Contents

PREFACE xvii

CHAPTER 01. INTRODUCTION 1

1.1 **Literate Programming** 1

1.1.1 Indexing and Cross-Referencing 4

1.2 **Photorealistic Rendering and the Ray-Tracing Algorithm** 5

1.2.1 Cameras and Film 6
1.2.2 Ray–Object Intersections 8
1.2.3 Light Distribution 9
1.2.4 Visibility 11
1.2.5 Light Scattering at Surfaces 11
1.2.6 Indirect Light Transport 13
1.2.7 Ray Propagation 15

1.3 **pbrt: System Overview** 16

1.3.1 Phases of Execution 17
1.3.2 pbrt’s main() Function 18
1.3.3 Integrator Interface 22
1.3.4 ImageTileIntegrator and the Main Rendering Loop 24
1.3.5 RayIntegrator Implementation 28
1.3.6 Random Walk Integrator 31

1.4 **How to Proceed through This Book** 36

1.4.1 The Exercises 38
1.4.2 Viewing the Images 38
1.4.3 The Online Edition 38

1.5 **Using and Understanding the Code** 38

1.5.1 Source Code Organization 39
1.5.2 Naming Conventions 39
1.5.3 Pointer or Reference? 39
1.5.4 Abstraction versus Efficiency 40
1.5.5 pstd 40
1.5.6 Allocators 40
1.5.7 Dynamic Dispatch 41
1.5.8 Code Optimization 42
1.5.9 Debugging and Logging 42
1.5.10 Parallelism and Thread Safety 43
1.5.11 Extending the System 44
1.5.12 Bugs 44

1.6 **A Brief History of Physically Based Rendering** 44

1.6.1 Research 45
1.6.2 Production 46

Further Reading 48

Exercise 51
CHAPTER 02. MONTE CARLO INTEGRATION

2.1 Monte Carlo: Basics
- 2.1.1 Background and Probability Review 54
- 2.1.2 Expected Values 56
- 2.1.3 The Monte Carlo Estimator 56
- 2.1.4 Error in Monte Carlo Estimators 58

2.2 Improving Efficiency
- 2.2.1 Stratified Sampling 60
- 2.2.2 Importance Sampling 63
- 2.2.3 Multiple Importance Sampling 65
- 2.2.4 Russian Roulette 67
- 2.2.5 Splitting 68

2.3 Sampling Using the Inversion Method
- 2.3.1 Discrete Case 69
- 2.3.2 Continuous Case 72

2.4 Transforming between Distributions
- 2.4.1 Transformation in Multiple Dimensions 74
- 2.4.2 Sampling with Multidimensional Transformations 75

Further Reading 77

Exercises 78

CHAPTER 03. GEOMETRY AND TRANSFORMATIONS

3.1 Coordinate Systems
- 3.1.1 Coordinate System Handedness 82

3.2 n-Tuple Base Classes 83

3.3 Vectors
- 3.3.1 Normalization and Vector Length 87
- 3.3.2 Dot and Cross Product 89
- 3.3.3 Coordinate System from a Vector 91

3.4 Points 92

3.5 Normals 93

3.6 Rays
- 3.6.1 Ray Differentials 96

3.7 Bounding Boxes 97

3.8 Spherical Geometry
- 3.8.1 Solid Angles 103
- 3.8.2 Spherical Polygons 104
- 3.8.3 Spherical Parameterizations 106
- 3.8.4 Bounding Directions 114

3.9 Transformations
- 3.9.1 Homogeneous Coordinates 119
- 3.9.2 Transform Class Definition 119
- 3.9.3 Basic Operations 120
- 3.9.4 Translations 122
- 3.9.5 Scaling 123
- 3.9.6 x, y, and z Axis Rotations 124
- 3.9.7 Rotation around an Arbitrary Axis 125
- 3.9.8 Rotating One Vector to Another 127
- 3.9.9 The Look-at Transformation 128
CONTENTS

