Brief Contents

1 Introduction 1

I Fundamentals 3
2 Probability 5
3 Statistics 63
4 Graphical models 143
5 Information theory 217
6 Optimization 255

II Inference 337
7 Inference algorithms: an overview 339
8 Gaussian filtering and smoothing 353
9 Message passing algorithms 395
10 Variational inference 433
11 Monte Carlo methods 477
12 Markov chain Monte Carlo 493
13 Sequential Monte Carlo 537

III Prediction 567
14 Predictive models: an overview 569
15 Generalized linear models 583
16 Deep neural networks 623
17 Bayesian neural networks 639
18 Gaussian processes 673
19 Beyond the iid assumption 727
<table>
<thead>
<tr>
<th>Generation</th>
<th>Discovery</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>27</td>
<td>34</td>
</tr>
<tr>
<td>Generative models: an overview</td>
<td>Discovery methods: an overview</td>
<td>Decision making under uncertainty</td>
</tr>
<tr>
<td>21</td>
<td>28</td>
<td>35</td>
</tr>
<tr>
<td>Variational autoencoders</td>
<td>Latent factor models</td>
<td>Reinforcement learning</td>
</tr>
<tr>
<td>22</td>
<td>29</td>
<td>36</td>
</tr>
<tr>
<td>Autoregressive models</td>
<td>State-space models</td>
<td>Causality</td>
</tr>
<tr>
<td>23</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Preface xxix

1 Introduction 1

I Fundamentals 3

2 Probability 5

2.1 Introduction 5
 2.1.1 Probability space 5
 2.1.2 Discrete random variables 5
 2.1.3 Continuous random variables 6
 2.1.4 Probability axioms 7
 2.1.5 Conditional probability 7
 2.1.6 Bayes’ rule 8

2.2 Some common probability distributions 8
 2.2.1 Discrete distributions 9
 2.2.2 Continuous distributions on \(\mathbb{R} \) 10
 2.2.3 Continuous distributions on \(\mathbb{R}^+ \) 13
 2.2.4 Continuous distributions on \([0, 1]\) 17
 2.2.5 Multivariate continuous distributions 17

2.3 Gaussian joint distributions 22
 2.3.1 The multivariate normal 22
 2.3.2 Linear Gaussian systems 28
 2.3.3 A general calculus for linear Gaussian systems 30

2.4 The exponential family 33
 2.4.1 Definition 34
 2.4.2 Examples 34
 2.4.3 Log partition function is cumulant generating function 39
 2.4.4 Canonical (natural) vs mean (moment) parameters 41
 2.4.5 MLE for the exponential family 42
 2.4.6 Exponential dispersion family 43
 2.4.7 Maximum entropy derivation of the exponential family 43

2.5 Transformations of random variables 44
 2.5.1 Invertible transformations (bijections) 44
 2.5.2 Monte Carlo approximation 45
 2.5.3 Probability integral transform 45

2.6 Markov chains 46
 2.6.1 Parameterization 47
 2.6.2 Application: language modeling 49
Contents

2.6.3 Parameter estimation 49
2.6.4 Stationary distribution of a Markov chain 51

2.7 Divergence measures between probability distributions 55
 2.7.1 f-divergence 55
 2.7.2 Integral probability metrics 57
 2.7.3 Maximum mean discrepancy (MMD) 58
 2.7.4 Total variation distance 61
 2.7.5 Density ratio estimation using binary classifiers 61

3 Statistics 63
 3.1 Introduction 63
 3.2 Bayesian statistics 63
 3.2.1 Tossing coins 64
 3.2.2 Modeling more complex data 70
 3.2.3 Selecting the prior 71
 3.2.4 Computational issues 71
 3.2.5 Exchangeability and de Finetti’s theorem 71
 3.3 Frequentist statistics 72
 3.3.1 Sampling distributions 72
 3.3.2 Bootstrap approximation of the sampling distribution 73
 3.3.3 Asymptotic normality of the sampling distribution of the MLE 74
 3.3.4 Fisher information matrix 75
 3.3.5 Counterintuitive properties of frequentist statistics 79
 3.3.6 Why isn’t everyone a Bayesian? 82
 3.4 Conjugate priors 83
 3.4.1 The binomial model 83
 3.4.2 The multinomial model 83
 3.4.3 The univariate Gaussian model 85
 3.4.4 The multivariate Gaussian model 90
 3.4.5 The exponential family model 96
 3.4.6 Beyond conjugate priors 98
 3.5 Noninformative priors 102
 3.5.1 Maximum entropy priors 102
 3.5.2 Jeffreys priors 103
 3.5.3 Invariant priors 106
 3.5.4 Reference priors 107
 3.6 Hierarchical priors 107
 3.6.1 A hierarchical binomial model 108
 3.6.2 A hierarchical Gaussian model 110
 3.6.3 Hierarchical conditional models 113
 3.7 Empirical Bayes 114
 3.7.1 EB for the hierarchical binomial model 114
 3.7.2 EB for the hierarchical Gaussian model 115
 3.7.3 EB for Markov models (n-gram smoothing) 116
 3.7.4 EB for non-conjugate models 118
 3.8 Model selection 118
 3.8.1 Bayesian model selection 119
 3.8.2 Bayes model averaging 121
 3.8.3 Estimating the marginal likelihood 121
 3.8.4 Connection between cross validation and marginal likelihood 122
 3.8.5 Conditional marginal likelihood 123
 3.8.6 Bayesian leave-one-out (LOO) estimate 124
 3.8.7 Information criteria 125
 3.9 Model checking 127
 3.9.1 Posterior predictive checks 128
 3.9.2 Bayesian p-values 130
CONTENTS

3.10 Hypothesis testing 131
 3.10.1 Frequentist approach 131
 3.10.2 Bayesian approach 131
 3.10.3 Common statistical tests correspond to inference in linear models 136

