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S2.1 Some Examples of Power Sets

Example S2.1 Find the power set of ∅.

Solution

The only possible subset of ∅ is itself and so P(∅) = {∅}. Note that using the
formula for finding the number of subsets of a set, we have n = 0 and 20 = 1.

Example S2.2 Find the power set of X = {a}.

Solution

A set with only one element is usually called a singleton; it has two subsets, so
P(X) = {{a}, ∅} = {X, ∅}.

Example S2.3 Find the power set of Z+ = {1, 2, 3, . . .}.

Solution

We cannot construct the power set of Z+ by enumeration, but we can define it by

P(Z+) = {X : X ⊆ Z+}

the set of all possible sets of positive integers.
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S2.2 Proof of Theorem 2.1
The proof is by contradiction. Suppose that

√
2 ∈ Q. Then there exist integers p

and q such that p/q = √
2, where we choose the smallest such p and q. Now

p2/q2 = 2, or p2 = 2q2, so p2 must be an even number. Since the square of an
odd number is always odd, p is even, and we may write p = 2r , where r is also
an integer. We then have

p2 = 4r2 = 2q2

and so q2 = 2r2. Clearly, q2, and hence q, must be even. This result contradicts
the assumption that p and q were the smallest numbers to give p/q = √

2. Thus
the statement

√
2 ∈ Q must be false.

This result establishes the fact that the line in figure 2.6 must contain at least one
number that is not rational. Alternatively, it shows that if we wish to solve a simple
equation such as

x2 − 2 = 0

then we need a set of numbers larger than Q, since x cannot belong to Q. In fact
there are a large number of irrational numbers.

S2.3 The Completeness Property of R

We have already indicated that the set of real numbers R has the property that
there are no “gaps.” That is, between any two points (numbers) on the real line,
every point is occupied by a number that is either a rational number or an irrational
number. In other words, corresponding to each point on the real line there is a real
number, and vice versa. This is known as the completeness property, and we can
express this property formally by considering the concepts of the greatest lowest
bound and the least upper bound of a subset of R. We develop these ideas in the
following definitions.

D e f in i t i o n S2 . 1 A set S ⊂ R is bounded above if there exists b ∈ R such that for all x ∈ S, x ≤ b;
b is then called an upper bound of S. A set T is bounded below if there exists
a ∈ R such that for all x ∈ T , x ≥ a; a is then called a lower bound of T .
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For example, the set Z+ = {1, 2, 3, . . .} is bounded below but unbounded
above. The set R̄+ = R−R+ = {x ∈ R : x < 0} is unbounded below but bounded
above.

If a subset of R has an upper (lower) bound, it has an infinity of upper (lower)
bounds. This follows from the transitivity property of the inequality relation (part
(ii) of theorem 2.2), since if x ∈ S and x ≤ b and b ≤ y, then x ≤ y and y is
also an upper bound of S. However, we are interested in just one upper bound of
S—the smallest upper bound, called the supremum—and just one lower bound
of S—the largest lower bound, called the infimum.

D e f in i t i o n S2 . 2 The supremum of a set S, written sup S, has the properties:

(i) x ≤ sup S for all x ∈ S.
(ii) If b is an upper bound of S, then sup S ≤ b.

D e f in i t i o n S2 . 3 The infimum of a set T , written inf T , has the properties:

(i) x ≥ inf T for all x ∈ T .

(ii) If a is a lower bound of T , then a ≤ inf T .

Here we see that inf Z+ = 1 while sup Z+ does not exist; inf R̄+ does not
exist while sup R̄+ = 0. These show that the inf and sup of a subset of R may or
may not exist, and when either of these does exist, it may or may not be an element
of the set. (Look at the sup of R̄+.)

Theorem S2.1 If the sup or the inf of a subset of R exists, then it is unique.

The completeness property of R may now be stated as

Theorem S2.2 Every nonempty subset of R that has an upper bound has a supremum (least
upper bound) in R. Similarly every nonempty subset of R that has a lower bound
has an infimum (greatest lower bound) in R.

See the application of this theorem, for sup S, in figure S2.1.
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S2.4 Proofs,The Necessary and
Sufficient Conditions

Why should one person ever accept as true a statement made by someone else?
The usual response would be, “Prove it!” If the statement is a purely factual one,
for example, “prices have risen,” then proof would take the form of some factual
evidence that substantiates the statement. Economics is more often concerned,
however, with deductive statements such as the if . . . then statement:

–∞ ∞
set of upper 
bounds of S

sup S

S

Figure S2.1 Completeness
property of R

If the money supply increases, then the price level will rise.

That is to say, increases in the money supply lead to inflation. A stronger statement
is the following:

The price level rises if and only if the money supply increases.

That is to say, only increases in the money supply lead to inflation. We are inter-
ested in how statements of this type are proved.

It is useful to express such statements in a general symbolic notation. We
introduce the symbol “⇒” for the relation “if then,” and the symbol “⇔” for “if
and only if.” We use capital letters such as P and Q to stand for basic statements
such as “the money supply increases” (P ) or “prices rise” (Q). We could then
write the statements above as

P ⇒ Q

P ⇔ Q

There are several ways in which these statements can be read, and it is useful
to spell these out:

P ⇒ Q can be read

• if P then Q
• P implies Q
• P is a sufficient condition for Q
• Q is a necessary condition for P
• P only if Q

“P is sufficient for Q,” means that the truth of P guarantees the truth of Q.
Q is always true when P is true. It follows that if Q is not true, then P cannot be
true. Thus it is necessary that Q is true for P to be true. In other words, P can be
true only if Q is true.

Q'

U

P'

Figure S2.2 P ⇒ Q means
P ′ ⊆ Q′ We illustrate this in the Venn diagram of figure S2.2.
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The rectangle in figure S2.2 denotes the universal set of all possible cases.
The set P ′ corresponds to the subset of cases for which the statement P is true and
the set Q′ the set of cases for which the statement Q is true. Then P ⇒ Q can be
interpreted as P ′ ⊆ Q′, since, whenever we have a case for which P is true, Q is
also true, so P ′ must be contained in Q′. It follows that for a case to be in P ′, it
must also be in Q′, so it is necessary to be in Q′ in order to be in P ′.

P ⇔ Q can be read

• P if and only if Q
• P is equivalent to Q
• P is a necessary and sufficient condition for Q
• P implies and is implied by Q

The last two statements reflect the fact that P ⇔ Q means the same thing as
“P ⇒ Q and Q ⇒ P .” So, in set theoretic terms, P ′ ⊆ Q′ and Q′ ⊆ P ′ so that
P ′ = Q′ (see section 2.1).

The following economic example illustrates how we might prove a statement
P ⇒ Q.

A Simple Model of the Quantity Theory of Money

We wish to prove the statement, “If the money supply increases, then the price level
rises.” Suppose that we have the following theory of the demand for money. The
total amount of money that households in the economy want to hold is proportional
to their level of nominal income. Nominal income is simply the product of real
income (income measured at constant prices) Y and the price level P . So demand
for money is kPY , where k is some positive constant. Now suppose that real
income is fixed (e.g., because the economy is fully employing all of its resources)
and the price level is free to vary. Finally, we assume that in equilibrium, money
demand equals money supply M , or

M = kPY , k > 0

Money supply is taken to be determined exogenously by the government. With k

and Y constant, we can write this equation simply as

P = aM, a ≡ 1

kY
(a constant)

It is obvious from this that an increase in M , say from M1 to M2, leads to a change
in price of

P2 − P1 = a(M2 − M1) > 0
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Thus we have proved that if the money supply increases, the price level rises.
We want to illustrate two things with this example. First, it shows that proofs

of propositions in economics must be model-specific. The proposition follows
logically from the assumptions of our model. We have not proved that actual
increases in the money supply lead to price rises—that is a matter for statistical
and econometric analysis.

Second, the proof is an example of a direct proof. The following are examples
of indirect proof.

Proof of the Contrapositive Proposition

The contrapositive statement to P ⇒ Q is “not Q ⇒ not P .” In our example this
would be:

If prices do not rise, then there is no increase in the money supply.

A contrapositive statement is equivalent to the original statement, or

(P ⇒ Q) ⇔ (not Q ⇒ not P)

and so proving the contrapositive is equivalent to proving the original proposition.
To illustrate, our theory tells us that

P2 − P1 = a(M2 − M1)

The contrapositive is that P2 = P1, so we must have M1 = M2 since a > 0.

Proof by Contradiction or the “Reductio ad absurdum”

Let us assume that P is true but that Q is false (i.e., that Q does not follow from P ),
or P ⇒ not Q. We need to show that this leads to a contradiction or a statement
that is false. To illustrate with our example, we assume that M2 − M1 > 0 but
P2 −P1 ≤ 0. In our theory, these can only be true at the same time if a ≤ 0, which
is a contradiction to our assumption that a > 0.

P R A CT I C E E X E R C I S E S

S2.1. The equilibrium price in a model of a simple market is found by setting
supply equal to demand. Assuming that price can never be negative, show
which one of the following propositions is true and which one is false:
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(a) If the demand function in a market is

D = a − bp, a, b > 0

and the supply function is

S = α + βp, α, β > 0

then an equilibrium price exists.

(b) If the demand and supply functions are as in part (a) and a > α, then
an equilibrium price exists.

S2.2. Prove by contradiction that the empty set is a subset of every subset of
some universal set.

S2.3. The overall effect of a change in the price of a good on the demand for
it is the sum of two separate component effects: The substitution effect
(demand for the good will increase when price falls because it is now
cheaper relative to its substitutes), and the income effect (a fall in the price
of a good increases the consumer’s real income, leading to an increase in
demand if the good is a normal good and a fall in demand if the good is
an inferior good).

(a) Prove the following statements using each of the three methods of
proof discussed in this section:

(i) A sufficient condition for the demand for a good to increase
when its price falls is that it is a normal good.

(ii) A necessary but not sufficient condition for the demand for a
good to decrease when its price falls is that it is an inferior
good.

(b) In a Venn diagram, illustrate the relationships among the following
four sets:

(i) The set of goods for which demand increases when prices fall

(ii) The set of goods for which demand falls when prices fall

(iii) The set of normal goods

(iv) The set of inferior goods



8 CHAPTER S2 REVIEW OF FUNDAMENTALS

Figure S2.3 Venn diagram for
exercise S2.3

Solutions

S2.1. Setting demand equal to supply, we obtain the equilibrium price p∗ = a−α
b+β

.
Since p∗ cannot be negative, an equilibrium price will only exist when
a ≥ α. Hence proposition 1 is false and proposition 2 is true.

S2.2. Let S ⊂ U , and S̄ the complement of S. Assume {} ⊂ S. Then {} ⊂ S ∩ S̄ ;
but then S̄ cannot be the complement of S, since, by definition, S∩ S̄ = {}.

S2.3. (a) Proof of statement (i):
A sufficient condition for the demand for a good to increase when its

price falls is that it is a normal good. DenotingA: “The good is normal” and
B: “The demand for the good increases when its price falls,” the statement
can formally be written as A implies B. Now we are asked to prove it
in the following ways: direct proof: A implies B; proof by contrapositive
proposition: not B implies not A; and proof by contradiction: A implies
not B leads to a contradiction.

• Direct proof: A implies B. When the price of the good falls, the con-
sumer’s real income increases. Since the good is normal by assumption,
this signifies that the income effect is an increase in the demand for the
good. The substitution effect has the same consequence: The fall in
price leads to increased demand. Thus the total effect must be that the
demand of the good rises.

• Proof of the contrapositive proposition: not B implies not A. If the de-
mand for the good decreases when its price falls, it must be the income
effect that causes decreased demand because the substitution effect al-
ways leads to increased demand. Since the fall in prices increases real
income, the good must be inferior, that is, not normal.

• Proof by contradiction: A implies not B leads to a contradiction. A fall
in the price of the good leads to an increase in real income. Because the
good is normal by assumption, the income effect leads to an increase in
demand for that good. If the demand for the good decreases when the
price falls, this can only be due to the substitution effect. This contradicts
the assumption that the substitution effect always leads to an increase
in demand for a good whose price has fallen. Thus it must be true that
when the good is normal, the demand rises when its price falls.

Proof of statement (ii):
A necessary but not sufficient condition for the demand for the good

to decrease when its price falls is that it is an inferior good. Since the good
is either normal or inferior, and its quantity demanded either falls or rises
when its price falls (for simplicity we ignore the case where the demand
stays the same), the second statement is simply: not B implies not A. But
this was just proved.
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(b) In the Venn diagram of figure S2.3, the rectangle shows the universal
set, the set of all goods. Subset A is the set of normal goods, subset B
the set of weakly inferior goods—the substitution effect is stronger than
or equal to the income effect—and subset C is the set of strongly inferior
goods—the income effect is stronger than the substitution effect. Then the
answers are

(i) A ∪ B

(ii) C

(iii) A

(iv) B ∪ C
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S3.1 More Applications of Series
Before moving on to applications, a general remark about series is in order. It may
seem counterintuitive that a series such as the geometric series (with 0 < ρ < 1),
which is formed by adding up the first n terms of a sequence of which each term
is a positive number, could have a limit (i.e., that the sum of an infinite number of
terms, each with positive value, can have a finite value.) The following story, based
on the classic problem of the Achilles Paradox, should convince you otherwise.

Example S3.1 The Achilles Paradox

Suppose that two families are taking identical cross-continental trips. Let us assume
that the continent is a large one, like North America, with a stretch of 3,000 miles.
Family A has early risers but relatively slow drivers. They leave at 7:00 a.m. and
travel at 60 miles per hour (1 mile per minute). Family B, the next door neighbor,
does not leave until 8:00 a.m. but travels at 120 miles per hour (2 miles per minute).
Disregarding stops (including the possibility of a speeding ticket for family B),
the astute reader will realize that family B will overtake family A after just one
hour of travel (i.e., at 9:00 a.m.).

However, one can construct an argument to make it appear that family B never
overtakes family A. We define an infinite sequence of time periods, all positive
in value, during which family B reduces successive gaps that family A opens up
without ever overtaking. To begin, family A has traveled to a point, call it P1, that
is 60 miles from its original location, the family home. It takes 30 minutes for
family B to arrive at the same point P1 (call this time interval τ1 with τ1 = 30). In
the meantime family A has traveled a further 30 miles to point P2, and so it takes
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family B a further 15 minutes (τ2 = 15) to arrive at this point. During this time
family A has, of course, traveled a further 15 miles to point P3. Thus family B
requires a further 7.5 minutes (τ3 = 7.5) to arrive at point P3. As you can see, each
time family B arrives at point Pi , a location familyApreviously arrived at, familyA
has time τi to open up another gap, which in turn takes family B time τi+1 to “catch
up.” Since all periods τi are positive, family B does not catch up to family A even
after an infinite number of (positive) intervals of time. Faulty intuition about the
nature of an infinite series might then lead one to believe that family B will never
catch up to family A, although common sense indicates that this is not so. The
stages of this story are illustrated in figure S3.1 with DA representing the distance
covered by family A and DB the distance covered by family B.

Hence we have an apparent paradox—theAchilles Paradox.This is because the
paradox was first developed around 450 b.c. by the school of Greek philosophers
called the Eleatics, of whom Zeno is the best-known member. In the original
version of the story, the fleet-footed Achilles played the role of family B who left
after family A but also drove more quickly. A nameless and slow-moving tortoise
played the role of the early-rising but slow-driving family A.

The resolution of the Achilles Paradox resides in the fact that although one can
construct an infinite sequence of positive time intervals, τi > 0, i = 1, 2, 3, . . . ,

in which family B tries to catch up to family A but fails to do so, the sum of these
time intervals forms an infinite series that converges:

lim
n→∞ sn = lim

n→∞

n∑
i=1

τi

For the simple example above we know that the limit of this infinite series is
60 (minutes), which is the time it takes for family B to overtake family A. To see
this formally, note that the series τi has terms τ1 = 30, τ2 = 15, τ3 = 7.5, . . . , or
τi = aρi−1, with a = 30 and ρ = 0.5. Thus sn = ∑n

i=1 ai is a geometric series and

lim
n→∞ sn = a

1 − ρ
= 60

Having resolved the Achilles Paradox by recognizing that an infinite sum
of positive numbers may be finite should not lead one to claim too much. In the
geometric series, an = aρn−1 with |ρ| < 1, the nth term approaches zero as n → ∞.
However, it is not generally correct that for any sequence an with limn→∞ an = 0,
the associated series sn = ∑n

i=1 ai converges.
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Figure S3.1 Relative locations of the families in the Achilles Paradox story
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S3.2 The Keynesian Multiplier
An important component of the traditional Keynesian macroeconomic model used
to explain the importance of government fiscal policy is the multiplier. The basic
idea is that if there is an increase in exogenous expenditure in the economy, say
government spending, then a multiplier effect ensues so that the ultimate impact
on economic activity (GNP) is greater than the initial expenditure. For example,
suppose that the government initiates additional expenditure of $100 million for
increased road repair. This expenditure then becomes additional income for firms
and households. We would expect these individuals to save a certain fraction of
this extra income, pay part of it as taxes, and perhaps use some to purchase im-
ported goods, but we would also expect that a certain fraction would be spent on
domestically produced goods and services. If the fraction of this income spent do-
mestically is 60%, then the increased government expenditure will have a second-
round impact on domestic incomes of $60 million (i.e., $100 million × 0.6). If the
individuals receiving this additional income of $60 million also spend a certain
fraction domestically, and if this is also 60%, then the third-round effect is equal
to $36 million (i.e., $60 million × 0.6). Continuation of this process is described
in table S3.1:

Table S3.1

1st round effect (initial) 100.00 million
2nd round effect 60.00 million (100 × 0.6)
3rd round effect 36.00 million (60 × 0.6)
4th round effect 21.60 million (36 × 0.6)
5th round effect 12.96 million (21.6 × 0.6)
and so on

We can see in the table that the overall impact can be described as the geometric
series

100 + 100(0.6) + 100(0.6)2 + 100(0.6)3 + · · ·

which, from equation (3.5), has the value (a = 100, ρ = 0.6)

100

1 − 0.6
= 100

0.4
= 250 million
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Even if we allow for an infinite number of rounds in this problem, the overall
increase in national income is finite because of the same intuition that resolves the
Achilles Paradox. Summing an infinite number of terms, each positive, can give
rise to a finite value if the terms become small sufficiently fast.

Example S3.2 Suppose that there is an initial increase in government spending of $100 billion
and that individuals spend 80% of any extra income on domestically produced
goods. Use the Keynesian multiplier model to determine the overall impact of this
$100 billion injected into the economy. Also compute the first five rounds of the
process as was done in table S3.1.

Solution

The first five rounds of effects are described in table 3.3. The overall impact is

100 + 100(0.8) + 100(0.8)2 + 100(0.8)3 + · · · = 100

1 − 0.8
= 500 billion

Table S3.2

1st round effect (initial) 100.00 billion
2nd round effect 80.00 billion (100 × 0.8)
3rd round effect 64.00 billion (80 × 0.8)
4th round effect 51.20 billion (64 × 0.8)
5th round effect 40.96 billion (51.2 × 0.8)

In general, if we let c be the fraction of extra income that each individual
spends on domestically produced goods (0 < c < 1), then the overall impact of an
initial injection of amount E into the economy is

E + cE + c2E + c3E + · · · = E

1 − c

Since 1−c is the fraction of additional income not spent on domestically produced
goods, we write w = 1 − c and refer to it as the propensity to withdraw (i.e.,
money withdrawn from the cycle of spending on domestic goods and services).
The fraction 1/w is known as the Keynesian multiplier.
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S3.3 St. Petersburg Paradox
The expected monetary gain of a lottery, gamble, portfolio of stocks, or any other
risky venture is computed by adding the probabilities of each possible outcome
multiplied by the monetary value of the outcome. For example, consider a risk
that involves winning nothing should a head be the outcome of a (fair) coin toss
or winning $20 million should a tail be the outcome. Since the probability of each
possible outcome is 0.5, the expected value of the monetary gain is

0.5(0) + 0.5($20 million) = $10 million

A natural question that arises is how to compare situations involving risk. For
example, would one prefer the risky situation above to receiving $5 million if a
head appears and $10 million if a tail appears (expected value = $7.5 million)? A
simple suggestion would be to postulate that individuals prefer those risks with the
highest possible expected monetary gain. The example above might convince one
that this postulate leaves something to be desired, as many individuals may well
prefer the second lottery despite its lower expected monetary value. The Swiss
mathematician Daniel Bernoulli offered the following type of gamble to illustrate
even more dramatically the folly in adopting the expected monetary value rule as a
behavioral postulate. The problem is now referred to as the St. Petersburg Paradox.

Consider the gamble involving the successive tossing of a (fair) coin with the
player receiving a prize of $2n when heads occurs for the first time after n tosses
(e.g., if the first three coin tosses are tails and the fourth is a head, the player wins
$24 or $16). Since coin tosses are independent events, the probability that the first
time a head appears on the nth toss is (1/2)n (e.g., the probability of three succes-
sive tails followed by a head is (1/2)4 = 1/16). The gamble could, in principle,
involve an arbitrarily large number of coin tosses. The expected monetary gain of
the gamble is

EM =
∞∑

n=1

(
1

2n

)
2n = 1 + 1 + 1 + · · · = ∞ (S3.1)

which is clearly a divergent series. This means that if one is willing to accept the
idea that individuals value risky outcomes according to the expected value of the
monetary outcome, then this gamble is preferred to a gain of $10 million for certain
or any other finite amount, no matter how large. Bernoulli believed that this was
a ludicrous conclusion and offered a way out of the apparent paradox.

An intuitive explanation of his argument is as follows. The value to an in-
dividual of different monetary awards is not simply measurable in dollars, since,
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Figure S3.2 Natural log function for utility of income. Note that the increase in utility
resulting from an extra $1,000 is less the greater is the initial income.

for example, the value of the first $1 million received is not likely equivalent to
the value of a second $1 million. Rather, one should assign utility values to the
monetary outcomes with the increase in utility for a given increase in income being
less the greater the initial income. Intuitively this means that the first million dol-
lars is worth more to an individual than the second million dollars. In particular,
Bernoulli suggested using the natural logarithm function to generate utility values
so that the utility of $y is ln(y). Using this function, one can see that the increase
in utility resulting from an extra dollar of income gets smaller as income increases
(see figure S3.2). If one compares risky situations by using the expected value
of utilities rather than money, the expected utility of the St. Petersburg Paradox
game is

EU =
∞∑

n=1

(
1

2n

)
ln(2n) (S3.2)
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which turns out to be a series that converges (i.e., has a finite-valued limit). We
can see this immediately by using theorem 3.4. That is,

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

[
1/2(n+1)

]
ln
(
2(n+1)

)
[
1/2n

]
ln(2n)

= lim
n→∞

2n

2(n+1)

(n + 1) ln 2

n ln 2

= lim
n→∞

(n + 1)

2n

= lim
n→∞

(
1

2
+ 1

n

)
= 1

2

which is less than 1, and so the series represented by equation (S3.2) converges.
(Note that the second line follows from ln(2n+1) = (n + 1) ln 2 and ln(2n) =
n ln 2.) Thus, by using the function ln(y) to represent the utility of $y and presum-
ing that individuals rank risky alternatives by comparing the expected value of the
utility they generate, rather than the expected monetary value, we can evade the
problem of concluding that a St. Petersburg gamble is worth more than any certain
amount of money, no matter how large in value.

Examining this issue further is worthwhile as it brings out some of the intuition
about infinite series of terms that tend to zero or infinity. Let pn be the sequence that
represents the probability that the first head occurs after n tosses (i.e., pn = 1/2n),
and let un = u(yn) be the utility gain upon receiving the winnings of yn (i.e., yn = 2n

and u(·) = ln(·) for the example above. Thus

EU = lim
N→∞

N∑
n=1

pnun

represents the expected utility of the gamble. The limit is the sum of the product of
the terms from two sequences, one that tends to zero (pn) and another that tends
to infinity (un) as n → ∞. The series converges if the un terms do not approach
infinity too quickly relative to how quickly the pn terms approach zero. We saw
above that if yn = 2n and we use un = yn (or any linear, increasing function of yn),
then the series does not converge, while if we use un = ln(yn), the series does
converge. The problem with this resolution of the St. Petersburg Paradox is that
one can construct a sequence of prizes, such as yn = e2n

, such that the series will
no longer converge even if u(·) = ln(·). This follows since
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EU = lim
N→∞

N∑
n=1

pnun

= lim
N→∞

N∑
n=1

(
1

2n

)
ln
(
e2n)

= lim
N→∞

N∑
n=1

(
1

2n

)
2n ln(e) = 1 + 1 + 1 + · · ·

which is a divergent series (recall that ln(e) = 1). Thus, by altering the prize struc-
ture, we see that adopting the utility function u(y) = ln(y) will not always resolve
the type of paradox raised by the St. Petersburg gamble.

A sufficient condition for resolving this paradox is to assume that the utility
function is bounded. If u(y) is bounded above by the value umax, as illustrated in
figure S3.3, then the series

EU = lim
N→∞

N∑
n=1

pnun

< lim
N→∞

N∑
n=1

pnu
max

= (
umax

)(
lim

N→∞

N∑
n=1

pn

)

= umax

An alternative way out of the St. Petersburg Paradox is to assume that the prize
values are bounded, say because of a budget constraint.

y

u(y )

umax u(y )

Figure S3.3 A bounded utility
function

P R A CT I C E E X E R C I S E S

S3.1. Suppose that there is an initial increase in government spending of $20
billion and individuals spend 70% of any extra income on domestically
produced goods. Find the overall impact on the economy according to the
Keynesian multiplier model.

S3.2. *Consider a St. Petersburg gamble with the following information (see the
notation in section 3.5): pn = 1/2n, yn = 2n, and u(y) = y1/2.
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(a) Use theorem 3.4 to show that EU , expected utility, is bounded.

(b) Find the level of expected utility for this case. Show that a consumer
would prefer the certainty of $2.50 to this gamble.

(c) Construct a sequence of prizes yn so that EU is not bounded.

S3.3. Suppose that there is an initial increase in government spending of $50
billion and individuals spend 75% of any extra income on domestically
produced goods. Find the overall impact on the economy according to the
Keynesian multiplier model.

S3.4. Consider a St. Petersburg gamble with the following information: pn =
1/2n, yn = 2n, u(y) = y2. Show that the expected utility of this gamble
is unbounded.

Solutions

S3.1. The first five round of effects are

1st round effect 20.00 billion

2nd round effect 14.00 billion (20 × 0.7)

3rd round effect 9.80 billion (14 × 0.7)

4th round effect 6.86 billion (9.8 × 0.7)

5th round effect 4.802 billion (6.86 × 0.7)

The overall impact is

20 + 20(0.7) + 20(0.7)2 + 20(0.7)3 + · · · = 20

1 − 0.7

= 66.67 billion

S3.2. (a)

EU = lim
N→∞

N∑
n=1

pnun

= lim
N→∞

N∑
n=1

1

2n
(yn)

1/2
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= lim
N→∞

N∑
n=1

(2n)1/2

2n

= lim
N→∞

N∑
n=1

1

(2n)1/2

= lim
N→∞

N∑
n=1

1

2n/2

So EU is a series formed from the sequence an = 1
2n/2 . Therefore

we can construct the ratio

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣∣

1
2(n+1)/2

1
2n/2

∣∣∣∣∣ = 2n/2

2n/2+1/2
= 1

21/2
< 1

and so, according to theorem 3.4, this series converges.

(b) Upon expanding the expression for EU , we get

EU = 1

21/2
+ 1

2
+ 1

23/2
+ 1

22
+ · · ·

We can easily see that this is a geometric series with first term a = 1
21/2

and ratio ρ = 1
21/2 , and so we can use the formula

a

1 − ρ
=

1
21/2

1 − 1
21/2

= 1

21/2 − 1
.= 2.44

to determine that the value of expected utility of this gamble is ap-
proximately 2.44. Therefore a consumer would prefer to receive with
certainty the amount $6.25, for example, rather than the stated gam-
ble (since u(6.25) = 6.251/2 = 2.5).

(c) If we used the sequence of prizes yn = (2n)2 = 22n, for example,
then EU of this gamble would not be bounded. To see this is so, note
that in this case

EU = lim
N→∞

N∑
n=1

(22n)1/2

2n
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= lim
N→∞

N∑
n=1

2n

2n

= lim
N→∞

N∑
n=1

1

= lim
N→∞

N = +∞

S3.3. Overall impact is

50 + 50(0.75) + 50(0.75)2 + 50(0.75)3 + · · ·
= 50

1 − 0.75
= 50

0.25
= $200 billion

S3.4. The expected utility of this gamble is

EU = lim
N→∞

N∑
n=1

pnun

where pn = 1
2n and un = y2

n = (2n)2 = 22n. Therefore we get

EU = lim
N→∞

N∑
n=1

1

2n
22n

= lim
N→∞

N∑
n=1

2n = +∞
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S4.1 Revenue Function, Cost Function,
and Profit Function for a Perfectly
Competitive Firm

In the model of perfect competition it is assumed that each firm treats the market
price as given. The firm does not believe its own choice of output level will
influence the market price, and so it treats this value as fixed. This assumption
is usually only made to describe markets in which a large number of producers
each produces a small amount of some homogeneous (identical) product. Letting
p̄ be the price of the product and y be the firm’s output level, we get the revenue
function R(y) = p̄y. Since this is a linear function in y, it is continuous. To show
what must be true in order that the cost function, C(y), be continuous takes a little
effort. We begin with the long-run situation.

The total cost of producing a given output level is simply the cost of all the
inputs used in the production process. Suppose that there is only one input x used
to produce y and that the production function y = f (x) is used to describe the
production relation. If we know how much output can be created from various
levels of input, then we can work backward to determine the level of input needed
to produce a given level of output. This simply generates the inverse function

y = f (x) ⇒ x = f −1(y)

as demonstrated in figure S4.1 for the case y = x1/2.
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x

y = f (x)

x1 = 4 x2 = 9

y1 = 2

y2 = 3
y = x 1/2

y

x = f –1(y)

y1 = 2 y2 = 3

x1 = 4

x = y 2

x2 = 9

Figure S4.1 A production function and its inverse

Thus the cost of producing output level y is wx, where x is the amount of
input required to produce output level y and w is the per-unit price of that input.
Using the inverse function x = f −1(y), we can write C(y) = wf −1(y). Now,
if the production function f (x) is continuous, then, because of theorem 4.1(vi),
so is its inverse, f −1(y), and so C(y) is continuous. The profit function, π(y) =
R(y)−C(y) is also continuous by theorem 4.1(iii). This is illustrated in figure S4.2
for a more general cost function.

y

Π(y) , R(y), C(y)

C(y)

R(y) = py

Π(y) = R(y) – C(y)

Figure S4.2 If the cost function, C(y), is continuous, so is the profit function, π(y).

In the short-run situation we usually model the firm’s decision in terms of a
single (variable) input. Again, let x represent this input and y = f (x) the (short-
run) production function. The same analysis as in the above paragraph applies
except that we need to recognize that if the firm produces no output in the short
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y

Π(y) , R(y), C(y) C(y)

R = py

Π(y)

C0

–C0

Figure S4.3 A cost function and profit function in the presence of fixed costs

run, it still must pay its fixed costs. If we let fixed cost be $C0, then the cost function
becomes C(y) = wf −1(y)+C0. Once again it follows that if f (x) is a continuous
function, then so is the cost function and then so is the profit function. An example
is illustrated in figure S4.3.

Consider the following case in which the profit function is not continuous:
Suppose that a firm cannot change from zero production to positive production
without expending resources to start the production process. For example, a smelt-
ing furnace may have to be preheated before any steel can be produced. This type
of cost is called a setup cost and differs from the usual sort of cost in that it is a
lump-sum cost that must be incurred when going from zero to any positive amount
of production. The amount produced does not affect the size of this cost. The result
is that the cost function, and hence the profit function, will be discontinuous at
y = 0. Letting c(y) represent the cost of producing y, excluding the setup costs,
we can write the cost function as

C(y) =
{

0, y = 0

B0 + c(y), y > 0

where B0 is the setup cost. Then the profit function is

π(y) =
{

0, y = 0

R(y) − B0 − c(y), y > 0

These functions are illustrated in figure S4.4.
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y

 C(y), R(y), Π(y) C(y)

R(y)

Π(y)

B0

–B0

Figure S4.4 A cost function and profit function in the presence of setup costs

In comparing the cost function in figure S4.3 with that in figure S4.4, it is
important to distinguish between fixed costs, a short-run phenomenon only, and
setup costs. The existence of fixed costs does not lead to a discontinuity of the
short-run cost function because, if the firm chooses to produce zero output, it is
still the case that the firm must pay its fixed costs. Thus, for the cost function
represented in figure 4.14, the right-hand limit of C(y) at y = 0 is equal to C0;
that is to say, limy→0+ C(y) = C0, which is also equal to the value of the cost
function at y = 0. For the cost function illustrated in figure S4.4, the setup costs,
B0, are incurred for any level of output no matter how small or large but are avoided
when the firm chooses to produce zero output. Thus, the right-hand limit of C(y)

at y = 0 for this cost function is equal to B0, namely limy→0+ C(y) = B0, but the
value of the cost function at y = 0 is 0. Clearly, this function is discontinuous at
the point y = 0.

S4.2 Hotelling’s Location Model
Hotelling’s location model is designed to illustrate why a group of firms selling
the same product sometimes cluster together geographically when it seems that
consumers would be better served if the firms were at different locations. For
example, we often see more than one gas station or convenience store located
across the street from each other or next to each other. Hotelling’s location model
explains how such a pattern can be the result of rational profit-maximizing behavior
by firms. What is interesting about this model from the perspective of this chapter
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is that the key to the equilibrium solution of this model is, as in the Bertrand
oligopoly model, the result of a discontinuity.

We use a highly stylized set of assumptions to model this phenomenon. Sup-
pose that there are two firms, A and B, who will locate on a street which is repre-
sented by a straight line of length one mile. We can indicate any location on this
street by a number, L, belonging to the closed interval [0, 1]. We assume that the
product each firm sells is identical. The firms charge the same price p̄ and face
the same unit cost of production that is the constant value c̄ with p̄ − c̄ > 0. Thus
the profit on each unit is p̄ − c̄ and is positive. Since the product the firms sell
is identical (homogeneous good) and the price is the same, we assume that con-
sumers will go to the firm that is closest and if the firms locate at the same point,
one-half of the consumers will go to each firm. We also assume that the consumers
are spread uniformly along the street and that each consumer buys one unit of the
product each period. If there are N consumers, then the potential aggregate profit
in the market is N(p̄ − c̄). The strategic problem for each firm is then to choose
a location in such a way as to maximize market share, since the greater is a firm’s
market share, the greater is its profit. The decision for each firm will depend on
where the other firm is located.

LB

0 10.2

Figure S4.5 Firm B’s location at
L = 0.2

To solve this model, we first treat firm B’s location, LB ∈ [0, 1], as already
determined at LB = L̄B, and then see how firm A’s market share changes as a
function of its location, LA, along the same interval [0, 1]. By considering where
firm A will locate relative to L̄B, we can then consider where firm B should locate
to obtain its greatest possible market share. In this series of steps we let the specific
location for firm B be L̄B = 0.2, as illustrated in figure S4.5.

We use figure S4.5 to determine the market share of each firm. Say that firm B
locates at L̄B = 0.2 and firm A locates at LA = 0.6, as illustrated in figure S4.6.
The midpoint between 0.2 and 0.6 is 0.4. Thus all consumers to the left of point 0.4
(40% of the market) will make their purchases from firm B while all those to the
right of point 0.4 (60% of the market) will make their purchases from firm A.

LA

0 10.2 0.4 0.6

LB

40% to
firm B

60% to
firm A

Figure S4.6 Market shares if
firm B locates at 0.2 and firm A
locates at 0.6

To solve this model, it is easiest to determine what happens to firm A’s market
share, MA(LA), as it changes its location decision beginning from 0 and moving
toward 1 (LA ∈ [0, 1]). If firm A locates at point LA = 0, then firm A’s market
share will be 10% and firm B’s will be 90%. This follows from the fact that the
midpoint between 0 and 0.2 is 0.1. All consumers to the right of point 0.1 (90% of
the market) will make their purchases from firm B, while those to the left of 0.1
(10% of the market) will make their purchases from firm A. Now, as firm A moves
to the right, but still chooses LA < 0.2, the midpoint between LA and L̄B = 0 will
also shift to the right, so more of the consumers will make their purchases from
firm A. As long as LA < 0.2, firm A will increase its market share gradually for
small movements to the right. As firm A’s location approaches L̄B = 0.2 from the
left, its market share rises steadily and continuously to 20%. However, once firm
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A locates exactly at the point L̄B = 0.2, the two firms share the market equally
as consumers are indifferent between them. Thus, at the point LA = 0.2, firm
A’s market share jumps discontinously to 50%. If firm A locates a small distance,
ε > 0, to the right of L̄B = 0.2, its market share jumps again to almost 80%, since
all consumers to the right of 0.2 + ε make their purchases from firm A with the
others going to firm B. As we increase the distance that firm A moves to the right
of L̄B = 0.2, we find that A loses some of its market share as those consumers to
the left of the midpoint between L̄B and LA (L̄B < LA) will make their purchases
from firm B. For example, if firm A locates at the rightmost point, LA = 1, all
the consumers to the left of 0.6 travel to firm B (60% of the market) while all the
consumers to the right of 0.6 (40% of the market) travel to firm A.

