
Computability and Complexity

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Computability and Complexity

Hubie Chen

The MIT Press
Cambridge, Massachusetts
London, England

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

© 2023 Hubert Ming Chen

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval) without
permission in writing from the publisher.

This book was set in Times New Roman by Hubert Chen. Printed and bound in the United States of
America.

Library of Congress Cataloging-in-Publication Data

Names: Chen, Hubie, author.
Title: Computability and complexity / Hubie Chen.
Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes bibliographical
references and index.
Identifiers: LCCN 2022054401 | ISBN 9780262048620 (hardcover) | ISBN 9780262376860 (epub)
| ISBN 9780262376853 (pdf)
Subjects: LCSH: Computational complexity.
Classification: LCC QA267.7 .C44 2023 | DDC 511.3/52–dc23/eng20230429
LC record available at https://lccn.loc.gov/2022054401

10 9 8 7 6 5 4 3 2 1

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Contents

Preface ix
Introduction xiii
Agreements xv

1 Automata Theory 1
1.1 Deterministic finite automata 1
1.2 Closure properties 8
1.3 Nondeterministic finite automata 13
1.4 More closure properties 29
1.5 Regular expressions 34
1.6 Proving non-regularity 42
1.7 Myhill-Nerode theory 48
1.8 DFA minimization 55
1.9 Exercises and notes 59
1.10 Bibliographic discussion 69

2 Computability Theory 71
2.1 Deterministic Turing machines 71
2.2 Encoding objects as strings 86
2.3 Universal Turing machines 90
2.4 A non-CE language 92
2.5 Closure properties 94
2.6 Nondeterministic Turing machines 98
2.7 The robustness of computability 108
2.8 Reductions 122
2.9 Rice’s theorem 128
2.10 Exercises and notes 130
2.11 Bibliographic discussion 139

3 Complexity Theory 141
3.1 Two tales 142
3.2 Polynomial-time computation 148

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

vi Contents

3.3 Closure properties 165
3.4 Reductions 169
3.5 NP-completeness 178
3.6 Circuit satisfiability 181
3.7 coNP languages 198
3.8 Further hardness results 202
3.9 Connecting decision and search 243
3.10 Exercises and notes 247
3.11 Bibliographic discussion 273

4 Further Complexity Theory 275
4.1 Space complexity 276
4.2 Hierarchy theorems 291
4.3 Fixed-parameter tractability 297
4.4 Parameterized complexity 315
4.5 Compilability theory 332
4.6 Exercises and notes 342
4.7 Bibliographic discussion 373

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

1.1 1.3

1.2

1.6

1.4 1.5

1.7 1.8

2.1

2.2

2.3

2.4

2.5 2.8 2.9

2.6 2.7

3.1

3.2 3.3 3.4 3.5 3.6

3.7

3.8

3.9

Figure 0.0.1. The dependencies between the sections of Chapters 1, 2, and 3. Each solid arrow
indicates a strong dependency; each dotted arrow indicates a weak dependency.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Preface

This textbook is an introduction to the theory of computation, viewed here as the study of
forms of computation that are abstract in the sense of being defined mathematically, and
hence amenable to a mathematical treatment. These forms include general computation
as typically associated with the term algorithm, time-efficient computation, and space-
bounded computation. A key aim of this theory is to understand both the capabilities
and limitations of each of these forms of computation; in part, this aim is achieved by
comparing the forms to each other.

Audiences
This book is targeted to multiple audiences.

First, this book aspires to be useable in a computer science curriculum at the upper
undergraduate level, and above. In particular, it was designed to be accessible to computer
science undergraduates having a basic mathematical maturity—namely, comfort working
with mathematical notation, definitions, and proofs.

At the same time, this book aims to serve as a thorough, rigorous initiation into the theory
of computation which may be used by students, researchers, and workers in disciplines
that draw on or depend upon this theory. This initiation should provide its users with the
ability to begin engaging with research literature that employs the theory of computation,
and a point of departure for learning more about this theory. This book could serve as a
primary text or as a reference for both undergraduate-level and graduate-level courses that
cover or contact the theory of computation. For all use cases, the crucial background is the
aforementioned basic mathematical maturity.

This book’s presentation assumes familiarity with basic set-theoretic notions (such as
those of set, subset, power set, intersection, and union), functions, and propositional
logic. On the part of the reader, some acquaintance with graph theory and with computer
programming would be helpful, but is not strictly required.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

x Preface

Approach
This book attempts to offer a uniform treatment of core concepts and topics in the the-
ory of computation. Throughout, an effort is made to underscore the unity of the subject
and its methods of inquiry. A small number of recurrent themes are emphasized: computa-
tional models and the comparison of their respective language classes; closure properties
of language classes; how determinism and nondeterminism compare in various contexts;
and, notions of reduction and completeness. The treatment strives to sculpt these themes
and the covered material into a coherent storyline in the hope of imbuing the reader with
a sense of the beauty and mystery held by the subject. Indeed, the desire to maintain an
overall narrative influenced not only the approach to the material, but also, to some extent,
the choice of which results and topics to include.

Where relevant, the treatment points out alternative ways to approach the material. In
addition, numerous remarks, notes, and exercises anticipate and explore ideas that deepen
the main presentation. These features were included with the goals of imparting a rounded,
robust appreciation of the subject, and of laying a foundation that naturally encourages and
leads to further study.

In writing this book, I (the author!) endeavored to provide rigorous proofs of all major
results. In fact, there are at least a few points in the book where, in lieu of waving my
hands or requesting exercises from the reader, I elected to give arguments in significant
detail. I did this with the philosophy that such detailed arguments should, at the minimum,
be available to a reader wishing to see them, and with the understanding that a given reader
should feel comfortable in skipping such arguments, especially upon initial readings. I
have attempted to signal such detailed arguments. (Examples of proofs where such detail
occurs include those of Theorem 1.4.1, Theorem 1.4.2, and Theorem 3.6.15; in these cases,
I attempted to structure each proof so that the most detail-intensive portions occur in the
latter part of the proof.)

Contents and use
A primary axis along which this book is organized is a presented procession of compu-
tational models, which are mathematical descriptions of computing devices. Following a
time-honored tradition, the book begins by considering relatively restricted models called
finite-state automata, which can process their inputs only by reading and with a finite
amount of memory. These models are the subjects of Chapter 1; although restricted, they
are well motivated and appealing in their own right, and provide meaningful preparation for
the subsequent development. Chapter 2, on computability theory, introduces and studies the
Turing machine model as a formalization of the notion of algorithm, and as representative
of a fully fledged computational model. Complexity theory, the study of resource-bounded
computation, is covered in Chapters 3 and 4. Chapter 3 studies time-bounded computation;
polynomial-time deterministic computation is presented as a formalization of efficient com-
putation, and the framework of NP-completeness complements it by offering an avenue for

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Preface xi

showing negative results. Chapter 4 presents a selection of further topics from complexity
theory: space-bounded computation, hierarchy theorems, and parameterized complexity
theory.

In writing this book, efforts were made to minimize dependencies between sections,
so as to promote modularity and allow for multiple pathways through the material. Some
suggestions as to how this book could be used in courses are as follows:
• A course covering automata, computability, and complexity could cover Sections 1.1–

1.4 and 1.6; Sections 2.1–2.6 and 2.8; and, Sections 3.1–3.6, along with a selection of
the reductions in Sections 3.8. Other sections could be added in optionally.

• A course focused on computability and complexity could cover Sections 2.1–2.8,
Sections 3.1–3.7, and a selection of the reductions in Section 3.8. Other sections could
be added in optionally.

• A course focused on complexity could cover Sections 2.1, 2.2, and 2.6; all Sections of
Chapter 3, with a selection of reductions made from Section 3.8; and, a selection of
topics from Chapter 4.

The beginning of Section 3.8 contains guidance on how one might form a selection of
reductions, from this section, for study: see Remark 3.8.2.

The dependencies between the sections of Chapters 1 through 3 were shown in
Figure 0.0.1 (a few pages ago). Let us describe the ways in which each section of Chap-
ter 4 depends on prior sections. Section 4.1 depends on the same sections as Section 3.2
does—namely, Sections 2.1, 2.2, and 2.6; acquaintance with Section 3.2 is also useful for
studying Section 4.1. Section 4.2 depends on Sections 3.2 and 4.1, and also, in a basic
way, on Section 2.3. Sections 4.3 and 4.4 are intended to be read in sequence; they mainly
depend on Section 3.2, although a general acquaintance with NP-completeness as pre-
sented in Chapter 3 is helpful. Section 4.5 depends on Section 3.2, and expects general
knowledge of NP-completeness; familiarity with Section 4.3 is also of aid.

For the most part, I believe that this book’s mathematical conventions are fairly standard.
But there is one deviation from the norm that I wish to directly address here. In this book’s
treatment of complexity theory, where it would usually be said that a language is in P ,
where P denotes the class of polynomial-time computable languages, I say adjectivally
that the language is PTIME or that it is a PTIME language. I similarly state that a language
is NP or is coNP where the norm would be to say that the language is in NP or in coNP ,
respectively; here, NP and coNP denote the suggested complexity classes. My personal
experience from teaching this book’s material is that each instance of non-uniformity in
presentation forms a potential stumbling block and a potential source of confusion for the
student. In my view, the use of class notation in complexity theory forms such a stumbling
block, as it is not at all standard to use class notation in automata theory or in computabil-
ity theory: the tradition is to say adjectivally, for example, that a language is regular, as

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

xii Preface

opposed to saying that it is in the class of regular languages; indeed, it is atypical to intro-
duce a notation for denoting the class of regular languages. In favor of uniformity and
consistency, I opted to maintain the adjectival approach in the treatment of complexity the-
ory. I elected use of the adjective PTIME over the shorter alternative P due to its higher
readability and higher descriptiveness. Despite these adjustments to the norm, due to the
prevalence of class notation in complexity theory at large, I often show how statements can
be alternatively presented using class notation where it is natural to do so.

Acknowledgments
For their feedback of many forms, I thank Eric Allender, Ilario Bonacina, Ronald de
Haan, Montserrat Hermo, Neil Immerman, Bart M. P. Jansen, Jari J. H. de Kroon, Vic-
tor Lagerkvist, Benoit Larose, Moritz Müller, George Osipov, Riccardo Pucella, Friedrich
Slivovsky, Johan Thapper, and Harry Vinall-Smeeth. I extend special thanks to Moritz
Müller for aiding with a wide range of queries, and for discussions on how to approach a
number of the covered topics. Curt Alexander, Christine Cuoco, and Joe Halpern provided
useful advice for which I am grateful. I thank my editor Elizabeth Swayze for all of her
patience and kind help.

I thank all of my teachers, in general; of all of them, I’ll explicitly name my doc-
toral advisor, Dexter Kozen, to whom I’m grateful for sharing with me an abundance of
mathematics, computer science, and ideas about exposition.

I thank my mother and my father for their continued support. For their generous
and warm hospitality during a crucial stage of writing, I express gratitude to my in-
laws Harumi-san, Tsuneo-san, Mika-san, Michio-san, and their family; I’ll always fondly
remember all of the time that we spent together. I am indebted to my mother-in-law Mariko
for her extensive and sustained help during the final years of this project. For their com-
panionship over many of this project’s varied phases, I thank my wife Mayumi for her
humor and backing, and for extending her decision-making capacities; and I thank my son
Noah for all of his instinct, laughter, and curiosity. I thank my daughter Arisa for joining
us in this world with a signature energy after this book’s final draft was submitted, and
for not waiting very long to begin smiling. Ari-chan, Noah-kun, and Mayumi, this book is
dedicated to you.

Hubie Chen
London, 2022

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Introduction

Just as the natural sciences aim to uncover, abstract out, and understand fundamental laws
of nature, the theory of computation aims to distill and analyze basic principles governing
computational phenomena—in particular, to understand both the capabilities and limita-
tions of computation. This book strives to provide a solid grounding in the core concepts
of this theory as it has been developed thus far.

This book’s material is motivated by the following two focal questions:
• What is computable?
• What is efficiently computable?

We will interpret, approach, and answer these questions mathematically. In doing so, we
will engage with a beautiful and intricate tapestry of ideas and concepts, which, we will
argue, are of a timeless, indelible character. However, in order to initiate our acquaintance
with this tapestry, these questions need to be made precise and we need to elucidate a
couple of points.

First, we need to qualify the what in these questions, by specifying which things we will
classify as being computable or not, and as being efficiently computable or not. Languages
are the objects that we will focus on classifying in this way, where a language is a set of
strings—fortunately, we will be able to give formal definitions of these notions relatively
readily. A language can be alternatively viewed as a so-called decision problem, which
provides an infinitude of yes-or-no questions: given as input a string x, decide whether or
not x belongs to the language. As we will see, the definition of language is sufficiently
generic that we will be able to take various sets of objects and encode them as languages—
for example, sets of graphs, or sets of natural numbers.

Next, we need to define what it means for a language to be computable or efficiently com-
putable. Robust definitions of these notions emerged in the first half and second half of the
twentieth century, respectively. Presenting these definitions requires some development: to
arrive at them, we will present and study so-called computational models (also known as
models of computation), which are abstract, mathematically defined models of computing
devices. For example, the first and simplest computational model that we will encounter is

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

xiv Introduction

the deterministic finite automaton (DFA). Each DFA M renders a judgement of acceptance
or rejection on every input string, and thus has an associated language: its set of accepted
strings, denoted by L(M). A language is defined as regular when there exists a DFA M
such that it is equal to L(M). In this way, the DFA model gives rise to and defines the class
of regular languages, the simplest language class with which we will engage. By enrich-
ing this model, we will reach a model known as the Turing machine, different versions of
which will be seen to define the computable languages and the languages considered to be
efficiently computable.

The interplay between computational models and the language classes that they define
is an overarching theme of this book. In particular, for each of the various models, we
endeavor to understand the range of its language class, which yields insight into the nature
and capabilities of the model. At the same time, we develop tools so that, when confronted
with a language of interest, we may attempt to classify it within our taxonomy by trying
to understand which classes it does and does not fall into. In essence, performing such
classification makes precise what form of computing machinery is needed, or not needed,
to cope with the language and its accompanying decision problem.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Agreements

Here, we present some definitions that will be basic for our study; we also set down some
of the conventions to be used during our presentation.

Alphabets, strings, and languages
An alphabet is a nonempty finite set, typically denoted by capital Greek letters such as ⌃
and �. Here are three examples of alphabets:
• ⌃1 = {0, 1},
• ⌃2 = {0, 1, 2, …, 9},
• ⌃3 = {a, b, c}.

We refer to the elements of an alphabet as symbols. We tend to use the term alphabet to
refer to a set having the specified properties when we form strings over the set.

A string over an alphabet ⌃ is a finite-length sequence of symbols from ⌃; the length
of a string x is its length as a sequence, and is denoted by |x|. As examples:
• abbaba is a string of length 6 over the alphabet {a, b},
• 31415926 is a string of length 8 over the alphabet {0, 1, 2, …, 9}.

By convention, there is a unique string of length 0 (over any alphabet), which is called
the empty string and denoted ✏. It is always assumed that ✏ does not occur as a symbol
in an alphabet; that is, for each alphabet ⌃, we assume that ✏ 62 ⌃. Note that we write the
symbols of a string contiguously, without any separating marker. When x is a string of
length m, we often use x1, …, xm to denote its constituent symbols, so that x = x1…xm.

When x = x1…xm is a string of length m and y = y1…yn is a string of length n, the
concatenation of x and y is the string x1…xmy1…yn of length m + n, and is denoted by xy
or x · y. Observe that for any string x, it holds that ✏x = x✏ = x. When x is a string and k � 0,
we use the exponentiation notation xk to denote the concatenation of x with itself k times:

xk = x · x · · · · · x| {z }
k

.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

xvi Agreements

By a usual and useful convention, for any string x, we consider x0 to be the empty string ✏.
By default, in working with strings, exponentiation is evaluated prior to other concatena-
tion. So for example, over the alphabet ⌃ = {a, b}, we have bab2a3a = babbaaaa.

A string x is a prefix of another string y if there exists a string v such that y = xv. A
string x is a substring of another string y if there exist strings u, v such that y = uxv. For
example, consider the string abcd; its prefixes are ✏, a, ab, abc, and abcd, and its length 2
substrings are ab, bc, and cd. Observe that for any string y, it holds that each of the strings ✏
and y is both a prefix and a substring of y, and indeed it holds that each prefix of y is a
substring of y.

When x is a string over alphabet ⌃ and a 2 ⌃, we use the notation #a(x) to denote the
number of occurrences of the symbol a in the string x. Over the alphabet ⌃ = {0, 1}, for
example, we have #0(01101) = 2, #1(01101) = 3, #0(10516) = 5, and #1(10516) = 7.

When ⌃ is an alphabet, we use ⌃⇤ to denote the set of all strings over ⌃. As examples:
• For ⌃4 = {a, b}, we have ⌃⇤

4 = {✏, a, b, aa, ab, ba, bb, aaa, …}.
• For ⌃5 = {0}, we have ⌃⇤

5 = {✏, 0, 00, 000, …}.

In both cases, we have explicitly presented some initial elements of ⌃⇤ according to a
length-increasing ordering. We note that, when ⌃ is an alphabet, the set ⌃⇤ is always
countably infinite.

A language over an alphabet ⌃ is a set of strings over ⌃; equivalently, a language
over ⌃ is a subset of ⌃⇤. When B is a language over alphabet ⌃, its complement, denoted
by B, is defined as ⌃⇤ \ B, that is, as the complement of B with respect to ⌃⇤; whenever we
refer to the complement of a language, the alphabet ⌃ should be clear from the context.
A language B over alphabet ⌃ is trivial if B = ; or B = ⌃⇤, and is nontrivial otherwise.
Observe that a language is trivial if and only if its complement is.

Conventions
Here, we present mathematical notions and notation to be used throughout the book.

We use the notation N to denote the set of natural numbers {0, 1, 2, …}. A natural
number is positive if it is not equal to 0; we use the notation N+ to denote the set of
positive natural numbers {1, 2, 3, …}. By default, we assume all numbers under discussion
to be natural numbers, unless mentioned otherwise. By a unary representation or a unary
encoding of a natural number n, we refer to a string cn containing n occurrences of a
symbol c; typically, c is taken to be the symbol 1. For our purposes, a multiple of a natural
number d 2 N is a natural number that can be expressed in the form d · k where k 2 N;
here, with d · k we denote the product of d and k. As an example, the five initial multiples
of 4 are 0, 4, 8, 16, and 20. When d and n are natural numbers, we say that d is a divisor
of n if n is a multiple of d, and that d is a proper divisor of n if, in addition, it holds
that 1 < d < n. A prime number is defined as a natural number that is greater than or
equal to 2 and that has no proper divisor.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Agreements xvii

When B and C are sets, B is a subset of C if each element of B is an element of C; B is
a proper subset of C if, in addition, B is not equal to C. We write B ✓ C to indicate that B
is a subset of C, and B (C to indicate that B is a proper subset of C.

The power set of a set C is denoted by }(C), and is defined as the set containing as
elements all subsets of C; that is, }(C) = {B

�� B ✓ C}. For example, we have

}({1, 2, 3}) = {;, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Observe that, for any set C, the empty set ; and C itself are both elements of }(C). When C
is a set, we use }fin(C) to denote {B

�� B ✓ C and B is a finite set}, that is, the subset of }(C)
whose elements are the finite sets in }(C).

The product of two sets B and C, denoted B ⇥ C, is the set of pairs (b, c) where the first
coordinate b is an element of B, and the second coordinate c is an element of C. That is,

B ⇥ C = {(b, c)
�� b 2 B, c 2 C}.

For example,

{1, 2} ⇥ {1, 2, 3} = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}.

More generally, the product of a finite sequence of sets B1, …, Bk, denoted B1 ⇥ · · ·⇥ Bk,
is the set of tuples

B1 ⇥ · · ·⇥ Bk = {(b1, …, bk)
�� b1 2 B1, …, bk 2 Bk}.

Note that tuples are considered to be ordered; so, for example, (1, 2) and (2, 1) are
considered to be distinct tuples.

Let B be a set and let k be a natural number. We use Bk to denote the k-fold product

B ⇥ · · ·⇥ B| {z }
k

.

For any set B, we consider B0 to be the set containing a single tuple, called the empty tuple.
A k-ary relation on B is defined as a subset of Bk. A 2-ary relation is also called a binary
relation. When R is a binary relation on B, we will sometimes use the infix notation aRb
to indicate that (a, b) 2 R. Examples of binary relations on a set B include the empty set ;;
the equality relation on B, which is the set {(b, b)

�� b 2 B}; and, the set B ⇥ B.
Let f : A ! B be a function. We use f [c 7! d] to denote the function that maps c to d,

and otherwise behaves as f does, mapping each element a 2 A \ {c} to f (a). On occasion,
we extend this notation, by using f [c1 7! d1, …, ck 7! dk] to denote the function that maps
each ci to di, and maps each element in a 2 A \ {c1, …, ck} to f (a). Whenever this extended
notation is used, the values c1, …, ck will be pairwise distinct.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

1 Automata Theory

One for sorrow,
Two for mirth,

Three for a wedding,
Four for birth . . .

— Traditional nursery rhyme

Our story commences with the study of finite-state automata, computational models that
are quite restricted in that each automaton can only use a bounded amount of memory and
processes an input string by reading it once from left to right. Although relatively simple,
they will allow us to encounter and explore, in a gentle fashion, a number of the themes that
will recur in our study of computation—for instance, they will provide our first exposure to
nondeterminism, a concept at the heart of the P versus NP question in complexity theory.
They also enjoy applications, for example, in text searching and parsing. Moreover, they
give rise to a theory that is elegant and appealing in its own right.

1.1 Deterministic finite automata

We begin by presenting our first computational model: the deterministic finite automaton
(DFA). A DFA contains a finite set of states, which represent its only memory; one state is
designated the start state. Given an input string, a DFA begins in its start state and reads
in one symbol of the string at a time. Each time a symbol is read, the automaton discretely
changes state based on its current state and the read symbol; the way in which the state is
changed is specified by a transition function. After having read all symbols of a string, a
DFA accepts or rejects the string based on whether or not its final state is an accept state.
We proceed to the formal definition of this model.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

2 Chapter 1

Definition 1.1.1. A deterministic finite automaton (DFA) is a 5-tuple M = (Q,⌃, s, T , �)
where
• Q is a finite set called the state set, whose elements are called states,
• ⌃ is an alphabet called the input alphabet,
• s 2 Q is a state called the start state or initial state,
• T ✓ Q is a set of states, where each member is called an accept state, and
• � : Q ⇥ ⌃ ! Q is a function called the transition function.

To get a feel for this model, we consider some examples.

Example 1.1.2. As a first example of a DFA, take the set of states to be Q = {0, 1, 2}; the
input alphabet to be ⌃ = {a, b}; the initial state s to be 0; and the set of accept states T to
be {2}. We give the transition function � by the following table:

� a b
0 0 1
1 1 2
2 2 2

When specifying a DFA, we must specify all five of its parts! We have just done this by
giving each of the parts individually. There is another convenient and often intuitive way
to specify a DFA, namely, drawing a diagram. The following is a diagram for the example
DFA just given, drawn under the conventions we will use:

0 1 2
b b

a a

a, b

In general, we form the diagram for a DFA as follows. Each state is placed in a circle;
the initial state is indicated by an unlabeled arrow that points to it; and each accept state
has a double circle placed around it. Each transition �(p, c) = q is indicated by drawing
an arrow from the state p to the state q, with label c. Multiple transitions having the same
source and target states are indicated using the same arrow, but with multiple labels; for
example, in the diagram above, the transitions �(2, a) = 2 and �(2, b) = 2 are indicated by
a single arrow from the state 2 to itself having the two labels a and b.

Let us explain how this DFA processes strings. As an opening example, consider the
string bab. The DFA begins in its start state 0. It reads the initial symbol b, and makes a
transition to the state �(0, b) = 1, that is, the state that the transition function yields when
fed the current state with the seen symbol. Once in state 1, the DFA then reads the sec-
ond symbol a, and makes a transition to the state �(1, a) = 1, so it effectively stays in the
same state. It then reads the final symbol b, and makes a transition from state 1 to the

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 3

state �(1, b) = 2. At this point, the DFA has fully processed the string, and has ended up in
the state 2, which is an accept state; thus, the string bab is said to be accepted. As another
example, consider the string aba. To process this string, the DFA begins in state 0; it reads
the initial symbol a and remains in state 0; it then reads the second symbol b and transi-
tions to state 1; and it then reads the final symbol a and terminates in state 1. As state 1 is
not an accept state, the string aba is said to be rejected. Verify further for yourself that the
strings ab and ba are rejected, and that the string abba is accepted.

There is a simple description of the strings that are accepted by this DFA; to arrive at it,
let us contemplate the transition function. When this DFA reads the symbol a, it does not
change state. When this DFA reads the symbol b, from state 0 or 1, it increments its state
by one, proceeding to state 1 or 2, respectively; from state 2, it remains in state 2. In effect,
the state of the DFA counts the number of b symbols that it has seen so far, up to 2; once
it reaches the state 2, it remains there. As this DFA only accepts strings that cause it to
terminate in state 2, it accepts precisely each string that contains two or more occurrences
of the symbol b.

Example 1.1.3. We present a second example of a DFA, where each state is a pair. This
DFA has state set

Q = {(E, E), (E, O), (O, E), (O, O)},

input alphabet ⌃ = {a, b}, initial state s = (E, E), and set of accept states T = {(E, E)}, so
the initial state is the unique accept state. The following table gives the transition function:

� a b
(E, E) (O, E) (E, O)
(E, O) (O, O) (E, E)
(O, E) (E, E) (O, O)
(O, O) (E, O) (O, E)

A diagram for this DFA is as follows:

(E, E) (E, O)

(O, E) (O, O)

b

b

b

b

a a a a

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

4 Chapter 1

What does this DFA do? Each of its states consists of two components; each of these
components can be either E or O. Whenever the symbol a is read, the first component
toggles between E and O; similarly, whenever the symbol b is read, the second component
toggles between E and O. In effect, the first component keeps track of whether or not the
number of a’s seen is even or odd, and the second component keeps track of whether or
not the number of b’s seen is even or odd. (The even natural numbers are 0, 2, 4, … and
the odd natural numbers are 1, 3, 5, ….) When the DFA has not yet read any symbols, both
the number of a’s seen and the number of b’s seen are equal to 0, an even number; this
observation accords with the initial state being (E, E). Since the only accept state is (E, E),
a string is accepted by this DFA if and only if its number of occurrences of a and its number
of occurrences of b are both even.

