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Preface 

It was fifty years ago in 1948, on the occasion of the Hixon Symposium at Caltech, that John 
von Neumann gave his celebrated lecture entitled "The General and Logical Theory of Automata" 
(von Neumann 1951), where he introduced to the public his thoughts on universal, self-reproducing 
machines. Von Neumann himself professed to have been inspired by Turing's theory of universal 
automata, which dates back another ten years. Also at the symposium was Warren McCullough, 
who five years earlier had introduced, with Pitts, the universal neuron which is at the center of 
almost all work on artificial neural networks. This work was also founded on Turing's ideas about 
universality. 

For fifty years then, have researchers fought to capture the universality in Life, to transplant it into 
a different medium, and to study its "general and logical" characteristics. These intervening years 
have been sometimes quiet, sometimes punctuated by feverish activity. Clearly, Chris Langton's 
work and the Artificial Life conferences that he spawned in 1987, have ushered in a new epoch of 
Alife research (never mind having given us the umbrella term under which we all meet here!) Also, 
many consider Tom Ray's "tierra" system (introduced at the second Alife Workshop (Ray 1991)) 
another major milestone, arguably synthesizing a truly living system within a computer for the first 
time. 

These are the Proceedings of the Sixth International Conference on Artificial Life. Like all things 
alive, the conference too has mutated and adapted over the years, from a "Workshop on the Synthesis 
and Simulation of Living Systems", attended by 150 researchers in a wide variety of fields, to the 
International Conference attended by many times more. 

The theme of this year's conference, "Life and Computation: the Boundaries are Changing" 
addresses two of the topics touched upon above. First, von Neumann and Turing taught us that 
Artificial Life has its root in the universality of computation extended to the universality of life. But 
even these visionaries would be amazed at the stunning variations on computer /life interactions here 
represented: molecules used for computing, computers modeling molecules, self-assembly in thin 
films, resurrected fossils, evolving programs, statistical models of genetic populations, robotic crick
ets, developmental and immunological models, social and linguistic models, artificial architecture, 
and the economics of agents. What would they have thought?! 

Indeed, the field does not stand still: it is itself evolving, and the boundaries are changing. For 
example, there are more papers dealing with computational molecular and cellular biology at this 
Alife meeting than ever before, providing new insights into developmental processes in the fruit fly, 
mechanisms for cell-differentiation, and the modeling of immune-response. And while the emergent 
properties of agents have always been a mainstay of the Alife field, today we are witnessing increasing 
applications to financial markets, trading, and even Internet transactions. 

But we are also witnessing efforts at reshaping some of the staples of Artificial Life research. For 
example, Stuart Kauffman's NK-model (Kauffman and Levin 1987), has been used to model the 
"ruggedness" or "smoothness" of evolutionary landscapes for over a decade. In these proceedings, 
however, Barnett introduces an "NKp" -model with a form of neutrality that many believe essential 
to evolution (see (Eigen 1986) for a forceful argument). Similarly, Chris Langton's model of self
replication as virtual state machines on a Cellular Automaton (Langton 1984, 1986) is a second 
classic reference in Alife. Now, in these pages, Sayama introduces a form of "death" into Langton's 
model, transforming the crystalline but abiotic structures into much more life-like forms that even 
seem to evolve. Both of the latter presentations are outgrowths of Master theses: a sign that Alife 
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is continually renewing. 
As always, there is much more worthy work going on than we can publish in any one Proceedings 

volume. We received approximately 100 submissions, and 39 of those are presented as full papers. 
We have highlighted nine of these as examples of high-quality work crossing the entire spectrum 
of Alife topics; we recommend these especially to readers trying to see just what Alife is about in 
1998. In addition, we include 21 shorter papers, presented as posters at the conference. Many of 
these extend Alife in exciting new directions, or bring a new student's or scientist's perspective to 
the field. 

We are especially excited by the set of invited speakers that have agreed to participate in AL
IFE VI. Christos Papadimitriou (MIT) and Len Adleman (USC) are seminal computer scientists, 
wrestling with many of the same issues that concerned Turing and von Neumann, but benefiting 
from the great progress in computational complexity theory developed in the interim. Gerald Joyce 
(UCSD) has been an active participant in Alife work for a number of years and combines an under
standing of the computational issues with a practioner's insight into what is possible in a test-tube 
(even while succeeding at those which seemed impossible!) 

Beyond the keynote speeches, the plenary talks, the parallel sessions and the posters which are 
covered in these proceedings, ALIFE VI sported events that remain undocumented, such as the 
Alife Art Show, workshops, demonstrations, and a robot contest, all occurring right at Hollywood's 
doorstep. In the shadow of a city that many brand 'artificial', the 'Alife experience' remains real 
and we have come full circle. Fifty years after Caltech hosted the Hixon Symposium, Southern 
California again provides a nurturing environment for Artificial Life. On to the next fifty years! 

Pasadena, March 1998 

Christoph Adami 
Richard Belew 
Hiroaki Kitano 
Charles Taylor 
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WHAT'S EVOLVING IN WET A-LIFE? 

Gerald F. Joyce 

The Scripps Research Institute 

The principles of darwinian evolution can be applied to a large, heteroge
neous population of RNA or DNA molecules to obtain particular molecules 
that have desired biochemical properties, including the ability to catalyze a 
target chemical reaction. A population of variant molecules is subjected to 
repeated rounds of selective amplification in the test tube. Only those indi
viduals that perform a chosen catalytic task are amplified so that, through 
successive rounds, the population adapts to the task at hand. 

Recently we developed the ability to carry out the in vitro evolution of 
RNA-based catalytic function in a continuous manner. The RNAs catalyze 
a ligation reaction that immediately makes them eligible for amplification 
and the newly-produced RNAs are immediately eligible to catalyze another 
reaction. This has enabled us to maintain laboratory "cultures" of evolving 
RNA enzymes, analogous to the way one maintains cultures of bacteria. The 
RNAs are perpetuated by a simple serial transfer procedure, amplifying 
indefinitely so long as an ongoing supply of substrate and other reaction 
materials is made available. During one run of continuous in vitro evolution, 
the RNA enzymes were amplified by a factor of 10E298 over 52 hours. By 
the end of this process, new "generations" of progeny RN A molecules were 
being produced approximately every 5 minutes. 



COMPUTATIONAL COMPLEXITY IN THE LIFE SCIENCES 

Christos H. Papadimitriou and Martha Sideri 

UC Berkeley 

The field of computational complexity has been investigating over the past 
three decades the reasons why some computational problems are so hard to 
compute. But it has more fascinating lessons to teach us than this, because 
many problems in science have latent algorithmic aspects. 

Among those, the protein folding problem is one of the most intrigu
ing. Proteins are polymer chains consisting of monomers of twenty different 
kinds, which tend to fold, presumably by dint of attraction or repulsion 
forces between monomers, to form a very specific and stable geometric pat
tern, known as the protein's native state. It is this geometric pattern that 
determines the macroscopic properties, behavior, and function of a protein. 
This surprising stability of the native state has led to the widespread belief 
that it must be the lowest-energy configuration of the chain. Thus Nature 
appears to be solving very rapidly an extremely complex combinatorial prob
lem (a widely-studied discretized version of the protein folding problem has 
in fact recently proved NP-complete (cf. Proceedings of the 1998 RECOMB 
Conference). This conundrum is known as Levinthal 's paradox. However, a 
simple explanation proceeds along these lines: Proteins must cooperate in 
order to function in an organism, and such cooperation often involves "lock
ing" of their shapes. Hence, there is evolutionary pressure towards protein 
forms that have a unique stable native state, and this pressure could have 
resulted in proteins with very flat energy landscapes. Flat landscapes fea
ture an overwhelmingly popular local optimum, which may not necessarily 
coincide with the global optimum. Computational experiments verify that 
such fiat landscapes evolve very rapidly in a broad variety of optimization 
problems and circumstances. 

Protein folding is only one of the mysterious steps in the map from geno
type to phenotype. There have been exciting results in recent years linking 
certain human diseases to specific genes. Some geneticists envision a com
ing "last stage of the Mendelian revolution," in which all such macroscopic 
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traits will be traced to their genetic causes. However, the vast majority of 
traits and diseases appear to be polygenic, in that they involve the com
plex interactions, as in a many-input Boolean circuit, of many genes. There 
seem to be unsurmountable obstacles of computational complexity lying in 
the path of this ambitious and important research project. 
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Evolution of Linguistic Diversity in a Simple Communication System 

Takaya Arita and Yuhji Koyama 

Graduate School of Human Informatics 
Nagoya University 

Furo-cho, Chikusa-ku, Nagoya 464-8601, JAPAN 
ari@info.human.nagoya-u.ac.jp koyama@shiro.gs.human.nagoya-u.ac.jp 

Abstract 
This paper reports on the current state of our efforts to shed 
light on the origin and evolution of linguistic diversity by 
using synthetic modeling and artificial life techniques. We 
construct a simple abstract model of a communication 
system that has been designed with regard to referential 
signaling in nonhuman animals. The evolutionary dynamics 
of vocabulary sharing is analyzed based on these 
experiments. The results show that mutation rate, population 
size, and resource restrictions define the classes of 
vocabulary sharing. We also see a dynamic equilibrium, 
where two states, a state with one dominant shared word and 
a state with several dominant shared words, take turns 
appearing. We incorporate the idea of the abstract model 
into a more concrete situation and present an agent-based 
model to verify the results of the abstract model and to 
examine the possibility of using linguistic diversity in the 
field of distributed AI and robotics. It has been shown that 
the evolution of linguistic diversity in vocabulary sharing 
will support cooperative behavior in a population of agents. 

Introduction 

Chomsky's famous claim that from a Martian's-eye-view 
all humans speak a single language is surely plausible. 
However, in our view it is true that we have thousands of 
mutually unintelligible languages. Terrestrial scientists 
have no conclusive answer as to why this linguistic 
diversity exists (Pinker 1994). While the quest for the 
origin of diversity in languages is a challenging theme, 
diversity in species is also one of the most important 
themes in biology. Charles Darwin stressed the importance 
of language difference and linked the evolution of 
languages to biology (Darwin 1871). 

The study of communication/language from an alife 
perspective has received a great deal of attention lately 
(Steels 1997). Some of the first experiments were 
conducted by MacLennan (1991) and Werner and Dyer 
(1991). MacLennan considered a population of simple 
organisms, represented genetically by truth tables, and 
created a shared environment through which the organisms 
could pass initially arbitrary signals. It was observed that 
effective communication evolved in the population based 
on their scoring function. The simulation experiment by 
Werner and Dyer successfully demonstrated the evolution 
of a system for signaling between members of opposite 

sexes to coordinate mating behavior. In their model, 
explicit scoring functions were not used, and instead 
effective communication allowed males to find females 
more rapidly, and thus increased the reproductive rate of 
the individuals that communicated effectively. 

Concerning the evolution of grammar, Batali (1994) 
constructed a model for the evolution of grammar, and 
performed the simulations of evolution on populations of 
simple recurrent networks where the selection criterion was 
the ability of the networks to recognize strings generated by 
grammars. The results suggested a new explanation for the 
"critical period" effects observed in language acquisition. 
Hashimoto and Ikegami (1995) studied the evolution of 
grammar systems in networks using an agent model. In 
their model, the individual grammar was expressed by a 
symbolic generative grammar, and each agent was ranked 
explicitly by three scores in each round: speaking, 
recognizing and being recognized. It was observed that two 
processes, a module type evolution and a loop forming 
evolution, were significant. The number of recognized 
words rapidly increased when a module emerged in a 
grammar system, and many words could be derived 
recursively by a grammar processing a loop structure. 

There have not been many studies concentrating on the 
issue of the linguistic diversity from an evolutionary 
perspective. Werner and Dyer (1991) showed that 
"dialects" that are bilingual (i.e., correctly interpret several 
signaling protocols) have an increased chance of 
dominating over time. Also, Hashimoto and Ikegami 
(1995) studied the diversity of spoken words produced by 
symbolic grammar systems in terms of the computational 
ability of automata, where their computational ability was 
the ratio of recognizable words to the total number of 
possible words. 

The most straightforward explanation for the origin of 
linguistic diversity is based on spatial distribution of 
individuals (Arita, Unno, and Kawaguchi 1995). The 
following two studies have supported this view. Arita and 
Taylor (1996) constructed a simple communication model 
in which a population of artificial organisms with neural 
networks inhabited a lattice plane and each organism 
communicated information with neighbors by uttering 
words. The results of the experiments showed that the 
accumulation of mutation, propagation delay and the effects 
of inheritance produce very complex dynamics, while 



learning by neural networks and selection of parents have 
large effects on language unification. Through their 
experiments on naming games, Steels and Mcintyre (1997) 
showed that agent interaction, which depends on spatial 
distribution, determines the degree of diversity in 
vocabulary. Their research takes the view that linguistic 
information evolves and is transmitted culturally, not 
genetically. 

There have been other explanations of the origin of 
linguistic diversity. Hutchins and Hazlehurst (1995) 
presented simulations employing communities of simple 
agents in order to model how a lexicon could emerge from 
interactions between agents in a simple artificial world. 
Their models were not based on the evolutionary 
perspective, but on. the connectionist approach. They 
occasionally observed that the random initial starting points 
of the networks in a community were incompatible with 
each other, and this led to divergence in the verbal 
representations of these individuals. 

Recently, Werner and Todd (1997) have extended their 
previous model to focus on exploring the idea that the 
origin of diversity in communication signals is due to 
sexual selection. In their new model, communication 
signals were used to attract females as mates, and sexual 
selection drove the evolution of male songs and female 
song preferences. Each male had genes that directly 
encoded the notes of his songs, and females' genes encoded 
a transition matrix used to rate transitions from one note to 
another in male songs. Each entry in the transition matrix 
represented the female's expectation that one pitch would 
follow another in a song. They have adopted three methods 
for scoring the male songs, one of which is based on the 
idea in ethology that females exposed to the same song 
repeatedly will become bored and respond to that song less. 
They have shown that sexual selection could lead to 
maintenance of signal diversity, which was at its maximum 
in an initial population with many different male songs. 

The first goal of our paper is to investigate the origin and 
evolution of linguistic diversity from an evolutionary 
perspective. To do this we construct minimal models that 
are designed with regard to referential signaling in 
nonhuman animals and analyze their evolutionary dynamics 
based on the synthetic experiments. The second goal is to 
examine the possibility of utilizing linguistic diversity in 
the fields of distributed AI and robotics, based on the 
results of the above experiments. We believe that a very 
simple communication system can continue to generate 
linguistic diversity in an environment without spatial 
distribution. This supports the hypothesis that in an 
environment with limited amounts of resources that 
contains individuals with poor linguistic facilities, linguistic 
unification is not necessarily adaptive. 

Section 2 discusses the design of the abstract model 
based on the communication systems among the nonhuman 
animals, and shows the results of the experiments. Section 
3 constructs an agent-based model by introducing the 
evolutionary mechanism of the abstract model into a 
concrete situation in order to verify the results obtained in 

10 

Section 2. Section 3 also examines the possibility of 
utilizing the mechanism in engineering fields. Section 4 
discusses several issues concerning the origin and evolution 
of linguistic diversity and its application, based on the 
results described in the previous Sections. Section 5 
summarizes the paper. 

Abstract Model 

Background 
Seyfarth, Cheney, and Marler's pioneering work (1980) on 
the vervet monkey's alarm call system revealed that they 
produce acoustically distinct and discrete alarm call types, 
and in response to hearing such calls, individuals respond 
with behaviorally appropriate escape responses. It is a 
remarkable point that vervet monkeys are born with the 
ability to respond appropriately to general predator 
categories (e.g. things up in the air, slithering things on the 
ground), where learning plays virtually no role in 
modifying signal structure, either during early development 
or later in life (Hauser 1996). A referential system is 
functionally significant because when an individual hears 
an alarm call, an appropriate antipredator response can be 
initiated without having to see what is going on. In fact, the 
vervet monkey's alarm call system is a beautiful illustration 
of how selection pressures might have favored signal 
diversification (Hauser 1996). An all-purpose alarm call 
would not work for vervet monkeys, because it would not 
provide sufficient information about the type of predator or 
escape response that would be most appropriate. 

Since the work on the vervet monkey's alarm call 
system, several other studies have focused on the problem 
of referential signaling in nonhuman animals, including 
other simian primates (e.g., rhesus macaques), prosimians 
(e.g., ringtailed lemurs), and a few other species (e.g., 
domestic chickens). It has become clear that these signals 
are used in various contexts such as predator encounters, 
discovering food, and social relationships. For example, 
when a food call is given, listeners obtain information about 
the availability of alternative food sources, which can serve 
to guide their foraging decisions. Characteristics of these 
communication systems, especially in primates, are as 
follows: 

The communication systems are composed of speakers 
and listeners. Those who encounter the predators (or 
food) produce acoustically distinct and discrete alarm 
(or food) calls, and in response to hearing such calls, 
listeners behave appropriately. 

The signals are referential in the sense that they are 
reliably associated with objects and events in the 
environment. 

They don't react instinctively as a direct expression of 
their internal states. They send the signals with some 
primitive type of intention on the assumption of the 
existence of listeners. 

They are born with ability to respond appropriately to 



general categories. Learning plays a relatively small 
role in modifying signal structure. 

These types of communication systems illustrate how 
natural selection might have driven signal 
diversification. 

The first steps toward human languages are still shrouded 
in mystery despite the studies and controversies in many 
fields, but the above described communication systems 
might be strong candidates for the immediate steps, in other 
words, the "protolanguages". This paper aims at exploring 
the origin and evolution of linguistic diversity using two 
different types of models (in Section 2 and Section 3) with 
a communication system which is constructed with regard 
to this type of communication system observed in 
nonhuman animals. 

Definition 
The communication system in our models is composed of 
Npop individuals. Each has a simple vocabulary system that 
is represented by a table which relates words and meanings 
as shown in Fig. I. Identical words can appear more than 
one time, which corresponds to homonyms (word 12 in this 
figure), while each meaning appears one time in this table. 
These tables describe innate information, and are 
transmitted to offspring by genetic operators. 

0 2 3 4 
87 12 34 60 12 

Fig. I An example of a vocabulary table. 

First an initial population of Npop individuals with 
randomly generated vocabulary tables is generated. A 
signaler and Nrec listeners are randomly selected in the 
beginning of each "conversation". In a conversation, a 
word is uttered by the signaler, and each listener is one of 
the following three types, based on the interpretation of the 
word: 

a listener that has the word in its vocabulary table, and its 
meaning is equal to the meaning in the signaler' s 
vocabulary table ("right listener"), 

a listener that has the word in its vocabulary table, but its 
meaning is not equal to the meaning in the signaler' s 
vocabulary table ("misunderstanding listener"), 

a listener that doesn't have the word in its vocabulary 
table ("ignorant listener"). 

In the case that the received word is a homonym in the 
listener's vocabulary table, one meaning is randomly 
selected as its interpretation. Fig. 2 shows an example 
where a signaler sends the word 5, which expresses the 
meaning 2. 

Here, we divide the "right listeners" into "successful 
listeners" and "unsuccessful listeners", because it would be 
necessary to take these constraints into consideration in 
many situations investigated. For example, in the case of 
the food call, some of the listeners that wish to obtain the 
food might nonetheless fail to do so, because of feeding 
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compet1t1on. In the case of the alarm call, some of the 
listeners that intend to respond with behaviorally 
appropriate escape responses might nonetheless fail in their 
effort to escape from the predator. 

In every conversation each individual belongs to one of 
the following categories: signaler, successful listeners, 
unsuccessful listeners, misunderstanding listeners, ignorant 
listeners, or non-participants, as shown in Fig. 2, and they 
are rewarded with Rsend, Rshare, Runshare, Rwrong, Rignorant, 
or Rout. respectively. There can be positive, negative, and 
zero values. These rewards are genetic fitness scores for 
signaling. 

Fig. 2 An example of a conversation. 

0~1,~l!ls~~ 
signaler 

------right listeners 

@.I ~ I ~ I :s I .--1 !-....I-~ -1 :---.2 I 0 
successful listener unsuccessful listener 

el 3~ I~ I~ I 
misunderstanding 

listener 

I I I 2 I 3 

I 11 I 64 I ss 
ignorant listener 

I ~ I ~ I : I 
nonparticipant 

After this process of conversation is repeated Nconv 
times, the information in the vocabulary tables is passed on 
to offspring by genetic operations. The next generation that 
is composed of also Npop individuals, is created by roulette 
selection based on the scores, where mated vocabulary 
tables cross over at a randomly-selected point of columns 
(Fig. 3). Then, mutation is performed on each word in the 
vocabulary tables with some probability Pmut, where the 
word is changed to a randomly selected word. 

Meaning 0 2 3 4 0 2 3 4 
Word 87 12 34 60 87 12 34 66 94 

Fig. 3 An example of cross-over on a vocabulary table. 

Experiments 
We have conducted simulations following the procedure 



described above. The abstract model is general in the sense 
that it can represent many situations depending on the 
values of the rewards. In this paper, we examine the 
communication system in the context that an individual 
finds a food source and utters the word for its meaning (the 
type of the food). We leave until later the case of alarm 
calls, though we see no reason why it should be different. 

The number of the population (Npop) was 64. If the 
number of the right listeners was not more than 4 in a 
conversation, all of the right listeners were considered to be 
successful and to obtain Rshare· Otherwise, 4 successful 
listeners were randomly selected from the right listeners, 
and the remaining right listeners were considered 
unsuccessful because of competition. The individual that 
found the food source and successful listeners shared the 
food source equally, that meant R.~end = Rs hare = Rtc)(ld I 
(n+l), where the amount of the food source was RfiJOd and 
the number of the successful listeners was n. RfcJOd was set 
to be an arbitrary constant, 20. The reward for the 
individuals that interpreted the uttered word correctly, but 
couldn't obtain the food source (Runshare), was -3. The 
reward for the individuals that misunderstood the uttered 
word (Rwrong) was -2. The reward for the individuals 
which did not have the uttered word in their vocabulary 
tables (Rignorant) , and the reward for the individuals which 
didn't join the conversation (Pout), were -1 and 0, 
respectively. The number of the individuals which joined 
the conversation was always 20 (Nrec+ 1). Each generation 
had 500 conversations (Nconv). Each word was expressed 
by an integer I (0 <= I <= 99). In this paper, we have 
investigated the case that there is only one type of food 
source (the size of vocabulary table was one) for 
convenience of the analysis . 

Fig. 4 a)-d) show the evolutionary dynamics in 
vocabulary sharing where mutation rates (Pmut) are 0.01 , 
0.015, 0.04, and 0.1 respectively. The horizontal axes 
represent the generations. The vertical axes represent the 
distribution of words corresponding to the meaning and 
each same gray level means that an identical word is 
dispatched to the meaning. 

It has been shown overall, from these figures, that the 
lower the mutation rate becomes, the more individuals have 
the same word for the meaning. The states of how the 
meaning was typically shared among the population were 
classified into the following 4 classes (the threshold values 
are approximate numbers). 

Class A (Pmut is less than 0.015, Fig. 4a)): 
A dominant word emerges, and the state becomes 

stable. 
Class B (Pmut is nearly 0.015, Fig. 4b)): 

The state that 3-6 words coexist and the state that 
one word spreads, appear in turn. 
Class C (Pmut is more than 0.015 and less than 0.07, 
Fig. 4 c)): 

Several words coexist. New words appear and then 
disappear repeatedly. 
Class D (Pmut is more than 0.07, Fig. 4d)): 

The state changes in a chaotic manner. 
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a) 

200 250 
b) 

0 50 100 150 200 250 

c) 

200 250 

d) 

150 200 

Fig. 4 Evolution of vocabulary sharing: 
Rmut =a) 0.01, b) 0.015, c) 0.04, d) 0.1. 

In class B, the latter state was broken by an individual 
which had a new word generated by mutation. The reason 
this occurred is considered to be that the merit to the mutant 
of monopolizing the food sources it found was larger than 
the merit of sharing the sources found by the others by 
receiving the information of their existence at that moment. 
It is shown here that the unification of vocabulary tables in 
the population is not necessarily adaptive, which is a 
remarkable point. 

We have conducted another series of experiments 
concerning the effects of the population size, and those 
concerning the effects of the amount of the source (Rtc,od). 
Some of the results are shown in Fig. 5a)-b). It can be 
found from these figures that an increase (decrease) in 
population size has the similar effects to an increase 
(decrease) in mutation rate. One of the things that we notice 
is that there is a difference between those occasions where 
many words coexist generated by increasing the mutation 
rate, and those occasions where many words coexist 
because of increased population size. In the former, the 
individuals with a new word appeared repeatedly and the 
states are changing. However, in the latter, the state has a 
tendency to be stable without allowing the individuals with 
a new word to appear. The experiments on the effects of 
varying the amount of the food source have shown that the 
more the amount of the food source is, the more individuals 
have a same word for the meaning. 



a) 

b) 

Fig. 5 Effect of varying population size: 
Npop =a) 32, b) 128. 

Fig. 6 shows the relation between the state of vocabulary 
sharing and the scores of agents when Pmut = 0.015. The 
upper part of this figure shows the state of vocabulary 
sharing, the middle part shows the average score of 
individuals, and the lower part shows the number of the 
words shared by more than 3 agents. It is easy to make a 
distinction between the occasion where several words 
coexist and the occasion where there is only one dominant 
word in the middle graph. It is regarded as the cause of 
reduced scores in the state with a dominant word that a 
large number of individuals with the identical vocabulary 
obtained the reward (cost) Punshare frequently in this state. 

" , -.- "' ' "' i 1 ' '" ,:~\1~ ri.-.·i1, 
' . " tA • \ 

I '' \'. ; ,, I, 

.... :, ,..J' ', ' '" • 't ,,, • ;.', 

Fig. 6 Relations between average score 
and the number of shared words. 
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It has been assumed in all of the experiments to this point 
that any individual who has found the food source always 
signals. Here, we make a minor modification in the settings 
in order to investigate the motivation of signalers. We 
interpret that a specified word (the word 0 in this series of 
experiments) means being silent. If an individual who has 
found a food source has the word 0 corresponding to the 
food source, then it will not signal at all. Therefore, it could 
monopolize the food source, which will be a merit, but at 
the same time it can't obtain the information about the 
existence of the other food sources when the other 
individuals find them, which will be a demerit. The 
experiments have been conducted under the same 
conditions (Pmut = 0.015) but with this modification. The 
results are shown in Fig. 7a). 
A silent individual, that is a mutant with this newly defined 
word 0, was generated by mutation at about the 180th 
generation, and then the silent group spread through the 
population rapidly. Communication died out in all 
experiments when silent individuals were allowed. The 
reason for this is estimated that the silent individuals have 
no need to pay the penalty when they can't obtain food 
sources, and at the same time, they have a slimmer chance 
to be sent signals from the individuals with a non-zero 
word, as the number of the silent individuals increases. 

a) 

0 

b) 

I I 

I .. ~±_ .. 
200 1 00 

Fig. 7 Effects of allowing silent individuals: 
full monopolization, b) half monopolization. 

In the above described experiment, when a silent 
individual found a food source, it monopolized all of the 
food source if it could. We have modified this setting here 
to be that it could obtain half of the food source at most. 
The results are shown in Fig. 7b). In this case, the silent 
group does not become dominant. The reason is believed to 
be that the silent individuals made less efficient resource 
distribution than non-silent group in the sense that it 
sometimes happened that the silent individuals left food 
sources without transferring information of the source. The 
issues concerning the silent individuals are worth 
examining, and some of them will be discussed in Section 
4. 



Agent-Based Model 

Definition 
We have introduced the evolutionary mechanism of the 
abstract model generating the linguistic diversity into a 
concrete situation and have constructed an agent-based 
model. The first objective of its design and experiments is 
to verify the results of the experiments concerning the 
abstract model, which depend on the explicit reward 
setting, by defining a concrete task done by agents. The 
second objective is to explore the possibility of applying the 
evolutionary dynamics of the linguistic diversity to issues in 
various fields, such as robotics and distributed AI. 

Foraging behavior in the population of simple mobile 
agents (robots) has been taken up as the theme of the agent
based model. The task described in this Section could be 
interpreted in many ways, as energy supply in robotics, or 
garbage collection in distributed AI, for example, since we 
have assumed a situation in which mobile agents move and 
gather food sources using the simple communication 
system. 

The field has Npop mobile agents and Nfood food sources. 
Each agent has a vocabulary table and has an energy value 
as an internal state, which corresponds to a genetic fitness, 
though it could be negative. If the energy value of an agent 
is less than Ehungry, then the agent is "hungry". When the 
energy value is Ejul/, the agent is "full", and it cannot eat 
the food source any more. Each agent consumes one unit of 
energy every time step. 

Reaching the food 

and finishing 

Approach Mode 

Search Mode 
Hungry, and hearing 

Reaching the place where 

detecting a food 

...... ----- React Mode 
Reaching the place 

where the word was uttered, 

and detecting the food 

Fig. 8 Transitions among behavioral modes. 

The behavioral state of each agent is one of the 3 modes: 
Search Mode, React Mode, or Approach Mode (Fig. 8). At 
the beginning of every generation, agents and the food 
sources are located at randomly selected positions in the 
field. All agents are in Search Mode, and the energy values 
are Eju/l. Each agent in Search Mode selects randomly and 
engages in one of the following five behaviors: halt, 
moving forward, moving backward, turning right, or 
turning left. The distance of moving forward/backward, D 
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is. randomly determined every time (0 < D < Lmove, in 
pixels). The speed of moving in any mode is constant 
(Vagent pixel/step). The angle of turning right/left, X is 
randomly determined every time (0 < X < Aiurn, in 
degrees). It takes 1 time step to turn right/left. Agents in 
Search Mode detect food sources within a distance of 
Ldetect. When a hungry agent in Search Mode finds a food 
source, it utters the word for it, and its state changes into 
Approach Mode. This signaling process takes 1 time step. 

An agent in Approach Mode approaches the food source. 
~ac.h food source also has an energy level which is Efood 
1mt1ally. When an agent reaches a food source, it ingests the 
food until it becomes full or the energy of the food source 
becomes zero. If the energy of a food source becomes zero 
it is removed from the field. Food sources are generated 
only when a new generation of agents is created. Other 
agents cannot get the information about the exhaustion of 
the food source. Therefore, when the food sources are 
removed, the agents which are in React Mode, in other 
words, which are devoting themselves to going for the 
location where the word was uttered, would generate loss of 
time and energy for themselves. This cost, which is 
represented implicitly and naturally in this agent-based 
model, is equivalent to the value expressed by Runshare in 
the abstract model. 

Agents that are in Search Mode and are within a distance 
of Lhear can hear uttered word. If an agent is hungry and is 
a "right listener", its state changes into React Mode. Each 
agent in React Mode approaches the location where the 
word was uttered. When an agent in React Mode reaches 
~he location, if it detects a food source, its state changes 
mto Approach Mode, otherwise its state changes into 
Search Mode. 

In this manner, the agents repeat searching for food, 
approaching food or the places the words were uttered, 
uttering words, and hearing the words, until Nstep time steps 
pass from the beginning, or all food sources are consumed. 
Next, the information on vocabulary tables is passed on to 
offspring by genetic operations in the similar way as in the 
abstract model. The next generation that are composed of 
also Npop agents, are created by roulette selection based on 
their energy values after scaling, where mated vocabulary 
tables cross over at a randomly-selected point of columns. 
Then, mutation is performed on each word in the 
vocabulary tables with some probability Pmut, where the 
word is changed to a randomly selected word. In this 
manner, these processes with a population of a new 
generation are repeated again and again. 

Experiments 
We have conducted some preliminary experiments with the 
following parameters. 

Npop = 20; Njood = 20; N.ftep = 10000; Lmove = 100; 
Ldetect = 100; Lhear = 200; Vagent = I; Arum = I 00; 
Ehungry = 3000; Ejull = 5000; Efood = 4500; 

Also, only one meaning was set up in this series of 



experiments. In other words, there was one type of food in 
the field. Evolution was observed for 300 generations. 

Fig, 9 shows the evolutionary dynamics in vocabulary 
sharing for 300 generations, where Pmut was 0.01. We 
have observed the similar evolutionary dynamics to those in 
the abstract model, except that the effect of the mutation 
rate is slightly different. The threshold value is 
approximately 0.01 in this agent-based model which 
divides Class A and Class C, while Pmut around 0.015 is the 
threshold in the abstract model. 

() 100 200 

Fig. 9 Evolution of vrv:abulary sharing. 

The following two additional methods were investigated 
for comparative evaluation: 

Method 1: 

All agents have the identical word-meaning relation 
(vocabulary table) a priori. Therefore, when an agent 
utters a word, each listener is either successful or 
unsuccessful, and cannot be a misunderstanding 
listener or an ignorant listener. No genetic operators 
are used, and there is no evolution. 

Method 2: 

There is no communication at all. All agents are 
silent all the time. There is also no evolution. 

We have conducted 10 trials of the comparative 
experiments. The parameters have the same values as in the 
experiment shown in Fig. 9. Results are shown in Table 1. 
Table 1 shows the average energy value and the maximum 
energy value among all agents, and the number of the 
occurrences that all food sources were exhausted. We refer 
to the method based on the original agent-based model as 
Method 0 in this table. It is shown that the maximum 
energy value and the average energy value in the Method 0 
are more than the ones in the Method 1 and Method 2. This 
means that the evolution of the vocabulary table contributed 
to the efficient task execution in these experiments. 
However, the number of the occurrences that all food 
sources were exhausted in Method 1, is slightly more than 
that in the Method 0. The cause of this seems to be that the 
communication with the identical word increased the cases 
that all food sources had been exhausted, although it made 
the agents that heard the word waste time and energy. It is 
also shown that Method 2 (no communication) shows poor 
performance as compared with the other two methods. 
These results mean that the role of the evolving 
communication system with linguistic diversity is 
significant for the foraging behavior in the population of 
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agents. 

Table 1 Results of the comparative experiments. 

Trial Method 0 Method 1 Method 2 
No. Avg E. (max E.) Avg E. (max E.) Avg E. (max E.) 

Exhaustion Exhaustion Exhaustion 

I -1254 (4004) -3608 (4354) -4508 (4409) 
175 184 131 

2 -2667 (4529) -2715 (4392) -5016 (4634) 
166 179 143 

3 -3560 (4476) -4096 (4200) -5595 (4305) 
166 170 140 

4 -3654 (4242) -3698 (3824) -2219 (4193) 
168 171 137 

5 -3362 (4143) -1908 (4319) -3716 (3905) 
162 170 145 

6 -1039 (4680) -4300 (3952) -2052 (3953) 
170 175 127 

7 -2933 (4186) -396 (3933) -3764 (4195) 
165 177 139 

8 -2011 (4371) -2601 (4676) -5492 (3926) 

168 183 147 

9 -2239 ( 4427) -3509 ( 4498) -3531 (3675) 
171 169 139 

10 -2035 (4060) -1759 (4174) -4203 (36 I 9) 
161 173 122 

Average -2475 (4312) -2859 (4232) -4010 (3081) 
167 175 137 

Discussion 

Observed linguistic diversity 
The results of the experiments imply that the linguistic 
diversity grows when population size, mutation rate, or 
restriction on resources becomes greater. Fig. 10 shows this 
implication roughly. From another point of view, it can be 
said that the communication system adapts to the growth of 
population size, mutation rate, or restriction on resources by 
increasing its linguistic diversity. One extreme case is that 
there is no diversity. This corresponds to the case that all 
agents shared an identical vocabulary table in the 
experiments with small mutation rates, or the case that all 
agents were silent in the experiments allowing silent 
individuals. The other extreme case is that they share no 
stable and identical vocabularies at all, and they thus cannot 
transfer efficient information by communication systems. 
This corresponds to the case with a quite large mutation 
rate in the experiments. The results of the experiments on 
the agent-based model have shown that the evolutionary 
dynamics could maintain a proper level of linguistic 
diversity, and attain effective task execution. 
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Linguistic 

Large 
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Fig. 10 Growth of linguistic diversity. 

There was a tradeoff between the monopoly of the 
resources discovered by an agent itself and the sharing of 
the resources discovered by other agents (to be exact, 
sharing with risks of additional competition). When the 
former exceeded the latter, the linguistic diversity observed 
in the experiments was generated by the selection pressure. 
This selection pressure allowed the individuals with new 
words to increase in the population. 

In other words, the individuals with new words can 
increase by making others respond with inappropriate 
reactions through misinterpreted words, which can be 
called functional deception, though cannot be called 
intentional deception (deception based upon manipulation 
of belief states). All agents became silent when we allowed 
the individuals to be silent. In this case, they withheld 
information about food sources and thereby increased their 
fitness relative to others. We can call it another primitive 
form of deception. This type of deceptive behavior in 
nonhuman animals has been reported. In Chimpanzees, 
food calls are given by individuals at relatively large food 
sources (implying that the costs of increased feeding 
competition may be negligible) (Wrangham 1977). Also, in 
some species, the probability of calling in the context of 
food call is less than 100%, suggesting the possibility that 
individuals sometimes suppress their calls (Hauser 1996). 

The invasion of a silent population and the generation of 
linguistic diversity discussed in this paper are closely linked 
to the issue of the origin of altruism. Food calls would 
appear to be altruistic in general, because those who 
announce their discoveries are essentially inviting increased 
food competition and, consequently, potentially decreasing 
their own access to food. Kin selection and reciprocal 
relationships are strong candidates for its explanation. It has 
been also reported that there is social pressure making 
individuals call. Individual rhesus who found food but 
failed to call and were detected by other group members 
received more aggression than individuals who called upon 
discovery (Hauser 1992). The result that the silent 
population disappeared when we reduced the maximum 
amount of food sources which individuals could obtain to 
half, might be a candidate for its explanation at the lowest 
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level. 
The effects of incorporating a learning mechanism into 

these models would be worth investigating, though we have 
focused on the evolutionary dynamics of the linguistic 
diversity in this paper. It is clear that the effects depend on 
the adopted learning algorithm. If we would adopt a 
learning algorithm that uses the rewards in conversations as 
teacher signals in learning, and modifies the word-meaning 
relations gradually, the learning mechanism would be 
believed to simply accelerate the evolutionary dynamics 
observed in these experiments. However, the contributions 
of population size, resource restriction, and mutation rate to 
linguistic diversity could be rather complex. 

Possibility of utilizing the diversity 
Application of the results of alife studies has been 

investigated, and it has begun to bear fruits in various 
fields. One of the promising fields is robotics. We have 
conducted the experiments on the agent-based model, partly 
based on the idea that the communication system which 
evolves and maintains linguistic diversity would be 
beautifully fit to be used as the flexible mechanism for 
communication among population of autonomous robots 
that attain cooperative behavior. The results in the 
experiments concerning the agent-based model are 
encouraging in the sense that the communication system 
supported the cooperative task execution. 

The complexity in the mechanism of the communication 
system is extremely reduced, because we have aimed to 
implement a minimal communication system that generates 
the linguistic diversity which could be utilized in 
engineering fields. Communication systems with far richer 
facilities, for example, those with which agents can 
negotiate on sharing the resources, would surely rank 
higher. On the other hand, slightly extended versions of the 
current communication system can be investigated, for 
example, as follows: 

Version 1: 

The agents which found the sources signal only when 
they finish feeding and there are food sources left. 
This modification of setting can reduce the cost of 
listener agents. 

Version 2: 

The volume of the food calls are set to be proportional 
to the amount of the food sources. This modification 
makes the number of the listening agents vary 
correspondingly to the amount of the food sources, 
which can reduce the cost of listener agents. 

We expect both versions will rank higher than the results 
of our experiments, though we don't have enough evidence 
that in nonhuman animals there are such communication 
systems. Although, some species have a food call which 
refers to the quality of food sources. 

One of the most difficult hurdles towards physical 
realization based on the evolutionary dynamics, in general, 



is the relationship between simulations and actual robot 
execution. Even the experiments on this simple 
communication system took a while to evolve in the agent
based model. It is very difficult and may take as much time 
for detailed simulations as it would take to build the actual 
robot systems. At the same time, it is also impractical to 
build and observe many actual robots during many 
generations. Therefore, we plan to adopt a hybrid simulated 
/embodied selection regime (Miglino, Nafasi, and Taylor 
1995). Large numbers of simulated robots are examined in 
simulation, but only the promising subset of these are 
actually built and examined, thereby reducing the scope of 
the problem. Simulated evolution of communication 
systems will also be necessary for speeding up the 
adaptation in the physically realized robotic systems in the 
near future, and thereby the communication systems will be 
able to adapt to rapid changes in dynamic environments. 

Summary 

This paper reports on the current state of our efforts to shed 
light on the origin and evolution of linguistic diversity, 
using synthetic modeling and artificial life techniques. We 
have constructed a simple abstract model for a 
communication system that is designed with regard to 
referential signaling in nonhuman animals. The 
evolutionary dynamics of vocabulary sharing was analyzed 
based on these experiments. 

The results have shown that only a subset of initial 
conditions leads to the unification of vocabulary, and the 
linguistic diversity evolves corresponding to the changes in 
population size, mutation rate and restriction of resources. 
We have also observed that unification of vocabulary 
causes the decrease in genetic fitness of the individuals. 

We have incorporated the idea of the abstract model into 
a more concrete situation, and have presented an agent
based model to verify the results of the abstract model and 
to examine the possibility of utilizing the linguistic 
diversity in the field of distributed AI and robotics. It has 
been shown that selection pressure could explain the 
linguistic diversity in the cooperative behavior of multiple 
agents. 
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Abstract 
It has come to be almost an article of faith amongst 
population biologists and GA researchers alike that the 
principal feature of a fitness landscape as regards 
evolutionary dynamics is "ruggedness'', particularly as 
measured by the auto-correlation function. In this paper we 
demonstrate that auto-correlation alone may be inadequate 
as a mediator of evolutionary dynamics, specifically in the 
presence of large scale neutrality. We introduce the NKp 
family of landscapes (a variant on NK landscapes) which 
possess the remarkable property that varying the degree of 
neutrality has minimal effect on the correlation structure. It 
is demonstrated that NKp landscapes feature neutral 
networks which have a "constant innovation" property 
comparable with the neutral networks observed in models of 
RNA secondary structure folding landscapes. We show that 
evolutionary dynamics on NKp landscapes vary dramatically 
with the degree of neutrality - at high neutrality the 
dynamics are characterised by population drift along neutral 
networks punctuated by transitions between networks. The 
relevance of these models to natural and artificial evolution 
is discussed. 

Introduction 

In attempting to address the dynamics of populations of 
genotypes evolving on fitness landscapes it appears that a 
specific scenario has become somewhat ingrained in the 
collective consciousness of researchers - that of a fitness 
landscape as a rugged, hilly terrain on which populations 
perform "hill-climbing". Selective pressure drags a 
population towards local peaks of relatively high fitness 
while mutation and recombination search the surrounding 
landscape by generating new genotypes. But this poses a 
problem which affects both the biologist and the GA 
specialist: if selective pressure is strong enough (relative to 
the disruptive effects of mutation and recombination) to 
drag a population up a hill, it is also likely to be strong 
enough to hold it there! How, then, is an evolving 
population to avoid becoming trapped on a local hilltop? 

For the GA worker seeking to optimise a multi-peaked 
function this is a practical issue and the literature abounds 
with schemes to avoid the dilemma (Goldberg 1989). For 
the biologist it is a serious theoretical conundrum, as 
populations in nature do not seem (at least on macro
evolutionary time-scales) to suffer this fate. It might be 
claimed that entrapment can be explained away by co
evolution and environmental change but another possibility 
must be considered - our picture of a fitness landscape as a 
rugged hilly terrain is misleading and in need of an 
overhaul. 

In both natural and artificial systems a picture is 
emerging of populations engaged not in hill-climbing but 
rather drifting along connected networks of genotypes of 
equal fitness, with sporadic jumps between networks. These 
"neutral networks" are of particular significance if they 
have the "constant innovation" property (see below) - for 
this raises the possibility that (given enough time) almost 
any possible fitness value can ultimately be attained by the 
population. The scenario of a population trapped on a local 
hilltop vanishes. It is this new paradigm of evolutionary 
dynamics which we examine here. It has yet to make a 
significant impact on the scientific community. 

It is, of course, reasonable to ask (both for natural and 
artificial evolutionary systems) whether such neutral 
networks actually occur. Comparatively recent 
developments in evolutionary theory and molecular biology 
all point to the importance of selective neutrality as a 
significant factor. This work includes Kimura's neutral 
theory of molecular evolution (Kimura 1983), Eigen's 
analysis of the molecular quasispecies (Eigen, McCaskill 
and Schuster 1989; Nowak and Schuster 1989) and recent 
developments in the understanding of RNA evolution both 
in vitro, in simulation and analytically (Reidys, Stadler and 
Schuster 1997; Schuster et al. 1994; Baskaran, Stadler and 
Schuster 1996; Gri.iner et al. 1996). Neutrality has also been 
detected in various protein models. In molecular biology it 
is clear that there is often a high degree of redundancy in 



the coding from genotype to phenotype - there may indeed 
be redundancy on several levels; e.g. many nucleotide 
sequences may code for the same amino acid, while many 
amino acid sequences may code for functionally equivalent 
proteins. Such coding redundancy will certainly imply the 
existence of selectively neutral mutation at the molecular 
level (Crow and Kimura 1970, Kimura 1983). Whether this 
takes the form of neutral networks with constant innovation 
is a (highly non-trivial) empirical question. Research into 
the structure of RNA folding landscapes suggests strongly 
that such networks may well be a feature of fitness 
landscapes in molecular biology. 

There is also evidence that neutral networks can appear 
in the fitness landscapes of "difficult" artificial evolution 
problems; e.g. in the evolution of neural network robot 
control systems, on-chip hardware evolution (Thompson 
1996; Harvey and Thompson 1996) and CA-based 
landscapes. Ironically it is customary among GA 
practitioners deliberately to avoid redundancy in the genetic 
coding of artificial evolution problems. 

The NKp landscapes introduced in this paper have the 
property that altering the degree of neutrality has minimal 
effect on the ruggedness of the landscape (as measured by 
the auto-correlation function). They thus provide a useful 
test-bed for a comparative study of the effects of 
ruggedness and neutrality on evolutionary dynamics. We 
begin with some formal definitions. 

Neutrality and Ruggedness 

All fitness landscapes in this paper are based on fixed
Jength binary bit-string genotypes. We thus identify a 
fitness landscape of sequence length N with a fitness 
function f: QN -4 R• where QN denotes the binary N
hypercube and R• is the set of real numbers ::'.'. 0. The fitness 
of a genotype g E QN is then given by f(g). There is a 
natural metric, Hamming distance, on QN defined by: 
h(g,g') = number of loci (bit-positions) at which g and g' 
differ. Hamming distance is often referred to in terms of 
mutation. If g, g' are hamming distance d apart we call g' a 
(d-bit) mutation of g (and vice-versa). 

Neutrality 
We call a (I-bit) mutation g' of g neutral iff f(g') = f(g). 
This relationship induces a partitioning of QN whereby g 
and g' are in the same equivalence class iff there is a 
sequence of neutral mutations connecting g and g'; i.e. there 
are genotypes g = g<0i, g0 >, g(2), ... , g<"> = g' such that g<a> is 
a I-bit mutation of g<a - 1> for ex = 1, 2, ... , n and f(g) = 
f(g10i) = f(grn) = f(g 12i) = ... = f(g<"i) = f(g'). The neutral 
networks of the fitness landscape are defined to be the 
equivalence classes of this partitioning. We can define a 
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coarser partitioning of QN by specifying g and g' to be in the 
same equivalence class iff f(g) = f(g'). We refer to the 
equivalence classes of this partitioning as neutral sets; the 
neutral networks are the connected components of the 
neutral sets. Although it is the neutral networks which are 
of direct relevance to evolutionary dynamics the neutral 
sets are generally easier to handle analytically; furthermore 
in many cases of interest the neutral sets consist of few 
connected components. A word of caution: the "network" 
terminology may well be misleading. If the frequency of 
neutral mutation is low there are likely to be very many 
neutral networks comprising a few, or even single 
genotypes. Even if there is high neutrality the neutral 
networks may not resemble networks as much as "clusters". 
The neutral degree of a genotype g, denoted by v(g) is 
defined to be the number of neutral mutations of g. 

We shall be interested in some notion of percolation for 
neutral networks. It is by no means obvious in what sense 
percolation may hold relevance for evolutionary dynamics. 
While it is feasible to transfer the graph-theoretical 
definition directly to neutral networks, it seems to this 
author that the related (but distinct) property of "constant 
innovation rate" introduced by (Huynen 1996) in the 
context of RNA folding landscapes is likely to be more 
pertinent; the reasons will hopefully become clear from the 
discussion of evolutionary dynamics in a later section. 
Random walks are performed on neutral networks ("neutral 
walks") and previously unseen phenotypes ("innovations") 
accumulated. The rate of discovery of innovations is then 
compared to the discovery rate for random walks on the 
landscape not constrained to a neutral network. Since we 
are not dealing with phenotypes (in the sense of an 
intermediate mapping between genotype and fitness) we 
identify phenotype directly with fitness and consider an 
innovation to be the discovery of a genotype of previously 
un-encountered fitness. 

We thus say that a neutral network has the constant 
innovation property if: (I) the rate of discovery of 
innovations remains approximately constant for a 
reasonably large number of steps - what Huynen terms 
"perpetual innovation" - and (II) the rate of discovery is 
comparable with that of an unconstrained random walk. 
Below we investigate this property rather than conventional 
percolation. It should be noted that constant innovation is 
indeed distinct from percolation - it is not difficult to 
construct fitness landscapes with neutral networks that 
percolate in the graph-theoretical sense, but fail one or both 
of the above criteria (Jakobi 1996). 

Ruggedness 

The most frequently encountered measure of ruggedness of 
a fitness landscape is the auto-co"elation function. It is 
often defined in terms of fitness values at successive steps 



along random walks (Weinberger 1990; Kauffman 1993) 
but, as remarked in (Stadler 1996) " .. .it seems to be rather 
contrived to invoke a stochastic process in order to 
characterise a given function [i.e. the fitness function] 
defined on a finite set". We thus use the definition below, 
apparently first proposed in (Eigen, McCaskill and Schuster 
1989). 

Let f: QN ~ R• be a fitness landscape. We first define the 
mean fitness of the landscape: 

(1) t = rN L/(g) 
geQN 

the fitness variance: 

(2) er/ =rN L(f(g)-f)2 
geQN 

and ford= 1, 2, ... N the set: 

Thus QN(d) is the set of pairs of genotypes in QN Hamming 
distance d apart. We now define the auto-correlation 
function to be: 

(4) 
1 1 ~ - -

p(d) = -2 I N I £..i (f(g)- f)(f(g')-f) 
erf Q (d) (g.g')EQN(d) 

ford= 1, 2, ... , N. For consistency we also set p(O) = 1. 

Note: We stress that the quantities f , er,2 and p(d) are 
not statistics but simply real numbers associated with a 
fitness landscape. There appears to be some confusion in 
the literature on this issue; auto-correlation is sometimes 
defined by averaging fitness, etc. over ensembles of 
landscapes, e.g. the family of all NKp landscapes with 
fixed N, K and p (Fontana et. al. 1993, Weinberger 1990). 
In this paper shall we use angle brackets exclusively to 
indicate that a mean (expectation) is to be taken of a 
quantity considered as a random variable defined on the 
sample space of all possible NKp landscapes with fixed N, 
Kand p. 

The NKp Family of Fitness Landscapes 

We begin by reviewing the construction of an NK 
landscape (Kauffman 1993). Let N > 0 be the genotype 
length and let 0 s; K < N. N and K are fixed during the 
construction. To each locus on the genotype (i.e. a position 
1 s; i s; N on the bit-string) we assign independently and at 
random K distinct loci (excluding the locus under 
consideration). These loci, plus the locus i itself, are said to 
be epistatically linked to locus i. The idea is that a locus i 
makes a contribution to the total fitness of a genotype 
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which depends on the value of the allele (0 or 1) at each of 
the K+ 1 loci epistatically linked to locus i. To each such 
combination of alleles (there are 2K+i in all) a fitness 
contribution is assigned as a real number drawn 
independently and uniformly at random from the interval 
[0,1]. We can think of this as the association of afitness 
table F; with each locus i; for a genotype g E QN, given the 

sequence of alleles E;(g) =a,~··· aK+I' say, at the loci 
epistatically linked to locus i the fitness contribution of 
locus i is given by F;(c.,(g)), which we also denote by f;(g). 

Finally, to calculate the fitness of an entire genotype the 
fitness contributions of all loci are summed and the result 
divided by N to normalise the fitness to the range [O, 1 ]. In 
the above notation: 

(5) 
1 N 

f(g)=-:Lfi(g) 
N i~I 

In summary, an NK landscape is fully specified by N, K, 
the particular assignment of epistatic links and the contents 
of the N fitness tables. 

It is clear from the construction that there is (almost 
surely) no neutral mutation on an NK landscape - for if two 
genotypes differ at some locus the respective fitness 
contributions for that locus will be drawn from different 
fitness table entries which will (almost surely) be different. 
There is, however, a "natural" way to introduce neutrality 
into the model, via the following biologically-inspired 
argument: the NK model assumes that every possible 
combination of alleles at the loci epistatically linked to a 
given locus gives rise to a positive contribution to fitness. 
In nature, however, it seems plausible that many (if not 
most) combinations of alleles will make no contribution to 
fitness. We could reflect this in the NK model by 
specifying that the fitness table entry corresponding to such 
an allelic combination be equal to zero. Thus motivated we 
proceed as follows: a new parameter 0 s; p s; 1 is 
introduced to represent the probability that an arbitrarily 
allelic combination makes no contribution to fitness. 
Explicitly, when assigning values to the fitness tables we 
set each entry to 0 independently with probability p. If an 
entry is not set to zero it is assigned uniformly randomly 
from the range [0,1] as before. We refer to the resulting 
landscape as an NKp landscape. The case p = O 
corresponds to a normal NK landscape, while p = I 
corresponds to a completely flat landscape (all fitness table 
entries are zero). 

Please note that due to space constraints most results in 
the following sub-sections are quoted without proof. 

Neutral structure of NKp landscapes 
Many of the results quoted below depend on the following 
observation (which holds almost surely): 



(6) if g, g' e QN then f(g) = f(g) ~for all i such 

that ((g) * 0 we have E;(g) = E,(g) 

It is evident that the possibility of neutral mutation arises on 
an NKp landscape. A calculation yields for the probability 
that an arbitrary mutation on an arbitrary NKp landscape be 
neutral: 

(7) 2 K 2 ( )
N-1 

P neutral = P 1 - N _ l (I - P ) 

For large sequence length N this is well approximated by: 

2 
_ 2 -K(l-p ) 

(8) p neutral - p e 

Thus for long genotypes the probability that a mutation is 
neutral is roughly independent of the genotype length and 
drops off exponentially with increasing epistasis K. A 
problem with Pneu1ra1 however, is that neutrality is not spread 
uniformly over the landscape - in fact an NKp landscape is 
by no means uniform in its structure, but may be 
decomposed naturally into subsets corresponding to 
genotypes with a particular number of zeroes in their fitness 
tables. Thus for an NKp landscape f: QN ~ R+ and g E QN 
we define: 

(9) s(g) = number of loci i for which f;(g) = 0 

and for n = 0, 1, ... N we define: 

Next we note that for g E Zn(f) the fitness of g is the sum of 
N-n independent random variables uniformly distributed on 
(0, I]. Thus the expected fitness for a g E Zn(f) for 
some NKp landscape is: 

(11) 
N-n 

<f(g)> - --
gEZo(O - 2N · 

A calculation gives for the expected neutral degree of a g 
E Z.(f)with 1 :5;n:5;N: 

(12) <V(g)>,EZn<O =np(l-q)N-n[l-(1-p)q]8-l 

where we have set q =~.Comparing (11) and (12) we 
N-1 

find that for large N the neutral degree of genotypes in an 
NKp landscape drops off roughly exponentially with 
increasing fitness - the "higher up" the landscape we go the 
less neutrality we can expect to encounter. This can also be 
seen from the observation that for all g E QN we must have 
v(g)::;; s(g)::;; N(l - f(g)). 

We also estimate the sizes of the sets Zn(f). A calculation 
yields: 
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(13) 

It is easy to show that the subsets Zn(f) have the following 
useful property: if r k QN is a neutral set (or indeed a 
neutral network) then r k Z0 (f) for some n. We calculated 
the expected size of neutral sets contained in Zn(f) in the 
following sense: define the random variable Sn (for fixed N, 
Kand p) to be the size of the (unique) neutral set containing 
a genotype uniformly randomly selected from Zn(f) for a 
randomly selected NKp landscape f: QN ~ R+. [Note that Sn 
does not represent the size of a neutral set randomly 
selected from some Zn(t) - it will differ due to the variance 
of neutral set size within the Zn(t)'s]. We have: 

(14) <Sn>= 

it±± (-l)i+j+k+m(~)(i·)(~)(: bN,K.j.m2j-k pi 
1=0 J=O k=O m=O J r 

= [(N -1-(j- m))/(N - l)]N-j where 0N K J. m -. .. K K 

if j - m :s; N - 1 - K and zero otherwise. If K is small 
compared to N it was found empirically that: 

This indicates that <Sn> scales roughly as o( e e" ) for 

small K. Fig 1 a and I b below plot the formula ( 14) for N = 
30. In Fig la K = 4 and pis varied; in Fig lb p = 0.9 and K 
is varied. The formula ( 14) may also be used to estimate the 
mean number of neutral sets in Zn(f). 

It would appear to be difficult to derive analytically an 
estimate for the size, number and distribution of the neutral 
networks in NKp landscapes; in lieu the results on neutral 
sets are helpful - the author suspects that the neutral sets 
comprise, on the whole, few connected components. The 
reader is referred to (Barnett 1997) for an empirical 
analysis of neutral networks on "small" NKp landscapes. 
See also (Gruner et al. 1996) for a detailed analysis of 
neutral networks on RNA secondary structure folding 
landscapes. 
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Estimated mean sizes of neutral sets in Z0 (f) as computed from 
(14) for N = 30, K = 4 and several values of p. 

Correlation structure of NKp landscapes 

The most surprising result regarding the correlation 
structure of NKp landscapes is the minimal effect of the 
neutrality parameter p on the auto-correlation function. The 
quantity <p(d)> (the auto-correlation ensemble mean) was 
estimated by sampling for a variety of N, K and p values. 
The results consistently indicated seemingly negligible 
dependence on p. Indeed, so small is the variation with p, 
that it was initially thought by the author that <p(d)> is 
invariant with respect to p. However more stringent 
statistical testing, in particular the Student's t-test (Press et 
al. 1992) which measures the significance of a difference of 
means, indicated a small but significant departure from 
invariance. The significance is smaller for large N and it 
may be the case that <p(d)> is invariant with respect top in 
some sense "in the limit" of large N. The ensemble 
definition of auto-correlation, (as distinct from the 
ensemble mean - see note above), was also tested for p
invariance. The results suggest that it is a true invariant. 
The derivation of an analytical expression for the ensemble 
auto-correlation function in (Fontana et. al. 1993) suggests 
that this is indeed the case. 

There is one particular class of NKp landscapes for 
which it is possible to calculate p(d) explicitly: this is the 
case where, out of all the N fitness tables there is only a 
single entry of non-zero fitness. p(d) for these "degenerate" 
NKp landscapes is given by: 
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Estimated mean sizes of neutral sets in Z0(f) as computed from 
(14) for N = 30, p = 0.9 and several values of K. 

(16) 
d _ (P-1)2 cx(d)-2(P-l)~(d)+y(d) 

Pdeg ( )- (N) 
P(P-1) 

d 

where: 

(1 7) cx(d)=J(~) if d::;L 

10 otherwise 

(18) ~(d) = (~)-a(d) 

(N) Min(d,K+IJ (K + 1)( L ) 
(19) y(d)=(P-1) - L 

d k=Max(l,d-L) k d - k 

and we have set P = 2K+• and L = N-K-1. See Appendix A.2 
of (Barnett 1997) for details. Surprisingly, this turns out to 
be a remarkably good estimate for <p(d)>. Fig 2 plots 

P",,(d) for N=60 and a few K values. 
It is also worth remarking that the variance of p(d) 

(considered, for each d, as a random variable over the 
sample space of NKp landscapes with fixed N, Kand p) is 
fairly small, particularly for small d. This implies in 
particular that p 0,.( d) as defined by ( 16) is a useful estimate 
of the auto-correlation for a specific NKp 
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The function pde8(d) for N=60 

landscape (and indeed for a specific NK landscape). These 
results appear at first sight to be paradoxical; we might 
expect that the high proportion of pairs of genotypes with 
equal fitness would tend to produce higher correlation with 
increasing p. However, in a certain sense, NKp landscapes 
actually become more rugged with increasing p. Genotypes 
of high fitness are comparatively rare; hence a near 
neighbour of a high fitness genotype is likely to be a 
genotype with more zeros in its fitness tables (particularly 
when epistasis is high), and hence of far smaller fitness. On 
average these effects seem to cancel each other out; it was 
found that the covariance of the fitness of pairs of 
genotypes Hamming distance d apart scales approximately 
the same as the fitness variance. More precisely, it was 
found empirically that for some function lj>(d) which 
depends on N and K but not on p, the mean fitness "auto
covariance" of an NKp landscape is given to a high 
approximation by: 

(20) <cov(d)>"" lj>(d)(l-p)(1+3p) 

The fitness variance is just cov(O). 

Constant innovation on NKp landscapes 
Neutral walks were performed on NKp landscapes as 
previously described. One such test is plotted in Fig 3, 
which may be compared with the corresponding plot 

23 

3000 

2500 

2000 

Ill c 
0 = 1500 
0 c 
.5 

1000 

500 

f=0.000 

f=0.007 

f=0.016 

f=0.040 

0 100 200 300 400 500 600 700 800 900 1000 

steps on walk 

Fig3 
Cumulative innovations on an NKp landscape (N=60, K=l4, 
p=0.99) for 1000-step random and neutral walks. f-values indicate 
the fitness of the corresponding neutral network. 

for an RNA folding landscape in (Huynen 1996). The 
approximate linearity and slope of the graphs indicate that 
the constant innovation property does indeed hold on NKp 
fitness landscapes, at least for neutral networks of modest 
fitness. As we climb higher up the landscape, however, the 
innovation rate falls and innovations "peter out" sooner; 
this is consistent with our earlier findings that the degree of 
neutrality and expected size of neutral networks fall as 
fitness increases. 

This concludes our analysis of the structure of NKp 
landscapes. In the next Section we examine their 
evolutionary dynamics. 

Evolutionary Dynamics on NKp Landscapes 

Firstly note that in this paper we only consider fixed-size 
populations evolving under mutation and selection; 
recombination is not considered. The evolutionary 
algorithm employed is conventional "fitness-proportional 
with roulette-wheel selection", as follows: let population 
size be M. To construct the population at the next 
generation from the current population we perform M 
selections (with replacement) from the current population, 
such that the probability of a genotype being selected is 
proportional to its fitness. Every genotype in the new 
population is then mutated with a per-locus probability m, 
where m is the (fixed) mutation rate. Typically we take M 



= 200 and m = 0.001. 
A previous study (Barnett 1997) investigated in some 

detail the dynamics of adaptive evolution on several 
abstract fitness landscapes featuring neutral networks, 
including NKp landscapes. The picture that emerges is 
strikingly similar to that described in (Huynen, Stadler and 
Fontana 1996) for RNA secondary structure folding 
landscapes and we conjecture that such dynamics are 
generic for landscapes with neutral networks which have 
the constant innovation property. A brief summary is as 
follows: most of the time the population (at reasonably low 
mutation rates) is largely confined to a specific neutral 
network, (corresponding to Huynen et al. 's "dominant 
phenotype") on which it drifts at a characteristic rate which 
is related to the population size, mutation rate and degree of 
neutrality of the network (see below). During such 
"metastable" episodes (van Nimwegen, Crutchfield and 
Mitchell 1997) diffusion is qualitatively similar to diffusion 
on a flat (i.e. completely neutral) landscape; the latter 
situation is analysed mathematically in (Derrida and Peliti 
1991), where it is found that stochastic effects of selection 
and mutation typically cause the population to fragment 
into clusters or sub-populations of genotypes, each cluster 
sharing a recent common ancestor. Such clustering is also a 
feature of populations diffusing on neutral networks in non
flat landscapes. Mutation generates new genotypes that 
explore neighbouring networks. If a genotype of higher 
fitness (i.e. on a higher-fitness neutral network) is 
discovered then, if selection pressure is strong enough 
relative to mutation, the population may, with a certain 
probability, transfer en masse to the higher neutral network. 
There is also the possibility that a population may, through 
stochastic effects, "fall off' its current network to a lower
fitness network. The probabilities of attaining or 
maintaining a given network are related to what has been 
termed the "phenotypic error threshold" (Forst, Reidys and 
Weber 1995) by analogy with the classical "genotypic" 
error threshold for single-peak fitness landscapes (Eigen, 
McCaskill and Schuster 1989). 

NKp landscapes afford a unique opportunity to 
investigate the form of adaptive evolution with tuneable 
neutrality. Differences in dynamical behaviour observed for 
fixed N and K values, but different values of p, cannot be 
ascribed to the correlation structure as we know this to be 
virtually invariant under change of p. In this paper we 
concentrate on one particular aspect of the dynamics, that 
of population diffusion. 

To this end we measured the diffusion coefficient of the 
population centroid at successive generations of an 
evolutionary run. The centroid of a population P of 
genotypes on an N-dimensional hypercube is a real-valued 

. 1 ""' N-dimensional vector c E RN defmed by ci = N L.,,gi 
geP 
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where g; = 0 or 1 is the allele of g at locus i. c may be 
thought of as the centre of mass of the population, 
considered as a set of points (weighted by their multiplicity 
in the population) on the hypercube embedded in the vector 
space RN. The diffusion coefficient is defined as the square 
of the Euclidean distance (in RN) travelled by the 
population centroid per generation. It measures the rate at 
which the population drifts through the landscape. In 
practice this quantity tends to fluctuate rapidly from 
generation to generation; in the graphs below we plot a 
rolling average over the previous 100 generations to smooth 
it out. It is possible to estimate the diffusion coefficient by 
assuming that the diffusion rate will be similar to that on a 
flat landscape of dimension equal to the (mean) neutral 
degree of the current neutral network (Huynen, Stadler and 
Fontana 1996). For population size M, mutation rate m and 
neutral degree v the estimated value is given byl: 

(21) 
vm 

D=---
1+2Mm 

In (Barnett 1997) this was found to be a good estimate for 
small values of m and a further refinement was suggested. 

While the diffusion coefficient tells us about how "fast" 
the population is wandering about the landscape it does not 
tell us very much about how "far" it is wandering; e.g. on a 
single peaked landscape the centroid may move quite 
rapidly but remain in the locality of the peak. We will be 
especially interested in the actual distances travelled by the 
centroid when comparing population dynamics on low and 
high neutrality landscapes and thus have need for a measure 
of actual distances travelled by the centroid. To this end we 
also computed a "time-lagged" diffusion coefficient, which 
we define to be the square of the distance between the 
centroid "now" and its position ~ .. generations previously. 
In all experiments ~ .. = 100 was used and the time-lagged 
coefficient smoothed over 100 generations prior to plotting. 

Figs 4 and 5 illustrate typical evolutionary runs over 
3000 generations on NKp landscapes for N=60, K=l2 and 
p=0.99 and 0 respectively. In both cases the population size 
was M = 200 and the mutation rate m=0.001. Apart from 
the population mean fitness we also plot the mean neutral 
degree (for the p=0.99 case), diffusion coefficient and time
lagged diffusion. In the p=0.99 case the graphs bears out 
the picture of evolutionary dynamics outlined above, with 
periods of metastability punctuated by transitions to higher 
fitness neutral networks clearly visible. In (Barnett 1997) it 
is demonstrated that during these periods the population is 

1 The formula given in (Huynen, Stadler and Fontana 1996) is for RNA 

sequences which have four allelic values (it also contains an error - the 5 
should be replaced by a 6) and must be adjusted for the binary case. 

Furthermore, their definition of the centroid works out at twice the 
magnitude of ours so we must divide their diffusion coefficient by 2. 



indeed largely confined to a specific neutral network and 
that the population drifts and clusters as described above. 
As we would expect the degree of neutrality falls as fitness 
increases. The apparently random fluctuations in the 
diffusion rate reflect the stochasticity of drift and clustering 
in the population, although overall there is a correlation 
between diffusion rate and neutral degree as suggested by 
(21). 

During the transitions between neutral networks the 
time-lagged diffusion increases sharply. This may be 
ascribed to a "bottleneck effect" as the steep increase in 
selection pressure occasioned by the discovery of a fitter 
genotype strongly converges the population around the new 
genotype. This phenomenon, also known as "hitchhiking", 
has been studied in other fitness landscapes, particularly the 
so-called "Royal Road" landscapes (van Nimwegen, 
Crutchfield and Mitchell 1997). Mutation then reasserts 
itself and the population resumes neutral diffusion on the 
new network. Since (most) neutral networks have the 
constant innovation property it is unlikely that the drifting 
population will exhaust the supply of previously unseen 
(and thus potentially higher fitness) neighbouring 
genotypes. Evolutionary search may potentially continue 
unabated; the question is how long it is likely to take before 
neutral drift discovers a gateway to a higher network (van 
Nimwegen, Crutchfield and Mitchell 1997). 

Fig 5 tells a different story. The landscape is now rugged 
and multi-peaked with many local optima (Kauffman 
1993). The population climbs rapidly up the landscape until 
it reaches a local optimum at which still higher optima are 
too rare in the locality to be easily discovered by mutation. 
At this point the population is effectively trapped - the 
search for fitter genotypes becomes worse than random 
search, as the population is confined to the locality of a 
local optimum. This is indicated by the lagged diffusion, 
which is significantly lower than for the neutral case. 

Conclusions 

We have seen that the dynamics of adaptive evolution on 
fitness landscapes in the presence of neutral networks with 
the constant innovation property have a distinctly different 
flavour from the case of ruggedness without neutrality. The 
scenario of entrapment by local optima is evaded; 
adaptation is characterised by neutral drift punctuated by 
transitions between networks rather than local hill
climbing. Furthermore, the formation of sub-populations 
allows a population to search diverse areas of a fitness 
landscape in parallel. 

Regarding natural evolution, as argued in the 
Introduction the issue of selective neutrality is becoming 
difficult to ignore. Even though the concerns of population 
geneticists and molecular biologists may often seem far 
removed from our abstract fitness landscapes it is pointed 
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out in (Huynen, Stadler and Fontana 1996), for example, 
that one issue of prime interest to evolutionary biology, that 
of the fixation rate of nucleotide substitutions, is closely 
related to the population diffusion rate. One general 
approach that suggests itself is to "reverse engineer" 
theoretical results; thus a theoretical estimate of the 
diffusion rate might be deployed to determine the degree of 
neutrality in a natural evolving system. 

There are also pungent implications for artificial 
evolution. The GA community has long been fixated on 
correlation structure as the primary factor in the efficacy of 
evolutionary search. It may be of benefit to GA 
practitioners to exploit the open-endedness and parallelism 
implicit in adaptation on neutral networks. One could, for 
example, envisage schemes whereby the mutation rate is 
optimised on-line for maximal rates of drift whilst staying 
below the (local) phenotypic error threshold. Perhaps, also, 
a change of attitude to the issue of coding of an 
optimisation problem may be fruitful. Whereas the instinct 
of many workers is to minimise coding redundancy as an 
extra burden on a search procedure, they may be thus 
dooming their search to the fate of entrapment by local 
optima. Of course it is not to be supposed that there is a 
"free lunch" involved - redundancy alone certainly does not 
imply neutral networks with constant innovation. However, 
it seems that some hard optimisation problems feature 
neutral networks in a natural way (Thompson 1996). A 
fascinating area for research would be to investigate in 
what sense neutral networks might be "intrinsic" to a search 
problem. 

The NKp family of landscapes, aside from the intriguing 
near-invariance of the auto-correlation function, may 
hopefully prove to be a useful test-bed for the study of 
neutral evolution, given the combination of tuneable 
ruggedness and neutrality. Areas that suggest themselves 
for further research include the extension of results on 
neutral networks to include recombination, the issue of 
"nearly neutral" mutation and the effects of "noisy" 
fitness. It would also be of great interest to ascertain to 
what extent the pattern of evolutionary dynamics that 
emerges from RNA folding landscapes and NKp 
landscapes is in any sense "generic". A promising approach 
may be to employ techniques from statistical mechanics, as 
applied with some success by (van Nimwegen, Crutchfield 
and Mitchell 1997) to the Royal Road fitness landscapes, 
which feature neutrality, albeit without the constant 
innovation property. 
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Evolving Reaction-Diffusion Ecosystems with Self-Assembling 
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Abstract 

Recently, new types of coupled isothermal polynu
cleotide amplification reactions for the investigation of 
in vitro evolution have been established that are based 
on the multi-enzyme 3SR. Micro-structured thin-film 
open bioreactors have been constructed in our labo
ratory to run these systems spatially resolved in flow 
experiments. Artificial DNA/RNA chemistries close to 
the in vitro biochemistry of these systems have been 
developed which we have studied in computer simula
tions in configurable hardware (NGEN). These artifi
cial chemistries are described on the level of individual 
polynucleotide molecules each with a defined sequence 
and their complexes. The key feature of spatial pat
tern formation provides a weak stabilization of coop
erative catalytic properties of the evolving molecules. 
Of great interest is the step to include extended self
assembly processes of flexible structures - allowing the 
additional stabilization of cooperation through semi
permeable, flexible, self-organizing membrane bound
aries. We show how programmable matter simulations 
of experimentally relevant molecular in vitro evolu
tion can be extended to include the influence of self
assembling flexible membranes. 

Introduction 
Two complementary schools of thought have concen
trated on fundamentally different properties of life: the 
primacy of self-replication (Eigen 1971) and the primacy 
of autopoieses (Varela 1979; Maturana & Varela 1980; 
McMullin & Varela 1997) in defining living systems. 
Within the self-replication based approaches, bound
ary formation or compartmentation appears necessary 
for the stable co-evolution of cooperative functional 
molecules (Boerlijst & Hogeweg 1991; McCaskill 1994; 
Cronhorst & Blomberg 1997; McCaskill 1997). Recently, 
several authors have shown that this move from inde
pendent replicators to cooperative molecular systems 
can also be fostered without boundaries in reaction
diffusion systems in two dimensions. This stabiliza
tion is relatively weak, however, so that the transition 
to cellular-like structures with distinct boundaries re
mains an important issue. However, the extension of 
reaction-diffusion modeling to include the processes of 

self-assembly and constrained diffusion of complex struc
tures like membranes with internal degrees of freedom is 
far from trivial. In particular, when it comes down to 
parallel algorithms with local, possibly stochastic, up
date rules (as in the programmable matter paradigm) 
capable of dealing with extended flexible objects in a 
reasonable computer time, difficulties occur. Similar dif
ficulties arise in the treatment of intramolecular con
formational changes, so that the present work is rel
evant both to the dynamics of supra-molecular com
plexes and intramolecular folding (Zuker & Steigler 1981; 
McCaskill 1990). 

Even local algorithms for parallel implementation of 
rigid-body motion of extended objects are non-trivial. 
Rasmussen and Smith (1994) have defined the problem 
of constrained collective motion and presented one class 
of solution in their lattice polymer automata. On the 
other hand, detailed molecular dynamics simulations of 
polymer motion capitulate to the problem of intramolec
ular constraints by moving to the femtosecond time scale: 
the separation of time scales between significant poly
mer motion and that of local bond relaxation allows the 
relatively rigid constraints of covalent bonds and hard
sphere contacts to be simulated at the cost of enormous 
computational effort. For the description of structural 
self-organization, this level of detail is inadequate, lim
ited as it currently is to the nanosecond-microsecond 
time scale by computational resources. Rasmussen's so
lution is still relatively complex and requires the intro
duction of a large number of virtual particles to the lat
tice gas automata modeling platform. In this work, we 
make a simpler start on the discrete automata model
ing of flexible structures and illustrate this by a comple
mentary example of self-assembling boundaries for self
replicating molecular ecosystems. We leave the equally 
interesting example of template based self-assembly of 
dynamical structures to later work. The evolvable ex
perimental ecosystems based on isothermal amplification 
of DNA and RNA, both the predator-prey (Wlotzka & 
McCaskill 1997) and the cooperative system (Ehricht, 
Ellinger, & McCaskill 1997; Ehricht et al. 1997), are 
modelled [see McCaskill (1997) for a review] in Section 



Figure 1: The photograph shows the modular card of 
the massively parallel, hardware configurable Computer 
NGEN. The chips inserted on the card are Field Pro
grammable Gate Arrays (FPGAs) . FPGAs are user
configurable, i.e. the logic of the on-chip circuit can 
be programmed by the user in the hardware. 18 of 
these cards are connected to form a toroid of 144 con
figurable FPGAs together with 1296 8bit wide mem
ory SRAM chips. Thus, NGEN combines massively 
parallel computing with application specific optimiza
tion. This allows us to make long term simulations of 
evolution with very large numbers of individuals. The 
second generation computer Polyp (Tangen, Schulte, & 
McCaskill 1997) uses micro-configurable FPGAs (XIL
INX XC6216) and an optical communication between 
the cards, making the step from user-configurable hard
ware to autonomous evolving hardware. 

2. The major limitation of these studies is the restriction 
to limited size, whole molecule diffusion: prohibiting the 
study of intramolecular motion, diffusion and rearrange
ment of complexes and thereby multi-component self
assembly. In Section three, we discuss the problem of 
boundary formation within the above context and show 
how the abstract autopoietic models of Maturana and 
Varela (1980), and Ganti (1975) can be extended to in
clude dynamical flexibility of the self-assembling mem
brane. 

Programmable matter has been realized in our lab 
using massively parallel configurable hardware, NGEN 
(see Figure 1), enabling the study of complex reaction
diffusion systems involving combinatorial families of 
molecules as studied in in vitro evolution experiments. 
Because of the elegance and efficiency of this configurable 
digital logic and its closeness to the programmable mat-

29 

ter ideal, we endeavor to make the above discussion con
crete within the context of our configurable hardware. 
We first exhibit the evolutionary potential of modeling 
in this medium, with application to the modeling of ex
perimental in vitro ecosystems, before outlining the ex
tension to self-assembly in Section four. Special con
sideration has been made to allow very high population 
size and long-term simulations. The simulations include 
base-by-base processing of the reactions including strand 
hybridization in various alignments as stochastic pro
cesses. In our studies we focus on the effects of spatial 
distribution on the reaction and evolutionary dynamics 
of cooperative systems, with regard to the emergence of 
parasites through mutation. We show that stochastic 
spatial distributions stabilize cooperative systems which 
would otherwise go extinct under the pressure of par
asitic mutants. On the basis of this stabilization, the 
systems can evolve to a level of higher complexity. The 
work has practical implications for real experiments with 
artificial molecular ecosystems. 

In Vitro Molecular Ecosystems 

To our knowledge, the first examples of in vitro molec
ular ecosystems are the predator-prey and symbiotic 
(CATCH) systems developed in our lab over the past 
few years based on the isothermal 3SR (Guatelli et al. 
1990) or NASBA (Compton 1991) reaction. These sys
tems provide a significant step forward in constructive 
evolution from the independent template evolution, de
scribable by the quasispecies model (Eigen, McCaskill, 
& Schuster 1989), which form the basis of many biotech
nological applications. The systems utilize several en
zymes (extracted from bacteria) as catalysts to assist 
in the amplification process, but these are essentially 
constant and may be regarded as properties of a some
what friendly chemical environment in assessing the self
replication capability of these systems. The systems are 
programmable in the sense that the choice of primer 
DNA sequences, which are buffered at high concentra
tion and act as substrates for the polymerization re
actions, strongly influence the type of system which 
can emerge. Very recently, symbiotic in vitro ecosys
tems on the basis of self-replicating peptides have also 
been created (Lee et al. 1997), and similar work is in 
progress on enzyme-free self-replication of nucleic acids 
(von Kiedrowski 1993) and organic molecules (Hong et 
al. 1992). 

Simplified reaction schemes for both biochemical 
miniature ecosystems are shown in Figure 2. Kinetic 
analysis has shown that the predator-prey system os
cillates at concentrations that should be detectable in 
experiments when placed in a flow reactor (Ackermann, 
Wlotzka, & McCaskill 1998). Spatial patch formation 
should then be observable with waves of pursuit and 
evasion in thin film reactors (McCaskill 1997). A micro-
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Figure 2: Simplified sketches of the in vitro molecu
lar ecosystems of the predator-prey and the coopera
tive type. Both systems consist of coupled isothermal 
reaction systems for the amplification of polynucleotides 
(3SR). Each 3SR-reaction is performed by the concerted 
action of an RNA-polymerase and a reverse transcrip
tase, not shown in the sketch. The prey cycle (upper left) 
is provided by the primer P and can replicated with
out prey. The predator cycle (upper right), however, 
needs the prey template as a primer for its own repli
cation. The single stranded prey template (ssTl) and 
single stranded predator template (ssT2) are annealed, 
reverse transcriptase can synthesize the double-stranded 
substrate (dsT2) for polymerase which can start the in 
vitro transcription of predator templates. In the coop
erative system two templates (ssTl and ssT2) must also 
hybridize to form a double stranded species capable to 
produce the two templates. This system exhibits a sec
ond order reaction step entailing the cooperation of the 
two different species. 

reactor technology has been developed to study the other 
interesting aspects of spatially interacting populations, 
and is described elsewhere. In what follows we rather 
wish to focus on the cooperative system, as it provides 
important insight into the general structure of catalytic 
evolvable systems, and has provided us with an impor
tant testb~d for the influence of spatial effects on evolu
tion. 

The CATCH kinetics may be radically simplified in 
a flow reactor to the following scheme, which displays 
the essential non-linearity of the bimolecular template
template hybridization step necessary to amplification: 

X1 +X2 ~ Y 

Y + R ~ Y + X1 + X2 

Allowing diffusion in a thin film, this scheme, and in
deed the full mechanism, shows the same phenomenon 
observed in the Scott-Gray kinetic model (McCaskill 
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Figure 3: A part of a strand of L particles bound to
gether to a linear chain, moving and folded on the rect
angular grid. The arrows indicate the possible (random) 
motion of the £-particles in the chain. The movements 
are diagonal on the grid and restricted by the bonds to 
the next neighbour particles in the chain. In addition 
only those nodes are available which are either free or 
occupied by one substrate particle S. 

1997): namely a spatial pattern formation similar in 
appearance to cellular division called self-replicating 
spots (Pearson 1993). The importance of such local
ized patterns in the evolution of cooperation has been 
outlined (McCaskill 1994; Cronhorst & Blomberg 1997; 
McCaskill 1997). This mechanism depends on a differ
ence in diffusion constants between the substrates and 
templates of the reaction. In Section two we focus in
stead on the key process of complex formation which 
provides the basis for the cooperativity in amplification. 

Self-Assembly of Flexible Structures by 
Diffusion and Autopoiesis 

As clear from Section two, spatial isolation of co
operating molecules is a crucial feature of the step 
towards complex evolutionary stable organization of 
molecular systems. Motivated also by the desire to move 
in the direction of supra-molecular complexes in our de
scription of molecular ecosystems, we decided as a first 
step to look at the comparatively simple abstract prob
lem of membrane self-assembly, raised within the con
text of autopoietic systems (Maturana & Varela 1980; 
McMullin & Varela 1997; Luisi 1994) and also widely 
known in the form of Ganti's "Chemoton" (Ganti 1975). 
An effective simulation of the self-assembly processes in
volved in forming a chemical boundary will also prove 
useful in evolutionary simulations of self-organization 
based on self-replication. 

Varela and coworkers (McMullin & Varela 1997; Matu-



rana & Varela 1980) have constructed a simple computer 
simulation of an autopoietic system in which lipid-like 
monomers are produced with the assistance of a catalyst 
from freely diffusing substrates and assemble into a mem
brane which acts as a boundary for catalyst and lipid 
monomer diffusion. Catalysts within such a boundary 
can enrich the cellular space with monomers for mem
brane repair. Both Varela's original simulation (Varela 
1979) and the more recent SWARM-based reimplemen
tation (McMullin & Varela 1997) make the assumption 
that monomers bound into pieces of membrane are im
mediately thereafter immovable. This assumption has 
to do with the difficulties outlined above in implement
ing flexible or rigid body motion of extended objects in 
a local manner. In what follows we outline a simple 
solution to allow the simulation of flexible membranes 
and their self-assembly. This solution neatly circum
vents the rather awkward discussion about mechanisms 
of catalytic inhibition necessary to avoid problems cre
ated by immovability. The solution has however a sig
nificant restriction in that it only applies to linear chain 
self-assembled structures and rigidifies with ternary in
teractions. We return to this problem further below. 

In Varela's model, three chemical species are involved 
on a square cellular lattice: substrate S, catalyst K and 
lipid-like membrane monomers L. K catalysis the syn
thesis of S to L, the latter decaying slowly back to S. 
In Varela's model two proximal S are required for the 
synthesis and the decay is to 2S. Proximal Ls can bind 
up to a valence of two per monomer. Bound Ls are im
mobile. Only S diffuses independently of the presence of 
L, the N SEW random walk of other species requiring a 
free square to move into. 

Because it is not essential for our purposes, we have 
reduced the order of the substrate catalysis by K to 1, 
with L correspondingly decaying to one S. The key fea
ture of our model rests in a consistent local treatment of 
constrained bound membrane component diffusion. We 
have made use of an approach utilized by M. Go in the 
simulation of polymer chains on a square lattice. Back
bone bonds are only allowed in NSEW directions (not 
diagonally as in Varela's simulation), and monomers are 
allowed to move diagonally to an unoccupied (or S occu
pied) square as shown in Figure 3. Although individual 
monomers, like bishops on a chess board, are restricted 
to half the possible cells, this is not a serious restriction 
of the motion of the chain. This rule, at first imple
mented with a serial stochastic choice of cells to update, 
can readily be extended to a truly parallel algorithm us
ing the alternating lattice approach used in other cellular 
simulations of diffusion for instance by Margolus (1984) 
and Toffoli (1984). 

The result of such simulations are shown in Figure 
4. It shows the temporary autopoietic stabilization of 
an initial loop surrounding a catalyst. Because of the 
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Figure 4: Snapshots from a simulation of the model de
scribed in the text. The diamonds are bound or free 
particles L, the crosses are substrate particles S and the 
square is a catalyst K for the reaction S + K -+ L + K. 
£-particles may bond together, but the number of bond 
of each £-particle is restricted to less or equal two. The 
simulation starts with the configuration in the upper 
left corner. One catalyst K is surrounded by a closed 
chain of L particles. Substrate particles S may dif
fuse into the membrane and may be catalized to £
particles. Since £-particles are trapped in the closed 
chain of £-particles, this configuration is denoted as a 
two-dimensional "membrane" or "cell". The membrane 
structure is flexible and can diffuse through space, see 
upper right corner. Every L particle has a certain chance 
to be degraded to a S particle what leads to an instabil
ity of the membrane, see lower left corner. Such a defect 
can be repaired by binding new L particles. The catalyst 
may diffuse through such defects in the membrane to the 
outside, see lower right corner. This mechanism leads to 
the total degradation of the membrane. Instantaneous 
generation of cells is not observed for this configuration. 

flexibility of the linear membrane segments, loop closing 
occurs statistically for much smaller loops than in the 
immobile case. Actually it seems sensible to introduce a 
limitation to the radius of curvature which can be sup
ported by intact membranes, to allow parametric control 
of the generic size of loop structures. Two ways of doing 
this are. 

1. To introduce an energetic cost of local bending and 
the Metropolis Monte Carlo choice of accepting moves 
with change to the net local binding curvature. 

2. To introduce a curvature dependence to the decay of 
bound L to S. 

A disadvantage of our dynamical chain model, applied 
to closed circular chains, is also that purely convex mem-
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Figure 5: Possible bond distortions on a grid. Two 
molecules denoted by solid circles may be bond in vari
ous configurations. To ensure the locality of the update 
algorithm the bond length d should be less than a maxi
mal value. The upper left configuration shows the bond 
of the two particles on neighboring nodes (d = 0). Ex
amples of distortions are shown with increasing bond 
length. 

branes without empty (or S filled) cells in their interior 
still cannot move. 

The difficulty arises when ternary binding interactions 
are introduced. This would be the single most impor
tant extension for supramolecular self-assembly and in
tramolecular folding. The above approach does not al
low rigid body motion, although it does allow transla
tion of structures which are flexible. This would be 
the single most important extension for supramolec
ular self-assembly and intramolecular folding. The 
secondary structure of RNA (Zuker & Steigler 1981; 
McCaskill 1990), in particular the base-base pairing, pro
vides a useful and prototypical example. It is not possi
ble to allow flexible motion without changing the bond
lengths and bond-angles of a structure. The above lat
tice algorithm becomes immobile at the ternary interac
tion points. The hierarchy of possible bond distortions 
from simple proximity (in the van Neumann neighbor
hood on the square lattice) with increasing bond lengths 
are shown in Figure 5. We believe that the first four 
distance classes (d ~ v'5) will be necessary to allow flex
ible motion of ternary structures on the two dimensional 
square lattice. Work in this direction is in progress, but 
involves relatively extended neighbourhoods. Using ex
citation energies of stretched or twisted bond configu
rations from the given (in general component-type de
pendent) ideal, would allow both structural conservation 
and limited flexibility with translation to be achieved 
with a Metropolis type probability weighting. The ro
tation and angle independent rigid body translation of 
extended structures remains a problem, probably like 
the problem of producing circular waves on cellular au
tomata (Kapral, Lawniczak, & Masiar 1991) only solv
able by assigning continuous coordinates to cells or using 
a fine sub-lattice. 
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Figure 6: Example for the interaction and processing 
of bits strings on NGEN which correspond to the coop
eratively coupled molecular amplification system. The 
amplification cycle is started with two single strands (or 
bit strings) of length 24. The strands hybridize with 
their complementary sequences. The enzyme for reverse 
transcription (HIV-RT in the experimental system) com
pletes the strand complementary to the binding partner. 
The result is a fully double stranded molecule of length 
40. Information encoded in the sequence may initiate a 
transcription process. The double strand above contains 
two so-called promoter sequences and the products of 
the transcriptions are the two single strands. The tran
scriptions can take place multiple times resulting in a 
non-linear growth. 

Configurable Hardware Simulation of 
Spatial Molecular Evolution and 

Self-Assembly 

In contrast with the in vitro molecular predator-prey 
ecosystem the CATCH system amplifies two molecular 
species trans-cooperatively (Ehricht, Ellinger, & Mc
Caskill 1997), see Figure 2. A basic model has been 
developed capturing essential the biochemical aspects 
of the CATCH system, see Figure 6. Individual based 
modeling is necessary to include emergent aspects of the 
population genetics. Since very large population sizes 
are demanded to follow the systematic effects of evolu
tion, the simulation of evolving molecular systems is a 
great numerical challenge that can only be performed by 
massively parallel computers. The model has been im
plemented in a large scale flow processor. The biopoly
mer molecules are encoded moving data. Biochemical 
reactions are realized through data processing. The flow 
processor consists of a large number of processing units 
connected to form a grid. The polymer molecules, each 
encoded in a data string, diffuse through this processor. 
Every grid point, i.e. processor, is able to perform an en
zyme reaction, e.g. transcriptase, or a reaction between 



Figure 7: Snapshot from a stochastic, individual based sim
ulation of the evolution in the experimental CATCH system, 
see text. At this stage the population has evolved away from 
the initial proliferation scheme of the CATCH system. The 
former dominating reaction network (white), becomes dis
placed by the more effective black one, which is an evolution
ary descendent of it. The number of different open reaction 
networks at this stage is extremely high. The number of dif
ferent molecules is in the order of 5 x 104 . This variety is 
of central importance for the evolution and makes individual 
based, sequence dependent simulation indispensable. 

two polymers, e.g. annealing. 
Each molecule, single or double stranded, is repre

sented by a 64 x 4 bit string. These molecules (or 
bit strings) are diffusing on a rectangular grid with 
513 x 1152 nodes. Two single strands with complemen
tary substrings may anneal when the enter the same 
node of the grid. Double stranded molecules are pro
cessed by processors for transcription and reverse tran
scription, producing more single stranded molecules. 
Point mutations are allowed during the transcription of 
new single stranded molecules. 

The simulations, see a snapshot in Figure 7, show that 
spatial isolation plays a crucial role for the character of 
evolving open reaction networks. It favors the emergence 
and stability of complex cooperative reaction networks. 
Details will be reported elsewhere. The simulation cur
rently includes self-assembly only by the formation of 
double stranded molecules and their processing. Includ
ing the bond between molecules on different grid nodes, 
describing the motion and action of such complexes in 
terms of local update rules would enable us to include 
the effects of extended self-assembly of supra- molecular 
template complexes. 

Along the line of Section three we first plan to im
plement self- assembly boundaries in addition to com
plex self- replication in the hardware. The linear chain 
approach if Section three should be adequate for this. 
The implementation of two- dimensional diffusion allows 
a ready extention to diagonal exchanges, so that the 
model of Figure 3 should be achievable. NGEN will allow 
self- assembly to be long enough for component evolution 
to occur. We hope to be able to report first such results 
at the conference. 
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Conclusion 
In this work, after outlining the interest in spatially re
solved molecular ecosystems, partly stemming from their 
recent experimental realization, and their evolutionary 
simulation, we have proceeded to outline the extension 
of simulations to include self-assembly processes such 
as boundary formation. Such considerations must ulti
mately also be employed in general template based am
plification via hybridization complexes with internal de
grees of freedom. One aim of this research is to develop 
a high level description of these features of supramolecu
lar dynamics in solution using the programmable matter 
paradigm in configurable hardware. This should enable 
a study of the evolution of replication processes involv
ing multi-component complexes. These range from sim
ple homogeneous aggregates such as globules and mem
branes to highly specific multimeric replicase complexes, 
spliceosomes, ribosomes etc. 

The current approach aims at simulation on the time 
scale of entire self-organization processes and not on the 
nanosecond-microsecond time scale of molecular dynam
ics. The description is consequently vastly simplified and 
involves for example no inertial effects. The platform 
should allow a coarse grained analysis of self-assembly 
effects in the self-organization. 

This work was supported by grants from the Ger
man Ministery of Education, Science and Technology 
(BMBF, grant no. 0310799-805). 
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Abstract 

It is generally believed that during prehistoric evolution phos
pholipid molecules first self-assembled into protocell struc
tures such as micelles, monolayer and bilayer structures, some 
of which eventually evolved into cell membranes. There have 
been various attempts to simulate the self-assembly process by 
computer. However, due to the computationally complex na
ture of the problem, previous simulations were often conducted 
with unrealistic simplifications of the molecules' morphology, 
intermolecular interaction, and the environment in which the 
molecules interact. In this paper, we present a new computa
tional model to simulate the self-assembly of lipid aggregates. 
In this model, each lipid is simulated by a more realistic am
phiphilic particle consisting of a hydrophilic head and a long 
hydrophobic tail. The intermolecular interactions are approxi
mated by a set of simple forces reflecting physical and chemi
cal properties (e.g., hydrophobicity and electrostatic) of lipids 
believed to be crucial for the formation of various aggregates. 
Special efforts have been made to reduce the model's computa
tional complexity. With a set of carefully selected parameters, 
this model is able to successfully simulate the formation of 
micelles in an aqueous environment and reverse micelle struc
tures in an oil solvent from an initially randomly distributed set 
of lipid-like particles. We believe that, compared with previous 
works, this model provides a more accurate computer simula
tion of the self-assembly of lipids in a more realistic prebio
logic setting. This model can be used to study, at the micro
scopic level, the self-assembly of different protocell structures 
in the evolutionary process and the impact of environmental 
conditions on the formation of these structures. It may be fur
ther generalized to simulate the formation of other, more com
plex structures of amphiphilic molecules such as monolayer 
and bilayer aggregates. 

Introduction 
From the quest for the origins of life emerges this question: 
How did the first living cell form? This question leads to 
many speculations, including the origin of DNA, RNA, pro
teins, and also the origin of protocell structures such as mi
celles and membranes. Researchers have approached this 
problem from several different perspectives: finding clues 
about the processes involved in the origin of the cell, iden
tifying underlying principles, constructing laboratory mod
els, and more recently, creating computer simulations. The 
generally accepted assumptions are: first, that basic elements 
found in living systems were available on the primordial 

Earth; second, that as a result of various kinds of energy 
and catalytic effects, the simple molecules in the atmosphere, 
hydrosphere and lithosphere reacted to form a wide variety 
of small organic compounds; third, that condensation and 
polymerization reactions resulted in the formation of com
pounds of higher molecular weight and polymeric products; 
and finally, that selective interaction and association of these 
macromolecules resulted in the generation of a living cell 
(Or6 et al. 1978). Researchers have been trying to verify 
these assumptions. The focus of our work is the development 
of computational models to simulate the formation of simple 
protocell structures from lipid-like amphiphilic particles. In 
this paper we present a new approach for computer modeling 
of the self-assembly process of protocell structures. 

A Theory About the Formation of Protocell 
Structures 

The general hypothesis about the origin of life on Earth is 
that an abundance of the simplest molecules existed in the 
prebiological period; these simple molecules eventually un
derwent chemical reactions to form more and more complex 
molecules, eventually forming all the elemental components 
of the first cell (Deamer and Oro 1980). 

There is strong evidence that amphiphilic molecules such 
as phospholipids were abundant in the prebiotic Earth (Or6 et 
al. 1990) These molecules can self-associate or self-assemble 
into small molecular aggregates such as monolayers, mi
celles, bilayers, vesicles and biological membranes (Fig
ure 1). Unlike solid or rigid particles and macromolecules 
such as DNA, these aggregate structures are flexible and fluid
like. This is due to the fact that the amphiphilic molecules in 
micelles and bilayers are held together not by strong covalent 
and ionic bonds, but by weaker van der Waals, hydropho
bic, hydrogen-bonding and screened electrostatic forces (ls
raelachvili 1991 ). The main forces governing the self
assembly of amphiphilic particles are believed to arise from 
the hydrophobic property of lipid tails at the hydrocarbon
water interface. Two opposing forces control the effective 
head group area exposed to the aqueous phase: The hydropho
bic property of the lipid tails causes molecules to associate, 
while the hydrophilic property of the lipid headgroups tends 
to force the molecules to remain in contact with water (Is-
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Figure 1: Formations of lipids in water and oil environment (Jain 1988). 

raelachvili 1991 ). 