LA0.2

0.2

0.4

0.6

0.4 0.6 0.8 1

MA(LA)

0.8

0.1

Figure S4.7 Market share of
firm A as a function of its location,
LA, given B’s location at LB = 0.2

From this information we can determine the market share for firm A as a
function of location LA for the given location choice of firm B, L̄B = 0.2. This is
given in equation (S4.1) and is illustrated in figure S4.7:

MA(LA) =

⎧⎪⎨
⎪⎩

LA + 0.5(0.2 − LA), LA < 0.2

0.5, LA = 0.2

(1 − LA) + 0.5(LA − 0.2), LA > 0.2
(S4.1)

LA

0.5

1

MA(LA)

LB

LB

2

Figure S4.8 Market share for
firm A as a function of its location,
LA, given a choice of location by B of
L̄B < 0.5

We do the same for the general choice LB = L̄B. The market-share function
is given in equation (S4.2) and illustrated in figure S4.8:

MA(LA) =

⎧⎪⎨
⎪⎩

LA + 0.5(L̄B − LA), LA < L̄B

0.5, LA = L̄B

(1 − LA) + 0.5(LA − L̄B), LA > L̄B

(S4.2)

Looking at the market-share function MA(LA) and returning to the conditions
for continuity given in definition 4.3, we can see formally for the case of L̄B = 0.2
why this function is discontinuous at the point LA = 0.2. At point LA = 0.2 the
left-hand limit of the market-share function is 0.2, the right-hand limit is 0.8, and
the value of the function itself is 0.5. Thus we have

lim
LA→0.2−

MA(LA) = 0.2, lim
LA→0.2+

MA(LA) = 0.8, MA(0.2) = 0.5

Since these values are all different, the function is not continuous at the point
LA = 0.2. In fact only two of these values need differ for the function MA(LA)

to be discontinuous.
From an economic standpoint this discontinuity is extremely important in

the model, since what happens at the point of discontinuity drives the model to
its solution. To see why this is so, suppose that firm B happens to locate to the
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left of center (i.e., L̄B < 0.5). In this case firm A’s market-share equation slopes
upward from LA = 0 to the point where LA = L̄B. If located just to the left of
LA = L̄B, firm A’s market share equals the value L̄B < 0.5 and so is less than
50%. When located at precisely the same point as firm B (e.g., the other side
of the street but the same distance to each end), each firm acquires 50% of the
market. However, if firm A locates just to the right of L̄B, then firm A will be
servicing all consumers to the right of L̄B, which means its market share will be
greater than 50% (since 1 − L̄B > 0.5). To move any further right will mean
that firm A starts to lose market share, and so the best thing for firm A to do
is to locate just to the right of L̄B and be rewarded with more than 50% of the
market. A similar argument can be made to show that if firm B locates to the
right of center (L̄B > 0.5), then the best thing for firm A to do is to locate just
to the left of firm B and once again be rewarded with more than 50% of the
market. Thus, if firm B locates on one or the other side of center, the result will
be that firm B gets less than 50% of the market and firm A gets more than 50%
of the market. Since firm B can presumably determine that this would be the
outcome, then firm B can get the greatest market share for itself by locating just
at the center. In this case the best firm A can do is locate just on either side of
center (or also at the center), with the result that both firms acquire 50% of the
market, as illustrated by figure S4.9. The same argument would apply in reverse
if we considered the scenario in which firm A is treated as if it is the firm that
locates first. The outcome that both firms locate at the center is an equilibrium
for the model. This is because if both locate at the center, neither can do better
by altering its decision. Thus, by careful consideration of the discontinuity in the
market-share function, we are able to solve this model.

LA

0.5

1

MA(LA)

LB = 0.5

Figure S4.9 Market share of
firm A as a function of its location,
LA, given the choice of location
L̄B = 0.5 by firm B

S4.3 Intermediate-Value Theorem
In this section we present a straightforward theorem, the intermediate-value theo-
rem and show that it can be very powerful in the study of equilibrium, which is one
of the most important concepts in economics. The particular application we make
is a very simple one. The range of applications, however, is in fact very broad.

Suppose that the function y = f (x) is continuous on the interval [a, b], b > a.
It follows that the function must take on every value between f (a) and f (b), which
are the function values at the endpoints of the interval [a, b]. This result is called
the intermediate-value theorem because any intermediate value between f (a) and
f (b) must occur for this function for at least one value of x between x = a and
x = b. This result is understood intuitively by looking at figures S4.10 and S4.11.
In figure S4.10 it is clear that any value between y = f (a) and y = f (b), for
example, y = ȳ, is realized by the continuous function f (x) for some x ∈ [a, b]. In
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x

f (x)

bca

f (b)

y

f (a)

f (x)

Figure S4.10 Demonstration of
the intermediate-value theorem for a
function f (x) that is continuous
on [a, b]

x

f (x)

ba

f (b)

y

f (a)

B

A

f (x)

Figure S4.11 Demonstration that
if f (x) is discontinuous on [a, b], then
it doesn’t necessarily take on every
value between f (a) and f (b)

figure S4.11 we see that this is not necessarily the case for a discontinuous function
as no value between y = A and y = B is realized by the function for any x ∈ [a, b].

Theorem S4.1 (Intermediate-value theorem) Suppose that f (x) is a continuous function on
the closed interval [a, b] and that f (a) = f (b). Then, for any number ȳ between
f (a) and f (b), there is some value of x, say x = c, between a and b such that
ȳ = f (c).

The Existence of Equilibrium

The simple result of the intermediate-value theorem is often very useful when
trying to prove that a special value of an economic variable exists. Consider the
simple partial equilibrium model of demand and supply withp representing price,y
representing quantity, y = D(p) representing the demand function, and y = S(p)

representing the supply function. An equilibrium price for this model is defined
as a price that clears the market. That is, p = pe ≥ 0 is an equilibrium price if
D(pe) = S(pe). We sometimes include the possibility of a free good which is
formally defined as the case where pe = 0 if D(0) < S(0). It is clear that if the
demand curve intersects the supply curve at a point (ye, pe) with both ye > 0 and
pe > 0, as in figure S4.12, then this is an equilibrium. The case of an equilibrium
for a free good is given in figure S4.13.

Rather than work with the two schedules, demand D(p) and supply S(p),
it is useful to amalgamate them into a single function called the excess-demand
function, z(p) = D(p)−S(p). Notice that the value of z(p) indicates the amount
by which demand exceeds supply if z(p) > 0, while if z(p) < 0, the absolute
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y

p

pe

ye

D(p)

S(p)

Figure S4.12 Market
equilibrium with positive
equilibrium price and output

y

p

D(p)
S(p)

pe = 0

Figure S4.13 Market equilibrium
for a free good

value of z(p) indicates the amount by which supply exceeds demand. In terms
of the excess-demand function, z(pe) = 0 whenever D(pe) = S(pe), while
z(0) ≤ 0 if D(0) ≤ S(0). Thus an alternative description of an equilibrium price
is that pe > 0 is an equilibrium price provided z(pe) = 0, while pe = 0 is an
equilibrium price provided z(0) ≤ 0. For the case in figure S4.12, excess demand
is positive whenever p < pe, while excess demand is negative whenever p > pe.
The excess-demand functions for each of the cases in figures S4.12 and S4.13 are
given in figures S4.14 and S4.15 respectively.

z

p

pe

z(p) = D(p) – S(p)

D(p) < S(p)
z(p) < 0 

D(p) > S(p)
z(p) > 0 

Figure S4.14 Excess-demand
function for the case of market
equilibrium shown in figure S4.12

z

p

z(p) = D(p) – S(p)

Figure S4.15 Excess-demand
function for the case of market
equilibrium shown in figure S4.13

Notice that in the figures, the variable p is placed on the vertical axis and
the variables that are functions of p—D(p), S(p) and z(p)—are placed on the
horizontal axis. This choice is not the conventional one in mathematics but is
generally used in economics when dealing with demand- and supply-functions.
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It is useful to have a set of sufficient conditions that guarantee that an equilib-
rium price exists. The intermediate-value theorem (theorem S4.1) helps us to do
just that. Suppose that we consider a commodity that requires costly resources to
produce and so at a price of zero supply would be zero, S(0) = 0. Further assume
that D(0) > 0; that is, that the good is desirable from the consumers’ point of view.
Then, at p = 0, we have

z(0) = D(0) − S(0) > 0

Moreover let us believe that at least for prices above some sufficiently high price,
call this level p = p̂, firms will find it so profitable to produce this product and
consumers will find the price so high that supply will exceed demand. Thus D(p̂) <

S(p̂) and so z(p̂) = D(p̂) − S(p̂) < 0. Now, if the demand and supply functions
are continuous on the interval of prices p ∈ [0, p̂], then so will z(p) be continuous
on p ∈ [0, p̂], according to theorem 4.1(iii). Thus, by the intermediate-value
theorem, every function value between z(0) and z(p̂) must be realized by some
value p between 0 and p̂. In particular, since z(0) > 0 and z(p̂) < 0, there must be
some value of p between 0 and p̂, say p = c, such that z(c) = 0. But such a value of
p is by definition an equilibrium price (i.e., c = pe). Theorem S4.2 provides
sufficient conditions under which we are guaranteed that a positive equilibrium
price exists.

Theorem S4.2 If the demand and supply functions are continuous and the following two condi-
tions are satisfied:

(i) at zero price, demand exceeds supply, D(0) > S(0), meaning that z(0) > 0
(ii) there exists some price, p̂ > 0, at which supply exceeds demand, S(p̂) >

D(p̂), meaning that z(p̂) < 0

then there exists a positive equilibrium price in the market.

Consider the following linear demand and supply curves:

D(p) = a − bp, b > 0

S(p) = c + ep, e > 0

The discussion above on existence can help us to determine any further con-
ditions on the parameters of these equations (i.e., on a and c) that are needed
to guarantee existence of a positive equilibrium price. To generate such an out-
come we need to satisfy the conditions listed above in theorem S4.2. Using these
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assumptions we get the excess-demand function to be

z(p) = D(p) − S(p) = (a − c) − (e + b)p

The first condition above, that z(0) > 0, implies that

(a − c) − (e + b)(0) > 0

and this shows that we need to restrict the parameters a and c so that (a − c) > 0.
The second condition requires that there be some price, p̂ > 0, such that z(p̂) < 0.
This condition is met by all values of p such that

(a − c) − (e + b)p < 0 ⇒ p >
a − c

e + b

With e > 0, b > 0, and (a − c) > 0, we see that this condition is met without
any further restrictions on the parameters a and c. Thus a positive equilibrium
price is guaranteed to exist for this linear example provided a > c.

It is admittedly quite easy to solve explicitly for the equilibrium in an example
with linear demand and supply curves. In the example above, D(pe) = S(pe), or
z(pe) = 0, leads immediately to the result that pe = (a − c)/(e + b). If e > 0 and
b > 0, it is obvious that pe > 0 only if a > c. However, we often work with far less
specific models in economics and it is useful to know the general conditions under
which a positive equilibrium price will exist. In particular, we see the importance of
assuming that the demand and supply functions are continuous. These continuity
conditions are implied by specific assumptions about the technology faced by firms
and the preferences of consumers. The intermediate-value theorem, if extended to
include the case of functions of more than one variable, is also helpful in character-
izing the conditions under which a general equilibrium or multi-market equilibrium
will exist. In this case, a simple graph is not so helpful in providing intuition.

Example S4.1 Supply and Demand Equilibrium

Consider the following market demand and supply functions:

D(p) = 100 − 2p

S(p) = 3p

Graph D(p) and S(p) on one diagram and z(p) = D(p) − S(p) on another.
Find the equilibrium price and quantity for this market and illustrate on both
graphs. Show that these demand and supply functions satisfy the conditions for
the existence of a positive equilibrium price, as specified in theorem S4.2.
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z

p

50 D(p) = 100 – 2p

pe = 20

100ye  = 60

S(p) = 3p

Figure S4.16 Demand and supply
functions for example 4.8

Solution

Now

z(p) = D(p) − S(p) = 100 − 2p − 3p = 100 − 5p

The graphs of D(p) and S(p) are shown in figure S4.16 and z(p) is graphed in
figure S4.17.

z

p

z(p) = 100 – 5ppe = 20

100

Figure S4.17 Excess-demand
function for example 4.8

Equilibrium price p = pe satisfies D(pe) = S(pe), so we find it by solving
the equation

100 − 2pe = 3pe

100 = 5pe

pe = 20

Substitute pe = 20 back into either the demand or supply function to get equilib-
rium quantity

ye = D(pe) = 100 − 2(20) = 60

ye = S(pe) = 3(20) = 60

To see that this demand-and-supply system satisfies the requirements of theo-
rem S4.2 note that

(a) at p = 0, D(0) = 100 > S(0) = 0 ⇒ z(0) > 0
(b) at p̂ = 50, D(50) = 0 < S(50) = 150 ⇒ z(50) < 0

Since both D(p) and S(p) are linear functions, they are continuous. Therefore
all the conditions required for a positive equilibrium price are satisfied.

One further matter needs attention. Although for the linear example above,
the restrictions imposed on the parameters a, b, c, and e imply that a positive
equilibrium price will exist, these conditions do not guarantee that the equilibrium
quantity will be nonnegative. Consider the following specific example:

D(p) = 10 − 2p

S(p) = −30 + 3p

The solution to this system gives the equilibrium price to be pe = 8 and equilibrium
quantity to be ye = −6. If the equilibrium quantity is negative, this means that
there is no price that is sufficiently high to induce producers to produce any output,
yet at the same time be sufficiently low to induce consumers to purchase any of
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the commodity. Thus we would say that such a market would not be active; that
is, no sales would take place. This is illustrated by figure S4.20. The choke price,
which is the maximum price at which consumers would be willing to pay for any
quantity of the output, is 5, while the minimum price that producers must receive
in order to be induced to supply any output is 10 and hence this market would not
be active. We have also ignored the possibility that there may be more than one
equilibrium price that may arise with nonlinear functions.

y

p
S(p) = –30 + 3p

10–6–30

D(p) = 10 – 2p

5

8

10

Figure S4.20 A market that would not be active

P R A CT I C E E X E R C I S E S

S4.1. Let y = kx, k > 0, be a production function relating input x to output y.
Let c̄ represent the unit cost of input x, and assume that total cost equals
fixed costs, C0, plus the cost of input x. Let p̄ be the unit price of y.
Find the revenue function, the cost function, and the profit function for
the firm. Are these functions continuous? Discuss. (Use theorem 4.1 to
answer this question.)

S4.2. Consider the following example of Hotelling’s location model. Each of
two firms sells a homogeneous product and charges a price of $10 while
facing constant unit cost of $6. There are N = 100 consumers who are
uniformly (evenly) distributed along a street one mile in length, repre-
sented by the unit interval [0, 1]. The two firms, A and B, will choose
locations, LA and LB respectively, on the line [0, 1] in such a way as to
maximize market share, and hence profit.

(a) Assuming that firm B establishes its location first at LB = 0.3, find
and graph firm A’s market-share function MA(LA) and profit
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function πA(LA). Discuss why each function is discontinuous at
the point LA = 0.3.

(b) For any general choice of location LB < 0.5 by firm B, do the same
exercise as part (a).

(c) For any general choice of location LB > 0.5 by firm B, do the same
exercise as part (a).

(d) For choice of location LB = 0.5 by firm B, do the same exercise as
part (a).

(e) Since firm B can deduce where firm A would locate, conditional on
firm B’s own choice of location LB, where would firm B locate?
What is the equilibrium outcome of this model? Discuss.

S4.3. Consider the following market demand and supply functions:

D(p) = 50 − 2p

S(p) = −10 + p

Graph D(p) and S(p) on one diagram and z(p) = D(p) − S(p) on
another. Find the equilibrium price and quantity for this market and il-
lustrate on both graphs. Show that these demand and supply functions
satisfy the requirements for existence of a positive equilibrium price, as
specified in theorem S4.2.

S4.4. Consider the following market demand and supply functions:

D(p) = a − p, a > 0

S(p) = −5 + p

(a) What further restriction must we impose, if any, on the parame-
ter a to ensure that a positive equilibrium price exists? (See theo-
rem S4.2.)

(b) What further restriction, if any, must we impose on the parameter
a to ensure that an equilibrium with a positive price and a positive
quantity exists?

S4.5. Consider the following market demand and supply functions:

D(p) = 50 − 8p, S(p) = −100 + 2p
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Graph D(p) and S(p) on one diagram and z(p) = D(p) − S(p) on
another. Find the equilibrium price and quantity for this market and il-
lustrate on both graphs. Show that these demand and supply functions
satisfy the conditions for the existence of a positive equilibrium price,
as specified in theorem S4.2. Explain what one would actually observe
happening in this market.

S4.6. Consider the following market demand and supply functions:

D(p) = 20 − p, S(p) = 30 + 4p

Graph D(p) and S(p) on one diagram and z(p) = D(p) − S(p) on
another. Find the equilibrium price and quantity for this market and il-
lustrate on both graphs. Which of the conditions of theorem S4.2 that
guarantee a positive equilibrium price is absent in this example? What
would one observe in this market?

S4.7. Consider the following market demand and supply functions:

D(p) = 20 + 2p, S(p) = −10 + p

Repeat the exercise in question S4.6. Explain what is unusual in this
example.

S4.8. Consider the following market demand and supply functions:

D(p) =
{

50 − 2p, if p ≥ 10

70 − 2p, if p < 10, S(p) = 10 + 3p

Repeat the exercise in question S4.6.

S4.9. Consider the following market demand and supply functions:

D(p) = 100 − 2p

S(p) = −20 + p

Graph D(p) and S(p) on one diagram and z(p) = D(p) − S(p) on
another. Find the equilibrium price and quantity for this market and il-
lustrate on both graphs. Show that these demand functions satisfy the
requirements for existence of a positive equilibrium price, as specified in
theorem S4.2.
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S4.10. Consider the following market demand and supply functions:

D(p) =
{

100 − 2p, p > 45

120 − 2p, p ≤ 45

S(p) = −20 + p

Notice that as price falls to $45, a jump in demand occurs. This may be
due to a new group of consumers deciding to enter the market once the
price falls to this level.

Graph D(p) and S(p) on one diagram and z(p) = D(p) − S(p) on
another. Which conditions of theorem S4.2, that guarantee existence of
a (positive) equilibrium price are absent? Discuss.

S4.11. Consider the following example of Hotelling’s location model. Each of
two firms sells a homogeneous product and charges a price of $25 while
facing constant unit cost of $15. There are N = 1,000 consumers who
are uniformly (evenly) distributed along a street one mile in length, rep-
resented by the unit interval [0, 1]. The two firms, A and B, will choose
locations, LAand LB respectively, on the line [0, 1] in such a way as to
maximize market share, and hence profit.

(a) Assuming that firm B establishes its location first at LB = 0.8,
find and graph firm A’s market-share function MA(LA) and profit
function πA(LA). Discuss why each function is discontinuous at
point LA = 0.8.

(b) For any general choice of location LB < 0.5 by firm B, do the same
exercise as part (a).

(c) For any general choice of location LB > 0.5 by firm B, do the same
exercise as part (a).

(d) For choice of location LB = 0.5 by firm B, do the same exercise
as part (a).

(e) Since firm B can deduce where firm A would locate, conditional on
firm B’s own choice of location LB, where would firm B locate?
What is the equilibrium outcome of this model? Discuss.

Solutions

S4.1. If y = kx is the production function relating input x to output y, then
the inverse of the production function, x = y/k, indicates the amount
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of input x needed in order to produce y units of output. Therefore the
variable cost of producing y units of output is

V C(y) = c̄

k
y

Adding in fixed cost, c0, we get cost function

C(y) = c0 + c̄

k
y

The revenue function is

R(y) = p̄y

and the profit function is

π(y) = R(y) − C(y) = p̄y − c0 − c̄

k
y

All of these functions are continuous. One way to see this is to show
that the function y = kx is continuous and then note that obtaining
the cost function, C(y), involves operations relating to points (vi), (i),
and (ii) of theorem 4.1. If we now were to show that R(y) = p̄y is
continuous, then obtaining the profit function, π(y), involves subtracting
one continuous function from another, (R(y)−C(y)), which is operation
(iii) of theorem 4.1.

S4.2. (a) Firm B locates at LB = 0.3. If firm A locates at a point to the left
of 0.3 (i.e., LA < 0.3), it will attract all consumers to the left of
its choice. This fraction is equal to LA, plus half of the consumers
between LA and LB — namely those consumers closer to LA than
LB — which represents a further fraction of 0.5(LB −LA). Market
share then is

MA(LA) = LA + 0.5(0.3 − LA), LA < 0.3

If firm A chooses to locate at the same point as firm B (LA = LB =
0.3), then consumers are indifferent between purchasing from A or
B and so they share the market equally. Thus

MA(LA) = 0.5, LA = 0.3
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If firm A locates just to the right of firm B, then virtually all con-
sumers to the right of the point 0.3 will go to firm A. This repre-
sents the fraction (1 − 0.3) of the consumers. Further to the right of
LB = 0.3, firm A will attract all consumers to the right of its loca-
tion, representing 1−LA market share, and also 50% of consumers
between firm B’s location (0.3) and its own location (LA), thus
representing a further fraction 0.5(LA − 0.3) of the market. Thus

MA(LA) = (1 − LA) + 0.5(LA − 0.3), LA > 0.3

Putting these expressions together gives us

MA(LA) =

⎧⎪⎨
⎪⎩

LA + 0.5(0.3 − LA), LA < 0.3

0.5, LA = 0.3

(1 − LA) + 0.5(LA − 0.3), LA > 0.3

Figure S4.21

There are 100 consumers in the market and the profit made per
consumer is $4 (i.e., $10 − $6), and so the profit function relating
to market share is

πA(LA) = 400MA(LA)

By substituting the function for market share into this equation,
we get

πA(LA) =
⎧⎨
⎩

400[LA + 0.5(0.3 − LA)], LA < 0.3
200, LA = 0.3
400[(1 − LA) + 0.5(LA − 0.3)], LA > 0.3
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Figure S4.22

Firm A’s market share and profit change in a discontinuous
fashion at the point LA = LB = 0.3. Locating just to the left of 0.3
means firm A obtains virtually all the consumers to the left of 0.3,
and so

lim
LA→0.3−

MA(LA) = 0.3

is the left-hand limit of MA(LA) at the point LA = 0.3. However, if
firm A locates precisely at the point LA = 0.3, it shares the market
equally with firm B, and so

MA(0.3) = 0.5

If firm A locates just to the right of firm B (i.e., to the right of 0.3),
it gets all the consumers to the right of 0.3 and so

lim
LA→0.3+

MA(LA) = 0.7

Thus at LA = 0.3 the right-hand limit for MA(LA) is not equal to
the left-hand limit, and neither is equal to the value of MA(LA) at
LA = 0.3. Thus, by definition 4.3, we see that this function is not
continuous at this point.

(b) The same arguments made in part (a) apply to any choice L̄B < 0.5
made by firm B. Firm A’s market share function is

MA(LA) =

⎧⎪⎨
⎪⎩

LA + 0.5(L̄B − LA), LA < L̄B

0.5, LA = L̄B

(1 − LA) + 0.5(LA − L̄B), LA > L̄B
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Figure S4.23

and the profit share function is

πA(LA) =

⎧⎪⎨
⎪⎩

400[LA + 0.5(L̄B − LA)], LA < L̄B

200, LA = L̄B

400[(1 − LA) + 0.5(LA − L̄B)], LA > L̄B

Figure S4.24

(c) If firm B locates to the right of midpoint (L̄B > 0.5), then a simi-
lar method is used to determine A’s market share and profit as was
used in part (b). The one important difference is that firmA’s market
share and profit are higher when it locates just to the left of firm B’s
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location than if it locates just to the right. Thus the same functions
as in part (b) describe the market share and profit for firm A, but
the appropriate graphs are in figures S4.25 and S4.26.

Figure S4.25

Figure S4.26

(d) Once again, the functions in part (b) describe the market share and
profit for firm A as a function of its location, LA. However, since
L̄B = 0.5, firm A’s market share approaches the value 0.5 as LA

approaches the value 0.5 either from the left (LA < 0.5) or from the
right (LA > 0.5). Moreover market share forAis 0.5 when it locates
at the point LA = L̄B = 0.5. Therefore the market share function
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is continuous at the point LA = L̄B, as is the profit function. The
appropriate graphs are given in figures S4.27 and S4.28.

Figure S4.27

Figure S4.28

(e) Firm B knows that if it locates either to the left or right of the mid-
point, 0.5, then firm A will choose its location so that firm A obtains
greater than 50% of the market share. This leaves firm B with less
than 50% of the market share. Therefore the best that firm B can
do is to locate at the midpoint, recognizing that firm A will respond
by also locating at the midpoint, with the firms sharing the market
equally. The reverse argument also applies if we consider where
firm A would locate based on the reaction of firm B, and so the
equilibrium outcome is that both firms locate at the midpoint.

S4.3. To find the equilibrium price, set D(p) = S(p):

50 − 2pe = −10 + pe

−3pe = −60

pe = 20
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To find the equilibrium quantity, substitute pe = 20 into either the de-
mand or supply function (since they are equal at the equilibrium price).

D(pe) = 50 − 2pe �⇒ ye = 10

Also

S(pe) = −10 + pe �⇒ ye = 10

Figure S4.29

The excess demand function is

z(p) = D(p) − S(p) = (50 − 2p) − (−10 + p)

= 60 − 3p

Note that z(pe) = 0 �⇒ pe = 20 is another method of determining the
equilibrium price.

Figure S4.30
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The demand and supply functions satisfy theorem S4.2, since:
(i) D(0) = 50, S(0) = −10, and so D(0) > S(0).
(ii) Picking price p̄ = 25 (or any price exceeding 20 in this case),

we see that there is indeed a price p = p̄ such that S(p̄) > D(p̄) (i.e.,
note that S(25) = 15, D(25) = 0).

S4.4. (a) Theorem S4.2 requires that
(i) D(0) > S(0)

(ii) There is some price p̄ such that S(p̄) > D(p̄). Since
D(0) = a and S(0) = −5, the condition a > 0 implies that
D(0) > S(0) and S(p̄) > D(p̄) for any p̄ such that −5 + p̄ >

a − p̄ ⇒ 2p̄ > a + 5 ⇒ p̄ > (a + 5)/2, and so such a p̄ exists for
any a > 0.

(b)

z(p) = D(p) − S(p) = (a − p) − (−5 + p)

= (a + 5) − 2p

In equilibrium, z(pe) = 0, and so

(a + 5) − 2pe = 0 ⇒ pe = a + 5

2

Substituting pe into the demand (or supply) function gives the equi-
librium quantity:

D(pe) = a − pe = a − a + 5

2
= a

2
− 2.5

That is,

ye = a

2
− 2.5

So ye > 0 only if a/2 − 2.5 > 0 �⇒ a > 5. Consequently the
further restriction on a of a > 5 must be imposed for there to be a
positive equilibrium quantity.

S4.5. D(p) = 50 − 8p is the demand function. S(p) = −100 + 2p is the
supply function.

z(p) = D(p) − S(p) = (50 − 8p) − (−100 + 2p)

and so z(p) = 150 − 10p is the excess demand function.
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The equilibrium price, pe, satisfies z(pe) = 0, and so pe = 15. To
find the equilibrium quantity, substitute pe into either D(p) or S(p). We
get ye = −70.

Figure S4.31

Figure S4.32

Since D(0) = 50 and S(0) = −100 where D(0) > S(0), condi-
tion (a) of theorem 4.3 is satisfied. For any p̄ > 15 we have D(p̄) < S(p̄)

or z(p̄) < 0, and so condition (b) of theorem S4.2 is also satisfied. What
is peculiar about this example is that using the standard computational
approach delivers a negative value for the equilibrium quantity, which
makes no economic sense. Upon considering the vertical (p) intercepts
for both the supply and demand functions, we see that firms require a
minimum price of $50 in order to be induced to produce any of this
product while consumers will not purchase any output if price exceeds
$6.25. Therefore there is no price that will induce any (positive) market
transactions. As a result this market will be inactive.
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S4.6. D(p) = 20 − p is the demand function. S(p) = 30 + 4p is the supply
function.

z(p) = D(p) − S(p) = (20 − p) − (30 + 4p)

and so z(p) = −10 − 5p is the excess demand function.
The equilibrium price, pe, satisfies z(pe) = 0 and so pe = −2. To

find the equilibrium quantity, substitute pe into either D(p) or S(p). We
get ye = 22.

Figure S4.33

Figure S4.34

Since D(0) = 20 and S(0) = 30, the first condition of theorem S4.2,
that D(0) > S(0), is not satisfied. This means that if the price were zero,
consumers would only wish to consume 20 units of the good while 30
units would be available. Therefore this is an example of a free good.
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S4.7. D(p) = 20 + 2p, S(p) = −10 + p

z(p) = D(p) − S(p) = (20 + 2p) − (−10 + p)

and so z(p) = 30 + p is the excess demand function.
The equilibrium price, pe, satisfies z(pe) = 0 and so pe = −30. To

find the equilibrium quantity, substitute pe into either D(p) or S(p). We
get ye = −40.

Figure S4.35

Figure S4.36

Since D(0) = 20 and S(0) = −10, the first condition of theorem
S4.2, that D(0) > S(0), is satisfied. However, since S(p) > D(p) im-
plies that −10 + p > 20 + 2p or p < 30, there is no positive price p̄
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such that S(p̄) > D(p̄). So the second condition of theorem S4.2 is not
satisfied.

In this example, for any price greater than $10, a positive amount
of output will be supplied. However, at every price greater than $10,
demand exceeds supply, and so firms could increase price and still sell
their entire output. One would expect to see a price increasing without
bound. Of course, a commodity with demand increasing in price without
bound is not a realistic possibility, since consumers would exhaust their
incomes if such were the case.

S4.8.

D(p) =
{

50 − 2p if p ≥ 10
70 − 2p if p < 10

S(p) = 10 + 3p

z(p) = D(p) − S(p), and so the excess demand function is

z(p) =
{

50 − 2p − (10 + 3p) = 40 − 5p if p ≥ 10
70 − 2p − (10 + 3p) = 60 − 5p if p < 10

Figure S4.37

Figure S4.38
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We can see from the graphs that the demand function is discontinu-
ous at p = 10, as is the excess demand function. Therefore theorem S4.2
does not apply. As it turns out, there is no price that equates demand and
supply. If p ≥ 10, then we have D(p) < S(p). However, if p < 10, then
we have D(p) > S(p). Although one might expect to see a price of $10
in this market, at least some firms would discover at this price that some
of their output was not being sold, and so inventories would build up.
If price was reduced even a small amount, demand would then actually
outstrip supply. Other than this observation, the equilibrim model does
not, in this case, indicate clearly how such a market would behave.

S4.9. Letting y represent quantity for either the demand or supply function and z

the excess demand, we have D(p) = 100−2p, S(p) = −20+p, z(p) =
(100−2p)−(−20+p) ⇒ z(p) = 120−3p. Equilibrium price, pe, is de-
termined by D(pe) = S(pe) or z(pe) = 0, and so pe = 40. Substitution
of pe = 40 into either the demand or supply function gives us ye = 20.

Figure S4.39

Figure S4.40
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The demand and supply functions are continuous, and as a result
so is the excess demand function. Since D(0) = 100 > S(0) = −20,
condition (i) of theorem S4.2 is satisfied. Also, since D(p) < S(p) ⇐⇒
100 − 2p < −20 + p ⇐⇒ p > 40, it follows that condition (ii) of
theorem S4.2 is satisfied (i.e., D(p̄) < S(p̄) for any value p̄ > 40).

S4.10. Letting y represent quantity for either the demand or supply function and
z the excess demand, we have

D(p) =
{

100 − 2p, p > 45
120 − 2p, p ≤ 45

S(p) = −20 + p

z(p) =
{

120 − 3p, p > 45
140 − 3p, p ≤ 45

Figure S4.41
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Figure S4.42

Since the demand function is not continuous, and hence neither is
the excess demand function, theorem S4.2 does not apply, and so there
may not be an equilibrium. This is seen to be the case for this exercise,
as is illustrated by the graphs in figures S4.41 and S4.42.

S4.11. This exercise is similar to exercise S4.2. The numbers are different, and
notice that when firm B chooses a location to the right of the midpoint
(LB = 0.8), firm A’s largest market share is obtained when it locates just
to the left of 0.8, as indicated in figure S4.43. Due to the similarity of
these questions, we indicate below only how they differ.

Figure S4.43
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(a)

MA(LA) =
⎧⎨
⎩

LA + 0.5(0.8 − LA), LA < 0.8
0.5, LA = 0.8
(1 − LA) + 0.5(LA − 0.8), LA > 0.8

Since πA(LA) = 10, 000MA(LA),

πA(LA) =
⎧⎨
⎩

10,000[LA + 0.5(0.8 − LA)], LA < 0.8
5,000, LA = 0.8
10,000[(1 − LA) + 0.5(LA − 0.8)], LA > 0.8

(b) Use the same functions as in (a), but replace 0.8 by L̄B everywhere.
Notice that when L̄B < 0.5, firm A’s market share and profit are
highest if it locates just to the right of L̄B

(c) The functions are the same functions as in (b) except that firm A’s
market share and profit are highest if it locates just to the left of L̄B.

(d) The functions are the same functions as in parts (b) and (c) except
that firm A’s market share and profit are highest if it locates just
at LA = L̄B = 0.5, and the market share and profit functions are
continuous at this point.

(e) Firm B would locate at LB = 0.5, and this would be the equilibrium
outcome of the model.



Chapter S5 The Derivative and Differential for
Functions of One Variable

Contents S5.1 Marginal Revenue Product of Labor for a Competitive Firm and for a
Monopoly Firm

S5.2 Further Details on the Elasticity Concept
Practice Exercises

S5.1 Marginal Revenue Product of Labor
for a Competitive Firm and for a
Monopoly Firm

Let q = q(L) be a firm’s production function where q is output and L is a single
input of labor. The marginal (physical) product of labor is MP(L) = dq/dL

and measures the extra units of output resulting from one more unit of input, L.
The marginal value product of labor, MVP(L), is the market value of the output
created by employing one more unit of input, which is just the amount of extra
output multiplied by the price. Thus we can write

MVP(L) = pMP(L)

where p is the price of the product.
The added revenue to the firm which results from using an additional unit of

labor is called the marginal revenue product of labor, MRP(L). If R(q) is the
firm’s revenue function, then using the chain rule we can write

MRP(L) = dR

dL
= dR

dq

dq

dL
= MR(q)MP(L)

We saw in example 5.4 that a competitive firm’s marginal revenue function is sim-
ply equal to market price, MR(q) = p̄. It follows then that MVP(L) = MRP(L) for
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a competitive firm. Assuming that MP(L) is decreasing in L, then this relationship
is illustrated in figure S5.1.

L

$

MRP(L) = pMPL = MVP(L)

Figure S5.1 Marginal revenue
product and marginal value product
coincide for a competitive firm

For a monopoly firm, however, price depends on the level of output produced
and hence depends on the level of the input used. If we write the inverse demand
function as p = p(q) or p = p(q(L)) and assume p′(q) < 0, then we can write
the monopolist’s revenue function in terms of its input L as

R(q(L)) = p(q(L))q(L)

where the term p(q(L)) is to be read as “p is a function of q which is a function
of L.” Thus, according to the chain rule, we get

p′(L) or
dp

dL
= dp

dq

dq

dL

L

$

MRP(L) = MVP(L) + p'(L)q(L)

MVP(L) = pMP(L)

p'(L)q(L)

Figure S5.2 Relationship between
marginal revenue product and
marginal value product for a
monopoly firm

Using these results we get the following expression for the marginal revenue
product of labor for a monopoly firm:

MRP(L) = dR

dL
= dp

dq

dq

dL
q + dq

dL
p = p′(L)q + MP(L)p

Given that dp/dq < 0 and dq/dL > 0, it follows that p′(L) = (dp/dq)(dq/dL) <

0 and so MRP(L) < MP(L)p = MVP(L). Therefore the monopolist’s marginal
revenue product of labor curve lies below the marginal value product of labor
curve. Intuitively speaking, the monopolist values the use of more labor less than
the market does (i.e., less than consumers do). This is illustrated in figure S5.2 and
by the following example.

Example S5.1 Marginal Revenue Product of Labor

Show that the marginal revenue product of labor, MRP(L), for a monopolist with
inverse demand function p(q) = 30−q and production function q(L) = 2L1/2 is
less than the marginal value product of labor MVP(L), where MVP(L) = pMP(L).

Solution

We have

MP(L) = dq

dL
= L−1/2



FURTHER DETAILS ON THE ELASTICITY CONCEPT 57

and so

MVP(L) = pMP(L) = pL−1/2

On substituting from the inverse demand function, and the production function,
we can write p as a function of labor

p(L) = 30 − q = 30 − 2L1/2

which implies that

MVP(L) = (30 − 2L1/2)L−1/2 = 30L−1/2 − 2

The monopolist’s revenue, written as a function of labor, is

R(q(L)) = p(q(L))q(L) = (30 − q(L))q(L) = (30 − 2L1/2)(2L1/2)

= 60L1/2 − 4L

L

$

MVP(L) = 30L–1/2 – 2

MRP(L) = 30L–1/2 – 4

Figure S5.3 Graph for
example S5.1

Therefore

MRP(L) = dR

dL
= 30L−1/2 − 4

which is less than

MVP(L) = 30L−1/2 − 2

See figure S5.3.

S5.2 Further Details on the Elasticity
Concept

For the example in the text, the arc elasticity between points (y1, p1) and (y2, p2) is

[
−%�y

%�p

]
= −−28.6

66.7
.= 0.43

that is, 43%. This elasticity represents, in absolute value, the percentage change
in demand (y) due to a given percentage change in price (see figure S5.4).
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y
(tonnes)

$/tonne

500

100

86 10

200

y = 10 – 0.02p

p

B = (y2, p2)

A = (y1, p1)

∆y

{

∆p {

y
(kg)

$/kg

0.50

0.10

8,0006,000 10,000

0.20

y = 10,000 – 20,000p

p

B = (y2, p2)

A = (y1, p1)

∆y

{

∆p {

Figure S5.4 Single demand relationship expressed in terms of different units

One of the problems with arc elasticity is that the value depends on the size
of the price change, �p. Take the same initial point as in the example above,
p1 = $100 per tonne and y1 = 8 tonnes, but use �p = $50 to get p2 = $150 per
tonne and y2 = 7 tonnes. In this case the arc elasticity is

[
−%�y

%�p

]
= − �y/(y1 + y2)

�p/(p1 + p2)
= − −1/(7 + 8)

50/(100 + 150)
= 5

15
.= 0.33

Since there is no obvious amount by which one should change price to deter-
mine the elasticity value, the concept of arc elasticity is troublesome. The source
of the difficulty is that the arc elasticity is really an average elasticity between the
points (y1, p1) and (y2, p2). By taking the limit of the arc elasticity formula as
�p → 0, we get the two points converging and in so doing we find the elasticity
at the point (y1, p1). The point elasticity of demand is developed formally in
the text.

Example S5.2 Finding Elasticities of Demand

Return to our example in the text a demand function for steel. Using the first
form (units of measurement) of the demand function, y = 10 − 0.02p, the point
elasticity of demand at (y1, p1) = (8, 100) is

ε = −dy

dp

p1

y1
= −

[
−0.02

(
100

8

)]
= 2

8
= 0.25
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Using the other form, y = 10,000 − 20,000p, the point elasticity of demand at
the equivalent point, (y1, p1) = (8,000, 0.1), is

ε = −dy

dp

p1

y1
= −

[
−20,000

(
0.1

8,000

)]
= 0.25

We see that the choice of units of measurement does not affect the point elasticity
value.