Remark 1.1.4. The particular names given to states in a DFA are, in a sense, immaterial
to the DFA’s functioning. Suppose that a DFA is modified by renaming its states, and
adjusting its other parts correspondingly; in terms of the DFA’s diagram, this amounts to
just changing the name of each state inside each state’s circle. Then, on any input string, the
modified DFA makes transitions corresponding to those of the original DFA, and accepts a
string if and only if the original DFA does.

Example 1.1.5. As another example, consider the DFA having state set Q = {0, 1, 2},
input alphabet ⌃ = {a, b}, initial state s = 0, accept states T = {0, 1}, and the following
transition function:

� a b
0 1 0
1 2 0
2 2 0

The following is a diagram for this DFA:

0 1 2
a a

b

b

b

a

Let us consider how this DFA treats a few example strings. On the string aa, the DFA
terminates in state 2, and rejects. On the string aba, the DFA terminates in state 1, and
accepts. And on the string aaaba, the DFA also terminates in state 1, and accepts.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 5

Which strings are accepted by this DFA? When the symbol a is read in state 0 or 1, this
DFA increments its state by 1; when the symbol a is read in state 2, this DFA remains in
state 2. When the symbol b is read, however, the DFA always resets its state to 0. Following
these observations, it can be seen that the DFA will be in state 2 precisely when the last
two symbols read are a, that is, if the string read thus far ends with aa. This DFA, however,
accepts if it terminates in state 0 or 1; therefore, it accepts a string if and only if the string
does not end with aa.

We now introduce the notion of a configuration of a DFA, which will be very useful
to reason about DFA behavior. In fact, as our study proceeds, we will define a notion of
configuration for each computational model to be considered. In general, a configuration
captures everything about a computation, at a given moment in time, that is relevant to
know how the computation will proceed. In the case of a DFA, this amounts to the state
that the DFA is in, and the portion of the string that has not yet been read.

We also introduce the notion of the initial configuration of a DFA on a string, and
the successor configuration of a configuration of a DFA, which formalizes how the DFA
processes a single symbol.

Definition 1.1.6. Let M = (Q,⌃, s, T , �) be a DFA.
• A configuration of M is a pair [q, y] consisting of a state q 2 Q and a string y 2 ⌃⇤.
• The initial configuration of M on a string y 2 ⌃⇤ is the configuration [s, y].
• The successor configuration of a configuration [q, y] of M is defined when |y| � 1 (that

is, when y is not the empty string ✏); in this case, denoting y by ax with a 2 ⌃ and
x 2 ⌃⇤, the configuration [�(q, a), x] is the successor configuration of [q, y].

So relative to a DFA, when the successor configuration of a configuration [q, y] is
defined, it is obtained by removing the string y’s leftmost symbol a, and replacing the
state q with the state �(q, a).

Example 1.1.7. Consider the DFA M from Example 1.1.2. The initial configuration of M
on the string bab is [0, bab]. The successor configuration of the configuration [0, bab]
is [1, ab]; the successor of [1, ab] is [1, b]; the successor of [1, b] is [2, ✏]; and the
configuration [2, ✏] has no successor configuration, as its string is the empty string.

We next introduce notation to discuss configurations of a DFA M; in particular, we intro-
duce binary relations on the set of configurations. However, before proceeding to this, a
remark is in order. A configuration of a DFA has at most one successor configuration; we
accordingly speak of the successor configuration of a configuration of a DFA. In the fol-
lowing definition, however, we speak of a successor configuration of a configuration; this is
because we will want to reuse this definition, and employ it to discuss other computational
models (in particular, nondeterministic models) where a configuration may have more than
one successor configuration.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

6 Chapter 1

Definition 1.1.8. Let ↵ and � be configurations of M.
• We write ↵ `M � if � is a successor configuration of ↵.
• For each n � 0, we write ↵ `

n
M � if � can be obtained by starting from ↵ and itera-

tively taking a successor configuration n times. That is, we write ↵ `
n
M � if there exist

configurations �0, �1, …, �n such that �0 = ↵, �n = �, and �0 `M �1 `M · · · `M �n.
• We write ↵ `

⇤
M � if there exists n � 0 such that ↵ `

n
M �. (Note that we can view the

relation `
⇤
M as the union

S
n�0 `

n
M of the relations `n

M .)

In using this notation, we sometimes omit the M subscript when the context allows.

Remark 1.1.9. In Definition 1.1.8, the relations `
n
M may be equivalently defined by

induction, as follows:
• It holds that ↵ `

0
M � if and only if ↵ = �.

• For each n > 0, it holds that ↵ `
n
M � if and only if there exists a configuration � such

that both ↵ `M � and � `
n–1
M � hold.

Example 1.1.10. Consider again the DFA M from Example 1.1.2. Let us continue
the discussion of Example 1.1.7; from the observations made there, we may write the
following:

[0, bab] `M [1, ab] `M [1, b] `M [2, ✏].

Having seen this, we may give the following examples of the notation presented in
Definition 1.1.8:

[1, ab] `0
M [1, ab], [0, bab] `3

M [2, ✏],

[1, ab] `1
M [1, b], [1, b] `⇤

M [1, b],

[1, b] `1
M [2, ✏], [1, ab] `⇤

M [2, ✏],

[0, bab] `2
M [1, b], [0, bab] `⇤

M [1, b],

[1, ab] `2
M [2, ✏], [0, bab] `⇤

M [2, ✏].

We will often refer to a particular realization of a computational model—for example,
a particular DFA—as a machine. In general, we refer to the process by which a machine
operates on an input string as a computation. We also use the term computation to refer in
particular to a sequence containing all configurations that a machine passes through when
invoked on an input string; in the case of a DFA, such a sequence begins with an initial
configuration, and ends with a configuration having no successor.

Example 1.1.11. Let M again be the DFA from Example 1.1.2. The following are
examples of computations of this DFA M:

[0, bab] `M [1, ab] `M [1, b] `M [2, ✏],

[0, aba] `M [0, ba] `M [1, a] `M [1, ✏].

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 7

Let M = (Q,⌃, s, T , �) be a DFA, let y be a string of length n, and let q 2 Q be a state.
Starting from the configuration [q, y], we may iteratively take the successor configuration n
times; in doing so, each time we take the successor configuration, it is unique, and its string
is the string of its predecessor configuration with the first symbol removed. We thus have
the following observation, which we will use tacitly throughout our discussion: for each
value k with 0 k n, there is a unique configuration � such that [s, y] `k

M �, and the
string component of � is equal to y with its first k symbols removed.

We may now define formally what it means for a string to be accepted or rejected by
a DFA. This status is determined by the state that the DFA arrives at after processing the
string, when it begins from the respective initial configuration.

Definition 1.1.12. Let M = (Q,⌃, s, T , �) be a DFA. Let y 2 ⌃⇤ be a string of length n,
and let q 2 Q be the unique state such that [s, y] `n

M [q, ✏].
• If q 2 T , we say that M accepts y.
• If q 62 T , we say that M rejects y.

We define the language of M, denoted by L(M), to be {y 2 ⌃⇤
�� M accepts y}.

Although it may seem that we are merely formalizing notions that are intuitively clear,
there are at least a couple of reasons why we want to make fully precise and formal the
components and behavior of a DFA. First, a true formalization will allow us to rigorously
prove theorems and results about DFA, for example, impossibility results demonstrating
the limitations of DFA. We would be hard-pressed to prove limitations on a computational
model that was not well-defined! Second, the process of formalization that we have carried
out for DFA offers us gainful practice and preview for the study that follows, in which we
will formalize increasingly complex computational models—not all of which are, by any
means, as simple or transparent as the DFA.

As we have just seen, each DFA M gives rise to a language L(M), which we call the
language of M or the language decided by M. We will want to discuss in an aggregate
fashion all of the languages thusly arising, and hence give the following name to a language
decided by a DFA.

Definition 1.1.13. A language B is regular if there exists a DFA M where B = L(M).

That is, a language is regular if there is some DFA that decides it. We have here identified
a class of languages: each language is either regular, or it is not. Having been provided this
definition, perhaps the most basic question that one could proceed to ask is whether or not
there is a language that is not regular. (If there is no such language, our definition would be
somehow trivial: in this case, the identified class of languages would simply be the class of
all languages.) At the risk of quashing the suspense, it can be reported here that there are
indeed languages that are not regular. Perhaps the most classic example of a language that
is not regular is

{anbn �� n � 0} = {✏, ab, aabb, aaabbb, …}.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

8 Chapter 1

In words, a string is in this language if it begins with some number of a’s, followed by the
same number of b’s. Later in this chapter, we will acquire techniques for proving that this
language and others are not regular.1

1.2 Closure properties

We just defined the class of regular languages in terms of the DFA computational model.
As we encounter further computational models, we will correspondingly define further
classes of languages. One basic type of question that we will ask, for each of these var-
ious classes of languages, is whether or not they possess certain closure properties. For
example, in a moment we will ask whether or not the regular languages are closed under
complementation, that is, whether or not the complement of an arbitrary regular language
is always itself regular. Given a class of languages, one can indeed inquire about closure
under any operation defined on languages: the class is closed under such an operation if,
whenever the operation is applied to a language or languages from the class, the resulting
language is also in the class. Understanding the closure properties of a class of languages
gives us insight into the internal structure of the class, and can be helpful in identifying
whether a particular language is inside or outside of the class.

In this section, to show closure properties of the regular languages, we demonstrate
that operations on regular languages can be effected by performing respective operations
on DFA. This pattern exemplifies our general approach to showing closure properties of
language classes: the typical language class that we study is defined from a group of
machines, and so establishing closure properties on the class is naturally performed by
defining operations on the machines.

1.2.1 Complementation
We begin by considering the operation of complementation. What would it mean for the
regular languages to be closed under complementation? Let us recall that a language is
regular if there exists a DFA that decides it. Hence, closure under complementation would
mean that for an arbitrary DFA M, it is possible to design a second DFA M0 that decides
the complement of L(M). By definition of the complement, the DFA M0 should reject each
string that is accepted by M, and accept each string that is rejected by M: its final judgment
should always be the polar opposite of that of M. It is indeed always possible to design
such a DFA M0, by starting with M, and swapping the acceptance status of each of the
states: a state is accepting in M0 if and only if it was not accepting in M.

Theorem 1.2.1. If B is a regular language over the alphabet ⌃, then its complement B is
also a regular language.

1. Intuitively speaking, in order to check if a string is in this language by scanning the string from left to right, it is
necessary to first count the number n of a’s that occurs, and then ensure that the number of b’s that follow is equal
to n; a DFA, however, cannot count up to an arbitrary natural number, and hence cannot decide this language.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 9

Proof. Since B is a regular language, there exists a DFA M = (Q,⌃, s, T , �) such that
L(M) = B. Define M0 = (Q,⌃, s, T 0, �) be the DFA that is identical to M except that its
set T 0 of accept states is Q \ T .

We claim that L(M0) = B. The DFA M and M0 have the same set of states and the same
transition function; by a review of Definition 1.1.6, one sees that they have the same con-
figurations and also the same notion of successor configuration, that is, the relations `M

and `M0 are equal. So, for any string x 2 ⌃⇤ of length n, if we let q 2 Q be the unique state
such that [s, x] `n

M [q, ✏], then [s, x] `n
M0 [q, ✏] also holds. We have that q 2 T if and only

if q 62 T 0, so x is accepted by M if and only if x is rejected by M0, yielding the claim.

1.2.2 Intersection and union
We next consider closure under intersection; the regular languages satisfy this closure
property, in the following formalization.

Theorem 1.2.2. If B and C are both regular languages over the same alphabet ⌃, then
their intersection B \ C is also a regular language.

Let MB = (QB,⌃, sB, TB, �B) be a DFA with L(MB) = B, and let MC = (QC,⌃, sC, TC, �C)
be a DFA with L(MC) = C. To establish the theorem, our mission is to construct a DFA
that decides B \ C. How are we to do this? In particular, what should the state set of our
new DFA be? A natural idea is the following: as the new DFA processes a string, its state
keeps track of both the state that the first DFA MB would be in, as well as the state that the
second DFA MC would be in. This can be accomplished naturally by taking the state set of
the new DFA to be the product QB ⇥ QC of the state sets of the original two DFA.

In a construction typically referred to as the product construction, we use the DFA MB

and MC to define a DFA M = (Q,⌃, s, T , �), as follows:

Q = QB ⇥ QC,

s = (sB, sC),

T = TB ⇥ TC,

�((qB, qC), a) = (�B(qB, a), �C(qC, a)).

Why do the definitions of the other parts make sense? The start state s should indicate
where each of the original DFA start; hence, we take the pair consisting of the start states
of those DFA. The new DFA M should accept a string precisely when both of the original
DFA accept the string. Hence, its set of accept states should contain all state pairs such
that the first state is accepting in MB, and the second state is accepting in MC; this can be
expressed as the product TB ⇥ TC. Finally, when a symbol is read and the new DFA M is
in the state (qB, qC), the first component qB should be updated according to the transition
function �B, and analogously the second component qC should be updated according to the
transition function �C. Figure 1.2.1 provides an example of this construction.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

0 1 2

E

D

(E, 0) (E, 1) (E, 2)

(D, 0) (D, 1) (D, 2)

M1

M2

a, b a
b

b

b

a

a

a

a

b
a

a

a, b a

b a, b

b bb

Figure 1.2.1. Example of the product construction on DFA. Here, the construction is applied to the
shown DFA M1 = (Q1,⌃, s1, T1, �1) and M2 = (Q2,⌃, s2, T2, �2); each is over the alphabet ⌃ = {a, b}.
The state sets of these two DFA are Q1 = {E, D} and Q2 = {0, 1, 2}; the state set of the resulting
DFA is Q1 ⇥ Q2. The start state of the resulting DFA is the pair (E, 0) obtained by pairing the start
states of the original two DFA. The set of accept states of the resulting DFA is the product T1 ⇥ T2,
which is equal to {E} ⇥ {1, 2} = {(E, 1), (E, 2)}. The transition function � of the resulting DFA,
when applied to a pair and a symbol, is defined to yield the applications of the transition functions �1

and �2 to the respective pair entries, along with the symbol; as one example transition according to �,
we have �((E, 1), b) = (�1(E, b), �2(1, b)) = (D, 2).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 11

In order to prove, as desired, that the language of M is the intersection B \ C, we first
establish a lemma showing that M behaves as claimed: from a state (qB, qC), after a string y
is processed, the resulting state is the pair consisting of
• the state that MB would end up in after processing y from qB, and
• the state that MC would end up in after processing y from qC.

Lemma 1.2.3. Let y 2 ⌃⇤ be a string of length n; let qB 2 QB and qC 2 QC be arbi-
trary states; and let rB 2 QB and rC 2 QC be the unique states where [qB, y] `n

MB
[rB, ✏]

and [qC, y] `n
MC

[rC, ✏]. Then, it holds that [(qB, qC), y] `n
M [(rB, rC), ✏].

Proof. We prove this by induction on n.
When n = 0, we have y = ✏, qB = rB, and qC = rC, from which the claim can be seen.
When n > 0, write y = ax where a 2 ⌃ and x 2 ⌃⇤; Figure 1.2.2 shows a diagram

indicating the setup and the result for this case. Define

q0
B = �B(qB, a) and q0C = �C(qC, a).

We have

[qB, ax] `MB [q0
B, x] `n–1

MB
[rB, ✏] and [qC, ax] `MC [q0

C, x] `n–1
MC

[rC, ✏].

We also have, from the definition of �, that

[(qB, qC), ax] `M [(q0B, q0C), x].

By appeal to induction, we obtain from [q0B, x] `n–1
MB

[rB, ✏] and [q0C, x] `n–1
MC

[rC, ✏] that

[(q0B, q0C), x] `n–1
M [(rB, rC), ✏].

Combining the previous two results, we obtain [(qB, qC), ax] `n
M [(rB, rC), ✏].

Proof of Theorem 1.2.2. Let x 2 ⌃⇤ be a string of length n. By Lemma 1.2.3, when we
define rB and rC to be the states such that [sB, x] `n

MB
[rB, ✏] and [sC, x] `n

MC
[rC, ✏], we

obtain [(sB, sC), x] `n
M [(rB, rC), ✏]. We then have

x 2 B \ C , x 2 L(MB) \ L(MC) (by the choices of MB and MC)

, rB 2 TB and rC 2 TC (by the definition of acceptance for MB and MC)

, (rB, rC) 2 TB ⇥ TC (by the definition of the set product TB ⇥ TC)

, (rB, rC) 2 T (by the definition of T)

, x 2 L(M) (by the definition of acceptance for M).

We next consider closure under union; once again, we have that the class of regular
languages enjoys this closure property.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

qC q0
C

rC

qB

q0
B

rB

(qB, qC)

(q0
B, q0C)

(rB, rC)

a x

a

x

a

x

MB

MC

M

Figure 1.2.2. The setup and desired result of the inductive step in the proof of Lemma 1.2.3. The
string y is viewed as the concatenation of a and x, where a 2 ⌃ is a single symbol and x 2 ⌃⇤ is
a string. In the DFA MB, from the state qB, reading the symbol a leads to the state q0

B, and then
reading the string x leads to the state rB. Similarly, in the DFA MC, from the state qC, reading the
symbol a leads to the state q0

C, and then reading the string x leads to the state rC. It follows that, in
the DFA M, from the state (qB, qC), reading the symbol a leads to the state (q0

B, q0
C), and by induction,

subsequently reading the string x leads to the state (rB, rC).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 13

Theorem 1.2.4. If B and C are both regular languages over the same alphabet ⌃, then
their union B [C is also a regular language.

At this point, there are a couple of ways that we may prove this theorem.
One way to proceed is to directly present a DFA, as was done for the previous theo-

rem. Namely, we can directly describe, given two DFA MB and MC, a DFA M0 whose
language L(M0) is equal to L(MB) [L(MC). Indeed, such a DFA M0 may be defined as
identical to the DFA M above, but with the change that its set of accept states is

T 0 = {(qB, qC) 2 Q
�� qB 2 TB or qC 2 TC}.

Note that the accept states of the DFA M, namely T = TB ⇥ TC, may be equivalently
expressed as

T = {(qB, qC) 2 Q
�� qB 2 TB and qC 2 TC}.

One can see that, to define T 0, the and in this expression of T has been changed to or,
reflecting the difference in definition between the intersection and the union. Lemma 1.2.3
holds with M0 in place of M, as its statement and its proof do not refer to the set of accept
states of M. By adjusting the argumentation in the proof of Theorem 1.2.2, it can be proved
that L(M0) = L(MB) [L(MC). (We leave a verification of this to the reader.)

We may alternatively obtain that the regular languages are closed under union by
invoking the following versions of De Morgan’s laws.

Proposition 1.2.5 (De Morgan’s laws, for languages). For any languages B and C over
the same alphabet, the following hold:

(1) B [C =
�
B \ C

�
,

(2) B \ C =
�
B [C

�
.

We have already established that the regular languages are closed under intersection and
complement. So, when B and C are regular languages, the languages B and C are also
regular, implying that B \ C is regular, from which we obtain that

�
B \ C

�
is regular. By

De Morgan’s law (1), this immediately implies that B [C is regular.
Note that De Morgan’s law (1) implies that, in general, any class of languages closed

under intersection and complement is closed under union. Similarly, the dual De Morgan’s
law (2) implies that any class of languages closed under union and complement is closed
under intersection.

1.3 Nondeterministic finite automata

Nondeterminism in computation is a theoretical construct; it is not intended to faithfully
model real computers or any aspect thereof, but rather is an instrument for analysis. In
deterministic computation models, such as the DFA, how a computation evolved was
uniquely determined at each step: as long as the computation proceeded, each configuration

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

14 Chapter 1

had a unique successor configuration. In nondeterministic computation models, a con-
figuration may have multiple successor configurations, and acceptance is always defined
via the notion of possibility: a string is accepted by a nondeterministic machine if there
exists a computation which results in acceptance. This section introduces nondeterministic
finite automata (NFA), which are nondeterministic counterparts of the deterministic finite
automaton. Whereas a deterministic finite automaton has a transition function that pro-
vides a unique state, given a state and a symbol, a nondeterministic finite automaton has a
transition function that provides a set of states, given a state and a symbol.

As a theoretical construct, nondeterminism has been immensely and supremely fruit-
ful in supplying insights into the nature of computation; in particular, it has shed light and
perspective on the reach and limitations of deterministic computation. In our study of com-
plexity theory, nondeterministic computation will be used crucially to classify languages
of interest. By the end of the current section, we will have compared NFA to DFA formally
and will have shown that these two models have the same expressiveness (in a sense made
precise). An offshoot of this result is that providing an NFA for a language is an avenue for
establishing the language’s regularity. Working with NFA has the advantages that they may
be more succinct than DFA, and also that they may be easier to comprehend and maintain.

In this section, we present and study two brands of nondeterministic automata: the
nondeterministic finite automaton (NFA), and an extension thereof referred to as the ✏-NFA.

1.3.1 NFA
We begin with the definition of NFA.

Definition 1.3.1. A nondeterministic finite automaton (NFA) is a 5-tuple M =
(Q,⌃, S, T ,�) where
• Q is a non-empty finite set called the state set, whose members are called states,
• ⌃ is an alphabet called the input alphabet,
• S ✓ Q is a set of states, where each member is called a start state or an initial state,
• T ✓ Q is a set of states, where each member is called an accept state, and
• � : Q ⇥ ⌃ ! }(Q) is a function called the transition function.

Remark 1.3.2. This definition is different from the definition of a DFA in two ways. First,
there is a set of initial states S, as opposed to a single initial state. Second, the transition
function �, instead of being a mapping to the set of states Q, is a mapping to the power set
of states }(Q). So, when the transition function � is given a state and a symbol, it returns
a set of states, as opposed to a single state.

Let us achieve a first understanding of this model by examining some examples.

Example 1.3.3. As an initial example, consider the NFA M = (Q,⌃, S, T ,�) with state set
Q = {0, 1, 2}, input alphabet ⌃ = {a, b}, initial state set S = {0}, accept state set T = {2},
and the following transition function:

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 15

� a b
0 {0, 1} {0}
1 {2} ;

2 ; ;

Observe that the sets �(2, a), �(1, b), and �(2, b) are empty; that each of the sets �(1, a)
and �(0, b) contains one element; and that the set �(0, a) contains two elements.

The following is a diagram for this NFA, drawn under the conventions we will use:

0 1 2
a a

a, b

We form the diagram for an NFA in the following fashion. Mimicking our convention
for DFA, each state is placed in a circle, each initial state is indicated by an unlabeled
arrow, and each accept state is in a double circle. For each state p, each symbol c, and
each state q 2 �(p, c), the diagram includes an arrow from p to q with label c; as with
DFA, multiple labels are placed on a single arrow. Observe that the emptiness of such a
set �(p, c) translates to the diagram lacking an arrow coming out of the state p with label c.

Let us consider how this example NFA processes the string baa. It starts in state 0, which
is the only initial state. After reading the symbol b, the NFA can only transition to state 0,
as this state is the lone element in �(0, b) = {0}. From state 0, after reading in the next
symbol, a, the NFA may transition to either state 0 or 1, as �(0, a) = {0, 1}. After reading
in the last symbol a, from state 0, the NFA may transition to either state 0 or 1; from state 1,
the NFA may transition to state 2, the lone element in �(2, a) = {2}. Hence, after reading
in baa, the NFA may be in state 0, 1, or 2.

As for a DFA, a configuration of an NFA is a state paired with a string. While we will
formalize the notion of successor configuration of an NFA below, we now look at some
examples. As is consistent with the notation for DFA, the symbol ` is used between two
configurations to indicate that the configuration coming after the symbol is a sucessor
configuration of the configuration before the symbol. The following diagram shows all of
the configurations reachable when this example NFA is invoked on the string baa:

[0, baa] ` [0, aa]
`

`

[0, a]

[1, a]

[0, ✏]

[1, ✏]

[2, ✏]`

`

`

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

16 Chapter 1

How does an NFA cast a judgment of acceptance or rejection on a string? After fully
reading in the string baa, the example NFA M may be in any of its three states. Exactly one
of these three states, the state 2, is an accept state. A staunch advocate of democracy might
suggest that baa ought to be considered rejected, since the majority of these three states are
not accept states! Indeed, the fact that an NFA configuration can admit multiple successor
configurations may invite the idea of making transitions based on chance. However, for an
NFA, acceptance is defined in terms of possibility; no real notions of probability come into
play. In the case of the NFA M, a string is considered accepted when, starting from the
initial state 0, there exists a choice of transitions such that the NFA terminates in an accept
state. Thus, the string baa is regarded as accepted by the NFA M.

Next, let us consider this NFA’s behavior on the input string aba. The following diagram
shows the reachable configurations:

[0, aba]
`

`

[0, ba]

[1, ba]

[0, a]`
`

`

[0, ✏]

[1, ✏]

Note that the configuration [1, ba] has no successor configurations, since �(1, b) is empty;
from this configuration, the computation simply terminates. After processing the entire
string aba, the NFA M may be in either state 0 or state 1. As neither of these states are
accept states, the string aba is regarded as rejected.

Which strings are accepted by this NFA? The only way to transition to the accept state 2
is to read an a from state 1, and the only way to transition to state 1 is to read an a from
state 0. On the other hand, state 0 also permits transitions to itself, on each of the symbols a
and b. Clearly, each string accepted by this NFA must end with aa; moreover, any string
that ends with aa is accepted by this NFA, for the symbols prior to the final aa can be
processed by staying in state 0, and then the final aa can be processed by moving from
state 0 to state 2. Hence, the NFA accepts precisely those strings that end with aa.

It may be instructive to compare this NFA with the DFA of Example 1.1.5. That DFA’s
language is the complement of the language accepted by this NFA, but if we modify that
DFA so that 2 is its only accept state, its language becomes equal to that of this NFA. This
NFA offers a dash of expressional economy over the modified DFA: its diagram contains
only 4 arrow labels, in contrast to the DFA diagram’s 6 arrow labels!

The computation of a DFA on a string may be said to proceed in a linear fashion: each
configuration either has a unique successor configuration, or no successor configuration;
and the reachable configurations naturally form a linear sequence. On the other hand, the

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 17

computation of an NFA on a string may be said to proceed in a branching fashion: a con-
figuration may have multiple successor configurations; and the reachable configurations
naturally form a tree, as seen in Example 1.3.3.