3.10 Applying Transformations 129
 3.10.1 Points 130
 3.10.2 Vectors 130
 3.10.3 Normals 131
 3.10.4 Rays 131
 3.10.5 Bounding Boxes 132
 3.10.6 Composition of Transformations 132
 3.10.7 Transformations and Coordinate System Handedness 133
 3.10.8 Vector Frames 133
 3.10.9 Animating Transformations 135

3.11 Interactions 136
 3.11.1 Surface Interaction 138
 3.11.2 Medium Interaction 141

Further Reading 141
Exercises 143

CHAPTER 04. RADIOMETRY, SPECTRA, AND COLOR 145

4.1 Radiometry 146
 4.1.1 Basic Quantities 147
 4.1.2 Incident and Exitant Radiance Functions 150
 4.1.3 Radiometric Spectral Distributions 152
 4.1.4 Luminance and Photometry 152

4.2 Working with Radiometric Integrals 153
 4.2.1 Integrals over Projected Solid Angle 154
 4.2.2 Integrals over Spherical Coordinates 154
 4.2.3 Integrals over Area 155

4.3 Surface Reflection 156
 4.3.1 The BRDF and the BTDF 157
 4.3.2 The BSSRDF 159

4.4 Light Emission 160
 4.4.1 Blackbody Emitters 161
 4.4.2 Standard Illuminants 163

4.5 Representing Spectral Distributions 165
 4.5.1 Spectrum Interface 165
 4.5.2 General Spectral Distributions 166
 4.5.3 Embedded Spectral Data 170
 4.5.4 Sampled Spectral Distributions 170

4.6 Color 175
 4.6.1 XYZ Color 176
 4.6.2 RGB Color 180
 4.6.3 RGB Color Spaces 182
 4.6.4 Why Spectral Rendering? 186
 4.6.5 Choosing the Number of Wavelength Samples 187
 4.6.6 From RGB to Spectra 189

Further Reading 200
Exercises 203

CHAPTER 05. CAMERAS AND FILM 205

5.1 Camera Interface 206
 5.1.1 Camera Coordinate Spaces 208
CONTENTS

<table>
<thead>
<tr>
<th>6.7</th>
<th>Curves</th>
<th>345</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7.1</td>
<td>Bounding Curves</td>
<td>348</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Intersection Tests</td>
<td>349</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.8</th>
<th>Managing Rounding Error</th>
<th>357</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8.1</td>
<td>Floating-Point Arithmetic</td>
<td>358</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Conservative Ray–Bounds Intersections</td>
<td>369</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Accurate Quadratic Discriminants</td>
<td>370</td>
</tr>
<tr>
<td>6.8.4</td>
<td>Robust Triangle Intersections</td>
<td>372</td>
</tr>
<tr>
<td>6.8.5</td>
<td>Bounding Intersection Point Error</td>
<td>373</td>
</tr>
<tr>
<td>6.8.6</td>
<td>Robust Spawned Ray Origins</td>
<td>380</td>
</tr>
<tr>
<td>6.8.7</td>
<td>Avoiding Intersections behind Ray Origins</td>
<td>383</td>
</tr>
<tr>
<td>6.8.8</td>
<td>Discussion</td>
<td>386</td>
</tr>
</tbody>
</table>

Further Reading 386

Exercises 390

CHAPTER 07. PRIMITIVES AND INTERSECTION ACCELERATION 397

<table>
<thead>
<tr>
<th>7.1</th>
<th>Primitive Interface and Geometric Primitives</th>
<th>398</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.1</td>
<td>Geometric Primitives</td>
<td>398</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Object Instancing and Primitives in Motion</td>
<td>402</td>
</tr>
</tbody>
</table>

| 7.2 | Aggregates | 405 |

<table>
<thead>
<tr>
<th>7.3</th>
<th>Bounding Volume Hierarchies</th>
<th>406</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1</td>
<td>BVH Construction</td>
<td>408</td>
</tr>
<tr>
<td>7.3.2</td>
<td>The Surface Area Heuristic</td>
<td>415</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Linear Bounding Volume Hierarchies</td>
<td>420</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Compact BVH for Traversal</td>
<td>428</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Bounding and Intersection Tests</td>
<td>430</td>
</tr>
</tbody>
</table>