In figure S5.5 we see that the elasticity of demand falls as one moves from
point A to point B. Since at point A the base level of y is small, a small percentage
reduction in price leads to a large percentage increase in y. Alternatively, as one
moves towards point B, the percentage increase in y becomes smaller as the base
level of y rises and the base level of p falls. This is seen mathematically from the
fact that the slope (dy/dp) is constant along a linear demand curve but the ratio
p/y falls as one moves from point A to point B. In fact, upon shifting point A so
that it approaches the p intercept we have y → 0 and so ε → ∞, while, upon
shifting point B so that it approaches the y intercept, we have p → 0 and so ε → 0.
At the midpoint (i.e., the midpoint between y = a, p = 0 and y = 0, p = a/b)

we have that y = a/2, p = a/2b, and so

ε = b

(
a/2b

a/2

)
= 1

y

p

a
2

 ε →  0

ε increasing

a

a
2b

a
b

ε decreasing

B

A
 ε → ∞

 ε = 1

(  ,  )a
2b

a
2

y = a – bp

C

Figure S5.5 Elasticity changes along a linear demand curve
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Another functional form which is frequently used to express the relationship
between price and quantity demanded is the so-called constant elasticity demand
function:

y = αp−β, α, β > 0

Consider first the particular case with β = 1 (i.e., y = α/p), constant unitary
elasticity of demand. For this demand function it is easy to see that total sales
revenue is the same at any price (py = α). This is illustrated in figure S5.6. Since
total sales revenue is constant at any price, then it follows that any percentage
reduction (increase) in price is always matched by the same percentage increase
(reduction) in sales, which keeps total sales revenue constant. Thus the elasticity of
demand is a constant value equal to one at every point on the demand function. This
is seen by applying the formula ε = −(dy/dp)(p/y) to the function y = αp−1

to get

ε = −((−1)αp−2)
p

y

Upon substitution for y = αp−1, we get

ε = αp−1

αp−1
= 1

p

Area of each rectangle = α

y

p1

y = α /p  ⇒   py = α

p2

p3

y1 y2 y3

(i.e., p1y1 = p2y2 = p3y3 = α)

Figure S5.6 Constant unitary elasticity of demand function
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For the more general form y = αp−β , we get the following result:

ε = −dy

dp

p

y
= −((−β)αp−β−1)

p

y
= αβp−β

αp−β
= β

P R A CT I C E E X E R C I S E S

S5.1. Suppose that a monopoly firm faces the demand function q = 10,000 −
200p. Consider an initial price and output combination of p̂ = 10 and
q̂ = 8,000.

(a) Find the extra revenue generated from the extra sales that would
result from a change in the price �p = −1 (i.e., �q = 200).

(b) Find the loss of revenue caused by the units that would have been
made at price p̂ = 10 but are now sold at price p = 9.

(c) Illustrate the two values computed in parts (a) and (b) on a diagram
such as figure 5.24, and show how these two values make up the
change in revenue associated with increased sales of �q = 200.

(d) Find the marginal revenue function for this monopolist.

Solution

S5.1. (a) If the price is reduced from p = $10 to p = $9 (�p = −1), sales
increase from q = 8,000 to q = 8,200 (�q = 200) and the sales
revenue from these additional sales is 200×$9 = $1,800 (see area A
in figure S5.7).

(b) The 8,000 units that could have been sold at price p = $10 but are
now sold at p = $9 generate $8,000 less in revenue (see area B in
figure S5.7).

(c) See figure S5.7
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Figure S5.7

(d) The inverse demand function for this monopolist is

p = 50 − (1/200)q

and so the total revenue function is

TR(q) = pq = [50 − (1/200)q]q = 50q − (1/200)q2

Thus the marginal revenue function is

MR(q) = TR′(q) = 50 − (1/100)q
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Variable

Contents S6.1 Monopoly Equilibria I and II
S6.2 Monopoly with Constant-Elasticity Demand and Constant Costs
S6.3 Average and Marginal Functions Revisited
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S6.7 The Competitive Firm with Cubic Costs Revisited

S6.1 Monopoly Equilibria I and II

Example S6.1 Monopoly Equilibrium I

A monopolist has inverse demand function p = 50 − 2x. The total-cost function
is C = 20 + 2x + 0.5x2. What are the profit-maximizing price and output?

Solution

Profit is

π(x) = 50x − 2x2 − [20 + 2x + 0.5x2]

= 48x − 2.5x2 − 20

so that

π ′(x∗) = 48 − 5x∗ = 0

and so

x∗ = 9.6 p∗ = 50 − 2(9.6) = $30.80
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R = 50x  – 2x2

π'(x*) = 0 

π = 48x  – 25x2 – 20
x*  =  9.6

C = 20 + 2x  + 0.5x2

R'(x*) = 11.6 

x

π
R
C 

p = 50 – 2x

p*  = 30.8
C'(x) = 2 + x

x

R'(x) = 50 – 4x 
x*  = 9.6

C'(x*) = 11.6 

25 

P, C

Figure S6.1 Monopoly equilibrium for example S6.2

The level of profit at the maximum is then

π(x∗) = 48(9.6) − 2.5(9.6)2 − 20 = $210.40

See figure S6.1.

Example S6.2 Monopoly Equilibrium II

A monopolist has inverse demand function p = 150 − 2x and total-cost func-
tion C = 0.1x3 − 3x2 + 50x + 100. What are the profit-maximizing price and
output?
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Solution

A similar sequence of steps to those in exercise 6.1 gives

π(x) = 150x − 2x2 − [0.1x3 − 3x2 + 50x + 100]

= 100x + x2 − 0.1x3 − 100

π ′(x∗) = 100 + 2x − 0.3x2 = 0

Solving this quadratic gives

x∗ = −2 ± √
4 − 4(−0.3)(100)

−0.6

so that

x∗ = 21.89 or x∗ = −15.23

R = 150x  – 2x2

π'(x*) = 0 

π = 100x + x2 – 0.1x3 – 100

x*  =  21.89

C = 0.1x3 – 3x2 + 50x + 100

R'(x*) = 62.4 

x

π
R
C 

p = 150 – 2x

p*  = 106.22 C'(x) = 0.3x2 – 6x + 50

x
MR

x*  = 21.89

C'(x*) = 62.4 

P, C

π*  =  1519.26

Figure S6.2 Monopoly equilibrium for example S6.3
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Since negative outputs are impossible, x∗ = 21.89, p∗ = $106.22, and

π(x∗) = 100(21.89) + (21.89)2 − 0.1(21.89)3 − 100 = $1,519.26

See figure S6.2.

S6.2 Monopoly with Constant-Elasticity
Demand and Constant Costs

We begin with an example of constant unit elasticity of demand. Suppose that a
monopoly firm faces the demand functionx = 10p−1, or in inverse formp = 10x−1,
and has the cost function, C = 5x. Note that we have to restrict the domain of the
function to x > 0. The demand function is called “constant elasticity” because, if
we evaluate the elasticity of demand, we obtain

ε = −dx

dp

p

x
= −(−10p−2)

(
p

10p−1

)
= 1

or even more simply, since log x = log 10 − log p

ε = − d log x

d log p
= 1

Since the elasticity is independent of the particular point on the demand curve, we
say elasticity is constant.

To find the profit-maximizing output, we set up

R(x) = px = (10x−1)x = 10

C(x) = 5x

π(x) = R(x) − C(x) = 10 − 5x

and applying equation (6.3) gives

π ′(x∗) = −5 = 0

which again is nonsense. What went wrong this time? Again, a figure will suggest
the mathematical answer (see figure S6.3). In figure S6.3(a), the revenue function
R(x) is a constant, while costs are increasing, and so profit varies inversely with
output—the lower is output the higher is profit.
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π = 10 – 5x  

R(x) = 10 

x

π
R
C 

p = 10x–1

x

P

C = 5x 

5 

(a) (b)

10

2

MC

Figure S6.3 Monopoly with unit elastic demand

In figure S6.3(b), we see why this is so: as output is lowered, price rises by
enough to keep revenue constant (p = 10/x ⇒ px = 10), and so, since reducing
output leaves revenue unchanged while reducing total costs, it pays to produce as
small an output as possible. However, there is a problem here. If the firm produced
zero output, it makes zero profit, so this cannot be the maximum. But then, since
between zero and any x, however small, there is an infinity of x-values (x is a
real number), so there is in fact no solution to the problem. If we proposed, say,
x = 0.1 as a solution, we could immediately show that x = 0.01 yielded a larger
profit, x = 0.001 still more, and so on.

Another way of looking at this is to note that marginal revenue, R′(x), in this
case is zero: in figure S6.3(b), the marginal-revenue “curve” coincides with the
horizontal axis, since a change in output produces no change in revenue. Since
marginal cost is constant at $5, there can be no output at which marginal rev-
enue equals marginal cost. Again, we see that care must be taken in applying
equation (6.3) in a model, because we again have a case in which a maximum
solution does not exist. A general discussion of the existence of solutions to opti-
mization problems is presented in chapter 13.

Now consider an example with constant elasticity of demand which is greater
than one. Let x = p−2 be the demand curve faced by the monopoly. In inverse
form we express this demand function as p = x−1/2. The elasticity of demand is

ε = −dx

dp

p

x
= −(−2p−3)

(
p

p−2

)
= 2

In this case the revenue function is not a constant:

R(x) = px = x−1/2x = x1/2
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If the cost function is C(x) = 2x, we have profit given by

π(x) = R(x) − C(x) = x1/2 − 2x

and so

π ′(x∗) = 0 ⇒ x∗−1/2

2
− 2 = 0

so that x∗ = 1/16 is the level of output that will maximize profit. Unlike the case
of unit elasticity of demand, we see in this example that reducing output reduces
total revenue and so a positive value of output exists which gives maximum profit.

The third possibility is for the constant elasticity of demand to be less than
one. We treat this possibility below.

Example S6.3 Constant Elasticity of Demand Less Than One

Is there a level of output, x ≥ 0, which maximizes profit for a monopolist facing
the demand function x = p−1/2 and cost function C(x) = 2x? Discuss in terms
of the elasticity of demand.

Solution

Since

x = p−1/2 ⇒ x = 1

p1/2
⇒ p1/2x = 1 ⇒ p1/2 = x−1

we get p = x−2 as the inverse demand function. We also have

ε = −dx

dp

p

x
= −

(
−1

2
p−3/2

)
p

p−1/2
= 1

2

Thus elasticity is a constant, less than one. Moreover

R(x) = px = x−2x = x−1

or R(x) = 1/x. For any positive value of x, revenue will rise if x falls. Since
costs also fall as x falls, then starting from any positive output level, this firm
can increase profit by reducing output, provided that the firm does not reduce
output to zero. This result follows because elasticity less than one implies that a
reduction in output is accompanied by a larger increase, in percentage terms, of
price. Therefore revenue rises when output is reduced as long as x > 0. As in the
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case of unit elasticity of demand, there is no positive value of output which leads
to maximum profit.

S6.3 Average and Marginal Functions
Revisited

In models of the firm, the relation between average and marginal product, or
average and marginal cost, is a subject of some interest, particularly the proposition
that the curves intersect at an extreme value of the average function (given that
this occurs at a positive value of x). The marginal-product curve cuts the average-
product curve at its maximum; the marginal-cost curve cuts the average-cost curve
at its minimum. This is very easy to show. Let f (x) denote the total-product or
total-cost function, a(x) ≡ f (x)/x the average-product or average-cost function,
and, of course, f ′(x) the marginal function. Then

a′(x) = 1

x2
(xf ′(x) − f (x))

= 1

x

(
f ′(x) − f (x)

x

)

= 1

x
(f ′(x) − a(x))

It follows that when a(x) is at an extreme value x∗

a′(x∗) = 1

x∗ (f ′(x∗) − a(x∗)) = 0

implying that

f ′(x∗) = a(x∗)

If f (x) is strictly concave (as with the total-product function, at least over the
“relevant range”), then a(x) takes a maximum at x∗, while if f (x) is strictly
convex (as with the total-cost function), then a(x) takes a minimum at x∗. Given
some specific function for f (x), we can always find the value of x∗ at which a(x)

and f ′(x) are equal by using the above first-order condition.

Example S6.4 Suppose that we have a total-product function

f (x) = 10x + 12x2 − x3
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The average-product function is

a(x) ≡ f (x)

x
= 10 + 12x − x2

and the marginal-product function is

f ′(x) = 10 + 24x − 3x2

x

a(x), f'(x)

a(x) = 10 + 12x – x2

6

f'(x) = 10 + 24x – 3x2

46

Figure S6.4 Graph of the result
that shows that a(x) = f (x)/x and
f ′(x) have the same value where a(x)
achieves its extreme value

At its maximum the average-product function’s first derivative is zero:

a′(x∗) = 0 ⇒ 12 − 2x∗ = 0 ⇒ x∗ = 6

Notice that at x∗ = 6 we have

a(x∗) = 10 + 12(6) − 62 = 46

f ′ = 10 + 24(6) − 3(62) = 46

This result is illustrated in figure S6.4. Notice that f ′′(x) = 24−6x < 0 at x∗ = 6,
which indicates that the production function is concave at the point where a(x)

takes a maximum.

S6.4 The Labor-Managed Firm
Suppose that a monopoly is owned by its workers, who are paid in the following
way: the firm’s total revenue is shared equally among all the workers. Let R(x)

denote the firm’s revenue function,x = f (L) its production function, and s = R/L

the payment each worker receives. Then it seems reasonable to assume that this
firm will choose its labor force so as to maximize s, and we have the problem

max
R[f (L)]

L

giving first-order condition

1

L2
(LR′f ′ − R[f (L)]) = 0
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This can be rewritten as

R′f ′ = R

L
= s

so that the number of workers is set at the point at which the marginal and average
revenue products of labor are equal. Assuming that the revenue and production
functions are both strictly concave, this will be at the maximum point of the
average-revenue product of labor function.

S6.5 Competitive Firm with a Cubic Cost
Function

The usual U-shaped average- and marginal-cost curves of the economics textbooks
can be generated by total cost functions of the form

C(x) = a0 + a1x + a2x
2 + a3x

3

which is a third-degree polynomial or cubic equation. Suppose that we have a
firm selling into a competitive market at a given price p = $30, and with the cost
function

C(x) = 20 + 50x − 3x2 + 0.1x3

In this function, 20 is the fixed-cost component, since it does not involve a term in
output x, and the remainder of the function gives total-variable cost. The firm’s
revenue function is R(x) = 30x, and so its profit is

π(x) = 30x − [20 + 50x − 3x2 + 0.1x3]

The condition for profit maximization yields

π ′(x∗) = 30 − [50 − 6x + 0.3x2] = 0

Since the term in square brackets is marginal cost, this gives the familiar “price =
marginal cost” condition. Simplifying the equation gives

−0.3x2 + 6x − 20 = 0

a quadratic equation. Solving this gives two roots:

x∗
1 = 4.2, x∗

2 = 15.8
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R = 30x

π = –20 – 20x  + 3x2 – 0.1x3

4.2

C = 20 + 50x  – 3x2 + 0.1x3

x

π
R
C 

30

x

P, MC, AVC

15.8–20

20

27.5

20

4.2 15.8

4.2 15.8

MC AVC

(a) (b)

Figure S6.5 Competitive firm with cubic costs

Is this then a case where we have more than one local maximum, or is there some-
thing more involved? Figure S6.5 shows that only x∗

2 = 15.8 is a local maximum,
while x∗

1 = 4.2, which, of course, is also a point at which price equals marginal
cost, is in fact a local minimum, since profit is at its lowest (most negative) there.
Thus, as we saw in the general discussion earlier (review figures 6.2 and 6.3), the
condition f ′(x) = 0 can characterize both maximum and minimum solutions.

For the remainder of this example, we focus on the maximum solution x∗
2 =

15.8. At this point, the firm’s total profit is

π(15.8) = 30(15.8) − [20 + 50(15.8) − 3(15.8)2 + 0.1(15.8)3]

= $18.49

and so production is profitable.
Suppose, however, that the firm’s fixed cost had been not $20 but $40. Then

an output of 15.8 is still the optimal solution, since this condition is unaffected
by the value of the fixed cost, but the firm has a loss of $1.51. Would it then be
better to shut down and produce zero output, rather than produce 15.8 units at a
loss? Table S6.1 gives the answer. It is clearly better to produce 15.8 units, since
the loss is lower than if no output is produced.

Table S6.1 illustrates an important economic point that has validity far beyond
this example. Note that the fixed costs are unavoidable: they are incurred regardless
of whether the firm produces any output (in economic terminology we would say
that the firm is “in the short run” since it has fixed costs). In deciding whether to
produce, we can therefore ignore these fixed costs. We note that the firm’s total
revenue exceeds total variable costs, so an operating surplus (here $38.49) helps
offset its fixed cost. Clearly, as long as this operating surplus, revenue minus total
variable cost, is positive, the firm should continue to produce. If this were negative,
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Table S6.1 Shut down or keep producing?

Output Revenue $ Variable cost $ Fixed cost $ Loss $

15.8 474 435.45 40 1.51
0 0 0 40 40

however, the firm should shut down, since otherwise it would be adding the loss it
incurs in production to the fixed costs it has to pay anyway. If we denote the firm’s
total variable costs by the function V (x), we can summarize by saying that the firm
should produce the output x∗ > 0 that satisfies its profit-maximizing condition as
long as

R(x∗) ≥ V (x∗)

Otherwise, it should set x = 0. Dividing through this inequality by output x∗, and
noting that R(x∗)/x∗ = p, while V (x∗)/x∗ is average variable cost, AVC, we can
state the condition as

p ≥ AVC

In figure S6.5(b) we see that this condition is satisfied at x∗ = 15.8, since at that
output AVC = $27.56 < p = $30.

S6.6 Short-Run Supply Function of a
Competitive Firm

We continue to use this model of the competitive firm but now generalize slightly.
Instead of taking a specific value for price, p, we leave it as a general parameter
in the problem. The firm’s profit function is now

π(x) = px − [20 + 50x − 3x2 + 0.1x3]

and the condition for profit maximization is

π ′(x) = p − [50 − 6x + 0.3x2] = 0

The firm’s supply function gives its desired output x as a function of market price, p.
This requires us to solve for x as a function of p. We can write the quadratic as

−0.3x2 + 6x + (p − 50) = 0



74 CHAPTER S6 OPTIMIZATION OF FUNCTIONS OF ONE VARIABLE

and using the standard quadratic formula, we then have

x∗ = −6 ± √
36 − 4(−0.3)(p − 50)

(−0.6)

Now we know from our earlier calculations that the profit maximum is at the higher
of the two roots to this quadratic, and we have the resulting function

x∗ = [−6 − (1.2p − 24)1/2]/−0.6

= 10 + 1.67(1.2p − 24)1/2

which gives x∗ as a real number only for p ≥ 20. (This corresponds to the rising
part of the marginal cost curve—refer to figure S6.5(b).) We know, however, that
for some range of prices above $20, namely those that are less than AVC, the firm
will produce zero output. In diagrammatic terms, the firm’s supply curve is that
portion of its marginal-cost curve that is above its AVC curve. To characterize this,
we first need to solve for minimum AVC. The AVC function is given by

TVC

x
= (50x − 3x2 + 0.1x3)

x
= 50 − 3x + 0.1x2

To minimize this function we set its derivative equal to zero:

−3 + 0.2x = 0

implying that AVC is minimized at x = 15. The resulting minimized value of
AVC is

50 − 3(15) + 0.1(15)2 = $27.50

So we can say that at any price below $27.50 the firm will shut down, while
at a price at or above $27.50 it will produce the output given by the first-order
condition. This implies that its (short-run) supply function is

x =
{

10 + 1.67(1.2p − 24)1/2 for p ≥ $27.50

0 for p < $27.50
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S6.7 Competitive Firm with Cubic Costs
Revisited

Return to the example of the competitive firm with a cubic-cost function. There
we obtained the equation on profit-maximizing output

π ′(x) = 30 − [50 − 6x + 0.3x2] = 0

which we saw had two solutions; x∗
1 = 4.2, x∗

2 = 15.8. We chose between them
by drawing a diagram. Instead, we can use the second-order condition. Now

π ′′(x) = 6 − 0.6x

So

π ′′(4.2) = 6 − 2.52 = 3.48 > 0

π ′′(15.8) = 6 − 9.48 = −3.48 < 0

Thus, from theorems 6.2 and 6.3, we can conclude that x∗ = 4.2 yields a local
minimum of the profit function and x∗ = 15.8 yields a local maximum.

Example S6.5 The Excise Tax That Maximizes Total Tax Revenue

Find the excise tax, t , that will maximize total tax revenue in the following market:

D = 50 − 2pB, S = −10 + pS

where pB is the price paid by consumers inclusive of tax and pS is the price
received by producers after the tax has been passed to the government. Check that
your answer really delivers a maximum and not a minimum.

Solution

Clearly,

pS = pB − t

Therefore

D = 50 − 2pB, S = −10 + (pB − t)
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Equilibrium (D = S) implies that

50 − 2pB = −10 + (pB − t) ⇒ 3pB = 60 + t

or

p̂B = 60 + t

3

will be the equilibrium price. Equilibrium quantity is

D̂ = 50 − 2

(
60 + t

3

)
= 30 − 2t

3

(You can check the result by substituting p̂B into the supply function as well.)
Thus total tax revenue is

T (t) = tD̂ = t

(
30 − 2t

3

)
= 30t − 2t2

3

The value of t , t = t∗, that leads to maximum tax revenue, is found by setting
T ′(t∗) = 0. So

T ′(t∗) = 30 − 4t∗

3
= 0 ⇒ t∗ = 7.5

t

T (t) 

t* = 7.50 15

T (t) = 30t – 2t2

337.5

Figure S6.6 Graph of the tax
revenue function for example S6.5

Notice that T ′′(t) = −4/3 < 0 for all t , implying that the function T (t) is strictly
concave everywhere and so t∗ = 7.5 delivers a global maximum. This is illustrated
in figure S6.6. Notice that T (t) = 0 at t = 0, for obvious reasons, and at t = 15,
since once tax is this large, equilibrium price becomes

p̂B = 60 + 15

3
= 25

and demand is zero at this price. If nothing is purchased, tax revenue must be zero.
The maximum tax revenue is

T (t∗) = 30(7.5) − 2(7.5)2

3
= 37.5
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S7.1 Open-Economy IS-LM-BP Model
An important extension of the IS-LM model includes consideration of open econ-
omy issues: the trade in goods and services, and the international movement of
capital. The two key endogenous variables of the closed economy IS-LM model,
the level of GDP (Y ) and the interest rage (R), are now potentially influenced by
world markets. As we add this new dimension to the IS-LM model, we have to
revisit assumptions about the parameters of the model and the variables we wish
to have determined by it.

We can extend the linear two-sector IS-LM model to allow for trade and
balance of payments considerations. The first implication of doing so is that net
demand on domestic output comes from exports, less the value of imports. This is
net exports, denoted by X. Net exports will be lower the higher is domestic income
because an increase in income increases imports but has no effect on exports. In
addition net exports will depend on the exchange rate, E, defined as the price of
a foreign currency in terms of domestic currency. If the domestic economy is the
United States and the foreign economy is Japan, E has the dimension $ U.S./yen.
An increase in E, so defined, makes U.S. goods relatively cheaper for Japanese
consumers to buy, because each yen will buy more U.S. dollars. Simultaneously an
increase in E makes Japanese goods relatively more expensive for U.S. residents
to buy, since each dollar buys fewer yen. Thus an increase in E increases net
exports to Japan. The IS side of the story is therefore determined by

C = a + bY

I = e − lR

X = X̄ − mY + αE
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representing the consumption function, investment function, and net export func-
tion respectively. Here X̄ represents some exogenous level of net exports. Note
that we are assuming no government sector here.

The LM sector is assumed to be unchanged, and we have

R = kY − M̄

h

Finally, we will require that a full equilibrium involves a zero balance of pay-
ments. The balance of payments, B, is the sum of the capital account surplus (the
net receipts from the sale of domestic assets to overseas residents) and net exports.
A simple linear formulation is therefore

B = X̄ − mY + p(R − Rw) + αE

The term p(R − Rw) represents the influence of the capital account. The capital
account surplus increases if the domestic interest rate is above the world rate. If the
domestic interest rate is less than the world rate, then individuals can earn a higher
rate of return on their assets overseas and a net outflow of capital will ensue. The
exchange rate would also normally influence capital movements, but for simplicity
we restrict the influence of the exchange rate to net exports. This makes the model
rather special. Setting Y = C + I + X and setting B = 0 give the IS curve and
the BP (balance of payments equilibrium) curves, respectively. These are

R = a + e + X̄

l
− (1 − b + m)

l
Y + α

l
E

R = mY − X̄ − αE

p
+ Rw

Y

R
LM

BP

IS

Figure S7.1 IS-LM-BP
equilibrium

The IS, LM, and BP curves are shown in figure S7.1. Since both LM and BP
curves are positively sloped, we need to make some assumption about the relative
steepness of the lines. If we assume that capital is mobile but not perfectly mobile
(see example 7.9), then BP may be less steep than LM. The slope of LM is

dR

dY

∣∣∣∣
LM

= k

h

and the slope of BP is

dR

dY

∣∣∣∣
BP

= m

p
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We assume the latter is smaller than the former. The parameter p tells us how
sensitive BP is to the interest rate differential. The larger is p the bigger are
the induced capital movements when the interest rate differential changes. As p

becomes very large, the slope of the BP curve becomes zero, which is essentially
the situation we had in example 7.9.

How the equilibrium is determined now depends on the assumption to be
made about the exchange rate. We will assume that the exchange rate is flexible,
so that it becomes the third variable (in addition to output and interest rate) to be
determined. We have three independent equations in three unknowns, Y , R, and E.
The three reduced forms are

Y = h(a + e) + M̄ (l + p) + hpRw

(l + p)k + h(1 − b)

R = k(a + e) + kpRw − (1 − b)M̄

(l + p)k + h(1 − b)

E = (a + e)(hm − pk)

α[k(l + p) + h(1 − b)]
+ M̄

{
p(1 − b + m) + lm

α[k(l + p) + h(1 − b)]

}

− X̄

α
+ pRw

{
kl + h(1 − b + m)

α[k(l + p) + h(1 − b)]

}

Example S7.1 Open-Economy Equilibrium with a Flexible Exchange Rate

You are given the following information about an open economy, where all the
notation has been defined earlier:

C = 210 + 0.8Y

I = 20 − R

X = 200 − 0.3Y + 0.5E

L = 0.5Y − R

M = 480

B = 200 − 0.3Y + (R − 10) + 0.5E

Show that the BP curve is less steep than the LM curve in this case (the situation
in figure S7.1). Solve for the equilibrium Y , R, and E.
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Solution

In terms of the earlier notation, k = 0.5, h = 1, so the LM curve has a slope of
0.5. With m = 0.3 and p = 1, the BP curve has an absolute slope of 0.3.

We can solve for the equilibrium by using the equilibrium conditions

Y = C + I + X

M = L

B = 0

Solving by substitution gives

R = 20%, Y = 1000, E = 180

Notice that substituting the parameter values into the general reduced forms derived
earlier produces approximately the same answers. Any discrepencies are due to
rounding errors.

A special case of the system in equation (7.14) arises when all of the constants, bi ,
are equal to zero.

S7.2 Gauss-Jordan Elimination
Some of the steps in producing the reduced row-echelon form of matrix from which
the solution to the system is derived seem somewhat arbitrary or haphazard. The
choice of procedure at each step seems to anticipate the future steps required to
solve the system and it seems that some intuition and subjective judgment are at
work. Gauss-Jordan elimination is a systematic procedure or algorithm which
always leads to a matrix in reduced row-echelon form. The method involves the
systematic interchange of rows and the application of row operations. Rather than
state the algorithm generally, it is better illustrated by an example:

Example S7.2 Open-Economy Equilibrium with a Flexible Exchange Rate

Consider the system

x2 + 2x3 − 4x4 = −9

2x1 − x2 + x4 = 6

x1 + x2 + x3 + x4 = 14

− x3 + x4 = 1
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which may be written in matrix form as

⎡
⎢⎢⎣

0 1 2 −4 −9
2 −1 0 1 6
1 1 1 1 14
0 0 −1 1 1

⎤
⎥⎥⎦

Solution

Step 1 Identify the first column to contain any nonzero elements. In this example
we identify column 1.
Step 2 Interchange rows so that a 1 appears at the top of the identified column.
If no row already contains a 1 in the identified column, but contains some other
number α, then multiply the entire row by 1/α to create a 1, then interchange
rows so that the 1 appears at the top of the identified column. In this example we
interchange the first and third rows to obtain

⎡
⎢⎢⎣

1 1 1 1 14
2 −1 0 1 6
0 1 2 −4 −9
0 0 −1 1 1

⎤
⎥⎥⎦

Step 3 Multiply the top row by the appropriate factor and subtract it from each
row below to obtain zeros in the first column in all rows except the top. In this
case we only need to subtract from the second row, twice the top row to give

⎡
⎢⎢⎣

1 1 1 1 14
0 −3 −2 −1 −22
0 1 2 −4 −9
0 0 −1 1 1

⎤
⎥⎥⎦

Step 4 Ignore the top row for now. Identify in the remaining rows the first col-
umn to contain any nonzero element, and repeat steps 2 and 3. In our example we
identify the second column as the leftmost column to contain any nonzero element,
and we may interchange the second row with the third row to obtain a 1 at the top
of the identified column:

⎡
⎢⎢⎢⎢⎣

1 1 1 1 14
· · · · · · · · · · · · · · ·

0 1 2 −4 −9
0 −3 −2 −1 −22
0 0 −1 1 1

⎤
⎥⎥⎥⎥⎦
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Operations are now on the lower submatrix. We now multiply the new first row by
3 and add to the second row to produce a zero below the 1. The new submatrix is

⎡
⎣0 1 2 −4 −9

0 0 4 −13 −49
0 0 −1 1 1

⎤
⎦

Step 4 may now be repeated on this submatrix. The top row is ignored and joins
the previously eliminated top row:

⎡
⎢⎢⎢⎢⎣

1 1 1 1 14
0 1 2 −4 −9

· · · · · · · · · · · · · · ·
0 0 4 −13 −49
0 0 −1 1 1

⎤
⎥⎥⎥⎥⎦

The first nonzero column in the lower submatrix is the third column and we can
multiply the second row by −1 and interchange with the top row to give

[
0 0 1 −1 −1
0 0 4 −13 −49

]

Multiplying the first row by 4 and subtracting from the second row gives

[
0 0 1 −1 −1
0 0 0 −9 −45

]

The new top row can be ignored for now and joins the others, leaving just the last
row to be divided by −9. Bringing all the previously ignored rows together with
the new last row gives

⎡
⎢⎢⎣

1 1 1 1 14
0 1 2 −4 −9
0 0 1 −1 −1
0 0 0 1 5

⎤
⎥⎥⎦

Step 5 Starting with the last row, add appropriate multiples of each row to the
rows above until the reduced row-echelon form is revealed. In the example we add
the last row to the third row to obtain a zero above the 1 in the last row. We then
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add 4 times the last row to the second row to give

⎡
⎢⎢⎣

1 1 1 1 14
0 1 2 0 11
0 0 1 0 4
0 0 0 1 5

⎤
⎥⎥⎦

We then subtract 2 times the third row from the second row to give

⎡
⎢⎢⎣

1 1 1 1 14
0 1 0 0 3
0 0 1 0 4
0 0 0 1 5

⎤
⎥⎥⎦

Finally, we subtract the sum of the second, third, and fourth rows from the first row

⎡
⎢⎢⎣

1 0 0 0 2
0 1 0 0 3
0 0 1 0 4
0 0 0 1 5

⎤
⎥⎥⎦

to give us the reduced row-echelon form. The solution is therefore x1 = 2, x2 = 3,
x3 = 4, and x4 = 5.

The Gauss-Jordan elimination technique is composed of two main parts. Steps 1
through 4 produce the zeros in the lower left-hand part of the matrix, while step 5
produces the zeros in the top right-hand part.
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S8.1 Migration
The transition matrix summarizes information that characterizes the transition
between “states.” Examples of such states may be social classes, income groups,
or geographical regions. We will examine the transition matrix that applies to
population migration between regions. Workers may move or stay, depending on
the economic conditions they face. For instance, for those with steady employment,
staying put at the location of their employment is very sensible, but for those
workers out of work, moving to another region may be worthwhile. Suppose that
we have a country divided into three regions: 1, 2, and 3. Then the proportions of
the populations of these regions that stay put or move to another region are given
in terms of the transition matrix

P =
⎡
⎣p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎦

The entry pij in this 3 × 3 matrix denotes the proportion of the population of
region j that moves to region i, j = 1, 2, 3 and i = 1, 2, 3. For instance, if 80%
of the population of region 1 stays put, 10% moves to region 2, and 10% moves to
region 3, the corresponding entries of P are p11 = 0.8, p21 = 0.1, and p31 = 0.1.
Similarly, if 70% of the population of region 2 stays, 15% moves to region 1, and
15% to region 3, we have p12 = 0.15, p22 = 0.7, and p32 = 0.15. Finally, if 90%
of region 3’s population stays, 5% moves to region 1, and 5% to region 2, we have
p13 = 0.05, p23 = 0.05, and p33 = 0.9. Then the matrix P is given as

P =
⎡
⎣0.80 0.15 0.05

0.10 0.70 0.05
0.10 0.15 0.90

⎤
⎦
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The transition matrix, as we will see later in the chapter, can be used to evaluate
the population movements between regions over time.

These examples lead to the general definition of a matrix.

S8.2 Profit for a Multiproduct Firm
Another application for matrix multiplication is in calculating the profit for a
multiproduct firm.

Example S8.1 Suppose that a firm produces three types of output, using two types of input. Its
output quantities are given by the column vector

q =
⎡
⎣15,000

27,000
13,000

⎤
⎦

and the unit prices of these are given by the row vector p = [10 12 5]. The
amounts of inputs it uses are given by the column vector

z =
[

11,000
30,000

]

and the input prices by the row vector w = [20 8]. The firm’s profit is given by

� = pq − wz

= [10 12 5]

⎡
⎣15,000

27,000
13,000

⎤
⎦− [20 8]

[
11,000
30,000

]

= (150,000 + 324,000 + 65,000) − (220,000 + 240,000) = 79,000
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Contents S9.1 Gauss-Jordan Elimination and the Inverse Matrix

S9.1 Gauss-Jordan Elimination and the
Inverse Matrix

The method for computing the inverse matrix that we will describe in this section
is based on the application of the so-called elementary row operations that we
saw in chapter 7 as a way of obtaining the solution of a system of simultaneous
equations. A nonsingular matrix A of order n can be reduced to In by a series of
elementary row or column operations defined below.

D e f in i t i o n S9 . 1 An elementary row operation involves any of the following three cases:

1. Interchanging any two rows
2. Adding a multiple λ of one row to another
3. Multiplying any row of a matrix by a scalar λ = 0

Similarly we can define an elementary column operation as follows:

1. Interchanging any two columns
2. Adding a multiple λ of one column to another
3. Multiplying any column of a matrix by a scalar λ = 0

D e f in i t i o n S9 . 2 A matrix obtained from the identity matrix In by means of an elementary row or
column operation is called an elementary matrix.

Note that we only use row or column operations; we should not mix the two.
Without any loss of generality we will concentrate only on row operations. Since
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there are three types of elementary operations, there are three types of elementary
matrices, examples of which are given below.

To illustrate the different elementary matrix operations, we consider the fol-
lowing matrix:

E1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

E1 is obtained from I7 by interchanging rows 2 and 6.

E2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 λ 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

E2 is obtained from I7 by multiplying row 2 times λ and adding the product
to row 6.

E3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 λ 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

E3 is obtained from I7 by multiplying the second row by λ = 0.
Performing a row operation of a given type on a matrix A is the same as

premultiplying the matrix by an appropriate elementary matrix. We can reduce
any matrix A with a nonzero determinant to In by an appropriate sequence of
elementary row operations. In other words,

EsEs−1 · · · E1A = I

where Es denotes the elementary matrix associated with the sth operation.
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Example S9.1 Reduce matrix A to I3 by an appropriate sequence of row operations:

A =
⎡
⎣1 2 3

0 1 −1
1 2 1

⎤
⎦

Solution

First subtract row 3 from row 1 to obtain

⎡
⎣0 0 2

0 1 −1
1 2 1

⎤
⎦

Multiply row 2 by −2 and add the product to row 3 to obtain

⎡
⎣0 0 2

0 1 −1
1 0 3

⎤
⎦

Next, multiply row 1 by (−3/2):

⎡
⎣0 0 −3

0 1 −1
1 0 3

⎤
⎦

Now, add row 3 to row 1:

⎡
⎣1 0 0

0 1 −1
1 0 3

⎤
⎦

Subtract row 1 from row 3:

⎡
⎣1 0 0

0 1 −1
0 0 3

⎤
⎦

Multiply row 3 by 1/3:

⎡
⎣1 0 0

0 1 −1
0 0 1

⎤
⎦
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Finally, add row 3 to row 2:

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

In this example we could have followed other sequences of elementary row oper-
ations to arrive at the same result.

