Algorithms for Decision Making
Mykel J. Kochenderfer, Tim A. Wheeler & Kyle H. Wray

A comprehensive introduction to algorithms for decision making under uncertainty that clearly breaks down representations of decision making problems and provides objective overviews of strategies for solving them.

From an author team situated at the cutting-edge of industry and research, this book presents the most actionable and impactful new ideas alongside an interdisciplinary, high-level view of the field.

• Written with a distinct point of view by field leaders
• Code-focused: provides real code implementations for algorithms in Julia
• Multidisciplinary approaches and applications span AI, operations research, control theory, psychology, neuroscience, engineering, and economics
• Accessible treatment of Markov Decision Processes (MDPs) for industry use in robotics, automation, and research models

"Its remarkable clarity, range, and depth make this a magnificent book both to learn from and to teach. It opens the door to so many modern techniques while firmly grounding them in the statistical and mathematical theory given to us by the founders. Truly exceptional.”
—Thomas J. Sargent,
Department of Economics, New York University; Senior Fellow, Hoover Institution, Stanford University

For a deep dive on what lies behind decision making under uncertainty, check out these previously published books from the MIT Press:

Decision Making Under Uncertainty
Theory & Application
Mykel J. Kochenderfer
A penetrating study of decision making under uncertainty from a computational perspective.

Algorithms for Optimization
Kochenderfer and Wheeler
A broad introduction with a focus on practical algorithms for the design of engineering systems.

Order your exam copy: visit mitpress.mit.edu/AFDM and click Request Exam/Desk Copy
Questions: mitpress_textbooks@mit.edu
CONTENTS

1 Introduction

I PROBABILISTIC REASONING

2 Representation
- 2.1 Degrees of Belief & Probability
- 2.2 Probability Distributions
- 2.3 Joint Distributions
- 2.4 Conditional Distributions
- 2.5 Bayesian Networks
- 2.6 Conditional Independence

3 Inference
- 3.1 Inference in Bayesian Networks
- 3.2 Inference in Naive Bayes Models
- 3.3 Sum-Product Variable Elimination
- 3.4 Belief Propagation
- 3.5 Computational Complexity
- 3.6 Direct Sampling
- 3.7 Likelihood Weighted Sampling
- 3.8 Gibbs Sampling
- 3.9 Inference in Gaussian Models

4 Parameter Learning
- 4.1 Maximum Likelihood Parameter Learning
- 4.2 Bayesian Parameter Learning
- 4.3 Nonparametric Learning
- 4.4 Learning with Missing Data

5 Structure Learning
- 5.1 Bayesian Network Scoring
- 5.2 Directed Graph Search
- 5.3 Markov Equivalence Classes
- 5.4 Partially Directed Graph Search

6 Simple Decisions
- 6.1 Constraints on Rational Pref.
- 6.2 Utility Functions
- 6.3 Utility Elicitation
- 6.4 Max Expected Utility Principle
- 6.5 Decision Networks
- 6.6 Value of Information
- 6.7 Irrationality

II SEQUENTIAL PROBLEMS

7 Exact Solution Methods
- 7.1 Markov Decision Processes
- 7.2 Policy Evaluation
- 7.3 Value Function Policies
- 7.4 Policy Iteration
- 7.5 Value Iteration
- 7.6 Asynchronous Value Iteration
- 7.7 Linear Program Formulation
- 7.8 Linear Systems with Quadratic Reward

8 Approx. Value Functions
- 8.1 Parametric Representations
- 8.2 Nearest Neighbor
- 8.3 Kernel Smoothing
- 8.4 Linear Interpolation
- 8.5 Simplex Interpolation
- 8.6 Linear Regression
- 8.7 Neural Network Regression

9 Online Planning
- 9.1 Receding Horizon Planning
- 9.2 Lookahead with Rollouts
- 9.3 Forward Search
- 9.4 Branch and Bound
- 9.5 Sparse Sampling
- 9.6 Monte Carlo Tree Search
- 9.7 Heuristic Search
- 9.8 Labeled Heuristic Search
- 9.9 Open-Loop Planning

10 Policy Search
- 10.1 Approximate Policy Eval.
- 10.2 Local Search
- 10.3 Genetic Algorithms
- 10.4 Cross Entropy Method
- 10.5 Evolution Strategies
- 10.6 Isotropic Evolutionary Strategies

11 Policy Gradient Estimation
- 11.1 Finite Difference
- 11.2 Regression Gradient
- 11.3 Likelihood Ratio
- 11.4 Reward-to-Go
- 11.5 Baseline Subtraction

12 Policy Gradient Optimization
- 12.1 Gradient Ascent Update
- 12.2 Restricted Gradient Update
- 12.3 Natural Gradient Update
- 12.4 Trust Region Update
- 12.5 Clamped Surrogate Obj.

