Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Introduction</td>
<td>xiii</td>
</tr>
<tr>
<td>Agreements</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 **Automata Theory**

1.1 Deterministic finite automata | 1
1.2 Closure properties | 8
1.3 Nondeterministic finite automata | 13
1.4 More closure properties | 29
1.5 Regular expressions | 34
1.6 Proving non-regularity | 42
1.7 Myhill-Nerode theory | 48
1.8 DFA minimization | 55
1.9 Exercises and notes | 59
1.10 Bibliographic discussion | 69

2 **Computability Theory**

2.1 Deterministic Turing machines | 71
2.2 Encoding objects as strings | 85
2.3 Universal Turing machines | 90
2.4 A non-CE language | 92
2.5 Closure properties | 94
2.6 Nondeterministic Turing machines | 98
2.7 The robustness of computability | 107
2.8 Reductions | 121
2.9 Rice’s theorem | 128
2.10 Exercises and notes | 130
2.11 Bibliographic discussion | 139

3 **Complexity Theory**

3.1 Two tales | 142
3.2 Polynomial-time computation | 148
3.3 Closure properties 165
3.4 Reductions 169
3.5 NP-completeness 178
3.6 Circuit satisfiability 181
3.7 coNP languages 198
3.8 Further hardness results 202
3.9 Connecting decision and search 243
3.10 Exercises and notes 247
3.11 Bibliographic discussion 273

4 Further Complexity Theory 275
4.1 Space complexity 276
4.2 Hierarchy theorems 291
4.3 Fixed-parameter tractability 297
4.4 Parameterized complexity 315
4.5 Compilability theory 332
4.6 Exercises and notes 342
4.7 Bibliographic discussion 373

References 375
Index 381