3.11 Missing data 141

4 Graphical models 143
 4.1 Introduction 143
 4.2 Directed graphical models (Bayes nets) 143
 4.2.1 Representing the joint distribution 143
 4.2.2 Examples 144
 4.2.3 Gaussian Bayes nets 148
 4.2.4 Conditional independence properties 149
 4.2.5 Generation (sampling) 154
 4.2.6 Inference 155
 4.2.7 Learning 155
 4.2.8 Plate notation 161
 4.3 Undirected graphical models (Markov random fields) 164
 4.3.1 Representing the joint distribution 165
 4.3.2 Fully visible MRFs (Ising, Potts, Hopfield, etc.) 166
 4.3.3 MRFs with latent variables (Boltzmann machines, etc.) 172
 4.3.4 Maximum entropy models 174
 4.3.5 Gaussian MRFs 177
 4.3.6 Conditional independence properties 179
 4.3.7 Generation (sampling) 181
 4.3.8 Inference 181
 4.3.9 Learning 182
 4.4 Conditional random fields (CRFs) 185
 4.4.1 1d CRFs 186
 4.4.2 2d CRFs 189
 4.4.3 Parameter estimation 192
 4.4.4 Other approaches to structured prediction 193
 4.5 Comparing directed and undirected PGMs 193
 4.5.1 CI properties 193
 4.5.2 Converting between a directed and undirected model 195
 4.5.3 Conditional directed vs undirected PGMs and the label bias problem 196
 4.5.4 Combining directed and undirected graphs 197
 4.5.5 Comparing directed and undirected Gaussian PGMs 199
 4.6 PGM extensions 201
 4.6.1 Factor graphs 201
 4.6.2 Probabilistic circuits 204
 4.6.3 Directed relational PGMs 205
 4.6.4 Undirected relational PGMs 207
 4.6.5 Open-universe probability models 210
 4.6.6 Programs as probability models 210
 4.7 Structural causal models 211
 4.7.1 Example: causal impact of education on wealth 212
 4.7.2 Structural equation models 213
 4.7.3 Do operator and augmented DAGs 213
 4.7.4 Counterfactuals 214

5 Information theory 217
 5.1 KL divergence 217
 5.1.1 Desiderata 218
 5.1.2 The KL divergence uniquely satisfies the desiderata 219
 5.1.3 Thinking about KL 222
 5.1.4 Minimizing KL 223
5.1.5 Properties of KL 226
5.1.6 KL divergence and MLE 228
5.1.7 KL divergence and Bayesian inference 229
5.1.8 KL divergence and exponential families 230
5.1.9 Approximating KL divergence using the Fisher information matrix 231
5.1.10 Bregman divergence 231
5.2 Entropy 232
5.2.1 Definition 233
5.2.2 Differential entropy for continuous random variables 233
5.2.3 Typical sets 234
5.2.4 Cross entropy and perplexity 235
5.3 Mutual information 236
5.3.1 Definition 236
5.3.2 Interpretation 237
5.3.3 Data processing inequality 237
5.3.4 Sufficient statistics 238
5.3.5 Multivariate mutual information 239
5.3.6 Variational bounds on mutual information 242
5.3.7 Relevance networks 244
5.4 Data compression (source coding) 245
5.4.1 Lossless compression 245
5.4.2 Lossy compression and the rate-distortion tradeoff 246
5.4.3 Bits back coding 248
5.5 Error-correcting codes (channel coding) 249
5.6 The information bottleneck 250
5.6.1 Vanilla IB 250
5.6.2 Variational IB 251
5.6.3 Conditional entropy bottleneck 252

6 Optimization 255
6.1 Introduction 255
6.2 Automatic differentiation 255
6.2.1 Differentiation in functional form 255
6.2.2 Differentiating chains, circuits, and programs 260
6.3 Stochastic optimization 265
6.3.1 Stochastic gradient descent 265
6.3.2 SGD for optimizing a finite-sum objective 267
6.3.3 SGD for optimizing the parameters of a distribution 267
6.3.4 Score function estimator (REINFORCE) 268
6.3.5 Reparameterization trick 269
6.3.6 Gumbel softmax trick 271
6.3.7 Stochastic computation graphs 272
6.3.8 Straight-through estimator 273
6.4 Natural gradient descent 273
6.4.1 Defining the natural gradient 274
6.4.2 Interpretations of NGD 275
6.4.3 Benefits of NGD 276
6.4.4 Approximating the natural gradient 276
6.4.5 Natural gradients for the exponential family 278
6.5 Bound optimization (MM) algorithms 281
6.5.1 The general algorithm 281
6.5.2 Example: logistic regression 282
6.5.3 The EM algorithm 283
6.5.4 Example: EM for an MVN with missing data 285
6.5.5 Example: robust linear regression using Student likelihood 287
6.5.6 Extensions to EM 289
Contents

6.6 Bayesian optimization 291
 6.6.1 Sequential model-based optimization 292
 6.6.2 Surrogate functions 292
 6.6.3 Acquisition functions 294
 6.6.4 Other issues 297
6.7 Derivative-free optimization 298
 6.7.1 Local search 298
 6.7.2 Simulated annealing 301
 6.7.3 Evolutionary algorithms 301
 6.7.4 Estimation of distribution (EDA) algorithms 304
 6.7.5 Cross-entropy method 306
 6.7.6 Evolutionary strategies 306
6.8 Optimal transport 307
 6.8.1 Warm-up: matching optimally two families of points 308
 6.8.2 From optimal matchings to Kantorovich and Monge formulations 308
 6.8.3 Solving optimal transport 311
6.9 Submodular optimization 316
 6.9.1 Intuition, examples, and background 316
 6.9.2 Submodular basic definitions 318
 6.9.3 Example submodular functions 320
 6.9.4 Submodular optimization 322
 6.9.5 Applications of submodularity in machine learning and AI 327
 6.9.6 Sketching, coresets, distillation, and data subset and feature Selection 327
 6.9.7 Combinatorial information functions 331
 6.9.8 Clustering, data partitioning, and parallel machine learning 332
 6.9.9 Active and semi-supervised learning 332
 6.9.10 Probabilistic modeling 333
 6.9.11 Structured norms and loss functions 335
 6.9.12 Conclusions 335

