPðBjAÞ;

that is, the probability of the intersection of two events (the proba-

bility of both occurring) can be computed by taking the unconditional
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probability of one of them and multiplying it by the conditional proba-

bility of the second given the first. Clearly, if the events are indepen-

dent, and

PðAjBÞ ¼ PðAÞ;

PðBjAÞ ¼ PðBÞ;

the two equations boil down to

PðAVBÞ ¼ PðAÞPðBÞ:

Note that the formula PðAVBÞ ¼ PðBÞPðAjBÞ applies also if indepen-

dence does not hold. For example, the probability that a candidate

wins a presidency twice in a row is the probability that she wins the

first time, multiplied by the conditional probability that she wins the

second time given that she has already won the first time.

Let there be two events A and B such that PðBÞ;PðBcÞ > 0. We note

that

A ¼ ðAVBÞU ðAVBcÞ

and

ðAVBÞV ðAVBcÞ ¼ q:

Hence

PðAÞ ¼ PðAVBÞ þ PðAVBcÞ

and, combining the equalities,

PðAÞ ¼ PðAjBÞPðBÞ þ PðAjBcÞPðBcÞ:

Thus, the overall probability of A can be computed as a weighted aver-

age, with weights PðBÞ and PðBcÞ ¼ 1� PðBÞ, of the conditional proba-

bility of A given B and the conditional probability of A given Bc.

A.7.4 Independence and i.i.d. Random Variables

Using the concept of independent events, we can also define indepen-

dence of random variables. Let us start with two random variables X,

Y that are defined on the same probability space. For simplicity of no-

tation, assume that they are real-valued:

X;Y : S ! R:
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Then, given a probability P on S, we can define the joint distribution of

X and Y to be the function fX;Y : R2 ! ½0; 1� defined by

fX;Yðx; yÞ ¼ PðX ¼ x;Y ¼ yÞ

¼ Pðfs A S jXðsÞ ¼ x;YðsÞ ¼ ygÞ:

We say that X and Y are independent random variables if, for every x, y,

fX;Yðx; yÞ ¼ fXðxÞ fYðyÞ:

In other words, every event that is defined in terms of X has to be inde-

pendent of any event that is defined in terms of Y. Intuitively, anything

we know about X does not change our belief about (the conditional

distribution of) Y.

If the state space is not finite, similar definitions apply to cumulative

distributions. We can then define independence by the condition

FX;Yðx; yÞ ¼ PðXa x;Ya yÞ

¼ PðXa xÞPðYa yÞ

¼ FXðxÞFYðyÞ:

All these definitions extend to any finite number of random vari-

ables. Thus, if X1; . . . ;Xn are random variables, their joint distribution

and their joint cumulative distributions are, respectively,

fX1;...;Xn
: Rn ! ½0; 1�

and

FX1;...;Xn
: Rn ! ½0; 1�

defined by

fX1;...;Xn
ðx1; . . . ; xnÞ ¼ PðX1 ¼ x1; . . . ;Xn ¼ xnÞ

and

FX1;...;Xn
ðx1; . . . ; xnÞ ¼ PðX1 a x1; . . . ;Xn a xnÞ:

Independence of n random variables is similarly defined, by the

product rule

FX1;...;Xn
ðx1; . . . ; xnÞ ¼

Yn
i¼1

PðXi a xiÞ;
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and it means that nothing that may be learned about any subset of

the variables will change the conditional distribution of the remaining

ones. If n random variables are independent, then so are any pair of

them. The converse, however, is not true. There may be random vari-

ables that are pairwise independent but that are not independent as

a set. For example, consider n ¼ 3, and let X1 and X2 have the joint

distribution

0 1

0 0.25 0.25

1 0.25 0.25

with X3 ¼ 1 if X1 ¼ X2, and X3 ¼ 0 if X1 0X2. Any pair of ðX1;X2;X3Þ
are independent, but together the three random variables are not inde-

pendent. In fact, any two of them fully determine the third.

Two random variables X and Y are identically distributed if they have

the same distribution, that is, if

fXðaÞ ¼ fYðaÞ

for any value a. Two random variables X and Y are identical if they

always assume the same value. That is, if, for every state s A S,

XðsÞ ¼ YðsÞ:

Clearly, if X and Y are identical, they are also identically distributed.

This is so because, for every a,

fXðaÞ ¼ PðX ¼ aÞ ¼ PðY ¼ aÞ ¼ fYðaÞ;

where PðX ¼ aÞ ¼ PðY ¼ aÞ follows from the fact that X ¼ a and Y ¼ a

define precisely the same event. That is, since XðsÞ ¼ YðsÞ, any s A S

belongs to the event X ¼ a if and only if it belongs to the event Y ¼ a.

By contrast, two random variables that are not identical can still be

identically distributed. For example, if X can assume the values f0; 1g
with equal probabilities, and Y ¼ 1� X (that is, for every s, YðsÞ ¼
1� XðsÞ), then X and Y are identically distributed, but they are not

identical. In fact, they never assume the same value.

The notion of identical distribution is similarly defined for more

than two variables. That is, X1; . . . ;Xn are identically distributed if, for

every a,

fX1
ðaÞ ¼ PðX1 ¼ aÞ ¼ � � � ¼ PðXn ¼ aÞ ¼ fXn

ðaÞ:
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The variables X1; . . . ;Xn are said to be i.i.d. (identically and indepen-

dently distributed) if they are identically distributed and independent.

A.7.5 Law(s) of Large Numbers

Consider a sequence of i.i.d. random variables X1; . . . ;Xn; . . . . Since

they all have the same distribution, they all have the same expectation,

EXi ¼ m;

and the same variance. Assume that this variance is finite

varðXiÞ ¼ s2:

When two random variables are independent, they are also uncorre-

lated (that is, their covariance is zero). Hence the variance of their sum

is the sum of their variances.

When we consider the average of the first n random variables,

Xn ¼ 1

n

Xn
i¼1

Xi;

we observe that

EðXnÞ ¼
1

n

Xn
i¼1

EXi ¼ m;

and since any two of them are uncorrelated,

varðXnÞ ¼
1

n2

Xn
i¼1

varðXiÞ ¼
s2

n
;

which implies that the more variables we take in the average, the lower

will be the variance of the average. This, in turn, means that the aver-

age, Xn, will be, with very high probability, close to its expectation,

which is m.

In fact, more can be said. We may decide how close we want Xn to be

to m, and with what probability, and then we can find a large enough

N such that, for all n starting from N, Xn will be as close to m as we

wish with the probability we specify. Formally, for every e > 0 and

every d > 0, there exists N such that

Pðfs j jXn � mj < d EnbNgÞ > 1� e:
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It is also the case that the probability of the event that Xn converges

to m is 1:

P s
��� b lim

n!y
Xn ¼ m

n o� �
¼ 1:

LLN and Relative Frequencies Suppose a certain trial or experiment

is repeated infinitely many times. In each repetition, the event A may

or may not occur. The different repetitions/trials/experiments are

assumed to be identical in terms of the probability of A occurring in

each, and independent. Then we can associate, with experiment i, a

random variable

Xi ¼
1 A occurred in experiment i

0 A did not occur in experiment i

�

The random variables ðXiÞi are independently and identically dis-

tributed (i.i.d.) with EðXiÞ ¼ p, where p is the probability of A occur-

ring in each of the experiments. The relative frequency of A in the first

n experiments is the average of these random variables,

Xn ¼
1

n

Xn
i¼1

Xi ¼
afijA occurred in experiment ig

n
:

Hence, the law of large numbers guarantees that the relative frequency

of A will converge to its probability p.
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B Formal Models

B.1 Utility Maximization

B.1.1 Definitions

Suppose there is a set of alternatives X. A binary relation7on X is sim-

ply a set of ordered pairs of elements from X, that is,7HX � X, with

the interpretation that for any two alternatives x; y A X,

ðx; yÞ A7;

also denoted

x7 y;

means ‘‘alternative x is at least as good as alternative y in the eyes of

the decision maker’’ or ‘‘given the choice between x and y, the decision

maker may choose x.’’

It is useful to define two binary relations associated with7, which

are often called the symmetric and the asymmetric parts of7. Specifi-

cally, let us introduce the following definitions. First, we define the in-

verse of the relation7:

6¼7�1¼ fðy; xÞ j ðx; yÞ A7g;

that is, y6 x if and only if x7 y (for any x, y). The symbol 6 was

selected to make y6 x and x7 y similar, but it is a new symbol and

requires a new definition.

Do not confound the relation7between alternatives and the relation

bbetween their utility values. Later, when we have a representation of

7by a utility function, we will be able to do precisely that—to think of

x7 y



as equivalent to

uðxÞb uðyÞ;

but this equivalence is the representation we seek, and until we prove

that such a function u exists, we should be careful not to confuse 7

withb.1

Next define the symmetric part of 7 to be the relation @HX � X

defined by

@¼7V6;

that is, for every two alternatives x; y A X,

x@ y , ½ðx7 yÞ and ðy7 xÞ�:

Intuitively, x7 y means ‘‘alternative x is at least as good as alternative

y in the eyes of the decision maker,’’ and x@ y means ‘‘the decision

maker finds alternatives x and y equivalent’’ or ‘‘the decision maker is

indifferent between alternatives x and y.’’

The asymmetric part of7 is the relation1HX � X defined by

1¼7n6;

that is, for every two alternatives x; y A X,

x1 y , ½ðx7 yÞ and not ðy7 xÞ�:

Intuitively, x1 y means ‘‘the decision maker finds alternative x strictly

better than alternative y.’’

B.1.2 Axioms

The main axioms that we impose on7are as follows.

Completeness For every x; y A X, x7 y or y7 x.

(Recall that or in mathematical language is inclusive unless other-

wise stated. That is, ‘‘A or B’’ should be read as ‘‘A or B or possibly

both’’).

The completeness axiom states that the decision maker can make up

her mind between any two alternatives. This means that at each and

every possible instance of choice between x and y something will be

chosen. But it also means, implicitly, that we expect some regularity in

1. Observe that the sequence of symbols xb y need not make sense at all because the ele-
ments of X need not be numbers or vectors or any other mathematical entities.
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these choices: x is always chosen (and then we would say that x1 y),

or y is always chosen ðy1 xÞ, or sometimes x is chosen and sometimes

y. But this latter case would be modeled as equivalence ðx@ yÞ, and
the implicit assumption is that the choice between x and y would be

completely random. If, for instance, the decision maker chooses x on

even dates and y on odd dates, it would seem inappropriate to say

that she is indifferent between the two options. In fact, we may find

that the language is too restricted to represent the decision maker’s

preferences. The decision maker may seek variety and always choose

the option that has not been chosen on the previous day. In this

case, one would like to say that preferences are history- or context-

dependent and that it is, in fact, a modeling error to consider prefer-

ences over x and y themselves (rather than, say, on sequences of x’s

and y’s). More generally, when we accept the completeness axiom we

do not assume only that at each given instance of choice one of the

alternatives will end up being chosen. We also assume that it is mean-

ingful to define preferences over the alternatives, and that these alter-

natives are informative enough to tell us anything that might be

relevant for the decision under discussion.

Transitivity For every x; y; z A X, if (x7 y and y7 z), then y7 z.

Transitivity has a rather obvious meaning, and it almost seems like

part of the definition of preferences. Yet, it is easy to imagine cyclical

preferences. Moreover, such preferences may well occur in group deci-

sion making, for instance, if the group is using a majority vote. This is

the famous Condorcet paradox (see section 6.2 of the main text). As-

sume that there are three alternatives, X ¼ fx; y; zg and that one-third

of society prefers

x1 y1 z;

one-third

y1 z1 x;

and the last third

z1 x1 y:

It is easy to see that when every two pairs of alternatives come up

for a separate majority vote, there is a two-thirds majority for x1 y, a

two-thirds majority for y1 z, but also a two-thirds majority for z1 x.
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In other words, a majority vote may violate transitivity and even gen-

erate a cycle of strict preferences: x1 y1 z1 x.

Once we realize that this can happen in a majority vote in a society,

we can imagine how this can happen inside the mind of a single indi-

vidual as well. Suppose Daniel has to choose among three cars, and he

ranks them according to three criteria, such as comfort, speed, and

price. He finds it hard to quantify and trade off these criteria, so he

decides to adopt the simple rule that if one alternative is better than an-

other according to most criteria, then it should be preferred. In this

case Daniel can be thought of as if he were the aggregation of three de-

cision makers—one who cares only about comfort, one who cares only

about speed, and one who cares only about price—where his decision

rule as a ‘‘society’’ is to follow a majority vote. Then Daniel would find

that his preferences are not transitive. But if this happens, we expect

him to be confused about the choice and to dislike the situation of in-

decision. Thus, even if the transitivity axiom does not always hold, it

is generally accepted as a desirable goal.

B.1.3 Result

We are interested in a representation of a binary relation by a numeri-

cal function. Let us first define this concept more precisely.

A function u : X ! R is said to represent7 if, for every x; y A X,

x7 y , uðxÞb uðyÞ: ðB:1Þ

Proposition 1 Let X be finite. Let 7 be a binary relation on X, i.e.,

7HX � X. The following are equivalent: (i)7 is complete and transi-

tive; (ii) there exists a function u : X ! R that represents7.

B.1.4 Generalization to a Continuous Space

In many situations of interest, the set of alternatives is not finite. If we

consider a consumer who has preferences over the amount of wine she

consumes, the amount of time she spends in the pool, or the amount

of money left in her bank account, we are dealing with variables that

are continuous and that therefore may assume infinitely many values.

Thus, the set X, which may be a set of vectors of such variables, is

infinite.

Physicists might say that the amount of wine can only take finitely

many values because there are a finite number of particles in a glass

of wine (and perhaps also in the world). This is certainly true of the

amount of money—it is only measured up to cents. And the accuracy
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of measurement is also limited in the case of time, temperature, and so

forth. So maybe the world is finite after all, and we don’t need to deal

with extension of proposition 1?

The fact is that finite models may be very awkward and inconve-

nient. For example, assume there are supply and demand curves that

slope in the right directions2 but fail to intersect because they are only

defined for finitely many prices. (In fact, they are not really curves but

only finite collections of points in R2.) It would be silly to conclude that

the market will never be at equilibrium simply because there is no pre-

cise price at which supply and demand are equal. You might recall a

similar discussion in statistics. The very first time you were introduced

to continuous random variables, you might have wondered who really

needs them in a finite world. But then you find out that many assump-

tions and conclusions are greatly simplified by the assumption of

continuity.

In short, we would like to have a similar theorem, guaranteeing util-

ity representation of a binary relation, also in the case that the set of

alternatives is infinite. There are several ways to obtain such a theo-

rem. The one presented here also guarantees that the utility function

be continuous. To make this a meaningful statement, we have to have

a notion of convergence in the set X, a topology. But in order to avoid

complications, let us simply assume that X is a subset of Rn for some

nb 1 and think of convergence as it is usually defined in Rn.

It is not always the case that a complete and transitive relation on Rn

can be represented by a numerical function. (A famous counterexam-

ple was provided by Gerard Debreu.3) An additional condition that

we may impose is that the relation7be continuous. What is meant by

this is that if x1 y, then all the points that are very close to x are also

strictly better than y, and vice versa, all the points that are very close

to y are also strictly worse than x.

Continuity For every x A X, the sets fy A X j x1 yg and fy A X j
y1 xg are open in X.

(Recall that a set is open if, for every point in it, there is a whole

neighborhood contained in the set.)

2. The supply curve, which indicates the quantity supplied as a function of price, is
increasing. The demand curve, which specifies the quantity demanded as a function of
price, is decreasing.
3. G. Debreu, The Theory of Value: An Axiomatic Analysis of Economic Equilibrium (New
Haven: Yale University Press, 1959), ch. 2, prob. 6.
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To see why this axiom captures the notion of continuity, we may

think of a function f : R ! R and a point x A R for which f ðxÞ > 0. If f

is continuous, then there is a neighborhood of x for which f is positive.

If we replace ‘‘positive’’ by ‘‘strictly better than y’’ for a fixed y, we see

the similarity between these two notions of continuity.

Alternatively, we can think of continuity as requiring that for every

x A X, the sets

fy A X j x7 yg

and

fy A X j y7 xg

be closed in X. That is, if we consider a convergent sequence ðynÞnb1,

yn ! y, such that yn 7 x for all n, then also y7 x, and if x7 yn for all

n, then also x7 y. In other words, if we have a weak preference all

along the sequence (either from below or from above), we should have

the same weak preference at the limit. This condition is what we were

after.

Theorem 2 (Debreu) Let 7 be a binary relation on X, that is,

7HX � X. The following are equivalent: (i)7 is complete, transitive,

and continuous; (ii) there exists a continuous function u : X ! R that

represents7.

B.2 Convexity

As a preparation for the discussion of constrained optimization, it is

useful to have some definitions of convex sets, convex and concave

functions, and so on.

B.2.1 Convex Sets

A set AHRn is convex if, for every x; y A A and every l A ½0; 1�,
lxþ ð1� lÞy A A. That is, whenever two points are in the set, the line

segment connecting them is also in the set. If we imagine the set A as a

room, convexity means that any two people in the room can see each

other.

B.2.2 Convex and Concave Functions

A function f : Rn ! R is convex if its graph is never above the strings

that connect points on it. As an example, we may think of
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f ðxÞ ¼ x2

for n ¼ 1. If we draw the graph of this function and take any two

points on the graph, when we connect them by a segment (the string),

the graph of the function will be below it (or at least not above the seg-

ment). The same will be true for

f ðx1; x2Þ ¼ x21 þ x22

if n ¼ 2.