If the same sequence of elementary row operations is applied to In, the result
will be the inverse matrix A−1. We can see this from the fact that

EsEs−1 · · · E1A = In

where Es, Es−1, · · · , E1 stand for the elementary matrices associated with the
corresponding s elementary operations. Then

A = E−1
1 E−1

2 · · · E−1
s

and

A−1 = EsEs−1 · · · E1

Example S9.2 Use the Gauss-Jordan elimination method to obtain the inverse of matrix A,

A =
⎡
⎣1 2 3

0 1 −1
1 2 1

⎤
⎦

Solution

We will apply the same sequence of elementary operations to I3 as were applied
to A when we reduced it to I3. So we start with

⎡
⎣1 2 3

0 1 −1
1 2 1

⎤
⎦ ,

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

First, we subtract row 3 from row 1:

⎡
⎣0 0 2

0 1 −1
1 2 1

⎤
⎦ ,

⎡
⎣1 0 −1

0 1 0
0 0 1

⎤
⎦
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Now, multiply row 2 by −2 and add the product to row 3:

⎡
⎣0 0 2

0 1 −1
1 0 3

⎤
⎦ ,

⎡
⎣1 0 −1

0 1 0
0 −2 1

⎤
⎦

Multiply row 1 by (−3/2):

⎡
⎣0 0 −3

0 1 −1
1 0 3

⎤
⎦ ,

⎡
⎣−3/2 0 3/2

0 1 0
0 −2 1

⎤
⎦

Add row 3 to row 1:

⎡
⎣1 0 0

0 1 −1
1 0 3

⎤
⎦ ,

⎡
⎣−3/2 −2 5/2

0 1 0
0 −2 1

⎤
⎦

Subtract row 1 from row 3:

⎡
⎣1 0 0

0 1 −1
0 0 3

⎤
⎦ ,

⎡
⎣−3/2 −2 5/2

0 1 0
3/2 0 −3/2

⎤
⎦

Multiply row 3 by (1/3):

⎡
⎣1 0 0

0 1 −1
0 0 1

⎤
⎦ ,

⎡
⎣−3/2 −2 5/2

0 1 0
1/2 0 −1/2

⎤
⎦

Now, add row 3 to row 2:

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ ,

⎡
⎣−3/2 −2 5/2

1/2 1 −1/2
1/2 0 −1/2

⎤
⎦

These matrices are I3 and A−1, respectively. Note that A−1 was obtained earlier
through the computation of the appropriate adjoint matrix in example 9.15.





Chapter S10 Advanced Linear Algebra

Contents S10.1 The Statistical Distribution of Quadratic Forms

S10.1 The Statistical Distribution of
Quadratic Forms

In statistical distribution theory the multivariate normal distribution is the most
widely used distribution and constitutes the building block on which other com-
monly used distributions are constructed. Let z be a vector of random variables of
dimension n × 1, each with zero mean and variance unity. Then we say that

z ∼ N(0, I )

which is read: z is distributed as a normal variable with mean the zero vector and
variance-covariance matrix the identity matrix of order n. The distribution of z is
characterized entirely in this case by its mean and its variance. The mean is defined
as E(z) and the variance of z is given by the variance-covariance matrix defined as

var(z) = E(z − E(z))(z − E(z))T

This matrix is a symmetric matrix of dimension n×n. We can write the mean and
variance of z explicitly as

E(z) = E

⎡
⎢⎢⎢⎣

z1

z2
...

zn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

E(z1)

E(z2)
...

E(zn)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
...

0

⎤
⎥⎥⎥⎦= 0
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and

var(z) = E

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

z1

z2
...

zn

⎤
⎥⎥⎥⎦ [z1z2 · · · zn]

⎞
⎟⎟⎟⎠ = E

⎡
⎢⎢⎢⎣

z2
1 z1z2 · · · z1zn

z2z1 z2
2 · · · z2zn

...
...

. . .
...

znz1 z2zn · · · z2
n

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

E
(
z2

1

)
E(z1z2) · · · E(z1zn)

E(z2z1) E(z2) · · · E(z2zn)
...

...
. . .

...

E(znz1) E(znz2) · · · E
(
z2
n

)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎦ = In

Note that E(zizj ) are the correlations among the zis and the zj s, (i, j = 1, . . . , n),
which are assumed to be zero.

The sum of the squares of these independently and identically distributed zis
defines a common distribution in econometrics, the χ2 distribution.

Example S10.1 The Classical Least-Squares Model

In this example, we will discuss the classical linear model and its basic mathemat-
ical and statistical structure. We will highlight the results from linear algebra and
statistical distribution theory that we use.

Let us describe the

y = Xβ + u

where y is an (n × 1) vector of observations on the dependent variable, X is an
(n × k) matrix of observations on k independent variables, β is a (k × 1) vector of
parameters, and u is a vector which is (n × 1) and whose components are random
errors or disturbances that are unobservable.Amodel where the dependent variable
is expressed in terms of independent variables is known as a regression model.
We assume the following:

1. The uis are random variables with the properties

E[u] = E

⎡
⎢⎢⎢⎣

u1

u2
...

un

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

E(u1)

E(u2)
...

E(un)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0
...

0

⎤
⎥⎥⎥⎦ = 0
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and

var(u) = E{(u − E(u))(u − E(u))T } = E(uuT )

since E(u) = 0. More explicitly

var(u) = E

⎡
⎢⎢⎢⎣
⎡
⎢⎢⎢⎣

u1

u2
...

un

⎤
⎥⎥⎥⎦ [u1u2 · · · un]

⎤
⎥⎥⎥⎦

= E

⎡
⎢⎢⎢⎣

u2
1 u1u2 · · · u1un

u2u1 u2
2 · · · u2un

...
...

. . .
...

unu1 unu2 · · · u2
n

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

E
(
u2

1

)
E(u1u2) · · · E(u1un)

E(u2u1) E
(
u2

2

) · · · E(u2un)
...

...
. . .

...

E(unu1) E(unu2) · · · E
(
u2

n

)

⎤
⎥⎥⎥⎦

= σ 2In

where In is the identity matrix of order n. The assumption above about the
errors simply states that they are pairwise uncorrelated, since E(uiuj ) = 0, for
all i = j . They also have the same variances. If we further assume that the joint
distribution of these n errors is normal, then they will be independent, since for
the case of normality, lack of correlation implies independence, and vice versa.
Then we say that the uis are independently and identically distributed, or i.i.d.,
and that they are spherical.

2. The Xs are fixed, real numbers. In other words, in contrast to the random
behavior of the uis the Xs do not add to the randomness that is transmitted to the
theys. Hence the stochastic nature of the model is entirely due to the randomness
of the errors. We will also assume that the matrix XT X will be nonsingular.

Least-squares estimation involves minimizing the sum of squared deviations
of the predicted from the actual series. The solution that minimizes these squared
deviations leads to the best choice of estimator. That is, for each choice of estimator,
there is a corresponding predicted or estimated or fitted value of the dependent
value and we choose the estimator that makes these fitted or predicted values
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mimic the actual data as well as possible. The problem is to minimize the objective
function given by

n∑
i=1

e2
i = eT e = (y − Xb)T (y − Xb)

= yT y − bT XT y − yT Xb + bT XT Xb

Note that the objective function is defined in terms of observable quantities, the ei ,
which are the residuals from the estimation. The residuals are to be distinguished
from the errors, the ui , that are unobservables. We use b to denote the estimator
of β, which is, of course, unknown. Different choices of b lead to different values
of the objective function, since the regression residuals will be different. We then
try to choose that value of b that minimizes the above objective function. Since
this objective function is a scalar, all of its components are also scalars. Hence
bT XT y = yT Xb, since taking the transpose of a scalar leaves it unchanged. That
is, bT XT y = (yT Xb)T . The objective function then becomes

eT e = yT y − 2bT XT y + bT XT Xb

In chapter 12 we will investigate the solution to the above minimization problem.
The optimal choice of b is known as the ordinary least-squares (OLS) estimator
of β.

Example S10.2 The Generalized Least-Squares Transformation

Suppose that the linear regression model y = Xβ +u has errors that are nonspher-
ical. In this case u ∼ N(0, σ 2�), where � is a positive definite matrix. However,
� = I , and it may have a nonconstant main diagonal and/or possibly nonzero
diagonal elements. The classical least-squares model of example 10.24 has certain
desirable statistical properties that are partly the result of the i.i.d. (spherical) struc-
ture of the errors. Given that the errors in the present model are u ∼ N(0, σ 2�),
we need to transform them so that they will be spherical. In other words, we want
to find a transformation T such that the variance-covariance matrix of the trans-
formed errors T u is σ 2I . We take T to be an n × n fixed matrix. The variance of
T u is given below:

var(T u) = E(T u − E(T u))(T u − E(T u))T

Since E(T u) = T E(u) = 0, we get

var(T u) = E(T uuT T T )

= T E(uuT )T T

= σ 2T �T T
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If we choose T such that T �T T = I , then transforming the model and applying
least squares to the transformed model will bring us back to the environment where
least squares are optimal. Below we will demonstate that such a transformation
exists. By assumption, we have that � is a positive definite symmetric matrix. Then
we can use theorem 10.6 to write

QT �Q = 

where Q is the orthogonal matrix of eigenvectors and  is the diagonal matrix of
eigenvalues. Then, by pre- and postmultiplying the equation above by Q and QT ,
respectively, we get

� = QQT

since QQT = I . We can take the square root of the eigenvalues because they are
all positive. That leads us to

� = Q1/21/2QT = PP T

where P is a positive definite matrix defined as Q1/2. By choosing T = P −1,
we obtain

T �T T = P −1(PP T )(P −1)T

= P −1PP T (P T )−1 = I

since we can interchange inversion and transposition. Having found the appro-
priate transformation T , we can apply it to the model as a whole. We can write
the transformed model as

T y = T Xβ + T u

Then the objective function to be minimized becomes

eT
∗ e∗ = (T y − T Xb∗)T (T y − T Xb∗)

= (y − Xb∗)T T T T (y − Xb∗)

Again the solution involves appropriately choosing b∗ to minimize eT
∗ e∗. The

optimal choice of b∗ is known as the generalized least-squares (GLS) estimator

of β.
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Contents S11.1 More Properties of Homogeneous Functions
S11.2 Homotheticity
Practice Exercises

S11.1 More Properties of Homogeneous
Functions’ Homotheticity

The properties of homogeneous functions that are presented in the text are those
that are especially important for use in economic models, notably for understand-
ing models that include use of production functions. There are many other prop-
erties of homogeneous functions that are useful in economics and some of these
are developed here. We also explore in this section of supplementary material how
the related (and broader) class of homothetic functions can be generated from
homogeneous functions.

A general property of homogeneous functions is illustrated by the graph of
the level curves of the function y = x

1/2
1 x

1/2
2 in figure 11.26. Starting from different

input bundles on a given isoquant, we can see that if we scale each input by the
same factor for each input bundle, we generate new input bundles that also lie on
a single isoquant. Thus, upon drawing rays from the origin to illustrate the effect
of multiplying different input bundles by the same scale factor, we see that the
isoquants are radial expansions and contractions of each other. This is a general
property of all homogeneous functions. We will state this formally as a theorem:

Theorem S11.1 Suppose that y = f (x), x ∈ R
n
+ is a homogeneous function. If x0 and x̄ are any

two points on the same level curve of the function f and we multiply each of
these points by the same factor s to get points sx0 and sx̄ respectively, then both
of these points will also lie on a single-level curve.
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Proof

Since x0 and x̄ lie on the same level curve f , it follows that

f (x0) = f (x̄) = y0

Letting k be the degree of homogeneity of f , we get

f (sx0) = skf (x0) = sky0

and

f (sx̄) = skf (x̄) = sky0

and so

f (sx0) = f (sx̄) = sky0

That is, sx̄ and sx0 lie on the same level curve, with y = sky0.

Theorem S11.1 can clearly be extended to include any number of points on
the initial isoquant f (x1, x2) = y0, as illustrated in Figure 11.26 for the Cobb-
Douglas production function y = x

1/2
1 x

1/2
2 . An interesting consequence of theo-

rems 11.14 and S11.1 is that if a production function is homogeneous, then what-
ever returns-to-scale property it possesses is independent of which input bundle

x2

x1

C

B

A

Figure S11.1 Slope of the isoquants. Note that the slope is the same at all points
along a ray from the origin if the production function is homogeneous.
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one begins with. For example, the production function y = x
1/2
1 x

1/2
2 displays con-

stant returns to scale no matter which input bundle one starts from. (Try doubling
inputs beginning with bundle (1, 9) and then (4, 25).) This characteristic is not
shared, for example, by the nonhomogeneous function examined in example 11.35.

Another interesting and useful property of homogeneous functions is that at
points where a ray from the origin intersects the level curves of f , the slopes of
the level curves are equal. For example, the slopes of the isoquants at points A, B,
and C in figure S11.1 are equal if f is homogeneous. The following theorems are
also useful.

Theorem S11.2 If f is a function which is homogeneous of degree k, then its first-order partial
derivatives are homogeneous of degree k − 1.

Proof

Since f is homogeneous of degree k,

f (sx1, sx2, . . . , sxn) = skf (x1, x2, . . . , xn) (S11.1)

Let zi = sxi and then differentiate both sides with respect to xi . Using the chain
rule to evaluate the result on the left-hand side of equation (S11.1), we get

∂f (z)
∂xi

= ∂f

∂zi

∂zi

∂xi

= sk ∂f

∂xi

But zi is just another way of referring to the ith argument of f and so, using
∂zi/∂xi = s, we have

fi(z)s = skfi(x)

which upon dividing through by s gives the result

fi(sx1, sx2, . . . , sxn) = sk−1fi(x1, x2, . . . , xn)

That is, the first-order partial derivatives are homogeneous of degree k − 1.

Theorem S11.3 If y = f (x), x ∈ R
2
+, is a production function that is homogeneous of degree 1,

then its marginal products f1 and f2 depend only on the ratio of the input levels,
x1/x2, and not on their absolute size.
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Proof

From theorem S11.2 it follows that if the production function is homogeneous
of degree one, then the marginal product functions are homogeneous of degree
zero and so we have

f1(sx1, sx2) = sf1(x1, x2) = f1(x1, x2) (S11.2)

f2(sx1, sx2) = sf2(x1, x2) = f2(x1, x2)

This relationship holds for any scalar value s > 0, and so it holds for the
particular value s = 1/x2. Therefore equations (S11.2) become

f1

(
x1

x2
, 1

)
= f1(x1, x2)

f2

(
x1

x2
, 1

)
= f2(x1, x2)

and so the value of the ratio x1/x2 determines completely the values of the marginal
products.

Theorem S11.3 can be extended to the case of y = f (x), x ∈ R
n
+, in which

case one needs to select a specific xi , i = 1, 2, . . . , n to form the input ratio. For
example, if xn is selected, then we can say the marginal products are determined
completely by the values x1/xn, x2/xn, x3/xn, . . . , xn−1/xn, and so multiplying
all inputs by the same factor s will not change the values of the marginal products.

Example S11.1 Finding First-Order Partial Derivatives

Show that theorem S11.2 applies for the function y = f (x1, x2) = x
1/3
1 x

1/4
2 by

finding the first-order partials.

Solution

f is homogeneous of degree k = 7/12, since

f (sx1, sx2) = (sx1)
1/3(sx2)

1/4 = s7/12f (x1, x2)

The first-order partials are

f1 = 1

3
x

−2/3
1 x

1/4
2 , f2 = 1

4
x

1/3
1 x

−3/4
2
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where the fi are homogeneous of degree k − 1 = −5/12 (as implied by theo-
rem S11.3). We can see this is so because

f1(sx1, sx2) = 1

3
(sx1)

−2/3(sx2)
1/4 = s−5/12f1(x1, x2)

and

f2(sx1, sx2) = 1

4
(sx1)

1/3(sx2)
−3/4 = s−5/12f2(x1, x2)

Example S11.2 Finding Marginal Product Functions

Show that theorem S11.3 applies for the production function y = f (x1, x2) =
x0.4

1 x0.6
2 by finding its marginal-product functions.

Solution

f1 = 0.4x−0.6
1 x0.6

2 = 0.4

(
x1

x2

)−0.6

f2 = 0.6x0.4
1 x−0.4

2 = 0.6

(
x1

x2

)0.4

Therefore the marginal products depend only on the ratio of the input values.

We now turn to the phenomenon illustrated in figure S11.1, namely the result
that along a ray from the origin the slopes of isoquants are equal if f is homoge-
neous. Recall from section 11.3 that the negative of this slope, if f is a production
function, is called the marginal rate of technical substitution (MRTS) and is equal
to the ratio of the marginal products of f :

MRTS = −dx2

dx1
= f1

f2

For the case with an arbitrary number of inputs, y = f (x), x ∈ R
n
+, we have

MRTSk,l = − dxl

dxk

= fk

fl
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where MRTSk,l is the MRTS between inputs k and l. We state and prove the result
for the case of two inputs

Theorem S11.4 If y = f (x), x ∈ R
2
+ is a production function that is homogeneous of degree

k and has continuous first-order partial derivatives, then along any ray from the
origin the slope of all isoquants, or the MRTS, is equal.

Proof

Since the ratio x1/x2 is constant along any ray from the origin, we need to show
that

MRTS = f1

f2

depends only on the ratio x1/x2. If f is homogeneous of degree k, then by theo-
rem S11.2, f1 and f2 are homogeneous of degree k − 1, and so

f1(sx1, sx2) = sk−1f1(x1, x2)

and

f2(sx1, sx2) = sk−1f2(x1, x2)

Choosing s = 1/x2 gives us the result

MRTS = f1(x1/x2, 1)

f2(x1/x2, 1)
= (1/x2)

k−1f1(x1, x2)

(1/x2)k−1f2(x1, x2)

= f1(x1, x2)

f2(x1, x2)

and so the ratio f1/f2 is completely determined by the ratio x1/x2.

It is important to note the difference between theorem S11.3 and theorem
S11.4. If f is homogeneous of degree 1, then its marginal products, f1 and f2, are
unchanged as one moves along a ray from the origin and so naturally the MRTS =
f1/f2 is unchanged. However, if f is homogeneous of degree k = 1, the ratio of
the marginal products, MRTS = f1/f2, is unchanged along a ray from the origin
but the marginal products themselves are not constant. The following example
illustrates:
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Example S11.3 Finding Marginal Rate of Technical Substitution

Show that along any ray from the origin (i.e., x1/x2 constant) the slopes of the
isoquants for the production function y = x

1/4
1 x

1/2
2 are equal, although the marginal

products do change.

Solution

The marginal-product functions are

f1 = 1

4
x

−3/4
1 x

1/2
2

f2 = 1

2
x

1/4
1 x

−1/2
2

which implies that

MRTS = f1

f2
=

1

4
x

−3/4
1 x

1/2
2

1

2
x

1/4
1 x

−1/2
2

= 1

2

x2

x1

Thus the slopes of the isoquants are the same for x1/x2 constant. The marginal-
product functions, however, are not completely determined by the ratio x1/x2. For
example, if x1 = 5, x2 = 8 (x1/x2 = 5/8), we get

f1 = 1

4
5−3/481/2 = 0.211

f2 = 1

2
51/48−1/2 = 0.264

while if x1 = 10 and x2 = 16 (x1/x2 = 5/8), we get

f1 = 1

4
10−3/4161/2 = 0.178

f2 = 1

2
101/416−1/2 = 0.222
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S11.2 Homotheticity
The concept of returns to scale is not a meaningful one for utility functions. How-
ever, some of the properties of the level curves corresponding to homogeneous
functions are useful in the context of consumer theory. In figure S11.2 we illustrate
some level curves for some function y = f (x), x ∈ R

2
+, which are radial expan-

sions and contractions of each other, as for a homogeneous function. However,
from the function values attached to the level curves, it is clear that this function is
not homogeneous (i.e., f (2x0) = 2f (x0), implies homogeneity of degree 1, while
f (3x0) = 2.4f (x0) implies homogeneity of degree less than 1). It follows that the
class of functions that satisfies the property that level curves are radial expansions
and contractions of each other is larger than the set of functions that is homoge-
neous. It includes all homogeneous functions as well as all monotonic transforma-
tions of homogeneous functions. The latter are called homothetic functions.

x1

x2

0

3x0

2x0

x0

y � 12

y � 10

y � 5

Figure S11.2 Level curves of a function that is homothetic but not homogeneous

D e f in i t i o n S11 . 1 A function is homothetic if it is a monotonic transformation of some homoge-
neous function.

Theorem S11.5 Let f be a function defined on R
2
+. The function f is homothetic if and only

if along any ray from the origin the slope of each level curve (i.e., the value of
f1/f2) is constant.
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This theorem extends to functions defined on R
n
+ in the same way as does the

equivalent result for homogeneous functions. That is, if a function f defined on
R

n
+ is homothetic, then the value of

− dxl

dxk

= fk

fl

is unchanged if all xi values are multiplied by the same factor.

Example S11.4 The function f (x1, x2) = 1 + x
1/2
1 x

1/2
2 defined on R

2
+ is not homogeneous but is

homothetic.

Solution

We know already that g(x1, x2) = x
1/2
1 x

1/2
2 is homogeneous, and since f is a

monotonic transformation of g, it follows that f is homothetic. It is straightforward
to show that f is not homogeneous. For instance, beginning with (x0

1 , x
0
2) = (1, 1)

we can see by comparing the values f (1, 1) = 2, f (2, 2) = 3, and f (3, 3) = 4
that there is no pattern f (sx0

1 , sx
0
2) = skf (x0

1 , x
0
2).

Since we are only interested in the shape of the indifference curves implied by a
utility function, and a utility function is unique only up to a positive, monotonic
transformation, then only the requirement of homotheticity is relevant and not the
additional properties implied by homogeneity.

P R A CT I C E E X E R C I S E S

S11.1. Show that the MRTS for the Cobb-Douglas production function f (x1,

x2) = Axα
1 x

β

2 , A > 0, α, β > 0 defined on R
2
++ is constant along any ray

from the origin. Also show that the marginal product functions change
value along such a ray unless α + β = 1.

S11.2. Show that the following functions are homothetic but not homogeneous:

(a) f (x1, x2) = k + x
1/2
1 x

1/2
2 for k = 0 a constant

(b) f (x1, x2) = ex2
1 x2

S11.3. Which of the following functions are (i) homogeneous, (ii) homothetic
but not homogeneous, (iii) neither?

(a) f (x1, x2, x3) = x
a1
1 x

a2
2 x

a3
3 for ai > 0 defined on R

3
++
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(b) f (x1, x2, x3) = 1 + x
1/2
1 x

1/4
2 x

1/4
3 defined on R

3
++

(c) f (x1, x2, x3) = x
1/2
1 x

1/3
2 + x

3/2
2 defined on R

3
++

Solutions

S11.1. f1 = αAxα−1
1 x

β

2 , f2 = βAxα
1 x

β−1
2 . Along a ray from the origin x2 =

kx1, so

MRTS = f1

f2
= αx2

βx1
= αkx1

βx1
= αk

β

which is a constant. Using x2 = kx1 in f1 and f2 shows that marginal
products are independent of x1 only if α + β = 1. To see this, note that
upon setting x2 = kx1 we obtain

f1 = αAkβx
α+β−1
1

and

f2 = βAkβ−1x
α+β−1
1

S11.2. (a) x
1/2
1 x

1/2
2 is a homogeneous function

(sx1)
1/2(sx2)

1/2 = sx
1/2
1 x

1/2
2

(i.e., it is homogeneous of degree one). Thus, since f is a monotonic
transformation of x1x2, it follows that f is homothetic. To see that
f is not homogeneous, note that f (1, 1) = k + 1, f (2, 2) = k + 2,
and f (4, 4) = k + 4. If f is homogeneous, it must be the case that
f (2, 2) = 2t f (1, 1) and f (4, 4) = 2t f (2, 2) for some value t . This
requires that (k + 2) = 2t (k + 1) and (k + 4) = 2t (k + 2). Taking
ratios, this means that 2t = (k+2)/(k+1) and 2t = (k+4)/(k+2),
which in turn implies that (k + 2)/(k + 1) = (k + 4)/(k + 2) or
(k + 2)(k + 2) = (k + 1)(k + 4). These results, however, are not
compatible as

(k + 2)(k + 2) = k2 + 4k + 4

(k + 1)(k + 4) = k2 + 5k + 4
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and it is not possible for

k2 + 4k + 4 = k2 + 5k + 4 or 4k = 5k

unless k = 0. Thus f cannot be a homogeneous function.

(b) x2
1x2 is a homogeneous function, since

(sx1)
2(sx2) = s3x2

1x2

(i.e., it is homogeneous of degree three). Thus, since f is a mono-
tonic transformation of x1x2, it follows that f is homothetic. To see
that f is not homogeneous, note that f (1, 1) = e, f (2, 2) = e8,
and f (4, 4) = e64. If f is homogeneous, it must be the case that
f (2, 2) = 2t f (1, 1) and f (4, 4) = 2t f (2, 2) for some value t .
This requires that e8 = 2t e and e64 = 2t e8. Taking ratios, this
means that 2t = e8/e = e7 and 2t = e64/e8 = e56, which are
clearly incompatible statements. Thus f cannot be a homogeneous
function.

S11.3. (a) The function f (x1, x2, x3) = x
a1
1 x

a2
2 x

a3
3 is homogeneous of degree

a1 + a2 + a3. To see this, note that

f (sx1, sx2, sx3) = (sx1)
a1(sx2)

a2(sx3)
a3

= sa1x
a1
1 sa2x

a2
2 sa3x

a3
3

= sa1sa2sa3(x
a1
1 x

a2
2 x

a3
3 )

= sa1+a2+a3(x
a1
1 x

a2
2 x

a3
3 )

= sa1+a2+a3f (x1, x2, x3)

Since any function that is homogeneous is also homothetic, it fol-
lows that this function is both homogeneous and homothetic.

(b) The function g(x1, x2, x3) = x
1/2
1 x

1/4
2 x

1/4
3 is homogeneous of de-

gree 1/2 + 1/4 + 1/4 = 1. To see this, note that

g(sx1, sx2, sx3) = (sx1)
1/2(sx2)

1/4(sx3)
1/4

= s1/2x
1/2
1 s1/4x

1/4
2 s1/4x

1/4
3

= s1/2s1/4s1/4(x
1/2
1 x

1/4
2 x

1/4
3 )

= s1/2+1/4+1/4(x
1/2
1 x

1/4
2 x

1/4
3 )

= s1g(x1, x2, x3)
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Since the function f (x1, x2, x3) = 1 +g(x1, x2, x3) is a monotonic
transformation of g(x1, x2, x3), where g(x1, x2, x3) is a homoge-
neous function, it follows that f is a homothetic function. How-
ever, f is not homogeneous. To see this, pick the points (1, 1, 1),
(2, 2, 2), and (4, 4, 4). If f is homogeneous of degree k, then it
follows that

f (2, 2, 2) = 2kf (1, 1, 1)

f (4, 4, 4) = 2kf (2, 2, 2)

To see that this is not possible, note that

f (1, 1, 1) = 1 + 11/211/411/4 = 2

f (2, 2, 2) = 1 + 21/221/421/4

= 1 + 21/2+1/4+1/4 = 1 + 21 = 1 + 2 = 3

f (4, 4, 4) = 1 + 41/241/441/4

= 1 + 41/2+1/4+1/4 = 1 + 41 = 1 + 4 = 5

Substituting these results into the conditions above, we get

f (2, 2, 2) = 2kf (1, 1, 1) ⇒ 3 = 2k × 2

and

f (4, 4, 4) = 2kf (2, 2, 2) ⇒ 5 = 2k × 3

The first result implies that 2k = 3/2 while the second implies
2k = 5/3. This is a contradiction, and so the function f is not
homogeneous.

(c) The function f (x1, x2) = x
1/2
1 x

1/3
2 + x

3/2
2 is neither homogeneous

nor homothetic. To see that it is not homogeneous, we simply note
that upon scaling up all xi values by the factor s, we obtain

f (sx1, sx2) = s5/6x
1/2
1 x

1/3
2 + s3/2x

3/2
2

which cannot be written as skf (x1, x2). However, it is not so
obvious how to show that f cannot be written as a monotonic trans-
formation of some function that is homogeneous, and so this
approach is not so helpful in showing that f is not homothetic.
Instead, note that if f is a homothetic function, then it must satisfy
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the property that the slope of each level curve is equal along any ray
from the origin. Thus f1/f2 must be equal at points (kx̄1, kx̄2) and
(x̄1, x̄2). To see that this doesn’t hold for the function f (x1, x2) =
x

1/2
1 x

1/3
2 + x

3/2
2 , compute the first-order partial derivatives:

f1(x1, x2) = 1

2
x

−1/2
1 x

1/3
2 =

1
2x

1/3
2

x
1/2
1

f2(x1, x2) = 1

3
x

1/2
1 x

−2/3
2 + 3

2
x

1/2
2

=
1
3x

1/2
1

x
2/3
2

+ 3

2
x

1/2
2

If the function f is homothetic, it follows that the ratio f1/f2 must
be equal, for example, at the points (1, 1) and (2, 2). To see that this
is not so, note that

f1(1, 1) = 1/2 and f1(2, 2) = 1/27/6 .= 0.445

f2(1, 1) = 11/6 and f2(2, 2) = 1

3 × 21/6
+ 3

21/2

.= 2.42

Thus at the point (1, 1) we get f1/f2 = (1/2)/(11/6)
.= 0.27, while

at the point (2, 2) we get f1/f2
.= 0.445/2.42

.= 0.18. Since these
two values are not equal, we know that f is not homothetic.





Chapter S12 Optimization of Functions of
n-Variables

Contents S12.1 Price-Discriminating Monopoly with Linear Demands and Costs

S12.1 Price-Discriminating Monopoly
with Linear Demands and Costs

A monopoly seller is able to divide its overall market into two submarkets, with
the (inverse-) demand functions

p1 = 100 − q1

p2 = 120 − 2q2

It produces output at a single plant with the cost function

C = 20(q1 + q2)

Thus unit cost is constant at $20 per unit, there are no fixed costs, and outputs to
the two markets are indistinguishable in production. The firm’s profit function is

π(q1, q2) = p1q1 + p2q2 − C

= 100q1 − q2
1 + 120q2 − 2q2

2 − 20(q1 + q2)

= 80q1 − q2
1 + 100q2 − 2q2

The firm wishes to choose outputs and prices in the two markets to maximize
profit, and so applying theorem 12.1 gives

π1(q
∗
1 , q∗

2 ) = 80 − 2q∗
1 = 0

π2(q
∗
1 , q∗

2 ) = 100 − 4q∗
2 = 0
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resulting in outputs and prices of

q∗
1 = 40, p∗

1 = $60

q∗
2 = 25, p∗

2 = $70

and a total profit of π∗ = $2,850. It can be shown that this, in fact, is a true maxi-
mum, and we will pursue that result further in the next section.

We now consider the question of the allocation of total output for the price
discriminating monopolist. To do this, it is useful to set the problem up a little
more generally. Let R1(q1) and R2(q2) denote the revenue functions in the two
markets, and let the cost function be C = c(q1 + q2). Then the firm’s profit is

π(q1, q2) = R1(q1) + R2(q2) − c(q1 + q2)

Applying theorem 12.1, we have the conditions

π1(q
∗
1 , q∗

2 ) = R′
1(q

∗
1 ) − c = 0

π2(q
∗
1 , q∗

2 ) = R′
2(q

∗
2 ) − c = 0

It is then clear that the conditions imply that marginal revenues in the two submar-
kets must be equalized; that is to say, we must have

R′
1(q

∗
1 ) = R′

2(q
∗
2 )

The intuition underlying this condition is easy to see. If marginal revenues in
the two markets were unequal, a unit of output could be switched from the market
with the lower marginal revenue, to the market with the higher marginal revenue,
giving a net increase in revenue, with no increase in cost because total output has
remained constant and so profit would increase. This simple condition has some
further interesting implications. It is easily shown (see section 6.1) that marginal
revenues can always be written as

R′
i (qi) = pi

(
1 − 1

εi

)
, i = 1, 2

where εi ≡ −(dqi/dpi)(pi/qi) is price elasticity of demand for good i. Then since
at the optimal outputs q∗

i marginal revenues are equal, we obtain

p1

p2
= 1 − (1/ε2)

1 − (1/ε1)

From this it can easily be shown that the market with the higher equilibrium price
is the one with the lower price-elasticity of demand at the optimal point. We can
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confirm this in the present example by noting that

ε1 = −(−1)

(
60

40

)
= 1.5, ε2 = −(−0.5)

(
70

25

)
= 1.4

Thus market 2, with the lower demand elasticity at the optimum, has the higher
price. As compared to the case in which the same price is set in the two markets,
profit is increased by raising price in the market with less elastic demand and
lowering it in the market with more elastic demand, until marginal revenues are
equalized.

Example S12.1 Cournot Equilibrium with n Identical Firms

Consider an oligopoly with n identical firms, where the market-demand function
is now

p = 100 −
∑

qi

and each firm’s profit is

πi = 100qi − qi

∑
qj − q2

i , i, j = 1, . . . , n; i = j

Find the Cournot equilibrium outputs.

Solution

Maximizing each firm’s profit, taking all other outputs as fixed, gives

∂πi

∂qi

= 100 − 2qi −
∑

qj = 0

so that each firm’s reaction function is

qi = 100 −∑
qj

2

We now make the plausible assumption, which strictly speaking should be proved,
that in the equilibrium all firms’ outputs will be the same; that is, as in the previous
example, we have a symmetric equilibrium. Denoting this common value by q∗

we then have

q∗ = 100 − (n − 1)q∗

2
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which, solving for q∗, gives

q∗ = 100

n + 1

We can easily confirm our answer in the previous example for n = 2. More
generally, we can consider the market equilibrium first for n = 1. We see that
we obtain the monopoly output q∗ = 50. Then consider the equilibrium output
as the number of firms increases. Obviously the output of each individual firm
gets smaller

lim
n→∞ q∗ = lim

n→∞

(
100

n + 1

)
= 0

but consider the total output Q∗ = nq∗. We have

Q∗ = 100n

n + 1
= 100

(
1

1 + 1/n

)

and so

lim
n→∞ Q∗ = 100

Thus, as the number of firms increases, total output in the market tends toward the
perfectly competitive level (at which p = marginal cost = 0).

The fact that we obtain both monopoly and competitive market outcomes as
limiting cases of the Cournot model, as we set n = 1 and then let n go to infinity
respectively, has undoubtedly contributed to the model’s appeal.

Example S12.2 Two-Plant Monopoly

A monopoly supplies its markets from two plants, with cost functions

C1 = q2
1 , C2 = 2q2

and faces a linear market-demand curve

p = 70 − 2(q1 + q2)

Find the firm’s profit-maximizing output for each plant.
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Solution

The firm’s profit is

π(q1, q2) = 70(q1 + q2) − 2(q1 + q2)
2 − q2

1 − 2q2

Applying theorem 12.1, we have

∂π

∂q1
= 70 − 6q1 − 4q2 = 0

∂π

∂q2
= 68 − 4q1 − 4q2 = 0

which solve to give q1 = 1 and q2 = 16.

Example S12.3 Optimal Input Quantities for a Competitive Firm

Solve the competitive firm’s profit-maximizing use of labor and capital for the
case where y = L0.2K0.6, p = 100, w = 10, and r = 20. Show that the solution
is a true maximum.

Solution

The firm’s profit is

π(L, K) = 100L0.2K0.6 − 10L − 20K

The first-order conditions are

∂π

∂L
= 20L−0.8K0.6 − 10 = 0

∂π

∂K
= 60L0.2K−0.4 − 20 = 0

Before solving these, we check for a maximum. We have

|H1| = −16
K0.6

L1.8
< 0 for any (K, L) ∈ R

2
++

and

|H | = 20(60)L−1.6K−0.8(1−0.2−0.6) = 240

L1.6K0.8
> 0 for any (K, L) ∈ R

2
++
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and so we have a true maximum. Upon dividing the two first-order conditions,
we get L/K = 2/3 or L = (2/3)K and substitution for L into either first-order
condition gives us, after a little algebra, L∗ = 108 and K∗ = 162 as the profit-
maximizing quantities of inputs.

Example S12.4 Multiproduct Monopoly Revisited

In the two-output monopoly example in section 12.1, we considered the maximum
of the profit function

π(x1, x2) = 78.57x1 + 57.14x2 − 0.71x1 − 0.43x2 − 0.43x1x2 − 50

We find that the Hessian matrix of second-order partials is

[−1.42 −0.43
−0.43 −0.86

]

It is then straightforward to confirm that the second-order conditions for a maxi-
mum are satisfied, since the principal minors are

−1.42 < 0; (−1.42)(−0.86) − (−0.43)2 = 1.0363 > 0

Note also that the second-order partials are not functions of x, and so the
second-order conditions are satisfied at all values of x (though not, of course, the
first-order conditions). This is because, as figure 12.3 showed, the profit function
is a strictly concave function.

Example S12.5 Multiplant Monopoly with Linear Costs

Suppose that a monopoly supplies its market from two plants, with cost functions:

C1 = 5q1, C2 = 6q2 (S12.1)

This means that a unit of output costs $5 to produce at plant 1 and $6 at plant 2,
and unit cost does not vary with output. Given the linear demand

p = 100 − (q1 + q2) (S12.2)

the firm’s profit function is

π = 100(q1 + q2) − (q1 + q2)
2 − 5q1 − 6q2
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We wish to find the profit-maximizing output from each plant. Applying theo-
rem 12.1, we have

∂π

∂q1
= 100 − 2q1 − 2q2 − 5 = 0

∂π

∂q2
= 100 − 2q2 − 2q1 − 6 = 0

These conditions then give the equations

2q1 + 2q2 = 95, 2q1 + 2q2 = 94

which, of course, have no solution. The lines defined by the equations are parallel.
What went wrong?

The answer is easy to see. Plant 2’s unit cost, at $6, is always greater than
plant 1’s unit cost, at $5. So, it would never pay to use plant 2; we should simply
set its output at zero and find the profit-maximizing output at plant 1. From the
preceding first-order condition with q2 = 0, this gives q1 = 95/2 = 47.5. It turns
out that introducing nonnegativity conditions explicitly, meaning that qi ≥ 0,

i = 1, 2, resolves the problem. These of course are perfectly reasonable restrictions
to impose in any case, but in this problem they are crucial. Thus we reformulate
the problem as

max π(q1, q2) = 100(q1 + q2) − (q1 + q2)
2 − 5q1 − 6q2 s.t. 0 ≤ q1, 0 ≤ q2

This is clearly a special case of the problem considered in theorem 12.7, with
ai = 0 and bi at +∞. We therefore need apply only (i) of the theorem. The
profit-maximizing outputs qi must satisfy

π1(q
∗
1 , q∗

2 ) = 100 − 2(q∗
1 + q∗

2 ) − 5 ≤ 0 and q∗
1 (100 − 2(q∗

1 + q∗
2 ) − 5) = 0

π2(q
∗
1 , q∗

2 ) = 100 − 2(q∗
1 + q∗

2 ) − 6 ≤ 0 and q∗
2 (100 − 2(q∗

1 + q∗
2 ) − 6) = 0

There are three solution possibilities (excluding the case where both outputs are
zero):

(a) q1 > 0, q2 > 0
(b) q1 > 0, q2 = 0
(c) q1 = 0, q2 > 0
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We now show that only case (b) is possible. Suppose that we have case (a).
Then from the conditions we must have

100 − 2(q1 + q2) = 5

100 − 2(q1 + q2) = 6

This is of course impossible, and so we cannot have case (a). Suppose that we now
have case (c). Then the conditions imply that

100 − 2(q1 + q2) ≤ 5

100 − 2(q1 + q2) = 6

which again is impossible. Suppose finally that we have case (b). Then we have

100 − 2(q1 + q2) = 5

100 − 2(q1 + q2) ≤ 6

which give no problem as long as we take the inequality < in the second condition.
Therefore we have the solution q1 = 47.5, q2 = 0.