Example 1.3.4. We consider a second NFA M0 = (Q0,⌃, S0, T 0,�0), which is an extension
of the example NFA M from Example 1.3.3. The NFA M0 has state set Q0 = {0, 1, 2, 00, 10},
input alphabet ⌃ = {a, b}, initial state set S0 = {0, 00}, accept state set T 0 = {2, 00, 10}, and
the following transition function:

�0 a b
0 {0, 1} {0}
1 {2} ;

2 ; ;

00 {10} {10}
10

; ;

The following is a diagram for the NFA M0:

0 1 2 00 10a a a, b

a, b

The NFA M0 has two initial states, 0 and 00. On an input string, an NFA may begin in
any of its initial states; if there exist a choice of initial state and a choice of transitions from
this initial state to one of the accept states, the string is regarded as accepted. For example,
the NFA M0 accepts the strings a and b, since from the initial state 00, both the symbols a
and b permit transitions to the state 10, which is an accept state. The NFA M0 also accepts
the empty string ✏: on this string, it may begin and terminate in the state 00, which is both
an initial state and an accept state.

It can be seen that when the NFA M0 begins in the state 00, the strings that can lead to
acceptance are precisely ✏, a, and b. On the other hand, when this NFA begins in the state 0,
the strings that can lead to acceptance are exactly the strings accepted by the NFA M of the
previous example. Hence, the set of strings accepted by the NFA M0 is equal to the union
of the set of strings {✏, a, b} with the set of strings ending with aa.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

18 Chapter 1

Example 1.3.5. We next consider an example NFA that performs a type of substring
search. This example NFA has state set Q = {0, 1, 2, 3, 4}, input alphabet ⌃ = {a, b}, initial
state set S = {0}, accepting state set T = {4}, and the following transition function:

� a b
0 {0, 1} {0}
1 ; {2}
2 ; {3}
3 {4} ;

4 {4} {4}
The following is a diagram for this example NFA:

0 1 2 3 4
a b b a

a, b a, b

This NFA always begins in state 0, its unique initial state. From that state, the NFA may
consume either of the symbols a and b and remain in that state; or it may proceed to state 1
upon reading an a. Once it proceeds to state 1, however, for the computation to stay alive,
it must read the symbols b, b, and a, in order, after which it reaches state 4, the only accept
state. In state 4, the NFA may consume either of the symbols a and b and remain in that
state. From this description, it can be seen that this NFA accepts exactly those strings that
contain abba as a substring.

Example 1.3.6. We present our final example of an NFA; whether a string is accepted by
this NFA depends on the contents of the end of the string, in particular, on the last few
symbols in the string (should they exist). This NFA has state set Q = {3, 2, 1, 0}, input
alphabet ⌃ = {a, b}, initial state set S = {3}, accept state set T = {0}, and the following
transition table:

� a b
3 {3, 2} {3}
2 {1} {1}
1 {0} {0}
0 ; ;

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 19

The following is a diagram for this NFA:

3 2 1 0
a a, b a, b

a, b

This NFA begins in state 3, its unique initial state. From this state, the NFA may consume
any number of a’s and b’s and remain in this state; the only way to exit this state is to
consume an a and move to state 2. From state 2, either symbol permits a unique transition,
which is to state 1; from state 1, either symbol permits a unique transition, which is to
state 0. While state 0 is accepting, it permits no transitions. Hence, a computation that
terminates in state 0 must be timed properly, so that when reading a string, the moment of
departure from state 3 allows the coincidence of reaching state 0 and of having scanned the
whole string. This coincidence occurs when the a symbol used to transition from state 3 to
state 2 is followed by exactly two symbols. We can thus see that a string is accepted by this
NFA if and only if it contains three or more symbols, and its third symbol from the right is
an a.

The following diagram shows the reachable configurations when this NFA is invoked on
the input string aba:

[3, aba]
`

`

[3, ba]

[2, ba]

[3, a]

` [1, a] ` [0, ✏]

`
`

`

[3, ✏]

[2, ✏]

Remark 1.3.7. For each of the last two example NFA, the reader is invited to ponder
how to construct a DFA sharing the NFA’s language, and how many states are needed to
construct such a DFA.

We next formalize the notions needed to precisely discuss the behavior of an NFA.

Definition 1.3.8. Let M = (Q,⌃, S, T ,�) be an NFA.
• A configuration of M is a pair [q, y] consisting of a state q 2 Q and a string y 2 ⌃⇤.
• An initial configuration of M on a string y 2 ⌃⇤ is a configuration of the form [s, y],

where s 2 S.
• A configuration [r, x] of M is a successor configuration of a configuration [q, y] of M if

there exists a 2 ⌃ such that y = ax and r 2 �(q, a).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

20 Chapter 1

To discuss configurations of M, we use the relations presented in Definition 1.1.8.

When dealing with an NFA, observe that in order for a configuration [q, x] to have a
successor configuration, it must hold that |x| � 1. On the other hand, even when |x| � 1, it
is not necessary for a configuration [q, x] to have a successor configuration: the set �(q, a)
may be empty, where a denotes the leftmost symbol of x.

In general, when dealing with a computational machine such as a DFA or an NFA, we
use the term computation to refer to a sequence of configurations that begins with an initial
configuration, and where each configuration � in the sequence is followed by a successor
configuration of �, so long as such a successor configuration exists. When invoked on a
string, it is possible for an NFA to carry out multiple computations, as the next example
will discuss. Say that a computation is accepting if it ends with a configuration whose state
is an accept state; under this terminology, an NFA M accepts a string x when there exists
an accepting computation beginning with the initial configuration of M on x.

Example 1.3.9. Let us revisit Example 1.3.3, and consider its NFA M and its first diagram
of configurations. The configuration [0, aa] has two successor configurations, [0, a] and
[1, a]; we can notate this by writing

[0, aa] `M [0, a] and [0, aa] `M [1, a].

As [0, aa] is a successor configuration of [0, baa], we can write [0, baa] `M [0, aa]; it then
follows that

[0, baa] `2
M [0, a] and [0, baa] `2

M [1, a].

As [0, a] `M [0, ✏], [0, a] `M [1, ✏], and [1, a] `M [2, ✏], we may write

[0, baa] `3
M [0, ✏], [0, baa] `3

M [1, ✏], and [0, baa] `3
M [2, ✏].

To unpack and expand the last three relationships shown, we have the following three
computations of M that begin with the initial configuration [0, baa]:

[0, baa] `M [0, aa] `M [0, a] `M [0, ✏],

[0, baa] `M [0, aa] `M [0, a] `M [1, ✏],

[0, baa] `M [0, aa] `M [1, a] `M [2, ✏].

By glancing back at the first diagram in Example 1.3.3, we can see that there are no further
computations of M beginning with the configuration [0, baa].

For an NFA M = (Q,⌃, S, T ,�), we officially define acceptance and rejection of strings
as follows.

Definition 1.3.10. Let y 2 ⌃⇤ be a string. If there exist states s 2 S and t 2 T such
that [s, y] `⇤

M [t, ✏], then we say that M accepts y; otherwise, we say that M rejects y.

Definition 1.3.11. We define the language of an NFA M, denoted by L(M), to be the
set {y 2 ⌃⇤

�� M accepts y}.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 21

Example 1.3.12. Let us continue the discussion in Example 1.3.9. For the NFA M under
examination, we had [0, baa] `3

M [2, ✏]; since 0 2 S and 2 2 T , we obtain that the NFA M
accepts the string baa, via Definition 1.3.10.

We have arrived at a critical juncture in our study. We have, in our hands, two compu-
tational models, the DFA and the NFA. A natural question that one can pose at this point
is how we can compare these two models. Above all, we are interested in what our com-
putational models can do, that is, in the languages that they can compute. We thus adopt a
functional viewpoint and compare our computational models externally, by grading each
model according to the span of languages that it defines. Indeed, in general it is not alto-
gether clear how one would compare models internally: the mechanisms by which one
model computes may be quite qualitatively different from those of another model.

We provide our first such model comparison result by arguing the quite plausible result
that each language definable by a DFA is also definable by an NFA. This result reveals that,
from the external viewpoint that we adopt, the NFA model is at least as powerful as the
DFA model. Before providing the argument, let us emphasize that—strictly speaking—a
DFA is not an NFA (nor is an NFA a DFA): as noted in Remark 1.3.2, the definitions of
NFA and DFA differ in two parts.

Proposition 1.3.13. For each DFA M, there exists an NFA M0 such that L(M0) = L(M).

This proposition can be argued as follows. Let M = (Q,⌃, s, T , �) be a DFA. Based on
this DFA M, we define the NFA M0 = (Q,⌃, S0, T ,�) to have initial state set S0 = {s} and
transition function defined by �(q, a) = {�(q, a)}, for each pair (q, a) 2 Q ⇥ ⌃. Since M
and M0 have the same state set, they have the same configurations. We have that the only
start state of the NFA M0 is the start state of the DFA M, and that when given any state q and
symbol a, the NFA M0 has exactly one state to which it can transition—namely, the state to
which the DFA M transitions. Indeed, if we were to draw both M and M0 as diagrams, the
results would be identical. Consequently, the notions of successor configuration coincide
for M and M0, that is, for all configurations ↵ and � of these automata, � is the successor
configuration of ↵ according to M (under Definition 1.1.6) if and only if � is a successor
configuration of ↵ according to M0 (under Definition 1.3.8). To state this symbolically: for
all configurations ↵ and �, it holds that ↵ `M � if and only if ↵ `M0 �. It follows that a
string is accepted by M if and only if it is accepted by M0; so, the proposition is established.

We will later prove results that imply that one can convert in the other direction, namely,
that for each NFA, there exists a DFA having the same language as the NFA (Theo-
rem 1.3.24). Together, the two conversions imply that the classes of languages induced
by each of these two models are equal. As a consequence, to show that there exists a DFA
for a given language (that is, that a language is regular), it suffices to show that there exists
an NFA for the language. This consequence implies a form of programming convenience:
for a given language, it may be easier to present an NFA for the language than to present a
DFA for the language.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

22 Chapter 1

1.3.2 ✏-NFA
We next present an extension of the NFA model, called the ✏-NFA. We will prove that
each ✏-NFA has a language that is regular, and hence, the ✏-NFA model provides yet more
convenience for establishing the regularity of a language. It will also be useful for showing
further closure properties of the regular languages.

The definition of this extended model is built on the definition of NFA, but has the sup-
plementary feature that, from any state of an ✏-NFA, additional transitions are permitted.
These additional transitions are referred to as ✏-transitions; the transition function � of
an ✏-NFA specifies the ✏-transitions by providing, for each state q, a set of states �(q, ✏).
Operationally, an ✏-NFA may, at any point in time, freely make a transition from a state q
to a state in the set �(q, ✏), without consuming any input symbols.

Definition 1.3.14. An ✏-NFA is a 5-tuple M = (Q,⌃, S, T ,�) where each of the parts is
defined as in the definition of NFA (Definition 1.3.1), except the transition function is a
mapping

� : Q ⇥ (⌃ [{✏}) ! }(Q).

Recall that ✏ 62 ⌃ is always assumed.

Example 1.3.15. We present an example ✏-NFA. In contrast to many of the automata
examples given so far, the state set consists of letters, and the input alphabet consists
of numbers. The example N = (Q,⌃, S, T ,�) has state set Q = {a, b, c, d}, input alpha-
bet ⌃ = {1, 2, 3, 4}, initial state set S = {a}, accept state set T = {d}, and the following
transition function:

� 1 2 3 4 ✏
a {a} ; ; ; {b}
b ; {b} ; ; {c}
c ; ; {c} ; {d}
d ; ; ; {d} ;

We form the diagram for an ✏-NFA much in the same way that we formed the diagram for
an NFA. The only difference is that we include the ✏-transitions, so whenever q 2 �(p, i),
we include an arrow from state p to state q with label i; here, we perform this over each
element i 2 ⌃ [{✏}, that is, including the case that i = ✏. The following is a diagram for
our example ✏-NFA N:

a b c d
✏ ✏ ✏

1 2 3 4

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 23

As with DFA and NFA, a configuration of an ✏-NFA consists of a state paired with a
string. We fully formalize the behavior of an ✏-NFA below; as an example, let us examine
the configurations reachable when this automaton is invoked on the string 13:

[a, 13]
`

`

[a, 3]

[b, 13]

[b, 3]

` [c, 13] ` [d, 13]

` ` [c, 3] `

`

[c, ✏]

[d, 3]

` [d, ✏]

Let us see cases of how this example ✏-NFA makes use of ✏-transitions. Due to the
inclusion b 2 �(a, ✏), from state a the automaton may freely transition to state b without
consuming any symbol. This is evidenced in the diagram, where we see the relation-
ships [a, 13] ` [b, 13], and [a, 3] ` [b, 3]. Indeed, most of the transitions shown in the
diagram can be recognized to be ✏-transitions.

It can be seen from the diagram of this automaton that, from the initial state a, the accept
state d can only be reached by traversing the states a, b, c, and d in order. In the state a, the
automaton may consume the symbol 1 and remain in this state, or it may freely progress
to the next state in the order. The states b and c behave similarly, but with respect to the
symbols 2 and 3. In state d, the automaton may consume the symbol 4 and remain in this
state. From this description, it can be seen that a string is accepted by the automaton if and
only if it is sorted in the sense that, whenever i, j 2 ⌃ are such that i < j, each occurrence
of i appears before each occurrence of j.

We next formalize the behavior of an ✏-NFA; the difference with the formalization of
NFA is that we extend the definition of successor configuration to account for ✏-transitions.

Definition 1.3.16. Let M = (Q,⌃, S, T ,�) be an ✏-NFA.
• A configuration of M is a pair [q, y] consisting of a state q 2 Q and a string y 2 ⌃⇤.
• An initial configuration of M on a string y 2 ⌃⇤ is a configuration of the form [s, y],

where s 2 S.
• A configuration [r, x] of M is a successor configuration of a configuration [q, y] of M if

there exists a 2 ⌃ [{✏} such that y = ax and r 2 �(q, a).

To discuss configurations of M, we use the relations presented in Definition 1.1.8. To define
the notions of acceptance and rejection for M, we put into effect Definition 1.3.10.

So, as was the case for an NFA, an ✏-NFA M accepts a string x when there exists a
computation that begins with an initial configuration of M on x, and that is accepting in the
sense of ending with a configuration having an accept state.

Definition 1.3.17. We define the language of an ✏-NFA M, denoted by L(M), to be the
set {y 2 ⌃⇤

�� M accepts y}.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

24 Chapter 1

We next show how to convert from an NFA to an ✏-NFA having the same language. This
shows that, in the sense made precise, the ✏-NFA model is at least as powerful as the NFA
model. Recall that we previously showed that the NFA model is at least as powerful as the
DFA model (Proposition 1.3.13); the present result is in the spirit of that previous result in
that it also compares two computational models.

Proposition 1.3.18. For each NFA M, there exists an ✏-NFA M0 such that L(M0) = L(M).

We can argue this proposition by designing the ✏-NFA M0 to have no ✏-transitions, and
to be otherwise based on the NFA M. To be precise, from an NFA M = (Q,⌃, S, T ,�),
define M0 as the ✏-NFA (Q,⌃, S, T ,�0) where, for each q 2 Q, we define �0(q, a)
as �(q, a) if a 2 ⌃, and as the empty set ; if a = ✏. It is straightforward to verify that M
and M0 share the same configurations as well as the same notion of successor configuration.
The definition of acceptance is the same for both automata and depends only on the set of
start states, the set of accept states, and the notion of successor configuration, all three of
which are shared in common by M and M0; consequently, a string is accepted by M if and
only if it is accepted by M0, and we have confirmed the proposition.

At this point, let us identify some facts about the automata models defined so far. Sup-
pose that M is a DFA, NFA, or ✏-NFA on alphabet ⌃, and let w 2 ⌃⇤ be any string. If one
configuration is the successor of another, then adding the string w to the end of each of the
configurations does not change the successor relationship; also, if one configuration is the
successor of another, then removing the string w from the end of each of the configurations,
when it is possible to do so, does not change the successor relationship. We formally state
these two facts as follows. First, if it holds that [r, x] is a successor configuration of a con-
figuration [q, y], that is, [q, y] `M [r, x], then [q, yw] `M [r, xw]. And the converse holds:
if, for configurations [q, y] and [r, x], it holds that [q, yw] `M [r, xw], then [q, y] `M [r, x].
These facts are verified immediately from the definitions of successor configuration. The
following proposition is a consequence of these two facts.

Proposition 1.3.19. Suppose that M is a DFA, NFA, or ✏-NFA on alphabet ⌃, that w 2 ⌃⇤

is a string, and that [p, z] and [p0, z0] are configurations of M. Then,

[p, z] `⇤
M [p0, z0] if and only if [p, zw] `⇤

M [p0, z0w].

1.3.3 From ✏-NFA to DFA
So far, we have seen three computational models and we have established that they increase
successively in power: each language definable by a DFA is definable by an NFA, and
each language definable by an NFA is definable by an ✏-NFA. We now close the loop by
showing that each language definable by an ✏-NFA is definable by a DFA, and hence that
these three computational models have the same power in that they each define the same
class of languages.

Theorem 1.3.20. For each ✏-NFA M, there exists a DFA M0 such that L(M0) = L(M).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 25

{a, b, c, d} {b, c, d} {c, d} {d}

;

3

4

4

2 3 4

1 1, 2 1, 2, 3

1 2 3 4

1, 2, 3, 4

Figure 1.3.1. Part of the DFA M0 = (Q0,⌃, s0, T 0, �) obtained by applying the subset construction of
Theorem 1.3.20 to the ✏-NFA N = (Q,⌃, S, T ,�) of Example 1.3.15. The start state s0 contains each
state from Q reachable via ✏-transitions from the start state a 2 S of N; each state in Q is reachable
in this way, so we have s0 = Q = {a, b, c, d}. The state set Q0 of the DFA M0 is defined as the power
set of Q, but not all states of M0 are shown in the diagram; only those reachable from the start state s0

via transitions are shown. The ✏-NFA N has one accept state, d; a state of Q0 is an accept state when
it contains d. The transition function of the DFA M0, given a state U and a symbol a, yields the set of
states reachable in N by consuming a along with taking ✏-transitions, from a state in U. For example,
from the state {c, d}, a transition on 1 yields the empty set: starting from c or d, it is not possible to
consume 1 in N, even after making ✏-transitions. From the state {c, d}, a transition on 4 yields the
set {d}: in N, from the state d, the symbol 4 can be consumed, but after this no further states can
be reached by ✏-transitions; from the state c, the symbol 4 can be consumed only after making an
✏-transition to d.

Let M = (Q,⌃, S, T ,�) be an ✏-NFA. Our goal is to define a DFA M0, based on the
✏-NFA M, that has the same language as M. One strategy for determining if a string is
accepted by an ✏-NFA is to read in the symbols of the string one-by-one, and to keep in
memory all of the states that the ✏-NFA could possibly be in, at each point in time. We show
how to construct a DFA M0 that, in essence, implements this strategy. The construction of
this DFA M0 from the ✏-NFA M is known as the subset construction: each state of M0 is a
subset of the state set of M. An example of this construction is given in Figure 1.3.1.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

26 Chapter 1

Define the DFA M0 = (Q0,⌃, s0, T 0, �) as follows:

Q0 = }(Q),

s0 =
�

u 2 Q
�� 9s 2 S such that [s, ✏] `⇤

M [u, ✏]

,

T 0 =
�

V ✓ Q
�� V \ T �= ;

,

�(U, a) =
�

v 2 Q
�� 9u 2 U such that [u, a] `⇤

M [v, ✏]

.

Let us explain how each of these components is formed.
• This DFA’s state set is the power set of Q, since at any point in time, it maintains the set

of states from Q that the ✏-NFA could be in.
• The DFA’s start state s0 is the set that contains all states reachable from S via ✏-

transitions, in the ✏-NFA; this set contains S itself, and is the set of all states that the
✏-NFA could be in prior to reading any symbols. See Figure 1.3.2 for a diagram.

• A state V of the DFA should be regarded as an accept state as long as it contains an
accept state of the ✏-NFA.

• Finally, when U is a state of the DFA and a is a symbol, the state given by the transition
function is the set that includes a state v if it is reachable from some state in U by
consuming a, and possibly allowing ✏-transitions as well. See Figure 1.3.3 for a diagram.

The following definition is useful for reasoning about our automata.

Definition 1.3.21. Relative to an ✏-NFA M = (Q,⌃, S, T ,�), a set U ✓ Q of states is
called ✏-closed when, for each u 2 U and each w 2 Q, if [u, ✏] `⇤

M [w, ✏], then w 2 U.

So, relative to an ✏-NFA, a set U of states is ✏-closed when U contains any state w that is
reachable, purely via ✏-transitions, from a state in U. In reasoning about subsets of Q (that
is, sets of states of M), our focus will be on those that are ✏-closed. The next lemma shows
that the set s0 has this property.

Lemma 1.3.22. The set s0 ✓ Q of states is ✏-closed.

Proof. Suppose that u 2 s0 and w 2 Q is such that [u, ✏] `⇤
M [w, ✏]. By the definition of s0,

there exists s 2 S such that [s, ✏] `⇤
M [u, ✏]. It follows that [s, ✏] `⇤

M [w, ✏], and thus by the
definition of s0, we obtain that w 2 s0.

The following lemma relates the transitions of the DFA M0 to the transitions of the ✏-
NFA M; in particular, it characterizes the state W that the DFA will be in when it starts in
an ✏-closed state U and reads a string y.

Lemma 1.3.23. Let y 2 ⌃⇤ be a string of length n; suppose that U ✓ Q is ✏-closed; and
let W ✓ Q be the unique set such that [U, y] `n

M0 [W, ✏]. Then, it holds that w 2 W if and
only if there exists u 2 U such that [u, y] `⇤

M [w, ✏].

Proof. We prove this by induction on n.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

S

s0

✏
✏

✏

✏

✏

✏

✏

Figure 1.3.2. The start state of the DFA in the subset construction. In the conversion of an ✏-NFA to
a DFA, the start state s0 of the DFA is defined as the set of all states reachable from any start state
of the ✏-NFA, by making 0 or more ✏-transitions. In particular, this start state s0 contains the set S of
start states of the ✏-NFA, that is, it holds that S ✓ s0.

U V

a
a

a

a
a

Figure 1.3.3. The transition function of the DFA in the subset construction. In the conversion of
an ✏-NFA to a DFA M0, each state of the DFA is a subset of the state set Q of the ✏-NFA. The
transition function of the DFA is defined so that, when given a set U ✓ Q of ✏-NFA states along with
a symbol a, the function returns the set V ✓ Q of ✏-NFA states that can be reached from a state in U
after consuming the symbol a. Here, a dotted arrow with label a from a first state to a second state
indicates that the second state can be reached from the first by traversing a sequence of states, such
that only the symbol a is consumed: thus, in such a traversal, one transition is on the symbol a, and
all others are ✏-transitions.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

28 Chapter 1

Suppose that n = 0; we then have y = ✏ and W = U. For the forward direction, suppose
that w 2 W; we have w 2 U and [w, y] `⇤

M [w, ✏]. For the backward direction, suppose that
there exists u 2 U such that [u, y] `⇤

M [w, ✏]; then, by the assumption that U is ✏-closed, it
holds that w 2 U = W.

Suppose that n > 0, and write y = ax where a 2 ⌃ and x 2 ⌃⇤. Let V ✓ Q be the unique
set such that [U, ax] `M0 [V , x] `n–1

M0 [W, ✏]. We have that V = �(U, a), implying by the
definition of � that

v 2 V , there exists u 2 U such that [u, a] `⇤
M [v, ✏].

The set V is ✏-closed: suppose that v 2 V , w 2 Q, and [v, ✏] `⇤
M [w, ✏]; by the above

description of V , we have that there exists u 2 U such that [u, a] `⇤
M [v, ✏], implying that

[u, a] `⇤
M [w, ✏], from which it follows that w 2 V by the above description of V . By

induction, we obtain that

w 2 W , there exists v 2 V such that [v, x] `⇤
M [w, ✏].

We now verify each of the two directions of the claim of the lemma.
• For the forward direction, assume that w 2 W. Then, by the above description of W,

there exists v 2 V such that [v, x] `⇤
M [w, ✏]. In turn, by the above description of V , there

exists u 2 U such that [u, a] `⇤
M [v, ✏], from which it follows that [u, ax] `⇤

M [v, x], by
Proposition 1.3.19. From the facts that [u, ax] `⇤

M [v, x] and [v, x] `⇤
M [w, ✏], we obtain

that [u, ax] `⇤
M [w, ✏], as desired.

• For the backward direction, assume that there exists u 2 U such that [u, y] `⇤
M [w, ✏]; we

want to show that w 2 W. Consider the sequence of configurations that witnesses the
relationship [u, y] `⇤

M [w, ✏]: there exist states q1, …, qk, r 2 Q (with k � 0) such that

[u, ax] `M [q1, ax] `M · · · `M [qk, ax] `M [r, x] `⇤
M [w, ✏].

From this, we obtain [u, a] `⇤
M [r, ✏] (via Proposition 1.3.19) and [r, x] `⇤

M [w, ✏]. By the
above description of V and the fact that [u, a] `⇤

M [r, ✏], we obtain that r 2 V; then, by the
above description of W and the fact that [r, x] `⇤

M [w, ✏], we conclude that w 2 W.

By making use of this lemma, we can now establish the theorem.

Proof of Theorem 1.3.20. Let y 2 ⌃⇤ be a string of length n, and let W ✓ Q be the unique
state of Q0 such that [s0, y] `n

M0 [W, ✏]. By Lemma 1.3.22, the set s0 ✓ Q is ✏-closed. By
Lemma 1.3.23, we obtain that

w 2 W , there exists u 2 s0 such that [u, y] `⇤
M [w, ✏].

We argue that the ✏-NFA M accepts y if and only if the DFA M0 accepts y.
Suppose that the ✏-NFA M accepts y. Then there exist states s 2 S and t 2 T giving the

relationship [s, y] `⇤
M [t, ✏]. Since s 2 s0, by the above characterization of W, we have the

inclusion t 2 W. This implies that W \ T �= ;, so W 2 T 0 and the DFA M0 accepts y.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 29

Suppose that the DFA M0 accepts y. Then W 2 T 0, implying that W \ T �= ;. Let t be
a state (of Q) that is in W \ T . By the above characterization of W, there exists u 2 s0

such that [u, y] `⇤
M [t, ✏]. By definition of s0, there exists s 2 S such that [s, ✏] `⇤

M [u, ✏],
implying that [s, y] `⇤

M [u, y]. From the results [s, y] `⇤
M [u, y] and [u, y] `⇤

M [t, ✏], it follows
that [s, y] `⇤

M [t, ✏]. Since s 2 S and t 2 T , we obtain that M accepts y.