II Inference 337

7 Inference algorithms: an overview 339
 7.1 Introduction 339
 7.2 Common inference patterns 340
 7.2.1 Global latents 340
 7.2.2 Local latents 341
 7.2.3 Global and local latents 341
 7.3 Exact inference algorithms 342
 7.4 Approximate inference algorithms 342
 7.4.1 The MAP approximation and its problems 343
 7.4.2 Grid approximation 344
 7.4.3 Laplace (quadratic) approximation 345
 7.4.4 Variational inference 346
 7.4.5 Markov chain Monte Carlo (MCMC) 348
 7.4.6 Sequential Monte Carlo 349
 7.4.7 Challenging posteriors 350
 7.5 Evaluating approximate inference algorithms 350

8 Gaussian filtering and smoothing 353
 8.1 Introduction 353
 8.1.1 Inferential goals 353
 8.1.2 Bayesian filtering equations 355
 8.1.3 Bayesian smoothing equations 356
 8.1.4 The Gaussian ansatz 357
 8.2 Inference for linear-Gaussian SSMs 357
CONTENTS

8.2.1 Examples 358
8.2.2 The Kalman filter 359
8.2.3 The Kalman (RTS) smoother 363
8.2.4 Information form filtering and smoothing 366
8.3 Inference based on local linearization 369
8.3.1 Taylor series expansion 369
8.3.2 The extended Kalman filter (EKF) 370
8.3.3 The extended Kalman smoother (EKS) 373
8.4 Inference based on the unscented transform 373
8.4.1 The unscented transform 373
8.4.2 The unscented Kalman filter (UKF) 376
8.4.3 The unscented Kalman smoother (UKS) 376
8.5 Other variants of the Kalman filter 376
8.5.1 General Gaussian filtering 376
8.5.2 Conditional moment Gaussian filtering 379
8.5.3 Iterated filters and smoother 380
8.5.4 Ensemble Kalman filter 382
8.5.5 Robust Kalman filters 383
8.5.6 Dual EKF 383
8.6 Assumed density filtering 383
8.6.1 Connection with Gaussian filtering 385
8.6.2 ADF for SLDS (Gaussian sum filter) 386
8.6.3 ADF for online logistic regression 387
8.6.4 ADF for online DNNs 390
8.7 Other inference methods for SSMs 390
8.7.1 Grid-based approximations 390
8.7.2 Expectation propagation 391
8.7.3 Variational inference 392
8.7.4 MCMC 392
8.7.5 Particle filtering 392