Computer modeling of biological systems 
With the rapid development of computer and computing tech
nology, computer modeling of biological systems has become 
more and more important in the study of prebiological evolu
tion. The Earth is about 4.5 billion years old. The first liv
ing organisms appeared on the earth about 3.7 billion years 
ago. The formation of the first living cells as a result of pos
sibly hundreds of millions of years of biochemical evolution 
is impossible to be completely simulated or reproduced in a 
biology lab. Realistic computer simulation of molecular com
pound interaction and formation can provide a distinctive in
sight of the biochemical synthesis at the microscopic level. 
Moreover, since the computer simulation is built upon our 
understanding of biological systems and hypotheses, it serves 
as a persuasive verification of the biological theories. Also, 
a well-defined computational model could be used as an im
portant tool to investigate the interactions of more complex 
biological structures. 

There have been a number of attempts by researchers to de
velop computational models for the formation of lipid struc
tures. Each approached the problem differently, yielding dif
ferent results. Some simulated the self-assembly of lipid ag
gregates, while others focused on the properties of such ag
gregates. Some of the major works are reviewed below. 

Simulation of formation of micelles and monolayers 
Smit et al. developed a computational model to simulate 
the dynamics of surfactants forming at an oil-water interface 
(Smit et al. 1990). This model works with two kinds of par
ticles: oil (o) and water (w). A water molecule in the water 
region consists of one w particle, and an oil molecule in the 
oil region consists of one o particle. Each surfactant molecule 
is represented as a chain of 2 w particles followed by 5 o par
ticles, each bound to its neighbor in the chain by a strong har
monic force. All surfactants are initially randomly distributed 

in the water region. The interactions between particles are de
termined by Lennard-Jones potential. The simulation yields 
formations of micelles in the water region and monolayers 
along the water-oil interface between the two regions. How
ever, the model does have some serious drawbacks. First, this 
model does not take into account the actual biological struc
ture of the lipid molecules, and the use of w and o particles 
to form surfactants cannot accurately capture the interactions 
of lipid-like molecules with water and oil solvents. Also, 
the micelles the simulation generates are somewhat different 
from the ones seen in actual biological experiments. Due to 
the geometrical packing properties of lipid molecules, lipids 
tend to form micelle structures when they are cone shaped, 
i.e. when they are single-chained lipids (surfactants) with 
large head-group areas and relatively thin tails (lsraelachvili 
1991). However, in Smit's experiments, the surfactants have 
large tails and small head-group areas, and thus should form 
inverted micelles. 

Simulation of membrane-like structures 
Drouffe et al. (1991) developed a model that simulates 
three-dimensional particles which self-assemble to form 
membrane-like objects. In this model, each particle, repre
sented as a ball, is a combination of two lipid molecules with 
the two tails smashed into a intermediate layer across the cen
ter of the ball. A set of interaction forces was used to repre
sent the properties of the particle. Starting from a randomly 
distributed set of 1,962 particles, the simulation ended with 
a membrane-like structure after 14 days of computation on a 
Sun Sparc-1 workstation. 

The main purpose of this model is to analyze the large
scale universal properties of membranes and vesicles, rather 
than a realistic formation of them. From the point of for
mation of protocell structures, several assumptions on which 
this model is based are questionable. First, the basic particle 
structure used in this model is not an actual stable biological 
structure. Such particles could not be present in abundance 



in the Prebiotic Earth. Also this model neglects the effect of 
the shape and structure of individual lipid molecules, which 
is generally considered essential to the self-assembly of lipid 
aggregates. Another major problem is that there is no bio
logical evidence to suggest the existence of the "anisotropic" 
interaction, which is used in this model as the major interac
tion forcing the molecules to align in planar configurations. 

Simulation of a membrane-water system 
Heller et al. (1993) performed a molecular dynamics sim
ulation of bilayer patch of 200 lipids in a water environ
ment. The paper described a simulation of the dynamics 
of a rectangular patch of membrane over a time span of 
263ps (1 x 10-12seconds). The initial state of the system 
consists of a hand-constructed patch of a bilayer membrane 
with 200 molecules of l-palmitoyl-2-oleoyl-sn-glycero-3-
phosphatidylcholine (each containing 134 atoms) and of 5483 
water molecules covering the head groups on each side of the 
bilayer. The simulation was done at the atomic level, with 
the total number of atoms about 27 ,000. The simulation took 
14,640 hours or 20 months to reach thermal equilibrium on 
a 60-node MIMD (multiple instruction, multiple data) paral
lel computer with double ring architecture (equivalent to the 
computing power of a Cray 2 supercomputer). 

This is undoubtedly an extraordinary effort. However, ap
plying this approach (i.e., simulating the molecular dynamics 
at the atomic level) to the formation of protocell structures 
such as membranes is intractable. This is because the simula
tion of the formation of a membrane (or a patch of it) is com
putationally several orders of magnitude more complex than 
simulation of an already-formed membrane reaching equilib
rium. 

Cellular automata based simulation 
Mayer et al. ( 1997) introduced a different type of self
assembly simulation, the lattice molecular automaton (LMA), 
which was able to simulate formation of small polymer clus
ters in a system of lipid-like pentamers in a polar environ
ment. However, in order to simulate systems of larger scale, 
such as micelles and membranes, the level of description of 
automata will have to be redefined to make the computation 
feasible. 

A New Computational Model 
A good computational model for simulating lipid aggregates 
should have the following features: 1) the ability to simulate 
different types of protocell structures, 2) the ability to sim
ulate formation of structures under different environmental 
conditions (different pH levels, presence of salt, etc.), 3) lipid 
molecule structures and their interactions modeled at a level 
of detail that is sufficient to be realistic, and 4) the system 
should be simple and computationally efficient. Deciding to 
what level of detail the model should simulate is crucial for a 
good compromise among these conflicting objectives. 

Based on these considerations, we adopt a different ap
proach from the simulation models mentioned in previous 
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sections. This model is centered on what is believed to be 
the most important property of lipid molecules responsible 
for the formation of lipid aggregates, namely, the different hy
drophobicity of the lipid's head and tail. First, to better reflect 
this amphiphilic property, lipids are modeled as structured 
particles of large heads and Jong, thin tails. Secondly, the 
inter-molecular interactions are approximated as a set of sim
ple forces rather than summing up in energy function, with 
heads and tails of particles playing different roles in defining 
these interactive forces. This provides more details of the in
teractions during the biological process and reflects physical 
and chemical properties of the lipid particles believed to be 
crucial to the formation of various aggregates. These forces 
are then used to determine the linear and rotational move
ments of individual particles according to classical Newto
nian mechanics. This is in contrast to models like that of 
Smit et al. (1990) where molecular interactions were coarsely 
modeled as energy functions and an energy-minimizing ap
proach was used to determine the motion of particles. We 
do not attempt to model at the atomic level, but believe that 
Newtonian mechanics provides a reasonable approximation 
for the forces influencing the motion of the particles in this 
simulation. 

Basic model and the interacting forces 
In an aqueous environment, the hydrophobic effect will drive 
the phospholipid particles close to each other, with their tails 
pointing inward to squeeze the water out, forming structures 
like micelles. In order to simulate the hydrophobic effect, 
we define each particle in our model as an amphiphilic struc
ture having a polar hydrophilic head group and a non-polar 
hydrophobic tail. These lipid-like particles are the basic el
ements of our simulation model. The head of a particle is 
defined as a sphere of radius r. The tail is represented as a 
thin, inflexible rod of length L (Figure 2). 

Figure 2: Lipid particle - The basic element in the simula
tion. 

Based on biological properties of lipids, we define seven 
inter-particle interacting forces (Figure 3). These forces, out
lined below, are defined for individual parts of any pair of 
particles in the system. Note that heads and tails play differ
ent roles in these definitions. 
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Figure 3: The interaction forces adopted in the simulation model. 

1. The hydrophobic effect is the major driving force in 
this model. To realize hydrophobicity in the lipid tails and 
hydrophilicity in the lipid heads, we introduce the following 
group of forces: 

• Ji: head-head attraction. The heads of the particles are hy
drophilic, therefore they tend to move toward the direction 
of an aqueous environment. We interpret this as an attrac
tion force between the heads of each pair of particles. This 
force has relatively long range. 

• f 5 : tail-tail attraction. The tails of particles are hydropho
bic, meaning that in an aqueous environment, the tails will 
move toward each other, forming a structure to create an 
environment that does not contain water. In other words, 
they will try to squeeze water out of the compartment. We 
represent this effect as an attraction force between the tails 
of any pair of lipid particles. 

• h and f 4 : tail-head and head-tail repulsion. The tails and 
heads of the lipid have opposite hydrophobicity. There
fore the head of a particle tends to repel the tail of another 
particle, and vice versa. We represent this property as a re
pulsive force between heads and tails of different particles. 

2. Forces based on electrostatic charge and hydrophilicity. 

• f2: head-head repulsion. This force comes from the fact 
that heads are electrically charged but tails are not. When 
two particle heads are too close to each other, the hy
drophilicity of the heads will try to maintain a distance be
tween the lipid heads to ensure a water environment among 
them. This force has relatively short range. 

3. Forces from incompressibility of molecules. 

• f 6 , h: repulsion force pair. These forces exist between two 
lipid particles due to the incompressibility of the molecules 

when they are close to each other. In our current simula
tion model, these forces are simplified by only considering 
the endpoints of the molecules (Figure 3b). Specifically, 
consider a pair of particles i and j: If the perpendicular 
distance from either the head or the end of the tail of parti
cle i to any part of j is within a certain (very small) range, 
these repulsive forces take effect. f 6 and h are a pair con
sisting of an applied force and a reacting force, having the 
same magnitude but opposite direction. Two pairs of such 
forces are computed for each pair of particles. They have 
very short range. 

Computing the forces: 
The directions and the points of actions of forces Ji through 
hare shown in Figure 3. The magnitudes of these forces are 
functions of their respective distances (e.g., fi depends on the 
distance between the centers of the heads of two particles, h 
depends on the distance between the center of the head of par
ticle i and the endpoint of the tail of particle j). They are con
stant within a distance and drop when the distance is beyond 
the given range. Currently we use two different ramp func
tions to specify the functional relations between the forces' 
magnitudes and the respective distances. The purpose of us
ing such ramp functions is to simplify computation. One of 
the two ramp functions has a relatively smooth reduction of 
the force magnitude as the distance exceeds the given range. 
This function is used for the long-range forces Ji, f3, f4, and 
f 5 (Figure 4). The other ramp function, with a more abrupt 
reduction, is used for the short-range forces f2, f 6 , and h 
(Figure 5). The magnitude of each force fk is determined by 
the distanced and the three function parameters rk. ak. and 
bk, where rk is the radius of the range of force fk with max
imum magnitude, ak is the maximum magnitude of force fk. 
and bk is the residual or minimum magnitude of force fk . 

The forces are calculated via the relation 

fk = ak *ramp 
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Figure 4: Ramp function for the interacting forces Ji, fa, f4, 
and fs. 

Figure 5: Ramp function for the interacting forces f2, fa and 

h-

. Each force produces a torque relative to the center of mass 
of the particle: 

Tk = fk * d 

where d is the distance from the point of action of force f k to 
the geometric center of the particle. 

Function of movement 
We compute two types of movement, linear and rotational, for 
each particle. The linear movement of particle i is determined 
by the following: 

• The movement of the center of mass of molecule i is deter
mined by the compound force on i from all other molecules 
j. 

where k ranges over all forces from j to i, and 

- f k ( t) is the force placed on particle i at time t, 
- rand 1 (t) is a small random force placed on particle i, 

- Vi ( t) is the current velocity of particle i, and 

- c1 > 0 is the friction coefficient. 
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• Assuming each particle has an unit mass, we then have: 

Llvi(t + 8t) 

LlSi(t +<St) = 

where ASi is the linear displacement. 

(1) 

(2) 

For rotational movement, the compound torque of particle 
i can be computed by 

where k ranges over all forces from j to i, and 

- Tk(t) is the torque generated by force fk at time t, 

- rand2 is a small random torque, 

- wi(t) is the current rotational velocity, and 

- c2 > 0 is rotational friction coefficient. 

The rotational inertia I can be computed by assuming each 
particle to be a uniform thin rod of length 2r + l: 

1 
I= -(2r + l)2 

12 

The rotational movement will then be 

Llw(t +<St) = Ti(t) <St 
I 

1 T.·(t) 
--'-'5t2 + w·(t)8t 
2 I ' 

where Ll(}i is the angular displacement. 

(3) 

(4) 

Implementation and Simulation Results 
Based on the computational model described in the previous 
section, we built a system to simulate the interactions be
tween the lipid particles and the formation of micelle struc
tures. We have obtained some very promising results. The 
major effort in the implementation has been the adjustment 
and final selection of the parameters ak, bk and rk. We have 
made various efforts to reduce the computation. They in
clude using the ramp functions to simplify the computation 
of forces, calculating inter-particle interactions only for those 
particle pairs whose distance is within a certain range, and 
restricting the simulation to two spatial dimensions. 

The simulation is divided into two parts. The first part 
is the simulation computation, which generates a data file 
recording the position of each particle at each time step. The 
second part is the interactive animated display which reads 
the data file generated from the computation in the first part 
and graphically displays the movement of lipid particles. 

The results shown here are simulations of a system in an 
aqueous environment. The size of the environment is 900 x 
900 (normalized) units. Each lipid particle has a sphere head 
of radius 5, and a tail of length 30. There are 200 lipid-like 
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(b) Formation after 20000 iterations 

(d) Formation after 60000 iterations 

file :z: /umbc/rcscarcMzhang/simu/data3/data.pc9, frame= 200 

(f) Formation after 260000 iterations 

Figure 6: System of 200 lipid particles, Simulation 1. 
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Figure 7: System of 200 lipid particles, Simulation 2. 



particles randomly distributed in the initial state of the sys
tem. A series of snapshots for different stages of two simu
lations is shown in Figure 6 and Figure 7, each starting from 
a different randomized initial state, and reaching a relatively 
stable state after 260,000 iterations. 

Micelle-like structures can be seen forming eventually dur
ing the process. The difference between the two simulations 
is that the range of repulsive forces h and f 4 in simulation 2 
is 303 less than that in sirnulation 1. It can be observed 
that larger sized micelle structures are formed in simulation 2. 
Simulation 1 was performed on an SGI R4400 platform. The 
total running time for 260,000 iterations was about 76 hours. 
Simulation 2 was performed on an SGI RBOOO platform, with 
a total running time of about 57 .5 hours for the same number 
of iterations. 

Conclusions 

We presented a new computational model for simulations of 
the self-assembly of lipid-like particles into well-formed pro
tocell structures. We believe this model is a demonstration 
of a more accurate computer simulation of the self-assembly 
of lipids in a more realistic prebiologic setting than found in 
previous efforts. By adopting a structural particle model and 
using a set of simple forces as an approximation to model 
the inter-molecular interaction between lipid molecules, this 
computational model provides a more accurate reflection of 
the biological properties and a more detailed simulation for 
the actual biological process. The effectiveness and efficiency 
of this model was demonstrated by successful simulations of 
the formation of simple structures such as micelles from a 
pool of randomly distributed lipid-like particles. 

We are currently extending the computational model to 
simulate the formation of reversed micelle structures in an oil 
environment. We have obtained very promising initial results 
which provide further support for our model. Our next im
mediate objective is to simulate the formation of monolayer 
structures in an oil-water interface environment, and develop 
computer programs for a three-dimensional simulation. 

We expect this simulation model to be able to reveal 
some underlying principles on which different lipid structures 
(monolayers, micelles, reversed micelles, and bilayers) are 
formed. It may also provide a new approach and be useful 
as a tool for other artificial life simulations. We hope that 
this simulation system can be used to investigate the effects 
of changes in the environment (such as pH values and tem
perature in the solvent, the density of the lipids, etc.) on the 
formation of lipid aggregates, as well as the dynamic (ftuid
like) property of those aggregates. This model can be used to 
study, at the microscopic level, the self-assembly of different 
protocell structures in the evolutionary process and the impact 
of environmental conditions on the formations of these struc
tures. It may be further generalized to simulate the formation 
of other, more complex structures of amphiphilic molecules 
such as mono-layer and bilayer aggregates. We are also ex
ploring the possibility of further extending this model to sim-
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ulate the formation of membrane-like bilayer structures. We 
hope that the completion of this research will provide sub
stantial insight into the process of protocell structure forma
tions as well as provide a useful tool for further study of the 
properties and functions of biological membranes. 
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Abstract 

The ongm of multicellular organisms and the mech
anism of development in cell societies are studied by 
choosing a model with intracellular biochemical dynam
ics allowing for oscillations, cell-cell interaction through 
diffusive chemicals on a 2-dimensional grid, and state
dependent cell adhesion. Cells differentiate due to a 
dynamical instability, as described by our "isologous di
versification" theory (Kaneko and Yomo 1994, 1997, Fu
rusawa and Kaneko 1998). A fixed spatial pattern of 
differentiated cells emerges, where spatial information 
is sustained by cell-cell interactions. This pattern is 
robust against perturbations. With an adequate cell 
adhesion force, active cells are released which form the 
seed of a new generation of multicellular organisms, ac
companied by death of the original multicellular unit 
as a halting state. It is shown that the emergence of 
multicellular organisms with differentiation, regulation, 
and life-cycle is not an accidental event, but a natural 
consequence in a system of replicating cells with growth. 

Introduction 
The development of multicellular organisms is one of the 
most elegant and interesting processes in biology. Cells 
which contain the same set of genomes differentiate to 
several types with exact order and exact location. The 
determination of cell type is quite robust, even though 
the development process occurs in a thermodynamic en
vironment with molecular fluctuations. Three mecha
nisms are necessary to sustain a robust developmental 
process in multicelluar organisms. First, an external 
field, which provides information to control differenti
ation and proliferation must be maintained through the 
interaction among cells. Second, each cell must detect 
and interpret such external information. Finally, the in
ternal state of each cell must be changed according to 
this interpreted information, leading to differentiation. 
Recent advances in molecular biology provide us with a 
molecular basis for these mechanisms. The gradient of 
morphogen concentration giving positional information 
can be identified experimentally, the existence of a sig
naling pathway from receptor protein on the membrane 
to the nucleus is verified, and the internal states of cells 

are reduced to regulations of protein synthesis from DNA 
molecules. 

However, when we focus on the emergence of multi
cellular organisms in the evolutionary process, it is hard 
to argue that such elaborate mechanisms appear inde
pendently at the same time. On the other hand, the 
fossil record shows that the transition to multicellular
ity has occurred at least three times in fungi, plants and 
animals (Maynard-Smith and Szathmary, 1995). This 
suggests that the evolution to multicellularity is not a 
chance event but a necessity in evolution. The three 
mechanisms mentioned above must be tightly incorpo
rated, at least at the first stage of multicellularity. Thus, 
to understand the transition to multicellular organisms, 
the interplay between interactions among cells and in
tracellular dynamics must be studied. 

The motivation behind this work is not restricted to 
the origin of multicellularity. Even if it might be pos
sible to describe all detailed molecular processes of the 
present organism, this does not answer why such a de
velopmental process is robust in spite of the considerable 
thermodynamic fluctuations occurring at the molecular 
level, which seems to make machine-like functions such 
as a 'clock' almost impossible. Any rule with a threshold 
given by a signal molecule's concentration is accompa
nied by fluctuations, and therefore cannot proceed cor
rectly. We need to construct a logic for the development 
process that, in general, works even under molecular fluc
tuations. Such a logic is relevant to understanding the 
level of multicelluarity in present organisms, from prim
itive structures such as Dictyostelum discoideum and 
Volvox, to higher organisms. 

To understand the emergence of multicellularity as a 
general consequence of the interplay between inter- and 
intra-dynamics of cell societies, we have earlier proposed 
the "isologous diversification" theory (Kaneko and Yomo 
1994, 1997, Furusawa and Kaneko 1998). This theory is 
rooted in the "dynamic clustering" observed in globally 
coupled chaotic systems (Kaneko 1990, 1992). It pro
vides a general mechanism of spontaneous differentia
tion ofreplicating biological units, where the cells (which 
have oscillatory chemical reactions within) differentiate 



through interaction with other cells, as their number in
creases through divisions. This differentiation is due to 
the separation of orbits in phase space which is not at
tributed to a specific chemical substance, but rather is 
represented through the dynamic relationships of sev
eral chemicals. While the differentiation is triggered by 
the instability of a nonlinear system, the differentiation 
process as a whole is shown to be robust against fluctu
ations. 

In this paper, we extend previous work to incorpo
rate the formation of spatial patterns on a 2-dimensional 
grid. At first glance, our framework may appear similar 
to previous work (Fleischer and Barr 1994, Mjolsness, 
Sharp, and Reinitz 1991, Eggenberger 1997), in which 
cells with internal states are placed on a 2-dimensional 
grid and interact with each other through this environ
ment. In the latter approaches, intra-cellular dynam
ics are mainly governed by a set of 'if-then'-like (con
ditional) rules which are specified in advance as genetic 
control. Although this implementation simplifies the de
scription of the simulation in terms of logical chains, 
there are three problems which we think will be over
come only by our approach. First, such if-then-like rules 
are based on the response to signals with some threshold. 
However, as mentioned above, given the fluctuations in 
the number of signal molecules, such rules cannot work 
as anticipated. Second, from the implementation of the 
rules, one cannot deduce how such a set of rules appears 
at the first stage of multicellularity. Third, the rules have 
to be tuned externally to fashion a stable development 
process. 

As mentioned, we propose that the interplay between 
interactions among cells and intracellular dynamics leads 
to the emergence of such conditional rules. The rule is 
found to be tuned spontaneously depending on cell-cell 
interactions rendering the development process robust 
against molecular fluctuations, and maintaining a de
gree of order in the cell society. In contrast with pre
vious studies, the rules of our cell society are not given 
in advance, but emerge as a consequence of interactions 
among cells. 

We have studied numerically several models consisting 
of cells with internal chemical reaction networks and in
teractions among them through the environment. Three 
basic problems are discussed: fixation of a spatial 
pattern of differentiated cells, robustness in the 
developmental process, and the emergence of a 
replicating cluster of cells. The first problem is an
swered by the formation of a ring pattern of differ
entiated cells, and the second by regeneration of a 
damaged cell cluster. The solution of the last problem 
is also given, which is essential to the origin of multicellu
larity since it treats recursive generation of an ensemble 
of cells at a higher level than cell replication. It will 
be shown that the dynamic order of the cell society is a 
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natural consequence of interacting cells with oscillatory 
dynamics and cell-cell adhesion forces. Hence, the emer
gence of multicellularity should occur as a necessity in 
the course of evolution. 

Model for Differentiation 
Our model for differentiation consists of 

• Internal biochemical reaction dynamics in each cell 

• Cell-cell interactions through media 

• Cell division 

• Cell adhesion 

In essence we assume a network of catalytic reactions 
for internal dynamics that also allows chaotic oscillations 
of chemical concentrations, while the interaction process 
is just a diffusion of chemicals through media. 

We represent the internal state of a cell by k chem
icals' concentrations as dynamical variables. Cells are 
assumed to be surrounded by the medium, where the 
same set of chemicals is given. Hence, the dynamics 
of the internal state is represented by a set of variables 
c~m)(t), the concentration of the m-th chemical species 
at the i-th cell, at time t. The corresponding concen
tration of the species in the medium is represented by a 
set of variables c<ml(x,y,t), where x and y denote the 
position on the 2-dimensional grid. 

Internal reaction dynamics 
As internal chemical reaction dynamics we choose a cat
alytic network among the k chemicals. Each reaction 
from chemical i to j is assumed to be catalyzed by chem
ical£, determined by a matrix (i,j,f). To represent this 
reaction-matrix we adopt the notation Can( i, j, £) which 
takes on unity when the reaction from the chemical i 
to j is catalyzed by £, and 0 otherwise. Each chemical 
has several paths to other chemicals, which act as a sub
strate to create several enzymes for other reactions. In 
addition, we assume that all chemicals have the poten
tial to catalyze a reaction to generate itself from another 
chemical, besides the ordinary reaction paths determined 
randomly. Due to this auto-catalytic reaction, positive 
feedback to amplify external signals is made possible, 
which often leads to oscillatory reaction dynamics1. This 
reaction matrix Can(i,j, £),generated randomly, is fixed 
throughout the simulation. 

Still there can be a variety of choices in the en
zymatic chemical kinetics. In this paper, we assume 
quadratic effects of enzymes. Thus, the reaction from 
chemical m to l aided by chemical j leads to the term 
e1 c~m)(t)(c~j)(t))2 , where e1 is a coefficient for chemical 
reactions, taken to be identical for all paths. 

1 For a more detailed discussion of the role of auto-catalytic 
reactions, see Furusawa and Kaneko (1998). 



Of course, the real biochemical mechanisms within 
cells are very much more complicated. We do not take 
such details into account here, as our purpose is to show 
how the differentiation process appears as a general con
sequence of interacting cells with internal nonlinear dy
namics. What is essential here is a biochemical reaction 
that allows for nonlinear oscillation, which is generally 
expected as long as there is a positive feedback process. 
It should be noted that in real biological systems, oscil
lations are observed in chemical substrates such as Ca, 
cyclic AMP, and so on (Hess and Boiteux 1971, Tyson 
et al. 1996, Goodwin 1963, Goldbeter 1996). 

Besides the change in chemical concentrations, we take 
into account the change in the volume of a cell. The 
volume is now treated as a dynamical variable, which 
increases as a result of transportation of chemicals into 
the cell from the environment. As a first approximation, 
it is reasonable to assume that the cell volume is propor
tional to the sum of chemicals in the cell. We note that 
the concentrations of chemicals are diluted as a result of 
an increase in the volume of the cell. With the above as
sumption, this dilution effect is tantamount to imposing 
the restriction Le cl') = 1, that is, the normalization of 
chemical concentrations at each step of the calculation, 
while the volume change is calculated from the transport 
as described later. 

Cell-cell interaction through diffusion to 
media 
Each cell communicates with its environment through 
the transport of chemicals. Thus, cells interact also with 
each other via the environment. Here we consider only 
indirect cell-cell interactions via diffusive chemical sub
stances, as a minimal form of interaction. We assume 
that the rates of chemicals transported into a cell are 
proportional to differences of chemical concentrations 
between the inside and the outside of the cell. 

The transportation or diffusion coefficient should de
pend on the chemical. Here, we assume that there are 
two types of chemicals, one which can penetrate the 
membrane and one which can not. We use the nota
tion O"m, which takes the value 1 if the chemical elm) is 
penetrable, and 0 otherwise. 

To sum up all these process, the dynamics of chemical 
concentrations in each cell is represented as follows: 

k 

dcl')(t)/dt = ~cl')(t) - (1/k) L~c)ll(t), (1) 
l=l 

with 

m,j 

m',j' 
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where the terms with L; Con(···) represent paths com
ing into and out of i, respectively. The variables pf 
and PY denote the location of the i-th cell on the x - y 

grid. The term ~c~l) gives the increment of chemical £, 
while the second term in Eq. (1) summarizes the con
straint Lt ell) (t) = 1 due to growth of volume (Eigen 
and Schuster 1979). The third term in Eq. (2) describes 
the transport in the medium, where Dm denotes the dif
fusion constant of the membrane, which we assume to 
be identical for all chemicals. 

The diffusion of penetrable chemicals in the medium 
is governed by a partial differential equation for the con
centration of chemical C(l) (x, y, t). For each chemical 
C(f), at a particular location: 

acUl(x,y,t)/8t = -De'V2 CCll(x,y,t) 

+ L6(x-pf,y-pnaeDm(C(t) _clt)(t)). (3) 

We assume the following boundary condition: 

C(O, y, t) = C(xmax, y, t) = 
C(x, 0, t) = C(x, Ymax, t) = const. 

(O < X < Xmax,O < Y < Ymax), (4) 

where De is the diffusion constant of the environment, 
Xmax and Ymax denote the extent of the lattice, and 
6(x,y) is Dirac's delta function. This boundary condi
tion can be interpreted as a chemical bath outside of the 
medium, which supplies those penetrable chemicals that 
are consumed to the medium via a constant flow to the 
cell. In practice, the variable C(l) (x, y, t) is discretized 
on an n x n grid, to reduce the diffusion equation to n2 

differential equations. 

Cell division 
Each cell takes penetrable chemicals from the medium 
as the nutrient, while the reaction in the cell trans
forms them to unpenetrable chemicals which construct 
the body of the cell such as membrane and DNA. As a re
sult of these reactions, the volume of the cell is increased 
by a factor (1 +Lt ~cf(t)) per dt. In this paper, the 
cell is assumed to divide into two almost identical cells 
when the volume of the cell is doubled. 

The chemical composition of two divided cells are al
most identical with their mother's, with slight differ
ences between them due to random fluctuations. In other 
words, each cell has (1 +f )c(I) and (1-f )c(I), respectively, 
with a small "noise" f given by a random number with 
a small amplitude, say from [-10-6 , 10-6]. Although 
the existence of this imbalance is essential to differenti
ation in our model and in nature, the mechanism or the 
degree of imbalance is not important for the differenti
ation itself. The important feature of our model is the 
amplification of microscopic differences between the cells 
through the instability of the internal dynamics. 



Cell adhesion 

In cell biology, each cell adheres to its neighbor cells 
through binding to proteins on its membrane surface. 
The nature of membrane proteins depends on the inter
nal state of the cell, and it is natural to assume that 
whether adhesion occurs or not is determined by a com
bination of the cell types of the two neighbors. As a 
minimal model for adhesion, we assume that cells within 
a given threshold distance have a 'connection', where a 
'spring' is put between them so that they adhere within 
the natural length of the spring if the combination of 
the two cell types satisfies a given condition. For exam
ple, cells with the same cell type will be connected by the 
same spring (with the same strength and natural length) 
if a distance condition is satisfied, while pairs with any 
combination of two different cell types do not adhere. 

In addition to the adhesion force, a random fluctua
tion force is applied to all cells that is expected from 
molecular Brownian motion. We seek a configuration 
that is stable against perturbations including these fluc
tuations. When a cell divides, two daughter cells are 
placed at randomly chosen positions close to the mother 
cell, and each daughter cell makes new connections with 
the neighbor cells. 

Results Without Spatial Information 
We have performed several simulations of our model with 
different chemical networks and different parameters. 
Since typical behaviors are rather common as long as 
nonlinear oscillatory dynamics are included, we present 
our results by taking a specific chemical network with 
k = 20 chemicals. First we show some results of sim
ulation without spatial information, to demonstrate the 
essence of our differentiation process based on dynamical 
instabilities. 
In this section, we assume that the medium is well stirred 
and all cells interact through an identical environment2 . 

Later, simulations with spatial information and diffusive 
chemicals are shown to discuss pattern formation and 
the emergence of multicellularity. As initial condition, 
we take a single cell with randomly chosen chemical con
centrations cl£) satisfying I:e cl e) = 1. In Fig. I, we have 
show the time series of concentration of the chemicals in 
a cell, when only a single cell is in the medium. We call 
this state "type-0" in this paper. This is the only at
tractor of internal cellular dynamics, detected from ran
domly chosen initial conditions. 

With diffusion, external chemicals flow into the cell 
which leads to an increase in the volume of the cell. 
Thus the cell is divided into two, with almost identi
cal chemical concentrations. The chemicals within the 

2 Here the results are described only briefly. More de
tailed ac~ounts are given in prior publications (Furusawa 
and Kaneko 1998), where we adopted a different biochem
ical network. 
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Figure I: Over laid time series of c( m) ( t) in the type-
0 cell, obtained from a network with 20 chemicals and 
seven connections in each chemical. We have plot
ted only the time series of 5 internal chemicals out of 
20 to avoid a crowded figure. Each line with number 
m=O,I,6,15,I8 represents the time series of concentration 
of the corresponding chemical c( m) ( t). The parameters 
are set as e1 = 0.7, Dm = 0.1, De= 0.2, chemicals cUl(t) 
for C ::; 3 are penetrable(i.e., at = I), while the others 
are not. The reaction network Con(i,j,C) is randomly 
chosen, and is fixed throughout the simulation results of 
the present paper. 

two daughter cells oscillate coherently, with the same 
dynamical behavior as their mother cell (i.e., attractor-
0). As the number of cells increases by a factor of two 
(i.e., I - 2 - 4 - 8 · · ·) with further divisions, the coher
ence of oscillations is easily lost. Such loss of synchrony 
is expected from the studies of coupled nonlinear oscil
lations. The microscopic differences introduced at each 
cell division are amplified to a macroscopic level through 
interaction, which destroys the phase coherence. 

Differentiation 
When the number of cells exceeds a threshold value, 
some cells start to display differing types of dynamics. 
In Figs. 2(a) and (b), the time series of chemicals in 
these cells are plotted. We call these states "type-I" 
and "type-2" cells, respectively. Note that these states 
are not an attractor of the internal dynamics of a single 
cell. Rather, these states are stabilized by the coexis
tence of cells with a different type. In Fig. 3, orbits of 
chemical concentrations at the transition from type-0 to 
type-I are plotted in phase space. It shows that each at
tractor occupies a distinct regime in phase space. These 
two types of cells are clearly distinguishable as "digi
tally" separated states, so that they can be identified 
computationally3 . Hence, this phenomenon is regarded 

31n practice, each cell type is distinguished by computing 
the average of concentrations c<ml(t) over a certain period to 
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Figure 2: Time series of cCml(t), overlaid for the 5 chem
icals (as given in Fig. 1) in a cell. (a)-(c) represent the 
course of differentiation to type-1,2, or type-3 cells re
spectively. The differentiation to type-3 always occurs 
starting from type-2 cells. Note the difference in scale of 
the x-axes. 

as differentiation. Here, the type-0 cells can potentially 
differentiate to either "l" or "2", while some of the type-
0 cells remain the same type after division. 

As the cell number further increases, some type-2 cells 
further differentiate to another distinct cell type, which 
is called type-3 here (Fig. 2(c))- At this stage, hierar
chical differentiation occurs. The type-2 cells also can 
potentially differentiate back to type-0 cell. Thus, type-
2 cells have three choices at division: to replicate, and 
to differentiate to a type-0 or type-3 cell. All in all, four 
distinct cell types coexist in this system. In addition, 
there is a limitation on the number of cells to allow for 
the diversity in cell types. When the number of cells 
exceeds this limit, all cells turn into type-1 or type-3 
cells, where the chemical dynamics is described by fixed 
points. 

Note that this differentiation is not induced directly 
by the tiny differences introduced at the division. The 
switch from one cell-type to another does not occur pre
cisely at cell division, but occurs later through the inter
action among the cells. This phenomenon is caused by an 
instability in the full dynamical system consisting out of 
all the cells and the medium. Thus, tiny differences be
tween two daughter cells are amplified to a macroscopic 
level through the interaction. Only when the instability 
exceeds a threshold, does differentiation occur. Then, 
the emergence of another cell type stabilizes the dynam
ics of each cell again. The cell differentiation process 
in our model is due to the amplification of tiny differ
ences by orbital instability (transient chaos), while the 
coexistence of different cell types stabilizes the system. 

Emergence of rules for differentiation and 
global stability 

The switch from type to type by differentiation follows 
specific rules. These rules originate in a constraint on the 
transient dynamics between attractor states correspond
ing to each cell type. In Fig. 4, we show an automaton
like representation of these rules. As mentioned earlier, 
cell-type "O" can undergo three transitions: to reproduce 
itself, and to differentiate to types "l" or "2". A cell of 
type-2 also has three possibilities. Cell-types "l" and 
"3" replicate without any further differentiation. 

When there are multiple choices of differentiation pro
cesses (as in "O" -+ "O", "l", "2", "3"), the probability to 
choose a particular path is neither fixed nor random, but 
is governed by the distribution of coexisting cell types in 
the system. 

Information about the distribution of cell types in 
the cell society is embedded in each internal dynamics. 

obtain the average position of each orbit. With this average, 
temporal fluctuations from oscillatory dynamics are smeared, 
and the average positions form clusters clearly separated in 
phase space, which correspond to the cell types. See Furu
sawa and Kaneko (1998) for details. 
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Figure 3: Orbit of internal chemical dynamics in phase 
space. The orbit of chemical concentrations at a tran
sient process from type-0 to type-1 cells is plotted in the 
projected space (c(6l(t),c(o)(t)). Each cell type is clearly 
distinguishable in phase space. 

Here, each attracting state of internal dynamics is grad
ually modified by a changing distribution of the states 
of other cells. This modulation of internal dynamics is 
much smaller than the differences between different cell 
types, but it is found that this modulation controls the 
rate at which differentiation to those cell types occurs. 
On the other hand, differentiations change the distribu
tion of cell types, whose information is embedded again 
into the intra-cellular dynamics (Furusawa and Kaneko 
1998). 

Simulation Results with Spatial 
Information 

Here, we present results of simulations including the mo
tion of cells and diffusive chemicals on a 2-dimensional 
grid. The reaction matrix and the parameters of internal 
dynamics are the same as those in the previous section, 
while the parameters related to the dynamics on the sur
rounding medium are tuned so that the same set of cell 
types are obtained with almost identical reaction dynam
ics and rules for differentiation. For cell types, the same 
nomenclature is adopted as in the previous section. 

Spatial pattern of differentiated cells 

In this subsection, we assume that all cells adhere to 
each other with the same strength, irrespective of their 
type, when their distance is within a given threshold. 

The first cell, initially placed in the medium, shows 
type-0 dynamics and divides into two almost identical 
daughter cells, in the manner described in the previous 
section. These two daughter cells then make a new con-
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Figure 4: Automaton-like representation of the rules of 
differentiation. The path back to the own node repre
sents the reproduction of type, while the paths to other 
nodes represent the potential of differentiation to the 
corresponding cell type. 

nection and adhere. With further divisions, a cluster of 
type-0 cells is formed (Fig. 5(a)). 

When the size of the cell cluster exceeds a threshold 
value, some cells located at the inside of the cluster start 
to differentiate to type-1 and type-2 cells (Fig. 5 (b)). As 
the cell number further increases, type-2 cells at the in
side differentiate to type-3 cells, to form the inner core 
of the cluster shown in Fig. 5(c). At this stage, a ring 
pattern consisting of three layers is formed. The ring 
of type-2 cells lies between peripheral cells with type-
0 dynamics and an inner core consisting of type-1 and 
3 cells. Positional information giving rise to such a 
spatial pattern naturally appears through competition 
for nutrients, without any sophisticated programs im
plemented in advance. Note that the pattern forma
tion originates from temporal differentiation. It is not a 
diffusion-induced pattern like Turing's mechanism. 

At this stage, the growth of cell clusters is only due to 
divisions of peripheral type-0 cells. The cell division of 
type-1 or 3 cells located at the inner core has stopped, 
due to their slower growth speed and the limited nutri
ents therein. As the size of the cell cluster increases, the 
size of the inner core also increases through differentia
tions from type-0 to type-1 or 3 cells. Finally, the growth 
of the inner core by differentiation overcomes the growth 
by divisions. At this stage, the ring structure is broken 
and all cells differentiate to type-1 or 3 cells. The growth 
of cell clusters almost stops and the internal dynamics 
of all cells fall into fixed points. 
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Figure 5: Development of cell cluster on a 2-dimensional grid. Each mark corresponds to a particular cell-type 
determined by differing internal dynamics. The grid indicates the unit of discretization on the diffusive chemicals 
C(tl(x,y,t). 

Regeneration of damaged structure 
A biological system often has robustness against some 
perturbations, such as for example the processes in reg
ulative egg. Such robustness is difficult to realize only by 
successive execution of pre-programmed 'commands' on 
DNA. The mechanism for robustness must include the 
interplay between intra-cellular dynamics and interac
tions among cells. As an example of such robustness, we 
discuss the regeneration of a damaged cell cluster, which 
is a natural consequence of our dynamic differentiation 
process. 

When a cluster develops into the stage with ring pat
tern as Fig. 5(c), we remove a quarter of the cells from 
this cluster externally (see Fig. 6(a)), and see what hap
pens later with our model dynamics. After this opera
tion, the division of peripheral cells at the damaged part 
is enhanced because they receive more nutrition than 
other cells. Besides this increase, cells also differentiate 
towards the original pattern, and the damaged part is 
gradually recovered (Fig. 6(b)). 

Emergence of multicellularity 
In this section, we change the condition of adhesion be
tween the cells, to see continuous growth in our cell soci
ety. As is mentioned, the ring pattern with three layers 
is formed when all cell types can connect to each other. 
The growth, however, stops at a certain stage, and new 
cell clusters are not formed. Thus, such a cellular system 
cannot be sustained for long. Ha change in the adhesion 
properties allows for the continuous growth and forma
tion of a new generation of cell clusters, such cellular 
systems will come to dominate. 

To study this problem we introduce a dependence of 
the adhesion force on cell types. Since the force of ad
hesion should depend on the membrane proteins on the 
cell surface, it is natural to include dependence of adhe
sion on the relative internal states of two adjacent cells. 

Figure 6: Regeneration of a cell cluster. (a): A fourth 
of the cell cluster is purposefully removed during the 
developmental process. (b): The growth in the damaged 
part is enhanced, and this part is gradually recovered. 
Note that the layer of peripheral cells at the damaged 
part becomes thicker. 



As a simple example, we assume that no connection is 
allowed between a type-2 cell and a type-3 cell, while 
the connections for all other combinations are preserved. 
This restriction on the connection implies that the sec
ond layer of type-2 cells and the inner core in Fig. 5(c) 
lose their capability to adhere to each other. 

We have made several simulations with these adhe
sion rules, and found that cell clusters divide into mul
tiple parts during development. The first stage of the 
developmental process is unchanged from the previous 
example. A cluster of type-0 cells grows through cell di
visions, and type-1 and type-2 cells appear at the inside 
of this cluster by differentiations until the inner core is 
formed as a result of further differentiations. When the 
growth of the inner core that consists mainly of type-3 
cells reaches the edge of the cell cluster, however, a small 
cluster of cells, or a solitary cell, is released from the pe
riphery of the mother cluster, as shown in Fig. 7(c). This 
figure depicts the process which gives rise to the fourth 
generation from the third generation of our multicellular 
organism. As will be shown, the formation of the second 
generation proceeds in the same way. The peripheral 
layer of type-0 and type-2 cells is cut off by the growth 
of the inner core, and the type-2 and type-3 cells at the 
contact surface of these layers do not adhere any more 
by our model assumption. 

The released small clusters move away by the force 
of random fluctuations. They encounter a new environ
ment with rich chemical substances, and start to divide 
actively. The increase in cell number in these clusters 
makes their random motion slower, because the fluctua
tion force is added to each cell independently, and thus 
tend to cancel out when the cell number is larger. In the 
new clusters, development proceeds as in their mother
cluster: The cells at the inside of a type-0 cluster differ
entiate to type-1 and type-2 cells, while the type-3 core 
is formed through further differentiations, until their pe
ripheral cells are released again (Fig. 7(c)). Hence a life
cycle of multicellular replicating units is observed, which 
emerges without explicit implementation. Thus, we ob
serve the emergence of a replicating unit on a higher hier
archical level than individual cell replication. Note that 
this emergence of replicating cell societies is a natural 
consequence of a system with internal cellular dynamics 
with nonlinear oscillation, cell-cell interaction through 
media, and cell-type dependent adhesion. 

Death of multicellular organism 
After the release of peripheral cells, the remnant core 
with type-1 and type-3 cells stops cell divisions af
ter intra-cellular chemical oscillations cease (Fig. 7 (b)). 
This determines the lifetime of the replicating multicel-
1 ular unit, given by its cell configurations and the de
ficiency of nutrition. This fact provides an interesting 
point of view with respect to the death of multicellular 
organism. As is well known, the death of a multicellu-
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lar organism is not identical with the death of cells in 
the organism, but rather coincides with the death of the 
organism as a 'system'. For example, cells in a dead 
body often survive for a while. Thus, the emergence of 
multicellularity must be accompanied with such a 'halt
ing' state of the system. This halting state limits the 
size and the lifetime of an organism, which is required 
to complete a life-cycle and to give rise to a new gener
ation. Indeed it is expected that when the size reaches 
a critical value, such a halting state is brought about by 
the lack of nutrition, at the first stage of multicellularity, 
where no special organ for transportation of nutrition is 
developed yet. In fact, our results show that there is 
a halting state in a cell cluster when it reaches a size 
where even cells at the boundary of the cluster lose their 
activity and stop reproducing. 

At the first stage of multicellularity in evolution, two 
daughter cells fail to separate after division, and a cluster 
of identical cell types is formed first. To survive as a unit, 
differentiation of cells has to occur, and subsequently the 
multicellular cluster needs to release their active cells 
before the system falls into the halting state. Hence, 
germ cell segregation and a closed life-cycle is expected 
to emerge simultaneously with a multicellular organism, 
as our simulation have demonstrated. 

Summary and Discussion 

In the present paper, we have studied a dynamical model 
to show that a prototype of cell differentiation occurs 
as a result of internal dynamics, interaction, and divi
sion. We have made several simulations choosing several 
chemical networks, with a different number of chemical 
species, and were able to observe the same scenario for 
cell differentiation. With the same parameters as used in 
the previous example, approximately 403 of randomly 
chosen chemical networks show oscillatory behavior in 
our system, while others fall into fixed points. Further
more, approximately 20% of these oscillatory dynamics 
are destabilized through cell divisions, where some of the 
cells differentiate following specific rules such as those 
shown in Fig. 4. 

Let us summarize the consequences of our simulations. 
First, cells differentiate, caused by a dynamical instabil
ity due to cell-cell interactions when the cell number ex
ceeds a threshold value. The initial state is destabilized 
for some cells, and changes into another state. Several 
discrete cell states appear, whose coexistence restabilizes 
the overall cellular dynamics. The differentiated states 
are transmitted to the daughter cells or switch to a differ
ent state, obeying a set of hierarchical rules (depicted in 
Fig. 4) which are not pre-programmed but rather emerge 
from the cell-cell interactions. In addition, the rate of 
differentiation is modulated by the distribution of dif
ferent cell types. Information about this distribution is 
embedded into the dynamics of each cell as a slight ( ana-
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Figure 7: Emergence of a life-cycle in multicellular organism. (a) gives a part of snapshot pattern of our model, 
while each of Fig.(b) and (c) is an expansion of the corresponding area in Fig.(a). The cluster in (b) has already 
fallen into a halting state, where the oscillation and the growth of almost all cells have stopped. The cluster in (c) 
is the second-next generation from the cluster in (b). It is just releasing its peripheral cells (the two type-0 cells at 
the upper part of ( c)), which will lead to the next generation. 



log) modulation of the intra-cellular dynamics for each 
type. 

During simulations on a 2-dimensional grid with dif
fusive chemicals, we have found ring patterns of differ
entiated cells such as shown in Fig. 5(c). This positional 
information is not imposed on the system from the out
side, but is sustained by cell-cell interactions through 
competition for nutrients. Each cell can detect informa
tion about this external "field" by modulating its own 
internal dynamics. This modulation controls the rate of 
transitions among cellular states, and the transitions in 
turn change the external field. This feedback maintains 
the spatiotemporal order of the cell society, and also pro
vides the robustness of the multicellular system. As can 
be seen in Fig. 6(b), a damaged structure is recovered 
both by an increase in cell divisions at the damaged part, 
and cell differentiations to recover the original pattern. 
It should be noted that this overall stability is an intrin
sic feature of our dynamic differentiation process. No ex
ternal regulation mechanisms are required, rather, this 
robustness is a feature of the differentiation mechanism 
itself. 

Our results also suggest a novel view of the emergence 
of multicellularity. With an adequate cell-cell adhesion 
force, active peripheral cells are released when the pro
cess of development reaches a particular stage through 
divisions and differentiations. These released cells start 
to develop in the same manner as their mother cluster, 
and release their peripheral cells again. On the other 
hand, a cluster which has lost the peripheral cells stops 
its growth, and all the intra-cellular dynamics fall into 
fixed points. At the level of the cluster, this inactive 
state can be regarded as death of the multicellular sys
tem. Thus, a life-cycle emerges for these multicellular 
organisms, alternating replication and death of cell clus
ters. We would like to stress again that this ordered 
cell society with a closed life-cycle appears not from a 
particular implementation of internal reaction dynam
ics, but from the interplay between inter- and intra- cell 
dynamics. 

Still, one might ask in which way multicellularity car
ries an advantage in natural selection. At this stage, this 
question is unimportant for our scenario of the emer
gence of multicellularity. Our results show that when 
the number of cells increases and the interactions among 
cells become tight, the diversity of cell types naturally 
emerges. The tight coupling between cells can easily 
appear, for example, when the cell separation after divi
sion fails due to an adhesive force. Then, it is found that 
only cell clusters that have a diversity of cell types and 
adequate cell-type dependent adhesion forces can avoid 
death as a cluster, and keep on growing to give rise to 
new generations. Thus, the emergence of multicellularity 
appears to be a natural consequence of an evolutionary 
process with never ending reproduction. 
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It is often believed that the rules which determine 
when, where, and what type of cells appear in a mul
ticellular organism, should be precisely specified before
hand as a successive switching of genes in the DNA, de
pending on external signals. Our scenario is not nec
essarily inconsistent with such a switching mechanism, 
since our biochemical dynamics and the emergent reg
ulation mechanisms can include those associated with 
DNA. However, the essential point of this theory is not 
the formation of rules consistent with such an explana
tion. Note that a rule-based explanation cannot answer 
important questions in the development process such as: 
Why did a particular development process evolve? Why 
is such a process robust with respect to thermodynamic 
fluctuations at a molecular level? Why does a multicel
lular organism have cell differentiation and death? The 
mechanism proposed here giving rise to ordered cell so
cieties is able to answer such questions simultaneously. 
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Abstract 

One scenario of the future of computation populates the 
Internet with vast numbers of software agents providing, 
trading, and using a rich variety of information goods 
and services in an open, free-market economy. An essen
tial task in such an economy is the retailing or brokering 
of information: gathering it from the right producers 
and distributing it to the right consumers. This paper 
investigates one crucial aspect of brokers' dynamical be
havior, their price-setting mechanisms, in the context of 
a simple information filtering economy. 

We consider only the simplest cases in which a broker 
sets its price and product parameters based solely on 
the system's current state, without explicit prediction of 
the future. Analytical and numerical results show that 
the system's dynamical behavior in such "myopic" cases 
is generically an unending cycle of disastrous competi
tive "wars" in price/product space. These in turn are 
directly attributable to the existence of multiple peaks 
in the brokers' profitability landscapes, a feature whose 
generality is likely to extend far beyond our model. 

Introduction 
We envisage the evolution of the Internet into a free
market information economy in which billions of soft
ware agents exchange a rich variety of information 
goods and services with humans and amongst themselves 
(Chavez & Maes 1996; Eriksson, Finne, & Janson 1996; 
Tsvetovatyy et al. 1997; White 1996). This will in
evitably occur as agents assume an ever more pervasive 
and responsible role in electronic commerce. Even more 
fundamentally, the proven ability of a free-market econ
omy to adjudicate and satisfy the conflicting needs of bil
lions of human agents recommends it as a decentralized 
organizational principle for billions of software agents as 
well (Miller & Drexler 1988). However, given that soft
ware agents can make decisions several orders of magni
tude faster than humans, and are vastly less flexible and 
complex, it is quite conceivable that an agent economy 
would behave in ways that are entirely unfamiliar. It is 
thus legitimate to ask whether a free-market information 
economy is inherently capable of facilitating the interac
tions of billions of software agents; and if so, what are 

the minimal requirements on the infrastructure of such 
an economy and on the agents that populate it. 

An unequivocal answer cannot be found in the litera
ture. Previous research suggests that large systems of in
teracting, self-motivated software agents can be suscep
tible to the emergence of wild, unpredictable, disastrous 
collective behavior (Kephart, Hogg, & Huberman 1989; 
1990). On the other hand, a large body of work on mar
ket mechanisms in distributed multi-agent environments 
suggests that efficient resource allocation or other de
sirable global properties may emerge from the collective 
interactions of individual agents (Kurose, Schwartz, & 
Yemini 1985; Huberman 1988; Clearwater 1995). 

Much of the latter work falls under the rubric of 
"market-based control", in which economic transac
tions are used to bring about some predefined, de
sired end (Birmingham et al. 1996; Wellman 1993; 
Stonebraker & others 1994; Clearwater 1995). Agents 
may be designed to cooperate (Huberman, Lokose, & 
Hogg 1996) or to compete (Hogg & Huberman 1991), 
but so long as the aggregate evolves toward a globally 
defined optimum, the system as a whole is deemed suc
cessful. But in an open system like the Web, there is no 
global purpose being served by the collective of agents; 
in a sense, there is no collective. Agents' goals may be 
harmonious, conflicting, or unrelated, as the case may 
be (Rosenschein & Zlotkin 1994). One cannot prescribe 
a universal medium of exchange, a universal ontology of 
goods and services, or a universal set of agent types or 
algorithms. Rather, these must emerge as the system 
evolves. 

All of this motivates a general, wide-ranging study of 
economically motivated autonomous agents. In this pa
per, we focus on one uniquely "economic" property, the 
price of information, and investigate the consequences of 
different price-setting algorithms in a simple model of a 
multi-agent news filtering economy inspired by informa
tion dissemination services that can be found on the In
ternet today. In Section 2, we describe the details of the 
model. Section 3 delineates the system's state space and 
presents a baseline analysis of its dynamical behavior 
under an idealized price-setting algorithm, in the case of 



direct competition between two brokers offering a single 
type of information good. Section 4 presents numerical 
results for a more complex situation in which three bro
kers may choose freely among three types of information 
good. We close by discussing the generality of our results 
and indicating some future directions. 

Model of a News Filtering Economy 
Our model of an information filtering economy consists 
of a source agent that publishes news articles, C con
sumer agents that want to buy articles they are inter
ested in, B broker agents that buy selected articles from 
the source and resell them to consumers, and a market 
infrastructure that provides communication and compu
tation services to all agents. Figure 1 illustrates part of 
the model system. The ellipse at the top represents the 
source agent, brokers are in the middle, and consumers 
are at the bottom. Each agent's internal parameters (de
fined below) appear inside its ellipse. The infrastructure 
is represented by the rectangle on the left. Solid lines 
represent the propagation of a sample article through 
broker 1. Broken lines indicate payment, and are labeled 
with symbols (explained below) for the amount paid. 

$Pc 

Figure 1: Part of an idealized news filtering economy. 
Only a subset of agents is shown. See text for interpre
tation of symbols. 

The source agent publishes one article at each time 
step t, and waits until that article has propagated 
through the system before publishing the next. It classi
fies articles according to its own internal categorization 
scheme, assigning each a category index j. The nature 
of the categories, and the number J of them, do not 
change. We represent this (hidden) classification scheme 
by a random process in which an article is assigned cat
egory j with fixed probability O:j· The set of all O:j is 
the source's category prevalence vector o:. Each article 
is labeled with its category index and offered for sale to 
all brokers at a fixed price Ps. For each article sold to 
each broker, the source pays a fixed transport cost Pr. 

54 

Upon receiving an offer, each broker b decides whether 
or not to buy the article using its own evaluation method 
to select which categories it is "interested" in. The bro
ker's evaluation method is approximated by an interest 
vector fJb, where fJbi represents the probability for b to 
purchase an article labeled with category j. Analysis 
(Kephart et al. 1998) shows that it is in broker b's best 
interest to set the fJbj individually to either 0 or 1. 

When broker b purchases an article, it immediately 
sends it to a set of subscribing consumers, paying tran
portation cost Pr for each. Subscribers may examine the 
article, but must pay the broker Pb if they want the right 
to use ("consume") it. The broker's internal parameters 
fJb and Pb are under its direct control. 

Subscriptions are represented by a subscription matrix 
S, where Sbc = 1 if consumer c subscribes to broker b, 
and Sbc = 0 if not. Subscriptions are maintained only 
with the consent of both parties and may be cancelled 
by either. For example, a broker b might reject c if the 
cost of sending articles exceeds the expected payment 
from c, or c might reject b if the cost of sifting through 
lots of junk outweighs the benefit of receiving the rare 
interesting article. The bilateral nature of the agreement 

is represented by setting Sbc = ai~) ai~), where a~~) = 1 
if broker b wants consumer c as a subscriber and 0 if not; 
analogously, a~~) represents consumer e's wishes. 

Each consumer waits for articles to arrive from the 
brokers it subscribes to. If a consumer receives at least 
one copy of an article, it pays the computation cost Pc 
to evaluate whether it is interested in the article, then 
decides whether (and from whom) to buy it. Like the 
brokers, the consumers' evaluation function is approxi
mated by a stochastic process parametrized by an inter
est vector /c: consumer c will be interested in an article 
labeled with category j with fixed probability /cj. If a 
consumer is interested in an article, it then selects from 
the set of brokers it subscribes to the one broker b* with 
the most attractive offer; we shall assume this to be the 
cheapest one. The consumer then decides whether its 
interest justifies paying Pb· for that article. For sim
plicity, we model this decision process as follows: each 
consumer assigns a universal anticipated value V to each 
article it is interested in. If V > Pb·, it purchases the 
usage rights; otherwise it discards the article unused. 

Each broker's or consumer's decision-making process 
may be expressed as an attempt to optimize its utility 
function, defined as the amount of net "value" or "util
ity" gained by making that particular decision. In the 
system described here, the expected utility per article for 
each broker and consumer may be explicitly formulated 
from the system variables. For consumers, the antici
pated value V provides the fundamental benchmark for 
measuring utility. For brokers, the appropriate measure 
of utility is profit, defined in the usual way as revenue less 
expenses. General expressions for consumer utility and 



broker profit may be found in (Kephart et al. 1998). 

Profit Landscapes; A Simple Price War 
We define the state of the system at time t, Z(t), as the 
collection of broker prices Pb, broker interest vectors f3bi, 
and subscription matrix elements Sbc at time t. Our goal 
is to understand the evolution of Z(t), given 

l. an initial configuration Z(O), 

2. the values of the various extrinsic (possibly time
varying) variables, comprising the category preva
lences ai, the costs Ps, PT, and Pc, the consumer 
value V, and the consumer interest vectors /c, and 

3. a specification of the utility-maximization algorithms 
used by each agent to dynamically change its own pa
rameters, including 

(a) the state information accessible to the agent (and 
its accuracy and timeliness), and 

(b) the times or conditions when the agent updates its 
own state. 

Even in systems of modest size (e.g., J = 10 cate
gories, B = 10 brokers, C = 1000 consumers), the state 
space can be quite large: its dimension is ( J + 1 + C)B, 
or more than 104 for the numbers just quoted. This is 
mainly due to the C x B elements of the subscription ma
trix S. However, it is possible to reduce the dimension
ality by factoring out the degrees of freedom associated 
with S. This is done by assuming that each broker and 
consumer instantly adapts to changes in its environment 
by selecting its optimal set of subscribers or subscrip
tions. Recall, however, that both broker and consumer 
must consent to a subscription. The conflicting opin
ions on what constitutes "optimal" may be resolved via 
a game-theoretic analysis. Thus the subscription matrix 
becomes a function of the remaining system variables 
f3bi and Pb· Note that, by factoring out the subscription 
matrix, we have in effect factored out the consumer pop
ulation, so that the "reduced" system's state is expressed 
entirely in terms of the brokers' states. We will denote 
the reduced state space by Y, and the subspace associ
ated with broker b by Yb· Thus Y =Yi x Y2 x ... x YB, 
where Yb is the space of possible values of the ( J + 1) 
broker variables Yb = {Pb, f3bj}. 

In the reduced system, the broker utility function 
Wb (Y) defines broker b's profit landscape, and the sys
tem dynamics is a co-evolutionary process in which each 
broker b attempts to maximize its profit Wb(Y) by set
ting the values of Yb, given the values of Yi for all the 
other brokers i. 

The remainder of this section is devoted to an analysis 
of the simplest possible multi-broker system, in which 
two brokers compete in a large consumer market in which 
there is only one type of information good. Thus B = 2, 
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J = 1, and C -+ oo. For the moment, assume that 
broker 1 charges less than broker 2 for the good (p1 < 
P2). In this case, we can apply the definition of the 
system given in the last section to get an expected utility 
per article for consumer c of 

Uc f31Sic [(V - Pi)rc - Pc]+ (1) 

f32S2c(l - f3iS1c) [(V - P2hc - Pc] 

The expected profit per article for the brokers is 

Wi = f31 (t, Sic (pnc - PT] - Ps) (2) 

W2 = f32 (t, S2c [p21c(l - f31Sic) - PT] - Ps) 

From equation 2, it is readily seen that, independent of 
any other choices it may make, broker i can maximize its 
expected profit by setting its interest level f3i equal to 1 if 
the quantity in parentheses is positive, and O otherwise. 
In other words, a self-interested broker will never have 
a negative expected profit, because it always has the 
option of pulling out of the market by setting its interest 
level to 0. In all that follows, we shall assume that f3i = 
f3z = 1, and if the resulting expected profit per article 
for broker i is negative we shall override this, setting 
f3i = Wi = 0. This reduces the dimensionality of the 
landscape, nominally 4, to 2. 

Having established the optimal setting of interest lev
els by the brokers, now consider the subscription ma
trix elements Sic = CTi:) CTi~l and S2c = CT~:) CT~~). First, 
note that each term in the expression for broker l's ex
pected utility in Eq. 2 can be maximized independently 
by setting CTi~ = 0(/c - PT/P1), where 0 represents 
the step function: e(x) = 1 for x > 0, and 0 other
wise. In other words, it is only worthwhile to send ar
ticles to consumer c if e's interest level le is sufficiently 
high that e's expected payment for interesting articles 
exceeds the cost of sending articles to c. Broker 2 is 
in a different situation. If c is already subscribed to 
broker 1, it will never purchase articles from broker 2 
because it charges a higher price for the same good. Un
der such circumstances, broker 2 should not attempt to 
send articles to c because it will be paying for article 
transport with no hope of reimbursement. However, if 
c is not subscribed to broker 1, then broker 2 should 
set CT~:) = 0(/c - PT/Pz) in order to maximize each 
term of the sum over consumers in the expression for 
W2. Putting all of this together, we have 

CTi:) = 0(/c - PT/P1) (3) 

CT~~) 0(/c - PT /pz) (1 - Sic) 



Now consider the situation from the consumer's per
spective, using Eq. 1. The consumer c will choose the 
optimal setting of (ai~l, at)) from among the four pos
sible choices: (0, 0), (0, 1), (1, 0) and (1, 1). 

First, suppose that ai~) = 1. If c chooses to set ai~l = 
1, then Sic = 1 and therefore S2c = 0, so that Uc = 
(V - p1 he - Pc. Alternatively, if c chooses to set ai~) = 
0, then Sic = 0, and so Uc = S2c [(V - P2hc - Pc]. 
Which is the better choice? If (V - P1hc - Pc > 0, 
then this quantity always exceeds S2c [(V - P2hc - Pc] 

because Pl < P2· In this case, ai~) should be set to 

1, and the value of a~~) is immaterial because Sic = 1 

substituted into Eq. 3 shows that a~~) = 0. However, if 
(V - P1hc - Pc< 0, then (V - P2hc - Pc< 0 as well, 
and both ai~) and a~~) should be set to zero. 

Now consider the other alternative: ai~) = 0. In this 

case the value of ai~) is immaterial, Sic = 0, and Uc = 
S2c [(V - P2hc - Pc]. The value of a~~) matters only if 

a~~) = 1, in which case the optimal value for a~~) is 1 if 
(V - P2hc - Pc > 0 and 0 otherwise. 

Assembling all of the above analysis, we obtain: 

S1 ('Y;p1) 

S2(r;p1 ,p2) 

e(1 -Pr)e(1-~) (4) 
P1 V-p1 

S1(r;p2) (1 - S1(r;p1)) 

In the expression for S1 , the step function on the left 
represents the veto power of the brokers, and the one 
on the right represents the veto power of the consumers. 
The expression for S2 is similar, except that it is auto
matically zero if the consumer already subscribes to the 
lower-priced broker. 

Having established the subscription matrix elements, 
and the brokers' interest levels, the only remaining deci
sions to be considered are the optimal brokers' prices p1 

and p2 • Since the number of consumers C-+ oo, we may 
replace the sums in Eq. 2 with integrals over a consumer 
population with a distribution of interest levels given by 
f(r), with the result: 

(5) 

where 

Ji(pi) = 11 
d1f(r)(p11-Pr)S1('Y;p1) (6) 

h(P1,P2) = 11 
d1r('Y) (P21- Pr) S2('Y;p1,P2) 

Suppose that r(r) is the uniform distribution, i.e. 
f(r) = 1 for all values of/· Then substitution of Eq. 
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4 into Eq. 6, and some integration by parts and other 
algebra lead to analytic solutions for the integrals Ii and 
/2. In the interval Pr:::; p:::; (V - Pc), 

Ii (pi) = (7) 

P1 Pr 2 
--Pr+-+ 
2 2p1 

[ Pc Pr _ P1 P8 _ Pr 2 ] G(pi _ Pr V ) 
(V-p1) 2(V-p1)2 2p1 Pc+Pr 

and outside this interval Ii (pi) = 0. (Despite the step 
function, / 1 (p1) is not discontinuous at P1 = fc~~T .) 
The solution for fz is: 

in the region satisfied by the constraints 0 :::; P1 < p2 :::; 

1, P1 < (P;'.;_~c), and P2 < V - PJ!;,c. Beyond this 
region, I2(P1,p2) = 0. Again, /(p1,P2) contains no real 
discontinuity, despite the step function. 

The restriction P1 < P2 can be removed by exploiting 
the symmetry arising from the fact that there is no in
herent difference between the two brokers. We obtain 
the profit landscapes for brokers 1 and 2 as a function of 
the prices P1 and P2: 

(9) 

where /(p1 ,pz) is given by: 

Each broker's profit landscape describes the depen
dence of its expected profitability as a function of the 
price vector {all of the brokers' prices, including its own). 
For any given price vector, the myriad self-interested de
cisions of the consumers and brokers about subscriptions 
and interest levels are taken into account. 

The profit landscape W1 is illustrated for the case 
Pc = Pr = 0.3, V = 1 in Fig. 2. Note that there 
are two distinct humps, the one on the right correspond
ing to /1 (pi) 8(p2 - p1) in Eq. 10 and the one on the 
left corresponding to I2(p1,P2) 8(p1 - P2). The "cheap" 
hump on the right corresponds to a situation in which 
broker 1 is cheaper (p1 < p2 ). The "expensive" hump 
on the left corresponds to the case in which broker 1 is 



more expensive than broker 2, but is still able to find r.us
tomers. This comes about when broker 2 charges so little 
that it cannot afford to keep marginal customers (those 
with low interest levels 'Ye) as subscribers. (Recall that 
a broker pays Pr for each article it sends to each of its 
subscribers, but receives payment only for those articles 
a subscriber is interested in.) Broker 1 can make money 
by serving the marginal customers that were rejected by 
the lower-priced broker 2. 

Suppose that brokers use the profit landscape itself to 
periodically update their parameters so as to maximize 
their profitability. Assume further that the updates are 
asynchronous, and that the entire agent population ad
justs its subscription matrix elements in a selfishly op
timal way. Such an update strategy is guaranteed to 
produce the optimal profit in the very short term -
up until the moment when the next broker updates its 
parameters. Thus we call such a strategy "myopically 
optimal", or "myoptimal" for short. 
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If broker 1 is myoptimal, it could derive from its profit 
landscape a function Pi (p2) that gives the value of p1 
that maximizes W1 (p1, p2) for each possible p21. Figure 
3 shows a contour plot of W1 on which pi(p2) is over
laid as a heavy solid line. (As before, Pc = Pr = 0.3, 
V = 1.) For 0.3 < P2 < 0.388709, pi(p2) is given by 
the solution to a cubic equation involving cube roots of 
square roots of p2; in this region it looks fairly linear. 
The "vertical" segment at P2 = 0.388709 is a disconti
nuity as the optimal price jumps from the 12 peak to 
the 11 peak. In the region 0.388709 < p2 < 0.589511, 
Pi = P2 - E, where f is a price quantum - the mini
mal amount by which one price can exceed another. For 
0.589511 < P2 < 0.7, Pi = 0.589511. This is the value of 
p1 that maximizes 11 (pi), i.e. it is the price that would 
be established by a monopolist. Any further increase in 
p1 would cut consumer demand by too much. 

If broker 2 also uses a myoptimal strategy, then by 
symmetry its price-setting function is identical to that of 
broker 1 with Pi and P2 interchanged. The profit land
scape W2 (pi, P2) and optimal price P2 (pi) are likewise 
identical under an interchange of Pi and P2. 

Now the evolution of both Pi and P2 can be obtained 
simply by alternate application of the two price opti
mization functions. I.e., first broker 1 sets its price 
Pi ( t + 1) = Pi (p2 ( t)), then broker 2 sets its price 
P2(t + 2) = p2(pi(t + 1)), and so forth. The time series 
may be traced graphically on a plot of both pi(p2) and 
p2(pi) together, as shown in Fig. 4. Assume any initial 
price vector (p1 , p2), and suppose broker 1 is the first to 
move. Then the graphical construction starts by hold
ing p2 constant while moving horizontally to the curve 
for pi(p2). Then, p1 is held constant while moving ver
tically to the curve P2 (p1 ). Alternate horizontal moves 

1 Analytically, this curve is composed of solutions to cubic 
equations involving Pc, PT, V and the prices. 

Figure 2: Double-peaked rofit landscape WifC for bro
ker 1 when Pc = Pr = 0.3, V = 1. 
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Figure 3: Contour map of profit landscape, with overlaid 
optimal price function pi(p2) for Pr= Pc= 0.3, V = 1. 
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time series, using functions pi{pi) and P2(P1). See text. 



to p~(p2 ) and vertical moves to p2(p1) always lead to a 
price war during which the brokers successively under
cut each other, corresponding to zig-zagging between the 
diagonal segments of the curves. The horizontal or ver
tical offset between the diagonals, equal to the amount 
by which a broker's price drops on every other itera
tion, is 2«i:. Eventually, the price gets driven down to 
0.388709, at which point the other broker (say broker 1) 
opts out of the price war, switching to the high-priced 
peak h in its profit landscape. Raising the price to 
pj(0.388709) = 0.543376 breaks the price war, but un
fortunately, as Fig. 4 shows, it triggers the immediate 
start of another one. The brokers are caught in a never
ending (and, as we shall see, disastrous) limit cycle of 
price wars punctuated by abrupt resets. 

Classic models of price wars, including those intro
duced by Cournot and Bertrand (Tirole 1988), typically 
have the feature that prices are driven down to a sta
ble value (e.g. the marginal cost in Bertrand's model). 
However, limit-cycle price wars have been observed pre
viously in a simple model introduced by Edgeworth, in 
which it assumed that no single firm is able to satisfy 
the entire aggregate consumer demand (Shubik 1980). 
On constructing the profit landscape for Edgeworth's 
model, we find that it has two peaks that are quali
tatively similar to those of Figure 2. In our case, the 
"expensive" hump arises because the low-priced broker 
may reject some consumers; this can be regarded as a 
sort of self-induced capacity constraint. 

Complex Price Wars 

In this section, we shall demonstrate the existence of 
complex analogs of limit-cycle price wars in systems with 
more brokers and categories. In this case, exact analysis 
or computation of the profit landscape wb (Y) for a given 
broker b becomes very difficult. For each point y in the 
(J + l)B-dimensional state space Y, a game-theoretic 
analysis must be performed to compute BC subscription 
matrix elements Sbc· Wb must then be computed from 
y and the matrix elements using a generalization of Eq. 
2 (see (Kephart et al. 1998)). 

Consider for example what would be involved in com
puting the landscape for a system with B = 3 brokers, 
J = 3 categories, and 10,000 consumers. The reduced 
state space Y is 12-dimensional, as compared to the full 
state space Z, which is 30,012-dimensional. Suppose 
that the set of allowed prices is quantized, such that 
it runs from 0 to 1 in increments of 0.002. The optimal 
interest level in each category is known to be either 0 or 
1, so broker 1 can be in any of 23 * 501 = 4008 distinct 
discrete states, as can brokers 2 and 3. For each of the 
resulting several billion discrete states in Y, computa
tion of the landscape W1 would require a game-theoretic 
computation of BC = 30, 000 subscription matrix ele
ments - an absolutely monstrous task. 
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A reasonable alternative to computing the entire land
scape is to start the system in some initial configuration, 
and simulate its evolution as follows. At any given time 
step t, a broker bis randomly selected, and it attempts to 
maximize Wb(t) by setting its own parameters to Yb(t), 
resulting in a new system state in which the parameters 
of all brokers other than b are equal to what they were 
at time t - l. For example, in the three-broker system, 
suppose that broker 1 is selected at time t. It will try 
to choose Y1(t) such that W1(Y1(t),y2(t - l),y3(t -1)) 
is optimized. The myoptimal strategy introduced in the 
previous section can be implemented as an exhaustive 
search over all 4008 possibilities at each time step -
still a lot of computation, but Uust barely) feasible. 

Figure 5 shows the resulting price dynamics for the 
system just described, with 3 myoptimal brokers, 3 
goods, and 10,000 consumers. The interest levels 'Yci are 
generated independently for each category j and con
sumer c from a uniform distribution between 0 and l. 
The computational and transport costs are the same as 
in the example of the previous section: Pc =Pr = 0.3, 
V = l. The set of possible prices is quantized in incre
ments of 0.002, and each broker performs an exhaustive 
search among the 4008 possible states. If a consumer 
perceives two brokers to be equally attractive, the bro
ker with the lower index is preferred. 

Expressing an individual broker's state b using the no
tation Yb = (pb, f3b1f3b2f3b3), we can now follow the dy
namics, starting from an initial configuration in which 
each broker is in the state (0.480,111) (i.e. each has 
price 0.48 and is interested in all three categories). In 
the simulation run depicted in Fig. 5, broker 3 moves 
first, and chooses to set its state to (0.560,100). Bro
ker 2 follows, choosing (0.564,010). Broker 1 is selected 
next. By choosing (0.586,001), broker 1 would make a 
profit W1 = 183.6. However, the random generation 
of consumer interests yields a very slight bias in favor 
of category 1, and it turns out that broker 1 can do 
even better (W1 = 183.8) by choosing (0.560,100), un
dercutting broker 3 and triggering a price war over the 
interest vector (100). Meanwhile, broker 2, in the ab
sence of any other competition for category 2, increases 
its price to the optimal single-category-monopoly value: 
(0.584,010). Note that this is very close to the price that 
optimizes Ii (p) in a system with an infinite number of 
consumers, as computed by maximizing Eq. 7 in the 
previous section: p* = 0.589511 (see also Fig. 3). 

Now the high price for category 2 increases its attrac
tiveness, and broker 3 immediately gives up its fight over 
(100) with broker 1, and now undercuts broker 2 with 
(0.582,010). With brokers 2 and 3 now specializing in 
category 2, broker 1 finds it most profitable to offer both 
categories 1 and 3: (0.564,101). Immediately thereafter, 
all three brokers join in a price war over the 101 con
figuration, during which the price is ultimately driven 
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down to 0.540. Now it becomes most profitable to spe
cialize purely in category 2, with price 0.584 (0.584,010). 
Immediately, a second broker joins into the battle over 
category 2, causing the remaining broker at (0.540,101) 
to raise its price, resulting in (0.564,101), instigating yet 
another price war over the 101 configuration. Although 
the stochasticity of the order in which brokers make de
cisions causes some variation in the exact details, the 
price war cycle continues in this fashion indefinitely. 

In summary, after a short initial transient, the system 
alternates between two price wars: a short-lived one be
tween two brokers vying for the 010 configuration, and a 
longer-lived one in which all three brokers vie for the 101 
configuration. A broker participating in the 010 price 
war receives its expected profit when it undercuts its 
competitor, and zero when it is being undercut. During 
the long 101 price war, a broker will be undercut two 
thirds of the time, and will thus receive just one third 
of what it expects. This is illustrated in Fig. 6, which 
tracks the profit of broker 2 as a function of time. 

Price wars are clearly harmful to brokers. In this par
ticular model, they hurt the consumers as well, as il
lustrated in Fig. 7. During the 010 price war, a single 
broker is left to offer both categories 1 and 3, which is un
satisfactory to consumers who are highly interested only 
in one of the two categories. During the long 101 price 
war, category 2 is completely unavailable to consumers, 
so the total consumer utility is even lower during this 
phase than during the 010 price war. Generally, when 
some or all of the brokers are competing for the same 
interest vector, a gap is created in the coverage of cate
gories, adversely affecting some consumers. 

As the number of brokers and consumers in the system 
grows, the myoptimal strategy becomes completely im
practical because of the tremendous demands it makes 
upon on exact knowledge of the system state, the strate
gies used by other agents, and computational power. 
Consider a second strategy that still assumes full knowl
edge of the system state, but requires less computational 
power. Instead of performing an exhaustive search for 
the optimal state Yb, the random-explorer strategy ran
domly selects a few candidate states, computes the ex
pected profit for each using a generalization of Eq. 2, 
and chooses the candidate that provides the maximal 
expected profit. The candidates are biased towards in
cremental changes in the prices, but occasional large ran
dom jumps in price and interest vector are permitted. 

Figure 8 shows a simulation run for such a system. 
The consumer population and the intial conditions are 
identical to those in Fig. 5. Price wars are still in 
evidence, but now there are metastable periods dur
ing which configurations and prices hold steady. Dur
ing one such metastable period, lasting from roughly 
time 283 until time 413, the brokers have specialized 
into separate monopolistic niches: y1 = (0.585, 100), 



Y2 = (0.585, 010), and y3 = (0.587, 001). The corre
sponding profits per unit time are W1 = 191.35, W2 = 
185.20, W3 = 183.68. At time 414, broker 2 discovers 
that it can improve its profitability from W2 = 185.20 
to 190.88 by switching from (0.585,010) to (0.580,100), 
which undercuts broker 1. A brief battle between bro
kers 1 and 2 over category 1 ensues, with broker 1 finally 
giving up and settling for category 2 at time 424. But 
just when it looks as though order is going to be re
stored, brokers 2 and 3 start to fight over category 1. 
This quickly evolves into a price war in which broker 2's 
interest vector (101), overlaps partially with broker 3's 
interest vector (100). As the brokers undercut each other 
in price, their profits shoot up and down, never going to 
zero because the sets of consumers served by the two bro
kers do not overlap perfectly. Finally, at time 4 73, broker 
2 cedes category 1 to broker 3, and the three brokers are 
once again fully specialized, one to each category. (Note, 
however, that the brokers have switched roles since the 
previous period of full specialization.) Brokers 2 and 3 
now proceed to raise their prices independently with no 
interference from one another, eventually reaching near
optimal prices that persist until the next price war. 
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Figure 8: Price war time series for 3 random-explorer 
brokers and 3 categories. All other parameters are as in 
Fig. 5. 

Figure 9 shows a close-up of a somewhat different price 
war that starts near time 1750. At first, brokers 1 and 
3 vie for category 1, leaving category 3 uncovered. At 
time 1803, the price has dropped to roughly 0.565, at 
which point brokers 1 and 3 both switch to the interest 
vector (101). Prices continue to drop. At time 1829, 
broker 1 cedes category 1 to broker 3, and the price war 
continues with broker 1 at (001) and broker 3 at (101). 
Eventually, at time 1860, broker 2 gets drawn into a 
price war with broker 1 when broker 1 switches to (011) 
and broker 2 remains at (010). At this point, the system 
is in the state ((0.547,0ll),(0.584,010),(0.547,101)). No 
two brokers share the same interest vector, yet appar-
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scriptions; same simulation run as in Fig. 8. 



ently the partial overlap between their interest vectors 
provides sufficient coupling to sustain a price war! At 
time 1878, broker 3 finds that it can drop its compe
tition with broker 1 by dropping category 3, leaving it 
a specialist in category l. While brokers 1 and 2 are 
fighting it out, broker 3's price drifts back to the single
category-monopoly level. Meanwhile, it is interesting to 
note that the price war between brokers 1 and 2 does 
not involve undercutting: broker l's price is consistently 
lower than broker 2's price. A quantitative analysis of 
this coupling would be valuable, and appears to be fea
sible. After some further switches in broker l's interest 
vector, brokers 1 and 2 eventually specialize in categories 
2 and 3 respectively, their prices drift up towards the mo
nopolistic optimal point, and the brokers are once again 
in specialized niches. 

On average, a universally-adopted random-explorer 
strategy is more advantageous to the brokers than a 
universally-adopted myoptimal strategy, as can be seen 
by comparing Figs. 6 and 10. During the metastable 
regimes, each broker has a single-category monopoly. 
The monopoly is inherently unstable because eventually 
a broker specializing in a slightly less profitable category 
will undercut a broker that is better off. Since all brokers 
have this tendency, price wars are still inevitable, but 
less frequent because it takes random explorers longer 
to find a good opportunity for undercutting. On the 
whole, the price wars tend not to be quite as devastating 
as they are in societies consisting entirely of myoptimals, 
because they often involve brokers that are only partially 
in competition with one another, so a broker that is be
ing undercut in price may still retain some customers. 

Likewise, the consumers tend to be better off on the 
whole, as seen by comparing Figs. 7 and 11. For the 
most part, customers are happiest when the brokers are 
specialized, because this allows them to receive any ar
ticles that they desire without being forced to receive 
much junk. There are some conditions under which the 
consumer population as a whole is even better off than 
during the metastable regime, namely, after a price war, 
when the brokers are fully specialized but their prices 
are still rising back towards the equilibrium monopolis
tic levels. This accounts for the blips in overall utility 
and subscription rate just prior to the reestablishment of 
each metastable period, for example at (approximately) 
times 480 and 610. 

Conclusion 

Cyclical price wars are an undesirable but fundamen
tal mode of collective behavior in our model economy 
of information filtering agents that optimize (or nearly 
optimize) their short-term utility. When the agents 
are permitted to simultaneously optimize both their 
price and their product (i.e. the categories they offer 
to consumers), a more complex cycle in price/product 

61 

space is typically observed. The natural tendency of 
agent economies to self-organize into non-competitive 
niches (Hanson & Kephart 1998) is thwarted, and agents 
tend to compete for the same (possibly narrow) market, 
leaving consumer demand in other niches unsatisfied. 
Less optimal but equally myopic policies may actually 
lead to better collective behavior in the sense that both 
the brokers and the consumers have higher average utili
ties overall. However, the underlying myopia still makes 
the system inherently unstable, and periods of relative 
calm and prosperity will necessarily be punctuated spo
radically with price wars. 

Three main ingredients drive these instabilities: the 
multi-peaked nature of the profit landscape, the abil
ity of well-informed agents to discover and jump nimbly 
to better peaks in that landscape, and the inability of 
myopic agents to anticipate the retaliatory response of 
other agents. These characteristics appear to be generic 
enough to raise the concern that many types of software 
agent economies will be plagued with such instabilities. 

Consider the first of these three factors. In our model, 
a broker's ability to unilaterally reject unprofitable cus
tomer relationships helped to create the "expensive" 
hump in Figures 2 and 3. The capacity constraint in 
Edgeworth's model also leads to multiple peaks. Our 
own study of an entirely different model involving a ver
tically differentiated product reveals multi-peaked land
scapes as well. The existence of so many different mech
anisms for creating them leads us to suppose that multi
peaked landscapes may actually be the norm. 

In realistic large-scale distributed agent systems, no 
single agent will have perfect information about the sys
tem, and even an omniscient agent might find it infea
sible to compute the profit landscape perfectly. How
ever, the present study shows that instabilities can per
sist even when decisions are made imperfectly. For the 
economy to be unstable, it is only necessary that agents 
be able to jump to better (not necessarily optimaQ peaks 
in the landscape. Note that agents will be strongly mo
tivated to obtain the best possible information and to 
employ the best possible decision algorithms, and this 
selfish pursuit of individual optimality will threaten the 
overall stability of the agent economy. 

The third factor, myopia, may be curable. One pos
sibility is to endow agents with a predictive algorithm 
based on some form of machine learning. The agent 
could base its decisions on its estimation of what will 
happen over some discounted future horizon. Our pre
liminary (unpublished) efforts in this area indicate that, 
under some conditions, price wars can be eliminated in 
two-broker systems. However, strict application of our 
particular method to larger systems would be computa
tionally infeasible. The collective dynamics of an econ
omy of co-evolving machine learners are certain to be 
fascinating, and an important topic for further research. 



If we believe that agent economies are susceptible to 
price-war instabilities, how can we explain the relative 
infrequency of price wars in human economies? The 
economics literature provides several possible explana
tions (Tirole 1988), including explicit or tacit collusion 
(based upon foresight), and a variety of frictional effects. 
The latter include the cost to sellers of updating prices or 
modifying products, the cost to consumers of shopping 
for good bargains, and spatial or informational differen
tiation of products (i.e. different consumers might value 
the same good differently, depending on their physical 
location or knowledge). 

We believe that these and other mitigating factors 
that may hold price-war instabilities in check in hu
man economies are likely to be weaker in agent-based 
economies. Humans are almost certainly more accu
rate than software agents in predicting the likely effect 
of their actions upon others. In agent-based informa
tion economies, frictional effects like consumer inertia 
are likely to be much less when agents rather than peo
ple are doing the shopping, and updates to prices and 
products of information goods and services can be made 
and advertised much more quickly. Localization effects 
should be much smaller for information goods and ser
vices than they are for carrots and carwashes. 

Perhaps some unanticipated effect will naturally hin
der price wars in information economies. But even if no 
such factor presents itself, we hope that our continued 
efforts to understand price wars and related instabilities 
will lead to methods for controlling them. 
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Abstract 

Behavioural experiments with crickets show that female 
crickets respond to male calling songs with syllable rates 
within a certain band-width only. We have made a 
robot model in which we implement a simple neural 
controller that is less complex than the controllers tradi
tionally hypothesised for cricket phonotaxis and syllable 
rate preference. The simple controller, which had been 
successfully used with a slowed and simplified signal, is 
here demonstrated to function, using songs with identi
cal parameters to those found in real male cricket song, 
using an analog electronic model of the peripheral au
ditory morphology of the female cricket as the sensor. 
We put the robot under the same experimental condi
tions as the female crickets, and it responds with phono
taxis to calling songs of real male Gryllus bimaculatus. 
Further, the robot only responds to songs with sylla
ble rates within a band-width similar to the band-width 
found for crickets. By making polar plots of the heading 
direction of the robot, we obtain behavioural data that 
can he used in statistical analyses. These analyses show 
that there are statistical significant differences between 
the behavioural responses to calling songs with syllable 
rates within the band-width and calling songs with sylla
ble rates outside the band-width. This gives the verifica
tion that the simple neural control mechanism (together 
with morphological auditory matched filtering) can ac
munt for the syllable rate preference found in female 
crickets. With our robot system, we can now systemati
cally explore the mechanisms controlling recognition and 
choice behaviour in the female cricket by experimental 
replication. 

Introduction 
Taxis, or approach to a sensory source, is frequently 
modelled in animat simulations, as a basic behaviour 
of animals in seeking food, mates or nests. The task is 
commonly abstracted as a source signal whose value de
creases with distance (smoothly or as a step function) 
and an animat that can sense the value and use it to 

0 The first author provided the extended neural model, 
made the experiments and analysis described in the paper, 
and wrote Sections 3, 4, 5, 6 and parts of 2 and 7. The second 
author provided the original hypotheses and wrote Sections 
1, parts of 2, and 7. The third author designed the auditory 
circuit. 

control movement to the source. Braitenberg's (1994) 
"vehicle 2" is the prototype. 

It is often argued that such simulations model the 
"essence" of the behaviour - as such they should illu
minate the understanding of any specific example of the 
behaviour. However, what these abstractions generally 
ignore are the real physics of signal propagation and de
tection. The abstract model is a reasonable represen
tation of light, and thus translating simulation results 
to robot photo-taxis is quite often successful. But the 
model is less adequate for other modalities, many of 
which are more salient to real animals. For example, in 
chemotaxis, the properties of the odour plume are criti
cal determinants of the problem (Bell, Kipp and Collins 
1995). Braitenberg-typc control is not appropriate in 
a task where the signal is highly dispersed (eliminating 
local gradients) and carried in specific directions by cur
rents in the environment (for example around obstacles). 

We have argued previously that the common abstrac
tion is positively misleading when applied to the specific 
example of phonotaxis behaviour in crickets. Here the 
sensors do not respond exclusively to the relevant signal 
- bursts of sound of a characteristic frequency and rep
etition rate. However, rather than first filtering for the 
signal properties and subsequently comparing strength 
to control turns, the directionality of the sensors and 
the motor control mechanism are dependent on signal 
characteristics. For example, a tube connecting the ears 
transfers a phase-delayed signal from one to the other, 
thus modifying the negliable amplitude difference be
tween the sensors of this small animal in a noisy en
vironment. Thus we can only understand this system 
through consideration of the physical properties of thP 
task and agent, which we believe arc best investigated 
through building a physical model. 

The same considerations suggest that the physical and 
temporal scales of the model are likely to be influential in 
the success of certain controllers for the behaviour. Our 
original implementation of a robot model (a LEGO robot 



prototype) of the cricket suffered from a number of lim
itations in this regard, particularly in that the process
ing of sound was relatively slow compared to the speed 
of movement (Webb 1995). While this model neverthe
less sufficed to demonstrate the viability of basic mech
anisms, it was difficult to make strong comparisons with 
data from the animal. 

These limitations, and details of the construction of a 
new robot addressing them have been described in de
tail in (Lund, Webb and Hallam 1997). We showed there 
that the re-implementation enabled us to experimentally 
verify assumptions that had been made, but not tested, 
about how the cricket responds selectively to carrier fre
quency of the signal. Here, we report on how the new 
robot led to a revised model of neural control of phono
taxis, to explain the band-pass selectivity for repetition 
rate, using signals that were temporally identical to those 
used in cricket experiments. 

Neural Model 

The original neural model was based on two properties 
of identified interneurons (ANl) known to be involved 
in phonotaxis in the cricket (Schildberger and Horner 
1988). First, the long time constant of these neurons 
means that they act as low-pass filters for the tempo
ral pattern of the signal: given repeated inputs they can 
only code distinct syllables (bursts of sound) below acer
tain repetition rate (for calling song structure, see Figure 
1). Second, the latency to onset of firing for each syllable 
is dependent on the amplitude of the sound. Thus which 
side fires first can be used to generate a turn towards the 
sound. However this mechanism has two features: it will 
not work when syllables repeat too fast for the low-pass 
filtering to track the onsets; and if the syllables repeat 
slowly, signals to turn will come less often. Thus there 
should be a band of repetition rates for which this mech
anism works best. 

We were able to demonstrate an effective "preference" 
for certain syllable rates using this mechanism in the old 
robot. However, this depended partly 011 the fact that 
the robot .could move a significant distance between slow 
syllables, which because of the auditory processing speed 
lasted a second or more in the LEGO robot. Real cricket 
song has repetition rates in the order of 30Hz, and "slow 
syllables" to which they no longer respond may last only 
50ms. With the new robot able to process song at com
parable rates to the cricket, slowing tlw song to lOHz or 
less was not sufficient to interfere with taxis because it 
was still making 10 corrections a second which was quite 
adequate to get it to the sound source. Consequently 
we had to produce a more complex neural control model 
than the one suggested in (Webb 1995) and used to show 
the robot's phonotaxis to male Gryllus bimaculatus call-
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ing song in (Lund, Webb and Hallam 1997). Especially, 
it has been extended to include an extra neuron on each 
side that performs integration over syllables. This sim
ple neural system can account for much of the biological 
data that show a band-pass in crickets' phonotaxis to 
calling songs with different syllable rates. 

The structure of the extended neural model is as fol
lows: input from the auditory sensors is feel into a neuron 
on each side (Nl), activation can flow from Nl to another 
neuron (N2), that in turn feeds activation directly to the 
motor on that side. The activation within a neuron is 
modeled with a leaky integrator specific for that neuron, 
so that the activation, A, at time t is calculated as 

A(t) =a* A(t - 1) + I(t) , 0 <a< 1 

where I is the input to that neuron and a is the decay 
rate. If A reaches an upper threshold, Thigh, it will fire 
activation on in the network. After having fired, neu
ral activation (A) has to decay below a lower threshold, 
T1 0 w, before the neuron can fire once again. As in natural 
systems, different groups of neurons can have different 
decay rates (a) and thresholds (Thigh and Tiow)· 

s;n;b1e 

Syllable period 

Chirp 

Figure 1: The song structure of the cricket calling song. 
The calling song consists of chirps, each with a number of 
syllables (bursts of sound with the species specific carrier 
frequency). In this case, with equal syllable length and 
gap length, the syllable duty-cycle (within a chirp) is 
503. 

Figure 2: The neural model implemented in the robot. 
The figure shows the neural activation of neuron Nl at 
the bottom and of neuron N2 at the top over the same 
time scale. Three chirps each with three syllables is 
imagined as input to neuron Nl. 

Figure 2 shows the activation of Nl and N2 over time 
when three chirps with three syllables each is given as 
input to Nl. For each syllables, the activation of N 1 



exceeds Tlhigh, so Nl fires for each syllable, since the 
activation drops below Tl1 0 w in between the syllables. 
When Nl fires, it sends activation directly to N2. In the 
example in Figure 2, this activation from Nl by itself is 
not enough for N2 activation to reach T2high, so N2 will 
not fire given only one input from Nl. However, if the 
firing rate from Nl is high enough, N2 activation will 
reach T2high after a while and will be able to fire. In 
Figure 2, it takes 3 firings at the right rate from Nl for 
N2 to reach T21i;9 1i and fire. N2 is able to fire for each 
chirp since it reaches T2high at the third syllable. 

MOTOR RESPONSE 

Left Right 

Left Right 

INPUT 

Figure 3: The structure of the neural control mechanism. 
Activation from the ears is fed into Nl. If Nl activation 
on either left or right reaches Tlhigh, it is compared with 
the activation on the contralateral side. If it is higher, 
the neuron will fire activation on to N2 on the same side. 
N2 neurons work in a similar way. 

The neural model suggested here is somewhat sim
ilar to the one suggested by Schildberger (1984) who 
found low-pass and high-pass neurons in neurophysio
logical experiments with Gryllus bimaculatus. Based on 
this, Schildberger suggested a neural model with low
pass and high-pass neurons that process in parallel and 
then is ANDed together in order to produce the band
pass filtering observed in behavioural experiments (see 
Figure 4). However, the model suggested here is simpler, 
since it directly produces the motor behaviour, and not 
only recognition of the right syllable rate. The reason for 
this is the processing contained in the auditory pathway. 
As we have argued in (Webb 1995), the peripheral audi
tory system of the cricket might provide directional cues 
through its structure, and we showed in (Lund, Webb 
and Hallam 1997) that this was indeed so when present
ing such a system with male Gryllus bimaculatus calling 
song. 

Robot Implementation 
The female cricket has four auditory openings: an ear 
(tympanum) located on each upper foreleg, and an audi
tory spiracle (or hole) on each side of the frontal section 
of her body. The four are linked internally by means 
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Figure 4: Top: Diagram of Schildberger's hypothesised 
mechanism for recognition of syllable rates. Bottom: Di
agram of our hypothesised mechanism for both recogni
tion and motor response for syllable rates in the right 
band-width. 

of tracheal tubes. Sound reaches the tympani directly 
through the air and, after propagation through the in
ternal tubes, from the other auditory openings. The 
sound transduced from each tympanum by the cricket's 
auditory receptors is thus a combination of delayed and 
filtered signals from the other tympanum and the spira
cles arriving at the back of the tympanum with the direct 
sound arriving at its outer face. 

The delays and filtering performed by the auditory 
morphology improve the cricket's ability to discriminate 
the arrival direction of the conspecific song since the 
phased combination of sounds from the different sources 
induces a strong directional sensitivity into the responsf! 
of each tympanum. Essentially, sounds arriving from 
the same side as the tympanum are delayed by the in
ternal structures to arrive in anti-phase with respect to 
the direct path at the ipsilateral ear and in phase at 
the contralateral ear. Since the sounds arriving by the 
two paths are subtracted (being on opposite sides of the 
tympanum), the stimulus intensity at the ipsilateral ear 
is enhanced while at the contralateral ear it is dimin
ished. 

In the cricket, the delays and filter characteristics of 
the internal auditory structures are species-specific. To 
model the auditory morphology of the cricket, we havr 
built an electronic emulation of some of these charac
teristics (see Figure 5 and 6). Sound is collected by 
two or four microphones whose spacing is carefully con
trolled. After amplification and initial filtering three 
delayed copies of the sound are generated with pro
grammable relative delays, which are then scaled and 
added together to construct a tympanal response. The 
intensity of the resultant signal is transduced using an 
analogue-to-digital conversion system for use by the con
trol program. This hardware allows us to approximate 
the auditory morphology of various crickets by adjust
ing the programmable delays and the summing gains. It 
is not a perfect emulation of the insect, however: two 



programmed delays allow us to sum signals from each 
tympanum and both spiracles, but not from all auditory 
openings; and the summation system allows us to pro
gram relative gains, but not frequency dependent gains. 

Figure 5: The Khepera robot with the auditory sensors. 
© Lund, Hallam & Webb, 1997. 

Phonotaxis Experiments 
In (Lund, Webb and Hallam 1997), we used the robot 
with the auditory system described above to verify that 
the simple neural control mechanism could account for 
frequency selectivity, since the robot did phonotaxis to 
male cricket Gryllus bimaculatus calling song, and pre
ferred calling songs with the right carrier frequency. 
Here, we will first replicate some of these experiments 
with the extended model, and then go on to the syllable 
rate experiments. 

In the present experiments, for Nl neurons, the decay 
rate, al, is set to 7 /8, upper threshold, Tlhigh, to 900, 
and lower threshold, Tl1 0 w, to 600. For N2 neurons, the 
decay rate, o:2, is set to 63/64, upper threshold, T2high, 
to 1725. These are empirical settings. 