1.3.4 Summary
The following theorem results from collecting together our comparisons between automata
models.

Theorem 1.3.24. Let B be a language. The following are equivalent:

• There exists a DFA M such that L(M) = B; that is, B is regular.
• There exists an NFA M such that L(M) = B.
• There exists an ✏-NFA M such that L(M) = B.

Proof. If there exists a DFA whose language is B, then by Proposition 1.3.13, there exists
an NFA whose language is B. If there exists an NFA whose language is B, then by Proposi-
tion 1.3.18, there exists an ✏-NFA whose language is B. And if there exists an ✏-NFA whose
language is B, then by Theorem 1.3.20, there exists a DFA whose language is B.

1.4 More closure properties

In this section, we show that the regular languages enjoy two further closure properties.
These results help us understand further the extent of the regular languages, and provide
insight into what types of languages can be shown to be regular. These results will also
have starring roles in the next section, where we will see that the regular languages can in
fact be characterized using natural closure properties. In the present section, to establish
each of the two closure properties under scrutiny, we build an ✏-NFA whose language is the
language claimed to be regular; hence, we rely crucially on the just-established fact that
✏-NFA define regular languages (this fact follows from Theorem 1.3.24). Let us remark
that this fact also allows for an alternative proof that the regular languages are closed
under union: given two ✏-NFA MB, MC, one can build an ✏-NFA whose language is the
union L(MB) [L(MC) essentially by drawing the diagrams of MB and MC side by side, and
interpreting the overall result as the diagram of an ✏-NFA.

1.4.1 Concatenation
Let B and C be languages. The concatenation of B and C, denoted by B · C or by BC,
is defined as {xy

�� x 2 B and y 2 C}, that is, as the set containing each string that can be
obtained by concatenating a string in B with a string in C.

Theorem 1.4.1. If B and C are both regular languages over the same alphabet ⌃, then
their concatenation B · C is also a regular language.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

30 Chapter 1

Let MB = (QB,⌃, SB, TB,�B) and MC = (QC,⌃, SC, TC,�C) be ✏-NFA with L(MB) = B
and L(MC) = C. We assume that the state sets QB and QC are disjoint. (If they are not
disjoint, the states in one of the sets may be renamed in order to achieve disjointness,
without affecting the language of its automaton; Remark 1.1.4 discussed state renaming
in DFA, and applies equally well to NFA and ✏-NFA.) From these two ✏-NFA, we build a
third ✏-NFA M, whose language is the concatenation B · C. On a high level, this is done by
including all of the states and transitions in both MB and MC, designating the states in SB as
the initial states and the states in TC as the accept states, and adding ✏-transitions from each
state in TB to each state in SC. Figure 1.4.1 gives a diagram indicating this construction.

Essentially, a string will be accepted by M if and only if it can be split into two parts,
where the first part allows for M to move from a state in SB to a state in TB (that is, the first
part is accepted by MB), and the second part allows for M to move from a state in SC to a
state in TC (that is, the second part is accepted by MC). The added ✏-transitions allow for
free passage from TB to SC, and are M’s only transitions linking the two original ✏-NFA.

Formally, we define the ✏-NFA M as (QB [QC,⌃, SB, TC,�) where the transition
function � is defined as follows:
• For all q 2 QB and a 2 ⌃ [{✏}, define �(q, a) as �B(q, a) [SC if q 2 TB and a = ✏,

and as �B(q, a) otherwise.
• For all q 2 QC and a 2 ⌃ [{✏}, define �(q, a) as �C(q, a).

So, the definition of � naturally imitates those of �B and �C, but in the particular case of
a state q 2 TB and the symbol a = ✏, transitions to the states in SC are allowed in addition
to the transitions given by �B.

Proof of Theorem 1.4.1. We prove that the ✏-NFA M just defined has L(M) = B · C; this
suffices by Theorem 1.3.24. We first establish the containment L(M) ◆ B · C, which is
readily done. We then establish the containment L(M) ✓ B · C, which involves analyz-
ing the transitions made by an accepting computation of M, and showing that the string
accepted can be split into two parts, where the first is accepted by MB, and the second is
accepted by MC. This latter part of the proof is a bit tedious, but relatively straightforward.

Suppose that z 2 B · C. Then there exist strings x 2 B, y 2 C such that z = xy. Due
to the inclusions x 2 L(MB) and y 2 L(MC), there exist states sB 2 SB and tB 2 TB such
that [sB, x] `⇤

MB
[tB, ✏]; and there exist sC 2 SC and tC 2 TC such that [sC, y] `⇤

MC
[tC, ✏].

• From the definition of �, we have that [sB, x] `⇤
M [tB, ✏] and [sC, y] `⇤

M [tC, ✏].
• It then follows from Proposition 1.3.19 that [sB, xy] `⇤

M [tB, y].
• By definition of �, we have sC 2 �(tB, ✏), implying that [tB, y] `M [sC, y].

Combining [sB, xy] `⇤
M [tB, y], [tB, y] `M [sC, y], and [sC, y] `⇤

M [tC, ✏], we obtain immedi-
ately that [sB, xy] `⇤

M [tC, ✏], implying that xy 2 L(M).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 31

MB MC

M

✏

✏

✏

✏

Figure 1.4.1. The construction of Theorem 1.4.1. Given two ✏-NFA MB and MC, a third ✏-NFA M is
formed whose language is equal to the concatenation of the languages L(MB) and L(MC). In this dia-
gram, only the start and accept states of MB and MC are depicted; the other states and the transitions
of these automata are not shown. The ✏-NFA M is formed by adding ✏-transitions from the accept
states of MB to the initial states of MC, by designating the start state set of M to be the start state set
of MB, and by designating the accept state set of M to be the accept state set of MC.

Suppose that z 2 L(M). Then there exist sB 2 SB and tC 2 TC such that [sB, z] `⇤
M [tC, ✏].

It follows that there exist configurations �0, …, �k of M such that �0 = [sB, z], �k = [tC, ✏],
and �0 `M �1 `M · · · `M �k. Set qj to be the state of the configuration �j, for each index j.
• Let i be the index such that, in the list q0, …, qk, it holds that qi is the first state in QC.

We have that i is well-defined since qk = tC 2 QC; also, as q0 = sB 62 QC, we have the
inequality i > 0.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

32 Chapter 1

• By the definition of �, whenever q 2 QC (and a 2 ⌃ [{✏}), the set �(q, a) only con-
tains states in QC; it follows that qi, qi+1, …, qk are all elements of QC, and q0, …, qi–1

are all elements of QB.
• The transition �i–1 `M �i must be witnessed by a symbol a such that qi 2 �(qi–1, a);

given that qi–1 2 QB and qi 2 QC, the definition of � implies that qi–1 2 TB, qi 2 SC,
and a = ✏. Hence, there exists a string y such that �i–1 = [qi–1, y] and �i = [qi, y]. So, we
have [sB, z] `⇤

M [qi–1, y] `M [qi, y] `⇤
M [tC, ✏].

• Let x be the string such that z = xy. From Proposition 1.3.19, [sB, z] `⇤
M [qi–1, y] implies

[sB, x] `⇤
M [qi–1, ✏], which in turn implies [sB, x] `⇤

MB
[qi–1, ✏] (by the definition of �); we

obtain that x 2 L(MB).
• From [qi, y] `⇤

M [tC, ✏], it follows that [qi, y] `⇤
MC

[tC, ✏] (by the definition of �); we
obtain that y 2 L(MC).

We conclude that z = xy, where x 2 B and y 2 C.

1.4.2 Star
When B is a language, we define B⇤ as the language

{x1 · · · xk
�� k � 0 and x1, …, xk 2 B};

that is, B⇤ is the language containing each string that is the concatenation of 0 or more
strings from B. We sometimes refer to B⇤ as the star of B. In the case that k = 0, we
understand x1…xk to denote the empty string ✏; so, for any language B, it holds that ✏ 2 B⇤.
In using ⌃⇤ to denote the set of all strings over an alphabet ⌃, we have already made use
of this notation; observe that this usage is consistent with and generalized by the given
definition of B⇤ for any language B.

Theorem 1.4.2. If B is a regular language, then B⇤ is also a regular language.

Let M = (Q,⌃, S, T ,�) be an ✏-NFA with L(M) = B. From this ✏-NFA, we build another
✏-NFA M0 whose language is B⇤. On a high level, this is done by starting with the states and
transitions of M, and adding a new state p, which has ✏-transitions to the initial states of M,
and from the accept states of M; this state p is defined to be the sole initial state and the sole
accept state of M0. A diagram indicating this construction of M0 is given in Figure 1.4.2.
Formally, define M0 = (Q [{p},⌃, {p}, {p},�0) where p is assumed to be a new state not
in Q, and �0 is defined as follows. Set �0(p, ✏) = S and, for each a 2 ⌃, set �0(p, a) = ;.
For each q 2 Q and a 2 ⌃ [{✏}, set �0(q, a) to be �(q, a) [{p} if q 2 T and a = ✏, and
to be �(q, a) otherwise.

Proof. We prove that, for the ✏-NFA M0 just defined, it holds that L(M0) = B⇤; this suf-
fices by Theorem 1.3.24. Paralleling the previous proof, the containment L(M0) ◆ B⇤ is
relatively straightforward to show, whereas showing the containment L(M0) ✓ B⇤ involves
analyzing an arbitrary accepting computation of M0, and requires more reasoning.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 33

M0

p

✏

✏

✏

✏

✏

Figure 1.4.2. The construction of Theorem 1.4.2 applied to the ✏-NFA MB from Figure 1.4.1. Given
an ✏-NFA M, a second ✏-NFA M0 is formed whose language is equal to the star of M’s language.
The ✏-NFA M0 is formed by adding a new state p which is both its unique start state and its unique
accept state; the state p has ✏-transitions to each of the initial states of M, and ✏-transitions from each
of the accept states of M.

Suppose that z 2 B⇤. Then there exist strings x1, …, xk 2 B such that z = x1 · · · xk. For
each i = 1, …, k, there thus exist si 2 S and ti 2 T such that [si, xi] `⇤

M [ti, ✏]; it follows
from the definition of M0 that [si, xi] `⇤

M0 [ti, ✏]. From Proposition 1.3.19, we obtain that

[s1, x1 · · · xk] `⇤
M0 [t1, x2 · · · xk], [s2, x2 · · · xk] `⇤

M0 [t2, x3 · · · xk], …, [sk, xk] `⇤
M0 [tk, ✏].

Using these relationships along with the definition of �0, we have the following computa-
tion of M0:

[p, x1 · · · xk] `M0 [s1, x1 · · · xk]

`
⇤
M0 [t1, x2 · · · xk] `M0 [p, x2 · · · xk] `M0 [s2, x2 · · · xk]

`
⇤
M0 [t2, x3 · · · xk] `M0 [p, x3 · · · xk] `M0 [s3, x3 · · · xk]

...

`
⇤
M0 [tk, ✏] `M0 [p, ✏].

As [p, x1 · · · xk] `⇤
M0 [p, ✏], we obtain z 2 L(M0).

Suppose that z 2 L(M0). If z = ✏, then clearly z 2 B⇤, so assume that z �= ✏. Then, there
exist configurations �0, …, �n such that

�0 = [p, z], �n = [p, ✏], and �0 `M0 �1 `M0 · · · `M0 �n.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

34 Chapter 1

Define the strings z1, …, z` so that [p, z1], …, [p, z`] is a list of the configurations from the
list �0, …, �n that have state p, in order; note that z1 = z, z` = ✏, and ` � 2 (as z �= ✏). For
each index i = 1, …, ` – 1, it holds that [p, zi] `⇤

M0 [p, zi+1]. Since, according to �0, the only
transitions from p are to states in S, and the only transitions to p are from states in T , there
exist states si 2 S, ti 2 T such that

[p, zi] `M0 [si, zi] `⇤
M0 [ti, zi+1] `M0 [p, zi+1].

By the definition of �0, it follows that, in the ✏-NFA M,

[si, zi] `⇤
M [ti, zi+1].

For each index i = 1, …, ` – 1, let xi be the string such that zi = xizi+1; by Proposition 1.3.19,
we have the relationship

[si, xi] `⇤
M [ti, ✏],

implying that xi 2 L(M). We have that the string z can be expanded as

z = z1 = x1z2 = x1x2z3 = · · · = x1 · · · x`–1z` = x1 · · · x`–1.

Since each of the strings x1, …, x`–1 is in L(M), we conclude that z 2 B⇤.

1.5 Regular expressions

We have studied three computational models, the DFA, the NFA, and the ✏-NFA. An
automaton of any of these three types, as seen, specifies a regular language. In this section,
we encounter and study another way, a textual way, of specifying a regular language: giving
a regular expression, which is a particular type of string. Presenting a regular expression
may offer the benefit that there can be a close conceptual correspondence between a regu-
lar expression and the language it specifies. Indeed, text searching programs often expect
regular expressions as input, although the particular syntax expected may vary.

1.5.1 Definition and evaluation
Definition 1.5.1. Let ⌃ be an alphabet. We define a regular expression over ⌃ to be a
string that can be derived by applying the following rules a finite number of times.
• ; is a regular expression.
• a is a regular expression, for each a 2 ⌃ [{✏}.
• ↵ + � is a regular expression, when ↵ and � are regular expressions.
• ↵� is a regular expression, when ↵ and � are regular expressions.
• ↵⇤ is a regular expression, when ↵ is a regular expression.
• (↵) is a regular expression, when ↵ is a regular expression.

Observe that each regular expression over ⌃ is a string over the alphabet obtained by start-
ing from ⌃ and adding the symbol ;, the symbol ✏, the symbol +, the symbol ⇤, the left

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 35

parenthesis, and the right parenthesis. Throughout, we assume that none of these additional
symbols is contained in any alphabet ⌃ over which we form regular expressions.

Example 1.5.2. Let ⌃ be the alphabet {a, b}. The following are examples of regular
expressions over ⌃:

ab + b⇤, ab⇤, (ab)⇤ + b, b⇤b + aa(a + ✏).

Let us emphasize that each regular expression is just a string. We will give semantic
meaning to the regular expressions by explaining how each regular expression ↵ evalu-
ates to a language, denoted by L(↵). While we define this evaluation more precisely in the
sequel, let us give a preview of how the evaluation is performed. The expression ; evalu-
ates to the language ;; each expression a 2 ⌃ [{✏} evaluates to the language {a}; and the
sum of two expressions evaluates to the union of their languages. The next two cases are
evaluated in a natural way: the concatenation of two expressions evaluates to the concate-
nation of the two corresponding languages, and the star of an expression evaluates to the
star of its language. Parentheses are used to control the order of evaluation.

Example 1.5.3. We here present some examples of how regular expressions evaluate to
languages. Let ⌃ be the alphabet {a, b}.

We have L(a) = {a} and L(b) = {b}. Next, consider the regular expression ab; since it is
the concatenation of the regular expressions a and b, its language L(ab) is the concatenation
of L(a) and L(b), which is the language {a} · {b} = {ab}. More generally, if we take any
string x 2 ⌃⇤, it holds that L(x) = {x}, that is, x as a regular expression evaluates to the
language that contains x as its sole element.

Consider now the regular expression (ab)⇤. As it arises from applying the star to the
expression (ab), its language is the star of L(ab) = {ab}, that is, L((ab)⇤) = {ab}⇤. From
the definition of the star operator, we know that {ab}⇤ = {✏, ab, abab, ababab, …}.

Next, consider the regular expression b + (ab)⇤. This regular expression is the sum of
the expressions b and (ab)⇤, and the language it evaluates to is thus the union of the
languages L(b) and L((ab)⇤). So,

L(b + (ab⇤)) = L(b) [L((ab)⇤) = {b} [{✏, ab, abab, ababab, …}.

In order to formally define how the evaluation of regular expressions is performed, we
first need to discuss the precedence of the operations, that is, the order in which the oper-
ations are evaluated. The notion of precedence is likely already familiar to the reader:
in arithmetic, by a usual convention, division has higher precedence than subtraction, so
in evaluating an arithmetic expression such as 9 – 6/3, it is the convention to evaluate the
division before the subtraction, and this expression evaluates to 9 – (6/3) = 9 – 2 = 7. (Note
that if the subtraction was evaluated first, the result would be 3/3 = 1 and hence different.)
In evaluating regular expressions, we adhere to the following convention: the star (⇤) has

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

36 Chapter 1

the highest precedence, followed by concatenation, followed by sum (+). Let us understand
what this implies via an example.

Example 1.5.4. In order to determine the language L(ab + c⇤) of the expression ab + c⇤ in
accordance with the precedence just given, we first determine L(c⇤), next determine L(ab),
and then compute L(ab + c⇤) as the union of L(ab) and L(c⇤). That is, in evaluating
the expression ab + c⇤, we evaluate the + operator last. So, to determine L(ab + c⇤), we
view ab + c⇤ as having the form ↵ + � where ↵ = ab and � = c⇤; then, L(↵) and L(�) are
evaluated individually, and L(↵ + �) is evaluated as L(↵) [L(�). We have L(↵) = {ab}
and L(�) = {✏, c, cc, ccc, …}, so we obtain

L(ab + c⇤) = {ab} [{✏, c, cc, ccc, …}.

The use of parentheses allows one to control the order of evaluation, in the usual fashion:
in any regular expression ↵, parenthesized expressions occurring within ↵ are evaluated
prior to evaluating operators not contained within parentheses. We illustrate this usage via
an example.

Example 1.5.5. Consider the expression (ab + c)⇤, which differs from the expression in
the previous example only in that a pair of parentheses has been added. To evaluate this
expression, the parenthesized portion would be completely evaluated prior to evaluating
the star. The expression (ab + c) evaluates to L((ab + c)) = {ab, c}. From this, to determine
the language L((ab + c)⇤), we apply the star to L((ab + c)), so

L((ab + c)⇤) = L((ab + c))⇤ = {ab, c}⇤.

Let us underscore that this language is different from the language L(ab + c⇤); for instance,
it holds that abab 2 L((ab + c)⇤), but abab 62 L(ab + c⇤).

The associativity of operators is another consideration that ought to be discussed, but
turns out to be less important in our present context. In dealing with an expression such
as ✏ + a + b, it should technically be specified which of the two + operators should be
evaluated first. While the result is independent of the order (as a result of the union [

being an associative operation), we formally adhere to the convention that when dealing
with multiple occurrences of +, evaluation proceeds from left to right, so in the example
expression, the first instance of + is evaluated prior to the second. The same issue arises in
dealing with concatenation (and note that concatenation of languages is also an associative
operation); we similarly evaluate multiple occurrences of concatenation from left to right.

We can now officially define the language associated to a regular expression. Let ↵, �,
and � be regular expressions. We say that � has the form ↵ + � if it is syntactically equal
to ↵ + � and ↵ and � are evaluated prior to the sum indicated by the +, that is, the + is the
last operator to be evaluated, according to the presented precedence and associativity. In
a similar fashion, we say that � has the form ↵� if it is syntactically equal to ↵� and ↵
and � are evaluated prior to the concatenation; and we say that � has the form ↵⇤ if it is

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 37

syntactically equal to ↵⇤ and ↵ is evaluated prior to the star. Lastly, we say that � has the
form (↵) simply if it is syntactically equal to (↵).

Definition 1.5.6. For each regular expression � over an alphabet ⌃, the language L(�) is
defined inductively, as follows.
• L(;) = ;.
• L(a) = {a}, for each a 2 ⌃ [{✏}.
• L(�) = L(↵) [L(�), when � has the form ↵ + �.
• L(�) = L(↵) · L(�), when � has the form ↵�.
• L(�) = L(↵)⇤, when � has the form ↵⇤.
• L(�) = L(↵), when � has the form (↵).

Example 1.5.7. As an example, let us consider how to give a regular expression for the
language D defined to contain all alternating strings over ⌃ = {a, b}. We here define an
alternating string to be a string where each occurrence of a, if followed at all, is followed
by a b; and where each occurrence of b, if followed at all, is followed by an a. Alternatively,
we could say that an alternating string is a string that does not contain two consecutive
occurrences of the same symbol.

Consider the regular expressions (ab)⇤ and (ba)⇤. Certainly, all of the strings in the
languages L((ab)⇤) = {✏, ab, abab, …} and L((ba)⇤) = {✏, ba, baba, …} are alternating.
However, these languages do not cover all alternating strings, since they do not include
any alternating strings of odd length. We may obtain the alternating strings of odd length
by considering the regular expressions a(ba)⇤ and b(ab)⇤, whose languages are L(a(ba)⇤) =
{a, aba, ababa, …} and L(b(ab)⇤) = {b, bab, babab, …}. Putting things together, we have
the following expression �1 where L(�1) = D:

�1 = (ab)⇤ + (ba)⇤ + a(ba)⇤ + b(ab)⇤.

Observe that the regular expressions (ab)⇤a and (ba)⇤b yield the same languages
as a(ba)⇤ and b(ab)⇤, respectively: L((ab)⇤a) = L(a(ba)⇤) and L((ba)⇤b) = L(b(ab)⇤).
Consequently, we arrive at a second expression �2 with L(�2) = D:

�2 = (ab)⇤ + (ba)⇤ + (ab)⇤a + (ba)⇤b.

We may develop another regular expression for D that only uses one instance of the
star, as follows. Begin with the expressions (ab)⇤ and b(ab)⇤. We want to include all of
the strings in the union L((ab)⇤) [L(b(ab)⇤); this union contains all alternating strings that
terminate with b. As this union can be obtained by taking each string y in L((ab)⇤) and
including both y itself and by, it can be seen that this union is equal to L((✏ + b)(ab)⇤). In
effect, placing (✏ + b) before (ab)⇤ allows the strings in L((ab)⇤) to optionally be prefixed
with b. In an analogous fashion, we can extend the expression (✏ + b)(ab)⇤ so as to allow its
strings to optionally end with a, by concatenating (✏ + a) to this expression. The resulting

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

38 Chapter 1

expression �3 has L(�3) = D:

�3 = (✏ + b)(ab)⇤(✏ + a).

We can actually derive the expression �3 from the expression �2 above, as follows.
First, observe that the language L(b(ab)⇤a) contains all non-empty alternating strings that
begin with b and end with a, so the empty string is the only string in L((ba)⇤) that is not
in L(b(ab)⇤a). From this observation, it follows that

L((ab)⇤ + (ba)⇤) = L((ab)⇤ + b(ab)⇤a),

since the empty string is in L((ab)⇤). We then have that

L(�2) = L((ab)⇤ + b(ab)⇤a + (ab)⇤a + (ba)⇤b).

From this last expression, if we replace (ba)⇤b with b(ab)⇤, and reorder, we obtain

(ab)⇤ + b(ab)⇤ + (ab)⇤a + b(ab)⇤a,

yet another expression whose language is D. We then have the chain of equalities

L((ab)⇤ + b(ab)⇤ + (ab)⇤a + b(ab)⇤a) = L(✏(ab)⇤✏ + b(ab)⇤✏ + ✏(ab)⇤a + b(ab)⇤a)

= L((✏ + b)(ab)⇤✏ + (✏ + b)(ab)⇤a)

= L((✏ + b)(ab)⇤(✏ + a)).

This gives the claimed derivation, as the last expression appearing is exactly �3. In this
chain, the latter two equalities can be justified algebraically by distributive laws stating
that L(�(↵ + �)) = L(�↵ + ��) and L((↵ + �)�) = L(↵� + ��), where ↵, �, and � denote
regular expressions.

1.5.2 Regular expressions characterize the regular languages
We next establish that regular expressions give another characterization of the regular
languages, in the following precise sense.

Theorem 1.5.8. A language B is regular if and only if there exists a regular expression ↵
such that L(↵) = B.

That is, the languages that are representable by regular expressions are exactly the
regular languages. This theorem’s statement is reminiscent of the automaton-based charac-
terizations of regularity (in Theorem 1.3.24), which each say that a language B is regular
if and only if there exists an automaton, of some type, whose language is B. Here, instead
of positing the existence of an automaton, we posit the existence of a regular expression.

This theorem can be viewed as a characterization of the regular languages in terms of
closure properties. In essence, the theorem says that if one starts with the language ; and
the languages {a} for each a 2 ⌃ [{✏}, and then closes these languages under union,
concatenation, and the star operator, the resulting class of languages is precisely the class
of regular languages.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 39

a

Figure 1.5.1. An ✏-NFA whose language is {a}, for any symbol a in an alphabet or for a = ✏.

Remark 1.5.9. Recall that we proved closure of the regular languages under complemen-
tation and intersection (Theorems 1.2.1 and 1.2.2). However, these two operations are not
among the operations just mentioned; they are not among the operations permitted in the
evaluation of regular expressions! This observation reveals a subtlety lurking under the new
characterization of regularity provided by this theorem; consider the following interesting
consequences of this characterization. For each regular expression ↵, there exists a second
regular expression ↵0 whose language L(↵0) is the complement of the language L(↵) of
the first expression. However, in many cases, it may not be immediately obvious how to
explicitly generate the expression ↵0 from the expression ↵! (Indeed, the reader is invited
to ponder how to do this for the example regular expressions seen so far.) Analogously,
it is a consequence of the given characterization that, for any two regular expressions ↵
and �, there exists a regular expression � whose language L(�) is the intersection of L(↵)
and L(�); but in concrete cases it may not be obvious how to generate � from ↵ and �.2

Having multiple characterizations of regularity in hand offers us the general advantage
of having multiple characterizations of any property: to establish a result about regularity,
we can choose which characterization to work with; a particular result may be easier to
establish with one characterization than with another, and different characterizations offer
different sources of illumination. See Exercise 1.9.35 for an example of a result on regular
languages that can be cleanly established using Theorem 1.5.8.

We prove Theorem 1.5.8 in the next two theorems, which establish the backward
direction and the forward direction, respectively.

Theorem 1.5.10. For each regular expression �, it holds that the language L(�) is regular.

Proof. We prove this result by induction on the structure of the expression �. (Alterna-
tively, the proof may be conceived of as by induction on the length of �.) We consider
cases, depending on the form of the expression �.
• Suppose � = ;. The language L(�) = ; is regular, for example, via a DFA that has no

accept states.

2. The observant reader might have noticed a similar phenomenon after seeing the characterization of regularity by
the NFA model. To wit: for each NFA M, there exists a second NFA M0 whose language L(M0) is the complement
of the language L(M); yet, in many cases, it may not be obvious how to generate such an NFA M0 from the NFA
M. In general, whenever we have a language class characterized by a model, we can ask how a closure property
of the class translates to an operation on realizations of the model.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

40 Chapter 1

• Suppose � = a, where a 2 ⌃ [{✏}. It is straightforward to verify that the language
L(�) = {a} is regular; see Figure 1.5.1 for an ✏-NFA whose language is {a}.