9 Message passing algorithms 395
9.1 Introduction 395
9.2 Belief propagation on chains 395
9.2.1 Hidden Markov Models 396
9.2.2 The forwards algorithm 397
9.2.3 The forwards-backwards algorithm 398
9.2.4 Forwards filtering backwards smoothing 401
9.2.5 Time and space complexity 402
9.2.6 The Viterbi algorithm 403
9.2.7 Forwards filtering backwards sampling 406
9.3 Belief propagation on trees 406
9.3.1 Directed vs undirected trees 406
9.3.2 Sum-product algorithm 408
9.3.3 Max-product algorithm 409
9.4 Loopy belief propagation 411
9.4.1 Loopy BP for pairwise undirected graphs 412
9.4.2 Loopy BP for factor graphs 412
9.4.3 Gaussian belief propagation 413
9.4.4 Convergence 415
9.4.5 Accuracy 417
9.4.6 Generalized belief propagation 418
9.4.7 Convex BP 418
9.4.8 Application: error correcting codes 418
9.4.9 Application: affinity propagation 420
9.4.10 Emulating BP with graph neural nets 421
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>The variable elimination (VE) algorithm</td>
<td>422</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Derivation of the algorithm</td>
<td>422</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Computational complexity of VE</td>
<td>424</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Picking a good elimination order</td>
<td>426</td>
</tr>
<tr>
<td>9.5.4</td>
<td>Computational complexity of exact inference</td>
<td>426</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Drawbacks of VE</td>
<td>427</td>
</tr>
<tr>
<td>9.6</td>
<td>The junction tree algorithm (JTA)</td>
<td>428</td>
</tr>
<tr>
<td>9.7</td>
<td>Inference as optimization</td>
<td>429</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Inference as backpropagation</td>
<td>429</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Perturb and MAP</td>
<td>430</td>
</tr>
<tr>
<td>10</td>
<td>Variational inference</td>
<td>433</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>433</td>
</tr>
<tr>
<td>10.1.1</td>
<td>The variational objective</td>
<td>433</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Form of the variational posterior</td>
<td>435</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Parameter estimation using variational EM</td>
<td>436</td>
</tr>
<tr>
<td>10.1.4</td>
<td>Stochastic VI</td>
<td>438</td>
</tr>
<tr>
<td>10.1.5</td>
<td>Amortized VI</td>
<td>438</td>
</tr>
<tr>
<td>10.1.6</td>
<td>Semi-amortized inference</td>
<td>439</td>
</tr>
<tr>
<td>10.2</td>
<td>Gradient-based VI</td>
<td>439</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Reparameterized VI</td>
<td>440</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Automatic differentiation VI</td>
<td>446</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Blackbox variational inference</td>
<td>448</td>
</tr>
<tr>
<td>10.3</td>
<td>Coordinate ascent VI</td>
<td>449</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Derivation of CAVI algorithm</td>
<td>450</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Example: CAVI for the Ising model</td>
<td>452</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Variational Bayes</td>
<td>453</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Example: VB for a univariate Gaussian</td>
<td>454</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Variational Bayes EM</td>
<td>457</td>
</tr>
<tr>
<td>10.3.6</td>
<td>Example: VBEM for a GMM</td>
<td>458</td>
</tr>
<tr>
<td>10.3.7</td>
<td>Variational message passing (VMP)</td>
<td>464</td>
</tr>
<tr>
<td>10.3.8</td>
<td>Autoconj</td>
<td>465</td>
</tr>
<tr>
<td>10.4</td>
<td>More accurate variational posteriors</td>
<td>465</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Structured mean field</td>
<td>465</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Hierarchical (auxiliary variable) posteriors</td>
<td>465</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Normalizing flow posteriors</td>
<td>466</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Implicit posteriors</td>
<td>466</td>
</tr>
<tr>
<td>10.4.5</td>
<td>Combining VI with MCMC inference</td>
<td>466</td>
</tr>
<tr>
<td>10.5</td>
<td>Tighter bounds</td>
<td>467</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Multi-sample ELBO (IWAE bound)</td>
<td>467</td>
</tr>
<tr>
<td>10.5.2</td>
<td>The thermodynamic variational objective (TVO)</td>
<td>468</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Minimizing the evidence upper bound</td>
<td>468</td>
</tr>
<tr>
<td>10.6</td>
<td>Wake-sleep algorithm</td>
<td>469</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Wake phase</td>
<td>469</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Sleep phase</td>
<td>470</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Daydream phase</td>
<td>471</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Summary of algorithm</td>
<td>471</td>
</tr>
<tr>
<td>10.7</td>
<td>Expectation propagation (EP)</td>
<td>472</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Algorithm</td>
<td>472</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Example</td>
<td>474</td>
</tr>
<tr>
<td>10.7.3</td>
<td>EP as generalized ADF</td>
<td>474</td>
</tr>
<tr>
<td>10.7.4</td>
<td>Optimization issues</td>
<td>475</td>
</tr>
<tr>
<td>10.7.5</td>
<td>Power EP and α-divergence</td>
<td>475</td>
</tr>
<tr>
<td>10.7.6</td>
<td>Stochastic EP</td>
<td>475</td>
</tr>
<tr>
<td>11</td>
<td>Monte Carlo methods</td>
<td>477</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>477</td>
</tr>
</tbody>
</table>
11.2 Monte Carlo integration 477
 11.2.1 Example: estimating \(\pi \) by Monte Carlo integration 478
 11.2.2 Accuracy of Monte Carlo integration 478
11.3 Generating random samples from simple distributions 480
 11.3.1 Sampling using the inverse cdf 480
 11.3.2 Sampling from a Gaussian (Box-Muller method) 481
11.4 Rejection sampling 481
 11.4.1 Basic idea 482
 11.4.2 Example 483
 11.4.3 Adaptive rejection sampling 483
 11.4.4 Rejection sampling in high dimensions 484
11.5 Importance sampling 484
 11.5.1 Direct importance sampling 485
 11.5.2 Self-normalized importance sampling 485
 11.5.3 Choosing the proposal 486
 11.5.4 Annealed importance sampling (AIS) 486
11.6 Controlling Monte Carlo variance 488
 11.6.1 Common random numbers 488
 11.6.2 Rao-Blackwellization 488
 11.6.3 Control variates 489
 11.6.4 Antithetic sampling 490
 11.6.5 Quasi-Monte Carlo (QMC) 491
12 Markov chain Monte Carlo 493
 12.1 Introduction 493
 12.2 Metropolis-Hastings algorithm 494
 12.2.1 Basic idea 494
 12.2.2 Why MH works 495
 12.2.3 Proposal distributions 496
 12.2.4 Initialization 498
 12.3 Gibbs sampling 499
 12.3.1 Basic idea 499
 12.3.2 Gibbs sampling is a special case of MH 499
 12.3.3 Example: Gibbs sampling for Ising models 500
 12.3.4 Example: Gibbs sampling for Potts models 502
 12.3.5 Example: Gibbs sampling for GMMs 502
 12.3.6 Metropolis within Gibbs 504
 12.3.7 Blocked Gibbs sampling 504
 12.3.8 Collapsed Gibbs sampling 505
 12.4 Auxiliary variable MCMC 507
 12.4.1 Slice sampling 507
 12.4.2 Swendsen-Wang 509
 12.5 Hamiltonian Monte Carlo (HMC) 510
 12.5.1 Hamiltonian mechanics 511
 12.5.2 Integrating Hamilton’s equations 511
 12.5.3 The HMC algorithm 513
 12.5.4 Tuning HMC 514
 12.5.5 Riemann manifold HMC 515
 12.5.6 Langevin Monte Carlo (MALA) 515
 12.5.7 Connection between SGD and Langevin sampling 516
 12.5.8 Applying HMC to constrained parameters 517
 12.5.9 Speeding up HMC 518
 12.6 MCMC convergence 518
 12.6.1 Mixing rates of Markov chains 519
 12.6.2 Practical convergence diagnostics 520
 12.6.3 Effective sample size 523
12.6.4 Improving speed of convergence 525
12.6.5 Non-centered parameterizations and Neal's funnel 525

12.7 Stochastic gradient MCMC 526
12.7.1 Stochastic gradient Langevin dynamics (SGLD) 527
12.7.2 Preconditioning 527
12.7.3 Reducing the variance of the gradient estimate 528
12.7.4 SG-HMC 529
12.7.5 Underdamped Langevin dynamics 529

12.8 Reversible jump (transdimensional) MCMC 530
12.8.1 Basic idea 531
12.8.2 Example 531
12.8.3 Discussion 533

12.9 Annealing methods 533
12.9.1 Simulated annealing 533
12.9.2 Parallel tempering 536

13 Sequential Monte Carlo 537
13.1 Introduction 537
13.1.1 Problem statement 537
13.1.2 Particle filtering for state-space models 537
13.1.3 SMC samplers for static parameter estimation 539

13.2 Particle filtering 539
13.2.1 Importance sampling 539
13.2.2 Sequential importance sampling 541
13.2.3 Sequential importance sampling with resampling 542
13.2.4 Resampling methods 545
13.2.5 Adaptive resampling 547

13.3 Proposal distributions 547
13.3.1 Locally optimal proposal 548
13.3.2 Proposals based on the extended and unscented Kalman filter 549
13.3.3 Proposals based on the Laplace approximation 549
13.3.4 Proposals based on SMC (nested SMC) 551

13.4 Rao-Blackwellized particle filtering (RBPF) 551
13.4.1 Mixture of Kalman filters 551
13.4.2 Example: tracking a maneuvering object 553
13.4.3 Example: FastSLAM 554