Formally, f : Rn ! R is convex if for every x; y A A and every

l A ½0; 1�,

f ðlxþ ð1� lÞyÞa lf ðxÞ þ ð1� lÞ f ðyÞ;

and it is strictly convex if this inequality is strict whenever x0 y and

0 < l < 1.

To see the geometric interpretation of this condition, imagine that

n ¼ 1, and observe that lxþ ð1� lÞy is a point on the interval con-

necting x and y. Similarly, lf ðxÞ þ ð1� lÞ f ðyÞ is a point on the inter-

val connecting f ðxÞ and f ðyÞ. Moreover, if we connect the two

points

ðx; f ðxÞÞ; ðy; f ðyÞÞ A R2

by a segment (which is a string of the function f ), we get precisely the

points

fðlxþ ð1� lÞy; lf ðxÞ þ ð1� lÞ f ðyÞÞ j l A ½0; 1�g:

For l ¼ 1 the point is ðx; f ðxÞÞ; for l ¼ 0 it is ðy; f ðyÞÞ; for l ¼ 0:5, the

point has a first coordinate that is the arithmetic average of x and y,

and a second coordinate that is the average of their f values. Generally,

for every l, the first coordinate is the ðl; ð1� lÞÞ average between x

and y, and the second coordinate is corresponding average of their f

values.

Convexity of the function demands that for every l A ½0; 1�, the value
of the function at the ðl; ð1� lÞÞ average between x and y, that is,

f ðlxþ ð1� lÞyÞ, will not exceed the height of the string (connecting

ðx; f ðxÞÞ and ðy; f ðyÞÞÞ at the same point.

Next assume that n ¼ 2 and repeat the argument to show that this

geometric interpretation is valid in general.
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A function f : Rn ! R is convex if and only if the following set is

convex4

fðx; zÞ A Rnþ1 j zb f ðxÞg:

If n ¼ 1 and f is twice differentiable, convexity of f is equivalent

to the condition that f 00 b 0, that is, that the first derivative, f 0, is non-

decreasing. When n > 1, there are similar conditions, expressed in

terms of the matrix of second derivatives, which are equivalent to con-

vexity.

Concave functions are defined in the same way, with the converse

inequality. All that is true of convex functions is true of concave func-

tions, with the opposite inequality. In fact, we could define f to be con-

cave if �f is convex. But we will spell it out.

A function f : Rn ! R is concave if for every x; y A A and every

l A ½0; 1�,

f ðlxþ ð1� lÞyÞb lf ðxÞ þ ð1� lÞ f ðyÞ;

and it is strictly concave if this inequality is strict whenever x0 y and

0 < l < 1.

Thus, f is concave if the graph of the function is never below the

strings that connect points on it. Equivalently, f : Rn ! R is concave if

and only if the following set is convex

fðx; zÞ A Rnþ1 j za f ðxÞg:

(This set is still required to be convex, not concave. In fact, we didn’t

define the notion of a concave set, and we don’t have such a useful def-

inition. The difference between this condition for convex and concave

functions is in the direction of the inequality. The resulting set in both

cases is required to be a convex set as a subset of Rnþ1.)

If n ¼ 1 and f is twice differentiable, concavity of f is equivalent

to the condition that f 00 a 0, that is, that the first derivative, f 0, is

nonincreasing.

An affine function is a shifted linear function. That is, f : Rn ! R is

affine if

4. Observe that the vector ðx; zÞ refers to the concatenation of x, which is a vector of n
real numbers, with z, which is another real number—together a vector of ðnþ 1Þ real
numbers.
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f ðxÞ ¼
Xn
i¼1

aixi þ c;

where faig and c are real numbers.

An affine function is both convex and concave (but not strictly so).

The converse is also true: a function that is both convex and concave is

affine.

If we take a convex function f , we can, at each x, look at the tan-

gent to the graph of f . This would be a line if n ¼ 1 and a hyperplane

more generally. Formally, for every x there exists an affine function

lx : R
n ! R such that

lxðxÞ ¼ f ðxÞ;

and for every y A Rn

lxðyÞa f ðyÞ:

If we take all these functions flxgx, we find that their maximum is f .

That is, for every y A Rn

f ðyÞ ¼ max
x

lxðyÞ:

Thus, a convex function can be described as the maximum of a col-

lection of affine functions. Conversely, the maximum of affine func-

tions is always convex. Hence, a function is convex if and only if it is

the maximum of affine functions.

Similarly, a function is concave if and only if it is the minimum of a

collection of affine functions.

B.2.3 Quasi-convex and Quasi-concave Functions

Consider the convex function

f ðx1; x2Þ ¼ x21 þ x22 :

Suppose that I cut it at a given height, z, and ask which points ðx1; x2Þ
do not exceed z in their f value. That is, I look at

fx A R2 j f ðxÞa zg:

It is easy to see that this set will be convex. This gives rise to the follow-

ing definition.
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A function f : Rn ! R is quasi-convex if, for every z A R,

fx A Rn j f ðxÞa zg

is a convex set.

Observe that this set is a subset of Rn and that we have a (poten-

tially) different such set for every value of z, whereas in the character-

ization of convex functions given previously we used the convexity of

a single set in Rnþ1.

The term quasi should suggest that every convex function is also

quasi-convex. Indeed, if

y;w A fx A Rn j f ðxÞa zg;

then

f ðyÞ; f ðwÞa z;

and for every l A ½0; 1�,

f ðlyþ ð1� lÞwÞa lf ðyÞ þ ð1� lÞ f ðwÞ

a lzþ ð1� lÞz ¼ z;

and this means that

lyþ ð1� lÞw A fx A Rn j f ðxÞa zg:

Since this is true for every y, w in fx A Rn j f ðxÞa zg, this set is convex
for every z, and this is the definition of quasi-convexity of the func-

tion f .

Is every quasi-convex function is convex? The answer is negative,

(otherwise we wouldn’t use a different term for quasi-convexity). In-

deed, it suffices to consider n ¼ 1 and observe that

f ðxÞ ¼ x3

is quasi-convex but not convex. Indeed, when we look at the sets

fx A Rn j f ðxÞa zg

for various values of z A R, we simply get the convex sets ð�y; a� for
some a (in fact, for a ¼ z1=3). The collection of these sets, when we

range over all possible values of z, does not look any different for the

original function, x3, than it would if we looked at the function x or

x1=3.
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Again, everything we can say of quasi-convex functions has a coun-

terpart for quasi-concave ones. A function f : Rn ! R is quasi-concave

if, for every z A R,

fx A Rn j f ðxÞb zg

is a convex set.

Imagine now the parabola upside down,

f ðx1; x2Þ ¼ �x21 � x22 ;

and when we cut it at a certain height, z, and look at the dome above

the cut, the projection of this dome on the x1, x2 plane is a circle. The

fact that it is a convex set follows from the fact that f is quasi-concave.

B.3 Constrained Optimization

B.3.1 Convex Problems

Constrained optimization problems are much easier to deal with when

they are convex. Roughly, we want everything to be convex, both on

the feasibility and on the desirability side.

Convexity of the feasible set is simple to define. We require that the

set F be convex.

What is meant by ‘‘convex preferences’’? The answer is that we wish

the ‘‘at least as desirable as’’ sets to be convex. Explicitly, for every

x A Rn, we may consider the ‘‘at least as good as’’ set

fy A X j y7 xg

and require that it be convex. If we have a utility function u that repre-

sents7, we require that the function be quasi-concave. Indeed, if u is

quasi-concave, then for every a A R, the set

fy A X j uðyÞb ag

is convex. When we range over all values of a, we obtain all sets of the

form fy A X j y7 xg, and thus a quasi-concave u defines convex prefer-

ences. Observe that quasi-concavity is the appropriate term when the

utility is given only up to an arbitrary (increasing) monotone transfor-

mation (utility is only ordinal). Whereas a concave function can be

replaced by a monotone transformation that results in a nonconcave

function, a quasi-concave function will remain quasi-concave after any

increasing transformation.
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Convex problems (in which both the feasible set and preferences are

convex) have several nice properties. In particular, local optima are

also global optima. This means that looking at first-order conditions is

often sufficient. If these conditions identify a local maximum, we can

rest assured that it is also a global one. Another important feature of

convex problems is that for such problems one can devise simple algo-

rithms of small local improvements that converge to the global opti-

mum. This is very useful if we are trying to solve the problem on a

computer. But, more important, it also says that real people may be-

have as if they were solving such problems optimally. If a decision

maker makes small improvements when these exist, we may assume

that, as time goes by, he converges to the optimal solution. Thus, for

large and complex problems, the assumption that people maximize

utility subject to their feasible set is much more plausible in convex

problems than it is in general.

B.3.2 Example: The Consumer Problem

Let us look at the consumer problem again. The decision variables are

x1; . . . ; xn A Rþ, where xi ðxi b 0Þ is the amount consumed of good i.

The consumer has an income Ib 0, and she faces prices p1; . . . ; pn A
Rþþ (that is, pi > 0 for all ia n). The problem is therefore

max
x1;...;xn

uðx1; . . . ; xnÞ

subject to

p1x1 þ � � � þ pnxn a I

xi b 0

B.3.3 Algebraic Approach

Let us further assume that u is strictly monotone in all its arguments,

namely, that the consumer prefers more of each good to less. More-

over, we want to assume that u is quasi-concave, so that the ‘‘better

than’’ sets are convex. Under these assumptions we may conclude that

the optimal solution will be on the budget constraint, namely, will

satisfy

p1x1 þ � � � þ pnxn ¼ I;

and if a point x ¼ ðx1; . . . ; xnÞ is a local maximum, it is also a global

one. Hence it makes sense to seek a local maximum, namely, to ask
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whether a certain point on the budget constraint happens to maximize

utility in a certain neighborhood (of itself on this constraint).

If the utility function is also differentiable, we may use calculus to

help identify the optimal solution. Specifically, the first-order condition

for this problem can be obtained by differentiating the Lagrangian

Lðx1; . . . ; xn; lÞ ¼ uðx1; . . . ; xnÞ � l½p1x1 þ � � � þ pnxn � I�

and equating all first (partial) derivatives to zero. This yields

qL

qxi
¼ qu

qxi
� lpi ¼ 0

for all ia n and

qL

dl
¼ �½p1x1 þ � � � þ pnxn � I� ¼ 0:

The second equality is simply the budget constraint, whereas the

first implies that for all i,

ui
pi

¼ const ¼ l;

where ui ¼ qu
dxi

. Thus, for any two goods i, j, we have

ui
pi

¼
uj

pj
ðB:2Þ

or

ui
uj

¼ pi
pj
: ðB:3Þ

B.3.4 Geometric Approach

Each of these equivalent conditions has an intuitive interpretation.

Let us start with the second, which can be understood geometrically.

We argue that it means that the feasible set and the desirable (‘‘better

than’’) set are tangent to each other. To see this, assume there are only

two goods, i ¼ 1; 2. Consider the budget constraint

p1x1 þ p2x2 ¼ I;

and observe that its slope, at a point x, can be computed by taking

differentials:
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p1 dx1 þ p2 dx2 ¼ 0;

which means

dx1
dx2

¼ � p1
p2

: ðB:4Þ

Next consider the ‘‘better than’’ set, and focus on the tangent to this

set at the point x. We get a line (more generally, a hyperplane) that

goes through the point x, and satisfies

du ¼ u1 dx1 þ u2 dx2 ¼ 0;

that is, a line with a slope

dx1
dx2

¼ � u1
u2

: ðB:5Þ

This will also be the slope of the indifference curve (the set of points

that are indifferent to x) at x. Clearly, condition (B.3) means that the

slope of the budget constraint, (B.4), equals the slope of the indifference

curve (B.5).

Why is this a condition for optimality? We may draw several in-

difference curves and superimpose them on the budget constraint. In

general, we can always take this geometric approach to optimization:

draw the feasible set, and then compare it to the ‘‘better than’’ sets. If

an indifference curve, which is the boundary of a ‘‘better than’’ set,

does not intersect the feasible set, it indicates a level of utility that can-

not be reached. It is in the category of wishful thinking. A rational de-

cision maker will be expected to give up this level of utility and settle

for a lower one.

If, on the other hand, the curve cuts through the feasible set, the cor-

responding level of utility is reachable, but it is not the highest such

level. Since the curve is strictly in the interior of the feasible set, there

are feasible points on either side of it. Assuming that preferences are

monotone, that is, that the decision maker prefers more to less, one

side of the curve has a higher utility level than the curve itself. Since it

is feasible, the curve we started with cannot be optimal. Here a rational

decision maker will be expected to strive for more and look for a

higher utility level.

What is the highest utility level that is still feasible? It has to be rep-

resented by an indifference curve that is not disjoint with the feasible

set yet does not cut through it. In other words, the intersection of the
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feasible set and the ‘‘better than’’ set is nonempty but has an empty in-

terior (it has zero volume, or zero area in a two-dimensional problem).

If both sets are smooth, they have to be tangent to each other. This tan-

gency condition is precisely what equation (B.3) yields.

B.3.5 Economic Approach

The economic approach is explained in the main text. But it may be

worthwhile to repeat it in a slightly more rigorous way. Consider con-

dition (B.2). Again, assume that I already decided on spending most of

my budget, and I’m looking at the last dollar, asking whether I should

spend it on good i or on good j. If I spend it on i, how much of this

good will I get? At price pi, one dollar would buy 1
pi
units of the good.

How much additional utility will I get from this quantity? Assuming

that one dollar is relatively small and that correspondingly the amount

of good i, 1
pi
, is also relatively small, I can approximate the marginal

utility of 1
pi
extra units by

1

pi
� qu
qxi

¼ ui
pi
:

Obviously, the same reasoning would apply to good j. Spending the

dollar on j would result in an increase in utility that is approximately
uj
pj
. Now, if

ui
pi

>
uj

pj
;

one extra dollar spent on i will yield a higher marginal utility than the

same dollar spent on j. Put differently, we can take one dollar of the

amount spent on j and transfer it to the amount spent on i, and be bet-

ter off, since the utility lost on j,
uj
pj
, is more than compensated for by

the utility gained on i, uipi .

This argument assumes that we can indeed transfer one dollar from

good j to good i. That is, that we are at an interior point. If we consider

a boundary point, where we don’t spend any money on j in any case,

this inequality may be consistent with optimality.

If one dollar is not relatively small, we can repeat this argument with

e dollars, where e is small enough for the derivatives to provide good

approximations. Then we find that e dollars are translated to quantities
e
pi
and e

pj
, if spent on goods i or j, respectively, and that these quantities

yield marginal utilities of eui
pi

and
euj
pj
, respectively. Hence, any of the

inequalities
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ui
pi

>
uj

pj
or

ui
pi

<
uj

pj

indicates that we are not at an optimal (interior) point. Condition (B.2)

is a powerful tool in identifying optimal points. It says that small

changes in the budget allocation, in other words, small changes along

the boundary of the budget constraint, will not yield an improvement.

B.3.6 Comments

Two important comments are in order. First, the previous arguments

are not restricted to a feasible set defined by a simple budget con-

straint, that is, by a linear inequality. The feasible set may be defined

by one or many nonlinear constraints. What is crucial is that it be

convex.

Second, condition (B.2) is necessary only if the optimal solution is at

a point where the sets involved—the feasible set and the ‘‘better than’’

set—are smooth enough to have a unique tangent (supporting hyper-

plane, that is, a hyperplane defined by a linear equation that goes

through the point in question, and such that the entire set is on one of

its sides). An optimal solution may exist at a point where one of the

sets has kinks, and in this case slopes and derivatives may not be well

defined.

Still, the first-order conditions, namely, the equality of slopes (or

ratios of derivatives) are sufficient for optimality in convex problems,

that is, problems in which both the feasible set and the ‘‘better than’’

sets are convex. It is therefore a useful technique for finding optimal

solutions in many problems. Moreover, it provides us with very pow-

erful insights. In particular, the marginal way of thinking about alter-

natives, which we saw in the economic interpretation, appears in many

problems within and outside of economics.

B.4 vNM’s Theorem

B.4.1 Setup

vNM’s original formulation involved decision trees in which com-

pound lotteries were explicitly modeled. We use here a more compact

formulation, due to Niels-Erik Jensen and Peter Fishburn,5 which

5. N. E. Jensen, ‘‘An Introduction to Bernoullian Utility Theory,’’ pts. I and II, Swedish
Journal of Economics 69 (1967): 163–183, 229–247; P. C. Fishburn, Utility Theory for Decision
Making (New York: Wiley, 1970).
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implicitly assumes that compound lotteries are simplified according to

Bayes’ formula. Thus, lotteries are defined by their distributions, and

the notion of mixture implicitly supposes that the decision maker is

quite sophisticated in terms of his probability calculations.

Let X be a set of alternatives. X need not consist of sums of money or

consumption bundles, and it may include outcomes such as death.

The objects of choice are lotteries. We can think of a lottery as a func-

tion from the set of outcomes, X, to probabilities. That is, if P is a lot-

tery and x is an outcome, PðxÞ is the probability of getting x if we

choose lottery P. It will be convenient to think of X as potentially infi-

nite, as is the real line, for example. At the same time, we don’t need to

consider lotteries that may assume infinitely many values. We there-

fore assume that while X is potentially infinite, each particular lottery

P can only assume finitely many values.

The set of all lotteries is therefore

L ¼ P : X ! ½0; 1�
����afxjPðxÞ > 0g < y;P

x AX PðxÞ ¼ 1

� �
:

Observe that the expression
P

x AX PðxÞ ¼ 1 is well defined thanks to

the finite support condition that precedes it.