• Suppose � has the form ↵ + �. By induction, each of the languages L(↵) and L(�) is
regular. It follows from Theorem 1.2.4 that the language L(�) = L(↵) [L(�) is regular.

• Suppose � has the form ↵�. By induction, each of the languages L(↵) and L(�) is regular.
It follows from Theorem 1.4.1 that the language L(�) = L(↵) · L(�) is regular.

• Suppose � has the form ↵⇤. By induction, the language L(↵) is regular. It follows from
Theorem 1.4.2 that the language L(�) = L(↵)⇤ is regular.

• Suppose � has the form (↵). By induction, the language L(↵) is regular, and so the
language L(�) = L(↵) is regular.

Theorem 1.5.11. For each regular language B, there exists a regular expression ↵ such
that L(↵) = B.

When B is a regular language, there is an ✏-NFA M = (Q,⌃, S, T ,�) such that L(M) = B,
by Theorem 1.3.24. To establish the theorem, we show how to pass from the automaton M
to a regular expression whose language is L(M).3 We know that a string x is accepted by M
if there exists a start state s 2 S and an accept state t 2 T such that [s, x] `⇤

M [t, ✏]. Thus, to
obtain a regular expression for L(M), it would be sufficient to have, for each pair (u, v) of
states, a regular expression for the set of strings x such that [u, x] `⇤

M [v, ✏]; one could then
take the sum (+) of these expressions over each pair (s, t) 2 S ⇥ T .

The following key definition presents a restriction of the `
⇤
M relation, and will facilitate

our building the desired regular expressions by induction. Let P ✓ Q, and let u, v 2 Q be
states. When x 2 ⌃⇤ is a string, we write

[u, x] `P,⇤
M [v, ✏]

when there exist configurations [q1, y1], …, [qk, yk] such that [q1, y1] `M · · · `M [qk, yk],
[u, x] = [q1, y1], [qk, yk] = [v, ✏], k � 1, and each index j with 1 < j < k has qj 2 P. That is,
the relationship [u, x] `P,⇤

M [v, ✏] holds when the configuration [v, ✏] can be reached from the
configuration [u, x] by taking successor configurations zero or more times, with the restric-
tion that any strictly intermediate configuration must have a state from P. Note that, in this
definition, the configurations [u, x] and [v, ✏] themselves need not have states from P. We
can make the following observations, which hold for all configurations [u, x] and [v, ✏]:
• If [u, x] `0

M [v, ✏] or [u, x] `1
M [v, ✏], then [u, x] `P,⇤

M [v, ✏], for any subset P ✓ Q.
(That is, the relations `0

M and `
1
M are subsets of `P,⇤

M , for any subset P ✓ Q.)
• It holds that [u, x] `⇤

M [v, ✏] if and only if [u, x] `Q,⇤
M [v, ✏].

(That is, the relations `⇤
M and `

Q,⇤
M are equal.)

3. To establish the theorem, it would suffice to show how to pass from a DFA to a regular expression. However,
as our proof technique applies quite directly to ✏-NFA, we carry it out for this model.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 41

The key result concerning this definition is the following.

Lemma 1.5.12. For all P ✓ Q and u, v 2 Q, there exists a regular expression ↵P
uv where

L(↵P
uv) =

�
x
�� [u, x] `P,⇤

M [v, ✏]

.

Proof. We prove the result by induction on the size |P| of P.
In the case that |P| = 0, we have that P = ; and thus [u, x] `P,⇤

M [v, ✏] if and only if
either [u, x] `0

M [v, ✏] or [u, x] `1
M [v, ✏]. The only strings x that can satisfy this condition

must have |x| 1. So define the set of strings

S =
�

x 2 ⌃ [{✏}
�� [u, x] `0

M [v, ✏] or [u, x] `1
M [v, ✏]

.

If S is empty, then we may take ↵P
uv to be the regular expression ;. If S is non-empty,

let a1, …, a` be a list of its elements; then, we may take ↵P
uv to be the sum a1 + · · · + a`.

In the case that |P| > 0, fix an element p 2 P; we claim that the regular expression

↵P
uv = ↵P\{p}

uv + ↵P\{p}
up (↵P\{p}

pp)⇤↵P\{p}
pv

has the desired property, namely, that L(↵P
uv) =

�
x
�� [u, x] `P,⇤

M [v, ✏]

. Informally, this is
because when x is a string such that [u, x] `P,⇤

M [v, ✏], there is a sequence of configurations
witnessing this. If this sequence makes no intermediate use of the state p, then x is in the
language of ↵P\{p}

uv ; otherwise, based on when the sequence visits the state p, the string x
can be broken up into segments x0, …, x` where
• x0 takes the ✏-NFA from state u to state p,
• each of x1, …, x`–1 takes the ✏-NFA from state p to state p, and
• x` takes the ✏-NFA from state p to state v,

and no visits to the state p are made other than those just mentioned explicitly; so, via
the given segments, the string x is in the language of ↵P\{p}

up (↵P\{p}
pp)⇤↵P\{p}

pv . Moreover, the
reasoning reverses: when x is a string in the language of ↵P\{p}

uv or of ↵P\{p}
up (↵P\{p}

pp)⇤↵P\{p}
pv ,

we have the relationship [u, x] `P,⇤
M [v, ✏].

We verify the claim formally as follows; let x be a string.
• Suppose that x 2 L(↵P

uv); then x 2 L(↵P\{p}
uv) or x 2 L(↵P\{p}

up (↵P\{p}
pp)⇤↵P\{p}

pv).
In the former case, [u, x] `P\{p},⇤

M [v, ✏], implying that [u, x] `P,⇤
M [v, ✏].

In the latter case, there exist strings x0, …, x` (with ` � 1) such that x = x0…x`,
x0 2 L(↵P\{p}

up), x1, …, x`–1 2 L((↵P\{p}
pp)⇤), x` 2 L(↵P\{p}

pv). We thus have that

‚ [u, x0] `P\{p},⇤
M [p, ✏],

‚ [p, xi] `
P\{p},⇤
M [p, ✏] for each i with 1 i < `, and

‚ [p, x`] `
P\{p},⇤
M [v, ✏].

It follows, by the same reasoning that justified Proposition 1.3.19, that

[u, x0…x`] `
P\{p},⇤
M [p, x1…x`] `

P\{p},⇤
M · · · `

P\{p},⇤
M [p, x`] `

P\{p},⇤
M [v, ✏],

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

42 Chapter 1

and we thus obtain that [u, x] = [u, x0…x`] `P,⇤
M [v, ✏].

• Suppose that [u, x] `P,⇤
M [v, ✏] holds. If [u, x] `P\{p},⇤

M [v, ✏] holds, then x 2 L(↵P\{p}
uv)

holds by induction, and hence x 2 L(↵P
uv). Otherwise, there exist configurations

[p1, y1], …, [pk, yk] of M, with k � 1, such that p1, …, pk 2 P and

[u, x] `M [p1, y1] `M [p2, y2] `M · · · `M [pk, yk] `M [v, ✏],

where the state p appears among the states p1, …, pk. Let [p, z1], [p, z2], …, [p, z`] be a
list, in order, of the configurations among [p1, y1], …, [pk, yk] whose state is equal to p.
We have that
‚ [u, x] `P\{p},⇤

M [p, z1],
‚ [p, zi] `

P\{p},⇤
M [p, zi+1] for each i with 1 i < `, and

‚ [p, z`] `
P\{p},⇤
M [v, ✏].

From these relationships, it can be seen that the string z1 is obtainable from x by remov-
ing zero or more symbols from the front of x; likewise, the string zi+1 is obtainable
from zi by removing zero or more symbols from the front of zi (for each i with 1 i < `).
Consequently, there exist strings x0, …, x` such that x = x0z1; zi = xizi+1 (for each i with
1 i < `); and, z` = x`. Observe that x = x0…x`. By the same reasoning that justified
Proposition 1.3.19, we obtain that
‚ [u, x0] `P\{p},⇤

M [p, ✏],
‚ [p, xi] `

P\{p},⇤
M [p, ✏] for each i with 1 i < `, and

‚ [p, x`] `
P\{p},⇤
M [v, ✏].

It follows by induction that x0 2 L(↵P\{p}
up); x1, …, x`–1 2 L(↵P\{p}

pp); and, x` 2 L(↵P\{p}
pv).

We derive that x = x0…x` 2 L(↵P\{p}
up (↵P\{p}

pp)⇤↵P\{p}
pv) and hence that x 2 L(↵P

uv), as
desired.

Proof of Theorem 1.5.11. From Lemma 1.5.12, we obtain that, for any string x 2 ⌃⇤, it
holds that x 2 L(↵Q

uv) if and only if [u, x] `Q,⇤
M [v, ✏]. To conclude the proof, we need to give

a regular expression ↵ where L(↵) = L(M). We have that x 2 L(M) if and only if there exist
states s 2 S and t 2 T such that [s, x] `⇤

M [t, ✏], or equivalently, such that [s, x] `Q,⇤
M [t, ✏].

Hence, we may define ↵ as the sum (+) of ↵Q
st over all s 2 S and t 2 T .

1.6 Proving non-regularity

The characterizations of the regular languages seen so far naturally lend themselves to
establishing regularity: we can establish that a language B is regular by presenting a DFA,
NFA, ✏-NFA, or regular expression whose language is equal to B. Correspondingly, we
have seen numerous positive examples of languages that are regular. This section presents
tools for proving that languages are not regular.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 43

A motivating example
Before presenting the general theory, we consider the particular language

E = {anbn �� n � 0},

which is perhaps the most classic example of a non-regular language. This language will
serve as a running example throughout the section.

Example 1.6.1. Let us try to first gain a heuristic understanding of why the language E
ought to be non-regular. As our current situation requests us to show limits on the scope of
regular languages, it behooves us to revert to working with the simplest, most unadulterated
automaton model that characterizes regularity: the DFA. So, let us try to understand why
there cannot be a DFA whose language is E. A DFA can only scan a string from left
to right, in one shot. Thus, intuitively speaking, a DFA for E would need to count the
number n of a’s that it sees prior to seeing any b, in a first phase; and then, in a second
phase, make sure that the number of b’s that follow is exactly equal to n. However, since a
DFA by definition can only have a finite number of states, it cannot truly keep count of the
number of a’s seen so far, in the first phase. Roughly speaking, if one keeps on feeding a’s
to the DFA and monitors the states that the DFA goes through, the DFA will eventually be
seen to confuse two different quantities of a’s, lumping them together onto the same state.

Let us be more formal, and also set back our sights by trying to establish that there is
no DFA M with 10 or fewer states whose language is E—a goal that is seemingly more
modest than proving that there is no DFA whatsoever for E. Consider the 11 strings

a1 = a, a2 = aa, …, a11 = aaaaaaaaaaa.

Assume that M is a DFA with 10 or fewer states. Then, there must exist two distinct strings,
among the 11 presented, that cause the DFA to reach the same state. Precisely, there
exist distinct values i, j 2 {1, …, 11} and there exists a state q such that [s, ai] `⇤

M [q, ✏]
and [s, aj] `⇤

M [q, ✏]. Once this shared state q is reached, the DFA cannot and does not dis-
tinguish between the two strings ai and aj. Let us take the string bi, which ought to cause
the DFA to accept when it follows ai. Look at the state q0 that the DFA reaches after pro-
cessing bi from state q, that is, the state q0 such that [q, bi] `⇤

M [q0, ✏]. If this state q0 is not
an accept state, then the DFA does not accept aibi, which is in E; hence, the DFA’s language
is not E. On the other hand, if this state q0 is an accept state, then the DFA does accept ajbi,
which is not in E; hence, the DFA’s language is not E. Either way, we can conclude that
the language of the DFA M is not E.

In fact, the argument just presented generalizes perfectly; it is readily seen that, for any
number k � 1, an analogous argument establishes that there is no DFA with k states whose
language is E. From this, one may conclude that E is not regular.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

44 Chapter 1

We next proceed to give a general framework for establishing non-regularity of lan-
guages. However, one can view this general theory as being obtained by simply abstracting
out elements that are present in the argument of Example 1.6.1!

Theory
We here present notions and results which culminate in a general theorem allowing one to
show non-regularity of languages.

Definition 1.6.2. With respect to a language B over an alphabet ⌃, a string w 2 ⌃⇤ is a
separator for a pair of strings x, y 2 ⌃⇤ if exactly one of the two strings xw, yw is in B.

Let us highlight that, in this definition, there is no requirement that the strings x, y be
included in—or excluded from—the language B.

Example 1.6.3. Let i and j be distinct natural numbers; consider the pair of strings ai, aj.
With respect to the language E:
• The string bi is a separator for the pair ai, aj: aibi is in E, but ajbi is not in E.
• The string bj is also a separator for the pair ai, aj: aibj is not in E, but ajbj is in E.
• When k is a natural number with k �= i and k �= j, the string bk is not a separator for the

pair ai, aj: each of the strings aibk, ajbk is not in E.

We next argue that two strings having a separator, with respect to the language of a DFA,
must be sent to different states by the DFA. (In Example 1.6.1, we used essentially this
result in contrapositive form: we derived that the DFA did not decide the desired language
by showing that two strings having a separator were sent to the same state.)

Proposition 1.6.4. Let M = (Q,⌃, s, T , �) be a DFA, and let y, y0 2 ⌃⇤ be any strings.
Denote by p, p0

2 Q the unique states such that [s, y] `⇤
M [p, ✏] and [s, y0] `⇤

M [p0, ✏] hold.
If there exists a separator for y and y0 with respect to L(M), then p �= p0.

Figure 1.6.1 depicts the setup of this proposition’s statement.

Proof. We show the contrapositive: we assume that p = p0, and prove that there exists no
separator for y and y0. Let w 2 ⌃⇤ be any string. By assumption, we have [s, y] `⇤

M [p, ✏]
and [s, y0] `⇤

M [p, ✏]. We obtain [s, yw] `⇤
M [p, w] and that [s, y0w] `⇤

M [p, w], via Proposi-
tion 1.3.19. Let q 2 Q be the unique state such that [p, w] `⇤

M [q, ✏]. Then [s, yw] `⇤
M [q, ✏]

and [s, y0w] `⇤
M [q, ✏]. If q 2 T , then yw and y0w are both in L(M); if q 62 T , then yw and y0w

are both not in L(M). Hence, w is not a separator for y and y0.

Definition 1.6.5. Let us say that a set S of strings is pairwise separable with respect to a
language B if each pair of distinct strings x, y 2 S have a separator with respect to B.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 45

s

p

p0

r

r0

y

y0

w

w

Figure 1.6.1. The setup of Proposition 1.6.4. States from a DFA M are shown. The states p and p0

are the states reached by the DFA after reading the strings y and y0 from the start state s, respec-
tively. A separator for y and y0, with respect to L(M), is a string w such that exactly one of the two
strings yw, y0w is in L(M); this is equivalent to the condition that exactly one of the two states r, r0

is accepting, where r and r0 are the states that the DFA reaches from p and p0, respectively, after
reading the string w. When such a separator exists, the proposition holds that the states p and p0 must
be distinct from each other. Note that, in this diagram, we do not indicate which of the states are
accepting. Indeed, the proposition’s statement and proof are agnostic about whether or not each of
the states s, p, and p0 is accepting.

Example 1.6.6. We consider separability with respect to the language E. The set of
strings {a1, a2, …, a11}, considered in Example 1.6.1, is pairwise separable; any two dis-
tinct strings in this set have a separator, by the discussion of Example 1.6.3. Indeed, by this
discussion, the infinite set of strings

�
ai
�� i � 1

is pairwise separable.

Given a language, the following theorem allows us to establish a lower bound on the
number of states of any DFA deciding the language.

Theorem 1.6.7. Let B be a language over alphabet ⌃, and let k � 2. Suppose that there
exists a finite set Y ✓ ⌃⇤ of size k that is pairwise separable with respect to B. Then any
DFA M for which L(M) = B has k or more states.

Proof. Assume that M = (Q,⌃, s, T , �) is a DFA with L(M) = B. Let y1, …, yk denote the
strings in Y . Let q1, …, qk 2 Q be the states such that [s, yi] `⇤

M [qi, ✏], for each i = 1, …, k.
Suppose that i, j 2 {1, …, k} are distinct indices; then the strings yi and yj have a separa-
tor w by assumption, and so by Proposition 1.6.4, it follows that qi �= qj. Consequently, the
states q1, …, qk are pairwise distinct, and |Q| � k.

From the previous theorem, we derive a sufficient condition for showing non-regularity
of a language.

Theorem 1.6.8. Let B be a language. Suppose that there exists an infinite set Z of strings
that is pairwise separable with respect to B. Then the language B is not regular.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

46 Chapter 1

0 1 2
a a

a

b b b

Figure 1.6.2. A DFA deciding the language A of Example 1.6.11. The language A contains a string if
and only if the number of a’s in the string is a multiple of 3. By swapping the roles of the symbols a
and b, one obtains a DFA deciding the language B of Example 1.6.11; the language B contains a
string if and only if the number of b’s in the string is a multiple of 3.

Proof. We prove this by contradiction. Suppose that there exists a DFA M with L(M) = B.
Let n denote the number of states that M has. Since the set Z is infinite, it has a subset Y
of size n + 1. By Theorem 1.6.7, any DFA whose language is B must have n + 1 or more
states, and we have a contradiction to L(M) = B.

Applications
We next give two examples that illustrate how Theorem 1.6.8 can be used to prove the
non-regularity of languages.

Example 1.6.9. Although we already argued that the language E is not regular (in
Example 1.6.1), let us explain how to derive this from Theorem 1.6.8. As discussed in
Example 1.6.6, the infinite set of strings

�
ai
�� i � 1

is pairwise separable with respect

to E. Hence, by Theorem 1.6.8, we obtain that the language E is not regular.

Example 1.6.10. Let rev(x) denote the reversal of a string x. We can define rev(x) induc-
tively: rev(✏) = ✏ and rev(ya) = a · rev(y), for all y 2 ⌃⇤ and a 2 ⌃. A palindrome is a
string x such that x = rev(x), that is, a string that reads identically forwards and backwards.

Consider the language P containing all palindromes over {a, b}. We prove that this lan-
guage is not regular. Set xi = aib for all i � 1. We show that the set of strings {x1, x2, …}
is pairwise separable, with respect to P; this suffices by Theorem 1.6.8.

We argue this as follows. Let i, j � 1 be distinct indices. We want to show that the pair
of strings xi = aib and xj = ajb has a separator w. Pick w = ai. We have xiw = aibai

2 P.
And, we have xjw = ajbai

62 P: due to i and j being distinct, the two strings ajbai and
rev(ajbai) = aibaj are not equal.

We next turn to deploy our development in a different way. In the following example
(Example 1.6.11), we show that any DFA for a particular regular language must have a
certain minimum number of states. We exhibit further results of this form in the subsequent
example (Example 1.6.12).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 47

Example 1.6.11. Set ⌃ = {a, b}, and let

C =
�

y 2 ⌃⇤ �� #a(y) and #b(y) are both multiples of 3

.

Recall that when d is a symbol and y is a string, #d(y) denotes the number of occurrences
of d in y. We can view C as the intersection of the following two languages:

A = {y 2 ⌃⇤
�� #a(y) is a multiple of 3}, B = {y 2 ⌃⇤

�� #b(y) is a multiple of 3}.

Each of the languages A and B is regular, and has a DFA with 3 states; see Figure 1.6.2.
The proof of Theorem 1.2.2 implies that the language C has a DFA with 3 · 3 = 9 states.

We prove that any DFA whose language is C must have 9 or more states, by using
Theorem 1.6.7. Consider the set of strings

�
aibj

�� i, j 2 {1, 2, 3}

. We claim that this set is
pairwise separable, which suffices, as it contains 9 strings. Let x = aibj and x0 = ai0bj0 be
distinct strings from this set; then either i �= i0 or j �= j0.
• First, consider the case that i �= i0. It can be seen that |i0 – i| is equal to 1 or 2, so i0 – i is

not a multiple of 3. We claim that the string w = a3–ib3–j is a separator for x and x0. We
have xw = aibja3–ib3–j, so #a(xw) = #b(xw) = 3 and xw 2 C. On the other hand, we have
x0w = ai0bj0a3–ib3–j, so #a(x0w) = i0 + 3 – i. Since i0 – i is not a multiple of 3, neither is
i0 + 3 – i, so x0w 62 C.

• Next, consider the case that j �= j0. The handling of this case is similar to that of the
previous case. We argue that the same string w = a3–ib3–j is a separator for x and x0. We
have xw = aibja3–ib3–j

2 C, as before. But we now have #b(x0w) = j0 + 3 – j; since j �= j0,
we have that j0 – j is not a multiple of 3 and hence that j0 + 3 – j is not a multiple of 3,
implying that x0w 62 C.

Recall that, from two given DFA, the product construction (of Theorem 1.2.2) allowed
us to define a DFA whose language was the intersection of the two given DFA’s languages.
According to this construction, the new DFA’s state set is the product of the state sets of
the original two DFA; hence, the new state set’s size is the product of the sizes of the given
state sets. Example 1.6.11 offers a perspective on the product construction; this example
reveals that, in one particular case, the increase in the number of states suggested by this
construction is in fact inherent. (Exercise 1.9.32 asks for a general proof that the product
construction is optimal in this sense.)

The subset construction of a DFA from an ✏-NFA (given by Theorem 1.3.20) involved
an exponential increase in the number of states: the state set of the constructed DFA was
the power set of the state set of the given ✏-NFA. This observation naturally poses a ques-
tion: is this exponential increase inherent, or is it merely an artifact of the particular proof
method used? In the next example, we show that the exponentiality of the increase is
inherent and necessary. That is, in the context of automata theory, nondeterministic compu-
tation is exponentially more economical than deterministic computation—when economy
is measured according to how many states an automaton has. This result foreshadows a
conundrum that will play primary protagonist in our study of complexity theory: there, the

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

48 Chapter 1

k k – 1 k – 2 · · · 1 0
a a, b a, b a, b

a, b

Figure 1.6.3. An NFA with k + 1 states whose language is Bk. The language Bk is defined to contain
each string x over the alphabet ⌃ = {a, b} such that the kth symbol from the right in x exists and is
equal to a. The diagram can also be viewed as that of an ✏-NFA having Bk as its language.

central P versus NP question amounts to asking whether or not nondeterministic compu-
tation is exponentially more economical than deterministic computation, when economy
is measured according to how much time a computation takes. In particular, this question
asks whether a natural exponential increase, which arises from simulating nondeterministic
computation with deterministic computation, is inherent.

Example 1.6.12. Let ⌃ = {a, b}, and for each k � 1, let Bk be the language that contains
each string x such that |x| � k and a is the kth symbol from the right in x. Example 1.3.6
gave a 4-state NFA whose language is B3. By generalizing the idea in that example, it can be
seen that for each k � 1, there exists a (k + 1)-state NFA whose language is Bk. (By Propo-
sition 1.3.18, there also exists a (k + 1)-state ✏-NFA whose language is Bk.) Figure 1.6.3
shows such an NFA.

We prove that, for each k � 1, any DFA whose language is Bk must have at least 2k

states. Let Yk be the set containing each string over ⌃ having length k. By appeal to Theo-
rem 1.6.7, it suffices to argue that Yk is pairwise separable with respect to Bk. Let y = y1…yk

and z = z1…zk be distinct strings in Yk. There exists an index i 2 {1, …, k} such that yi �= zi;
it then holds that for the strings ybi–1, zbi–1, the kth symbols from the right are yi and zi,
respectively, so exactly one of these two strings is in Bk. We have thus shown that y and z
are separable, with respect to Bk.

1.7 Myhill-Nerode theory

The previous section presented a sufficient condition for non-regularity of a language—
namely, the existence of an infinite set of pairwise separable strings—and applied this
condition to show the non-regularity of some particular languages. A natural question that
one can ask about this condition is whether or not it is also necessary for non-regularity;
this amounts to asking whether or not the presented proof method is complete, that is,
whether or not it can always succeed when confronted with a non-regular language. In this
section, we exhibit yet another characterization of regularity, in terms of an equivalence
relation, that permits us to answer this question in the affirmative. Another fruit of our

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 49

development is to give, for each regular language, a form of canonical minimal DFA, which
will be used to prove the correctness of a DFA minimization algorithm in the next section.
The development here originates from late 1950s work of John Myhill and Anil Nerode.

We will use the notion of equivalence relation and various associated concepts; we
briefly review and present these now. An equivalence relation ⇡ on a set U is a binary
relation satisfying the following three properties.
• Reflexivity: for all u 2 U, it holds that u ⇡ u.
• Symmetry: for all u, v 2 U, it holds that u ⇡ v implies v ⇡ u.
• Transitivity: for all u, v, w 2 U, if u ⇡ v and v ⇡ w, then u ⇡ w.

For each u 2 U, define [u] as {v 2 U
�� u ⇡ v}. An equivalence class of ⇡ is a set of

the form [u]. It is known that two equivalence classes are either equal or disjoint; that
is, for all u, v 2 U, either [u] = [v] or [u] \ [v] = ;. We say that an equivalence relation
has infinite index if it has infinitely many equivalence classes; and finite index if it has
finitely many equivalence classes. When an equivalence relation has finite index, its index
is defined to be its number of equivalence classes. An equivalence relation ⇡ on a set U
refines a subset V of U if, for all u, u0 2 U, it holds that u ⇡ u0 implies u 2 V , u0 2 V;
equivalently, ⇡ refines V when, for each u 2 U, either [u] ✓ V or [u] \ V = ;.

Characterizing regularity via an equivalence relation
Let B ✓ ⌃⇤ be a language. Define the binary relation ⇠

B on ⌃⇤ as follows:

x ⇠
B y if and only if for all w 2 ⌃⇤, it holds that xw 2 B , yw 2 B.

Note that the latter condition is equivalent to saying that there is no separator for x and y
with respect to B. The relation ⇠

B can thus be thought of as the binary relation of non-
separability, with respect to B. It is straightforwardly verified that ⇠B is an equivalence
relation (we leave this to the reader). For each x 2 ⌃⇤, we use [x]B to denote the equiv-
alence class of ⇠

B containing x, namely, the set
�

y 2 ⌃⇤
�� x ⇠

B y

. Observe that the
equivalence relation ⇠

B refines the set B: when x ⇠
B y, it holds that x 2 B , y 2 B, by

taking w = ✏ in the definition of x ⇠
B y.