Of course, the answer to the problem is always obvious, q2 should clearly be
set to zero. However, methods that seem excessively long-winded in easy prob-
lems are very powerful in helping us solve harder ones. We hope to show this in
another economic application below. First, however, we consider an extension of
the present example.

Example S12.6 Two-Plant Monopoly with Capacity Constraints

Suppose that we have a two-plant monopoly with the linear cost and demand
functions given in equations (S12.1) and (S12.2), and the added feature that each
plant has a maximum capacity of 30 units of output. Solve the profit-maximization
problem.

Solution

The solution we found previously to this problem, of q1 = 47.5 is no longer feasible
because it exceeds the available capacity of plant 1. We must now formulate the
firm’s profit-maximization problem as

max π(q1, q2) = 100(q1 + q2) − (q1 + q2)
2 − 5q1 − 6q2 − 50

s.t. 0 ≤ q1 ≤ 30, 0 ≤ q2 ≤ 30
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Applying theorem 12.7, we have the conditions

π1(q
∗
1 , q∗

2 ) = 100 − 2(q∗
1 + q∗

2 ) − 5 ≤ 0

and q∗
1 (100 − 2(q∗

1 + q∗
2 ) − 5) = 0

π1(q
∗
1 , q∗

2 ) = 100 − 2(q∗
1 + q∗

2 ) − 5 ≥ 0

and (30 − q∗
1 )(100 − 2(q∗

1 + q∗
2 ) − 5) = 0

π2(q
∗
1 , q∗

2 ) = 100 − 2(q∗
1 + q∗

2 ) − 6 ≤ 0

and q∗
2 (100 − 2(q∗

1 + q∗
2 ) − 6) = 0

π2(q
∗
1 , q∗

2 ) = 100 − 2(q∗
1 + q∗

2 ) − 6 ≥ 0

and (30 − q∗
2 )(100 − 2(q∗

1 + q∗
2 ) − 6) = 0

We have in total nine logical possibilities, since each output may be within,
or at one of the end points of its interval. It will save a lot of tedium, however, if
we use what we already know to rule some of these out from the start. We know
that q1 will be at its capacity level, which gives us the condition

100 − 2(30 + q∗
2 ) − 5 ≥ 0

We can rule out immediately the case in which q∗
2 = 30, because from the last

condition this would give us

100 − 2(30 + 30) − 6 ≥ 0

which is clearly false. We can also rule out the case in which q∗
2 = 0 because this

would give us the condition

100 − 2(30 + 0) − 6 ≤ 0

which is also false. So we must have 30 > q∗
2 > 0, in which case we have the

condition

100 − 2(30 + q∗
2 ) − 6 = 0

giving the solution q∗
2 = 17. As a check, note that

100 − 2(30 + 17) − 5 = 1 ≥ 0

and so there is no contradiction with the condition on q∗
1 .

This solution may seem needlessly long-winded. If plant 1 is being used to
capacity, then the firm’s marginal cost is $6, which is the marginal cost of plant 2.
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q1 + q2

$

6

5
Plant 1

Plant 2
MC2

q1*  = 30 q1*  + q2* = 47

q2*  = 17}

MR

Figure S12.1 Two-plant monopoly with fixed capacities

Then we could simply have solved the problem

max 100q − q2 − 6q − 50

where q is total output. We then obtain the condition

94 − 2q∗ = 0

giving the solution q∗ = 47, of which we know 30 will be produced in plant 1.
Figure S12.1 illustrates the simple solution.

However, although in simple problems there may be more direct ways to the
solution than the grinding through of logical possibilities given by the conditions
in theorem 12.5, in more complex cases these turn out to be very valuable.
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Contents S13.1 A Farmer’s Land Allocation
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Function
S13.4 Cost Minimization with a CES Production Function
S13.5 Optimization with More Than One Constraint
S13.6 Constraints in Points Rationing

S13.1 A Farmer’s Land Allocation
A farmer has a given amount of land, denoted by l̄, and can allocate it between
two crops. li , i = 1, 2, is the amount of land allocated to crop i. Each crop is sold
on a competitive market at a given price. The production functions for the crops
are given by

yi = l
ai

i , ai ∈ (0, 1), i = 1, 2

where yi is output of crop i. For simplicity, we assume that the required amounts
of labor, fertilizer, and so on, are fixed quantities per unit of land and so need not
be chosen separately. The net profit per unit of output, price minus variable costs
(assumed also constant per unit of output), is denoted by ri , i = 1, 2. Next we
assume that the land has no alternative use or market: it will be used for growing
these two crops or not at all. If the farmer wants to maximize his net income, he
must solve

max r1y1 + r2y2 s.t. l̄ − l1 − l2 = 0 and yi = l
ai

i , i = 1, 2

We can proceed in one of three ways with this problem. We could treat it as a
problem with four variables and three constraints, but we have not yet made the
extension to the theory required to handle this case. Or, we could substitute for the
outputs in the profit function to obtain
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max r1l
a1
1 + r2l

a2
2 s.t. l̄ − l1 − l2 = 0

which is a problem in two land use variables. Or, we could invert the production
functions to obtain the input requirement functions

li = y
1/ai

i , i = 1, 2

and substitute into the constraint to obtain

max r1y1 + r2y2 s.t. l̄ − y
1/a1
1 − y

1/a2
2 = 0

Each method would lead to the same solution, but each gives a somewhat different
insight into the nature of the problem. Here we will work with the li and leave the
last formulation as an exercise. Thus the Lagrange function is

L = r1l
a1
1 + r2l

a2
2 + λ(l̄ − l1 − l2)

and the first-order conditions are

∂L
∂l1

= r1a1l
a1−1
1 − λ = 0

∂L
∂l2

= r2a2l
a2−1
2 − λ = 0

∂L
∂λ

= l̄ − l1 − l2 = 0

We can interpret riai l
ai−1
i as the marginal net profit of land allocated to crop i. It is

the product of marginal net profit per unit of output, ri , and the marginal physical
product of land producing crop i, ail

ai−1
i . Since ai < 1, this marginal physical

product is positive but decreasing in li .
Then, using the first two conditions, we immediately have that the optimal

allocation of land is characterized by the condition

r1a1l
a1−1
1 = r2a2l

a2−1
2

The profit earned from the marginal bit of land allocated to each crop must be
equal, so that total profit could not be increased by reallocating a little land from
one crop to the other. Figure S13.1 illustrates. The distance 0L on the horizontal
axis gives the total amount of land available, l1 is measured rightward from 0, and
l2 is measured leftward from L.
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0 L
←

←

r2a2l2
*a2 – 1

r1a1l1
a1 – 1 r2a2l2

a2 – 1

l1* l2*

r2a2l2
a2 – 1

r1a1l1
*a1 – 1

r1a1l1
a1 – 1

Figure S13.1 Optimal land allocation

To interpret the solution in terms of the tangency of the level curves of the con-
straint and objective functions, first note that the condition above can be rearranged
to give

r1a1l
a1−1
1

r2a2l
a2−1
2

= 1

l2

l1Lπ˚l1*

l2*

L
π*

π*

l1+ l2 = l

0

π˚

Figure S13.2 Optimal land
allocation as a tangency solution

In figure S13.2 we show the constraint as the line LL, and its slope is −1. We
define the level curves of the objective function by setting

r1l
a1
1 + r2l

a2
2 = π

For a given π the typical level curve is shown by π0π0. The slope of the level
curve is

− r1a1l
a1−1
1

r2a2l
a2−1
2

Thus we have a tangency solution at l∗1 and l∗2 .
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Example S13.1 Numerical Version of the Land-Allocation Problem

The farmer’s available amount of land is 1,000 acres, the unit net profit of crops 1
and 2 are $10 and $8 respectively, and the production functions are

y1 = l0.6
1 , y2 = l0.8

2

What is the optimal land allocation?

Solution

The Lagrange function is

L = 10l0.6
1 + 8l0.8

2 + λ(1,000 − l1 − l2)

and the first-order conditions are

6l−0.4
1 − λ = 0

6.4l−0.2
2 − λ = 0

1,000 − l1 − l2 = 0

The first two conditions give

6l−0.4
1 = 6.4l−0.2

2

implying that

6l0.2
2 = 6.4l0.4

1

and so

l2 =
[(

6.4

6

)
l0.4
1

]5

= 1.38l2
1

Substituting into the constraint gives the quadratic equation

1.38l2
1 + l1 − 1,000 = 0

This solves to give

l∗1 = 26.6, l∗2 = 973.4
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Note how much more important is the greater marginal productivity in producing
y2 than the higher net profit per unit of output of y1.

S13.2 Consumer-Demand Functions with
Cobb-Douglas Utility

The standard model of the consumer in economic theory is concerned with deriving
the consumer’s demands for goods as a constrained maximization problem. In the
two-good case, the consumer has a utility function u(x1, x2), defined on bundles of
goods (x1, x2), and she is assumed to maximize this utility, subject to the constraint
that the amount she spends on the goods, given by the sum of prices times quantities,
p1x1 + p2x2, cannot exceed the income she has available, m. Therefore we write
the consumer’s problem as

max u(x1, x2) s.t. m − p1x1 − p2x2 = 0

We assume that the consumer’s preferences are such that the utility function takes
the Cobb-Douglas form

u = xα
1 x1−α

2 with 0 < α < 1

We want to examine for this utility function the form of the demand functions that
shows how the consumer’s demands depend on prices and income. We write the
Lagrange function

L(x1, x2, λ) = xα
1 x1−α

2 + λ(m − p1x1 − p2x2)

Then we apply definition 13.1 to obtain

∂L
∂x1

= αxα−1
1 x1−α

2 − λp1 = 0

∂L
∂x2

= (1 − α)xα
1 x−α

2 − λp2 = 0

∂L
∂λ

= m − p1x1 − p2x2 = 0

We wish to derive solutions for x1 and x2 as functions of p1, p2, and m. To do
this, we first eliminate λ from the first two conditions, to obtain

αxα−1
1 x1−α

2

(1 − α)xα
1 x−α

2

= p1

p2
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Simplifying gives

αx2

(1 − α)x1
= p1

p2

This is the condition that the slope of the indifference curve be equal to the slope
of the budget constraint. We can solve for, say, x2 as a function of x1 to obtain

x2 =
[
(1 − α)p1

αp2

]
x1

Then substituting into the budget constraint gives

m − p1x1 − p2

[
(1 − α)p1x1

αp2

]
= m − p1

[
1 + 1 − α

α

]
x1 = 0

Solving for x1 gives the demand function for x1:

x1 = αm

p1
(S13.1)

Substituting for x1 in the expression for x2 gives the demand function for x2:

x2 = (1 − α)m

p2
(S13.2)

In figure S13.3 we graph the level curves of the utility function, the consumer’s
indifference curves. The line BB ′ graphs the budget constraint, and so has slope
−p1/p2 and intercepts m/p1 and m/p2. Points on this line require an expenditure
exactly equal to the consumer’s income. The solution is a point of tangency, and
the expressions given above for x1 and x2 enable us to calculate these solution
values once we have numerical values for the parameters α, p1, and p2.

x2

x1m/p1

m/p2

p

B'

B

0

Figure S13.3 Solution to the
consumer’s demand problem

The demand functions (13.4) and (13.5) have a number of interesting
properties:

1. The demand curves drawn from them are negatively sloped with a constant
own-price elasticity of 1. Thus differentiating the first demand function
gives

∂x1

∂p1
= −αm

p2
1
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and so

e1 = −
(

p1

x1

)
∂x1

∂p1
= −

(
p2

1

αm

)(−αm

p2
1

)
= 1

and similarly for the second demand function. In fact, when graphed, these
functions are rectangular hyperbolas (see figure S13.4).

p1

x1
0

x1 = αm/p1

Figure S13.4 The demand curve
for a Cobb-Douglas utility function is
a rectangular hyperbola

2. Multiply the first demand function through by p1. We then have

p1x1 = αm

x1

m0

x1 =  p1

α( )m

Figure S13.5 The Engel curve for
a Cobb-Douglas utility function is
linear

Thus at every price, demand is such that precisely the same proportion of
income is spent on the good. For good 1, this proportion is α, while for good 2
the proportion is 1 − α.

3. Good 1’s Engel curve, which relates quantity demanded to income, is a straight
line through the origin with slope α/p1 (see figure S13.5). The elasticity of
expenditure with respect to income (denoted χ1) is 1, as is the income elasticity
of demand (η1):

χ1 =
(

∂(p1x1)

∂m

)(
m

p1x1

)
= α

(
1

α

)
= 1

η1 =
(

∂x1

∂m

)(
m

x1

)
=
(

α

p1

)(
p1

α

)
= 1

Similarly for good 2.
4. Each good’s demand is independent of the other good’s price. This is easy to

see, since p1 does not appear in the demand function for x2, and vice versa.
This example shows how, given a specific utility function, we can solve

the consumer’s constrained maximization problem to obtain demand functions
with specific properties. Other functions are of course possible, though few are
as easy to work with!

Example S13.2 In equations (S13.1) and (S13.2) if α = 0.25, and m = 100, then for prices p1 and
p2 the demand curves are

x1 = 25

p1
, x2 = 75

p2

which have properties 1 to 4 above.
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S13.3 Long-Run Cost Function for a Firm
with Cobb-Douglas Production
Function

If a firm wishes to maximize its profit, then the implication is that it will want
to minimize the cost of producing any given level of output. In fact the standard
model of the profit-maximizing firm proceeds in two steps: we first find the firm’s
cost function, expressing minimized cost as a function of the output level and input
prices; then we find the profit-maximizing level of output by combining the firm’s
cost and revenue functions. Here we are concerned with the first of these stages,
using for concreteness a specific functional form for the production function.

Assume that the firm uses two inputs, labor L, and capital K . The firm’s
production possibilities are described by the Cobb-Douglas production function

y = KαLβ, α, β > 0

where y is output. If r is the price of a unit of capital and w the price of a unit of
labor, then the firm’s total costs are

C = rK + wL

If the firm wishes to minimize the cost of producing some given level of output y,
then it has to solve the constrained minimization problem

min rK + wL s.t. y − KαLβ = 0

The Lagrange function for the problem is

L(K, L, λ) = rK + wL + λ(y − KαLβ)

and the first-order conditions are

∂L
∂K

= r − λαKα−1Lβ = 0

∂L
∂L

= w − λβKαLβ−1 = 0

∂L
∂λ

= y − KαLβ = 0

Eliminating λ from the first two conditions gives

αKα−1Lβ

βKαLβ−1
= r

w
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The term on the left-hand side is the marginal rate of technical substitution (MRTS)
between the inputs (see example S11.22), and the condition says that cost mini-
mization requires that the MRTS be equated to the input price ratio. The MRTS
can be simplified to obtain

αL

βK
= r

w

Solving for, say, L as a function of K gives

L =
(

βr

αw

)
K

and then substituting into the constraint gives

y − Kα

(
βrK

αw

)β−α

= y − Kα+β

(
r

w

)β−α(
β

α

)β−α

= 0

We can then solve for K:

K =
(

α

β

)β/(α+β)(
w

r

)β/(α+β)

y1/(α+β)

This is a demand function for K , since it shows how the firm’s desired capital
input varies with input prices and planned output level. Similarly

L =
(

β

α

)α/(α+β)(
r

w

)α/(α+β)

y1/(α+β)

is the demand function for labor.
We illustrate this solution in figure S13.6. The curve labeled y is a level curve

of the production function corresponding to the given output level, which is called
an isoquant of the production function (see section 11.3). It is the constraint curve
in this problem, since we are required to choose from input pairs that produce the
required output level. At any given cost level C, the input pairs that incur that level
of cost lie along a straight line with slope −w/r , and intercepts C/w and C/r . The
higher is C, the higher is the cost line, and so the problem of minimizing cost is,
diagrammatically speaking, the problem of getting onto the lowest possible cost
line. The solution is then at the point of tangency shown.

K

LC/w

OEP

0

C/r

y

Figure S13.6 Solution to the
firm’s cost-minimization problem Consider now the straight line labeled OEP in figure S13.6. Since it passes

through the tangency point, it has the equation

K =
(

αw

βr

)
L
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and shows the set of pairs of (L, K)-values that satisfy the tangency condition at
given prices as y varies. That is, if we were to change the required output level and
re-solve the constrained minimization problem with the same prices, we would
always obtain a solution on OEP. This line is called the output expansion path,
because it shows how the cost-minimizing input pairs change as required output
expands. It is a particular feature of this example that the output expansion path is
a straight line through the origin.

Returning to the algebra, we can derive the cost function in the following way.
Given the cost equation C = rK +wL, we obtain minimized cost as a function of
output and input prices by substituting in the optimal solutions for K and L. There-
fore, at the optimal input combination for the given output level, total cost will be

C = rK + wL

= r

(
α

β

)β/(α+β)(
w

r

)β/(α+β)

y1/(α+β)

+ w

(
β

α

)α/(α+β)(
r

w

)α/(α+β)

y1/(α+β)

This expression can be simplified readily. Let

a =
(

α

β

)β/(α+β)

+
(

β

α

)α/(α+β)

and note that

r

(
w

r

)β/(α+β)

= r1−β/(α+β)wβ/(α+β) = rα/(α+β)wβ/(α+β)

w

(
r

w

)α/(α+β)

= rα/(α+β)w1−α/(α+β) = rα/(α+β)wβ/(α+β)

where we have simply used the fact that 1 = (α + β)/(α + β). We can then
rearrange the expression above to obtain the cost function

C = arα/(α+β)wβ/(α+β)y1/(α+β)

We note that at any given output, costs are increasing in the input prices, but since
we are interested mainly in the relation between cost and output, we suppress the
input prices by setting

b = arα/(α+β)wβ/(α+β)
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and writing the cost function as

C = by1/(α+β)

We now want to examine the properties of this cost function. Clearly, its shape
depends on the value of the sum α + β. We have three possibilities:

Case 1 α + β > 1. In this case, 1/(α + β) < 1, and so the function is strictly
concave. The marginal- and average-cost functions are

MC = dC

dy
= γy1/(α+β)−1, AC = C

y
= by1/(α+β)−1

where γ = b/(α + β). Here the exponents in both the MC and AC functions
are negative, implying that the MC and AC curves are both negatively sloped,
with the MC curve below the AC curve, since γ < b. Figure S13.7 illustrates. In
economics, the cost function in this case is said to exhibit economies of scale.
Case 2 α + β = 1. In this case, 1/(α + β) = 1, and so the cost function is
simply C = by, a straight line through the origin. We have MC = AC = b, as
figure S13.8 illustrates.

(a) (b)
y

C
C = by1/(α + β) 

y

AC
MC

AC = by[1/(α + β)] – 1

MC =   y[1/(α + β)] – 1 

α + β > 1

γ

Figure S13.7 Total-, average-, and marginal-cost curves with economies of scale

(a) (b)
y

C

C = by 

y

MC
AC

MC = AC b

Figure S13.8 Total-, average-, and marginal-cost curves with constant returns to scale
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Case 3 α + β < 1. In this case, 1/(α + β) > 1, and the cost function is strictly
convex. The exponents in the AC and MC functions are both positive, and so the
AC and MC curves are positively sloped, with MC above AC because now γ > b.
The cost function is said to exhibit diseconomies of scale. Figure S13.9 illustrates.
(Refer to section 11.5 for a more comprehensive discussion of returns to scale.)

(a) (b)
y

C
C = by1/(α + β) 

α + β < 1

y

MC
AC

AC = by[1/(α + β)] – 1 

MC =   y[1/(α + β)] – 1 γ

Figure S13.9 Total-, average-, and marginal-cost curves for diseconomies of scale

S13.4 Cost Minimization with the CES
Production Function

In chapter 11 we defined the CES production function as

y = [δL−r + (1 − δ)k−r ]−1/r , 1 > δ > 0, r > −1

where the elasticity of substitution σ is given by

σ ≡ 1

1 + r

For present purposes, in light of the manipulations necessary to derive the cost
function, it is useful to rewrite the CES production function as follows. First, let

ρ ≡ −r

and then define

α1 = δ1/ρ, α2 = (1 − δ)1/ρ
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We can now write the CES production function in more convenient form

y = [(α1L)ρ + (α2K)ρ]1/ρ

The problem is

min C = wL + rK s.t. q = [(α1L)ρ + (α2K)ρ]1/ρ

The first-order conditions are

w − λ
1

ρ
[(α1L)ρ + (α2K)ρ](1/ρ)−1ρ(α1L)ρ−1α1 = 0

r − λ
1

ρ
[(α1L)ρ + (α2K)ρ](1/ρ)−1ρ(α2K)ρ−1α2 = 0

y − [(α1L)ρ + (α2K)ρ]1/ρ = 0

Eliminating the Lagrange multiplier gives

w

r
=
(

α1

α2

)ρ(
L

K

)ρ−1

Solving for K gives

K =
(

α1

α2

)ρ/(ρ−1)(
r

w

)1/(ρ−1)

L

Substituting for K in the production function gives

y =
[
(α1L)ρ +

(
α2

(
α1

α2

)ρ/(ρ−1)(
r

w

)1/(ρ−1)

L

)ρ
]1/ρ

= [(
α

ρ

1 + α
ρ

2 α
−ρ2/(ρ−1)

2 α
ρ2/(ρ−1)

1 rρ/(ρ−1)w−ρ/(ρ−1)
)
Lρ
]1/ρ

= [(
α

ρ

1 α
−ρ2/(ρ−1)

1 wρ/(ρ−1) + α
ρ−[ρ2/(ρ−1)]
2 rρ/(ρ−1)

)
Lρα

ρ2/(ρ−1)

1 w−ρ/(ρ−1)
]1/ρ

Now note that

ρ − ρ2

ρ − 1
= − ρ

ρ − 1



136 CHAPTER S13 CONSTRAINED OPTIMIZATION

and so we have

y =
[(

w

α1

)ρ/(ρ−1)

+
(

r

α2

)ρ/(ρ−1)
]1/ρ

Lα
ρ/(ρ−1)

1 w−1/(ρ−1)

Thus solving for L gives the labor-demand function

L =
[(

w

α1

)ρ/(ρ−1)

+
(

r

α2

)ρ/(ρ−1)
]−1/ρ

α
−ρ/(ρ−1)

1 w1/(ρ−1)y

In a similar way we find the demand function for capital

K =
[(

w

α1

)ρ/(ρ−1)

+
(

r

α2

)ρ/(ρ−1)
]−1/ρ

α
−ρ/(ρ−1)

2 r1/(ρ−1)y

To derive the cost function, we must substitute for L and K in the cost equation.
First note that

wL =
[(

w

α1

)ρ/(ρ−1)

+
(

r

α2

)ρ/(ρ−1)
]−1/ρ

α
−ρ/(ρ−1)

1 wρ/(ρ−1)y

=
[(

w

α1

)ρ/(ρ−1)

+
(

r

α2

)ρ/(ρ−1)
]−1/ρ(

w

α1

)ρ/(ρ−1)

y

Likewise we have

rK =
[(

w

α1

)ρ/(ρ−1)

+
(

r

α2

)ρ/(ρ−1)
]−1/ρ(

r

α2

)ρ/(ρ−1)

y

Then adding these expressions gives

C = wL + rK

=
[(

w

α1

)ρ/(ρ−1)

+
(

r

α2

)ρ/(ρ−1)
]1−(1/ρ)

y

=
[(

w

α1

)ρ/(ρ−1)

+
(

r

α2

)ρ/(ρ−1)
](ρ−1)/ρ

y

= c(w, r)y
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The cost function can be factored into output multiplied by a unit-cost function
c(w, r) that depends only on input prices.

Example S13.3 Numerical Version of the CES Cost Function Problem

A firm pays $10 per unit for input x1 and $8 per unit for input x2. It has the CES
production function

y = (
0.4x−2

1 + 0.6x−2
2

)−0.5

What is its cost-minimizing input combination to produce one unit of output?

Solution

The Lagrange function is

L = 10x1 + 8x2 + λ
[
1 − (

0.4x−2
1 + 0.6x−2

2

)−0.5]
The first-order conditions are

10 − λ0.5
[
0.4x−2

1 + 0.6x−2
2

]−1.5
0.8x−3

1 = 0

8 − λ0.5
[
0.4x−2

1 + 0.6x−2
2

]−1.5
1.2x−3

2 = 0

1 − [
0.4x−2

1 + 0.6x−2
2

]−0.5 = 0

Taking the ratio of the first two conditions gives

10

8
= 0.8

1.2

(
x1

x2

)−3

giving

1.875 =
(

x2

x1

)3

and so

x2 = (1.875)1/3, x1 = 1.233x1

Substituting into the constraint gives

[
0.4x−2

1 + 0.6(1.233x1)
−2
]−0.5 = 1
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implying that

[
0.4 + 0.6

(1.233)2

]
x−2

1 = 1−2 = 1

or

0.795x−2
1 = 1

giving, finally,

x1 =
(

1

0.795

)−0.5

= (0.795)0.5 = 0.89 units

We then have

x∗
2 = 1.1, x∗

1 = 0.89 units

S13.5 Optimization with More Than One
Constraint

So far in this chapter, we have considered constrained maximization and minimiza-
tion problems only for the case of one constraint and functions of two variables.
This was, however, simply for ease of illustration. The Lagrange procedure extends
readily to the case in which there are m ≥ 1 constraints and n choice variables.

D e f in i t i o n S13 . 1 The Lagrange method of finding a solution x∗ to the problem

max f (x) s.t.

⎧⎪⎪⎨
⎪⎪⎩

g1(x) = 0
g2(x) = 0
. . . . . . . . .

gm(x) = 0

consists of deriving the conditions for a stationary value of the Lagrange function

L(x, λ) = f (x) +
∑

j

λjg
j (x)
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which are the n + m conditions

∂L
∂xi

= fi(x∗) +
∑

j

λ∗
j g

j

i (x
∗) = 0, i = 1, . . . , n

∂L
∂λj

= gj (x∗) = 0, j = 1, . . . , m

One restriction we have to place is that n > m. The reason for this is that if
n = m, then there may be only one feasible point, in which case optimization is
unnecessary since we have no choice for the solution. If m > n, then there may be
no solution, meaning no point at which all the constraints can be simultaneously
satisfied. We can illustrate these points, as well as introduce an interesting model,
in the “points rationing” example below.

Example S13.4 Points Rationing

Solve the constrained maximization problem

max y = x0.5
1 x0.2

2 x0.2
3 s.t.

{
100 − 2x1 − 3x2 = 0
20 − x2 − 4x3 = 0

Solution

The Lagrange function is

L = x0.5
1 x0.2

2 x0.2
3 + λ1[100 − 2x1 − 3x2] + λ2[20 − x2 − 4x3]

and the five first-order conditions are

∂L
∂x1

= 0.5x−0.5
1 x0.2

2 x0.2
3 − 2λ1 = 0

∂L
∂x2

= 0.2x0.5
1 x−0.8

2 x0.2
3 − 3λ1 − λ2 = 0

∂L
∂x3

= 0.2x0.5
1 x0.2

2 x−0.8
3 − 4λ2 = 0

∂L
∂λ1

= 100 − 2x1 − 3x2 = 0

∂L
∂λ2

= 20 − x2 − 4x3 = 0
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which solve to give two potential sets of values for (x∗
1 , x∗

2 , x∗
3 ): (40.82, 6.12, 3.47)

and (13.64, 24.24, −1.06).We investigate how to identify the true maximum in this
type of problem in the section 13.2. For now, we can simply insert these alternative
values into the objective function. Since the first set of solutions gives a positive
value for the objective function while the second set gives a negative value, the
solution we are looking for therefore appears to be (40.82, 6.12, 3.47).

S13.6 Constraints in Points Rationing
We take the case of a consumer with the same type of Cobb-Douglas utility function
as before. We assume that the price of good 1 is $1, and that of good 2 is $2, and that
the consumer has an income of $100. Now, however, we also assume that points
rationing is in force. That is, the government specifies that when the consumer buys
one unit of each good, she must hand over a specified number of ration coupons as
well as the money price, and she is given an initial endowment of ration coupons.
Assume that one unit of good 1 requires two coupons, and a unit of good 2 requires
one coupon, and that she has in total 100 coupons. In effect the consumer faces
two budget constraints: the money-budget constraint

1x1 + 2x2 = 100

and the coupon-budget constraint

2x1 + 1x2 = 100

x1

x2

CM

C

331/3

331/3

M

Figure S13.10 Constraints in the
points-rationing problem

These are graphed in figure S13.10. The lines intersect at x1 = x2 = 33.3. The
consumer’s utility-maximization problem is now

max u = xα
1 x

β

2 s.t. 1x1 + 2x2 = 100 and 2x1 + 1x2 = 100

We form the Lagrange function

L = xα
1 x

β

2 + λ1(100 − x1 − 2x2) + λ2(100 − 2x1 − x2)

and maximizing this with respect to x1, x2, λ1, and λ2 gives

∂L
∂x1

= αxα−1
1 x

β

2 − λ1 − 2λ2 = 0

∂L
∂x2

= βxα
1 x

β−1
2 − 2λ1 − λ2 = 0
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∂L
∂λ1

= 100 − x1 − 2x2 = 0

∂L
∂λ2

= 100 − 2x1 − x2 = 0

However, before we start to solve these equations, we can save ourselves a
little work by noting that the optimal values of x1 and x2 are determined by the last
two conditions, the constraints of the problem, as we saw in figure S13.10. Since
we have two constraints and two variables (n = m), this is a case in which the
consumer has no choice—there is only one feasible solution, at x1 = x2 = 33.3.
The first two conditions tell us that in general we do not have a tangency solution
between an indifference curve and either one of the budget lines. To see this, refer
first to figure S13.11. The solution is at point A, and at this point, the slope of
the indifference curve, shown by the tangent line T , lies between the slope of the
money-budget constraint,MM , and the slope of the coupon-budget constraint,CC.

x1

x2

CM

C

M

T

T
u

A

Figure S13.11 The marginal rate
of substitution lies between the slopes
of the constraints

(The alert reader may wonder about the case where the indifference curve just
happens to be tangent to one of the budget lines at the kink. In that case, one of
the Lagrange multipliers is zero, but full consideration of that case must await the
Kuhn-Tucker conditions in chapter 15.)

Example S13.5 Second-Order Conditions for the Land-Allocation Problem

Confirm that the solution for the optimal land-allocation problem in example S13.2
is a true maximum.

Solution

The Hessian in this problem takes the form

H =
⎡
⎣−2.4l−1.4

1 0 −1
0 −1.28l−1.2

2 −1
−1 −1 0

⎤
⎦

At the optimal solution, l∗1 = 26.6 and l∗2 = 973.4, this becomes

H ∗ =
⎡
⎣−0.0243 0 −1

0 −0.0003 −1
−1 −1 0

⎤
⎦

Expanding the determinant along the first column gives

|H ∗| = −0.0243(−1) − 1(−0.0003) = 0.0246 > 0

and so we have a true maximum.
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Example S13.6 Second-Order Conditions for the Cost-Minimization Problem

Confirm that the solution to the constrained minimization problem in example S13.4
is a true minimum.

Solution

The Hessian matrix is

H =
⎡
⎣0.25λx−1.5

1 0 −0.5x−0.5
1

0 0 −1
−0.5x−1.5

1 −1 0

⎤
⎦

and so at the optimum (x∗
1 , x∗

2 , λ∗) = (0.25, 0.5, 1),

H ∗ =
⎡
⎣ 2 0 −1

0 0 −1
−1 −1 0

⎤
⎦

Consequently |H ∗| = −(−1)[2(−1) − 0(1)] = −2 < 0, and so we have a true
minimum.

Example S13.7 Second-Order Conditions with a Cobb-Douglas Production Function

We return now to the example in which a firm with a Cobb-Douglas production
function is seeking to minimize cost at a given level of output; that is, we have the
problem

min C = rK + wL s.t. y − KaLb = 0 a, b > 0

The Lagrange function is

L = rK + wL + λ(y − KaLb)

We have already examined the first-order conditions at some length and so we
proceed directly to the second-order conditions. We have the second-order partial
derivatives

LKK = −λa(a − 1)Ka−2Lb

LLL = −λb(b − 1)KaLb−2

LKL = LLK = −λabKb−1La−1
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while the first-order partials of the constraint function in this case are

g1 = −aKa−1Lb, g2 = −bKaLb−1

Applying theorem 13.3, the first-order conditions characterize a true minimum if
the Hessian

|H ∗| =
∣∣∣∣∣∣

LKK LKL −aKa−1Lb

LLK LLL −bKaLb−1

−aKa−1Lb −bKaLb−1 0

∣∣∣∣∣∣ < 0

Expanding this determinant, substituting for the second-order partials of the
Lagrange function, and rearranging eventually gives us the inequality

−2λ(ab)2Ka−2Lb−2 < −λ[a2b(b − 1)Ka−2Lb−2 + b2a(a − 1)Ka−2Lb−2]

So dividing through by −λ(ab)2Ka−2Lb−2 gives

0 > −(a + b)

which must be satisfied in this case because a, b > 0. Thus in the Cobb-Douglas
case the first-order conditions give a true minimum.

An important point to note here is that the second-order condition was satisfied
independently of the value of a + b. When a + b < 1, the Cobb-Douglas function
is strictly concave, but when a + b > 1, it is neither concave nor convex, though
it is still strictly quasiconcave. This example suggests therefore something we
confirm in section 13.3: as a second-order condition, concavity, for a maximum,
or convexity, for a minimum, are stronger than necessary; what really matters
is the shape of the level curves of the function, namely whether the function is
quasiconcave or quasiconvex.
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Contents S14.1 Comparative Statics Examples
S14.2 The Profit Function
S14.3 The Indirect Utility Function
S14.4 The Expenditure Function

S14.1 Comparative Statics Examples

Example S14.1 Government in the Simple Keynesian Model

Suppose that there is a government in the simple Keynesian model. The govern-
ment buys goods and services in the amount G and raises revenue through a tax on
income. Let the rate of income tax be t , so that disposable income is (1 − t)Y . If t =
0.2, c = 0.8, and I = 500, find the value of the government expenditure multiplier.

Solution

Aggregate demand is now C + I + G and so in equilibrium

Y = C + I + G

= c(1 − t)Y + I + G

= 0.8(0.8)Y + 500 + G

so that

Y ∗ = 1,400 + 2.8G

The government expenditure multiplier is

dY ∗

dG
= 2.8
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Example S14.2 Effects of a Change in Income on Price and Quantity

Suppose that the demand and supply functions for a good are

D = 30 − 2p − y, S = p

Find the effect of a change in income on equilibrium price and quantity.

Solution

In equilibrium, D = S, and so equilibrium price and quantity are

p∗ = 10 − y

3
, q∗ = 10 − y

3

and so the comparative statics we seek are

dp∗

dy
= −1

3
,

dq∗

dy
= −1

3

The demand function indicates that this is an inferior good, with the consequence
that equilibrium quantity and price both fall when income increases.

Example S14.3 Effect of Tax on Monopoly Output

Suppose that the monopolist has a demand curve p = 180 − 2q and a total-cost
function C = q2. Find the effect of an increase in the output tax on equilibrium
output.

Solution

Profit is π = (180 − t)q − 3q2, and optimal output is

q∗ = 30 − t

6

and the comparative-static effect is

dq∗

dt
= −1

6
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Example S14.4 Effect of a Change in the Discount Factor on Investment

In the planner’s problem of choosing optimal investment, suppose thatY 0
1 = 1,000,

and α = 0.5. Solve for optimal investment as a function of the discount factor β

and find the comparative-static effect of a change in β on I ∗.

Solution

Making the appropriate substitutions into equation (14.7), we have

I ∗ = 500β

1 + 0.5β

Using the quotient rule of differentiation (rule 8 in section 5.4), we have

dI ∗

dβ
= 500

[1 + 0.5β]2
> 0

So an increase in the discount factor, which places additional weight on future
consumption in the utility function, increases investment.

Note from this example that comparative-statics exercises can be performed just
as well to study the effect of a change in a model parameter on the endogenous
variable, with the exogenous variable held constant.

Example S14.5 A Linear IS-LM Model

The expenditure function is E = Ē + 0.7Y − 100R. The demand for money is
L = 30 + 0.2Y − 10.5R. The money supply is M̄ . Solve for equilibrium Y and
R as functions of autonomous investment Ē and the money supply M̄ . Show the
effects on the equilibrium values of changes in Ē and M̄ .

Solution

The equilibrium conditions are

Y − (0.7Y − 100R) − Ē = 0

30 + 0.2Y − 10.5R − M̄ = 0
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Gathering terms, we can write these as the linear system

[
0.3 100
0.2 −10.5

][
Y

R

]
=
[

Ē

M̄ − 30

]

The determinant of the square matrix is −10.5(0.3) − 100(0.2) = −23.15. Using
Cramer’s rule, we have as solutions

Y ∗ =

∣∣∣∣∣ Ē 100

M̄ − 30 −10.5

∣∣∣∣∣
−23.15

= −(10.5Ē + 100M̄ − 3,000)

−23.15

= 0.45Ē + 4.32M0 − 129.59

R∗ =

∣∣∣∣∣0.3 Ē

0.2 M̄ − 30

∣∣∣∣∣
−23.15

= 0.3M̄ − 0.2Ē − 9

−23.15

= 0.39 − 0.013M̄ + 0.009Ē

It follows that

∂Y ∗

∂Ē
= 0.45

∂Y ∗

∂M̄
= 4.32

∂R∗

∂Ē
= 0.009

∂R∗

∂M̄
= −0.013

Example S14.6 Effects of a Wage Change in a Cobb-Douglas Model

Use the Cobb-Douglas production function y = pLαKβ to find the comparative-
static effects ∂L∗/∂w and ∂K∗/∂w.

Solution

The first-order and second-order conditions for this were derived in the example
in section 12.2, and the Hessian is

|D| = p2αβL2α−2K2β−2(1 − α − β) > 0

for 1 > α + β. SincefKK = β(β − 1)LαKβ−2 < 0, andfKL = αβLα−1Kβ−1 > 0,
we have
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∂L∗

∂w
= p

β(β − 1)LαKβ−2

|D| < 0

∂K∗

∂w
= −p

αβLα−1Kβ−1

|D| < 0

Clearly, in the case of a Cobb-Douglas production function, an increase in the
wage unambiguously reduces the demand for capital.