Further Reading 434

Exercises 441

CHAPTER 08. SAMPLING AND RECONSTRUCTION 445

<table>
<thead>
<tr>
<th>8.1</th>
<th>Sampling Theory</th>
<th>445</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.1</td>
<td>The Frequency Domain and the Fourier Transform</td>
<td>446</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Ideal Sampling and Reconstruction</td>
<td>449</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Aliasing</td>
<td>452</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Understanding Pixels</td>
<td>454</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Sampling and Aliasing in Rendering</td>
<td>455</td>
</tr>
<tr>
<td>8.1.6</td>
<td>Spectral Analysis of Sampling Patterns</td>
<td>457</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8.2</th>
<th>Sampling and Integration</th>
<th>460</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 8.2.1</td>
<td>Fourier Analysis of Variance</td>
<td>460</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Low Discrepancy and Quasi Monte Carlo</td>
<td>464</td>
</tr>
</tbody>
</table>

| 8.3 | Sampling Interface | 467 |

| 8.4 | Independent Sampler | 471 |

| 8.5 | Stratified Sampler | 472 |

<table>
<thead>
<tr>
<th>* 8.6</th>
<th>Halton Sampler</th>
<th>477</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6.1</td>
<td>Hammersley and Halton Points</td>
<td>477</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Randomization via Scrambling</td>
<td>480</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Halton Sampler Implementation</td>
<td>485</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Evaluation</td>
<td>489</td>
</tr>
</tbody>
</table>
CHAPTER 09. REFLECTION MODELS

9.1 BSDF Representation
 9.1.1 Geometric Setting and Conventions
 9.1.2 BxDF Interface
 9.1.3 Hemispherical Reflectance
 9.1.4 Delta Distributions in BSDFs
 9.1.5 BSDFs

9.2 Diffuse Reflection
 9.3 Specular Reflection and Transmission
 9.3.1 Physical Principles
 9.3.2 The Index of Refraction
 9.3.3 The Law of Specular Reflection
 9.3.4 Snell’s Law
 9.3.5 The Fresnel Equations
 9.3.6 The Fresnel Equations for Conductors

9.4 Conductor BRDF

9.5 Dielectric BSDF
 9.5.1 Thin Dielectric BSDF
 * 9.5.2 Non-Symmetric Scattering and Refraction

9.6 Roughness Using Microfacet Theory
 9.6.1 The Microfacet Distribution
 9.6.2 The Masking Function
 9.6.3 The Masking-Shadowing Function
 9.6.4 Sampling the Distribution of Visible Normals
 9.6.5 The Torrance–Sparrow Model

9.7 Rough Dielectric BSDF

9.8 Measured BSDFs
 9.8.1 Basic Data Structures
 9.8.2 Evaluation

9.9 Scattering from Hair
 9.9.1 Geometry

* 8.7 Sobol’ Samplers
 8.7.1 Stratification over Elementary Intervals
 8.7.2 Randomization and Scrambling
 8.7.3 Sobol’ Sample Generation
 8.7.4 Global Sobol’ Sampler
 8.7.5 Padded Sobol’ Sampler
 8.7.6 Blue Noise Sobol’ Sampler
 8.7.7 Evaluation

8.8 Image Reconstruction
 8.8.1 Filter Interface
 8.8.2 FilterSampler
 8.8.3 Box Filter
 8.8.4 Triangle Filter
 8.8.5 Gaussian Filter
 8.8.6 Mitchell Filter
 8.8.7 Windowed Sinc Filter

Further Reading

Exercises
CONTENTS

9.9.2 Scattering from Hair 604
9.9.3 Longitudinal Scattering 607
9.9.4 Absorption in Fibers 609
9.9.5 Azimuthal Scattering 613
9.9.6 Scattering Model Evaluation 616
9.9.7 Sampling 618
9.9.8 Hair Absorption Coefficients 620

Further Reading 621
Exercises 629

CHAPTER 10. TEXTURES AND MATERIALS 633

10.1 Texture Sampling and Antialiasing 634
10.1.1 Finding the Texture Sampling Rate 635
10.1.2 Ray Differentials at Medium Transitions 642
* 10.1.3 Ray Differentials for Specular Reflection and Transmission 643
10.1.4 Filtering Texture Functions 647