We may observe the following proposition, which connects the index of ⇠B to the notion
of pairwise separability.

Proposition 1.7.1. Let B be a language. The equivalence relation ⇠
B has infinite index if

and only if there exists an infinite set of strings that is pairwise separable with respect to B.

Proof. Suppose that ⇠B has infinite index. Define U to be a set that contains one string
from each equivalence class of ⇠B. Then for any two distinct strings x, y 2 U, it does not
hold that x ⇠

B y, and thus there exists a separator for x and y with respect to B.
For the other direction, suppose that U is an infinite set of strings that is pairwise

separable. Then, for any two distinct strings x, y 2 U, it does not hold that x ⇠
B y, and

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

50 Chapter 1

so [x]B
�= [y]B. Therefore, no two distinct strings in U fall in the same equivalence class

of ⇠B, and thus ⇠B has infinitely many equivalence classes.

We next show that if the condition of Proposition 1.7.1 does not hold, then the lan-
guage B is regular. This will allow us to characterize the notion of regularity in terms of
the equivalence relation ⇠

B.

Theorem 1.7.2. Let B be a language. If the equivalence relation ⇠
B has finite index, then B

is regular; in particular, there exists a DFA M– such that L(M–) = B and whose number of
states is equal to the index of ⇠B.

Let B be a language over alphabet ⌃ such that ⇠B has finite index; from B, we define a
DFA M– = (Q–,⌃, s–, T–, �–) whose parts are given as follows:

Q– =
�

[x]B �� x 2 ⌃⇤ ,

s– = [✏]B,

T– =
�

[x]B �� x 2 B

,

�–([x]B, a) = [xa]B.

We have to show that �– is well-defined, that is, that its definition depends only on the
set [x]B, and not the particular representative chosen.4 To this end, assume that [x]B = [x0]B,
and let a 2 ⌃ be arbitrary; then, for each w 2 ⌃⇤, it holds that xw 2 B , x0w 2 B. In
particular, for each v 2 ⌃⇤, it holds that xav 2 B , x0av 2 B. It follows that xa ⇠

B x0a
and that [xa]B = [x0a]B, as desired.

Example 1.7.3. Let B be the language {x
�� #b(x) � 2} over ⌃ = {a, b}. (This language was

previously seen, in Example 1.1.2.) Relative to this language, let us analyze the structure
of the DFA M– just given.

First, we consider the equivalence class [✏]B. Set B0 = {x
�� #b(x) = 0}; we observe that

B0 ✓ [✏]B,

as when x is any string in B0, it holds that x ⇠
B ✏: for all w 2 ⌃⇤,

xw 2 B , #b(w) � 2 , ✏w 2 B.

Set B1 = {x
�� #b(x) = 1}; we observe that

B1 ✓ [b]B,

4. Let us elaborate. The function �– needs to be defined on each pair (q, a) 2 Q– ⇥ ⌃; each element q 2 Q– is an
equivalence class of ⇠B. However, the given definition of �– on such a pair (q, a) is in terms of a representative
element x of the equivalence class q. To ensure that this definition is proper, we thus need to verify that when x
and x0 are both elements of the same equivalence class q, that is, when [x]B = [x0]B, the function definition yields
the same result on them, that is, [xa]B = [x0a]B holds.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 51

as when x is any string in B1, it holds that x ⇠
B b: for all w 2 ⌃⇤,

xw 2 B , #b(w) � 1 , bw 2 B.

Observe also that
B ✓ [bb]B,

as when x is any string in B, it holds that x ⇠
B bb: for all w 2 ⌃⇤, we have the

inclusions xw 2 B and that bbw 2 B.
It is straightforwardly verified that the set {✏, b, bb} of strings is pairwise separable with

respect to B, implying that the equivalence classes [✏]B, [b]B, and [bb]B are pairwise not
equal. As each string in ⌃⇤ falls into either B0, B1, or B, we may conclude that

B0 = [✏]B, B1 = [b]B, and B = [bb]B.

The DFA M– can be seen to be the bottom DFA shown in Figure 1.7.1 (on page 53).

Proof of Theorem 1.7.2. Since the states in Q– are precisely the equivalence classes
of ⇠

B, the number of states in Q– is the index of ⇠
B. Hence, to conclude the proof of

the theorem, we need only verify that L(M–) = B. Let x = x1…xk 2 ⌃⇤ be an arbitrary
string of length k. Then, it holds that

[[✏]B, x1…xk] `M– [[x1]B, x2…xk] `M– [[x1x2]B, x3…xk] `M– · · · `M– [[x1…xk]B, ✏].

If x 2 B, then [x]B
2 T–, and M– accepts x. On the other hand, if x 62 B, then, as ⇠

B

refines B, we have [x]B
\ B = ; and hence [x]B

62 T–; so, M– rejects x.

Collecting together the above results, we obtain yet another characterization of the
regular languages.

Theorem 1.7.4. A language B is regular if and only if the equivalence relation ⇠
B has

finite index.

Proof. If the equivalence relation ⇠
B has infinite index, then it follows from Proposi-

tion 1.7.1 and Theorem 1.6.8 that B is not regular. If the equivalence relation ⇠
B has finite

index, then it follows from Theorem 1.7.2 that B is regular.

At this point, we can conclude that the sufficient condition for non-regularity pre-
sented in the previous section is also necessary, that is, we can establish the converse of
Theorem 1.6.8. This result follows directly from Theorem 1.7.4 and Proposition 1.7.1.

Corollary 1.7.5. Suppose that B is a non-regular language; then, there exists an infinite
set of strings that is pairwise separable with respect to B.

Minimality and canonicity of automata
In the rest of this section, we perform a more detailed study of the DFA M–, and show
that it is a canonical minimal DFA, in a sense made precise. We require the following

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

52 Chapter 1

notions. Let us say that a state q of a DFA M is reachable if there exists a string x such
that [s, x] `⇤

M [q, ✏], where s denotes the start state of M. Clearly, states of a DFA that are
not reachable can be eliminated without affecting the DFA’s behavior.

We next define the notion of a homomorphism from a DFA to another DFA. This notion
allows us to structurally relate two DFA; in substance, when there exists a homomorphism
from a first DFA to a second DFA, the structure of the first DFA is embodied in the structure
of the second DFA.

Definition 1.7.6. When M = (Q,⌃, s, T , �) and M0 = (Q0,⌃, s0, T 0, �0) are DFA over the
same alphabet, a homomorphism from M to M0 is a map h : Q ! Q0 such that
• h(s) = s0;
• q 2 T , h(q) 2 T 0, for all q 2 Q; and,
• h(�(q, a)) = �0(h(q), a), for all q 2 Q and a 2 ⌃.

Figure 1.7.1 discusses an example of a homomorphism.
We next establish a theorem essentially showing that, for a regular language B, the struc-

ture of any DFA M for B is manifest in the structure of the DFA M–: precisely, we show
that there is a homomorphism from M to M–.

Theorem 1.7.7. Let B be a regular language, and let M– be defined from B as described
above; M– is a DFA via Theorem 1.7.4. If M = (Q,⌃, s, T , �) is a DFA with L(M) = B
and whose states are all reachable, then there exists a unique homomorphism h : Q ! Q–

from M to M–, and moreover, this homomorphism is surjective.

Both here and in the sequel, we will make use of an equivalence relation ⇠M on ⌃⇤

derived from a DFA M = (Q,⌃, s, T , �), defined as follows: x ⇠M y if and only if there
exists a state q 2 Q such that [s, x] `⇤

M [q, ✏] and [s, y] `⇤
M [q, ✏]. It is straightforward (and

left to the reader) to verify that this binary relation is an equivalence relation.

Proof of Theorem 1.7.7. Let M = (Q,⌃, s, T , �) be a DFA satisfying the hypotheses.
We show that ⇠M is a subset of ⇠B, as follows. Suppose that x ⇠M y. Then, via Proposi-

tion 1.3.19, there exists a state q such that, for each w 2 ⌃⇤, it holds that [s, xw] `⇤
M [q, w]

and [s, yw] `⇤
M [q, w]; hence, for each w 2 ⌃⇤, it holds that xw 2 L(M) , yw 2 L(M).

Thus x ⇠
B y. (Consequently, each equivalence class of ⇠M is contained in an equivalence

class of ⇠B, and the index of ⇠B is less than or equal to the index of ⇠M , which in turn is
the number of states of M; recall our assumption that each state of M is reachable.)

Suppose that g is a homomorphism from M to M–, and let q 2 Q be a state of M.
Assume x = x1…xn to be a string such that [s, x] `⇤

M [q, ✏]. We claim that g(q) = [x]B.
Let q0 = s, and let q1, …, qn 2 Q be the states such that

[q0, x1…xn] `M [q1, x2…xn] `M [q2, x3…xn] `M · · · `M [qn, ✏].

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

b2

b3

b1

✏1

✏2

b2
1

b2
2

a a

b

b

a

a

a

b

b

b

a, b a

b

M0

M–

[✏] [b] [bb]
b b

a a

a, b

Figure 1.7.1. A pair of DFA related by homomorphism; the bottom DFA M– is from Example 1.7.3.
There is a homomorphism from the top DFA M0 to the bottom DFA M–, namely, the mapping h
from the top DFA’s state set to the bottom DFA’s state set defined by h(✏1) = h(✏2) = [✏], h(b1) =
h(b2) = h(b3) = [b], and h(b2

1) = h(b2
2) = [bb]. In the definition of homomorphism, the first condition

holds that the start state of the first DFA is mapped to the start state of the second; here, we indeed
have h(✏1) = [✏]. The second condition holds that a state of the first DFA accepts if and only if
it is mapped to an accept state; here, we have that [bb] is the unique accept state of the bottom
DFA, and that the states mapped to it, namely b2

1 and b2
2, are indeed the only accept states of the

top DFA. The third condition holds that, for any state of the first DFA, transitioning on a symbol and
passing through the homomorphism yields the same state as first passing through the homomorphism
and then transitioning on the same symbol. As one example, consider the state ✏2 of the top DFA;
transitioning on b leads to the state b3, and passing through the homomorphism yields the state [b];
passing the state ✏2 through the homomorphism to obtain [✏] and then transitioning on b also yields
the state [b].

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

54 Chapter 1

Observe that, for each i with 0 i < n, it holds that

g(qi+1) = g(�(qi, xi+1)) = �–(g(qi), xi+1),

where the second equality holds by the definition of homomorphism. By the definition of
homomorphism, we have g(q0) = [✏]B. By repeatedly applying our observation about the
value of g(qi+1) and using the definition of �–, we obtain

g(q1) = [x1]B, g(q2) = [x1x2]B, …, g(qn) = [x1…xn]B.

Since qn = q, we obtain g(q) = [x]B, as desired.
For each q 2 Q, define h(q) = [x]B where x is a string such that [s, x] `⇤

M [q, ✏]. We have
that h is well-defined: for any two strings x, x0 such that [s, x] `⇤

M [q, ✏] and [s, x0] `⇤
M [q, ✏],

it holds that x ⇠M x0; this implies that x ⇠
B x0 (as just shown) and that [x]B = [x0]B. We

have argued that any homomorphism g must be equal to h. Therefore, if h is indeed a
homomorphism from M to M–, it is the unique such homomorphism.

We verify that h is a homomorphism from M to M– as follows.
• As [s, x] `⇤

M [q, ✏] when q = s and x = ✏, we have h(s) = [✏]B, so we obtain h(s) = s–.
• Let q 2 Q; there exists a string x such that [s, x] `⇤

M [q, ✏], and h(q) = [x]B.
‚ When q 2 T , the DFA M accepts x, and x 2 B; then, [x]B

2 T–.
‚ When q 62 T , the DFA M rejects x, and x 62 B; since ⇠B refines B, we have [x]B

62 T–.
• Let q 2 Q and a 2 ⌃. Set x 2 ⌃⇤ so that [s, x] `⇤

M [q, ✏]; then h(q) = [x]B holds. We
have [s, xa] `⇤

M [q, a] `M [�(q, a), ✏], so h(�(q, a)) = [xa]B = �–([x]B, a) = �–(h(q), a).

It holds that h : Q ! Q– is a surjective mapping: for any string y, let p be the state such
that [s, y] `⇤

M [p, ✏]; then, h(p) = [y]B.

Define a DFA M to be minimal if there does not exist a DFA M0 that has strictly fewer
states than M and has L(M0) = L(M). That is, a DFA M is minimal if there is no strictly
smaller DFA that has the same language, where we measure the size of a DFA according
to the number of states.

Let B be a language, and consider a DFA M with L(M) = B. Suppose that the DFA M
is minimal; since it is minimal, it clearly has only reachable states. Theorem 1.7.7 implies
that the DFA M admits a surjective homomorphism to the DFA M– defined from B; by the
surjectivity, M has at least as many states as M–. It follows that the DFA M– is minimal,
and so we have established the following corollary.

Corollary 1.7.8. Let B be a regular language, and let M– be the DFA described above.
The DFA M– is minimal.

Remark 1.7.9. When M and M0 are DFA over the same alphabet, define an isomorphism
from M to M0 to be a homomorphism from M to M0 that is bijective. It is straightforwardly
verified that if i is an isomorphism from M to M0, then its inverse i–1 is an isomorphism

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 55

from M0 to M. Say that a DFA is isomorphic to another DFA when there exists an isomor-
phism from one to the other. Diagramatically, two DFA that are isomorphic are the same,
up to relabeling the names of their states. It can be verified that relating together each pair
of isomorphic DFA yields an equivalence relation (on the class of all DFA).

From Theorem 1.7.7, we learn that any minimal DFA M for a language B is isomorphic
to the DFA M–: when M is minimal, the DFA M and M– must have the same number of
states, implying that the homomorphism provided by the theorem is a bijection and hence
an isomorphism. Thus, we can conceive of M– as a canonical minimal DFA for B.

1.8 DFA minimization

In this section, we present and study an algorithm that, given as input a DFA M, outputs a
minimal DFA whose language is that of M.

We employ the following notation in this section. Relative to a DFA M = (Q,⌃, s, T , �),
when q 2 Q is a state and x 2 ⌃⇤ is a string, we use b�(q, x) to denote the unique
state such that [q, x] `⇤

M [b�(q, x), ✏]. In words, b�(q, x) denotes the state that the DFA
ends up in if it begins in state q and processes the string x. We will invoke the prop-
erty that, for each state q 2 Q, each symbol a 2 ⌃, and each string w 2 ⌃⇤, it holds
that b�(�(q, a), w) = b�(q, aw). This property is straightforwardly verified, and in fact could
be used to alternatively define the function b� by induction.

The input to the algorithm is a DFA M = (Q,⌃, s, T , �). The algorithm performs three
phases, in order:
• the preliminary phase,
• the marking phase, and
• the collapsing phase, which outputs the minimized DFA.

In the preliminary phase, the algorithm removes from M each state that is not reachable.
This can be done by flagging the start state, and then iteratively flagging each state admit-
ting a transition from a flagged state; when no more states can be flagged, the reachable
states will be precisely those that are flagged, and the non-flagged states can be removed.
The marking phase and collapsing phase are described and studied in what follows.

1.8.1 Marking phase
The marking phase iteratively marks elements of Q ⇥ Q, that is, pairs of states. It is
assumed that all pairs are unmarked prior to the commencement of this phase. The marking
phase performs the following:
• Initialization: mark all pairs in T ⇥ (Q \ T) and in (Q \ T) ⇥ T .
• Loop, doing the following until no more changes can be made:

� For each unmarked pair (p, q), if there exists an element a 2 ⌃ such that
(�(p, a), �(q, a)) is marked, then mark (p, q).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

56 Chapter 1

Intuitively, this phase marks each state pair whose states are behaviorally different, and
cannot be collapsed together. The initialization marks each state pair where exactly one
state is an accept state; the states of such a pair behave differently. The loop marks a state
pair (p, q) as different when making a transition from these states, based on a common
symbol, would lead to a pair of states already marked as being different.

Let us introduce some symmetric binary relations, each of which is a subset of Q ⇥ Q,
for the sake of reasoning about this algorithm. First, define

R0 = (T ⇥ (Q \ T)) [((Q \ T) ⇥ T).

The relation R0 contains the pairs that are marked after the initialization step. Next, for
each value i � 0, define the relation

Ri+1 = Ri [{(p, q) 2 Q ⇥ Q
�� 9a 2 ⌃ such that (�(p, a), �(q, a)) 2 Ri}.

Clearly, we have the inclusions

R0 ✓ R1 ✓ R2 ✓ · · · .

What is the meaning of the relations Ri+1? The relation Ri+1 contains those pairs that are
marked after the (i + 1)th iteration of the loop body, so long as this iteration is performed.
The loop terminates as soon as no changes can be made; letting k be the lowest value such
that Rk = Rk+1, the loop terminates after k + 1 executions of the loop body. Observe that,
for this value k, it holds that Rk = Rk+1 = Rk+2 = · · · . We nonetheless define Ri+1 for all
values i � 0, for the purpose of analyzing the algorithm.

Figure 1.8.1 discusses an example of the marking phase’s behavior.
Define R =

S
j�0 Rj. Observe that R contains a pair if and only if the pair is marked by the

algorithm. We will use R to denote the complement of R with respect to Q ⇥ Q; that is, we
use R to denote the set (Q ⇥ Q) \ R. We thus have that the pairs in R are precisely the pairs
that are not marked by the algorithm. The following lemma provides a characterization of
the set R, and thus implicitly, a characterization of the set R, as well.

Lemma 1.8.1. A pair (p, q) of states is in R if and only if for all w 2 ⌃⇤, it holds
that b�(p, w) 2 T , b�(q, w) 2 T. Consequently, the binary relation R ✓ Q ⇥ Q is an
equivalence relation.

Proof. The second statement about R being an equivalence relation is readily verified from
the first statement. We prove the first statement. Let (p, q) be an arbitrary pair of states of M.

We prove the forward direction by establishing its contrapositive. Suppose that there
exists w 2 ⌃⇤ such that exactly one of b�(p, w), b�(q, w) is in T; we prove that (p, q) is not
in R. Let w = w1…wn. Set p0 = p and q0 = q. For each index i = 1, …, n in sequence, define
the two states pi = �(pi–1, wi) and qi = �(qi–1, wi). We have

[p, w1…wn] `M [p1, w2…wn] `M [p2, w3…wn] `M · · · `M [pn, ✏],

[q, w1…wn] `M [q1, w2…wn] `M [q2, w3…wn] `M · · · `M [qn, ✏].

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 57

✏1 ✏2 b1 b2 b3 b2
1 b2

2
✏1 1 1 1 0 0
✏2 1 1 1 0 0
b1 1 1 0 0
b2 1 1 0 0
b3 1 1 0 0
b2

1 0 0 0 0 0
b2

2 0 0 0 0 0

Figure 1.8.1. The marking phase’s behavior on the DFA M0 of Figure 1.7.1. This DFA has state set
Q = {✏1, ✏2, b1, b2, b3, b2

1, b2
2} and accept state set T = {b2

1, b2
2}. The relation R0 is defined to contain

all pairs that are initially marked, which are the pairs containing one accept state and one non-accept
state; these pairs are indicated with a 0 in the table. The relation R1 contains all pairs marked by
the 1st iteration of the loop, as well as the pairs in R0; in this case, R1 newly includes each pair of
the form (✏i, bj) and its transposition, as for such a pair we have (�(✏i, b), �(bj, b)) 2 R0. The pairs in
R1 but not in R0 are indicated with a 1 in the table. After the first iteration of the loop, no further
pairs are marked by the marking phase, and we have R1 = R2 = · · · . When the marking phase is
concluded, the unmarked pairs always form an equivalence relation on the state set; this is established
by Lemma 1.8.1. Here, this equivalence relation has the equivalence classes {✏1, ✏2}, {b1, b2, b3}, and
T = {b2

1, b2
2}.

By hypothesis, exactly one of the states pn, qn is in T . Hence, we have (pn, qn) 2 R0. Since
(pn, qn) = (�(pn–1, wn), �(qn–1, wn)), it follows from the definition of R1 that the inclusion
(pn–1, qn–1) 2 R1 holds. Repeating this reasoning, we obtain that (pn–i, qn–i) 2 Ri for each
index i = 0, …, n, and so (p, q) = (p0, q0) 2 Rn ✓ R. We have shown that (p, q) is not in R.

We prove the backward direction also by establishing its contrapositive. Suppose the
inclusion (p, q) 2 R; we show that there exists w 2 ⌃⇤ such that exactly one of the two
states b�(p, w), b�(q, w) is in T . We prove by induction that for each i � 0, if (p, q) 2 Ri,
then there exists a string w with the stated property. In the case of i = 0, it is clear that
the string w = ✏ has the stated property. For the induction, assume that the statement holds
for i; we show that it holds for i + 1. Let (p, q) 2 Ri+1. If (p, q) 2 Ri, we are finished, by
the induction hypothesis. Otherwise, by the definition of Ri+1, there exists a 2 ⌃ such
that (�(p, a), �(q, a)) 2 Ri. By the induction hypothesis, there exists a string w0 such that
the set T contains exactly one of the two states b�(�(p, a), w0), b�(�(q, a), w0). As we have the
equalities b�(�(p, a), w0) = b�(p, aw0) and b�(�(q, a), w0) = b�(q, aw0), we can take w = aw0.

1.8.2 Collapsing phase
The collapsing phase of the algorithm computes and outputs a minimized DFA N,
described as follows. Let us use [q] to denote the equivalence class of a state q 2 Q with
respect to the equivalence relation R, the set of unmarked pairs. Essentially, the DFA N
is obtained from the DFA M = (Q,⌃, s, T , �) by taking each equivalence class [q], and

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

58 Chapter 1

collapsing all of its states into one state. Intuitively, this is justified due to all states in
an equivalence class [q] being behaviorally equivalent. To be formal, let us define the
DFA N = (QN ,⌃, sN , TN , �N) as follows:

QN = {[q]
�� q 2 Q},

sN = [s],

TN = {[t]
�� t 2 T},

�N([q], a) = [�(q, a)].

We need to argue that the transition function �N is well-defined; in particular, we
need to argue that, assuming a 2 ⌃, if (p, q) 2 R, then (�(p, a), �(q, a)) 2 R. We prove
the contrapositive. Suppose that (�(p, a), �(q, a)) 2 R. Then there exists an index j � 0
such that (�(p, a), �(q, a)) 2 Rj. But then it follows by the definition of the relations Ri

that (p, q) 2 Rj+1, and hence (p, q) 2 R.
In the next two theorems, the correctness of the algorithm is established. We assume, for

these two theorems, that M is a DFA whose states are all reachable, and that N is the DFA
defined from M as just described. These theorems show that the new DFA N has the same
language as the original DFA M, and that the new DFA N is minimal.

Theorem 1.8.2. L(M) = L(N).

Proof. Let x = x1…xk be an arbitrary string. Let q1, …, qk 2 Q be the states such that

[s, x1…xk] `M [q1, x2…xk] `M [q2, x3…xk] `M · · · `M [qk, ✏].

From the definition of �N , it follows that

[[s], x1…xk] `N [[q1], x2…xk] `N [[q2], x3…xk] `N · · · `N [[qk], ✏].

We show that x 2 L(M) if and only if x 2 L(N). In order to do this, we argue that
for any state qk 2 Q, it holds that qk 2 T if and only if [qk] 2 TN . The forward direc-
tion follows immediately from the definition of TN . For the backward direction, suppose
that [qk] 2 TN ; then, there exists t 2 T such that [t] = [qk], that is, such that (t, qk) 2 R. But
by Lemma 1.8.1, we have

t = b�(t, ✏) 2 T , qk = b�(qk, ✏) 2 T ,

so it follows that qk 2 T .

Theorem 1.8.3. The DFA N is minimal.

Proof. By our assumption that all states of M are reachable, it follows that all states of N
are reachable. Let B = L(N); by Theorem 1.8.2, we have that B = L(M). We will prove the
claim that ⇠B is a subset of ⇠N . This implies that each equivalence class of ⇠B is contained
in an equivalence class of ⇠N , which in turn implies that the index of ⇠B is greater than
or equal to the index of ⇠N . The index of ⇠B is equal to |Q–|, the number of states of M–

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 59

(defined from B in the previous section). The index of ⇠N is equal to |QN |, the number
of states of N; this holds since all states of N are reachable. Since M– is known to be
minimal (by Corollary 1.7.8), it follows that N is minimal. (We remark that the proof of
Theorem 1.7.7 yields that ⇠N is a subset of ⇠B, here implying that ⇠N and ⇠

B are equal.)
To establish the claim, assume that x ⇠

B y; then, by definition we have that for each
string w 2 ⌃⇤, it holds that

xw 2 B , yw 2 B.

Since B = L(M), we obtain that, for each string w 2 ⌃⇤, it holds that
b�M(s, xw) 2 T , b�M(s, yw) 2 T ,

and consequently that
b�M(b�M(s, x), w) 2 T , b�M(b�M(s, y), w) 2 T .

By Lemma 1.8.1, we obtain that [b�M(s, x)] = [b�M(s, y)]. It follows from the first paragraph
of the proof of the previous theorem (Theorem 1.8.2) that

�N([s], x) = [b�M(s, x)] and �N([s], y) = [b�M(s, y)].

Therefore, we have that �N([s], x) = �N([s], y) which, by definition of ⇠N , yields that the
relationship x ⇠N y holds.

1.9 Exercises and notes

Exercise 1.9.1. List each string of length 3 or less that is accepted by the following DFA:

0 1 2
b a

a b a, b

Note 1.9.2: Automata as finite descriptions of languages. Observe that an automaton
(of one of the defined brands) is an inherently finite object: from the supposition that each
automaton has a finite state set, each part of an automaton may be presented by expending
a finite amount of ink on paper. Likewise, a regular expression is by definition a string
having finite length, and is also a finite object in this sense.

On the other hand, each automaton and regular expression describes a language, which
is potentially an infinite object, in that there are infinitely many strings that may belong to a
language, and presenting a particular language involves specifying (explicitly or implicitly)
which of those strings are members. So, automata and regular expressions may be viewed
as finite descriptions of generally infinite objects.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

60 Chapter 1

Note 1.9.3. To continue the discussion of Note 1.9.2, fix an alphabet ⌃. A corollary of the
observation that each DFA admits a finite representation is that the number of possible DFA
over ⌃ is countably infinite. This can be seen, in fact, by observing that each DFA (over ⌃)
can itself be represented as a string over an alphabet, and that the number of strings over
any particular alphabet is countably infinite.