A mixing operation is performed on L, defined for every P;Q A L and

every a A ½0; 1� as follows: aPþ ð1� aÞQ A L is given by

ðaPþ ð1� aÞQÞðxÞ ¼ aPðxÞ þ ð1� aÞQðxÞ

for every x A X. The intuition behind this operation is of conditional

probabilities. Assume that I offer you a compound lottery that will

give you the lottery P with probability a and the lottery Q with proba-

bility ð1� aÞ. You can ask what is the probability of obtaining a certain

outcome x, and observe that it is indeed a times the conditional proba-

bility of x if you get P plus ð1� aÞ times the conditional probability of x

if you get Q.

Since the objects of choice are lotteries, the observable choices are

modeled by a binary relation on L,7H L� L.

B.4.2 The vNM Axioms

The vNM axioms are

Weak order 7 is complete and transitive.

Continuity For every P;Q;R A L, if P1Q1R, there exist a; b A ð0; 1Þ
such that aPþ ð1� aÞR1Q1 bPþ ð1� bÞR:
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Independence For every P;Q;R A L, and every a A ð0; 1Þ, P7Q if and

only if aPþ ð1� aÞR7 aQþ ð1� aÞR.

The weak order axiom is not very different from the same assump-

tion in chapter 2 of the main text. The other two axioms are new and

deserve a short discussion.

B.4.3 Continuity

Continuity may be viewed as a technical condition needed for the

mathematical representation and for the proof to work. To understand

its meaning, consider the following example, supposedly challenging

continuity. Assume that P guarantees one dollar, Q guarantees zero

dollars, and R guarantees death. You are likely to prefer one dollar to

no dollars, and no dollars to death. That is, you would probably ex-

hibit preferences P1Q1R. The axiom then demands that for a high

enough a < 1, you will also exhibit the preference

aPþ ð1� aÞR1Q;

namely, that you will be willing to risk your life with probability

ð1� aÞ in order to gain one dollar. The point of the example is that

you are supposed to say that no matter how small the probability of

death ð1� aÞ, you will not risk your life for one dollar.

A counterargument to this example (suggested by Howard Raiffa) is

that we often do indeed take such risks. For instance, suppose you are

about to buy a newspaper, which costs one dollar. But you see that it is

freely distributed on the other side of the street. Would you cross the

street to get it at no cost? If you answer in the affirmative, you are will-

ing to accept a certain risk, albeit very small, of losing your life (in traf-

fic) in order to save one dollar.

This counterargument can be challenged in several ways. For in-

stance, you may argue that even if you don’t cross the street, your life

is not guaranteed with probability 1. Indeed, a truck driver who falls

asleep may hit you anyway. In this case, we are not comparing death

with probability 0 to death with probability ð1� aÞ. And, the argument

goes, it is possible that if you had true certainty on your side of the

street, you would not have crossed the street, thereby violating the

axiom.

It appears that framing also matters in this example. I may be about

to cross the street in order to get the free copy of the newspaper, but if

you stop me and say, ‘‘What are you doing? Are you nuts, to risk your
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life this way? Think of what could happen! Think of your family!’’ I

might cave in and give up the free paper. It is not obvious which be-

havior is more relevant, namely, the decision making without the

guilt-inducing speech or with it. Presumably, this depends on the

application.

In any event, we understand the continuity axiom. Moreover, if we

consider applications that do not involve extreme risks such as death,

it appears to be a reasonable assumption.

B.4.4 Independence

The independence axiom is related to dynamic consistency. However,

it involves several steps. Consider the following four choice situations:

1. You are asked to make a choice between P and Q.

2. Nature will first decide whether, with probability ð1� aÞ, you get R,

and then you have no choice to make. Alternatively, with probability

a, nature will let you choose between P and Q.

3. The choices are as in (2), but you have to commit to making your

choice before you observe Nature’s move.

4. You have to choose between two branches. In one, Nature will first

decide whether, with probability ð1� aÞ, you get R, or, with probabil-

ity a, you get P. The second branch is identical, with Q replacing P.

Clearly, (4) is the choice between aPþ ð1� aÞR and aQþ ð1� aÞR.
To relate the choice in (1) to that in (4), we can use (2) and (3) as inter-

mediary steps. Compare (1) and (2). In (2), if you are called upon to act,

you are choosing between P and Q. At that point R will be a counter-

factual world. Why would it be relevant? Hence, it is argued, you can

ignore the possibility that did not happen, R, and make your decision

in (2) identical to that in (1).

The distinction between (2) and (3) has to do only with the timing of

your decision. Should you make different choices in these scenarios,

you would not be dynamically consistent. It is as if you plan in (3) to

make a given choice, but when you get the chance to make it, you do

(or would like to do) something else in (2). Observe that when you

make a choice in (3), you know that this choice is conditional on get-

ting to the decision node. Hence, the additional information you have

should not change this conditional choice.

Finally, the alleged equivalence between (3) and (4) relies on chang-

ing the order of your move (to which you already committed) and
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Nature’s move. As such, this is an axiom of reduction of compound

lotteries, assuming that the order of the draws does not matter as long

as the distributions on outcomes, induced by your choices, are the

same.

B.4.5 The Theorem

Finally, the theorem can be stated.

Theorem 3 (vNM) Let there be given a relation7H L� L. The follow-

ing are equivalent: (i)7 satisfies weak order, continuity, and indepen-

dence; (ii) there exists u : X ! R such that, for every P;Q A L,

P7Q iff
X
x AX

PðxÞuðxÞb
X
x AX

QðxÞuðxÞ:

Moreover, in this case u is unique up to a positive linear transforma-

tion (plt). That is, v : X ! R satisfies, for every P;Q A L,

P7Q iff
X
x AX

PðxÞvðxÞb
X
x AX

QðxÞvðxÞ

if and only if there are a > 0 and b A R such that vðxÞ ¼ auðxÞ þ b for

every x A X.

Thus, we find that the theory of expected utility maximization is

not just one arbitrary generalization of expected value maximization.

There are quite compelling reasons to maximize expected utility (in a

normative application) as well as to believe that this is what people

naturally tend to do (in a descriptive application). If we put aside the

more technical condition of continuity, we find that expected utility

maximization is equivalent to following a weak order that is linear in

probabilities; this linearity is basically what the independence axiom

says.

B.5 Ignoring Base Probabilities

The disease example discussed in section 5.4.1 of the main text illus-

trates that people often mistake PðAjBÞ for PðBjAÞ. In that example, if

you had the disease, the test would show it with probability 90 per-

cent; if you didn’t, the test might still show a false positive with proba-

bility 5 percent. Suppose you took the test and you tested positive.

What was the probability of your actually having the disease?
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Let D be the event of having the disease and T be the event of testing

positive. Then

PðTjDÞ ¼ :90;

PðTjDcÞ ¼ :05:

What is PðDjTÞ?
The definition of conditional probability says that

PðDjTÞ ¼ PðDVTÞ
PðTÞ :

Trying to get closer to the given data, we may split the event T into

two disjoint events:

T ¼ ðDVTÞU ðDc VTÞ:

In other words, one may test positive if one is sick ðDVTÞ but also if

one is healthy ðDc VTÞ, so

PðTÞ ¼ PðDVTÞ þ PðDc VTÞ

and

PðDjTÞ ¼ PðDVTÞ
PðTÞ

¼ PðDVTÞ
PðDVTÞ þ PðDc VTÞ :

Now we can try to relate each of the probabilities in the denominator

to the conditional probabilities we are given. Specifically,

PðDVTÞ ¼ PðDÞPðTjDÞ ¼ :90PðDÞ

and

PðDc VTÞ ¼ PðDcÞPðTjDcÞ ¼ :05½1� PðDÞ�

(recalling that the probability of no disease, PðDcÞ, and the probability

of disease have to sum up to 1.) Putting it all together, we get

PðDjTÞ ¼ PðDVTÞ
PðTÞ

¼ PðDVTÞ
PðDVTÞ þ PðDc VTÞ
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¼ PðDÞPðTjDÞ
PðDÞPðTjDÞ þ PðDcÞPðTjDcÞ

¼ :90PðDÞ
:90PðDÞ þ :05½1� PðDÞ� :

This number can be anywhere in ½0; 1�. Indeed, suppose that we are

dealing with a disease that is known to be extinct. Thus, PðDÞ ¼ 0. The

accuracy of the test remains the same: PðTjDÞ ¼ :90, and PðTjDcÞ ¼ :05,

but we have other reasons to believe that the a priori probability of

having the disease is zero. Hence, whatever the test shows, your poste-

rior probability is still zero. If you test positive, you should attribute it

to the inaccuracy of the test (the term :05½1� PðDÞ� in the denominator)

rather than to having the disease (the term :90PðDÞ). By contrast, if you

are in a hospital ward consisting only of previously diagnosed patients,

and your prior probability of having the disease is PðDÞ ¼ 1, your pos-

terior probability will be 1 as well (and this will be the case even if you

tested negative).

To see why Kahneman and Tversky called this phenomenon ‘‘ignor-

ing base probabilities,’’ observe that what relates the conditional prob-

ability of A given B to the conditional probability of B given A is the

ratio of the unconditional (base) probabilities:

PðAjBÞ ¼ PðAÞ
PðBÞ PðBjAÞ;

and the confusion of PðBjAÞ for PðAjBÞ is tantamount to ignoring the

term PðAÞ=PðBÞ.

B.6 Arrow’s Impossibility Theorem

Let N ¼ f1; 2; . . . ; ng be the set of individuals, and let X be the set of

alternatives. Assume that X is finite, with jXjb 3. Each individual is

assumed to have a preference relation over X. For simplicity, assume

that there are no indifferences, so that for each i A N, there is a relation

7iHX � X that is complete, transitive, and antisymmetric (namely,

x7i y and y7i x imply x ¼ y.) Alternatively, we may assume that for

each individual i A N there is a ‘‘strictly prefer’’ relation1iHX � X that

is transitive and that satisfies

x0 y , ½x1i y or y1i x�:
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(If7i is complete, transitive, and antisymmetric, its asymmetric part1i

satisfies this condition.)

The list of preference relations ð71; . . . ;7nÞ ¼ ð7iÞi is called a profile.

It indicates how everyone in society ranks the alternatives. Arrow’s

theorem does not apply to one particular profile but to a function that

is assumed to define a social preference for any possible profile of indi-

vidual preferences. Formally, let

R ¼ f7HX � X j7 is complete; transitive; antisymmetricg

be the set of all possible preference relations. We consider functions

that take profiles, or n-tuples of elements in R into R itself. That is, the

theorem will be about creatures of the type

f : Rn ! R:

Note that all profiles, that is, all n-tuples of relations (one for each in-

dividual), are considered. This can be viewed as an implicit assump-

tion that is sometimes referred to explicitly as ‘‘full domain.’’

For such functions f we are interested in two axioms:

Unanimity For all x; y A X, if x7i y Ei A N, then xf ðð7iÞiÞy.

The unanimity axiom says that if everyone prefers x to y, then so

should society.

Independence of Irrelevant Alternatives ( IIA) For all x; y A X, ð7iÞi,
ð70

i Þi, if x7i y , x70
i y, Ei A N, then xf ðð7iÞiÞy , sf ðð70

i ÞiÞy.

The IIA axiom says that the social preference between two spe-

cific alternatives, x and y, only depends on individual preferences be-

tween these two alternatives. That is, suppose we compare two

different profiles, ð7iÞi, ð7
0
i Þi, and find that they are vastly different

in many ways, but it so happens that when we restrict attention

to the pair fx; yg, the two profiles look the same: for each and every

individual, x is considered to be better than y according to7i if and

only if it is better than y according to 7
0
i . The axiom requires that

when we aggregate preferences according to the function f , and con-

sider the aggregation of ð7iÞi, that is f ðð7iÞiÞ, and the aggregation of

ð70
i Þi, which is denoted f ðð70

i ÞiÞ, we find that these two aggregated

relations rank x and y in the same way.

The final definition we need is the following:

A function f is dictatorial if there exists j A N such that for every ð7iÞi
and every x; y A X,
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xf ðð7iÞiÞy , x7j y:

That is, f is dictatorial if there exists one individual, j, such that, what-

ever the others think, society simply adopts j’s preferences. We can fi-

nally state

Theorem 4 (Arrow) f satisfies unanimity and IIA iff it is dictatorial.

Arrow’s theorem can be generalized to the case in which the prefer-

ence relations admit indifferences (that is, are not necessarily antisym-

metric). In this case, the unanimity axiom has to be strengthened to

apply both to weak and to strict preferences.6

B.7 Nash Equilibrium

A game is a triple ðN; ðSiÞi AN; ðhiÞiÞ, where N ¼ f1; . . . ; ng is a set of

players, Si is the (nonempty) set of strategies of player i, and

hi : S1
Y
i AN

Si ! R

is player i’s vNM utility function.

A selection of strategies s ¼ ðs1; . . . ; snÞ A S is a Nash equilibrium (in

pure strategies) if for every i A N,

hðsÞb hðs�i; tiÞ; Eti A Si;

where ðs�i; tiÞ A S is the n-tuple of strategies obtained by replacing si
by ti in s. In other words, a selection of strategies is a Nash equilibrium

if, given what the others are choosing, each player is choosing a best

response.

To model random choice, we extend the strategy set of each player

to mixed strategies, that is, to the set of distributions over the set of

pure strategies:

Si ¼ si : Si ! ½0; 1�
����X
si A Si

siðsiÞ ¼ 1

( )
:

6. Other formulations of Arrow’s involve a choice function, selecting a single alternative
x A X for a profile ð7iÞi. In these formulations the IIA axiom is replaced by a monotonic-
ity axiom stating that if x is chosen for a given profile ð7iÞi, x will also be chosen in any
profile where x is only ‘‘better,’’ in terms of pairwise comparisons with all the others.
This axiom is similar in its strengths and weaknesses to the IIA in that it requires that di-
rect pairwise comparisons, not concatenations thereof, would hold sufficient information
to determine social preferences.
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Given a mixed strategy si A Si for each i A N, we define i’s payoff to

be the expected utility

Hiðs1; . . . snÞ ¼
X
s A S

"Y
j AN

sjðsjÞ
#
hiðsÞ;

and we define a Nash equilibrium in mixed strategies to be a Nash

equilibrium of the extended game in which the sets of strategies are

ðSiÞi and the payoff functions—ðHiÞi.
Mixed strategies always admit Nash equilibria.

Theorem 5 (Nash) Let ðN; ðSiÞi AN; ðhiÞiÞ be a game in which Si is finite

for each i.7 Then it has a Nash equilibrium in mixed strategies.

7. Recall that in the formulation here N was also assumed finite.
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C Exercises

Chapter 1 Feasibility and Desirability

1. In the first example we saw an instance of

impossible ) undesirable;

whereas the second was an instance of

possible ) undesirable:

The third example is one in which

desirable ) possible;

and this raises the question, what would be an example in which

desirable ) impossible?

2. Symmetry requires that we also look for examples in which

possible ) desirable;

impossible ) desirable;

undesirable ) possible;

undesirable ) impossible:

Can you find such examples?

3. George says, ‘‘I wish to live in a peaceful world. Therefore, I favor

policies that promote world peace.’’

a. Explain why this statement violates the separation of feasibility and

desirability.

b. Suppose George thinks that if a peaceful world is impossible, he is

not interested in living any more, and further, he doesn’t care about



anything else that might happen in this world, to himself or to others.

Explain why, under these assumptions, George’s statement is compati-

ble with rationality.

4. In the previous exercises, the symbol ) referred to causal implica-

tion. First there is the antecedent (on the left side), and then, as a result,

the consequent (on the right side) follows. Another notion of implica-

tion is material implication, often denoted by !:

p ! q iff sp4q ðC:1Þ

iff sðp5sqÞ:

Then some of the eight implications in exercises 1 and 2 are redundant.

Which are they?1

5. Convince yourself that for the material implication (C.1),

a. p ! q is equivalent to sq ! sp,

but

b. p ! q is not equivalent to q ! p.

Chapter 2 Utility Maximization

1. To what degree is the function u in proposition 1 and theorem 2 (see

section B.1 in appendix B) unique? That is, how much freedom does

the modeler have in choosing the utility function u for a given rela-

tion7?

2. Assume that apart from preferences between pairs of alternatives

x7 y or y7 x, more data are available, such as (1) the probability that

x is chosen out of fx; yg; or (2) the time it takes the decision maker to

make up her mind between x and y; or (3) some neurological data that

show the strength of preference between x and y. Consider different

representations of preferences, corresponding to (1)–(3), which will

also restrict the set of utilities one can ascribe to the decision maker.

3. Assume that X ¼ R2 and that because of some axioms, you are con-

vinced that your utility function should be of the form

uðx1; x2Þ ¼ v1ðx1Þ þ v2ðx2Þ:

Discuss how this additional structure may help you to estimate your

own utility function, and contrast this case with the (end of the dia-

logue) we started out with.

1. Notation: sp is the negation of p, i.e., not-p.4means or and5means and.
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4. Prove that if7 is transitive, then so are � and@.

5. Assume that7 is complete. Prove that u represents7 if and only if,

for every x; y A X,

x � y , uðxÞ > uðyÞ:

6. Assume that X ¼ ½0; 1�2 and that7 is defined by

ðx1; x2Þ7 ðy1; y2Þ

if

½x1 > y1�

or

½ðx1 ¼ y1Þ and ðx2 b y2Þ�:

Prove that 7 is complete and transitive but not continuous. Prove

that7 cannot be represented by any utility u (continuous or not).