10.2 Texture Coordinate Generation 649
10.2.1 (u, v) Mapping 650
10.2.2 Spherical Mapping 651
10.2.3 Cylindrical Mapping 653
10.2.4 Planar Mapping 654
10.2.5 3D Mapping 654

10.3 Texture Interface and Basic Textures 655
10.3.1 Constant Texture 656
10.3.2 Scale Texture 657
10.3.3 Mix Textures 657

10.4 Image Texture 660
10.4.1 Texture Memory Management 662
10.4.2 Image Texture Evaluation 663
10.4.3 MIP Maps 664
10.4.4 Image Map Filtering 667

10.5 Material Interface and Implementations 674
10.5.1 Material Implementations 678
10.5.2 Finding the BSDF at a Surface 682
10.5.3 Normal Mapping 684
10.5.4 Bump Mapping 687

Further Reading 690
Exercises 694

CHAPTER 11. VOLUME SCATTERING 697

11.1 Volume Scattering Processes 697
11.1.1 Absorption 699
11.1.2 Emission 700
11.1.3 Out Scattering and Attenuation 701
11.1.4 In Scattering 702

11.2 Transmittance 704
11.2.1 Null Scattering 707

11.3 Phase Functions 709
11.3.1 The Henyey–Greenstein Phase Function 711
11.4 Media

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.1 Medium Interface</td>
<td>717</td>
</tr>
<tr>
<td>11.4.2 Homogeneous Medium</td>
<td>720</td>
</tr>
<tr>
<td>11.4.3 DDA Majorant Iterator</td>
<td>721</td>
</tr>
<tr>
<td>11.4.4 Uniform Grid Medium</td>
<td>728</td>
</tr>
<tr>
<td>11.4.5 RGB Grid Medium</td>
<td>731</td>
</tr>
</tbody>
</table>

Further Reading

Exercises 736

CHAPTER 12. LIGHT SOURCES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Light Interface</td>
<td>740</td>
</tr>
<tr>
<td>12.1.1 Photometric Light Specification</td>
<td>744</td>
</tr>
<tr>
<td>12.1.2 The LightBase Class</td>
<td>744</td>
</tr>
<tr>
<td>12.2 Point Lights</td>
<td>746</td>
</tr>
<tr>
<td>12.2.1 Spotlights</td>
<td>748</td>
</tr>
<tr>
<td>12.2.2 Texture Projection Lights</td>
<td>750</td>
</tr>
<tr>
<td>12.2.3 Goniophotometric Diagram Lights</td>
<td>755</td>
</tr>
<tr>
<td>12.3 Distant Lights</td>
<td>757</td>
</tr>
<tr>
<td>12.4 Area Lights</td>
<td>759</td>
</tr>
<tr>
<td>12.5 Infinite Area Lights</td>
<td>764</td>
</tr>
<tr>
<td>12.5.1 Uniform Infinite Lights</td>
<td>765</td>
</tr>
<tr>
<td>12.5.2 Image Infinite Lights</td>
<td>766</td>
</tr>
<tr>
<td>* 12.5.3 Portal Image Infinite Lights</td>
<td>770</td>
</tr>
<tr>
<td>12.6 Light Sampling</td>
<td>780</td>
</tr>
<tr>
<td>12.6.1 Uniform Light Sampling</td>
<td>782</td>
</tr>
<tr>
<td>12.6.2 Power Light Sampler</td>
<td>783</td>
</tr>
<tr>
<td>* 12.6.3 BVH Light Sampling</td>
<td>785</td>
</tr>
</tbody>
</table>