As a consequence, one obtains from size considerations that there exists a language not
decided by any DFA (that is, a language that is not regular), for the number of languages
over ⌃ is uncountably infinite. Indeed, the vast majority of languages are inaccessible in
that they lack representation via DFA. The same phenomenon will persist throughout our
study; for each of the studied computational models, the number of particular realizations
of the model will be countably infinite, implying immediately that there are languages
without representation in the model.

Note 1.9.4. While the argument of Note 1.9.3 imparts that there exist languages that are not
regular, it does not at all render uninteresting the techniques we developed for proving non-
regularity of languages. The developed techniques allow us to explicitly present natural
specimens of non-regular languages; more generally, they offer the possibility of analyzing
whether a given language of relevance is regular or not.

As our study progresses, we will identify further classes of languages; one broad goal
of the theory of computation is to understand, when confronted with a relevant language
(possibly arising from the real world!), to which classes it belongs and to which classes it
does not, thereby clarifying the computational resources demanded by language.

Note 1.9.5: On the trivial languages and DFA. Relative to an alphabet ⌃, the trivial
languages ; and ⌃⇤ are indeed among the most innocuous languages with which we will
deal. They are the only two languages that are decidable by 1-state DFA, a fact which
assures us that monikering them as trivial was reasonable. They fall into the families of
finite and cofinite languages (respectively), which are the principals of Exercise 1.9.7.

Note 1.9.6. As has already been suggested, the regular languages are the smallest class
of languages and the least difficult languages that we will study computationally. That the
trivial languages are clearly regular suggests that the subset and superset relations will,
in general, not be of high utility for comparing the difficulty of languages. For the trivial
languages bookend all other languages: over an alphabet ⌃, each language is a subset
of ⌃⇤, and a superset of the empty set ;.

Exercise 1.9.7: Regularity of finite languages. Prove that each finite language is regular.
This implies, via Theorem 1.2.1, that each cofinite language is also regular; a cofinite

language is a language whose complement is finite.

Exercise 1.9.8: On infinite state sets. It is certainly a legitimate move to define a math-
ematical object more general than the DFA, by lifting off the assumption that the state set

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 61

be finite. Define a deterministic automaton (DA) in exactly the same way that a DFA is
defined, but without the restriction that the state set be finite. For a DA M = (Q,⌃, s, T , �),
we can define the notions of configuration, successor configuration, acceptance, and
rejection just as we did for DFA.

Prove that for every language B, there exists a DA M with L(M) = B.

Note 1.9.9. The result of Exercise 1.9.8 highlights the cruciality of the assumption that
each DFA has a finite state set. In the absence of this assumption, the computational model
becomes trivialized in that its power becomes overwhelming: every language becomes
describable. Correspondingly, the theory goes flat, not permitting any interest in or tech-
nique for showing the non-describability of languages; also, the describable languages
trivially possess any closure property.

Exercise 1.9.10: Symmetric differences of regular languages. The symmetric differ-
ence of two languages B and C is defined as the set (B \ C) [(C \ B); it is the language
containing each string that is in exactly one of B and C.

Prove that when B and C are regular languages over the same alphabet ⌃, their
symmetric difference is also a regular language.

Note 1.9.11. When one has a language B of interest in hand, each string over the lan-
guage’s alphabet poses a question to a potential DFA for deciding the language B: is the
string inside B? Whether or not there is a DFA deciding B is not affected by modify-
ing the answer to this decision question for a finite number of strings: by Exercises 1.9.7
and 1.9.10, regularity of a language is preserved under taking a symmetric difference with
a finite language. And, this statement holds not just for the DFA model, but for each of the
principal computational models that we will consider in this book.

What we are building, then, is not so much a theory of individual decision questions, but
rather, a theory of how decision questions behave in an aggregate fashion and in relation to
each other.

Note 1.9.12. In some of the following exercises, you are asked to present an automaton
or a regular expression whose language is a given one. Also, strive for comprehensibility:
to the extent possible, design and present automata and regular expressions so that their
functionality is transparent and readily graspable. And, with comprehensibility in mind,
strive for brevity: when presenting automata, attempt to use as few states as is feasible, and
when presenting regular expressions, try to minimize the length of expressions.

Exercise 1.9.13: Building DFA. Let ⌃ = {a, b}. For each of the languages over ⌃ that is
given below, present a DFA with input alphabet ⌃ whose language is the given one.

1. The language containing each string with exactly 4 occurrences of b.
2. The language containing each string that ends with either aa or ab.
3. The language containing each string x such that |x| is a multiple of 4.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

62 Chapter 1

4. The language containing each string x such that |x| is a multiple of 2 or 3.
5. The language containing each string x such that #a(x) is odd.
6. The language containing each string x such that #a(x) is odd, equal to 2, or equal to 6.
7. The language containing each string that does not have abb as a substring.
8. The language containing each string x such that each occurrence of baab as a

substring is either followed by aa, or is at the end of x.
9. The language containing each string x such that ab is a substring of x if and only if

ba is a substring of x.
10. The language containing each string x where, for each prefix w of x, it holds

that |#a(w) – #b(w)| 3.
11. The language containing each string x where, for each prefix w of x, it holds

that |2#a(w) – #b(w)| 3.
12. The language containing each string that contains ab as a substring an odd number

of times.
13. The language containing each string that ends with either aaa, aab, or aba.
14. The language containing each string that contains exactly two b’s or contains an odd

number of a’s.
15. The language containing each string that contains exactly two b’s and contains an

odd number of a’s.

Exercise 1.9.14: Building more DFA. Let ⌃ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. For each of the
languages over ⌃ that is given below, present a DFA with input alphabet ⌃ whose language
is the given one.

1. The language B containing each string that is a number between 1 and 420, inclusive,
written without any leading 0’s. As examples, 0 62 B, 04 62 B, 1 2 B, 4 2 B, 44 2 B,
50 2 B, 050 62 B, 404 2 B, 420 2 B, 444 62 B, and 500 62 B.

2. The language C containing each string that is a number between 1 and 2046, inclu-
sive, written without any leading 0’s. As examples, 0 62 C, 042 62 C, 42 2 C, 142 2 C,
0142 62 C, 1024 2 C, and 2401 62 C.

3. The language D containing each string that is a number between 1984 and 2001,
inclusive, written without any leading 0’s.

Exercise 1.9.15: Building NFA. Let ⌃ = {a, b, c}. For each of the languages over ⌃ that
is given below, present an NFA with input alphabet ⌃ whose language is the given one.

1. The language containing each string that contains both ca and bb as substrings.
2. The language containing each string that contains at least one of aab or aac as a

substring.
3. The language containing each string x such that the second symbol from the right in x

exists, and is equal to the second symbol from the left in x.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 63

4. The language containing each string x such that if the 5th symbol from the right exists
in x, it is equal to c.

5. The language containing each string having 3 consecutive symbols that are equal.
6. The language containing each string x such that there exist natural numbers k, ` � 0

where |x| = 5k + 7`.
7. The language containing each string where each occurrence of a is followed immedi-

ately by an occurrence of b.

Exercise 1.9.16: Building more NFA. Let ⌃ = {a, b}. For each of the languages over ⌃
that is given below, present an NFA with input alphabet ⌃ whose language is the given
one.

1. The language containing each string x such that |x| � 1 and the first symbol of x is
equal to the last symbol of x.

2. The language B containing each string x such that |x| � 4 and the first two symbols
of x are equal to the last two symbols of x. As examples, aaa 62 B, abab 2 B, and
abba 62 B.

3. The language C containing each string x such that |x| � 2 and the first two symbols
of x are equal to the last two symbols of x. As examples, aaa 2 C, aba 62 C, abab 2 C,
and abba 62 C.

Exercise 1.9.17. List all strings of length 3 and of length 4 that do not belong to the
language L(a⇤b⇤a⇤).

Exercise 1.9.18: Describing languages of regular expressions. For each of the following
regular expressions, give a natural language description of the language represented, and
list all of the strings of length 6 or less that belong to the language represented. If there are
more than 15 such strings, then you may list the first 15 strings in a length-ascending order.

1. (ab)⇤ + (ba)⇤

2. (ab)⇤c + (bc)⇤

3. (aab)⇤ + (bba)⇤

4. (a + bb)⇤ + (b + aa)⇤

5. (ab + ba)(aa + bb)⇤

6. (ab + ba)⇤

7. (ab + c + b)⇤

8. (abb + c)⇤

9. (a + ab)⇤(✏ + b)
10. (abb + b)⇤

11. ((b⇤) + (aa)⇤)⇤

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

64 Chapter 1

Exercise 1.9.19: Building regular expressions. Let ⌃ = {a, b}. For each of the languages
over ⌃ given below, present a regular expression whose language is the given one.

1. The language containing each string that contains 3 or more a’s.
2. The language containing each string that contains 3 or fewer a’s.
3. The language containing each string that contains abba as a substring.
4. The language containing each string x such that |x| � 4 and the 4th symbol from the

right is b.
5. The language containing each string that contains baa as a substring 2 or fewer times.
6. The language containing each string that does not contain two consecutive a’s.
7. The language containing each string that begins or ends with abba.
8. The language containing each string having even length.
9. L(b⇤a⇤) \ L(a⇤b⇤).

10. L(b⇤a⇤b⇤) \ L(a⇤b⇤a⇤).
11. L(b⇤ab⇤) \ L(a⇤ba⇤).

Exercise 1.9.20. The DFA of Example 1.1.3 can be viewed as the DFA that results by
applying the product construction, given at the beginning of Section 1.2.2, to two DFA.
Which two DFA?

Exercise 1.9.21: Unary alphabets and ultimate periodicity. This exercise characterizes
the structure of regular languages over a unary alphabet. Define a subset S ✓ N of the
natural numbers to be ultimately periodic if there exist numbers n � 0 and p > 0 such
that for all m � n, it holds that m 2 S if and only if m + p 2 S.

Let ⌃ be the unary alphabet {a}. Prove that a language B over ⌃ is regular if and only if
the set {n 2 N

�� an
2 B} is ultimately periodic.

Exercise 1.9.22. Prove that if B is a regular language over ⌃, then for any a 2 ⌃, the
language B0 = {x

�� xa 2 B} is also regular. Prove this by first assuming that M is a DFA
with L(M) = B, and then showing how to construct a DFA M0 with L(M0) = B0 and whose
set of states is equal to that of M.

Exercise 1.9.23. Prove that if B is a regular language over ⌃, then the language

P =
�

x 2 ⌃⇤ �� 9v 2 ⌃⇤ such that xv 2 B

is also regular. The language P contains each prefix of each string in B.

Exercise 1.9.24. Prove that if B is a regular language over ⌃, then the language

B0 =
�

x 2 ⌃⇤ �� xx 2 B

is also regular. Hint: let M = (Q,⌃, s, T , �) be a DFA with L(M) = B; it may be useful to
consider the functions ha : Q ! Q, defined for each a 2 ⌃, by ha(q) = �(q, a).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 65

Exercise 1.9.25. For each language B over ⌃, define

FirstHalf(B) =
�

x 2 ⌃⇤ �� 9y 2 ⌃⇤ such that xy 2 B and |x| = |y|

.

That is, FirstHalf(B) contains the first half of every even-length string in B. Prove that if B
is a regular language, then FirstHalf(B) is also regular.

Exercise 1.9.26. Let D denote the language {ambn
�� 0 n < m}. Answer each of the

following questions, and justify your answer.

1. Does the pair of strings (a, aa) have a separator, with respect to D?
2. Does the pair of strings (ab, abb) have a separator, with respect to D?

Exercise 1.9.27: Proving non-regularity. For each of the given languages over the
alphabet ⌃ = {a, b}, prove that the language is not regular.

1. The language
�

aibj
�� i, j � 0, i �= j

.

2. The language
�

aibj
�� i � 0, i2 = j

.

3. The language containing each string x such that #a(x) #b(x).
4. The language containing each string x such that 2 · #a(x) = 3 · #b(x).
5. The language containing each string x such that #a(x) � 2#b(x).
6. The language containing each string over ⌃ whose length is a square, that is, whose

length has the form n2 for a natural number n � 0.
7. The language containing each string over ⌃ whose length is a power of 2, that is,

whose length has the form 2n for a natural number n � 0.
8. The language {xx

�� x 2 ⌃⇤}. (It may be didactic to compare this language with that of
Exercise 1.9.24.)

Exercise 1.9.28: Deciding regularity. For each of the following languages over the
alphabet ⌃ = {a, b}, state whether or not the language is regular, and prove your assertion.

1. The language
�

aibj
�� i, j � 0 and (i + j) is even

.

2. The language B that contains each string x such that the number of occurrences of ab
as a substring in x is one more than the number of occurrences of ba as a substring
in x. As examples, ab 2 B and abba 62 B.

3. The language C that contains each string x such that the number of occurrences of abb
as a substring in x is one more than the number of occurrences of baa as a substring
in x. As examples, ab 62 C and abba 2 C.

Exercise 1.9.29. Let B be the language containing each string over {a, b} that has babbab
as a substring. Show that any DFA whose language is B must have 7 or more states.

Exercise 1.9.30: Multiples of 7. Let B7 be the language containing each string over the
alphabet ⌃ = {0, 1, …, 9} that represents a number (base 10) that is a multiple of 7. Leading

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

66 Chapter 1

zeroes should be ignored, in the sense that a string x is in B7 if and only if 0x is in B7. Hence,
we have 0, 007, 14, 014, 42, 217, 1729 2 B7, and we have 6, 06, 10, 237 62 B7.

Give a DFA whose language is B7. (A diagram is not necessary; the DFA may be
specified in any way.)

Exercise 1.9.31: Multiples of 99. Let B99 be the language containing each string over the
alphabet ⌃ = {0, 1, …, 9} that represents a number (base 10) that is a multiple of 99. (As
in Exercise 1.9.30, leading zeroes should be ignored.) Prove that any DFA whose language
is B99 must contain 99 or more states.

Exercise 1.9.32: Optimality of the product construction. For each pair of natural num-
bers k, ` � 1, give a DFA M having k states, a DFA M0 having ` states, and a proof that any
DFA whose language is L(M) \ L(M0) must have at least k · ` states. In a sense, this exer-
cise witnesses the optimality of the product construction of Theorem 1.2.2; this theorem
established closure under intersection, for the regular languages.

Exercise 1.9.33: A product construction for NFA. Show how to directly construct, from
two NFA M1 = (Q1,⌃,�1, S1, T1) and M2 = (Q2,⌃,�2, S2, T2), a third NFA M with state
set Q1 ⇥ Q2 such that L(M) = L(M1) \ L(M2), and prove that your construction works.

Exercise 1.9.34. Consider the ✏-NFA with state set Q = {1, 2}, input alphabet ⌃ = {a, b},
initial state set S = {1}, accept state set T = {1}, and the following transition function:

� a b ✏
1 {1, 2} {2} ;

2 ; {1} ;

Use the subset construction of Theorem 1.3.20 to convert the given ✏-NFA to a DFA.
The resulting DFA will have the same language as the given ✏-NFA.

Exercise 1.9.35: Reversing regular languages. Prove that if B is a regular language, then
the language

B0 = {rev(x)
�� x 2 B}

is also regular. Here, rev(x) denotes the reversal of the string x, as in Example 1.6.10. That
is, prove that if one starts from a regular language and reverses every single one of its
strings, the resulting language is also regular. Hint: try using Theorem 1.5.8.

Exercise 1.9.36: String homomorphisms. Let ⌃ and � be alphabets. For each mapping
of the form h : ⌃ ! �⇤, define the mapping h : ⌃⇤

! �⇤ by h(x1…xn) = h(x1) · · · h(xn).
Each mapping h : ⌃⇤

! �⇤ that arises from a mapping h : ⌃ ! �⇤ in this way is called a
string homomorphism. Prove the following statements.

1. If h : ⌃ ! �⇤ is any mapping, and B is a regular language over ⌃, then the language�
h(x)

�� x 2 B

is also regular. This result is typically referred to as closure under
homomorphism.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 67

2. If h : ⌃ ! �⇤ is any mapping, and C is a regular language over �, then the language�
x 2 ⌃⇤

�� h(x) 2 C

is also regular. This result is typically referred to as closure under
inverse homomorphism.

Exercise 1.9.37: Rotating regular languages. When B is a language over alphabet ⌃,
define the language of rotations of B as

Rotations(B) =
�

yx
�� x, y 2 ⌃⇤ and xy 2 B

.

Prove that if B is regular, then Rotations(B) is also regular.

Exercise 1.9.38: Myhill-Nerode relations. Let B be a language over alphabet ⌃. Define a
Myhill-Nerode relation for B to be an equivalence relation ⇡ on ⌃⇤ that has finite index,
refines B, and is a right congruence in that, for all strings x, y 2 ⌃⇤ and for each a 2 ⌃,
it holds that x ⇡ y implies xa ⇡ ya. Prove that a language B is regular if and only if there
exists a Myhill-Nerode relation for B.

Note 1.9.39. One way to prove the forward direction of Exercise 1.9.38 is by invoking
Theorem 1.7.4 and by confirming that ⇠B is a Myhill-Nerode relation. This exercise can
thus be interpreted as showing that the notion of Myhill-Nerode relation abstracts out the
vital properties of ⇠B that ensure regularity of B.

Exercise 1.9.40: The pumping lemma. Prove the pumping lemma, which is the following
statement. Suppose that B is a regular language over ⌃; then, there exists a natural number
K � 1 such that for any string w 2 B with |w| � K, there exist x, y, z 2 ⌃⇤ such that the
following hold:
• w = xyz,
• |xy| K,
• y �= ✏, and
• for all n � 0, it holds that xynz 2 B.

The pumping lemma gives a necessary condition for regularity. Its contrapositive form
thus gives a sufficient condition for non-regularity, and indeed a typical use of this lemma
is to show non-regularity of a language via the contrapositive form.

As a hint sketch, this lemma can be proved along the following lines. Let M =
(Q,⌃, s, T , �) be a DFA whose language is B, and set K = |Q|. Let w = w1…wm be a string
of length m � K, set q0 = s, and let q1, …, qm be the states that the DFA passes through
upon processing w, that is, the states such that

[q0, w1…wm] `M [q1, w2…wm] `M [q2, w3…wm] `M · · · `M [qm, ✏].

Then, exploit the fact that two of the K + 1 states in the list q0, q1, …, qK must be equal.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

68 Chapter 1

Exercise 1.9.41: Non-regularity of the primes. Let B be the language {1n
�� n is a prime}

containing the primes in unary representation. Prove, using the pumping lemma (of
Exercise 1.9.40), that the language B is not regular.

Exercise 1.9.42: Between one string and infinitely many. Let M be a DFA with state
set Q. Prove that the language L(M) is infinite if and only if there exists a string x 2 L(M)
such that the inequalities |Q| |x| 2|Q| – 1 hold.

Exercise 1.9.43: The tip of the pyramid. Let ⌃ be the alphabet {r, g, b}, whose symbols
represent the colors red, green, and blue. Define d : ⌃⇤ \ ({✏} [⌃) ! ⌃⇤ as the function
that, on a non-empty string x1…xm of length m � 2, returns the string y1…ym–1 where, for
each i = 1, …, m – 1, the symbol yi is defined as xi if xi = xi+1, and as the unique element
of ⌃ \ {xi, xi+1} if xi �= xi+1. That is, the color yi is derived from the colors xi and xi+1 as
follows: if the colors xi and xi+1 are the same, then the color yi is set equal to them; if the
colors xi and xi+1 are different, then the color yi is set to the unique color that is different
from each of them. Define d+ : ⌃⇤ \ {✏} ! ⌃ as the function that, on a non-empty string x,
returns the symbol obtained by applying the function d to x repeatedly, a total of |x| – 1
many times. In other words, when x is a non-empty string, d+(x) is defined as the symbol
that results from applying d repeatedly to x until a single symbol remains.

Prove or disprove: the language B = {x 2 ⌃⇤ \ {✏}
�� d+(x) = b} is regular.

Exercise 1.9.44: Bisimulations. Let M = (Q,⌃, s, T , �), M0 = (Q0,⌃, s0, T 0, �0) be DFA
sharing the same input alphabet ⌃. Define a bisimulation between M and M0 as a rela-
tion R ✓ Q ⇥ Q0 where, for each pair (q, q0) 2 R, the following hold: q 2 T , q0

2 T 0,
and for each a 2 ⌃, the pair (�(q, a), �0(q0, a)) is in R. Note that this definition does not
depend on the start states of the DFA.

Say that two states q 2 Q, q0
2 Q0 are bisimilar if there exists a bisimulation between M

and M0 of which the pair (q, q0) is an element. Let us presuppose that what one can observe
about a state is whether or not it is accepting, and that one can also subject a state to a
transition, based on a given symbol. Then, bisimilar states can be described as being obser-
vationally indistinguishable: they produce the same observations, and subjecting them to
transitions based on a common symbol leads to states that are again indistinguishable.

1. Prove that there exists a bisimulation R between M and M0 such that (s, s0) 2 R if and
only if L(M) = L(M0).

2. Let g : Q ! Q0 be a map, and let Rg = {(q, g(q))
�� q 2 Q} be its graph. Prove that g is

a homomorphism from M to M0 if and only if Rg is a bisimulation between M and M0

such that (s, s0) 2 Rg.
3. Prove that when R1, R2 are bisimulations between M and M0, their union R1 [R2 is

also a bisimulation between M and M0. This result implies that, when looking at the

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Automata Theory 69

bisimulations between two DFA, there is a greatest bisimulation—namely, the union
of all such bisimulations.

4. Let ⇡M be the bisimilarity relation on M, defined as the set containing each pair
of states (p, q) 2 Q ⇥ Q such that there exists a bisimulation between M and itself of
which the pair (p, q) is an element. This relation is clearly the greatest bisimulation
between M and itself, in the just-introduced sense. Prove that the relation ⇡M is equal
to the relation R treated by Lemma 1.8.1.

5. By modifying the marking phase in Section 1.8, give an algorithm for computing the
complement of the greatest bisimulation between M and M0; here, the complement is
with respect to the set Q ⇥ Q0. The resulting algorithm allows us to determine whether
or not M and M0 are equivalent in the sense of having the same language: by part 1
of this exercise, we have that L(M) = L(M0) if and only if the pair (s, s0) is not in this
complement. Hint: first mark the states in T ⇥ (Q0 \ T 0) and in (Q \ T) ⇥ T 0.

1.10 Bibliographic discussion

General references on the theory of computation include the books by Hopcroft, Mot-
wani, and Ullman (2007); Kozen (1997, 2006); Moore and Mertens (2011); Papadimitriou
(1994); and Sipser (2013).

An early study of finite-state systems was conducted in an article of McCulloch and
Pitts (1943). In the 1950s, versions of the DFA model were presented and studied (Huff-
man 1954; Mealy 1955; Moore 1956; Kleene 1956). The NFA model is due to an article
of Rabin and Scott (1959), who established the equivalence to the DFA model, in the
sense of Theorem 1.3.24. Closure properties of the regular languages were studied by
many authors, including Kleene (1956); Ginsburg and Rose (1963); and, Rabin and Scott
(1959). The characterization of regular languages via regular expressions given in Theo-
rem 1.5.8 is due to Kleene (1956); our presentation of this result is based on that of Kozen
(1997). The Myhill-Nerode theory in and around Section 1.7, and in Exercise 1.9.38, is
due to Myhill (1957) and Nerode (1958). DFA minimization procedures were studied by
numerous authors, including Huffman (1954), Moore (1956), Nerode (1958), and Hopcroft
(1971).

Our discussion in Example 1.5.7 of the language of alternating strings stems from a
textbook discussion of this language (Hopcroft, Motwani, and Ullman 2007, Chapter 3).
The pumping lemma of Exercise 1.9.40 is due to Bar-Hillel, Perles, and Shamir (1961).
Exercise 1.9.44 is based on an article of Rutten (1998).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

2 Computability Theory

I wonder why. I wonder why.
I wonder why I wonder.

I wonder why I wonder why
I wonder why I wonder!

— Richard Feynman

The problem with introspection is that it has no end.
— Philip K. Dick, The Transmigration of Timothy Archer

The finite-state automata of the previous chapter were relatively limited computational
models: an automaton could only make one pass through an input string, and had no work-
ing space, apart from its bounded memory. This chapter turns to study Turing machines,
computational models which are considerably more general and more powerful than
automata, and which indeed are the most powerful models that we will study. A particular
type of Turing machine, the halting deterministic Turing machine, will be presented as a
formalization of the intuitive notion of algorithm; the corresponding class of languages that
these machines define are called the computable languages. Just as the previous chapter
explored both the scope and the boundaries of the regular languages, this chapter engages
in a kindred exploration of the computable languages.

2.1 Deterministic Turing machines

2.1.1 Introduction
The notion of algorithm is an informal and intuitive one; an early known example of an
algorithm, from ancient Greece, is Euclid’s algorithm for computing the greatest common
divisor of two positive natural numbers. By an algorithm, we here refer to a procedure
with the following properties. An algorithm is specified via a finite list of instructions;
each instruction is finite and unambiguously describes an action performable mechanically,
without recourse to judgement or creativity. An algorithm operates deterministically, and

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

72 Chapter 2

in discrete time steps. When executed on an input, an algorithm terminates after a finite
number of steps, producing the desired output.

This section presents the deterministic Turing machine (DTM), a general-purpose, full-
fledged computational model that is recognized as providing a formalization of the intuitive
notion of algorithm, and thus as capturing the concept of computation in a broad sense. The
DTM is a mathematical object, a construct for performing analysis—as was the case for the
DFA and the other automata models previously seen. The definition of DTM will naturally
lead us to define the notion of a computable language, which amounts to a language for
which there exists an algorithm determining membership. In this chapter, the quantity of
time and space consumed during a computation is not in any way restricted, for the focus
is on the power of computation in principle.

The DTM was introduced in a 1937 publication by Alan Turing. Around this time, there
were in fact numerous proposals of computational models, in addition to the DTM, that
aimed to formalize the notion of algorithm. These proposals stemmed from mathemati-
cal questions of the era about whether certain problems were solvable by algorithms; in
order to rigorously address these questions, a precise definition of algorithm was needed.
At the time, the proposed computational models seemed quite qualitatively different from
each other; for example, one was based on functions defined on the natural numbers, and
another, the �-calculus, was based on a simple, abstract view of function formation and
application. Remarkably, these differences were revealed to be superficial: all of these com-
putational models turned out to be provably equivalent, in that membership in a language
could be computed by one model if and only if it could be computed by another. Typi-
cal programming languages used in practice, when formalized, also yield computational
models that are equivalent to the original ones. This rich system of equivalences signals
the robustness and the stability of the notion of computable language. These equivalences
back the non-mathematical claim that each of these models provides a suitable formaliza-
tion of the intuitive notion of algorithm—a claim known as the Church-Turing thesis, and
credited to the 1937 article of Turing and a 1936 article of Alonzo Church.