The robot has its auditory sensory system's parame
ters set as in (Lund , Webb and Hallam 1997) (i .e. the 
two microphones are placed 18mm apart since 18mm 
corresponds to 1/4 wavelength of the carrier frequency, 
4. 7kHz, of male Gryllus bimaculatus calling song, the 
delays are set to 53µs (the time sound propagates the 
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Figure 6: Simplified diagram of the ears circuit. When 
sound arrives at each microphone (the analogue of the 
cricket's tympanum), the received signal is pre-amplified. 
The signal is then sent with a 'through delay' to the 
mixer at the same side, and with a 'cross delay' to the 
mixer at the opposite side. The mixed signal is sent 
through an RMS and an A/D converter to one of the 
Khepera's input channels. The same happens on the 
opposite side. © Lund, Hallam & Webb, 1997. 

length of 1/4 wavelength of 4.7kHz), and the mixers sub
tract the delayed signal from the contralateral side from 
the signal from the lateral side). When we play male 
Gryllus bimaculatus calling song to the robot, the em
pirical settings of neural activation decay and thresholds 
described above result in the neural effect drawn on Fig
ure 2. 

We have replicated the data from (Lund, Webb and 
Hallam 1997) with the extended neural model. The re
sults are shown in Figure 7. It shows that the robot with 
the extended neural models performs phonotaxis to male 
cricket Gryllus bimaculatus calling song1 emitted from a 
loud speaker in the arena. The figure shows 10 different 
runs with the robot's starting point alternating between 
45 degrees left or right to the sound source. Both start
ing points are 150cm away from the sound source. In 
all cases, the robot moves forward a bit, then it reacts 
to the calling song by turning towards the loud speaker 
and moves directly towards it . 

1 The calling song was recorded at Life Science Depart
ment, University of Nottingham. The adult male cricket 
was sitting in a sand-floored arena and was recorded using 
a Maplin uni-directional dynamic microphone (YU-34) on a 
Marantz Stereo cassette recorder (CP230) from a distance of 
about 20cm. A 30s part of these recordings is played through 
a host Pentium computer with SB AWE32 sound card and 
was repeated twice for each experiment. The sound was fed 
through an amplifier to a loud speaker that was placed on 
a 240*240cm arena in our robot lab. It should be noted 
that we did nothing to control echos from the surrounding 
environment 
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Figure 7: The robot's behaviour when male cricket Gryl
lus bimaculatus calling song is emitted from the loud 
speaker at the bottom of the arena. 

Henr.e, the robot with this neural model is attracted to 
male Gryllus bimaculatus calling song. As was the case 
with the robot with the previous neural model, this robot 
also discriminates between calling songs with the right 
carrier frequency ( 4. ?kHz) and those with other carrier 
frequencies (e.g. 6.7kHz). (The data is not shown here 
because of space limitation and emphasis on syllable rate 
preference. For frequency selectivity, see (Lund, Webb 
and Hallam 1997).) 

Syllable Rate Experiments 

Syllable rate experiments with crickets have shown that 
the female cricket responds only to calling songs with syl
lable rates within a certain band-pass. Weber and Thor
son (1989) report that Gryllus campestris females do 
"tracking almost perfectly near 30 syllables per second 
but [are] revealing reduced performance or [are] stopping 
entirely at rates below 20Hz or above 40Hz" (Weber and 
Thorson 1989) p. 321. These data were found using trills, 
but Weber and Thorson also report that in performance 
tests for chirps with different syllable numbers, "we have 
uniformly found that the females' response increases as 
the number of syllable increases, as long as syllables are 
delivered at the .natural (30-Hz) rate" (Weber and Thor
son 1989) p. 318. Doherty (1985a) also found that Gryl
lus bimaculatus failed to discriminate between calling 
songs having a 45ms syllable period and an alternative 
syllable period until the alternative syllable period was 
30ms or shorter, or 55ms or longer. 

Though Popov and Shuvalov's (1977) arena exper
iments suggests that Gryllus campestris are more at
tracted by the four-syllable calling song than those with 
three or five or more syllables, other experiments (Do
herty 1985b; Weber and Thorson 1989) show that chirps 
can be dispensed with entirely and females can "track 
continuous trills of syllables delivered at rates near 30Hz. 
Our recent tests indicate that this ability increases with 
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the age of the animal" (Weber and Thorson 1989) p. 
318. Regarding the change over age, Stout and McGhee 
(1988) also conclude that adult female A. domestica were 
more attracted to calling songs with a much wider range 
of syllable periods than were attractive to younger fe
males, and thus "for A. domestica females, a central fil
ter for SP [syllable period] would at least need a variable 
band-pass width that could be influenced by other stim
uli, age, and other variables" (Stout and McGhee 1988) 
p. 287. 

In the following experiments, we will show how the 
simple neural model suggested above together with the 
auditory mechanism implemented in the auditory sensor 
circuit can account for this data on cricket band-pass 
filtering of syllable rates. Further, the band-width is 
dependent only on the characteristics of the Nl and N2 
neurons (namely the decay rate and the firing threshold) 
that might change over age in natural nervous systems. 

We made computer generated trills of a carrier fre
quency of 4. 7kHz (the carrier frequency of the Gryllus 
bimaculatus calling song) with different syllable rates. 
The trills had syllable periods of lOms, 20ms, 30ms, 
40ms, 50ms, 60ms, 70ms, and 80ms. The duty cycle 
was kept constant at 503 (i.e. the syllables were 503 of 
the syllable period), and since we were using trills, also 
the chirp duration and chirp rate were kept constant. 

As in the previous experiment, we replicated each ex
periment ten times by placing the robot at the two start
ing positions five times each (alternating between them). 
Figure 8 shows the result of these experiments. When 
the robot was presented with the lOms syllable period 
trill, it did not react at all, but just moved with the de
fault forward movement. With the 20ms syllable period 
trill, the robot would react very few times and would 
not perform successful phonotaxis. However, with both 
30ms, 40ms, and 50ms syllable period trills, the robot 
performed phonotaxis by reacting to the trill and mov
ing to the source. With 60ms syllable period trills, the 
robot reacted to the trill very few times, and managed 
to reach the sound source only once out of the ten runs. 
With neither ?Oms nor 80ms syllable period trills did the 
robot react to the sound at all. Hence, the simple neu
ral model provides an effective syllable rate band-pass 
filter that allowed the robot to perform phonotaxis only 
with a narrow band-pass. In this case, the neural band
pass filtering was such that the robot could not perform 
succesful phonotaxis below a syllable period of 30ms or 
above 50ms. 

Statistical Analyses 

In order to analyse the trajectories of the robot and 
whether there are statistical significant differences be-
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Figure 8: The robot's behaviour when trills are emitted from the loud speaker at the bottom of the arena. The duty 
cycle is 50% in all experiments, while the syllable rate changes. The experiments are with syllable intervals of lOms, 
20ms, 30ms, 40ms, 50ms, 60ms, 70ms, and 80ms (ordered left,right from top to bottom). ©Lund, Hallam & Webb, 
1998. 
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Figure 9: The robot's heading in experiments with songs with different syllable rates. The experiments are with 
syllable intervals of lOms, 20ms, 30ms, 40ms, 50ms, 60ms, 70ms, and 80ms (ordered left, right from top to bottom). 
Here, we show data from only one of the ten runs for each syllable rate. © Lund, Hallam & Webb, 1998. 



tween the performance under the different experimen
tal set-ups, we plot the robot's heading in polar co
ordinates with the origin at the loud speaker position. 
Approximately each 0.3sec, we record the robots posi
tion and find the vector connecting the previous posi
tion of the robot with the present position. After one 
run, the vector mean is calculated and the vectors with 
their (summed) length is used for the plots in Figure 9. 
The mean heading angle (towards the speaker) and di
rectionality of the path is plotted as a dot ( *). A direct 
path from starting position to the loud speaker would 
therefore he plotted as (0,1) -- the angle would he 0 
and the directionality of the path would be l. 

We can then perform statistical tests on the vector 
means in the different groups of experiments in order to 
achieve statistical evidence of the phonotaxis behaviour 
(discrimination between sounds with diffrrent syllable 
rates). Hne, we use the statistical U-test and obtain the 
table shown in Table 1. 

syllable 
period 10 20 30 40 50 60 70 80 

10 s s s s 
20 s s s 
30 s s s s s 
40 s s s s s 
50 s s s s s 
60 s s s s s s 
70 s s s s 
80 s s s s 

Table 1. Analysis of difference between mean heading 
direction in polar coordinates between experiments with 
computer generated trills with syllable periods of lOms, 
20ms, 30ms, 40ms, 50ms, 60ms, 70ms, and 80ms. 'S' 
indicates that there is a statistical significant difference 
(significance level 0.01) between heading direction under 
the corresponding two conditions. Each experimental 
set-up was repeated 10 times to achieve the mean head
ing direction. ~otahly, tlwre is no statistical significant 
difference within 30-50ms, and statistical significant dif
ference between 30-50ms and experimmts with s.vllable 
periods lying outside this interval. 

For the experiments with songs with varying syllable 
rates, the statistical analysis shows that there is a sta
tistical significant difference in the robot's performance 
between experiments with syllable periods in the interval 
30-50ms and all other syllable periods. This is a verifica
tion of the biological data - hut here we show it with a 
much simpler ('Ontrol system than has been hypothesised 
by most biologists (e.g. Schildbergcr). 
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Discussion 

We have hypothesised a model for explaining the band
pass filtering found in crickets.The model is an exten
sion of the simpler one with which we previously showed 
frequency selectivity. The experiments presented here 
show that the extended model result in a behaviour sim
ilar to the behaviour resulted from the previous model, 
but most importantly, the syllable rate experiments show 
that the model results in band-pass filtering similar to 
the one found in biological experiments. The statisti
cal analysis of the heading directions shows that there 
is a statistical difference in heading direction between 
the conditions where 30-50ms syllable rate songs are pre
sented and the conditions with syllable rates outside this 
interval. 

Although we have described this as a neural model, it 
is more properly a 'neuron-like' algorithm. Nl and N2 
are not intended to correspond explicitly to specific neu
rons in the cricket but represent processes we believe are 
carried out by small numbers (3-10) of neurons in the 
cricket prothoracic ganglion and brain. In (Webb and 
Scutt 1997) we have described how these processes might 
be mapped onto specific neurons, and we am current.I:., 
working on implementing the spiking neuron controller 
described there on the new robot base. 

Nevertheless, the way in which our model controls 
the band-pass response to syllable rates is a plausible 
'high-level' model of the cricket controller and provides 
a number of useful insights for interpreting behavioural 
and physiological cricket research. In particular, it is the 
simple interactions of decay rates and thresholds in our 
model that determine the effectiveness of different sig
nals. 

The neural band-pass filtering is dependent on the 
neural characteristica, namely the decay rate and fir
ing thresholds of '.'l'l and N2, and the correspondence 
between the two. If Tl1ow is lowered, then the syllable 
period has to be increased for the Nl activation to drop 
bc~low Tltow in between syllables, so the robot would re
spond only to trills with a larger syllable period. If Tl1 0 ,,, 

is set higher, then N 1 would be able to fire on trills with 
a lower syllable period. However, this also depends 011 

the decay rate. On the other hand, N2 allows only trills 
with syllable period up to a certain level to pass. If the 
syllable period is too long, N2 activation will drops too 
much in between activation from :'-11 and it will never be 
able to reach T2high· 

With the decay rates and thresholds set in these ex
periments, Nl works as a low-pass filter, while N2 works 
as a high-pass filter of syllable rates. 



This also provides a simple method by which the 
variation in syllable rate preference can be explained. 
Small parameter changes in decay rates and thresholds 
can set the preference of the cricket at different values, 
thus genetic predisposition to species specific rates can 
evolve. Adaptation in these parameters during the crick
et's life-time can explain the age-related change in band
width of preference reported in (Stout and McGhee 1988; 
Weber and Thorson 1989). 

A more complex issue is raised by the biological data 
regarding the syllable duty-cycle: "one can alter the duty 
cycle [ ... ] of the syllables from very small values to ca. 
903; the song remains attractive as long as the sylla
ble repetition rate is near 30Hz." (Weber and Thorson 
1989) pp. 319. At first glance our model suffices to ex
plain this effect because it is only the onset of syllables 
that controls behaviour and the length of syllable is ir
relevant. In fact the issue is more complex. For a short 
duty-cycle, our model will produce taxis behaviour pro
vided the amplitude of the signal is sufficient to sum to 
threshold (Tlhigh) before the short syllable ends (this 
depends on details of the summation rate and the value 
of T lhigh). Consequently it is interesting to note that 
short syllables do need to be louder to be equally at
tractive to female crickets. For long duty-cycles our cur
rent model is more problematic, because the decay rate 
and Tl1ow set a minimum length of gap between syl
lables. If we increase Tl1 0 w to decrease the length of 
gap required (e.g. for a 903 duty cycle the gap would 
be around 5ms) we also change the low-pass filtering 
properties such that songs with syllable periods of lOms 
should be easily trackable. We believe this points to an 
important experiment for cricket neuroethology: no-one 
has (to our knowledge) explored the response of auditory 
interneurons to long duty-cycle songs. Gnless these 1wu
rons have a more complex characteristic than low-pass 
filtering, the ability to track 903 duty cycle songs is an 
anomaly. 

Our new robot should enable us to explore a variety 
of other interesting questions in cricket behaviour. One 
is the evolutionarily interesting issue of choice by female 
crickets between differing males. Our preliminary tests 
in this area suggest that sensory bias may play a signif
icant role. Another issue is the interaction of taxis with 
the auditory escape response. 

Our exploration of the phonotaxis system has re
emphasised the close relationship of physical and tempo
ral scales with the control systems underlying behaviour. 
A generic simulation approach may tell us little about 
real problems in approach behaviour. By investigating 
a specific biological system and modelling it at a level 
of detail driven by biological questions, we gain more 
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sophisticated insights into the real problems of sensori
motor control. 
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Abstract 

In this paper, we describe a method for reconstructing 
and predicting a possible gene network based on partial 
information of gene expression data. We have applied 
the method to identify a gene network involved in the 
formation of the Drosophila melanogaster eye. In par
ticular, the experiment developed a gene network which 
determines the differentiation of photo receptor cells in 
the ommatidia, or eye segment. We used a classifier sys
tem to generate a set of rules describing a gene network. 
For each photoreceptor cell (Rl-R8 cell) within the om
matidia, a unique classifier system computes the genetic 
interaction cascade within the cell, and is optimized to 
reproduce the spatio-temporal dynamics of a gene ex
presion pattern. During this process rules are added or 
deleted; this process models the development of hypo
thetical gene interactions. The classifier system's fitness 
function is based on the actual gene expresion patterns 
of Drosophila photo receptor cells during ommatidia for
mation. Our results predict a novel interaction between 
the atonal and rough genes. 

Introduction 
Understanding biological processes, such as the develop
mental process, is one of the ultimate goals of modern 
biology. Rapid progress in molecular biology and related 
instrumentation technologies has made available massive 
amounts of data on the DNA sequence, genes and their 
enhancer structures, protein functions, and metabolic 
cascades. Nevertheless, these biological systems are so 
complex that mere collection of data does not lead to 
real understanding. In this paper, we present an at
tempt to understand biological systems using a synthetic 
approach, which constructs a detailed simulation model 
of actual biological systems, and a method of identify
ing unknown genes and genetic interactions using com
puter simulations and an automated learning scheme. 
The goal of this research is to establish a methodology 
to systematically predict unknown genes and their inter
actions, as well as establish detailed simulation models 
of actual biological systems so that various virtual bio
logical experiments can be carried out. This approach 
leads to a clear division of labor between theoretical biol
ogy and experimental biology, just as there is in particle 
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physics. The main task of theoretical biology, therefore, 
is to establish a model of biological systems from which 
powerful predictions may be derived. 

In this paper, we report one of our early attempts 
to accomplish this goal. The specific biological pro
cess discussed in this paper is the eye formation of 
Drosophila melanogaster. Currently we are working on a 
project called the "Virtual Drosophila Project" (Ki
tano 1997), which aims to create a detailed model 
of Drosophila melanogaster. We chose Drosophila 
melanogaster because it, along with C. elegans, is one 
of the most well investigated animals in all of biology. 
Eye formation is particularly interesting because it in
volves creation of large numbers of repetitive structures, 
each of which has a complex internal structure. Eye for
mation is also interesting because it is an example of the 
development of sensory systems joined to neural systems. 

Because of the biological significance of eye formation, 
a large number of molecular biologists are working on 
identifying the genes involved, and trying to determine 
the mechanism behind eye formation. Nevertheless, the 
system is so complex and the gene expression patterns 
so dynamic that no systematic model of eye formation 
has yet been proposed. One reason for this is that not all 
genes and gene interactions have been identified. This 
paper presents our attempt to create a simulation model 
of gene interactions in eye formation, and predict un
known genes and their interactions. 

Eye Formation in Drosophila 
The Drosophila retina is an especially useful model sys
tem for examining cell fate induction (Bate 1993). It is 
a simple micronervous system consisting of several hun
dred identical 'ommatidia', each of which contains eight 
photoreceptor neurons. The determination of cell fate 
within an ommatidium is not dictated by lineage (Ready 
1976). Instead, it is believed that cell differentiation 
takes place based on cell-cell interaction. Cells are ini
tially undifferentiated, and could be differentiated into 
any cell type; such cells are called omnipotent precursor 
cells (Tomlinson 1987). Most ommatidial cell fates are 
considered determined by short-range cell-to-cell induc-



tive signaling. 
The eye is derived from the eye-antennal disc. The disc 

itself arises from approximately 20 cells from the optic 
primordium in the embryonic blastoderm. The disc is 
formed by invagination at stage 12, to produce a flat
tened sac of epithelium. By the third instar larva, the 
disc contains about 2,000 cells. 

The morphogenetic furrow 
During the middle of the third instar phase, a dorsal 
ventral furrow forms, sweeping from the posterior to the 
anterior (Figure 1). This furrow is called the morpho
genetic furrow (MF), and it is the site where each pho
toreceptor cell commits to a different cell fate. The area 
anterior to the furrow is rich in synchronously dividing 
cells, but lacks any pattern. The furrow itself is caused 
by a shortening of cells at its center. The area posterior 
to the furrow shows preclusters of cells, each with a rec
ognizable core of five cells, corresponding to cells 2, 3, 4, 
5 and 8 of the photoreceptor. 

Eye lmaglnal disc 

Morphogenetlc 
Furrow 

Figure 1: Morphogenetic furrow 

Figure 2 shows a simulated expression level of the 
atonal and rough genes triggered by the MF. It clearly il
lustrates that the MF triggers expression of several genes 
which affect eye formation later on. Simulation of MF 
progression will be discussed elsewhere. 

Ommatidia formation 

Each ommatidium contains eight photoreceptor cells, 
each containing a rhabdomere, a rod-like element which 
holds the cell's photoreceptor machinery. In the om
matidium, photoreceptor cells Rl through R6 surround 
cells R7 and R8, forming an irregular trapezoid. The 
rhabdomeres of R7 and R8 center themselves, R7 above 
R8. Each ommatidium is surrounded by two primary 
pigment cells; these in turn are surrounded by six sec
ondary pigment cells shared with adjacent ommatidia. 
Thus each ommatidium contains a total of 22 cells, mak
ing the total number of cells in each eye over 16,000. The 
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R8 photoreceptor neuron is the first terminally differ
entiated cell type in the neuroepithelium and therefore 
must arise from a different mechanism than the other 
cells. Mutations in several different genes give rise to 
multiple R8s within a single ommatidium (Cagan 1989; 
Baker 1990), suggesting R8 emerges from a larger cluster 
of 'R8 candidate' cells. A process of selection between 
initially equivalent cells leads to the formation of one 
single R8 neuron in each ommatidium. 

Nelnl competence 
!Mngllngoutol 
RI_...., 

pr0f'IM.Jf81clu.t ... 

RB dlflerenU•Uon 

Figure 3: R8 selection 

ProgrNalVe 
recruitment 

Three cell pairs are then differentiated in succession: 
R2/R5, R3/R4, and Rl/R6. Following this, R7 and the 
surrounding four cone cells become differentiated. After 
pupation, pigment cells are established, and excess cells 
are eliminated by apoptosis. 

Figure 4: R-cell differentiation 

Communication between cells has emerged as a theme 
underlying many of the mechanisms by which cells in a 
developing organism acquire their specific fate. A cell 
may receive information from its neighbors, causing it 
to adopt a specific identity and thereby follow a par
ticular developmental pathway. These cell-cell inter
actions can be limited to adjacent cells, or can range 
over a larger area, mediated by some diffusible fac
tor. Inductive interactions have been extensively stud
ied in the Drosophila compound eye. Within the imag
inal disc, a cell's fate is believed to be determined 
only through interaction with other cells (Wolff 1991; 
Cagan 1993) . 

During the development of complex multi-cellular or
ganisms, numerous local cell signaling events are re
quired for proper cell fate determination (Artavanis
Tsakonas 1995). Among a group of initially equiva
lent cells, lateral inhibition allows an individual cell or 
a group of cells to be singled out from the surrounding 
cells (Figure 5). 
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(A) atonal (B) rough 

Figure 2: Simulated expression patterns of atonal and rough 
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Figure 5: Lateral Inhibition 

Genetic Networks for Ommatidia 
Formation 

A large number of genes are involved in eye formation. 
The interactions and cascades of gene products have not 
been fully identified. Nevertheless, there is a substantial 
body of experimental data from which we can recon
struct possible genetic interactions. Figure 6 represents 
a possible genetic cascade during the development of the 
Drosophila eye after the precluster has emerged. Nodes 
in the graph are genes, and edges are the genes' inhibi
tion or activation of each other. This diagram is based on 
various papers' experimental data, and represents what 
is believed to be the major genetic interactions involved 
in ommatidia formation. Table 1 shows properties of the 
major genes involved. 

It should be noted, however, that the genetic interac
tion shown in the diagram is not confirmed to be fully 
accurate nor complete. The challenge now is to verify 
whether the interaction described in the diagram is cor
rect and complete. If it is not correct, we may inquire 
about other possible interactions and unknown genes 
which can reproduce the gene expression patterns during 
the eye formation. 

The Simulator Architecture 

The simulator architecture is composed of three layers: 
the Classifier System Layer, the Interaction Layer, and 
the Diffusion Layer (Figure 7). Since the simulation re-

Gene 

atonal( ato) 
Enhancer of split 
complex (E{spl)-C) 
Delta(DQ 
Notch(N) 
EGF receptor(DER) 
spitz(spi) 
rough(ro) 
rhomboid( rho) 
seven-up( svp) 
argos 
bride of sevenless( boss) 
sevenless( sev) 
rolled(rQ 
Supressor of Hairless(Su{H)) 

Cellular Location 

nuclei 
nuclei 

transmembrane 
transmembrane 
transmembrane 
diffusive 
nuclei 
transmembrane 
nuclei 
diffusive 
transmembrane 
transmembrane 
nuclei, cytoplasm 
nuclei, cytoplasm 

Table 1: List of genes 

ported in this paper focuses on the differentiation of pho
torecpetor cells in a single ommatidia, the simulation is 
restricted to only eight cells. However, the system can 
be extended to simulate an arbitarily large number of 
cells. 

The classifier system layer 
The simulator's classifier system is applied in the classi
fier system layer. A classifier system is a learning mech
anism based on message matching, bidding, and rein
forcement (Holland 1995). The classifier system layer 
contains eight classifier systems, each corresponding to 
one of the ommatidia's cells, simulating each cell's inter
nal genetic cascade. The eight classifier systems run con
currently. Whenever there is interaction with other cells 
via cell-cell contact or diffusion, the interaction layer and 
the diffusion layer will mediate this process, and prop
agate the resultant information as environment status. 
In our classifier system, each rule set is regarded as a 
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Figure 6: Gene regulation pathways. Some pathways are 
abbreviated. For example, the Rasl --+MAPK pathway 
has intermediate components not shown here, such as 
MAPKK and MAPKKK. 

lassifier system Layer 

Figure 7: System architecture 
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Message 1 
Message 2 

Action 

Factorl ID 
Factor2 ID 

I Factor3 ID 

Threshold 
Threshold 

Mode 

Figure 8: A classifier structure 

separate individual. 
The basic execution cycle of the classifier system con

sists of an iteration of the following steps: 

1. Messages from the environment are placed on the mes
sage list. 

2. Each condition of each classifier is checked against the 
message list to see if it is satisfied by (at least one) 
message thereon. 

3. All satisfied classifiers participate in a competition, 
and the winner posts its messages to the message list . 

4. All messages directed to effectors are executed ( caus
ing actions in the environment) . 

5. All messages on the message list from the previous 
cycle are erased (i.e., message persist for only a single 
cycle, unless they are repeatedly posted). 

The format of classifier is shown in Figure 8. For 
this preliminary study, we used a rather simple classifier 
structure. The "condition" part of the classifier consists 
of two matching templates, each of which has Factor ID 
and its concentration threshold. A Factor ID is a unique 
identifier for a particular kind of protein, produced by 
the transcription of some corresponding gene. 

Figure 9 shows a classifier which represents the fol
lowing rule: when both proteins ("Factors") A and B, 
produced by genes A and B, are at a concentration of 
more than 0.5 units (the threshold}, the transcription of 
gene C is activated. 

This can be written as: CS1: A 0. 5, B 0. 5 --+ C 

A, where CSl is a rule identifier. Notice that the action 
part and the condition part of the classifier is different. 
In this simulation, the expression of a gene produces a 
predefined amount of gene products, and there are other 
factors involved, such as diffusion, protein decay, and 
cell-cell interaction. These factors are taken into con
sideration to convert the classifier 's active messages into 
a set of messages to post to the message list. 

The interaction layer 
The interaction layer is the layer in which cell-cell in
teraction is simulated, especially signal transduction in 
the ligand-receptor channel. Depending on the amount 
and position of ligands and receptors (calculated in the 
classifier system layer), the interaction layer determines 
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Message 2 Factor B 0.5 
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Action Gene C Activate 

Figure 9: A classifier structure 

a receptor's signalling intensity. A signal is a concentra
tion level of chemicals which causes effects downstream 
in the cascade; in this model, signals are presented as 
messages to the classifier in the classifier layer. 

To accurately simulate the cell-cell interaction, it is 
essential to accurately simulate cell shape and topology. 
Although the topology of cells in the wild-type omma
tidia is strictly determined, cell shapes are not identical. 
Furthermore, during the process of morphogenesis, cell 
division takes place, and cells change their shape. Based 
on (Sun 1996), we use a Voronoi diagram to simulate cell 
topology and shapes. 

The diffusion layer 
The diffusion layer is where the diffusion of paracrine 
substances is simulated. The basic equation used in the 
model is: 

(1) 

ui: concentration of protein i 
Di: diffusion coefficient of protein i 

Parameter Search and Hypotheses 
Generation 

While the simulator architecture reproduces gene expres
sion patterns at sufficient accuracy for this research, it 
assumes that each parameter is set appropriately and 
that the gene interactions (represented by the set of clas
sifiers) are complete and accurate. 

There are two major challenges in the simulation of 
gene expression in biological systems. The first is to 
identify a set of parameters which enable the model to 
reproduce individual gene expression patterns consistent 
with the actual data. This can be a Herculean task, as 
the number of parameters involved easily exceeds 100, 
and can even be over a few thousand. 

The second issue is to find all correct and complete 
gene interactions. To do this, we need to introduce a 
sophisticated method of hypotheses generation and test
ing. 

The approach we haved tested in this paper is to use 
classifiers for both issues. Parameter identification can 
be done through the adaptation capability of the clas
sifier system. For the photoreceptor cell differentiation, 
we assumed that the very existence of a particular gene 
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expression is more important than some subtle differ
ence in expression level. Accordingly, the parameter set 
is limited to just gene expression thresholds. This as
sumption holds only for this specific process, and does 
not generalize to other processes, such as RB selection. 

In finding the appropriate set of threshold levels for 
each gene, we used the credit assignment mechanism of 
the classifier. Credit assignment in classifier systems is 
based on competition. There are several ways to do this: 
we used the "Pittsburgh" approach. That is, we regard 
a rule set as an individual, and the assembly of the rule 
sets generate a cluster. Within the Pittsburgh approach, 
credit assignment is performed over an entire rule set. 
However, we also need to have adapation within a gener
ation to efficiently identify threshold level. Accordingly, 
we also use the "Michigan" approach. 

The procedure is as follows: 

1. At the end of time t, the error between the concentra
tion of a sample pattern and that of simulation pattern 
is calculated with each gene. This is calculated with 
least squares as follows: 

DiJJ t = L (C(i, t)sample - C(i, t)simulation) 2 

iEgenes 

(2) 
where C(i, t) represents the concentration of gene i 
products at time t. 

2. This is compared with the difference at time t-1. 

3. If Diff t-l < Diff t, then the strength of the active rule 
is updated. 

Thus, the credit assigment is done for each time step 
so that classifiers which made appropriate rule-firing are 
reinforced, and the strength of each classifier changes. 

Besides the identification of parameters, the use of 
classifier systems combined with genetic algoreithms to 
alter a classifier set enables the system to predict un
known genes and their interactions. Using crossover and 
mutation, new classifiers are introduced and some exist
ing rules may be elimiated. After obtaining optimum 
fitness, we can investigate resultant classifier sets and 
decode them to see if any new gene or the removal of a 
cascade contributes to improving the accuracy of expres
sion pattern reproduction. 

Experiments 
To evaluate the validity of the system, we conducted a 
simulation on an ommatidia which consists of eight pho
toreceptor cells, four cone cells and eight pigment cells. 
The rule set embedded in the system is based on knowl
edge accumulated so far from real biological experiments. 
For this experiment, we collected the genetic data from a 
number of papers in the literature, and from this formed 
the regulation pathway map shown previously in Figure 



6. Each gene classification in the simulation is shown in 
Figure 1. 

Our experiment is summarized as follows. 

1. Create an initial rule set, and initialize the strength 
to 100. 

2. Execute the system for 150 steps. 

3. For each step, perform credit assignment in order to 
estimate threshold paramters. 

4. Goto step 2. 

After each cycle, we alter the strengths. In the first 
run, all strengths were initialized to the same value: 100. 
In the second run, all values were initialized except for 
the strengths. 

At the begining of the simulation, the atonal gene is 
expressed in all cells; this is an initial condition assumed 
in this simulation. Figure 10 and Figure 11 show the sim
ulated expression patterns for the atonal and rough genes 
in the R8 and R2 cells, averaged over ten trials. Changes 
in the strength of each classifier is shown in Figure 12 
and Figure 13, based on gene interactions shown in Fig
ure 6. In an actual ommatidium, soon after differenti
ation begins, atonal is expressed only in R8, and rough 
is expressed in R2 and R5 after a short delay. There 
are other genes involved in photo-receptor cell-fate de
termination, such as spitz, star, and sea, but we focus on 
atonal and rough in this paper. 

The problem of the results shown here is that the rough 
expression level is too high in the R8 cell, which should 
never express rough. 

... 

Figure 10: Dynamics of atonal expression in R8 and R2 
cells 

Figure 12 and Figure 13 show changes in the strength 
of the classifiers. Note the strength changes in R8 and 
R2. This reflects changes in the concentration of gene 
products in R8 and R2. 
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Figure 11: Dynamics of rough expression in R8 and R2 
cells 

The different run allows the system to change classi
fiers which encode genetic interaction now believed to be 
correct. 

A new set of classifiers which removed the intra
cellular atonal to rough activation is shown in Figure 15 
and Figure 14. With this set, rough is not expressed in 
R8, which is consistent with actual data. Also, the atonal 
expression level in R8 and R2 is better distiguished than 
original rule set. 

u.---.--.---,.---.---.---, 

S11~ 

Figure 14: atonal expression dynamics in the R8 and R2 
cells 

Discussion 
In this work, we have used a classifier system to in
vestigate the genetic networks in the development of 
Drosophila's eye. From Figure 10 and Figure 11 it can 
be seen that expression patterns within the second cycle 
are quite similar to those of actual experimental data. 

These data implies that the rules seem to adapt to the 
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Figure 12: Dynamics of strength of rules 1-40 in the R8 cell 

Figure 13: Dynamics of strength of rules 1-40 in the R2 cell 
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Figure 15: rough expression dynamics in the R8 and R2 
cells 

environment. 
In addition, the results provide suggestions about the 

interaction between atonal and rough. As seen in Figure 
11, within both R8 and R2 cells, rough gene products 
appear just after the simulation begins. In actual bio
logical data, rough is never expressed in the R8 cell, but 
is expressed in the R2 cell. And the rough gene product 
is generated after some delay. From experimental biolog
ical observation, atonal and rough expression appear to 
complement each other (Dokucu 1996). In contrast with 
real experimental data, the simulation data exhibits dif
ferent dynamics, with respect to rough expression data. 
These differences are partly due to a rule describing some 
of the interaction between atonal and rough. The rule 
was originally defined as follows: 

if (atonal is expressed) then activate (rough) 

This rule allows atonal to both activate rough directly 
inside the cell, or activate rough in neighboring cells. 
The use of this rule, therefore results in the expression 
of rough in both the R8 and R2 cells. However, this is not 
the case in a real expression pattern, where rough is ex
pressed in R2, but not in RB. From this we can predict a 
hypothetical interaction mechanism between atonal and 
rough: atonal does not activate rough directly inside the 
cell where atonal exists, but instead it activates rough 
in adjacent cells, possibly mediated by transmembrane 
factors, or some other unknown factor X (Figure 17). 
One plausible mediating pathway is the Rasl-tMAPK 
pathway. 

There may also be other unknown mechanisms con
trolling the activation of rough expression; without these 
mechanisms it would be difficult to maintain the expres
sion of rough over time. According Lo the regulation 
pathway shown previously, MAPK activates rough, yet 
the results tend to show a decrease in concentration of 
rough gene products. In particular, Rule 23's strength 
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Figure 17: Hypothetical interaction between atonal and 
rough 



in Figure 12 rises less than in Figure 13. Rule 23 is the 
MAPK-trough promoting function. As such, the expres
sion of rough is less than expected from the actual data. 
Three possibilities may explain this: 

• self-activation of rough 

• relatively strong activation of Rasl-tMAPK pathway 
prior to rough 

• activation by external factors 

We have not yet identified which one of these mech
anisms is the most biologically plausible. Further ex
tension of our simulation may be able to narrow down 
the hypotheses, but actual biological experiments will be 
needed to verify whether our predictions are correct. 

Conclusion 
In this paper, we report our initial attempts to develop 
a methodology for reproducing gene expression patterns 
involved in Drosophila eye formation. We have concen
trated on the identification of genes and the interactions 
involved in photoreceptor differentiation in ommatidia. 
Our simulator is based on three layer architecture con
sisting of the classifier layer, the interaction layer, and 
the diffusion layer. A classifier system is used to iden
tify a set of parameters, and to find unknown genes and 
their cascades, in order to produce correct expression 
patterns. As a result we have made several predictions 
about unknown genes and their interactions with other 
genes. We also propose that atonal may only activate 
rough in neighbour cells, but not in the same cell where 
atonal is being expressed. We have also proposed three 
possible mechanisms which may maintain rough expres
sion; without these mechanisms, rough decreases rapidly 
in our simulation. This is not in accordance with actual 
biological data. While we believe that there is a consid
erable need to make more precise predictions, still this 
research exemplifies the possiblities of a new approach 
to computational biology. 
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Abstract 

An understanding of antiviral drug resistance is impor
tant in the design of effective drugs. Comprehensive 
features of the interaction between drug designs and re
sistance mutations are difficult to study experimentally, 
because of the very large numbers of drugs and mutants 
involved. We describe a computational framework for 
studying antiviral drug resistance. Data on HIV-1 pro
tease are used to derive an approximate model that pre
dicts interaction of a wide range of mutant forms of the 
protease with a broad class of protease inhibitors. An 
algorithm based on competitive coevolution is used to 
find highly resistant mutant forms of the protease, and 
effective inhibitors against such mutants, in the context 
of the model. We use this method to characterize gen
eral features of inhibitors that are effective in overcom
ing resistance, and to study related issues of selection 
pathways, cross-resistance, and combination therapies. 

Introduction 
Drug resistance is a major obstacle to the effectiveness 
of many antiviral drugs. Through the selection of muta
tions that reduce the efficacy of antiviral drugs, viruses 
such as HIV are very adept at evolving resistance. Com
prehensive features of the interaction between drug de
signs and resistance mutations are difficult to study ex
perimentally, because of the very large numbers of drugs 
and mutants involved. Computational modelling offers 
one approach to the study of the drug/mutant dynamic. 
Other authors have also proposed viral evolution as a 
rich domain for artificial life studies (Moya, Domingo, & 
Holland 1995). 

We use competitive coevolution to search for highly 
resistant mutants, and for drug designs that are effec
tive against these resistant mutants. Our computational 
framework depends on a model that predicts the effec
tiveness of specific antiviral drug designs against specific 
mutants of targeted viral enzymes. In this paper, we 
use a simple model that is based on the interaction of 
HIV-1 protease mutants with peptidomimetic protease 
inhibitors. We consider several classes of resistance mu
tations and inhibitors, and analyze the results of coevo
lution to study a variety of questions about drug design 
in the face of resistance. 

The following section gives basic descriptions of our 
simple computational model of inhibitor interaction with 
HIV-1 protease mutants, and of the coevolutionary algo
rithms we use to analyze this model. Technical details 
of the model and algorithms are in the Appendixes. The 
"Experiments and Results" section gives an overview of 
a diverse set of experimental results. We consider strate
gies for effective inhibitor design, cross-resistance against 
a range of inhibitors, the design of combination thera
pies, and restrictions imposed by the evolutionary tra
jectories of a mutating virus. 

Methods 

Model 

We model the interaction of HIV-1 protease with pro
tease inhibitors. The HIV-1 protease enzyme serves 
an essential role during HIV-1 maturation by cleaving 
polyproteins manufactured from viral genetic material 
into the individual proteins required by HIV-1. Cleav
age takes place at a localized active site in the protease. 
Protease inhibitors bind to this active site, preventing 
the normal function of HIV-1 protease and interrupting 
the life cycle of the virus. The emergence of resistance 
limits the effectiveness of such drugs. Mutants of HIV-1 
protease that are resistant to an inhibitor have a mod
ified shape that reduces binding by the inhibitor, while 
retaining the ability to bind and cleave the viral polypro
tein. 

Nine polyprotein sites must be be cleaved by HIV-
1 protease during maturation. These sites are repre
sented here as octapeptides, consisting of eight amino 
acids with four on either side of the cleavage site. These 
peptides are the natural substrates that every active mu
tant of HIV-1 protease must be able to bind and cleave. 
We consider inhibitor designs from the class of pep
tidomimetic inhibitors, which includes many of the drugs 
currently being tested (Wlodawer & Erickson 1993; 
Darke & Huff 1994). Such inhibitors closely resemble 
a peptide, with the central bond replaced by an uncleav
able bond. In our model, these inhibitors are represented 
as octapeptides, just like the natural substrates. 



The fitness computation for a mutant in the presence 
of an inhibitor is based on the strength of binding be
tween the mutant protease and the inhibitor, and the 
rate at which the mutant cleaves its natural substrates. 
Both of these contributions to fitness are calculated us
ing a binding model that predicts protease binding to 
peptides. A full atomic simulation is computationally 
unfeasible: current methods incorporating the necessary 
flexibility in the peptide inhibitors and in the protease 
active site would require minutes to hours for evaluation 
of each pair (Rosenfeld, Vajda, & DeLisi 1995). Since we 
need to consider the interaction of many pairs of peptides 
and protease mutants, the computational model must be 
very fast. 

For this work, we use a simple binding model that is 
derived empirically from data on HIV-1 protease, and 
captures the effect of mutations in the active site. Such 
active site mutations have the most direct effects on 
protease specificity, and form a sizable fraction of the 
known resistance responses to protease inhibitors (Schi
nazi, Larder, & Mellors 1997). While the accuracy and 
generality of this binding model is limited, it should still 
be useful for studying the general qualitative features of 
resistance and drug design that concern us here. 

Figure 1: Schematic of HIV-1 Protease Active Site 

Figure 1 shows a schematic of the active site of HIV-
1 protease, with a bound peptide substrate. Subsites 
are numbered S4, S3, S2, Sl, Sl', S2', S3', S4', with 
the cleavage site between Sl and Sl'. Each subsite is 
in contact with several amino acids in the protease, and 
each protease amino acid in the active site may contact 
several subsites. Since HIV-1 protease is a homodimer 
(i.e., made up of two identical subunits), a change in 
any amino acid of a subunit affects the active site at 
two positions. In our model, there are ten distinct mu
table amino acids that affect the active site at twenty 
positions. 

The viral fitness function used for coevolution eval
uates the likelihood that a given virus may reproduce 
when challenged by a given inhibitor. The mutant virus 
must retain the ability to cleave its polyprotein process
ing sites at a sufficient rate, so we have defined the fit
ness function as the ratio of: (i) the reaction velocity 
of the mutant protease cleaving its worst substrate (i.e. 
its rate-limiting substrate) when challenged by the in-
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hibitor, to (ii) that of the wild type (unmutated) enzyme, 
uninhibited, cleaving its worst substrate. For inhibitor i 
and protease mutant m this ratio will be referred to as 
A(m, i), the relative activity of the the protease mutant 
in the presence of the inhibitor. A simple volume-based 
model is used to approximate the binding free energy of 
substrates and inhibitors, and mutation is incorporated 
by a simple modification of this binding model based 
on crystallographic structures of protease-inhibitor com
plexes. A detailed description of the model is given in 
Appendix B. 

Model fitness values larger than one indicate mutants 
that are more active than wild type, even in the presence 
of inhibitor, whereas values less than one are proteases 
that are effectively inhibited. It has been estimated that 
reduction of protease activity to 23 that of the wild 
type is sufficient to block viral maturation (Rose, Babe, 
& Craik 1995) and that restoration of protease activity 
to about 263 that of the wild type will yield a viable 
resistant strain (Tang & Hartsuck 1995). We consider 
changes of this order of magnitude to be significant in 
our simulations. Since the absolute level of activity ob
tained from the model depends on the chosen concen
trations of substrate and inhibitor, for which there is a 
wide range of reasonable values, experiments below em
phasize comparison of the relative magnitude of different 
activities, rather than their absolute level. 

Coevolution 
Given this model, the basic problem we wish to solve is 
the design of minimax-optimal inhibitors. Given a mu
tant protease m EM, where M is the set of all allowed 
mutant proteases; an inhibitor i E I, where I is the 
set of all allowed inhibitors; and our model A(m, i) that 
evaluates the activity of the protease when challenged by 
the inhibitor, we seek the particular i with the minimax
optimal activity: 

min max A(m, i) 
iEI mEM 

i.e., the inhibitor that minimizes the activity of the best 
protease, while that protease itself retains the maximal 
activity when inhibited. 

Since the quality of an inhibitor is defined in terms 
of the entire (possibly very large) set of mutant pro
teases, we do not have an efficient objective function 
that allows us to search directly for good inhibitors. 
Instead, we use coevolutionary algorithms (Hillis 1991; 
Rosin & Belew 1997) that simultaneously anticipate spe
cific resistance mutations while searching for inhibitors 
that overcome this resistance. These algorithms are 
based on the biological concept of an arms race (Dawkins 
& Krebs 1979); in our context, inhibitors drive the evo
lution of resistance, which in turn drives the evolution 
of inhibitors that are effective against a broader range of 
resistance mutations, and so on. 



The experiments here use a genetic algorithm to con
tinually search for new protease mutants and inhibitors 
that are effective against inhibitors and mutants that 
arose during earlier search. The particular method 
used is based on prior work (Rosin & Belew 1996; 
1997) adapted for this problem. Technical details about 
the method are given in Appendix A. Note that coevo
lution is used here only as a computational technique 
(albeit biologically inspired); we are not attempting to 
model a physically realizable coevolutionary process. 

This genetic algorithm-based coevolutionary method 
is a heuristic that cannot be guaranteed to return a 
minimax-optimal inhibitor. The inhibitor that results 
from coevolution, however, can be tested exhaustively to 
guarantee that it is minimax-optimal. This is an advan
tage of the computationally simple model used in these 
experiments. We take the final best inhibitor produced 
by coevolution, and the set of protease mutants that were 
sufficient to test the candidate inhibitors that arose dur
ing coevolution. By enumerating all inhibitors against 
this set of protease mutants, we verify that there does 
not exist an inhibitor better than the one found. By 
enumerating all protease mutants against the final in
hibitor, we guarantee that there does not exist a mutant 
with higher activity against the final inhibitor than the 
activity found during coevolution. These methods are 
used to verify that all results found here are, in fact, ex
actly optimal. 1 The coevolutionary heuristics proved to 
be reliable: a single run on each problem was adequate 
to produce an optimal inhibitor. 

Experiments and Results 
Strategies for Designing Resistance-Evading 
Inhibitors 
Any viable protease mutant must retain its natural cleav
age ability. One common strategy for the design of in
hibitors is to model them after natural substrates (Wlo
dawer & Erickson 1993): since the enzyme must retain 
some binding to the natural substrates, such an inhibitor 
may perform well against a broad range of mutants. 
Such mimics of natural substrates are one class of in
hibitors that we consider here. 

Most enzymes are highly specific for a single substrate 
and their active sites have evolved to complement per
fectly the shape and chemical nature of the reaction tran
sition state associated with this substrate. Natural sub
strate mimics are ideal inhibitors for these enzymes: they 
bind tightly to the active site and block substrate bind
ing. They are also fairly robust in the face of resistance 

1The one exception to this arises in the "Combination 
Therapies" section: there are too many inhibitor pairs to enu
merate all and verify that none are better than the one found 
during coevolution. But proteases are enumerated against 
the inhibitor pair found to verify that it is as good as it ap
pears to be during coevolution; this is the most important 
test for the comparison made in that section. 
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mutations: because of the close similarity of inhibitor 
and transition state of the natural substrate, mutant en
zymes that evade the inhibitor while retaining activity 
may be difficult to find. 

There may, however, exist better inhibitors than these 
substrate mimics. This issue is particularly important 
for retroviral proteases such as HIV-1 protease. Retro
viral proteases have a large, cylindrical active site that 
binds and cleaves a diverse set of protein sequences re
quired for viral maturation (Pettit et al. 1991; Dunn et 
al. 1994). The modular nature of substrate recognition 
in HIV-1 protease, with eight substrate residues bind
ing to eight protease subsites, and the lack of absolute 
specificity of each site together provide a mechanism for 
mutation and drug resistance: the active site may mu
tate slightly to widen the energetic difference between 
inhibitor binding and substrate binding. 

With coevolution, we can search for inhibitors from 
a much larger class than the nine substrate .mimics. 
Here, we consider general-sequence octapeptides com
posed of fifteen amino acids.2 There are about 2.6 bil
lion such inhibitors. By comparing the performance 
of minimax-optimal inhibitors obtained from this large 
class, with that of minimax-optimal inhibitors drawn 
from the nine substrate mimics, we can evaluate these 
two design strategies in terms of ability to overcome re
sistance. 

Inhibitors are coevolved against increasingly diverse 
sets of protease mutants. We start by considering single 
point mutations, then proteases with up to two muta
tions from wild type, then up to three, and so on up to 
any set of mutations at the ten mutable protease sites. 
The size of these sets increases exponentially with the 
allowed number of mutations, from 119 single-point mu
tants up to about 41 billion arbitrary mutants. These 
sets allow us to see trends as the possibilities for resis
tance increase. 
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Figure 2: Natural Substrate Mimics vs. General
Sequence Inhibitors 

2The uncharged amino acids: all except D, E, H, R, K. 



Figure 2 shows the minimax-optimal activity obtained 
against each class of protease mutants. As the number 
of allowed mutations increases, resistance increases and 
the minimax-optimal activity goes up. Both inhibitor 
binding and substrate binding contribute to the activity 
of a mutant; in general, resistant mutants in these ex
periments display both improved substrate binding and 
reduced inhibitor binding. Both modes of resistance have 
been observed in HIV-1 protease (Schock, Garsky, & Kuo 
1996). 

The experiment reveals several features of resistance 
in this model. First, there do exist inhibitors with a 
significant capability to limit resistance: even allowing 
any set of mutations, the best inhibitor forces a protease 
activity that is below 10% that of the uninhibited wild 
type. Second, there are large differences in the relative 
abilities of different inhibitors to limit resistance: the 
difference in activity between the two lines is a factor of 
5-10. Finally, there exist inhibitors that fare much better 
than the substrate mimics in the face of resistance mu
tations. The natural substrates do not seem to provide a 
completely adequate model for inhibitor design. A more 
extensive discussion of these features, in the context of 
an earlier version of this experiment, is given in (Rosin 
et al. 1998). 

Cross-Resistance 
In clinical trials, it has been observed that resistance 
mutations that arise in a patient using one protease in
hibitor often confer resistance to a large number of differ
ent protease inhibitors that the patient has never used 
(Condra et al. 1995). This is called cross-resistance, 
and it is problematic because it limits the number of 
distinctly useful drugs available to treat patients that 
have developed resistance to one drug. 

In our context, we can consider cross-resistance by 
enumerating the best inhibitor designs, then finding the 
mutant most resistant to one of them and seeing how it 
fares against the rest of these designs. Most inhibitors 
currently being tested have been designed to inhibit the 
wild type protease. This is most closely modelled in our 
context by choosing inhibitors that are best against the 
wild type protease. Consider the best inhibitor designed 
against the wild type in our model. We find the mutant 
(from the set of all mutants, with any number of allowed 
mutations) that is most resistant to this inhibitor, and 
check the activity of this mutant against other inhibitor 
designs that performed well against the wild type. We 
can also consider the best inhibitor designs obtained by 
coevolution against larger pools of mutants than the sin
gle wild type, and compare cross-resistance results on 
these. 

More specifically, we take the minimax-optimal in
hibitor design in against the set of mutants with at 
most n mutations. We then find the optimal mutant 
mn against in· To obtain a set of "reasonably good" 
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inhibitor designs against proteases with at most n muta
tions, let Sn be the set of all inhibitors with worst-case 
activity that is at most twice the minimax-optimal activ
ity. Sn is found by enumeration, and typically has several 
thousand members. Finally, we test the cross-resistance 
of mn by evaluating its activity against each member of 
Sn, and computing the fraction of Sn against which it 
achieves an activity of at least a desired threshold T. Re
sults are shown for T = 0.25 and T = 0.0825. Results at 
other thresholds typically resemble one of these graphs. 

Fraction of Cross-Resistance by Optimal Mutant against Best Inhibitor 
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Figure 3: Cross-Resistance 

In Figure 3, n is allowed to range from 0-5, where n 
is defined as above to be the maximum number of mu
tations allowed in the set of proteases against which in
hibitors are initially designed. The graph shows the frac
tion of Sn to which mn is cross-resistant at the T = 0.25 
and T = 0.0825 levels of activity. The lack of smoothness 
in the graphs is partly due to the use of a single mutant 
mn at each point. The exact properties of this particu
lar mutant are somewhat arbitrary and may not entirely 
reflect the average behavior of other mutants resistant 
to a single inhibitor chosen from Sn. 

A high level of cross-resistance is displayed against in
hibitors that are designed against the wild type protease: 
only about 25-303 of such inhibitors remain successful 
against the mutant most resistant to io. Since most ex
isting protease inhibitor drugs have been targeted to in
hibit the wild type enzyme, these cross-resistance results 
for So are the most relevant comparison with clinical 
data on cross-resistance. Existing data reveals a high 
degree of cross-resistance by HIV-1 against protease in
hibitors in clinical trials (Condra et al. 1995), so the 
model is in general agreement with this data. Such 
agreement is an encouraging feature of the model, be
cause cross-resistance is one of the few comprehensive 
features of the interaction between drug design and re
sistance where data is available. 

Cross-resistance displays a general decreasing trend as 
inhibitors are designed against larger sets of mutants. 
These inhibitors tend to remain robust in the face of 



unrestricted mutations, despite the fact that they were 
not designed against such unrestricted mutants. While 
this is interesting in itself, it indicates that substantial 
resistance cannot emerge against such inhibitors. This 
limits the degree of cross-resistance that could be seen 
in this experiment. 

Combination Therapies 

The most effective therapies against HIV-1 in current 
use consist of combinations of multiple drugs. Resistant 
mutants may be less likely to arise if they must be simul
taneously effective against several different drugs with 
varying properties (Condra & Emini 1997). Such combi
nation therapies are typically chosen to be diverse, con
taining drugs that target multiple viral enzymes. Here, 
we consider more limited combinations consisting of two 
protease inhibitors. 

The activity of a protease mutant in the presence of 
a combination of protease inhibitors is modelled by tak
ing the minimum of its activities against each inhibitor 
separately. Thus, if any member of a combination is 
effective against a particular mutant, the whole com
bination is considered to be effective. This makes sense 
since all inhibitors in the combination are simultaneously 
present. This type of action by inhibitor combinations 
allows them to split up the work of covering the set of 
possible resistant mutants: each inhibitor needs only to 
be effective against a subset of the mutants, while the 
other inhibitors pick up the slack on the remaining mu
tants. 
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Figure 4: Single Inhibitors vs. Combinations 

We coevolve pairs of inhibitors against the mutant 
pools, and compare these results to those obtained for 
single inhibitors. Figure 4 shows minimax-optimal activ
ities at 0-10 allowed mutations. Against the single wild 
type protease, combination therapies offer no advantage 
over single inhibitors. This follows from the definition 
of protease activity against a combination of inhibitors: 
the minimum over activities obtained by each member 
of a combination against the wild type can be no bet-
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ter than the activity obtained by the best single inhibitor 
against the wild type. With mutations allowed, inhibitor 
pairs perform better than single inhibitors, yielding a 
minimax-optimal activity that is almost a factor of 2 
smaller at 2-10 allowed mutations. Thus, even with 
the limited range of inhibitor diversity available in our 
model, combination therapies can limit resistance to a 
greater degree than single inhibitors. 

Coevolved inhibitor pairs reflect features of the en
ergy potentials that form the basis for the fitness func
tion. Most importantly, the energy in subsite Sl' has 
two minima, reflecting a preference for both large and 
small amino acids in this subsite. A single inhibitor must 
choose some compromise between these two minima, but 
resistance mutations have substantial freedom in increas
ing binding energy away from these minima. The coe
volved pairs of inhibitors contains one inhibitor that has 
a small amino acid in Sl', and another inhibitor that 
has a large amino acid in S 1 '. This greatly constrains 
the range of feasible resistance mutations. 

Selection Pathways 
One of the reasons for the rapid rise of drug resistance in 
HIV-1 is its high turnover rate and high mutation rate: 
every point mutation is likely to be tried over the course 
of a few days in an infected individual (Coffin 1995). 
Point mutations that yield increased fitness are selected, 
and can form the basis for further mutations. Resistance 
arises through a selection pathway: an ordered sequence 
of mutations, each of which yields a viable mutant (Molla 
et al. 1996). 

In experiments above, protease mutants with multiple 
point mutations from the wild type were not constrained 
to have arisen by any particular sequence of mutations. 
We assumed that the worst-case mutant would arise, 
without considering how it would arise. To contrast this 
permissive model, we use here a very restrictive model of 
virus evolution. Resistant mutants against a particular 
inhibitor are constrained to arise by a sequence of point 
mutations, each of which must confer increased activ
ity. Since such mutations are genetic, we consider only 
those amino-acid substitutions that may be achieved by 
some single point change in the genetic sequence. Be
yond this restriction, however, we allow any sequence 
of mutations that yields increasing activity, without at
tempting to model the likelihood that such a pathway 
would actually be followed under biological conditions. 

We consider classes of mutants of increasing size, as 
the maximum allowed selection pathway length (the 
maximum number of sequential mutations) is increased. 
A restriction is also placed on inhibitors: we only al
low inhibitors against which there are no pathways that 
continue to increase activity out to the maximum al
lowed number of mutations. This restriction is natural 
in these experiments because the allowed inhibitors are 
fully tested: no resistance can evolve (within the con-



fines of our model) beyond the selection pathways that 
are explicitly tested. 

Note that, as a result of this restriction on inhibitors, 
increasing numbers of allowed mutations actually help 
the inhibitors rather than the virus. When selection 
pathways are restricted to be short, inhibitors are limited 
to those against which resistance cannot evolve much be
yond the fitness of the wild type. When selection path
ways are permitted to be longer, inhibitors have more 
freedom to allow viral evolution. This freedom may help 
if there exist longer selection pathways that have in
creasing fitness that nonetheless remains low in absolute 
terms. This benefit to inhibitors stands in contrast to 
experiments above, where increasing numbers of allowed 
mutations could only benefit the protease mutants. 

Table 1: Minimax-Optimal Activity Against Selection 
Pathways 

I Max Path Length I Activity I 

1 0.0129 
2 0.0117 
3 0.0092 
4 0.0092 
5 0.0092 

Results for minimax-optimal inhibitors against selec
tion pathways are shown in Table 1. Activity is reduced 
to about 13 that of the uninhibited wild type. This is 
substantially better than the minimax-optimal activity 
of about 83 that was obtained without restricting mu
tants to selection pathways. This shows that there exist 
highly-resistant mutants that cannot be reached through 
a series of single-mutation improvements. Restrictions 
on viral evolution allow much more effective inhibition 
than is possible against unconstrained mutants. 

It should be noted that the advantages in reduced 
activity that are seen here cannot obtained with arbi
trary inhibitor designs. For example, allowing selection 
pathways of length at most 5, the best substrate mimic 
yields an activity of 0.15; about 15 times worse than that 
for the best inhibitors seen here. The minimax-optimal 
general-sequence inhibitors that were obtained in the 
initial experiment also fare relatively poorly. Against 
selection pathways of length at most 5, the best in
hibitor designs against pools of mutants with at most 
1,2, and 3 mutations fail to terminate all selection path
ways. Such inhibitors allow continued increases in viral 
fitness. Beyond this, the minimax-optimal inhibitors de
signed against unrestricted mutants obtain an activity 
of 0.034 against selection pathways of length at most 5. 

Evolutionary constraints on resistance appear to place 
important restrictions on the mutations that need to be 
considered. Inhibitor designs that cut off viral evolution 
before it has a chance to get very far are highly effec-
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tive. Such inhibitors are also obtained at a relatively 
low design cost: only proteases with a small number of 
mutations from wild type need to be considered, as op
posed to the vast search space that must be considered 
in finding inhibitors that are minimax-optimal against 
unrestricted mutants. Future work will consider such 
design strategies in more realistic models of virus evo
lution, between the permissive and restrictive regimes 
discussed here. 

Conclusion 

We have presented a computational framework that al
lows a broad range of issues in the interaction of resis
tance and drug design to be readily addressed. Within 
the scope of a simple model ofHIV-1 protease interaction 
with inhibitors, competitive coevolution is able to find 
inhibitors that optimally limit the emergence of resis
tance. Due to the limited accuracy of the current model, 
we do not place much confidence in specific predictions 
concerning resistance mutations or good inhibitor de
signs. Our basic framework does, however, allow the 
exploration of several qualitative features of drug design 
and resistance. 

We find that there exist inhibitors with a substantial 
ability to limit resistance. While mimics of the natu
ral substrates of the targeted enzyme have some abil
ity to limit resistance, much more effective designs are 
found from a broader class of inhibitors. As inhibitor de
signs are forced to compete against larger and larger sets 
of possible resistance mutations, the possibilities for the 
emergence of resistance and cross-resistance are greatly 
reduced. Also, even in our limited domain, combination 
therapies offer an advantage in limiting resistance over 
single inhibitors. Finally, constraining viral evolution to 
mutants reached by an ordered sequence of mutations 
of increasing fitness prevents some highly-resistant mu
tants from being discovered. Inhibitors designed to ex
ploit these constraints can greatly limit the ability of the 
virus to evolve resistance. 

Future work will focus on improving the model and 
the coevolutionary algorithms used to analyze it. The 
present model is quite simple: it captures only basic ge
ometric features of binding, does not attempt to model 
separately differences in binding and catalysis, and is cal
ibrated using only data on the wild type HIV-1 protease. 
Current work is exploring the improvement of accuracy 
with additional features such as hydrophobicity, explicit 
modelling of changes in catalytic efficiency, and the in
corporation of experimental data on the interaction of 
mutants of HIV-1 protease with peptides. Beyond such 
empirically-derived models, we hope eventually to use 
more accurate predictions of binding based on molecular 
docking (Morris et al. 1996) for important evaluations 
during coevolution. As more and more data becomes 
available on observed mutations to the HIV virus, both 



across patients and within a single patient during the 
course of the disease, we aspire to model gross features 
of its evolution. 

Coevolution is successful in finding minimax-optimal 
inhibitors under the current model. This problem is a 
good test case for coevolutionary algorithms, because it 
permits exact testing of results. Still, the vast number 
of potential drug designs and HIV mutants means it is 
not an easy problem for coevolutionary methods. These 
preliminary results raise important issues such as the dif
ficulty of dealing with large, diverse test sets in coevolv
ing populations. A more detailed understanding of these 
issues may help improve the coevolutionary algorithms 
used in this work. Such improvements will become im
portant as we consider more computationally intensive 
models of molecular interaction. 

Problems of drug resistance involve evolutionary ques
tions that are difficult to address directly with experi
ments. However, data is available at the molecular level, 
and this allows us to build computational models that 
permit easy exploration. As these models become more 
accurate, we hope to reach a point where some results 
from these computational models, such as specific in
hibitor designs, will be experimentally verifiable. Drug 
resistance provides a domain where both artificial life 
models and real-life experiments can contribute to an 
understanding of evolutionary questions. 

Acknowledgments 
This work was supported by NIH grant POI GM48870, 
and Burroughs Wellcome LJIS grant APP #0842 
(C.D.R.). This is publication #11417-MB from The 
Scripps Research Institute. 

Appendix A: Coevolution Algorithm 
Details 

A number of coevolutionary algorithms were tested on 
this problem. Methods that employ two competing 
populations that evolve simultaneously (Rosin & Belew 
1997) encounter difficulties. This is partly because of the 
large number of mutants required to test adequately the 
inhibitors that arise during coevolution: even with nich
ing methods, it is difficult for a single panmictic pop
ulation to maintain simultaneously such a large num
ber of tests and continue successfully searching for new 
protease mutants. Modifications such as subpopulation 
schemes (Miihlenbein, Schomisch, & Born 1991) might 
improve results, but for now we use a more computa
tionally intensive coevolutionary method that succeeds 
reliably using our model of inhibitor/protease interac
tion. 

We adapt a method for minimax problems that di
rectly forces progress in an arms race (Rosin & Belew 
1996; Rosin 1997). In this context, the method maintains 
sets I and M of inhibitors and mutants, respectively. I 
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begins empty, and M begins with the unmutated wild 
type protease. At each step, the inhibitor i, whose worst
case activity over M is optimal, is found and is added to 
I. Then, against each member of I, the highest activity 
obtainable against it by any allowed mutant is found. 
The minimum of these activities sets the threshold v at 
which I may be covered: we find a minimal set S of 
mutants, such that for each member i E I, at least one 
m E S obtains activity at least v against i. S is then 
added to M. 

This procedure is guaranteed eventually to find the 
minimax-optimal inhibitor. The exact search, that is re
quired each step to find inhibitors optimal against M and 
mutants optimal against J, seems to be too inefficient 
for the full version of this problem (despite savings over 
complete enumeration obtained by a branch-and-bound 
technique). So, we use a genetic algorithm (GA) instead 
in most of the experiments described here. The excep
tion to this is that optimal selection pathways against 
each inhibitor in I are found with breadth-first search in 
the "Selection Pathways" section; the increasing-activity 
constraint makes this search reasonably efficient. 

Inhibitor and mutant genetic algorithms are restarted 
each step. During evolution against M, each member of 
the inhibitor population is tested against each member 
of M. An inhibitor is scored with the worst-case (max) 
activity over M (Barbosa 1997). Inhibitor evolution pro
ceeds until the population stagnates (defined here to be 
20 successive generations without improvement in best 
fitness), at which point the best inhibitor in the popula
tion is added to I. 

Each step, a separate population is initialized and run 
against each individual member of I. These separate 
runs are not much more costly than a single run against 
all of I, because each run does only a m fraction of the 
fitness testing that would be done in a single large run, 
and fitness testing dominates the run time. Once each 
of these runs stagnates, an equal number of the best in
dividuals from each of the separate runs are used to seed 
a final population that is evolved directly against all of 
I. This helps compress the size of the resulting cover 
(the importance of this is discussed in (Rosin & Belew 
1996)), and sometimes makes further progress against I 
when the results of one run against one member of I are 
helpful against a different member of I. Fitness during 
this phase is calculated using an extension of competi
tive fitness sharing (Rosin & Belew 1997): against each 
inhibitor, a unit of fitness is divided up among all pro
teases that obtain the best activity against it that was 
obtained by any protease in that generation. Thus, if 
there is a single best protease against the inhibitor this 
generation, it receives the entire unit of fitness. But if 
many proteases obtain maximal activity against it, each 
only receives a small amount of fitness. This is a niching 
method (Goldberg & Richardson 1987) that has the ef-



feet of focusing selection on proteases that are resistant 
to inhibitors to which few other proteases in the popu
lation are resistant. This large GA is run to stagnation, 
and a greedy set-covering algorithm (Chvatal 1979) is 
used on the final population to choose a small cover that 
achieves the best activity currently possible against I, 
as described above. This cover is added to M. After 
each step, minimax-optimal activity is estimated from 
the current I and M. Coevolution terminates when this 
activity is unchanged for five successive steps. 

GA parameters were chosen with minimal experimen
tation, and may not be optimal. A large population 
size of 3000 is used to give reliable results in aff exper
iments. The inhibitor population uses a single elitist, 
and the mutant population uses 50 elitists; elitists are 
chosen using the same fitness used for selection. Tour
nament selection is used, with each parent chosen in an 
independent tournament of size 3 in the inhibitor popu
lation, and of size 2 in the mutant population. Offspring 
are created via crossover with 753 probability in the 
inhibitor population, and with 253 probability in the 
mutant population. Mutation3 occurs in each child with 
803 probability in the inhibitor population, and 903 
probability in the protease population. 

The inhibitor population uses fairly simple operators: 
2-point crossover, and a mutation probability of 0.15 at 
each site (0.075 in the "Combination Therapies" experi
ment) of an inhibitor chosen for mutation. Mutant pro
tease search is complicated by the restrictions placed on 
the total number of mutations allowed from wild type, 
and the fact that viable mutants are sparse in the entire 
space of mutants. A 2-point crossover operator is used, 
with crossover points chosen repeatedly until the result
ing child does not violate the constraint on the total 
number of mutations. The protease mutation operator 
chooses a single site to mutate, and chooses a random 
allowed allele for it. If the resulting protease exceeds the 
total number of allowed mutations from the wild type, 
one of the other sites is chosen randomly and is back 
mutated to restore this condition. Finally, a repair op
erator (Hart, Kammeyer, & Belew 1995) is applied to 
the protease. If it fails to bind to one of the natural 
substrates, each possible single-site change is tried (pre
serving the original mutated site, so that this site is not 
simply back mutated). For each, if the constraint on to
tal mutational distance from the wild type is violated, 
each possible back mutation is tried (again, excluding 
the originally chosen mutated site). If any of these at
tempted repairs is successful in yielding a protease that 
binds to all natural substrates, one of the successful re
pairs is chosen at random. If none is successful, a new 
mutation is randomly chosen and the repair attempt be
gins again. Such complex mutations seem to be required 

3 Note that this is mutation in the genetic algorithm, not 
natural mutation of the protease. 
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to prevent the population from getting stuck on subop
timal individuals from which successful changes are very 
difficult to find. The initial population is prepared us
ing the repair operator: to generate a random protease, 
one site is chosen and fixed randomly, a random number 
of additional mutations from wild type are chosen (up 
to the total number allowed), and the repair operator 
is then applied, preserving the initially fixed site. This 
helps obtain an initial population with sufficient diver
sity in each gene of GA's representation. 

Appendix B: Model Details 
Fitness Calculation 
The reaction velocity of the wild type protease with a 
given substrate, v(wt), is calculated using Michaelis
Menten kinetics (Stryer 1995): 

[SJ 
v(wt) = Vmax(wt) [SJ ( 

+KM wt) 

where [SJ is the substrate concentration, Vmax (wt) is 
the maximal velocity, and KM(wt) is the Michaelis con
stant. To define the velocity of the rate-limiting step, 
we evaluate v(wt) using the substrate with the lowest 
velocity, making two assumptions: (i) Vmax is identi
cal for each of the substrates, and (ii) KM may be 
approximated by the binding constant Kd, such that 
KM ~ K d = et:.G I RT, where D..G is the energy eval
uated by the volume-based method described below. 
Nine native substrates are tested for the v(wt) evalua
tion: RGANFLGK, AETFYVDR, SQNYPIVQ, RKIL
FLDG, ATIMMQRG, PGNFLQSR, TLNFPISP, SFNF
PQIT, and ARVLAEAM (the cleavage site is at the cen
ter of each octapeptide). 

The reaction velocity of a given mutant protease with 
a competitive inhibitor is calculated similarly: 

v(m,i) = Vmax(m) [SJ 
[SJ+ KM(m) + [J]KM(m) 

KI(m,i) 

where [IJ is the concentration of inhibitor, K 1 is the in
hibition constant, and m and i indicate that the values 
are taken for a given mutant protease and inhibitor, re
spectively. Again, the velocity is evaluated for the worst 
substrate of the nine. Michaelis and inhibition constants 
are evaluated using the volume-based method modified 
for mutations (see below), with K 1 = et:.G(m,i)/RT. 

We define the fitness A(m, i) as the 
ratio v(m,i)/v(wt), assuming that Vmax and the con
centrations of all substrates are identical between wild 
type and mutant proteases. The concentration of sub
strate in the HIV-1 virion has been estimated variously 
from 10 mM (Gulnik et al. 1995) to 80 mM (Tang & 
Hartsuck 1995), and KM values for wild type protease 
with peptide substrates are in the high mM range (Darke 
et al. 1988). We set the concentration of substrate to 



a value ten times less than KM(wt), and the inhibitor 
concentration to a value ten times more than the sub
strate concentration. Qualitatively similar results were 
obtained for different ratios of [I] and [SJ versus KM( wt) 
(data not shown). Higher values of [J) generally reduce 
the fitness of the entire set of mutant proteases, while re
taining similar ordering and relative effectiveness among 
the set of inhibitors. 

Volume-based Binding Free Energy Model 

The free energy of binding of inhibitors and substrates to 
wild type protease is estimated using a simple measure 
of volume complementarity. A potential of mean force 
was calibrated using a data set of 63 cleaved sequences 
and 239 uncleaved sequences (Chou et al. 1996), and 
adding a set of 1488 uncleaved octapeptides taken from 
the gag and pol proteins of HIV-1 BRU isolate (SWISS
PROT accession codes P03348 and P03367). First, two 
tables of abundances were created, one for the cleaved 
amino acid sequences and the other for the uncleaved 
peptides, with subsites from S4 to S4' along one axis 
and amino acid sidechain volumes (Chothia 1975) in bins 
of 20A 3 along the other axis. These tables were popu
lated by averaging over a moving window of lOA 3 , to 
minimize artifacts from the discrete binning. We then 
used the uncleaved sequence table to define the refer
ence state, to normalize the effects of the distribution of 
the twenty amino acids within the volume bins. Prob
abilities, P, were obtained by normalizing all volume 
values at a given subsite. The probabilities were used to 
calculate the free energy of binding of substrate to pro
tease by assuming Boltzmann-type statistics using the 
relation 6.G = -RTln(P) (Sippl 1995). An arbitrary 
high energy of 100 kcal/mol was assigned to bins that 
had probability zero. 

The volume-based binding model was tested by cross
validation. Each sequence in the training set was re
moved in turn, new potentials calculated, and the bind
ing energy calculated for the omitted sequence using 
the new potentials. Choosing a threshold value of 44 
kcal/mol, 803 of the cleaved sequences showed binding 
stronger than the threshold and 773 of the uncleaved se
quences showed weaker binding. The discriminant func
tion method (Chou et al. 1996), from which much of our 
training set was taken, performs somewhat better than 
this: using their reported threshold of 0.8 on data not 
included in their training set, the method yields proper 
prediction of 893 of a set of 55 sequences known to be 
cleaved. However, the discriminant function method, 
and other methods that deal with amino acids as "sym
bols" without physical properties, are incompatible with 
the scheme by which we evaluate mutations, described 
below. 

These potentials reflect many of the qualitative fea
tures previously reported for protease-substrate recogni-
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tion (Griffiths et al. 1992). Low free energies are ob
served for large amino acids in Sl and medium-sized 
amino acids in S2'. High free energies disallow large 
amino acids in S2 and S2', and Sl' shows two minima, 
one for large amino acids, reflecting substrates with aro
matic groups flanking the cleavage site, and one for small 
amino acids, reflecting substrates cleaved between aro
matic amino acids and praline. 

Modelling of Protease Mutation 

Protease mutation was modelled by assuming that 
changes in volume of amino acids in contact with the 
substrate add linearly, and may be used with the volume
based model described above. For example, mutation 
V32L increases the size of the amino acid by 26A 3 , de
creasing the size of the S2 and S2' protease subsites. In 
order to evaluate the free energy of binding, we then 
shift the potentials for S2 and S2' 1.3 bins towards the 
smaller volumes. The shifted potentials disfavor larger 
sidechains in the substrates and inhibitors even more 
strongly than the original potentials. Sites of muta
tion were limited to amino acids judged to be in con
tact with substrate, determined using structures of 12 
protease-inhibitor complexes with inhibitors that are 
peptidomimetics (Brookhaven Protein Data Bank acces
sion codes: laaq, lhef, lheg, lhih, lhiv, lhvi, lhvj, lhvk, 
lhvs, 7hvp, 8hvp, 9hvp). The protein chains were over
lapped, and average values for the Cf3 positions of pro
tein and inhibitor residues determined. Distances be
tween inhibitor and protein Cf3 atoms were calculated 
(the RMSD of these distances was "'0.5A), and protein 
residues within 6A of an inhibitor were added to the list 
of residues contacting that given subsite. The 12 struc
tures did not contain inhibitors with a C(3 position at S4', 
so we assumed that this site is symmetrical with the S4 
site, and is contacted by the symmetry-related residues. 
In the final model, ten protease amino acids were al
lowed to mutate: G27, A28, V32, I47, G48, G49, I50 and 
I84 were allowed to mutate to uncharged amino acids, 
and D29 and D30 were allowed to mutate conservatively 
to E, N or Q. The subsites they contact are: G27-Sl; 
A28-S2; D29-S3,S4; D30-S2,S4; V32-S2; I47-S2,S3,S4; 
G48-S3; G49-Sl,S2,S3; 150-82'; I84-Sl'; G127-Sl'; A128-
S2'; D129-S3',S4'; D130-S2',S4'; V132-S2'; Il47-S2',S4', 
G148-S3'; G149-Sl',S2'; I150-S2; !184-Sl. 
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Abstract 

In an algorithmic artificial chemistry the objects 
(molecules) are data and the interactions (reactions) 
among them are defined by an algorithm. The same 
object can appear in two forms: (1) as a machine (op
erator) or (2) as data (operand). Thus, the same ob
ject can, on the one hand, process other objects or, on 
the other hand, it can be processed. This dualism en
ables to implicitly define a constructive artificial chem
istry which exhibits quite complex behavior. Remark
ably, even evolutionary behavior emerged in our experi
ments, without defining any explicit variation operators 
or fitness-function. In addition to microscopic meth
ods (e.g., monitoring the actions of single molecules) 
and macroscopic measures (e.g., diversity or complex
ity) we developed a stepwise mesoscopic analysis method 
based on classification and dynamic clustering. Knowl
edge about the system is accumulated by an iterative 
process in which measuring tools ( classificators) extract 
information which in turn is used to create new classifi
cators. 

Keywords: 

self-organization, evolution, computational chemistry, 
constructive dynamical systems, algorithmic chemistry, 
chemical computing, cluster analysis, binary string sys
tem, automata reaction 

Motivation 

The construction of artificial life systems with complex 
behaviors is surprisingly easy (Ray, 1992). Analysis is of
ten much harder, especially in population-based systems 
with a huge number of diverse and interacting individ
uals. In this case the reduction of experimental data is 
necessary. Measuring macroscopic parameters only (i.e., 
temperature, diversity or complexity) allows to see that 
something is happening, but does not provide insight 
into how or what. Microscopic tracing of an experiment 
and understanding every single step is possible in prin
cipal. But with growing computational resources, this 
becomes more and more difficult, probably iqmpossible, 
because time complexity for the generation of n micro
scopic events (e.g., O(n)) is lower than time complex
ity needed for analysis (e.g., 0( n log( n) for sorting the 

experimental 
data 

... kn~wledge 

Figure 1: Iterative increase of knowledge. 

population). Therefore, methods for analysis in between 
macroscopic and microscopic methods are required. 

In this paper we present a stepwise mesoscopic anal
ysis method for artificial chemistries, which might be 
applied to other population-based systems as well. In 
this mesoscopic analysis the population is decomposed 
into groups. The decomposition is based on so-called 
classifiers1 . A classifier represents a property p of 
an object. A first-order classifier is simply a function 
C : S --+ [O, 1]. The value C(s) = p represents the 
strength of a property C of a string s and is used for a 
separation of the population into partial quantities with 
a cluster algorithm. Data produced by the classifiers as 
well as the collection of classifiers themselves represent 
knowledge about the system. This knowledge will grow 
by creating and collecting more and more classifiers. It is 
then possible to gain more information about the system 
by classifying the classifiers, i.e., by analyzing the basic 
properties of classifiers with, for example, the same clus
tering procedure that separated the population. This 
can be done in an iterative process (Fig. 1). 

Mesoscopic Analysis 
The mesoscopic analysis is a tool to find groups in data. 
The field of data analysis provides an overwhelming 

1The classifiers introduced here are not to be confused 
with Holland's classifier systems. 



amount of methods, ranging from classical statistical 
methods (e.g., correlation analysis, c-means clustering) 
to modern adaptive methods from the fields of compu
tational intelligence (e.g., neural networks, genetic pro
gramming). Furthermore, many more complex methods 
exist that are specialized for certain problem domains. 

We do not present a new classification or clustering 
method here, but we suggest a method how to apply 
available data analysis methods on artificial chemistries 
or on other population-based evolutionary artificial life 
systems. Our method will allow the integration of dif
ferent available data analysis tools in an uncomplicated 
way. 

First-Order Classifier: Property 
A first-order classifier C relates an object s to a prop
erty p by indicating to what extend s has the property 
p. 

A first-order classifier is defined as a map C : S --+ 
[O, 1). Without loss of generality and for simplification 
the output of a classifier is normalized. If the output of 
C(s) =pis either 0 (s does not have the property p) or 
1 (p is property of s) we call the classifier binary. If p 
is continuous the classifier C might be called fuzzy. 

There are different ways of constructing a classifier: 
(1) manually by estimating the classifying property by 
an apriori analysis of the data, and (2) automatically by 
learning of the mapping C. Typical examples are arti
ficial neural networks, evolutionary algorithms or any 
other supervised or unsupervised algorithm with the 
ability to learn the classifying function C. 

A typical example for a manually defined classifier is 
a detector Cs for a certain subsequence s. For the bi
nary case C8 (s') is equal to 1 if the subsequence s can 
be found in s' otherwise C8 (s') is 0. 

Second-Order Classifier: Distance 
A second-order classifier is defined as a mapping C : 
S x S --+ [O, l]. It relates two objects. A classifier of this 
type is called a distance measure or shortly distance. 
If the conditions 

C(s, s") 

C(s, s') 

C(s, s) 

< C(s,s')+C(s',s"), 

= C(s',s) 

= 0 (1) 

are valid, the classifier C is a metric. As mentioned in 
the previous section we can define C manually. Ham
ming distance, for instance, is a well known distance 
measure. Using an evolutionary algorithm for the au
tomatic generation of classifiers of any order is an ap
propriate method. Its fitness function then relies on the 
phenotypic/genotypic behavior of the objects or is given 
explicitly by user interaction (Banzhaf, 1997). 
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It is also possible to construct a second-order classifier 
CF based on first-order classifiers C1, ... Cn by using the 
Euclidean distance 

or by methods taken from fuzzy set theory, i.g. 
(Miyamoto and Nakayama, 1986): 

C ( ') E~=l min(Ci(s), Ci(s')) 
F S, S = "n ( ( ) ( ')) L..i=l max Ci s .Ci s 

(3) 

Application and Integration of Classifiers 
In this section we shall describe and demonstrate how 
classifiers may be integrated into a mesoscopic analysis 
of an evolutionary population-based system .. The de
velopment of the population P = ( s1 , ... , s M) in time 
requires the analysis of P(t) (population at time t) for 
every single time step. The results of consecutive analy
ses have to be compared and correlated. 

Clustering 
The task of a cluster analysis procedure is to classificate 
a set P = { s1, ... , Sn} into c partial quantities (Bacher, 
1996; Dunn, 1974). Each of these quantities is repre
sented by a so-called prototype Vi, ( i = 1, ... , c). The 
degree of affiliation Uik of object si to cluster Ck is com
puted and quantifies the probability of Si to belong to 
Ck· In the case of fuzzy clustering Uik is E [O, 1) .. 

The partition of P should obey the following rules: 

• similar data should be partitioned into similar clusters: 
homogeneity. 

• different data should be separated into different clus
ters: heterogeneity. 

The first step in a mesoscopic analysis could be a clus
tering based on a manually designed first-order classifier. 
The separating feature is, to what extend the objects 
have this property. 

The second step could be a second-order classificator
-based clustering. The number of clusters now depends 
on the internal structure of the population and the used 
classifier. The minimum of the objective function 

n c 

J(U,V) = LLUik ·d~k (4) 
k=li=l 

with ~k symbolizing the distance between Sk and proto
type vi according to the used distance measure (a second
order classifier) is then the optimal clustering. Our dis
tance measure for the following experiments is the Ham
ming distance, a natural choice given the binary nature 
of strings used as individuals here. 



Distance 

Classification of a population with a clustering algorithm 
thus depends crucially on the structure and dimension(s) 
of the sequence space. 

The genotypic Hamming distance measures the num
ber of different bits between two individuals represented 
by binary strings. Therefore the clustering only uses 
structural information to separate the population into 
different clusters. But the use of the genotypic informa
tion only causes in fact a loss of information. 

Cluster algorithms using distance measures depending 
on both, genotypic and phenotypic information may be 
able to represent the internal structure of the population 
more accurately. The phenotypic distance between two 
individuals could be quantified by taking their functional 
behavior into account or by determining the difference 
between their fitness values according to a globally de
fined fitness function. If this global fitness function fur
thermore changes with an evolving population, it may be 
considered an environmental distance. This distance 
measure is a classifier of an order equal to the population 
size M. 

Both, phenotypic and environmental distance are still 
under investigation. The following experimental results 
use genotypic distance only. 

Tracing of Cluster Development 

The development of a population is traced by analyzing 
its state after every generation (about 106 reactions). 
Each resulting cluster is represented by its specific pro
totype Ve which is the center of a hypersphere in distance 
space. The relationship between clusters at t; and ti+1 

is determined by the distances between their prototypes 
Vc,ti' Vc,t1+1 · 

An analysis of the development of properties of an ar
tificial chemistry using the above explained techniques is 
the main object of the following sections. 

Artificial Chemistry 
Our mesoscopic analysis method will be applied to a 
static and dynamic analysis of an artificial chemistry 
(Varela, 1978; Lugowski, 1989; Rasmussen et al., 1990; 
Bagley et al., 1992; Fontana, 1992; Thiirk, 1993; Bagley 
and Farmer, 1992; Banzhaf, 1993; Fontana and Buss, 
1994). Usually, an artificial chemistry consists of at least 
two parts: 1.) a set of objects (molecules, substances) S 
and 2.) a set of collision rules. In addition, a simulation 
of the artificial chemistry requires a third component: 
an algorithm, which models the reaction vessel and is 
therefore called reactor algorithm. 

In our case the objects are binary strings of fixed 
length S = {O, 1}32 (Banzhaf, 1993; Banzhaf, 1995). 
The collision rules are all second-order catalytic reac
tions of the form s1 + s2 + X ----+ s1 + s2 + s3, shortly 
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s1 + s2 =::} s3. All collisions of two objects si, s2 will 
have a unique outcome s3 . Therefore the set of collision 
rules can be represented as a function r : S x S ----+ S. 

The following reactor algorithm operates on a popu
lation P = { s1 , ... , SM} which is a multiset on S. 

Reactor algorithm 

The development of the population P is realized by iter
atively applying steps 2, 3, and 4 of the following reactor 
algorithm: 

1. Initialize the population P with M objects selected 
randomly from S. 

2. Select two objects s1 , s2 from the population P ran
domly, without removing them. 

3. If there exists a reaction s1 + s2 =::} s3 and the fil
ter condition f (s1, s2, s3) holds, replace a randomly 
selected object of the population by s3 . 

4. Goto step 2. 

The filter condition f : S x S x S ----+ {true, false} is 
used to introduce elastic collisions easily, without chang
ing the reaction mechanism. In our case f is defined as 

(5) 

This filter condition inhibits the reaction if, on the one 
hand, operator s1 and operand s2 are the same and, on 
the other hand, if the operator string s1 is an active repli
cator. (See Sec. Automata Reaction for more details.) 

The reactor algorithm simulates mass-action kinetics 
of second-order catalytic reactions which allows hyper
cyclic dynamics (Eigen and Schuster, 1979; May, 1991). 
For a large population size M the system can be modeled 
by coupled ordinary differential equations (Hofbauer and 
Sigmund, 1984; Stadler et al., 1993). 

The following macroscopic measurements are used in 
the diagrams: 

The diversity is the number of different strings in P 
divided by the population size M for normalization. 

The productivity is the probability, that a collision 
of two strings is reactive, The term collision refers to 
one execution of steps (2) and (3) of the reactor algo
rithm. A collision is called reactive if a product s3 is 
inserted into the population. So, a collision of two ob
jects s1, s2 is reactive, if a product is defined by the re
action rule and if the filter condition allows the insertion 
of the product. 

The innovativity is the probability of a collision pro
ducing an object that has never been in the system be
fore. 

We will use the the following 32-bit automata reaction 
as a reaction mechanism. 
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Figure 2: Automaton, resulting by folding s1. It carries out the reaction s1 + s 2 ==? s 3 . s 1 is written into the 
operator register and specifies the program. The IO register is initialized with s2 and contains the result s3 after 
running the program. 

Automata Reaction 

The automata reaction is based on a finite state au
tomaton which is a mixture of a Turing-machine and 
a register machine. It has also been inspired by Hofs
tadter's (Hofstadter, 1985; Morris, 1989) Typogenetics. 

The automata reaction instantiates a deterministic 
reaction s 1 + s2 ==? s 3 , with s1, s2, s3 E { 0, 1 }32 . In 
order to calculate the product s3 , string s1 is "folded" 
into an automaton A. 1 , which gets s2 as an input. The 
construction of A. 1 ensures that the automaton will halt 
after a finite number of steps. Because As, is a determin
istic finite automaton, the automata reaction defines a 
functions {O, 1}32 x{O,1} 32 --+ {O, 1}32 . Figure 2 shows 
the structure of the automaton. It contains two 32-bit 
registers, the IO register and the operator register. 
At the outset operator string s1 is written into the op
erator register and operand s 2 into the IO register. The 
program is generated from s1 by simply mapping suc
cessive 4-bit segments into instructions. The resulting 
program is executed sequentially, starting with the first 
instruction. There are no control statements for loops or 
jumps in the instruction set2 . 

Each 32-bit register has a pointer, referring to a bit 
location, the IO pointer, referring to bit b' in the IO 
register and the operator pointer, referring to bit b 
in the operator register. Bit b and b' are inputs to the 
ALU. The result of the execution of one instruction of 
the operator register is stored at the IO pointers location, 
therefore replacing b'. 

2The instruction set used here is ID, MOV, SETP, TMM, 
TDIR, UNSETP,CPON, CPOFF,STOP,OR,EQ,EXOR, 
NOP, ID, AND. The resulting reaction is usually called a2-
reaction 

Instead of going into more details here we point 
the reader to a precise formal specification of the au
tomata reaction as source code, available from (Dit
trich, 1997) and a discussion of self-evolution in artificial 
chemistries based on the automata reaction in (Dittrich 
and Banzhaf, 1998). 

As a short summary the following basic properties of 
the automata reaction should be noted: 

• The probability of producing a string s3 similar to one 
of the colliding strings is high. 

• The product of two randomly generated strings s 1 , s2 

is likely (p ~ 303) equal to s 2 . This is called passive 
replication, because the operator string s1 does not 
modify the operand string s2 . 

• A string s 1 for which \:/x E S : s 1 + x =::} s 1 is 
called active replicator, because it copies the op
erator string (itself) into the IO register. Active self
replicatiors are rare and have to be evolved during the 
development of the population. Due to their prolifer
ation, they are the strings for which part two of the 
filter condition holds. 

The structure of the population thus changes with the 
replicating ability of its individuals. Passive replicators 
may survive if the population is small (M < < 1000) but 
they are displaced if active replicators evolve during a 
run. Due to the starting position of the register-pointers 
during a collision, the center positions of the string are 
likely to remain nearly unchanged while the possibility 
of changing the margins is higher. 
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Figure 3: Diversity, productivity and innovativity of ex
periment A4-23 with the automata reaction a2. Param
eters: M = 100000, reaction a2, no replication, full sys
tem seeding. 

Application 
We will now demonstrate the application of the meso
scopic analysis method with data obtained from an arti
ficial chemistry. 

Figure 3 shows run A4-23 out of a series of 100 exper
iments all with the following parameter setting: popula
tion size: M = 105 (constant), reaction: automata reac
tion, reaction type: catalytic second-order, filter condi
tion: active replication disabled (elastic), initialization: 
random strings (full system seeding). The observed be
haviors in the series were very diverse ranging from early 
stabilization with short transients to complex, oscillating 
dynamics (Fig. 10). In (Dittrich and Banzhaf, 1998) we 
have identified two different evolutionary phases. The 
first one is characterized by high constructive activity 
which creates many new strings per generation. The 
second evolutionary phase begins with the emergence 
of a very stable, self-replicating core-set of cooperat
ing strings dominating the system. This stable core
set keeps evolving by detachment of sub reaction path
ways, by integration of totally new molecules or by emer
gence of new substrings which proliferate in almost eve~y 
string. Here we will concentrate on one phenomenon m 
run A4-23: The sudden decrease and sudden increase of 
productivity around t = 700. The macroscopic observ
ables in Fig. 3 are indicating that something is happen
ing. The increasing diversity and the decreasing pro
ductivity indicate an interesting developmental phase. 
Even looking at the innovativity does not elucidate the 
process. So what happens and why? In principle we can 
reconstruct every single step and thus may be able to un
derstand the phenomenon. But reducing the interval of 
interest to t = 600 until t = 800 still leaves about 16*106 

collisions between 3 · 105 different strings at t = 600. 
We now start our mesoscopic analysis by asking the 

question: 
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Figure 4: Normalized sum of classifier C1 over time. Run 
A4-23. 

(Ql)Does the structure of the population change from 
t = 600 tot= 800? 

To answer this question we generated automatically 
(using genetic programming (GP) (Koza, 1992; Banzhaf 
et al., 1998)) a first-order classifier C1 which is able to 
discriminate strings at t = 600 from strings at t = 800. 

The training cases for the GP fitness function are the 
400 most frequent strings of both, generation 600 and 
generation 800: C1 ( s) should be 0 if s is a string of gen. 
600 and 1 ifs is a member of the population at gen. 800. 

The GP system has been used with the following set
tings: Operator set: conventional boolean functions, two 
ADFs (automatically defined functions) allowed. Ran
dom constants out of {O, 1, ... , 32}. (µ + A) selection 
(Schwefel, 1995) with µ = 500 (population size) and 
A = 350 (number of descendants), finite life span: 5 
generations. Program structure: tree and linear. 

Among many other programms, GP created a short 
program which only tests bit 14 of the input string. Sur
prisingly, this bit discriminates not only the test cases 
but nearly every string in gen. 600 from any string in 
gen. 800. Thus, with the automatically generated clas
sifier C1 we are able to visualize the moment when the 
population is beginning to change its structure (Fig. 4). 

We have now identified a structural change, but 

(Q2)Does the functional property of strings change? 

To answer this question we define a first-order classifier 
C2 manually: 

( ) _ _ dHam((s EB so), s) + dHam((s EB Bf), s) (6) C2 s - 1 64 

where so =0000000 and Bf =ffffffff. This classifier es
timates the self-replicating ability by testing s against 
the so and the Bf string. The string s is the operator 
processing both, s0 and Bf - The number of bit flips, 
either from 0 to 1 (dHam((s EB so), s)) or from 1 to 0 
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Figure 5: Clusterdevelopment of cluster 04111260. Cluster method: fuzzy c-means. Run A4-23. 1 cm diameter~ 
30 3 of population. 
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Figure 6: Normalized sum of classifier C2 over time (self
replication ability). Run A4-23. 

(dHam((sEBsJ ), s)) caused in so and SJ indicate the repli
cating ability of s. C2 (s) is at maxixmum ifs causes as 
many bit flips in s0 (and s J) as necessary to reproduce 
its bit pattern. C2 (s) is 0, ifs does not change neither 
s0 nor SJ· Indeed, Fig. 6 shows that there is a functional 
change. The replicating ability of strings in the popula
tion decreases until t ~ 690. There is a strong increase 
in C2 from t = 720 until t = 750, the point in time at 
which the restructuring of P seems to be finished. The 
questions to answer are now: 

(Q3) How is the population structured at t = 600? 
(Q4) What happens at t = 690? 

The structure of the population in experiment A4-
23 at about t = 600 until t = 680 is shown in Fig. 5. 
All strings present belong to cluster 04111260, so their 
genotypic structure is almost the same. There is a slight 

increase in volume which indicates that more and more 
individuals are replaced by one of the most frequent 400 
strings. Figure 7 shows a second-order cluster analy
sis of these 400 most frequent strings from t = 693 to 
t = 699, the moment of the supposed restructuring. 
At t = 695 the single cluster Oc211260 (04111260 of 
Fig. 5 slightly changed its center) splits into two clus
ters 4b0112d6 and 4b1412d6. The former disappears 
after two generations while the latter quickly grows and 
changes its center (in t = 699 almost half of the popu
lation is in 4b1432d4). Analysis shows that the center 
of the shrinking cluster has almost the same structure 
as in previous generations but the second cluster has an 
obviously different bit pattern on the left side. Further 
development of the remaining cluster shows that now 
both, individuals with modified and unmodified left and 
right sides belong to the same cluster. The point of in
terest is now: 

(Q5) Is there a change in the way genotypic informa
tion is reproduced or conserved ? 

Looking at the clusters obtained from (Q3) and (Q4) 
reveals that strings in the displaced cluster have high 
diversity on the left side. Strings in the new cluster are 
much more homogeneous on the left side. This raises 
the question whether the members of the new cluster 
have acquired the ability to replicate their left side more 
accurately. To validate this assumption we have defined 
a first-order classifier Csm which checks for replicating 
activity at certain bit positions specified by the substring 
Sm: 

dHam(((s EB so)/\ Sm), S /\Sm) 

2#anes(s) 
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Figure 7: Clusterdevelopment. Clustering performed on the 400 most frequent strings per generation. 1 cm diameter 
~ 203 of population. Cluster method: fuzzy c-means. Run A4-23. 
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Figure 8: Normalized sum of classifier Coooo//f/ and 
C/f/foooo over time. Run A4-23. 

dHam((s EB SJ) V -ism, S V -ism) (7) 
2#ones(s) 

with Sm E Sand #ones(s) denotes the number of ones 
in s. (Note that C2 = Csm with Sm = fl1llllf.) 

The change of replication from right-oriented to left 
and-right-oriented is shown in Fig. 8 by showing the de
velopment of Coooo/ ff f and Cf ff 10000. 

Another very interesting experiment is shown in 
Fig. 10. Obviously, there is an oscillating behavior of the 
the macroscopic parameters from t = 1000 to t = 2000. 
A zoom into the interval from t = 1200 to t = 1600 is 
shown in Fig. 11. This run is remarkable because its 
complex behavior is an exception. Most of the exper-

0.8 

0.4 

0.2 

roductivily -
diversity ------

500 1000 1500 2000 2500 3000 3500 4000 
time in generation 

Figure 10: Diversity, productivity and innovativity of 
experiment A4-49 with the automata reaction. Parame
ters: M = 100000, no replication. 

iments are similar to run A4-23, about 203 are even 
simpler. The result of a cluster analysis of A4-49 is 
shown in Fig. 9. Here, an oscillating separation and 
merging of two clusters with stable centers ( eel0526a 
and eftlf26a) is the dominating phenomenon. 

Discussion 

A new mesoscopic step-wise analysis method for evo
lutive population-based systems has been suggested. 
Knowledge about the system is gained by decomposing 
it with the help of classifiers. The application of classi
fiers generates information which can be used to gener
ate new classifiers which in turn can be applied to the 
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Figure 9: Time development of clusters eel0526a and efllf26a in run A4-49. 1 cm diameter~ 203 of population. 
Cluster method: fuzzy c-means. 
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Figure 11: Magnification of Fig. 10. 
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system. This concept allows the integration of different 
automatic and manual analysis techniques. The method 
has been successfully applied to an articial chemistry. A 
sudden decrease and increase of a macroscopic quantity 
(productivity) has been identified as the indication of the 
appearance of a new organization (cluster). Its develop
ment has been visualized and investigated by dynamic 
cluster analysis. The resulting clusters motivated the 
definition of more specialized classifiers which confirmed 
the assumption that the new organization has acquired 
the ability to replicate the left side of a string. 

Future Work 

Classifiers can be generated automatically (i.e., C1), may 
be parameterized (i.e., Cs=) or may be combined into a 
huge number of new classifiers. To ease the handling of 

classifiers we can assign a "meaning" to each classifier, 
e.g., a text describing the properties of the classifier, and 
set up a data base containing the classifier name, its for
mal definition (program) and its meaning (text). We are 
then able to combine and integrate formal descriptions 
with more intuitive, linguistic descriptions. In a second 
step the classifiers may be correlated. 