13.5 Extensions of the particle filter 557
13.6 SMC samplers 557
13.6.1 Ingredients of an SMC sampler 558
13.6.2 Likelihood tempering (geometric path) 559
13.6.3 Data tempering 561
13.6.4 Sampling rare events and extrema 562
13.6.5 SMC-ABC and likelihood-free inference 563
13.6.6 SMC 563
13.6.7 Variational filtering SMC 563
13.6.8 Variational smoothing SMC 564

III Prediction 567
14 Predictive models: an overview 569
14.1 Introduction 569
14.1.1 Types of model 569
14.1.2 Model fitting using ERM, MLE, and MAP 570
14.1.3 Model fitting using Bayes, VI, and generalized Bayes 571
14.2 Evaluating predictive models 572
14.2.1 Proper scoring rules 572
14.2.2 Calibration 572
14.2.3 Beyond evaluating marginal probabilities 576

14.3 Conformal prediction 579
14.3.1 Conformalizing classification 581
14.3.2 Conformalizing regression 581

15 Generalized linear models 583
15.1 Introduction 583
15.1.1 Some popular GLMs 583
15.1.2 GLMs with noncanonical link functions 586
15.1.3 Maximum likelihood estimation 587
15.1.4 Bayesian inference 587

15.2 Linear regression 588
15.2.1 Ordinary least squares 588
15.2.2 Conjugate priors 589
15.2.3 Uninformative priors 591
15.2.4 Informative priors 593
15.2.5 Spike and slab prior 595
15.2.6 Laplace prior (Bayesian lasso) 596
15.2.7 Horseshoe prior 597
15.2.8 Automatic relevancy determination 598
15.2.9 Multivariate linear regression 600

15.3 Logistic regression 602
15.3.1 Binary logistic regression 602
15.3.2 Multinomial logistic regression 603
15.3.3 Dealing with class imbalance and the long tail 604
15.3.4 Parameter priors 604
15.3.5 Laplace approximation to the posterior 605
15.3.6 Approximating the posterior predictive distribution 607
15.3.7 MCMC inference 609
15.3.8 Other approximate inference methods 610
15.3.9 Case study: is Berkeley admissions biased against women? 611

15.4 Probit regression 613
15.4.1 Latent variable interpretation 613
15.4.2 Maximum likelihood estimation 614
15.4.3 Bayesian inference 616
15.4.4 Ordinal probit regression 616
15.4.5 Multinomial probit models 617

15.5 Multilevel (hierarchical) GLMs 617
15.5.1 Generalized linear mixed models (GLMMs) 618
15.5.2 Example: radon regression 618

16 Deep neural networks 623
16.1 Introduction 623
16.2 Building blocks of differentiable circuits 623
16.2.1 Linear layers 624
16.2.2 Nonlinearities 624
16.2.3 Convolutional layers 625
16.2.4 Residual (skip) connections 626
16.2.5 Normalization layers 627
16.2.6 Dropout layers 627
16.2.7 Attention layers 628
16.2.8 Recurrent layers 630
16.2.9 Multiplicative layers 631
16.2.10 Implicit layers 632

16.3 Canonical examples of neural networks 632
16.3.1 Multilayer perceptrons (MLPs) 632
16.3.2 Convolutional neural networks (CNNs) 633
16.3.3 Autoencoders 634
16.3.4 Recurrent neural networks (RNNs) 636
16.3.5 Transformers 636
16.3.6 Graph neural networks (GNNs) 637

17 Bayesian neural networks 639
17.1 Introduction 639
17.2 Priors for BNNs 639
17.2.1 Gaussian priors 640
17.2.2 Sparsity-promoting priors 642
17.2.3 Learning the prior 642
17.2.4 Priors in function space 642
17.2.5 Architectural priors 643
17.3 Posteriors for BNNs 643
17.3.1 Monte Carlo dropout 643
17.3.2 Laplace approximation 644
17.3.3 Variational inference 645
17.3.4 Expectation propagation 646
17.3.5 Last layer methods 646
17.3.6 SNGP 647
17.3.7 MCMC methods 647
17.3.8 Methods based on the SGD trajectory 648
17.3.9 Deep ensembles 649
17.3.10 Approximating the posterior predictive distribution 653
17.3.11 Tempered and cold posteriors 656
17.4 Generalization in Bayesian deep learning 657
17.4.1 Sharp vs flat minima 657
17.4.2 Mode connectivity and the loss landscape 658
17.4.3 Effective dimensionality of a model 658
17.4.4 The hypothesis space of DNNs 660
17.4.5 PAC-Bayes 660
17.4.6 Out-of-distribution generalization for BNNs 661
17.4.7 Model selection for BNNs 663
17.5 Online inference 663
17.5.1 Sequential Laplace for DNNs 664
17.5.2 Extended Kalman filtering for DNNs 665
17.5.3 Assumed density filtering for DNNs 667
17.5.4 Online variational inference for DNNs 668
17.6 Hierarchical Bayesian neural networks 669
17.6.1 Example: multimoons classification 670

18 Gaussian processes 673
18.1 Introduction 673
18.1.1 GPs: what and why? 673
18.2 Mercer kernels 675
18.2.1 Stationary kernels 676
18.2.2 Nonstationary kernels 681
18.2.3 Kernels for nonvectorial (structured) inputs 682
18.2.4 Making new kernels from old 682
18.2.5 Mercer’s theorem 683
18.2.6 Approximating kernels with random features 684
18.3 GPs with Gaussian likelihoods 685
18.3.1 Predictions using noise-free observations 685
18.3.2 Predictions using noisy observations 686
18.3.3 Weight space vs function space 687
CONTENTS

