Huber / Causal Analysis

########## R EXAMPLES ##########

1
install.packages("causalweight") # install causalweight package
library(causalweight) # load causalweight package
data(JC) # load JC data
?JC # call documentation for JC data
D=JC$assignment # define treatment (assignment to JC)
Y=JC$earny4 # define outcome (earnings in fourth year)
mean(Y[D==1])-mean(Y[D==0]) # compute the ATE

2
library(causalweight) # load causalweight package
library(lmtest) # load lmtest package
library(sandwich) # load sandwich package
data(JC) # load JC data
D=JC$assignment # define treatment (assignment to JC)
Y=JC$earny4 # define outcome (earnings in fourth year)
ols=lm(Y~D) # run OLS regression
coeftest(ols, vcov=vcovHC) # output with heteroscedasticity-robust se

3
bs=function(data, indices) { # defines function bs for bootstrapping
dat=data[indices,] # creates bootstrap sample according to indices
coefficients=lm(dat)$coef # estimates coefficients in bootstrap sample
return(coefficients) # returns coefficients
} # closes the function bs
library(boot) # load boot package
bootdata=data.frame(Y,D) # data frame with Y,D for bootstrap procedure
set.seed(1) # set seed
results = boot(data=bootdata, statistic=bs, R=1999) # 1999 bootstrap estimations
results # displays the results
tstat=results$t0[2]/sd(results$t[,2]) # compute the t-statistic
2*pnorm(-abs(tstat)) # compute the p-value

4
library(causalweight) # load causalweight package
library(lmtest) # load lmtest package
library(sandwich) # load sandwich package
data(wexpect) # load wexpect data
?wexpect # call documentation for wexpect data
D1=wexpect$treatmentinformation # define first treatment (wage information)
D2=wexpect$treatmentorder # define second treatment (order of questions)
Y=wexpect$wexpect2 # define outcome (wage expectations)
ols=lm(Y~D1+D2) # run OLS regression
coefftest(ols, vcov=vcovHC) # output with heteroscedasticity robust se

5
library(datarium) # load datarium package
library(np) # load np package
data(marketing) # load marketing data
?marketing # call documentation for marketing data
D=marketing$newspaper # define treatment (newspaper advertising)
Y=marketing$sales # define outcome (sales)
results=npregbw(Y~D) # kernel regression
plot(results, plot.errors.method="asymptotic") # plot regression function
plot(results, gradients=TRUE, plot.errors.method="asymptotic") # plot effects

6
library(causalweight) # load causalweight package
library(lmtest) # load lmtest package
library(sandwich) # load sandwich package
data(coffeeleaflet) # load coffeeleaflet data
attach(coffeeleaflet) # store all variables in own objects
?coffeeleaflet # call documentation for coffeeleaflet data
D=treatment # define treatment (leaflet)
Y=awarewaste # define outcome (aware of waste production)
X=cbind(mumedu,sex) # define covariates (grade, gender, age)
ols=lm(Y~D+X) # run OLS regression
coeftest(ols, vcov=vcovHC) # output with heteroscedasticity robust se

7
library(Matching) # load Matching package
library(Jmisc) # load Jmisc package
library(lmtest) # load lmtest package
library(sandwich) # load sandwich package
data(lalonde) # load lalonde data
attach(lalonde) # store all variables in own objects
?lalonde # call documentation for lalonde data
D=treat # define treatment (training)
Y=re78 # define outcome
X=cbind(age,educ,nodegr,married,black,hisp,re74,re75,u74,u75) # covariates
DXdemeaned=D*demean(X) # interaction of D and demeaned X
ols=lm(Y~D+X+DXdemeaned) # run OLS regression
coeftest(ols, vcov=vcovHC) # output

8
library(Matching) # load Matching package
data(lalonde) # load lalonde data
attach(lalonde) # store all variables in own objects
D=treat # define treatment (training)
Y=re78 # define outcome
X=cbind(age,educ,nodegr,married,black,hisp,re74,re75,u74,u75) # covariates
pairmatching=Match(Y=Y, Tr=D, X=X) # pair matching
summary(pairmatching) # matching output

9
matching=Match(Y=Y, Tr=D, X=X, M=3, BiasAdjust = TRUE) # 1:M matching
summary(matching) # matching output

10
library(Matching) # load Matching package
data(lalonde) # load lalonde data
attach(lalonde) # store all variables in own objects
D=treat # define treatment (training)
Y=re78 # define outcome
X=cbind(age,educ,nodegr,married,black,hisp,re74,re75,u74,u75) # covariates
ps=glm(D~X,family=binomial)$fitted # estimate the propensity score by logit
psmatching=Match(Y=Y, Tr=D, X=ps, BiasAdjust = TRUE) # propensity score matching
summary(psmatching) # matching output