If we also allow classifiers to be discarded (for instance, 
because they are redundant measures), the resulting pro
cess seems to become an evolutionary process, now on 
the level of classifiers. So, we can apply the same tech
niques as described here not only to the primary popula
tion system but also to the system of evolving classifiers. 
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Abstract 

A new approach to the study of "complex" cellular au
tomata is described, and applied to Conway's "Game of 
Life". It is shown that in infinite and very large finite 
fields of the Game of Life, emergent structures will even
tually dominate the dynamics of initially random con
figurations, provided the initial density of "live" cells is 
sufficiently low. It is also shown that many quite sim
ple structures will self-replicate under these conditions, 
although none are known to do so efficiently enough to 
increase their numbers indefinitely. The application of 
the approach to other cellular automata is discussed. 

Introduction 
A cellular automaton or CA, as the term is used here, 
is a discrete state system consisting of a countable net
work C of identical cells. Each cell is, at any "step", in 
one of k states (k finite); all are updated synchronously. 
The state of a cell c at time step t + 1 depends on the 
states at step t of a finite set of in-neighbors (usually 
we just say neighbors). This may or may not include c, 
in-neighborhood may or may not be symmetric, and dif
ferent neighbors may have different roles in determining 
e's next state. For every possible combination of states 
of a cell's in-neighbors, the "transition rule" R specifies 
the possible states at the next step - a single state in 
the deterministic case, to which we limit our attention. 
R is the same for each cell and at each step. There is 
an automorphism of C mapping any cell onto any other. 
For a k-state CA with network C there are kiCI possi
ble configurations or fields; a maximal set of fields which 
map onto each other by automorphisms of C we call a 
layout. The distance between two cells is the minimum 
number of links between neighboring cells traversed on 
any path between the two. 

CA can be classified structurally by their network 
topology. Most work has been done on 1-dimensional 
arrays and square lattices, finite or infinite. For finite 
networks, periodic boundary conditions are used (or edge 
cells given special treatment, but this falls outside our 
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definition). In-neighbors are most commonly the cell it
self and the r cells to each side in the 1-d case. The 
common 2-d in-neighborhoods are the cell itself plus the 
four orthogonally adjacent cells (von Neumann neigh
borhood), and these plus the diagonally adjacent cells 
(Moore neighborhood). 

The Game of Life (henceforth GoL) is a two
dimensional Moore neighborhood binary (k = 2) CA. 
We call the states 0 and 1. Cx,y is in state 1 at step t + 1 
iff either of the following is true at step t: 
1) Cx,y is in state 0, and exactly three of its neighbors 
are in state 1. 
2) Cx,y is in state 1, and either two or three of its other 
("non-self") neighbors are in state 1. 
State 0 is quiescent: if all cells are in state 0 they will 
remain so. Any layout having a finite number of state 
1 cells we call a "pattern". Since the transition rule is 
spatially symmetric, spatial symmetries cannot be lost 
as a pattern evolves; they may be gained. 

In (Berlekamp et al. 1982, p.849), GoL's discoverer 
John Conway, and his co-authors, sketch proofs that 
it is computationally universal, and can support self
reproducing patterns. They then say that: 

Inside any sufficiently large random broth, we ex
pect just by chance, that there will be some of these 
self-replicating creatures ... It's probable ... that af
ter a long time, intelligent self-reproducing animals 
will emerge and populate some parts of the space. 

Poundstone (Poundstone 1985, pp.175-6) says: 

Speculation about "living" Life patterns focuses 
on infinite, low-density random fields... If there 
are self-reproducing Life patterns, they would have 
room to grow in such a field. 

What does happen in infinite (and large finite), "low
density random fields" of GoL is the main topic of this 
paper. The work resembles "computational mechanics" 
(Hanson and Crutchfield 1997) in its detailed investiga
tion of a particular CA. 

By "infinite, low density random field", Poundstone 
means an infinite lattice, in which each cell independently 



has a small probability, p, of being initially in state 1. 
Consider the set of all cells within a distance d from a 
given cell (we could equally use cell-sets of other shapes). 
Probabilities of particular arrangements of cell-states in 
this set depend only on the number of cells in each state, 
and on p. Taking increasingly large fi.nite chunks of an 
infinite array, or averaging over increasingly large ensem
bles of finite arrays, frequencies of such arrangements 
will tend toward these probability values. The quoted 
statements will thus hold for sufficiently large arrays of 
any binary CA 1 capable of supporting self-reproducing 
patterns, whatever the value of p (so long as 0 < p < 1). 
However, it may be that for some or all such p values, 
the density of self-reproducing patterns tends to zero for 
almost all initial fields (including all those for which the 
frequencies of arrangements are as expected given inde
pendently assigned cell-states). 

Would "intelligent, self-reproducing, animals", or 
other very complex structures and processes, emerge 
from simpler elements in infinite or very large finite ran
dom fields of GoL or any other CA? If so, would they per
sist and evolve through anything like mutation and selec
tion? What properties must the CA have? These ques
tions are largely unexplored- but see (Chou and Reggia 
1997). This paper does not answer them, but demon
strates that the medium-term dynamics of large ran
dom GoL fields with sufficiently low p will be dominated 
by emergent structures, and will include simple kinds 
of self-replication. The meanings given to "medium
term", "dominated", "emergent" and "self-replication" 
are made clear below. 
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Very sparse fields are good places to look for the 
emergence of complexity from disorder for two reasons. 
First, most "complex" CAs, like GoL, tend to develop 
local structures which occasionally interact: there is sub
stantial but not complete decoupling between local and 
global scales of activity. Very sparse fields emphasise 
the features of such CAs that make them interesting. 
Second, much can be discovered about the history of 
such fields by combining local computation using CA
simulating software with global analysis. 

Classification of Cellular Automata 
There are numerous ways to classify CA in terms of their 
computational and dynamic properties. The most rele
vant classifications here are those describing the histories 
of classes of initial layouts. 

Wolfram (Wolfram 1984) describes classes based on 
the evolution of "disordered" fields. He initially consid
ers the left-right symmetric 1-d CA with r=2, k=2, a 
quiescent state 0, and a totalistic rule (all in-neighbors 
have equivalent effect on a cell's state), but conjectures 
that his classes apply across all types of CA: 

1 We can extend the idea of an infinite random field to 
cases where k > 2, but k - 1 probabilities must be specified. 

Class 1: Evolution leads to a homogeneous state. 
Class 2: Evolution leads to a set of separated simple sta
ble or periodic structures. 
Class 3: Evolution leads to a chaotic pattern. 2 

Class 4: Evolution leads to complex localized structures, 
sometimes long-lived. 
These are not precise definitions: how "complex" and 
"long-lived" must structures be before a CA is class 4? 
Wolfram conjectures that class 4 CA are capable of uni
versal computation. (Dhar et al. 1995), exhibiting com
putationally universal CA apparently of classes 2 and 3, 
argue that different classifications arise according to the 
set of initial configurations considered. 

Among refinements or modifications to Wolfram's 
scheme, that of (Braga et al. 1995) is most relevant 
here. They define a 3-way classification of infinite 1-d 
CA, concentrating on the "elementary" CA (those with 
k = 2, r = 1), with 0 a quiescent state. Their class 
C1 includes CA where all patterns (they use the word 
as we do) disappear. Class C2 includes all CA for which 
no patterns increase their length without limit, and C3 is 
the complement of C2. Membership of these three classes 
is decidable for the 128 CA they consider. 

There are obvious ways to refine their classification. 
We find it convenient first to modify it to consist of mu
tually exclusive and jointly exhaustive classes: 
1. All patterns disappear. 
2. There is a pattern that persists indefinitely, but no 
patterns grow indefinitely. 
3. There is a pattern that grows indefinitely. 
Two types of refinement are possible. First, we can re
fine classification of individual patterns. For patterns 
that neither disappear nor grow without limit, we can 
ask about periodicity and movement across the network. 
For those that grow without limit, we can ask whether 
the number of cells does so, or just the diameter (maxi
mum distance between any two cells). The latter implies 
the former for the 128 CA Braga et al. consider, but 
not in general. In either case, we can ask how fast this 
quantity increases. Second, we can ask whether some 
property holds for all, some or no patterns. If it holds 
for some but not all, we can ask for the minimal size of 
pattern (in terms of cell number or diameter) for which 
it holds. This paper shows the relevance of such classifi
cations to the dynamics of layouts other than patterns. 

Previous Work on GoL 
Since its discovery in 1970, GoL has generated 
widespread popular interest (Wainwright 1971; Gardner 
1983; Poundstone 1985). It was not designed for a spe
cific task; Conway wanted simple patterns' histories to 
be hard to predict. Recent work on GoL includes: 

1. Design of layouts (mostly patterns) with particular 
properties, by "Life hackers". Occasional papers are 

2 A configuration or field, not a pattern in our sense. 
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published, e.g. (Buckingham and Callahan forthcom
ing), but most results appear on Internet newsgroups 
and WWW pages. Some ideas presented here were 
independently arrived at by this community. We used 
GoL freeware from sources within it. 

2. Numerical studies of GoL fields' histories. (Bag
noli et al. 1991) found final densities of state 1 
cells to be around 2.853 if the initial density is 
153 - 753, falling off beyond these limits. The re
sults of (Gibbs and Stauffer 1997), using 503 initial 
density on lattices up to 204384 x 204384, agree closely 
with this. Studies including (Garcia et al. 1993; 
Sales et al. 1993) examine the number and size dis
tribution of "clusters" 3 of cells in the final state of 
small (150 x 150) lattices, finding power-scaling laws 
for 153 - 753 initial densities. (Hof and Knill 1995), 
in a study of infinite fields, describe the first 100 steps 
of some almost periodic layouts defined in terms of 
circle-shifts, but do not try to interpret their results. 

3. Studies concerned with the idea that some CA, and 
GoL in particular, may be poised on the "edge of 
chaos". A finite random field with 503 density is 
run until it becomes periodic. A single cell-state is 
then flipped, and the ensuing disturbance is mea
sured. (Bak et al. 1989; Alstn~m and Leao 1994) 
claim that GoL shows "self-organized criticality", with 
the distribution of disturbance sizes governed by a 
power law, but (Bennett and Bourzutschky 1991; 
Hemmingsson 1995) claim this finding is an artifact 
of small lattice sizes and GoL is subcritical. 

Our work differs from type 1 in concentrating on GoL's 
"natural" behavior rather than on esthetically-guided 
engineering. It differs from types 2 and 3 in concen
trating on the behavior of low-density infinite random 
fields, and in deducing features of such fields' evolution 
from the proved existence (or non-existence) of particu
lar types of finite pattern and process. 

Infinite Sparse Random GoL Fields 
Random fields 
We call the layout arising after t steps from an infinite 
random CA field, with initial state 1 probability p for 
each cell, Cp,t· For GoL, we use Lp,t· The reciprocal of p 
we call N. For infinite CA, specifying C, R, t andp deter
mines the expected frequency of any finite arrangment of 
cell-states. We can expect sufficiently large ensembles of 
finite arrays to approximate these frequencies as closely 
as desired. 

There are two values of p for which, given any infi
nite deterministic binary CA, Cp,t can readily be char
acterised for all t: p = 0 and p = 1. If both states are 

3 Their use of "cluster" overlaps with, but differs from ours, 
given below. 

quiescent4 , Co,t will consist entirely of Os, C1,t of ls. If 
only one is quiescent, Co,t and C1,t will consist entirely 
of cells in that state for all t > 0. If neither is quiescent, 
uniform fields of the two states will alternate. 

For all other values of p we can calculate exact fre
quencies for any finite arangement of states, but in many 
cases, including GoL, the effort required appears to grow 
very rapidly with t. For GoL, we can make some definite 
statements without detailed analysis: 
(1) The density, D(Lp,t) will be > 0 but < 1 for all t > 0. 
Initially, there will be both arbitrarily large empty areas, 
and oscillators (see below) surrounded by such areas. Ef
fects cannot propagate faster than one link per step, so 
both will survive at any finite t. 
(2) In Lp,o where 0 < p < 1, all finite subfields will 
appear infinitely often. However, some of these have 
no possible predecessor in GoL (Berlekamp et al. 1982, 
pp.828-9), and will not appear at any t > 0. 
(3) D(Lp,1 ) is 28(3 - p)p3 (1 - p)5 (calculated from the 
transition rule). We cannot reiterate the computation to 
get D(Lp,2): the probabilities of neighboring cells being 
in state 1 are not independent for t > 0. 

Most CA studies of random fields concentrate on p = 
1/2. Here we assume that p is arbitrarily low, but non
zero: whenever the value of p makes a difference to our 
analysis, we assume it to be in the lowest distinguishable 
range of values. 

Clusters 

If p is very low, most ls will be far from each other. 
Only ,...., p of them will be near any others; only ,...., p2 of 
them will have two others near, and so on ("near" means 
within some fixed distance « N). We will use "cluster" 
rather than "pattern" for a finite group of state 1 cells 
surrounded by a non-empty field. 

A "0-cluster" is a maximal set of ls such that any two 
members are joined by a continuous path of neighbor
hood links going through no state 0 cells. A "d-cluster" 
is a maximal set of ls such that the corresponding paths 
never pass through more than d successive 0 cells. A 1-
cluster's future depends only on itself, for the next step, 
but of course that step may merge or split I-clusters. 
The number of state 1 cells in a cluster is its "size", s. 
"Cluster" without a numerical prefix means a set of ls 
which form a d-cluster for some d. A pattern is necessar
ily a cluster. 

For any infinite binary CA, there is a p below which 
there will only be finite 0-clusters in random fields. The 
critical value of p will be ~ 1/(z - 1), where z is the 
number of neighbors a cell has (Shante and Kirkpatrick 
1971, p.332). For CAs on square lattices we can extend 
the result to any value of d by dividing the lattice into 
(d+ 1) x (d+ 1) "macrocells" (square sub-arrays of cells). 

4We use "quiescent" for any state of a CA such that a 
homogeneous field of cells in that state does not change. 
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A d-cluster in the original network must occupy a con
tiguous set (i.e. a 0-cluster) of these macrocells. The 
probability that a macrocell contains at least one 1 can 
be derived from p, and can be made as low as we please 
for any given d by reducing p. Thus if p is low enough, 
all d-clusters will be finite. 

Consider GoL cluster-types defined so that two clus
ters are of the same type iff a translation maps one onto 
the other. The exact frequency of such a cluster-type in 
Lp,O depends on how many cells must be in state 0 for a 
cluster of that type to exist, as well as how many must 
be in state l. However, with p very low, considering just 
the number of ls the cluster contains gives a very good 
approximation. All translation-defined cluster-types of 
sizes will be almost equal in frequency in Lp,o, ifs « N 
and d « N. 

We will need terms for some types of cluster defined 
in behavioral terms. 

• An oscillator is a cluster which, if it were a pattern, 
would show periodicity: the CA's configuration would 
be the same at tx+r as at tx, where r is the period 
(which may be 1). 

• A repeater would also show periodicity if it were a 
pattern, but the definition is wider: the CA 's layout 
would be the same at tx+r as at tx. A repeater which 
is not an oscillator is a spaceship (i.e., it moves). 

• A quiet cluster consists of a set of repeaters, no two 
of which overlap the same 1-cluster, or would ever do 
so in an otherwise empty array. (This ensures that no 
two of the repeaters interact.) 

• An indefinite growth cluster would increase its number 
of cells without limit if it were a pattern; by definition, 
it would never become quiet. 

A cs-cluster, intuitively, is a cluster extended through 
some time-span. If we envisage a succession of CA fields 
"stacked" vertically5 , with the earliest at the base, each 
"slice" of the structure represents a time step and each 
"cell", a cell of the CA field at a particular step: a 
"cell-slice". Two cell-slices are "cs-neighbors" iff they 
belong to the same or adjacent steps, and their cells are 
neighbours in the CA concerned. We can define d-cs
clusters for any d. Two cell-slices are in the same d-cs
cluster with start and end steps ts, te, iff there is a path 
between the two along cs-neighbor links, which always 
passes from one state 1 cell to another when moving up 
or down a slice, and which never goes through more than 
d successive state 0 cell-slices within a slice. If ts = te, d
es-clusters correspond 1-1 with d-clusters. If we increase 
te by 1 without changing t., each of the d-clusters of the 

5We need not assume the CA is 1-d or 2-d ~ "stacking" 
is simply an aid to visualization. 

new te may act as a "bridge" between two or more pre
viously separate d-cs-clusters, but cs-clusters can never 
split. The ti slice of a cs-cluster is the set of cell-slices 
( ci, ti) belonging to that cs-cluster. We say a cs-cluster 
is quiet, or has indefinite growth, iff its top slice does. 

Cs-clusters with ts = 0 are rooted cs-clusters; we will 
be most interested in rooted 1-cs-clusters. If we removed 
all state 1 cells from an initial field, except those belong
ing to the t = 0 slice of a rooted 1-cs-cluster with end 
step te, that I-cs-cluster would be unaffected up to te. 

Statement of results 
Very sparse CA fields provide us with a logarithmic time 
scale of "eras" expressed in terms of p or its reciprocal 
N. "In era l", for example, means "after ,...., N steps"; 
"in era 3" means "after ,...., N 3 steps". All isolated clus
ters without indefinite growth become quiet during era 
0 (the "very short term"). The "short term" lasts un
til interactions between initially distant clusters become 
important dynamically. For GoL, the "medium term" 
certainly begins by era 5/2. "Long term" refers to what 
happens in the temporal limit; here, we do not go beyond 
era 3. 

Our specific claims concern the growing importance 
of "emergent" indefinite growth clusters after era 5/2 
and before era 3. If p > 0 but is low enough, a time will 
come when almost all 1-cs-clusters with indefinite growth 
have gained it through mergers of quiet 1-cs-clusters, 
with roots distant from each other. Also, the top slices 
of such I-cs-clusters will contain almost all state 1 cells 
which were in state 0 up to t = I, and the nearest such 
cell in an orthogonal or diagonal line from almost all 
points. These "emergent structures" thus "dominate" 
the dynamics of the field by providing most of the centres 
of growth in the state 1 population, and almost all state 
I cells - except those in minimal size original clusters 
which have remained isolated. 

Preparing to state our results, we first note that all 
t = 0 clusters of :::; 5 cells become quiet by t = 1105; 
all of :::; 9 cells, with an exception detailed later, by 
t = I 7410. We now define two conditions on indefinite 
growth I-cs-clusters. Those meeting condition A are cre
ated by merging at least 2 clusters (each starting from 
< 10 cells), all of which become quiet before the merger 
begins. Those meeting condition B (stricter than A), are 
created by merging at least 3 clusters (one starting from 
5 cells, the rest from 3) which all become quiet before 
the merger begins. In both cases, the quiet clusters that 
merge do not constitute the whole of a larger cluster at 
the time the last of them becomes quiet. 
(A) There is a t1 slice, ti :::; I 7410, consisting of 2 or 
more quiet clusters which do not all belong to the same 
rooted 1-cs-cluster with end step t 1, and each of which 
developed from a t = 0 cluster of< 10 cells. 
(B) There is a ti slice, ti ~ 1105, consisting of 3 or more 
quiet clusters, which do not all belong to the same rooted 
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1-cs-cluster with end step tj. One of these quiet clusters 
develops from a t = 0 cluster of 5 cells, the rest from 
t = 0 clusters of 3 cells. 
The following then hold: 

1. For any E > 2 ~~~, and any w < 1, there is a p such 
that there is a step te (te < p-E) at which a proportion 
> w of the indefinite growth rooted 1-cs-clusters meet 
condition A. 

2. For any E > 2 ~i and any x, y < 1 there is a p such 
that there is a step te (te < p-E) at which: 

(a) A proportion > x of all state 1 cells which were in 
state O up to t = 1 belong to rooted 1-cs-clusters 
which meet condition A. 

(b) For a proportion > y of all cells, the nearest state 
1 cells (along an orthogonal or diagonal line) which 
were in state 0 up to t = 1 belong to rooted 1-cs
clusters which meet condition B. 

3. For any E > 2 g~ and any z < 1, there is a p such that 
there is a step te (0 < te < p-E) at which a proportion 
> z of the indefinite growth rooted I-cs-clusters meet 
condition B. 

The first 17410 time steps 
In this subsection, when we say a quantity or ratio ap
proaches or tends to some value, it is to be understood 
that this occurs as p ~ 0. 

At t = 1, all clusters of size :::; 2 will vanish (and 
some larger ones). The formula 28(3-p)p3(1- p) 5 given 
for D(Lp,l) tends to 84p3 . By t = 2, all initial size 3 
3-clusters will have vanished except blinkers and those 
producing blocks (see the leftmost patterns in Figure 1). 
The same will be true of a proportion of size 3 1-clusters 
approaching 1. The ratio of blocks to blinkers tends to 
2:1 and D(Lp,2 ) tends to 22p3 • From t = 2 onward, the 
layout will, for a number of steps~ oo asp~ 0, contain 
mostly these blocks and blinkers, with the proportion of 
other cells approaching 0 asp does. (Collectively blocks 
and blinkers are "blonks"; those derived from 3 cells at 
t = O are "original blonks"; and we extend "original" 
to other clusters derived from minimal size clusters at 
t = 0.) . 

By t = 11, all the initial size 4 clusters which have not 
interacted with other clusters (approaching all of them 
asp~ O) will reach a stable state or a 2-cycle, producing 
"debris" in the form of oscillators scattered thinly among 
the original blonks: additional blonks, plus "beehives", 
"traffic lights", "ponds" and "tubs" (see Figure 1) in 
ratios approaching 58:12:4:1 (reflecting the numbers of 
cluster-types leading to each). 

Size 5 clusters give rise to two new kinds of oscilla-
b " l"d ,, tor. More significantly, some are or ecome g 1 ers -

the smallest GoL spaceship, which moves 1 link diago
nally in 4 steps - and others "r-pentominos", each of 

which produces six gliders, plus some oscillators. These 
two forms will be produced in a ratio approaching 8:9. 
Some of the r-pentomino predecessors take 1105 steps to 
become quiet. 
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Figure 1: Life-histories of some small patterns 

All clusters with 6, 7, 8 or 9 cells become quiet by 
t = 17410, except for some consisting of two sub-clusters, 
one of which emits a glider that later hits the other. In 
all these cases, the two sub-clusters both become quiet 
before t = 17410. 

Minimal patterns in GoL 

In analyzing very sparse CA fields, we are interested 
in the smallest clusters with particular dynamic prop
erties. We have seen the smallest persistent GoL clus
ters (3 cells), and the smallest spaceships and clusters 
with indefinite growth in diameter (5 cells). We recently 
found three 10-cell patterns that increase their number of 
cells without limit (linearly )6 . These patterns grow into 
"switch engines": patterns with a "head" which moves 
8 cells diagonally in 96 steps, and an ever-lengthening 
"tail" of oscillators. Two grow into the "block-laying 
switch engine" (see Figure 2, showing the head, going 
NW, and part of the tail, consisting wholly of blocks); 
the third into the "glider-stream switch engine" , with 
a more complex tail, and a stream of gliders the head 
"fires" ahead of itself. 

We also found the smallest known patterns with in
definite superlinear (in fact quadratic) growth. These 
have 130 cells, and use 16 interacting switch engines to 
build further switch engines indefinitely (the latter do 
not interact to produce a third generation). 

6 0utlines of the techniques used to show there are none 
smaller are available from Gotts, along with patterns men
tioned in the paper and software to run them. 
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In the long run, a GoL pattern's number of cells can 
at most grow quadratically; its diameter (as for any CA) 
at most linearly. Thus in very sparse fields, the to
tal density contribution of any type of original cluster 
at most grows ex: t 2 (interaction between clusters can
not overcome this limit, although it might produce new 
quadratic growth clusters). The linear limit on diameter 
growth means that an original cluster's distance from a 
given cell, or a straight strip of cells (such as a glider's 
prospective path) cannot shrink faster than ex: t. Even 
if there were 10-cell quadratic growth patterns (which 
seems highly implausible, but an exhaustive check has 
not been made), their total density contribution could 
not reach ,...., p4 until era 3. 

Collision sequences 

Consider the future of an original glider in a very sparse, 
random, infinite GoL field. The expected distance to the 
first original blonk so placed that the glider would inter
act with it is ,...., N 3 links, but for ,...., p2 of them it will be 
< N links, and in general,...., p3-E of them will have one 
at < N 3-E links. While original blonks remain much 
commoner than anything else, the rough proportion of 
original gliders that will have collided with one is eas
ily calculated. In the first l NJ time steps, ,...., p2 of the 
original gliders will have hit a blonk (,...., p3 of them will 
have hit something else instead). The same calculations 
apply to the gliders emitted by an original r-pentomino 
(a single glider going in one direction, and "fleets" of two 
and three in two others). 

The result of such an glider or fleet hitting a blonk 
depends on precisely how the collision occurs. Two of the 
12 glider/blinker collisions, and some of those between 

r-pentomino derived fleets and a blinker, produce further 
gliders (plus clusters of oscillators). If, contrary to fact, 
one of these collisions produced a cluster with indefinite 
linear growth, this process could have a significant effect 
on the overall field density by era 5/2. By this era, ,...., 
p112 of the original gliders would have taken part in such 
a collision, meaning that overall such a collision would 
have occurred "near" (within some small fixed distance 
of) ,...., p1112 of the cells in the field. Almost all such 
collisions would have generated a pattern containing ,...., 
N 512 cells, for a total density contribution of around 
,...., p3 the same order as for the original blonks. If 
the cluster were linear in shape as well as growth rate, 
an original fleet (we allow "fleet" to cover the case of 
a single glider) would be roughly as likely to hit such a 
resulting cluster as to hit an original blonk: the expected 
distance to either kind of obstacle would be ,...., N 3 . 

If a cluster with indefinite quadratic growth could be 
produced in this way, the same density contribution 
would be reached in era 5/3, when ,...., p413 of the gliders 
would have taken part in such a collision, and almost all 
would have produced ,...., N 1013 cells. However, an orig
inal fleet would not be likely to hit such a cluster until 
era 5/2. A cluster must spread across a fleet's path to be 
hit by it; the number of glider paths a cluster obstructs 
can at most grow linearly. To challenge the preponder
ance of fleet collisions with original blonks, the number 
of paths each member of a cluster type can be expected 
to obstruct, multiplied by the density of their starting 
points, must be ,...., ps. 

Of the two glider /blinker collisions mentioned above, 
one produces two new gliders, the other ("glider /blinker 
6") produces five (two travelling parallel to the incoming 
glider but shifted sideways, one antiparallel to it, two 
at right angles). The "onward" pair follow the same 
path, 52 "half-diagonals" from the path of the incomer 
(a "half-diagonal" is the least by which two parallel but 
distinct glider paths can differ). The "sideways" pair 
both travel in the same direction, but their paths are 53 
half-diagonals apart. 

If one of the fleets produced by a "first generation" 
collision itself hits something, then with probability al
most 1 this will be an original blonk, assuming indefinite 
growth clusters remain sufficiently rare. This collision 
may itself produce further fleets and another collision -
on the same assumption, almost certain to be with either 
an original blonk, or the oscillators left by the first col
lision. (The second possibility depends on exact details 
of the collisions, but the path of any backward glider 
from the second collision must at least pass close to the 
debris from the first, and prior to era 3, that debris is 
almost certain to be closer to the second collision than 
any original blonk in the path of any gliders produced.) 

We call a collision sequence involving only a single 
glider or r-pentomino, and a set of original blonks, a 



"standard collision sequence". The number of possible 
standard collision sequences grows rapidly with the num
ber of original blanks involved; the probability of any 
given sequence occurring falls correspondingly. 

Prior to era 3, and retaining our assumption about 
the rarity of indefinite growth clusters, the proportion of 
original gliders and r-pentominos taking part in standard 
collision sequences involving at least b original blanks by 
era E (after,..., NE steps) is,..., (p3-E)b, or,..., pb(3-E). We 
can neglect factors due to variation in the number of out
put gliders different collisions produce, as p is taken to 
be much smaller than any finite probability that occurs 
in the analysis. 

Collision sequences and self-replication 

Successive collisions with blanks can reduce any fleet to 
a single glider, and there is a 3-collision sequence leading 
from a single glider to an r-pentomino. Hence any cluster 
produced by a collision sequence starting from an origi
nal glider or r-pentomino, and which itself produces any 
gliders, can start a collision sequence leading to a copy 
of itself. Gliders, r-pentominos, and the glider fleets and 
other clusters produced by such collision sequences could 
all be considered to replicate themselves in sparse GoL 
fields, using the original blonks as raw material. 
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There are a number of possible objections to this de
scription of affairs. First, none of these patterns repli
cate "autonomously": all require interaction with ob
jects in a non-uniform environment. However, the same 
is true of real organisms; it is replication in an oth
erwise empty environment, as in (von Neumann 1966; 
Langton 1984) that is unnatural! 

Second, it could be said that this form of replication 
is "trivial". It does not use a universal computer, as in 
(von Neumann 1966), nor even have a "genome" which is 
both copied and read (Langton 1984). Some might there
fore prefer a term such as "auto-catalysis" rather than 
"self-replication". At any rate, it is clearly different from 
the kind of replication found in Fredkin's parity-rule CA 
(Gardner 1983), where any pattern self-replicates: only 
certain clusters can replicate, and different ones repli
cate themselves (and produce each other), with different 
probabilities. 

Third and most convincingly, no cluster is known to 
be able to replicate itself in this way with sufficient effi
ciency to increase its numbers indefinitely. Such a pro
cess could not in any case become self-sustaining until 
era 3, and other processes may radically alter the envi
ronment before then. Before turning to these, we show 
that fleets of any finite size can arise. 

Glider /blinker 6, as noted, produces a 2-glider fleet 
with a 53 half-diagonal sideways separation. One of 
these can collide with a blinker to produce two forward 
gliders one half-diagonal to the side of (and somewhat 
behind) the other member of the fleet. The first two of 

this fleet (the third neither helps nor hinders) can react 
successively with a block and another blinker to give a 
3-fleet, of which two again follow paths a half-diagonal 
apart. The process can then be repeated indefinitely, 
adding one glider to the fleet every two collisions. The 
extra gliders can also, with the right sequence of colli
sions, produce further half-diagonal pairs, giving a fur
ther kind of replication, of sub-fleets within a fleet. 

Switch engine construction/ destruction 

If there is a standard collision sequence which produces 
an indefinite growth cluster, its products would meet 
conditions A and B in the "Statement of Results" sub
section, and could dominate the dynamics of sparse GoL 
layouts before era 3 arrives. Collision sequences produc
ing indefinite growth clusters could make use of original 
clusters of > 5 cells, and/or of more than one cluster 
with > 3 cells at t = 0, but these would meet only con
dition A, and would occur much less often than standard 
collision sequences. We recently found a 96-blonk stan
dard collision sequence producing a block-laying switch 
engine. The first collision is glider /blinker 6. The next 
94, making use of the fleet-growing sequence described 
above, convert the sideways 2-fleet into a final 5-fleet. 
This collides with a final blinker to produce the switch 
engine. 

For a standard collision sequence producing a linear 
growth pattern and involving collisions with b original 
blonks, a first calculation suggests a density contribution 
of ,..., p3 in era 2 b!i. In this era, ,..., pb/(b+l) of original 
gliders and r-pentominos will have produced standard 
collision sequences involving at least b original blonks. 
Some fraction of these (not dependent on p and » p, if 
p is sufficiently low) will be the desired sequence. The 
pattern concerned will therefore have begun to grow near 
,..., p5 .tr of the cells in the array. Each one will reach a 
size of ,..., N 2 &ti during the era 2 b!i, for a total density 
contribution of ,..., p3 . 

This calculation neglects the fact that, at character
istic diameter ,..., N 512 , the rate at which clusters such 
as switch engines are struck by gliders will reach ,..., 1 
per step. This is before they would be expected to run 
into an obstacle, so long as the expected distance to such 
an obstacle is » N 512 • As a switch engine grows past 
a particular point, the nearest glider moving toward it 
will usually be ,..., N 5 links away, but for ,..., p512 cases it 
will be ,..., N 512 links away, and will hit the switch engine 
tail after ,..., N 512 steps. (This process will affect orig
inal indefinite growth clusters significantly in era 5/2.) 
Some infinite growth clusters are easily "killed" (their 
growth is halted). The glider-stream switch engine can 
be killed by a single glider hitting the glider stream, cre
ating an obstruction in the switch engine's path. The 
block-laying switch engine cannot be killed by a single 
glider, or fleet from an r-pentomino, but may be vulnera-



ble to multiple collisions of this kind. If so, both original 
switch engines and those produced by collision sequences 
will "die" when they reach ,...., N 512 cells. Moreover, it 
is conceivable that some sequence of collisions with the 
tail could "ignite" it and burn it away. 

We will show here that all the results claimed in the 
"statement of results" subsection will hold, even under 
the following conservative assumptions: 

1. Block-laying switch engines ignite and burn away at 
size,...., N 512 • 

2. Block-laying switch engines cannot be produced from 
a standard collision sequence involving fewer than 96 
original blonks. 

3. Collision sequences can make no other indefinite 
growth clusters from < 10 cell quiet clusters. 

In fact, we believe none of these assumptions hold, and 
that it is feasible to disprove the last two at least. We 
show in the next subsection that their failure to hold 
could not undermine our claims, but might enable us to 
strengthen them. 

The rate per step at which the 96 collision sequence 
produces switch engines, if nothing else interferes, de
pends on the product of the densities of original blonks, 
and of copies of the fleet produced by the first 95 col
lisions: ,...., p3 x (p5 x p95( 3-El) where E is the era. In 
era 2ill this will be ,...., p 2512 • in era 2 94 ,...., p9 • in era 
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2 i~~, ,...., p1712 . If block-laying switch engines burn away 
at size ,...., 5/2, we can expect, in any era after era 5/2, 
that a proportion ,...., 1 of those created in the last N 512 

steps will survive, but few others. Most will have a size 
of,...., N 512 cells. (In the eras of interest, and with plow, 
rate of production will be nearly constant over a period 
of N 512 steps. The process of burning away must it
self take ,...., N 512 steps.) The head of such a cluster will 
therefore be found near ,..., p10 cells in era 2 ~~6 (see claim 
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1) and,..., p6 in era 2 1~~ (claim 3). 
In any era after 2 ~~ the density contribution of switch 

engines from the 96 collision sequence would be > p4 . 

The commonest original indefinite growth clusters begin 
to grow near ,..., p10 cells, and even with quadratic growth 
would only produce a density contribution of,...., p4 in era 
3. Original 3 cell clusters that do not interact create no 
new state 1 cells after t = 1. Original clusters of > 3 
cells that do not help to produce indefinite growth can 
never contribute more than ,..., p4 . After era 2 ;i the 96 
collision sequence switch engines would therefore meet 
claim 2a. The expected distance to the tail of a 96 colli
sion sequence switch engine in a diagonal or orthogonal 
line would be < p4 , so claim 2b would also be met. 

The nearest cells to the quiet clusters of conditions A 
and B can safely be taken to belong to original blonks 
that do not take part in the collision sequences producing 
the switch engines. We lose a negligible proportion of 

clusters that would otherwise meet these conditions by 
assuming this, as the nearest original blonk to almost all 
initial clusters at any t ~ 17410 will be "' N 312 away. 
On the assumptions above, our 96-collision sequence will 
therefore produce indefinite growth rooted I-cs-clusters 
meeting all our claims. 

Possibilities for preemption 
If we assume that the block-laying switch engine would 
not burn away when it reached a size of ,..., N 512 , or 
even more strongly, that its growth would not be halted 
at that size, the growth targets set by our claimed re
sults would be met sooner than under our pessimistic as
sumption. In the case that growth is not halted (retain
ing our assumption that no faster construction processes 
are operating), we could make much stronger claims: in 
era 2~~, the density contribution of these switch engines 
would be ,...., p3 . In any subsequent era, the density could 
surpass K p3 for any desired constant K if we took p suf
ficiently low. (If glider bombardment from the side does 
not halt a switch engine's growth, it will continue to grow 
until it runs into something. Here, this would typically 
be another switch engine, in era 2 ~~, when the length 
of such clusters and the expected straight-line distance 
from a given cell to one of them are comparable.) 

If there are standard collision sequences using fewer 
than 96 blonks which lead to indefinite growth clusters 
(as is very likely), then again the targets set will be 
reached earlier than required. It would be surprising 
if the shortest such sequence produced anything other 
than a switch engine: experiments with various kinds of 
random pattern produced a switch engine once in around 
300, 000 tries, and never produced any other indefinite 
growth pattern. Nevertheless, it is not impossible. Fur
thermore, a sequence producing some other type of in
definite linear growth cluster could preempt the minimal 
switch engine producing sequence, if this cluster did not 
burn away at size ,..., N 512 (assuming the switch engine 
does), or did not have its growth halted (and the switch 
engine does). Such indefinite growth clusters are most 
likely to have heads that move orthogonally: many are 
known with heads that move at one link every two steps 
- and no finite pattern can move or grow faster than 
that indefinitely. If there are any indefinite growth clus
ters which can arise from a standard collision sequence, 
and which do not have their growth halted at ,..., N 512 

cells, then all our claims will be met, and the overall 
density of a sparse GoL field will exceed p3 before era 3. 

Whether or not they die, switch engines may also re
produce at size ,...., N 512 cells. Sequences of collisions 
between gliders and the tail may produce further switch 
engines, headed in any direction. This would be another 
form of self-replication, and might be efficient enough 
to produce quadratic growth of a "mycelium" in which 
the threads are individual switch engines. Alternatively, 
glider collisions with the tail could produce some other 



form of superlinear growth. Neither possibility under
mines our claims. 

Also possible is the production of superlinear infinite 
growth clusters directly from quiet clusters. These could 
make an important density contribution even if they 
arose only from non-standard collision sequences. (But 
recall that no cluster of size ~ 10 could be involved in a 
sequence producing a density contribution of ,..., p4 be
fore era 3.) Non-standard collision sequences involve 
either an original cluster of ~ 6 cells, or the ,..., p (or 
worse) chance of an original cluster other than a blonk 
being hit by a fleet from a sequence beginning with a 
5 cell cluster. They could not therefore produce indefi
nite growth clusters starting near as many as ,..., p6 cells 
before era 3. This means that no non-standard colli
sion sequence could interfere significantly with the 96-
collision sequence. Moreover, superlinear growth rates 
cannot change the rate of growth of cluster diameter, 
so no non-standard collision sequence could rival a stan
dard collision sequence in producing the nParPst state 1 
cell (not counting original blonks) 011 a11 ortboµ;onal or 
diagonal line from almost any point. 

Looking back at the "statement of r<'fmlt s ·· s11 hs<'ction, 
we are now in a position to affirm the cl:iims rnadc there. 
The 96-collision sequence could be prevented frnm bring
ing about the fulfillment of the c011ditions listi~d, but 
only if other processes that also build indefinite growth 
clusters from sets of small, quiet clusters do so first. In 
the case of claims (2b) and (3), only standard collision 
sequences (using at least two blonks) could do so; for 
claims (1) and (2a), the possibilities are wider, but still 
limited as required in those claims. 

Discussion 

We have shown that the medium-term dynamics of 
sparse random GoL fields will be dominated, in ways we 
can make precise, by emergent structures, and that some 
simple forms of self-replication will occur. So far as GoL 
itself is concerned, considerable further progress may be 
possible. It is certainly feasible to check whether the 
two switch engines are indeed the only 10 cell indefinite 
growth patterns. It may be possible to find the mini
mal collision sequence that produces indefinite growth 
clusters, to discover whether the block-laying switch en
gine is vulnerable to glider bombardment when it reaches 
size ,..., N 512 , and to prove that there are other indefinite 
growth clusters which can be produced by collision se
quences and which are not vulnerable. 

So far as other CA are concerned, work is already in 
progress both on the "elementary" 1-d CA (for example, 
the smallest indefinite growth pattern for that generally 
called ECA 120 (Braga et al. 1995) grows ex t 112 , which 
does not appear to have been noted before), and on CA 
closely related to GoL. Of these, the most interesting 
may be "HighLife" (Bell 1994), which differs from GoL 
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only in that a cell switches from 0 to 1 iff either 3 or 
6 of its non-self neighbours are in state 1. Many GoL 
patterns "carry over" to HighLife, but there are two ma
jor differences. First, no standard collision sequence can 
get going: the glider carries over, but its collisions with 
blonks produce no new gliders, and there is nothing cor
responding to the r-pentomino. Second, there is a 6 cell 
cluster with indefinite growth, of a kind which is difficult 
(though possible) to produce in GoL: at ever-increasing 
intervals, the number of cells returns to a fixed figure 
(20), then rises to new heights. The effect is to "em
bed" copies of the 1-d CA known as ECA 18 into the 
HighLife field. It turns out that when these copies reach 
a size ,..., N 512 in a very sparse field, a single glider can 
cause them to self-replicate. 

This raises a wider point. Both these CA show com
plex behavior, but the two are very different, and how 
the differences manifest themselves depends on the range 
of initial conditions tested. Also, the features displayed 
in very sparse random fields are the outcome of inter
play between patterns whose behavior depends on de
tails of the transition rule, and can be radically changed 
by small changes in the rule. The relative sizes of the 
smallest clusters with crucial dynamic properties are im
portant, as are the interactions of these minimal clusters. 
The approach taken, like the work of (Dhar et al. 1995; 
Hanson and Crutchfield 1997) and others, casts doubt 
on claims that CA fall into a few "universality classes" 
within which the details of rules do not matter much. 
Whether this is so appears to depend on how you look 
at them. 
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Abstract 

The phenomenon of death, or disappearance of life, has 
two aspects. One is failure in the function of life and 
the other is dissolution of the structure of life. In or
der to examine the significance of the latter aspect, 
the author contrived a "structurally dissolvable self
reproducing (SDSR) loop" by introducing the capability 
of structural dissolution into Langton's self-reproducing 
(SR) loop in which death as functional failure has al
ready been installed. To be more specific, a dissolv
ing state '8' was introduced into the set of states of the 
CA, besides other modifications to Langton's transition 
rules. Through this improvement, the SDSR loop can 
dissolve its own structure when faced with difficult situ
ations such as a shortage of space for self-reproduction. 
This mechanism (disappearance of a subsystem of the 
whole system) induces, for the first time, dynamically
stable and potentially evolvable behavior into the colony 
of SDSR loops. 

Introduction 
This study is an attempt to introduce death as structural 
dissolution into Langton's self-reproducing loop (abbre
viated as "SR loop" in the following) in which death 
as functional failure is already featured. While it was 
motivated simply by the author's desire to allow SR 
loops to continue with their characteristic behavior semi
permanently within finite memory space, it also creates 
a means to investigate the significance of a death-process 
for the dynamics of life. 

What is life? How does a living system behave? To 
answer any of these basic questions, so far many kinds of 
behavior characteristic of life have been studied, such as 
self-reproduction, metabolism, physical motion, percep
tion, learning, immunity, inheritance, evolution, emer
gent behavior of population, death, and so forth. Ac
cording to these studies, life has been defined many times 
in many ways. We temporarily and simply define life 
here only via its behavioral aspects, as a complex system 
which adapts to and affects the external environment, 
and also has the capability of self-reproduction and evo
lution. Among these characteristics of life, it may be no 
exaggeration to say that death is one of the phenomena 
which are examined relatively less than the others. 

What is death? What kind of behavior do we call 
death? At least we can say as a trivial definition that 
death is a state transition of a system from a living state 
to a non-living one. Though we also need definitions 
for the living state and the non-living state in order to 
complete this statement, we do not want to consider it 
too deeply here. For the time being, here we will define 
the living state to be a state in which a system func
tions correctly and shows the above-mentioned behavior 
characteristic of life. "Death of life" as a state transition 
from the living state to the non-living caused by loss of 
sound function of the system is, for now, referred to as 
death as functional failure in this article. 

In practice, however, there are many cases in which we 
view the cessation of life not only as functional failure 
but also by the disorganization of the physical struc
ture of a system. Here, we shall refer to this, again 
for the time being, as death as structural dissolution. 
For example, all terrestrial creatures including human 
beings will be decomposed into organic compounds by 
their own function and other microorganisms after death 
due to functional failure, unless a special treatment for 
preservation is applied to their corpses. Moreover, it 
is clearly understood that in the engineering techniques 
represented by genetic algorithms, e.g., or in artificial 
ecosystem simulations like Tierra, death of an individ
ual implies not only their functional termination but also 
removal of them from the memory space of computers. 
Thus, it is obvious that the value of death for a system 
in a finite environment would not only be functional fail
ure, but in fact in the structural dissolution associated 
with it. However, death has never been discussed while 
drawing a distinct line between these two aspects. 

Therefore, we aim here at elucidating the significance 
of death as structural dissolution by introducing it into 
a system in which it was previously absent, and chose 
Langton's SR loop for the subject matter. A new state 
'8' was introduced into the set of states of the CA, while 
states '0'-'7' and Langton's transition rules were pre
served in order to completely emulate the properties of 
the SR loop. Transition rules governing the behavior 
of the new state '8' were designed in such a manner as 
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Figure 1: Configuration of Langton's SR loop. Six signal 
states '7' (each of which make the arm grow straight for one 
cell) and two signal states '4' (which make the arm turn left) 
are set in the 'Q'-shaped tube enclosed by sheath states '2'. 
The right chart indicates the correspondence between states 
of cells and shades of pixels in the figure. The following 
figures are also drawn according to this chart. 

Time= 0 Time= lOO 

Time= 40 Time=l20 

Time= 60 Time=l40 

Time= 80 Time=l51 

Figure 2: Self-reproduction of the SR loop. As signals in the 
loop propagate counterclockwise, copies of them are made 
and sent toward the tip of the arm. The arm grows through 
repetition of straight growth and left turning ( time=40- 100). 
When the tip reaches its own root after three left turns, they 
bond together to form a new offspring loop. Then the con
nection between parent and offspring disappears (time=120-
140) . In such a way, the loop reproduces its offspring which 
has a structure identical to its parent's in the right area, in 
151 updates (time=151). 

to give state '8' the meaning of a dissolving state which 
can propagate along the tube of the loop and dissolve 
the neighboring structure. Such an improved loop was 
termed "structurally dissolvable self-reproducing loop" 
( "SDSR loop" .) Through experiments with the SDSR 
loop, several interesting phenomena never previously 
seen in the world of SR loops were observed. 

This article consists of five parts: Review of Lang
ton's SR loop, explanation of a concrete method for im
plementation of the SDSR loop, observation of results 
of experiments using the SDSR loop, several discussions 
about them, and a brief conclusion. 

Langton's Self-Reproducing Loop 

Langton's SR loop (Langton 1984) is one of the most fa
mous models of self-reproduction constructed by means 
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Figure 3: Death as functional failure of the SR loop. The 
right loop tries to thrust its arm to the left (time=438). Since 
the left area is already occupied by another loop, however , 
a sheath fragment is generated on the pathway of signals at 
the upper left part of the right loop (time=442). Signals 
propagating in the loop are absorbed one after another by 
the generated fragment (time=446-462). Eventually, all the 
signals have been extinguished, and only a circular tube filled 
with core states are left (time=466). 

of cellular automata (CA). Langton invented it in order 
to reveal that universality of construction is not neces
sary for self-reproduction. The SR loop is implemented 
in an 8-state 5-neighbor CA. Its configuration is shown in 
Figure 1. Signal states '4' and '7' are set to float in the 
'Q'-shaped tube enclosed by sheath states '2'. Signals 
propagate along the tube in the direction of the neigh
boring core state 'l '. When a signal reaches the tip of a 
construction arm which is thrust outward from the loop, 
translation from genotype to phenotype will occur, such 
as straight growth or left turning of the arm. When the 
tip of the arm reaches its own root after it turned left 
three times, tip and arm bond together to form a new off
spring loop, and then the connection between parent and 
offspring-which Langton called the "umbilical cord" -
disappears . In such a way, the SR loop is ingeniously 
designed to reproduce itself in just 151 updates. This 
method of self-reproduction is shown in Figure 2. Since 
the specifications of the SR loop are described at length 
in Langton's paper, details are omitted here. 

When the SR loop finishes self-reproduction, it will 
try to do the same again in the same way but rotated by 
ninety degrees counterclockwise. It repeats this action 
forever while there is enough space for self-reproduction. 
If an area in which the loop wants to place its offspring 
is already occupied by others, it generates a new sheath 
fragment in the tube to obstruct the pathway of signals. 
Then, signals in the loop become extinct one after an
other, being absorbed by the obstacle fragment. Finally, 



only a circular tube filled with core states is left, by it
self. The manner by which this proceeds is shown in 
Figure 3. Thus, death as functional failure is certainly 
present in the SR loop. However, it is not equipped with 
the capability of death as structural dissolution, except 
for partial dissolution: the disappearance of the umbili
cal cord. 

A Structurally Dissolvable 
Self-Reproducing Loop 

In order to accomplish at the same time the following 
two tasks-to completely emulate the above-mentioned 
properties of the SR loop and to introduce the capabil
ity of structural dissolution, it was decided to introduce 
a new dissolving state '8' into the set of states of the 
CA, while exactly preserving the states '0'-'7' and all 
the transition rules proposed by Langton1 . We expected 
that structural dissolution would be rr:dized through 
propagation of this dissolving state alor1g the tube of 
the loop. Details of this implementc\1 i<lJ1 are 'lescribed 
in below. 

First, we need to address a technical pu1riJ .. ·1,i rnherent 
in the rules published by Langton, as tlios(' \\·c-n· limited 
to an indispensable rule set for simple sclf-n·prnrluction 
only, while many situations ( "neighlH 1rboodc · ) ~till re
mained undefined. We suppose that Laugtun implicitly 
assumed that the environment in which the loops would 
expand was itself infinite, so that the loops would not 
encounter any irregular situation not previously defined 
in the transition rules. However, if space is designed to 
be finite by imposing periodic, or free, boundary condi
tions at the edges, it is obvious that those inhabitants 
will eventually face the limitation of space and the ap
pearance of irregular situations will cause their activities 
to halt. To avoid this inconvenience, before introducing 
the possibility of structural dissolution, the transition 
rules needed to be extended to redefine rules which had 
been left undefined in Langton's SR loop, by a natural 
extension of the ideas of Codd and Langton (Codd 1968; 
Langton 1984) as follows: 
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1. A background state 'O' in the tube next to a core state 
'1' will turn to 'l'. All other 'O's will remain as is. 

2. A core state '1' in the tube next to a signal state '7' 
will turn to '7'. Or, a 'l' in the tube next to a signal 
state '6' will turn to '6'. Or, a '1' in the tube next to 
a signal state '4' will turn to '4'. 

3. Signal states '4', '6' and '7' in the tube next to 'O' will 
turn to 'O'. 

4. A sheath state '2' next to a signal state '3' will turn 
to 'l'. Or, a '2' next to another '2' will remain as is. 

1 As we remark later, there is one exception to this com
plete preservation. 

Extensions 1, 2 and 3 define general rules for propagation 
of signals in the tube, and extension 4 defines general 
rules for the connection of two tubes. The criterion for 
judgment whether a cell is in the tube or not was taken 
to be whether at least two cells in the state 'l ', '2 ', '4', 
'6' or '7' are included in the four cells neighboring itself. 

Second, a new dissolving state '8' was introduced into 
the set of states of the CA with the following transition 
rules: 

1. A state '8' will unconditionally turn to 'O'. 

2. When neighboring an '8', 

(a) both background states and core states ('O' and 'l') 
will turn to '8' if there is a sheath state or a signal 
state in the four cells next to themselves. This rule 
represents infection of dissolving states. Otherwise, 
they will remain unchanged. 

(b) a sheath state and several signal states ('2', '3' and 
'5 ') will turn to 'O'. This rule represents dissolution 
of tube structure. 

(c) the remaining signal states ('4', '6' and '7') will turn 
to 'l '. This rule represents dissolution of signals in 
the tube. 

Owing to these rules, the dissolving state acquires the 
ability to propagate along the tube and dissolve a neigh
boring tube structure. The direction of propagation of 
a dissolving state is the same as that of the signals' flow 
in the tube, because, if it propagates against the sig
nals' flow, it is blocked by the sequence of signals. This 
behavior of the dissolving state is shown in Figure 4. 

Third, only one alteration was made in the transition 
rules inherited from Langton as follows: 

CTRBL I 
11152 2 

CTRBL I 
11152 8 

Here, CTRBL and I stand for the states of neighbor cells 
and the image of transition, respectively. This alteration 
implies that the SDSR loop will generate a dissolving 
state in itself for the situation in which the SR loop will 
generate a sheath fragment in itself at the beginning of 
death process. 

Fourth, finally, it was decided that all the rules left 
undefined after the above definitions are implemented 
are uniformly directed to the dissolving state '8'. 

Via the previous definitions, once a site takes on the 
dissolving state, a continuous structure which includes 
that site will be extinguished quickly by the dissolving 
state propagating in the tube. Thus, the SDSR loop ac
quires the capability of structural dissolution in addition 
to self-reproduction. 

The SDSR loop designed here can dissolve itself in the 
manner depicted in Figure 5. This can be regarded as a 
phenomenon similar to programmed death of biological 
cells, such as apoptosis. However, it is important to 
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Figure 4: Behavior of the dissolving state '8'. Cells not 
explicitly specified are in background state 'O'. When a dis
solving state propagates in the same direction as the signal 
flows (left), it can completely dissolve the structure to the 
tip of the tube. However, when a dissolving state propagates 
against the direction of flow (right), it is blocked by these
quence of signals. For these reasons, a dissolving state will 
extinguish the tube structure along the same direction as the 
signals' flow. 

Time =434 Time=454 

Time=438 Time=458 

Time=442 Time=462 

Time=446 

Time=450 

Figure 5: Death as structural dissolution of the SDSR loop. 
The right loop tries to thrust its arm to the left (time=438). 
Since the left area is already occupied by another loop, how
ever , a dissolving state is generated on the pathway of signals 
at the upper left part of the right loop (time=442) . The dis
solving state propagates counterclockwise along the tube and 
dissolves neighboring sheaths one after another (time=446-
462). Eventually, the structure of the right loop has been 
completely dissolved (time=466- 470). 

point out the fact that structural dissolution of the SDSR 
loop is programmed not in the genes of a living organism, 
but into the transition rules, the natural laws of the very 
world. 

In addition, the SDSR loop also acquires some abil
ity to overcome external difficulties. For example, when 
several obstacles are placed in front of the loop, it is pos
sible that the loop eliminates them by dissolving its or
gan (i.e ., the tip of the arm) together with obstacles and 
reproduces itself correctly, as shown in Figure 6. This 
can be regarded as a phenomenon similar to the cutting 
of a lizard's tail, or the vomiting of internal organs of sea 
cucumbers, that is, the action of disposing partial organs 
of an individual in order to overcome external difficulties 
and achieve survival of the individual. 

Experiment 
In this section, several experiments using SR loops and 
SDSR loops are reported. The SR loop is provided with 
the same extension of transition rules as the SDSR loop 
except for the rules concerned with the dissolving state 
'8 '. All sites under undefined situations in the SR loop 
are set to remain as they are. 

Self-reproduction in infinite space 

The first experiment is to breed loops with no restriction 
due to finite space. Figure 7 shows the development of 
the spatial distribution of SR loops and SDSR loops in 
infinite space, compared with each other. One genera-
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Figure 6: Structural dissolution of organs of the SDSR loop. 
Two sheath fragments are placed in the area in which the 
loop intends to reproduce its offspring (time=O). As the 
loop thrusts an arm, a dissolving state appears because of 
collision of a tip of the arm with a sheath fragment. The 
dissolving state extinguishes the fragment together with the 
tip (time=20 -100). After the loop has managed to eliminate 
obstacles in such a way, it reproduces the offspring correctly 
into the right area (time=150- 190). However, because the 
length of the arm is changed in the process of elimination of 
fragments, an inconsistent situation with the mechanism of 
the loop has developed in the parent, and the structure of 
the parent loop is consequently dissolved (time=190- 230). 

tion takes 151 CA updates, which the loop needs for one 
complete self-reproduction . 

The behavior of SDSR loops at the edge of the colony 
is identical to that of SR loops at the same location, be
cause there is no deficit in space so that no dissolving 
states appear in the SDSR loops at that point. How
ever, at the core of the colony, it is observed that many 
SDSR loops dissolve their own structure and provide new 
space for neighbor loops to reproduce themselves, while 
corpses of SR loops which died because of functional fail
ure remain at the same location in the "control" world of 
SR loops. Thus the colony of SDSR loops appears more 
sparse. 

Figure 8 shows the temporal development of the 
number of living individuals in the process of self
reproduction of both SR loops and SDSR loops. We 
can see from this figure that the number of living SDSR 
loops is much larger than that of living SR loops. Since 
SDSR loops can reproduce into the central area of the 
colony (which is filled with corpses in the world of SR 
loops,) they arrange themselves into the shape of a 
collapsing spiral. We can therefore estimate that the 
number of living individuals of SDSR loops approaches 
O(Generation2 ) as time proceeds, substantially different 
from the number of living individuals of SR loops, which 
is estimated to be O(Generation) as they can reproduce 
only at the edge of the colony. 

Self-reproduction in finite space 

The second experiment involves breeding loops in finite 
space. Under this condition, the advantage of SDSR 
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Figure 7: Development of spatial distribution of SR/SDSR 
loops in infinite space. Each picture is scaled differently to 
the size of the colony. 
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Figure 8: Development of the number of living loops in Fig
ure 7. The curve of Generationl. 7 is drawn for reference. 

loops will become even more apparent than in the former 
experiment. Figure 9 shows the evolution of the spatial 
distribution of SR loops and SDSR loops in finite space, 
just as in Figure 7. The size of the space is restricted 
to 200 x 200 sites, where wrapping (periodic) boundary 
conditions have been applied in both x and y directions. 

In the world of SR loops, when the opposite edges 
of the colony collide with each other due to the period
icity of space, the irregularity of the emerging situation 
leads to a failure of the loops' function, so that their self
reproductive behavior halts. Eventually, the entire space 
is filled with static patterns including corpses of loops. 
After that , no changes can happen in this world ever 
more. On the other hand, in the SDSR loops' world, as 
new regions, which can be used for self-reproduction of 
new loops, are produced continuously by structural dis
solution, the self-reproduction of loops is actively main
tained. Although SDSR loops have a probability of ac
cidental extinction of species caused by structural disso
lution, they continue self-reproduction for a significantly 
longer period longer of time, at least ten thousand gen
erations in this experiment. Thus, there can be no doubt 
that SDSR loops have attained a semi-permanent state 
of dynamic stability, while SR loops tend to fall into a 
static state without living behavior. 

In addition, we observed a number of merged loops, 
strange configurations shown in Figure 10, which were 
produced in the course of self-reproduction of SDSR 
loops. Because SDSR loops can continue their self
reproductive behavior for a long period owing to struc
tural dissolution, they are faced many times by rare sit
uations which can produce these merged loops by direct 
interaction of phenotypes. However, since they are gen
erated by bonding arms of more than one loop, they 
are destined to lose their construction arms which are 
necessary for self-reproduction. In this sense, they can 
be regarded as corpses having lost the capability of self-

Generation SR loop SDSR loop 

10 

13 

15 

20 

100 

1000 

10000 

Figure 9: Development of spatial distribution of SR/SDSR 
loops in finite space. Each picture is scaled to 200 x 200 cells. 



Figure 10: Examples of merged loops produced through the 
interaction of phenotypes of SDSR loops in the course of self
reproduction in Figure 9. 

4 7 9 10 12 

Figure 11: Examples of loops of different species. The name 
for each species is (temporarily) the number of signal states 
'7' contained in the loop of that species. 

reproduction because of functional failure. 

Struggle for existence in finite space 

The third experiment is to observe the struggle for ex
istence among SDSR loops of different species in finite 
space. Even though Langton's loop contains exactly six 
signal states '7', we can construct loops of arbitrary size 
using extended transition rules, as long as no less than 
four signal states '7' are contained in the loop. Figure 11 
shows examples of loops of different species. 

When loops of two different species were placed and 
bred in the same finite space, we observed that in the 
SDSR loops' world one species drove the other into ex
tinction in less than ten thousand updates. Figure 12 
shows an example of competition between species 4 and 
6. It is observed that small species generally fit this 
world better than big ones. This is a trivial result as 
the smaller the size of loops, the faster they can repro
duce themselves (as the gestation time is shorter) and 
the slighter the damage due to structural dissolution for 
the entire colony. 

Discussion 
Significance of structural dissolution 

In the previous sections, we compared the behavior of 
SDSR loops to that of SR loops. Both loops are iden
tical to each other except for the rules concerned with 
the dissolving state '8'. As a result, SDSR loops show 
several unique phenomena never observed in the world 
of SR loops, such as (1) an ability to overcome external 
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Figure 12: Example of struggle for existence between loops 
of species 4 and 6. At the beginning, loops of species 4 are 
placed in the upper left and lower right regions of the space, 
and loops of species 6 in the upper right and lower left regions 
(time=O) . As time proceeds, loops of species 4 show that they 
are superior to those of species 6 (time=l000-3000). Even
tually all loops of species 6 are exterminated (time=4000) . 
Each picture is scaled to 200 x 200 cells. 



difficulties by means of organic dissolution, (2) signifi
cant increase in the number of living loops when bred 
in infinite space, (3) continuous self-reproduction in fi
nite space, (4) production of many merged loops in the 
course of self-reproduction, and (5) competitive exclu
sion acting between loops of different species. 

Because the phenomena (2), ( 4) and (5) can be re
garded as by-products of (3), the substantial meaning of 
structural dissolution lies in (1) and (3). The difference 
between them is the level at which structural dissolu
tion occurs: the organic, or the individual, level. Even 
though we usually view the latter as the cessation of life, 
the level of dissolution is actually not essential to the 
consideration of the behavior of the whole system. The 
important fact is that both (1) and (3) have a common 
point in being a phenomenon of disappearance of a sub
system which becomes inconsistent with the environment. 

Thus, it is evident that structural dissolution functions 
as a kind of negative feedback mechanism. Resources 
having been owned by the dissolved subsystem will be 
re-utilized by the other subsystem. Repetition of such 
processes provides the whole system with dynamic and 
adaptive stability, and furthermore, probability of evo
lution. For instance, an individual can secure its living 
state by dissolution of partial organs, and a colony can 
continue its dynamic behavior by dissolution of individ
uals. 

Strategic death based on structural 
dissolution 

121 

Note again here that the mechanism of structural dis
solution in this study is not described in the "genes" of 
the loops, but rather is embedded in the transition rules 
which govern the dynamics of the CA. In contrast, as was 
pointed out by Todd (Todd 1993), if death is genetically 
programmed in individuals, those individuals are sub
ject to being driven into extinction in the course of nat
ural selection by the emergence of immortal individuals 
which have lost their genes of death. Still, many genes 
concerned directly with aging and death have recently 
been discovered and discussed in the field of molecular 
genetics. These discoveries teach us that death is effec
tively preprogrammed in real creatures by genetic means. 
What, then, should we conclude from the fact that ge
netic programs implying aging and death actually exist 
while avoiding being eliminated through natural selec
tion? 

We would like to offer the guess that death pro
grammed by genetic means can be effective and remain 
in the population if a primitive mechanism of structural 
dissolution is embedded in the basic laws of Nature, such 
as the transition rules of CA adopted in this study. In 
other words, if the world is furnished with the rule that 
everything will change sometime no matter how much 
you invest to preserve it, the strategy of dynamic devel
opment of structures with positive dissolution of them 

will be more efficient than the strategy of static main
tenance of fixed structures, and as a consequence death 
programmed in genes can be selected by living organ
isms. The other extreme of self-preservation is to force 
continuation of existence by constructing extra-strong 
structures in a static equilibrated system without dis
solution, such as the structure of carbon atoms in di
amond. However, such structures are generally simple, 
regular and static, and cannot be the source of complex 
and dynamic behavior characteristic of life. Because life 
is a structure which emerges in a system far from equi
librium, there may always be an essential probability of 
it changing its phase. Then, it is much more likely that 
strategic death has an advantage over other strategies 
and becomes the substantial characteristic of life. 

Primitive evolution in SDSR loops' world 
Before concluding this article, let us briefly consider here 
the evolvability of SDSR loops. The fact that both al
teration of phenotypes caused by their direct interaction 
and competitive exclusion acting between loops of dif
ferent species are observed in the world of SDSR loops 
suggests that the SDSR loop is potentially evolvable with 
mutations caused by the interaction of phenotypes. It is 
easy to imagine that, if a self-reproducing offspring dif
ferent from its parent loop appears through a situation 
such as the merger of parent loops, and if it fits the laws 
of the world better than its parents, that it would spread 
through space and drive the parent species into extinc
tion. 

On the other hand, we usually think that the phe
notype of life develops mostly according to its geno
type, so that the evolution of life is caused by acciden
tal changes which might occur to its genotype. This 
principle is based on the idea that a biological cell is 
regarded as a universal constructor which can control 
external/internal environments well and faithfully con
struct another cell according to DNA 'tapes.' Of course, 
this is almost certainly true with respect to sophisticated 
li~e forms such as eukaryotic organisms including human 
beings. 

However, as mentioned by Langton (Langton 1984), 
there can be little doubt that life at the ancient dawn 
was not a universal constructor. At that time, the geno
types of living objects may have been physical structures 
at the same scale as their phenotypes, so that the geno
type may have had some phenotypical character, and 
vice versa. Thus, it is very likely that evolution of life at 
that time was accomplished not only by change of geno
types but also by such environmental factors as direct 
interaction of phenotypes-in other words, such envi
ronmental factors could alter how the genotype is inter
preted into a phenotype. Production of merged loops 
in the world of SDSR loops resembles the beginning of 
such a process of primitive evolution. Since both geno
type and phenotype of the SDSR loop are configurations 



of the same scale which can affect each other, the SDSR 
loop (after some further development) will be a useful 
model for investigating the primitive evolution of life. 

Conclusion 
In this study, the SDSR loop which has the capability of 
structural dissolution was implemented through an im
provement in Langton's SR loop. According to the re
sults of several experiments using SDSR loops, remark
able behavior of dynamic stability and potential evolv
ability was observed, which has never been seen in the 
world of SR loops. 2 

We believe that, through the extension of rules given 
in this study, Langton's SR loop having been no more 
than a simple model of self-reproduction has begun to 
step toward an entity which could well contribute to the 
elucidation of the dynamics and history of life. With 
this conviction, we are now tackling the question how 
the SDSR loop can be made to actually evolve. This 
effort would represent the basis for the process of natural 
selection and evolution by means of a set of interacting 
virtual state machines embedded in CA, as foretold by 
Langton (1986). 
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Abstract 

In biological systems higher order hyperstructures seem 
to occur both in an intuitive and a formal sense. Starting 
at a molecular level of description we have: molecules, 
polymers, supramolecular structures, organelles, cells, 
tissues, organs, etc. But in models and simulations of 
these systems it has turned out to be difficult to produce 
higher order emergent structures from first principles. 
We demonstrate how monomers (first order structures) 
compose polymers (second order structures) which in 
turn can assemble into ordered, micellar (third or
der) structures, which in turn can self-reproduce as 
they catalyse the formation of additional amphiphilic 
molecules. Processes of this particular kind have prob
ably been important for the origins of life. 
Our molecular system is defined on a 2-D lattice and 
the dynamics is modeled as a discrete automaton. In 
this system all interactions (electromagnetic forces) are 
decomposed and communicated via propagating infor
mation particles. Each lattice site has an associated 
data structure where molecules are represented by in
formation particles and their associated force fields (ex
cluded volumes, kinetic energies, bond forces, attractive 
and repulsive forces) are decomposed and propagated as 
information particles as well. The propagation- and in
teraction rules a.re derived from Newton's Laws. 
Based on this self-assembly and self-reproduction exam
ple it is possible to extract some of the principles in
volved in the generation of higher order (hyper-) struc
tures and relate them to dynamical systems. An Ansatz 
for generating higher order structures in formal dynam
ical systems is given. 

Introduction 
One of the key steps in the origin of life and also one 
of the key elements in making a proto-cell is the emer
gence of a protecting 'shell' within which a more stable 
and controlled environment can be maintained (Schnur 
1993). Such a shell must be able to self-reproduce to
gether with a templating molecular complex (a prim
itive genome) and a simple aggregate that is able to 
harness external energy (a proto-metabolism), presum
ably of chemical nature (Deamer 1997). The most primi
tive, known self-reproducing shell-aggregate is a micelle. 
Luisi and his group pioneered this experimental work 

in 1990 (Bachmann et al. 1990) and have later elabo
rated on this scenario to include self-replicating RNA 
within a self-reproducing liposome yielding simultane
ous core- and shell-replication (Oberholzer et al. 1995) 
as well as specific shell-shell recognition (Berti et al. 
1997). The main topic of the present paper is to study 
the self-assembly of micelles and concomittant micelle 
self-reproduction in simulation using realistic models for 
the relevant physico-chemical interactions. 

A step by step aggregation of molecular elements can 
lead to the emergence of novel functionalities as it must 
have happened in the processes that eventually lead to 
the origin of life. However, the same phenomenon is 
found in contemporary living systems as they also have 
clear functionalities to emerge at different levels: 

molecules -t organells -t cells -t tissues -t etc. 

At each of these levels of description we can observe dis
tinct properties which only have a meaning at this par
ticular level and where each of the levels is generated 
by the levels below. A dynamical system organized in 
this manner defines a dynamical hierarchy (Baas et al. 
1996). The above identification of levels of course has 
many sub-levels. It should also be noted that it does not 
define a strict hierarchy. Communication can and does 
indeed occur between, e.g., level 1 and level 5. In this 
paper we demonstrate how a 3-level dynamical hierar
chy can be generated in a formal system and show how 
our Ansatz to do this also works in the general case for 
even higher order systems. A more detailed discussion 
of these issues can also be found in Baas et al. ( 1996). 

There are two significant reasons why it is not trivial 
to generate a dynamical hierarchy in a formal system : 
(i) It involves multilevel dynamics-that is simultaneous 
dynamics on several time- and length scales-which re
quires large computational resources. (ii) The natural, 
conceptual framework for such a system seems to be a 
set of interacting objects and not a closed form model 
as, e.g., a differential equation system. How to form 
the higher oder structures from the bottom up becomes 
simple in systems of interacting objects. For example, 



starting with objects that are models of monomers it is 
trivial that the monomer objects can form polymers as 
they are combined into a string. Now the polymers can 
form membranes as they are aggregated in a particular 
fashion, and so forth. A systematic study of systems of 
interacting objects, including cellular automata, is a rel
atively recent scientific activity (Wolfram 1986, Langton 
etal. 1989). 

It turns out that a formulation of a dynamical hier
archy can be made conceptually simple if the interact
ing objects are defined on a lattice. Furthermore, the 
most promising results on modeling macroscopic effects 
in chemical systems based on a fine grained system rep
resentation are based on lattice-type simulation methods 
(Chen et al. 1992, Ostrovsky et al. 1995, Coveney et al. 
1996, Emerton et al. 1997). Thus, we introduce a lattice 
gas style (Frisch et al. 1986), discrete field simulation 
concept (Rasmussen and Smith 1994, Baas et al. 1996, 
Mayer et al. 1997, Mayer and Rasmussen 1998) which al
lows to simulate micelle formation and self-reproduction 
as well as demonstrate some of the fundamental formal 
properties of a dynamical hierarchy. 

Emergence of Dynamical Hierarchies 
We have just discussed the notion of dynamical hierar
chies in the context of chemical and biological systems. 
In order to understand them better, i.e., their use as well 
as their synthesis, it is important also to have formal 
systems in which such structures can be generated. In 
general when higher order structures occur, new proper
ties a.rise at ea.ch level-for example through aggregation. 
This means that in this context we will be looking for 
objects or aggregates with new properties. An obvious 
question is then what new really means? This brings us 
into the basic discussion of emergence and the notion of 
an observer. For a general discussion of emergence and 
higher order structures we refer to Baas (1993) where a 
suitable framework is given in which these concepts can 
be discussed. How this connects to dynamics we refer to 
Rasmussen and Barrett (1995). Let us just recall briefly 
a few basic notions (Baas 1993). We consider families of 
objects or structures s; of first order 

s; = s;urs,Sr,Tr), r,S = 1,2, .. . ,n (1) 

where Sr is the state of the object, f rs defines the object
object interactions, and Tr is the local object time. In 
addition we need to define an update functional U which 
schedules the object updates (e.g., parallel, random, 
event driven), which together with the interaction rules
given by fr 8 -defines the dynamics. Also the important 
notion of an observer 0 1 needs to be introduced. With 
0 1 we can measure explicit system properties as for in
stance internal object states. The system dynamics may 
now generate a new structure 52 through the interac
tions 

S2 =R(S~), r=l,2, ... ,n (2) 
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where R is the process that generates S2 . This is what we 
call a second order structure which may be subjected to 
a possible new observer 0 2 . Then we say that a property 
P is emergent iff 

Clearly emergence depends on the observer in use which 
may be internal or external. An external observer can 
be the experimenter, but it can also be a mechanism 
(given by an algorithm) encoded in the system to detect 
patterns, regularities, aggregates, correlations, etc. 

Part of the dynamics may actually be viewed as an 
internal observer. For example, ea.ch object will typ
ically receive information about its neighborhood and 
a.ct accordingly following an algorithm as an experi
menter would have done from the outside. Also note 
that the emergent properties may be computable or non
computable (Baas 1993, Rasmussen and Barrett 1995). 

The above process can be iterated in a cumulative, not 
necessarily a recursive, way to form higher order emer
gent structures which we shall call hyperstructures of, 
e.g., order N: 

S N R(sN-1 sN-2 ) 
- TN-1' TN-2' .. • . (4) 

It should be noted that the definition of an observation 
function is no more-or just as-arbitrary as the definition 
of the objects and their interactions. For more details we 
refer to Baas (1993) and Rasmussen and Barrett (1995), 
where the concept of emergence and the relation between 
emergence and dynamics are discussed. 

Level of Molecular Emergent 
Description Structure Property 

l.stOnler H-philic. H-phobic Phase Separation. 

l 
Monomers, Water Pair Distribution 

Elasticity, Radius 2.nd Order Polymers 

l 
of Gyration 

Inside I Outside, 
3.rdOnler Micelles Permeability, 

Self-Replication 

Figure 1: Dynamical hierarchy in a chemical system. 

As we use this conceptual framework to interpret how 
self-assembling processes form micelles which again self
reproduce we obtain the following picture (see Figure 
1). At each level of description the physical structures; 
the monomers (level 1), the polymers (level 2), and the 
micelles (level 3), 'carry', or more correctly, through 
their interactions, generate, properties that cannot be 
observed at the levels below. They are emergent proper
ties. At the fundamental level 1 (water and monomers) 
we can, e.g., observe the generation of water structures as 
well as phase separation between water and hydropho
bic monomers. At the polymer level, level 2, we can, 



e.g., observe elasticity. At the micelle level, level 3, we 
can observe an outside and an inside as well as perme
ability which does not have any meaning at the level 
below. Also, the micelles (the third order structures) 
can under certain conditions self-reproduce [assuming a 
distinct chemical reactivity at the water-membrane in
terphase (Oberholzer et al. 1995)] which none of the ob
jects at the lower levels can. Thus, the interactions of the 
molecules (water and monomers) in this relatively sim
ple, chemical system, generate higher order structures 
which carry non-trivial (e.g., life-like), emergent proper
ties. 

It should be stressed that the encoded functional prop
erties of the basic, first order objects does not change 
during this process. It is only the context within which 
these objects are arranged that changes. Thus, the op
erational semantics of the information, the forces each 
object receives from its environment, is context sensi
tive. For example the accessible states for a hydrophobic 
monomer in bulk polar phase are distinctively different 
from the states in a non-polar phase and again different 
from the states of a hydrophobic monomer in an am
phiphilic polymer (Baas et al. 1996, Mayer et al. 1997.) 
This fact defines a downwards causality as the higher 
order structures modulate or restrict the dynamics of 
the lower order structures by which they are made up. 
This phenomenon of observed downwards causality in 
dynamical hierarchies is related to the 'slaving principle' 
as originally suggested by Haken (1987). 

The next section introduces the principles of a lattice 
gas style simulation concept, the Lattice Molecular Au
tomaton (LMA) (Rasmussen and Barrett 1994, Mayer 
et al. 1997, Mayer and Rasmussen 1998), which is ca
pable of generating higher order, chemical structures, as 
self-replicating micelles, in a simulation. 

The Discrete Field Automaton Concept 

The basic idea behind the discrete field automaton is to 
model both, matter and forces, as mediating information 
particles. Three main steps determine the molecular dy
namics: ( i) rules that propagate force information par
ticles, (ii) rules that evaluate the received information 
together with the local state, and (iii) rules that move 
molecules on the lattice and transform the system into 
the next time-step. All rules are directly derived from 
the laws of physics. 

Our simulation takes place on a square, 2-D lat
tice, but the general formalism holds for arbitrary lat
tice topologies as, e.g., a triangular lattice (Rasmussen 
and Smith 1994, Baas et al. 1996, Mayer et al. 1997, 
Mayer and Rasmussen 1998). The simulation objects 
(i.e., molecular entities) and vacuum are encoded as data 
structures, located at each site of the lattice (see Figure 
2A). A Boltzmann distribution of kinetic energies as well 
as potential energies (based on discrete force fields) are 
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Figure 2: A: The LMA data structure concept; B: Prop
agation of repellons ensuring excluded volume and bon
dons to maintain bonds in polymers; C: Force particle 
propagation to construct a type-specific force field. 

implemented to describe the molecular dynamics. Ki
netic energies are distributed between colliding molecules 
following a hard sphere model conserving the overall mo
mentum. The total potential energy lltotal of our model 
system with n molecules on a lattice with q neighbors is 
described by: 

n q 

lltotal =LL Vli~.-dip.,charge-charge,H-bond 
i=l j=l 

n q n q 

+ '°' '°' vdi,j · d d. + '°' '°' vi,Jd. d' · d d. L_, L_, ip.-m . ip. L_, L_, m . ip.-m . ip. 

i=l j=l i=l j=l 

n q 

+ LLVci~~P· (5) 
i=l j=l 

These potential energy terms are implemented to ac
count for specific physico-chemical properties of our 
molecular objects as, e.g., dipoles, induced dipoles, hy
drogen bond donor and acceptor sites, or polarizability 
volumes, all crucial parameters for the micelle formation 
in polar environment. This set of weak intermolecular 
interactions given in the above equation, commonly sum
marized as Van der Waals forces, has generally proven 
to be suitable for a description of macromolecular sys
tems (Privalov et al. 1998, Browman 1975) as well as 
responsible for the emergence of bulk phase phenomena 



as the structured hydrogen-bond network in water or the 
hydrophobic effect (Mayer et al. 1997). Kinetic energy 
terms drive the molecular system into local minima on 
the potential energy hypersurface. The overall setup cor
responds to a microcanonical ensemble, conserving mass, 
momentum and the total energy. 

The dynamical system that defines our LMA is of the 
form 

{Sr(t + 1)} = U {Sr(t)}, r = 1, ... , n. (6) 

where 
(7) 

denotes the interacting objects defined on the 2-D, 
square lattice. Each object has an internal state Xr, an 
object-object interaction function !rs (which has its own 
state Xr as an argument together with the state(s) of 
the object(s) that it is interacting with X 8 , s = 1, 2 .... ), 
and local time Tr. To generate the dynamics the object
object interactions have to be scheduled by an update 
functional U, which is random sequential for this ver
sion of our LMA. 
A data structure V~i,J) at the lattice location (i, j), at 
time t, denoting an object Sr-e.g., vacuum if it is empty 
and a molecule if it is occupied-with k variables xh, 
h = 1, .. . k 

is updated to time t + 1 by an only implicitely given local 
interaction function F in the following way: 

V (i,J) - F(V(i,j) vl(i,jJ vq(i,J)) (9) 
t+l - t , t ' ... ' t ' 

where the other data structures are located at the q 
neighboring lattice positions. The different variables 
within each data structure indicate which molecular 
type a given object is, which force particles (variables) 
are emitted from the current object (and received from 
neighboring sites), what the local potential energy gra
dient is as well as the value of the kinetic energy of the 
current object as well as of colliding objects. 
The principal structure of each step in the update cycle 
is a function that updates one of the data structure vari
ables xh. The function, denoted by formal compositions 
"o" for the individual elements Xh on a square lattice is 
of the form 

x~·i) (t + 1) J' 0 (x~i,j), ... ,x~i,J))(t1 ) o 

f l ( 1,(i,j) 1,(i,j))(t') 1X1 , ... ,Xk o ... o 

J' 4 (x1'(i,j), ... , x!'(i,j))(t'), (10) 

which means that the new value of a given variable at a 
given lattice site is a composed function of the variables 
at the site (i,j) itself and of the variables h = 1, ... k 
(where k defines the number of variables in the data 
structure) at the neighboring sites (in the four principal 
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directions). For a more detailed discussion of the formal 
proporties of such a dynamical system we refer to Baas 
et al. (1996) and Rasmussen et al. (1997). 

A data structure V is defining all (lattice) objects 
through the q = 7 variables x1 -x7, which are elements in 
the 7 sets X1 - X1 (see Figure 2A). These sets define the 
local object's state space. Below is the list of variables 
associated with every lattice location (data structure) 
(i,j) in the LMA: 

X1 = {xi}; x1 E No; type-state: 
molecular types (including vacuum) at site (i,j). 

X2 = {x2,1, ... ,x2,s}; X2,1 E No; rec-type: 
molecular types (including vacuum) in the neighbor

hood of site (i,j). 
X3 = {x3,1, ... ,x3,4}; X3,1 E Z: send-state: 

outgoing force particles along q lattice directions. 
X4 = {x4,1, ... ,x4,s}; X4,1 E Z; rec-state: 

incoming force particles from q lattice directions. 
Xs = { x5,1, ... , Xs,4}; xs,1 E No; kin-state: 

local kinetic energy at location (i,j) in q directions. 
X6 = { X5,1, ... , X6,4}; X6,l E Z; move-state: 

list of net energetic states (including potential and ki
netic energies). 
X1 = {x1,i, ... ,x1,s}; x1,1 E {0,1}; bond-state: 

maintain bonds within polymers. 

The type - state defines vacuum and the molecular type 
at the monomer level, e.g., as water, a hydrophilic or a 
hydrophobic object. Associated with the type - state is 
the send - state list denoting the respective force field, 
e.g., describing dipoles and hydrogen bond sites. The 
information particles in the send - state list are propa
gated to the neighborhood and stored in the respective 
rec - state list. The rec - type stores the type - state 
entries from the neighboring molecules and is used to in
terpret the force particle data received in the rec- state. 
Thus the entries in the send - state, rec - state and 
rec - type lists are used to calculate the potential and 
respective forces following a Coulomb potential. The 
kin - state list holds the kinetic energy state of the 
object and the bond - state encodes the bonds formed 
within a polymer. The individual information particle 
propagation steps are schematically shown in Figure 2B 
(propagation of 'repellons' to maintain excluded volume, 
of 'bondons' to keep the configuration of polymers) and 
Figure 2C (propagation of force particles 'forceons' ca
pable of representing the potential energy surface given 
in Equation (5)). A water molecule is characterized by 
three hydrogen-bond sites, hydrophilic monomers show 
two hydrogen bond sites (e.g., a COOH group) and all 
molecular objects furthermore interact based on vari
ous dipole contributions. Finally, the calculated po
tential energy as well as the kinetic energy determine 
the move - state of the object, i.e., which lattice site 



will be occupied in the next update cycle, considering 
constraints as the excluded volume and bonds between 
monomers in polymers. 

It should be noted that as we include more details 
about the physics of the interactions it becomes possible 
to generate higher and higher order structures (Baas et 
al. 1996, Mayer et al. 1997). For example, if we as here 
require that these objects need to be able to generate 
third order structures (micelles) which are able to self
reproduce and that the molecular interactions are based 
on known physical principles, then it cannot be done 
with much less object complexity (variable and interac
tion functions) than given here. A detailed discussion 
of the notion of object complexity and what it means in 
connection to a system's ability to generate higher order 
(:'.:: 3) emergent structures is given in Baas et al. (1996) 
and Rasmussen et al. (1997). 

The full LMA update cycle holds the following indi
vidual steps: 
(1) propagation of molecular types 
(2) construction of type-specific force fields 
(3) calculation of potential energies 
(4) calculation of the most proper move direction 
(5) random update of the individual objects transfering 
the system into the time step t + 1 
A detailed description of the update cycle is given in 
Mayer and Rasmussen (1998). 

Simulation of Dynamical Hierarchies and 
Self-Reproduction in a Chemical System 
A central molecule in biomolecular structure and dy
namics is water. The strong polarity of water and con
comittant ability to form hydrogen bonds allows to form 
large, hydrogen-bonded water networks that continu
ously break up and reform due to thermal noise. It is 
the entropic and enthalpic balance associated with join
ing these networks of water molecules that is responsible 
for the hydrophobic effect (Mayer et al. 1997). An exam
ple of a water network generated by the LMA is shown 
in Figure 3A, which is a detail of a 100 x 100 lattice. 

When hydrophobic monomers are present in water 
we observe a phase separation of the molecular types 
(see Figure 3B). The hydrophobic effect is responsible 
for this separation phenomenon, but it should be noted 
that the mechanics of the separation is as follows: The 
water - hydrophobic- and the hydrophobic-hydrophobic 
attractions are of the same magnitude in this simula
tion: The enthalpic loss due to hydrogen bond breakage 
is counteracted by various dipole interactions (dipole -
induced dipoles between water and hyrophob. monomers 
and ind. dipoles - ind. dipoles between hydrophob. 
monomers) giving a comparable enthalpy for bulk water 
and the mixture. This is set according to experimen
tal results on changes of enthalpy, entropy and resulting 
free energy of such mixtures. In our LMA model mix-
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D I 

11-
Figure 3: LMA simulation of molecular systems (empty 
circle: water; grey circle: hydrophobic monomer; black 
circle: hydrophilic monomer): 
A: bulk water phase 
B: mixture of water and hydrophobic monomers 
C: mixture of water and hydrophilic trimers 
D: mixture of water and amphiphilic trimers. The ar
rows indicate the location of a micellar structure. 

tures, the phase separation is generated by the complex 
dynamics of solvating hydrophobic surfaces and main
taining the hydrogen bond network, which results in an 
entropy-driven phase separation process (Mayer et al. 
1997). This process is commonly refered to as the hy
drophobic effect, clearly an emergent property. 

As monomers polymerize they form 'strings' or poly
mers. As we discussed in the previous section the dy
namics of the polymer generates properties which are not 
observable at the level of the individual monomer. The 
polymer has its own (lower) diffusion constant, a radius 
of gyration, an elasticity constant, just to mention a few. 
In Figure 3C we see how hydrophilic polymers stay sol
vated in water (contrary to hydrophobic objects) as they 
can participate in the ever changing water networks (as 
the hydrophilic model polymers can participate in the 
hydrogen bond network, too). When the polymers are 
amphiphilic (hydrophilic head and a hydrophobic tail) 
the hydrophobic effect together with the structure of the 
polymers generate a structurally well defined aggregate, 
a micelle, which we can identify as a third order structure 
(see Figure 3D). 

A micelle carries properties: like inside/ outside, per
meability, has another (much lower) diffusion constant 
and defines a new interface chemistry. In fact, the par
ticular chemical properties at the hydrophilic heads or
ganized in the surface can hydrolyze one end of a hy
drophobic polymer as demonstrated in a oleic acid / 
oleate system experimentally (Oberholzer et al. 1995). 
The resulting polymer is amphiphilic. This amphiphilic 
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Figure 4: LMA micelle self-replication (empty circle: wa
ter; grey circle: hydrophobic monomer; black circle: hy
drophilic monomer): 
A: Early stage mixture of water, amphiphilic and hy
drophobic trimers. The arrows indicate a chemically ac
tive site to convert a hydrophobic into an amphiphilic 
trimer. 
B: Final state of a micelle self-replication simulation. 
C: Kinetics of the hydrophobic trimer - amphiphilic 
trimer conversion process. The concentration of am
phiphilic trimers is plotted versus the LMA update steps. 

polymer now seeks, with a certain probability, into the 
micelle that catalyzed it in the first place and as many 
such processes occur the micelle continues to grow until 
it becomes unstable and divides. 

Thus, we have an autocatalytic self-reproduction of 
micelles as long as the system has a surplus of hydropho
bic polymers which can be hydrolyzed. Figure 4A shows 
an initial condition of a mixture of access hydropho
bic and some amphiphilic polymers in aqueous solution, 
where one micellar structure is formed. If one head group 
of a hydrophobic polymer faces the polar surface of the 
micelle (i.e., at least two hydrophilic head groups in our 
simulation) it is 'hydrolyzed', forming an amphiphilic 
polymer. After the hydrolysis of all the available hy
drophobic polymers the initial micelles have replicated 
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many times (see Figure 4B). The dynamics of this pro
cess is reflected in the concentration of amphiphilic poly
mers which grows rapidly until it runs out of fuel (hy
drophobic polymers). The kinetics of this process is 
shown in Figure 4C. 

This demonstrates how we can within our LMA con
cept (i): generate a dynamical hierarchy of chemical na
ture, which carries distinct properties at each level, (ii) 
including the ability for the generated third order struc
tures to self-reproduce in an autocatalytic fashion. 

Conclusion and Outlook 

By defining a formal system of interacting (molecular) 
objects on a 2-D lattice we demonstrate how a dynam
ical hierarchy can be generated in simulation. All in
teractions are derived from first principles and are thus 
representing a simplified, but still realistic picture of the 
actual physico- chemical nature of the system. At each 
level of description (monomers, polymers, micelles) dis
tinct emergent properties are being generated by the dy
namics, which are also observable in the corresponding 
real system. The system's ability to generate higher or
der structures depends in a nontrivial way on the object 
complexity. The more details of the physics we include, 
the higher order structures the system can generate. We 
demonstrate how a generated third order structure, a 
micelle, can self-reproduce in an autocatalytic fashion, 
as has been shown in vitro. 

This approach is neither limited to 2-D nor to gen
erate third order structures. We are in the process of 
extending the simulation to 3-D and by including more 
details of the physics in the first order objects it is pos
sible to have the system generate fourth or higher order 
emergence, e.g., allowing a templating molecule to co
operate with the self-reproducing micelles. This Ansatz 
has opened an avenue where we in a formal system can 
have objects interact with objects to generate higher or
der objects which in turn can interact with yet other 
objects which again can generate higher order objects, 
etc, without any principal limit. 

This leaves us with many unanswered questions in
cluding: At which level of object complexity can we in a 
formal system generate a dynamical hierarchy which sup
ports, say what corresponds to a proto-organism? Such a 
limit probably exists, since only a limited set of biological 
precursor molecules are in turn combined into a limited 
number of biomolecules, which in turn seem to constitute 
a universal 'tool kit' from which all cellular organelles are 
assembled. This is also in fine agreement with the exis
tence of neutral networks for RNA secondary structures, 
and a very limited number of actual RNA shapes (Rei
dys et al. 1997), as well as the possibly limited number 
of actual folds of proteins (Rost et al. 1996). 
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Abstract 

We develop an abstract computational model (ARMS) 
to deal with systems with many degrees of freedom (such 
as liquids) and confirm that it can simulate the emer
gence of oscillations. Furthermore, by a theoretical in
vestigation of ARMS, we propose an order parameter 
which reflects the qualitative dynamics of the system. 
We examine and confirm the effectiveness of this pa
rameter in describing macroscopic aspects of our simu
lations. 

Introduction 
Life can be considered as a system in a specific class of 
chemical reaction systems, but real biochemical systems 
are so complex that it is difficult to reconstruct the pre
cise dynamics in the system. Thus, it is important to 
abstract the essential properties of biochemical systems 
in order to obtain insights into its dynamical properties. 
We develop an abstract computational model (ARMS), 
which can deal with systems with many degrees of free
dom and confirm that it can simulate the emergence of 
complex cycles such as chemical oscillations that are of
ten found in the emergence of life. We also study mathe
matical properties of the model by using a computational 
algebra and propose an order parameter to describe the 
global behavior of the system. 

Model 
In this section, we describe an abstract chemical system 
in terms of an abstract rewriting system. Before describ
ing the system in detail, we introduce abstract rewriting 
systems in general. 

Abstract Rewriting System (ARS) 
An abstract rewriting system models the algebraic char
acteristics of calculation. By introducing this formal 
structure, several characteristics of calculation can be 
discussed in a common framework. This concept is ap
plied to various formal methods in mathematics and 
computer science, for example in proof theory, the alge
braic description of computer software, and automated 
deduction. 

The principle of calculation within an ARS is simple. 
A calculation is performed by rewriting using rules as in 
formal grammar: a --+ Sa. 

Definition 1 (Abstract Rewriting System) An ab
stract rewriting system is defined as a pair (A, 'R), where 
A and 'R denotes a finite alphabet and a finite set ·of pairs 
of words over the alphabet A, respectively. A rule which 
transforms b E A into a E A is written as a --+ b and we 
say that a--+ b is a "rewriting step". 

An abstract rewriting system is a string-replacing sys
tem. If the left hand side of a rule matches a string, it is 
replaced with the right hand side of the rule. The final 
result of a calculation is called a normal form: 

Definition 2 (Normal Form) If there does not exist b 
such as a--+ b and b E A, then a EA is called a normal 
form. 

Multiplication, for example, can be viewed as an ab
stract rewriting model. Let us define a set of rewriting 
rules, Ru as: Ru = {2 x 2 --+ 4, 4 x 2 --+ 8}. Using Ru, 
2 x 2 x 2 is calculated as shown in Figure 1, 

2 x 4 +- 2 x 2 x 2 --+ 4 x 2 --+ 8. 

Figure 1: An example of rewriting calculus 

In the first step, since only the rule 2 x 2 --+ 4 can be 
used on 2 x 2 x 2, the string 2 x 2 x 2 is rewritten into 
4 x 2, for example. This string on the other hand can 
be transformed into 8 using the rule 4 x 2 --+ 8. Because 
there are no rules that apply to 8, the latter is a normal 
form. However, as the first step we can also transform 
2 x 2 x 2 into 2 x 4, which turns out to be another normal 
form. In this calculation, we see that two normal forms 
exist (see Figure 1). 

ARMS 
Extending the concepts of the abstract rewriting system, 
we introduce an abstract rewriting system on multi-sets 
(ARMS). Intuitively, ARMS is like a chemical solution 
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in which floating molecules can interact with each other 
according to reaction rules. Technically, a chemical so
lution is a finite multi-set of elements denoted A k = 
{a, b, ... , } ; these elements correspond to molecules, and 
reaction rules are specified in terms of rewrite rules. As 
to the intuitive meaning of an ARMS, we refer to the 
study of chemical abstract machines (Bellin and Boudol 
1992). In fact, rewrite rule systems can be thought of as 
reflecting an underlying algorithmic chemistry: 

Algorithmic Chemistry Fontana (1994) introduces 
an abstract model, called the >.-gas, where a new chem
ical is generated by interactions between existing chem
icals, using the >.-calculus. This model is described by 
a set of functions which correspond to molecules. Two 
functions are randomly selected and interact with each 
other, which is represented as a compound function f (g). 
Although this model also focuses on the characteristics 
of chemical reactions, the main difference between the 
>.-gas and ARMS is that we focus on temporal aspects 
and the emergence of cycles. Let us now continue with 
the definition of ARMS. 

We denote the empty set by ¢, and the base number 
of a multi-set (size of a multi-set) by ISi (where S is a 
multi-set), respectively. Then we define: 

Definition 3 (Multi-set) A "multi-set" is an element 
t E Ak (1 ~ k ~ n) E E, where n is a finite number, and 
A k is a Cartesian product A1 ... Ak. A k = A1 x A2 ... x 
Ak, E denotes the set of multi-sets, and n is called the 
"maximal multi-set size." 

The multi-sets correspond to possible states of chemical 
solution. The set of multi-sets corresponds to the space 
of transitions of an ARMS. 

Definition 4 (Rewriting rule) A "rewriting rule" is 
a relation l n r {l, r E E}, Ill, lrl ~ maximal multi-set 
size, n. A rewriting rule l n r is denoted as l -4 r. 

A rewriting rule such as 

a -4 a ... b, (1) 

is called a heating rule and denoted as rLl>Oi it is in
tended to contribute to the stirring solution. It breaks a 
complex molecule into smaller ones: ions. On the other 
hand, a rule such as 

a ... c -4 b, (2) 

is called a cooling rule and denoted as rLl<Oi it rebuilds 
molecules from smaller ones. In this paper, reversible 
reactions, i.e., S ~ T, are not considered. We shall not 
formally introduce the refinement of ions and molecules 
though we use refinement informally to help intuition. 

Definition 5 (ARMS) An "Abstract Rewriting Sys
tem on Multi-sets" (ARMS) is a pair {T, Ru) consisting 
of a multi-set T and a set Ru of rewriting rules. 

Definition 6 (Rewriting on ARMS) Let (T, Ru) be 

an ARMS. We writes ~ t if there exists a rewriting rule 
l -4 r E Ru such that l ~ s and t = (s - Q U r. 

The ARMS can construct input by such a rule, for ex
ample, <P -4 a. 

Definition 7 (Normal Form in ARMS) If no rule 
in Ru can be applied to a multi-set and no symbols can be 
inputted to the multi-set without the resulting base num
ber exceeding the limit on the multi-set, then the multi
set is called Normal Form (final state). 

Normal forms correspond to a steady state. 
The reader will notice that the method of rewriting 

of ARMS is different from that of the abstract rewrit
ing system. Since the abstract rewriting system is a 
string-replacing system, the string ab and the string ba 
are treated as different strings on rewriting. On the other 
hand, since ARMS is a multi-set replacing system, the 
system regards ab and ba as multi-sets of symbols, {ab} 
and {ba}. Thus, they are treated the same. Hence, e.g., 
ARS cannot rewrite ab using the rule ba -4 c, while 
ARMS, however, can rewrite ab into c using this rule. 

How ARMS works 

In ARMS, we assume that one randomly selected rule is 
applied in each rewriting step, unless no input is allowed. 
An algorithm for rewriting steps in ARMS is described 
in Figure 2. 

procedure ARMS (Rewriting Step) 
begin 

count-step i- O; 
while count-step "# n do 

begin 
if the multi-set reached Normal Form then 

count-step:= n; 
else 

Input string(s) to the multi-set; 
Select a rule; 
if the rule can rewrite the multi-set then 

Rewrite the multi-set; 
count-step := count-step + 1; 

end if 
end if 

end 
end while 

end. 