18.3.4 Semiparametric GPs 688
18.3.5 Marginal likelihood 689
18.3.6 Computational and numerical issues 689
18.3.7 Kernel ridge regression 690
18.4 GPs with non-Gaussian likelihoods 693
18.4.1 Binary classification 694
18.4.2 Multiclass classification 695
18.4.3 GPs for Poisson regression (Cox process) 696
18.4.4 Other likelihoods 696
18.5 Scaling GP inference to large datasets 697
18.5.1 Subset of data 697
18.5.2 Nyström approximation 698
18.5.3 Inducing point methods 699
18.5.4 Sparse variational methods 702
18.5.5 Exploiting parallelization and structure via kernel matrix multiplies 706
18.5.6 Converting a GP to an SSM 708
18.6 Learning the kernel 709
18.6.1 Empirical Bayes for the kernel parameters 709
18.6.2 Bayesian inference for the kernel parameters 712
18.6.3 Multiple kernel learning for additive kernels 713
18.6.4 Automatic search for compositional kernels 714
18.6.5 Spectral mixture kernel learning 717
18.6.6 Deep kernel learning 718
18.7 GPs and DNNs 720
18.7.1 Kernels derived from infinitely wide DNNs (NN-GP) 721
18.7.2 Neural tangent kernel (NTK) 723
18.7.3 Deep GPs 723
18.8 Gaussian processes for time series forecasting 724
18.8.1 Example: Mauna Loa 724
19 Beyond the iid assumption 727
19.1 Introduction 727
19.2 Distribution shift 727
19.2.1 Motivating examples 727
19.2.2 A causal view of distribution shift 729
19.2.3 The four main types of distribution shift 730
19.2.4 Selection bias 732
19.3 Detecting distribution shifts 732
19.3.1 Detecting shifts using two-sample testing 733
19.3.2 Detecting single out-of-distribution (OOD) inputs 733
19.3.3 Selective prediction 736
19.3.4 Open set and open world recognition 737
19.4 Robustness to distribution shifts 737
19.4.1 Data augmentation 738
19.4.2 Distributionally robust optimization 738
19.5 Adapting to distribution shifts 738
19.5.1 Supervised adaptation using transfer learning 738
19.5.2 Weighted ERM for covariate shift 740
19.5.3 Unsupervised domain adaptation for covariate shift 741
19.5.4 Unsupervised techniques for label shift 742
19.5.5 Test-time adaptation 742
19.6 Learning from multiple distributions 743
19.6.1 Multitask learning 743
19.6.2 Domain generalization 744
19.6.3 Invariant risk minimization 746
19.6.4 Meta learning 747
19.7 Continual learning 750
19.7.1 Domain drift 750
19.7.2 Concept drift 751
19.7.3 Task incremental learning 752
19.7.4 Catastrophic forgetting 753
19.7.5 Online learning 755
19.8 Adversarial examples 756
19.8.1 Whitebox (gradient-based) attacks 758
19.8.2 Blackbox (gradient-free) attacks 759
19.8.3 Real world adversarial attacks 760
19.8.4 Defenses based on robust optimization 760
19.8.5 Why models have adversarial examples 761

IV Generation 763
20 Generative models: an overview 765
20.1 Introduction 765
20.2 Types of generative model 765
20.3 Goals of generative modeling 767
20.3.1 Generating data 767
20.3.2 Density estimation 769
20.3.3 Imputation 770
20.3.4 Structure discovery 771
20.3.5 Latent space interpolation 771
20.3.6 Latent space arithmetic 773
20.3.7 Generative design 774
20.3.8 Model-based reinforcement learning 774
20.3.9 Representation learning 774
20.3.10 Data compression 774
20.4 Evaluating generative models 774
20.4.1 Likelihood-based evaluation 775
20.4.2 Distances and divergences in feature space 776
20.4.3 Precision and recall metrics 777
20.4.4 Statistical tests 778
20.4.5 Challenges with using pretrained classifiers 779
20.4.6 Using model samples to train classifiers 779
20.4.7 Assessing overfitting 779
20.4.8 Human evaluation 780
21 Variational autoencoders 781
21.1 Introduction 781
21.2 VAE basics 781
21.2.1 Modeling assumptions 782
21.2.2 Model fitting 783
21.2.3 Comparison of VAEs and autoencoders 783
21.2.4 VAEs optimize in an augmented space 784
21.3 VAE generalizations 786
21.3.1 β-VAE 787
21.3.2 InfoVAE 789
21.3.3 Multimodal VAEs 790
21.3.4 Semisupervised VAEs 793
21.3.5 VAEs with sequential encoders/decoders 794
21.4 Avoiding posterior collapse 796
21.4.1 KL annealing 797
21.4.2 Lower bounding the rate 798
21 Variational autoencoders (VAEs)

- 21.4.3 Free bits 798
- 21.4.4 Adding skip connections 798
- 21.4.5 Improved variational inference 798
- 21.4.6 Alternative objectives 799

21.5 VAEs with hierarchical structure

- 21.5.1 Bottom-up vs top-down inference 800
- 21.5.2 Example: very deep VAE 801
- 21.5.3 Connection with autoregressive models 802
- 21.5.4 Variational pruning 804
- 21.5.5 Other optimization difficulties 804

21.6 Vector quantization VAE

- 21.6.1 Autoencoder with binary code 805
- 21.6.2 VQ-VAE model 805
- 21.6.3 Learning the prior 807
- 21.6.4 Hierarchical extension (VQ-VAE-2) 807
- 21.6.5 Discrete VAE 808
- 21.6.6 VQ-GAN 809

22 Autoregressive models

22.1 Introduction

22.2 Neural autoregressive density estimators (NADE)

22.3 Causal CNNs

- 22.3.1 1d causal CNN (convolutional Markov models) 813
- 22.3.2 2d causal CNN (PixelCNN) 813

22.4 Transformers

- 22.4.1 Text generation (GPT, etc.) 815
- 22.4.2 Image generation (DALL-E, etc.) 816
- 22.4.3 Other applications 818

23 Normalizing flows

23.1 Introduction

23.2 Constructing flows

- 23.2.1 Affine flows 822
- 23.2.2 Elementwise flows 822
- 23.2.3 Coupling flows 825
- 23.2.4 Autoregressive flows 826
- 23.2.5 Residual flows 832
- 23.2.6 Continuous-time flows 834

23.3 Applications

- 23.3.1 Density estimation 836
- 23.3.2 Generative modeling 836
- 23.3.3 Inference 837