Example S14.7 The Slutsky Equation for Cobb-Douglas Preferences

Find the Slutsky equation for x∗
1 when the consumer has Cobb-Douglas prefer-

ences u(x1, x2) = x0.5
1 x0.5

2 .

Solution

We have

u11 = −0.25x−1.5
1 x0.5

2 < 0, u22 = −0.25x0.5
1 x−1.5

2 < 0

u12 = u21 = 0.25x−0.5
1 x−0.5

2 > 0

and so we have, using equation (14.21) and the fact that λ∗ = u1/p1,

∂x∗
1

∂p1
= −0.5x−0.5

1 x0.5
2 p2

2

p1|D| + x∗
1
−p10.25x0.5

1 x−1.5
2 − p20.25x−0.5

1 x−0.5
2

|D| < 0

So, in the case of Cobb-Douglas preferences, since x∗
1 is a normal good, an increase

in p1 surely reduces the demand x∗
1 .

S14.2 The Profit Function
A competitive firm wishes to maximize its profit

π = py − wL − rK

where y is output, L is labor, and K is capital, with p, w, and r , their respective
prices. It has the production function y = f (L, K) with the usual properties and,
in particular, decreasing returns to scale. The Lagrange function is

L = py − wL − rK + λ[f (L, K) − y]
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The first-order conditions are

p − λ = 0

λfL(L, K) − w = 0

λfK(L, K) − r = 0

−y + f (L, K) = 0

These give solutions for the input-demand functions L(p, w, r) and K(p, w, r),
and the output-supply function y(p, w, r). Inserting these functions into the profit
equation gives the profit function

π = py(p, w, r) − wL(p, w, r) − rK(p, w, r) = V (p, w, r)

which is the value function in this problem. Now notice that the exogenous vari-
ables p, w, and r appear only in the objective function and so applying the envelope
theorem gives

∂V

∂p
= ∂L

∂p
= y(p, w, r)

∂V

∂w
= ∂L

∂w
= −L(p, w, r)

∂V

∂r
= ∂L

∂r
= −K(p, w, r)

That is, differentiating the profit function with respect to the prices gives the
output-supply and input-demand functions for the firm. This is often referred to as
Hotelling’s lemma.

Example S14.8 Profit Function for a Firm

Find the profit function for a competitive firm with the production function

y = L0.4K0.4

Solution

The first-order conditions for the profit-maximization problem are

p − λ = 0

λ0.4L−0.6K0.4 − w = 0
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λ0.4L0.4K−0.6 − r = 0

y = L0.4K0.4

Substitute p for λ in the second and third conditions, and then note that we
have a linear system in logarithms

⎡
⎣−0.6 0.4 0

0.4 −0.6 0
0.4 0.4 −1

⎤
⎦
⎡
⎣ L̂

K̂

ŷ

⎤
⎦ =

⎡
⎣ ŵ − p̂ − log 0.4

r̂ − p̂ − log 0.4
0

⎤
⎦

where a “hat” over a variable denotes its log. Solving this system and taking antilogs
gives the input-demand and output-supply functions

L = 0.01w−3r−2p5

K = 0.01w−2r−3p5

y = 0.03w−2r−2p4

To obtain the profit function, we substitute into the expression

π = px − wl − rk

to get

π = 0.01w−2r−2p5

which is the value function—the profit function—in this example. Figure S14.1
illustrates the shape of this function. Notice that it is convex in w, r , and p. This
can be shown to be a general property of the profit function.

(a)

w

π(w, r, p)

(b) (c)

∂π
∂w

= –L

π(w, r, p)

r

π(w, r, p)

∂π
∂r

= –K

π(w, r, p)

p

π(w, r, p)

∂π
∂p

= x

π(w, r, p)

Figure S14.1 Cross sections through the profit function in the Cobb-Douglas case



152 CHAPTER S14 COMPARATIVE STATICS

S14.3 The Indirect Utility Function
Consider the standard consumer problem

max u(x1, x2) s.t. p1x1 + p2x2 = m

From the first-order conditions we obtain the demand functions x1(p1, p2, m), and
x2(p1, p2, m), and substituting these into the utility function gives

u = u(x1(p1, p2, m), x2(p1, p2, m)) = V (p1, p2, m)

which is the value function in this problem—the indirect utility function. Applying
the envelope theorem gives

∂V

∂m
= λ∗

It then seems reasonable to call λ the marginal utility of income and of course since
it is an endogenous variable, it is also a function of prices and income in general.
Next, notice that prices appear only in the constraint of the problem, and applying
the envelope theorem again gives

∂V

∂pi

= ∂L
∂pi

= −λ∗xi(p1, p2, m), i = 1, 2

This result, known as Roy’s identity, tells us that, given that income has positive
marginal utility, a change in the price of a good has a negative effect on utility
which is proportional to the amount of the good consumed.

S14.4 The Expenditure Function
Now consider the dual problem to the indirect utility function. Instead of maxi-
mizing utility subject to a budget constraint, we minimize expenditure subject to
a utility constraint. The idea here is that the utility constraint defines a particu-
lar standard of living and so we are trying to find the cheapest way to achieve a
particular standard of living. The problem is

min
x1,x2

E = p1x1 + p2x2 s.t. u(x1, x2) = ū

where E denotes expenditure and ū is the given utility level. The Lagrange func-
tion is

L = p1x1 + p2x2 + µ[ū − u(x1, x2)]
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where µ is the Lagrange multiplier. The solution to this includes two demand
functions, x1(p1, p2, u) and x2(p1, p2, u), which must differ from those derived
in the previous example since they have u as an argument, not m. Substituting into
the objective function gives

E = p1x1(p1, p2, u) + p2x2(p1, p2, u) = e(p1, p2, u)

where e is called the expenditure function and is the value function in this prob-
lem. Since u is in the constraint, we see that

∂E

∂u
= µ∗

and we can think of µ as the marginal cost of utility. Next note that prices enter
only into the objective function and so the envelope theorem gives

∂E

∂pi

= ∂L
∂pi

= xi(p1, p2, u), i = 1, 2

This is known as Shephard’s lemma. If the consumer is consuming xi units of
good i and its price increases by, say, one cent, then to maintain the same standard
of living, defined as a particular utility level, the consumer requires approximately
xi cents more income.

Example S14.9 Expenditure Function for a Consumer

A consumer has the utility function

u = xa
1 xb

2 , a, b > 0; a + b = 1

We solved this problem in chapter 12, and know the demand functions to be

x1 = am

p1
, x2 = bm

p2

Substituting these values into the utility function gives the indirect utility function

u =
(

am

p1

)a (
bm

p2

)b

= aabbp−a
1 p−b

2 m
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As we expected, it is decreasing in prices and increasing in income. It gives the
maximum utility level achievable at prices p1, p2, and income m. Inverting the
function gives

m = a−ab−bpa
1pb

2u

which is increasing in prices and utility. We can interpret this function as giving
the income required to achieve utility u at prices p1 and p2 when the consumer
chooses optimally. But, this is simply the definition of the expenditure function,
so is the expenditure function in this case. To confirm this, note that the solution
to the problem

min p1x1 + p2x2 s.t. u = xa
1 xb

2

gives the demand functions

x1 = abb−bp−b
1 pb

2u, x2 = a−abapa
1p−a

2 u

Substituting these into m = p1x1 + p2x2 gives

m = abb−bp1−b
1 pb

2u + a−abapa
1p1−a

2 u

and then using a + b = 1, we find

m = a−ab−bpa
1pb

2u

p1

m = e(p1, p2, u)
∂e
∂p1

= x1

e(p1, p2, u)

Figure S14.2 The expenditure
function is concave in prices

as before. Note finally that the expenditure function in this case is strictly concave
in prices, since

∂2m

∂p2
1

= −(1 − b)abb1−bp
−(1+b)
1 pb

2u < 0

and similarly for p2. Concavity (though not necessarily strict concavity) is a feature
of expenditure functions in general. This is illustrated in figure S14.2.



Chapter S15 Concave Programming and the
Kuhn-Tucker Conditions

Contents S15.1 Cost-Minimization
S15.2 The Linear-Programming Problem

S15.1 Cost-Minimization
The firm’s cost-minimization problem is

min C = wL + rK s.t. f (L, K) − y ≥ 0 and L ≥ 0, K ≥ 0

Since minimizing a function is equivalent to maximizing the negative of that
function, we can put the problem in the standard form by taking −(wL + rK) as
our maximand. Then the Lagrange function is

L = −(wL + rK) + λ[f (L, K) − y]

and the K-T conditions are

∂L
∂L

= −w + λ∗fL(L∗, K∗) ≤ 0, L∗ ≥ 0; L∗(λ∗fL − w) = 0

∂L
∂K

= −r + λ∗fK(L∗, K∗) ≤ 0, K∗ ≥ 0; K∗(λ∗fK − r) = 0

∂L
∂λ

= f (L∗, K∗) − y ≥ 0, λ∗ ≥ 0; λ∗(f (L∗, K∗) − y) = 0

We begin by making the assumption that both inputs are essential if any output is
to be produced, so that we are only interested in interior solutions with both inputs
strictly positive. It follows that the first two conditions have to be equalities. Since
the input prices w and r are both positive, so must be λ∗, and so from the third
condition we have that the constraint must be binding. This tells us that the firm will
not produce inefficiently: if y < f (L∗, K∗), then more output could be produced
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with the same input quantities and this would be inefficient. If the constraint is
binding, no more output can be produced with the same inputs.

In this case, then, the optimum is exactly the one we found earlier by using
the standard Lagrangean approach. The advantage of using the K-T approach here
is that it clarifies the conditions under which that solution is obtained and also
facilitates analysis of more general cases, for example, if output can be produced
with only one input or if one input price were zero (see question 2 of the exercises).

S15.2 The Linear-Programming Problem
The earliest form of concave-programming problem studied by mathematicians
and economists was the linear-programming problem, in which the objective and
constraint functions are all linear. The significance of this was that relatively
straightforward methods could be used to solve numerical problems of this type,
something rather harder to do in the case of nonlinear concave-programming prob-
lems. But in addition certain interesting theoretical ideas emerged that attracted
a lot of attention in economics. In this example, we will develop some of these
ideas, simply by treating a linear-programming problem as a concave programming
problem and applying the Kuhn-Tucker theorem to it.

To get started, we take a specific problem. A firm uses three inputs—labor L,
machine time M , and raw materials R—to produce two outputs, x1 and x2. It has
fixed amounts of these inputs available, L0, M0, and R0. The selling price of output
i = 1, 2 is pi > 0, and one unit of output i requires li units of labor, mi units of
machine time, and ri units of raw material to produce, where all these parameters
are independent of the scale of output. The profit-maximizing problem of the firm
is then the special form of concave-programming problem:

max p1x1 + p2x2 s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l1x1 + l2x2 ≤ L0

m1x1 + m2x2 ≤ M0

r1x1 + r2x2 ≤ R0

x1, x2 ≥ 0

Maximization of revenue is equivalent to maximizing profit because we assume
that input costs are all fixed. The constraints simply say that a particular output
pair (x1, x2) is feasible if and only if it is nonnegative and does not require more
than the available amounts of inputs to be produced. We assume the feasible set
defined by these constraints is nonempty.

The Lagrange function for the problem is

L = p1x1 + p2x2 + λ(L0 − l1x1 − l2x2)

+ µ(M0 − m1x1 − m2x2)

+ ρ(R0 − r1x1 − r2x2)
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The K-T conditions are

pi − λ∗li − µ∗mi − ρ∗ri ≤ 0, x∗
i ≥ 0, x∗

i (pi − λ∗li − µ∗mi − ρ∗ri) = 0

L0 − l1x
∗
1 − l2x

∗
2 ≥ 0, λ∗ ≥ 0, λ∗(L0 − l1x

∗
1 − l2x

∗
2 ) = 0

M0 − m1x
∗
1 − m2x

∗
2 ≥ 0, µ∗ ≥ 0, µ∗(M0 − m1x

∗
1 − m2x

∗
2 ) = 0

R0 − r1x
∗
1 − r2x

∗
2 ≥ 0, ρ∗ ≥ 0, ρ∗(R0 − r1x

∗
1 − r∗

2 ) = 0

The Lagrange multipliers are ususally referred to as dual variables in linear pro-
gramming. The key point is their interpretation as the shadow prices of the input
constraints. At the optimal solution, the value of λ∗, µ∗, or ρ∗ gives the increase in
revenue the firm would earn if it acquired a little bit more of the respective inputs
and allocated that optimally between the outputs. The last three conditions also tell
us that if a shadow price is positive, all of the corresponding input is used up, while
if at the optimum, there is some amount of an input unused; its shadow price is zero.

It is always useful to use a diagram to obtain a sense of the solution possibili-
ties. In figure S15.1 we see that there may be as many as seven. The lines denoted
R are iso-revenue lines; this means that they show (x1, x2)-pairs that generate the
same revenue, and so they satisfy

R = p1x1 + p2x2

for given R. They therefore have slope −p1/p2, and at given prices, the higher
the line, the greater the revenue. The shaded area is the feasible set in each case,
and we have assumed that the exact form of the constraints is such that each
could be binding. If one constraint coincided with another or lay entirely outside
another, then it could be dropped and the number of solution possibilities would
consequently fall. The constraint L0 has slope −l1/l2, M0 has slope −m1/m2, and
R0 has slope −r1/r2. No point above any constraint line is feasible. The feasible
set is the intersection of the sets of points lying on or below a constraint line. It is
assumed in the figure that

l1

l2
<

m1

m2
<

r1

r2

Then, which of the solution possibilities results depends on the value of p1/p2

relative to the slopes of the constraint lines.
In figure S15.1 (a), we have p1/p2 < l1/l2, and so the solution is at point a,

with x∗
2 > 0 and x∗

1 = 0. Note also that only the labor constraint is binding, so
λ∗ > 0 while µ∗ = ρ∗ = 0.

In figure S15.1 (b), we have p1/p2 = l1/l2. The highest possible revenue line
coincides with the labor constraint. In that case any point on the segment [a, b]
is optimal. The labor constraint is binding, so λ∗ > 0. However, note that small
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(a)

x2

0 x1

a

M˚

L˚

R

R˚

(b)

x2

0 x1

a

M˚

L˚
R

R˚

(c)

x2

0 x1

b

M˚

L˚R

R˚

(d)

x2

0 x1

M˚

L˚

R

R˚

(e)

x2

0 x1

c

M˚

L˚

R

R˚

(f)

x2

0 x1

c

M˚
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Figure S15.1 Solution possibilities in the linear-programming problem
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variations in either of the two other constraints cannot change the maximized value
of revenue, and so again µ∗ = ρ∗ = 0.

In figure S15.1 (c), we have l1/l2 < p1/p2 < m1/m2. There is a unique opti-
mum at b, with x∗

1 > 0, x∗
2 > 0. In addition both labor and machine-time constraints

are binding, and so λ∗ > 0, µ∗ > 0 while ρ∗ = 0.
In figure S15.1 (d), we have p1/p2 = m1/m2. Any point on the segment [b, c]

is optimal, and so x∗
1 > 0, x∗

2 > 0. The machine-time constraint is certainly bind-
ing, and so µ∗ > 0. However, small variations in the other two constraints leave
maximum revenue unchanged, and so λ∗ = ρ∗ = 0.

In figure S15.1 (e), we have m1/m2 < p1/p2 < r1/r2, and there is a unique
solution at c with x∗

1 > 0, x∗
2 > 0. The machine-time and raw-material constraints

are both binding, and so µ∗ > 0, ρ∗ > 0 but λ∗ = 0.
In figure S15.1 (f), we have p1/p2 = r1/r2, and so any point on the seg-

ment [c, d] is optimal. The raw-material constraint is certainly binding, and so
ρ∗ > 0, but small variations in the other two constraints leave maximized revenue
unchanged, and so λ∗ = µ∗ = 0.

In figure S15.1 (g), we have p1/p2 > r1/r2, and so there is a unique solution
with x∗

1 > 0, x∗
2 = 0. Only the raw-material constraint is binding, and so ρ∗ > 0

and λ∗ = µ∗ = 0.
One notable feature of the solutions is that the optimum could always be taken

to be at a corner point of the upper boundary of the feasible set, a point such as a,
b, c, or d. This is what greatly facilitates numerical solution of linear problems:
it is necessary simply to evaluate the objective function at corner points, rather
than over the entire feasible set. However, here we are interested in the economic,
rather than the computational, aspects of the solution.

A second notable feature is that there were never more than two binding
constraints at any solution: at least one constraint was always nonbinding. This is
a consequence of the fact that there are two variables in the problem. Thus consider
the last three K-T conditions above and note that if at most two variables can be
strictly positive, then three constraints cannot be nontrivially binding, because that
would give three equations in only two unknowns.

Consider now the first of the K-T conditions, which relates to the optimal out-
puts. Suppose that both x∗

1 > 0 and x∗
2 > 0, and that only the raw-material constraint

is nonbinding so that we have ρ∗ = 0. Then these conditions take the form

p1 − λ∗l1 − µ∗m1 = 0

p2 − λ∗l2 − µ∗m2 = 0

Recall that λ∗ and µ∗ are interpreted as the shadow prices of the inputs. Then
these conditions have the interpretation of “marginal revenue = marginal cost”
conditions. To see this, note that li is the amount of labor used in producing one
unit of xi so that λ∗li is the imputed cost, valued at the shadow price of labor, of
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the amount of labor used to produce one unit of xi . Likewise mi is the amount of
machine time used per unit of xi , and so µ∗mi is the imputed cost of the machine
time used per unit of xi . Therefore λ∗li + µ∗mi is the imputed cost of a unit of xi ,
while pi is the marginal revenue of xi .

Notice that whatever may be the actual prices the firm pays for the inputs,
these unit costs are evaluated at the shadow prices because these are the appropriate
measures of the marginal opportunity costs of the inputs to the firm. In particular,
note that the cost of raw material plays no part in the unit cost calculation. Because
ρ∗ = 0, this input is not relatively scarce to the firm.

Returning to the K-T conditions, we see that

pi − λ∗li − µ∗mi < 0

implies that x∗
i = 0. This says that if the marginal revenue falls short of its unit cost

evaluated at the appropriate shadow prices, then the good should not be produced.
All the resources should be allocated to the other good for which the equality in
this condition will hold.

Finally, note that multiplying through the first condition by x∗
1 , and the second

by x∗
2 , and adding gives

p1x
∗
1 + p2x

∗
2 = λ∗(l1x∗

1 + l2x
∗
2 ) + µ∗(m1x

∗
1 + m2x

∗
2 )

= λ∗L0 + µ∗M0

Therefore, not only do the shadow prices give the marginal value or marginal-
opportunity cost of each input, but they do so in such a way that the entire revenue
of the firm is imputed to the inputs: we could regard λ∗L0 as the share of revenue
that can be imputed to labor, and µ∗M0 the share imputed to machine time, and
these shares exactly exhaust available revenue.

A slight paradox here is that this makes it seem as though raw materials
are valueless to the firm, which is clearly not true in an absolute sense, because
raw material is used (in the amount r1x

∗
1 + r∗

2 x∗
2 < R0) and output could not be

produced without it. The point is that at the margin the stock of raw material is
valueless, because the firm has more of it than is optimal to use. The result above
then shows that the sum of the costs of the inputs evaluated at their shadow prices,
just equals the total revenue. This is essentially a result of the constant-returns-to-
scale assumption underlying the linear model.
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Contents S16.1 More on Consumer Surplus Measurement

S16.1 More on Consumer Surplus
Measurement

The term
∫ q0

0 D−1(q) dq is sometimes referred to as the gross surplus of the
consumer or an approximation of the willingness to pay for q0 units of output.
To see why we use this term, consider any price greater than p0 but low enough
that the consumer will purchase some positive amount q, where 0 < q < q0, say,
p = p1 and q = q1 in figure S16.1.

p

q

p0

D

q0q2q1

p2

p1

pc D

Figure S16.1 Approximation of a
consumer’s willingness-to-pay for a
change in the price from p1 to p2

If the price were to fall slightly to p2 the consumer would be willing to buy
q2 − q1 more units, or, in other words, the consumer would be willing to pay the
amount shown in the shaded area to obtain the additional q2 − q1 units, having
already been consuming q1 units. The consumer would not have been willing to
pay more than this since, if the price had fallen to a value greater than p2, less would
have been purchased. By considering a series of such price reductions, beginning
at price p = pc, where q = 0, to price p = p0, and letting the size of each price
reduction approach zero (in the limit), we see that we have simply generated the
Riemann integral

∫ q0

0
D−1(q) dq

and this represents the maximum willingness to pay for q = q0 units of the good.
Since p0q0 is the amount actually paid, the difference, given in definition 16.5, is
the surplus for the consumer.
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There is one flaw in this argument. The point (q0, p0) on the demand schedule
reflects the optimal consumption decision of the consumer, who pays price p0 for
each marginal unit from q = 0 to q = q0, not a series of prices all of which exceed
p0 except for the price of the final marginal unit. In the latter case the consumer’s
income net of expenditures on this good is less than in the case where the single
price p = p0 is charged for all units purchased, and so unless there is no income
effect on demand for this good, there would be a different consumption decision
taken in each of these cases. Therefore we should think of consumer surplus only
as an approximation of the benefit of consuming a good at a certain price.

p

q

p0

CS

q0

p = D–1(q)

Figure S16.2 Consumer surplus
(CS) for a consumer at price p = p0

The diagrammatic interpretation of consumer surplus is shown in figure S16.2.
It is the area below the demand curve and above price over the interval q ∈ [0, q0].

Example S16.1 For a consumer with demand function q = 50 − 2p, find

(i) CS at price p0 = 20
(ii) CS at price p̂ = 15

(iii) �CS (change in consumer surplus) from price change p0 = 20 to p̂ = 15

Illustrate each answer in a graph and show how to compute �CS using the
demand function q = D(p), rather than using the inverse-demand function.

Solution

(i) At p0 = 20, q0 = 10. The inverse-demand function is p = 25 − q/2 and so

CS(p0 = 20) =
∫ 10

0

(
25 − q

2

)
dq − 20(10)

=
[

25q − q2

4

]10

0

− 200

=
[(

250 − 100

4

)
− (0 − 0)

]
− 200 = 25

This corresponds to the area indicated in figure S16.3 (a).
(ii) At p̂ = 15, q̂ = 20, and so

CS(p̂ = 15) =
∫ 20

0

(
25 − q

2

)
dq − 15(20)

=
[

25q − q2

4

]20

0

− 300

=
[(

500 − 400

4

)
− (0 − 0)

]
− 300 = 100

This corresponds to the area indicated in figure S16.3 (b).
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p

q

CS = 25

q0 = 10

D

p0 = 20

25

q = 50 – 2p
or
p = 25 – q/2

D

(a)

p

q

CS = 100

q0 = 20

D

p = 15

25

q = 50 – 2p
or
p = 25 – q/2

D

(b)

Figure S16.3 Computation of consumer surplus at prices p = 20 and p = 15
(example S16.1)

(iii) From (i) and (ii) we can see that changing price from p0 = 20 to p̂ = 15 leads
to an increase in consumer surplus of amount 100 − 25 = 75. Noting that the
inverse of the inverse-demand function is simply the demand function

q = D(p) = 50 − 2p

we can compute the change in consumer surplus according to the formula

�CS =
∫ p0

p̂

D(p) dp

=
∫ 20

15
(50 − 2p) dp

= [50p − p2]20
15 = 75

The same rationale given in example 16.4 for using the inverse func-
tion to find the change in producer surplus applies here, as is illustrated by
figure S16.4 where we see that area ABCD in figure S16.4 (a) corresponds
to area abcd in figure S16.4 (b).

To indicate the effect of a price increase from p0 to p̂, where p̂ > p0, we write

�CS =
∫ p0

p̂

D(p) dp = −
∫ p̂

p0

D(p) dp

Notice that in evaluating �CS it is conventional to use the original price (p0) as
the upper limit for the integral and the new price (p̂) as the lower limit, so that
�CS is positive for a price fall and negative for a price rise.
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Figure S16.4 Two methods of computing the change in consumer surplus
(example S16.1 (iii))

We can also use the consumer surplus concept to measure the impact of a
product becoming unavailable. This could happen, for example, as a result of an
import ban. To deal with this issue, we start by defining the choke price of a good,
p = pc, as the minimum price for which demand becomes zero. That is, demand
is choked off. For example, the choke price for the demand function q = 50 − 2p

is pc = 25 (see figure S16.3). The impact on consumers of a product becoming
unavailable is equivalent to an increase in its price from its existing price, p0, to
the choke price.

Example S16.2 The demand function for a product is q = 15 − 3p1/2. Find the loss of consumer
surplus resulting from a ban on purchases of this product if its current price isp = 9.

q

p

D

pc = 25

15

6

9

 q = 15 – 3p1/2

D

Figure S16.5 Loss of consumer
surplus resulting from the withdrawal
of a product from the market
(example S16.2)

Solution

The choke price solves for q = 0 and so 15 − 3p
1/2
c = 0 or pc = 25. Therefore

the change in consumer surplus resulting from the ban is

�CS =
∫ 9

25
(15 − 3p1/2) dp

= −
∫ 25

9
(15 − 3p1/2) dp

= −[15p − 2p3/2]25
9

= − [375 − 2(125)] + [135 − 2(27)] = −44

The result is illustrated in figure S16.5.
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Practice Exercise

S18.1 A Modified Cobweb Model
In the cobweb model of price determination that was examined in section 18.1,
modify the way in which price expectations are formed, as follows:

Et−1(pt ) = pt−1 + θ(p̄ − pt−1), 0 ≤ θ ≤ 1

We assume that suppliers have an accurate forecast of the steady-state equilibrium
price, p̄. As a result, in period t − 1, the next period price is expected to equal
current price (pt−1), plus a fraction, θ , of the difference between the steady-state
price and the current price. If the current price is below the steady-state price,
price is expected to rise; if the current price is above the steady-state price, price is
expected to fall. If θ = 0, this model reduces to the basic cobweb model examined
in section 18.1 of the textbook. If θ = 1, suppliers expect price to adjust to the
equilibrium price in one period.

Example S18.1 Solve the difference equation for price and analyze the convergence properties of
the solution.

Solution

Substituting the modified price expectation equation into the supply function, and
then setting quantity supplied equal to quantity demanded gives

A + Bpt = F + G(1 − θ)Pt−1 + θGp̄
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Solving for pt gives

pt = (1 − θ)
G

B
pt−1 + F − A + θGp̄

B

To find the steady-state price, set pt = pt−1 = p̄. After some manipulation
this gives

p̄ = A − F

G − B

which is the same steady-state equilibrium price as in the basic cobweb model. By
theorem 18.1, the solution to the difference equation is

pt =
(

(1 − θ)
G

B

)t

p0 + F − A + θGp̄

B

[
1 − [(1 − θ)G/B]t

1 − (1 − θ)G/B

]

Simplifying, rearranging, and using the fact that (F − A) = (B − G)p̄, gives

pt = (p0 − p̄)

(
(1 − θ)

G

B

)t

+ p̄ (S18.1)

Like the basic cobweb model, price in this model oscillates whether it converges
or not because (1 − θ)G/B is negative for the usual case of negatively sloping
demand and positively sloping supply. However, this modified model is more
likely to satisfy the convergence condition than the basic cobweb model because
the absolute value of (1 − θ)G/B is more likely to be less than 1 than is G/B. For
example, even if the absolute value of G is 5 times as large as B, price converges
to its equilibrium value if θ is larger than 0.8.

S18.2 A Partial Adjustment Model of
Energy Demand

Suppose that the desired long-run industrial demand for energy is a function of the
price of energy, the prices of other factors of production, and the price of industrial
output. We express this as

Ē t = β0 + β1Pt + βzzt

where Ē t is the long-run desired energy consumption in period t , Pt is the price
of energy in period t , zt is the vector of input prices and the output price in period
t , and β0, β1, and βz are constant parameters of the demand function.
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The long-run demand function shows the amount of energy firms would wish
to consume if prices Pt and zt were given. However, firms are not usually able to
adjust their energy consumption to the desired long-run level instantaneously.
Instead, it is typically more efficient to adjust gradually to the desired long-run
level. We therefore assume that actual energy demand adjusts as follows:

Et − Et−1 = α(Ē t − Et−1), 0 < α < 1

This says that the actual adjustment in energy consumption from t − 1 to t is
a fraction, α, of the gap between long-run desired consumption in t and actual
consumption in t − 1. Solving the adjustment equation for Ē t and substituting it
into the energy demand equation gives

Et = (1 − α)Et−1 + αβ0 + αβ1Pt + αβzzt (S18.2)

In recent years economists have used market data on energy demand, Et , and prices
Pt and zt with this model or variants of it to estimate the values of the parameters
of this demand equation (α, β0, β1, and βz). Their interest is in determining the
response of energy demand to price changes both in the short run and long run.
We can use our knowledge of difference equations to work out the dynamics of
energy demand adjustment.

Assume that the price of energy changes to a new level and, to simplify
notation, assume that this price change occurs in time period 0. The new price level
is P0.Assume further that it and all other prices remain constant thereafter. We now
have an autonomous, linear, first-order difference equation for energy demand

Et = (1 − α)Et−1 + αβ0 + αβ1P0 + αβzz

The immediate response of energy demand to the price change is given by the par-
tial derivative

∂E0

∂P0
= αβ1

The long-run (steady-state) response of energy demand to the price change is deter-
mined by first obtaining an expression for the steady-state level of energy demand.
This is found by setting Et = Et−1 = Ē . Doing this gives

Ē = β0 + β1P0 + βzz

Thus the long-run (steady-state) response of energy demand to the price change
that occurs in period 0 is given by the partial derivative

∂Ē

∂P0
= β1
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As a result the long-run demand response is 1/α times larger than the short-run
response. For example, if α = 0.5, then the long-run response to the price change
is twice as large as the short-run response.

To investigate the dynamics of energy demand adjustment more thoroughly,
the difference equation can be solved. By theorem 18.1, the solution is

Et = (1 − α)tE0 + α(β0 + β1P0 + βzz)
(

1 − (1 − α)t

1 − (1 − α)

)

where E0 is energy consumption in time period 0. Simplifying, rearranging, and
using the expression for Ē gives

Et = (1 − α)t (E0 − Ē) + Ē

We see clearly now the reason for the restriction 0 < α < 1 in the original spec-
ification of the adjustment equation: only then does energy demand converge to
the desired level in the long run. Moreover, since this restriction implies that 0 <

1 − α < 1, energy demand converges monotonically to Ē .
Figure S18.1 depicts the adjustment of energy demand toward its steady-state

level. At time period 0 we suppose that the price of energy rises to a new level, P0,
causing an immediate reduction in energy demand to E0 (from its previous level,
which we denote Ē−1 to represent an implicit assumption that energy demand

Figure S18.1 Path of energy demand in a partial adjustment model
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was in a different long-run equilibrium to begin with). Thereafter, energy demand
gradually adjusts (converges) toward the desired long-run level.

P R A CT I C E E X E R C I S E S

S18.1. Solve the difference equation for the modified cobweb model for the
parameter values given in exercise 6 from the textbook, assuming that
θ = 0.6.

Solutions

S18.1. (a) Pt = −3(− 0.2)t + 5

(b) Pt = −1(− 0.8)t + 3

(c) Pt = −2(− 0.4)t + 4
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S19.1 An Economic Growth Model
Let aggregate output in a model economy be given by

yt = kα
t , 0 < α < 1; t = 0, 1, 2, . . .

where yt is aggregate output and kt is the aggregate capital stock. This expression
says that the economy’s output is a concave function of its stock of productive
capital.

Capital is accumulated in this economy by saving (i.e., not consuming) some
of the current output. We assume that a constant share, s, of output is saved each
period. Assuming further that capital depreciates at the rate δ, we get

kt+1 = kt − δkt + syt

which says that the capital stock in period t + 1 is equal to its amount in period t ,
less depreciation during period t , plus savings from period t . Making the substitu-
tion for aggregate output gives a first-order, nonlinear difference equation for the
economy’s capital stock

kt+1 = kt (1 − δ) + skα
t , t = 0, 1, 2, . . . (S19.1)

Given the assumed saving behavior in this model economy, we would like to know
as much as possible about the path of the economy’s capital stock over time. Does
it grow forever? Does it converge to a steady-state value? Does it oscillate?

To answer these questions, we conduct a qualitative analysis of the difference
equation, beginning with the phase diagram. For this purpose we need to graph
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equation (S19.1). To do so, note that kt+1 = 0 when kt = 0, so the graph goes
through the point (0, 0). Next, take the first derivative:

dkt+1

dkt

= 1 − δ + sαkα−1
t

which exceeds 0 since we will assume that δ < 1. This result tells us that the curve
is upward-sloping for all kt > 0. Next, take the second derivative:

d2kt+1

dk2
t

= sα(α − 1)kα−2
t

which is less than 0 because 0 < α < 1 by assumption. This result, together with
the first derivative, tells us that the curve is strictly concave for all kt > 0. This is
enough essential information to draw a rough sketch of the curve. Figure S19.1
depicts a curve with these characteristics.

The steady-state equilibrium values are found by setting kt+1 = kt . After some
simplification, we get

k̄[δ − sk̄
α−1

] = 0.

The solutions are

k̄ = 0

kt+1

ktk0

k

Figure S19.1 Phase diagram for equation (S19.1) showing that k̄ is a stable steady
state
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and

k̄
α−1 = δ

s

Theorem 19.1 requires that we evaluate the derivative of the right-hand side of
equation (S19.1) at the steady-state values to determine which of them is stable.
This derivative is

1 − δ + sαk̄
α−1

At k̄ = 0, this derivative goes to infinity. Hence kt does not converge to 0 locally.
Evaluating the derivative at the second steady state gives

1 − δ + sα
δ

s
= 1 − δ(1 − α)

which is larger than 0 and smaller than 1 because both δ and α are between 0 and 1.
Hence the point

k̄ =
(

δ

s

)1/(α−1)

is locally stable. The phase diagram analysis shows that as long as k0 > 0, then kt

converges to k̄. Hence, k̄ is globally stable, at least over the positive domain of k.
Finally, the analysis we have done shows that the derivative of f is positive over
the entire domain of k. Theorem 19.2 tells us then that the approach paths to the
steady-state are monotonic, not oscillatory.

S19.2 A Malthusian Growth Model
Thomas Malthus hypothesized that population growth is an inverse function of
income per capita up to a biologically determined limit. Let us assume that

Nt+1 − Nt

Nt

= n − b

wt

, t = 0, 1, 2, . . . (S19.2)

where wt is income per capita, Nt is population in period t , and n and b are positive
constants. This says that the rate of population growth per period is equal to n minus
a constant divided by income per capita. As wt rises, the greater food supply and
better living conditions mean that the population growth rate rises (because of
higher birth rates and lower death rates). The upper limit on the growth rate is n.
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Conversely, as wt falls, the smaller food supply and poorer living conditions mean
that the population growth rate declines.

We assume that wt is given by

wt = Yt

Nt

where Yt is aggregate output in the economy. For concreteness, we assume that
the aggregate production function is

Yt = Nα
t , 0 < α < 1

which says that aggregate output is an increasing function of population (labor).
After making the appropriate substitution, income per capita is

wt = Nα−1
t

Substituting this into equation (S19.2) and rearranging gives the nonlinear, first-
order difference equation for population in this model

Nt+1 = Nt

(
1 + n − bN1−α

t

)
(S19.3)

To construct the phase diagram, we plot equation (S19.3). The function starts at
the origin and then increases at a decreasing rate until reaching a maximum; it
then decreases at a decreasing rate until eventually intersecting with the horizontal
axis. This qualitative information about the phase diagram is found in the usual
way as follows: the first derivative is

dNt+1

dNt

= 1 + n − b(2 − α)N1−α
t (S19.4)

which is positive (and equal to 1 + n) when Nt = 0 and then decreases monoton-
ically as Nt increases; it reaches zero at N ′where

N ′ =
(

1 + n

b(2 − α)

)1/(1−α)

and then becomes negative. This indicates that the function reaches a maximum at
N ′; this conclusion is verified by evaluating the second derivative of the function

d2Nt+1

dN2
t

= −b(2 − α)(1 − α)N−α
t < 0
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NtN

Nt+1

0

Figure S19.2 Phase diagram for
the Malthusian growth model

Figure S19.2 shows the phase diagram for the case in which the steady-state
value of N occurs to the right of the peak. Because the phase curve is hill-shaped,
the path of Nt in this model could converge to a steady-state point, converge to
a stable limit cycle, or could be chaotic. To determine the behavior of the path of
Nt in the neighborhood of N̄ , evaluate the derivative in equation (S19.4) at this
point. To do this, we require an analytical solution for N̄ . Setting N̄ = Nt+1 = Nt

in equation (S19.3) and solving gives

N̄
1−α = n

b

Substituting this value into equation (S19.4) and simplifying gives

dNt+1

dNt

= 1 − n(1 − α)

Since n(1 − α) > 0, the slope is always less than 1. For stability, we also require
the slope to be greater than −1, which occurs only if

n(1 − α) < 2

Is this condition likely to be satisfied? We know that 0 < α < 1. If α were as large
as 0.99, n would have to be smaller than 200 to satisfy this condition. This seems
likely, as n is the upper limit on the population growth rate per period. If a period
is 25 years, say, (about the number of years for one generation), a growth rate
of 200 would mean a 200-fold increase in the population every generation, which
seems absurdly high. For high values of α, then, we would expect the population to
converge to the steady state. If α were as small as 0.01, on the other hand, n would
have to be smaller than 2.02 to satisfy the stability condition. This event seems less
likely. Indeed, a doubling of the population every generation seems quite possible.
Thus, for small values of α, it is less likely that the population will converge to a
steady state; instead, it could display cyclical behavior or even chaotic behavior.

P R A CT I C E E X E R C I S E S

S19.1. For the growth model solve for kt when t = 1, 2, 3, 4 given the following
parameter values: k0 = 95000, s = 0.2, δ = 0.02, and α = 0.8. Find the
steady-state value of the capital stock and determine whether kt converges
to it monotonically or in an oscillatory fashion.
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S19.2. For the growth model, instead of savings being a constant share of output,
assume savings each period are equal to y

1/2
t . Derive the difference equa-

tion for the capital stock, sketch its phase diagram, and determine whether
the steady state is stable.