11
library(Matching) # load Matching package
library(boot) # load boot package
data(lalonde) # load lalonde data
attach(lalonde) # store all variables in own objects
D=treat # define treatment (training)
Y=re78 # define outcome
X=cbind(age,educ,nodegr,married,black,hisp,re74,re75,u74,u75) # covariates
bs=function(data, indices) { # defines function bs for bootstrapping
dat=data[indices,] # bootstrap sample according to indices
ps=glm(dat[,2:ncol(dat)],data=dat,family=binomial)$fitted # propensity score
effect=Match(Y=dat[,1], Tr=dat[,2], X=ps, BiasAdjust = TRUE)$est # ATET
return(effect) # returns the estimated ATET
} # closes the function bs
bootdata=data.frame(Y,D,X) # data frame for bootstrap procedure
set.seed(1) # set seed
results = boot(data=bootdata, statistic=bs, R=999) # 999 bootstrap estimations
results # displays the results
tstat=results$t0/sd(results$t) # compute the t-statistic
2*pnorm(-abs(tstat)) # compute the p-value

12
library(causalweight) # load causalweight package
library(COUNT) # load COUNT package
data(lbw) # load lbw data
attach(lbw) # store all variables in own objects
D=smoke # define treatment (mother smoking)
Y=bwt # outcome (birthweight in grams)
X=cbind(race==1, age, lwt, ptl, ht, ui, ftv) # covariates
set.seed(1) # set seed
ipw=treatweight(y=Y,d=D, x=X, boot=999) # run IPW with 999 bootstraps
ipw$effect # show ATE
ipw$se # show standard error
ipw$pval # show p-value

13
library(CBPS) # load CBPS package
library(lmtest) # load lmtest package
library(sandwich) # load sandwich package
cbps=CBPS(D~X, ATT = 0) # covariate balancing for ATE estimation
results=lm(Y~D, weights=cbps$weights) # weighted regression
coeftest(results, vcov = vcovHC) # show results

14
library(drgee) # load drgee package
library(COUNT) # load COUNT package
data(lbw) # load lbw data
attach(lbw) # store all variables in own objects
D=smoke # define treatment (mother smoking)
Y=bwt # outcome (birthweight in grams)
X=cbind(race==1, age, lwt, ptl, ht, ui, ftv) # covariates
dr=drgee(oformula=formula(Y~X), eformula=formula(D~X), elink="logit") # DR reg
summary(dr) # show results

15
library(COUNT) # load COUNT package
library(kdensity) # load kdensity package
data(lbw) # load lbw data
attach(lbw) # store all variables in own objects
D=smoke # define treatment (mother smoking)
Y=bwt # outcome (birthweight in grams)
X=cbind(race==1, age, lwt, ptl, ht, ui, ftv) # covariates
ps=glm(D~X,family=binomial)$fitted # estimate the propensity score by logit
psdens1=kdensity(ps[D==1]) # density of propensity score among treated
psdens0=kdensity(ps[D==0]) # density of propensity score among non-treated
par(mfrow=c(2,2)) # specify a figure with four graphs (2X2)
```r
plot(psdens1)  # plot density for treated
plot(psdens0)  # plot density for non-treated
hist(ps[D==1])  # plot histogram of p-score for treated
hist(ps[D==0])  # plot histogram of p-score for non-treated
summary(ps[D==1])  # summary statistics for p-scores among treated
summary(ps[D==0])  # summary statistics p-scores among non-treated

# 16
library(MatchIt)  # load MatchIt package
output=matchit(D~X)  # pair matching (ATET) on propensity score
plot(output,type="hist")  # plot common support before/after matching
summary(output,standardize=TRUE)

# 17
library(Matching)  # load Matching package
output1=Match(Y=Y, Tr=D, X=ps)  # pair matching (ATET) on p-score
MatchBalance(D~ptl, match.out=output1)  # covariate balance before/after matching
output2=Match(Y=Y, Tr=D, X=ps, CommonSupport=TRUE)  # pair matching (ATET)
MatchBalance(D~lwt, match.out=output2)  # covariate balance before/after matching
summary(output1)  # ATET without common support
summary(output2)  # ATET with common support

# 18
library(causalweight)  # load causalweight package
set.seed(1)  # set seed to 1
ipw=treatweight(y=ptl,d=D,x=X, boot=999)  # run IPW with 999 bootstraps
ipw$effect  # show mean difference in X
ipw$pval  # show p-value

# 19
set.seed(1)  # set seed to 1
ipw=treatweight(y=ptl,d=D,x=X, trim=0.1, boot=999)  # run IPW with 999 bootstraps
ipw$effect  # show mean difference in X
ipw$pval  # show p-value
ipw$ntrimmed  # number of trimmed units
```
20
library(causalweight) # load causalweight package
library(devtools) # load devtools package
install_github("ehkennedy/npcausal") # install npcausal package
library(npcausal) # load npcausal package
data(games) # load games data
games_nomis=na.omit(games) # drop observations with missings
attach(games_nomis) # attach data
X=cbind(year,userscore, genre=="Action") # define covariates
D=metascore # define treatment
Y=sales # define outcome
results=ctseff(y=Y, a=D, x=X, bw.seq=seq(from=1,to=5,by=0.5)) # DR estimation
plot.ctseff(results) # potential outcome-treatment relation