13 Actor-Critic Methods
- 13.1 Actor-Critic
- 13.2 Generalized Advantage Est.
- 13.3 Deterministic Policy Gradient
- 13.4 Actor-Critic with Monte Carlo Tree Search

14 Policy Validation
- 14.1 Performance Metric Eval.
- 14.2 Rare Event Simulation
- 14.3 Robustness Analysis
- 14.4 Trade Analysis
- 14.5 Adversarial Analysis

15 Exploration & Exploitation
- 15.1 Bandit Problems
- 15.2 Bayesian Model Estimation
- 15.3 Undirected Exploration Strategies
- 15.4 Directed Exploration Strat.
- 15.5 Optimal Exploration Strat.
- 15.6 Explor. with Multiple States

16 Model-Based Methods
- 16.1 Maximum Likelihood Models
- 16.2 Update Schemes
- 16.3 Exploration
- 16.4 Bayesian Methods
- 16.5 Bayes-adaptive MDPs
- 16.6 Posterior Sampling

17 Model-Free Methods
- 17.1 Incremental Est. of Mean
- 17.2 Q-Learning
- 17.3 Sarsa
- 17.4 Eligibility Traces
- 17.5 Reward Shaping
- 17.6 Action Value Function Approximation
- 17.7 Experience Replay

18 Imitation Learning
- 18.1 Behavioral Cloning
- 18.2 Dataset Aggregation
- 18.3 Stochastic Mixing Iterative Learning
- 18.4 Maximum Margin Inverse Reinforcement Learning
- 18.5 Maximum Entropy Inverse Reinforcement Learning
- 18.6 Generative Adversarial Imitation Learning

IV STATE UNCERTAINTY

19 Beliefs
- 19.1 Belief Initialization
- 19.2 Discrete State Filter
- 19.3 Linear Gaussian Filter
- 19.4 Extended Kalman Filter
- 19.5 Unscented Kalman Filter
- 19.6 Particle Filter
- 19.7 Particle Injection

20 Exact Belief State Planning
- 20.1 Belief-State Markov Decision Processes
- 20.2 Conditional Plans
- 20.3 Alpha Vectors
- 20.4 Pruning
- 20.5 Value Iteration
- 20.6 Linear Policies

21 Offline Belief State Planning
- 21.1 Fully Observable Value Approximation
- 21.2 Fast Informed Bound
- 21.3 Fast Lower Bounds

22 Online Belief State Planning
- 22.1 Lookahead with Rollouts
- 22.2 Forward Search
- 22.3 Branch and Bound
- 22.4 Sparse Sampling
- 22.5 Monte Carlo Tree Search
- 22.6 Determined Sparse Tree Search
- 22.7 Gap Heuristic Search

23 Controller Abstractions
- 23.1 Controllers
- 23.2 Policy Iteration
- 23.3 Nonlinear Programming
- 23.4 Gradient Ascent

V MULTIAGENT SYSTEMS

24 Multiagent Reasoning
- 24.1 Simple Games
- 24.2 Response Models
- 24.3 Dominant Strategy Equilibrium
- 24.4 Nash Equilibrium
- 24.5 Correlated Equilibrium
- 24.6 Iterated Best Response
- 24.7 Hierarchical Softmax
- 24.8 Fictitious Play
- 24.9 Gradient Ascent

25 Sequential Problems
- 25.1 Markov Games
- 25.2 Response Models
- 25.3 Nash Equilibrium
- 25.4 Fictitious Play
- 25.5 Gradient Ascent
- 25.6 Nash Q-Learning

26 State Uncertainty
- 26.1 Partially Observable Markov Games
- 26.2 Policy Evaluation
- 26.3 Nash Equilibrium
- 26.4 Dynamic Programming

27 Collaborative Agents
- 27.1 Decentralized Partially Observable Markov Decision Processes
- 27.2 Subclasses
- 27.3 Dynamic Programming
- 27.4 Iterated Best Response
- 27.5 Heuristic Search
- 27.6 Nonlinear Programming