S19.3. Make the following change to the growth model. Instead of aggregate
output being a concave function of capital, assume that it is the following
linear function:

yt = a + bkt , a, b > 0

Derive the difference equation for the capital stock. What parameter re-
strictions are required to ensure the steady-state capital stock is positive?
Sketch the phase diagram, and determine whether the steady state is
stable.

Solutions

S19.1. k̄ = 100,000, k1 = 95,019.59, k2 = 95,039.11, k3 = 95,058.55,
k4 = 95,077.92. Since

dkt+1

dkt

= 1 − δ + sα

k1−α
t

> 0

for all k > 0 and 0 < δ < 1, then by theorem 19.2, the path of yt is
monotonic. Further, since

dkt+1

dkt

∣∣∣∣
ȳ

= 1 − 0.02 + (0.2)(0.8)

(100,000)0.2
= 0.996

the path of kt converges to k̄.

S19.2. The difference equation becomes

kt+1 = kt (1 − δ) + k
α/2
t

The steady-state points are the solution to

k̄

[
1 − (1 − δ) − k̄

α−2
2

]
= 0
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which gives k̄ = 0 and k̄ = δ2/(α−2). Using theorem 19.1, we have

dkt+1

dkt

= 1 − δ + α

2
k̄

α−2
2

Since 0 < α < 1, this derivative tends toward infinity as k̄ −→ 0. So
k̄ = 0 is not stable. At k̄ = δ2/(α−2), the derivative equals 1 − δ(1 −α/2)

which is between 0 and 1, so this point is stable. See figure S19.3.

 

Figure S19.3

Figure S19.4
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S19.3. The difference equation for capital is

kt+1 = kt (1 − δ) + syt

Substituting for yt and rearranging gives

kt+1 = kt (1 − δ + sb) + sa

The steady-state is k̄ = sa(δ − sb). We therefore require (δ − sb) > 0
to ensure that k̄ > 0. Since this is a linear difference equation, we know
that kt converges if and only if the absolute value of 1 − δ + sb is less
than 1. That is, we require that −1 < 1−(δ−sb) < 1. The restriction that
δ − sb > 0 ensures that the upper restriction is met. To ensure that the
lower restriction is met, we require that δ − sb < 2. The restriction
δ − sb > 0 ensures that the slope of the kt+1 line is less than 1 so that it
intersects the 45◦ line. See figure S19.4.
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S20.1 A Multiplier-Accelerator Model
Let aggregate national income be given by

Yt = Ct + It + Gt

where C, I , and G are consumption, investment, and government expenditure,
respectively. Assume that G is constant over time at Gt = Ḡ, and assume that
consumption is always given by

Ct = mYt, 0 < m < 1

where m is the marginal propensity to consume. Now assume that there is an en-
dogenous component to investment, I n, and an exogenous component, I x . For the
endogenous component, assume that investors in the economy base their invest-
ment decisions for period t on the amount by which national income grew in the
previous period. In particular, assume that

I n
t = α(Yt−1 − Yt−2)

where α is a positive constant. Assume that the exogenous component is

I x
t = (1 + g)t

where g > 0 is the growth rate of the exogenous part of investment. The total
investment is

It = I n
t + I x

t
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Substitute the investment expression and the consumption expression into the
national income identity to get

Yt = mYt + α(Yt−1 − Yt−2) + (1 + g)t + Ḡ

Simplify to obtain

Yt − α

1 − m
Yt−1 + α

1 − m
Yt−2 = (1 + g)t+2

1 − m
+ Ḡ

1 − m

Write this in more common form by adding 2 to all the time subscripts

Yt+2 − α

1 − m
Yt+1 + α

1 − m
Yt = (1 + g)t

1 − m
+ Ḡ

1 − m

To solve this difference equation, we first solve its homogeneous form. This is
given by

Yt+2 − α

1 − m
Yt+1 + α

1 − m
Yt = 0

The roots of this difference equation are

r1, r2 = α

2(1 − m)
± 1

2

√(
α

1 − m

)2

− 4α

1 − m

and the solution to the homogeneous version is

Yt = C1r
t
1 + C2r

t
2

To find a particular solution, we use the method of undetermined coefficients.
Noting that the term in the complete difference equation is

Ḡ

1 − m
+ (1 + g)t+2

1 − m

we guess that the particular solution is

yp = A0 + A1(1 + g)t+2
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where A0 and A1 are the coefficients to be determined. Since this particular solution
must satisfy the complete difference equation, substitute it in to get

A0 + A1(1 + g)t+4 − α

1 − m
[A0 + A1(1 + g)t+3] + α

1 − m
[A0 + A1(1 + g)t+2]

= Ḡ

1 − m
+ (1 + g)t+2

1 − m

Factoring out (1 + g)t+2 on the left-hand side and cancelling terms reduces this to

(1 + g)t+2

[
(1 + g)2A1 − α(1 + g)A1

1 − m
+ αA1

1 − m

]
+ A0 = Ḡ

1 − m
+ (1 + g)t+2

1 − m

This equality determines the values of the coefficients. For the equality to be true
for all values of t , we must set

A0 = Ḡ

1 − m

and

[
(1 + g)2 − α(1 + g)

1 − m
+ α

1 − m

]
A1 = 1

1 − m

which gives

A1 = 1

(1 + g)2(1 − m) − αg

The general solution to the complete difference equation then is

Yt = C1r
t
1 + C2r

t
2 + Ḡ

1 − m
+ (1 + g)t+2

(1 + g)2(1 − m) − αg

Interestingly it is still possible for Yt to converge to yp, even though yp is
not a steady-state solution. If the absolute values of both roots are less than 1,
yt will converge to the particular solution yp as t goes to infinity. The economic
interpretation of this behavior is that, given enough time, national income will
converge to a long-run growth path that is given by yp.
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Are the absolute values of the roots less than 1? We will use theorem 20.6 to
answer. The first necessary condition is 1 + a1 + a2 > 0. In this model

1 + a1 + a2 = 1 − α

1 − m
+ α

1 − m
= 1

This condition is clearly satisfied. The second condition is 1 − a1 + a2 > 0. In this
model

1 − a1 + a2 = 1 + 2
α

1 − m

This condition is also satisfied, since α/(1 − m) > 0 by assumption. The final
condition is a2 < 1 which in this model is

α

1 − m
< 1

This condition is not satisfied, in general, since the only restrictions placed on α

and m in the model are that they each are between 0 and 1. Therefore the model
does not, in general, converge to the long-run growth path, unless we impose the
additional condition that α/(1 − m) < 1.

P R A CT I C E E X E R C I S E S

S20.1. Consider the following multiplier-accelerator model. Assume that con-
sumption is given by

Ct = mYt

investment is given by

It = α(Yt−1 − Yt−2)

and government expenditure grows over time according to

Gt = G0(1 + g)t

where g is the exogenous growth rate of government expenditure. De-
rive and solve the linear, second-order difference equation implied by this
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model. Show that if the absolute values of the real parts of the characteris-
tic roots are less than 1, then national income converges to an exponential
growth path.

S20.2. Consider yet another modification of the multiplier-accelerator model.
Assume that consumption is given by

Ct = mYt

investment is given by

It = Ī + α(Yt−1 − Yt−2)

and government expenditure declines over time according to

Gt = G0(1 − δ)t , 0 < δ < 1

where δ is the exogenous rate of decline of government expenditure. De-
rive and solve the linear, second-order difference equation implied by this
model. Show that if the absolute values of the real parts of the character-
istic roots are less than 1, then national income converges to Ī /(1 − m).

S20.3. Suppose that two firms share a growing market.Assume that the (inverse)
demand curve is

p(x + y) = 120αt − (xt + yt ), α < 1

Assuming that each firm makes a Cournot assumption about the other
firm’s output and maximizes profit (assume that costs are zero), derive and
solve the second-order difference equation for x implied by this model.

Solutions

S20.1. Substitute into the national income identity Yt = Ct + It + Gt . After
re-arranging, we get

Yt+2 − α

1 − m
Yt+1 + α

1 − m
Yt = G0

1 − m
(1 + g)t+2

The homogeneous solution is the same as the example solved in section
20.2. For the particular solution, we try yp = A(1 + g)t . Substitute this
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solution into the difference equation to get

A(1 + g)t+2 − α

1 − m
A(1 + g)t+1 + α

1 − m
A(1 + g)t

= G0

1 − m
(1 + g)t+2

Simplifying and solving gives

A = G0

(1 − m) − αg

The complete solution then is

Yt = C1(r1)
t + C2(r2)

t + G0

(1 − m) − αg
(1 + g)t

where

r1, r2 = α

2(1 − m)
± 1

2

√(
α

1 − m

)2

− 4α

1 − m

If the absolute values of the roots are less than 1, then the first two
terms in the solution for Yt tend toward 0 as t gets very large. Thus
Yt converges in the limit to the third term, which produces exponential
growth at the rate g.

S20.2. The difference equation is

Yt+2 − α

1 − m
Yt+1 + α

1 − m
Yt = Ī

1 − m
+ G0

1 − m
(1 − δ)t

The homogeneous solution is the same as above. For the particular so-
lution, we try yp = A0 + A1(1 − δ)t . After substituting this into the
complete difference equation, this gives A0 = Ī /(1 − m) and A1 =
G0/[(1 − m)(1 − δ)2 + αδ]. The complete solution is

Yt = C1(r1)
t + C2(r2)

t + Ī

1 − m

+ G0

(1 − δ)2(1 − m) + αδ
(1 − δ)t
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If the absolute values of the roots are less than 1, then because 0 < δ < 1,
Yt converges in the limit to Ī /(1 − m).

S20.3. The reaction functions are xt+1 = 60αt − yt/2 and yt+1 = 60αt − xt/2.
After substituting, the second-order difference equation for xt becomes

xt+2 − 1

4
xt = 60αt

(
α − 1

2

)

The roots are r1, r2 = ±1/2. The particular solution we try is xp = Aαt

as long as α = ±1/2, for then the particular solution would have a term
in common with the homogeneous solution. The complete solution is

xt = C1

(
1

2

)t

+ C2

(
−1

2

)t

+ 60

α + 1
2

αt
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S21.1 The Dynamics of National Debt
Accumulation

Many countries have run persistent budget deficits in recent years. This has led
to a dramatic growth in national debts and a concern that this trend could lead to
bankruptcy (which would occur if a nation’s debt were to become so large that its
interest payments exceeded national income). Is this a necessary consequence of
persistent deficit financing? Are countries that run persistent deficits on a path
toward bankruptcy? These are questions that can be answered by analyzing the
dynamics of debt accumulation and income growth. For our purposes we will take
a relatively simplified view of these processes to keep the differential equations
simple.

Let D(t) represent the dollar value of the debt at time t , and let Y (t) represent
the dollar value of the nation’s income, or GNP, at time t . We will abstract from
inflation by assuming that all variables are denominated in real dollar terms. We
will assume that the deficit (defined as a posititive value equal to expenditures
minus revenues) is a constant proportion of national income at any point in time.
Since the change in the debt is just the deficit, we have

Ḋ = bY , b > 0 (S21.1)

as the ordinary differential equation that describes the behavior of debt. (Typically
the value for b in many countries would fall in the range 0.02 to 0.08 which means
that deficits are about 2% to 8% of the size of national income). We further as-
sume that national income grows over time according to the following differential
equation:

Ẏ = gY (S21.2)
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where g is a positive constant (representing the growth rate of national income).
Together, equations (S21.1) and (S21.2) are a model of debt accumulation. To
analyze the implications of the model for the long-run ratio of interest payments to
national income, we need to solve these equations. We start with equation (S21.3),
which we can rewrite as

Ẏ

Y
= g

Integrating both sides gives

ln Y (t) + c2 = gt + c1

which we can rewrite as

Y (t) = C1e
gt

where C1 = ec1−c2 . Assuming that the initial time is t0 = 0 and that the initial
values of income and debt are Y0 and D0 respectively, we require Y (0) = Y0 = C1.
Thus the solution to the initial-value problem for equation (S21.2) is

Y (t) = Y0e
gt (S21.3)

Substitution of this solution into equation (S21.1) gives

Ḋ = bY0e
gt

Although this is actually nonautonomous, it is in a form that can be solved by
direct integration. Integrating both sides gives

D(t) = bY0
egt

g
+ C2

Since D(0) = D0, the value of C2 must be set to (D0 − b/gY0). Using this
value, we have the solution

D(t) = D0 + b

g
Y0(e

gt − 1)

Inspection of the solution indicates that national debt, D(t), grows without
limit in this model. However, our real concern is with the country’s ability to meet
the interest obligations on the debt. We assume a constant interest rate r , and we
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calculate the ratio of interest payments [rD(t)] to national income Y (t) as

rD(t)

Y (t)
= r

D0 + bY0(e
gt − 1)/g

Y0egt

Defining z(t) ≡ rD(t)/Y (t) as the share of national income absorbed by interest
payments on the national debt and simplifying produces

z(t) = r
D0

Y0
e−gt + r

b

g
(1 − e−gt ) (S21.4)

This expression gives the ratio of interest payments to national income at any point
in time in this model. Our main interest is to determine whether this ratio converges
to a finite limit less than 1 (interest payments never become as large as national
income).

Inspection of equation (S21.4) indicates that z(t), the ratio of interest obliga-
tions to income, converges to a finite limit as t → ∞. To see this, take the limits
of the two terms on the right-hand side as t → ∞, keeping in mind that e−gtgoes
to 0 as t → ∞. We obtain

lim
t→∞ z(t) = r

b

g
(S21.5)

Interest payments on the debt converge to a constant proportion of national
income equal to rb/g. If rb/g < 1, then even if a government forever runs a deficit
which is a constant proportion of a growing national income, the burden on the
economy of the resulting debt converges to a constant share of national income.
This would be good news because it would mean the economy would always
be able to meet its debt payments and bankruptcy would never occur. On the
other hand, if rb/g > 1, then the process converges to a finite limit where interest
payments exceed national income. In this case the economy would be destined to
experience bankruptcy if it continued to run deficits.

What is the intuitive explanation for our finding? Because Ḋ = bY and
Ẏ = gY , the ratio of the increase in debt to the increase in income, Ḋ/Ẏ , is just
b/g. Thus, for every dollar increase in national income, debt increases by b/g.
Suppose that b/g = 0.5. Then for every dollar increase in national income, debt
increases by 50 cents. Clearly, income is growing faster than the debt, so the ratio
of debt to income will always be less than unity. Then, because interest rates are
typically much less than 1, the ratio of interest on debt to income will always be
less than unity.

On the other hand, suppose that b/g = 1.5. Then every dollar increase in in-
come leads to a $1.50 increase in debt. Debt is now growing faster than income, so
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the ratio of debt to income will definitely exceed unity eventually. In this case inter-
est on the debt could also exceed national income if the interest rate is high enough.

Some typical values for the ratio b/g can be calculated from data contained
in the OECD Economic Outlook. For the United States, the ratio averaged 0.61
over the high-growth years 1987–89, rose above 1 in the 1990s and averaged
0.81 from 2001 to 2006. However, the combination of high military spending and
high deficits due to the financial crisis that began in 2008 pushed the ratio up to
2.89 in 2010. Italy had a ratio exceeding 3.0 over the late 1980s and reaching a
dangerously high value of 12.0 by 1990. Fortunately, Italy’s b/g dropped to an
average of 0.9 from 2001 to 2006. The United Kingdom had a very high ratio,
12.0, in 1990, but greater fiscal prudence brought the ratio down to an average of
0.63 from 2001 to 2006. Other countries, such as Australia, Canada, and Korea,
ran budgetary surpluses on average from 2001 to 2006 so that their b/g ratios were
negative, indicating that national debt was actually falling.

For some of these countries the ratio b/g was substantially larger than 1 in
some years, which is cause for concern. Concern would be even higher if these
countries had been unable to bring the ratio down to more sustainable levels as was
common in the period of strong economic growth from 2001 to 2006. Nevertheless,
by analyzing the dynamics of this model, we have discovered the surprising result
that even if governments do run persistent deficits, even large ones, bankruptcy
is not a necessary long-run consequence. However, different specifications of the
model of deficit spending can produce less optimistic results. See exercise S21.3
for an example.

S21.2 The Dynamics of the IS-LM Model
Consider the following IS-LM model:

C = a + bY − lR (consumption demand)

I = Ī (investment demand)

G = Ḡ (government demand)

L = kY − hR (money demand)

M = M̄ (money supply)

The endogenous variables in this model are output (Y ) and the interest rate (R).
Equilibrium in the goods market requires that aggregate demand (C + I + G) equal
aggregate supply (Y ). Equilibrium in the money market requires that the demand
for money (L) equal the supply of money (M). When these two conditions hold,
the equilibrium values of output and interest rate are determined.

We will assume that the money market clears instantly (R adjusts instanta-
neously to equate the demand for and supply of money). However, we do not
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assume this about the goods market. Instead, we assume that output adjusts grad-
ually in response to the demand-supply gap. In particular, we assume that

Ẏ = α(a + bY − lR + Ī + Ḡ − Y ), α > 0 (S21.6)

where α is a positive coefficient determining the speed at which the goods market
adjusts. This model gives us a linear, first-order differential equation for Y . We
wish to solve this for Y (t) and then determine whether the equilibrium is stable.

Rewrite the differential equation as

Ẏ − α(b − 1)y + αlR = α(a + Ī + Ḡ)

Because the money market clears instantly, R will always be at its equilibrium
value. Equating the demand for money with the supply of money gives

R = k

h
Y − M̄

h

Making the substitution for R and simplifying gives

Ẏ + α

(
1 − b + lk

h

)
Y = α

(
a + Ī + Ḡ + lM̄

h

)

To simplify the next few steps, define A and B as

A = α

(
1 − b + lk

h

)

B = α

(
a + Ī + Ḡ + lM̄

h

)

The differential equation then becomes

Ẏ + AY = B

Assuming that the initial condition for output is Y (0) = Y0, then applying equation
(21.8) from chapter 21 of the textbook gives the complete solution

Y (t) =
(

Y0 − B

A

)
e−At + B

A

As usual, the solution shows that if Y0 happens to be equal to its steady-state
value, it will always equal the steady-state value.
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What happens if Y0 is not equal to the steady-state value of Y ? The solution
shows that Y (t) converges to its steady state, B/A, if and only if A > 0. We
conclude that the IS-LM model contains a stable equilibrium if and only if A > 0.
By the definition of A, this requires that

1 − b + lk

h
> 0

Provided that l > 0, which would normally be assumed, we can rewrite this as

k

h
> −1 − b

l

In this form the stability condition requires that the slope of the LM curve (the
left-hand side) exceed the slope of the IS curve (the right-hand side). This con-
dition is met if the parameters satisfy the usual conditions (0 < b < 1, l, k, h > 0)
which produce a positively sloped LM curve and a negatively sloped IS curve.
However, even if these usual conditions are not satisfied, the equilibrium could
still be satisfied. For example, the LM curve can be negatively sloped (k/h < 0)
provided that it is flatter than the IS curve.

P R A CT I C E E X E R C I S E S

S21.1. Using the IS-LM model, assume the goods market clears instantly, mak-
ing aggregate demand always equal to aggregate supply. However, as-
sume that the interest rate adjusts gradually at speed α in response to the
gap between the demand for money and the supply of money. Derive the
differential equation for R. Solve for R(t), and determine the condition
on the parameters that must be satisfied for the equilibrium to be stable.

S21.2. Modify the IS-LM model by letting investment demand depend on the
interest rate. That is, assume that

I = Ī (1 − R)

and assume that 0 < R < 1. Derive the differential equation for Y . Solve
for Y (t) and determine the condition the parameters must satisfy for the
equilibrium to be stable.

S21.3. Suppose that the government runs a deficit, gross of interest payments
on the debt, which is a fixed proportion b of national income. Then debt
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increases by the amount of the deficit plus the interest payments on the
debt. If r denotes the constant interest rate paid on the debt, then the
differential equation for debt is

Ḋ = bY + rD

Assuming that Ẏ = gY, D(0) = D0, and Y (0) = Y0, solve for the ratio
rD(t)/Y (t). Show that this ratio converges to a finite limit if and only if
the growth rate of income exceeds the interest rate.

S21.4. Suppose that a government always runs a budgetary deficit equal to 12% of
national income including interest payments. If national income is grow-
ing at a rate of 3%, will this government always be able to meet its interest
payments on the debt? If the interest rate is a constant 10%, what share of
national income will go toward servicing (paying interest on) the national
debt in the limit?

Solutions

S21.1. Instantaneous clearing in the goods market ensures that C + Ī + Ḡ = Y .
This gives equilibrium Y as

Y = a − lR + Ī + Ḡ

1 − b

The interest rate adjusts according to Ṙ = α(L − M), which gives

Ṙ = α(kY − hR − M̄ )

Substituting and re-arranging gives

Ṙ + α

(
h + kl

1 − b

)
R = αk

1 − b
(a + Ī + Ḡ) − αM̄

The solution is

R(t) = (R0 − R̄)e−At + R̄

where

R̄ = k(a + Ī + Ḡ) − (1 − b)M̄

h(1 − b) + kl
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and

A = α

(
h + kl

1 − b

)
.

Convergence requires that A > 0.

S21.2. The money market clears instantly and the equilibrium interest rate is
R = kY/h − M̄/h. The goods market adjusts according to

Ẏ = α[a + bY − lR + Ī (1 − R) + Ḡ − Y ]

Substituting for R and simplifying gives

Ẏ + AY = B

where

A = α

[
1 − b + (l + Ī )k

h

]

B = α

[
a + (l + Ī )M̄

h
+ Ī + Ḡ

]

We require that A > 0 for stability. The solution is

Y (t) =
(

Y0 − B

A

)
e−At + B

A

S21.3. Since Ẏ = gY , we have Y (t) = Y0e
gt . Substituting this into the differ-

ential equation for debt gives

Ḋ = bY0e
gt + rD

Re-arranging gives

Ḋ − rD = bY0e
gt

The integrating factor is e−rt . Multiply both sides by this factor and
rewrite the equation as

d

dt
(De−rt ) = bY0e

(g−r)t
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Integrating gives

De−rt = bY0e
(g−r)t

g − r
+ C

which, after re-arranging, becomes

D(t) = bY0e
gt

g − r
+ Cert

At t = 0, D(0) = D0. This gives C = D0 − bY0/(g − r). The solution
for debt becomes

D(t) = bY0e
gt

g − r
+
(

D0 − bY0

g − r

)
ert

The ratio of interest payments, rD(t), to national income is

rD(t)

Y (t)
= rb

g − r
+ e(r−g)t

(
rD0

Y0
− rb

g − r

)

If g > r , the exponential term goes to 0 in the limit and the solution
converges to the finite limit rb/(g − r). If g < r , the ratio of interest
payments to national income grows without limit. To see this, it helps to
rewrite our expression as

rD(t)

Y (t)
= rb

r − g

(
e(r−g)t − 1

)+ e(r−g)t rD0

Y0

With r − g > 0, both terms on the right-hand side are positive and grow
without limit.

S21.4. With Ḋ = 0.12Y and Ẏ = 0.03Y , we get

rD(t)

Y (t)
= rD0

Y0
e−0.03t + r(0.12)

0.03
(1 − e−0.03t )

If r = 0.10, then in the limit as t −→ ∞, rD/Y = 0.4. That is, 40% of
national income will be used to service the debt.
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S22.1 Nonlinear Differential Equation
Examples

Example S22.1 A Fishery Model with the Harvest Rate Proportional to Stock Size

Consider a fish species that is caught with nets. The quantity of fish caught is
assumed to be a fraction, α, of the fish population. The size of α will depend on the
number of fishing boats used to deploy the nets, but here we will take α as exoge-
nously given. If the growth function of the fishery in the absence of any fishing is

g(y) = y − y2, y(0) = y0 > 0

solve for the fish population as a function of t when the harvest rate is

h = αy

Solution

The differential equation governing the fish population now becomes

ẏ = y − y2 − αy (S22.1)

To solve, first we rewrite the equation as

ẏ − y(1 − α) = −y2

Multiply through by y−2 to obtain

y−2ẏ − y−1(1 − α) = −1
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Now define x = y−1 (note that we require y(t) = 0 here) which transforms our
differential equation into

−ẋ − x(1 − α) = −1

or, after multiplying through by −1,

ẋ + x(1 − α) = 1

This is a linear, first-order differential equation with a constant coefficient,
1 − α, and a constant term, 1. To solve, rewrite its homogeneous form as

ẋ

x
= −(1 − α)

The solution to the homogeneous form is

xh = Ce−(1−α)t

The particular solution, given by the steady state, is

x̄ = 1

1 − α

The complete solution is then

x(t) = Ce−(1−α)t + 1

1 − α

Using the initial condition x(0) = x0 to solve for C gives

x(t) =
(

x0 − 1

1 − α

)
e−(1−α)t + 1

1 − α

Now substitute y−1 for x and simplify to get

y(t) = y0(1 − α)

y0 + (1 − α − y0)e−(1−α)t

This is the solution we are looking for. It shows the size of the population as a
function of t . We can go one step further to determine the steady-state value of the
fish stock by taking the limit of our solution as t → ∞. We see that y(t) → (1−α)
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as t → ∞. We conclude that if the fishing technology is such that the harvest
is a constant fraction, α, of the fish population, the size of the fish population
will approach a fraction, 1 − α, of its natural equilibrium size, where its natural
equilibrium size is 1 as example S22.2 shows.

Example S22.2 An Explicit Solution of the Fishery Model

Solve differential equation (22.3) explicitly.

Solution

Note that equation (22.3) is the same as equation (S22.1) if we set α = 0. Since
we have already obtained a solution for equation (S22.1), we merely need to set
α = 0 in the solution to obtain the solution for equation (22.3). Doing so gives

y(t) = y0

y0 + (1 − y0)e−t

It is apparent that the limit of y(t) as t → ∞ is 1. This confirms the results of the
qualitative analysis. Note that we rule out the other steady-state value of y = 0 when
we use the technique shown here to obtain an explicit solution to the Bernoulli
equation because we cannot allow y(t) = 0, given that the technique involves a
transformation of variables in which we divide by y(t).

The advantage of the explicit solution over the qualitative analysis is that
we can use it to calculate the actual value of y(t) at any time t , whereas the
qualitative solution does not provide that kind of information. If we need that kind
of quantitative information and we cannot obtain an explicit solution, it would
be necessary to do a numerical approximation. There are a number of computer
software programs now available for personal computers that are designed to do
just that.

Example S22.3 The Aggregate Growth Model with Technological Change and Zero
Population Growth

In this example we consider a special version of the Solow growth model examined
in chapter 22 of the textbook. We assume here that output per person is a function
not only of the capital–labor ratio but also of t , which represents the technological
improvements that occur over time. In particular, let

y = eatk1/2
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where a > 0 is a constant. This says that output is a concave function of the
capital–labor ratio, and an increasing function of time, owing to technological
progress.

Assuming zero population growth (n = 0), the differential equation for k be-
comes

k̇ = seat k1/2

This is a nonlinear differential equation describing the growth of the capital–labor
ratio. We wish to solve this equation to obtain an expression showing k as a
function of t . To do this, we notice that the differential equation is separable in t

and k because we can write it as

−seat + k−1/2k̇ = 0

where the first term depends only on t and the second term, which multiplies k̇,
depends only on k.

We re-express this differential equation as

−seat dt + k−1/2 dk = 0

and integrate directly to obtain

−
∫

seat dt +
∫

k−1/2 dk = 0

Carrying out the integration gives

− s

a
eat + 2k1/2 = C

Solving for k gives

k(t) =
(

s

2a
eat + C

2

)2

Next we can determine the constant of integration in the usual way from the initial
condition on the capital stock, k(0) = k0. This gives

C = 2
√

k0 − s

a
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The solution becomes

k(t) =
(

s

2a
(eat − 1) +

√
k0

)2

It is apparent that, in this model, k(t) grows without bound, provided a > 0.

P R A CT I C E E X E R C I S E S

S22.1. In the growth model, the differential equation for the economy’s capital–
labor ratio is

k̇ = sf (k) − nk

where f (k) gives output per worker, y, as a function of the capital–labor
ratio, k; s is the saving rate in the economy; and n is the growth rate of
the labor force. Let

f (k) = k1/2

and obtain an explicit solution for k as a function of t . Show that k(t)

converges to the steady-state equilibrium point as long as n is positive.

S22.2. In the Solow growth model, allow for technological progress by redefining
the labor force as the effective labor force, E, which includes not only the
number of workers but also the impact of technological improvement.
Assuming that the effective labor units per person grow at the rate λ,
we have

E(t) = L(t)eλt

Assuming that the labor force is initially L0 and grows at the rate n, then
we have

E(t) = L0e
(n+λ)t

The production function becomesy = f (k), wherey = Y/E and k = K/E.
Derive the nonlinear differential equation for k in this augmented model.
Find the steady-state equilibrium value of k and determine the conver-
gence property of the model by conducting a qualitative analysis. Finally
show that this augmented model implies that output per person, Y/L,
grows at the rate λ in the steady state.
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Solutions

S22.1. We are given k̇ = sk1/2 − nk. Set k̇ = 0 to find the steady state. For
k = 0, this gives k̄ = (s/n)2. Now write the differential equation as
k̇+nk = sk1/2 and multiply through by k−1/2. This gives k̇k−1/2+nk1/2 =
s. Define x = k1/2 so that ẋ = k−1/2k̇/2. Substituting transforms the
differential equation into

ẋ + nx

2
= s

2

The solution is x(t) = Ce−nt/2 + s/n. Since k = x2, this becomes

k(t) =
(
Ce−nt/2 + s

n

)2

If n > 0, then k(t) converges to (s/n)2 in the limit.

S22.2. Since k = K/E we have k̇ = K̇/E − kĖ/E = sY/E − k(n + λ) =
sf (k) − (n + λ)k. The steady state occurs at k̇ = 0, which gives

f (k̄)

k̄
= n + λ

s

The phase diagram looks very much like that in the Solow growth model
in figure 22.4. It indicates that k(t) converges to k̄ in the limit. In the
steady state, Y/E = f (k) is constant. Therefore Ẏ /E − Y Ė/E2 = 0
so that Ẏ /Y = Ė/E = n + λ. But the growth rate of Y/L equals
Ẏ /Y − L̇/L = (n + λ) − n. Therefore Y/L grows at the rate λ.
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S23.1 A Walrusian Price-Adjustment
Model with Entry and Exit

Suppose that price adjusts according to whether there is excess demand or supply
at the current price in a competitive market, as in the Walrasian price-adjustment
model analyzed in chapter 21. If qD and qS are the quantities demanded and sup-
plied respectively, and α is a positive constant, then the price adjusts according to

ṗ = α(qD − qS) (S23.1)

In addition suppose that firms enter or exit the industry according to whether
economic profits are positive or negative. Let N represent the number of firms
in the industry (assume that N is differentiable), and let c̄ be a positive constant
representing the minimum average cost that firms can achieve. If price exceeds
c̄, positive economic profits are earned, and this stimulates entry to the industry:
Ṅ > 0. If price is less than c̄, economic losses are earned, and this stimulates exits
from the industry: Ṅ < 0. This is expressed algebraically as follows:

Ṅ = γ (p − c̄) (S23.2)

where γ is a positive constant that represents the speed at which N adjusts to
profits and losses. Let us assume that the demand curve is given by

qD = A + Bp

We assume that the demand curve slopes downward in this model, which means
we impose the restriction that B < 0. We assume that the supply curve in this
model is
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qS = mN

where m is a positive constant. This gives us a supply curve (in a price-quantity
diagram) that is vertical for a given N ; that is, it is perfectly inelastic with respect
to price for a given number of firms.

Our goal is to analyze the path of price over time and, in particular, to determine
whether, and if so how, it converges to an equilibrium. Equation (S23.1) is a
first-order differential equation for price. However, we cannot use our first-order
techniques to solve it because it depends on N , which in turns depends on p. There
are two ways to deal with this problem. One way is to treat equations (S23.1)
and (S23.2) as a system of two first-order differential equations and solve them
simultaneously. We do this in chapter 24. The other way is to differentiate equation
(S23.1) with respect to t to get a second-order differential equation. Doing this
gives us

p̈ = α(Bṗ − mṄ)

Use equation (S23.2) to substitute for Ṅ to get the following linear, second-order
differential equation:

p̈ − αBṗ + αmγp = αmγ c̄

To solve, begin with the homogeneous form

p̈ − αBṗ + αmγp = 0

The characteristic equation is

r2 − αBr + αmγ = 0

and

r1, r2 =
−a1 ±

√
a2

1 − 4a2

2

where

a1 = −αB and a2 = αmγ

Assume for now that the roots are distinct. The homogeneous solution is

ph = C1e
r1t + C2e

r2t
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The particular solution we use is the steady-state price. This is found by setting
p̈ = ṗ = 0. This gives

pp = c̄

The steady-state equilibrium value of price is c̄, the minimum average cost.
The complete solution is the sum of the homogeneous solution and the par-

ticular solution. After using the expressions for a1 and a2 and simplifying, the
complete solution becomes

p(t) = C1e
r1t + C2e

r2t + c̄

where

r1, r2 = αB ±
√

α2B2 − 4αmγ

2

The roots in this solution are never positive as long as the demand curve is
negatively sloped (B < 0) because α, m, and γ are positive constants. If the roots
are real-valued, the price path will converge to the steady-state equilibrium, c̄. If
the roots are complex-valued (α2B2 − 4αmγ < 0), then theorem 23.4 gives the
solution as

p(t) = eht (A1 cos vt + A2 sin vt) + c̄

where

h = αB

2
and v =

√
4αmγ − α2B2

2

The price path still converges to c̄ since the real part of the complex roots, h, is
negative, given our assumption that B < 0.

Whether the roots are real or complex, price always converges to the steady-
state value, c̄, in this model. The difference is that the path toward this equilibrium
is monotonic in the case of real-valued roots, such as the path depicted in figure 23.6
in the textbook, and oscillatory in the case of complex-valued roots, such as the
path depicted in figure 23.7.

In the case of complex roots, the price path displays dampened oscillations
in its convergence to the equilibrium price. Overshooting of the equilibrium price
occurs frequently. This is a fascinating behavior because it indicates that even when
price reaches the equilibrium value, it will not necessarily remain there. The reason
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is that there are two forces operating to change price. Therefore two conditions,
not just one, must be satisfied for price to be stationary: quantity supplied must
equal quantity demanded and economic profits must be zero.

It is interesting to note that one of the factors more likely to cause the roots
to be complex and the price path to display oscillations is a large value of γ . A
large value of γ means that the number of firms in the industry adjusts rapidly to
realizations of profits or losses. Thus we would expect industries for which entry
and exit can occur quickly to be more likely to display fluctuating price behavior
than otherwise.

P R A CT I C E E X E R C I S E S

S23.1. In the Walrusian price-adjustment model with entry and exit, find the
complete solution for the following parameter values: α = 0.5, γ =
5/4, B = −2, m = 2, c̄ = 10, and A = 30.

S23.2. Solve for price as a function of time in the following price-adjustment
model. Assume price adjusts to the supply-demand gap according to

ṗ = α(qD − qS)

where qD = A + Bp, and with A > 0, B < 0 and qS = Gp + mk

and with G > 0, m > 0. Here, k is the stock of capital (plant and
equipment) invested in the industry. More capital means larger supply at
the given price. Assume that capital adjusts according to whether firms
earn economic profits or losses as follows:

k̇ = γ (p − c̄)

where c̄ > 0 is the average cost of production and γ > 0 is a speed-
of-adjustment parameter.

Solutions

S23.1. r1, r2 = −1/2 ± i; p̄ = 10.

p(t) = e−t/2[A1 cos t + A2 sin t] + 10

S23.2. Differentiating ṗ and substituting for k̇ gives

p̈ − α(B − G)ṗ + αmγp = αmγ c̄
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Let

a1 = −α(B − G)

a2 = αmγ

b = αmγ c̄

The solution is

p(t) = C1e
r1t + C2e

r2t + p̄

where p̄ = b/a2 = c̄ and

r1, r2 = α(B − G)/2 ±
√

α2(B − G)2 − 4αmγ /2
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S24.1 A Walrusian Price-Adjustment
Model with Entry

In chapter S23 we considered a model of a competitive market in which price
adjusts to excess demand or supply and firms enter or exit the industry if profits
or losses are being made. We re-examine the model here as a system of two linear
differential equations rather than as a single second-order differential equation for
price.

Price adjusts to excess demand according to

ṗ = α(qD − qS), α > 0

where qD = a + bp is the demand function, qS = mN is the supply function, p

is price, N is the number of firms in the industry, and α is a speed-of-adjustment
coefficient. Making these substitutions gives

ṗ = α(a + bp − mN) (S24.1)

The number of firms adjusts according to

Ṅ = γ (p − c̄), γ > 0 (S24.2)

where c̄ is the fixed average cost of production. Firms enter (Ṅ > 0) if price exceeds
average cost (profits positive) and exit if price is less than average cost (profits
negative). Together, equations (S24.1) and (S24.2) form the system of two linear,
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first-order differential equations in this model. We re-express the model as

[
ṗ

Ṅ

]
=
[

αb −αm

γ 0

][
p

N

]
+
[

αa

−γ c̄

]
(S24.3)

Using theorem 24.2 the solutions are

p(t) = C1e
r1t + C2e

r2t + p̄ (S24.4)

N(t) = r1 − αb

−αm
C1e

r1t + r2 − αb

−αm
C2e

r2t + N̄ (S24.5)

where p̄ and N̄ are the steady-state price and number of firms respectively. The
roots of the characteristic equation are

r1, r2 = αb

2
± 1

2

√
α2b2 − 4αmγ

The determinant of the coefficient matrix is

αmγ > 0

The positive determinant indicates that the roots are either both negative or both
positive if real valued. The trace of the coefficient matrix is

tr(A) = αb

Both roots are negative if and only if αb < 0. Since α > 0, the only way this can
happen is if b < 0. Therefore the necessary and sufficient condition for stability in
this model is b < 0, which is the requirement that demand be negatively sloped.
To determine whether the roots are real or complex we calculate [tr(A)]2 − 4|A|.
If this expression is negative, the roots are complex; if it is zero, the roots are real
and equal; if it is positive, the roots are real. We get

[tr(A)]2 − 4|A| = α2b2 − 4αmγ

Whether this value is positive or negative cannot be determined in general but will
depend on the particular numerical values of the parameters α, b, m, and γ . Thus,
in general, all we can say about this model is that it converges to the steady state
if and only if b < 0. The steady state is either a stable node, a stable focus, or an
improper stable node, depending on whether α2b2 − 4αmγ is positive, negative,
or zero. The phase diagram for this model is shown in figure S24.1 for the case
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Figure S24.1 Phase diagram for the Walrusian price-adjustment model with entry

of real and distinct (negative) roots, which gives a stable node. To construct this
diagram, begin by plotting the isocline for p. Setting ṗ = 0 and simplifying gives

p = m

b
N − a

b

Thep isocline is a straight line with slope m/b, which is negative given b < 0,
m > 0, and intercept −a/b, which is positive given a > 0.