21
library(qte) # load qte package
D=metascore>75 # define binary treatment (score>75)
dat=data.frame(Y,D,X) # create data frame
QTE=ci.qte(Y~D, x=X, data=dat) # estimate QTE across different ranks
ggqte(QTE) # plot QTEs across ranks (tau)

22
library(causalweight) # load causalweight package
data(JC) # load JC data
X0=JC[,2:29] # define pre-treatment covariates X0
X1=JC[,30:36] # define post-treatment covariates X1
D1=JC[,37] # define treatment (training) in first year D1
D2=JC[,38] # define treatment (training) in second year D2
Y2=JC[,44] # define outcome (earnings in fourth year) Y2
output=dyntreatDML(y2=Y2,d1=D1,d2=D2,x0=X0,x1=X1) # doubly robust estimation
output$effect; output$se; output$pval # effect, standard error, p-value

23
output=dyntreatDML(y2=Y2,d1=D1,d2=D2,x0=X0,x1=X1, d2treat=0) # estimation
output$effect; output$se; output$pval # effect, standard error, p-value
```r
# 24
library(causalweight)                          # load causalweight package
data(wexpect)                                  # load wexpect data
attach(wexpect)                                # attach data
X=cbind(age,swiss,motherhighedu,fatherhighedu) # define covariates
D=male                                         # define treatment
M=cbind(business,econ,communi,businform)       # define mediator
Y=wexpect2                                     # define outcome
medDML(y=Y, d=D, m=M, x=X)                     # estimate causal mechanisms

# 25
library(causalweight)            # load causalweight package
data(JC)                         # load JC data
X0=JC[,2:29]                     # define pre-treatment covariates X0
X1=JC[,30:36]                    # define post-treatment covariates X1
D1=JC[,37]                       # define treatment (training) in first year D1
D2=JC[,38]                       # define treatment (training) in second year D2
Y2=JC[,44]                       # define outcome (earnings in fourth year) Y2
output=dyntreatDML(y2=Y2,d1=D1,d2=D2,x0=X0,x1=X1) # doubly robust estimation
output$effect; output$se; output$pval # effect, standard error, p-value

# 26
library(causalweight)                          # load causalweight package
data(JC)                         # load JC data
X=JC[,2:29]                      # define covariates
D=JC[,37]                        # define treatment (training) in first year
Y=JC[,46]                        # define outcome (health state after 4 years)
output=treatDML(y=Y, d=D, x=X)   # double machine learning
output$effect; output$se; output$pval # effect, standard error, p-value

# 27
output=treatDML(y=Y,d=D,x=X,MLmethod="randomforest") # double machine learning
output$effect; output$se; output$pval # effect, standard error, p-value

# 28
library(grf)                      # load grf package
```
library(causalweight) # load causalweight package
data(JC) # load JC data
X=JC[,2:29] # define covariates
D=JC[,37] # define treatment (training) in first year
Y=JC[,40] # outcome (proportion employed in third year)
set.seed(1) # set seed
cf=causal_forest(X=X, Y=Y, W=D) # run causal forest
ATE=average_treatment_effect(cf) # compute ATE
pval=2*pnorm(-abs(ATE[1]/ATE[2])) # compute the p-value
ATE; pval # provide ATE, standard error, and p-value

29
CATE=cf$predictions # store CATEs in own variable
hist(CATE) # distribution of CATEs

30
library(lmtest) # load lmtest package
library(sandwich) # load sandwich package
highCATE=CATE>median(CATE) # dummy for high CATE
ols=lm(JC$age~highCATE) # regress CATEs on gender
coefftest(ols, vcov=vcovHC) # output

31
best_linear_projection(forest=cf, A=JC$female) # regression of function on gender