Figure 2: An algorithm for ARMS (for the first n steps) 

Example In this example, we assume that a will be 
inputted on each rewriting step, the maximal multi-set 
size is 4 and the initial state is given by {a, a, f, a}. The 



set of the rewriting rules, Ru1 is { r 1, r 2, r 3, r 4}, where 
each rule is described by the following: 

aaa ---+ b : r1, b ---+ a : r2, b ---+ c : r3, a ---+ bb : r 4. 

In this example, we assume that rules are selected as 
following the order {r4 =} r 1 =} r 3 =} r2}. Then, each 
rule is applied in the following way. First, r 4 is applied. 
Next, as steps 2 and 3, r 1 and r 3 are applied, respectively. 
Finally, as step 4, r 2 is applied. 

{aafa} 
+ 

{aafa} 
+ 

{ba} 

~ a (the left hand side of r4 ) 

.... can not input a and can not apply r4 , 

~ aaa (the left hand side of r 1 ) 

.... can not input a but can apply r 1 

Figure 3: Example of rewriting steps of AR!\IS 

Figure 3 illustrates two rewriting steps of the calcula
tion from the initial state. 

As the first step, since the base number of the multi-set 
is 4, the system can not input a. On the left hand side of 
r 4, a is included in {aafa}, however, r4 can not be used. 
If a is replaced with bb, the base number of the multi-set 
becomes 5 and it exceeds the maximal multi-set size, 4. 

In the next step, the system can not input a, however, 
r 1 can apply to the multi-set and { aaf a} is rewritten 
into { ba} (because if aaa is replaced with b, the base 
number of the multi-set does not exceed the maximal 
multi-set size, see Figure 3). 

In step 3, ARMS inputs a to the multi-set and trans
forms it to { c, a, a} with r 3 • 

Step 3 : { c, a, a}. 

In step 4, the system inputs a, but r 2 can not apply to 
it. Thus { c, a, a} becomes { c, a, a, a}. 

Step 4 : { c, a, a, a}. 

Typical Examples In this paragraph, we shall 
present two examples. Let us assume a set of rewrit
ing rule Ru1 and a maximal multi-set size of 4. The first 
example is a case where ARMS generates two cycles. 
This example has the following rule order: 

{r4 =} r3 =} r2 => r4 => r1 =} r2 => r1 =* r3 => r4}, 

whose state transition is shown in Figure 4. After 8 
steps, the system forms two cycles, whose periods are of 
3 steps. 

The next example is a case where ARMS terminates. 
Although ARMS applies the same rules, the obtained 
result is completely different (Figure 5). This example 
has the following rule order: 

{r4 => r1 => r2 =} r4 =* r3 => r1 => r2}. 

The state transition is shown in Figure 5: 
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0. {!} 
1. {a,!} 
2. {a,a,J} 
3. {a,a,a,J} 
4. {b,J} t 
5. {a,b,f} a cycle 
8. {a,a,a,f} + 
9. {b,f} t 

10. {a,b,f} a cycle 
11. {a,a,a,f} + 
12. {b,f} 

Figure 4: Example of a system that generates cycles 

0. {!} 
1. {a,!} 
2. {a,a,f} 
3. {a,a,a,f} 
4. {b,f} 
5. {a, b, !} 
6. {a,a,b,f} 
7. {a,a,c,f}. 

Figure 5: Example of a system that halts 

Experimental Results of the Simulation 
of ARMS 

We simulated ARMS with various different setups; m 
this paper we shall discuss two of them as follows: 

• Simple setup 

• Brusselator model. 

Through these experiments, we confirmed that the sys
tem is capable of generating complex patterns. 

A simulation with a simple setup 
Computational experiments were made under the follow
ing initial conditions: 

(1) only five symbols {a, b, c, d, e} were used to describe 
the rewriting rules, 

(2) {a} was the only input symbol, 

(3) the maximal multi-set size was 10, 

( 4) six rules were used for rewriting steps, and 

(5) two important parameters, namely the frequency of 
inputs and randomness of rule application, were given 
for each simulation, where the former four conditions 
were fixed and two parameters in the last condition 
were set to variables. 
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Figure 6: Example of period-doubling 

Although these are clearly very simple settings, the 
experiments led to the following two interesting results. 
The first one showed the emergence of a cycle even un
der simple initial conditions, compared with Kauffman's 
network model (Kauffman 1993) or Fontana's >.-calculus 
(Fontana and Buss 1994), which both need large-scale 
computation to generate cyclic structures from a given 
system. The second result showed the complex behavior 
of cycles. Fusion of several cycles and period-doubling 
were observed easily, when randomness in the input was 
introduced. Figure 6 shows a system undergoing period
doubling. (For more details, the reader should refer to 
Suzuki and Tanaka 1998). 

The Brusselator model of ARMS 

In order to confirm that ARMS works as an abstract 
chemical system, we performed an experiment imple
menting the Brusselator model (Nicolis and Prigogine 
1989) within ARMS. The Brusselator is a well-known 
mathematical model of chemical oscillations of the 
Belousov-Zabotinsky reaction (Field and Burger 1985) 
(see Figure 7.) 

A ~ x 
B +x ~ y +D 
2X +Y ~ 3X 

x ~ E 

Figure 7: Abstract chemical model of the Brusselator. 

We can view the abstract chemical reaction equations 
as rewriting rules, as Figure 8 shows: 

In this simulation, the reaction rate corresponds to 
the frequency of rule application. If r 1 has the highest 
reaction rate, then r 1 is applied at the highest frequency. 
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A --+ x : r1 

B x --+ y D : r2 

x x y --+ x x x : r3 

x --+ E : r4. 

Figure 8: Rewriting rules for the Brusselator model. 

Simulation of the Brusselator model Let us ex
amine the relationship between the frequency of rule ap
plication (reaction rate) and the concentration X and Y 
in the multi-set. The concentration of X and Y in the 
multi-set is indicated by the number of X and Y present 
in the multi-set. 

As to the initial condition, we assume that the maxi
mal multi-set size is equal to 5000 and the initial state 
of the multi-set is an empty multi-set. We assume that 
the system makes inputs A and B continually. Hence 
this model can be regarded as a continuously-fed stirred 
tank reactor (CSTR). 

In this simulation, we confirmed that oscillations be
tween the number of X and Yin the multi-set emerged. 
Furthermore, we discovered three types of oscillations 
as follows: (1) quasi-stable oscillations (Figure 10), (2) 
unstable oscillations (Figure 11) and ( 3) divergence and 
convergence (Figure 9). For further details of this simu
lation, see (Suzuki and Tanaka 1997). 
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Figure 9: Example of convergence 

Classification of the behavior pattern of 
ARMS 

Up to now, we have been studying the formal properties 
of ARMS, based on our experimental results. Through
out the investigation we made a conjecture that the 
global behavior of ARMS is closely related to two es
sential properties: termination and confluence. Before 
entering into a detailed discussion of classifying the be
havior patterns of ARMS, we shall describe the conflu
ence termination properties. 
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Figure 11: Example of unstable oscillation 

Termination property The "termination property" 
can be related to the halting of a computation. There 
are two types of terminations: 

Strongly terminating Weakly terminating 

Figure 12: Types of terminations 

Weakly terminating We classify as "weakly termi
nating", chemistries where some calculations reach a nor
mal form while other do not (see the right hand side of 
Figure 12.) 

Strongly terminating "Strongly terminating" im
plies that any calculation reaches a normal form. Note 
that this property does not ensure a unique normal form 
(see the left hand side of Figure 12.) 
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Confluence property The "confluence property" is 
related to the particulars of the pathway of rewriting 
calculus. We distinguish two types as follows: 

Strongly confluent Weakly confluent 

Figure 13: Confluence property 

Weakly confluent "Weakly confluent" means that 
some calculations reach the same forms, while others do 
not (see the right side of Figure 13.) 

Strongly confluent "Strongly confluent" implies that 
every calculation reaches the same form. This property 
ensures that the system has a unique normal form (see 
the left side of Figure 13.) 

Classification table of ARMS behavior 
We can classify the behavior of ARMS using the above 
characteristics of ARS. 

Conflu
ent 

Terminating 

Table 1: Classification table of ARMS behavior 

Table 1 illustrates the behavioral pattern with re
spect to the termination and confluence properties. The 
columns indicates the characteristics of confluence prop
erty while the rows show the characteristics of termina
tion. 

In this table, l. denotes the case where the system does 
not generate any cycles, while 0 denotes the case where 
the system generates several kinds of cycles. Further, 0 
denotes the case where the system generates many kinds 
of cycles, and oo stands for the case where the system 
generates a great many kinds of cycles. 

The most important feature of this table is that the 
confluence property determines the complexity of cycles 
while the termination property determines the number 
of cycles. 

Effect of termination property 
As we just mentioned, the termination property is re
lated to the number of cycles. If an ARMS is strongly 



terminating, every calculation must reach the normal 
form. Consequently, the system can not generate any 
cycles. When this property becomes weak, the system 
is apt to generate cycles. When the calculation does not 
terminate, the ARMS must generate cycles because the 
transitional space of ARMS is finite (Suzuki and Tanaka 
1998). 

Effect of confluence 

The confluence property determines the spatial behav
ior of ARMS. If an ARMS does not have this property, 
the trajectory of the system resembles a spiral. Once 
a rewriting sequence branches away from a state, the 
rewriting sequence can never return to it. 

When this property becomes strong, even if a rewrit
ing sequence branches away from a state, the rewrit
ing sequence is apt to return to the former state and 
the trajectory of the system becomes a complex cycle. 
When entering such a complex cycle, many kinds of cy
cles emerge (Suzuki and Tanaka 1998). 

Order parameter for ARMS 
From an examination of the effectiveness of the termina
tion property, we obtained the Ae parameter as an order 
parameter for the qualitative behavior of ARMS. 

We define "order" here as being given by the diversity 
of cycles. Thus, in this paper, "ordered state" refers to 
a case where the system yields simple cycles (such as the 
limit cycle), while "disordered state" refers to the case 
where the system yields chaotic or complex cycles. 

The Ae parameter 

Let us define the Ae parameter as follows: 

Ae = :Ert.S>O 
1 + (:Ert.s<o - 1) 

(3) 

where :Ert.s>o corresponds to the number of heating 
rules used, and :Ert.s<o to the number of cooling rules 
used. This parameter is defined when the number of 
rules used is greater than 1. 

When the ARMS only uses rules of the type rt.s<o, Ae 
is equal to 0.0. On the contrary, if the ARMS uses rules 
of the type rt.s>o and rt.s<o with the same frequency, 
Ae is equal to 1.0. Finally, when the ARMS only uses 
rules of the type rt.s>o, Ae is greater than 1.0. 

Simulation 
We confirmed the appropriateness of the Ae parameter 
through a simulation of the ARMS, and verified that 
the parameter reflects the diversity of cycles that are 
generated by the system. 

Setup A simulation was carried out under the follow
ing environment: 
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procedure ARMS (Rewriting Step) 
begin 

count-step +--- O; 
while count-step -:/: n do 

begin 
if the multi-set reached Normal Form then 

count-step:= n; 
else 

. . . . not assuming any inputs ... 
Select a rule; 
if the rule can rewrite the multi-set then 

Rewrite the multi-set; 
count-step := count-step + 1; 

end if 
end if 

end 
end while 

end. 

Figure 14: An algorithm for the simulation (until n-th 
step) 

Rule set The length of the left- or right-hand-side of 
a rule was between one and five. Both sides of the rules 
were obtained by sampling with replacement of two sym
bols a and b. A set of rewriting rules was constructed as 
the overall permutation of both sides of the rules. The 
number of rules is given by Equation ( 4), where n cor
responds to the kinds of symbols that we take and m is 
the range of lengths of strings. 

(4) 

As Equation ( 4) illustrates, if many kinds of symbols 
are used, the number of rules increases rapidly. Hence 
we use two symbols in this simulation. We assume that 
the string's length can range between 1 and 5. Then, the 
number of rules for this simulation is equal to 30976. 

Algorithm of ARMS In this simulation, we intend to 
focus on qualitative features of the rewriting rule, while 
not assuming any inputs. The algorithm of ARMS (Fig
ure 14) is therefore slightly different from the previous 
one (Figure 2). 

A rule was selected randomly according to the follow
ing protocol: the probability of selecting a rt.s>o rule is 
given by the probability 0 ~ p ~ 1, while a rt.s<o rule 
is selected with probability (1 - p). 

Method We assume that the maximal multi-set size is 
10. At the beginning of a simulation, the value of pis set 
to 0 and it increased by steps of 0.01. At each value of p, 
100 new initial states with base number between 1 and 10 
are generated by selecting the symbol a or b randomly. 



The base number of the initial state of a multi-set is 
decided randomly. For each initial state the simulation 
is performed for 1000 steps. 

Experimental results 
Let us present the experimental results, focusing on the 
following two points: 

(1) the correlation between the system's terminating 
property and the value of p, 

(2) the correlation between the diversity of periods of the 
generated cycles and the value of p. 
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Figure 15: The correlation between the number of ter
minating calculations and p 

Termination Figure 15 illustrates the correlation be
tween p and the number of terminating calculations. In 
Figure 15, the vertical axis corresponds to the number 
of terminating calculations and the horizontal axis cor
responds to p. 

In this simulation, before p exceeded 0.1, most calcu
lations terminated. When p exceeded 0.1, the number of 
terminating calculations decreased rapidly, while when 
p was greater than 0.2, this decrease leveled off. Then, 
for p between 0.3 and 0.85, only a few calculations termi
nated, while with p greater than 0.85, the number ofter
minating calculations increased rapidly again. In other 
words, for p near 0 or 1, the system strongly terminated, 
while with when p away from 0 or 1, the termination 
property became weak. 

The number of generated cycles Figure 16 illus
trates the relationship between the number of generated 
cycles and p. 

As p increases, the number of generated cycles also 
increases rapidly. This rise levels off when p exceeds 0.3. 
For p between 0.3 and 0.8, the number of generated cy
cles remains at the same level, however, when p exceeds 
0.75, this number rapidly decreased again. 

This result indicates that the termination property in
deed is related to the number of generated cycles. As we 
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mentioned in the previous subsection, when p was close 
to 1 or 0, the system strongly terminated while for p 
away from 0 or 1, this property became weak. Also, for 
p near 1 or 0, only a few cycles were generated while 
for p away from 1 and 0, the system generated many 
cycles. We may thus conclude that the degree of termi
nation influences the number of cycles generated by the 
system. 

It is interesting that once the number of generated cy
cles reaches around 450, it remains at the same level, 
even while p was changed from 0.3 continuously up to 
0.8. We believe that for p between 0.3 and 0.8, the sys
tem is in an equilibrium state. 

To investigate the system's behavior in this equilib
rium state, let us examine the relationship between the 
kinds of periods generated by the cycles and the value 
of p. 

The kinds of periods generated by the cycles 
The experimental result indicates that even if the sys
tem is in an equilibrium state, the kinds of periods are 
different for each value of p. Figure 17 displays the av
erage number of different kinds of periods. As we can 
see in this figure, when p reaches about 0.5, the number 
of different kinds of periods is maximal. In other words, 
when cooling rules and heating rules are used at the same 
frequency, many kinds of periods are generated. 

Discussion 

In this section, we shall show that the Ae parameter is 
related to the termination property, which implies that 
Langton's A parameter is also related to termination. 

Before discussing this issue, let us describe cellular 
automata, Langton's A parameter (Langton 1991) and 
Wolfram classes (Wolfram 1984b) in more detail. Then, 
we display the relation among these parameters and Wol
fram classes. 
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Figure 16: Correlation between the number of generated 
cycles (vertical axis) and p (horizontal axis). 
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Figure 17: Correlation between the kinds of periods of 
generated cycles (vertical axis) and p (horizontal axis). 

Cellular Automata 
A Cellular Automaton (CA) is a discrete mathematical 
model (Wolfram 1984a) whose behavior is caused by the 
interactions among neighbor sites. This model can be 
applied to various fields to model, for example, statistical 
mechanics, mathematical biology, public hygiene (as a 
model of infectious disease, for example), in medicine 
and so on. 

Formally, a cellular automaton is a D-dimensional lat
tice automaton. Each lattice site is updated by a deter
ministic rule involving a local neighborhood of sites, in 
discrete time steps. 
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The possible state of a site is chosen from the alphabet 
K = {O, 1, ... , k - 1}, and the value of site i at step t 
is denoted by a~t). At each time step, each site value is 
updated according to the particular neighborhood of N 
sites around it by a local rule 

of the form 
(t) { (t-1) (t-1) (t-1)} 

pai = </J al-r 'll1-r+l' · · · 'll1+r · 

This local rule leads to a global mapping 

cp: KN--+ KN 

(5) 

(6) 

(7) 

on all cellular automata configurations. Then, in general 

o(t+1) = <Po(t) ~ o(t), (8) 

where 
(9) 

is the set of configurations generated after t iterated ap
plications of <P (Wolfram 1984a, Langton 1991). 

For example, a local rule for the one dimensional cel
lular automaton with neighborhood two is: 

000 001 010 011 100 101 110 111 
0 1 0 0 1 0 0 0. 

By using this rule, a step of global mapping is; 
000101011011100 

0100000000001. 

Qualitative characterizations of CA 

Wolfram's classification and Langton's .X. parameter as 
qualitative characterizations of the behavior of cellular 
automata are well known. 

Wolfram classes 

Wolfram (1984b) proposed four classes of qualitative be
havior patterns of cellular automata based on his inves
tigation of a large sample of CA rule tables. He main
tained that any cellular automata would fall into one of 
the four basic classes': 

• Class 1: Evolution leads to a homogeneous state. 

• Class 2: Evolution leads to a set of separated simple 
stable or periodic structures. 

• Class 3: Evolution leads to a chaotic pattern. 

• Class 4: Evolution leads to chaotic, localized struc
tures, sometimes long-lived. 

These four classes are obtained in an analogy between 
the CA 's behavior and the classification of dynamical 
systems: 

• Class 1: Limit points. 

• Class 2: Limit cycles. 

• Class 3: Chaotic behavior of the kind associated with 
strange attractors. 

• Class 4: No direct analogue. 

With respect to Class 4, Wolfram suspected that CA in 
this class are capable of universal computation, so that 
properties of its infinite-time behavior would be unde
cidable (Wolfram 1984b). 

Langton 's ). parameter 

Langton criticized Wolfram's classification by saying: "it 
is obvious that such a classification can only serve as 
rough approximations to the more subtle, underlying 
structure (Langton 1991, p.46)" and proposed his .\ pa
rameter to describe CA rules, to obtain "a deeper un
derstanding of the structure of cellular automata rule 
spaces, one that provides an explanation for their rela
tionships to one another"(Langton 1991, p. 46). The.\ 
parameter is defined as follows: 

, _KN -nq 
I\ - KN ' (10) 

where K corresponds to the number of symbols used, 
N to the size of the neighborhood, and nq to the num
ber of local rules which transform cellular automata to 
the quiescent state, respectively. The quiescent state is 



picked arbitrarily, and is usually associated with a "spe
cial" state, such as the "zero" state. If all rules trans
form to the quiescent state, KN = nq, and the the ,\ 
parameter is equal to 0. When no rules transform to the 
quiescent state on the other hand, >. is equal to 1. 

The values >. = 0 and >. = 1-k represent the most ho
mogeneous and the most heterogeneous rule tables. As 
the value of the ,\ parameter increases, the dynamical 
activity of cellular automata becomes chaotic. The cor
respondence between the value of the ,\ parameter and 
dynamical activity of cellular automata is as follows: 

fixed point ---+ periodic ---+ "complex" ---+ chaotic. 

In terms of the Wolfram classes, the sequence is: 

Class 1 => Class 2 => Class 4 => Class 3. (11) 

Langton (1991) demonstrated that the complex rules are 
located in between the periodic and the chaotic rules, 
and that there is a clear phase-transition between peri
odic and chaotic behavior. 

Computational algebraic characteristics of >. 

parameter 

We demonstrate here that the >. parameter indicates a 
degree of termination and that when cellular automata 
yield complex or chaotic behavior, this termination prop
erty of the system becomes weak. When >. is close to 0, 
the dynamical activity of the cellular automaton quickly 
dies out or reaches a uniform fixed point. In this regime, 
thus, the termination property of cellular automata is 
strong. As the value of the >. is increasing, cellular au
tomata evolve to periodic structures or chaotic aperiodic 
patterns. As the value of the >. increases even more, the 
termination property becomes weak. The larger the pa
rameter becomes, the later the calculation terminates. 
Since the transitional space of cellular automata is fi
nite, if a calculation does not terminate or is difficult to 
stop, cyclic structure must emerge in the process of the 
computation. 

\Vhen >. is equal to 0.125, for example, we could find 
the following rule: 

000 001 010 011 
0 0 1 0 

100 101 
0 0 

110 111 
0 o. 

As this parameter increases, the rule might change to 
that given below: 

000 001 010 011 
1 0 1 0 

100 101 
0 0 

110 111 
0 1 . 

The >. parameter of this rule is equal to 0.375. As the 
value of ,\ parameter increases, the number of rules such 
as, 

* * * (*=Oorl) 
0 
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termina ,\e >. Wolfram 
-ting classes 

Strong ,\e ~ 0.0, ,\ ~ 0.0 I or II 
>-e » 1.0 

Fair 1.0 > >.. > 0.0, 0.0 < >. < 1 - -k II or IV 
strong >.e > 1.0 
Weak ,\e ~ 1.0 ,\~1--b III 

Table 2: Relation among parameters, complexity classes 

decreases while, on the other hand, the number of rules 
such as, 

* * * (* = 0 or 1} 
1 

increases. The CA rule yields a complex or chaotic pat
tern when ,\ is near 1 - k, and rules that lead to the 
quiescent state are used at the same frequency as rules 
that lead away from said state. 

Relation between >.e, >., Wolfram classes, 
and the termination property 
The qualitative dynamics of CA and ARMS that we have 
described is summarized in Table 2. It suggests that each 
parameter and class indicate a degree of terminating. 

Comments on the 'edge of chaos'-regime 

We have demonstrated that an equal frequency of Tt...S>O 

rules to Tt...S<O rules yields dynamical patterns for both 
cellular automata and ARMS. We can now see that the 
principle of "edge of chaos" (Langton 1991, Kauffman 
1993), according to the dynamics just described, results 
from a biased ratio of Tt...S>O rules to Tt...S<O rules. 

If these two types of rules are used at the same fre
quency, the system yields a chaotic pattern. However, 
when the ratio changes slightly, the "edge of chaos" 
regime emerges. Thus, a lack of symmetry in the appli
cation of rules generates the diversity of cycles in these 
systems. 

Finally, we close with a quote of Fontana (1994), who 
addresses the difference between his >.-calculus and ab
stract rewriting systems, and their importance for simu
lating chemistry: 

With some ingenuity the observer will further derive all 

laws supplied by the uncovered group structure [. .. ]. If 

read as rewrite rules, the equations thus obtained will 

enable the observer to exactly describe (and predict) 

each and every collision product in the system - with

out any knowledge about >.-calculus. The observer will, 

then, have discovered a perfectly valid theory of that or

ganization, without reference to its underlying micro

mechanics. (from: Fontana and Buss 1994, p. 22) 
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Abstract 
The behavior and type of immune responses are currently 
believed to be the result of cross regulation of CD4+ T 
lymphocyte populations. Many debates have arisen 
concerning the way the immune system is able to provide an 
immune response and tolerate self simultaneously. Classical 
theories try to explain these phenomena through the 
specificity of T cell receptors. Nevertheless, observations 
show us that the specificity of the immune system cells can 
be quite degenerated, providing a different scope on the 
understanding of the immune system's balance. We propose 
a computational model for the dynamics of Th, and Th, 
cn4• T lymphocyte sub-populations, aiming the study of 
diversity and multiple responses. Using this model we are 
able to identify some experimental observations which are 
poorly understood. Some of the results show us that the 
immune system's balance can be related to a measure of 
locality, helping to explain the paradigm of concomitant 
responses and tolerance. 

Introduction 

The behavior of the immune system as well as the type of 
immune responses is believed to be set by the cross 
regulation of CD4• T lymphocyte populations (Fitch, 
McKisic, Lancki and Gajewski 1993). 

This is especially the case of the Th, and Th, classes, as 
demonstrated in several experimental situations (Bottomly 
1989; Mosmann and Coffman 1989). In these situations, 
the murine immune response to certain pathogens and 
antigens can be strongly biased to either a Th, or Th2 

dominant phenotype, suggesting that these cells do exist 
and are important in vivo. Therefore, it is strongly sustained 
that the differentiation pathway between Th1 and Th2 plays 
a major role in the immune system ontogeny, since the 
entire organism can be compromised if the wrong pathway 
is taken. 

The theories around these mechanisms rely mostly on 
features that have no relation with the intrinsic properties of 
the Th populations themselves. Hence the suggestion that 
the bias towards a specific pathway is determined by the 
nature of the antigen, its route of presentation or its density 
to the Th cell population (Gajewski, Pinnas, Wong, Fitch 
1991 ). However, it is implausible that the immune system 
could identify such extrinsic features per se. The system 
will engage with different antigens, and it may be useful to 

classify them based on a set of extrinsic features. At the 
level of the Th population, it is required to identify what 
mechanisms direct the system either to a Th, or Th2 mode. 
Thus, this feature is likely to be established a priori, due to 
the way antigen engages Th populations dynamics. Only 
incidentally, this feature would be related with the extrinsic 
features of the antigens (Carneiro and Stewart 1995; 
Murray, Madri, Tite, Carding, and Bottomly 1989). Today, 
most immunologists considered that the activity of the 
immune system reflects both its own dynamics and 
ontogeny, and that the Th populations themselves are 
probably the major determinant in their own role and 
development. 

The importance of studying the development of Th 
populations is broadly justified by current research on auto
immunity, since the immune system's regulation and 
tolerance mechanisms are strongly sustained to be a result 
of cross-regulation between Th cells. However, 
experiments concerning the study of cross-regulatory points 
are centered on homogeneous and isolated populations 
within in vitro environments, aiming towards a broad 
extrapolation between the observed qualitative results and 
in vivo observations. Nevertheless, this operation neglects 
two primary factors: the ontogenesis of cell population in 
vitro and the fact that simultaneous and concurrent immune 
responses do occur in vivo. In Carneiro, Stewart, Coutinho 
and Coutinho 1995, the question of cell ontogeny is studied 
and mathematically modeled, but no attempts are made in 
order to establish results concerning multiple and 
concomitant responses. The model presented here enables 
the analysis of cross-regulatory points in a system capable 
of providing simultaneous antigenic immune responses and 
yet upholding tolerance. 

Method 

This section describes the model for the population 
dynamics of multiple Th lymphocyte sub-populations. The 
basic concept concerning such a model for the sub
populations of CD4• T lymphocytes, as well as the cross
regulatory and tolerance mechanisms, is based on the work 
of Institut Pasteur's Unite d'Immunobiologie (Carneiro, 
Stewart, Coutinho and Coutinho 1995; Carneiro and 
Stewart 1995; Carneiro, Coutinho, Faro and Stewart 1996). 

We have defined a model to study multiple responses and 
cross-regulatory points using a complex adaptive system's 



emergent behavior analysis. We will first describe the 
underlying postulates of the model and then explain its 
formulation. 

The sub-populations of CD4+ T lymphocytes 

The CD4+ T lymphocyte population can be distinguished 
by the pattern of T Cell Receptors (TCR) and through 
cytokine expression and cross-regulation mechanisms of 
the population. We will focus on the differentiation 
pathway into Th1 and Th2 cells. First, these pathways seem 
mutually exclusive due to the intrinsic dynamics and cross
regulatory mechanisms. Second, two poles can be 
associated to each sub-population: the inflammatory or Th1 

pole, associated with cell-mediated immunity; and the Th2 

or helper pole, which promotes B cell growth and antibody 
production. However, we emphasize that these poles do not 
define a single pattern of cytokine expression a dominant 
state instead. The intermediate states, i.e., non Th, and non 
Th2 states, are depicted through a neutral compartment, the 
Th0 compartment. This compartment can derive from 
thymic output and by differentiation of resting Th2 

lymphocytes as we will discuss shortly. Furthermore, both 
Th1 and Th2 poles can be assigned one of two modes: 
resting and activated. A Th cell is said to be activated when 
successfully bound to a specific antigen, therefore able to 
express its dominant pole, whether inflammatory or 
tolerant. 

The Th sub-populations are expressed by a set of agents, 
each representing a single Th cell. At any given time, each 
agent will be in one of five states: activated in Th1 pole 
(aTh,), resting in Th1 pole (rTh,), resting in neutral state 
(rTh0), resting in Th2 pole (rTh) or activated in the Th2 pole 
(aTh1). The model comprises the definition of multiple 
lineages of CD4• T cells, along with the required 
mechanisms for the analysis of binding affinity towards 
several antigenic niches. The dynamics of a Th lymphocyte 
cell are depicted in Figure I. 

1.1. The concept of antigenic niche 

The activation of Th cells is essentially local and 
involves immune system cell-to-cell cooperation. In the 
same way, the cross-regulatory mechanisms mediated by 
cytokines are short ranged, and require either direct contact 
or interference within close vicinity. Furthermore, TCR 
binding is required to maintain a stable interaction in order 
to keep Th cells activated (Dustin and Springer 1991, 
Fiorentino, Zlotnik, Vieira, and Mosmann 1991). 

In this model, the antigenic niche designates the set of 
local conditions which are required to activate and cross 
regulate a Th cell population, whether they are the 
morphogenic mechanisms in the lymphoid organs or the 
artificial conditions sustained in in vitro experiments. The 
term 'antigenic' derives from a major condition required to 
activate those cells: the availability of antigen presenting 
cells (APC) and MHC/peptide complex. However, other 
components will modulate the driving capacity of the niche 
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such as regulatory cells or molecules, or specific clonal 
positive/negative stimuli. 

In the general case, a given T cell clone may be 
associated with several antigenic niches. The distribution 
depends on the affinity between clones and the 
corresponding niches, and on the size of competing sub
populations. However, in this model we assume that each T 
cell clone can be associated with only one antigenic niche. 
Each antigenic niche can be associated with more than one 
T cell clone depending on its driving capacity, and different 
niches are independent of each other. These simplifying 
assumptions, although probably unrealistic, are 
nevertheless useful since they enable us to focus on the 
basic phenomena, which arise from the cross regulation of 
Th sub-populations. 

Differentiation pathways and population dynamics 

The basic differentiation pathway is activated when the 
whole population is in resting state, i.e., when no antigenic 
niche is present in the system to successfully activate the 
Th cells. In the absence of any activation, the dynamics of 
the Th cell population are characterized by a set of main 
features: 
• Input of thymic migrants into the Th2 and Th0 

compartments; 
• Spontaneous flow by differentiation from resting the 

Th2 into the resting Th0 compartment, and from the 
latter to the resting Th1 compartment; 

• Output dominated by an exponential decay of each 
compartment by cell death. 

When in the presence of an antigenic niche with a 
significant driving capacity, the activation of resting Th 
lymphocytes results in a flow from all the resting 
compartments to the activated Th1 and Th2 compartments. 
Both the Th1 and Th2 compartments are poles with effector 
functions and regulatory potential that ensure the 
population expansion by cell division. 

In Bendelac and Schwartz 1992 it is suggested that a 
considerable fraction - if not all Th lymphocytes - come out 
of the thymus committed to an IL-4 expressing pathway of 
differentiation. However, it is observed that IFN-y 
expression dominates IL-4 expression after 3 to 6 days. 

Two different processes could explain this change in 
proportions: 
• Each differentiation state is irreversibly committed, but 

individual cells have very short lived IL-4 expressions; 
• There exists a differentiation from IL-4 to IFN-y 

expression in recent thymic migrant, i.e., a 
spontaneous flow from the resting Th2 compartment to 
the resting Th0, and thence to the Th1 compartment. 

Accordingly to some recent work on immunology, the 
second alternative seems more likely since the precursors 
of both types of activated cells expressed IL-4, 
corresponding to the resting Th2 cells of the model. 



Cross-regulatory mechanisms in the antigenic niche 

The cytokines produced by each of the activated polar 
compartments tend to work in such a way as to increase the 
relative importance of their own differentiation pathway. In 
order to capture the main features of cross-regulation in Th 
populations, we have identified three main regulatory 
mechanisms: 
• Down-modulation of expansion potentials; 
• Access modulation of the resting sub-populations to 

the driving niche; 
• Biasing of the commitment step. 

See Carneiro, Stewart, Coutinho and Coutinho 1995 for 
further details on cytokine modulation effects on CD4+ T 
cells. 

Model description and formulation 

The dynamics of both resting and activated Th, and Th2 

sub-populations are governed by following postulates. The 
simulation parameters, the rate constants k, the thymic 
source terms s, and the cytokine mediated effects c, are 
indicated along. 
l. Resting Th2 and resting Th0 cells are produced by 

thymic output with constant rates, (s2 and s0 , 

respectively). 
2. The resting Th2 sub-population decreases exponentially 

by death (k4) and by spontaneous differentiation (k5) into 
the rTh0 compartment, or by niche-driven activation 
into the aTh1 compartment (k6); it increases as activated 
Th2 cells revert to resting Th2 state, with (k3) or without 
(k2). 

3. The resting Th0 population decreases exponentially by 
death (k7) and by spontaneous differentiation into the 
resting Th, compartment; it also decreases by following 
niche-driven activation into aTh2, through (k8), and/or to 
aTh1 compartment through (k9). 

4. The resting Th1 sub-population decreases exponentially 
by death (k11 ) and by activation into the aTh1 

compartment (k12); it increases as activated Th, cells 
revert to resting Th, state, with (k15) or without (k14) 

going through the mitotic cycle. 
5. Only activated Th2 and activated Th1 cells produce 

cytokines with regulatory effects. These cytokines are 
assumed to have effective concentrations in the niche 
and are directly proportional to the sizes of the activated 
Th1 compartment (c1 and c2) and activated Th1 

compartment (c3). 

6. All three resting compartments compete in the driving 
capacity of the antigenic niche, being the share of each 
sub-population proportional to its size. 

7. Cytokines produced by aTh2 cells inhibit the capacity of 
the niche to drive aTh1 cells. The force of this inhibition 
depends on the relative size of aTh2 sub-population with 
the niche's driving capacity. 

8. Resting Th0 cells will differentiate into activated Th1 

cells after their activation in the niche (k.). The 
differentiation into aTh2 cells can be redirected through 
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cytokines produced by the same compartment (c2), 

however the Th, sub-population will inhibit the same 
differentiation (cJ Therefore, the proportion of rTh0 

cells that will commit into aTh2 cells depends on the 
balance between activated Th1 and Th2 cells. 

9. The driving capacity of the niche can be dynamically 
changed in order to study cross-regulation under such 
conditions as well as the corresponding emergent 
behaviors. 

We have explained the dynamics of Th lymphocyte sub
populations, the concept of antigenic niche and driving 
capacity. The rules enumerated above describe the global 
dynamics of the system. 

The simulation model includes one or more Th cell 
lineages and a set of antigenic niches with a specific 
binding affinity, comprehended within a bi-dimensional 
lattice. The parameters k0 , c. and s0 , which guide population 
dynamics, are the values that enable an output in agreement 
with experimental results. They remain constant for every 
simulation. Since the spatial location within the lattice, 
especially the Hamming distance between niches modify 
the emergent behavior, it is considered as another variable. 

Th cells and APCs 

To control the binding mechanism between 
MHC/peptide molecules on the antigenic niche and the Th 
cell TCR molecule, two additional independent variables 
are introduced: TCR and MHC/peptide 'length' and the 
binding affinity value for each sub-population element. 

The Th sub-populations are mapped into a mutually 
exclusive five-element space state. The transition functions, 
TCR pattern expression and the state of a T cell clone are 
modeled by a single agent, which allows heterogeneous 
agent populations (Smith, Forrest, Perelson 1994). 

This population is distributed over an object oriented 
cellular automaton, comprising a set of sites arranged in a 
two-dimensional lattice. This same lattice is used to depict 
the data concerning the antigenic niches and cell mediated 
cytokines. 

Binding mechanisms 

To model the TCR molecules on the Th cell clones and 
the MHC/peptide pairs we have used a bit-string matching 
procedure (Hightower, Forrest, and Perelson 1993). In this 
bit-string universe, molecular binding takes place when a 
TCR bit-string and an antigenic one match each other in a 
complementary fashion. The match score between two bit
strings is the number of complementary bits, computed by 
applying the exclusive-or operator. The binding value, 
derived from the match score, represents how well two 
molecules bind. Actually, molecular binding requires a 
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Figure 1: Th cell dynamics and state trans1t10n flows. The boxes represent the Th sub-populations: aTh2 

(activated Thz), rTh2 (resting Th2), aTh, (activated Th,), rTh, (resting Th,) and rTh11 (resting in Th0 state). Plain 
arrows stand for the flow between sub-populations. Decay by death is indicated by arrows into a cross. The thin 
arrows depict spontaneous flows between compartments, while the thick ones correspond to flows, which are 
activated by the driving capacity of the niche. Dashed arrows from one compartment to a transfer arrow indicate 
the modulation effect of cytokines on the target: inhibitory effects are depicted by a crossed line, while 
stimulatory effects are given by a E8 sign. Cell division is indicated by a double arrow from the source 
compartment to the target one. The parameters s. (thymic output rate), k. (rate constants) and c. (cytokine effects) 
are affixed to the corresponding process. 
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sufficiently large surface area match, essential to form a 
stable bond. This feature is emulated by requiring the 
match score to exceed a certain threshold before binding 
takes place. For match scores below the threshold the 
binding value is essentially zero. For match scores above 
the threshold, the value approaches one. The binding 
function makes a smooth transition on either side of the 
threshold, rather than an abrupt shift (Hinton and Nowlan 
1987, Hightower, Forrest, and Perelson 1994). 

State transition functions 

The basic parameter values, k" ... k 15 , c" c2 and c), have 
been automatically determined with a genetic algorithm 
whose fitness function was based on an agent population 
attaining the three basic steady state configurations, SSO, 
SS 1 and SS2. See the Results section for details on Th, and 
Th2 steady states. 

The parameters values used to obtain the presented 
results are: s0 = 8000; s2 =1000; c, = 100; c2 =100; c) = 45; 
k,=0; kl= 48; k)= 41; k. = 57; k5= 29; k6 = 55; k1= 40; k.=21; 
k9 = 52; k10=47; k11 = 30; k, 2= 53; k,1 = O; k"= 23; k,,= 17. 

The transition functions define the agent's behavior based 
upon internal and environmental criteria. Hence, each of 
the possible five states holds a specific transition function. 

Every state relies in a stochastic decision function . 
Depending on the agent's state, two situations can be 
considered: the resting and activated modes. In resting 
mode it is required to test the binding affinity to choose 
either the activation or the spontaneous flow pathways. It is 
clear that only the spontaneous flow requires testing for the 
binding affinity, since the activation pathway assumes a 
stable molecular bond. 

The binding result 8, depends on the agent's type, the 
TCR and the target antigenic molecule. This value is 
obtained by comparing the binding value of the two 
molecules with the agent's binding affinity threshold. 

The Th sub-population space state is represented by the 
set LT" = { aTh" rTh" rThcv rTh2, aTh2 }. Set upon this, a 
global decision space state LA = ~" u { 'il'} is defined to 
identify the possible transition space state of every agent. 
The transition function, cr, is defined by cr: LT"~ LA and is 
evaluated by all agents on every simulation step. Any 
element of LT" can be overloaded with the symbol v 



denoting state transition and simultaneous cell division or 
cloning. The I:A element { 'll'} depicts the agent's death. 

The value of p{c.) describes the cytokine absolute density 
value within the site where the evaluated agent currently is. 
The value of c. can be one of cl' c2 or cr 

Finally, the operator a depicts the competitive stochastic 
selection among the parameter space of an element of r.,,,, 
and is defined as: a: N0 © N0 ~ Boo!. The operator a[n, 
m] can be interpreted as: given a value n and a maximum 
discriminating boundary m, if s(n) is outside the boundary 
ceiling m, a returns a Boolean true value, otherwise a false 
one. s(n) is a stochastic function which returns a value 
within the range [O, n]. With this operator it is possible to 
select a single transition state from a n-dimensional 
parameter space on each evaluation of a. 

The state transition functions for every element of I:,,, 
provide a complete description of the function CT. Every 
state has been divided into a set of independent groups 
(depicted by I, II, ... ), each confining the scope of the a 
operator to the same group. 
a(rTh0 ) 

I. 

II. 

aTh2 

aThl 

III. 

a(rTh 1) 

I. 

II. 

III. 

CT(aTh 1) 

I. 

II. 

CT(rTh2) 

'li' 
aTh1 

rTh 1 

'1i' 

I. 'll' 
rTh, 

II. aTh2 

III. 

<= a[(l - 0)k1 , 200] 

<= a[(l - 0)k\(" 200) 

<= otherwise 

<=a[(l-0)k11 , 100] 
<= a[0(kj1 + c,p(c,)) + 100 - k,) k,,(I 

+ c1p(c)) + 100] 
<= otherwise 

<= a[(l - 8)k1v 300] 
<=a[( I - 0)kw 300] 
<= a[ (I - 8)k1,, 300] 

<= otherwise 

<= a[(l - 8)k4 , 200] 
<= a[(J - 8)k, , 200] 

<= a[0(kil + c,p(c,)) + 100 - k0 ) , k6(1 

+ c1p{c1))] 

<= otherwise 

147 

CT(aTh2) 

I. 'll' 
rTh2 

rTh2~ 
II. ath2 

<= a[(I - 8)k1 , 300] 

<= a[(l - 0)k2 , 300] 

<= a[(l - 8)k,, 300] 

<= otherwise 

Results 

The obtained results concern: 
• Basic steady states for the canonical conditions of 

antigen presentation; 
• Concomitant responses to the same antigen; 
• Concomitant responses towards skin grafts. 

In Carneiro, Stewart, Coutinho and Coutinho ( 1995), the 
attained system responses considered unary diversity, i.e. a 
Th cell population with similar TCRs. Since this model 
allows diversity, both of cell population and antigen, we are 
able to extrapolate some results to complex in vitro 
observations and even to conditioned in vivo environments. 

Depending on the development conditions, the system 
can reach different steady state responses. In the present 
model, the driving capacity of the antigenic niches does not 
change with Th cell activity throughout the simulation, 
meaning that the achieved steady states are highly 
dependent on it. Nevertheless, they are also dependent on 
the way the system develops, i.e., on the timing and type of 
antigen presentation. With a homogeneous population and 
antigen as described in Carneiro, Stewart, Coutinho and 
Coutinho 1995 these states are easier to identify. When 
diversity is considered, some complex behaviors occur, as 
different responses to different antigens can be achieved 
simultaneously. As a basic experiment to identify the 
possible states, we tried the system with a diverse 
population but only one type of antigen. Three main 
equilibrium states were identified. SSO equilibrium 
corresponds to a complete absence of antigen, featuring no 
activated cells and the dominance of Th1 and Th11 

population compartments (v. Figure 2). SS I equilibrium 
corresponds to antigen rejection and is typically achieved 
through the presentation of antigen to a system in SSO state. 
It's main feature is the clear dominance of the 
inflammatory or Th 1 compartment (v. Figure 3). Finally, 
SS2 equilibrium is reached when the system develops from 
its onset on the presence of antigen, featuring a dominant 
Th, population, which corresponds to a tolerant response of 
self antigen (v. Figure 4). 

The protocol of this simulation requires the system to 
evolve its population in the presence of an antigen patch, 
which occupies a small fraction of the available space, yet 
big enough to promote a SS2 response. After the system 
reaches equilibrium, another patch of the same antigen is 
inserted, somewhat distant from the initial one (v. Figure 
5). The initial patch keeps promoting a SS2 response while 
the second promotes a concomitant SS 1 response. This 
result can be easily explained. As the system evolves, the 
SS2 response is obtained in the area occupied by the initial 



patch. Nevertheless, as the remaining space is empty, the 
flux of cells from resting Th2 state towards Th0 and thence 
to Th 1, promotes a SSO equilibrium. The antigen which 
was later inserted in the SSO dominant area leads to a new 
and local SS I response. As there is still an unoccupied 
physical space between the two patches, the SSO pole keeps 
offering a boundary that stops any influence between the 
antigenic clusters . 

Figure 2: SSO equilibrium 1s reached in the absence of 
antigen. 
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The study of concomitant tolerant and rejection 
responses has special interest to understand the 
observations on skin graft experiments, whether in vitro or 
in vivo. The main issue concerns the immune response, 
which eliminates the pathogenic agents without interfering 
with the tolerant response to self. In other words, why the 
rejection of a skin graft does not propagate to the self 
tissues in the vicinity? A possible explanation relies on a 
set of different responses from the cells promoting rejection 
and those who lead to self-tolerance, with no interference 
between both compartments. This theory has been 
classically accepted, however, current research holds that 
lymphocyte specificity is quite degenerated . In the light of 
those observations, concomitant responses would depend 
on a balance between regulatory and inflammatory cells 
through the definition of boundaries in both physical space 
and specificity. 

This model considers the latter theory. The following 
experiments concern tolerance towards skin grafts. Firstly, 
a diverse Th population develops in the presence of 
MHC/peptide molecule A homogeneously distributed 
throughout the available physical space, leading to the 
tolerance of antigen A, identified by a global SS2 steady 
state. Next, a small area is cleared of A, and replaced with a 
patch of MHC/peptide molecule B with the same average 
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density . The obtained immune response is studied for both 
molecules, A and B, allowing the identification of the cell 
compartments and populations which responded to each 
peptide. We take into account the ratio of B in the global 
system, as well as the similarity between both antigens . 
The similarity degree is the factor of equivalence of the 
TCR receptors. The results are shown on Table 1 and Table 
2. 

The SS2 response to peptide A is the same after the 
graft attachment, meaning overall self recognition . 
Moreover, we can observe that the response increases in 
proportion to the graft's fraction of the total driving 
capacity of the system, enabling the identification of the 
graft either as self or as allogeneic material. Keeping this 
fraction constant, we note that B is more likely to be 
rejected as its similarity towards A decreases . Note that the 
less similar self and non-self are, the more orthogonal the 
responding populations. 

Table I: average relative density of Th I or Th2 active cells 
per antigenic niche occupied by antigen A before grafting. 

Initial response to antigen A 
Th I Th, 

I I 7 

The interpretation of these observations leads to a 
possible explanation on the way the immune response 
eliminates pathogenic agents and simultaneously tolerates 
self. Once the peptide A is added to the system, the 
population which positively binds to it develops a SS2 
response, enabling the recognition of A as self. 
Nevertheless, the remaining cells evolves as if there was no 
initial antigen in the system, thus developing a response of 
type SSO. When the graft is added, tolerance to A is 
maintained no matter what the response is towards B, 
thanks to the overwhelming c1 and c, cytokine action. If the 
B peptide is similar to A, the response is essentially created 
by cells that are reactive to the antigen, and thus the SS2 
response propagates to the graft, inducing tolerance. On the 
other hand, when the similarity is low enough (at least 
below or equal 50% ), the response is mainly created by the 
cells which do not match peptide A and thus in SSO state. 
The addition of antigen in a SSO state system promotes the 
inflammatory SS I response . Acceptance of small grafts is 
related to the fact that the cell population matching A, 
already in a SS2 state and therefore in larger global 
concentration, easily overwhelms the remaining cells to 
promote tolerance. This result is consistent with the 
observations described in Carneiro, Stewart, Coutinho and 
Coutinho 1995. 

Discussion 

Concomitant responses towards a single antigen are a 
somewhat unusual result that might occur in some in vivo 
experiments. An example can be given by the experiments 
made on transgenic animals whose beta cells of the 



pancreas express an antigen A of viral origin. Those 
animals also express an anti-A transgenic TCR. When those 
animals are infected with the virus from which the gene 
was imported, the virus is rejected while the pancreas 
shows no sign of disease. This model can explain this by 
the simultaneous existence of both SS2 and SSO 
equilibrium states towards a given antigen in different areas 
of the same organism, depending on its concentration and 
density. 

Responses to skin grafts were achieved through an active 
mechanism that keeps a balance between regulatory and 
inflammatory cells. There is experimental evidence that the 
diversity within in the immune system alone is several 
times greater than that in the rest of the body. This is 
consistent with the described results. Cytokine mediated 
regulation, especially IL-4 and IL-10, was found to have a 
significant role on local graft rejection and effector 
function restraint on neighbor tissues. Although the 
proposed model considers a population with low diversity, 
we believe that the achieved results can be extrapolated to a 
broader domain of diversity. 

Figure 3: After the SSO state, the addition of peptide m 
moment A causes a SS I type response to develop. 
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These results depict immune responses upon local steady 
states and well-defined boundaries. The major interrogation 
concerns the way local interactions are considered, in other 
words, the spatial scale of the model. Each in vitro culture 
can be regarded as a single antigenic niche, since the 
antigenic stimulus are homogeneously distributed by all 
antigen presenting cells, and cytokines are usually added 
from the outside and distributed consistently. However, in 
vivo environments provide a set of additional problems. In 
a pragmatic way, we have considered to interpret the 
neighborhood between antigenic niches as the probability 
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of a cell to change between the niches, additionally 
representing a boundary for cytokine modulation. 

Figure 4: SS2 state reached in the presence of peptide. 
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Figure 5: Antigen presence is indicated by a white dot. The 
first patch of antigen A, can be seen on the top left corner. 
Its color indicates that the cell majority is Th2 (tolerant 
state). On the bottom right corner, we have a majority of 
Th I cells, a synonym of rejection. 
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Table 2: Values represent the average relative density of active Thi and Th2 cells per antigenic niche A and B after grafting. 
Darker areas indicate convergence towards an inflammatory SS 1 local state. Lighter areas indicate dominant tolerance, 
towards SS2 local state. 

62.5% 50% 

H e tide ra Ar a Th1 Th2 Th1 Th2 
16% 1 7 1 7 

A 9% 7 1 7 
4% 7 
16% 5 2 

B 9% 6 
4% 7 

Conclusion 

We have presented a model for the ontogeny and 
concomitant immune responses on CD4• T lymphocytes 
sub-populations. The model enables both TCR and 
MHC/peptide diversity considering different matching 
coefficients with the same antigen, which makes it suitable 
for simulations concerning in vitro and in vivo test 
protocols. Moreover, the ontogeny and the dynamics of Th 
lymphocytes appear to be one of the major regulatory 
mechanisms that upholds the tolerance and rejection of the 
immune system. We note that the establishment and 
maintenance of local equilibrium states, a process in which 
cytokines appear to have a decisive role, may help to 
understand one of the many important phenomena in the 
immune system. 

The proposed model gives interesting clues on the 
learning process the immune system is submitted during its 
ontogeny and on how a population that presents a very 
degenerated specificity can recognize both self and 
allogeneic antigen. These results somewhat contradict the 
more orthodox theories which put exclusive specificity as 
the main factor for immune regulation and immunity. 
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Abstract 

Drosophila is one of the most well investigated animals 
in molecular and developmental biology. However, the 
process of embryogenesis is still a complex phenomenon 
in biological studies. Due to its complexity, it is al
most impossible to understand intuitively what is going 
on during embryogenesis. In this paper, we replicated 
Drosophila embryogenesis in a computational model. 
The system successfully reproduced the patterns of gene 
expression compared to the actual staining patterns of 
Drosophila's embryo. In this system, we use a genetic 
algorithm to determine the parameter set for the de
velopment of Drosophila's early segmentation. As the 
result of the simulation, we found that some phenom
ena taking place in Drosophila's early embryogenesis are 
understandable. We propose that computer simulation 
can become a useful new method for biological experi
mentation. 

Introduction 
Current biological studies on Drosophila have revealed 
much about its genetics and development. Drosophila 
is a fruit fly, which is very popular experimental ma
terial in traditional genetics, experimental embryology, 
and molecular biology. These fields have been combined 
to build a blueprint of its developmental mechanisms. 
Due to their efforts, Drosophila has yielded a large map 
of genes which is far more complete than that of any 
other complex organism (Lawrence 1992). 

Computer simulations have also contributed to stud
ies of Drosophila, especially about the formation of gene 
expression during early embryo genesis. In 1990, Axel 
Hunding simulated the hairy gene expression pattern 
(Hunding et al. 1990) by using reaction-diffusion theory 
(Turing 1952). John Reinitz performed the simulation of 
several gene expressions and found the diffusion constant 
of even-skipped product is uniquely smaller than those of 
other genes (Reinitz and Sharp 1995). Masanori Arita 
simplified Reinitz's model to propose Simfly (Arita 1995) 
the same year. 

For Drosophila, quite a large amount of data is avail
able about early embryogenesis, a number of mutants 
have been identified, and detailed expression patterns of 
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genes have been studied. However, Drosophila is still 
complex animal. There may be unknown mechanisms, 
genes, regulational pathways, etc. yet to discover. The 
morphogenesis of Drosophila is still quite complex and 
it also has a substantial central nervous system. In ad
dition, recent biological studies have reported that the 
mechanisms of development (such as the specification of 
the anterior-posterior axis of the body) between mam
mals and Drosophila are very similar. Drosophila is quite 
a simple animal, but it is a significant animal. That is 
why Drosophila is a most suitable animal for the compu
tational modeling (Kitano et al. 1997). Thus we chose 
Drosophila, especially its early embryogenesis, for our 
computational model. 

The goal of this paper is to make a detailed model of 
Drosophila early embryogenesis, mainly its segmentation 
along the anterior-posterior axis of the body, to predict 
unknown mechanisms in its development, and to propose 
a new methodology called computational biology. This 
goal is part of the Virtual Drosophila Project (Kitano et 
al. 1997) at Sony Computer Science Laboratory Inc. 

Drosophila 
Early Segmentation 
During the past decade, a model has emerged (Figure 1) 
which synthesizes much existing the data to show how 
the polarity of the Drosophila egg gives rise to the po
larity of the fly body with its repetitive individual seg
ments (Gilbert 1994). The basis of the establishment of 
segment polarity and homeotic stripes is the anterior
posterior distribution of maternal genes. These genes 
are maternally localized at different regions of the em
bryo. The two major such genes, bicoid and nanos, are 
believed to be very important in specifying the anterior
posterior polarity of the embryo. The bicoid protein and 
the nanos protein respectively regulate the formation of 
the anterior and posterior parts of the embryo. These 
maternal genes regulate zygotic genes called gap genes 
which form bands along the anterior-posterior axis of the 
embryo. These bands roughly determine the position of 
body segments. The various concentrations of gap gene 
products also regulates the expression of pair-rule genes. 
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Figure 1: Generalized model of Drosophila pattern for
mation (Gilbert 1994) 

The expression of pair-rule genes forms the pattern of 
seven vertical bands along the anterior-posterior axis. 
The pair-rule gene proteins regulate the expression of 
segment polarity genes and homeotic genes. Segment 
polarity genes create 14 bands which divide the embryo 
into 15 segments. The homeotic genes determine the 
developmental fate of each segment. 

In Drosophila, nuclei division occurs rapidly every 9 
minutes. At the stages of embryogenesis during the 13th 
nucleic division cycle, the embryo is not cellularized and 
forms a syncytial blastoderm (that is, it consists of one 
large cell with many nuclei). This is different from the 
embryos of many other organisms, which perform cellu
lar division every time a nucleus divides. The Drosophila 
embryo thus allows the free diffusion of proteins within 
the egg, while in many other embryos this is not feasible . 

Gene Regulation 

Early in segmentation, Drosophila forms seven vertical 
"bands" of concentration of gene products along the 
anterior-posterior axis of the embryo. These stripes lead 
to the body segments which are formed in latter stages 
of embryogenesis. The gene expression patterns are de
termined by the distribution of concentrations of regu
lational gene products. 

As shown in Figure 2, genes are hierarchically regu
lated from upstream genes to downstream genes. 

One of the maternal genes is bicoid, whose mRN A 
(from the mother's bicoid gene) is placed into the ante
rior region of the embryo by the mother's ovarian cells. 
The product of the bicoid gene controls anterior <level-
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Figure 2: Hierarchical structure of gene regulation 
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Figure 3: Gene Regulation Circuit 

opment. The bicoid protein binds to the promoter of 
the hunchback gene and activates its expression. It does 
likewise to the Kruppel gene. Another maternal gene is 
nanos, whose mRNA is placed into the posterior region 
of the embryo and product plays a role in posterior de
velopment. Both of the bicoid and nanos genes produce 
proteins soon after fertilization. The protein product of 
the nanos gene represses the translation of hunchback 
mRNA. The members of the gap gene group are hunch
back, K ruppel, knirps, and giant. The hunchback protein 
activates the expression of Kruppel and inhibits knirps gi
ant. The Kruppel protein activates knirps expression but 
inhibits hunchback and giant expression. The knirps pro
tein inhibits both Kruppel and giant expression. The gi
ant protein inhibits the expression of Kruppel and knirps. 
In this way, gap genes regulate one another and form 



Figure 4: The regulation of even-skipped gene 

various distributions of protein concentration along the 
anterior-posterior axis. 

The seven vertical bands of the even-skipped protein 
are formed by the various concentration distributions of 
the maternal and gap proteins. Formerly, as the expres
sion pattern looked like a wave, it was assumed that it 
was under the control of some chemical reaction-diffusion 
system. However, current biological efforts have shown 
that this is not the case for even-skipped expression. 
Each stripe of even-skipped expressions are regulated by 
unique regulational factors, as shown in Figure 4. 

Stripe 2 of even-skipped has been quite extensively in
vestigated and its regulation is well understood. The an
terior border of stripe 2 is determined by the inhibition 
of the giant protein and its posterior border is deter
mined by the inhibition of the Kruppel protein. Stripe 
3 is refined by anterior bicoid inhibition and posterior 
knirps inhibition. Stripe 7 is refined by anterior knirps 
inhibition and posterior hunchback inhibition. The pos
terior border of stripe 7 is believed to be determined by 
another gene:tailless. 

Modeling 

In this paper, we have modeled Drosophila embryogene
sis from fertilization to the 14th cleavage cycle. During 
these cycles, the embryogenesis involves the interaction 
of maternal genes, gap genes, and pair-rule genes. Ta
ble 1 shows the set of genes which have been modeled in 
current version of our simulator. Note that we do not 

Class Genes 

Maternal Effect Genes bicoid (bed) 
nanos (nos) 
torso (tor) 

Gap Genes hunchback (hb) 
Kriippel (Kr) 
knirps (kni) 
giant (gt) 
tailless ( tll) 
huckebein (hkb) 

Pair-Rule Genes even-skipped (eve) 

Table 1: A list of genes implemented in the simulation 
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Figure 5: Transcription Model 

include any pathways other than those known to exist 
from real biological data. 

For a detailed simulation, the simulator needs to 
model the shape of the embryo, genetic processes, and 
the behavior of the gene products. Genetic processes in
clude transcription and translation. The chief behavior 
of the products is diffusion. 

Transcription 
Gene transcription can be modeled by a stochastic pro
cess where activators and repressors compete for a bind
ing site on the promoter of the target gene. As shown in 
figure 5, for example, when two proteins compete for one 
binding site, a simple way to approximate the probabil
ity that protein A can bind to the site can be described 
by the following formula: 

PA= UA 
UA+UB+f3A 

(I) 

In formula (1), UA and UB are protein A and B con
centrations surrounding the target binding site, and the 
constant value f3A is introduced to adjust the probabil
ity as deemed appropriate. However, this approximation 
assumes that both binding affinities of protein A and B 
are equal. If the binding affinities are different from one 
another, formula (1) does not make sense. In that case, 
we have to extend the formula (1) to: 

PA= O:AUA 
O:AUA + O:BUB + f3A 

(2) 

In Eq. (2), O:A and O:B are the binding affinity of the 
activator or repressor of protein A and B. In this paper, 
we consider that the probability of transcription is given 
by Eq. (2). In reality, the situation can be even more 
complex, and in the future we may extend this model 
even further. 

Whether gene A is transcribed or not can be deter
mined if the following inequality holds: 

PA> ThresholdA (3) 

The same threshold determines the expression of each 
gene. The amount of mRNA which is transcribed from 
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Figure 6: Two-threshold model 

gene A is described as follows: 

{ TA 
amountA = 0 

if inequality (3) is true 
otherwise 

(4) 

In Eq. (4), TA is a constant value representing the 
amount of mRNA which is transcribed at each step. 
However, this model can be used only in the case that 
activation occurs when the amount of activator is higher 
than some threshold level. For example, the hunchback 
protein acts as an activator or repressor under unusual 
conditions. In particular, knirps is activated only by low 
values of hunchback, while Kiippel is activated only by 
medium levels of hunchback, but inhibited again by high 
levels. Also, giant is activated only by high or low lev
els of hunchback, (but not medium levels!). This case 
is modeled with two thresholds in our system. Figure 
6 shows how the two-threshold model works. In Figure 
6, the horizontal axis indicates the activation levels of 
thresholds and the vertical axis indicates the levels of 
concentration of protein, for both activator and repres
sor. This model can describe two opposing situations. 
Different concentrations (low, medium, high) can indi
vidually activate, inhibit, or not affect gene expression. 
Because this model is more flexible in various situations, 
we chose to implement it. 

Translation 
In the translational process, messenger RNA is trans
lated into protein. Biologically, the process of transla
tion is also regulated by "regulational factors" (other 
proteins). For example, the translation of the mRNA 
of the hunchback gene is inhibited by the nanos protein. 
Due to the lack of available data, however, we perform 
the translational process without regulatory inhibition 
except in the case of hunchback translation. 

Embryo shape 
We approximate the shape of Drosophila's embryo with 
a cylindrical coordinate system, instead of the exact oval 
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Figure 7: Approximation of Drosophila embryo shape 

shape, as shown in Figure 7. With such an approxima
tion, when the distribution of proteins along the anterior
posterior axis is taken into account, the three dimen
sional embryo shape can be regarded as just a line; only 
the anterior-posterior distribution is considered. This 
model breaks down near the poles of the egg, and could 
be improved if more accuracy is needed in the simula
tion. 

Diffusion 
In the process of diffusion, proteins produced by the 
translation of genes diffuse within the embryo. During 
the first two hours or so, there are no partitions in the 
egg to prevent the proteins from diffusing freely. Because 
of the abstraction of the shape described above, the tran
sition of the protein along the dorsal-ventral and lateral 
axes need not be calculated. Therefore, the diffusion can 
be described by a simple differential equation. For ex
ample, the diffusion of the protein of gene A is described 
as follows: 

(5) 

U A concentration of protein A 
DA diffusion parameter 

In Eq. (5), x denotes the position along the anterior
posterior axis and U A describes the concentration of pro
tein A at position x. The diffusion constant for the pro
tein of gene A is DA. For such a diffusion process, diffu
sion constants are individually determined for each gene 
product. 

Behavior of components 
During early embryogenesis, many components interact 
with one another to form seven stripe patterns of protein 
concentration within the egg. The interactions involve 
genes, mRNAs, and proteins. In the simulation, the be
havior of the items must be considered. 



• Protein production through transcription and transla
tion process 

• Diffusion of proteins 

• Deletion of proteins 

Deletion occurs when a protein breaks down or is re
moved through a process such as methylation. In sum
mary, the behavior of the proteins are described by the 
following equation: 

au; a2 U; at = D; 8x2 + g. U; + f (V) (6) 

U; concentration of protein i 
x position on axis 
t time 
D diffusion parameter 
g deletion parameter (g = -0.2) 
f protein production function 
U concentration vector 

Equation (6) is derived from (5) and involves diffusion, 
deletion, and production of the proteins. It is consistent 
with a model proposed by Reinitz and Sharp (1995). 

Optimization 
A number of parameters (protein diffusion constants, 
binding affinity, ratio of transcription, etc.) are opti
mized using a genetic algorithm. At each time step, the 
result of the simulation is compared with the desired 
pattern. The details of the optimization processes is de
scribed elsewhere. 

Simulator 
Outlines 
Simulation cycle The simulation covers about two 
hours of Drosophila segmentation development, in which 
the genes interact with one another, mRNA and proteins 
are produced through the process of transcription and 
translation, and proteins diffuse throughout the embryo 
to form the striped patterns of the even-skipped gene 
product. In the current version of the simulator, only 
stripes 2, 3, and 7 of the even-skipped protein are im
plemented because the mechanisms of the other stripes 
remain unknown. 

The simulation has four stages per run, which are 
shown in table 2. At the first stage of the simulation, 
maternal mRNA of bicoid and nanos genes is localized 
at the anterior pole and posterior pole of the embryo. 
Their amounts are predetermined. At the second stage, 
mRNAs of maternal genes start to be translated, respec
tively, into proteins and diffuse within the embryo. At 
the beginning of the third stage, the downstream genes 
such as gap and pair-rule genes begin to be transcribed 
into mRNA, which is translated into proteins. These 
proteins also diffuse in the embryo and form their own 

155 

Stage 

Stage 1 

Stage 2 
Stage 3 

Stage 4 

Operation 

Localization of mater
nal mRNAs 
Start translations 
Gap and pair-rule gene 
start to be operated 
Fitness evaluation 

Table 2: A chart of simulation flow 

gradients of protein concentration. Finally, the fitness of 
the resultant protein distribution is determined by com
paring it to the ideal "wild-type" distribution. 

The experiment has two steps: 

1. Determination of a parameter set by using genetic al
gorithm optimizing fitness compared to the wild-type 
embryo 

2. Simulation for the mutants by adjusting the optimized 
parameter set obtained from step 1 

Mutant analysis We only generate mutants through 
major changes in gene interaction, not subtle changes 
to parameter settings. The simulator can perform the 
usual kinds of mutant analysis: loss-of-function knock 
out, over-expression of a gene product, and site-directed 
mutagenesis. The loss-of-function knock out experi
ments can be replicated by simply disabling the tran
scription of a target gene through the simulation. In the 
over-expression experiment, the amount of the product 
transcribed from the target gene is artificially increased. 
This method can be replicated by increasing a parame
ter which determines the amount transcribed in one time 
step. Site-directed mutagenesis is where a specific bind
ing site on the promoter of the target gene is altered, to 
disable the activator or the repressor to bind to it. 

Simulator interface 
A whole screen capture of the simulator interface is 
shown in Figure 8. There are three different kinds of 
windows on the screen. At the top of the screen is the 
protein concentration graph along the anterior-posterior 
axis of the egg. In the middle of the screen, there are 
embryo shaped maps for each gene product, which show 
the image of the staining patterns of respective proteins. 
Below these windows, there is a control panel for all of 
the operations of the simulator. 

The simulator also has other control panels which 
can enable or disable gene transcription, the diffusion 
constants for the respective proteins, and assign values 
to the strength of transcription, the levels of thresh
old which determine the gene transcription sensitivity, 
and the binding affinities between any two genes. While 
the simulation is running, all of the parameters can be 
changed quickly to see the effect of such a change. 



bed 
naros 
huochback 

Figure 9: Interfaces 
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Figure 10: Simulated expression patterns of gap genes 

Result 
At the early stages of the simulation, the embryo shows 
the non-characteristic mixture of proteins along the 
anterior-posterior axis except the two gradients of the 
maternal proteins from bicoid mRNA and nanos mRNA. 
They are localized at the anterior and posterior pole at 
the beginning of the simulation. As the simulation pro
ceeds, the gap proteins form unique gradients through 
their interaction with one another. The formation of gap 
proteins refines the expression bands of the even-skipped 
protein. 

We have examined various situations in embryogene
sis. For example, we artificially changed the transcrip-



tion amount of a target gene. This simulation corre
sponds to the over-expression experiments in biology. In 
addition, we have tested loss-of-function knock-out mu
tation simulations and site-directed mutagenesis simu
lations. Later in this paper, we report some of the re
sults of simulations such as wild-type embryo and loss
of-function mutants of giant- (gt-). Also, we record the 
temporal dynamics of the gap gene expression patterns 
during their development. 

Wild-type 
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Figure 10 shows the simulated expression patterns of gap 
genes for the wild-type embryo. The figure is drawn with 
the left side as the anterior pole and the right side as 
the posterior pole of the egg along the horizontal axis. 
The vertical axis indicates the level of concentration of 
proteins. 

Figure 11 shows the embryo images for embryo-shaped 
concentration maps for both the result of simulation and 
the actual staining pictures of the wild-type embryo. 
These are the pictures of the final stages of the wild
type simulation. The left column in Figure 11 shows the 
simulated result and the right column shows the actual 
staining pattern of the specific protein of the wild-type 
embryo. 

Comparing the result images the with actual staining 
patterns, each expression pattern has been reproduced 
consistent with the actual one. 

Loss-of-function mutants 
The result of a simulation of the loss-of-function muta
tion of giant is shown in Figure 12. In this embryo, the 
transcription of giant is strictly cut off, while the other 
properties of the simulation are preserved from the wild
type simulation. Therefore no giant protein is in the egg. 
As the giant protein determines the anterior border of 
the even-skipped stripe 2 by is inhibition, without giant 
protein, even-skipped is broadly expressed in the anterior 
region. Because giant is not the regulational factor for 
stripes 3 and 7, they do not suffer the effects from the 
lack of giant protein, which is described as "gt-". The 
result of the simulation of gt- is quite consistent with 
the actual experimental data. 

If the knirps protein does not exist in the middle of 
the egg, {it works as the inhibitor against the posterior 
border of stripe 3 and the anterior border of stripe 7 
of the even-skipped gene), the even-skipped protein can 
express broadly in the region between stripes 3 and 7 
while stripe 2 is expressed normally at the anterior region 
of the egg. 

Figure 14 shows the expression patterns of the Kriippel 
and giant proteins in an embryo with a loss-of-function 
mutation of the bicoid gene. The K riippel protein occu
pies the anterior region, inhibiting the transcription of 
the giant gene, while in the posterior region of the egg 
the giant protein is strongly expressed. 

Compared with the actual staining patterns of bio
logical experiments, Figures 13 and 14 are also highly 
consistent with the biological data. In this manner, we 
have tried various mutants of Drosophila and confirmed 
the expression patterns for the mutants respectively. 

Discussion 
Expression dynamics 

We recorded a series of temporal dynamics of gene ex
pression from the beginning of the simulation to the final 
stage where the transitions of the expression are con
verged. In series (i), the knirps and giant protein com
petitively express at the posterior half of the egg, as 
shown in the second and third pictures of Figure 15. Se
ries (ii) finished similarly to series (i) but the path taken 
there is quite different. At the early stage of the simu
lation, the giant protein increased because of inhibition 
from the knirps protein. Then, giant begins to appear 
near the posterior pole of the egg. As the expression of 
giant protein becomes wider, it pushes the expression of 
the knirps gene toward the anterior side. The difference 
is that the binding affinity in the series (i) is only 10-53 
larger than that in the series (ii). Even though this differ
ence is very small, the expression processes have changed 
dramatically. 

Verification of the simulator 

In this paper, we have reported simulation results of the 
wild-type and the loss-of-function mutant of the giant 
gene. In fact, the simulator can examine the gene ex
pression of many gene mutants. Because of a lack of real 
biological data, our comparisons are limited at this time. 
This happens a lot in biology. We hope that much more 
biological data will improve our simulation accuracy and 
verify the correctness of our simulator parameters. 

Additionally, we hope to use the simulator and G As or 
other global search methodologies to predict (currently 
unknown) mechanisms behind known biological results. 
For example, the unknown mechanisms behind stripes 
1, 4, 5, and 6 of the even-skipped protein, the posterior 
band of the hunchback expression, etc., are exciting areas 
for prediction. We think that simulated computational 
biology may be able to predict a variety of unknown 
mechanisms behind Drosophila development. 

Lastly, we are careful not to reject out-of-hand the 
inconsistencies between some simulator results and ac
tual experimental data. We think many of these incon
sistencies are due to oversimplifications in our simula
tor model. For example, consider one inconsistency we 
found in the loss-of-function mutant arising from the lack 
of the K riippel gene. Our initial explanation was simply 
simulation inaccuracy. However, we now think a more 
plausible explanation is binding competition. Binding 
competition occurs where more than two regulational 
factors competitively bind to the same binding site or 
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(i) bicoid 

(ii) nanos 

(iii) hunchback 

(iv) Kriippel 

(v) knirps 

.----. 
~ 

(vi) giant 

(vii) even-skipped 

Figure 11: Pictures of a wild-type simulation. The picture of the actual staining patterns of (i) is from (Curtis et al. 
1995), (ii) is from (Driever and Niisslein-Volhard 1988), (iii)-(vi) are from (Binari and Perrimon 1994), and (vii) is 
from (Goto et al., 1989). 

(i) (ii) 

Cf) 
Figure 12: Expression patterns of even-skipped for gt
mutant. The actual staining pattern on the right side is 
from (Goto et al., 1989) . 

to neighboring sites which both can locally determine 
whether a target gene is activated or not . We believe 
that inconsistencies may be arising between the simula
tor and biological data because the simulator does not 
model binding competition at all; however, binding com
petition is believed to exist in real organisms. As the 
simulator improves, we hope to add more details to our 
model to eliminate such inconsistencies. 

When the knirps transcription is prevented, the ex
pression of the even-skipped has drastically changed in 
formation, as shown in Figure 13. 

Figure 15 shows two different series of temporal dy
namics. Both of the simulations had the same parameter 
set, except for the binding affinity of the giant protein 
toward the site of the knirps promoter. 

Figure 13: Expression patterns of even-skipped in kni
embryo 

Conclusion 

Our simulator successfully reproduced gene expression 
patterns of Drosophila embryogenesis by comparing 
them with actual expression patterns. We have shown 
that current biological knowledge is sufficient to repro
duce the gene expression patterns of early segmentation 
during wild-type Drosophila development. However, be
cause actual experimental data about mutants and the 
transition of gene expressions during the development of 
Drosophila are still not complete, currently we can not 
make completely convincing arguments about mutants 
or the temporal dynamics of gene expression patterns. 
On the other hand, the work reported in this paper sug
gests that the prediction of unknown mechanisms in bi
ology might be possible by using such a simulator. We 
have confirmed that computational biology can be a use
ful experimental tool in biological studies. 



(i) 

"" ---"""" --------

"" ---
"""" ----""""""'---

"" """" ----""'"""'---

"" ---"""" --------

"" ----"""" -------

""'"' ---i<W>< ___ _ 

""'' ----

qt 

""'"' ---knllpa ___ _ 

r:iant ___ _ 

""""--knll>< ----
""'' - ---

""'"' ---knll>< ----giant ___ _ 

""'"'---i<W>< ___ _ 

""''----

159 

(ii) 

"" ---"""" --------

"" ---"""" -----

"" ,..,... ___ _ -

"" ----....... -----

"" ---
~----

,,,..,., __ _ 
knll><--"""----

'"l 

""'"' ---knirpa __ _ 

""''--- -

,,,..,., __ _ 
knll><---
""'' ----

,,,..,., __ _ 
knll>< --
""'' ----

"'""' --knll><---
""'' ----
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(i) Kruppel (ii) giant 

(iii) Actual Staining Patterns 

Figure 14: Expression patterns of Kruppel and giant in 
an embryo where bicoid is knocked out. Pictures (i) and 
(ii) are the result of a simulation while (iii) is an ac
tual staining pattern from (Struhl et al. 1992). In (iii), 
the anterior side of expressions shows the K riippel pro
tein and the other side of the expression shows the giant 
protein. 

Acknowledgment 

This research was carried out under the Virtual 
Drosophila Project at Sony Computer Science Labora
tory Inc. We would like to express our sincere thanks 
to Dr. Mario Tokoro of Keio University for his useful 
advice. We also want to extend our sincere gratitude to 
Sean Luke for his demi-godlike power in correcting our 
English. 

References 
Arita, M. 1995. Simfly. Master's thesis, University of 

Tokyo. 
Curtis, D., J. Apfeld and R. Lehmann. 1995. nanos is an 

evolutionarily conserved organizer of anterio-posterior 
polarity. Development 121: 1899-1910. 

Driever, W. and C. Niisslein-Volhard. 1988. A gradient 
of bicoid protein in drosophila embryos. Cell 54: 83-
93. 

Gilbert , S. F. 1994. Developmental Biology, Chapter 15. 
Sinauer Associates Inc., fourth edition. 

Goto, T., P. Macdonald and T. Maniatis. 1989. Early 
and late periodic patterns of even-skipped expression 
are controlled by distinct regulatory elements that re
spond to different spatial cues. Cell 57: 413- 422. 

Kitano, H., S. Hamahashi, J. Kitazawa, K. Takao, and 
S. Imai. 1997. Virtual Biology Laboratories: A New 
Approach of Computational Biology. In Proceedings of 
Fourth European Conference on Artificial Life, edited 
by P. Husbands and I. Harvey. Cambridge, MA: MIT 
Press, p. 274- 283. 

Hunding, A., S. A. Kauffman, and B. C. Goodwin. 1990. 
Drosophila segmentation: Supercomputer simulation 
of prepattern hierarchy. J. theor. Biol. 145: 369- 384. 

160 

Lawrence, P. A. 1992. The Making of a Fly. Blackwell 
Science. 

Reinitz, J. and D. H. 
eve stripe formation. 
49: 133-158. 

Sharp. 1995. Mechanism of 
Mechanisms of Development 

Struhl, G., P. Johnston, and P. A. Lawrence. 1992. Con
trol of drosophila body pattern by the hunchback mor
phogen gradient. Cell 69: 237-249. 

Turing, A. M. 1952. The chemical basis of morphogene
sis. Philos. Trans. R. Soc. Land. B 237: 37-72. 



Pro bing the Dynamics of Cell Differentiation in a Model of Drosophila 
N eurogenesis 

George Marnellos 
Sloan Center for Theoretical Neurobiology, 

The Salk Institute, La Jolla, CA 92037, USA 

Abstract 

We have formulated a computational model of 
Drosophila early neurogenesis, the process by which neu
roblasts and sensory organ precursor (SOP) cells dif
ferentiate from within proneural clusters of cells. The 
model includes intracellular gene regulatory interactions 
as well as lateral cell-cell signalling. It makes predictions 
about how the interplay of factors like proneural cluster 
shape and size, gene expression levels, and strength of 
cell-cell signalling determines the timing and position of 
appearance of neuroblasts and SOP cells; and about the 
robustness of this process and the effects of gene product 
level perturbations on cell differentiation. 

Introduction 
One of the very early steps in neural development is 
the generation of neuronal precursor cells in appropri
ate numbers and their precise positioning, which to a 
large extent determines the identity of their progeny. 
In Drosophila, neuroblasts and sensory organ precursor 
(SOP) cells differentiate from epithelia to give rise to 
the central nervous system in the fly embryo and to epi
dermal sensory organs in the peripheral nervous system 
of the adult fly, respectively. Neuroblasts are precursor 
cells that divide to form neurons and glia; they segre
gate from the ventral neuroectoderm of the embryo in a 
regular segmental pattern (Bate 1976). SOPs appear at 
stereotypical positions on imaginal discs (which are pri
mordia giving rise to appendages like wings, legs, eyes 
and antennae) during late larval and early pupal stages 
and divide to produce a neuron and three other cells that 
form Drosophila's sensory organs, like the bristles on its 
thorax (Hartenstein & Posakony 1989). 

The activities of two main sets of genes working in op
posite directions are thought to underlie this differenti
ation process: one promoting neural development and 
the other preventing it and favoring epidermal devel
opment. Cell-cell signalling is believed to be an es
sential part of this specification of cell fate and thus 
Drosophila neurogenesis is an example of many such re
lated processes of cell differentiation in epithelia both in 
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invertebrate and vertebrate organisms - see recent re
views (Campuzano & Modollel 1992; Muskavitch 1994; 
Artavanis-Tsakonas, Matsuno, & Fortini 1995). 

More specifically, neuroblasts and SOPs differentiate 
from clusters of apparently equivalent cells which at 
some stage all have the potential to adopt the neu
ral fate (Stern 1954), as ablation studies have shown 
(Doe & Goodman 1985a; 1985b). These cell clusters 
express genes of the achaete-scute complex, so called 
proneural genes, which all encode transcription activa
tors and confer to cluster cells the potential to adopt 
the neural fate (Romani et al. 1989; Cubas et al. 1991; 
Skeath & Carroll 1991; 1992); the clusters are therefore 
called proneural clusters (see Fig. 1). 

The other set of genes involved in neurogenesis includes 
a number of genes also encoding nuclear proteins, for 
instance genes of the Enhancer-of-split (E(spl)) complex 
and hairy, as well as other genes for membrane and cyto
plasmic proteins; all these tend to suppress neurogenesis 
and promote epidermal development. In this paper we 
refer to this set of genes as epithelial genes - in the 
literature they are called "neurogenic" genes, because 
loss-of-function mutations of these genes lead to overpro
duction of neurons (Poulson 1940; Lehmann et al. 1983; 
Skeath & Carroll 1992), but we have avoided this term 
as it might create confusion with proneural genes. 

Expression of proneural genes in embryonic neuroecto
derm and imaginal disc clusters eventually gets restricted 
to a single cell per cluster, in the case of the neuroec
toderm, or very few cells per cluster, in the case of 
imaginal discs (clusters in the discs are typically larger 
than those in the neuroectoderm); in these cells, the 
future neuroblasts or SOPs, proneural expression in
creases, whereas in the remaining cluster cells it ceases 
and those cells become epidermal (Cubas et al. 1991; 
Martin-Bermudo et al. 1991; Skeath & Carroll 1991· 
1992); the whole process is referred to as "cluster reso~ 
lution". Cluster resolution and the singling out of neu
ral precursors from within proneural clusters is brought 
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A B 

Figure 1: (A) Proneural gene expression in clusters in a Drosophila wing disc (the appendage of the fly larva that gives 
rise to the wing and the back of the adult) . The lacZ reporter indicates achaete expression ( achaete is one of the proneural 
genes) . (B) Detail of (A), note cluster on lower left that has not yet resolved; other clusters appear to be at a more advanced 
stage of resolution. We have used the enhancer-trap line Al-1, which expresses the reporter lacZ gene under the influence 
of cis-elements in the promoter of achaete (van Doren et al. 1992); we have stained with anti ,B-gal antibody and secondary 
fluorescent antibody; images were obtained with a Bio-Rad MRClOOOUV confocal microscope and processed with the NIH
Image program. 

about by inhibitory lateral signalling between adjacent 
cells, through which the neural fate is promoted in the fu
ture neuroblasts and SOPs and suppressed in other cells 
(Wigglesworth 1940; Stern 1954; Doe & Goodman 1985a; 
1985b). The lateral signal is transmitted by the prod
uct of Delta which is a ligand of the receptor encoded 
by Notch (Fehon et al. 1990; Heitzler & Simpson 1991; 
Struhl, Fitzgerald, & Greenwald 1993). The signal is re
layed from Notch to epithelial genes through a protein 
that has been shown to directly activate E(spl) transcrip
tion (Fortini & Artavanis-Tsakonas 1994; Jarriault et al. 
1995; Bailey & Posakony 1995) 

Despite the amount of experimental data that have been 
gathered, several features of the neural fate determina
tion process remain unexplained. A precise characteri
zation of the function of lateral signalling is still lack
ing. Some researchers have described the singling out 
of neural precursors from equivalence groups as a pro
cess in which one of the cells in the group receives an 
initial push to become a neural precursor, in an un
specified, perhaps stochastic, manner, and this cell then 
extinguishes the neural potential in the other cells of 
the proneural cluster through "lateral inhibition" (Wig-

glesworth 1940; Stern 1954), possibly amplifying its 
own inhibitory power and weakening that of its neigh
bors through a feedback mechanism (Heitzler & Simp
son 1991). Other researchers have favored a scheme 
of "mutual inhibition", in which all cells in a proneu
ral cluster, including the future neural precursor, are 
subject to inhibition by other cells in the cluster, but 
the future precursor has additional means to shield itself 
from inhibition (Goriely et al. 1991; Muskavitch 1994; 
Bang, Bailey, & Posakony 1995). There are also ques
tions about how important interactions of range longer 
than that of lateral signalling are: it is not clear, for 
instance, how crucial diffusible factors are for the reso
lution of proneural clusters. 

Dynamical aspects of cluster resolution are poorly un
derstood. It is not known, for example, whether and 
how the shape and size of proneural clusters can deter
mine how cluster resolution proceeds: although there 
have been some observations regarding shapes of clus
ters, and descriptions of subsets of cells (often centrally 
located) in the clusters from which future neural pre
cursors are more likely to emerge (Goriely et al. 1991; 
Cubas et al. 1991) as well as some work on the tern-



poral sequence of neural precursor emergence (Huang, 
Dambly-Chaudiere, & Ghysen 1991), there has been no 
systematic study of how shape or size of clusters might 
affect the position and timing of neural precursor emer
gence. 

In order to address questions like these and investigate 
the interplay between proneural and epithelial genes and 
the genes that mediate cell-cell signalling, we have con
structed a model which is presented below; it is an ex
tension of a model that was first described in Marnellos 
(1997). 

Model 
In our model, cells are represented as overlapping cir
cles in a 2-dimensional hexagonal lattice; the extent of 
overlap determines the strength of interaction between 
neighboring cells (see Fig. 2). Cells in the model ex
press a small number of genes corresponding to genes 
that are involved in neuroblast and SOP differentia
tion. In the work presented here we have used net
works with four genes (one corresponding to the proneu
ral group, another for the epithelial group and two for 
the ligand and receptor, respectively, mediating cell-cell 
signalling). The model has been based on a frame
work introduced in Mjolsness et al. (1991) to simu
late developmental processes through the use of regu
latory gene networks; a framework very similar to this 
in scope and structure, but with some differences in how 
state changes in cells are represented, has also been pro
posed by Fleischer and Barr (Fleischer & Barr 1994; 
Fleischer 1995). 

Genes interact as nodes in recurrent neural nets: A gene 
a sums inputs from genes in the same cell or in neigh
boring cells at time t according to the following equation 

Ua(t) = 'L: TabVb(t) (1) 
b 

where Tis the matrix of gene interactions and vb(t) gene 
product concentrations within the cell; the T matrix has 
the structure depicted in the table below; columns in 
this table are for input genes and rows for genes affected 
(empty boxes signify zero interaction strength. i.e. no 
interaction): 

Intracellular Interactions 

Pro neural Epithelial Receptor Ligand 

Proneural • • Epithelial • • Receptor • • Ligand • • 
This table shows that we have allowed only proneural 
and epithelial gene products to directly regulate the ex
pression of other genes (themselves included), since these 
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two genes correspond to transcription factors in the real 
biological system. 

Concentration va(t) of the product of gene a then 
changes according to 

dva ( dt = Rag(ua t) +ha) - AaVa(t) (2) 

where ua(t) is the linear sum of Eq. 1, g a sigmoid func
tion, Ra the rate of production of gene a's product, ha 
the threshold of activation of gene a and Aa the rate of 
decay of gene a product. We integrate these differential 
equations using Euler's method (we use 150 time steps). 

We have modeled lateral interactions between cells by 
the binding of ligand to the receptor in the neighboring 
cell and subsequent regulation of the epithelial gene by 
the active ligand-receptor complex - this corresponds 
to the signal relayed from activated Notch receptor to 
epithelial gene E(spl), as was mentioned in the Intro
duction. In more detail, the ligand-receptor reaction is 
taken to be of the following form: 

L+R=+LoR (3) 

where Lis ligand (on one cell), R receptor (on a neigh
boring cell) and LoR the active receptor-ligand complex; 
the rate of the reaction to the right is k1 and to the left 
k2. If VL is ligand concentration, VR receptor concen
tration and [Lo R] concentration of the receptor-ligand 
active complex, we have that 

d[L o R] 
dt = k1VLVR - k2[L 0 R] (4) 

This reaction is assumed to take place at a much faster 
timescale than gene expression and to have reached a 
steady state before influencing gene expression. From 
Eqs. 4 and 5, at this steady state we have 

(6) 

where k = ~. Thus the epithelial gene in a cell receives 
input from receptor-ligand complexes activated by ligand 
in the six surrounding cells (the lattice is hexagonal); this 
can be represented as an extra term uE that is added to 
UE (which is the sum of inputs u for the epithelial gene, 
see Eq. 1) before Eq. 2 is calculated 

UE = L AiTE[L 0 R]i 
iEN 

(7) 

where N is the set of six surrounding cells, Ai a factor 
depending on the overlap of the cell with neighboring 



cell i (as measured for instance by the common chord 
of the two circles), TE the strength of the action of the 
receptor-ligand complex on the epithelial gene (k of Eq. 
6 has been included in TE), and finally [Lo R]i is the 
concentration of receptor-ligand complex due to ligand 
on cell i. Because of Eq. 6, we can write this as 

U£ = L AiTEvivR 
iEN 

(8) 

where vi is ligand concentration in neighboring cell i. 

We optimize on gene interaction strengths, i.e. TE of 
Eq. 7 and the eight T's of Eq. 1 (the other parameters 
in the equations above are kept constant) in order to fit 
gene expression patterns described in the literature; the 
cost function optimized is 

E= 
. . 2 

(v~MODEL(t) - v~DATA (t)) ' (9) 
cells 1gene s, times 

which is the squared difference between gene product 
concentrations in the model and those in the dataset, 
summed over all cells and over all gene products and 
times for which data is available. We have used a 
stochastic algorithm, simulated annealing, for this op
timization. For more details on the model and the opti
mization method used see Marnellos ( 1997). 

Simulation Results 
Design of optimization and test runs. The 
gene expression datasets we optimize on, the train
ing datasets, are adapted from schematic results de
scribed in the experimental literature (Cubas et al. 1991; 
Skeath & Carroll 1992; Jennings et al. 1994); they spec
ify the initial pattern of concentrations of gene products 
(i.e. the proneural clusters), the desired intermediate 
pattern, and the desired final pattern when the proneu
ral clusters have resolved to single cells expressing the 
proneural gene at high levels (see Fig. 2); it is left to 
the optimization to find the right model parameters so 
that the system develops from the initial state through 
the intermediate one to the desired final one. The ini
tial concentrations of receptor and ligand are uniform 
for all cells and their subsequent concentrations are not 
constrained by the dataset (in this respect, they are com
parable to hidden units in neural nets). 

All cells in a proneural cluster have initially the same 
gene expression levels. The size and cluster arrange
ment of the training datasets do not have any particular 
biological significance; the datasets have been designed 
in such a way as to keep the number of cells low while 
including as many clusters as possible, since optimiza
tion is very expensive computationally and so optimiza
tion runs on datasets with more cells than we have used 
would be impractical. We have used torus topology in 
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our runs, although this does not appear to be a crucial 
factor in the results described here. 

Robustness of solutions. We have tried to limit the 
number of parameters we optimize on (as was mentioned 
above, we optimize only on gene interaction strengths), 
in order to avoid overfitting our rather small datasets. 
The optimization procedure used (simulated annealing) 
has produced very good and consistent fits to the train
ing datasets. For instance, out of the eight (8) good 
solutions obtained for the dataset in Fig. 2, six were 
very similar in their parameter values (same signs, sim
ilar orders of magnitude); so all these solutions proba
bly come from the same optimum of the cost function, 
which may be one of very few large optima, or even the 
global optimum. Also, successful optimization runs have 
yielded solutions that not only perform well on the train
ing dataset shown in Fig. 2 (see top row of Fig. 3) but 
also work for other datasets with clusters like those in the 
training dataset but with greater numbers of such clus
ters in various spatial arrangements (data not shown). 
This indicates that optimization does not just find pa
rameter values that only work for the specific size and 
cluster arrangement of the training dataset, but rather 
produces solutions incorporating "rules" for cluster res
olution. 

In order to further evaluate these solutions and deter
mine how robust they are and what they can tell us 
about the biological system under consideration, we have 
also run these solutions with different initial conditions, 
changes of solution parameter values, perturbations of 
gene expression during a run, as well as on test datasets 
containing novel, bigger or smaller, proneural clusters. 

In Fig. 3, for instance, we have the same optimization 
solution parameters in both rows, but in the run of the 
top row initial concentrations of proneural and epithelial 
gene products are identical for all cells in a cluster, while 
in the bottom row initial proneural concentrations vary 
and differ between cells by about 10-153. Despite this 
and despite the fact that, in this particular example, the 
future neural precursors start out with lower proneural 
concentrations than other cluster cells (even the lowest 
in the cluster), the pattern of cluster resolution remains 
identical as the end result shows (compare right panels 
of top and bottom rows of Fig. 3). So the optimiza
tion solutions are robust to small changes in initial con
ditions. Such robustness is a feature that a biological 
system would need during development. 

Test datasets specify only initial concentrations and con
tain many more cells than training ones (since we do not 
optimize on them). An example appears in Fig. 4: it 
contains several clusters of various shapes and sizes, both 
smaller ( 4-cell clusters) and bigger (cluster in top right 



165 

Initial (t = 1) Middle (t = 75) Final (t = 150) 

Figure 2: Cells are modeled as circles on a hexagonal lattice. Gene expression is represented by disks, proneural expression 
in brown, epithelial in green, and where the two overlap in yellow-green (dark, medium and light gray, respectively, in black
and-white); disk radius is proportional to level of expression. This figure shows the training dataset: on the left, the initial 
concentrations of the gene products - there is only proneural gene expression in three symmetrical clusters; in the middle, the 
desired intermediate pattern of expression; on the right, the desired final pattern of gene expression - proneural expression 
is retained only in the central cell of each cluster, the future neuroblast or SOP, whereas all other cells express the epithelial 
gene. Times (t) indicate the points in the run when the desired expression pattern is compared with the actual one (see Eq. 
9) ; at t = 1 there is of course only initialization and no comparison. Initial concentrations of ligand and receptor are not 
shown. 

corner of panels in Fig. 4) than in the training dataset 
of Fig. 2. The test datasets could in principle have been 
used as training datasets, if it were not for the practical 
considerations mentioned above. 

The optimization solution presented in Fig. 3 works 
well on the dataset of Fig. 4 too and resolves almost 
all clusters apart from the small, 4-cell ones; this is 
something we have observed in previous work with a 
model of similar structure to the one presented here 
and similar optimization procedures (Marnellos 1997; 
Marnellos & Mjolsness 1998): it is probably due to the 
fact that 4-cell clusters do not have a cell that is much 
more encircled than the others (as 5,6 and 7-cell of Fig. 
4 do), but all cells are almost equally exposed. The op
timization solution also resolves the big cluster in Fig. 
4, for which it was not optimized; this is another aspect 
of the robustness of the solution. 

Changes in initial proneural concentrations, as in the 
bottom row of Fig. 3, can be also studied in the dataset 
of Fig. 4 and usually do not alter the final outcome in 
the resolution of the big cluster, but in rare cases the 
big cluster does not resolve to a single cell but to two or 
three cells. This is consistent with experimental observa
tions (Huang, Dambly-Chaudiere, & Ghysen 1991) and 
provides an illustration of the interplay between position 
in cluster and level of proneural expression in determin
ing whether a cell becomes a neural precursor or not. 

A feature of our simulations that becomes apparent in 
Fig. 4 is that proneural expression in differentiated neu
ral precursors decreases with time after they have been 

selected (see last panel, t = 256, in Fig. 4). This does 
not mean that the model diverges from biological obser
vations at this point, but is simply a result of the fact 
that our model was not meant to deal with what happens 
after clusters resolve; in any case, in the actual biological 
system, neural precursors do not stay around expressing 
high levels of proneural proteins either, but, soon after 
they differentiate, they divide to give rise to neurons 
and glia and other cell types (Doe & Goodman 1985a; 
Hartenstein & Posakony 1989). 

Dynamics of cluster resolution The parameters of 
the simulation in Fig. 4 are identical to those of the runs 
in Fig. 3, apart from one: the strength of lateral inter
actions through the receptor-ligand complex, i.e. TE of 
Eqs. 7 and 8. Since lateral interactions are crucial for 
cluster resolution, we have varied their strength to see 
the effects on the dynamics of the whole process. In 
Fig. 4 the value of TE is 25% higher than in Fig. 3; 
the stronger lateral interaction makes cluster resolution 
faster, as can be observed, for instance, when compar
ing the stage of resolution at t = 76 of the symmetrical, 
7-cell clusters in Figs. 3 and 4: resolution has clearly 
progressed more in clusters of Fig. 4. The effect is much 
more pronounced for the big cluster of Fig. 4, which 
takes about 200 timesteps longer to resolve when lateral 
interaction strengths are 20-30% lower (not shown). At 
even higher values of TE, clusters start to fail to resolve 
and proneural expression is extinguished (not shown). 
When TE = 0, i.e. when lateral interactions are abol
ished, clusters do not resolve but all cells in them retain 
proneural gene expression. This parallels the effect of the 
neurogenic mutations in the real biological system; these 
mutations disrupt lateral communication between cells 
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t = 1 t = 76 t = 121 

Figure 3: Computer simulation of neural precursor differentiation with parameter values in the model derived by optimization 
on the dataset of Fig. 2. From left to right, different time frames of the evolution of gene product concentrations. Top row: 
run with identical initial gene product concentrations for all cells in each proneural cluster. Bottom row: initial proneural 
concentrations vary by about 10-15% between cells in each cluster. In both runs the clusters resolve in the same way, as the 
comparison of the two panels at t = 121 shows (the only difference being that in the bottom run the clusters take slightly 
longer to resolve). This illustrates the robustness of cluster resolution to small changes in initial gene expression levels in 
proneural clusters. Conventions as in Fig. 2. 

and lead to overproduction of neurons (Poulson 1940; 
Lehmann et al. 1983; Skeath & Carroll 1992). Thus 
variation in the value of a single parameter, TE, can pro
duce this "heterochronic" change in the process of cluster 
resolution or even prevent neural precursor differentia
tion. This is an interesting and testable prediction of the 
model. 

The timing of cluster resolution also depends on the 
size of the cluster; bigger clusters take longer to re
solve, which is something we have observed in previous 
work (Marnellos 1997; Marnellos & Mjolsness 1998), but 
which is much more evident in the example of Fig. 4. 