To determine the motion of p in the two isosectors, use the fact that

∂ṗ

∂N
= −αm < 0

Therefore moving from any point on the isocline to a smaller (larger)N increases
(decreases) ṗ. Thus ṗ > 0 to the left of the isocline and ṗ < 0 to the right of it.

Next plot the isocline for N . Setting Ṅ = 0 and simplifying gives

p = c̄

which is a line with zero slope at the intercept c̄. The motion of N in the two
isosectors separated by the N isocline can be determined directly by inspection of
the Ṅ equation. Clearly, Ṅ > 0 for p > c̄ and Ṅ < 0 for p < c̄.

The phase diagram shows that regardless of where the dynamic system starts,
it converges asymptotically to the steady-state equilibrium values of p̄ and N̄ . In
the “long run” therefore price converges to average cost.
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S24.2 A Markov Model of Layoffs
This model of the transition of laid-off workers between the states of unemploy-
ment and re-employment provides a good illustration of how systems of difference
equations can arise in economics. Suppose that 1,000 workers at a large manufac-
turing plant are laid off (because the company is downsizing, say). Only a small
proportion of them are able to find another job immediately. Let this proportion be
called e0, where the subscript stands for t = 0. The remaining proportion become
unemployed and begin searching for another job. Let this proportion be called u0

(of course, u0 = 1 − e0).
Let the probability of finding a job during any time period be β. On average,

we would expect a proportion β of the unemployed workers to become employed
during a time period. However, those workers who were already employed may
become unemployed again (their new employer may lay them off or they may quit
to find a better job). Let the probability of becoming unemployed during any time
period be α. On average we would expect a proportion α of the employed workers
to become unemployed during a time period.

The initial layoff of 1,000 workers starts a chain of events. During every time
period after the initial layoff, there is a transition of some people from the state
of unemployment to the state of employment as well as a transition of some other
people from the state of employment to the state of unemployment. Suppose that
100 of the 1,000 laid off are re-employed immediately. Then at t = 0, we have
900 unemployed and 100 employed. Suppose that the probability of finding a job
is 0.20. Then during t = 1, of the 900 unemployed, 180 find jobs and 720 remain
unemployed. Suppose further that the probability of losing a job if you have one
is 0.05. Then during t = 1, of the 100 who had jobs, 5 become unemployed and 95
keep their jobs. We now have 725 unemployed in total and 275 employed in total.
During t = 2, 20% of the 725 unemployed find jobs and the remaining 145 stay
unemployed. Likewise, of the 275 that were employed, 14 become unemployed
and the remaining 261 keep their jobs. At the end of period 2 then, we have 596
unemployed and 406 employed. Notice that the proportion of the original 1,000
employees who are employed increases from 0.1 at t = 0, to 0.275 at t = 1, and to
0.406 at t = 2. It turns out that this process will converge to a steady state in which
the proportion of the original 1,000 who are employed is 0.80 and the proportion
who are unemployed is 0.20. We can determine that this result holds true by treating
this model as a pair of difference equations.

The proportion (probability) employed in t = 1 is e1. We know that the pro-
portion employed in t + 1 is the proportion who had jobs in the previous period
and kept them [(1 − α)et ] plus the proportion who were unemployed but found
jobs (βut ). Thus the probability of employment in t + 1 is

et+1 = (1 − α)et + βut
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Similarly the proportion unemployed in t + 1 is the proportion who were unem-
ployed in the previous period and stayed unemployed [(1 −β)ut ] plus the propor-
tion who had jobs but lost them (αet ). Thus the probability of unemployment in
t + 1 is

ut+1 = αet + (1 − β)ut

These two difference equations make up a homogeneous system of linear difference
equations that describes how the probabilities of being in the state of employment
or unemployment following the initial layoff change from one period to the next.
Let us solve this system.

Write the system in matrix form

[
et+1

ut+1

]
=
[

1 − α β

α 1 − β

][
et

ut

]

The determinant of the coefficient matrix is (1−α)(1−β)−αβ, which simplifies
to 1 − β − α. Therefore the roots (eigenvalues) of the coefficient matrix are

r1, r2 = 2 − α − β

2
± 1

2

√
(2 − α − β)2 − 4(1 − β − α)

Carrying out the square under the root sign and simplifying gives

r1, r2 = 2 − α − β

2
± 1

2

√
(α + β)2

which simplifies further to

r1, r2 = 1 − α + β

2
± α + β

2

The roots are therefore 1 and 1 − (α + β). The solutions to the homogeneous
system of difference equations then are

et = C1 + C2(1 − α − β)t

ut = α

β
C1 − C2(1 − α − β)t
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To complete the solution, we must use the initial conditions to determine the values
of the constants C1 and C2. At t = 0, e0 and u0 are given. Using these, we obtain

e0 = C1 + C2

u0 = α

β
C1 − C2

The first equation implies that C1 = e0−C2. Substitute this into the second equation
to get

u0 = α

β
(e0 − C2) − C2

Solving this for C2 gives

C2 = αe0 − βu0

α + β

Substitute this back into the expression for C1 to get

C1 = e0 − αe0 − βu0

α + β

Simplify this equation and use the fact that e0 + u0 = 1. This gives

C1 = β

α + β

The solutions to the difference equations then become

et = β

α + β
+ αe0 − βu0

α + β
(1 − α − β)t

ut = α

α + β
− αe0 − βu0

α + β
(1 − α − β)t

The solutions give the probabilities of being in the state of employment or un-
employment during any time period t . However, our real concern is to determine
whether these probabilities converge to stationary values. Inspection of the solu-
tions indicates that this is indeed the case. Because α and β are both positive but
less than 1, it is necessarily true that the term (1−α−β) is between −1 and 1. Thus
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this term raised to the power of t goes to 0 as t → ∞. As a result we conclude that

lim
t→∞ et = β

α + β

lim
t→∞ ut = α

α + β

In the numerical example given above, β = 0.2 and α = 0.05. Therefore we
conclude that the proportion of the original 1,000 workers who are employed
during any time period converges to 80%, or 800 workers. Another 20%, or 200
workers, will be unemployed at any one time. Of course, there will continue to be
transitions of people between the two states of employed and unemployed so the
makeup of the two groups continues to change, but the proportion in each group
does tend to converge to these values.

P R A CT I C E E X E R C I S E S

S24.1. Consider the following nonlinear market equilibrium model. Price ad-
justs to excess demand as given by

ṗ = α(qD − qS)

and the number of firms in the industry adjusts to excess profits accord-
ing to

Ṅ = γ (p − c̄)

where QD = a + bp is the demand function and the supply function is

Qs = (F + Gp)N

S24.2. Suppose that the daily sales of an ice-cream vendor can be classified as
either high or low. Suppose that a day of high sales is followed by another
day of high sales 75% of the time, and is followed by a day of low sales
25% of the time. A day of low sales is followed by another day of low
sales 50% of the time and by high sales 50% of the time. Construct the
system of difference equations for this Markov chain model and solve.
Find the limiting values of the probability that the vendor will experience
a day of high sales and a day of low sales.



216 CHAPTER S24 SIMULTANEOUS SYSTEMS OF DIFFERENTIAL AND DIFFERENCE EQUATIONS

S24.3. Suppose that a political party is selecting a new leader from two candi-
dates, A and B. The winner will be decided by vote using a 2/3 majority
rule. That means that a candidate must obtain at least 2/3 of the votes
before being declared a winner. If neither candidate obtains 2/3 of the
votes, a second round of voting occurs. Party members vote again in the
second round and may vote differently if they wish. If a winner is still
not found, a third round of voting occurs. This process continues until
one of the candidates obtains 2/3 of the votes.

Given the probability that a voter who voted for A in the previous
round will vote for A again is 0.85 and the probability that a voter who
voted for B in the previous round will vote for B again is 0.90, will a 2/3
majority ever be reached if the votes are split equally between the two
candidates in the first round of voting?

Solutions

S24.1. After making appropriate substitutions, the nonlinear differential equa-
tion system is

ṗ = αa + αbp − αN(F + Gp)

Ṅ = γ (p − c̄)

The coefficient matrix of the linearized form is

A =
[

αb − αGN −α(F + Gp)

γ 0

]

The determinant is positive and the trace is negative. Therefore the steady
state is stable. The roots are

r1, r2 = αb − αGN

2

± 1

2

√
(αb − αGN)2 − 4αγ (F + Gc̄)

The term under the square root sign is positive as γ gets smaller (real-
valued roots, indicating a stable node) but could become negative as γ

gets larger (complex-valued roots, indicating a stable focus).

S24.2. Let pt be the probability of high sales and qt be the probability of low
sales.

pt+1 = 0.75pt + 0.5qt

qt+1 = 0.25pt + 0.5qt
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The roots of this system are r1, r2 = 1, 0.25. The solutions then are

pt = C1 + C2(0.25)t

qt = C1

2
− C2(0.25)t

At t = 0 we have

p0 = C1 + C2

q0 = C1

2
− C2

Solving gives

C2 = p0 − 2q0

3

C1 = 2

3
(p0 + q0)

However, since p0 + q0 = 1, we have C1 = 2/3. The solutions become

pt = 2

3
+ p0 − 2q0

3
(0.25)t

qt = 1

3
− p0 − 2q0

3
(0.25)t

The limiting value of pt as t goes to infinity is 2/3; the limit of qt is 1/3.

S24.3. Using the notation of the Markov model of layoff in the chapter, we have
α = 0.15 and β = 0.10 here. Let pt be the probability that a voter votes
for A; let qt be the probability that a voter votes for B. The solutions,
using p0 = q0 = 1/2, are

pt = 0.4 + 0.1(0.75)t

qt = 0.6 − 0.1(0.75)t

We see that pt begins at p0 = 0.5 and then declines monotonically
and converges to 0.4. Likewise qt begins at q0 = 0.5 and then rises
monotonically toward its limiting value of 0.6. A 2/3 majority is never
reached.
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Practice Exercise

S25.1 A Derivation of the Necessary
Conditions in Optimal Control
Theory

Why are the conditions that make up the maximum principle combined with the
transversality condition necessarily satisfied only along the path that solves the dy-
namic optimization problem? In an effort to answer this question and at the same
time justify these necessary conditions, we now demonstrate how it is possible to
derive these necessary conditions using basic tools of calculus.

The problem at hand is to find the path of y(t) that maximizes the functional
J in definition 25.1. If we knew nothing about optimal control theory, how would
we go about this? Our approach is to transform this maximization problem into one
for which the standard rules of calculus apply. In so doing, we will demonstrate
the validity of the maximum principle of optimal control theory.

Form the following expression:

J =
∫ T

0
(f [x(t), y(t), t] + λ(t){g[x(t), y(t), t] − ẋ}) dt (S25.1)

In forming this expression, we have added the term {g[x(t), y(t), t]−ẋ} multiplied
by an arbitrary function of time λ(t). Since this term is always equal to 0 provided
the constraint is satisfied at each point in time, it does not alter the value of the objec-
tive functional, J. We can think of this new expression as a Langrangean function,
which makes λ(t) a sequence or path of Lagrange multipliers as a function of t .
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Next, we can actually carry out some of the integration in equation (S25.1)
before attempting to maximize J. The term

∫
λ(t)ẋ dt can be integrated by parts

as follows. First, recall the rule for integrating by parts (section 16.5)

∫ T

0
v du = [uv]T0 −

∫ T

0
u dv

Let v = λ(t) and du = ẋ dt . Differentiating v gives

dv = λ̇(t) dt

and integrating du gives u = x(t).
We therefore have

∫ T

0
λ(t)ẋ dt = [x(t)λ(t)]T0 −

∫ T

0
x(t)λ̇ dt

= x(T )λ(T ) − x(0)λ(0) −
∫ T

0
x(t)λ̇ dt

Substituting this into equation (S25.1) gives

J =
∫ T

0
{f [x(t), y(t), t] + λ(t)g[x(t), y(t), t] + x(t)λ̇} dt

− x(T )λ(T ) + x(0)λ(0) (S25.2)

To simplify notation, let us define the first two terms under the integral sign as a
new function H :

H [x(t), y(t), λ(t), t] = f [x(t), y(t), t] + λ(t)g[x(t), y(t), t] (S25.3)

where H depends on x(t), y(t), λ(t) and t .
Using this definition of H , our objective functional to be maximized in equa-

tion (S25.2) becomes

J =
∫ T

0
{H [x(t), y(t), λ(t), t] + x(t)λ̇} dt − x(T )λ(T ) + x(0)λ(0) (S25.4)

To this point, we have merely found a new way of expressing the value of
the objective functional we wish to maximize. Now suppose that there is a known
solution path y∗(t) that maximizes J in equation (S25.4), and let x∗(t) be the



A DERIVATION OF THE NECESSARY CONDITIONS IN OPTIMAL CONTROL THEORY 221

associated solution for the state variable. We therefore have

J ∗ =
∫ T

0
{H [x∗(t), y∗(t), λ(t), t]+x∗(t)λ̇} dt −x∗(T )λ(T )+x(0)λ(0) (S25.5)

which is the maximum value of J that can be attained. Since, by assumption, the
path y∗(t) maximizes J, we know that any other path, y(t), will yield a smaller
value of J. Consider any arbitrary neighboring path to y∗(t). We know that if we
allowed this neighboring path to get closer and closer to the optimal path y∗(t),
the value of J would get closer and closer to the maximum value J ∗. This gives
us a clue about how to find a unique property that will be true of the optimal path
but not true for any neighboring paths. A convenient way to generate a family of
arbitrary neighboring paths is to make use of a perturbing path, z(t), which can be
any arbitrary continuous path over time. Figure S25.1 displays both a hypothetical
optimal path, y∗(t), and a hypothetical perturbing path z(t).

y(t) y*(t) + εz(t)

y*(t)

z(t)

tT
0

Figure S25.1 Perturbing path,
z(t), used to create neighboring paths
to the optimal path

By adding the amount εz(t) to y∗(t), where ε is a small number, we can
generate a neighboring path to y∗(t) as shown in figure S25.1. The equation for
the neighboring path is

y(t) = y∗(t) + εz(t)

By treating y∗(t) and z(t) as given paths, we can generate an entire family of
neighboring paths by simply altering the value of the small constant ε. Varying ε

will at the same time generate a family of neighboring paths of the state variable
x(t), via the equation of motion ẋ = g[x(t), y(t), t]. Since it is not possible to
derive an explicit expression for the neighboring paths of x(t) as ε is varied, we
simply write the state path associated with a particular value of ε as x(t, ε) with
the properties

x(t, 0) = x∗(t)
x(0, ε) = x0

The first property states that when ε = 0, the neighboring path is, in fact, the
optimal path itself. The second property states that all neighboring state paths
satisfy the initial condition for the state variable.

The value of the objective functional for neighboring paths generated by vary-
ing the size of ε can be written as a function of ε:

J (ε) =
∫ T

0
{H [x(t, ε), y∗(t) + εz(t), t] + x(t, ε)λ̇} dt

− x(T , ε)λ(T ) + x(0)λ(0) (S25.6)
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Since y∗(t) and z(t) are fixed paths, we can, by varying the size of ε, vary the value
of the objective function J. We know that J (ε) < J ∗ for ε = 0 and that J (0) =
J ∗. In other words, J (ε) is maximized at ε∗ = 0. As figure S25.2 demonstrates,
J ′(ε∗) = 0 where ε∗ = 0. Thus, if we take the derivative of equation (S25.6) with
respect to ε and set it equal to zero, we should obtain a first-order condition that
provides a derivative property that holds only on the optimal path. This property
can later be used to help identify optimal paths.

J(ε)

J�(ε) � 0

ε0

Figure S25.2 J (ε) maximized at
ε = 0

Setting J ′(ε) = 0 gives

J ′(ε) =
∫ T

0

[
∂H

∂x
xε(t, ε) + ∂H

∂y
z(t) + λ̇xε(t, ε)

]
dt − xε(T , ε)λ(T ) = 0

(S25.7)

where xε(t, ε) ≡ ∂x(t, ε)/∂ε, and where, for convenience, we have not written
out the arguments of H . Collecting terms in (S25.7) gives

J ′(ε) =
∫ T

0

{
∂H

∂y
z(t) +

[
∂H

∂x
+ λ̇

]
xε(t, ε)

}
dt − xε(T , ε)λ(T ) = 0 (S25.8)

This expression contains three terms, two of them under the integral sign. By
chance the terms could cancel one another and equal zero, as required, for some
specific perturbing curve z(t); however, we know that J ′(ε) must equal zero for any
arbitrary perturbing curve. Therefore, each of the three terms must be identically
zero. Because the perturbing curves z(t) and xε(t, ε) for t ∈ (0, T ) are not zero,
the only way for this to happen is for each of the following three conditions to hold:

∂H

∂y
= 0 (S25.9)

∂H

∂x
+ λ̇ = 0 (S25.10)

λ(T ) = 0 (S25.11)

These three conditions are necessary to make J ′(ε) = 0. Since this occurs
only when ε = 0, these conditions therefore hold only on the optimal paths y∗(t)
and x∗(t). As a result, they are necessary conditions for the maximization of the
objective functional J.

For completeness, we add that another condition that must hold along the
optimal path is

∂H

∂λ
= ẋ − g[x∗(t), y∗(t), t] = 0 (S25.12)
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This condition merely recovers the constraint that was specified in the maxi-
mization problem. We include it here as a necessary condition because we had to
assume this constraint holds for all t ∈ (0, T ) in order to go from equation (25.1)
to equation (S25.1).

S25.2 Interpretation of λ
The interpretation of λ as the shadow price or imputed marginal value of the state
variable is obtained by differentiating equation (S25.5) (an expression for J ∗, the
maximum value function) with respect to x(0). This gives

∂J ∗

∂x(0)
= λ(0)

This says that a marginal increase in x(0) (the initial value of the state variable,
e.g., the capital stock) increases the maximum value of the objective (such as
profits) by an amount equal to λ(0). Hence λ(0) is the marginal imputed value or
shadow price of x(0). Similarly differentiating equation (S25.5) with respect to
x(T ) gives

∂J ∗

∂x(T )
= −λ(T )

from which we conclude that a marginal increase in the amount of the state variable
that must be left over at the end of the planning horizon decreases the maximum
value of the objective by λ(T ). Hence λ(T ) is the marginal imputed value or
shadow price of x(T ). It follows intuitively that λ(t) can be interpreted as the
marginal imputed value or shadow price of x(t), but we do not attempt to prove
this result here.

S25.3 Derivation of the H (T ) = 0
Condition

To understand the origin of definition 25.7, consider the expression we derived for
J in equation (S25.5), but which we now write as a function of T

J (T ) =
∫ T

0
{H [x∗(t), y∗(t), λ(t), t] + x∗(t)λ̇} dt − x∗(T )λ(T ) + x(0)λ(0)
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Take the derivative of this expression with respect to T . This gives

J ′(T ) =
∫ T

0

{[
∂H

∂x
+ λ̇

]
dx∗(t)

dT
+ ∂H

∂y

dy∗(t)
dT

}
dt

+ H [x∗(T ), y∗(T ), T ] + x∗(T )λ̇(T ) − d[x∗(T )λ(T )]

dT

= 0 (S25.13)

To understand this, you need to use Leibniz’s rule, which was developed in sec-
tion 16.5. Suppose that y is given by

y =
∫ U

L

f (t, z) dt

That is, y is equal to the integral over t , where t runs from L up to U , of a function
that depends on t and a variable z that itself depends on x. The derivative of y with
respect to x is

dy

dx
=
∫ U

L

∂f (t, z)

∂z

dz

dx
dt + f (U, z)

dU

dx
− f (L, z)

dL

dx

The derivative is defined as: the integral of the derivative of f with respect to x

plus the integrand, evaluated at U , multiplied by the derivative of U , minus the
integrand, evaluated at L, multiplied by the derivative of L. If U and L are not
functions of x, then the last two terms are zero. If the variable z is not a function of
x, then the first term is zero. In the derivative of J with respect to T , the derivative
of the upper limit of integration with respect to T is just one, but the lower limit
is not a function of T .

In equation (S25.13), the necessary conditions we have already derived im-
ply that the integral term is zero along an optimal path. After carrying out the
differentiation of the term [x∗(T )λ(T )] then, equation (S25.13) becomes

J ′(T ) = H [x∗(T ), y∗(T ), T ] + x∗(T )λ̇(T ) − x∗(T )λ̇(T ) − λ(T )ẋ(T ) = 0

where the derivatives of λ(T ) and x(T ) with respect to T are denoted by a dot
over the variable. Since λ(T ) = 0 is another necessary condition, this reduces to

J ′(T ) = H [x∗(T ), y∗(T ), T ] = 0
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This is the rationale for the additional necessary condition when T is free to be
chosen optimally. The derivation says that the change in the optimal value function
if T is changed marginally is equal to the value of the maximized Hamiltonian at
time T .

P R A CT I C E E X E R C I S E

S25.1. In the following optimal investment problem, suppose that there is a
salvage value for the firm’s capital stock. That means that at the end of
the planning horizon, the firm’s capital stock has a salvage value given
by the function v[K(T )], with v′ > 0 and v′′ < 0. This could represent,
for example, the amount for which the firm could sell its capital in the
second-hand market. The problem is as follows:

max
∫ T

0
e−ρt�(K, I) dt + e−ρT v[K(T )]

subject to K̇ = I − δK

K(0) = K0 > 0

K(T ) ≥ 0

T (free)

Derive the necessary conditions for this problem using the method that
begins with equation (S25.1). Prove that the only changes are to the trans-
versality conditions and that these become

µ(T ) = v′[K(T )] if K(T ) ≥ 0; K(T ) = 0 otherwise

H(T ) = ρv[K(T )] if T finite

Provide an economic interpretation of these transversality conditions.

Solution

S25.1.

J =
∫ T

0
{e−ρt�(K, I) + λ(t)[I − δK − K̇]}dt + e−ρT V (K(T ))
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Integrating λK̇ by parts as shown in the chapter gives

J =
∫ T

0
{e−ρt�(K, I) + λ(t)[I − δK] + K(t)µ̇}dt

−λ(T )K(T ) + λ(0)K0 + e−ρT V (K(T ))

Define

H = {e−ρt�(K, I) + λ(t)[I − δK]}eρt

and define µ(t) = λ(t)eρt so

H = �(K, I) + µ(t)[I − δK]

Making these substitutions gives

J =
∫ T

0
{e−ρtH(K(t), I (t)) + K(t)(µ̇ − ρµ)e−ρt }dt

−µ(T )K(T )e−ρT + µ(0)K0 + e−ρT V (K(T ))

Now use the perturbing path to get

J (ε) =
∫ T (ε)

0
e−ρt {H[K(t, ε), I ∗ + εz(t)] + K(t, ε)(µ̇ − ρµ)}dt

−µ(T )K(T , ε)e−ρT + µ(0)K0 + e−ρT V (K(T , ε))

J ′(ε) =
∫ T (ε)

0
e−ρt

{[
∂H
∂K

+ µ̇ − ρµ

]
Kε(t, ε) + ∂H

∂I
z(t)

}
dt

−µ(T )Kε(T , ε)e−ρT + e−ρT V ′(K(T ))Kε(T , ε) + ∂J (ε)

∂T
= 0

Leaving ∂J/∂T aside for the moment, the necessary conditions become

∂H
∂K

+ µ̇ − ρµ = 0

∂H
∂I

= 0

−µ(T ) + V ′(K(T )) = 0 if T is finite
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Next, using equation (25.65) in the chapter, we see that ∂J/∂T re-
duces to the following after using the above three conditions:

∂J

∂T
= H[K∗(T ), I ∗(T )]e−ρT + K∗(T )[µ̇(T ) − ρµ(T )]e−ρT

−µ̇(T )K∗(T )e−ρT + ρµ(T )K∗eρT − ρe−ρT V (K∗(T )) = 0

which reduces to

H[K∗(T ), I ∗(T )] − ρV (K∗(T )) = 0 if T is finite

The first of the new conditions requires the shadow price of K(T )

to equal the marginal salvage value of K(T ). The second new condition
says to stop operating the firm at T when the flow of economic profits
from operating has just become equal to the flow of economic profits
from not operating (living off the interest from the salvage value).





Appendix Complex Numbers and Circular
Functions

In chapter 20 we learned that it is necessary to find the roots of the characteristic
equation

r2 + a1r + a2 = 0

to solve second-order linear difference equations. In chapter 23 the characteristic
roots are required in the solution of second-order linear differential equations, and
in chapter 24 they are required to solve systems of linear difference and differential
equations. The characteristic roots are given by

r1, r2 = −a1

2
± 1

2

√
a2

1 − 4a2

When a2
1 − 4a2 > 0, r1 and r2 are real-valued numbers. However, when a2

1 −
4a2 < 0, there are no real valued numbers that solve the characteristic equation.
Although this may appear to make it impossible to go on to solve the difference
equation, it turns out that there is a way to solve this problem: make use of the
complex valued number system. This system, combined with a powerful theorem
(de Moivre’s theorem in the case of difference equations and Euler’s theorem in
the case of differential equations) allows us to find real valued solutions to the
difference (or differential) equation even though there are no real-valued roots to
the characteristic equation. The purpose of this appendix is to explain how to do
this. We begin with an introduction to the concept of complex numbers.

Complex Numbers
A complex number can be defined as an ordered pair of real numbers (h, v). For
example, (2, 1) and (1, 2) are both complex numbers, though different ones because
the order matters. A complex number is a two-dimensional concept but can be
thought of as a single entity with the help of a graphical representation. Figure
A.1, called an Argand diagram, shows the complex number as the vector OD
where D is represented by its Cartesian coordinates, (h, v).

v

B
D

hAO

Figure A.1 Argand diagram
There are a number of rules in algebra for this number system. Two that are

of immediate interest to us are addition and scalar multiplication.
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Addition of two complex numbers z1 = (h1, v1) and z2 = (h2, v2) is carried
out as follows:

z1 + z2 = (h1 + h2, v1 + v2)

giving us a new complex number.
Multiplication of a complex number by a real-valued scalar a yields

az1 = (ah1, av1)

Two complex numbers in particular receive special attention. These are

(1, 0) = unit vector OA and (0, 1) = unit vector OB

The unit vector (1, 0) can be thought of as having the real value 1 (the reason for
this is made clear below). The other unit vector, (0, 1), is referred to as i. As we
will see, this i is the imaginary number that has the property i = √−1.

Given these definitions, scalar multiplication of the unit vector one and the
unit vector i yields:

a1 = a(1, 0) = (a, 0) and ai = a(0, 1) = (0, a)

As a result these two vectors provide us with a convenient way of representing any
complex number (h, v) as h + vi:

h + vi = h(1, 0) + v(0, 1) = (h, 0) + (0, v) = (h + 0, 0 + v) = (h, v)

Thus a complex number z can be expressed as

z = h + vi

where h and v are real numbers and i is the imaginary number defined above. The
set of complex numbers is larger than and includes the set of real numbers. The set
of real numbers could be defined as the subset of complex numbers that occurs
when v = 0.

The rationale for giving the unit vector (1, 0) the real value of unity and the unit
vector i the value

√−1 follows logically from the rules of vector multiplication.
It would take us too far afield to explain the rules for multiplying two complex
numbers together; however, we will state two useful results.

First, any vector when multiplied by the unit vector (1, 0) remains the same
vector. For this reason we say that the unit vector (1, 0) has the value one. Second,
any vector, when multiplied by the unit vector i = (0, 1), is rotated 90◦ in the
counterclockwise direction. Thus the unit vector (1, 0), when multiplied by the
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i vector, becomes the i vector. Similarly the i vector, when multiplied by itself,
becomes the (0, −1) vector, which has the real value −1. It is for this reason that
we use the rule that i2 = −1, which leads to i = √−1.

Two additional properties of complex numbers that are used in chapters 20,
23, and 24 are

Theorem A.1 The sum of two conjugate complex numbers is a real-valued number.

Proof

Two conjugate complex numbers are z1 = (h, v) and z2 = (h, −v). Adding them
gives us

(h + vi) + (h − vi) = 2h

a real-valued number.

Theorem A.2 The difference between two conjugate complex numbers multiplied by i yields
a real-valued number.

Proof

[(h + vi) − (h − vi)]i = 2vi2 = −2v

a real-valued number.

Now that we have introduced the concept of complex numbers, we need to
show how the concept helps solve the difference (or differential) equation when
a2

1 − 4a2 < 0. In particular, we need to know how to interpret the expressions

(h + vi)t and (h − vi)t

in the case of difference equations and

e(h+vi)t

and

e(h−vi)t
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in the case of differential equations. It turns out that to do this, we need to re-
express the complex number (h, v) in terms of its polar coordinates. Therefore
we turn next to a brief review of circular (or trigonometric) functions.

Circular Functions
The circular functions are best explained with the aid of a diagram containing a
circle with a unit radius. Figure A.2 shows the unit circle centered on the origin.
The point marked A is (1, 0), the point marked B is (0, 1), A′ is (−1, 0), and B ′ is
(0, −1). The vector OP is also a radius of unit length and it makes an angle of θ de-
grees. As P moves around the circle in the counterclockwise (positive) direction,
the angle takes on values ranging from 0◦ to 360◦. For example, at B the angle is
90◦, at A′ it is 180◦, at B ′ it is 270◦, and back at A after one revolution it is 360◦.

y

B

N

AA

B

P

xMO

Figure A.2 Unit circle

Drop a perpendicular from P to the horizontal axis at M . Notice that as P

moves around the circle, the length of OM changes in value. For example, at B,
the length of OM is zero; at A′, OM is −1; at B ′, OM is zero again, and back at A

after one revolution, OM is one. Thus there is an explicit relationship between the
angle θ made by OP and the distance OM. We define this as the cosine relationship
and give it the formal definition

cos θ◦ = OM

OP
= OM

For example, we have just seen that cos(0◦) = 1, cos(90◦) = 0, cos(180◦) = −1,
cos(270◦) = 0, and cos(360◦) = 1.

Asimilar process generates the sine function. Extend a perpendicular fromP to
the vertical axis at N . Again, as P moves around the circle in the counterclockwise
direction, 0N takes on values starting with zero at A, rising to one at B, falling
to zero at A′, falling further to negative one at B ′ and rising back to zero at A.
Formally we have

sin θ◦ = ON

OP
= ON

We can see from the unit circle that some particular values of the sine function are
sin(0◦) = 0, sin(90◦) = 1, sin(180◦) = 0, sin(270◦) = −1, and sin(360◦) = 0.

Although we are all accustomed to measuring angles in degrees, it is actually
easier (and customary) in theoretical work with angles to measure them in terms
of the distance of the arc AP taken counterclockwise. The units of distance are
called radians. We can calculate the relationship between 1 radian and 1◦ easily
because we know the distance around the entire circumference of the circle is 2πR

where R = 1 is the radius of the unit circle, giving us a distance of 2π . Since there
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are 360◦ in one complete revolution of the circle and a distance of 2π radians, we
know that

360◦ corresponds to 2π radians

1◦ corresponds to
π

180
radians

x◦ corresponds to x
π

180
radians

Angles larger than 360◦ = 2π radians are obtained by letting P rotate more
than once around the circle. For example, starting at P and going once around
gives us an angle of θ◦ + 360◦, twice around gives us an angle of θ◦ + 720◦, and
so on. In terms of radians, if the angle is x radians, once around gives us an angle
of x + 2π radians, twice around gives us an angle of x + 4π radians, and so on.
In all of the following, we use radian measures of angles.

The circular functions are defined as before but now using radians. If θ◦ = x

radians, then sin(x) = ON and cos(x) = OM. Some commonly used values of the
sine and cosine functions are

0◦ = 0 radians : sin 0 = 0; cos 0 = 1

90◦ = π

2
radians : sin

(π

2

)
= 1; cos

(π

2

)
= 0

180◦ = π radians : sin(π) = 0; cos(π) = −1

270◦ = 3π

2
radians : sin

(
3π

2

)
= −1; cos

(
3π

2

)
= 0

360◦ = 2π radians : sin(2π) = 0; cos(2π) = 1

Figure A.3 shows the sine function. We see that sin(x) = ON rises from zero
to one as x increases from zero to π/2, then decreases back to zero as the angle x

increases from π/2 to π . It then decreases to negative one as x increases further
to 3π/2 and then rises back to zero as x increases to 2π . There is a whole cycle
of sin(x) going from zero to one, back to zero and then to negative one before
returning to zero. The cycle repeats itself as P makes a second revolution around
the circle and angle x continues to rise.

The cosine function is shown in figure A.4. Referring back to figure A.2 we
see that cos x = OM begins at one when x = 0, then falls to zero as x increases
to π/2, then falls further to negative one, then rises back up to zero, and then
completes the first cycle by returning to its starting position at one as x increases
through π, 3π/2, and 2π . As does the sine function, the cosine function repeats
its cycle every 2π radians.
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sin(x)
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Figure A.3 Sine function

cos(x)
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Figure A.4 Cosine function

We can see now how the circular functions generate cyclical behavior. Both the
sine and cosine functions repeat themselves every 2π radians; they are said to
have a period of 2π radians. This property means that sin(x) = sin(x + 2π) =
sin(x + 4π) = . . . and cos(x) = cos(x + 2π) = cos(x + 4π) = . . . . In general,

sin(x) = sin(x + 2nπ) and cos(x) = cos(x + 2nπ), n = 0, 1, 2, . . .

Both the sine and cosine functions are bounded between one and negative
one. They are said to have an amplitude of one. They also obey some important
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properties we will need to use to solve difference equations and differential equa-
tions. First, because negative angles are constructed by rotating P around the circle
in the clockwise, rather than the counterclockwise, direction, the sine and cosine
functions are symmetrical between positive and negative values of the domain.
Therefore

sin(−x) = −sin(x) and cos(−x) = cos(x)

Another useful property is that the functions

φ1(x) = A sin(x) and φ2(x) = A cos(x)

where A is a constant, have the same period as the sine and cosine functions (2π )
but are bounded between A and −A (have an amplitude of A).

The final properties of the sine and cosine functions we require are

d

dx
sin(x) = cos(x)

d

dx
cos(x) = −sin(x)

B

O

D

hA
x

v

Figure A.5 Complex number in
polar coordinates

An alternative representation of a complex number is one that recognizes, as in
figure A.5, that the point D can be described not only by its Cartesian coordinates
(h, v), but by the length of the ray OD and the angle, x radians, it makes with the
horizontal axis.

In particular, since cos(x) = Oh/OD = h/R where R is the length of the
vector OD, we know that h = R cos(x). Similarly, since sin(x) = Ov/OD = v/R,
we know that v = R sin(x). These results allow us to express a complex number as

h + vi = R cos(x) + Ri sin(x) = R[cos(x) + i sin(x)] (A.1)

This expresses the complex number in terms of its polar coordinates (R, x) as
opposed to its Cartesian coordinates (h, v). Although they are just two different
ways of determining the location of point D, it turns out to be much easier in what
follows to use the polar coordinates definition of a complex number.

Euler’s Formula
We are now able to demonstrate that

eix = cos(x) + i sin(x)

e−ix = cos(x) − i sin(x)



236 APPENDIX COMPLEX NUMBERS AND CIRCULAR FUNCTIONS

which are known as Euler’s formulas. To do this we take Taylor series expansions
of the exponential function and the sine and cosine functions around the point
x = 0; in this form, it is straightforward to derive Euler’s formula.

A Taylor series expansion of the function ez around the point z = 0 gives us

ez = e0 + e0(z − 0)

1!
+ e0(z − 0)2

2!
+ e0(z − 0)3

3!
+ e0(z − 0)4

4!
+ · · ·

Therefore

ez = 1 + z

1!
+ z2

2!
+ z3

3!
+ z4

4!
+ z5

5!
+ z6

6!
+ z7

7!
+ · · ·

Setting z = ix and recalling that i2 = −1, we get

eix = 1 + ix − x2

2!
− ix3

3!
+ x4

4!
+ ix5

5!
− x6

6!
− ix7

7!
+ · · ·

and

e−ix = 1 − ix − x2

2!
+ ix3

3!
+ x4

4!
− ix5

5!
− x6

6!
− ix7

7!
+ · · ·

The next step is to take a Taylor series expansion of the sine and cosine
functions. We begin with the cosine function. Taking successive derivatives of
cos(x) and evaluating them at x = 0 gives

d

dx
cos(x) = −sin(x) = 0 at x = 0

d2

dx2
cos(x) = −cos(x) = −1 at x = 0

d3

dx3
cos(x) = sin(x) = 0 at x = 0

d4

dx4
cos(x) = cos(x) = 1 at x = 0

d5

dx5
cos(x) = −sin(x) = 0 at x = 0

d6

dx6
cos(x) = −cos(x) = −1 at x = 0

. . .
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Using these derivatives in a Taylor’s series expansion around x = 0 gives

cos(x) = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · ·

Similarly we can derive a Taylor series expansion for sin(x)

sin(x) = x − x3

3!
+ x5

5!
− x7

7!
+ · · ·

Using these expansions of cos(x) and sin(x), the expanded expression for eix

can be rewritten to get

eix = i sin(x) + cos(x) (A.2)

Similarly the expanded expression for e−ix can be rewritten to get

e−ix = −i sin(x) + cos(x) (A.3)

This completes the derivation of Euler’s formula, which is used in completing
the solution to linear, second-order differential equations in the case of complex
valued roots.

De Moivre’s theorem shows how to interpret a complex number that is raised
to the nth power.

Theorem A.3 (De Moivre’s theorem) The conjugate complex numbers, h ± vi, when raised
to the nth power can be expressed as

(h ± vi)n = Rn[cos(nx) ± i sin(nx)]

where R = √
h2 + v2, h = R cos(x), v = R sin(x).

Proof

From equation (A.1) a conjugate complex number h±vi can be expressed in polar
coordinate form as

h ± vi = R[cos(x) ± i sin(x)]
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From Euler’s formula in (A.2) and (A.3), we know that

e±ix = cos(x) ± i sin(x)

Therefore

h ± vi = Re±ix

This means that

(h ± vi)n = Rne±inx

Applying Euler’s formula again gives us the result

(h ± vi)n = Rn[cos(nx) ± i sin(nx)]