Chapter 3 Constrained Optimization

1. You are organizing an interdisciplinary conference and wish to have

a good mix of psychologists, economists, and sociologists. There are

many scientists of each type, but the cost of inviting them grows with

distance; it is relatively inexpensive to invite those that are in your

city, but it gets expensive to fly them from remote countries. State the

problem as a constrained optimization problem. Is this a convex prob-

lem? What do the first-order conditions tell you?

2. Provide an example of a consumer problem in which the optimal

solution does not satisfy the first-order conditions. (Hint: Use two

goods and a simple budget set such as that defined by x1 þ x2 a 100.)

3. Suppose you have to allocate a given amount of time among several

friends. Unfortunately, since they live far away, you can’t meet more

than one friend at the same time. Let xi be the amount of time you

spend with friend i. Formulate the problem as a constrained optimiza-

tion problem. Is it convex?

4. Show that in the presence of discounts for quantity (that is, the price

per unit goes down as you buy large quantities) the feasible set of the

consumer is not convex.

5. Show that the intersection of convex sets is convex.
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6. A half-space is defined by a (weak) linear inequality. That is,

for a linear function f : Rn ! R and a number c A R, it is the set of

points

Hð f ; cÞ1 fx A Rn j f ðxÞa cg:

Show that the intersection of (any number of) half-spaces is convex.

Chapter 4 Expected Utility

1. A concave utility function can explain why people buy insurance

with a negative expected value. And a convex utility function can ex-

plain why they buy lottery tickets, whose expected value is also nega-

tive. But how would you explain the fact that some people do both

simultaneously?

2. Assume that a decision maker’s preference 7 is representable by

median utility maximization. That is, for a function u : X ! R, and a

lottery P A L, define

medPu ¼ max

(
a

�����
X

uðxÞ<a

PðxÞa 1

2

)

and

P7Q , medPubmedQu

for all P;Q A L.

Show that 7 is a weak order but that it violates continuity and

independence.

3. If 7 is representable by median u maximization as in exercise 2,

how unique is u? That is, what is the class of functions v such that me-

dian v maximization also represents7?

4. Suppose that the utility function from money, u, is twice differen-

tiable and satisfies u 0 > d > 0 and u 00 < 0. Let X be a random variable

assuming only two values, with EX > 0.

a. Show that for every wealth level W, there exists e > 0 such that

E½uðW þ eXÞ� > uðWÞ:

b. Show that there exists a wealth level W such that for all wbW,

E½uðwþ XÞ� > uðwÞ:
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5. Show that if7 satisfies the vNM axioms, then whenever P � Q,

aPþ ð1� aÞQ7 bPþ ð1� bÞQ iff ab b:

6. a. Show that if x; y; z A X satisfy x � y � z (where we abuse notation

and identify each x A X with the lottery Px A L such that PxðxÞ ¼ 1),

there exists a unique a ¼ aðx; y; zÞ such that

axþ ð1� aÞz@ y:

b. Assume that for some x; z A X, we have x7 y7 z for all y A X.

Define

uðyÞ ¼ 1 if y@ x;

uðyÞ ¼ 0 if y@ z;

uðyÞ ¼ aðx; y; zÞ if x � y � z:

Explain why maximization of the expectation of u represents 7.

(Sketch the proof or, even better, write the complete proof formally.)

Chapter 5 Probability and Statistics

1. Explain what is wrong with the claim, ‘‘Most good chess players are

Russian; therefore a Russian is likely to be a good chess player.’’

2. When one sails along the shores of the Mediterranean, it seems that

much more of the shoreline has hills and cliffs than one would have

thought. One theory is that the Earth was created with the tourism in-

dustry in mind. Another is that this is an instance of biased sampling.

Explain why.

(Hint: Assume that the Earth is unidimensional and that its surface

varies in slope. To be concrete, assume that the surface is made of the

segments connecting ðð0; 0Þ; ð90; 10ÞÞ and ðð90; 10Þ; ð100; 100ÞÞ, where

the first coordinate denotes distance and the second height. Assume

that the height of the water is randomly determined according to a uni-

form distribution over ½0; 100�. Compare the probability of the shore’s

being at a point of a steep slope to the probability you get if you sam-

ple a point at random (uniformly) on the distance axis.)

3. Comment on the claim, ‘‘Some of the greatest achievements in eco-

nomics are due to people who studied mathematics. Therefore, all

economists had better study mathematics first.’’
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4. Consider exercise 5, following (even if you do not solve it), and ex-

plain how many prejudices in the social domain may result from ignor-

ing base probabilities.

5. Trying to understand why people confuse PðAjBÞ with PðBjAÞ, it is
useful to see that qualitatively, if A makes B more likely, it will also be

true that B will make A more likely.

a. Show that for any two events A, B,

PðAjBÞ > PðAjBcÞ

iff

PðAjBÞ > PðAÞ > PðAjBcÞ

iff

PðBjAÞ > PðBjAcÞ

iff

PðBjAÞ > PðBÞ > PðBjAcÞ;

where Ac is the complement of A. (Assume that all probabilities

involved are positive, so that all the conditional probabilities are well

defined.)

b. If the proportion of Russians among the good chess players is

higher than their proportion overall in the population, what can be

said?

6. Consider a regression line relating the height of children to that of

their parents. We know that its slope should be in ð0; 1Þ. Now consider

the following generation, and observe that the slope should again be in

ð0; 1Þ. Does this mean that because of regression to the mean, all the

population will converge to a single height?

Chapter 6 Aggregation of Preferences

1. In order to determine a unique utility function for each individual,

to be used in the summation of utilities across individuals, it was sug-

gested to measure an individual’s vNM utility functions (for choice

under risk) and to set two arbitrary outcomes to given values (shared

across individuals). Discuss this proposal.
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2. The Eurovision song contest uses a scoring rule according to which

each country ranks the other countries’ songs and gives them scores

according to this ranking. It has been claimed that the given scores

favor standard songs over more innovative ones. Does this claim make

sense? Is it more convincing when the score scale is convex or concave?

3. It turns out that for two particular individuals, Pareto domination

defines a complete relation. (That is, for every two distinct alternatives,

one Pareto-dominates the other.) Assume that

uðXÞ ¼ fðu1ðxÞ; u2ðxÞÞ j x A Xg

is convex. What can you say about the utility functions of these

individuals?

4. Assume that individual i has a utility function ui. For a ¼ ða1; . . . ;
anÞ with ai > 0, let

ua ¼
Xn
i¼1

aiui:

Show that if x maximizes ua for some a, it is Pareto-efficient.

5. Is it true that every Pareto-efficient alternative maximizes ua for

some a? (Hint: For n ¼ 2, consider the feasible sets

X1 ¼ fðx1; x2Þ j
ffiffiffiffiffi
x1

p þ ffiffiffiffiffi
x2

p
a 1; x1; x2 b 0g

and

X2 ¼ fðx1; x2Þ j x21 þ x22 a 1; x1; x2 b 0g;

where ui ¼ xi.)

6. Show that under approval voting, it makes sense for each individ-

ual to approve of her most preferred alternative(s) and not to approve

of the least preferred one(s) (assuming that the voter is not indifferent

among all alternatives).

Chapter 7 Games and Equilibria

1. Suppose prisoner’s dilemma is played T times between two players.

Show that playing D is not a dominant strategy but that only Nash

equilibria still result in consecutive play of D.
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2. Consider the following story. In a certain village there are n married

couples. It is the case that if one married woman is unfaithful to her

husband, all other men are told about it immediately but not the hus-

band. This fact is commonly known in the village. The law of the land

is that if a husband knows that his wife has been unfaithful to him, he

must shoot her to death on the same night. But he is not allowed to

hurt her unless he knows that for sure.

One day a visitor comes to the village, gets everyone to meet in the

central square, and says, ‘‘There are unfaithful wives in this village.’’

He then leaves.

That night and the following night, nothing happens. On the third

night, shots are heard.

a. How many shots were heard on the third night?

b. What information did the visitor add that the village inhabitants

did not have before his visit?

3. Consider an extensive form game, and show how a player might

falsify common knowledge of rationality (by deviating from the back-

ward induction solution). Show an example in which it may be in the

player’s best interest to do so.

4. Compute the mixed strategies equilibria in the following games (see

section 7.3 of main text):

Game 6. Pure Coordination 1

R L

R ð1; 1Þ ð0; 0Þ
L ð0; 0Þ ð1; 1Þ

Game 7. Pure Coordination 2

A B

A ð3; 3Þ ð0; 0Þ
B ð0; 0Þ ð1; 1Þ

Game 8. Battle of the Sexes

Ballet Boxing

Ballet ð2; 1Þ ð0; 0Þ
Boxing ð0; 0Þ ð1; 2Þ

5. Show that a 2� 2 game in which all payoffs are different cannot

have precisely two Nash equilibria.
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6. A computer sends a message to another computer, and it is com-

monly known that the message never gets lost and that it takes 60 sec-

onds to arrive. When it arrives, it is common knowledge (between the

two computers) that the message has indeed been sent and has arrived.

Next, a technological improvement was introduced, and the message

can now take any length of time between 0 and 60 seconds to arrive.

How long after the message was sent will it be commonly known that

it has been sent?

Chapter 8 Free Markets

1. Discuss the reasons that equilibria might not be efficient in the fol-

lowing cases:

a. A physician should prescribe tests for a patient.

b. A lawyer assesses the probability of success of a legal battle.

c. A teacher is hired to teach a child.

2. The dean has to decide whether to give a department an overall

budget for its activities or split the budget among several activities

such as conferences, visitors, and so forth. Discuss the pros and cons

of the two options.

3. Consider the student course assignment problem described in sec-

tion 8.4 of the main text. Show that for every n it is possible to have

examples in which n is the minimal number of students that can find a

Pareto-improving reallocation of courses.
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D Solutions

Chapter 1 Feasibility and Desirability

1. In the first example we saw an instance of

impossible ) undesirable;

whereas the second was an instance of

possible ) undesirable:

The third example is one in which

desirable ) possible;

and this raises the question, what would be an example in which

desirable ) impossible?

Solution You may be reflecting such a belief if you think, for in-

stance, that any potential spouse you may like is bound to be married.

Indeed, you may rely on statistics and a reasonable theory that says

when you like someone, so do others, and therefore the object of desire

is less likely to be available. But if we all believed that anything de-

sirable is automatically impossible, those desirable potential spouses

would end up remaining single. By analogy, it is true that one doesn’t

often see $100 bills on the sidewalk, but the reason is that they have in-

deed been picked up. Someone who sees the bill believes that it might

be real and is willing to try to pick it up. Thus, you are justified in

believing that something really worthwhile may not be easy to find,

but you would be wrong to assume that anything worthwhile is auto-

matically unreachable.



2. Symmetry requires that we also look for examples in which

possible ) desirable;

impossible ) desirable;

undesirable ) possible;

undesirable ) impossible:

Can you find such examples?

Solution

possible ) desirable. Habits may provide an example in which you do

not try to optimize and assume that something is what you want only

because you know you can have it.

impossible ) desirable. By the same token, it would also be irrational to

want things just because you don’t have them. Whereas the previous

example leads to too little experimentation and may make you settle

for suboptimal solutions, this example might lead to too much experi-

mentation and not let you settle on an optimal solution even if you

found it.

undesirable ) possible. The pessimistic assumption that you might be

doing something just because you hope not to is reminiscent of ‘‘If

something can go wrong, it will.’’

undesirable ) impossible. This is the optimistic version of the preceding,

a bit similar to ‘‘This won’t happen to me’’ (referring to negative events

such as accidents).

3. George says, ‘‘I wish to live in a peaceful world. Therefore, I favor

policies that promote world peace.’’

a. Explain why this statement violates the separation of feasibility and

desirability.

b. Suppose George thinks that if a peaceful world is impossible, he is

not interested in living any more, and further, he doesn’t care about

anything else that might happen in this world, to himself or to others.

Explain why, under these assumptions, George’s statement is compati-

ble with rationality.

Solution This exercise is supposed to point out that people often

think about what they want and then reason backward to see what’s
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needed for that. This may be incompatible with rationality if they for-

get to ask what is feasible. In George’s case, if (as in 3b) he doesn’t care

about anything but his one goal, then it makes sense to ignore what is

precisely feasible. If peace is not feasible, he doesn’t care about any-

thing anyway. But for many people feasibility is important. Even when

people say they want peace at all costs, they do not literally mean it.

What we expect of rational decision makers is not to state just what is

desirable but also what is feasible.

4. In the previous exercises, the symbol ) referred to causal implica-

tion. First there is the antecedent (on the left side), and then, as a result,

the consequent (on the right side) follows. Another notion of implica-

tion is material implication, often denoted by !:

p ! q iff sp4q ðC:1Þ

iff sðp5sqÞ:

Then some of the eight implications in exercises 1 and 2 are redundant.

Which are they?1

Solution With material implication, p ! q is equivalent to sq ! sp

(see exercise 5, following). Hence,

possible ! desirable

is equivalent to

undesirable ! impossible;

and

possible ! undesirable

is equivalent to

desirable ! impossible:

Hence, half of the implications are redundant.

5. Convince yourself that for the material implication (C.1),

a. p ! q is equivalent to sq ! sp.

b. p ! q is not equivalent to q ! p.

1. Notation: sp is the negation of p, i.e., not-p.4means or and5means and.
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Solution

Part 5a First, using proof by negation, assume that p ! q. We want to

show that sq ! sp. Assume that indeed sq, that is, q is false. Ask

whether p can be true. If it were (contrary to what we want to show),

then we could use p ! q to conclude that q is true as well, in contradic-

tion to the assumption sq. Hence, by assuming sq, we obtained sp,

which is the first part of what we wanted to prove.

Another way to see part 5a is to observe that p ! q is simply the

statement, ‘‘We cannot observe p and not-q simultaneously.’’ That is, of

the four possible combinations of truth values of p and of q, only three

combinations are possible. The possible ones are marked by þ, and the

impossible one, by �:

q is false q is true

p is false þ þ
p is true � þ

If we denote ‘‘p is true’’ by A and ‘‘q is false’’ by B, the statement

p ! q means that A and B cannot happen together. To say that two

events, A and B, are incompatible is like saying ‘‘If A, then not B,’’ or

‘‘If B, then not A.’’

Part 5b This is the converse. That is, assume sq ! sp; then p ! q. We

could go through a similar proof as for part 5a (or use the previous

one), observing that ssp $ p and ssq $ q.

To see part 5b, take a simple example such as ‘‘Because all humans

are mortal, mortal ! human.’’ But because dogs are also mortal, it is

false that mortal ! human. This looks trivial in such simple examples,

and yet people make such mistakes often in the heat of a debate or

when probabilities are involved.

Chapter 2 Utility Maximization

1. To what degree is the function u in proposition 1 and theorem 2 (see

section B.1 in appendix B) unique? That is, how much freedom does the

modeler have in choosing the utility function u for a given relation7?

Solution The utility function is unique up to a monotone transforma-

tion. That is, if u represents7, then so will any other function
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v : X ! R

such that there exists a (strictly) monotonically increasing

f : R ! R

for which

vðxÞ ¼ f ðuðxÞÞ ðD:1Þ

for every x A X. Conversely, if both u and v represent7, it is easy to see

that for every x; y A X,

uðxÞ > uðyÞ , vðxÞ > vðyÞ;

and this means that there exists a (strictly) monotonically increasing

f : R ! R such that (D.1) holds.

2. Assume that apart from preferences between pairs of alternatives

x7 y or y7 x, more data are available, such as (1) the probability that

x is chosen out of fx; yg; or (2) the time it takes the decision maker to

make up her mind between x and y; or (3) some neurological data that

show the strength of preference between x and y. Consider different

representations of preferences, corresponding to (1)–(3), which will

also restrict the set of utilities one can ascribe to the decision maker.

Solution Assume that in reality there exists some numerical measure

of desirability, uðxÞ, which is not directly observable. Yet we may find

the following observable manifestations of this measure:

� The probability of choosing x out of fx; yg may be increasing as a

function of the utility difference, uðxÞ � uðyÞ. The standard model

implicitly assumes that this probability is

Prðx_over_yÞ ¼
1 uðxÞ > uðyÞ
:5 uðxÞ ¼ uðyÞ
0 uðxÞ < uðyÞ

8><
>: ðD:2Þ

but this discontinuous function is not very realistic. Instead, we may

consider a function such as the cumulative distribution function of the

normal (Gaussian) distribution with parameters ð0; sÞ, namely,

Prðx_over_yÞ ¼
ð uðxÞ�uðyÞ

�y
e�t2=

ffiffiffiffi
2p

p
s dt
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such that Prðx_over_yÞ converges to (D.2) as s ! 0. This function

would make utility differences observable by the probability of choice.

� The standard model ignores response time, or the time it takes the

decision maker to reach a decision. We might consider a function such

as

Rðx; tÞ ¼ cþ de�y½uðxÞ�uðyÞ�2

such that c > 0 is the minimal response time, obtained when the choice

is very clear (when the absolute difference between the utility levels is

approaching infinity), and the maximal response time, cþ d, is ob-

tained when the two alternatives are equivalent in the eyes of the deci-

sion maker.

� Finally, the standard model treats anything that goes into our brains

as unobservable. But recent neurological studies identify zones of the

brain that tend to be activated when the alternatives are close to equiv-

alent but not otherwise. Thus, neurological data may be another source

of information on the strength of preferences.

Overall, the model in which the utility function is ‘‘only ordinal’’ and

we therefore cannot discuss strength of preferences is a result of our

highly idealized assumption that only choice is observable and that

choice is deterministic, as in (D.2). It is our choice to focus on such a

model. In reality, much more information is available, and this addi-

tional information may suffice to pinpoint a cardinal utility function,

one that is more or less unique, at least up to a linear transformation of

the type

vðxÞ ¼ auðxÞ þ b

with a > 0.