To further probe the dynamics of cluster resolution, we 
have perturbed the levels of expression of proneural and 
epithelial genes in specific cells during a run, as illus
trated in Fig. 5. In this simulation (which has the 
same initial concentrations as the one in Fig. 4 and uses 
the same parameter values, including TE) we instanta
neously increased at t = 60 the level of epithelial expres
sion in the central cell of a symmetrical, 7-cell cluster 

and also the level of proneural expression in a peripheral 
cell of a different symmetrical cluster. Whereas the first 
perturbation prevents normal resolution of the cluster 
involved, (as can be observed at t = 121 for instance), 
the second one has no effect on resolution and the clus
ter involved resolves normally (see Fig. 5). The effects 
of such perturbations will vary depending on the time 
and cell in which they are carried out, and on whether 
they occur singly, as in the two examples of Fig. 5, or in 
various combinations. Such manipulations are therefore 
a rich source of predictions of the model. 

Discussion 

In this paper we have extended and slightly modified 
a Drosophila neurogenesis model introduced in Marnel
los (1997), in order to make it more biologically real
istic. The previous model had only proneural and ep
ithelial genes that could interact with each other across 
cells; this afforded much greater flexibility in cell-cell sig
nalling than has been experimentally observed in this 
system. In the work presented here we have included 
genes for a receptor and a ligand that gate communica-
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t = 121 t = 256 

Figure 4: Simulation using a test dataset with clusters of various shapes and sizes. The parameter values are almost all 
identical to those of the simulations in Fig. 3. All clusters, except for the 4-cell ones, successfully resolve. The big cluster 
takes much longer than other clusters to resolve. The strength of the lateral interaction, TE of Eqs. 7 and 8, is greater in 
this simulation than in those of Fig. 3. This has a "heterochronic" effect: it makes clusters resolve faster, as can be seen 
by comparing the degree of resolution of symmetrical, 7-cell clusters at t = 76 in this Figure with those of Fig. 3. Same 
conventions as in Fig. 2. 
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t = 76 t = 121 

Figure 5: Simulation with perturbations of gene expression in individual cells of two symmetrical, 7-cell clusters. The clusters 
are the two ones in the lower left corner of the dataset. At t = 60 the level of epithelial expression in the central cell of the 
upper one of these two clusters was instantaneously increased, while in the lower cluster proneural expression was increased 
in a peripheral cell. Both perturbations can be detected in the left panel (t = 76). The first perturbation abolishes cluster 
resolution, while the second has no effect on resolution, as can be seen in the right panel (and also in comparison with the 
corresponding panel of Fig. 4). 

tion across cells; such communication can now occur only 
through the interaction of an activated receptor-ligand 
complex with the epithelial gene, as has been described 
in the literature (Fortini & Artavanis-Tsakonas 1994; 
Jarriault et al. 1995; Bailey & Posakony 1995). The 
increase in the number of genes has been accomplished 
without an accompanying increase in the number of opti
mized parameters. The size of the t raining datasets has 
also increased with the addition of desired intermediate 
concentrations: performance is now scored in the mid
dle and at the end of a run, instead of only at the end. 
This more constrained optimization has yielded many 
good and consistent solutions. The training datasets 
now have one 7-cell, one 6-cell and one 5-cell cluster, 
instead of only symmetrical 7-cell clusters, and this may 
have made the optimization solutions better at resolving 
novel types of clusters. 

In the present model the strength of lateral signalling 
during a run is modulated by changes in receptor and lig
and concentrations, whereas in the original model similar 
but less flexible modulation was afforded by the inclu
sion of cell delamination (absent here) which changed the 
area of contact between adjacent cells and contributed 
to the resolution of larger clusters. Although neurob
last delamination accompanies cluster resolution in the 
central nervous system of the Drosophila embryo, de-

lamination does not occur during cluster resolution in 
imaginal discs and may not be necessary for resolution; 
the present model is therefore more consistent with ex
perimental evidence. 

Our results here have reconfirmed findings of the pre
vious model (Marnellos 1997; Marnellos & Mjolsness 
1998): for instance, that smaller clusters generally re
solve faster than larger ones (Fig. 4); that lateral sig
nalling is crucial for cluster resolution and when it is 
abolished clusters do not resolve (which parallels the 
neurogenic mutant phenotype in the biological system); 
or that cell-cell interactions involving just the immediate 
neighborhood of any given cell can bring about cluster 
resolution, without the need of other longer range pro
cesses like diffusion (even though the existence of such 
processes cannot be ruled out) . This last conclusion is 
even stronger in the context of the present model, as 
lateral interactions now depend on a single optimized 
parameter; this indicates that even rather limited cell
cell signalling is sufficient for cluster resolution. 

Investigation of our present model has also revealed that 
variations in the strength of lateral signalling have a het
erochronic effect on cluster resolution (Fig. 4). This may 
have some bearing upon issues such as the differences in 
bristle number between different fly species. Researchers 
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have considered these differences as the result of altered 
patterns of expression of genes that set up proneural 
clusters (Simpson 1996). Our work suggests that vari
ation in the strength of lateral signalling may also con
tribute to bristle number phenotypes. 

Our optimization solutions have also been shown to be 
robust to small changes in initial conditions (Fig. 3). Of 
course one might argue that, since through our training 
dataset we look for solutions that result in the most cen
tral and most encircled cell of each cluster becoming the 
neural precursor, it is not surprising that with slightly 
different initial conditions the same cell is still selected. 
This is true, but the point is that, if in the biological 
system the same selection rule occurs, then our results 
show that this is a robust process. This point relates to 
questions raised in the literature about "lateral inhibi
tion" versus "mutual inhibition" explanations of cluster 
resolution (see Introduction above). Our results would 
favor mutual inhibition as the most likely explanation, 
with position in cluster and degree of encirclement being 
the properties that shield the prospective neural precur
sor from inhibition from other cells. 

Finally, perturbations of gene expression in individual 
cells in the model (Fig. 5) are a rich source of quan
titative predictions about how cells would respond to 
externally imposed changes. Such predictions are now 
testable in Drosophila (Halfon et al. 1997). 

In conclusion, the model described in this paper, suffi
ciently simple and faithful to experimental observations, 
can produce biologically intepretable results. With more 
quantitative data to optimize its parameters on and with 
experimental testing of its various predictions, it could 
become a good tool to probe the dynamics of develop
mental processes like neurogenesis. 
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Abstract 

We report on our attempts at reconstructing a lost 
ecosystem through computer simulation. The Cambrian 
explosion is known as the time when various body forms 
appeared during a relatively short period of geological 
time. One of the largest predatory species of the period, 
which swam with other curious animals in the ancient 
seas of 530 million years ago, was Anomalocaris, char
acterized by a series of lateral flaps. We study their 
behavior based on a theoretical framework. A 3D vir
tual model of the extinct animal is constructed within a 
computer graphics environment. The possible behavior 
of the animal is calculated by simple hydro-dynamics 
modeling and an evolutionary computation approach, 
showing that Anomalocaris probably swam by waving 
its flaps like a stingray. We also introduce a rule-based 
system which creates a basic body plan of swimming ani
mals with flaps. The swimming ability of those creatures 
was evaluated and the results show that Anomalocaris 
or similar body-typed animals have a considerable swim
ming ability. The goal of our work is to reconstruct an 
ecosystem-that was lost 530 million years ago-by com
puter simulation. Based on theoretical considerations 
we are constructing a system in which virtual creatures 
live in a virtual world with the ability to interact with 
the real world through additional inputs by us. 

Introduction 
The Cambrian explosion has drawn attention recently 
because of the appearance of animals with a large vari
ety of body forms at the early stage of evolution (Mor
ris 1994). The largest predator, Anomalocaris, swam 
with a series of flaps, and possessed two big limbs and 
a mouth beneath its head. In this paper we investigate 
possible swimming motions in water using a theoretical 
framework. In the field of ALife, Sims (1994a-c) devel
oped a computational approach to studying swimming 
and walking motions of artificial creatures in a three
dimensional space. Terzopoulos, Tu, and Grzeszczuk 
(1994) studied the swimming motion of realistic mod
els of tropical fish. Also, Ngo and Marks (1993) studied 
ground-locomotion, while Hamner (1998) also studied 
swimming motion. In this paper, we model a virtual 
creature by a composition into blocks in a 3D-space, ac
cording to the structure of Anomalocaris. We then study 

F = - A(n. v) 
Force Area 

Figure 1: Model creature and its coordinate system. 

how such a creature might swim in a water medium. 
In the second part of this paper, we introduce a rule
based system which creates the basic body structure 
of swimming animals with flaps. The swimming abil
ity of each virtual creature is studied, and it is found 
that Anomalocaris-type animals are remarkably adept at 
swimming. This may explain why Anomalocaris became 
the largest predator during this early period of animal 
evolution on earth. 

Computational Method 

In this part we investigate swimming for a model animal 
using evolutionary computation. Suppose that the crea
ture is constructed out of a main body and lateral flaps. 
When the creature waves its flaps, the flaps receive a 
force from the water 

ff= -An· iJ, 

where iJ denotes the velocity relative to the fixed frame, 
ii is the normal vector of the surface of the flap and A 
its surface area. The flaps are assumed to rotate around 
the x, y and z axis, according to the following Fourier
series-like time-series: 

a =al cos( wit+ Ji) + a~cos( .!.w~t +JD 
f3 = aicos(w~t + Jn + a~cos( fw~t + J~) 
'Y = a~cos(wrt +Jr)+ a~cos(~w~t + J~) 
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Figure 2: Diagrammatic representation of evolution al
gorithm. 

A set of parameters 

describe the creature's motion, which is determined by 
an evolutionary algorithm. In this algorithm, each pa
rameter is initially chosen randomly. and 12 sets of can
didates are generated: 

Next , the swimming ability is evaluated in a 3-D cal
culation. The top three sets among 12 samples were 
selected. Crossing and mutation of parameters are ap
plied. The three sets give rise to three sets of offspring 
by parameter crossing, said crossing being achieved by 
simply taking the average of two species. The top three 
sets create 9 offspring by mutation of parameters. Again, 
the swimming ability of the 12 offspring are evaluated. 
This procedure is repeated through many generations. 

We construct our Anomalocaris model by combining 
blocks as shown in Fig. 3. Nearest neighbor flaps are as
sumed to rotate with a phase difference given by o and 
e, where 0 can be adjusted for each individual flap while 
e is an overall phase difference. The emergent behav
ior of the swimming motion is then determined by the 
evolutionary algorithm. 
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Figure 3: The structure of a model of Anomalocaris. 
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Figure 4: Development of swimming ability. 

In addition to the mathematical evolution scheme, we 
introduce physiological conditions on the rotation speed 
of flaps of the virtual creature. We assume that the 
frequency has an upper limit so that the sum of the force 
does not exceed a certain constant value C, which is 
set to about 1/3 of the maximum force we experienced 
through all the simulation. If C is set large enough , 
the best swimmer rotates each fin without any phase 
difference. 

Possible Motion of Model Anomalocaris 
Figure 4 displays the increase in swimming ability of 
our Anomalocaris model during evolution using this al
gorithm. We ran 20 sets of calculations with different 
initial conditions, in which each calculation contains 12 
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Figure 5: Swimming style of type 1. 

species (A1 , A--;, A-;,···, A~2 ). The best candidate's abil
ity among those 12 is plotted in the figure. Looking at 
Fig. 4, we observe that a certain trajectory grows from 
generation to generation and finally attains No. 1. We 
call it type 1, and similarly we call the second type 2 and 
so forth. We display the swimming motion of type 1 in 
Fig. 5. As we can see, type 1 's motion smoothly waves 
each fin with a certain phase. At first glance, the waving 
motion is reminiscent of a stingray. From these simula
tions, we suggest that Anomalocaris swam like this in 
the sea of 530 million years ago. 

Elementary Forms and Motion 

As we mentioned in the Introduction, the Cambrian ex
plosion is known as an interesting and mysterious event. 
The fossil record shows a short time range to develop 
various body forms of animals. From a biological point 
of view, the question could be summarized as to how and 
why the explosion occurred. Both questions are hard to 
answer at present, especially from a biological basis such 
as genetics. In the second part of our work, we intro
duce a simple rule-based form system. The structure of 
a creature is created by a composition of simple rules. A 
comparison of swimming ability for each body form will 

Rule "O" 

Rule "1" 

Figure 6: The basic rule to produce basic body plan. 

be made. The authors believe that such a calculation 
may help clarify certain mechanisms in evolution. 

To create various body forms, we introduce a system 
to create forms from rules. Each form is constructed out 
of 3D blocks. For example, rule "O" gives rise to the 
same element as the parent, as shown in Fig. 6. On the 
other hand, rule "l" produces a branch from the parent 
element, also shown in Fig. 6. 

In Fig. 7, we show the branch tree of the rule system, 
and the body structure created from the rule. Once each 
body plan is determined from the rule-form system, we 
evaluate its moving ability. In order to simplify the cal
culation, we make an approximation such that a branch 
occurs only from the main body. Examples of such ap
proximations are shown in Fig. 8. 

Actually, we have never observed an animal having 
a multi-branched structure such as "1111..", except for 
plants in the real world. In future publications, we plan 
to present work on the behavior of agents having such 
complex structures. 

In Fig. 9, we display the swimming ability of virtual 
creatures created from the rules. Roman numbers in
dicate the rule-type while italic numbers below show 
the swimming ability of the best among the simula
tions for each body form. For example, we created a 
virtual creature from rule "101", then searched for the 
best swimming form and determined its ability. On the 
right of Fig. 9, we show the species which scored high
est in swimming ability. As we can see from the fig
ure, we found that creatures with high swimming ability 
are generated from rule "00001", etc. We can see from 
Fig. 7 that such rules create Anomalocaris-type struc
tures. From the result of these calculations, we con
clude that Anomalocaris-type structures result in the 
best swimming ability among all the structures created 
from the present rule-form system. 

It is well known that Anomalocaris was the largest 
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Figure 7: Branch tree of rules, and the forms created using the rule. Rule "O" gives rise to the same element as the 
parent, shown here as a gray block. Rule "1" creates a branch of the parent element, shown as a black block. 
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Figure 9: Swimming ability of virtual creature created 
from rule. 

predator among Burgess shale animals that lived in early 
Cambrian period. Our calculations suggest that Anoma
locaris may have had enough food by the benefit of its 
outstanding swimming ability. 

An Attempt at Reconstructing a Lost 
Ecosystem in the Computer 

The goal of our work is to reconstruct lost ecosystems 
in computer graphics on the basis of theoretical consid
eration. In Fig. 10, we display a prototype of such a 
system. There, a lost animal such as Anomalocaris is 
reconstructed as a realistic 3D object within computer 
graphics. The virtual creature swims based on the result 
of the simulations presented here. We are construct-

Figure 10: The lost animal Anomalocaris is recon
structed in the computer. 

ing an interactive system in which agents have neural 
systems allowing them to react to video input. While 
Anomalocaris was lost 530 millions years ago, we plan to 
resurrect it in its own virtual world in the future. 
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Abstract 
This paper describes a unique simulation in which a 
population of physically-based organisms evolves 
morphology and motor control for fluid locomotion, through 
competition for mates and food. Preference for mates 
exhibiting specified phenotypic features has an affect on the 
evolution of locomotion which is sometimes inhibitory, 
sometimes advantageous, and at times amusing. 
Reproduction of genotypes is autonomous and local in this 
spatial model, occurring among organisms which are able to 
approach critical proximity to a desired mate. An organism's 
energy level dictates whether it will seek mates or pursue 
food. Thus, an organism whose motions expend excessive 
amounts of energy will eat more, and reproduce less. The 
simulation was set up to determine whether mate preferences 
for arbitrary features can inhibit optimization of locomotion. 
While the general evolutionary trend is towards energy
efficient locomotion, the inclusion of mate preference causes 
a bias towards arbitrary anatomy and motion within the 
population. It was found that certain preferences indeed 
counter the trend for efficient swimming. A delicate balance 
between two forces (representing natural selection and 
sexual selection) is demonstrated. 

Introduction 

In the natural world, there are particular instances of form 
and motion which are the direct result of a phenomenon 
known as sex. The exuberant display of colored feathers 
during courtship in some bird species is an example. Much 
of the amazing variety of form and motion in nature which 
has become such a basic part of our aesthetic lives can be 
traced to the need for organisms to reproduce sexually. 

Many fish species possess body plans and coloration 
strongly adapted for sexual attraction. Some species exhibit 
elaborate displays of dance, often causing risk to their own 
safety, in order to attract mates (i.e., the widely-studied 
African rift valley cichlids). The need to attract mates in 
some species may be demanding enough on the evolution 
of a body plan to greatly affect other characteristics, such as 
locomotion. 

What is the importance of "attractiveness" in evolution? 
In what ways does mate preference affect the overall fitness 
of individuals or species? While this paper does not attempt 
to address the deep questions concerning the subtle 

interactions between natural selection and sexual selection, 
it does offer a context in which to explore this subject, by 
describing a simulation which produces intriguing forms 
and motions, resulting from a simple form of mate choice. 
The hypothesis is that mate preferences for arbitrary 
features in phenotypes can inhibit the evolution of energy
efficient locomotion. 

In this simulation, a population of coexistent organisms 
evolves optimized morphology and motor control for 
locomotion in a viscous fluid, through competition for 
mates and food. There is no distinction between male and 
female in this simulation-it is not meant to model sex, but 
simply to introduce mate preference as a factor in the 
evolution of physically-based locomotion. 

In a preliminary version of this model, the criteria for 
choosing mates involved a minor genetic component. But 
for the sake of clarity in observing results, the genetic 
component was replaced with a set of pre-defined criteria 
for attractiveness, so that the results of different kinds of 
mate preferences could be studied and compared. The 
simulation demonstrates how preferences for specific 
phenotypic features in the bodies of potential mates can 
alter, and sometimes inhibit the optimization of energy
efficient locomotion in the population. The emergence of 
peculiar motions and forms is then observed qualitatively, 
compared with results of simulations in which organisms 
choose mates randomly. 

Background 

Computer animation techniques which complement 
traditional animated scripting with autonomous agents have 
made possible complex life-like systems composed of 
many distributed elements (Reynolds, 1987). Physically
based modeling techniques and virtual motor control 
systems inspired by real animals are used to automate many 
of the subtle, hard-to-design nuances of animal motion 
(Badler, 1991). In task-level animation, (Zeltzer, 1991), 
and the space-time constraints paradigm, (Witkin and Kass, 
1988), these techniques allow an animator to direct a 
character on a higher level. 

The idea to use the genetic algorithm (GA) for 
automation of animated motion follows naturally. One 
application in using the GA for evolution of goal-directed 
motion in physically-based animated figures includes 



evolving stimulus-response mechanisms for locomotion 
(Ngo and Marks, 1993). 

While the work described in this paper bears a 
resemblance to the virtual creatures of Sims (1994a), it 
continues a previous line of explorations, using a GA for 
optimizing locomotion in physically-based figures. The 
first example is a 2-legged walking figure (Ventrella, 
1990) which evolves locomotion through pursuit of food, 
continuing with an unpublished 1992 project in evolving 
morphology and locomotion in 20 swimming creatures, 
and later, including evolution of 30 morphology as well as 
anatomy for locomotion (Ventrella 1994). 

Sims (1994a, 1994b) has developed techniques for the 
evolution of morphology and locomotion most 
comprehensively and impressively, using the genetic 
programming paradigm (Koza 1992), and includes 
extensive 30 physical modeling. A holistic model of fish 
locomotion, with perception, learning, and group behaviors, 
has been developed by Terzopoulos, Tu, and Grzeszczuk 
( 1994 ), which generates beautifully realistic animations. 

Evolutionary modeling of situated organisms which 
reproduce spontaneously takes evolutionary modeling a 
step closer to nature (Ray 1991). "Electronic primordial 
soups" involving spatiality, such as Yaeger's Polyworld 
(1994), demonstrate artificial ecosystems in which mating, 
eating, learning, and even social behaviors, evolve within 
the simulated world. 

In a prior paper (Ventrella 1996), it was demonstrated 
that swimming skills in physically-based figures could 
evolve without the use of an explicit fitness function, by 
delegating reproductive freedom to the organisms in the 
simulation such that locomotive skill emerged through 
competition for mates and food. (Throughout this paper I 
refer to this work as "the previous simulation"). A 
commercial product was derived from this work (RSG 
1997) which enables users to manipulate the organisms and 
conduct experiments. 

Ijspeert, Hallam, and Willshaw (1997) have developed 
artificial neural controllers which evolve through a GA for 
optimizing swimming locomotion in simulated lampreys, 
which can produce complex oscillations for undulating
style locomotion. 

Todd and Miller (1991) developed a model which 
demonstrates how the forces of sexual selection can drive a 
population to have arbitrary phenotypic features, above and 
beyond the features resulting from natural selection. 

The current project is motivated in part by Todd and 
Miller, and explores mate preference, building upon the 
previous simulation. As an extension of the previous 
simulation, the current simulation includes: 

1) a more comprehensive physical model with a larger 
phenotype space 

2) a set of pre-defined mate preference criteria 

3) a means of measuring the effects of mate preference on 
evolution of locomotion skills 
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Fitness 
Genetic algorithm-based systems for optimizing motor 
control in physically-based articulated figures typically 
update a population of genotypes in discrete generations, 
and use a pre-defined fitness function to control 
reproduction. This simulation places each organism of the 
population in a common spatial domain and allows mate 
selection to be local and autonomous. It does not use a pre
defined fitness function: fitness is instead considered as a 
property of the simulation: define.cl as the rate at which the 
population reproduces. Now, what is required for a higher 
reproductive rate in the population is a set of necessary 
emergent properties in individuals, such as: swimming 
quickly and efficiently towards mates or food; turning 
efficiently; and, of course, being attractive. 

Physics and genetics are linked 
In this simulation, the physically-based model is intimately 
tied to, in fact, drives, the genetic algorithm, and vice versa. 
Genotypes are housed in physically-based phenotypes, 
which in time become better at transporting their 
genotypes. Phenotypes which are better at transporting 
their genotypes to other phenotypes get to reproduce more 
genotypes. High reproduction of genotypes is rewarded 
naturally-the selfish gene at work. 

The problem of reproduction is tied-in with the means 
for organisms to attain energy, as follows: organisms who 
waste energy at a high rate fall below a hunger threshold 
frequently. They must therefore spend more of their lives 
pursuing food than mating, and so they reproduce less. This 
creates evolutionary pressure for relatively rapid 
locomotion which expends relatively little energy. 

In addition to selection for energy-efficient locomotion, 
mate preference encourages stylized motion and form. Each 
organism consists of a collection of body parts which move 
in relation to each other. Organisms can be set to respond to 
specific phenotypic features in other organisms, such as 
movement, size, length, etc. Selective pressure to flaunt 
these features encourages the emergence of non
locomotion-based motions and anatomy among body parts 
within the population. Existence of these features may not 
benefit locomotion in an individual, but does however 
increase its chances of having offspring, thereby making it 
more fit within the context of the population. Whether or 
not efficient swimming is affected by this is what provided 
the central inquiry behind the project. 

The Simulation 

A simulation was designed to test the hypothesis. It models 
a continuous two-dimensional square area representing a 
fluid medium. In the model, distances and sizes are 
measured in abstract world units. The size of the square 
domain is 6000 by 6000. Nothing can pass beyond its 
boundary-it is like an aquarium tank. 

Organisms in this simulation are called "swimbots", due 
to a slight machine-like, or robot-like appearance. In 



addition to swimbots, there are food bits, and the medium 
in which they exist, called, the fluid. Time is measured in 
discrete units of 1, with each time step corresponding to an 
update of physical forces, swimbot states, and an animation 
frame. Food is regenerated periodically (one bit every 20 
steps) in the fluid, and eaten by swimbots. Swimbots eat, 
mate, give birth to new swimbots, and die. 

Energy 
Global energy is set to 150,000 (abstract units), and 
remains constant. Throughout the simulation it is 
exchanged between fluid, food, and swimbots, as shown in 
Figure 1. 

Food Swim bots 

'Fluld/ 
Figure 1. Energy exchange 

The fluid contains ambient energy which is gradually 
converted into new food bits which appear in random 
locations of the fluid . Each food bit contains 50 units of 
energy and remains stationary until eaten by a swimbot, 
which then acquires this energy. Energy is expended in the 
swimbot from the work of moving body parts. This 
expended energy is then converted back into ambient 
energy and stored in the fluid. 

Swim bots 

A Swimbot is a two-dimensional object consisting of a set 
of rectangular parts connected in a tree-like topology. Parts 
can have varying thicknesses (rectangular heights) and 
lengths (rectangular widths), as shown in Figure 2. 

Figure 2. Swimbot anatomies 

In this illustration, the ends of the parts are rounded for 
cosmetics, and bumps are shown to indicate joints. Parts 
range in length from 5.0 to 20.0, and in thickness from 0.3 
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to 4.0. Each part has two ends, labeled 0, and 1. Body parts 
are organized hierarchically, such that each part, as child, 
has an associated parent part (except for part 0 which has 
no physical extension but provides the original parent node 
for all other parts). End 0 of each part is rigidly connected 
to end 1 of its parent part at a resting angle ranging from -
90 to 90 degrees, and is free to rotate about the joint. In the 
physical model, parts are permitted to intersect other parts 
(as if they were thin slabs overlapping in the third 
dimension). Similarly, the model does not recognize 
collisions between swimbots: they overlap freely with each 
other as well. Parts come in six colors: red, orange, yellow, 
green, blue, and violet. Part colors are genetically 
determined but are not perceivable by other swimbots as a 
factor in mate choice, and thus are not evolutionarily 
relevant. They are however useful in visualization, and 
help in detecting the emergence of distinct local gene pools 
within the fluid field, since coloration gets reproduced 
along with other traits. 

These various physical attributes among parts do not 
represent any explicit bodily functions, although the parts 
of swimbots in evolved populations often exhibit qualitative 
locomotive or mate-attracting functions. 

Part 1 is functionally special in one respect: it possesses 
the genital and the mouth. The genital is located at end 0, 
and the mouth is located at end 1. These regions are the foci 
for mating and eating. They are seen in Figure 2. as short 
black line segments of length 10, with each segment 
directed towards the swim bot' s goal. For instance, if a 
swimbot is interested in food, a segment is seen originating 
from its mouth and aiming at a food bit, with a dot at the 
end. If it is interested in mating, a segment is seen 
originating from the genital and aiming at a potential mate, 
with a small circle at the end. These graphical elements are 
used to help visualize the swimbots' goals and thus to 
enhance comprehension and intuition while observing the 
animated simulation. 

Motor control 
Swimbots are assumed to have absolute strength to bend 
parts as their motor control systems dictate, without 
resistance from friction or torque. They bend their joints in 
a predetermined, predictable manner, using sine functions 
as controllers. The angles in the joints of a swimbot change 
by small increments at each time step. Over extended time, 
every swimbot part rotates about the end of its parent part 
in pendulum fashion-back and forth, driven by its 
associated sine function. Within a single swimbot, all the 
parts' sine functions have the same frequency, but overall 
frequency can vary among different swimbots. 

While frequency remains fixed within a single 
swimbot, amplitudes and phases of these sine functions 
vary among the parts. The resulting accumulation of this 
hierarchy of motions (along with variation in anatomy) 
gives rise to a large variety of complex periodic rhythms, 
and hence, a large phenotypic space of possible swimming 
strategies. 



The physics of swimming 
A forward dynamics model is used to generate linear and 
angular momentum of a swimbot's body, resulting from 
body parts moving within a fixed fluid frame, with high 
viscosity. No fluid dynamics are modeled. Proportional to a 
friction constant, the motion of each part creates a force in 
the direction of the normal to the main axis of the part, 
which is proportional to the sine of the angle between the 
main axis of the part and the part's velocity. Part forces are 
summed to determine the linear and angular forces on the 
whole body, at each time step of the simulation. 

Moving around burns off virtual calories: energy is 
expended by bending joints and by stroking the fluid . 
Energy expenditure is proportional to the combined torques 
required for each joint to rotate the masses of parts on 
either side, plus friction from parts sweeping through the 
fluid, times a caloric burn constant. 

Energy efficiency in a swimbot is defined to be equal to 
speed divided by energy expenditure, where speed and 
energy expenditure are equal to the change in position and 
energy level, respectively, after each period of 100 time 
steps. 

Mental states 
Swimbots have simple brains to accompany their simple 
goals in life (to eat food and have sex). They do not learn 
from experience, but just change from state to state, 
triggered by a few stimuli. The mental states of a swimbot, 
and their transitions, are borrowed directly from the 
previous simulation, as shown in Figure 3. 

if hungry 
)lir looking ~ 

for food 

if found 
if lost 

if hungry 
,....---....;./ ,_........ _) 

pursuing 
food 

if contacted if contacted 

Figure 3. The states of a swimbot and the transitions between 
them. 

All states persist through time until their associated 
conditions are met, except for the mating and eating states, 
which are instantaneous. These two states are accomplished 
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when the distance between the swimbot and its goal reaches 
a distance less than 10. 

A looking state transitions to its associated pursuing state 
when the swimbot has chosen its goal (a food bit or a 
potential mate). While in a pursuing state, this goal does 
not change unless a) the swimbot swims away in the wrong 
direction and loses sight of it, orb) the goal disappears (the 
food is eaten or the potential mate dies). 

Perception 
Swimbots can see in all directions-a complete 360 degrees, 
but cannot see further than a distance of 300 units. 
Although they are two-dimensional creatures, living in a 
world analogous to Abbot's Flatland creatures (Abbott, 63), 
they can interpret a few properties of the 2D anatomies and 
motions of companion swimbots as if viewed from outside 
of the 2D plane. The things a swimbot can perceive are: 

the direction from its genital to another swimbot's 
genital in relation to its own axis of orientation (i.e., the 
degree it would have to turn in order to orient itself). 

2 the direction of a coveted food bit (similar to above) 
3 various features of the bodies of other swimbots, such as 

part sizes, distances between parts, and amounts of 
movement. 

Perceptions 1 and 2 are used to modulate the swimbot' s 
part amplitudes and phases (as explained in the next 
section). Perception 3 goes into affect when the swimbot is 
sizing up potential mates. 

Reactivity 
This model uses a straightforward stimulus-response 
mechanism: a swimbot responds to the direction of its 
current goal (represented by focus vector F in Figure 4) 
relative to its own orientation (vector 0). 

0 

·~ 

N 

Figure 4. Focus direction compared to orientation 

A swim bot' s orientation is set equal to the main axis of 
one of its parts (part #1 in the hierarchy). The swimbot's 
focus vector continually adapts in order to aim towards its 
current goal, rotating (as in the hands of a clock) as the 



relative positions of the swimbot and its goal change. While 
the actual direction of the goal may sometimes change 
rapidly in relation to the swimbot's own orientation (i.e., 
when the swimbot is near its goal, and both are mobile), its 
focus vector must not change too rapidly since this provides 
a stimulus which directly modulates the motions of its 
parts. Thus, to avoid occasional jolts in the body as a result 
of quick changes in the direction of the goal, a maximum 
rotation rate is imposed on the focus vector so that it cannot 
rotate more than I degree per time step. This lag in 
adjusting focus is analogous to a lag in visual tracking of a 
moving target in real animals. 

If a swimbot is searching for a mate or food, there is no 
specific goal and thus no goal direction. In this case, the 
focus vector wanders randomly, rotating by small amounts, 
as if searching. This behavior enables the swimbot to avoid 
swimming off in a straight line when there is no specific 
goal. 

The dot product d of the normalized direction vectors 0 
and N (N being the normal to vector F) is used to modulate 
the amplitudes and phases of the motions of each body part, 
so as to affect a turning mechanism. For example, if a 
swimbot's goal is to its left, d dictates that it will move its 
parts in a different rhythm than if its goal is to the right. If 
vectors 0 and F are aligned, then d is zero and there is no 
modulation added to the already existing motions. The 
amplitude and phase modulators associated with each parts' 
motion are genetically-determined (from genes 8 and 9 
below). These modulators are multiplied by the 
dynamically-changing d as the simulation runs, to affect 
part motions for the sake of turning. The farther away from 
zero d is, the greater the modulation. Since these modulator 
genes are randomized at initialization, it is up to the forces 
of evolution to select for a set of modulations which affect 
better turning to orient towards a goal, as d changes 
dynamically. 

It is interesting to note that, since a swimbot's overall 
direction of motion may not necessarily be aligned with its 
orientation, it does not necessarily have to align vectors 0 
and F in order to move towards its goal. 

As noted in the previous simulation, in tracking the 
overall trajectories of un-evolved swimbots, we get a mixed 
bag: some spiraling outwards away from the goal, some 
spiraling in, and many tracing spirals within spirals. These 
paths, caused by a combination of locomotion style and the 
stimulus-response mechanism, are reminiscent of the 
wanderings of Braitenberg creatures [Braitenberg, 84]. 
Over evolutionary time, these paths become more direct 
and purposeful. 

Genetics 
Swimbot genes are represented in fixed-length arrays, 
consisting of real number values ranging from 0 to 1. In 
expression from genotype to phenotype, these values are 
converted into real and integer values, each existing within 
a pre-determined phenotype-specific range, and used as 
parameters for building the body and controlling motions. 
Each swimbot's genotype consists of 74 values: 2 over-all 
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values (see below), and 72 values controlling 8 possible 
body parts (with 9 values associated with each of the 8 
parts: 9*8=72). Swimbots with fewer than 8 parts still 
possess latent gene values for a full 8, and can continue 
their reproduction. 

The phenotypic effects of each of the genes are: 

(for whole swimbot) 
1 number of parts (2-8) 
2 frequency of motion 

(for each possible part) 
1 parent part (for connectivity) 
2 color 
3 resting angle (relative to parent) 
4 length 
5 thickness 

(for sine wave bending) 
6 amplitude 
7 phase 
8 turning amplitude modulator 
9 turning phase modulator 

Many genetic algorithm techniques have been described 
in the literature pertaining to the ordering of values within a 
genotype, and its relation to the problem domain. This 
model uses a straightforward approach: each set of 9 genes 
associated with a part are ordered in sequence from I to 8. 
So each part is represented in the genotype by a set of 
adjacent genes. 

Mate choice 
If a swimbot' s energy level is above the hunger threshold 
(50), and it has not already chosen a mate, it begins looking 
for one. From the set of potential mates within its circular 
view horizon, it chooses one whose body provides the most 
attractive stimuli. The choice is made by ranking the set of 
potential mate according to one of the following 
measurements: 

Massiveness 
the sum of all the parts' sizes 
Movement 
the sum of all the parts' instantaneous speeds 
Openness 
the sum of all the parts' distances from the centroid 
Length 
the largest distance between any two parts 

When attractiveness is set to equal Massiveness, 
swimbots choose mates exhibiting comparatively larger 
bodies than the others within view. When it is set to equal 
Openness, swimbots choose mates whose parts tend to be 
splayed outward the most. Attraction to the inverse of these 
features can also be set. For instance, if attractiveness is set 
to equal the inverse of Movement, swimbots choose mates 
who exhibit the least motion. 



Reproduction 
If swimbots could sing, half the population would be 
singing the Blues. Mate choice is not necessarily reciprocal 
in this world: a swimbot' s chosen mate is not guaranteed to 
have also chosen the chooser, and in fact it is more likely to 
be concerned with eating a food bit or pursuing its own 
(possibly indifferent) chosen mate. This simulation does not 
require mutual consent for reproduction to occur. The 
inclusion of this requirement was tested briefly, and it was 
found that the resulting low birth-rate could not sustain the 
population, given the model settings. While comparing 
evolutionary dynamics of reproduction with and without 
mutual consent would be interesting, it is not the central 
inquiry in this project, and will likely be explored in a 
subsequent simulation. 

When swimbots reproduce, they have exactly one 
offspring, which is initialized midway between its parents. 
It inherits a mixture of genes from each parent, using 
genetic crossover. The offspring genotype is subject to 
chance mutation (mutation rate= 0.01). 

The energy level of each parent is halved during 
reproduction and the remaining energy is donated to the 
offspring swimbot. The offspring is born as an "adult" and 
immediately begins looking for a mate or food. Since 
parental energy is halved, it sometimes dips below the 
hunger threshold, and so the parents often begin 
immediately pursuing food. 

Reproduction is rewarded to those swimbots who possess 
one or more of the following characteristics: they are good 
enough at swimming to reach a desired mate; they are 
lucky enough to have found an attractive mate in 
immediate range (uncommon); and they are attractive 
enough to have been chosen by a good swimbot as a mate 

Results 

In all simulations, swimbot count is initialized at 1000, and 
food count at 2000. 

Figure 5. Swimbot vs. food population, superimposed with energy 
efficiency, from a typical simulation 

Figure 5 illustrates swimbot and food population from a 
simulation over a span of 184900 time steps. Each vertical 
register is equal to 10000 time steps. The sudden drop in 
swimbot population at time 40000 is the result of surviving 
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members of the first generation of swimbots dying of old 
age (swimbots are initialized at age 0, and cannot live 
longer than 40000 time steps). 

The increase in swimbot population around 50000 is the 
result of swimbots multiplying in local regions, spreading 
out, and consuming large amounts of food, giving them 
energy to reproduce. Food population plummets as a result, 
followed by a decrease in swimbot population. Most 
simulations exhibit this characteristic spike. 

The jagged light gray line indicates average energy 
efficiency in the population. This graph element uses a 
different scaling than population, and is superimposed to 
show correlation of efficiency with population dynamics. In 
most simulations run without mate preference, energy 
efficiency continues to rise for another 100000 to 500000 
s~eps before leveling off. Figure 6 shows 3 macroscopic 
views of the state of a typical simulation in which there is 
no mate preference. The states at time steps 0, 50000, and 
100000 are shown. In the top panel, random swim bots and 
food bits are seen distributed randomly in the fluid. In the 
middle panel, local gene pools of swimbots have begun 
reproducing and 

Figure 6. initialization, foraging, stasis 



foraging through regions rich in food, leaving food-sparse 
areas in their wake. The bottom panel represents the 
general appearance of the simulation after food and 
swimbot populations have become more stable. 

An exemplary swimming strategy which emerged from 
this simulation is illustrated in Figure 7. 

Figure 7. An evolved swimming strategy 

The sequence is ordered from top-left to bottom-right. 
Each image in this illustration is separated by 4 time steps. 
It shows approximately one swim cycle. The swimbot is 
moving towards the upper-right. The two "paddle" parts are 
responsible for most of the swimming work. 

Preliminary mate pref ere nee runs 
In preliminary experiments, preferences were modeled with 
a genetically-inherited factor. These experiments were 
inspired by the work of Todd and Miller (91), whose model 
demonstrated how mate preferences can evolve to exploit 
existing phenotypic features . Each swimbot was given a 
"favorite color" gene. When sizing up potential mates, 
swimbots would seek out those individuals having this 
color in any of their parts. 

Figure 8. Locomotion exhibiting "open" features 
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And they were especially attracted if these parts were more 
massive, and moved more than any other parts encountered. 
The idea was to model a form of stimulus in which 
organisms respond simply to the amount of colored 
movement in their visual fields. 

In running these simulations, it was hoped that such 
criteria would inhibit swimming performance. In 
simulations run with mate preference, isolated body parts 
became larger and exhibited more motion, as expected, yet 
energy efficiency increased at the same rate as simulations 
run without mate preference, and the population flourished. 
It appears as if mate preferences had evolved to exploit 
attractive features existing in swimbots who were already 
efficient swimbots. In fact, these attractive characteristics 
actually correlate with many efficient swimming strategies 
(of an aggressive, flamboyant nature). 

Observations 

For the sake of more controlled experiments and 
predictable results, the choice of what is attractive was 
taken out of the hands (or genes, as it were) of the 
swimbots. The "favorite color" gene was removed, and the 
criteria for attractiveness were set up as the objectively
defined features (as described earlier). When attractiveness 
was set to equal Massiveness, the simulation produced 
thick-bodied swimbots which moved slowly, as expected. 
When it was set to equal Movement, large motions became 
the norm, and consequent swimming strategies became 
aggressive and bold. Openness resulted in bodies which 
were spread-out more, as illustrated in Figure 8, where each 
image represents 3 time steps. The population represented 
in this illustration exhibited a curious behavior: the stroke 
recovery (at the beginning and end of this sequence) 
appears more exaggerated than what would normally be 
expected. 

It is as if the swimbots had overshot the motion, and 
opened-up inside-out. This behavior might have given some 
swimbots a slight advantage in being chosen. A pursuing 
swimbot sizing up mates can take a snapshot of a potential 
mate at any stage of its swim cycle to measure its 
attractiveness. Therefore, exhibiting open features through 
the majority of the swim cycle creates an advantage. 



Attraction to Length resulted in unique behavior: bodies 
became long, with few branches in their topology. The 
"parent" genes (for part connectivity) had adapted to 
become more sequential. Figure 9 illustrates a group of 
swimbots from a population which evolved with this 
criteria. These swimbots exhibit very rigid postures, using a 
small paddle-like part at the end to propel forward . Over 
evolutionary time these paddling behaviors were replaced 
by graceful undulating motions in straight bodies. 

Figure 9. A group of long swimbots 

The virtues of vegetating 
Setting attraction to be the inverse of these features 
revealed interesting results. For instance, in a simulation 
run in which attractiveness was set to equal lack of 
movement, the simulation produced a population of 
swimbots with sparse anatomy, and with very little motion. 

\ 

I ' I 
\._ 

Figure I 0. A family of slow swim bots from a population attracted 
to lack of movement 
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This simulation resulted in lower average energy efficiency 
than most other simulation runs (the time series graph 
which is not illustrated here reveals a relatively low, 
uneventful energy efficiency trend) . A few qualitative 
observations were made from this simulation. 

Since the simulation had produced swimbots who moved 
slowly, the fluid field exhibited a great patchwork quilt of 
phenotypes (indicated by coloration), since genotypes 
mixed at such a slow rate. Mating remained predominantly 
local. All swimbots however were very simple in anatomy, 
possessing only two parts, as shown in Figure I 0. 

Another observation was made: although swimming was 
slow, swimbot population rose dramatically. The 
explanation may be that since swimbots expended little 
energy, they were able to live long lives: a lower death rate. 
This large population then offered those few swimbots who 
were slightly mobile a wealth of potential mates within 
close proximity. Locomotion required for reproduction was 
not demanding of energy or time. 

Conclusion 

The results indicate that mate preferences for arbitrary 
features may not necessarily inhibit evolution of energy 
efficiency in all cases, but in some experiments, energy 
efficiency was inhibited, as in the experiment in which 
attractiveness was set to equal lack of movement. In 
addition to this conclusion, a wealth of discoveries and 
surprises have resulted, as the populations discovered ways 
to adapt their phenotypes to increase reproduction. 

It is hoped that this paper inspires further, more in-depth 
explorations in similar artificial worlds, where the search 
for the perfect mate has an impact on how things evolve. 

Future Developments 

Now that a simple scheme has been built into the model, 
enabling swimbots to evaluate a few phenotypic features in 
potential mates, it would be useful to add more extensive 
motion feature detectors. For instance, swimbots could 
respond to features such as uniformity of movement, 
possibly giving rise to symmetrical swimming styles and 
anatomies. Pattern-matching could also be used, whereby 
swimbots generate archetypal periodic motions from a 
parameter set, which they then compare to motion 
trajectories detected in potential mates. 

Many other developments could be easily envisioned, 
including the addition of gender to the model, extending the 
physics to 3 dimensions, and adding motor modulators 
which respond to additional mental states (such as 
courting). 
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Abstract 

This paper investigates how environmental structure, given 
the innate properties of a population, affects the degree to 
which this population can adapt to the environment. The 
model we explore involves simple agents in a 2-d world 
which can sense a local food distribution and, as specified by 
their genomes, move to a new location and ingest the food 
there. Adaptation in this model consists of improving the 
genomic sensorimotor mapping so as to maximally exploit 
the environmental resources. We vary environmental 
structure to see its specific effect on adaptive success. In our 
investigation, two properties of environmental structure, 
conditioned by the sensorimotor capacities of the agents, 
have emerged as significant factors in determining adaptive 
success: (l) the information content of the environment 
which quantifies the diversity of conditions sensed, and (2) 
the expected utility for optimal action. These correspond to 
the syntactic and pragmatic aspects of environmental 
information, respectively. We find that the ratio of expected 
utility to information content predicts adaptive success 
measured by population gain and information content alone 
predicts the fraction of ideal utility achieved. These 
quantitative methods and specific conclusions should aid in 
understanding the effects of environmental structure on 
evolutionary adaptation in a wide range of evolving systems, 
both artificial and natural. 

Adaptation as a Function of Environmental 
Structure 

An evolving system consists of a population of agents 
adapting their behavior to an environment through the 
process of natural selection. The difficulty of the adaptive 
challenge obviously depends upon the population, the 
environment, and the interaction between the two. In this 
paper, we adopt an environment-centered view, that is, we 
examine how environments vary in the adaptive challenge 
which they present. This orientation reflects a kind of 
figure/ground reversal. One commonly takes the 
environment as ground and the adapting population as 
figure. That is, one treats the adaptive challenge as fixed 
and examines the resulting dynamics of adaptation, e.g., as 
a function of different adaptive capabilities of the 
population. Here, we treat the population as relatively given 
and study how varying the environment affects the 
difficulty of the adaptive task to be solved. This reversal of 
focus is found in some other recent studies (e.g., Wilson 

1991; Littman 1993; Todd and Wilson 1993; Todd et al. 
1994, Todd and Yanco 1996, and Menczer and Belew 
1996) and it recalls the earlier work of Emery and Trist 
( 1965) on the causal texture of environments of social 
organizations. These studies tend to pursue one of two 
projects: either providing an abstract categorization of 
environments, or gathering experimental evidence about 
how artificial agents actually adapt in different simulated 
environments. Here and in a previous paper (Fletcher, 
Zwick, and Bedau 1996) we pursue both projects 
simultaneously; we experimentally study how the 
adaptation of given (possibly sub-optimal) agents varies in 
response to environmental structure. Since our 
characterization of environmental structure is quantitative, 
we can seek evidence for general laws relating adaptive 
success and environmental structure. 

We intentionally have made our model quite simple. In 
this way we can more easily develop quantitative methods 
and results which can then be applied to more complicated 
evolving systems. In particular, our model encompasses the 
following simplifications: 

• simple environment 
I . agents do not affect the environmental structure, 

which is static 
2. agents randomly sample the entire environment 

• simple agents 
1. simple internal representation of the environment 

(implicit in the genome) 
2. no genotype/phenotype difference (every gene 

encodes a response to a unique sensory condition) 
3. simple behavior: movement (and food ingestion) 
4. no temporal organization of behavior 

• simple evolutionary process 
I. minimal inter-agent interactions 
2. no sexual recombination 

The following complex features of agent-environment 
interaction were, however, retained in our model: 

• differences between objective environment and an 
agent's sensory discrimination 

• uncertain consequences of action (an agent's sensory 
horizon is smaller than its movement horizon) 

• no explicit fitness function 



The population in our model consists of sensorimotor 
agents. Each agent responds to limited sensory input from 
the environment with a single behavioral output specified 
by the agent's genome. The adaptive task consists of finding 
an output to associate with each possible input. The 
difficulty of the adaptive task, therefore, involves at least 
the following aspects of environmental structure: 

• the quantity of sensory information, i.e., the variety of 
sensed environmental conditions with which behaviors 
must be associated (a "syntactic" aspect) 

• the utility of the information, i.e., the benefit of adaptive 
behaviors over non-adaptive behaviors (a "pragmatic" 
aspect) 

The first draws upon the information theory of Shannon 
and Weaver (1949); the second draws upon game theory 
(sometime referred to as decision theory) of von Neumann 
and Morgenstern (1944). Both aspects are needed to 
characterize the evolutionary challenge. We refer to them 
jointly as environmental structure. 

In terms of these aspects, an adaptive task is difficult if 
the environment sends many messages requiring an 
adaptive response, or if they have little utility. The syntactic 
aspect is central to Ashby's (1956) conceptualization of 
adaptation, according to which environmental variety poses 
a problem to which behavioral variety is the response. 
Agents also experience the second aspect of environmental 
structure directly as they gain the resources yielded by 
particular responses to particular sensory inputs. In our 
previous paper ( 1996) we began to explore these issues. 
Here we extend that work by quantitatively measuring both 
aspects of environmental structure and showing their 
relationship to our quantitative measures of adaptive 
success. 

Modeling Adaptation in Diverse 
Environments 

Our observations are from computer simulations of 
adaptation in a series of constructed environments. The 
model consists of many agents that sense their local 
environment, move as a function of what they sense, and 
ingest what resources they find where they move. This 
model is a modification of those previously studied by 
Bedau and Packard (1992), Bedau, Ronneburg and Zwick 
(1992), Bedau (1994), Bedau and Bahm (1994), Bedau 
(1995), Bedau, Giger and Zwick (1995), and Fletcher, 
Zwick, and Bedau ( 1996). All of these models are 
extensions of one originally developed by Packard ( 1989). 

Agent and environment interactions 
The world is a grid of 128 x 128 sites with periodic 
boundary conditions, i.e., a toroidal lattice. All that exists in 
the world besides the agents is a resource field, which is 
spread over the lattice of sites. The resource level at a given 
site is set at a value chosen from the interval [0-R], where R 
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is the maximum resource level (chosen arbitrarily as 255). 
In the framework of Emery and Trist ( 1965), our model is a 
type-II ("placid, clustered") rather than type-III ("disturbed, 
reactive") environment, because the principal consideration 
is location rather than actual or potential inter-agent 
interactions. 

Here we consider only static resource fields, i.e., fields 
in which resources are immediately replenished whenever 
they are consumed, so that the spatiotemporal resource 
distribution, i.e., structure, is constant. In static resource 
models the population has no effect on the distribution of 
resources. Nevertheless, since the agents constantly extract 
resources and expend them by living and reproducing, the 
agents function as the system's resource sinks and the 
whole system is dissipative. 

Adaptation is resource driven since the agents need a 
steady supply of resources in order to survive and 
reproduce. Agents interact with the resource field at each 
time step by ingesting all of the resources (if any) found at 
their current location and storing it in their internal resource 
reservoir. Agents must continually replenish this reservoir 
to survive for they are assessed a constant resource tax at 
each time step. If an agent's internal resource supply drops 
to zero, it dies and disappears from the world. As a 
practical expedient for speeding up the simulation, each 
agent also runs a small risk, proportional to population size, 
of randomly dying. 

Each agent moves each time step as dictated by its 
genetically encoded sensorimotor map: a table of behavior 
rules of the form: IF (environment j sensed) THEN (do 
behavior k). Only one agent can reside at a given site at a 
given time, so an agent randomly walks to the first 
unoccupied site near its destination if its sensorimotor map 
sends it to a site which is already occupied. (Population 
sizes range from about 2% to 10% of the number of sites in 
the world, so at the larger population sizes these collisions 
will occur with a non-negligible frequency.) An agent 
receives sensory information about the resources (but not 
the other agents) in its von Neumann neighborhood of the 
five sites above, below, to the left, to the right, and at its 
present location. An agent can discriminate only four 
resource levels (evenly distributed over the [0-R] range of 
objective resource levels) at each site in its von Neumann 
neighborhood. Thus, each sensory state j corresponds to 
one of 45 = 1024 different detectable local environments. 
Each behavior k is a jump vector between zero and fifteen 
sites in any one of the eight compass directions (north, 
northeast, east, etc.). The behavioral repertoire of these 
agents thus consists of 8 x 16 = 128 different possible 
behaviors. This sensorimotor map, consisting of a 
movement genetically hardwired for each detectable 
environmental condition, is the agent's "genotype." These 
genotypes are extremely simple, amounting to nothing 
more than a lookup table of l 024 sensorimotor rules. On 
the other hand, the space in which adaptation occurs is vast, 
consisting of 128102 distinct possible genotypes. (As the 
next section explains, in some environments some von 
Neumann neighborhoods do not exist and so the 



corresponding sensorimotor rules cannot ever be used; this 
lowers the number of effectively different genotypes in 
these environments.) 

An agent reproduces (asexually) if its resource reservoir 
exceeds a certain threshold. The parent produces one child, 
which starts life with half of its parent's resource supply. 
The child also inherits its parent's sensorimotor map, except 
that mutations may replace the behaviors associated with 
some sensory states with randomly chosen behaviors. The 
mutation rate parameter determines the probability of a 
mutation at a single locus, i.e., the probability that the 
behavior associated with a given sensory state changes. At 
the extreme case in which the mutation rate is set to one, a 
child's entire sensorimotor map is chosen at random. 

Sensorimotor strategies evolve over generations. A given 
simulation starts with randomly distributed agents 
containing randomly chosen sensorimotor strategies. The 
model contains no a priori fitness function (Packard 1989), 
so the population's size and genetic constitution fluctuates 
with the contingencies of extracting resources. Agents with 
maladaptive strategies tend to find few resources and thus 
to die, taking their sensorimotor genes with them; by 
contrast, agents with adaptive strategies tend to find 
sufficient resources to reproduce, spreading their 
sensorimotor strategies (with mutations) through the 
population. The basic components of our model have some 
similarities to the LEE model studied by Menczer and 
Belew (19%) including: varying the adaptive challenge by 
varying the patterns in a resource grid, movement in the 
grid as the adaptable behavior, asexual reproduction, and no 
explicit fitness function. 

During each time step in the simulation, each agent 
follows this sequence of events: it senses its present von 
Neumann neighborhood, moves to the new location 
dictated by its sensorimotor map, consumes any resources 
found at its new location, and then goes to a new location 
chosen at random from the entire lattice of sites. This 
repositioning constantly scatters the population over the 
entire environment, exposing it to the entire range of 
detectable environmental conditions. Since the resource 
field is static, the set of detectable environmental conditions 
remains fixed throughout a given simulation. Agents never 
have the opportunity to put together unbroken sequences of 
behaviors, since each behavior is followed by a random 
relocation. And since all agents are taxed equally, rather 
than being taxed according to distance moved, all that 
matters to an agent in a given detectable local environment 
is to jump to the site most likely to contain the most 
resources. Thus, the adaptive challenge the agents face is to 
make the best possible single move given specific sensory 
information about the local environment. Adaptation occurs 
through multiple instances of these one-step challenge-and
response trials. 

Varying environmental structure 
We want to study adaptation in a variety of environments 
that differ only in their environmental structure. At the 
same time, to make population size a measure of 

191 

adaptability that can be meaningfully compared across the 
different environments, we want all of these environments 
to have the same total quantity of resources. If we let R be 
the maximal possible resource level at a site (in the present 
simulation R = 255), we can achieve this goal by 
engineering the environments so that the average resource 
level at a site is R 12. (Although a site can have any of 256 
different objective resource levels, recall that the agents can 
discriminate only four resource levels.) The following suite 
of environments meets these desiderata: 

1. Flat: Each site in this environment has a resource level 
set toR/2. 

2. Random: Resource levels in this environment are chosen 
at random with equal probability from the interval [O
R], thus ensuring that the average level is R 12. 

3. Sine waves: Resource are assigned by two sine waves, 
one along the x-axis and the other along the y-axis. The 
amplitude of these waves is scaled in such a way that 
when both are maximal and overlapping the site has 
the maximum resource level, when both are minimal 
the site has no resources, and the average resource 
level is R I 2. The frequencies of the two sine waves 
can be varied independently and are expressed in the 
number of sine-wave periods which cover the x- or y
axes. 

4. Substituting Flat or Random levels in Sine waves. In 
these environments the sine wave-generated resource 
level is substituted at randomly chosen sites with either 
constant or random values. Since the constant resource 
level is set equal to R I 2, and the random resource 
levels are chosen with equal probability from the 
interval [0-R], the average resource level per site 
remains R I 2 regardless of the density of sites. The 
density of substituted sites is a model parameter. 

In a previous paper (Fletcher, Zwick, and Bedau 1996) 
we provided several figures illustrating the various patterns 
generated in our suite of environments. We also discussed 
how these environments apply to Wilson's (1991) and 
Littman's (1993) environment classification schemes. 

Quantitative Measures 

To study how adaptability depends on environmental 
structure, we define separate measures of environmental 
structure and adaptive success. We then observe how 
adaptive success (our dependent variable) responds when 
we manipulate environmental structure (our independent 
variable). The measures we propose illuminate how 
adaptation and environmental structure interact. 

Two aspects of environmental structure 
Adaptation is sensitive to those aspects of environmental 
structure that the agents perceive and act upon. One such 
aspect is the variety of the environmental conditions which 
the agents can discriminate; a second is the utility provided 



by the environment for adapting to these environmental 
conditions. These two aspects correspond to the syntactic 
information content in the environment and pragmatic 
value of the information, respectively. 

Information. A natural way to quantify the former is with 
the information-theoretic uncertainty or Shannon entropy 
(Shannon and Weaver 1949) of the distribution of 
detectable local conditions: 

where v; is the ith detectable local environmental condition 
(in this case, a distinct resource distribution in the von 
Neumann neighborhood), and F ,fv) is the frequency of 
occurrence, across all sites in environment E, of v,. 

H(E) measures the information content of the 
environmental conditions that the agents can detect, i.e., the 
reduction in uncertainty about v when an agent detects a 
local environmental condition. This measure is a particular 
way of integrating two aspects of the distribution Fiv ): its 
width (number of different v) and flatness (constancy of 
F ,f v)). Everything else being equal, the wider or the flatter 
F ,f v) is, the more uncertain an agent will be about which 
neighborhood it will detect, the more information an agent 
will get when it does detect its neighborhood, and the 
higher H(E) will be. We can equivalently refer to H(E) as 
the detectable environment's uncertainty, Shannon entropy, 
or information content. 

Since the environments studied here all have static 
resource distributions, in every case H(E) is constant over 
time. H(E) would change in environments with dynamic 
resource distributions and thus would apply to a wide 
variety of environments in addition to those studied here. 

Utility. To measure the pragmatic differences among 
environments, we calculate what the expected utility would 
be for a perfectly adapted population in each environment. 
We measure this ideal expected utility, U*(E), as how 
much resources on average each agent would receive per 
time step in a perfectly adapted population in excess over 
what the average agent would receive in a randomly 
behaving, non-adapted, population. 

Like H(E), U*(E) is a property of the environment, given 
the innate capacities of the agents, and it can be calculated 
a priori-before any simulation is run. For each distinct 
von Neumann neighborhood in the environment, the utility 
(above the average utility of random action) of all moves 
from each instance of the von Neumann neighborhood is 
tallied. The highest tally gives the best average expected 
utility for this neighborhood. The average of all the best 
expected utilities, weighted by the frequency of each 
neighborhood type in the environment, is U*( E). This 
would be the result of successful application of a Maximum 
Expected Value strategy in a game against nature (von 
Neumann and Morgenstern 1944). 

Given that the objective resource levels are the same in 
all our environments, it might seem that the ideal utility, 
U*( E), should be equal for all environments. There are two 
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reasons why this is not the case: 

I. The limited jump range of agents (15 sites) makes it 
impossible in some environments for agents to jump 
to a maximal resource hill from some environmental 
locations. 

2. Even if an. environment always contains a close by 
resource hill, agents can only have one behavior 
mapping per distinct von Neumann neighborhood 
type. Therefore, if the best action in different 
instances of that neighborhood is different, even a 
perfectly adapted agent could not move to a maximum 
benefit site from each environmental location. 
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Figure 1 Side view of the 1 x I sine-wave environment in a 
128 x 128 toroidal lattice of sites, showing both the 
objective resource field and the agents' perspective of it. 
Note that, although the objective resource level at a site can 
have 1 of 256 possible values, the agents can distinguish 
only 4 resource levels. 

Figure 1 shows a cross-section of the 1 x 1 environment 
and illustrates both cases above. An agent sitting at position 
80 jumping 15 sites to the left makes the best move 
possible, but still does not reach the resource maximum 
l~c~ted at po~i~ion 32. In this same environment, an agent 
s1ttmg at pos1t1on 5 would sense a resource plateau-the 
same resource level in each of the 5 sites that makes up the 
von Neumann neighborhood centered on its position. The 
ideal behavior from position 5 would be a jump 15 to the 
right, but at position 60 the agent senses the same von 
Neumann neighborhood and the ideal behavior is a jump 15 
to the left. 

The agent's coarse sensory discrimination and limited 
jump range make the U*(E) value for the I x I environment 
only 11.5. On the other hand, some high frequency, 
regularly patterned environments always have a maximum 
resource site unambiguously located within an agent's jump 
range, e.g. in the 64 x 64 sine-wave environment, the U*(E) 
value is 127.3 (very close to the maximal value of R 12 or 
127.5). 

Note that U*( E) does not capture environmental utility 
completely. It says nothing about the distribution of benefits 
for sub-optimal behaviors. Nevertheless, it gives a rough 



measure of the differences in expected utility among a wide 
variety of environments. 

To develop a feel for aspects of the detectable 
environmental structure measured by H(E) and U*(E) 
consider our suite of environments: 

I. If E is the flat environment, all local environmental 
conditions are identical, so they all look identical to the 
agents in the population. Thus, H(flat) = 0. Also, 
U*(flat) = 0 since there is no structure to adapt to. 

2. If E is the random environment, all detectable 
environments occur with (approximately) equal 
frequency, which makes H(random) close to its 
maximal value, which is log2 of the number of different 
v. Since the agents in our model can detect two bits of 
information about resource levels at each site in their 
von Neumann neighborhood, there are 4' = 2'0 

detectable environmental conditions, so H(random) "" 
IO. (In the random environments we generated, 
typically H(random) = 9.95.) In a random 
environment, the best behavior varies among different 
instances of each von Neumann neighborhood. The 
U*(random) value is about 85. 

3. Sine-wave environments vary in the x and y frequency of 
the sine waves, and the number and frequency of 
detectable neighborhoods varies with these 
frequencies. Thus, F jv) can have a variety of shapes, 
and both H(E) and U*(E) can take a variety of values, 
as shown in the table below: 

Environment H(EJ U*(E) 
I x 1 2.65 11.5 
4x4 3.99 73.3 
64 x 64 2.00 127.3 
34 x42 7.09 119.1 

4. If some fraction of the sites in a sine-wave environment 
are replaced with flat or random resource levels, H(E) 
and U*( E) values can vary quite a bit. Low density of 
replaced sites tend to make Fjv) slightly flatter, which 
makes H(E) slightly higher, regardless of whether the 
resource levels in the new sites are flat or random. As 
the density of replaced sites approaches one however, 
depending on whether the substituted levels are flat or 
random, F/v) approaches the shape of Ffljv) or 
F~~jv), so H(E) approaches the value of H(flat) or 
H(random) and U*(E) approaches U*(flat) or 
U*(random). 

Finally, we wish to reiterate that both H(E) and U*(E) do 
not simply reflect the objective properties (i.e., the resource 
field) of the environment; they reflect this field as 
perceived by agents of the population. In this respect, it is 
like the ways in which Wilson (1991) and Littman (1993) 
characterize environments. 
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Measures of adaptation 
We have developed two different measures of adaptive 
success: an external one that is based on the gain in 
population size due to adaptation, and a more internal view 
of adaptation based on the degree to which agents achieve 
the ideal expected utility. 

External measure of adaptation. The model we study 
here is resource driven, and a population's size reflects its 
ability to locate the resources found in the environment. 
Although, in all the environments we studied, objective 
resource levels were roughly equal, we cannot assume in 
general that observed population size by itself is an accurate 
indication of the degree to which adaptation has taken 
place. Given the resources available in the environment and 
given the agents' existence taxes, even non-adapting 
randomly behaving agents might still survive by 
accidentally "bumping into" resources. To factor this out, 
we compare equilibrium population size in a given 
environment with the equilibrium size of a "reference" 
population in exactly the same kind of environment. The 
reference population has exactly the same set of internal 
features (sensory and behavioral capacities, existence tax, 
etc.) as the observed population, except that its behaviors 
are always chosen at random instead of being based on 
sensory input. We denote this reference population size 
P_.(E), while P(E) denotes the actual equilibrium population 
size of population P in environment E. Thus A.( E), the 
adaptive success of population P in environment E is the 
proportion of increase above the reference population size: 

A (E) = P(E) - PR (E) 
p PR(E) 

Internal measure of adaptation. A,(E) gives us a way to 
compare the adaptive success of our standard population 
among different environments, but we can also look more 
closely at the internal causes of the observed population 
differences. That is, we can also express adaptive success in 
terms of U(E): how much utility agents receive compared 
to non-adapting agents. As we will see, U(E) and AJE) are 
highly correlated. 

Consider two environments that result in the same A,( E) 
and also result in the same U(E) of 25 resource units per 
agent per time step. If U*(E) of one environment is 100 and 
U*( E) of the second is 50, then the population in the first 
~nvironment achieved 25% of the ideal expected utility and 
m. the second the population achieved 50% of the expected 
utility. The behaviors, and therefore the agents' genomes, 
are closer to the ideal in the second environment. Since the 
A,(E) values were the same, the A,(E) measure does not 
capture this adaptation difference. We capture this more 
internal view of adaptive success with the ratio of U( E) to 
U*(E): 

A (E)= U(E) 
u U * (E) 

We use the subscript U to distinguish adaptive success 



measured using the utility ratios from A,( E) which is our 
measure of adaptation based on population size. 

Measures of diversity in adaptive behavior 
Finally, we can study another internal aspect of adaptation 
by measuring the change in Shannon entropy of the 
population's alleles (weighted by gene usage) as adaptation 
takes place. Three different measures are relevant. First, we 
can simply calculate the total Shannon entropy (diversity) 
of alleles used by a population. We periodically sample the 
population for a small time interval and calculate the 
Shannon entropy of all alleles used during this interval. We 
designate this by H(L) where L stands for alleles. Second, 
we can bin this same data by gene and calculate the 
diversity of alleles within each gene (von Neumann 
neighborhood), and then average these results (weighted by 
gene usage) to calculate an overall within-gene allelic 
diversity. This we designate as H(LIG): the diversity of 
allele, L, given the gene (or von Neumann neighborhood), 
G. Because there are 128 = i different alleles, the 
maximum H(L) or H(LIG) value is 7. Third, the difference 

I (L: G) = H (L) - H (LI G) 

is the mutual information which can also be considered the 
"between-gene" diversity. In our present simple 
environments, variation increases H(LIG) while selection 
reduces it; successful adaptation is reflected in an increase 
in l(L:G). For more details on these information-theoretic 
measures, see Bedau, Zwick, and Bahm (1995). 

NB: For notational simplicity, we now will drop the 
argument E for measures U, U*, AP, and A,. H without an 
argument will always refer to environmental information, 
but we will write H(E) explicitly where we need to 
differentiate it from other Shannon entropy measures. 

Environmental Structure and Adaptation 

We studied adaptation in a total of 70 different distinct 
environments with environmental information content, H, 
values ranging from 0.00 to 9.95 (10 is maximum) and 
ideal expected utility, U*, values ranging from 0.00 to 
127.25 (127.50 is maximum). For all of these runs we used 
a mutation rate of 0.001 and allowed population size to 
reach equilibrium. Our task is to understand the relationship 
between our independent environmental variables H and 
U*, and our dependent variable, adaptive success, measured 
using either Ar or Au. 

Observations using A, 
We first note a very high correlation between AP values and 
the actual average utility, U. Figure 2 shows this 
relationship, which holds very well across the whole range 
of environments tested. This gives us confidence that 
average resource consumption is directly proportional to 
population size gain, and therefore factors such as the 
chance of random death do not significantly affect 
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population size results. 
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Figure 2 Adaptive success (measured using population) as 
a function of actual equilibrium utility per agent per time 
step. The relationship is proportional and shows that other 
factors besides Udo not significantly contribute to Ar. 

Next we examine how AP depends on our environmental 
parameters. We expect that it will be inversely dependent 
on H and directly dependent on the ideal utility, U*. In 
other words, increased adaptive success will be associated 
with less uncertainty of sensory inputs to adapt to, and 
higher utility for adapting. Figure 3 shows the relationship 
between A,. and U*. We can see that AP tends to increase 
with U*, but this relationship is weak. This "fuzziness" 
may be partially due to our other environmental parameter 
H. 
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Figure 3 Adaptive success (measured using population) as 
a function of average ideal utility per agent per time step. 
This shows a weak relationship. 

Figure 4 plots the relationship between A, and 1 I H. Again, 
there is an indication of the expected relationship, but we 
observe two notable exceptions. First, there is a series of 
points that show a low A,, across the whole range of IIH 
values. These lend to be environments with very low U* 
values (typically less than 30). Second, there is series of 
environments where A, is flat for high A, values. We 



discuss this leveling off of adaptive success for 
environments with low H values (high 1 I H) in the next 
section. 
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Figure 4 Adaptive success (measured using population) as 
a function of the inverse of environmental information 
content. This shows a weak relationship with notable 
exceptions for low and high A, values. 
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Figure 5 Adaptive success (measured using population) as 
a function of ideal utility divided by environmental 
information content (utility per bit of environmental 
information). This shows a significant relationship for U* I 
H less than 30. A linear fitting of all data gives an R2 value 
of 0.5846. 

In Figure 5 we combine our two measures of 
environmental structure by dividing U* by H. The 
relationship between this combined measure and A, is 
strikingly improved over the relationship with A, of either 
individually. There are six points that do not fit well into 
the linear relationship. There appears lo be a hard upper 
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limit to A, of about 2.5 where neither raising the utility nor 
lowering the uncertainty of sensory inputs raises A, We 
discuss possible reasons for this in the next section. We 
should note that U* I H is only one of many possible ways 
to model our data. We have used other models, such as 
exponential and polynomial models, to fit the entire range 
of data, but since the number of points in the non-linear 
range is small, we restrict ourselves here to the linear 
model. The rational for a linear dependence of U* I H is 
compelling. It is a measure of the utility of perfect 
adaptation per bit of environmental sensory information to 
be adapted to. Across all the environments we studied with 
U* I H less than 30, this ratio predicts how well the 
population will adapt (as measured by population size 
gain). For U* I H less than 30 there is a linear relationship 
with A, (R2 = 0.8351 ). For U* I H greater than 30, A,. is 
maximal at roughly 2.5. 

We have also obtained reasonable fits of the data using 
simple linear regressions of A, against U* and H (or 1 I H), 
but the dependence of A, on the composite U* I H is more 
compact and readily interpretable. 

Observations using Au 
Although population size is a traditional way of measuring 
adaptive success, A,, has the advantage of having a hard 
upper limit defined by U*. Also, it gives us an internal view 
of how behaviors (genomes) are changing as adaptation 
takes place. Figure 6 plots A,, against the ratio U* I H. 
Although the general trends are the same as seen in Figure 
5, the relationship is rather weaker. 
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Figure 6 Adaptive success (measured using achieved 
fraction of ideal utility) as a function of ideal utility divided 
by environmental information content (utility per bit of 
environmental information). This relationship using this 
measure of adaptive success is much less significant than 
the one using A, (shown in Figure 5). A linear fitting of all 
data gives an R2 value of 0.3088. 
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Figure 7 Adaptive success (measured using achieved 
fraction of ideal utility) as a function of the inverse of 
environmental information content. This shows a linear 
relationship with two notable exceptions: 1) very low U* 
values (less than 30) shown with empty triangle; and 2) H 
values less than 5 (1 I H values less than 0.2) shown with 
empty circles. This shows that for environments with 
moderate to high U* values and H values greater than 5, the 
degree of utility achieved is inversely proportional to the 
diversity of sensory inputs. For H values less than 5 (1 I H 
greater than 0.2), Au is fairly flat at about 60-80%. A linear 
fitting of all data gives an R2 value of 0.3007. 

Figures 7 shows A,, plotted against I I H. This shows a 
relationship between the syntactic information content of 
environments, H, and the degree to which ideal utility is 
achieved. This relationship appears to be approximately 
linear with two notable exceptions. First, the points shown 
with empty triangles represent environments with very low 
U* values (less than 30). For these environments, the 
degree of ideal utility achieved, A", appears to be not well 
correlated with I I H values. The second exception occurs 
for H less than 5 (1 I H greater than 0.2). These points are 
shown with empty circles. In this region A,, appears to level 
off at about 60-80%. In other words, even as the adaptive 
task becomes easier (less uncertainty of sensory inputs), the 
degree of utility achieved though adaptation does not 
appear to improve appreciably. We would not expect a 
population to ever reach 100% perfect adaptation. The 
mutation rate alone would keep this from happening. 
Additionally, as mentioned before, as environments become 
more crowded, agents are more likely to land on each other 
and be diverted to another nearby site. In this case, even if 
agents' genomes were ideal, the utility gain would not be 
the ideal value since they were being "bumped" from their 
target site. Our measure depends on the actual utility and 
we would expect U to level off below the ideal, U*, at least 
in part due to the reasons above. For the environments 
studied here and a mutation rate of 0.001, A,. plateaus at 
around 60-80% and lowering H (raising I I H) does not 
improve Au- This plateau appears to begin for I I H greater 
than 0.2 (or H less than 5). There was no discernable 
relationship for U* vs. A,, -not shown. 
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Relationship between A. and Au 
We can tie our two measures of adaptive success together 
by deriving the relationship depicted in Figure 5 (which 
uses A,) from the relationship depicted in Figure 7 (which 
uses A,,). The four steps below are intended to illustrate a 
hypothesized relationship, rather than to prove a 
mathematical one. 

I. I I Hoc A,, [relationship shown in Figure 7] 
2. 1 I Hoc U I U* [definition of A,,] 
3. U* I Hoc U [multiply both sides by U*] 
4. U* I Hoc A, [U oc A, by Figure 2] 

We have, thus, A, oc (A,,)-(U*). A, measures the increase 
in population size due to adaptation and is dependent on the 
utility of adapting per bit of environmental sensory 
information to be adapted to (except for high values of this 
ratio where A, is maximal). A,, measures the fraction of 
ideal utility achieved due to adaptation and indirectly the 
degree to which ideal behaviors are achieved. A,, is 
inversely dependent on the uncertainty of sensory inputs 
(with two exceptions: (I) where expected utility is quite 
low-in which case A,, is variable, and (2) where the 
diversity of sensory inputs is low, in which case A,. is 
maximal). 

In retrospect, if we had constructed our environments 
with constant U* rather than constant total resources, we 
would expect A11 and A, to show the same dependence on 
environmental information. 

Ashby's law of requisite variety 
Another indication that a population is adapting to an 
environment is that the variety of alleles across different 
genes matches the variety of sensory inputs and at the same 
time the variety of alleles for any particular gene is small. 
In other words, full adaptation to the static environments 
we are studying calls for the existence of a unique allele for 
each sensory input-that allele being the best behavioral 
response to the particular environmental condition. 

At the start of a run, the distribution of alleles across all 
genes in the population is random and thus the overall allele 
uncertainty is maximal at H( L) "" 7. Within each particular 
gene, the uncertainty, H(LIG), over the population is 
similarly random and maximal, i.e., is also close to 7. By 
contrast, the between-gene diversity, which is the mutual 
information, I( L:G ), between allele and environmental 
condition is near zero. 

Figure 8 illustrates what then happens as the population 
becomes well adapted. The between-gene diversity of the 
alleles, I( L:G ), which represents also the tightness of 
constraint between alleles and environmental conditions, 
approaches the uncertainty of the environment, H(E), which 
equals 4. At the same time, the within-gene diversity, 
H(LIG), drops to near zero., i.e., there is no allelic diversity 
not coupled to environmental diversity. 
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Figure 8 Time series showing the allelic diversity changes 
as adaptation takes place. A11 is also shown on the same 
graph. This shows that as adaptation takes place the overall 
allelic diversity, H(L), and the mutual information, between 
alleles and genes, I( L:G ), matches that of the environment, 
in this case 4.0. At the same time the diversity of alleles 
within genes, H(LIG), drops to almost zero. 

Both of these changes exemplify Ashby's "Law of 
Requisite Variety" (1956). Ashby's Law states that for 
optimal regulation a system needs to have a variety of 
responses to match the variety of environmental conditions 
it encounters, and second that this variety should not be 
mere randomness. This second point specifies that the 
"regulator of the system", here the genomic sensorimotor 
mapping, should be deterministic and not stochastic: for a 
particular environmental condition, there should be in the 
population only one response, namely the optimal one, not 
a mixture of responses. In Ashby's language, the 
uncertainty of the regulator state, given the disturbance, 
should be zero. This applies to the very simple evolving 
system studied here. For more complex evolutionary 
contexts (where resource levels are dynamic and inter-agent 
interactions are significant), there may well be advantages 
for non-zero H(LIG). Both of these conditions are satisfied 
as adaptation approaches its maximal value: H(L) matches 
H(E) and H(LIG) is near zero. It is interesting also to 
observe the slight bump in H(LIG) at approximately Time= 
/000. Here a temporary slight stochasticity of allelic 
response reflects the introduction through mutation of new 
and improved alleles, which as they spread, generate an 
increase in adaptive behaviors, A11 • 

Conclusions 

Our observations support two kinds of conclusions: 
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I. methodological conclusions about how to quantify major 
aspects of environmental challenge and adaptive 
success 

2. substantive conclusions, based on experimental data, 
about how variations in these aspects of environmental 
challenge influence the degree to which populations in 
them adapt 

Our measures of environmental structure have been 
applied to this simple evolutionary model, but we have 
defined them in general terms so that they can be applied 
across a wide range of evolving systems. Concepts such as 
the diversity of sensory inputs, H, and the utility for 
adaptive behaviors, U*, are relevant to both artificial and 
natural systems where natural selection occurs. In addition, 
measuring external adaptive success by comparing 
population size to a non-adapting population in the same 
environment, A,, and internal adaptive success by 
measuring the degree to which ideal utility is achieved, Au, 
can also be applied to many other adapting systems. We 
have also demonstrated how, for artificial systems where 
genome information is readily available, the diversity of 
alleles both across genes and within genes can illuminate 
the internal workings of the adaptive process. 

On the substantive side, although there are certainly 
facets of environmental structure and adaptive success not 
captured by our measures, we have clear and testable 
indications about how environmental structure influences 
adaptation. For a wide range of environments, adaptive 
success depends upon both the syntactic (information
theoretic) and pragmatic (game-theoretic) aspects of 
environmental structure. In our work these two aspects are 
effectively integrated as utility per bit of sensory 
information. We expect that this measure will be useful in 
other studies of evolving systems. At the very least, both 
aspects of environmental structure will still need to be 
considered. When adaptive success is measured 
"internally" as the fraction of ideal utility gained, the utility 
aspect is encompassed implicitly. Adaptive success then 
depends simply (but less accurately) on sensory 
information content alone. Lastly, we have demonstrated 
explicitly Ashby's Law of Requisite Variety by showing 
that evolutionary adaptation is accomplished by the 
genomic representation of environmental information. 
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Abstract 

Recently there has been great interest in the idea that 
evolvable systems based on the principles of Artificial 
Life can be used to continuously and autonomously 
adapt the behavior of physically embedded systems such 
as mobile robots, plants and intelligent home devices. At 
the same time, we have seen the introduction of evolv
able hardware(EHW): new integrated circuits that are 
able to adapt their hardware autonomously and almost 
continuously to changes in the environment (Higuchi et 
al. 1992). This paper describes how a navigation sys
tem for a physical mobile robot can be evolved using 
a dynamic Boolean function approach implemented on 
evolvable hardware. The task of the mobile robot is 
to track a moving target represented by a colored ball, 
while avoiding obstacles during its motion in a non
deterministic and not stationary environment. Our re
sults show that a dynamic Boolean function approach is 
sufficient to produce this navigation behavior. Although 
the classical model-free evolution method is often infea
sible in the real world due to the number of possible 
interactions with the environment, we demonstrate that 
a model-based evolution method can reduce the interac
tions with the real world by a factor of 250, thus allow
ing us to apply the evolution process on-line and to ob
tain an adaptive tracking-avoiding system, provided the 
implementation can be accelerated by the utilization of 
evolvable hardware. 

Introduction 
Robotics has, until recently, consisted of systems able to 
automate mostly simple, repetitive and large scale tasks. 
These robots, e.g., arm manipulators, are mostly pro
grammed in a very explicit way and in a well-defined 
environment. However, for mobile robot applications, 
the environment must be perceived via sensors and is 
usually not fully specified. This implies that a mobile 
robot must be able to learn to deal with an unknown 
and possibly changing environment. 

In this paper we tackle the navigation task for a mobile 
robot which must reach a goal, from any given position 
in an environment while avoiding obstacles. The robot 
is regarded as a reactive system described by a dynamic 
Boolean function which is represented by a disjunctive 
normal form. The dynamic Boolean function can easily 

be implemented by evolvable hardware and change with 
the environment. 

Unfortunately, the classical model-free evolution 
method, where the robot behavior is learned by evolu
tion without learning a model of the environment, is in
feasible in the real world due to the number of required 
fitness evaluations in the real world which may need sev
eral hours (Floreano & Mondada 1996). To avoid this 
problem, most of the model-free evolution methods use 
off-line evolution, e.g., the robot behavior is trained off
line using the training data. The robot's behavior will 
be fixed after training. However, good training data are 
very difficult to obtain, especially for real-world environ
ments where we have little prior knowledge about them. 
A simulated environment has often been used instead in 
training. This raises the issue of how close the simulated 
environment might be of the real one. The main objec
tive of the off-line model-free evolution method is to find 
a robust behavior to maintain the robot performance in 
the real world despite the gap between the simulated and 
real world. 

We have shown in this paper that a model-based evolu
tion method can alleviate this problem significantly. In 
this method, a robot tries to build a model of the envi
ronment while learning by on-line evolution how to nav
igate in this environment. Such simultaneous learning of 
the environment and navigation within the environment 
can reduce the number of fitness evaluations in the real 
physical environment since the robot can use the envi
ronment it builds progressively. Our experiments have 
shown that we can reduce the number of fitness eval
uations in the real environment by a factor of 250 for 
the navigation task we considered. Fitness evaluations 
can be done extremely fast in the internal environment 
because they are done at electronic speed in hardware. 

The paper first defines the robot task and its envi
ronment. In Section 3, it describes the reactive naviga
tion system based on a Boolean function controller rep
resented in its disjunctive normal form. In Section 4 it 
presents the implementation of the evolution mechanism 
on the Evolvable Hardware. In Section 5 it describes and 
compares the model-free and the model-based evolution 
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Figure 1: Real robot. 

methods implemented using Evolvable Hardware. 

Robot Environment and Task 
The shape of the robot is circular with a diameter of 25 
cm (Fig.l). It has 10 infra-red sensors mapped into 6 
Boolean variables indicating the presence of objects at a 
distance smaller than 30 cm. It is equipped with a bump
ing sensor to detect when the robot hits an obstacle and 
with two cameras able to identify and track a colored 
object (the ball in Fig. 1). The cameras return one of 
the 4 sectors, covering 90 degrees each, in which the tar
get is located. The robot is driven by two independent 
motor wheels, one on either side. This allows the robot 
to perform 8 motions: 2 translations, 2 rotations and 
4 combinations of rotation and translation. The robot 
is controlled by a PC mother board connected to two 
transputers: one dealing with the infra-red sensors, the 
vision sensor and the motor wheels, and the other con
trolling two EHWs which respectively, execute the robot 
behavior and simulate the evolutionary process. The en
vironment is a world with low obstacles such that the 
colored target can always be detected by the robot. The 
obstacle shapes are such that using only a reactive sys
tem the robot will not become stuck. In other words, 
these are no overly complex shapes such horseshoes. For 
the off-line evolution approach, we built a robot simu
lation to generate and evaluate the performance of the 
model-free method. 

The task assigned to the robot is to reach the target 
without hitting obstacles within a minimum number of 
motions and from any position in the real world. To per
form its task, the robot must learn two basic behavior~, 
obstacle avoidance and going to the target, and coordi
nate these two behaviors to avoid becoming stuck due to 
repetition of an identical sensor-motor sequence. 

Reactive Navigation System 
To describe our evolutionary approach, we consider a 
model of robot-world interaction widely used in robot 
learning (Wilson 1987). In this model the robot and the 
world are represented by two synchronized processes in
teracting in a discrete time cyclical process. At each ti~e 
point, (i) the robot directly observes the world state, (11) 
based on this current world state, the robot chooses a 

motion to perform, (iii) based on the current world state 
and the motion selected by the robot, the world makes 
a transition to a new state and generate a reward, and 
(iv) finally the reward is passed back to the robot. 

One way to specify a robot's behavior is in terms of a 
controller, which prescribes, for each world state, a mo
tion to perform. For the tracking-avoiding task in a non
deterministic1 and not stationar'!i2 environment (Kael
bling & Moore 1996) we considered, a dynamic Boolean 
function control system will be used. The system can 
change or evolve its function with time. It assumes nei
ther knowledge of the necessary behaviors nor the high 
level primitives of each behavior. It is well suited for 
an evolutionary search algorithm and is easily imple
mentable in hardware. However to perform more com
plex tasks such as navigation in an environment with 
obstacles of arbitrary shape (e.g., horseshoe shape) or 
where the target is not always visible, it may be nec
essary to exploit properties of the task, the sensor con
figurations, the environment and to change the existing 
control structure. 

Formally, the controller is a function :F from world 
states to motions. The Boolean function approach de
scribes the function :F as m Boolean functions of n 
Boolean variables which represents the desired reactive 
behavior. The input domain of the function :F is { 0, 1} n 

where 2n is the number of possible world states directly 
observable by the robot . It is encoded by 8 Boolean vari
ables in our study: 6 bits for the infra-red sensors and 
by 2 bits for the vision sensor. It represents 256 world 
states observable by the robot. The output range of the 
function is {O, l}m where 2m is the number of possible 
motions. It is encoded by 3 bits to represent 8 possible 
motions. 

A possible representation of function :F is a look-up 
table. But the look-up table is generally impractical for 
real-world applications due to its space and time require
ments and that it completely separates the information 
they have about one input situation without influencing 
what the robot will do in similar input situations. We 
chose to represent function :F by m Boolean formula in 
k-term DNF3 which consists of a disjunction of at most 
k terms (k = 50 in our study), each term being the con
junction of Boolean variables or their complement, such 
that function :F can easily be implemented in LSI hard
ware which has a limited number of logic gates. The 
function controller represents function :F by m Boolean 
functions f; in their k-term DNF. 

1 The environment is non-deterministic if taking the same 
action in the same state on two different occasions may result 
in different next states and/or reward. 

2 The environment is not stationary if the probabilities of 
making state transitions and/or receiving reward change over 
time. 

3 f; in k-term DNF: /; = (xo /\ · · · /\ Xn-1 )o V · · · V (xo /\ 
· · · /\ Xn-1h-1 
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To increase the computation speed by one order of 
magnitude, function :F described by m Boolean func
tions in their k-term DNF is executed with an EHW. 
The EHW structure suited for the execution of function 
:F consists of an AND-array and an OR-array (Fig.3). 
Each row in the AND array calculates the conjunction 
of the inputs connected to it, and each column of the OR
array calculates the disjunction of its inputs (Keymeulen 
et al. 1998). In our experimental set-up with n = 8 
Boolean input sensors (6 bits for the infra-red sensors 
and 2 bits for the vision sensor) and 3 Boolean outputs, 
the AND-OR array has 2*n+3 = 19 columns and needs 
a maximum number of 2n = 256 rows. However to force 
the Boolean function to generalize, the number of rows 
can be reduced by merging rows with the same output. 
In our experiments, we were able to reduce the number 
of rows to k = 50. In this way, on average, 25506 ::::: 5 input 
states are mapped to the same output. 

Evolvable Reactive Navigation System 
From a machine learning perspective, the tracking
avoiding control task where the motions performed by 
the robot influence its future input situations (Kaelbling 
& Moore 1996) is an associative delayed reinforcement 
problem where the robot must learn the best motion for 
each world state from a delayed reward signal (Watkins 
& Dayan 1992). For learning this robot task in unknown 
and non-deterministic environments, researchers have 
applied evolution-based learning algorithms (Mataric & 
Cliff 1996) to low level control architecture such as 
LISP-like programming languages (Koza 1992)(Brooks 
1992)(Reynolds 1994), finite state automata (Thomp
son 1995), production rules (classifier systems) (Wil-
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son 1987) (Dorigo & Colombetti 1994) (Grefenstette & 
Schultz 1994), process network (Steels & Brooks 1995) 
and neural networks (Floreano & Mondada 1996) (Beer 
& Gallagher 1992)(Parisi, Nolfi, & Cecconi 1992)(Hus
bands et al. 1995)(Hoshino, Mitsumoto, & Nagano 
1998). 

In our experiments, the learning task consists to find 
the function :F, mapping 256 inputs (world states) to 8 
outputs (motions), in a search space of 8256 functions 
from a given set of observable input-output pairs and a 
reward signal. For learning pure, instantaneous Boolean 
functions of the inputs from a delayed reinforcement sig
nal, we chose the evolutionary approach. It is better 
suited for not stationary environments and large search 
spaces when a large number of inputs and motions make 
Q learning impractical (Watkins & Dayan 1992). The 
evolutionary algorithm performs a parallel search in the 
space of Boolean functions in a genetically inspired way. 
The algorithm is implemented in hardware where the 950 
architecture bits of the EHW are regarded as the chromo
some for the genetic algorithm (Keymeulen et al. 1998). 
We built specific mutation and cross-over operators for 
the k-term DNF representation to change the architec
ture bits and to reduce the learning time (Keymeulen et 
al. 1998). 

Evolvable Hardware Methods 
To learn the tracking-avoiding task, the robot must in
teract with the real world environment (on-line) or its 
simulation (off-line) to obtain information which can be 
processed to produce the desired controller. There are 
two ways to proceed to obtain the controller (Kaelbling 
& Moore 1996): 
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• Model-free: learn a controller without learning a 
model of the environment. 

• Model-based: learn a model of the environment, and 
use it to derive a controller. 

The next sections discuss and compare the model-free 
and model-based evolution. But for both methods, in 
order to give leverage to the learning process we incor
porate 3 biases: 

• reflexes: we have programmed a reflex that moves the 
robot toward the ball when no obstacle is perceived 
around the robot. In this way the robot finds inter
esting parts in the environment but it is still hitting 
obstacles and becoming stuck. 

• shaping: we present very simple environments to the 
robot first and then gradually expose it to more com
plex environments. For the model-free method, once 
the robot reaches the target it is moved to new posi
tions (selected in a deterministic way). For the model
based method, the robots arc evolved in a growing and 
changing world model. 

• local reinforcement signals: for the model-based 
method, we give a reinforcement signal that is local, 
helping the robot to step up a gradient in he space of 
the learning parameters. 

Off-line model-free evolvable hardware 

The off-line model-free evolution simulates the evolution
ary process of the robot controller in an artificial envi
ronment, simulating the real environment known a priori 
(Fig . 4). In this approach both the EHW and the en
vironment are simulated to find the controller able to 
track a colored object and avoid the obstacles (left box 
in Fig. 4). Then the best controller found by evolution 
is used to control the real robot: the EHW architecture 
bits defining the best behavior are downloaded into the 
robot evolvable hardware board and control the robot in 
the real world (right box in Fig.4). 

In this model-free approach, the evolutionary algo
rithm is used as an optimization strategy to find the opti
mal controller for a given simulated environment known 

Figure 5: Simulation of the motion of a real 
robot controlled by the best individual at gen
eration 285 obtained by off-line model-free evo
lution. 

a priori. The population size is 20 individuals. For the 
selection scheme, we have used a tournament selection 
with tournament size s = 5 and the elitist strategy to 
maintain the best individual. The main objective of the 
off-line evolution is to find a robust controller because 
the robot's controller cannot change during robot's life 
time. To obtain a robust controller, we first improve the 
generalization ability of the controller by limiting the 
number of disjunctive terms in the k-term DNF repre
sentation.Second we force the robot, during its evolution, 
to encounter many different situations. 

Evaluation Each robot is evaluated in the simulated 
environment. It fails when it cannot reach the target 
within a long period of time. It can fail for two reasons: 

• It hits an obstacle. 

• It reaches the maximum number of steps it is allowed 
to move in the environment. This situation occurs 
when the robot is stuck in a loop. 

The fitness <I> of a controller is represented by a scalar 
between 0 (worst) and 64 (best) through combining three 
factors: 

• R 1 : The number of times the robot has reached the 
target. When it reaches the target, it will be assigned 
to a new position in the environment. There are 64 
new positions. This forces the robot to encounter 
many different world situations. 

• R 2 : The distance to the target D(robot, target) , which 
forces the robot to reach the target. It is normalized 
using the dimension L of the simulated environment. 
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• R 3 : The number of steps used to reach its actual po
sition from its initial position. This forces the robot 
to choose a shorter path and to avoid becoming stuck 
in a loop. An arbitrary large Maximum Nbr. Steps 
is used for normalization. 

In our experiment the distance and the number of 
steps evaluations had an equal contribution to the fit
ness: 

cJ> = Nbr. of New Positions+ 

'R1 

0.5 ( 1 _ D(roboi target)) + 

'R2 

0 5 (l _ Nbr. Steps ) 
· Maximum Nbr. Steps 

Experiments We have conducted experiments with 
an environment containing 9 obstacles of different shapes 
except for horseshoes. The target is situated in the cen
ter of the environment (Fig.5). 

During evolution and for each individual evaluation, 
the robot is always placed at the same initial position in 
the environment: the upper left corner. At the beginning 
of evolution, the controllers are initialized at random. 
The behavior of each individual is then simulated until 
it hits an obstacle or becomes stuck in a loop. When 
an individual reaches the target position, it is moved 
to a new position in the environment and its fitness is 
increased by 1. There are 64 new positions which are 
distributed equally in the environment and selected in a 
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deterministic careful way introducing a shaping bias in 
the learning process. The important point is that during 
its evolution, all individuals start from the same initial 
position and that the sequence of new positions is always 
the same for all individuals. 

The behavior of the best individual in the population 
at generation 285 is shown in Figure 5. It demonstrates 
that the best individual coordinates the obstacle avoid
ance and the target tracking behaviors very well. For 
example, it discovers that a robust strategy is to turn 
clockwise around the obstacle until there is no obstacle 
in the direction of target. 

Figure 6 shows the number of steps and the fitness 
of the best individual with generations. First and most 
importantly, figure 6 shows the number of interactions 
(nbr. of generations* nbr. of individuals * nbr. of steps) 
with the environment of all the individuals is 3, 283, 269. 
It shows also that although there are 256 possible world 
states and 2048 possible transitions, the individuals in 
the population have encountered 122 world states and 
744 transitions during their evolution. The number of 
genetic operations is 5700 (nbr. of individuals * nbr. of 
generations). 

Figures 7 and 8 show the sensor-motion mappings for 
52 world states of the best controller at generation 0 and 
285 respectively. The 52 world states represent, for the 4 
possible target directions (Front, Right, Back, Left), the 
situation without obstacle (No Obst.) and 12 situations 
with 1 obstacle around the robot. Both figures show the 
reflexes that map the 4 world states with no obstacle 
around the robot to 4 pre-programmed motions. Figure 
8 illustrates the ability of Evolvable Boolean Controller 
to generalize. For example, the best individual at gener
ation 7.85 executes a Rotation-Left motion independently 
of the target direction when there is an obstacle at its 
right side. 

Once the best individual reaches the target 64 times, 
we download the controller of the best individual in gen
eration 285 into the EHW. Although the real world dif
fers from the simulated world in diverse aspects, the con
troller was robust enough to work well in the real world 
known a priori. In this model-free experiment the com
putation speed obtained by the hardware implementa
tion of the Boolean function controller is not crucial for 
the real-time robot controller. 

On-line model-based evolvable hardware 
The off-line model-free approach assumes that the sim
ulated world is designed carefully and that the Boolean 
controller is robust enough to deal with the uncertainty 
and inaccuracy of the sensor values and the motors. Un
fortunately, this approach cannot take into account any 
failures of the robot hardware, e.g. not stationary envi
ronment, and does not allow the controller to be adap
tive, e.g. changing its structure while performing its 
task. But simply replacing training in the simulated 

Figure 9: On-line Model-based Evolution schema. 

Figure 10: On-line model-based evolvable hardware 
board with 2 EHW's. 

world with training in the real world presents two prob
lems. First, it decreases considerably the efficiency of the 
evolutionary approach due to the number of interaction 
with the environment needed (10 days if an interaction 
takes 0.25 second) to learn an effective behavior. Second, 
it doesn't maintain good on-line performance because the 
off-line evolutionary approach is only interested in the 
end-result. 

To learn with fewer interactions with the physical 
environment and maintain good on-line performance, 
the robot can do some experiments in an "approxi
mated" world model of the environment (Mahadevan 
1992)(Booker 1988). This approach is especially impor
tant in applications in which computation is considered 
to be cheap and real-world experience costly. It has been 
explored in reinforcement learning and extended to deal 
with unknown environments by learning the world model 
during robot's interaction with its environment (White
head & Ballard 1989) (Sutton 1990). In the evolutionary 
approach, Grefenstette et al. use a world model known 
a priori (a parameterized quantitative model) and cali
brate it during robot's life time (Grefenstette & Schultz 
1994). Nordin et al. propose an on-line control method 
using genetic programming and a memory of the past 
experiences but designed for problems in which reward 
is not delayed in the sense that reward occurs at each 
decision steps (Nordin & Banzhaf 1997). 



On-line model-based learning Our method learns a 
model continually through robot's life time and, at each 
step, the current model is used to compute an optimal 
controller (Fig. 9). 
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In order to keep the world model simple, adaptive and 
without bias, it is predictive model built using the ex
periences encountered by the robot (Lin 1992). It is 
represented by a deterministic state transition function 
where the states are the past world states observed by 
the robot, the transition are the motion generated by 
the robot and the outcome is the resulting world state 
observed by the robot. In the non-deterministic real 
world environment, each motion can have multiple possi
ble outcomes. To model the environment we decide that 
the world model generates only the most recent outcome. 
There is one exception: the transitions which cause the 
robot to hit an obstacle are never erased from the world 
model. The world model is learned during the robot's 
life and is continuously changing to represent the non
deterministic and not stationary real world in a locally 
deterministic way (Zhivotovsky, Bergman, & Feldman 
1996). 

The on-line model-based approach works as follows: at 
each time step, the on-line model-based evolution simu
lates the evolutionary process of the robot controllers 
in the current world model of the environment to com
pute the optimal controller (left box on Fig. 9). After 
a few generations (around 10), the best controller found 
by evolution is downloaded to the EHW to control the 
robot in the real world (right box on Fig. 9). More
over, while the robot executes the behavior of the best 
controller, the model is updated. In this approach the 
learning phase and motion phase are concurrent: while 
searching a new optimal controller, the robot, controlled 
by the last optimal controller, continue to track the ball 
and gather environmental data. 