24 Energy-based models

24.1 Introduction

24.2 Maximum likelihood training

- 24.2.1 Gradient-based MCMC methods 842
- 24.2.2 Contrastive divergence 842

24.3 Score matching (SM)

- 24.3.1 Basic score matching 846
- 24.3.2 Denoising score matching (DSM) 847
- 24.3.3 Sliced score matching (SSM) 848
- 24.3.4 Connection to contrastive divergence 849
24.3.5 Score-based generative models 850
24.4 Noise contrastive estimation 850
24.4.1 Connection to score matching 852
24.5 Other methods 852
24.5.1 Minimizing Differences/Derivatives of KL Divergences 853
24.5.2 Minimizing the Stein discrepancy 853
24.5.3 Adversarial training 854

25 Diffusion models 857
25.1 Introduction 857
25.2 Denoising diffusion probabilistic models (DDPMs) 857
25.2.1 Encoder (forwards diffusion) 858
25.2.2 Decoder (reverse diffusion) 859
25.2.3 Model fitting 860
25.2.4 Learning the noise schedule 861
25.2.5 Example: image generation 863
25.3 Score-based generative models (SGMs) 864
25.3.1 Example 864
25.3.2 Adding noise at multiple scales 864
25.3.3 Equivalence to DDPM 866
25.4 Continuous time models using differential equations 867
25.4.1 Forwards diffusion SDE 867
25.4.2 Forwards diffusion ODE 868
25.4.3 Reverse diffusion SDE 869
25.4.4 Reverse diffusion ODE 870
25.4.5 Comparison of the SDE and ODE approach 871
25.4.6 Example 871
25.5 Speeding up diffusion models 871
25.5.1 DDIM sampler 872
25.5.2 Non-Gaussian decoder networks 872
25.5.3 Distillation 873
25.5.4 Latent space diffusion 874
25.6 Conditional generation 875
25.6.1 Conditional diffusion model 875
25.6.2 Classifier guidance 875
25.6.3 Classifier-free guidance 876
25.6.4 Generating high resolution images 876
25.7 Diffusion for discrete state spaces 877
25.7.1 Discrete Denoising Diffusion Probabilistic Models 877
25.7.2 Choice of Markov transition matrices for the forward processes 878
25.7.3 Parameterization of the reverse process 879
25.7.4 Noise schedules 880
25.7.5 Connections to other probabilistic models for discrete sequences 880

26 Generative adversarial networks 883
26.1 Introduction 883
26.2 Learning by comparison 884
26.2.1 Guiding principles 885
26.2.2 Density ratio estimation using binary classifiers 886
26.2.3 Bounds on f-divergences 888
26.2.4 Integral probability metrics 890
26.2.5 Moment matching 892
26.2.6 On density ratios and differences 892
26.3 Generative adversarial networks 894
26.3.1 From learning principles to loss functions 894
26.3.2 Gradient descent 895
26.3.3 Challenges with GAN training 897
Contents

26.3.4 Improving GAN optimization 898
26.3.5 Convergence of GAN training 898
26.4 Conditional GANs 902
26.5 Inference with GANs 903
26.6 Neural architectures in GANs 904
26.6.1 The importance of discriminator architectures 904
26.6.2 Architectural inductive biases 905
26.6.3 Attention in GANs 905
26.6.4 Progressive generation 906
26.6.5 Regularization 907
26.6.6 Scaling up GAN models 908
26.7 Applications 908
26.7.1 GANs for image generation 908
26.7.2 Video generation 911
26.7.3 Audio generation 912
26.7.4 Text generation 912
26.7.5 Imitation learning 913
26.7.6 Domain adaptation 914
26.7.7 Design, art and creativity 914

V Discovery 915

27 Discovery methods: an overview 917
27.1 Introduction 917
27.2 Overview of Part V 918
28 Latent factor models 919
28.1 Introduction 919
28.2 Mixture models 919
28.2.1 Gaussian mixture models (GMMs) 920
28.2.2 Bernoulli mixture models 922
28.2.3 Gaussian scale mixtures (GSMs) 922
28.2.4 Using GMMs as a prior for inverse imaging problems 924
28.2.5 Using mixture models for classification problems 927
28.3 Factor analysis 929
28.3.1 Factor analysis: the basics 929
28.3.2 Probabilistic PCA 934
28.3.3 Mixture of factor analyzers 936
28.3.4 Factor analysis models for paired data 943
28.3.5 Factor analysis with exponential family likelihoods 945
28.3.6 Factor analysis with DNN likelihoods (VAEs) 948
28.3.7 Factor analysis with GP likelihoods (GP-LVM) 948
28.4 LFM with non-Gaussian priors 949
28.4.1 Non-negative matrix factorization (NMF) 949
28.4.2 Multinomial PCA 950
28.5 Topic models 953
28.5.1 Latent Dirichlet allocation (LDA) 953
28.5.2 Correlated topic model 957
28.5.3 Dynamic topic model 957
28.5.4 LDA-HMM 958
28.6 Independent components analysis (ICA) 962
28.6.1 Noiseless ICA model 962
28.6.2 The need for non-Gaussian priors 963
28.6.3 Maximum likelihood estimation 964
28.6.4 Alternatives to MLE 965
29 State-space models 969