3. Assume that X ¼ R2 and that because of some axioms, you are con-

vinced that your utility function should be of the form

uðx1; x2Þ ¼ v1ðx1Þ þ v2ðx2Þ:

Discuss how this additional structure may help you to estimate your

own utility function, and contrast this case with the (end of the dia-

logue) we started out with.

Solution In this case, one can try to learn something about one’s pref-

erences in complex choices from one’s preferences in simple ones. For
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example, suppose that after intensive introspection you realize that

your preferences satisfy

ðx1; x2Þ@ ðy1; y2Þ

and

ðz1; x2Þ@ ðw1; y2Þ:

The first equivalence means that

v1ðx1Þ � v1ðy1Þ ¼ v2ðy2Þ � v2ðx2Þ; ðD:3Þ

and the second, that

v1ðz1Þ � v1ðw1Þ ¼ v2ðy2Þ � v2ðx2Þ: ðD:4Þ

Next suppose also that

ðx1; s2Þ@ ðy1; r2Þ;

which means that

v1ðx1Þ � v1ðy1Þ ¼ v2ðr2Þ � v2ðs2Þ: ðD:5Þ

It then follows that we should also have

ðz1; s2Þ@ ðw1; r2Þ

because we already know that (combining (D.3) and (D.4))

v1ðz1Þ � v1ðw1Þ ¼ v2ðy2Þ � v2ðx2Þ ¼ v1ðx1Þ � v1ðy1Þ

and because of (D.5), also

v1ðz1Þ � v1ðw1Þ ¼ v1ðx1Þ � v1ðy1Þ ¼ v2ðr2Þ � v2ðs2Þ:

In other words, additional structure on the utility function will make

the elicitation of utility a noncircular exercise.

4. Prove that if7 is transitive, then so are � and@.

Solution In this type of proof the main thing is to keep track of what

is given and what is to be proved. Most mistakes in such exercises arise

from getting confused about this. Also, much of the proof is a transla-

tion of the symbols using their definitions. For these reasons it is

best to write things down very carefully and precisely, even though it

might seem silly or boring.
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Let us begin with@. Assume that (for some x; y; z A X) x@ y and that

y@ z. We need to show that x@ z. Let us first translate both premise

and desired conclusion to the language of the relation7 about which

we know something (i.e., that it is transitive).

By definition of@, x@ y means that

x7 y and y7 x; ðD:6Þ

whereas y@ z is a shorthand for

y7 z and z7 y: ðD:7Þ

What we need to prove is that y@ z, namely, that

x7 z and z7 x: ðD:8Þ

The first parts of (D.6) and (D.7) are, respectively, x7 y and y7 z,

and given the transitivity of7, they yield x7 z. This is the first part of

(D.8).

Similarly, the second parts of (D.6) and (D.7) are, respectively, y7 x

and z7 y, which given transitivity of7 imply z7 x. This is the second

part of (D.8).

Since this is true for any x, y, z with x@ y and y@ z, transitivity of@
has been established.

Next turn to transitivity of �. Assume that (for some x; y; z A X)

x � y and y � z. We need to show that x � z. Again, let us translate

both the premises and the desired conclusion to the language of7.

By definition of �, x � y means that

x7 y and sðy7 xÞ; ðD:9Þ

whereas y � z is the statement

y7 z and sðz7 yÞ: ðD:10Þ

We need to show that x � z, which means

x7 z and sðz7 xÞ: ðD:11Þ

The first part of (D.11) follows from the first parts of (D.9) and of

(D.10) by transitivity of7. The second part of (D.11) will be proved by

negation. Suppose that, contrary to our claim, z7 x does hold. Com-

bining this with x7 y (the first part of (D.9)), we get, by transitivity of

7, that z7 y. But this would contradict the second part of (D.10).

Hence z7 x cannot be true, and the second part of (D.11) is also true.

Again, this holds for every x, y, z, and this completes the proof.
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5. Assume that7 is complete. Prove that u represents7 if and only if,

for every x; y A X,

x � y , uðxÞ > uðyÞ:

Solution The simplest way to see this is to observe that for real num-

bers a, b,

sðab bÞ , b > a;

and, because 7 is complete, a similar fact holds for preferences: for

every z;w A X,

sðx7 yÞ , y � x:

Once this is established, we can use the contrapositive (exercise 5a in

the previous section (chapter 1)) to conclude the proof. But before we

do so, a word of warning. We know that

x7 y , uðxÞb uðyÞ; Ex; y A X; ðD:12Þ

and we need to show that

x � y , uðxÞ > uðyÞ; Ex; y A X: ðD:13Þ

This is rather simple unless we get ourselves thoroughly confused with

the x’s in (D.12) and in (D.13). It is therefore a great idea to replace

(D.13) by

z � w , uðzÞ > uðwÞ; Ez;w A X: ðD:14Þ

You can verify that (D.13) and (D.14) mean the same thing. Since we

range over all x, y in (D.13) and over all z, w in (D.14), these variables

have no existence outside the respective expressions. Replacing ‘‘all x’’

by ‘‘all z’’ is similar to changing the index inside a summation. That is,

just as

Xn
i¼1

ai ¼
Xn
j¼1

aj;

the statements (D.13) and (D.14) are identical.

If we agree on this, we can now observe that, for every x, y,

x7 y ) uðxÞb uðyÞ

is equivalent to
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sðuðxÞb uðyÞÞ ) sðx7 yÞ

or to

uðyÞ > uðxÞ ) y � x:

Thus, for every zð¼ yÞ, and wð¼ xÞ,

uðzÞ > uðwÞ ) z � w:

Similarly, for every x, y,

uðxÞb uðyÞ ) x7 y

is equivalent to

sðx7 yÞ ) sðuðxÞb uðyÞÞ

or to

y � x ) uðyÞ > uðxÞ

and, again, for every zð¼ yÞ, and wð¼ xÞ,

z � w ) uðzÞ > uðwÞ:

6. Assume that X ¼ ½0; 1�2 and that7 is defined by

ðx1; x2Þ7 ðy1; y2Þ

if

½x1 > y1�

or

½ðx1 ¼ y1Þ and ðx2 b y2Þ�:

Prove that7 is complete and transitive but not continuous. Prove that

7 cannot be represented by any utility u (continuous or not).

Solution To see that 7 is complete, consider ðx1; x2Þ and ðy1; y2Þ.
If x1 > y1, then ðx1; x2Þ7 ðy1; y2Þ. Similarly, y1 > x1 implies ðy1; y2Þ7
ðx1; x2Þ. We are left with the case x1 ¼ y1. But then x2 b y2 (and

ðx1; x2Þ7 ðy1; y2Þ) or y2 b x2 (and then ðy1; y2Þ7 ðx1; x2Þ).
Next turn to transitivity. Assume that ðx1; x2Þ7 ðy1; y2Þ and

ðy1; y2Þ7 ðz1; z2Þ. If x1 > y1, or y1 > z1, then x1 > z1 and ðx1; x2Þ7
ðz1; z2Þ follows. Otherwise, x1 ¼ y1 ¼ z1. Then ðx1; x2Þ7 ðy1; y2Þ implies
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x2 b y2, and ðy1; y2Þ7 ðz1; z2Þ implies y2 b z2. Together we have

x2 b z2, which implies (since we already know that x1 ¼ z1) that

ðx1; x2Þ7 ðz1; z2Þ.
To see that continuity does not hold, consider y ¼ ðy1; y2Þ with

y1 ¼ 0:5;

y2 ¼ 1;

and the set

BðyÞ ¼ fðx1; x2Þ j ðy1; y2Þ � ðx1; x2Þg:

You can verify that ð0:5; 0Þ A BðyÞ, but for every e > 0, ð0:5þ e; 0Þ B BðyÞ
(because ð0:5þ e; 0Þ � ð0:5; 1Þ ¼ y). Hence BðyÞ is not open, which is

sufficient to show that continuity of7does not hold.

We know from Debreu’s theorem that 7 cannot be represented by

a continuous utility function. This can also be verified directly in this

example. Indeed, if there were a continuous u that represented7, we

would have

uðð0:5þ e; 0ÞÞ > uðyÞ > uðð0:5; 0ÞÞ ðD:15Þ

for every e > 0. But this is incompatible with continuity because

ð0:5þ e; 0Þ ! ð0:5; 0Þ

as e ! 0, and continuity would have implied that

uðð0:5þ e; 0ÞÞ ! uðð0:5; 0ÞÞ;

whereas (D.15) means that the left side of the preceding statement is

bounded below by a number ðuðyÞÞ strictly larger than uðð0:5; 0ÞÞ.
To see that no utility function can represent7 requires a little more

knowledge of set theory. We can try intuition here. If u represented7,

then the function

wðzÞ ¼ uððz; 0ÞÞ

has a discontinuity from the right at z ¼ 0:5. That is, as we have just

seen,

lim
e!0

uððzþ e; 0ÞÞ > uððz; 0ÞÞ:

By now we don’t expect u to be continuous. But the above is true not

only for z ¼ 0:5 but for any z A ð0; 1Þ. And wðzÞ is a monotone function
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(the higher is z, the better is ðz; 0Þ and the higher should be uððz; 0ÞÞ ¼
wðzÞÞ.

The contradiction arises from the fact that a monotone function can

have jumps, but not everywhere. Roughly, this has to do with the fact

that the set of jumps of a monotone function is countable, whereas the

interval ð0; 1Þ is not.
This lexicographic example might seem like a mathematical oddity.

But lexicographic relations often appear in everyday speech. For in-

stance, one can imagine a politician’s saying that we will give the pub-

lic the best health care possible, but subject to this level of health care,

we will save on costs. Or that we will promote minority candidates,

provided that we do not compromise on quality. These are examples

of lexicographic relations. These are also often examples of dishonesty.

Typically, trade-offs do exist. If one needs to save money on health

care, one might have to compromise on the quality of health care. If

one wants to promote a social agenda and help minorities, one might

have to compromise on quality. Politicians often try to disguise such

compromises. This lexicographic example, showing that we can easily

describe a function that cannot be represented numerically, suggests

that perhaps politicians do not really mean what they say. That is, it

might be more honest to describe a continuous trade-off, as in, ‘‘We

have to cut on health costs, and we will try to do it without hurting

the quality of the service too much.’’ Or, ‘‘It’s important to have affirma-

tive action, and we are willing to pay some price for that.’’ When you

hear someone describing preferences lexicographically, ask whether

they really mean what they say.

Chapter 3 Constrained Optimization

1. You are organizing an interdisciplinary conference and wish to have

a good mix of psychologists, economists, and sociologists. There are

many scientists of each type, but the cost of inviting them grows with

distance; it is relatively inexpensive to invite those that are in your

city, but it gets expensive to fly them from remote countries. State the

problem as a constrained optimization problem. Is this a convex prob-

lem? What do the first-order conditions tell you?

Solution Suppose that you invite x1 psychologists, x2 economists,

and x3 sociologists, and make the unrealistic but convenient assump-

tion that these are real numbers, that is, that scientists are divisible. Let
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uðx1; x2; x3Þ be a measure of how good the conference is as a function

of the number of scientists invited from each group. An even more un-

realistic assumption here is that all psychologists are interchangeable,

as are all economists (among themselves) and all sociologists. This is

implicit in the formulation asking ‘‘How many should we invite?’’

while ignoring their identity.

The story implicitly refers to only one constraint, namely, cost. How-

ever, it is clear that cost is not linear because it grows with distance. Let

ciðxiÞ be the cost of inviting xi scientists of type i (1 for psychologists, 2

for economists, and 3 for sociologists), and let B be the overall budget.

The optimization problem is then

max
x1;x2;x3

uðx1; x2; x3Þ

subject to

c1ðx1Þ þ c2ðx2Þ þ c3ðx3ÞaB

xi b 0

This will be a convex problem provided that the cost functions are

weakly convex and that the utility function is quasi-concave. Specifi-

cally, if the cost functions are (weakly) convex, then for every i ¼
1; 2; 3, every xi; yi b 0, and every a A ½0; 1�,

aciðxiÞ þ ð1� aÞciðyiÞb ciðaxi þ ð1� aÞyiÞ;

and this means that x ¼ ðx1; x2; x3Þ and y ¼ ðy1; y2; y3Þ are in the feasi-

ble set, then so is axþ ð1� aÞy. Non-negativity of xi and of yi implies

non-negativity of axi þ ð1� aÞyi, and

X3
i¼1

ciðaxi þ ð1� aÞyiÞa
X3
i¼1

½aciðxiÞ þ ð1� aÞciðyiÞ�

¼ a
X3
i¼1

ciðxiÞ þ ð1� aÞ
X3
i¼1

ciðyiÞa aBþ ð1� aÞB ¼ B:

Quasi-concavity of u means precisely that the ‘‘better than’’ sets are

convex, that is, the set

fx A R3 j uðx1; x2; x3Þb gg
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is convex for every g. With a convex feasible set and convex ‘‘better

than’’ sets, the problem is convex.

The first-order conditions can be obtained from taking the deriva-

tives of the Lagrangian,

Lðx1; x2; x3; lÞ ¼ uðx1; x2; x3Þ þ l½B� c1ðx1Þ þ c2ðx2Þ þ c3ðx3Þ�;

which yield

qL

qxi
¼ uiðx1; x2; x3Þ � lc 0i ðxiÞ;

with uiðx1; x2; x3Þ ¼ qu
qxi

uðx1; x2; x3Þ. Equating all to zero, we get

uiðx1; x2; x3Þ
c 0i ðxiÞ

¼ l;

that is, the ratio of the marginal utility to marginal cost should be the

same across all decision variables xi. Given that the problem is convex,

if we find such a point, it is optimal. Note, however, that such a point

may not exist, and the optimal problem may well be at a corner solu-

tion, for example, if sociologists turn out to be too expensive and the

optimal solution is to invite none of them ðx3 ¼ 0Þ.

2. Provide an example of a consumer problem in which the optimal

solution does not satisfy the first-order conditions. (Hint: Use two

goods and a simple budget set such as that defined by x1 þ x2 a 100.)

Solution Given the budget constraint x1 þ x2 a 100, consider the util-

ity function

uðx1; x2Þ ¼ 2x1 þ x2:

Clearly, the optimal solution is at ð100; 0Þ. You can also generate such

an example if the utility function is strictly quasi-concave. All you

need to guarantee is that the slope of the indifference curves will be

steep enough so that there will be no tangency point between these

curves and the budget line. Specifically, if throughout the range

u1
u2

> 1;

the optimal solution will be at ð100; 0Þ without the marginality condi-

tion holding.
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3. Suppose you have to allocate a given amount of time among several

friends. Unfortunately, since they live far away, you can’t meet more

than one friend at the same time. Let xi be the amount of time you

spend with friend i. Formulate the problem as a constrained optimiza-

tion problem. Is it convex?

Solution The problem might look like

max
x1;...;xn

uðx1; . . . ; xnÞ

subject to

x1 þ � � � þ xn aB

xi b 0

that is, like a standard consumer problem where the prices of all goods

are 1.

If you like to see each friend as much as possible, u will be mono-

tonically increasing. For the problem to be convex, you would like u to

be quasi-concave. That is, consider two feasible time allocation vectors,

ðx1; . . . ; xnÞ and ðy1; . . . ; ynÞ. If each guarantees a utility value of c at

least, so should

lðx1; . . . ; xnÞ þ ð1� lÞðy1; . . . ; ynÞ:

This is a reasonable condition if at any level of the variables, you

prefer to mix and have some variety. But it may not hold if the values

are too low. For instance, if you mainly derive pleasure from gossip, it

seems that frequent changes among friends is a great thing. But if you

wish to get into a deep conversation about your emotional life, you

may find that one hour with one friend is better than six ten-minute

sessions with different friends.

4. Show that in the presence of discounts for quantity (that is, the price

per unit goes down as you buy large quantities) the feasible set of the

consumer is not convex.

Solution Suppose that the prices of goods 1 and 2 are p1 ¼ p2 ¼ 1,

and that you have income of I ¼ 200. But if x1 > 100, the price of good

1 drops to 1/2. Then the feasible (budget) set is bounded above by

the segment connecting ð0; 200Þ and ð100; 100Þ (for 0a x1 a 100) and

by the segment connecting ð100; 100Þ and ð300; 0Þ. Thus, the points
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A ¼ ð0; 200Þ and B ¼ ð300; 0Þ are in the feasible set, but the point

100; 133 1
3

� �
, which is on the segment connecting them, is not in the fea-

sible set.

5. Show that the intersection of convex sets is convex.

Solution Let there be two convex sets A;BHRn. Consider C ¼ AVB

¼ fxjx A A and x A Bg. To see that C is convex, consider x; y A C and

l A ½0; 1�. We need to show that

lxþ ð1� lÞy A C:

By convexity of A (and since x; y A A), we get lxþ ð1� lÞy A A. Simi-

larly, lxþ ð1� lÞy A B. But this means that lxþ ð1� lÞy is both in A

and in B, that is, in their intersection, C.

6. A half-space is defined by a (weak) linear inequality. That is, for a

linear function f : Rn ! R and a number c A R, it is the set of points

Hð f ; cÞ1 fx A Rn j f ðxÞa cg:

Show that the intersection of (any number of) half-spaces is convex.