In this model-based approach, the evolutionary algo
rithm is used as an adaptive strategy to find continuously 
an optimal controller for an approximated world model 
changing slightly but continuously. The population size 
is increased to 500 individuals to maintain diversity in 
the population. For the selection scheme, we have used 
a tournament selection with tournament size s = 20 and 
the elitist strategy. 

In order to accelerate the entire evolutionary process 
by one order of magnitude, this process is implemented in 
a special-purpose hardware including an evolvable hard
ware located next to the evolvable hardware controlling 
the robot (FiglO). The special purpose hardware eval
uates a population of controllers, implemented by an 
evolvable hardware, with the world model, implemented 
by a look-up table. 

On-line model-based evolution Each controller is 
evaluated in the world model using an experience replay 
strategy (Lin 1992). Although the learning and the ex-

ecution phase may be concurrent, we use them in a se
quence to simplify the comparison between the two meth
ods. The learning phase starts when the robot fails to 
reach the target during the execution phase in the real 
world as described for the off-line model-free evolution 
approach. 

The fitness ~ of each individual controller is obtained 
by testing the controller for each world state of the world 
model. Each world state of the world model is presented 
to the controller which returns the corresponding motion. 
Then the transition found in the world model predicts 
the next world state. The process continues until (i) no 
such world state exists in the actual world model, (ii) 
the transition causes the robot to hit an obstacle, (iii) 
this world state was already tested previously and (iv) 
an infinite loop is detected. 

The fitness ~ is represented by a scalar between O 
(worst) and 1 (best) obtained by combining three fac
tors: 

• 'R1: The number of crashes when the robot hits an 
obstacle. 

• 'R2: The number of infinite loops detected. 

• 'R3: The total distance covered by the robot for each 
world state. For this measure, we know the distances 
covered by the real robot for each of the 8 motions and 
its Max. Distance .. 

In our experiment, limiting the number of crashes and 
the number of infinite loops are the most important and 
has a greater contribution to the fitness than the dis
tance: 

~= 0.5 (l _ Nbr. of Crash ) + 
Nbr. of World States 

'R.1 

0.4 (l _ Nbr. of Infinite Loop) + 
Nbr. of World States 

'R.2 

0 1 ( Distance Covered ) 
· Max. Distance * Nbr. of World States 

Using these three factors and the reflexes, the real 
robot is able to reach the target by searching and switch
ing controllers in the population every time the world 
model changes. 

Experiments Although the method is dedicated to 
real world robots, we analyze the advantage of the on
line model-based evolution by simulating the real robot 
and conducting the same experiments in the same envi
ronment as that for the off-line evolution. The target is 
situated in the center of the environment (Fig.11). 
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Figure 12: Number of new positions of real 
robot (1=64 new positions) and of world inter
actions of real robot (1 = 20,000 interactions) 
throughout generations. 

Figure 11: Simulation of the motion of a real 
robot using on-line model-based evolution and 
adapting continuously its controller. 
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Figure 13: Number of new positions (1 = 64 
new positions) and of world interactions (1 = 
20,000 interactions) executing 12 times 64 po
sitions throughout generations. 

At the beginning of evolution, all controllers (individ
uals) are initialized at random and the world model is 
empty. One of the controllers in the population is cho
sen at random to control the behavior of the robot. The 
real robot gathers data and builds the world model by 
memorizing the experiences, until it hits an obstacle or 
reaches a maximum number of steps. Then the evolution 
phase starts for a few generations (around 10) to find a 
controller which doesn't hit an obstacle and is not stuck 
in a loop. The execution and gathering process resumes 
with the new best controller after the evolution phase. 
When the robot reaches the target position, the robot 
is moved to a new position in the environment. There 
are 64 new positions and are identical as for the off-line 
evolution. 

The behavior of the robot during its life time is shown 
in Figure 11. It demonstrates that the robot behavior 
changes its strategy during its life. For example, the 
way it follows a vertical obstacle: sometimes it strictly 
follows the wall (vertical wall of the bottom left obstacle) 
other times it follows by bouncing on the wall (vertical 
wall of the obstacle at the left side of the target). 

Figure 12 shows the relation between the execution 
and evolution process by plotting the number of times 
the robot reached the target versus the number of gener
ations. Also it shows the number of world state and tran
sitions during the execution of the robot. It reached 84 
world states and 334 transitions when the robot reached 
the target 64 times. But the world model was continu
ously changing, modifying the deterministic transition. 
The number of genetic operations is around 50 times 
larger than that for the model-free method: 242, 500 ge
netic operations. Finally and most importantly, it shows 
that the number of interactions of the robot with the 
environment is 12, 280, which is a factor of 250 smaller 
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than the model-free evolution. It makes the model-based 
method using EHW, feasible in the real world. 

Figure 13 is the extension of Figure 12 when we con
tinue to assign new positions to the robot after 64 posi
tions have already been assigned. It shows that although 
the robot needs less interactions (around 30 percent less) 
to reach the target 64 times, the on-line model-based evo
lution is a weak approach as an optimization strategy for 
a stationary environment because it is unable to find an 
optimal robust controller even after more than 120, 000 
interactions and 3, 600 generations with the environment 
because its world model is local and continually chang
ing. Figures 14 and 15 illustrate, using the same 52 world 
states defined for the model-free experiment, the adap
tation of the sensor-motion mapping of the controller 
executed by the robot at generation 3500 and 3600. It 
first shows that the mapping is still changing with time 
and second that parts of the sensor-motion mapping are 
conserved through generations. 

Motions 

Backward 
Backward-Right 

Backward-Left 
Rotation-Left 

Rotation-Right 
Forward-Right 

Forward-Left 
Forward 

Mapping Sensors-Motions -
5.5 ..... 
4.5 .. 
3.5 -·-·-
2.5 -·-. 
1.5 .... . 
0.5 ..... . 

Left 

Target Direction 
Right 

No Obst t--'.'4::"..---L-,---l.~'.___-r-__:t_ _ _J 
·45 Proxf,J;~Senso"'5 Right Back 

Figure 14: Learning on-line sensor-mapping of 
the best individual at generation 3500. 

The on-line model-based approach has been tested in 
the real world for an environment with only one obstacle. 
The robot was able to avoid it in less than 5 min and 
to adapt to the non-stationary environment when one 
of the sensor was blinded. These first experiments first 
show that as a result of the on-line learning of world mod
els, the number of interactions with the real world can be 
reduced by a second order of magnitude and second that 
as a result of the evolvable hardware implementation the 
computation time to derive the controller can be reduced 
by a first order of magnitude. These results are encour
aging. But many problems remain, such as how detailed 
the world model must be, whether it must include in
ternal states and whether it must be probabilistic. All 
these questions are topics for future research. 
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Backward-Left 
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Figure 15: Learning on-line sensor-motion map
ping of the best individual at generation 3600. 

Conclusion 
We have demonstrated how EHW can be used to produce 
an on-line, model-based evolutionary navigation system 
for a mobile robot in a non-deterministic and not sta
tionary environment. The specific navigation task we 
addressed was the tracking of a colored target while 
avoiding obstacles. Our EHW produces dynamic reac
tive navigation control for this task by executing a dy
namic Boolean function in its disjunctive normal form. 
Thus, we have demonstrated (1) that a dynamic reactive 
navigation system is able to perform the task of tracking 
and avoiding, (2) that the model-based approach allows 
us to build highly adaptive behaviors on-line, and (3) 
that a hardware implementation using EHW can main
tain real-time robot performance. 

Other tasks for which model-based on-line evolution 
with EHW is currently being investigated are data com
pression for ultra high precision images (Salami et al. 
1998) and digital mobile communication (Murakawa et 
al. 1997). Our research can be seen as part of this on
going attempt to apply EHW to real world problems. 
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Abstract 

The hypothesis that environmental variability promot~s 
the evolution of organism complexity is explored and il
lustrated, in two contexts. A co-evolutionary 'Iterated 
Prisoner's Dilemma' (IPD) ecology, populated by strate
gies determined by variable length genotypes, provides 
a quantitative demonstration, and an exampl~ fr~m evo
lutionary robotics (ER) provides a more qualitative and 
naturalistic exploration. In the ER example, the above 
hypothesis is illustrated in real environments, and the 
organism complexity is seen in robots exhib.iting rela
tively complex behaviours and neural dynamics. 
Implications are drawn for the emergence of comple~ity 
in general, and also for artificial evolution as a design 
methodology. 

Introduction 
The general principle that there is organism complexity 
by virtue of environmental complexity, has a substan
tial historical pedigree. This is prominent in the work of 
Ashby (1952), and, earlier, Dewey (1929), and has en
joyed more recent attention from Godfrey-Smith (1996). 
The present work empirically explores this idea, firstly 
by taking environmental variability to be one measure 
of environmental complexity (there may, of course, be 
others), and secondly by postulating that the process 
of evolution can serve to link this environmental com
plexity with organism complexity. Thus, the hypothesis 
under test is that environmental variability promotes the 
evolution of organism complexity. 

Two methodologies are employed, both based on the 
principles of artificial evolution. The first example quan
titatively analyses the dynamics of co-evolutionary arti
ficial ecologies with specifiable degrees of environmental 
variability. These ecologies were constructed on the ba
sis of the 'Iterated Prisoner's Dilemma', with complexity 
and simplicity charted by the 'memory' of the strategies 
(instantiated with variable length genotypes) deployed 
by the constituent agents. A second example is based 
on the artificial evolution, in simulation, of neural net
work controllers for mobile 'Khepera' robots. Again, by 
controlling the levels of environmental variability present 
during evolution, differences in the behavioural and neu
ral dynamics of the evolved robots can be examined. 

This is a more qualitative test. Conclusions are drawn 
from the analysis of simulations, and some of the results 
are confirmed in the real world. 

Background 
The context 

Broadly speaking, there are two frameworks for under
standing the emergence of complexity; internalist and 
externalist (see Godfrey-Smith 1996). Internalist expla
nations, ranging from the rationalist tradition in philos
ophy and psychology to (albeit to a lesser extent) the 
'self-organising' theories of Kauffman (1993) and his col
leagues, give explanatory privilege to mechanisms in
ternal to the agent. In contrast, externalist theories 
(from the empiricist tradition and, for example, adapta
tionist biology) locate causal mechanisms and explana
tory precedence primarily in external (environmental) 
influences1 • 

This research, with its emphasis on the evolutionary 
effects of environmental variability on organism complex
ity, resides within the externalist camp. However, it in 
no way intends to refute or argue against internalism; 
indeed, the internal structures of both the robotic and 
IPD agents are crucial for the development and deploy
ment of behaviour. So, whilst exploring the value of 
externalism, this work is in fact a manifestation of an 
interactionist viewpoint, which allows that both internal 
and external factors have explanatory currency. This re
search is also not to be set in exclusive competition with 
other accounts of externalist explanation. For example, 
'predator-prey' situations provide useful explanations of 
certain specific competences of organisms2 (see, for ex
ample, Dawkins (1986)). In another example, Schuster 
(1996) has argued for environmental resource abundance 

1There is, of course, a case for arguing that all divisions 
between 'internal' and 'external' are artificial. Nevertheless, 
for the purposes of explanatory expediency, 'internal' here is 
taken to refer only to the control structure of the agent (that 
is to say, the robot body in the ER example is taken to be 
part of the environment). 

2Though not all; for example, algae have not evolved so
phisticated 'fish-avoidance mechanisms'. 
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as a spur for 'radical innovation' in the evolution of com
plexity. 

Godfrey-Smith (1996) makes a strong case for what 
he terms the 'environmental complexity thesis', arguing 
that 'the function of cognition is to enable the agent to 
deal with environmental complexity'. The present re
search takes considerable inspiration from this position, 
which itself draws inspiration from the earlier work of 
Dewey (see, for example, Dewey 1929). However, less 
stress is laid on the meaning of 'cognition', with other, 
more empirical measures of organism complexity being 
preferred. And more emphasis is placed on variabil
ity as a measure of environmental complexity. Indeed, 
Dewey himself proposed that only environments contain
ing both variable and predictable elements would lead 
to the emergence of 'cognition'. Without variability, he 
argues, cognition would have no value, and without reg
ularity, could not engage with the world. To quote: 

The incomplete and the uncertain give point and 
application to the ascertainment of regular relations 
and orders. 

Dewey (1929) p. 160 

This valuable proposal will be discussed in terms of 
the evolutionary robotics model. 

The meaning of complexity 

In the present research, complexity in the environment 
is measured in terms of variability, or noise. However, 
this definition is far from rigorous, and does not apply 
in such an obvious way to considerations of organism 
complexity. 

Information theory provides a quantitative and spe
cific, yet narrow definition of complexity in terms of 
'minimum description size', or 'Kolmogorov complexity' 
(Kolmogorov 1965). This measure is only applicable to 
finitely presented languages, such as the genotypes em
ployed in genetic algorithms (GAs). It cannot be applied 
to behaviours, nor neural dynamics, nor even notions of 
environmental variability. It can be applied to the vari
able length genotypes of the agents in the IPD example, 
but it is not clear, even then, that such a measure would 
always be appropriate. 

The idea of minimum description size suggests that 
the complexity of a given expression is determined by 
its minimum length following compression, whilst still 
retaining all the original information. This certainly al
lows that mere duplications of expressions do not aug
ment complexity, but also (implausibly) awards maximal 
complexity to purely random expressions. 

Therefore, in the IPD example, both straightforward 
genotype length (indicating strategy 'memory') and the 
Kolmogorov complexities of the genotypes were used as 

quantitative metrics of organism complexity3. 

No such quantitative basis exists for assessing the 
complexity of the behavioural and neural dynamics ex
hibited by evolved robots (or indeed, living creatures). 
Therefore, measurements of organism complexity in the 
evolutionary robotics (ER) example must rely more on 
common sense than on rigour. However, the lack of 
specificity is compensated by the natural context of the 
evolved robots. Behavioural complexity can be assessed 
in terms much less arbitrary than 'minimum description 
size', and, furthermore, can be related to the functional 
complexity of the underlying neural dynamics. 

The IPD ecology 
Introduction 
In this section, the Iterated Prisoner's Dilemma (IPD) is 
used to found a co-evolutionary artificial ecology, whose 
constituent members can evolve from being simple to 
being complex. This complexity is charted through the 
memory of the strategies deployed, reflected in geno
type length. By studying the changes in mean geno
type length in populations evolving in both variable and 
non-variable environments, it is demonstrated that more 
complex individuals evolve readily in the variable case, 
but not in the non-variable4• 

The Prisoner's Dilemma 

The Prisoner's Dilemma has enjoyed substantial popu
larity in co-evolutionary investigations, (Axelrod 1984, 
Langton 1995). Essentially, it provides a framework for 
modelling interactions between agents where the max
imisation of individual short term gain minimises the 
collective welfare, as illustrated in the following anec
dote: 

Imagine that you and an alleged accomplice have both 
been arrested, accused of a terrible crime. You are held 
in separate cells, and upon interrogation you can either 
cooperate by denying all knowledge, or defect by impli
cating your accomplice. You have no idea what your 
accomplice will do, but if you both cooperate, you will 
both be released (the reward, R), and if you both de
fect, then both of you will be jailed (the punishment, P). 
However, if you defect and she cooperates, then you will 
receive a payoff (the temptation, T) and she will go to 
jail for longer (the sucker, S). But if she defects and you 
cooperate, then you yourself are the sucker. The para
dox is thus evident, in a single meeting you will always 
do best to defect, in doing so either receiving the mone
tary payoff or avoiding being the sucker. But of course 
the logic is the same for your alleged accomplice, and if 

3Some contact with the variability as a measure of com
plexity is maintained here; high Kolmogorov complexity can 
also be interpreted in terms of high variability. 

4 A more detailed exploration of this example appears in 
Seth (1997). 
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player 2 cooperates player 2 defects 
player 1 cooperates l:R=3 2:R=3 l:S=O 2:T=5 
player 1 defects l:T=5 2:8=0 l:P=l 2:P=l 

Table 1: Prisoner's Dilemma Scoring Table 

you both defect then you will both do worse than if you 
had both cooperated (see Table 1). Note that the actual 
scores don't really matter so long as T > R > P > S 
and 2R > T+S. 

Cooperation is thus unlikely to arise in a one-shot case, 
but in the Iterated Prisoner's Dilemma (IPD) coopera
tion on any given move can become a rational strategy, 
and indeed many researchers have used GAs to evolve 
cooperating strategies to play the IPD (see e.g. Axelrod 
1984, Langton 1995). In these studies, as in the present 
model, the fitness function (evaluated for each individ
ual) is simply the score over a number of iterations of 
the game, and the genotypes comprise of binary char
acter strings representing the strategies, with the length 
of the genotype determining the number of preceding 
moves (the game history) upon which each individual 
can base it's moves. Genotype length thus has a direct 
interpretation as 'memory'. In the present example, the 
evolution of cooperation per se is not of primary inter
est. Rather, the co-evolution of a cooperating population 
provides a good platform for the subsequent investiga
tion of the evolution of complexity. 

Variable length genotypes and the Iterated 
Prisoner's Dilemma 
By introducing variable length genotypes (VLGs) into 
an IPD ecology, Lindgren (1991) demonstrated the evo
lution of longer and increasingly complex strategies (with 
longer memories) in variable (noisy) environments, but 
did not rigorously address the possibility of a causal role 
for variability in this process. The variability was in
troduced by invoking a certain probability for the oppo
site move to that specified by the genotype being made 
- this can be interpreted as 'environmental variability' 
since the environment for any given individual consists 
simply of the moves made by the other members. VLG's 
were instantiated by Lindgren by allowing splitting and 
doubling mutations (in addition to point mutation and 
crossover), which would increment or decrement the po
tential memory (and hence potential complexity) of the 
strategy in question by one game iteration. 

The present study employs splitting and doubling mu
tations, and variability, in the same way as Lindgren 
in order to provide a quantitative method for following 
the evolution of complexity. This method is particularly 
attractive because the phenotypical strategy is not di
rectly affected by a doubling mutation. By itself, an 
increase in memory doesn't change behaviour. Changes 
will only occur if the extra memory is subsequently used 

d 

d 

Figure 1: Genotype encoding scheme; see text for details. 

(through further mutations/crossover in the new geno
type segment) to discriminate between possible courses 
of action (cooperation or defection). Thus, evolution of 
longer memories cannot simply be ascribed to some phe
notypical side-effect of having a longer genotype, and 
must be attributed to some employment of the extra 
memory provided; thus a more complex strategy. 

Genotype encoding scheme 

Each individual in the ecology consists of a genotype, 
comprising of a string of e's and d's, determining the 
strategy of that individual for playing the IPD. The 
longer the genotype, the more it can be influenced by 
the history of the game, thus the longer the 'memory' of 
the individual. 

Fig 1 illustrates how the genotype can code for a par
ticular strategy. Each time a previous move in the game 
history (between two particular agents) is considered, 
halfof the genotype is (temporarily) discarded (the non
shaded area in Fig 1) - one half if the move had been 
cooperative, or the other if it had been a defection. In 
this way, the genotype in Fig 1 (of length 16) can encode 
a strategy with a memory of 4 prior interactions (after 
cutting a string of 16 characters in half 4 times, you 
are left with just a single character). The black square 
in Fig 1 indicates which allele would be accessed for a 
[c ,d, c ,d] history. 

The genotype must actually be even longer in order 
to specify the initial moves up until this memory limit is 
reached. The genotype in Fig 1 would require an extra 9 
alleles to code for the initial 3 moves before the final 16 
alleles can be used5 . The maximum genotype length em
ployed was (somewhat arbitrarily) 127 alleles, allowing 
for a maximum memory of 6 iterations6 • 

5Doubling mutations were therefore instantiated by copy
ing the latter half of the genotype twice again onto its own 
end, thereby preserving an appropriate section for initial 
move specification and also incrementing the memory by one. 

6The crossover rate was set at 0.95, and all mutation rates 
were set at 0.005 (per bit for point mutations). 
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Figure 2: Evolution of complexity without variability; 
complexity does not evolve (results from 12 evolutionary 
runs overlayed). 

IPD Results 
In the first experiment, ecosystems were populated with 
30 strategies of memory length one, each playing 20 
rounds of IPD with every other member, and were al
lowed to evolve over 20,000 generations. Twelve evolu
tions were followed in non-variable, non-noisy ecologies, 
and 12 in ecologies with a noise level of 1 percent. Fig 2 
illustrates that, without environmental variability, com
plexity does not evolve, but Fig 3 illustrates that, with 
such variability, complexity does evolve 7 . Not mono
tonically, nor often to the maximum possible. But it 
is evident that noise (or environmental variability) does 
promote the evolution of agent complexity. 

To confirm this result, a test was performed with pop
ulations evolving with a cost placed on complexity, in 
both variable and non-variable environments8 . This cost 
was set at 0.25 percent of fitness score per memory unit 
of the strategy in question. Twelve runs were performed 
without noise, and 12 with 1 percent noise. Fig 4 and 
Fig 5 clearly illustrate that the presence of environmental 
variability (noise) promotes the evolution of complexity, 
even given an explicit fitness penalty imposed on such 
complexity. 

Evolutionary Robotics Example 
Int rod uct ion 
In this example, a distributed GA was used to evolve 
weights and thresholds for a simple neural network to 

7 For clarity, the Kolmogorov complexity metric is omitted; 
it followed the same pattern as the memory metric. 

8 A further change in this experiment was the introduc
tion of 'partner choice mechanisms' for each individual, based 
on an algorithm from Stanley, Ashlock, & Smucker (1995), 
and discussed in detail in Seth (1997}. The effect of this 
mechanism was to further facilitate the evolution of complex 
strategies, even to the extent that a small fitness cost on long 
genotypes could be overcome. 

ew~n al oomplexly - nose= 0.01 

Figure 3: Evolution of complexity with variability; com
plexity does evolve (results from 12 evolutionary runs 
overlayed). 
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Figure 4: Evolution of complexity without variability, 
and a medium cost on complexity; complexity does not 
evolve. 
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Figure 5: Evolution of complexity with variability, and 
a medium cost on complexity; complexity does evolve. 
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Figure 6: Khepera network architecture and sensor layout; for clarity, not all connections are shown. All input units 
are connected to all hidden units, and all hidden units are connected to themselves and to every other hidden unit, 
as well as to both motors. The central floor sensor is located beneath the robot base. 

control a Khepera (K-Team (1993)) mobile robot9 . The 
context used for this study was drawn from a 'homing 
behaviour' experiment by Floreano & Mondada (1996) 
in which a 40cm by 45cm walled arena was employed, 
situated in a dark room, but with a small light tower 
at one corner. This corner (denoted the 'charging area') 
also had black paint on the floor out to a radius of 8cm 
(the floor was otherwise white). The Khepera robot was 
equipped with an extra sensor attached to its undercar
riage (a 'floor sensor') which was thresholded so to be 
able to detect this difference in floor reflectivity. This 
sensor was in addition to the usual array of 8 infra-red 
proximity sensors (which also independently detect am
bient light levels). 

The robot had a simulated battery of 50 'actions', but 
if it happened to pass over the recharging area, the bat
tery would be instantaneously recharged and the robot 
could carry on for another 50 actions, up to a maxi
mum of 150. Each action corresponded to one update of 
the controlling neural network, taking place about every 
300ms. 

The fitness function was very simple, calculated in
crementally at every step (except when the robot was 
directly over the charging area, where no score was 
awarded), and maximised by speed and IR avoidance 
(V is the linearly scaled average wheel speed, and i the 
(linearly scaled) highest IR activation level): 

fJ = V(l - i), 0 ~ V ~ 1, 0 ~ i ~ 1 

Under this fitness function, robots evolved to roam 
around the arena at high speed, avoiding the walls, and 
periodically returning to the charging area at suitable in
tervals to maintain a viable battery level. It is important 

9 For a detailed introduction to the approach of evolution
ary robotics see Harvey et al. (1997). 

to note that this 'homing' behaviour is only specified im
plicitly by this function. Candidate robots that tend to 
return to the charging area will tend to live longer, and 
since the (simple) fitness function is incremental, will 
tend to accrue higher fitness scores. This is important 
because it means that the way in which the robot evolves 
to perform the homing behaviour is not subject to in
direct experimenter preconception expressed through an 
overly specific fitness function. And this is important be
cause evolution then has the potential to explore many 
different kinds of organism architecture, according to the 
degree of variability in the environment. 

Floreano & Mondada (1996) pursued artificial evolu
tion in the real world, actually downloading candidate 
control networks onto real Kheperas and evaluating their 
performance, taking ten whole days (about 150 genera
tions) to evolve fit individuals. The approach taken in 
the present work, in contrast, was to perform the evolu
tion in simulation, with subsequent testing of the evolved 
controllers in the real world. The simulation techniques 
used were based on Jakobi's (1997) 'minimal simulation' 
methodology, which enables the transference from sim
ulation to real world with sufficient amounts of noise in 
the right places in the simulation. Of central interest in 
the present context is that these noise levels (ie. the de
gree of environmental variability) can be adjusted, and 
the resulting differences in behaviour and neural mech
anism can be explored. 

The simulation 

The experimental set up, as described above, was simu
lated using a number of look-up tables to deliver appro
priate values for the robot sensors in any given situation 
(distance from wall or corner, angle to wall or light, ori-
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Figure 7: A real Khepera going about its business, con
trolled by a network evolved in a very noisy simulation. 

entation of robot, and so on) in the environment. These 
sensor values were then fed into the candidate control 
network and a further look-up table was used to cal
culate the position and orientation change of the robot 
given the wheel speeds (as specified by the activations of 
the output units). The neural net controller (Fig) was a 
three layer perceptron of exactly the same architecture 
as that employed by Floreano & Mondada (1996). Thus, 
12 input units corresponding to the 8 IR sensors, the am
bient light sensors number 2 and 6 (front and back), and 
one input unit each for the floor sensor and battery level. 
These inputs pass through a 5 unit internally recurrent 
hidden layer, which in turn is connected to the two unit 
output layer, setting the wheel speeds. Sigmoid acti
vation functions were employed in all layers apart from 
the input layer, which scaled the sensory inputs to range 
linearly from -0.5 to 0.5 . 

The other important aspect of the simulation was, of 
course, that a lot of noise or variability could be em
ployed, both during each trial and between trials (each 
individual was evaluated over twelve separate trials in 
the GA) . Intra-trial noise could be applied to all input 
sensor readings, the robot position, wheel speeds, ori
entation, the rate of orientation change during turning, 
and to the effects of wall collision; following collision the 
robot was randomly repositioned within about 2-3cm of 
the wall, with a large and random orientation and speed 
change. Inter-trial noise could be applied to the angle 
of acceptance of the light sensors, the dimensions of the 
arena, the radius of the charging zone, and the levels of 
IR, background IR, and ambient light noise. These loci 
of variability are all external to the control structure 
of the robot and therefore are aspects of environmental 
noise. 

The experiment proceeded using a distributed GA, 
with a population of 100, to evolve the weights and 
thresholds for the network (this structure remained fixed 

for the duration of each individual). The weights and 
thresholds were specified as floating point numbers on a 
102 allele genotype, with mutation and crossover being 
the only genetic operators employed. 10 

With this simulation, evolutionary runs of about 100 
generations always produced very fit individuals. These 
runs took about 1 hour on a single user Sun SparcU!tra 
(143 MHz) workstation, considerably faster than the real 
world evolution reported in Floreano & Mondada (1996). 
Many runs were performed, either with high levels of 
inter- and intra-trial noise, or with no inter-trial noise 
and very low intra-trial noise levels (see Appendix 1 for 
details of these noise levels). Successful transfer to re
ality was consistently observed when networks from the 
fittest robots, evolved in noisy conditions, were down
loaded onto real Kheperas11 . Fig 7 illustrates a real 
Khepera (powered externally, but with all processing on
board) just leaving the recharging area halfway through 
a demonstration. 

Behavioural analysis 

Twelve evolved robots were analysed - six evolved in 
noisy environments (type A robots), and six in non
noisy environments (type B robots), with all analysis 
taking place in simulation. Three environmental con
ditions were analysed for each robot; a normal (NO) 
condition (with light source and charging area), a 'no 
charging area' (NC) condition, where the black paint is 
removed and the robot cannot recharge, and a 'no-light
source' (NL) condition where, although the charging area 
is present, the light source at the corner is removed12 . 

The robots were all evolved in the NO condition with 
the NC and NL conditions deployed only for tes~ pur
poses. Low noise levels were used in all these test condi
tions. 

Figs. 8 (a-c) illustrates typical overhead trajectory 
plots for the robots evolved in noisy environments (type 
A) in the three conditions, and (d-f) illustrate the same 
for robots evolved in non-noisy environments (type B). 
The behaviours are evidently different. Both A and B 
robots can repeatedly find the charging area (situated in 
the lower left hand corner), in normal conditions, and 
their trajectories are not obviously different. However 
in the NC and NL conditions, there are clear differences. 
The B robots maintain a behaviour pattern qualitatively 
similar to that displayed in normal conditions but the 

' 
'. 0.Crossov~r probability was set at 0.95, with a 0.03 prob

ab1hty of pomt mutation per genotype bit. 
11 Robot controllers evolved in non-noisy conditions did not 

transfer effectively to the real world. This was to be expected 
from Jakobi (1997), but does not affect the present argu
ments, since we are considering the emergence of complexity 
at a primarily abstract level. 

12 These tests were also performed by Floreano & Mondada 
(1996), who observed similar results to those of the type A 
robots in the present study. 
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Figure 8: Trajectory plots of robots evolved under noisy (a-c) or non-noisy (d-f) conditions in either normal (a,d), 
no charging area (b,e), or no light (c,f) conditions. The charging area is located in the bottom left-hand corner of 
each plot, out to a radius of 8cm. The type B robots maintain a simple trajectory regardless of the environmental 
manipulations, but the type A robots clearly deploy more complex 'searching' and 'circling' behavioural strategies. 

A robots present a much more interesting picture. In 
the NC condition, these robots head towards the charg
ing area and remain in the vicinity, as if 'confused' by 
the absence of charging. We can call this a searching 
behaviour. In the NL condition, the robots begin, as in 
normal conditions, with a semilinear trajectory, but af
ter a while begin to circle. This circling behaviour makes 
good sense if the robot is thought of as trying to orient 
to a light source using front and rear light detectors. 

Thus, the B robots seem only to have evolved to 
move in straight lines and to turn upon encountering 
walls; a strategy which does indeed periodically return 
the robot to the charging area (in non-variable envi
ronments). However, the A robots are clearly affected 
by the presence (or absence) of the black charging area 
and the light source. This results in the qualitatively 
more complex behaviours of searching and circling when 
these environmental features are tampered with (these 
searching and circling behaviours were also observed in 
real-world Khepera behaviour, when the environment in 
Fig. 7 was manipulated in the appropriate way). All six 
A robots presented qualitatively similar searching and 
circling behaviours, and all six B robots displayed the 
simple behaviour (as in Figs. 8 (d-f)). Therefore, it seems 
sensible to conclude that artificial evolution in variable 
environments has led to the evolution of more complex 
behaviours than artificial evolution in non-variable envi
ronments. 

One final example of how the A robots are be-

haviourally more complex can be seen in a competi
tion between an A robot and a B robot in a condition 
(in a low-noise simulation) in which the walls are re
moved, and the charging area extends in a complete cir
cle around the light source. Fig. 10 illustrates that the B 
robots was completely impotent in such circumstances, 
hinting at reliance on IR stimulation (one typical run 
is shown, and out of 40 test runs the robot only man
aged a single visit to the charging area, most probably 
due to sheer chance). On the other hand, the A robot 
could cope to some extent, although performance was 
still seriously prejudiced. Fig. 9 illustrates a particularly 
impressive trajectory, and out of 40 test runs, 10 resulted 
in the robot reaching the charging area, and in 4 cases 
it returned more than once. This considerably greater 
success rate suggests that the A robots are taking ac
count of a greater range of environmental stimuli than 
the B robots, and are thereby deploying a more complex 
behaviour. 

Neural analysis 

The purpose of this section is to show that the neural dy
namics of the robots evolved in noisy conditions are more 
complex (this again has to be a qualitative judgement, as 
in the behavioural case) than those of robots evolved in 
non-noisy conditions. Furthermore, that the enhanced 
neural complexity of the robots in the noisy case makes 
sense in terms of the more complex behaviour displayed 
by these robots. 
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Figure 9: Type A robot in no-wall test; the edge of the 
graph does not represent a wall, and the charging area 
is situated in a circle around the origin (0,0 point). The 
robot is able to find the charge area. 
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Figure 10: Type B robot in no-wall test; the edge of the 
graph does not represent a wall, and the charging area 
is situated in a circle around the origin (0,0 point). The 
robot is not able to find the charge area. 

An initial analysis was undertaken by examining plots 
of neural activations for all 19 neurons in all three condi
tions (NO, NC, and NL) for all of the 12 robots (6 A, and 
6 B). Although this data is too extensive to be shown 
here, the main initial conclusion was that whereas for 
the B robots, the vast majority of the hidden units ap
peared to respond primarily to IR activity, for the type 
A case neural activation displayed much more activity 
not correlated with IR activity, but instead with some 
combination of light/battery /floor sensor input. 

To explore this in a non-behavioural context, short 
periods (spikes) of activity were injected into six combi
nations of input units, with the activations of the hidden 
and motor units being recorded. What became immedi
ately clear from this was firstly that only in the type A 
robots did the battery input unit have any direct influ
ence on the motor layer, in the absence of any IR input. 

A set of six input conditions were tested; the first two 
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Figure 11: Hidden unit response patterns for both type 
A and type B robots; see text for details. 

consisted of IR inputs only, with either all 8 inputs ac
tive, or all except the rear two. The next 2 conditions 
tested combinations of ambient light inputs in the ab
sence of IR input. The final 2 conditions injected either 
a negative floor sensor input (as if the robot were over 
the charging area), or a negative battery input (signify
ing an empty battery), both in the absence of IR. 

These six conditions were tested on each of the 12 
robots. Fig 11 presents summary data for all 12 robots 
over all the six conditions, in terms of the hidden unit 
activity elicited by the various inputs. For example, for 
the condition involving battery unit activation, 60 per
cent of the type A robot hidden units responded strongly, 
compared to 20 percent of the type B robot hidden 
units. Thus, Fig 11 makes it clear that the A robots 
take greater account than the B robots of the light and 
battery sense data. These conditions were statistically 
significant according to Mann-Whitney U tests ( (U = 
57.0;df = 6,6;p < 0.01), (U = 56.5;df = 6,6;p < 0.01) 
respectively). And although the statistical test is not 
significant, the B robots appear to rely more heavily on 
IR input than the A robots. 

This extra reliance on light data for the A robots is 
particularly clear in the 'no-wall' condition discussed be
forehand, only the A robots display any significantly 
varying neural activity, and what there is, is strongly 
correlated with the light, floor, and battery sense data 
(see Fig 12 and Fig 13). 

The neural dynamics of the A robots are therefore tak
ing into account a wider variety of environmental stim
uli and forging them into a coherent and complex be
haviour. This is not the case for the B robots, and so, 
again, it seems sensible to conclude that at both the 
neural and behavioural levels, evolution in variable envi
ronments has delivered organisms of greater complexity 
than evolution in non-variable environments. 
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Figure 12: Type B robot hidden unit activation in no
wall test; very little changing activation in any units. 
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Figure 13: Type A hidden unit activation in no-wall test; 
significantly changing levels of activation; (only first 70 
time steps shown). 

Discussion 

Two examples of environmental variability promoting 
the evolution of organism complexity have been illus
trated; a model based on the IPD, and a model employ
ing evolutionary robotics (ER). 

The IPD example provides a quantitative illustration 
of the en.vironmental variability principle, with 'noise' 
in the responses generated by individuals engaged in 
the IPD providing the environmental variability. It is 
worth noting that what was observed was a population of 
mostly equally complex individuals, rather than a com
plex population of individuals (which would comprise of 
individuals of many different levels of complexity). In 
the natural world, population complexity and individ
ual complexity require explanation. The position taken 
here is that, in nature, there are (or were) many differ
ent drives towards complexity, not all of which are (or 
have been) available to all organisms. And this diversity 
in drives could have led to the emergence of population 

complexity. It may be possible to extend the present 
IPD model to include differential drives to complexity 
to further investigate this question . 

The ER example provides a more qualitative explo
ration, illustrating that environmental variability can 
lead to the artificial evolution of both behavioural and 
neural complexity. Contact here is made with a cen
tral aspect of Dewey's philosophy; that 'cognition' will 
arise in environments characterised by a mixture of pre
dictable and unpredictable elements13 . In the ER case 
certain properties of the environment were indeed vari
able, and others (properties necessary for the survival of 
the robot, for example, the presence of a charging area) 
did not vary. Whether the more complex robots are in 
any sense 'more cognitive' is, however, more a matter of 
semantics than of substance. 

Dewey's insight also makes sense in terms of evolu
tionary dynamics. With a mixture of variability and 
reliability, then certain local maxima (which depend on 
the environmental features that are rendered excessively 
variable) will be eliminated, whilst others (which depend 
on the still-reliable environmental features) will be pre
served. In the ER case, variability has been applied such 
that the simple, type B, strategy is infeasible, and so the 
local maxima corresponding to that solution will not be 
present in the landscape. Evolution is then free to mi
grate towards the more complex solution. 

It should be emphasised once again that this paper 
does lack a rigorous definition of complexity applicable to 
both the IPD and ER experimental contexts. Unfortu
nately, such a definition does not yet exist. Nevertheless, 
the notion of variability as an intuitive metric for com
plexity does provide a common thread throughout the 
present work. This is most apparent in the use of noise 
as an indicator of environmental complexity (in both the 
IPD and ER examples). But the 'complex' behaviours 
in the ER example are indeed more variable than the 
simple behaviours, and the longer memories evolved in 
the IPD example also provide the potential for increased 
variation in the strategies that are deployed. 

Some useful alternative definitions of complexity are 
now beginning to appear. For example, Adami & Cerf 
(1997) provide a metric for the complexity of symbolic 
strings that is grounded in the information about an en
vironment that is coded in the string, and which does not 
suffer from the problems associated with Kolmogorov 
complexity14 . future research could apply this metric to 
the IPD experiment, and could provide empirical guid-

13In the IPD case, since environmental complexity is one
dimensional Uust noise) then Dewey's idea boils down to the 
observation that with either zero noise, or too much noise, 
complex strategies do not arise. 

14The present 'memory' metric is similar to Adami's metric 
in that strategies with longer memories can potentially store 
more information about their environment. 
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ance for constructing a definition of complexity that re
mains useful beyond the confines of information theory. 

In conclusion; the hypothesis that environmental vari
ability promotes the evolution of organism complexity is 
presented as an empirically-testable elaboration of the 
general ( externalist) principle that environmental com
plexity leads to organism complexity. It is, however not 
an argument against internalism15 . The hypothesis is il
lustrated in both quantitative and qualitative contexts, 
but of course these contexts are quite specific to par
ticular computational models and methods of artificial 
evolution. Nevertheless, empirical approaches to such 
general questions as the 'emergence of complexity' must 
necessarily start from simple examples, and this paper 
has illustrated that such simple examples are possible. 

Furthermore, given that these examples employ arti
ficial evolution as a methodology, it is also possible that 
the use of selective variability to engineer fitness land
scape structure will become of practical importance in 
the application of genetic algorithms. 

Appendix 1 
The noise levels used in the homing navigation (evolutionary 
robotics) example are given below: 

noisy levels non-noisy levels 

IR ±50 ±10 
background IR ±10 0 
ambient light ±50 ±5 
floor sensor ±50 ±5 
robot position ±0.lcm 0 
robot orientation ±0.02rad 0 
turning noise ±0.2rads 0 
friction ±3cm 0 
arena size ±5cm 0 
charge radius ±lcm 0 
light angle of acceptance ±0.25rad 0 
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15Godfrey-Smith (1996) notes a possible internalist chal
lenge to his 'environmental complexity thesis', which argues 
that it is the internal structure of the organism that makes 
it the case that the environment contains relevant (to the or
ganism) complexity, or that it does not. Environmental com
plexity is then dependent upon internal structure. Perhaps 
an empirical approach can begin to address this challenge: an 
evolutionary process acting in a complex environment leads 
to the evolution of mechanisms, that then make it the case 
that certain kinds of environmental complexity, (such as am
bient light information, for example), are relevant to the or
ganism. This change in 'relative complexity' will then further 
influence the evolutionary process. 
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Abstract 

We analyze the geometry of the species- and genotype
size distribution in evolving and adapting populations of 
single-stranded self-replicating genomes: here programs 
in the Avida world. We find that a scale-free distribution 
(power law) emerges in complex landscapes that achieve 
a separation of two fundamental time scales: the relax
ation time (time for population to return to equilibrium 
after a perturbation) and the time between mutations 
that produce fitter genotypes. The latter can be dialed 
by changing the mutation rate. In the scaling regime, 
we determine the critical exponent of the distribution 
of sizes and strengths of avalanches in a system without 
coevolution, described by first-order phase transitions in 
single finite niches. 

Introduction 
Power law distributions in Nature usually signal the 
absence of a scale in the region where the scaling is 
observed, and sometimes point to critical dynamics. 
In Self-Organized-Criticality (SOC) (Bak, Tang, and 
Wiesenfeld 1987, 1988), for example, power law distribu
tions reveal the dynamics of an unstable critical point, 
brought about by slow driving and a feed-back mecha
nism between order parameter and critical parameter. 
The critical dynamics is usually described within the 
language of second-order phase transitions in condensed 
matter systems (Sornette, Johansen and Dornic 1996), 
but it can be shown that SOC-type behavior also oc
curs within a dual description in terms of the Landau
Ginzburg equation as first-order transitions (Gil and Sor
nette 1996). Indeed, it was shown that a power law 
distribution of epoch-lengths, that is, the time a par
ticular species dominates the dynamics of an adapting 
population, is explained by a self-organized critical sce
nario (Adami 1995) that carries the hallmark of first
order phase transitions. Here, we measure the distribu
tion of abundances of species and genotypes in an artifi
cial chemistry, (the Avida Artificial Life system, Adami 
and Brown 1995, Ofria, Brown and Adami 1998) and 
show that the distribution is scale-free under a broad 
class of circumstances, confirming the results reported in 

Adami (1995). In the next section, we discuss the first
order dynamics in more detail and examine "avalanches 
of invention" from the point of view of a thermodynam
ics of information. In Section III, we measure the critical 
exponent of the power law of genotype abundances in 
the limit of infinitesimal driving, i.e., infinitesimal mu
tation rate, and discuss the role of the fitness landscape 
in shaping the distribution. In Section IV, we repeat the 
analysis for a higher taxonomic level (that of species) 
and discuss its relation to the geometric distributions 
found by Burlando (1990, 1993). Conclusions about the 
evolutionary process drawn from the data obtained in 
this paper are presented in Section V. 

Self-Organization in Evolution 
The idea that the evolutionary process occurs in spurts, 
jumps, and bursts rather than gradual, slow and contin
uous changes has been around for over 75 years (Willis 
1922), but has gained prominence as "punctuated equi
librium" through the work of Gould and Eldredge (1977, 
1993). The general idea is that evolutionary innovations 
are not bestowed upon an existing species as a whole, 
gradually, but rather by the emergence of one better 
adapted mutant which, by its superiority, serves as the 
seed of a new breed that sweeps through an ecological 
niche and supplants the species previously occupying it. 
The global dynamics thus has a microscopic origin, as 
shown experimentally, e.g., in populations of E. Coli by 
Elena, Cooper and Lenski (1996). 

Such avalanches can be viewed in two apparently con
tradictory ways. On the one hand we may consider the 
wave of extinction touching all species that are connected 
by their ecological relations, a process akin to percola
tion and therefore suitably described by the language 
of second-order critical phenomena (Bak and Sneppen 
1993). Such a scenario relies on the coevolution of species 
(to build their ecological relations) and successfully de
scribes power-law distributions obtained from the fos
sil record (Sole and Bascompte 1996, Bak and Paczuski 
1996). There is, on the other hand, a description in 
terms of informational avalanches that does not require 
coevolution and leads to the same statistics, as we show 
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here. Rather than contradicting the aforementioned pic
ture (Newman et al. 1997), we believe it to be comple
mentary. 

In the following, we set up a scenario in which informa
tion is viewed as the agent of self-organization in evolving 
and adapting populations. Information is, in the strict 
sense of Shannon theory, a measure of correlation be
tween two ensembles: here a population of genomes and 
the environment it is adapting to. As described else
where (Adami 1998), this correlation grows as the popu
lation stores more and more information about the envi
ronment via random measurements, implementing a very 
effective natural Maxwell demon. Any time a stochas
tic event increases the information stored in the pop
ulation, a wave of extinction removes the less adapted 
genomes and establishes a new era. Yet, information 
cannot leave the population as a whole, which there
fore may be thought of as protected by a semi-permeable 
membrane for information, the hallmark of the Maxwell 
demon. Let us consider this dynamics in more detail. 

The simple living systems we consider here are popu
lations of self-replicating strings of instructions, coded in 
an alphabet of dimension 1J with variable string length 
e. The total number of possible strings is exponentially 
large. Here, we consider the subset of all strings cur
rently in existence in a finite population of size N , har
boring Ng different types, where Ng « ve. Each geno
type (particular sequence of instructions) is character
ized by its replication rate fi, which depends on the se
quence only, while its survival rate is given by t:i/(t:), in 
a "stirred-reactor" environment that allows a mean-field 
picture. This average replication rate (t:) characterizes 
the fitness of the population as a whole, and is given by 

(1) 

where ni is the occupation number, or frequency, of geno
type i in the population. As N 9 is not fixed in time, the 
average depends on time also, and is to be taken over 
all genotypes currently living. The total abundance, or 
size, of a genotype is then 

l oo 1Te 
Si= ni(t) dt = n i (t) dt, 

0 Tc 
(2) 

where Tc is the time of creation of this particular geno
type, and Te the moment of extinction. Before we obtain 
this distribution in A vida, let us delve further into the 
statistical description of the extinction events. 

At any point in time, the fate of every string in the 
population is determined by the craftiness of the best 
adapted member of the population, described by fbest · 

In this simple, finite, world, which does not permit 
strings to affect other members of the population ex
cept by replacing them, not being the best reduces a 

Figure 1: "Energies" (inferiorities) of strings in a first
order phase transition with latent heat .6.t:. 
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string to an ephemeral existence. Thus, every string is 
characterized by a relative fitness, or inferiority 

Ei = fbest - fi (3) 

which plays the role of an energy variable for strings of 
information (Adami 1998). Naturally, (E) = 0 charac
terizes the ground state, or vacuum, of the population, 
and strings with Ei > 0 can be viewed as occupying 
excited states, soon to "decay" to the ground state (by 
being replaced by a string with vanishing inferiority) . 
Through such processes, the dynamics of the system tend 
to minimize the average inferiority of the population , and 
the fitness landscape of replication rates thus provides a 
Lyapunov function. Consequently, we are allowed to pro
ceed with our statistical analysis. Imagine a population 
in equilibrium, at minimal average inferiority as allowed 
by the "temperature": the rate (or more precisely, the 
probability) of mutation. Imagine further that a muta
tion event produces a new genotype, fitter than the oth
ers, exploiting the environment in novel ways, replicating 
faster than all the others. It is thus endowed with a new 
best replication rate , fg::;,, larger than the old "best" by 
an amount .6.t:, and redefining what it means to be infe
rior. Indeed, all inferiorities must now be renormalized: 
what passed as a ground state (E = O) string before 
now suddenly finds itself in an excited state. The seed 
of a new generation has been sown, a phase transition 
must occur. In the picture just described, this is a first
order phase transition with latent heat .6.t: (see Fig. 1) , 
starting at the "nucleation" point, and leading to an ex
panding bubble of "new phase". This bubble expands 
with a speed given by the Fisher velocity 

(4) 

where D is the diffusion coefficient (of information) in 
this medium, until the entire population has been con
verted (Chu and Adami 1997). This marks the end of 



the phase transition, as the population returns to equi
librium via mutations acting on the new species, creating 
new diversity and restoring the entropy of the population 
to its previous value. This prepares the stage for a new 
avalanche, as only an equilibrated population is vulner
able to even the smallest perturbation. The system has 
returned to a critical point, driven by mutations, self
organized by information. 

Thus we see how a first-order scenario, without coevo
lution, can lead to self-organized and critical dynamics. 
It takes place within a single, finite, ecological niche, and 
thus does not contradict the dynamics taking place for 
populations that span many niches. Rather, we must 
conclude that the descriptions complement each other, 
from the single-niche level to the ecological web. Let us 
now take a closer look at the statistics of avalanches in 
this model, i.e., at the distribution of genotype sizes. 

Exponents and Power Laws 
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The size of an avalanche in this particular system can be 
approximated by the size s of the genotype that gave rise 
to it, Eq. (2). We shall measure the distribution of these 
sizes P(s) in the Artificial Life system Avida, which im
plements a population of self-replicating computer pro
grams written in a simple machine language-like instruc
tion set of V = 24 instructions, with programs of varying 
sequence length. In the course of self-replication, these 
programs produce mutant off-spring because the copy 
instruction they use is flawed at a rate R errors per in
struction copied, and adapt to an environment in which 
the performance of logical computations on externally 
provided numbers is akin to the catalysis of chemical 
reactions (Ofria, Brown and Adami 1998). In this ar
tificial chemistry therefore, successful computations ac
celerate the metabolism (i.e., the CPU) of those strings 
that carry the gene (code) necessary to perform the trick, 
and any program discovering a new trick is the seed of 
another avalanche. 

Avida is not a stirred-reactor environment (although 
one can be simulated). Rather, the programs live on a 
two-dimensional grid, each program occupying one site. 
The size of the grid is finite, and chosen in these experi
ments to be small enough that avalanches are generally 
over before a new one starts. As is well-known, this is 
the condition sine qua non for the observation of SOC 
behavior, a separation of time scales which implies that 
the system is driven at infinitesimal rates. 

Let r denote the average duration of an avalanche. 
Then, a separation of time scales occurs if the average 
time between the production of new seeds of avalanches 
is much larger than r. New seeds, in turn, are produced 
with a frequency (f.)P, where (t:) is again the average 
replication rate, and P is the mutation probability (per 
replication period) for an average sequence of length e, 

P = 1 - (1 - R)t . (5) 

Figure 2: Fitness of the dominant genotype in the pop
ulation, fbest as a function of time (in updates). 
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For small enough R and not too large e (so that the 
product Rf is smaller than unity) we can approximate 
P :::::: Rf, and infinitesimal driving occurs in the limit 

Furthermore 

1 
(t)Ri « - . 

L 
T"' -

v 

T 
(6) 

(7) 

with L the diameter of the system and v a typical Fisher 
velocity. The fastest waves are those for which the latent 
heat is of the order of the new fitness, i.e., ~f ....., t:, in 
which case v:::::: E (because D....., t: in Eq. (4), see Chu and 
Adami 1995) and a separation of time scales is assured 
whenever 

1 
R£ » L' (8) 

that is, in the limit of vanishing mutation rate or small 
population sizes. For the L = 60 system used here, this 
condition is obeyed (for the fastest waves) only for the 
smallest mutation rate tested and sequence lengths of 
the order of the ancestor. 

In the following, we keep the population size constant 
(a 60 x 60 grid) and vary the mutation rate. From the 
previous arguments, we expect true scale-free dynamics 
only to appear in the limit of small mutation rates. As in 
this limit avalanches occur less and less frequently, this 
is also the limit where data are increasingly difficult to 
obtain, and other finite size effects can come into play. 
We shall try to isolate the scale-free regime by fitting the 
distribution to a power law 

P(s)....., s-D(R) (9) 
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and monitor the behavior of D from low to high mutation 
rates. 

In Fig. 2, we display a typical history of fbest, i.e., 
the fitness of the dominant genotype1 . Note the "stair
case" structure of the curve reflecting the "punctuated" 
dynamics, where each step reflects a new avalanche and 
concurrently an extinction event. Staircases very much 
like these are also observed in adapting populations of 
E. Coli (Lenski and Travisano 1994). 

As touched upon earlier, the Avida world represents 
an environment replete with information, which we en
code by providing bonuses for performing logical compu
tations on externally provided (random) numbers. The 
computations rewarded usually involve two inputs A and 
B, are finite in number and listed in Table 1. At the end 
of a typical run (such as Fig. 2) the population of pro
grams is usually proficient in almost all tasks for which 
bonuses are given out, and the genome length has grown 
to several multiples of the initial size to accommodate 
the acquired information. 

Table 1: Logical calculations on random inputs A and B 
rewarded, bonuses, and difficulty (in minimum number 
of nand instructions required). Bonuses bi increase the 
speed of a CPU by a factor vi = 1 + 2b' - 3 • 

Name Result I Bonus bi I Difficulty I 
Echo I/O 1 -

Not -.A 2 1 
Nand -.(A/\ B) 2 1 

Not Or -.AV B 3 2 
And A/\B 3 2 
Or AVB 4 3 

And Not A/\ -.B 4 3 
Nor -.(Av B) 5 4 
Xor A xorB 6 4 

Equals -.(A xor B) 6 4 

Because the amount of information stored in the 
landscape is finite, adaptation, and the associated 
avalanches, must stop when the population has ex
hausted the landscape. However, we shall see that even a 
'flat' landscape (on which evolution is essentially neutral 
after the sequence has optimized its replicative strategy ) 
gives rise to a power law of genotype sizes, as long as the 
programs do not harbor an excessive amount of "junk" 
instructions2 • A typical abundance distribution (for the 

1 As the replication rate f is exponential in the bonus ob
tained for a successful computation, fbest increases exponen
tially with time. 

2 "Junk" instructions do not code for any information, and 
do not affect the fitness of their bearer. Consequently, pro
grams with excessive amounts of junk code will give rise to 
many "degenerate" genotypes with no competitive advan
tage. In this regime, the genotype abundance distribution 
is exponential rather than of the power-law type, due to a 

run depicted in Fig. 2) is shown in Fig. 3. As mentioned 

Figure 3: Distribution of genotypes sizes P(s) fitted to 
a power law (solid line) at mutation rate R = 0.004. 
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earlier, we can also turn off all bonuses listed in Tab. 1, in 
which case fitness is related to replicative abilities only. 
Still, avalanches occur (within the first 50,000 updates 
monitored) due to minute improvements in fitness, but 
the length of the genomes typically stays in the range of 
the ancestor, a program of length 31 instructions. We 
expect a change of dynamics once the "true" maximum 
of the local fitness landscape is reached, however, we did 
not reach this regime in the experiments presented here. 
The distribution of genotype sizes for the flat landscape 
is depicted in Fig. 4. Clearly then, even such landscapes 
(flat with respect to all other activities except replica
tion) are not neutral. Indeed, it is known that neutral 

violation of condition (6). 

Figure 4: Distribution of genotypes sizes P( s) for a land
scape devoid of the bonuses listed in Tab. 1, at mutation 
rate R = 0.003. 
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Figure 5: Fitted exponent of power law for 34 runs at 
mutation rates between R = 0.0005 and R = 0.01 copy 
errors per instruction copied. The error bars reflect the 
standard deviation across the sample of runs taken at 
each mutation rate. The solid line is to guide the eye 
only. 
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evolution, where the chance for a genotype to increase or 
decrease in number is even, leads to a power law in the 
abundance distribution with exponent D = 1.5 (Adami, 
Brown, and Haggerty, 1995). 

In order to test the dependence of the fitted expo
nent D(R) (Eq. (9)] on the mutation rate, we conduct a 
set of experiments at varying copy-mutation rates from 
0.5 x 10-3 to 10 x 10-3 and take data for 50,000 updates. 
Again, a "best" genotype is not reached after this time, 
and we must assume that avalanches were still occurring 
at the end of these runs. Furthermore, in some runs we 
find that a genotype comes to dominate the population 
(usually after most 'genes' have been discovered) which 
carries an unusual amount of junk instructions. As men
tioned earlier, such species produce a distribution that 
is exponentially suppressed at large genotype sizes (data 
not shown). To avoid contamination from such species, 
we stop recording genotypes after a plateau of fitness 
was reached, i.e., if the population had discovered most 
of the bonuses. Furthermore, in order to minimize finite 
size effects on the determination of the critical exponent, 
we excluded from this fit all genotype abundances larger 
than 15, i.e., we only fitted the smallest abundances. In
deed, at larger mutation rates the higher abundances are 
contaminated by a pile-up effect due to the toroidal ge
ometry, while at lower mutation rates a scale appears to 
enter which prevents scale-free behavior. We have not, 
as yet, been able to determine the origin of this scale. 

In the results reported here, we show the dependence 
of the fitted exponent D as a function of the mutation 
rate R used in the run, which, however, is a good measure 
of the mutation probability P only at small R and if the 
sequence length is not excessive. As a consequence, data 

points at large R, as well as runs where an excessive 
sequence length developed, carry a systematic error. 

For the 34 runs that we obtained, the power D was 
measured for each run (for the low abundances), and an 
average was calculated for all the runs at a particular 
mutation rate. This data is plotted in Fig. 5 and shows 
a plateau in the fitted exponent only at intermediate 
mutation rates, with D = 2.0 ± 0.05. A fit of the middle 
abundances (10-100) produces a critical coefficient more 
or less independent of mutation rate, around D = 2.0, 
but with less accuracy (data not shown). At high R, we 
witness a deviation from scale-free behavior (reflected in 
the rising D for small abundances) which is most likely 
due to pile-up, i.e., a finite toroidal lattice. This effect 
may be avoided by using absorbing rather than periodic 
boundary conditions. We also see a violation of scaling 
at small R, which is due to the emergence of some other 
scale. While it is most likely a finite-size effect, the exact 
origin of this scale is as yet unclear. We comment on the 
significance of these results in Section V. 

Still, more control over the spread in exponents for 
fixed mutation rate would be desirable. This can obvi
ously be achieved by plotting D versus P, rather than R, 
for example, and by better keeping track of the coding 
percentage within a genotype, a variable that we know 
significantly affects the shape of the distribution. Such 
experiments are planned for the near future. 

Distribution of Species Sizes 

In A vida, it is possible to monitor groups of programs 
that display the same "phenotype", while differing in 
genotype. Even though programs in this world are hap
loid (single-stranded) and do not reproduce sexually, it 
is convenient to label such groups taxonomically, i.e., we 
refer to them as "species" . Strictly speaking, a species 
consists out of all those genotypes that, when executed, 
give rise to the same "chemistry", i.e., such programs 
differ only in instructions that are either unexecuted, 
or else are neutral. Algorithmically, the determination 
whether two genotypes belong to the same species is 
complicated by the fact that sequence length is not con
stant in these experiments. Thus, we need to be able to 
compare strings with differing lengths, which is achieved 
by lining them up in such a manner that they are identi
cal in the maximum number of corresponding sites. Sub
sequently, a cross-over point is chosen randomly and the 
genomes above and below this point are swapped. In 
other words, we construct a hybrid program from the two 
candidates and test it for functionality, but without in
troducing it in the population (see Adami 1998.) In the 
experiments reported here, we actually test two cross
over points in order to rule out accidental matches. In 
retrospect, we find that almost all those strings classified 
as belonging to the same species by this method differ 
only in "silent", or at least inconsequential, instructions. 



Figure 6: Distribution of genotypes within species at 
R = 0.004, fitted to a power law with D = 2.44 ± 0.05. 
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The abundance distribution of genotypes within 
species more closely corresponds to the kind of geomet
ric distributions investigated by Willis (1922) as well as 
Burlando (1990, 1993). Indeed, Burlando found, in an 
analysis of distributions of subtaxa within taxa obtained 
from the fossil record as well as recorded flora and fauna, 
that these distributions appear to be scale-free across 
taxonomic hierarchies, with critical coefficients between 
2.0 < D < 2.5. This distribution can also be viewed as 
a distribution of avalanches sizes, if avalanches are re
defined as events that spawn different genotypes of the 
same species. Indeed, in this manner it is possible to 
investigate hierarchies of avalanches, each higher level 
presumably sporting a higher critical coefficient. 

In the experiments reported here, we found species 
coefficients closer to D ~ 2.5, but we also found viola
tions of power-law behavior which are most likely due 
to the contribution of species of different lengths to the 
abundance distribution. Indeed, the amount of "junk" 
instructions in a species most likely governs the steep
ness of the distribution, and several different such species 
may give rise to a multifractal distribution rather than a 
pure power law. In the future, we expect to disentangle 
such distributions by appealing to a an even higher level 
in taxonomy, reuniting all species of the same sequence 
length within a genus. The latter taxonomic level could, 
for example, be entirely phenotypic, by keeping track of 
which tasks a genus executes (irrespective of its geno
type). 

Still, even though changing sequence lengths affect 
the distribution of genotypes within species, those ex
periments in which the sequence length does not change 
significantly can give rise to power laws with single ex
ponents, as shown below in Fig. 6. The data for this 
experiment were obtained from the same run as gave 
rise to Figs. 2 and 3. 

226 

Conclusions 

The distribution of avalanche sizes in evolving systems, 
which is quite clearly related to the distribution of ex
tinction events, can reveal a fair amount of information 
about the dynamics of the adapting agents. For exam
ple, purely random systems in which there are no fit
ness advantages, and where selection does not occur, 
can still show power law behavior, as extinction events 
are governed by the return-to-zero probability of random 
walks (Adami, Brown and Haggerty 1995). In Avida, 
we observe a scaling exponent D = 2.0 in an interme
diate regime of mutation rates. While it is still unclear 
whether the mixing of scales that we have observed at 
small and large mutation rates is due to the finite size 
of the lattice or the emergence of another scale, we can 
conclude with confidence that scale-free dynamics does 
occur. Scaling violations should be investigated by a 
thorough finite lattice-size analysis, and this is planned 
for the future along with more refined methods for deal
ing with explicit neutrality (i.e., "junk" code.) 

An interesting hint at what the distribution might be 
like in Nature comes from Raup's analysis of a data set 
prepared by Sepkoski (Raup 1991): genera of marine in
vertebrates from the fossil record. Raup's "kill-curve" 
can be transformed into a distribution of sizes of extinc
tion evens (as shown by Newman 1996) governed by a 
critical exponent close to D = 2.0. This is tantalizingly 
close to the coefficient we found in our genotype abun
dance distribution, but we must be careful in comparing 
these distributions. 

The avalanche-size distribution of genotypes gives us 
a good indication of the strength of an evolutionary 
shock, but also about the length of time the particu
lar species dominates the dynamics, and therefore, of 
the time between evolutionary transitions. Also, each 
evolutionary transition brings with it a wave of extinc
tion, as all previously extant genotypes and species of 
lower fitness must disappear on the heels of the new 
"discovery". The size of extinction events proper, how
ever, is not measured by the "epoch-length" distribution 
reflected in the avalanche sizes, but rather by the abun
dance of genotypes within species (or any higher taxo
nomic abundance distribution) because each species ap
pearing in this distribution must eventually go extinct, 
and thus this distribution must equal the distribution 
of extinction sizes. The latter distribution (measured in 
Section IV), appears to have a critical exponent around 
D ~ 2.5, higher than the corresponding one from the 
fossil record. Furthermore, we must keep in mind the 
simplicity of the model treated here when comparing to 
actual fossil data. As mentioned in the introduction, co
evolution does not play a role in the dynamics control
ling the size of avalanches in this model, while we must 
assume that extinctions in Earth history have some co
evolutionary component. On the other hand, the abun-



dance distribution of genotypes within species is consis
tent with those obtained by Burlando (1990, 1993), who 
argued that they represented evidence for a "fractal ge
ometry of Nature". 

From the present analysis, it is clear that there is 
as yet no reason to jump to conclusions from the evi
dence extracted either from the fossil record, theoreti
cal models of extinctions (Newman 1997), or else direct 
implementation of the dynamics of adaptive avalanches 
as we have done here. We do, however, see clear evi
dence that avalanches not reigned in by any scale can 
and do develop in evolving and adapting systems with
out co-evolutionary pressures, via first-order transitions 
in populations occupying single ecological niches. Not 
only do we find scale-free dynamics for the time between 
transitions (as evidenced by the genotype abundance dis
tribution) but also for the strength of these transitions, 
measured by the distribution of species-sizes. It is left 
for future experiments to determine how such dynamics, 
taking place in interacting ecological niches, gives rise to 
power laws for co-evolutionary systems, and how the de
scription in terms of first-order transitions is ipso facto 
transmutated into a second-order scenario. 

This work was supported by NSF grant No. PHY-
9723972. 
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Abstract 

We present empirical evidence that long-term evolution
ary dynamics fall into three distinct classes, depend
ing on whether adaptive evolutionary activity is absent 
(class 1), bounded (class 2), or unbounded (class 3). 
These classes are defined using three statistics: diver
sity, new evolutionary activity (Bedau & Packard 1992), 
and mean cumulative evolutionary activity (Bedau et 
al. 1997). The three classes partition all the long
term evolutionary dynamics observed in Holland's Echo 
model (Holland 1992), in a random-selection adaptively
neutral "shadow" of Echo, and in the biosphere as re
flected in the Phanerozoic fossil record. This classifi
cation provides quantitative evidence that Echo lacks 
the unbounded growth in adaptive evolutionary activity 
observed in the fossil record. 

Why Classify Evolutionary Dynamics? 
We present and illustrate a classification of long-term 
evolutionary dynamics. Classifications of complex dy
namical behavior are reasonably familiar, with Wol
fram's classification of cellular automata rules being one 
well-known example (Wolfram 1984), but there are few 
attempts to classify the dynamics specifically of adap
tive evolution. Nevertheless, such a classification is at 
least implicitly presupposed by the debates in biology 
about such issues as the evolution of clay crystallites 
(Cairns-Smith 1982; 1985), the evolution of "memes" 
(Dawkins 1976), and the increasing complexity of life on 
Earth (Gould 1989; McShea 1996; Gould 1996). Like
wise for claims in artificial life about systems exhibiting 
"open-ended evolution" or "perpetual novelty" or oper
ating "far from equilibrium" (Lindgren 1992; Ray 1992; 
Holland 1992; 1995; Bedau et al. 1997). Indeed, the 
defining focus of the field of artificial life-simulating 
and synthesizing systems that behave essentially like liv
ing systems-implies such a classification. How can we 
tell whether artificial systems behave relevantly like real 
living systems without using at least an implicit classifi
cation of system behavior? 

The classification question arises sharply only when 
we have many concrete instances to classify, so our inat
tention to the classification question was understandable 

when we had a sample size of only one-the biosphere. 
But the advent of artificial life changes this. Scores of ar
tificial evolving systems are now generating many thou
sands of instances of long-term evolutionary dynamics. 
So we now have ample empirical data to tackle the clas
sification question rigorously. 

On the basis of studying data from a variety of arti
ficial life models and from the biosphere, we have con
cluded that long-term evolutionary dynamics fall into 
three different classes. Our procedure here is to define 
statistics characterizing evolutionary dynamics and then 
use them to define three classes of long-term evolutionary 
trends. We then illustrate these classes of evolutionary 
dynamics in three systems: Holland's Echo model (Hol
land 1992; 1995), a random-selection model that shadows 
Echo's dynamics, and the Phanerozoic biosphere as re
flected in the fossil record. We choose these systems 
to illustrate the kinds of dynamics because (i) Echo, 
among artificial life models, is an especially promising 
candidate for exhibiting complex adaptive evolutionary 
dynamics, (ii) Echo's random-selection shadow provides 
an adaptively-neutral null case which highlights adap
tations in Echo, and (iii) the Phanerozoic fossil record 
presents our best evidence about long-term dynamics in 
natural evolving systems. We are in the process of classi
fying many other artificial and natural evolving systems. 

Evolutionary Activity Statistics 
Our classification of evolutionary dynamics is based on 
statistics for quantifying adaptive evolutionary phenom
ena. These statistics have already been applied to vari
ous evolving systems in various ways for various purposes 
(Bedau & Packard 1992; Bedau 1995; Bedau et al. 1997; 
Bedau & Brown 1997). This section describes these 
statistics with maximal generality and then explains how 
they are applied here. 

Our evolutionary activity statistics are computed from 
data obtained by observing an evolving system. In our 
view an evolving system consists of a population of com
ponents, all of which participate in a cycle of birth, life 
and death, with each component largely determined by 
inherited traits. (We use this "component" terminology 



to maintain enough generality to cover a wide variety 
of entities, ranging from individuals alleles to taxonomic 
families.) Birth, however, creates the possibility of in
novations being introduced into the population. If the 
innovation is adaptive, it persists in the population with 
a beneficial effect on the survival potential of the compo
nents that have it. It persists not only in the component 
which first receives the innovation, but in all subsequent 
components that inherit the innovation, i.e., in an en
tire lineage. If the innovation is not adaptive, it either 
disappears or persists passively. 

Our idea of evolutionary activity is to identify innova
tions that make a difference. Generally we consider an 
innovation to "make a difference" if it persists and con
tinues to be used. Counters are attached to components 
for bookkeeping purposes, to update each component's 
current activity as the component persists and is used. 
If the components are passed along during reproduction, 
the corresponding counters are inherited with the com
ponents, maintaining an increasing count for an entire 
lineage. Two large issues immediately arise: 

l. What should be counted as a component, and what 
counts as the addition or subtraction of a compo
nent from the system? In most evolving systems 
components may be identified on a variety of lev
els. Previous work has studied components on the 
level of individual alleles (Bedau & Packard 1992; 
Bedau 1995) as well as genotypes (Bedau et al. 1997; 
Bedau & Brown 1997) and taxonomic families (Bedau 
et al. 1997). 

Here we study entire genotypes and taxonomic fam
ilies. The addition or subtraction of a given compo
nent consists of the origination or extinction of a given 
genotype or taxonomic family. It's natural to choose 
genotypes and taxonomic families as components be
cause adaptive evolution can be expected to affect the 
dynamics of those entities. 

2. What should be a new component's initial contribu
tion to the evolutionary activity of the system and 
how should it change over time? To measure activity 
contributions we attach a counter to each component 
of the system, a;(t), where i labels the component and 
t labels time. These activity counters are purely ob
servational devices. A component's activity increases 
over time as follows, a;(t) = L:k<t 6i(k), where 6i(k) 
is the activity increment for component i at time k. 
Various activity incrementation functions 6;(t) can be 
used, depending on the nature of the components and 
the purposes at hand. 

Since genotypes and taxonomic families are compo
nents in the present context, it's natural to measure 
a component's contribution to the system's evolution
ary activity simply by its age. Everything else being 
equal, the more adaptive an innovative genotype or 
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taxonomic family continues to be, the longer it will 
persist in the system. So we choose an activity in
crementation function that increases a component's 
activity counter by one unit for each time step that it 
exists: 

6 . (t) = { 1 if com~onent i exists at t (l) 
' 0 otherwise 

Though there are ways to refine this simple counting 
method (Bedau & Packard 1992; Bedau 1995; Bedau 
et al. 1997), this version facilitates direct comparison 
with many other systems. 

In some contexts activity statistics indicate a system's 
adaptive evolutionary dynamics only after the activity 
increment ~;(t) is normalized with respect to a "neu
tral" model devoid of adaptive dynamics (Bedau 1995; 
Bedau et al. 1997; Bedau & Brown 1997). Here we 
address this issue in two different ways. With respect 
to taxonomic families in the Phanerozoic biosphere, 
we consider this normalization to be accomplished de 
facto by the fossil record itself. In our view, the mere 
fact that a family appears in the fossil record is good 
evidence that its persistence reflects its adaptive sig
nificance. Significantly maladaptive taxonomic fami
lies would likely go extinct before leaving a trace in 
the fossil record. But measuring evolutionary activ
ity in Echo data is another matter, because we know 
maladaptive genotypes contribute to Echo's activity 
data. So, to screen off the activity of maladaptive 
Echo genotypes, we measure evolutionary activity in 
a "neutral shadow" of Echo. Then, by comparing the 
Echo and neutral shadow data we can tell how much 
(if any) of Echo's evolutionary activity is due to the 
genotypes' adaptive value. The details of this neutral 
screening are explained in subsequent sections. 

Now, we can define various statistics based on the com
ponents in a system and their activity counters. Per
haps the simplest statistic-because it ignores activity 
information-is the system's diversity, D(t), which is 
simply the number of components present at time t, 

D(t) = #{i: a;(t) > O} , (2) 

where # {-} denotes set cardinality. 
The values of the activity counters of each component 

in the system over all time can be collected in the com
ponent activity distribution, C(t, a), as follows: 

C(t, a)= I>5(a - a;(t)) , (3) 

where J(a-ai(t)) is the Dirac delta function, equal to one 
if a = a;(t) and zero otherwise. Thus, C(t, a) indicates 
the number of components with activity a at time t. 
(Normalizing the component activity distribution by the 
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diversity, 0J~i)), gives the fraction of components in the 
population with activity a at time t.) 

A measure of the continual adaptive success of the 
components in the system at a given time is provided 
by the total cumulative evolutionary activity, Acum ( t), 
which simply sums the evolutionary activity of all the 
components at a given time: 

(4) 

-t fo 00 
aC(t, a) da (5) 

(In practice, we compute activity statistics using the 
sum; the integral indicated is obtained in the limit when 
activity takes on a continuum of values.) As the integral 
shows, you can think about Acum(t) as the mass in the 
component activity distribution weighted by its level of 
activity. So, the cumulative activity per component, or 
mean cumulative evolutionary activity, Acum ( t), is sim
ply the cumulative evolutionary activity Acum (t) divided 
by the diversity D(t): 

A (t) = Acum(t) 
cum D(t) (6) 

We sometimes refer to mean cumulative evolutionary ac
tivity simply as "mean activity." 

Adaptive innovations correspond to new components 
flowing into the system and proving their adaptive value 
through their persistent activity. Let ao and a 1 define a 
strip through the component activity distribution func
tion, C(t, a), such that activity values a in the range 
a0 ~ a ~ a 1 are among the lowest activity values that 
can be interpreted as evidence that a component has 
positive adaptive significance. Then, one reflection of 
the rate of the evolution of adaptive innovations is the 
new evolutionary activity, Anew(t), which sums the evo
lutionary activity per component with values between a0 

and a1: 

Anew(t) 
1 

D(t) L a;(t) 
i,ao'.Sa;(t)'.Sa1 

(7) 

1 1a1 
D(t) ao C(t, a) da (8) 

We sometimes refer to new evolutionary activity per 
component just as "new activity." 

Since we view any appearance in the fossil record as 
evidence of a taxonomic family's positive adaptive sig
nificance (recall above), we measure new activity in the 
fossil record in a strip right along the bottom of the com
ponent activity distribution. To screen off the low activ
ity values which might reflect maladaptive genotypes in 
Echo, we use a "neutral shadow" of Echo to determine 
that activity level, a', at which we can begin to have 

confidence that a component's activity reflects its posi
tive adaptive value, and we let a0 and a1 define a small 
window surrounding a'. 

There is more than one way to quantify diversity 
and evolutionary activity. For example, another use
ful measure of diversity is the Shannon entropy of the 
distribution of sizes of components in the system. In 
addition, the choice of what to count as a system's 
components affects a system's diversity as measured by 
D(t). Likewise, the activity statistics are affected by 
choices about, among other things, what the system's 
components are, how to define the component activ
ity incrementation function, ~i(t), where to set a0 and 
ai, how to define a "neutral" model, etc. Further
more, there are other kinds of activity statistics besides 
those defined here (Bedau & Packard 1992; Bedau 1995; 
Bedau & Brown 1997). Our specific choices of diversity 
and evolutionary activity statistics here is motivated by 
the desire to directly compare the adaptive evolutionary 
dynamics in Echo and in the Phanerozoic biosphere. 

Classes of Evolutionary Dynamics 
On the basis of observing evolutionary dynamics from a 
variety of artificial and natural evolving systems, we have 
concluded that there are three fundamentally different 
kinds of long-term evolutionary dynamics: 

Class 1. No adaptive evolutionary activity: diversity D 
is bounded, new activity Anew is zero, and mean ac
tivity Acum is zero. 

Class 2. Bounded adaptive evolutionary activity: di
versity D is bounded, new activity Anew is positive, 
and mean activity Acum is bounded. 

Class 3. Unbounded adaptive evolutionary activity: di
versity D is unbounded, new activity Anew is positive, 
and mean activity Acum is bounded. Evolutionary ac
tivity is growing because D is unbounded, Acum is 
bounded, and total cumulative evolutionary activity, 
Acum, is their product. 1 

(The Appendix precisely defines what we mean by a 
statistic being positive or bounded.) The three classes 
of evolutionary dynamics apply equally well to artificial 
and natural evolving systems. Although we sometimes 
lack sufficient evidence for an unambiguous classifica
tion, and although the available evidence sometimes is 
misleading, we have found that the evolutionary dynam
ics of any evolving system in which our statistics can be 
defined will eventually be seen to fall into one of these 
three classes. 

The classification of a system's evolutionary dynam
ics depends on certain decisions made when defining the 

1Unbounded Acum and bounded (or unbounded) D would 
also yield unbounded Acum, but we have never observed such 
dynamics. 



statistics. In particular, diversity and activity statistics 
can be implemented only after the components of a sys
tem are identified and the activity incrementation func
tion, ~i(t), is defined. Thus, a system could exhibit dif
ferent classes of evolutionary dynamics at different levels 
of analysis (say, the genetic and the phenotypic levels). 

The three classes of evolutionary dynamics are not 
logically exhaustive. Other classes of long-term evo
lutionary dynamics can be defined, such as a system 
showing bounded diversity, zero new activity, and un
bounded mean activity, or a system showing bounded 
diversity, positive new activity, and unbounded mean ac
tivity. And, in fact, some evolving systems do appear to 
exhibit these two kinds of dynamics. However, when a 
system has evolved long enough to reveal its long-term 
evolutionary dynamics, and when its evolutionary ac
tivity data is appropriately normalized with a neutral 
model, we have always found its behavior to fall into 
one of the classes 1-3. (If further study were to reveal 
the need for additional classes of evolutionary dynamics, 
they should be definable with our statistics.) 

In the first instance, our classification applies to the 
evolutionary dynamics in a given run of a given system. 
But if different runs of the same system at the same spot 
in parameter space all exhibit the same class of evo
lutionary dynamics, then the classification is a generic 
property of that system at that place in parameter space. 
Further, if the same class of evolutionary dynamics is 
exhibited by a system across a large area of parameter 
space, then the classification is even more generic. When 
adjacent regions in parameter space have different kinds 
of generic evolutionary dynamics, an important question 
is to identify and explain the line demarking these dy
namics. Finally, a class of evolutionary dynamics might 
be shared as a generic feature across a large area of pa
rameter space by a wide class of evolving systems, includ
ing both those found naturally and those constructed 
artificially. 

231 

The Echo Model 

John Holland created Echo in the attempt to produce 
a model that would illustrate the creation of complex 
structures by natural selection (Holland 1995). Echo's 
central explicit focus is to allow natural selection to 
shape the strategies by which a population of agents en
gage in various kinds of interactions. Detailed informa
tion about the Echo model is available elsewhere (Hol
land 1992; Jones & Forrest 1993; Holland 1994; Forrest & 
Jones 1994; Holland 1995; Hraber, Jones, & Forrest 1997; 
SFI 1998). 

An Echo world consists of a toroidal lattice of sites, 
each site having a resource fountain and a population 
of agents. (The Echo runs we describe here consist of 
worlds with only one site.) Different letters of the al
phabet represent different types of resources available in 

the world. A fixed amount of resources is distributed to 
each site at each time step, and unconsumed resources 
accumulate at a site up to a fixed ceiling. 

An Echo agent consists of a "chromosome" that is 
composed of eleven sub-strings of the world's resources 
(letters of the alphabet) together with a reservoir stor
ing excess resources. The sub-strings of the chromosome 
constitute an agent's external tags and internal condi
tions together with an uptake mask which specifies what 
resources the agent can take up from the environment. 
An agent's tags are external in the sense that other 
agents have access to them, while an agent's conditions 
are inaccessible to other agents. The tags and conditions 
are used to determine the outcome of the three types of 
interactions that Echo agents can engage in-combat, 
trade, and mating. Whether two agents interact and, 
if so, what type of interaction they have is determined 
by comparing the agents' tags and conditions. A string 
match of the appropriate tag and condition causes the 
interaction to take place. External tags and internal con
ditions allow complex (e.g. non-transitive) relationships 
to exist between the agents, and it is central to Echo's 
endogenous fitness function (a fitness function that is 
an emergent property of the environment and the other 
agents (Packard 1989)). 

The combat interaction gives a good illustration of 
how tags and conditions are used. Two individuals en
gage in combat provided there is a prefix match between 
their combat conditions and the other individuals' of
fense tag. Each individual's payoff of the combat inter
action is determined by a calculation based on the letters 
in the two individuals' offense and defense tags, and the 
winner of the combat is chosen probabilistically, based 
on the two individuals' relative payoffs. The losing agent 
gets a chance to flee, and otherwise is killed and loses it 
resources to the winner. 

Trading and mating interactions use tags and con
ditions in a related way. Trading takes place if there 
is a prefix match between the trading condition of the 
first agent and the offense tag of the other agent. A 
trading interaction between two agents results in each 
agent transferring the excess of its trading resource (the 
amount of resources in the agent's reservoir over and 
above what the it needs for reproduction) to the other 
agent. The mating interaction takes place if a bilateral 
match is found between the mating tags and conditions 
of two agents chosen to interact. The result of a success
ful mating interaction is more analogous to the types of 
genetic exchange seen in bacteria as opposed to sexual 
reproduction. The two participating agents exchange 
genetic material via crossover (at a random point in the 
chromosome) and replace their "parents" in the popula
tion. 

Agents that have acquired enough resources in their 
reservoir to copy their chromosome reproduce asexually. 



Asexual reproduction is subject to a probability, µ, of 
a point mutation as well as probabilities of mutation 
by crossover and by insertion-deletion within the parent 
chromosome. As a part of asexual reproduction, par
ents give a fixed percentage of the resources remaining 
in their reservoir to their offspring. In addition to gather
ing resources from the environment, agents lose resources 
through a metabolic tax r, as well as by asexual repro
duction, and they gain and loose resources by fighting 
and trading. The interaction probability, i, determines 
the probability that nearby agents will engage in the in
teractions that affect their resource levels. It is mutation 
together with the selection pressure due to competition 
for resources that drives the evolution of Echo's popula
tion. 

One time step in the Echo model consists of the fol
lowing cycle of events: A proportion of the agents are se
lected to undergo interactions and the interactions take 
place. Resources at a site are distributed to those agents 
that can accept them. Agents are taxed probabilistically. 
Some agents are randomly killed and their resources re
turned to the environment. Agents that have not col
lected resources migrate to a randomly chosen neighbor
ing site (in multi-site worlds). Finally, agents that have 
acquired sufficient resources reproduce asexually. 

Echo's Neutral Shadow 
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In order to discern which features of Echo's genotype 
statistics can be attributable to the genotypes' adap
tive significance, we created a "neutral shadow" of Echo. 
The crucial property of Echo's neutral shadow is that 
its evolutionary dynamics are like Echo's except that a 
genotype's presence or concentration or longevity in the 
shadow population cannot be due to its adaptive signif
icance. 

Echo's neutral shadow consists of a population of nom
inal "creatures" with nominal "genotypes." A shadow 
"creature" has no spatial location and it cannot ingest 
resources or interact with other "creatures." All it ever 
does is come into existence, perhaps reproduce (perhaps 
many times), and go out of existence; its only properties 
are its genotype and the times of its birth, reproductions 
(if any), and death. 

Each Echo run has its own corresponding neutral 
shadow run. Changes in the Echo run sometimes 
cause corresponding changes in its neutral shadow, but 
changes in the neutral shadow never affect the run (hence 
the "shadow" terminology). The timing and number of 
birth and death events in the neutral shadow are directly 
copied from those in the normal Echo run, as is the neu
tral shadow's mutation rate. 

When some creature is born in the normal Echo run, 
it is time for a birth event in the shadow model, so a 
shadow parent chosen at random (with equal probabil
ity) from the shadow population reproduces. The new 

shadow child inherits its parent's genotype unless a mu
tation gives the child a new, unique genotype. When 
some creature dies in the normal Echo run, it is time 
for a death event in the shadow model and a "creature" 
is chosen at random (with equal probability) from the 
shadow population and killed. Thus, all selection in the 
neutral shadow is random. 

The evolutionary dynamics in a neutral shadow is a 
neutral diffusion process in genotype space. Genotypes 
arise and go extinct, and their concentrations change 
over time, but the genotype dynamics are at best weakly 
linked to adaptation through the birth and death rates 
determined by adaptation in the normal Echo model. 
The birth, reproduction and death statistics that drive 
a neutral model "shadow" those of the Echo model, and 
those in the Echo model are (typically) affected by adap
tation. Still, properties like the relative longevity and 
concentration of a genotype in the neutral shadow can
not be due to the genotype's adaptive significance. All 
selection in the shadow model is random so no geno
type has any adaptive significance. At the same time, 
by precisely mimicing the births, deaths, and mutation 
rate in a normal Echo run, the neutral shadow's behavior 
helps us to determine which aspects of the behavior of 
the normal Echo run can be attributed to the adaptive 
significance of genotypes and which might reflect noth
ing more than the system's underlying architecture or 
chance. 

Figure 1 illustrates the difference between Echo and 
its neutral shadow. The Figure shows a "side view" 
of component activity distributions (from the Echo run 
and neutral shadow shown in Figure 4). These distri
butions have been collapsed (summed) along the tem
poral dimension and then divided by the total number 
of counts in both distributions. There is no guarantee 
that an Echo run and it's neutral shadow will have the 
same number of genotypes. In fact, often the neutral 
shadow has more genotypes, since natural selection does 
not preferentially preserve those that are well adapted. 
By dividing the distributions by the total number of ac
tivity counts in both distributions, the value of each dis
tribution at a given activity value a reflects the fraction 
of activity counts in each distribution that have activity 
a. 

Note that, on average, the activity counters in the 
neutral shadow's collapsed activity distribution are lower 
than those in Echo's collapsed activity distribution; i.e., 
the distribution is squashed to the left. This is just how 
one would expect the neutral shadow's random selection 
to affect a component activity distribution. By construc
tion, individuals in Echo and its neutral shadow have the 
same birth, reproduction, and death rates, and their mu
tation rates are the same (indeed, all model parameters 
are identical). But while the selective force in the neutral 
shadow is entirely random, natural selection can pref-
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Figure 1: Log-log plot of the component activity dis
tributions for the Echo run shown and neutral shadow 
shown in Figure 4, where these distributions have been 
collapsed (summed) along the temporal dimension. As 
one would expect, the neutral shadow's genotypes show 
relatively lower activity. The point at which the distribu
tions are equal is the activity value at which an activity 
count has the same probability of having occurred in the 
Echo and neutral shadow distributions. Since these dis
tributions are equal at activity a' = 2.1 x 105 , we set 
a0 and a1 (used to calculate new activity, Anew) slightly 
above and below this value, specifically, a0 = 1. 7 x 105 

and a 1 = 2.5 x 105 . 

erentially cull poorly adapted genotypes and preserve 
well adapted genotypes in Echo. This squashes the low
activity end of Echo's collapsed distribution and inflates 
its high-activity end. The difference between the two 
collapsed distributions quantifies how much natural se
lection affects the activity counts in Echo's component 
activity distribution. 

The point at which the two distributions have the 
same value (i.e., cross) reveals the activity value, a', at 
which an activity count is equally likely to have been 
chosen from either distribution. Thus, to calculate new 
activity, Anew, we set ao and a 1 slightly above and below 
a'. (Recall our discussion of evolutionary activity statis
tics above.) Specifically, if we let amax be the highest 
activity value at which either collapsed distribution is 
positive and if we let a' be the lowest value at which the 
two collapsed distributions cross, then we set ao and a1 

to be a'± (0.05 X (amax - a')). 
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Figure 2: Diversity, new activity, and mean cumulative 
activity in the fossil data of Benton and Sepkoski. The 
labels at the top of each graph show the boundaries 
between the standard geological periods, thus: Cam
brian, Ordovician, Silurian, Devonian, Carboniferous, 
Permian, Triassic, Jurassic, Cretaceous, Tertiary. 

The Fossil Data 

We used two fossil data sets, each of which indicates the 
geological stages or epochs with the first and last ap
pearance of taxonomic families. Benton's data (Benton 
1993) covers all families in all kingdoms found in the fos
sil record, for a total of 7111 families. Sepkoski's data 
(Sepkoski 1992) indicates the fossil record for 3358 ma
rine animal families. The duration of different stages and 
epochs varies widely, ranging over three orders of mag
nitude. In order to assign a uniform time scale to the 
fossil data, we used Harland's time scale (Harland et al. 
1990) to convert stages and epochs into time indications 
expressed in units of millions of years before the present. 

We are most interested in classifying long-term trends 
among fossil species, but we study fossil families because 
much more complete data is available at this level of 
analysis (Valentine 1985; Sepkoski & Hulver 1985). Al
though fossil family data is certainly no precise predictor 
of fossil species data, there is evidence that species-level 
trends in the fossil record are reflected at the family level 
(see (Valentine 1985) and the references cited therein). 
Sepkoski and Hulver ((Sepkoski & Hulver 1985), p. 14) 
summarize the situation thus: 'Although families do not 
display all of the detail of the fossil record, they should be 
sufficiently sensitive to show major evolutionary trends 
and patterns with characteristic time scales of fives to 
tens of millions of years.' The trends we use to classify 
evolutionary dynamics occur in the fossil data on time 
scales at least that long. 
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Figure 3: Typical diversity, new activity, and mean cu
mulative activity data from Echo and a neutral shadow 
when mutation rate µ = 10-2 , interaction probabil
ity i = 0.05, and metabolic tax T = 0.01. Note that 
Anew = 0 for both Echo and the neutral shadow and that 
Acum is not significantly higher in Echo than in the neu
tral shadow. (Here, ao = 6.4 x 103 and a1 = 6.8 x 103 .) 
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Figure 4: Typical diversity, new activity, and mean cu
mulative activity data from a Echo and a neutral shadow 
when mutation rate µ = 10-2 , interaction probabil
ity i = 0.85, and metabolic tax T = 0.15. Note that 
Anew and Acum are significantly higher in Echo than 
in the neutral shadow. (Here, a0 = l. 7 x 105 and 
a1 = 2.5 x 105.) 
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Results 

We computed diversity, new activity, and mean cumula
tive activity in the Benton and Sepkoski fossil data sets 
(see Figure 2). We also computed these statistics from 
data produced by the Echo model and its neutral shadow 
at a variety of places in Echo's parameter space (see Fig
ures 3 and 4). Comparing the data from Echo and its 
neutral shadow allows us to normalize Echo's evolution
ary activity statistics. 

The paucity of earlier fossil data lead us to restrict our 
attention to the Phanerozoic fossils, which start with the 
Cambrian explosion. The major extinction events, such 
as the mammoth one which ends the Permian period, 
and the famous K/T extinction which ended the age of 
the dinosaurs, are visible in the data. The overall trends 
in the fossil statistics are pretty unambiguous: D is un
bounded, Anew is positive, and Acum is bounded. Thus 
the evolutionary dynamics of the Phanerozoic biosphere 
is in class 3. 

We examined the evolutionary dynamics of Echo and 
its neutral shadow while varying three crucial parame
ters across their entire viable range. The per-locus mu
tation rate, µ, ranged over 0 ::::; µ ::::; 1; the interaction 
probability, i, ranged over 0 ::::; i ::::; 1; and the metabolic 
tax (metabolic tax), T, ranged over 0 < T < 0.45. 
All other Echo parameters were held cons~t aZross all 
runs. (The CD available with this volume contains the 
Echo source code we used, including the parameter files, 
as well as evolutionary activity analysis software.) 

To normalize the Echo data by a "neutral" model, we 
compare activity data from Echo and its neutral shadow. 
Not all of the activity generated by Echo reflects adap
tive innovations. In fact, the neutral shadow's activity 
shows how much "raw" activity accumulates in a non
adaptive analogue of Echo. So, we normalize Echo's ac
tivity data by subtracting the neutral shadow's new or 
cumulative activity from that of Echo. If the result is 
negligible or negative, then Echo's normalized activity is 
nil. Since that level of raw activity has been observed 
in the neutral shadow, it is not evidence of the adap
tive value of Echo's components. On the other hand, if 
Echo's level of raw activity is significantly higher than 
its neutral shadow, then we have good evidence that this 
residue-the normalized new or cumulative activity
indicates significant new and cumulative adaptive suc
cess of the system's components. 

After making sure that we were observing long-term 
trends and properly normalizing the activity data, we 
found that Echo's evolutionary dynamics fell into either 
class 1 or class 2. Since long-term diversity dynamics 
were always bounded, class 3 dynamics never material
ized. 

If the mutation rate was very low (at or near zero), 
Echo and its neutral shadow show virtually identical 
evolutionary dynamics. Except for fleeting exceptions 



caused by a mutation, only one genotype exists at a time, 
so the indefinite trend is D(t) = 1 and Anew(t) = 0. This 
causes the "raw" mean activity to increase with a slope 
of unity in both Echo and its neutral shadow, so the 
normalized mean activity is zero. Thus, the evolution
ary dynamics of Echo when µ ~ 0 falls into class 1. 
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When the mutation rate is very high (at or near 
zero), the evolutionary dynamics of Echo and its neutral 
shadow are again virtually identical. A child's genotype 
is virtually guaranteed to differ from that of its parent, 
so virtually every genotype has only one instance and 
D(t) remains very high. Furthermore, those genotypes 
that by chance have some adaptive significance have no 
chance to leave an imprint on the population, which 
means that the collapsed component activity distribu
tions of Echo and the neutral shadow are virtually iden
tical. Thus, a0 is set so high that Anew(t) ~ 0 in both 
Echo and the neutral shadow. In addition, the two mod
els have such similar "raw" mean activity dynamics that 
after normalization the consistent trend is Acum(t) ~ 0. 
Thus, the evolutionary dynamics of Echo when µ ~ 1 
falls into class 1. 

If the mutation is between these extremes, then the 
long-term evolutionary dynamics depend on other sys
tem parameters. Here we focus on two other parameters: 
interaction probability, i, and metabolic tax, T. Previous 
work has shown that these parameters are key determi
nants of evolutionary activity in Echo (Smith 1998). For 
example, when both i and T are very low, then even at 
moderate mutation rates Echo exhibits behavior remi
niscent of what happens when the mutation rate is very 
high. For example, Figure 3 shows typical long-term 
statistical trends in Echo and its neutral model with 
i = 0.05 and T = 0.01. The long-term trend is clearly 
that diversity is bounded and new activity is zero. Fur
thermore, since "raw" mean activity is about the same 
in Echo and the neutral shadow, normalized mean activ
ity is approximately zero. This illustrates how, at very 
low interaction probability and metabolic tax, Echo has 
class 1 evolutionary dynamics regardless of the mutation 
rate. 

On the other hand, at intermediate mutation rates, 
evolutionary activity in Echo increases significantly 
within a certain range of interaction probabilities and 
metabolic taxes, specifically, when 0.5 ~ i ~ 1.0 and 
0.15 ~ r ~ 0.4 (Smith 1998). Some qualitative fea
tures of the evolutionary dynamics vary with the muta
tion rate, as one would expect, but those features of the 
statistics that determine long-term evolutionary dynam
ics remain the same. Figure 4 shows typical dynamics of 
the statistics from an Echo run and its neutral shadow 
within this region of parameter space. First, diversity is 
bounded (and significantly higher in the neutral shadow, 
as one would expect). Second, both new and mean activ
ity are positive. Moreover, both are significantly higher 

in Echo than in the neutral shadow, so Echo's normal
ized new and mean activity are positive. Thus, Echo's 
long-term evolutionary dynamics fall into class 2. 

Finally, it is worth noting that, when normalized, the 
neutral shadows themselves have no new or cumulative 
evolutionary activity. Since data from a neutral shadow 
and its neutral shadow would look alike, subtracting one 
from the other would yield nothing. Thus, its normal
ized new and cumulative activity will be zero. In addi
tion, since the qualitative shape of a neutral shadow's 
diversity dynamic follows that of the Echo run which it 
shadows, and since all observed Echo runs show bounded 
diversity dynamics, so do all of Echo's neutral shadows. 
For this reason, the long-term evolutionary dynamics of 
all observed neutral shadows of Echo falls into class 1. 

Table 1 summarizes the three classes of evolutionary 
dynamics and the examples of each we have observed. 

Discussion 
Our classification of long-term evolutionary dynamics in 
Echo, the neutral shadow, and the biosphere suggests 
three main conclusions: 

Conclusion 1: New evolutionary activity measures the 
flow of adaptive innovations into an evolving system and 
mean cumulative evolutionary activity measures the con
tinual adaptive success of such innovations. The pri
mary evidence for this is the comparison between Echo 
and its neutral shadow and the effect of varying key 
Echo parameters (mutation rate, probability of interac
tion, metabolic tax) governing the process of adaptation. 
Further evidence supporting this conclusion comes from 
comparisons between other artificial evolving models and 
their neutral shadows (Bedau 1995; Bedau et al. 1997; 
Bedau & Brown 1997). 

Conclusion 2: Comparison of the long-term evolution
ary dynamics observed in Echo, its neutral shadow, and 
the Phanerozoic biosphere reveals these to be partitioned 
into three distinct classes: no adaptive evolutionary ac
tivity (class 1), bounded adaptive evolutionary activity 
(class 2), and unbounded adaptive evolutionary activity 
(class 3). All neutral shadow dynamics and some Echo 
dynamics fall into class 1, the rest of Echo dynamics fall 
into class 2, and only the biosphere dynamics fall into 
class 3. 

Conclusion 9: If we accept conclusions 1 and 2, then 
Echo and the biosphere exhibit qualitatively different 
kinds of evolutionary dynamics. In particular, Echo 
lacks the unbounded growth in adaptive activity ob
served in the fossil record. 