32
library(randomForest) # load randomForest package
dat=data.frame(CATE,X) # define data frame
randomf=randomForest(CATE~.,data=dat) # predict CATE as a function of X
importance(randomf) # show predictive importance of X

33
library(Matching) # load Matching package
library(policytree) # load policytree package
library(DiagrammeR) # load DiagrammeR package
data(lalonde) # load lalonde data
attach(lalonde) # store all variables in own objects
D=factor(treat) # define treatment (training)
Y=re78 # define outcome
X=cbind(age,educ,nodegr,married,black,hisp,re74,re75,u74,u75) # covariates
forest=multi_arm_causal_forest(X=X, Y=Y, W=D) # estimate treatment+outcome models
influence=double_robust_scores(forest) # obtain efficient influence functions
Xpol=cbind(age,educ,nodegr) # relevant X for optimal policy
tree=policy_tree(X=Xpol, Gamma=influence, depth=2) # policies for 4 subgroups
plot(tree) # plot the tree with optimal policies

34
library(causalweight) # load causalweight package
data(JC) # load JC data
Z=JC$assignment # define instrument (assignment to JC)
D=JC$trainy1 # define treatment (training in 1st year)
Y=JC$earny4 # define outcome (earnings in fourth year)
ITT=mean(Y[Z==1])-mean(Y[Z==0]) # estimate intention-to-treat effect (ITT)
first=mean(D[Z==1])-mean(D[Z==0]) # estimate first stage effect (complier share)
LATE=ITT/first # compute LATE
ITT; first; LATE # show ITT, first stage effect, and LATE

35
library(AER) # load AER package
LATE=ivreg(Y~D|Z) # run two stage least squares regression
summary(LATE,vcov = vcovHC) # results with heteroscedasticity-robust se

36
library(LARF) # load LARF package
library(causalweight) # load causalweight package
data(c401k) # load 401(k) pension data
D=c401k[,3] # treatment: participation in pension plan
Z=c401k[,4] # instrument: eligibility for pension plan
Y=c401k[,2] # outcome: net financial assets in 1000 USD
X=as.matrix(c401k[,5:11]) # covariates
set.seed(1) # set seed
LATE=lateweight(y=Y, d=D, z=Z, x=X, boot=299) # compute LATE (299 bootstraps)
LATE$effect; LATE$se.effect; LATE$pval.effect # show LATE results
LATE$first; LATE$se.first; LATE$pval.first # show first stage results

37
library(npcausal) # load npcausal package
set.seed(1) # set seed
ivlate(y=Y, a=D, z=Z, x=X) # estimate LATE by double machine learning

38
library(localIV) # load localIV package
data(toydata) # load toydata
D=toydata$d # define binary treatment
Z=toydata$z # define continuous instrument
Y=toydata$y # define outcome
X=toydata$x # define covariate
MTE=mte(selection=D~X+Z, outcome=Y~X) # LIV estimation of MTE
MTEs=mte_at(u=seq(0.05, 0.95, 0.01), model=MTE) # predict MTEs at mean of X
plot(x=MTEs$u,y=MTEs$value,xlab="p(Z, mean X)",ylab="MTE at mean X") #plot

39
library(wooldridge) # load wooldridge package
library(multiwayvcov) # load multiwayvcov package
library(lmtest) # load lmtest package
data(kielmc) # load kielmc data
attach(kielmc) # attach data
Y=rprice # define outcome
D=nearinc # define treatment group
T=y81 # define period dummy
interact=D*T # treatment-period interaction
did=lm(Y~D+T+interact) # DiD regression
vcovCL=cluster.vcov(model=did, cluster=cbd) # cluster: distance to center (cbd)
coeftest(did, vcov=vcovCL) # DiD results with cluster st.error

40
library(causalweight) # load causalweight package
X=cbind(area, rooms, baths) # define covariates
set.seed(1) # set seed to 1
out=didweight(y=Y,d=D,t=T,x=X,boot=399,cluster=cbd) # DiD with cluster se
out$effect; out$se; out$pvalue # effect, se, and p-value

41
library(did) # load did package
data(mpdta) # load mpdta data
out=att_gt(yname="lemp", tname="year", gname="first.treat", idname="countyreal", xformla=~lpop, clustervars="countyreal", data=mpdta) # doubly robust did
summary(out) # group-time-specific ATETs
ggidid(out) # plot DiD results
meanATET=aggte(out) # generate averages over ATETs
summary(meanATET) # report averaged ATETs

42
library(qte) # load qte package
library(wooldridge) # load wooldridge package
data(kielmc) # load kielmc data
cic=CiC(rprice~nearinc,t=1981,tmin1=1978,tname="year",data=kielmc) # run CiC
ggqte(cic) # plot QTETs