Solution First, we need to convince ourselves that a single half-space

is convex. To see this, assume that

x; y A Hð f ; cÞ;

that is,

f ðxÞ; f ðyÞa c:

Because f is linear, for any l A ½0; 1� we have

f ðlxþ ð1� lÞyÞ ¼ lf ðxÞ þ ð1� lÞ f ðyÞ;

hence

f ðlxþ ð1� lÞyÞa c

and

lxþ ð1� lÞy A Hð f ; cÞ;

that is, Hð f ; cÞ is convex.
Next, we show that any intersection of convex sets is convex. We fol-

low the same reasoning that applied in exercise 5 for two sets to any
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collection of sets. That is, assume that fAaga is some collection of

convex sets, where a is an index that ranges over a certain set. (If a

assumes only finitely many values, you can apply the conclusion of ex-

ercise 5 inductively. But the fact is true even if there are infinitely many

a’s.) Then

A� ¼ VaAa ¼ fxjx A Aa Eag

is convex because for any x; y A A� and any l A ½0; 1�, we have

x; y A Aa; Ea;

and by convexity of Aa,

lxþ ð1� lÞy A Aa; Ea;

and this means

lxþ ð1� lÞy A VaAa ¼ A�:

Hence, x; y A A� implies that lxþ ð1� lÞy A A� for any l A ½0; 1�, and
this is the definition of a convex set.

Chapter 4 Expected Utility

1. A concave utility function can explain why people buy insurance

with a negative expected value. And a convex utility function can ex-

plain why they buy lottery tickets, whose expected value is also nega-

tive. But how would you explain the fact that some people do both

simultaneously?

Solution One explanation is that the utility function looks like an in-

verse S: concave up to a certain point and convex thereafter. Imagine

that w is the inflection point, the wealth level above which u is convex

and below which it is concave. Then, if the decision maker is at w,

considering a major loss (as in the case of insurance), she behaves in a

risk-averse manner, but considering a major gain (as in a lottery), she

behaves in a risk-loving manner.

The problem with this explanation is that it seems unlikely that all

the people who both insure their property and buy lottery tickets are

at the inflection point of their utility function. Another explanation is

that this inflection point moves around with the current wealth level:

the utility function depends on the wealth the individual already has.
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This is very similar to the idea of a reference point (Kahneman and

Tversky 1979). They argued that people respond to changes in the

wealth level rather than to absolute levels of wealth. Moreover, they

suggested that people react differently to gains as compared to losses.

However, they found in their experiments that people are risk-averse

when it comes to gains and risk-loving when it comes to losses. This

appears to be in contradiction to the S-shaped utility function. At the

same time, the sums of gains and losses involved in lotteries and insur-

ance problems are much larger than the sums used in experiments.

Another explanation of the gambling behavior is that gambling is

not captured by expected utility maximization at all. Rather, gambling

has an entertainment value (people enjoy the game) or a fantasy value

(people enjoy fantasizing about what they will do with the money they

win). And these cannot be captured by expectation of a utility function,

which is defined over outcomes alone.

2. Assume that a decision maker’s preference 7 is representable by

median utility maximization. That is, for a function u : X ! R, and a

lottery P A L, define

medPu ¼ max

(
a

�����
X

uðxÞ<a

PðxÞa 1

2

)

and

P7Q , medPubmedQu

for all P;Q A L.

Show that 7 is a weak order but that it violates continuity and

independence.

Solution To see that 7 is a weak order, it suffices to note that it is

defined by maximization of a real-valued function. Since every lottery

P is mapped to

VðPÞ ¼ max

(
a

�����
X

uðxÞ<a

PðxÞa 1

2

)
;

and the decision maker maximizes VðPÞ, the relation is complete and

transitive (as is the relationb on the real numbers).

To see that 7 is not continuous, assume for simplicity that X ¼ R

and uðxÞ ¼ x, and consider the lotteries P, Q, R defined as follows:
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P ¼ 10 0:5

0 0:5

�
:

Q guarantees outcome 5 with probability 1; and R guarantees the out-

come 0 with probability 1. Then

VðPÞ ¼ 10; VðQÞ ¼ 5; VðRÞ ¼ 0;

hence

P � Q � R:

However, for any a A ð0; 1Þ,

VðaPþ ð1� aÞRÞ ¼ 0 < VðQÞ

and

Q � aPþ ð1� aÞR;

which contradicts the continuity axiom.

As for independence, consider the same P, Q, R, and observe that

P � Q;

but if we mix them with R and a ¼ 0:7, we get

Vð0:7Pþ 0:3RÞ ¼ 0;

Vð0:7Qþ 0:3RÞ ¼ 5;

and

0:7Qþ 0:3R � 0:7Pþ 0:3R

in violation of the independence axiom, which would have implied

aPþ ð1� aÞR � aQþ ð1� aÞR:

3. If 7 is representable by median u maximization as in exercise 2,

how unique is u? That is, what is the class of functions v such that me-

dian v maximization also represents7?

Solution In this case, u is unique up to (any) monotone transforma-

tion. The median ranking depends only on the ordering of the various

outcomes, and thus any transformation that preserves this ordering

can also serve as the utility function.
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4. Suppose that the utility function from money, u, is twice differen-

tiable and satisfies u 0 > d > 0 and u 00 < 0. Let X be a random variable

assuming only two values, with EX > 0.

a. Show that for every wealth level W, there exists e > 0 such that

E½uðW þ eXÞ� > uðWÞ:

b. Show that there exists a wealth level W such that for all wbW,

E½uðwþ XÞ� > uðwÞ:

Solution Assume that

X ¼
a p

b 1� p

�

with a > 0 > b and EX ¼ paþ ð1� pÞb > 0. Denote this expectation by

c ¼ EX.

We know that if the utility function were linear ðu 00 ¼ 0Þ, the deci-

sion maker would prefer to add aX to her current wealth level w, for

any a > 0 and any w. This is so because for a linear u,

E½uðwþ aXÞ� ¼ uðwÞ þ aEX > uðwÞ:

For risk-averse decision makers, this may not hold in general.

However, we should expect it to be true if u can be approximated

by a linear function, that is, if the decision maker is roughly risk-

neutral.

In parts 4a and 4b, we have different reasons for thinking of the deci-

sion maker as roughly risk-neutral, that is, to approximating her utility

function by a linear one. In the first case, the approximation is local,

with the tangent to the utility function’s graph as the linear approx-

imation. In the second case, the utility function has a decreasing but

positive derivative, and it therefore has to converge to a constant de-

rivative, that is, to a linear function. More details follow.

Part 4a Here we want to approximate uðxÞ by

vðxÞ ¼ uðWÞ þ ðx�WÞu 0ðWÞ;

that is, by the tangent to the curve of u at W.

To simplify notation, we may change the variable so that W ¼ 0.

(Formally, introduce a new variable y ¼ x�W.) Also, since u is given
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up to a positive linear transformation, no loss of generality is involved

in assuming that uð0Þ ¼ 0 and u 0ð0Þ ¼ 1. Under these assumptions, we

also have

vðxÞ ¼ x:

Thus, the expected v-value of aX is simply ac > 0, for any a > 0.

Differentiability of u means that

uðxÞ � x

x

����
����!x!0 0:

Now consider the expected utility of wþ eX ¼ eX. We have

E½uðeXÞ� ¼ puðeaÞ þ ð1� pÞuðebÞ;

and we wish to approximate it by the expected utility of vðxÞ ¼ x,

which is

E½eX� ¼ peaþ ð1� pÞeb ¼ ec > 0:

Explicitly,

E½uðeXÞ� ¼ puðeaÞ þ ð1� pÞuðebÞ

¼ peaþ p½uðeaÞ � ea� þ ð1� pÞebþ ð1� pÞ½uðebÞ � eb�

¼ ecþ pea
uðeaÞ � ea

ea

� �
þ ð1� pÞeb uðebÞ � eb

eb

� �

¼ e cþ pa
uðeaÞ � ea

ea

� �
þ ð1� pÞb uðebÞ � eb

eb

� �� 	

or

E½uðeXÞ�
e

¼ cþ pa
uðeaÞ � ea

ea

� �
þ ð1� pÞb uðebÞ � eb

eb

� �
:

Since the two expressions in brackets converge to zero as e ! 0, the ex-

pression converges to c > 0. This proves our claim.

The meaning of this result is that if a decision maker has a constant

(risk-free) asset W, and she has the opportunity to invest in an asset X

with positive expected value, she would invest at least some amount

e > 0 in the asset X, even if she is risk-averse.

This conclusion may not be entirely realistic because the expected

utility gain, for a very small e, may not exceed the transaction cost
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(say, of buying an asset), and it may be also just too small for the deci-

sion maker to notice.

Part 4b Since the derivative of the utility function, u 0, is positive and

decreasing (because u is increasing and concave), we know that it con-

verges to a limit:

u 0ðwÞ &w!y db d > 0

(the notation & means ‘‘converges from above’’).

Consider the expected utility of getting the asset X with initial assets

fixed at w:

E½uðwþ XÞ� ¼ puðwþ aÞ þ ð1� pÞuðwþ bÞ:

We wish to show that for a large enough w the expected utility is

higher than EuðwÞ ¼ uðwÞ. That is, we wish to show that the following

expression is positive (for w large enough):

E½uðwþ XÞ� � uðwÞ:

Observe that

E½uðwþ XÞ� � uðwÞ

¼ puðwþ aÞ þ ð1� pÞuðwþ bÞ � ½puðwÞ þ ð1� pÞuðwÞ�

¼ p½uðwþ aÞ � uðwÞ� þ ð1� pÞ½uðwþ bÞ � uðwÞ�:

We know that a difference of the values of a differentiable function be-

tween two points is equal to the distance between the points times the

derivative at some point between them. That is, for w and wþ a, there

exists w 0 A ½w;wþ a� such that

uðwþ aÞ � uðwÞ ¼ au 0ðw 0Þ;

and there also exists w 00 A ½wþ b;w� such that

uðwþ bÞ � uðwÞ ¼ bu 0ðw 00Þ:

Using these, we can write

E½uðwþ XÞ� � uðwÞ

¼ pau 0ðw 0Þ þ ð1� pÞbu 0ðw 00Þ
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¼ pau 0ðw 0Þ þ ð1� pÞbu 0ðw 0Þ þ ð1� pÞb½u 0ðw 00Þ � u 0ðw 0Þ�

¼ cu 0ðw 0Þ þ ð1� pÞb½u 0ðw 00Þ � u 0ðw 0Þ�

¼ u 0ðw 0Þ cþ ð1� pÞb u
0ðw 00Þ � u 0ðw 0Þ

u 0ðw 0Þ

� �
:

As w ! y, w 0;w 00 A ½wþ b;wþ a� also converge to infinity, and u 0ðw 0Þ;
u 0ðw 00Þ ! d. This implies that

u 0ðw 0Þ � u 0ðw 00Þ ! 0;

and because the denominator u 0ðw 0Þb d > 0, the expression in brack-

ets above converges to c > 0. Hence, the entire expression converges to

dc > 0, and for all w from that point on, E½uðwþ XÞ� will be strictly

higher than uðwÞ.
The meaning of this result is that when one becomes very rich, one

tends to be risk-neutral. This may not be realistic because, as Kahne-

man and Tversky pointed out, people react to changes in their refer-

ence point, not to absolute levels of overall wealth.

5. Show that if7 satisfies the vNM axioms, then whenever P � Q,

aPþ ð1� aÞQ7 bPþ ð1� bÞQ iff ab b:

Solution Assume that P � Q. Consider a A ð0; 1Þ. Use the indepen-

dence axiom with P, Q, and R ¼ Q to obtain

aPþ ð1� aÞQ � Q;

and the same axioms with P, Q, and R ¼ P to obtain

P � aPþ ð1� aÞQ:

Thus, whenever P � Q,

P � aPþ ð1� aÞQ � Q:

Next, consider a; b A ð0; 1Þ. If a ¼ b, then the equivalence aPþ ð1� aÞQ
@ bPþ ð1� bÞQ is trivial (because it is precisely the same lottery on

both sides). Assume, then, without loss of generality, that a > b. The

point to note is that bPþ ð1� bÞQ can be described as a combination

of aPþ ð1� aÞQ and Q. Specifically, denote

P 0 ¼ aPþ ð1� aÞQ;
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Q 0 ¼ Q;

g ¼ b

a
A ð0; 1Þ:

Then we have P 0 � Q 0, and by the first part of the proof,

P 0 � gP 0 þ ð1� gÞQ 0;

but

gP 0 þ ð1� gÞQ 0 ¼ g½aPþ ð1� aÞQ� þ ð1� gÞQ

¼ b

a
½aPþ ð1� aÞQ� þ 1� b

a

� 	
Q

¼ bPþ ð1� bÞQ;

and the conclusion aPþ ð1� aÞQ ¼ P 0 � bPþ ð1� bÞQ follows.

6. a. Show that if x; y; z A X satisfy x � y � z (where we abuse notation

and identify each x A X with the lottery Px A L such that PxðxÞ ¼ 1),

there exists a unique a ¼ aðx; y; zÞ such that

axþ ð1� aÞz@ y:

b. Assume that for some x; z A X, we have x7 y7 z for all y A X.

Define

uðyÞ ¼ 1 if y@ x;

uðyÞ ¼ 0 if y@ z;

uðyÞ ¼ aðx; y; zÞ if x � y � z:

Explain why maximization of the expectation of u represents 7.

(Sketch the proof or, even better, write the complete proof formally.)

Solution

Part 6a Consider the sets

A ¼ fa A ½0; 1� j axþ ð1� aÞz � yg

and

B ¼ fa A ½0; 1� j y � axþ ð1� aÞzg:
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We know that 0 A B and 1 A A, and from exercise 5, we also know

that both A and B are contiguous intervals. Obviously, they are dis-

joint. The question is, can they cover the entire segment ½0; 1�, or does
there have to be something in between?

The answer is given by the continuity axiom. It says that both A

and B are open: if a is in A, then for a small enough e, a� e is also in A.

Similarly, if a A B, then for a small enough e, aþ e A B. Together, this

implies that A and B cannot cover all of ½0; 1�, and a point

a A ½0; 1�nðAUBÞ

has to satisfy

axþ ð1� aÞz@ y:

To see that this a is unique, it suffices to use exercise 5. The strict

preference between x and z implies that no distinct a, b can yield an

equivalence

axþ ð1� aÞz@ y@ bxþ ð1� bÞz:

Part 6b Consider a lottery

P ¼ ðp1; x1; p2; x2; . . . ; pn; xnÞ:

Since

x1 @ aðx; x1; zÞxþ ð1� aðx; x1; xÞÞz;

we can replace x1 in the lottery by aðx; x1; zÞxþ ð1� aðx; x1; zÞÞz. More

precisely, the independence axiom says that when we mix x1 (with

probability a ¼ p1) with

p2
1� p1

; x2; . . . ;
pn

1� p1
; xn

� 	
;

we might as well mix aðx; x1; zÞxþ ð1� aðx; x1; zÞÞz with the same lot-

tery (and same a ¼ p1). This gives us a lottery that is equivalent to P

but does not use x1. (It uses x, z, though.)

Continuing this way n times, we replace all the other outcomes by x,

z. If we then calculate the probability of x in this lottery, we find that it

is precisely

Xn
i¼1

piaðx; xi; zÞ ¼
Xn
i¼1

piuðxiÞ;
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that is, the expected utility of the lottery according to the preceding

utility function.

Chapter 5 Probability and Statistics

1. Explain what is wrong with the claim, ‘‘Most good chess players are

Russian; therefore a Russian is likely to be a good chess player.’’

Solution As explained in chapter 5 of the main text, this is a classical

case of ignoring base probabilities, that is, of confusing the probability

of A given B with that of B given A. It is possible that PðAjBÞ is high

while PðBjAÞ is low.

2. When one sails along the shores of the Mediterranean, it seems that

much more of the shoreline has hills and cliffs than one would have

thought. One theory is that the Earth was created with the tourism in-

dustry in mind. Another is that this is an instance of biased sampling.

Explain why.

(Hint: Assume that the Earth is unidimensional and that its surface

varies in slope. To be concrete, assume that the surface is made of the

segments connecting ðð0; 0Þ; ð90; 10ÞÞ and ðð90; 10Þ; ð100; 100ÞÞ, where

the first coordinate denotes distance and the second height. Assume

that the height of the water is randomly determined according to a uni-

form distribution over ½0; 100�. Compare the probability of the shore’s

being at a point of a steep slope to the probability you get if you sam-

ple a point at random (uniformly) on the distance axis.)

Solution The hint here basically gives the answer. Once you draw

the curve, if you select a point at random (with a uniform distribution)

on the x axis, the steep slope has probability of 10 percent of being

chosen. If you select a random point on the y axis (again, using a uni-

form distribution), you get a probability of 90 percent for the steep

slope. Thus, if you look around the Earth from a plane, it seems that

mountains are very rare. But if you pour water (presumably a random

quantity that generates a uniform distribution over the height of the

water surface), you’re much more likely to have the water height be at

a steep slope.

Similarly, if I spend 11 hours and 50 minutes at home, run for ten

minutes to get to my office, spend another 11:50 hours there, and run
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back, people who see me at a random point on the street might think

that I’m running a very hectic lifestyle. But if you randomly sample

me over time, you’re most likely to conclude that I don’t move at all.

3. Comment on the claim, ‘‘Some of the greatest achievements in

economics are due to people who studied mathematics. Therefore, all

economists had better study mathematics first.’’

Solution Again, this is the same issue. It’s possible that the probabil-

ity of mathematical background given achievements in economics is

high, but this doesn’t mean that the probability of economic achieve-

ments given a mathematical background is also high.

4. Consider exercise 5, following (even if you do not solve it), and ex-

plain how many prejudices in the social domain may result from ignor-

ing base probabilities.