29.1 Introduction 969
29.2 Hidden Markov models (HMMs) 970
 29.2.1 Conditional independence properties 970
 29.2.2 State transition model 970
 29.2.3 Discrete likelihoods 971
 29.2.4 Gaussian likelihoods 972
 29.2.5 Autoregressive likelihoods 972
 29.2.6 Neural network likelihoods 973
29.3 HMMs: applications 974
 29.3.1 Time series segmentation 974
 29.3.2 Protein sequence alignment 976
 29.3.3 Spelling correction 978
29.4 HMMs: parameter learning 980
 29.4.1 The Baum-Welch (EM) algorithm 980
 29.4.2 Parameter estimation using SGD 983
 29.4.3 Parameter estimation using spectral methods 984
 29.4.4 Bayesian HMMs 985
29.5 HMMs: generalizations 987
 29.5.1 Hidden semi-Markov model (HSMM) 987
 29.5.2 Hierarchical HMMs 989
 29.5.3 Factorial HMMs 991
 29.5.4 Coupled HMMs 992
 29.5.5 Dynamic Bayes nets (DBN) 992
 29.5.6 Changepoint detection 993
29.6 Linear dynamical systems (LDSs) 996
 29.6.1 Conditional independence properties 996
 29.6.2 Parameterization 996
29.7 LDS: applications 997
 29.7.1 Object tracking and state estimation 997
 29.7.2 Online Bayesian linear regression (recursive least squares) 998
 29.7.3 Adaptive filtering 1000
 29.7.4 Time series forecasting 1000
29.8 LDS: parameter learning 1001
 29.8.1 EM for LDS 1001
 29.8.2 Subspace identification methods 1003
 29.8.3 Ensuring stability of the dynamical system 1003
 29.8.4 Bayesian LDS 1004
29.9 Switching linear dynamical systems (SLDSs) 1005
 29.9.1 Parameterization 1005
 29.9.2 Posterior inference 1006
 29.9.3 Application: Multitarget tracking 1006
29.10 Nonlinear SSMs 1009
 29.10.1 Example: object tracking and state estimation 1010
 29.10.2 Posterior inference 1010
29.11 Non-Gaussian SSMs 1010
 29.11.1 Example: spike train modeling 1011
 29.11.2 Example: stochastic volatility models 1012
 29.11.3 Posterior inference 1012
29.12 Structural time series models 1012
 29.12.1 Introduction 1013
 29.12.2 Structural building blocks 1013
 29.12.3 Model fitting 1016
CONTENTS

29.12.4 Forecasting 1016
29.12.5 Examples 1016
29.12.6 Causal impact of a time series intervention 1020
29.12.7 Prophet 1024
29.12.8 Neural forecasting methods 1024
29.13 Deep SSMs 1025
 29.13.1 Deep Markov models 1026
 29.13.2 Recurrent SSM 1027
 29.13.3 Improving multistep predictions 1027
 29.13.4 Variational RNNs 1028

30 Graph learning 1031
 30.1 Introduction 1031
 30.2 Latent variable models for graphs 1031
 30.3 Graphical model structure learning 1031

31 Nonparametric Bayesian models 1035
 31.1 Introduction 1035

32 Representation learning 1037
 32.1 Introduction 1037
 32.2 Evaluating and comparing learned representations 1037
 32.2.1 Downstream performance 1038
 32.2.2 Representational similarity 1040
 32.3 Approaches for learning representations 1044
 32.3.1 Supervised representation learning and transfer 1045
 32.3.2 Generative representation learning 1047
 32.3.3 Self-supervised representation learning 1049
 32.3.4 Multiview representation learning 1052
 32.4 Theory of representation learning 1057
 32.4.1 Identifiability 1057
 32.4.2 Information maximization 1058

33 Interpretability 1061
 33.1 Introduction 1061
 33.1.1 The role of interpretability: unknowns and under-specifications 1062
 33.1.2 Terminology and framework 1063
 33.2 Methods for interpretable machine learning 1066
 33.2.1 Inherently interpretable models: the model is its explanation 1067
 33.2.2 Semi-inherently interpretable models: example-based methods 1069
 33.2.3 Post-hoc or joint training: the explanation gives a partial view of the model 1069
 33.2.4 Transparency and visualization 1073
 33.3 Properties: the abstraction between context and method 1074
 33.3.1 Properties of explanations from interpretable machine learning 1074
 33.3.2 Properties of explanations from cognitive science 1076
 33.4 Evaluation of interpretable machine learning models 1077
 33.4.1 Computational evaluation: does the method have desired properties? 1078
 33.4.2 User study-based evaluation: does the method help a user perform a target task? 1082
 33.5 Discussion: how to think about interpretable machine learning 1086

VI Action 1091

34 Decision making under uncertainty 1093
 34.1 Statistical decision theory 1093
 34.1.1 Basics 1093
 34.1.2 Frequentist decision theory 1093
34.1.3 Bayesian decision theory 1094
34.1.4 Frequentist optimality of the Bayesian approach 1095
34.1.5 Examples of one-shot decision making problems 1095
34.2 Decision (influence) diagrams 1099
34.2.1 Example: oil wildcatter 1100
34.2.2 Information arcs 1101
34.2.3 Value of information 1101
34.2.4 Computing the optimal policy 1102
34.3 A/B testing 1103
34.3.1 A Bayesian approach 1103
34.3.2 Example 1106
34.4 Contextual bandits 1107
34.4.1 Types of bandit 1108
34.4.2 Applications 1109
34.4.3 Exploration-exploitation tradeoff 1109
34.4.4 The optimal solution 1110
34.4.5 Upper confidence bounds (UCBs) 1111
34.4.6 Thompson sampling 1113
34.4.7 Regret 1114
34.5 Markov decision problems 1116
34.5.1 Basics 1116
34.5.2 Partially observed MDPs 1117
34.5.3 Episodes and returns 1117
34.5.4 Value functions 1119
34.5.5 Optimal value functions and policies 1119
34.6 Planning in an MDP 1120
34.6.1 Value iteration 1121
34.6.2 Policy iteration 1122
34.6.3 Linear programming 1123
34.7 Active learning 1124
34.7.1 Active learning scenarios 1124
34.7.2 Relationship to other forms of sequential decision making 1125
34.7.3 Acquisition strategies 1126
34.7.4 Batch active learning 1128

35 Reinforcement learning 1133
35.1 Introduction 1133
35.1.1 Overview of methods 1133
35.1.2 Value-based methods 1135
35.1.3 Policy search methods 1135
35.1.4 Model-based RL 1135
35.1.5 Exploration-exploitation tradeoff 1136
35.2 Value-based RL 1138
35.2.1 Monte Carlo RL 1138
35.2.2 Temporal difference (TD) learning 1138
35.2.3 TD learning with eligibility traces 1139
35.2.4 SARSA: on-policy TD control 1140
35.2.5 Q-learning: off-policy TD control 1141
35.2.6 Deep Q-network (DQN) 1142
35.3 Policy-based RL 1144
35.3.1 The policy gradient theorem 1145
35.3.2 REINFORCE 1146
35.3.3 Actor-critic methods 1146
35.3.4 Bound optimization methods 1148
35.3.5 Deterministic policy gradient methods 1150
35.3.6 Gradient-free methods 1151