The situation of having a single mathematical notion with an abundance of seemingly
disparate characterizations strongly suggests that this notion is natural and primal. But,
if there are numerous computational models that formalize the notion of algorithm, why
do we focus on the DTM in our study? A prime reason is the simplicity of the DTM
model. It can be presented with relative ease (particularly when the DFA model has been
understood), and its stripped-down nature facilitates proving the types of results that are of
interest to us. Furthermore, the DTM model makes it easy and natural to impose time or
space bounds on computation; such bounds are central to the study of complexity theory.
What is lost and traded off by considering such a simple model is that it can be cum-
bersome to precisely present sophisticated algorithms. However, the precise presentation
of algorithms by DTMs is not our focus, and we typically specify algorithms informally,
appealing to the reader’s sense that they could be implemented by DTMs—if laboriously.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Computability Theory 73

· · ·a b b a

s

Figure 2.1.1. The initial configuration of a DTM on the input string abba. The control is depicted
by a polygon enclosing the current state, which in this case is the DTM’s start state s. The head is
depicted by the tip of an arrow that emanates out of the control. The worktape here contains the string
abba in its initial 4 cells, and the blank symbol in all other cells.

2.1.2 Model
We begin with an overview of the model. A deterministic Turing machine (DTM) has a
one-dimensional working space, its worktape. The input string of a DTM is presented on
this tape, with each symbol in a memory unit; beyond the input string, this tape has further
memory units, each capable of holding one symbol, with which the DTM can compute.
While a DTM accesses its tape via a head that is located at and can operate on one memory
unit at a time, this head can move in both directions, and can write symbols in addition to
reading them. A more comprehensive, informal description of the DTM model follows.

Architecture-wise, a DTM consists of a control, a head, and a worktape. The worktape
constitutes the working space of a DTM; it is a one-dimensional array, which we conceive
of as horizontally positioned. The worktape is infinite to the right, but has a left end; it
consists of discrete memory units called cells, each of which can store one symbol. At any
point in time, the control is in a state, and the head is located at a single worktape cell. A
DTM can move its head both to the left and right during a computation, and can both read
from and write to the worktape via its head; this is in contrast to a DFA, which scans its
input just once, from left to right, in a read-only fashion.

Given an input, a DTM begins in the configuration where the control is in the DTM’s
start state; the head is at the leftmost cell of the worktape; and the worktape contains
the input in its initial cells but otherwise contains a special symbol, the blank symbol .
Figure 2.1.1 illustrates an initial configuration of a DTM.

A DTM operates in discrete time steps, as with a DFA. In each time step, a DTM makes
a transition based on its current state and the symbol in the cell where its head is located.
To make a transition, a DTM performs three changes:
• It changes state.
• It writes a tape symbol at the location of its head.
• It moves its head left or right.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

74 Chapter 2

Correspondingly, a DTM’s transition function needs to specify, for each state and symbol,
three pieces of information: a state, a symbol, and a direction—left or right, to be repre-
sented by –1 and +1, respectively. Recall that a DFA made a transition simply by changing
state; correspondingly, its transition function specified, for each state and symbol, just one
piece of information, a state.

When run on an input, a DTM makes transitions until it enters its accept state or its
reject state, at which point it comes to rest and ceases to make transitions; so, formally,
the transition function is not defined on these two states. It is certainly possible that, when
invoked on an input, a DTM will never enter its accept state or its reject state, but rather,
runs infinitely without halting—in this case, we will say that the DTM loops on the input.

We next turn to present the formal definition of a DTM.

Definition 2.1.1. A deterministic Turing machine (DTM) is a 7-tuple (Q,⌃,�, s, t, r, �)
where:
• Q is a finite set called the state set,
• ⌃ is an alphabet called the input alphabet,
• � is an alphabet called the tape alphabet and is such that � ◆ ⌃,
• s 2 Q is a state called the start state or initial state,
• t 2 Q is a state called the accept state,
• r 2 Q is a state called the reject state and is such that r �= t, and
• � : (Q \ {t, r}) ⇥ � ! Q ⇥ �⇥ {–1, +1} is a function called the transition function.

It is required that the blank symbol is an element of � \ ⌃.

Let us remark that there are multiple ways to define the DTM; here, we elected a
definition of minimalist design.

As mentioned, when a DTM is invoked on a particular input string, its tape is initialized
to contain the string at the left end, followed by an infinite sequence of blank symbols; and
the DTM’s head is located at the leftmost position of the tape. Each input string is required
to be over the input alphabet ⌃; the assumption that the blank symbol is not in ⌃ permits
the DTM to detect where the input string ends. In carrying out a computation, a DTM may
write elements from the tape alphabet � onto the tape, and its transition function must be
fully defined on all pairs consisting of a state (that is not t nor r) and a symbol from �.

We next formalize the notion of a configuration of a DTM. Recall that a configuration
ought to contain all of the information that one needs to know, at a particular point in time,
about how a computation will proceed. For a DTM, then, a configuration will provide the
state of its control, the entire contents of its tape, and the location of its head. We assume
that the worktape cells are numbered with indices, starting from the left end, by 1, 2, 3, …;
this is depicted in Figure 2.1.2. So, a head location can be specified as an element of N+;
and, the tape contents can be given by a function that maps a cell’s number to the symbol
that it contains, that is, by a function from the set N+ to the tape alphabet �.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Computability Theory 75

1 2 3 4 5 6 7
· · ·a b b a

Figure 2.1.2. A DTM’s worktape cells are numbered with indices, starting from 1 on the left. The
example tape contents given here are represented by a function ⌧ : N+ ! � where ⌧ (1) = a, ⌧ (2) = b,
⌧ (3) = b, ⌧ (4) = a, and ⌧ (i) is the blank symbol for all i � 5.

We also next give the definition of successor configuration of a configuration. To define
this notion comprehensively, it is necessary to specify what occurs if a DTM tries to move
its head left when it is at the leftmost cell; the convention we use is that, in this case, the
DTM’s head remains at the leftmost cell. Hence, if the DTM’s head is at location ` 2 N+

and a transition calls for the head to move in the direction d 2 {–1, +1}, the next location
will be ` + d unless this sum is 0, in which case the next location should be 1; this value is
expressed below as max(` + d, 1).

Definition 2.1.2. Let M = (Q,⌃,�, s, t, r, �) be a DTM.
• A configuration of M is a triple [q, ⌧ , `] where q 2 Q is a state, ⌧ is a function from N+

to � representing tape contents, and ` 2 N+ is a head location.
• The successor configuration of a configuration [q, ⌧ , `] is defined when q 2 Q \ {t, r}.

In this case, set (p, a, d) = �(q, ⌧ (`)); then, the successor configuration of [q, ⌧ , `] is
defined as the configuration [p, ⌧ [` 7! a], max(` + d, 1)]; here, ⌧ [` 7! a] denotes the
function that maps ` to a, and is otherwise equal to ⌧ .

To discuss configurations of a DTM M, we use the previously given definitions of the
relations `M , `n

M , and `
⇤
M presented in Definition 1.1.8.

In order to smoothly present configurations of DTMs, we need a convenient way to
specify a function ⌧ : N+

! � giving the tape contents; such a function is an infinite object.
To this end, we view such a function as an infinite string, that is, as the infinite sequence
of symbols ⌧ (1)⌧ (2)⌧ (3)…; and we use the notation … to indicate the infinite string
consisting solely of blanks. So, for example, we will use the notation bab … to denote
the function ⌧ : N+

! � that maps 1 to b, 2 to a, 3 to b, and each other element of N+ to ;
as another example, we will use the notation abba … to denote the tape contents and the
function given in Figure 2.1.2. (Note that the tape contents, when viewed as an infinite
string, will always terminate with an infinite sequence of blanks.)

DTM examples
We next examine two examples of DTMs.

Example 2.1.3. Consider the DTM M = (Q,⌃,�, s, t, r, �), presented in Figure 2.1.3,
where Q = {s, t, r, h, e, g}, ⌃ = {a, b}, and � = {a, b, }.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

76 Chapter 2

s h e g

t r

/ , +1

a/ , +1 / , –1 b/ , –1

/ , +1
a/a, +1

/ , +1
b/b, +1

a/a, +1
b/b, +1

a/a, –1
b/b, –1

Figure 2.1.3. The DTM given in Example 2.1.3. In general, we form the diagram for a DTM as
follows. Each state is placed in a circle; the initial state is indicated by an unlabeled arrow that
points to it; the accept state has a double circle placed around it. Each transition �(q, c) = (p, a, d)
is indicated by an arrow with label c/a, d from the state q to the state p; multiple transitions having
the same source and target states are indicated using multiple labels on a shared arrow. Thus, to
determine the behavior of the transition function � given a state q and a read symbol c, one looks
for an arrow coming out of state q having a label whose first component is c; the label’s remaining
components specify the symbol to be written and the direction of movement, and the arrow’s target
is the state to be entered. The accept and reject states are the only states with no outgoing arrows.

This DTM’s transition function � is given by the following table:

� a b
s (h, , +1) (r, b, +1) (t, , +1)
h (h, a, +1) (h, b, +1) (e, , –1)
e (r, a, +1) (g, , –1) (r, , +1)
g (g, a, –1) (g, b, –1) (s, , +1)

On the input string a, this DTM begins in the initial configuration [s , a …, 1]. We have

[s , a …, 1] `M [h, …, 2]

`M [e, …, 1]

`M [r , …, 2].

Once in the configuration [r , …, 2], the machine halts in its reject state r. The string a
is considered rejected.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Computability Theory 77

Remark 2.1.4. Before proceeding further, let us add a detail to the fashion in which we
present configurations. To enhance readability, when displaying concrete configurations,
we will typically underline the symbol in the tape string where the head is located. This
convention should facilitate determining successor configurations of DTMs.

As in the previous chapter, we use the term computation to refer to a sequence of all
configurations that a machine passes through when invoked on an input string.

Example 2.1.5. Having put the convention of Remark 2.1.4 in effect, we exhibit further
computations of the DTM M from Example 2.1.3.

On the input string ab, this DTM begins in the initial configuration [s , ab …, 1]. We
have the computation

[s , ab …, 1] `M [h, b …, 2]

`M [h, b …, 3]

`M [e, b …, 2]

`M [g, …, 1]

`M [s , …, 2]

`M [t , …, 3].

Once in the configuration [t , …, 3], the machine halts, in its accept state t; the
string ab is considered accepted.

On the input string abb, this DTM M begins in the initial configuration [s , abb …, 1].
We have the computation

[s , abb …, 1] `M [h, bb …, 2]

`M [h, bb …, 3]

`M [h, bb …, 4]

`M [e, bb …, 3]

`M [g, b …, 2]

`M [g, b …, 1]

`M [s , b …, 2]

`M [r , b …, 3].

Here, the DTM halts in its reject state, so the string abb is rejected by this DTM.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

78 Chapter 2

s

t r

0/0, +1
1/1, +1

/ , +1

Figure 2.1.4. The DTM N given in Example 2.1.6. The diagram is formed from the specification
of N in the manner described by Figure 2.1.3. Neither the accept state nor the reject state is ever
entered by this DTM, and so this DTM does not halt on any input.

Example 2.1.6 (A runaway DTM). Let us give, as another example, a tiny DTM.
Consider the DTM N = (Q,⌃,�, s, t, r, �), presented in Figure 2.1.4, where Q = {s, t, r},
⌃ = {0, 1}, � = {0, 1, }, and � is given by the following table:

� 0 1
s (s, 0, +1) (s, 1, +1) (s, , +1)

At each time step, this DTM simply moves to the right, mindlessly! For example, on the
input string 10, we have the computation

[s , 10 …, 1] `N [s , 10 …, 2] `N [s , 10 …, 3] `N [s , 10 …, 4] `N · · · .

In particular, this DTM never enters its accept state or its reject state, and thus does not
accept or reject any string. To make use of terminology formalized below, on every input
string x 2 ⌃⇤, this DTM does not halt, but loops.

Outcomes
Let us define precisely the outcomes possible when a DTM is run on an input string. Let
M = (Q,⌃,�, s, t, r, �) be a DTM.

Definition 2.1.7. Define the initial configuration of M on a string x 2 ⌃⇤ as the
configuration [s , x …, 1].

Definition 2.1.8. We say that a configuration [q, ⌧ , `] of M is
• an accepting configuration if q = t;
• a rejecting configuration if q = r; and,
• a halting configuration if q 2 {t, r}, that is, if it is either accepting or rejecting.

Definition 2.1.9. Let x 2 ⌃⇤ be a string; let ↵x be the initial configuration of M on x.
• We say that M accepts x if there exists an accepting configuration � such that ↵x `

⇤
M �.

• We say that M rejects x if there exists a rejecting configuration � such that ↵x `
⇤
M �.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Computability Theory 79

halts loops

accepts rejects

Figure 2.1.5. Tree showing the possible outcomes when a DTM is run on an input string.

• In the case that M accepts or rejects x, we say that M halts on x; otherwise, we say
that M loops on x.

Definition 2.1.10. We define the language of a DTM M, denoted by L(M), to be the
set {x 2 ⌃⇤

�� M accepts x}.

Let us offer some remarks on the introduced definitions. During a computation, once a
DTM enters a halting configuration, it ceases to make transitions; a configuration that is
halting is (by definition) either accepting or rejecting, but cannot be both, by the proviso
that r �= t (in Definition 2.1.1). So, on an input, a DTM either halts or loops, but not both; if
it halts, it either accepts or rejects, but not both. Consequently, we can observe that, when a
DTM is run on an input, exactly one of three outcomes occurs: the DTM accepts, rejects, or
loops. (This is a point of contrast with the DFA model; recall that when a DFA is run on an
input, exactly one of two outcomes occurs: the DFA either accepts or rejects.) These three
DTM outcomes are depicted in Figure 2.1.5. Thus, when a string y is in the language L(M)
of a DTM M, it holds that M accepts y; and when a string y is not in the language L(M) of
a DTM M, what can be generally inferred is that M either rejects y or loops on y.

Let us emphasize that we here use the word loops in a specific terminological fashion:
a DTM is said to loop on a string when it does not halt on the string. When a DTM loops
on a string in this sense, it is not necessarily the case that the DTM’s computation on the
string has a configuration that appears more than once. (For example, when invoked on any
input string, the DTM of Example 2.1.6 never repeats configuration.)

Example 2.1.11 (Continuation of Example 2.1.3). The DTM M of Example 2.1.3 halts
on each input, and its language L(M) is in fact equal to a key language previously seen (in
Section 1.6): the language E = {anbn

�� n � 0}. Let us explain why.
On a high level, when invoked in the state s, this DTM attempts to remove an instance

of the symbol a from the left boundary of the string that starts from the head location; to
then remove an instance of the symbol b from the right boundary of this string; and then to
move back to the new left boundary and to iterate this process.

More concretely, let us assume that the DTM is invoked in state s and at a location such
that, beginning from the location and continuing to the right, the tape consists of a string

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

80 Chapter 2

in {a, b}⇤ followed by blank symbols. The DTM rejects if the symbol scanned is b, and
accepts if the symbol scanned is the blank symbol. (This act of acceptance is consistent
with the desire to accept the strings in the language E: we have that the empty string ✏
is included in E.) If the symbol scanned is a, this symbol is overwritten with the blank
symbol, and the DTM changes to state h. In state h, one can then think of the DTM as
holding an instance of the symbol a.

Once in state h, the DTM iteratively moves to the right and stays in h so long as it sees
the symbol a or the symbol b. When it encounters a blank, it transitions to state e, wherein it
is ready to eat an instance of the symbol b. After first transitioning into state e, the DTM’s
head is located at the last non-blank symbol—if this exists. If the symbol at the head is
not b, then the DTM rejects; if it is, then the DTM transitions into the state g, overwrites
the b with a blank symbol (in effect, eating the b), and steps to the left.

In the state g, the DTM tries to go to the leftmost boundary of the string; it does this
by staying in the state g until it encounters a blank symbol. Note that in the configuration
where the state g is first entered, there is either a blank at the head’s location or to the left
of the head, since a blank was written when the DTM most recently came out of the s state.
When a blank is encountered in state g, the DTM transitions to state s and moves to the
right, and hence iterates the just-described process on a shorter string in {a, b}⇤.

Further DTM examples
We next give two more examples of DTMs.

Example 2.1.12. Consider the DTM M = (Q,⌃,�, s, t, r, �), presented in Figure 2.1.6,
where Q = {s, u, t, r}, ⌃ = {a, b, c}, � = {a, b, c, }, and � is given by the following table:

� a b c
s (t, a, +1) (r, b, +1) (u, c, +1) (u, , +1)
u (u, a, +1) (u, b, +1) (u, c, +1) (u, , +1)

This DTM accepts immediately if its input begins with the symbol a; it rejects imme-
diately if its input begins with the symbol b; and otherwise, it enters state u and walks
indefinitely to the right. Thus, its language L(M) is the set of all strings over ⌃ that begin
with the symbol a; and this DTM halts on precisely the strings that begin with either the
symbol a or the symbol b.

Let us consider some example computations. When invoked on the input string abba,
this DTM accepts after making one transition:

[s , abba …, 1] `M [t , abba …, 2].

And, when invoked on the input string ca, this DTM makes a head move to the right at
each step, and thus loops:

[s , ca …, 1] `M [u, ca …, 2] `M [u, ca …, 3] `M · · · .

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Computability Theory 81

s u

t r

c/c, +1
/ , +1

a/a, +1 b/b, +1

a/a, +1
b/b, +1
c/c, +1
/ , +1

Figure 2.1.6. The DTM given in Example 2.1.12. The diagram is formed using the conventions
described in Figure 2.1.3.

0 1 2
a a

b

b

b

a

Figure 2.1.7. The DFA discussed in Example 2.1.13.

Example 2.1.13 (A DTM based on a DFA). We revisit the DFA M = (Q,⌃, s, T , �) of
Example 1.1.5. This DFA M, shown in Figure 2.1.7, has Q = {0, 1, 2}, ⌃ = {a, b}, s = 0,
T = {0, 1}, and transition function � defined by:

� a b
0 1 0
1 2 0
2 2 0

We here give a DTM M0 based on the DFA M. In particular, each input string is accepted
or rejected by M0 according to whether it is accepted or rejected by M. We define the
DTM M0, which is displayed in Figure 2.1.8, as (Q0,⌃,�, 0, t, r, �0) where 0 is the start
state, Q0 = {0, 1, 2, t, r}, � = {a, b, }, and �0 is given by the following table:

�0 a b
0 (1, a, +1) (0, b, +1) (t, , +1)
1 (2, a, +1) (0, b, +1) (t, , +1)
2 (2, a, +1) (0, b, +1) (r, , +1)

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

82 Chapter 2

It can be seen that the state component of �0(q, d), for each q 2 Q and d 2 ⌃, is equal to
the value �(q, d) provided by the transition function � of the DFA M. Indeed, this DTM
imitates the behavior of the DFA M: as long as it reads symbols from ⌃ = {a, b}, it takes
steps to the right and makes precisely the state transitions that the DFA M would make.

As an example, let us consider the input string aaba. When invoked on this string, the
DFA M produces the following computation:

[0, aaba] `M [1, aba]

`M [2, ba]

`M [0, a]

`M [1, ✏].

When invoked on this string, the DTM M0 produces the following computation:

[0, aaba …, 1] `M0 [1, aaba …, 2]

`M0 [2, aaba …, 3]

`M0 [0, aaba …, 4]

`M0 [1, aaba …, 5]

`M0 [t , aaba …, 6].

Recall that, by definition, a DTM has a unique accept state, while a DFA may have
multiple accept states, as is the case for the DFA M considered here. Despite this difference
in definition, we have succesfully presented a DTM whose behavior is faithful to that of
the DFA M; as soon as the DTM reads a blank symbol, it knows that it has reached the
end of the input string and then enters its accept state t or its reject state r depending on
whether or not its state (0, 1, or 2) was an accept or reject state of the DFA M, respectively.

In this example, we showed how to imitate a particular DFA by a DTM; the ideas we
used to do so can be generalized to show that any DFA can be imitated by a DTM. We
formulate this claim below as Proposition 2.1.18; see also the discussion that follows.

2.1.3 Classes of languages
We next define two classes of languages using the DTM model. First and foremost, we
define what it means for a language to be computable; this definition is intended to formal-
ize what it means for membership in the language to be decidable by an algorithm. Recall
that an algorithm is presupposed to terminate after a finite number of steps, on any input.
Correspondingly, to define the notion of computable language, we want to only permit a
DTM if it halts after a finite number of steps, on each input; such a DTM is formalized

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Computability Theory 83

0 1 2

t r

a/a, +1 a/a, +1

b/b, +1

b/b, +1

/ , +1
/ , +1 / , +1

b/b, +1

a/a, +1

Figure 2.1.8. The DTM given in Example 2.1.13; this DTM is constructed based on the DFA given
in Figure 2.1.7. The diagram is formed using the conventions described in Figure 2.1.3.

here as a halting DTM. Indeed, imagine that one initiates a DTM computation on an input;
the utility of doing this is not at all clear if the computation is not guaranteed to halt.5

Definition 2.1.14. A DTM M with input alphabet ⌃ is called halting if M halts on every
string x 2 ⌃⇤. When M is a halting DTM, we say that M decides its language L(M).

Definition 2.1.15. A language B is computable if there exists a halting DTM M such
that B = L(M).

Note that computable languages were historically referred to as recursive languages, and
are also referred to as decidable languages.

Example 2.1.16. Let us examine the four example DTMs in the previous section to see
which are halting:
• The DTM of Example 2.1.3 is halting, as discussed in Example 2.1.11.
• The DTM of Example 2.1.6 is not halting; indeed, it does not halt on any input.
• The DTM of Example 2.1.12 does not halt on all inputs; in particular, it does not halt on

inputs beginning with the symbol c; thus, this DTM is not halting.
• The DTM of Example 2.1.13 is halting: on any input, it moves to the right until it scans

the blank symbol, at which point it halts.

5. Even if there is such a guarantee, the amount of time that the computation will take should also be considered;
but that is the concern of the next chapter.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

84 Chapter 2

Note that even if a DTM M is not halting, its language L(M) may be computable; there
may still exist a halting DTM sharing the same language. For example, the DTM N of
Example 2.1.6 is not halting, but its language L(N), the empty set ;, is computable, via (for
example) a DTM that immediately rejects each input string.

This is an opportune moment to define what it means for a function to be computable.
Essentially, a function f : ⌃⇤

! ⌃⇤ is defined to be computable if there exists a DTM M
such that, when M is run on any string x 2 ⌃⇤, it terminates in an accepting configuration
where the tape contains f (x) followed by blank symbols, and the head is at the leftmost
location (namely, the location numbered 1).

Definition 2.1.17. A DTM M = (Q,⌃,�, s, t, r, �) computes a function f : ⌃⇤
! ⌃⇤ if,

for each string x 2 ⌃⇤, it holds that

[s, x …, 1] `⇤
M [t, f (x) …, 1].

A function f : ⌃⇤
! ⌃⇤ is computable if there exists a DTM that computes it.

We can observe that any DTM computing a function is a halting DTM.
Let us next compare the notions of regular language and computable language. On the

one hand, we have the following.

Proposition 2.1.18. Each language that is regular is also computable.

This proposition can be proved by showing how to pass from a DFA to a DTM that imi-
tates the behavior of the DFA; this can be done by generalizing the idea of Example 2.1.13,
where a concrete DFA was converted to a DTM. We leave the arguing of this proposition
as an exercise (Exercise 2.10.13).

The converse of Proposition 2.1.18 does not hold; the following proposition implies that
the class of computable languages strictly contains the class of regular languages.

Proposition 2.1.19. The language {anbn
�� n � 0} is computable but is not regular.

Proof. By the discussion in Example 2.1.11, the DTM given in Example 2.1.3 is halting,
and its language is the specified one. Hence, this language is computable. Example 1.6.9
established that this language is not regular.

We now present the second class of languages defined in terms of the DTM model. The
definition of computable language, as discussed, is a formalization of what it means for a
language to be computable by an algorithm. In contrast, the class of languages that we next
define are presented for the purpose of analysis.

Definition 2.1.20. A language B is computably enumerable (for short, CE) if there exists
a DTM M such that B = L(M).

Computably enumerable languages were historically referred to as recursively enumer-
able languages, and are also referred to as semi-decidable languages.

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Computability Theory 85

According to the definitions, the requirement for a language to be computably enu-
merable is clearly a relaxation of the requirement for a language to be computable; the
stipulation that the DTM be halting is lifted. We record this fact, to be used tacitly in the
sequel, as follows.

Proposition 2.1.21. Each language that is computable is also computably enumerable.

To recapitulate, a language B is computable if there exists a DTM that accepts each
string in B, and rejects each string outside B; a language B is computably enumerable if
there exists a DTM that accepts each string in B, and does not accept any string outside B—
so, the DTM either rejects or loops on each string outside B. One might succinctly say that
the definition of computable is based on the distinction between acceptance and rejec-
tion, whereas the definition of computably enumerable is based on the distinction between
acceptance and nonacceptance.

Remark 2.1.22 (On the presentation of DTMs). When we claim the existence of a DTM
with a particular behavior, in the sequel we typically do not present a DTM formally by
giving all parts of the 7-tuple in the definition of DTM, as we did in Examples 2.1.3,
2.1.6, 2.1.12, and 2.1.13. Rather, we give a high-level description of what the DTM should
do; we appeal to the reader’s sense, intuition, and judgment that the description could be
implemented by a DTM (if arduously). Recall that the original impetus behind introducing
the DTM was, in any case, to formalize the intuitive notion of algorithm.

2.1.4 Summary of models and language classes
The following table shows the computational models that have been studied so far, along
with the language classes that they define:

Computational model Defined class of languages Justification
DFA regular languages Definition 1.1.1
NFA regular languages Theorem 1.3.24
✏-NFA regular languages Theorem 1.3.24

halting DTM computable languages Definition 2.1.15
DTM CE languages Definition 2.1.20

As discussed in Section 2.1.3, each language that is regular is also computable, but not
vice versa; and each language that is computable is also CE. The relationship between
the computable languages and the CE languages will be clarified later in this chapter
(specifically, in Section 2.5.1).

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