Solution Think of a social prejudice, say, associating an ethnic group

with a certain characteristic, and ask whether the prejudice might be

partly driven by ignoring base probabilities.

5. Trying to understand why people confuse PðAjBÞ with PðBjAÞ, it is
useful to see that qualitatively, if A makes B more likely, it will also be

true that B will make A more likely.

a. Show that for any two events A, B,

PðAjBÞ > PðAjBcÞ

iff

PðAjBÞ > PðAÞ > PðAjBcÞ

iff

PðBjAÞ > PðBjAcÞ

iff

PðBjAÞ > PðBÞ > PðBjAcÞ;

where Ac is the complement of A. (Assume that all probabilities

involved are positive, so that all the conditional probabilities are well

defined.)
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b. If the proportion of Russians among the good chess players is

higher than their proportion overall in the population, what can be

said?

Solution

Part 5a Consider the first equivalence,

PðAjBÞ > PðAjBcÞ

iff

PðAjBÞ > PðAÞ > PðAjBcÞ:

The second line clearly implies the first. So let us prove the converse:

assume the first line, and then derive the second.

Bayes’ formula tells us that

PðAÞ ¼ PðAjBÞPðBÞ þ PðAjBcÞPðBcÞ:

Denoting b ¼ PðBÞ, we have PðBcÞ ¼ 1� b, and then

PðAÞ ¼ bPðAjBÞ þ ð1� bÞPðAjBcÞ;

with b A ½0; 1�. That is, the unconditional probability PðAÞ is a weighted

average (with weights PðBÞ, PðBcÞ) of the two conditional probabilities

PðAjBÞ and PðAjBcÞ. The weighted average is necessarily between the

two extreme points. Moreover, if the two are distinct, say, PðAjBÞ >
PðAjBcÞ, and if these are well defined (that is, PðBÞ;PðBcÞ > 0), then

0 < b < 1 and PðAÞ is strictly larger than PðAjBcÞ and strictly smaller

than PðAjBÞ.
Next, we wish to show that if PðAjBÞ > PðAjBcÞ, then we can reverse

the roles of A and B and get also PðBjAÞ > PðBjAcÞ. (Clearly, the last

equivalence is the same as the first, with the roles of A and B

swapped.)

Assume that the probabilities of intersections of A and B and their

complements are given by

B Bc

A p q

Ac r s
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so that

PðAVBÞ ¼ p; PðAVBcÞ ¼ q;

PðAc VBÞ ¼ r; PðAc VBcÞ ¼ s;

with pþ qþ rþ s ¼ 1. For simplicity, assume that p; q; r; s > 0.

Then

PðAÞ ¼ pþ q; PðAcÞ ¼ rþ s

PðBÞ ¼ pþ r; PðBcÞ ¼ qþ s

and

PðAjBÞ ¼ p

pþ r
; PðAjBcÞ ¼ q

qþ s

PðBjAÞ ¼ p

pþ q
; PðBjAcÞ ¼ r

rþ s
:

The condition

PðAjBÞ > PðAjBcÞ

is

p

pþ r
>

q

qþ s
;

and it is equivalent to

pðqþ sÞ > qðpþ rÞ

or

ps > qr;

which is equivalent to

psþ pr > qrþ pr

pðrþ sÞ > rðpþ qÞ

p

pþ q
>

r

rþ s
;

Solutions 91



that is, equivalent to

PðBjAÞ > PðBjAcÞ:

Part 5b We have found that if A makes B more likely (that is, more

likely than B used to be before we knew A, or equivalently, A makes B

more likely than does Ac), the converse is also true. B makes A more

likely (than A was before we knew B, or equivalently, B makes A more

likely than does Bc).

In this case, if the proportion of Russians among the good chess

players is larger than in the population at large, we can say that

� the proportion of Russians among chess players is higher than

among the non–chess players;

� the proportion of good chess players among Russians is higher than

among non-Russians;

� the proportion of good chess players among Russians is higher than

in the population at large.

Importantly, we cannot say anything quantitative that would bring

us from PðAjBÞ to PðBjAÞ without knowing the ratio PðBÞ=PðAÞ.

6. Consider a regression line relating the height of children to that of

their parents. We know that its slope should be in ð0; 1Þ. Now consider

the following generation, and observe that the slope should again be in

ð0; 1Þ. Does this mean that because of regression to the mean, all the

population will converge to a single height?

Solution The answer is negative. The regression to the mean is ob-

served when we try to predict a single case, not the average of the pop-

ulation. Indeed, particularly tall parents will have children that are, on

average, shorter than they are (but taller than the average in the popu-

lation), and particularly short parents will have, on average, taller

children. These would be the extremes feeding the mean. At the same

time, there will be the opposite phenomena. Parents of average height

will have children at both extremes. (In particular, a parent with tall

genes who happened to have been poorly nourished might be of aver-

age height yet still pass on the tall genes.)

Moreover, if one regresses the height of the parents on the height of

the children, one is also likely to find a positive correlation, again with

the regression to the mean. (Recall that correlation does not imply cau-
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sation: the parents’ height is a cause of the height of the children, not

vice versa, but the correlation goes both ways.) If you were to agree

that the children’s generation would have a lower variance than the

parents’ generation, you should also endorse the opposite conclusion.

Chapter 6 Aggregation of Preferences

1. In order to determine a unique utility function for each individual,

to be used in the summation of utilities across individuals, it was sug-

gested to measure an individual’s vNM utility functions (for choice

under risk) and to set two arbitrary outcomes to given values (shared

across individuals). Discuss this proposal.

Solution The proposal is not without merit. Fixing two outcomes

that are considered to be more or less universally agreed-upon values

makes sense. Of course, nothing is ever objective. An individual who

wishes to commit suicide might prefer death to life, so we can’t even

agree on what seems like an obvious ranking. Yet, we can hope that

this is exceptional. Moreover, we can take a paternalistic point of view

and decide to ignore such preferences even if they do exist, ascribing to

the person a preference for life over death, or for more money over less

money, independently of what he actually prefers.

There are, however, two other difficulties with this proposal. First, it

is not clear that the utility function used for describing behavior under

risk is the right one for social choice. Assume that one individual is

risk-averse and another is risk-neutral. We have to share $1 between

them. Assume that we normalize their utility functions so that they

both have uið0Þ ¼ 0 and uið1Þ ¼ 1. If u1 is concave and u2 is linear, the

maximization of

u1ðxÞ þ u2ð1� xÞ

will be obtained where u 0
1ðxÞ ¼ 1. If, for example,

u1ðxÞ ¼
ffiffiffi
x

p
;

we end up giving

x ¼ 0:25 > 0:5

to individual 1. That is, being risk-averse, this individual gets less of

the social resource, and it is not obvious that we would like to endorse

this.
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Finally, once such a procedure is put into place, we should expect

individuals to be strategic about it. If one knows that the responses

one gives to vNM questionnaires eventually determine social policy,

one may choose to provide untruthful reports (say, pretend to be less

risk-averse than one really is) in order to get a larger share of the pie.

2. The Eurovision song contest uses a scoring rule according to which

each country ranks the other countries’ songs and gives them scores

according to this ranking. It has been claimed that the given scores

favor standard songs over more innovative ones. Does this claim make

sense? Is it more convincing when the score scale is convex or concave?

Solution If the score scale is convex, say, 1; 2; 4; 8; 16; . . . , it is worth-

while to be half the time at the higher end of the scale and the other

half at the lower end, as compared to being around the middle all the

time. If you have a choice between a risky song, which might be loved

by some and abhorred by others, or a less risky one, which is likely not

to arouse strong emotions in anyone, you would prefer the riskier

song.

By contrast, a concave scale such as 5; 9; 12; 14; 15; . . . generates the

opposite incentives for similar reasons.

3. It turns out that for two particular individuals, Pareto domination

defines a complete relation. (That is, for every two distinct alternatives,

one Pareto-dominates the other.) Assume that

uðXÞ ¼ fðu1ðxÞ; u2ðxÞÞ j x A Xg

is convex. What can you say about the utility functions of these

individuals?

Solution First, if the set

uðXÞ ¼ fðu1ðxÞ; u2ðxÞÞ j x A Xg

is convex, it has to be a straight line segment (in R2, where the first co-

ordinate is u1ðxÞ and the second is u2ðxÞ). To see this, assume that uðXÞ
is not contained in a segment. Connect two points in uðXÞ. Since the

latter is not included in the line defined by these two points, there are

points off the line. By convexity, there is an entire nontrivial triangle

(with positive area) in uðXÞ. But in such a triangle one can find two

points that are not ranked by Pareto domination. Hence uðXÞ is con-

tained in a segment.
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If the segment has a negative slope, there are again points that are

not ranked by Pareto domination. Hence we conclude that this seg-

ment can be parallel to the x axis, or parallel to the y axis, or it has a fi-

nite but positive slope. In all these cases we conclude that the utility

function of one individual is a linear function of the other (with the

possibility of zero coefficient if the segment is parallel to one of the

axes, making one individual indifferent among all alternatives).

4. Assume that individual i has a utility function ui. For a ¼
ða1; . . . ; anÞ with ai > 0, let

ua ¼
Xn
i¼1

aiui:

Show that if x maximizes ua for some a, it is Pareto-efficient.

Solution Assume that x maximizes ua for some a > 0, but suppose,

by negation, that x is not Pareto-efficient. Then there exists y such that

uiðyÞb uiðxÞ for all i, with a strict inequality for at least one i, say

i ¼ i0. Since we assume that all the coefficients are strictly positive, we

know that ai0 > 0. This means that

uaðyÞ > uaðxÞ;

contrary to the assumption that x is a maximizer of ua.

5. Is it true that every Pareto-efficient alternative maximizes ua for

some a? (Hint: For n ¼ 2, consider the feasible sets

X1 ¼ fðx1; x2Þ j
ffiffiffiffiffi
x1

p þ ffiffiffiffiffi
x2

p
a 1; x1; x2 b 0g

and

X2 ¼ fðx1; x2Þ j x21 þ x22 a 1; x1; x2 b 0g;

where ui ¼ xi.)

Solution The answer is negative, as suggested by the second exam-

ple in the hint. If the feasible set X were convex, the answer would

have been almost positive. To be precise, it would have been positive

if we allowed some ai to be zero. Indeed, for the convex feasible set X2

all points where x1; x2 > 0 are optimal for a utility function

a1u1 þ a2u2;
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with a1; a2 > 0, but for the extreme points ð0; 1Þ, ð1; 0Þ we need to set

one of the ai to zero.

However, with a nonconvex set such as X1, none of the Pareto-

efficient points can be described as a maximizer of a utilitarian function

with a1; a2 > 0.

6. Show that under approval voting, it makes sense for each individ-

ual to approve of her most preferred alternative(s) and not to approve

of the least preferred one(s) (assuming that the voter is not indifferent

among all alternatives).

Solution Assume that a is my preferred alternative. Suppose I am

about to cast a ballot that approves of some set of alternatives B, which

does not contain a. (B may be empty, although under approval voting

an empty set is equivalent to abstention.) Next, consider switching

from the ballot B to BU fag, that is, adding the most preferred alterna-

tive to the set of approved-of alternatives.

Consider two possibilities: (1) The other voters casts ballots that, to-

gether with my vote B, put a among the top alternatives; and (2) the

others’ votes, together with my B, does not put a at the top. In case 1, a

will certainly be at the top; in fact, it will become the unique top alter-

native if it was not the unique one before. Thus, I only stand to gain

from adding a: either it used to be the unique one at the top, and then

my vote does not change that, or else it singles out a as the unique one

among several that used to be equally popular.

In case 2, a was not among the winners of the vote. Adding it to my

ballot B might not change anything or might add a to the set of win-

ners. But in the latter case, it reduces the probability of alternatives I

like less than a in favor of a, which is my most preferred alternative.

Thus, in this case again I can only gain by switching from B to BU fag.

Chapter 7 Games and Equilibria

1. Suppose prisoner’s dilemma is played T times between two players.

Show that playing D is not a dominant strategy but that only Nash

equilibria still result in consecutive play of D.

Solution First, let us show that playing D at the first stage is no

longer dominant. To see this, imagine that the other player’s strategy

is to respond to your first move as follows. If you play C in the first
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stage, he plays C throughout the rest of the game, but if you play D in

the first stage, he plays D in the remaining ðT � 1Þ stages. If T is large

and you are not too impatient, it makes sense to forgo the gain in the

first period in order to get the higher payoffs guaranteed by the other

player’s playing C after that period.

Second, we wish to show that at each Nash equilibrium the players

play only D. We reason from the end back to the beginning. Consider

the last stage, t ¼ T. In this stage there is no future and playing D

is dominant. To be precise, whatever the strategy the other player

chooses, a player’s only best response is to play D (with probability 1)

at this last node.

Now consider the penultimate stage, t ¼ T � 1. Can it be the case

that a player plays C at this stage? The answer is negative. Suppose

you decided to play C. Why wouldn’t you switch to D, which gives

you a strictly higher payoff at stage t ¼ T � 1? The only reason can be

that this switch will be punished by the other player’s reply in the fol-

lowing stage ðt ¼ TÞ. However, you already know that the other player

will play D. Differently put, for there to be a punishment threat, it

should be the case that if you do stick to the presumed equilibrium

strategy (and play C), you will be rewarded by the other player’s play-

ing C (or at least C with a positive probability) in the last stage. But we

have concluded that any node that can be reached by the equilibrium

strategies is one in which the players play D (with probability 1).

In the same manner we continue and prove, by induction on kb 1,

that at any node that is in stage T � k;T � k þ 1; . . . ;T and that is

reached (with positive probability) by the equilibrium play, the players

play D. Applying the conclusion to k ¼ T � 1 completes the proof.

2. Consider the following story. In a certain village there are n married

couples. It is the case that if one married woman is unfaithful to her

husband, all other men are told about it immediately but not the hus-

band. This fact is commonly known in the village. The law of the land

is that if a husband knows that his wife has been unfaithful to him, he

must shoot her to death on the same night. But he is not allowed to

hurt her unless he knows that for sure.

One day a visitor comes to the village, gets everyone to meet in the

central square, and says, ‘‘There are unfaithful wives in this village.’’

He then leaves.

That night and the following night, nothing happens. On the third

night, shots are heard.
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a. How many shots were heard on the third night?

b. What information did the visitor add that the village inhabitants

did not have before his visit?

Solution

Part 2a There were three shots. The reasoning is as follows. Let k be

the number of unfaithful wives. Assume first that k ¼ 1, that is, there

is exactly one unfaithful wife in the village. In this case, all men apart

from her husband know that there are unfaithful wives in this village.

But the husband doesn’t know whether there are ðk ¼ 1Þ or there aren’t
ðk ¼ 0Þ. Importantly, this husband knows that the other married

women are faithful to their husbands because he knows that, were one

of them unfaithful, he would know about her. But he knows of none,

and he knows that he knows of none. So he can conclude that the other

women are faithful. Hearing the news that some women are not faith-

ful ðkb 1Þ proves to him that his wife isn’t faithful to him, and he will

kill her on the first night.

Next, assume that there are exactly two unfaithful wives ðk ¼ 2Þ,
them A and B. The husband of each knows that there are some ðkb 1Þ
unfaithful wives because he knows for sure that the other wife (not his

wife) is unfaithful. That is, A’s husband knows that B is unfaithful but

doesn’t know whether A is, and B’s husband knows that A is unfaith-

ful but doesn’t know whether B is. Hence, the husbands of both A and

B are not too excited when they hear that there are unfaithful wives in

this village. Each should say to himself, ‘‘Well, I don’t know about my

wife, but the fact that some wives are unfaithful is not news to me.’’

However, A’s husband should also reason as follows: ‘‘If my wife, A,

were faithful to me, then B would be the only unfaithful wife in the vil-

lage (that is, k ¼ 1). In this case, by the reasoning for the case k ¼ 1, B’s

husband just learned that B is unfaithful to him, and he’ll shoot her to-

night.’’ Anticipating the prospect of a sensational killing, A’s husband

goes to sleep. In the morning, he is awakened by the birds chirping

rather than by the sound of a shot. And then he must reason, ‘‘B’s hus-

band didn’t shoot her last night, so that means he’s not sure that she’s

unfaithful. Therefore, he already knew there had been some unfaithful

wives, that kb 1. But, not knowing about B herself, he could only have

known that my wife, A, has been unfaithful to me.’’ Equipped with this

sad conclusion, A’s husband waits until night falls and then shoots his

wife. By the same reasoning, so does B’s husband.
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Similarly, one can prove by induction that if there are exactly k un-

faithful wives, then all their husbands will know for sure that their

wives are unfaithful on the kth night and shoot them on that night. So,

if the shots were heard on the third night, there were exactly three un-

faithful wives in the village.

Part 2b The information added by the visitor was not ‘‘there are un-

faithful wives in this village.’’ Indeed, with kb 2, all husbands know

that there are some unfaithful wives. The additional piece of informa-

tion was that ‘‘there are unfaithful wives in this village’’ is common

knowledge. That is, by making a public declaration, the visitor ensured

that an already known fact was also commonly known.

To see this, observe that if k ¼ 1, everyone but one husband knows

the proposition p ¼ ‘‘there are unfaithful wives in this village.’’ In this

case, this husband does learn something from the declaration. If, how-

ever, k ¼ 2, everyone knows p, but it is not true that everyone knows

that everyone knows p. As analyzed, if the only two unfaithful wives

are A and B, then A’s husband knows p, and he also knows that all

other husbands apart from B’s husband know p, but he does not know

that B’s husband knows p. As far as he knows, his wife, A, may be

faithful, and then B’s husband would not know whether p is true or

not (whether B is faithful or not). Similarly, if k ¼ 3, everyone knows

p, and everyone knows that everyone knows p, but it is not true that

(everyone knows that)3 p. Thus, for any k, some hierarchy of knowl-

edge is missing, and this level is what the visitor adds by his public

announcement.