43
library(devtools) # load devtools package
install_github("synth-inference/synthdid") # install synthdid package
library(synthdid) # load synthdid package
data(california_prop99) # load smoking data
dat=panel.matrices(california_prop99) # prepare data
set.seed(1) # set seed
out=synthdid_estimate(Y=dat$Y, N0=dat$N0, T0=dat$T0) # synthetic DiD
se = sqrt(vcov(out, method='placebo')) # placebo standard error
out[1]; se # show results

44
set.seed(1) # set seed
out=synthdid_estimate(Y=dat$Y, N0=dat$N0, T0=dat$T0, omega.intercept=FALSE, weights=list(lambda=rep(0,dat$T0))) # synthetic control
se = sqrt(vcov(out, method='placebo')) # placebo standard error
out[1]; se # show results
plot(out) # plot effects over time

45
library(rdrobust) # load rdrobust library
data(rdrobust_RDsenate) # data on elections for US Senate
Y=rdrobust_RDsenate$vote # outcome is vote share of Democrats
R=rdrobust_RDsenate$margin # running variable is margin of winning
results=rdrobust(y=Y, x=R) # sharp RDD
summary(results) # show results
rdplot(y=Y, x=R) # plot outcome against running variable

46
library(rdd) # load rdd library
DCdensity(runvar=R) # run the McCrary (2008) sorting test

47
library(devtools) # load devtools package
install_github("kolesarm/RDHonest") # install RDHonest package
library(RDHonest) # load RDHonest package
data(rcp) # load rcp data
Y=rcp$cn # outcome is expenditures on non-durables
R=rcp$elig_year # running var based on eligibility to retire
D=rcp$retired # treatment is retirement status
results=rdrobust(y=Y, x=R, fuzzy=D) # fuzzy RDD
summary(results) # show results

48
library(haven) # load haven package
data=read_dta("C:/finaldata.dta") # load data
Y=data$pers_total # define outcome (total personnel)
R=data$forcing # define running variable
D=data$costequalgrants # define treatment (grants)
results=rdrobust(y=Y, x=R, fuzzy=D, deriv=1) # run fuzzy RKD
summary(results) # show results
```r
# 49
library(bunching)              # load bunching package
data(bunching_data)            # load bunching data
Y=bunching_data$kink_vector    # define outcome (with bunching at value 10000)
set.seed(1)                    # set seed
b=bunchit(z_vector=Y,zstar=10000,binwidth=50,bins_l=20,bins_r=20,t0=0,t1=.2)#est
b$B; b$B_sd; b$plot            # show results

# 50
library(experiment)                      # load experiment package
library(causalweight)                    # load causalweight package
data(JC)                                 # load JC data
treat=JC$assignment                      # random treatment (assignment to JC)
outcome=JC$earny4                        # define outcome (earnings in 4. year)
selection=JC$pworky4>0                   # sample selection: employed in 4. year
outcome[selection==0]=NA                 # recode non-selected outcomes as NA
dat=data.frame(treat,selection,outcome)  # generate data frame
results=ATEbounds(outcome~factor(treat),data=dat) # compute worst case bounds
results$bounds; results$bonf.ci          # bounds on ATE + confidence intervals

# 51
library(devtools)                        # load devtools package
install_github("vsemenova/leebounds")    # install leebounds package
library(leebounds)                       # load leebounds package
results=leebounds(dat)                   # bounds (monotonic selection in treat)
results$lower_bound; results$upper_bound # bounds on ATE under monotonicity

# 52
library(rbounds)                           # load rbounds package
library(Matching)                          # load Matching package
data(lalonde)                              # load lalonde data
attach(lalonde)                            # store all variables in own objects
D=treat                                    # define treatment (training)
Y=re78                                     # define outcome
X=cbind(age,educ,nodegr,married,black,hisp,re74,re75,u74,u75) # covariates
```
set.seed(1) # set seed
output=Match(Y=Y, Tr=D, X=X, replace=FALSE)# pair matching (ATET), no replacement
hlsens(output, Gamma=2, GammaInc = 0.25) # sensitivity analysis

53
library(devtools) # load devtools package
install_github("szonszein/interference") # install interference package
library(interference) # load interference package
data=read.csv("C:/india.csv") # load data
data=na.omit(data) # drop observations with missings

cluster id
group=data$village_id
group_tr=data$mech
indiv_tr=data$treat
obs_outcome=data$EXPhosp_1

dat=data.frame(group, group_tr, indiv_tr, obs_outcome) # generate data frame

estimates_hierarchical(dat) # run estimation