Further Reading

Exercises 810

CHAPTER 13. LIGHT TRANSPORT I: SURFACE REFLECTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 The Light Transport Equation</td>
<td>813</td>
</tr>
<tr>
<td>13.1.1 Basic Derivation</td>
<td>814</td>
</tr>
<tr>
<td>13.1.2 Analytic Solutions to the LTE</td>
<td>815</td>
</tr>
<tr>
<td>13.1.3 The Surface Form of the LTE</td>
<td>816</td>
</tr>
<tr>
<td>13.1.4 Integral over Paths</td>
<td>817</td>
</tr>
<tr>
<td>13.1.5 Delta Distributions in the Integrand</td>
<td>819</td>
</tr>
<tr>
<td>13.1.6 Partitioning the Integrand</td>
<td>820</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2 Path Tracing</td>
<td>821</td>
</tr>
<tr>
<td>13.2.1 Overview</td>
<td>822</td>
</tr>
<tr>
<td>13.2.2 Path Sampling</td>
<td>822</td>
</tr>
<tr>
<td>13.2.3 Incremental Path Construction</td>
<td>824</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3 A Simple Path Tracer</td>
<td>825</td>
</tr>
<tr>
<td>13.4 A Better Path Tracer</td>
<td>830</td>
</tr>
<tr>
<td>13.4.1 Path Regularization</td>
<td>841</td>
</tr>
</tbody>
</table>

Further Reading

Exercises 849
CHAPTER 14. LIGHT TRANSPORT II: VOLUME RENDERING 853

14.1 The Equation of Transfer 853
- 14.1.1 Null-Scattering Extension 855
- 14.1.2 Evaluating the Equation of Transfer 856
- 14.1.3 Sampling the Majorant Transmittance 857
- 14.1.4 Generalized Path Space 863
- 14.1.5 Evaluating the Volumetric Path Integral 866

14.2 Volume Scattering Integrators 867
- 14.2.1 A Simple Volumetric Integrator 867
- 14.2.2 Improving the Sampling Techniques 873
- 14.2.3 Improved Volumetric Integrator 877

14.3 Scattering from Layered Materials 891
- 14.3.1 The One-Dimensional Equation of Transfer 892
- 14.3.2 Layered BxDF 893
- 14.3.3 Coated Diffuse and Coated Conductor Materials 908

Further Reading
- Exercises 914

CHAPTER 15. WAVEFRONT RENDERING ON GPUs 917

15.1 Mapping Path Tracing to the GPU 919
- 15.1.1 Basic GPU Architecture 919
- 15.1.2 Structuring Rendering Computation 925
- 15.1.3 System Overview 926

15.2 Implementation Foundations 928
- 15.2.1 Execution and Memory Space Specification 928
- 15.2.2 Launching Kernels on the GPU 929
- 15.2.3 Structure-of-Arrays Layout 930
- 15.2.4 Work Queues 935

15.3 Path Tracer Implementation 938
- 15.3.1 Work Launch 940
- 15.3.2 The Render() Method 941
- 15.3.3 Generating Camera Rays 943
- 15.3.4 Loop over Ray Depths 947
- 15.3.5 Sample Generation 949
- 15.3.6 Intersection Testing 951
- 15.3.7 Participating Media 954
- 15.3.8 Ray-Found Emission 955
- 15.3.9 Surface Scattering 959
- 15.3.10 Shadow Rays 969
- 15.3.11 Updating the Film 970

Further Reading
- Exercises 971

CHAPTER 16. RETROSPECTIVE AND THE FUTURE 977

16.1 pbtr over the Years 977

16.2 Design Alternatives 979
- 16.2.1 Out-of-Core Rendering 979
- 16.2.2 Preshaded Micropolygon Grids 980
- 16.2.3 Packet Tracing 981
16.2.4 Interactive and Animation Rendering 983
16.2.5 Specialized Compilation 983

16.3 Emerging Topics 984
16.3.1 Inverse and Differentiable Rendering 984
16.3.2 Machine Learning and Rendering 989

16.4 The Future 992

16.5 Conclusion 992

APPENDIXES

A SAMPLING ALGORITHMS 993
B UTILITIES 1031
C PROCESSING THE SCENE DESCRIPTION 1119

REFERENCES 1141
INDEX OF FRAGMENTS 1183
INDEX OF CLASSES AND THEIR MEMBERS 1201
INDEX OF MISCELLANEOUS IDENTIFIERS 1213
SUBJECT INDEX 1215
COLOPHON 1245