3. Consider an extensive form game, and show how a player might

falsify common knowledge of rationality (by deviating from the back-

ward induction solution). Show an example in which it may be in the

player’s best interest to do so.

Solution It will be helpful to draw a game tree. Consider a game in

which player I can choose to play down ðDÞ and end the game with

payoffs ð11; 5Þ, or to play across ðAÞ. If she plays A, it’s player II’s turn.
He can choose to play down ðdÞ and end the game with payoffs ðx; 9Þ,
or to play across ðaÞ, in which case it’s player I’s turn again. In the last

stage, player I has to choose between down ðdÞ with payoffs ð9; 0Þ and
across ðaÞ with payoffs ð10; 10Þ.

The backward induction solution is as follows. At the last node

player I would play across ðaÞ because 10 > 9. Given that, at the
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second node player II should play across ðaÞ because he gets 10 by the

backward induction solution if he continues and only 9 if he stops the

game. Given that, we conclude that at the first node player I should

play down ðDÞ because this guarantees 11 and the backward induction

analysis says she will get only 10 if she plays across.

However, what should player II think if he finds himself playing?

The backward induction solution says that he will not have to play

at all. So there is something wrong in the assumptions underlying

the backward induction solution. What is it? We don’t know. Maybe

player I is not rational? Maybe she’s crazy? In this case, can player II

trust that she will indeed prefer 10 to 9 at the last stage? Maybe she

won’t, and then player II will get only 0? So perhaps it is safer for

player II to play down ðdÞ, guaranteeing 9, rather than taking a lottery

with outcomes 10 and 0 with the unknown probability that player I is

rational?

Indeed, if x is rather low, this would make a lot of sense. But what

happens if x ¼ 15? In this case, this payoff is the best outcome for

player I throughout the game. In this case it is in player I’s interest to

sow doubt about her own rationality in player II’s mind. If player II is

sure that player I is rational, he will play across. But if player I man-

ages to convince player II that she is crazy, she will be better off. But

then again, perhaps player II will see through this ruse and not be

scared? Maybe he’ll conclude, ‘‘Oh, I know the game she’s playing.

She is trying to scare me in order to get the best payoff for herself. But

I will not be tricked. I’ll play across, and I’m sure that when it’s her

choice in the final node, she’ll be rational. . . . Or will she?’’

Indeed, it’s not clear how players revise their theory of the game

(and of the other players’ rationality) in such situations. We can see

such examples in real life, for instance, political situations where one

may be better off if others think one is crazy, but pretending to be

crazy is not easy if the motives for doing so are too transparent.

4. Compute the mixed strategies equilibria in the following games (see

section 7.3 of main text):

Game 6. Pure Coordination 1

R L

R ð1; 1Þ ð0; 0Þ
L ð0; 0Þ ð1; 1Þ
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Game 7. Pure Coordination 2

A B

A ð3; 3Þ ð0; 0Þ
B ð0; 0Þ ð1; 1Þ

Game 8. Battle of the Sexes

Ballet Boxing

Ballet ð2; 1Þ ð0; 0Þ
Boxing ð0; 0Þ ð1; 2Þ

Solution Consider game 6 first. Assume that player I plays R with

probability p and L with probability ð1� pÞ. Assume that player II

plays R with probability q and L with probability ð1� qÞ. If player I

uses a truly mixed strategy, that is, if 0 < p < 1, it has to be the case

that the expected utility she gets from both pure strategies is the same.

To see this, observe that the expected utility is linear in p:

EU1ððp; 1� pÞÞ ¼ pEU1ðð1; 0ÞÞ þ ð1� pÞEU1ðð0; 1ÞÞ:

If the expected utility from playing R, EU1ðð1; 0ÞÞ were higher than the

expected utility from playing L, EU1ðð0; 1ÞÞ, the only optimal response

for player I would be p ¼ 1. Conversely, if EU1ðð1; 0ÞÞ < EU1ðð0; 1ÞÞ,
the only optimal response would be p ¼ 0. Hence the only way that

p A ð0; 1Þ can be optimal is if

EU1ðð1; 0ÞÞ ¼ EU1ðð0; 1Þ:

In this case player I is completely indifferent between playing

ðp; 1� pÞ and playing ð1; 0Þ, ð0; 1Þ or any other mixed strategy. This

may sound a little weird, and indeed some people are not completely

convinced by the concept of mixed strategy Nash equilibria in games

that are not zero-sum (where there exist other justifications of the con-

cept). But let’s acknowledge these doubts and move on.

Given that player II plays ðq; 1� qÞ, we can compute these expected

utilities:

EU1ðð1; 0ÞÞ ¼ q� 1þ ð1� qÞ � 0 ¼ q;

and

EU1ðð0; 1ÞÞ ¼ q� 0þ ð1� qÞ � 1 ¼ 1� q;

Solutions 101



and the equation EU1ðð1; 0ÞÞ ¼ EU1ðð0; 1ÞÞ means that q ¼ 1� q, or

q ¼ 0:5. The same calculation applies to player II, given that player I

plays ðp; 1� pÞ, and it yields p ¼ 0:5.

For game 7 the same type of calculations (with the same notation for

p and q, though the names of the pure strategies are different) yield

EU1ðð1; 0ÞÞ ¼ q� 3þ ð1� qÞ � 0 ¼ 3q;

and

EU1ðð0; 1ÞÞ ¼ q� 0þ ð1� qÞ � 1 ¼ 1� q;

and the equation EU1ðð1; 0ÞÞ ¼ EU1ðð0; 1ÞÞ implies 3q ¼ 1� q, or

q ¼ 0:25.

Similarly, we get p ¼ 0:25.

In game 8 we have (again, with the same meaning of p and q)

EU1ðð1; 0ÞÞ ¼ q� 2þ ð1� qÞ � 0 ¼ 2q;

EU1ðð0; 1ÞÞ ¼ q� 0þ ð1� qÞ � 1 ¼ 1� q;

and 2q ¼ 1� q, or q ¼ 1
3 , but for player II we get

EU2ðð1; 0ÞÞ ¼ p� 1þ ð1� pÞ � 0 ¼ p;

EU2ðð0; 1ÞÞ ¼ p� 0þ ð1� pÞ � 2 ¼ 2ð1� pÞ;

and p ¼ 2ð1� pÞ, or p ¼ 2
3 . That is, each player chooses the strategy

that corresponds to his/her preferred equilibrium with probability 2
3 .

5. Show that a 2� 2 game in which all payoffs are different cannot

have precisely two Nash equilibria.

Solution Let there be a game

L R

T a, a b, b

B c, g d, d

Since all payoffs are different, we may assume without loss of gener-

ality that a > c. Otherwise, c > a, and we can rename the strategies to

make a the higher payoff.
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Consider b and d. If b > d, then strategy T strictly dominates strategy

B for player I. In this case, in each equilibrium player I will play T with

probability 1. And then the only equilibrium will be obtained when

player II plays L (with probability 1) if a > b, or R (with probability 1)

if a < b. That is, if b > d, the game has a unique equilibrium in pure

strategies and no equilibria in mixed strategies. The number of equilib-

ria is then one.

Next, consider the case in which b < d.

Recall that the vNM utility functions are given up to multiplication

by a positive constant and an addition of a constant. In fact, if we only

consider this particular game, we can also add an arbitrary constant to

the payoffs of player I in each column and an arbitrary constant to the

payoffs of player II in each row. (Such a shift of the utility function in a

given column for player I or in a given row for player II does not

change the best response set. A strategy is a best response for a player

after such a shift if and only if it used to be a best response before the

shift.)

Hence, we can assume without loss of generality that c ¼ 0 (by sub-

tracting c from player I’s payoffs in column L) and that b ¼ 0 (by sub-

tracting b from player I’s payoffs in column R) and obtain the game

L R

T a, a 0, b

B 0, g d, d

with a; d > 0. (Technically speaking, it is now no longer true that all

payoffs are different, but what is important is that the payoffs can be

compared by a given player who considers switching a strategy. That

there are two zeros in this game does not change the fact that there are

no indifferences when players compare their payoffs, given different

choices of their own but the same choice of the other.)

We now turn to consider player II’s payoffs. If a < b and g < d, then

R is a strictly dominant strategy for player II and the unique equilib-

rium is ðB;RÞ. Similarly, if a > b and g > d, then L is a dominant strat-

egy and the unique equilibrium is ðT; LÞ. Thus we are left with the

interesting case in which player II does not have a dominant strategy

either. This means that either a < b and g > d, or a > b and g < d.

Note that these cases are no longer symmetric. If one switches the

names of the columns, one changes some of the assumptions about

player I’s payoffs.
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We may still simplify notation by assuming that at least one zero

appears among player II’s payoffs in each row. We can decide, for in-

stance, that b ¼ 0 and consider the cases in which a is positive or nega-

tive. Or we may choose to work only with non-negative payoffs, and

set a different parameter to zero each time. Let’s do this, one case at a

time.

In case 1 we may assume without loss of generality that a ¼ d ¼ 0

and we get the game

L R

T a, 0 0, b

B 0, g d, 0

with a; d; b; g > 0. In this case there is no pure strategy Nash equilib-

rium. An equilibrium in mixed strategies ððp; 1� pÞ; ðq; 1� qÞÞ will

have to satisfy

qa ¼ ð1� qÞd;

ð1� pÞg ¼ pb;

that is,

g

b þ g
;

b

b þ g

� 	
;

d

aþ d
;

a

aþ d

� 	� 	

is the unique mixed strategy Nash equilibrium, and the unique Nash

equilibrium overall.

In case 2 we may assume that b ¼ g ¼ 0 and the game is as follows:

L R

T a, a 0, 0

B 0, 0 d, d

with a; d; a; d > 0.

In this case, both ðT; LÞ and ðB;RÞ are pure strategy Nash equilibria.

Are there any mixed ones? If ððp; 1� pÞ; ðq; 1� qÞÞ is a Nash equilib-

rium in mixed strategies, it will have to satisfy

qa ¼ ð1� qÞd;

pa ¼ ð1� pÞd:

Indeed,
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d

aþ d
;

a

aþ d

� 	
;

d

aþ d
;

a

aþ d

� 	� 	

is a mixed strategy Nash equilibrium. Overall, there are three equilib-

ria in the game.

To conclude, if one of the players has a dominant strategy, the game

will have a unique Nash equilibrium, and it will be pure. Otherwise,

there might be a unique Nash equilibrium in mixed strategies (if the

game is of the type of matching pennies, or three equilibria of which

two are pure (if the game is a coordination game or a game of battle of

the sexes).

6. A computer sends a message to another computer, and it is com-

monly known that the message never gets lost and that it takes 60 sec-

onds to arrive. When it arrives, it is common knowledge (between the

two computers) that the message has indeed been sent and has arrived.

Next, a technological improvement was introduced, and the message

can now take any length of time between 0 and 60 seconds to arrive.

How long after the message was sent will it be commonly known that

it has been sent?

Solution Suppose that the message was sent at time 0 (measured in

seconds) and arrived at time t, 0a ta 60. At time t, the receiver knows

that the message has arrived. Does the sender know that it has arrived?

If t ¼ 60, the sender will know that the message has arrived because 60

seconds is the upper bound on the transmission time. But if t < 60, the

receiver will know it sooner, but not the sender. The sender will have

to wait until the 60th second to know that the message did indeed

arrive.

When will the receiver know (for sure) that the sender knows (for

sure) that the message has arrived? The receiver knows about the anal-

ysis in the previous paragraph, so he knows that the sender is going to

wait 60 seconds from the time she sent the message until she can surely

say that the message has arrived. When was the message sent? The

receiver can’t know for sure. Getting the message at time t, he has to

consider various possibilities. It might have been a quick transmission,

sent at t and arriving immediately, or a sluggish one, sent at t� 60 and

taking the maximal length of time, 60 seconds. When will the receiver

know that the sender knows that the message has been sent? The re-

ceiver will have to wait 60 seconds after transmission time, which is

somewhere between t� 60 and t. The maximum is obtained at t. That
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is, after having received the message, the receiver has to wait another

60 seconds to know for sure that the sender knows for sure that the

message has arrived.

When will the sender know that the receiver knows that the sender

knows that the message has arrived? She knows the previous analysis,

that is, she knows that the receiver has to wait 60 seconds from the

time that the message has actually arrived until he (the receiver) knows

that she (the sender) knows that it has arrived. Sending the message at

time 0, she has to consider the maximal t, that is, t ¼ 60, and add to it

another 60 seconds, and then, only at t ¼ 120, can she say that she

knows that he knows that she knows that the message has arrived.

And when will the receiver know that the sender knows that the re-

ceiver knows that the sender knows that the message has arrived? The

receiver has to wait 120 seconds from the time the message has been

sent, which means, 120þ 60 ¼ 180 seconds from the time he received

it. Taking this into account, the sender knows that she has to wait

180þ 60 ¼ 240 seconds from the time of transmission until she knows

that he knows that. . . . In short, the fact that the message has arrived

will never be common knowledge.

Chapter 8 Free Markets

1. Discuss the reasons that equilibria might not be efficient in the fol-

lowing cases:

a. A physician should prescribe tests for a patient.

b. A lawyer assesses the probability of success of a legal battle.

c. A teacher is hired to teach a child.

Solution All these cases are examples of principal agent problems

with incomplete information. A physician is an expert hired by the pa-

tient (directly or indirectly). The physician knows more than the pa-

tient does about the patient’s condition, possible treatments, and so

on. Consider a test that the physician might prescribe, which is very

expensive or unpleasant. If he bears no part of the cost, he might be

overly cautious and prescribe the test simply because he would feel

more comfortable with the additional information. The patient may

prefer to forgo the test and avoid the cost or pain involved, but she

does not have the information to make this decision. If, however, the

physician does bear some of the cost, say, he has a budget for tests,

then he has an incentive to save money even if the test is necessary.
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Again, the patient can’t directly check whether the physician’s rec-

ommendation is the same recommendation the patient would have

arrived at, given the information. Thus, in both systems, equilibria

may not be Pareto-efficient.

Similar problems arise when the lawyer, an expert, has to advise the

client whether to pursue a legal battle. If the only costs and benefits

involved are monetary, it is possible to agree on a fee that is propor-

tional to the client’s outcome and thus to align the interests of the in-

formed agent (the lawyer) with the uninformed principal (the client).

But since there are other costs (such as the psychological cost of uncer-

tainty), one may again find that equilibria are inefficient.

Finally, in education we find a double agent problem. The parent

hires the teacher to teach, but both the child and the teacher would pre-

fer to tell each other jokes rather than work. The parent may condition

the teacher’s compensation on the child’s performance on a certain test,

but it’s hard to disentangle the child’s talent and the teacher’s efforts

and to make the compensation proportional to the latter. Again, ineffi-

ciency is to be expected.

2. The dean has to decide whether to give a department an overall

budget for its activities or split the budget among several activities

such as conferences, visitors, and so forth. Discuss the pros and cons

of the two options.

Solution The argument for an overall budget is the classical argu-

ment for free markets. Rather than a central planner, who dictates the

details of economic activities, the free market intuition suggests that

we decentralize the decision-making process. Thus, the dean might

say, ‘‘Who am I to judge what’s the best trade-off between inviting vis-

itors and going to conferences? Let the department make these choices.

I should trust that the department knows best how useful conferences

are, which ones should be attended, which visitors should be invited,

and so on.’’

However, this free market intuition should be qualified. First, there

is a problem of incomplete information, as in any principal agent prob-

lem. The principal may not know whether the faculty members go to a

conference on a charming Mediterranean island because it’s the most

important conference in the field or because its location is nice. Since

the faculty’s payoff is not precisely aligned with the school’s, it’s also

not clear whether the right trade-off has been struck between traveling
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and inviting visitors, and whether the choice of visitors was perfectly

objective, and so on.

Besides this, there may be problems of externalities involved. For ex-

ample, inviting visitors may benefit other departments, and this exter-

nality may not be internalized by the department making the decision.

3. Consider the student course assignment problem described in sec-

tion 8.4 of the main text. Show that for every n it is possible to have

examples in which n is the minimal number of students that can find a

Pareto-improving reallocation of courses.

Solution Let there be n students and n courses, denoted fa1; . . . ; ang.
Consider the preferences shown in the following table. Each column

designates a student, and the courses in that column are listed from

top (most preferred) to bottom (least preferred):

1 2 3 . . . n

a1 a2 a3 . . . an
a2 a3 a4 a1
a3 a4 a5 a2
. . . . . .

an a1 a2 an�1

That is, the preferences of individual i are obtained from those of indi-

vidual i� 1 by taking the best alternative in the eyes of i� 1 and mov-

ing it to the bottom without changing the ranking of the other pairs of

alternatives.

Now assume that the allocation is such that each individual has her

second-best choice. That is, 1 has a2, 2 has a3, and so on (with a1 in the

hands of individual n). Clearly, there is a Pareto-improving trade by

which each gets her most preferred alternative instead of her second

most preferred. However, no proper subset of the individuals can ob-

tain a Pareto-improving trade. To see this, assume that a particular in-

dividual is not among the traders. Without loss of generality, assume

that this is individual n. In this case, individual 1 cannot get a1, which

is the only alternative she is willing to trade for what she has, namely,

a2. This means that individual 1 will also not be part of the trade. This,

in turn, means that individual 2 cannot be convinced to give up her

current holding, a3, and so on.
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