Classes 1-3 provide a classification of the evolution
ary dynamics in artificial models and natural evolving 
systems. These classes have internal quantitative struc
ture and they can be further subdivided, but we think 
that these three classes mark the most fundamental dis
tinction among adaptive evolutionary dynamics. To be 
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EVOLUTIONARY STATISTICAL SIGNATURE 
CLASS ACTIVITY D I Anew Acum EXAMPLES 

1 none bounded zero zero Echoµ~o 

Echoµ~l 

Echo,~o. r~o 
all neutral shadows of Echo 

2 bounded bounded positive bounded Echo10-•..,;µ<10-1, o.s<i<i.o, o.15<T<0.4 

3 unbounded unbounded positive bounded Phanerozoic biosphere 

Table 1: Classes of evolutionary dynamics and their statistical signatures observed in Echo, Echo's neutral shadow, 
and data from the fossil record. The Echo parameters varied in these examples are mutation rate, µ, interaction 
probability, l, and metabolic tax, T. 

sure, detecting these classes requires surmounting some 
practical problems. A system must be observed long 
enough for long-term trends to reveal themselves, and 
seeing a system's specifically adaptive evolutionary ac
tivity might require normalization with a suitable "neu
tral" model. Nevertheless, the payoff of surmounting 
these obstacles is the ability to classify an evolving sys
tem by reference to an elusive and controversial (Gould 
& Lewontin 1979) but central property: the extent to 
which adaptations are being created by the process of 
evolution. 

A weakness with the statistics we use to define classes 
1-3 is the "emergence" problem: The statistics can be 
applied only after settling what a system's components 
are and what counts as their activity, so the statistics 
woulci not directly reflect the evolutionary innovation of 
genuinely novel kinds of system components. The emer
gence problem does not arise when classifying the fossil 
data, because post hoc analysis has identified the rel
evant system components. Furthermore, with existing 
artificial life models, our understanding the system usu
ally allows us to identify the relevant components confi
dently. Anyway, it's unclear how serious the emergence 
problem will prove in practice. On the one hand, as 
discussed earlier, evolutionary activity statistics are al
ways defined at a given level of analysis, and we should 
not expect to see the evolutionary activity at all levels 
with statistics defined at one level. On the other hand, 
we would often expect to see significant adaptive inno
vations echoed in activity statistics across many levels. 
For example, activity statistics defined at the level of in
dividual cell types in the biosphere would show marked 
activity at the origination of multicellular life. So, ac
tivity statistics defined at one level will often indirectly 
indicate the emergence of higher levels of adaptive ac
tivity. The fact that we do not see this sort of signature 
in the Echo data indicates that higher levels of adaptive 
innovation are probably not occurring. 

There are special problems and pitfalls inherent in us
ing the fossil record to study long-term trends (Raup 

1988). In particular, the "pull of the present" is a well
known sampling bias due to the fact that there are sim
ply more recent fossils to study than older fossils. Future 
work will investigate the extent to which our classifica
tion of the evolutionary dynamics evident in the fossil 
record can be supported more rigorously. 

Although we focus here only on Echo, its neutral 
shadow, and the Phanerozoic biosphere, our methodol
ogy and conclusions have quite broad import. Some nat
ural evolving systems probably have class 2 dynamics. 
For example, space and time constraints might bound 
the adaptive activity of bacterial evolution in a chemo
stat. Other natural evolving systems probably show 
class 3 dynamics. Class 3 dynamics might even be de
tectable in systems like the global economy or internet 
traffic. We also suspect that no existing artificial evolv
ing system has class 3 dynamics. In our opinion, creat
ing such a system is among the very highest priorities 
of the field of artificial life. From one perspective, this 
is a negative result: Echo, and perhaps all other exist
ing artificial evolutionary systems, apparently lack some 
important characteristic of the biosphere-whatever is 
responsible for its unbounded growth of adaptive activ
ity. But at the same time this conclusion calls attention 
to the important constructive and creative challenge of 
devising an artificial model that succeeds where all oth
ers have failed. Here, again, classes 1-3 show their value, 
for they provide a feasible, objective, quantitative test 
of success. 
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Appendix: Definitions 
In this paper our operational definitions of what it is 
for a function f (t) to be unbounded or positive are as 
follows: The function f (t) is unbounded iff 

lim (sup(f(t))) > 0 , 
t-+oo t 

(9) 

where sup(-) is the supremum function. The function 
f ( t) is positive iff 

hm > 0. . (I~ f(t)dt) 
t-+oo t 

(10) 
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Abstract 

Coevolution has been proposed as a way to evolve a 
learner and a learning environment simultaneously such 
that open-ended progress arises naturally, via a com
petitive arms race, with minimal inductive bias. Never
theless, the conditions necessary to initiate and sustain 
arms-race dynamics are not well understood; mediocre 
stable states frequently result from learning through 
self-play (Angeline & Pollack 1994), while analysis usu
ally requires closed domains with known optima, like 
sorting-networks (Hillis 1991). While intuitions regard
ing what enables successful coevolution abound, none 
have been methodically tested. We present a game that 
affords such methodical investigation. A population of 
deterministic string generators is coevolved with two 
populations of string predictors, one "friendly" and one 
"hostile"; generators are rewarded to behave in a man
ner that is simultaneously predictable to the friendly 
predictors and unpredictable to the hostile predictors. 
This game design allows us to employ information the
ory to provide rigorous characterizations of agent be
havior and coevolutionary progress. Further, we can 
craft agents of known ability and environments of known 
difficulty, and thus precisely frame questions regarding 
learnability. Our results show that subtle changes to 
the game determine whether it is open-ended, and pro
foundly affect the existence and nature of an arms race. 

Introduction 
Most machine learning (ML) systems operate by opti
mizing to a fixed fitness function, or learning environ
ment, and typically require considerable inductive bias 
in order to succeed; this inductive bias takes the form 
of either a learner that is pre-adapted to the learning 
environment, or a carefully gradient-engineered fitness 
landscape that provides the learner with a clear path 
towards a global optimum. In both cases, however, the 
onus inevitably falls upon the human user of ML technol
ogy to imbue the learning system with the appropriate 
bias. Thus, results are often attributable to inductive 
bias as much as, or more than, the ML methods used. 
As learning domains become more intricate and demand
ing of ML systems, however, both methods of bias engi
neering quickly become infeasible: gradient engineering 

turns overwhelmingly complex, and, following the obser
vation that "you can only learn what you almost already 
know," pre-adaptation requires the learning problem to 
be already substantially solved. 

To address these problems, coevolution has been pro
posed as a way to evolve a learner and learning environ
ment simultaneously such that progress arises naturally 
with minimal inductive bias. In coevolution, however, 
the terms 'learner' and 'environment' no longer denote 
absolute roles, but relative ones; each participant in a 
coevolutionary system is both a learner as well as an 
environment against which other participants learn -
the conventional asymmetry between learner and envi
ronment does not exist. 

The key to successful coevolutionary learning is a com
petitive arms race between opposed participants. Com
petitors must be sufficiently well-matched in skill to force 
each other to improve. The difference between what 
participants already know and what they must learn 
is critical: if one competitor becomes relatively expert 
such that the opponent is "overpowered,'' then the op
ponent will fail to find a gradient towards improvement 
and be subsequently unable to offer continued challenge, 
thereby breaking the arms race. If a balance in the arms 
race is maintained, on the other hand, coevolution is hy
pothesized to provide a way to gradually evolve opposing 
forces such that each is always suitably pre-adapted to 
learn against the other while, at the same time, offering a 
suitably engineered gradient against which the other can 
learn. In open-ended domains, coevolutionary progress 
can, theoretically, continue indefinitely. 

Nevertheless, the precise conditions necessary to ini
tiate and sustain such arms-race dynamics are neither 
definitively known nor well understood; mediocre stable
states (MSS) (Angeline & Pollack 1994; Pollack, Blair, 
& Land 1997) are a common result in coevolutionary 
systems, where the agents in the evolving population(s), 
to anthropomorphise, discover a way to collude to give 
the impression of competition without actually forcing 
each other to improve in any "objective" sense. This 
phenomenon is analogous to that found in accounts of 
World-War I trench warfare (Axelrod 1984), where op-
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posing forces established ritualized acts of aggression 
meant to appear genuine to their respective comman
ders that were, nevertheless, completely predictable to 
each other, and thus of no real threat. 

Complicating research into the arms-race mechanism 
is the fact that analysis of coevolutionary systems usu
ally requires domains with known optima, like sorting
networks (Hillis 1991), and simple differential games 
(Isaacs 1965), so that an objective metric of performance 
is available. Unfortunately, these domains are closed
ended, and are thus categorically less interesting than 
open-ended domains. Without quantitative metrics of 
agent behavior, researchers in open-ended coevolution
ary domains can do no better than use qualitative lan
guage to describe agent behavior and system progress. 
Indeed, this problem has been recognized by researchers 
in the pursuer-evader domain (Cliff & Miller 1996). 

Thus, while current research is rich with insights and 
intuitions regarding what enables coevolution, there is, 
at the same time, a paucity of domains that can serve 
as systematic testbeds for these intuitions; we present 
a game that affords such methodical investigation. Our 
game involves three agents: one bitstring generator, and 
two string predictors - one "friendly" and one "hostile"; 
the generator is to behave in a manner that is simulta
neously predictable to the friendly predictor partner yet 
unpredictable to the hostile predictor opponent. The 
two predictor roles produce a tension between cooper
ative and competitive pressures, respectively. Because 
agent behavior is expressed as a binary time series, we 
can use information theory to quantitatively assess agent 
behavior and coevolutionary progress. Further, we are 
able to hand-build agents of known ability, which implies 
that we can also build environments of known difficulty. 
We may thus pose precisely-framed questions regarding 
learnability, arms-race dynamics, mediocre stable-states, 
and open-endedness. 

Our results demonstrate the expressiveness of our do
main in investigating coevolution; many different dy
namics can be produced by simple changes to our game. 
While our substrate is capable of representing both good 
generators and predictors, we find that high-quality play
ers are not an inevitable outcome of coevolution; the ob
vious competitive approach to coevolution in our game 
(one that omits the friendly partner) does not produce 
an open-ended arms-race. Rather, a mediocre stable
state or closed-ended system is the result, depending on 
a seemingly minor change in how the game is scored. 
Mediocre stable-states result from a variety of causes in 
coevolutionary research. Due substantially to our rigor
ous metric of behavior, we can refine the notion of MSS 
and begin a taxonomy of such causes. All three players in 
our game are found required to enable an arms-race. The 
viability of an arms race relies on the sustained learn
ability (Pollack, Blair, & Land 1997) of environments; 

we are able to construct environments that are too easy 
and too difficult for learning to take place, and quantita
tively demonstrate the poorness of these environments. 

This paper is organized as follows: we first explain 
our game in detail, discuss the recurrent artificial neu
ral network substrate used for our experiments, and de
scribe the evolutionary algorithm. Next, key concepts 
from information theory that are relevant to this work 
are introduced. These concepts are then integrated into 
the framework of arms-race dynamics. Results are pre
sented and analyzed. Finally, we summarize our work 
and present concluding remarks. 

Game Setup, Substrate, and 
Evolutionary Algorithm 

Illustrated in Figure 1, our game is played by three 
agents that operate in discrete time and space. The 
generator, g, is an agent that ballistically produces a 
binary time series. That is, its behavior is determined 
solely by its own internal dynamics; at each time step, 
the generator simply outputs a single new bit. The pre
dictors, :F and 1i, are agents that simultaneously try to 
predict the generator's output for the current time step; 
given their own internal state and the generator's out
put from the previous time step as input, the predictors 
also output a single bit in synchrony with the genera
tor. The generator's job is to behave in a manner that 
is both predictable to the friendly predictor, :F, and un
predictable to the hostile predictor, 1i. The purpose of 
having both friendly and hostile predictors in our game is 
to explore how the opposed needs for predictability and 
unpredictability affect coevolutionary dynamics. Each 
match lasts one thousand time steps. 

Agents are coevolved in three distinct populations, one 
population for each role (represented by :F, g, and 1i) 
in our game. The three populations are all of a fixed 
size of 75 agents. For each generation of evolution, all 
generators are played against all friendly and hostile pre
dictors. Agent performance is measured strictly in terms 
of the number of correct and incorrect predictions made. 
Scores across all games are averaged to derive fitness 
values. Game scores for all agents range between [O, 
l]. The exact formulas used for scoring predictors are 
discussed below in the experiment descriptions. A gen
erator's score is computed by subtracting the average 
score of its hostile opponents from the average score of 
its friendly partners and normalizing the result to fall 
within the range (0, l]; values above 0.5 thus indicate 
that a generator is able to make itself more predictable 
to friendly predictors than hostile ones. 

The substrate used for the agents is an enhanced ver
sion of the deterministic, discrete-time recurrent artifi
cial neural network used in the GNARL system (An
geline, Saunders, & Pollack 1994); the network enhance
ment consists of a set of nine new transfer functions, min, 
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Figure 1: Grune Setup. 

max, sum, product, sig-prod (sigmoid applied to prod
uct), unit-time-delay, sign, uni-linear-truncate (truncate 
outside range [-1, 1)), dee-linear-truncate (truncate out
side range [-10, 10)), in addition to the traditional sig
moid function. Though these supplementary transfer 
functions increase the range of behavior significantly, 
they by no means guarantee successful coevolution, as 
we will see. Unfortunately, the new functions also make 
network analysis much more difficult. 

GNARL is used to coevolve networks' internal archi
tectures and weights. Generators are allowed to have as 
many as 60 hidden nodes and 400 weights. Because the 
prediction task is more difficult, predictors are allowed 
to have as many as 150 hidden nodes and 700 weights. 
These values merely reflect intuition and are not known 
to be optimal; indeed, actual network sizes fall far below 
these limits. 

Mutation is the only genetic operator used by the 
GNARL algorithm - crossover is not used. Five forms 
of mutation are implemented: change-weights, add
hidden-nodes, remove-hidden-nodes, add-weights (con
nections), and remove-weights (connections). When a 
hidden node is removed, all efferent and afferent connec
tions from and to that node are removed as well. New 
nodes are added with no connections. Network weights 
are modified by adding a gaussian to each weight. Only 
a single form of mutation is applied to a network when it 
is modified. The overall severity of mutation performed 
to a network is determined by its temperature, which is 
an inverse function of its fitness. The higher the tem
perature of a network, the more severe the mutation will 
be. 

The input and output layers of the networks are fixed. 
Generators and predictors have a single, real-valued out
put that is thresholded to a binary value. Though the 
game formally defines predictors to have a single input, 
our current experiments provide predictors with a small 
buffer to enhance performance: the predictors have five 
binary-valued inputs, corresponding to the last five out
puts of the generator at times t - 1, ... , t - 5. Note that 
this predictor enhancement in no way obviates the need 
for a recurrent network architecture: generator behavior 
can be induced only by observation over time. 
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Metric of Behavior 
Introduction 
In this section we introduce two key notions from the 
field of information theory that provide our game with 
a rigorous and quantitative metric of agent and system 
behavior, namely entropy and order. Rather than give 
their formal mathematical definitions, we emphasize a 
more intuitive explanation of these concepts and their 
implications as they relate to our domain. Readers in
terested in more formal detail are referred to (Hamming 
1980). 

Entropy 

Information theory is concerned with characterizing sig
nals and their transmission. A signal source produces 
some symbol, which is passed through a channel to a 
receiver. We assume, for our purposes, that the chan
nel does not distort the signal. The entropy, h, of a 
source reflects the receiver's uncertainty as to what it 
will receive. The higher the entropy, the less certain 
the receiver is, and the more it learns once the symbol 
is actually received. Thus, entropy is a measure of the 
amount of information in a signal. More precisely, the 
entropy of a source is equal to the average number of 
bits of information produced (conveyed) per generated 
symbol. 

By indicating the uncertainty of the receiver, entropy 
inversely indicates the degree to which the source can be 
predicted by the receiver, that is, the receiver's certainty. 
We must be careful to point out that the receiver's opin
ion of what the next symbol will be is based exclusively 
upon the observed behavior of the source - assumptions 
about the source's internal dynamics are not made. 

Order 
If the receiver's certainty is based upon observation of 
the source, we can ask "How much observation is re
quired to maximize the receiver's certainty?" For ex
ample, let us consider some binary source, S. If the 
receiver only tallies the number of occurrences of 0 and 
1, this source may be found to produce each 503 of 
the time. With this runount of behavioral context, the 
receiver's certainty is zero and entropy is measured at 
h = 1.0. Nevertheless, it may be that if the receiver 
keeps track of the previous symbol received, then the 
source will be found simply to be alternating between 
0 and 1; in this case, a behavioral context of one sym
bol makes the source completely predictable. Measured 
entropy would now be h = 0.0. If the receiver keeps 
track of yet another symbol, now the previous two, no 
additional advantage is gained with respect to source S. 

The minimal amount of behavioral context needed to 
maximize a receiver's certainty of a source is the order 
of the source. The order is equal to the number of sym
bols that must be tracked, that is, the size of the history 



window needed to maximize receiver certainty. The en
tropy measured when using a window size equal to a 
source's order is the true entropy of the source; window 
sizes larger than a source's order will produce measure
ments equal to the source's true entropy, but not lower. 
Thus, a receiver cannot increase its certainty of a source 
by using a window size larger than the source's order. 

Order Statistics and Measured Entropy 

With our example source, S, above, we first measured 
entropy without keeping track of the previously gener
ated symbol; this is equivalent to measuring entropy with 
a window size of zero, or, alternatively, measuring en
tropy with zero-order statistics. Our second measure
ment, then, used a window size of one, or first-order 
statistics. Our zero-order measurement gave us an en
tropy of h = 1.0, but the first-order measurement fell to 
the true entropy of h = 0.0. Indeed, measured entropy 
will always monotonically decrease as window size is in
creased, and eventually reach a source's true entropy, as 
illustrated in Figure 2. 

1.0 
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System 
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Figure 2: Measured vs. True System Entropy and Order. 
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A source with true entropy h = 0.0, such as S, is com
pletely predictable and regular. In contrast, a binary 
source with maximum true entropy of h = 1.0 entirely 
lacks structural regularity and cannot be predicted bet
ter than random, on average, without specific knowledge 
of its internal works. For a source with true entropy 
somewhere in between, 0.0 < h < 1.0, there exists both 
a regular component and an irregular component to the 
source's signal. The regular component is that portion 
of the signal that can be reliably predicted, while the ir
regular component is that portion that cannot. By def
inition, the information content of a source must reside 
exclusively in the irregular component. 

Order as Complexity 

System order is also equal to the logarithm of the max
imal number of states required for a Markov model to 

reproduce behavior statistically identical to a source; 
entropy reflects the degree of certainty in the model's 
state transitions. Consider a randomly behaving binary 
source, with true entropy of h = 1.0. We find that the 
minimal window size needed to maximize a receiver's 
certainty of this source is zero! Since the order of such 
a source is zero, the equivalent Markov model requires 
2° = 1 state to reproduce statistically identical behavior. 
This result is understandable since there exists no signal 
structure to capture through state. This view of system 
complexity thus considers random sources to be simpler 
than completely predictable sources of higher order; the 
size and structure of the Markov model is what counts, 
not the compressibility of the produced signal (Kolen & 
Pollack 1994). 

Where's the Arms Race? 

When considered together, order and entropy form 
the nexus between generator complexity and predictor 
power: if a signal has a regular component, then that 
component can be predicted assuming the power of the 
predictor is sufficient; that is, the predictor must use an 
order statistic, i.e., history window, of size m 2:: n, where 
n is the order of the signal being predicted. If the pre
dictor's window size is m, such that m < n, then it will 
be able to predict only that portion of the signal's reg
ular component that is detectable when measuring the 
signal's entropy with mth_order statistics. Recall that 
as window size decreases, measured entropy increases; 
thus, predictors using smaller windows will necessarily 
be weaker than those using larger windows. 

Because irregular signal components are inherently 
unpredictable, and our three-player game requires gen
erators to be predictable to friendly predictors, gener
ators must maintain substantial regular components in 
order to succeed. Nevertheless, generators need to be 
unpredictable to the hostile predictors. The only way 
both goals can be effectively met is for the generators 
and friendly predictors to evolve system order and pre
dictive power that are closely matched, yet greater than 
the predictive power of the hostile predictors. 

Regular signals allow for a general solution to the pre
diction task. A predictor of power n can predict any 
generator of order m :::; n; to escape prediction, there
fore, a generator has no choice but to increase its or
der above n. The amount by which the generator in
creases its order and the unpredictability it exhibits at 
lower order-statistics determines how much the predic
tor's performance degrades. Of course, a generator may 
increase its true entropy instead; doing so, however, will 
also defeat any hopes of being predicted by the friendly 
predictor. 

The assumption up to now has been that predictors 
will actually evolve such a general prediction algorithm 
and evolve the functional equivalent of ever-growing his-
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tory windows. Of course, this represents an idealized 
solution; in reality, the issue of generalization vs. spe
cialization is intimately tied to that of diversity and do
main "physics." Nevertheless, having some notion of 
what idealized predictors can and cannot do, and what 
an idealized arms race looks like, provides a useful frame
work in which to examine empirical results. 

Experiments and Results 
Testing the Search Space 

Our concern here is to verify that the combination of 
our substrate and problem domain yields a search space 
rich enough to support an arms race. Our first ques
tion is whether the substrate is capable of representing 
irregular generators and regular, high-order generators. 
As recurrent networks are known to produce chaotic be
havior with ease, this question is partly rhetorical. Nev
ertheless, we seek to evolve generators in an environ
ment that closely mimics our game. Using hand-built 
(non-network) predictors that employ a variety of win
dow sizes, we evolve generators to become minimally pre
dictable to weaker predictors while remaining maximally 
predictable to more powerful ones. The hand-built pre
dictors are used as the basis of a boot-strapping process: 
predictors of known power are used to evolve generators 
of specific order complexity. Seventy generators, pre
dominantly of orders two through eight, are thus evolved. 
Our second question is whether, given these generators of 
known order, predictors can be evolved to predict them. 
Evolving against this fixed population of generators, we 
are able to produce predictors that perform at an av
erage rate of 753 to 853 correct prediction, or 503 to 
703 better than random. The nominal range of behav
iors demonstrated by our networks suggest a non-trivial 
solution space. 

The Two Half-Games 
We begin our analysis of game results by looking at the 
two possible half-games. These are versions of the game 
where generators coevolve only with friendly predictors 
or hostile predictors, but not both. The purpose of the 
half games is to explore convergent and competitive pres
sures in isolation such that we may compare and contrast 
results with those that include all three players. 

In the first half-game, we coevolve generators with 
friendly predictors only. The system is asked, essentially, 
to establish a convention of behavior. This version of the 
game quickly converges in less than twenty generations. 
Generators and predictors alike display static behaviors 
of all ones or zeros, depending on which the system set
tles on. All agents receive perfect scores. Simply, there 
is no pressure for complexity and none is observed. 

The second half-game, coevolving generators against 
hostile predictors, is more illuminating. A reasonable 
intuition would expect an arms race to develop between 

ever more complex generators and ever more powerful 
predictors. The actual outcome depends strongly on how 
the game is scored. One scoring method (A) gives pre
dictors a point for each correct prediction. The tallies 
are then normalized to the percentage of correct or in
correct predictions. Another scoring method (B) tallies 
correct predictions, like method A, but predictors are 
now rewarded only to the extent that they perform bet
ter than random; predictors that get less than or equal to 
503 correct prediction receive a score of zero. Method A 
gives maximal reward to a generator when a predictor is 
unable to make any correct predictions, whereas method 
B gives maximal reward when a predictor performs no 
better than random. No other experiment parameters 
are modified between these two scoring methods. 

Figure 3: Performance of Best Predictors vs. Best Gen
erators (Methods A, left, and B, right). The champion 
predictors are arranged along the X axis in the order in 
which they appear in evolutionary time. The Y axis is 
prediction performance as percent better than random 
guessing. 

With each scoring method, we collect the champion 
predictor and generator from each generation and play 
the two sets of champions against each other. Pre
dictors perform considerably worse than in the fixed
environment substrate tests described above. With 
method A the average prediction rate is 133 better than 
random (56.53 correct), though many predictors per
form 203-303 better than random, as shown in Figure 
3a. Method B gives an average prediction rate of 63 
better than random (533 correct); these data, shown 
in Figure 3b, have a standard deviation of 0.03 - less 
than half that of Figure 3a. The predictor scores alone 
are not particularly informative. We must look at the 
generators to discover why these scores are so low and 
whether they are low for the same reason. 

Our principle method of measuring generator behavior 
is to take entropy measurements over a range of window 
sizes; Figures 4 and 5 graph these entropy contours for 
the best generators that arise over evolutionary time in 
sample runs for scoring methods A and B, respectively. 
These contour graphs indicate the extent to which the 
generators can be predicted when observing their behav
ior with various window sizes. 



Neither figure suggests the presence of an arms race -
generator characteristics do not change during the runs. 
The contours produced by method A drop rapidly; 
this indicates that the generators are substantially pre
dictable and regular. In contrast, the contours produced 
by method B decline gradually and consume a much 
greater volume of space, indicating considerably more ir
regular (unpredictable) generator behavior. This differ
ence results simply from the change in scoring method. 

Figure 4: Generator Behavior by Scoring Method A. 

Window Slz• 

Figure 5: Generator Behavior by Scoring Method B . 
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Significantly, Figure 5 shows that the best genera
tor from the initial population is already of relatively 
high order and entropy, while Figure 4 does not - not 
because such generators do not exist within the ini
tial population of this run, but rather because they are 
not as adaptive to scoring method A. That low-order, 
regular generators out-score irregular ones by method 
A indicates that simple prediction strategies can be 
elicited from the initial predictor population - predic
tion strategies against which the most adaptive genera
tors act as potent anti-signals, sequences that make pre
dictors perform worse than random (Zhu & Kinzel 1997). 
Since the generators are ballistic, they require some ho
mogeneity amongst the predictors in order to be viable 
as anti-signals. Consequently, the selected-for generators 
must reflect this homogeneity and thus do not provide 
a suitably diverse environment for subsequent predictor 

evolution: the predictors do evolve to counter the genera
tors, but through specialization instead of generalization. 
At this point, much of the evolutionary turnover is due to 
exploitation of peculiar weaknesses in the agents. Rather 
than enter an arms race, the two populations form loose 
food-chain relationships and fall into a circular pattern 
of convention chasing - a mediocre stable-state. 

Much like the CIAO graphs of (Cliff & Miller 1995), 
Figure 6 shows the results of playing the champion 
predictors against the champion generators that were 
evolved by scoring method A. Each position on the axes 
represents a moment in evolutionary time when a change 
in champion occurred. A column (going up) thus shows 
a particular predictor champion playing against all the 
generator champions in the order in which they reigned 
during the run; similarly, a row (going right) shows a par
ticular generator champion playing against all predictor 
champions in the order in which they reigned. The data 
are thresholded such that a white point represents a pre
diction score of ~ 40% better than random, and black 
points < 40%. 

The important details are the many prominent hori
zontal and vertical lines. The pattern of a line serves 
to characterize an individual predictor or generator with 
respect to the opposing population. For example, cham
pion generators #61, #100, and #129 have very similar 
(horizontal) profiles regarding which champion predic
tors can predict them. The gaps in these lines indicate 
periods where the predictor champion has lost some abil
ity to predict this class of generator behavior. This re
peated appearance and loss of particular generator and 
predictor behaviors is the manifestation of convention 
chasing. 

PrlKfictor 

Figure 6: Evidence of Convention Chasing. 

A frequently effective prediction behavior seen with 
scoring method A is to simply predict all ones or zeros; 
this strategy is general in the sense that it provides per
formance similar to random guessing, on average. Nev
ertheless, this strategy also dampens any tendency to 
evolve generator complexity or irregularity: because a 
random generator can cause it to do no worse than a sim-



244 

ple oscillator, there is nothing to be gained by evolving or 
maintaining irregular generators. In contrast, irregular 
generator behavior is clearly adaptive by scoring method 
B because it guarantees a minimal predictor score, re
gardless of what the predictor does, short of specialized 
memorization. Thus, method B defines an optimal gen
erator strategy and makes the game closed-ended. The 
anti-signal behavior from method A does not represent 
an optimal generator solution, however, because its ef
fectiveness depends entirely upon the simplicity and ho
mogeneity of the predictor population. 

The key observations of our analysis result from be
ing able to characterize the nature of adaptiveness with 
respect to a known environment, and are independent 
of the mechanics of evolution, due to the evolutionary 
algorithm (GNARL). The utility of isolating the con
tributions made by these two components to an evolu
tionary system's operation is considerable. Historically, 
much more attention is paid to the algorithmics than 
to the environment. This imbalance is perhaps due to 
the inherent opaqueness of most problems domains with 
regard to adaptiveness. Because information theory pro
vides tools to analyze and synthesize agents, our domain 
allows detailed exploration of adaptiveness in isolation 
from the vagaries of mutation operators, reproduction 
schemes, and so on. 

The Full Game 

For the full-game, where all three populations partici
pate, we keep scoring method B, to provide a pressure 
to evolve irregular generators. The tension between the 
opposed requirements of being unpredictable to hostile 
opponents while being predictable to friendly partners is 
the feature of interest in the full-game . In this case, a 
reasonable intuition might expect these opposing forces 
to stifle any possibility of an arms race; to the contrary, 
we believe this tension to be a necessary ingredient. Two 
particular runs of the full-game are discussed below; the 
first run displays features of an arms race, while the sec
ond run exhibits a phenomenon more typical of the full
game setup, one that likely subsumes the arms race dy
namic. 
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Figure 7: Generator Behavior in First Full-Game Run . 

Evidence of the arms race is found first through en
tropy contour graphs. Figure 7, unlike Figures 4 and 
5, shows a general increase in the order and entropy 
of the best generators over evolutionary time; that is, 
higher-order generators are eventually required to keep 
the hostile predictors at bay while remaining predictable 
to the friendly predictors, ostensibly because the hostile 
predictors have mastered simpler generator behaviors. 

From each generation of the run we save the best 
generator, friendly predictor, and hostile predictor and 
play these champions against each other to look for ev
idence of such skill accumulation in predictors. Figure 
8 shows how well hostile predictor champions perform 
against generator champions. The shade of the data 
point refers to the success of the predictor in the match; 
lighter shades indicate better prediction. 

J 

Figure 8: Champion Hostile Predictors vs. Champion 
Generators. Lighter shade indicates greater predictor 
success. 
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Figure 9: Average Scores of Champion Hostile Predic
tors against Champion Generators . 

Figure 9 graphs the average performance of each 
champion predictor against the entire set of champion 
generators, that is, the average value of each column of 
Figure 8. Starting approximately with predictor #18, 
we see a clear accumulation of skill as the predictors 
evolve. The first group of generators to be mastered is 
the set #11-#25, then generators #26-#31 (starting 
around predictor #23), and finally generators #32-#45 



(starting with predictor #27). The generators numbered 
#46 and higher come to be predicted, on the whole, with 
moderate success (up to about 503 above random). 
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Paradoxically, Figure 8 appears to show that predic
tors # 1-# 17 already predict a rather wide range of gen
erators. This seems to contradict the view that predic
tors require evolution to generalize. If we look at Figure 
9, we see that predictor #15, for example, performs no 
better on average than predictor #25. But, predictors 
#15 and #25 have very different characteristics, accord
ing to Figure 8; predictor #15 scores 403-503 above 
random against most generators, whereas predictor #25 
does no better than random against many, but near per
fect against others. Thus, predictor #25 is specialized. 
Yet, predictor #15 is a generalist only in a weak sense be
cause it does not effectively adapt its behavior to match 
different generators. In contrast, predictors that arise 
later in the run (e.g., #40) actually master a variety of 
generators, and exhibit a more substantive form of gen
eralization. 

In summary, these data suggest a decomposition of 
the arms-race notion into finer-grained events. Figures 
8 and 9 suggest that predictor ability increases through 
accumulation of specific and distinct skills rather than 
a more diffuse improvement of a monolithic prediction 
strategy. Figure 7 allows us to see how generators evolve 
in response. 

Figure 10: Punctuated Shifts in Generator Behavior 
from Second Full-Game Run. 

More typically, however, the full-game exhibits punc
tuated shifts in generator behavior, from simple to com
plex and back again, rather than the monotonic increase 
in complexity indicative of an arms race. Figure 10 shows 
one such example; indeed, Figure 7, used to argue for 
the presence of an arms race above, also shows abrupt 
retreats in generator complexity. To help us discover 
the adaptive utility of these sudden behavioral changes, 
Figure 11 plots, from top to bottom, average population 
fitness of the friendly predictors, hostile predictors, and 
generators, and order of the most fit generator over evo
lutionary time. We see that, on average, generators are 

able to behave more predictably to their friendly part
ners than to their hostile opponents almost throughout 
the run, as generator scores rarely fall below 0.5; average 
generator fitness increases, by definition, with increased 
difference between average friendly and hostile predictor 
fitness. 
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Figure 11: Fitness Averages and Best Generator Order. 

We can develop an intuition of the dynamics in this 
run if we consider how generator order corresponds to fit
ness; particularly, we wish to pay attention to when, and 
how frequently, generator order changes. The periods of 
greatest stability in generator order always span the on
set and duration of a period of generator success, that 
is, a period during which generators and their friendly 
predictor partners are most easily and effectively able to 
cooperate without falling prey to the hostile opponents. 
Generators stably maintain relatively low-order behavior 
during these periods. 

Nevertheless, this very stability allows the hostile pre
dictors to eventually learn the current behavioral con
vention, as evidenced by their fitness values. Once both 
populations of predictors are of comparable ability, gen
erator fitness is minimal. Empirically, this tends to be 
the moment at which the order of champion genera
tors becomes unstable, often alternating between very 
high-order and low-order behaviors. We conjecture that 
this period of generator instability injects noise into 
the evolutionary process of the predictor populations 
such that the two, presumably similar, populations once 
again diverge. When the two predictor populations be
come suitably differentiated, some medium-order genera
tor is found that only the friendly predictors can predict. 
Thus, we enter a period of renewed generator stability 
and success. While further analysis is required to con
firm this model of generator and predictor interaction, 
Figures 10 and 11 clearly show that rather than con
tinuously improve predictor ability over the entire run, 
the system achieves mediocrity by repeatedly initiating 
short-lived arms races - a particularly interesting MSS. 

We must recognize, however, that the desired arms 
race does not simply involve competition, but also en-



culturation towards convention. Presently, the genera
tors and friendly predictors have no opportunity to de
velop their convention of cooperative behavior in isola
tion; once hostile predictors latch onto their current con
vention, the opportunity to evolve a more complex con
vention is long past. This issue may very well require a 
richer model of coevolution that encompasses both "pub
lic" and "private" interactions. Giving the generators 
the ability to distinguish friend from foe does not solve 
this problem, as a private sign of species "membership" 
must still be evolved. 

The Question of Learnability 

The central tenet of coevolution deems that an environ
ment must be neither too difficult, nor too easy, for learn
ing to take place. But, what precisely constitutes an 
extreme environment for a particular learner in a partic
ular domain is a question usually left unasked out of faith 
that coevolutionary dynamics will correctly maintain a 
balanced environment, thus obviating the need to know. 
More seriously, most domains do not provide an obvi
ous method of characterizing environment learnability, 
nor of constructing environments of arbitrary hardness. 
Our domain suggests ways in which to investigate not 
only the question of learnability, but also the question of 
what is really learned: to what extent might learning in 
one environment confer knowledge that is applicable in 
another? This kind of investigation is enabled only by 
the existence of a behavioral metric. 

What's Too Easy? If a learner is not sufficiently chal
lenged, nothing will be learned. The friendly predictors 
coevolved with the generators in the first half-game de
scribed above had such an impoverished environment. 
This half-game merely converged onto the simplest of 
conventions. When we play these predictors against the 
generators evolved in the full-game, they perform very 
poorly - 123 better than random, or roughly 563 pre
diction. Curiously, the generators frequently cause the 
predictors to behave very differently than they do against 
their "native" half-game opponents. Yet, the perfor
mance the predictors do achieve above random stems 
from games where they predict all Os and the generator 
has slightly more Os than 1 s. 

What's Too Hard? If a learner is overwhelmed, noth
ing will be learned. Recall that, in the competitive half
game with scoring method B, the generators become rea
sonably complex and the hostile predictors perform only 
63 better than random. The predictors do not appear 
to learn at all over the run. Consequently, we might as
sume that the environment provided by the generators is 
too hard. Yet, when we play these very same predictors 
against the generators from the full-game depicted in 
Figure 7, we are surprised to see that the predictors have, 
in fact, learned something. Figure 12a shows that some 
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of these predictors actually perform as well as those co
evolved in the full-game itself, though the skill displayed 
by the group of half-game predictors is very inconsistent. 

This result begs the question of how well the best full
game predictors fare against the complex generators of 
the half-game. Indeed, they perform very poorly. This 
time we are not surprised, however, because we know 
from comparing Figures 5 and 7 that the full-game did 
not produce generators as complex as those seen in the 
competitive half-game. The full-game predictors cannot 
reasonably be expected to perform well versus genera
tors much harder than those against which they evolved. 
Thus, the half-game generators confer adaptiveness to 
the full-game generators, but not vice versa. 
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Figure 12: A (left): Performance of champion predictors 
of competitive half-game vs. champion generators of full
game; B (right): Predictors evolved against hand-built, 
chaotic generator show no improvement over evolution
ary time against champion generators of first full-game. 

Can we construct an environment that is too difficult 
for substantial learning to occur? To find out we use 
the logistic function as the sole sequence generator (in
stead of a population of neural networks) against which 
we evolve predictors. When the logistic function's con
stant is set to 4.0 and its output values are thresholded, 
it yields a binary sequence of true entropy h = 1.0. 
Since this generator will cause, on average, predictors 
to perform no better than random guessing, predictors 
will all receive the minimum fitness of zero with scor
ing method B. This makes the system behave equiva
lently to random search. Figure 12b shows that predic
tors thus evolved generally perform no better than 303 
above random (653 prediction) when played against the 
full-game generators. Indeed, the lion's share of this 303 
stems from predicting the single band of similar genera
tors numbered 11 through 25 in Figure 8. Therefore, this 
pathological control is a significantly harder environment 
for evolving general prediction ability than the complex 
generators of the half-game. The prediction task is non
trivial and does not yield to simple random search. 

Maintaining the Balance That cooperative half
game predictors are ill-prepared to play against full
game generators is not a particularly compelling result. 
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But, we also find that competitive half-game predictors 
perform inconsistently against full-game generators, and 
predictors evolved against the logistic function do poorly. 
Finally, predictors evolved from a different run of the 
full-game do relatively well against the full-game gener
ators of Figure 7, ranging mostly from 303 to 603 above 
random prediction. We now see a picture consistent with 
the hypothesis of learnability - coevolutionary progress 
is heightened when a balance of skill can be maintained 
between participants. 

Conclusions 

The information-theoretic tools described in this paper 
allow us to measure the complexity of an evolved gen
erator and construct a predictor that uses an arbitrar
ily large order statistic. Conspicuously, we do not di
rectly build generators of known complexity, but rather 
we evolve them. Further, in this paper the power of 
evolved predictors is measured only indirectly, with re
spect to the evolved generators. We have recently built 
new tools that will allow us to directly measure predic
tor power and construct regular generators of arbitrary 
complexity. 

The experiments described here are suggestive of the 
wide variety of questions our domain allows to be ex
pressed. Our game provides not only a powerful metric 
of behavior, but also the ability to explore convergent 
and competitive dynamics and their interaction. The do
main allows us to begin refining key notions in coevolu
tionary learning, namely arms-race dynamics, mediocre 
stable-states, and learnability. 

By hand-building agents and environments we can ar
tificially create situations that may arise during coevo
lution. This allows us to systematically test our game, 
our substrate, and coevolutionary dynamics. We dis
cover, for example, that the ability of the substrate to 
successfully perform the opposing roles of our game does 
not guarantee that coevolution will find these solutions· 
just because a substrate can do X and Y does not mea~ 
that both will arise automatically when the substrate is 
placed in a coevolutionary framework. 

We find that open-ended coevolution is not necessar
ily synonymous with a purely competitive framework; 
our game requires a mixture of cooperative and com
petitive pressures to avoid simple mediocre stable-states 
and closed-endedness. In this sense, our result agrees 
substantially with (Akiyama & Kaneko 1997). 

Finally, because our domain allows us to characterize 
the difficulty of an environment, we can identify arms 
races that have broken because a participant has become 
too good. Indeed, we can begin to tease apart the many 
possible causes of system disfunction. While every do
main has unique peculiarities, we believe the parsimony 
of our prediction game extends the validity and applica
bility of our results to other domains. 
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Abstract 

The evolutionary adaptation of mutation rates is known 
to play an important role in the molecular evolution of 
life as well as in evolutionary algorithms (such as evolu
tion strategies). In molecular life, active adaptation of 
mutation rates is associated with an energy cost. How
ever, there is a lack of computer models of evolution 
which include such an energy cost. 
In this contribution, energy dependent mutation rate 
adaptation in computer models and evolutionary algo
rithms is explored. A general modelling concept is intro
duced and demonstrated with LindEvol-GA, a computer 
model of plant evolution. As an extension of the ba
sic modelling concept, the energy cost of mutation rate 
adaptation can be represented as a fitness penalty. This 
allows the application of energy dependence to mutation 
rate adaptation in all types of evolutionary algorithms 
which operate by using fitness values. It is shown that 
the use of such fitness penalties can prevent premature 
convergence resulting from the evolution of excessively 
small mutation rates. 

Introduction 
Mutations are the source of new variations and diversity 
in molecular evolution as well as in Artificial Life mod
els of evolution and evolutionary algorithms. However, 
mutation limits the genetic complexity of organisms by 
imposing an error threshold (Schuster & Swetina 1988; 
Maynard Smith 1989). In molecular biology, it is known 
that mutation rates are reduced by several orders of 
magnitude through various mechanisms such as DNA 
proofreading (Watson et al. 1987, p. 340). Without 
these mechanisms, which require energy, error thresh
olds would prevent life forms of the genetic complexity 
observed today from being evolutionarily stable. 

Artificial Life simulations of evolution and evolution
ary algorithms frequently use random perturbations such 
as adding Gaussian noise or flipping bits for modelling 
mutation. In simple systems, these operations are ap
plied using fixed control parameters (e.g. fixed param
eters for Gaussian noise or constant mutation rates). 
More advanced approaches use various types of adap
tation of mutation rates (Back 1992a; 1993; Oster
meier 1992). In evolution strategies, mutation rates 

are typically subject to evolution themselves (Rechen
berg 1994). This approach has also been applied to ge
netic algorithms (Back 1992b). A variety of other Ar
tificial Life models with adaptive mutation rates (Ma
ley 1995) or evolvable mutation mechanisms (Ray 1992; 
Ikegami & Hashimoto 1995; Ofria, Brown, & Adami 
1998) also exists. However, energy dependence of mu
tation rate adaptation is not captured by these models. 

Artificial Life models of evolution are appropriate test 
systems to investigate the effects of energy dependence of 
mutation rate adaptation on the course of evolutionary 
processes. For evolutionary algorithms, coupling muta
tion rate adaptation to an energy cost may be interest
ing as an approach to prevent simulated evolutionary 
processes from evolving excessively low mutation rates 
and converging prematurely. In this contribution, some 
support for this hypothesis are presented. 

Concept 
The basic approach for extending computer models of 
evolution in order to allow for individual based, energy 
dependent adaptation of mutation rates consists of the 
following steps: 

• A scalar (real valued or integer) component, called 
the mutation modificator is added to the phenotype 
description of individuals and initialized to zero upon 
creation of an individual. Let µ(i) denote the muta
tion modificator of individual i. 

• Two new control parameters, called the mutation 
modification factor denoted by q, and the mutation 
modification penalty denoted by p, are introduced. 

• Individuals are enabled to change their mutation mod
ificator. Changing the value of the mutation modifi
cator by one unit is associated with an energy cost of 
p (i.e. the mutation modification penalty). 

• The effective individual mutation rates are calculated 
by 

m(i) = m · qµ(i) (1) 
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where m denotes the global mutation rate and m(i) 
denotes the effective mutation rate for individual i. 
After mutating the genome with this individual muta
tion rate, the mutation modificator of the individual 
is reset to zero. The global mutation rate is typically 
given as a control parameter, but it could also be com
puted according to arbitrary rules built into the sim
ulation. 

The method for calculating effective individual muta
tion rates (eq. 1) was designed to enable the evolution of 
all individual mutation rates greater than zero while not 
allowing the evolution of zero mutation, which would 
freeze evolution or negative individual mutation rates, 
which would make no sense. Other functions with these 
properties may in principle also be used in place of eq. 
1. 

The mutation modification factor q can be used to per
form control runs in which q is set to 1, which effectively 
disables mutation rate modification and thus allows to 
compare results with and without this feature. 

Many evolutionary algorithms do not include an ex
plicit energy representation. However, in a large array 
of evolutionary algorithms, fitness values are assigned to 
individuals. In models with explicit energy representa
tion, an individual's ability to allocate energy usually 
implicitly determines its fitness and reproductive suc
cess. Explicit fitness values serve the same purpose in a 
more direct way. Thus, associating mutation rate modi
fication with a fitness penalty is a logical extension of the 
concept of energy dependent mutation rate adaptation. 

The following section illustrates the application of the 
concept of energy dependent mutation rate adaptation 
using two models as examples. 

Models 
LindEvol-GA 
LindEvol-G A is a model in which simulated plants grow 
in a two dimensional lattice world (see (Kim 1996; 
1997) for details). Plant cells obtain energy units by 
absorbing light. Each plant has a genome consisting of 
several genes. Gene activation is triggered by the local 
structure surrounding a cell, resulting in the cell carry
ing out an action specified by the activated gene. Plant 
growth takes place by cells performing divide n actions, 
where the parameter n, which determines the position of 
the new cell being produced, is also encoded in the ac
tivated gene. Division is only possible at the expense 
of an energy unit. All genes which are activated during 
the growth of a plant are collectively called the devel
opmental program of the plant. Plants grow from single 
germ cells for a finite vegetation period, at the end of 
which the number of energy containing cells in a plant is 
assigned as a fitness value to the corresponding genome. 
The subsequent generation is then assembled by a ge
netic algorithm procedure. 

There are three types of mutation in LindEvol-G A, re
placement, insertion and deletion. The rates with which 
they occur per site and time step are control parameters, 
labelled mrepl, mins and mde!, respectively. 

Following the concept described above, the set of pa
rameters describing a plant was extended to include an 
integer valued mutation modificator. Two new actions, 
called mut- and mut+, were introduced. These can be 
performed by cells, their effect is to decrement or incre
ment the mutation modificator, respectively. Both ac
tions consume one energy unit; thus, the mutation mod
ification penalty is implicitly fixed to be one and is not 
specified as a control parameter. The mutation mod
ification factor q was added to the control parameters 
of LindEvol-GA. All three mutation rates are modified 
according to eq. 1: 

ffirepl ( i) = ffirepl · qµ( i) 

mins(i) = mins. qµ(i) 

(2) 

(3) 

(4) 

Evolutionary algorithms 

In evolution strategies, mutation is traditionally imple
mented by adding Gaussian noise to the real valued 
genome components. Additionally, genomes contain val
ues for the standard deviation of Gaussian noise for each 
individual component. These standard deviation values 
are themselves subject to mutation and thus to evolu
tionary adaptation. This adaptation of standard devi
ations has been modified to be "energy dependent" by 
associating it with a fitness penalty. 

A genome in this evolution strategy with fitness depen
dent standard deviation adaptation (EFDSA for short) 
consists of a vector of d real valued components denoted 
by x = (xo, ... , Xd-d and a vector of d mutation mod
ificators, denoted by fl,= (µo, ... ,µd-1), where dis the 
dimensionality of the fitness landscape. The selection 
scheme used in EFDSA is tournament selection, only 
asexual reproduction was employed. EFDSA has these 
control parameters: 

symbol meaning 
d Dimensionality of the fitness function 
m Global standard deviation for mutation, 

subject to energy dependent modification 
M Global standard deviation for mutating the 

mutation modificators, cannot be modified 
q Mutation rate modification factor 
p Mutation rate modification penalty 
n Population size 

The penalty associated with mutation rate modifi
cation is introduced by converting "raw" fitness value 
Fraw ( i) = F(x( i)) (i.e. the fitness value calculated for 
genome i by the fitness function) into an effective fitness 
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LindEvol-GA run with energy dependent mutation rate adaptation (q = 2): 

Control run with q = 1: 

1.00,-----------------------------------~ 

Figure 1: Results of a LindEvol-GA with energy dependent mutation rate adaptation and of a control run where 
mutation rate adaptation is disabled by setting the modification factor to 1. 

value which is used during selection: 
. d-1 

F ( .) _ Fraw(i) - Fmin + . "'j ·( ')j 
eff i - F - F . p ~ µ1 i 

max min j=O 
(5) 

Here, F max denotes the maximal and F min denotes 
the minimal fitness value in the population at the cur
rent generation. EFDSA minimizes the fitness function, 
therefore the penalty is applied by increasing effective 
fitness. If p is set to zero, this conversion simply rescales 
the fitness values to the interval [O, l]. This rescaling 
allows application of the penalty such that it is indepen
dent of the absolute raw fitness values. 

The fitness function used in this contribution are: 

Ji= llill 
ho= - cos(21fllxll) + 0.1·llxll+1 

d-1 

f6 = L(xJ - 10cos(21fXj) + 10) 
j=O 

(6) 

(7) 

(8) 

These are known as the sphere function (eq. 6), Sa
lomon's function (eq. 7), and Rastrigin's function (eq. 
8); their definition and their indexing was taken from 
(Salomon 1996). 

Mutation is performed by replacing each component 
of x by Xj + Gauss(O, m · qµ' ). Subsequently, the com
ponents of ji, are replaced by µi + Gauss(O, M). j1 is 
not reset to 0, its value is inherited because j1 is consid
ered to belong to the genetic, and not to the phenotypic 
description of individuals in EFDSA. A mutation mod
ification vector in the phenotype would be an identical 
copy of the i1 created in each generation at the cost im
plied by eq. 5, therefore, the vector i1 can directly be 
taken from the genome for mutation rate modification 
as well as for penalty calculation and there is no need 
for an explicit representation of a phenotypic mutation 
modification vector. 

Results and discussion 
LindEvol-GA 

Fig. 1 shows results from runs of LindEvol-GA with a 
selection rate of s = 0.8 (i.e. 803 of the genomes in the 
population are replaced in each generation) and muta
tion rates set to mrepl = m;ns = mdel = 0.1. With these 
settings, only rather simple developmental programs can 
evolve without modification of mutation rates (see be-



World at generation 1400: 

World at generation 1700: 

World at generation 4999: 

Figure 2: Pictures of plant communities observed in the 
LindEvol-GA run with energy dependent mutation rate 
adaptation. The entire lattice worlds (150 * 30 sites) 
are shown. Plant cells are shown as boxes. Cells with 
different gray shades belong to different plants. 

Figure 3: Picture of plant community observed in the 
LindEvol-GA control run at generation 4999. 

low). In the run with energy dependent mutation rate 
modification enabled, the mutation modification factor 
was set to = 2, the control was run with q = 1. 

For the run with mutation rate adaptation, the time 
series of mutation modificator values immediately re
veal that the run can be divided into phases in which 
no relevant mutation rate modification takes place and 
other phases in which effective individual mutation rates 
are significantly lowered (the latter extending approx
imately from generation 1400 to 1600, a short period 
around generation 2100 and from generation 2300 un
til the end of the run). During times with mutation 
rate reduction, both average and maximal fitness values 
are significantly higher than in phases without mutation 
rate modification. Likewise, the number of active genes, 
which is an indicator of complexity at the level of de
velopmental programs, increases in phases of mutation 
rate reduction. Furthermore, distance distribution com
plexity, which was introduced as a measure of structured 
diversity in (Kim 1996), exhibits elevated levels strongly 
correlated to phases with mutation rate reduction. Fi
nally, the pictures of plant communities shown in Fig. 2 
demonstrate that complex phenotypes are abundant in 
phases with mutation rate reduction whereas they are 
seen only rarely in phases without mutation rate modi-
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fication. 

In the control run, no evolution of negative mutation 
modificators takes place. Fitness values and number 
of active genes remain at lower levels, as does distance 
distribution complexity. Fig. 3 shows that the pheno
types also remain simple. Thus, adaptation of mutation 
rates can be identified as necessary for the evolution of 
complexity which is evidenced by the observations listed 
above. 

In (Kim 1996), it was discussed that a developmental 
program consisting of r genes can only be evolutionarily 
stable at a given selection rate s if the mutation rates 
are below the error threshold t D ( s, r), and an estimation 
for the critical error threshold was derived for the case 
that only replacement mutations are used. For the case 
that all three mutation rates are set to the same value, 
mrepl = mins = mde1 = m, an estimation for the critical 
error threshold of m can be derived in a similar way: 

merit = 1 - 6\/1 - S (9) 

If m exceeds merit, no developmental programs with 
r or more genes can be evolutionarily stable (because 
even at maximal reproductive success, the statistically 
expected number of descendants inheriting the develop
mental program without alterations is lower than one). 
Equation 9 can be rewritten to estimate the maximal 
length of developmental programs (in genes) that can be 
evolutionarily stable at given values for m and s: 

log(l - s) 
rmax = 6log(l - m) (10) 

For m = 0.1 and s = 0.8, the setting in the run 
shown in Fig. 1, this estimation yields rmax = 2.55, 
thus, developmental programs with more than 2 genes 
cannot evolve without mutation rate reduction in this 
run. This estimation correlates well to the observed av
erage numbers of active genes which never exceeds 2 in 
phases without mutation rate modification. However, in 
phases where mutation rates are lowered, the average 
number of used genes substantially exceeds the thresh
old of 2.55. These observations prove that the energy 
dependent mutation rate reduction which takes place in 
the run presented here is indeed necessary for the evolu
tion of developmental programs with a complexity above 
the threshold imposed by the unmodified mutation rates. 

EFDSA 

The effects of mutation rate adaptation in the EFDSA 
system were explored by simulation series with the fol
lowing control parameters: 
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Figure 4: Minimal fitness values obtained after 1000 gen
erations with the sphere function with energy dependent 
standard deviation adaptation (triangles) and without it 
(crosses). Both axes have a logarithmic scale. 
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Figure 5: Minimal fitness values obtained after 1000 gen
erations with Salomon's function with energy dependent 
standard deviation adaptation (triangles) and without it 
(crosses). Both axes have a logarithmic scale. 

parameter value 
Genome space dimensionality d=8 
Global standard deviation for muta- m = 0.1 
ti on 
Standard deviation for mutating µ M = 1.0 
values 
Mutation modification factor q=2 
Mutation modification penalty p= 

10-5 ..• 1.0 
Population size n = 500 
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The first simulation in a series was performed with p = 
10-6 and for each subsequent simulation, the penalty 
was increased by 2% (with respect to the preceding run). 
Each simulation was run for 1000 generations. For each 
penalty setting, a control with the mutation factor set to 
1 was also performed. Other variations of the mutation 
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Figure 6: Minimal fitness values obtained after 1000 gen
erations with Rastrigin's function with energy dependent 
standard deviation adaptation (triangles) and without it 
(crosses). Both axes have a logarithmic scale. 

modification factor were not tested because for any y > 
0, keeping q constant and changing p to y · p results in the 
same penalty / modification table as keeping q constant 
and setting p to pY. (Notice, however, that this does not 
mean that a simulation run with q and y · p is identical 
to one run with p and pY unless M is also adjusted). 

Series were run using the three fitness functions given 
in equations 6, 7 and 8. The results are shown in Figures 
4, 5 and 6. Common features seen in these three Figures 
are: 

l. Optimal minimization results are achieved with inter
mediate settings of the mutation modification penalty. 

2. As the penalty increases above this optimal range, 
minimization levels approach those observed in the 
controls. 

3. At penalty settings below the optimal range, mm1-
mization results are significantly suboptimal. (In the 
case of Rastrigin's function, they are even worse than 
the controls.) 

The controls exhibit some deterioration at high 
penalty values. The reason is that disabling adaptation 
has no effect on the penalty term p · I:~:~ lµj I in the 
effective fitness (see eq. 5). Thus, in the control runs 
minimization of this term takes place simultaneously 
with minimization of the fitness function. When the 
penalty is set to large values, minimization of the penalty 
term dominates over the optimization of the fitness func
tion resulting in the observed deterioration. This phe
nomenon can be interpreted as hitch-hiking, where a sub
optimal i hitch-hikes on top of a µ that minimizes the 
penalty term well. 

With Rastrigin's function (Fig. 6), lower penalty set
tings (ranging approximately from 5.10-5 to 10-2 ) result 
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Figure 7: Time series from an individual simulation us
ing the sphere function and from the corresponding con
trol simulation. p was set to 0.0004822 in both runs. The 
x and µ values are averaged over the entire population. 

in substantially improved results in some cases. Rastrig
in's function has a large number of local minima, and 
here, some amount of hitch-hiking turns out to be ben
eficial by allowing for hitch-hiking out of these minima. 

The sphere function has only a global minimum and 
no additional local minima, so the EFSDA algorithm 
converges towards the global minimum until arrives at 
an equilibrium where mutation prevents further conver
gence. The control simulation shown in Fig. 7 demon
strates that the system reaches this equilibirium within 
the 1000 generations that were run. It can be concluded 
that the improvement of minimization seen at appropri
ate penalty settings is a result of mutation rate adapta
tion, allowing closer approximations to the global min
imum to be evolutionarily stable, as it is described for 
LindEvol-GA above. It should be noted that the simu
lation with adaptation enabled shown in Fig. 7 does not 
reach equilibrium within 1000 generations. This means 
that the optimization results shown in Fig. 4 do not nec
essarily reflect equilibrium minimization levels. 

Salomon's fitness function can be thought of as a vari
ant of the sphere function in which suboptimal minima 
are layered in spherical surfaces around the global mini-

simulation with p = 5 · 10-6 
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Figure 8: Time series from two individual simulations 
using Salomon's fitness function. With p = 0.04676, the 
best minimization result was observed within the series, 
whereas the evolutionary process converges prematurely 
with p = 5 · 10-6 . 

mum which is located at the coordinate origin. Thus, the 
algorithm can prematurely converge and become stuck 
in a suboptimal minimum of this fitness function. Fig. 
8 shows time series from two individual runs with Sa
lomon's function which demonstrate that such prema
ture convergence occurs when the mutation modification 
penalty is set too low. In the simulation performed with 
p = 5 · 10-6 , the system reaches an equilibrium state in 
which the chance for further progress in minimization is 
extremely diminished by strongly negative averageµ val
ues. In the simulation run with p = 0.04676 (the optimal 
value identified in the series shown in Fig. 5), the aver
age µ values also reach an equilibrium, but in this case, 
the equilibrium values allow the system to cross some 
barriers between the local minima. As a result, the min
imization achieved after 1000 generations is substantially 
better than the one observed after 1000 generations with 
p = 5 · 10-6 . The phenomenon of premature convergence 
explains why the best minimization results are achieved 
with intermediate penalty settings for Salomon's func
tion. 

Rastrigin's function differs from the sphere function 



and Salomon's function in that it is not rotationally in
variant, and it was chosen for this contribution to demon
strate that optimal minimization at intermediate penalty 
settings is not a feature specific for sphere-like fitness 
functions. Rastrigin's function has a large number of lo
cal minima, and as a consequence simulations run with 
low penalty settings converge at local minima which are 
even worse than the minimization levels achieved by the 
controls, as can be seen in. Fig. 6. However, at interme
diate penalty settings, minimization results with adap
tation are substantially better than in the controls, and 
also, the best simulation of the series is found in this 
range. 

Since the sphere function has no local optima, the ob
servation of the best minimization results at interme
diate penalty settings cannot be explained by prema
ture convergence, as it was done above for Salomon's 
and for Rastrigin's function. With the sphere function, 
this phenomenon is due to differential speed of mini
mization, combined with the fact that equilibrium is not 
reached in all simulations, particularly in those with low 
penalty values, during the first 1000 generations. With 
low penalty settings, negative µ values tend to evolve 
quickly, resulting in a slowdown of minimization speed. 
Imposing a mutation modification penalty reduces the 
rate at which negative µ values evolve, resulting in faster 
progress of fitness function minimization over the first 
1000 generations. 

In summary, the EFDSA results demonstrate that fit
ness dependent standard deviation adaptation allows for 
optimization beyond the error threshold which is implied 
by the global standard deviation without the adaptation 
mechanism. Small penalty settings render the system 
prone to premature convergence. High penalty values 
make mutation rate adaptation so costly that it does 
not evolve at significant levels and consequently, results 
obtained using such penalty settings are not significantly 
different from the controls. For all three fitness functions 
that were explored, intermediate penalty values at which 
optimal minimization takes place were identified. With 
these intermediate settings, on the one hand the cost of 
adaptation is sufficient to counterbalance the tendency 
of evolving increasingly negative µ values and thereby 
to prevent or at least delay premature convergence and 
premature slowdown in evolutionary speed, while on the 
other hand, this cost is not so high that it prevents any 
significant adaptation. 

Conclusions and Ideas for Future Work 

It is a typical approach in Artificial Life to develop ab
stract methods to represent key principles of molecular 
life in order to investigate these principles using com
puter models (cf. (Langton et al. 1992, preface)). The 
principle investigated in this contribution is that muta
tion rate adaptation is coupled to an energy cost. The 
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formal method proposed to represent this principle is 
suitable for integration ito a large class of evolutionary 
algorithms and simulations. The application of this for
mal method was demonstrated using two systems, firstly 
LindEvol-GA, an Artificial Life model of plant evolution 
and secondly a simple evolution strategy. 

The LindEvol-GA results show that extending a simu
lation of evolution with the proposed method can indeed 
fundamentally change the evolutionary process. With 
energy dependent mutation rate adaptation, evolution 
of elevated complexity levels with respect to the control 
can be observed using various indicators. The exper
iments with an evolution strategy with fitness depen
dent standard deviation adaptation demonstrate that 
coupling mutation rate adaptation with a fitness cost 
can prevent premature convergence which occurs with 
unconstrained mutation rate adaptation. This suggests 
that energy dependence of mutation rate adaptation in 
molecular evolution may be more than a random feature 
that just inevitably results from the underlying physics, 
but that it may be important to keep evolution open
ended by preventing it to freeze at some locally stable 
state. This idea can be further investigated by additional 
experiments with LindEvol and other models. 

Preventing premature convergence is a potentially 
very useful property of energy dependent mutation rate 
adaptation for optimization by evolutionary algorithms, 
and it would be interesting to further explore this pos
sibility. For Salomon's and Rastrigin's functions, which 
have local, suboptimal minima, the best penalty values 
are larger than those for the sphere function. One may 
therefore speculate that rugged fitness landscapes can be 
minimized better with larger mutation rate modification 
penalties. Using e.g. NK fitness landscapes (Kauffman & 
Weinberger 1989), this issue may be systematically ad
dressed. It would also be interesting to evaluate the per
formance of evolutionary algorithms more extensively, 
e.g. as suggested in (Whitley et al. 1996) and (Salomon 
1996). 

Finally, it was seen that µ values may arrive at equi
libria in which fitness penalties counterbalance the evo
lution of further mutation rate reduction (Fig. 8). It 
would be interesting to find out how these equilibrium 
levels are related to the setting of the control parame
ters, and to possibly extend the theory of critical error 
thresholds to systems with energy dependent mutation 
rate modification. 
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Abstract 

The role of contingency (random events) in an artifi
cial evolutionary system is investigated by running the 
system a number of times under exactly the same con
ditions except for the seed used to initialize the random 
number generator at the beginning of each run. Twelve 
different measures were used to track the course of evo
lution in each run, and "activity wave diagrams" were 
also produced (Bedau & Brown 1997). The results of 19 
runs are presented and analyzed. The performance of 
every run was compared with each of the others using 
a non-parametric test (a randomization version of the 
paired-sample t test). When comparing absolute values 
of the measures between the runs, some significant dif
ferences were found. However, looking at the difference 
in values between adjacent sample points for a run, no 
run was significantly different to any other for any of the 
measures. This suggests that the general behaviour is 
the same in all runs, but the accumulation of differences 
results in significantly different outcomes. The results 
lead us to propose a rule of thumb for future experi
ments with the system: to check whether the outcome 
of any particular experiment is robust to contingency in 
the evolutionary process, at least nine runs should be 
conducted using different seeds for the random number 
generator, to be confident of seeing a variety of results. 
The results are likely to be applicable to other A-Life 
platforms of self-replicating computer programs, but at 
this stage can probably tell us little about the role of 
contingency in biological evolution. 

Introduction 
There is much debate in the field of evolutionary biology 
over the role of contingency ("historical accidents") in 
determining the course of evolution (see, for example, 
(Gould 1989), and, for a flavour of the ensuing debate, 
(Ridley 1993; Gould 1993; McShea 1993)). If evolution 
were to be re-run on Earth, starting from the same initial 
conditions and proceeding for another 4 billion years, 
encountering the same sorts of perturbations from the 
physical environment that it encountered the first time 
around, what sort of a world would exist today? Would 
homo sapiens evolve again, or might life not even make 
the transition from prokaryotic to eukaryotic cells, or 
maybe not even reach the cellular stage at all? What, 

in other words, would happen if "the tape were played 
twice"? 

The same question arises when considering artificial 
evolutionary systems, where we have the advantage of 
being able to "replay" evolution under experimental con
trol. Indeed, in considering the performance of any evo
lutionary system, we generally wish to disentangle the 
relative influence of three factors: (1) contingency, (2) 
performance due to the particular design of the sys
tem, and (3) performance which may be general to a 
wide class of evolutionary systems (Taylor & Hallam 
1997). However, considering the importance of these 
questions, very little has been published to date on the 
role of contingency in artificial systems. Fontana and 
Buss have done some excellent work on the subject, 
choosing to focus on self-maintaining organizations in an 
artificial chemistry, rather than presupposing the exis
tence of self-replicating entities (Fontana & Buss 1994b; 
1994a). Their results suggest that a number of generic 
organizational features may be expected to emerge in 
any comparable system. 

Fontana and Buss have not, as yet, witnessed the 
emergence of high-level self-reproducing entities in their 
work (and that was not their primary goal). There 
do, however, exist a growing number of A-Life systems 
which presuppose the existence of self-replicators (e.g. 
Ray's Tierra (Ray 1991), Adami et al.'s Avida (Adami 
& Brown 1994), Skipper's Computer Zoo (Skipper 1992), 
and our own platform, Cosmos (Taylor & Hallam 1997; 
Taylor 1997)). Most publications relating to these sys
tems mention in passing that the results being presented 
were typical of a large number of runs, but details are 
rarely given, and, to our knowledge, no systematic study 
of the role of contingency in such systems has yet been 
published. One factor that may have contributed to 
this omission is the difficulty of dealing sensibly with 
the huge amounts of data that such simulations can pro
duce, which can make it difficult to usefully compare one 
run with another. However, Bedau et al. have recently 
been developing a number of techniques for visualizing 
evolutionary activity, and have also proposed some quan
titative measures of evolution (Bedau & Packard 1991; 



Bedau et al. 1997; Bedau & Brown 1997). These anal
ysis tools provide some fairly straightforward ways of 
comparing the results of a number of evolutionary runs, 
both qualitatively and quantitatively. 
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The purpose of this paper is twofold: (1) to report 
an experiment that runs an artificial life system a num
ber of times, varying just the random number seed be
tween runs, in order to compare how each run evolves 
and therefore get some idea of the role of contingency 
in the system; and (2) to use a variety of measures and 
visualization techniques to compare the runs, and hope
fully to ascertain which are the most useful measures for 
such comparisons. The paper ends with a discussion of 
the results, including the extent to which they may be 
generalized to other evolutionary systems. 

The A-Life System 

Cosmos is a Tierra-like platform that supports a 
population of self-replicating computer programs living 
in an environment. Its design differs from Tierra 
in a number of ways, the most relevant of which, 
for the present discussion, are described below. For 
more details about Cosmos, refer to (Taylor 1997; 
Taylor & Hallam 1997), or look on the worldwide 
web at http://www.dai.ed.ac.uk/daidb/people/ 
homes/timt/research.html. The source code is 
available from the authors. 

Spatial organization For the runs reported in this 
paper, the environment was configured as a two
dimensional toroidal grid. There is evidence that such 
spatial organization, where interactions between pro
grams are restricted to a program's local neighbourhood, 
can promote heterogeneity and prevent premature con
vergence (Adami & Brown 1994). 

Energy collection At each time step, energy is dis
tributed throughout the grid. Programs must collect 
energy from the environment in order to execute their 
instructions. If a program's internal energy level falls be
low a certain threshold, it dies. In addition, a maximum 
population size can be specified for the system. If this 
is the case, when the population maximum is reached, a 
fraction of the programs are killed off stochastically, but 
those with low internal energy have a higher probabil
ity of being killed. Programs therefore have to concern 
themselves with energy collection as well as reproduc
tion, and thus have some degree of control over their 
own lifespans (i.e. those that collect more energy are 
less likely to be killed). 

Communication Unlike in Tierra, programs in Cos
mos can not directly read the code of other programs. 
However, any program can compose an arbitrary mes
sage (a string of bits) and transmit it to the local en
vironment, and any program can issue instructions to 
receive such messages from the environment and inter-

pret them how it wishes. However, in the experiments 
reported here, such communication did not evolve, so 
the programs generally had fewer ecological interactions 
than, for example, Tierran parasites that execute the 
code of other programs. 

Mutations and flaws As a run proceeds, variation 
may begin to appear amongst the programs in the en
vironment, caused by the action of two different mecha
nisms: (1) Mutations can affect any program, by the ran
dom flipping of one or more bits in the program's code 
or associated structures. The mutation rate is a system
wide parameter, and does not vary throughout the run; 
(2) Flaws. While a program in running, a flaw may occur 
in its execution. If this happens, the instruction which 
was about to be executed will, with equal probability, ei
ther be executed twice consecutively, or not at all. The 
rate at which flaws occur is determined by a parame
ter owned by each individual program. Being a part of 
the program, it is therefore possible for the flaw rate to 
evolve over time (by being changed by mutations) in a 
lineage of individuals. 

On a technical note, as this paper is concerned with 
the role of chance events in evolution, the choice of ran
dom number generator (RNG) is particularly relevant, as 
different types of RNG have different properties. Cosmos 
uses the bsd...random() RNG, which uses the linear feed
back shift register generation technique. bsd...random() 
does not suffer from some of the deficiencies of many 
versions of the standard random() RNG. 

Measurement Techniques 
In any population of self-replicating entities which are 
competing against each other for resources required for 
replication (e.g. energy and materials), there are three 
factors which determine the rate at which any particular 
type of replicator will spread throughout the population 
(Dawkins 1989). These are the life-span or longevity of 
the replicator, the rate at which it replicates (its fecun
dity), and the number of errors in makes while producing 
copies of itself (its copy-fidelity). A number of measures 
were chosen to track changes in each of these three fac
tors through an evolutionary run. 

For longevity, we looked at the age at death of each 
program. Specifically, for time slice windows of equal 
width from the start to the end of the run, we plotted 
the age at death of each program that died within that 
time slice window. Example plots are shown in Figure 2. 
The plots for measures of fecundity and copy-fidelity, de
scribed below, also used this windowing technique. For 
the plots for all three of these factors, the data is pruned 
by only plotting values for individual programs of types 
which achieved a concentration of at least two individu
als at some time during the run. In the plots, the dark
ness displayed at any point reflects the number of in
dividual programs taking that particular value at that 



particular time. 
For fecundity, we looked at two measures: the num

ber of time slices between the first and second successful 
replication of each program (the replication period) (this 
could obviously only be applied to programs that suc
cessfully replicated at least twice in their lifetime), and 
the length of programs. Example plots for replication 
period are shown in Figure 9. 

For copy-fidelity, we looked at three measures: the 
flaw rate, the number of faithful (error-free) replications 
made by individual programs over their lifetime, and the 
number of unfaithful replications. Example plots of these 
three measures are shown in Figures 3 and 4. 

In addition to these six measures, the population size 
throughout the run was also recorded, as was the popu
lation diversity (the number of different types of program 
in the population). 

Four measures suggested by Bedau et al. were used: 
the Activity (presence), Mean Activity (presence), Ac
tivity (concentration), and Mean Activity ( concentra
tion), along with their visualization technique of plot
ting "activity distribution functions" (also referred to as 
"activity waves"). The basic idea behind all of these 
techniques is the same, involving the notion of the evo
lutionary activity of each genotype (type of program) in 
the population: 

"the evolutionary activity a; ( t) of the ith geno
type at time t [is] its concentration integrated over 
the time period from its origin up to t, provided it 
exists: 

a;(t) = { 6~ c;(t)dt if genotype i exists at t 
otherwise 

where c; ( t) is the concentration of the ith genotype 
at t. A genotype's evolutionary activity ... reflects 
its adaptedness (relative to the other genotypes in 
the population) throughout its history in the sys
tem." (Bedau & Brown 1997) 

Activity (concentration) is defined at time t as 
I:; a;(t). Activity {presence) is defined similarly, but 
with c;(t) defined to simply reflect whether genotype i 
exists at time t, rather than being a measure of con
centration (i.e. c;(t) is 1 if genotype i exists at t, and 0 
otherwise). Mean Activity (concentration) and Mean Ac
tivity (presence) are defined as their respective Activity 
measures divided by the diversity (number of different 
genotypes) of the population at t. 

For a fuller explanation of these measures and the rea
sons they are defined as they are, refer to (Bedau et al. 
1997; Bedau & Brown 1997; Bedau & Packard 1991). 

To end this section, we acknowledge that paleobiolo
gists have developed their own suite of measures of bio
logical evolution. Daniel McShea has recently published 
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some particularly interesting work on tests for evolution
ary trends (McShea 1994), and definitions of complexity 
(McShea 1996; 1991). Ideally, we would like to be able 
to use the same set of measures for studying both nat
ural and artificial evolution. Unfortunately, the amount 
of evolutionary change occurring in Cosmos in the runs 
reported here is really very small compared to the sorts 
of macroscopic trends that McShea's measures were de
signed to track, so it is not clear that these measures can 
usefully be applied to artificial evolutionary systems (or 
at least to Cosmos) at present. 

Method 
Nineteen runs of Cosmos were initialized, each with ex
actly the same ancestor programs, and exactly the same 
parameter values except for the seed for the random 
number generator. 

Most of the parameters took on the system's default 
values; those that did not are listed in the Appendix. 
The most salient of these are grid_size, set to 40 (i.e. a 
40 x 40 square environment), max_cells_per_process, 
set to 800, and number_oLtimeslices, set to 300,000. 

For each completed run, the measures described in 
the previous section were investigated. To recapitulate, 
these measures were as follows: 

1. Program age at death 

2. Replication period (time between 1st and 2nd 
faithful replication) 

3. Program length 

4. Flaw rate 

5. Number of faithful replications per program 

6. Number of unfaithful replications per program 

7. Population size 

8. Population diversity 

9. Activity (presence) 

10. Mean activity (presence) 

11. Activity (concentration) 

12. Mean activity (concentration) 

13. Activity waves 

Results 
For each measure, the results from each of the 19 runs 
were compared. (In the following, the pairs of run re
sults displayed in Figures 1-9 and Figure 15 were gen
erally chosen because they illustrate noticeably different 
results.) 

Population size, age at death, flaw rate, 
number of faithful replications, number of 
unfaithful replications. 
In each run, the population size rose rapidly from the ini
tial value (64 ancestors) up to 800, the maximum number 
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Figure 1: Population size, Runs 14 (left) and 18 (right) 

allowed. Whenever this ceiling was reached, 10% of the 
population was killed off stochastically, but according to 
each program's internal energy levels (as described ear
lier). After the ceiling had first been reached, the pop
ulation size fluctuated in the region of around 700-800 
programs for the rest of the run. Typical population size 
graphs are shown in Figure 1. 

No trends were found for program age at death, flaw 
rate, number of faithful replications per program, and 
number of unfaithful replications per program. That is, 
for each of these measures, the distribution of values 
across the population showed no change right through 
the run. In addition to showing no trends, the abso
lute values of the measures were generally very similar 
in different runs. Example graphs for these measures 
are shown in Figures 2 (age at death), 3 (flaw rate), and 
4 (faithful and unfaithful replications per program). In 
Figures 2 and 3, the plot on the left hand side shows a 
representative graph of the measure, as observed in the 
majority of the runs. The plots on the right hand side 
of Figures 2 and 3 show slightly unusual or noteworthy 
cases. 

For Age at Death (Figure 2), there are a couple of 
points to note. Most obviously, there is considerable 
structure in the distribution of ages at which organisms 
die. This is interpreted as indicating that the cycle of 
births and deaths in the population is well synchronized 
throughout the run. The figure shows that the majority 
of programs live for some multiple of a little over 130 time 
slices, with fewer programs surviving for each successive 
multiple. This figure of 130 time slices corresponds very 
well with the time it takes the programs to replicate (see 
Figure 9). The obvious explanation is that each time 
the population size reaches the ceiling of 800 programs, a 
number of programs die, creating space for the remaining 
programs to reproduce. Once this reproduction stage 
occurs, the population size is soon at the ceiling again, 
so the cycle repeats. The extinctions triggered by the 
population size hitting the ceiling are therefore periodic, 
resulting in the observed distribution of ages, with most 
organisms surviving for an integral multiple of the period 
of this cycle. The second point about the Age at Death 
plots is that, in some runs, a slight kink in seen in them 
(e.g. in the middle section of the plot for Run 10, on 

,Run~ 
·~ ~ : ;' ' 

Run 10 

Figure 2: Age at Death, Runs 5 (left) and 10 (right) 
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Figure 3: Fla~Rate, Runs 8 (left) and 19 (right) . The verti
cal axis is scaled by a factor of 106 . 

the right hand side of Figure 2). Having just discovered 
that age of death is related to the replication period of 
the programs, it is not surprising to see that these kinks 
are associated with times of significant change in the 
replication period of the programs. For the graph of 
replication period for run 10, corresponding to the Age 
at Death plot on the right hand side of Figure 2, see the 
right hand side of Figure 9. 

For flaw rates (Figure 3), in 16 out of the 19 runs, very 
few programs with flaw rates different to that of the an
cestor programs appeared throughout the run. However, 
in three runs (3, 11and19), the whole population moved 
to a higher rate during the run (the figure effectively 
shows the reciprocal of the flaw rate, so the increase in 
flaw rate appears as a downward trend). If these changes 
in flaw rate were adaptive, one might expect to see cor
responding changes in other measures, particularly the 
number of faithful and unfaithful reproductions per or
ganism. However, no such trends were observed (the 
graph of number of unfaithful reproductions per organ
ism for Run 3, for example, is shown on the right hand 
side of Figure 4). It therefore appears that these changes 
in flaw rate were the result of random (genetic) drift . 

Activity (presence), mean activity 
(presence), activity (concentration), mean 
activity (concentration), diversity, program 
length, replication period. 
To recap, the measures just discussed generally showed 
no trends, and their absolute values were very sim
ilar across different runs. In contrast, trends were 
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Figure 4: Number of Faithful Replications per Program, Run 
6 (left). Number of Unfaithful Replications per Program, 
Run 3 (right) 

Figure 5: Activity (concentration), Runs 17 (left) and 10 
(right) 

observed in seven of the other measures (i.e. Ac
tivity (presence), Mean Activity (presence), Activity 
(concentration), Mean Activity (concentration), Diver
sity, Program Length and Program Replication Period
discussion of the wave plots will be left until the end of 
the section), with noticeable differences between some of 
the runs. Plots for some of these measures are presented 
for two example runs (17 and 10) in Figures 5- 9. 

Ideally, we would like to know whether the differences 
in these measures between any of the runs are statis
tically significant. Such differences would indicate that 
evolution might genuinely be treading a different path, 
for no other reason than the different seed used for the 
random number generator when the runs commenced. 
The choice of a statistical test for this task was not 
immediately obvious. We wished to avoid parametric 
tests, as we did not want to make assumptions about 
the population parameters (for example, there is no rea
son to suspect that any of the measures we are looking at 
are normally distributed across all possible evolutionary 
runs). 

We therefore chose a non-parametric method-a ran
domization version of the paired sample t test (see, for 
example, (Cohen 1995)) . For each measure of interest, 
this test will tell us, for each run, which other runs pro
duced significantly different results. The test can indi
cate whether two samples are related without any refer
ence to population parameters. The procedure used was 
as follows: 

Run 17 

Figure 6: Mean Activity (concentration), Runs 17 (left) and 
10 (right) 

Figure 7: Diversity, Runs 17 (left) and 10 (right) 

Procedure: randomization version of the paired
sample t test For each run, 10 sample data points 
were extracted, each one representing the value of the 
measure in question at one of 10 equally spaced times 
throughout the run. 

The basic idea of the paired sample t test in this case 
is to consider the 10 sample points for pairs of runs in 
turn. By doing pairwise tests at 10 sample points we are 
comparing the measures at a number of points through 
the run, with no point having more significance than 
any other. For each pair of runs, the difference between 
corresponding samples is calculated, together with the 
mean value for the 10 differences. We then ask what 
the likelihood is of achieving this mean difference under 
the null hypothesis that the two runs are statistically 
equivalent. The method by which this is done will be 
explained shortly. 

Obtaining Raw Sample Points In the case of mea
sures which are already statistics of the whole popula
tion at any given time (i.e. both forms of the Activ
ity measure, both forms of the Mean Activity measure, 
and Diversity), these 10 sample points could be taken 
directly from the value of the measure at the appropri
ate time. However, to prevent high-frequency changes 
in these measures from producing aberrant results , the 
measures were first smoothed before the samples were 
taken (using median-smoothing with a window of 10,000 
time slices) . 

In the case of the measures where the existing data 
consisted of multiple values at each time slice, each rep-
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Figure 8: Program Length, Runs 17 (left) and 10 (right) 
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Figure 9: Replication Period (interval between first and sec
ond faithful replications), Runs 17 (left) and 10 (right) 

resenting individual programs (i.e. the Program Length 
and Replication Period measures), each of the 10 sample 
points was produced by taking the median value of all 
values lying within a window of 1000 time slices around 
the time slice being sampled. 

Obtaining Differenced Sample Points Because of 
the cumulative nature of evolution, it is possible that a 
small difference in the sampled value of a measure early 
on in a pair of runs will be magnified into a large dif
ference later on, even if the two runs are actually pro
ceeding in a fairly similar fashion. In order to gauge 
the magnitude of this effect, a duplicate set of tests was 
run, which used the difference in value between adjacent 
sample points as the figure to compare between runs, 
rather than the absolute value of the sample points. Us
ing differenced data should reduce the influence of any 
cumulative disparity between runs. 

Testing for Significance We are considering the dif
ference in values between corresponding sample points 
in a pair of runs. Under the null hypothesis that the two 
runs are equal, however, it is equally likely that these 
values would be reversed (i.e . for sample point n for 
runs A and B, the null hypothesis is that the values An 
from run A and En from run B are just as likely to have 
come from the other run- An from run B and En from 
run A) . If this were the case, the difference between the 
values would be the same as before, but with the sign re
versed. We can test for the significance of the observed 
mean difference by constructing the distribution of all 

mean differences obtained from looking at each possible 
combination of each of the paired samples into one or 
other of the runs. As there are 10 paired samples, there 
are 210 (1024) such combinations. The exact procedure 
is listed below (adapted from (Cohen 1995)), which may 
make things clearer: 

1. For run I and J, if 81 and SJ are lists of the 10 sample 
data points for each run, construct a list D of the 
differences between these values, D = S 1 - SJ. Denote 
the mean of these differences iv. 

2. if iv= 0 

p= 0.5 

else 

(a) Set a counter C to zero . 

(b) for i = 0 .. 1023 
• Construct a list D* such that Dj = Dj if b;j = 0, 

or Dj = -Dj if b;j = 1, for j = 1..10, where b;1 is 
the jlh digit of i in base 2. 

• denote the mean of the new list iv• 
• if iv> 0 

if iv• ~ iv, then increment C by one 
else if iv < 0 
if iv• ~ iv, then increment C by one 

endif 

(c) p = (C /1024) 

p is the (one-tailed) probability of achieving a result 
greater than or equal to iv (or less than or equal to iv 
if iv < 0) by chance under the null hypothesis. That 
is, p is the probability of incorrectly rejecting the null 
hypothesis that systems I and J have equal population 
mean scores for the measure in question. 

For each of the seven measures being considered (Ac
tivity (presence), Mean Activity (presence), Activity 
(concentration), Mean Activity (concentration), Diver
sity, Program Length and Replication Period), this pro
cedure was followed for each of the 19(19 - 1)/2 = 171 
pairwise comparisons between runs, for both the raw 
sample data and the differenced sample data. 

The p values for each pairwise comparison are shown 
graphically in Figures 10-14. These figures show one 
histogram for p values obtained using raw sample data, 
and another for p values obtained using differenced sam
ple data. In all of the histograms, any p value less than 
0.05 is plotted as zero. Bars of non-zero height on the 
histograms therefore represent pairs of runs which are 
not significantly different from each other for the mea
sure in question at the p = 0.05 level. 

(Note that, in order to emphasize the formation of 
various clusters of runs in these histograms, the runs 
in each histogram are arranged along the x and y axes 
in increasing order according to the mean of their 10 



sample values. While this emphasizes clusters in any 
one histogram, it means that clusters occurring in similar 
positions in the histograms of different measures do not 
necessarily represent the same runs.) 

The randomization version of the paired-sampled t 
test has some advantages over other methods of investi
gating pairwise comparisons (e.g. it is non-parametric), 
but it has the disadvantage that it is "virtually certain 
to produce some spurious pairwise comparisons" (Co
hen 1995) (p.203). Cohen suggests one way, not to get 
around this problem, but at least to have some idea of 
the reliability of a particular set of pairwise comparisons 
(Cohen 1995) (p.204). The idea is to first calculate, at 
the 0.05 level, how many runs, on average, each run 
differed from (call this n0 .05 ). Then calculate a sim
ilar figure at a much more stringent level. As we have 
1024 numbers in our distribution of mean differences, the 
0.001 level is appropriate. Finally, calculate the criterion 
differential, G.D. = iio.05 - no.001· If G.D. is large, this 
indicates that many significant differences at the 0.05 
level did not hold up at the 0.001 level. A small G.D. 
value indicates that the experiment differentiates runs 
unequivocally, therefore lending more weight to the va
lidity of the results at the 0.05 level. Table 1 shows n0 05 , 

n 0 .001 and G.D. for each measure, and for both raw and 
differenced sample data. 

Table 1 reveals a number of interesting results. The 
most striking is the difference in the results of using raw 
sample points compared with differenced sample points. 

Using raw data, the average number of runs that any 
particular run was significantly different to at the 0.05 
level ranged from 3.89 for Activity (presence) to 13.26 
for Diversity. However, the criterion differential for all 
of these measures is high (ranging from 3.68 for Activity 
(presence) to 12.32 for Program Length). This suggests 
that the validity of the figures at the 0.05 level are ques
tionable, and the true figures are probably somewhat 
lower than those calculated. Having said this, the aver
age number of runs that any particular run was signifi
cantly different to even at the 0.001 level was non-zero 
for the five measures suggested by Bedau et al. (ranging 
from 0.21 for Activity (presence) to 6.32 for Diversity). 

Using differenced data, the results have a very differ
ent look. In only two measures were any runs signif
icantly different from any others even at the 0.05 level 
(0.11 for Activity (concentration) and 0.42 for Diversity), 
and both of these vanished at the 0.001 level. In other 
words, these figures suggest that, for all of these mea
sures, starting off at any point during any of the runs, 
the amount the measure changed over a given period was 
not significantly different compared to any of the other 
runs. 

Activity wave diagrams 
Whereas the Activity and Mean Activity measures pro
duce a summary figure for a whole population of geno-
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Figure 10: Activity (concentration): Pairwise compar
isons (p values) between runs. Raw Sample Data (left). Dif
ferenced Sample Data (right). p values below 0.05 are plotted 
as zero, so bars of non-zero height indicate pairs of runs that 
are not significantly different at the 0.05 level. See text for 
details. 
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Figure 11: Mean Activity (concentration): Pairwise 
comparisons between runs. See text and caption of Figure 10 
for details. 
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Figure 12: Diversity: Pairwise comparisons between runs. 
Sec text and caption of Figure 10 for details. 
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Figure 13: Program Length: Pairwise comparisons be
tween runs. See text and caption of Figure 10 for details. 



263 

I Measure Data Type no.os no.001 C.D. 
Activity (presence) raw 3.89 0.21 3.68 

differenced 0.00 0.00 0.00 
Mean Activity (presence) raw 12.00 4.53 7.47 

differenced 0.00 0.00 0.00 
Activity (concentration) raw 8.42 2.11 6.32 

differenced 0.11 0.00 0.11 
Mean Activity (concentration) raw 10.32 4.11 6.21 

differenced 0.00 0.00 0.00 
Diversity raw 13.26 6.32 6.95 

differenced 0.42 0.00 0.42 
Program Length raw 12.32 0.00 12.32 

differenced 0.00 0.00 0.00 
Replication Period raw 10.21 0.00 10.21 

differenced 0.00 0.00 0.00 

Table 1: Mean number of runs that each run is significantly different from at the 0.05 level (n0 .05 ) and 0.001 level (n0001 ), 

and the criterion differential ( C.D.). See text for details. 
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Figure 14: Replication Period: Pairwise comparisons be
tween runs. See text and caption of Figure 10 for details. 

types at time t, activity wave diagrams plot the success 
of every genotype in the population at every stage of 
the run (Bedau & Brown 1997). They are therefore a 
useful visualization technique for competition between 
genotypes, and the shape of an individual wave can also 
suggest the level of adaptive value of the corresponding 
genotype relative to its competitors. 

The activity wave diagrams for most of the runs looked 
surprisingly different, although it is hard to quantify 
these differences (the Activity and Mean Activity mea
sures do quantify some aspects of them, but no single 
measure captures all of the important information that 
the diagrams can tell us). Example activity wave dia
grams (for runs 17 and 10) are presented in Figure 15. 

One way in which the activity wave diagrams can be 
very useful is in evaluating the effectiveness of differ
ent measures of evolution at highlighting the important 
adaptive events during a run. In particular, in the runs 
reported here it was observed that the Activity and Mean 
Activity measures based purely upon the presence of 
genotypes in the population bear little resemblance to 
the salient features of the wave diagrams. Indeed, these 

I 
r&~ ~ j< ... L~J... 
Figure 15: Activity Wave Diagram, Runs 17 (left) and 10 
(right) 

measures were introduced mainly so that they could be 
applied to fossil data as well as to data from artificial 
systems (the concentration data for fossil taxa being un
known) (Bedau et al. 1997). The measures based upon 
the concentrations of genotypes should be better, and 
the results of these runs indicate that this is indeed the 
case. Activity (concentration) usually seems to give a 
better reflection of the wave diagram than does Mean 
Activity (concentration). This is possibly because the 
latter measure is defined as Activity divided by Diver
sity, but diversity, by its very nature, does not take ac
count of the concentrations of different genotypes, but 
merely their presence. 

Discussion 
As discussed earlier in the paper, the three factors that 
are fundamental to the success of genotypes in an evolv
ing population are the longevity, fecundity and copy
fidelity of the individuals. The measures chosen to track 
these factors in the runs reported here were Age at Death, 
Replication Period, Program Length, Flaw Rate, Number 
of Faithful Replications and Number of Unfaithful Repli
cations. Very little change was observed in any of these 
measures except Program Length and Replication Period 



throughout the course of any of the runs. It therefore 
appears that, under the set of parameters used in these 
runs, the programs are only able to evolve along one 
of the three axes (fecundity) theoretically available to 
them. Studying some of the programs that evolved dur
ing the runs suggests that most adaptive events involved 
either making the program shorter by removing (what 
turned out to be) redundant instructions, or by adding 
energy collection instructions to reduce the chance of the 
program being culled. 

For Program Length and Replication Period, signifi
cant differences (at the 0.05 level) were observed in the 
raw data values between some runs. For these measures, 
the mean number of runs that each run is significantly 
different from at this level was calculated as 12.3 for 
Program Length and 10.2 for Replication Period, but 
the high criterion differential on these scores suggests 
that the true value should be somewhat lower (looking 
at Figures 13 and 14, probably somewhere in the range 
of 6 to 10). 

Looking at the derived measures suggested by Bedau 
et al. (Activity (presence), Mean Activity (presence), 
Activity (concentration), Mean Activity (concentration) 
and Diversity), significant differences were found be
tween runs which did hold up even at the 0.001 level. 
Again, the true value of each of these differences proba
bly lay in the range of roughly 6 to 10. 
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These results indicate that each run, on average, per
formed significantly differently to between a third and a 
half of the other runs. One of the main reasons for doing 
these experiments was to understand how we should deal 
with contingency when conducting further experiments 
with Cosmos. If we assume that at least the finding 
that each run is statistically different to more than a 
third of the others is a general result, then we can use 
the following rule of thumb: For each re-run of a trial 
with a different seed for the RNG, the probability of its 
outcome being statistically equivalent (at the p = 0.05 
level) to the original one is, at most, about ~· Therefore, 
the number of re-runs that should be conducted to be 
confident (at the 953 level) of at least seeing one statisti
cally different type of behaviour is n, where ( i )n ~ 0.05, 
i.e. n ~ 7.388, or, in round figures, n ~ 8. This is the 
number of re-runs after the original, so, finally, we can 
say that any trial should be conducted nine times with 
different seeds for the RNG. 

Having said that each run performed significantly dif
ferently to at least a third of the other runs, precisely 
which runs were significantly different depended upon 
the particular measure being looked at. This empha
sizes the fact that one should be clear about exactly what 
measure is being used when talking about comparisons 
between evolutionary runs. 

The fact that no significant differences were found be
tween any of the runs for any of the measures when 

looking at differenced sample data is of great interest. 
It suggests that the significant differences observed in 
raw sample data may be caused (at least in part) by the 
cumulative magnification of initially small differences as 
a run proceeds. If this effect is controlled for (which was 
the purpose of using differenced data), the behaviour of 
the runs in terms of the change in values of the measures 
over a given time period would seem to be very similar 
in all of the runs. However, because of the cumulative 
magnification of small differences, the absolute outcomes 
of the runs do differ significantly in some cases, so con
tingency does play a big role. 

Finally, we can ask to what extent these results can 
be generalized to other evolutionary systems. Consider
ing biological evolution first, it is clear that even just in 
terms of population size and the length of runs, the sys
tem is completely trivial. Also, the role of contingency 
may be different in systems which have rich ecological 
interactions (of which Cosmos programs have very lit
tle). It would therefore be unwise to claim that these 
results can tell us much about the role of contingency 
in biological evolution, but they may be relevant in spe
cific cases. As for other artificial evolutionary systems, 
Cosmos is of comparable design, so the results, and the 
rule of thumb about the number of trials that should be 
run, should be broadly applicable to these platforms as 
well. The extent to which ecological interactions affect 
the results may be investigated by running similar trials 
on systems that display stronger interactions of this kind 
(such as Tierra). 
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Appendix:Non-default parameter values 
ancestor=user ..defined number=64 rng..seed=( variable] 

limited..run=yes number..oLtimeslices=300000 grid..size=40 hor

izontaLwrap=yes verticaLwrap=yes max..cells_per _process=800 

x_delta=0.025 et-value..constant=0.025 

max..energy _tokens_per _cell=50 

max..energy _tokens-per ..grid_pos=25 

mutation..application_period=l 

neighbouring..genomes..readable=yes 

apply Jlaws=yes 

mutation_period= 1000000 

defaultJlaw_period=lOOOOOO 
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Abstract 

A class of models for large-scale evolution and mass ex
tinctions is presented. These models incorporate envi
ronmental changes on all scales, from influences on a 
single species to global effects. This is a step towards 
a unified picture of mass extinctions, which enables one 
to study coevolutionary effects and external abiotic in
fluences with the same means. The generic features of 
such models are studied in a simple version, in which 
all environmental changes are generated at random and 
without feedback from other parts of the system. 

Introduction 
In the history of the Earth, there have been several catas
trophic events which in a short period of time have wiped 
out large parts of the existing species. The amount of 
species annihilated in such events has been up to 96% 
of the biodiversity at that time (Raup 1986). It has of
ten been argued that these mass extinctions must have 
been caused by some disastrous abiotic incidences like 
extraterrestrial impacts. Evidence in favor of that has 
been put forward (Alvarez 1987), but on the other hand, 
only 5% of the total loss of biodiversity in the fossil 
record can be connected to mass extinctions. The rest 
are the so-called background extinctions, which happen 
on much smaller scales. Interestingly, the two types of 
extinction cannot clearly be distinguished from another 
in the frequency distribution of extinction event sizes. 
The event sizes' distribution forms a smooth curve, very 
close to a power-law (Sole & Bascompte 1996). 

In order to explain a single smooth distribution, 
the idea of coevolutionary avalanches has been devel
oped (Kauffman 1992). The extinction of a single species 
might cause another species to die out, which might drive 
a third species into extinction and so on, producing an 
avalanche that in principle could span the whole sys
tem. Because of the diverging mean avalanche size, the 
distribution of extinction events would then be a power
law, similar to the situation of thermodynamical systems 
at the point of a phase-transition. Nevertheless, this 
mechanism, called self-organized criticality, completely 
neglects external influences that certainly are present. 

On the contrary, as it has recently been shown, a 
power-law distribution of extinction events can appear 
even in a system in which species are wiped out solely 
because of external influences (Newman 1996). How
ever, this effect depends crucially on influences that are 
imposed on all species coherently. 

From the point of view of a single species it does not 
really matter whether it has to struggle with bad condi
tions imposed externally, e.g., a global shift in temper
ature, or with bad conditions due to heavy competition 
with other species. All that counts for a single species is 
whether it can keep up with its environment or not. 

A species goes extinct when its population decreases 
to zero. This can happen for several reasons. One is a 
loss of habitat. Climatic or tectonic changes affect the 
location and the size of a species' habitat. If the size 
decreases rapidly, the species may not be able to adapt 
fast enough to find a new niche. Then the population 
will drop below a level at which it can sustain itself and 
the species will die out. Another reason for species' ex
tinction is the invasion of new competitors or new preda
tors. Competitors that invade a territory may be better 
adapted to a niche than the species originally occupy
ing this niche. In this case, the population of the native 
species can be decimated so effectively that it is wiped 
out. The same thing can happen because of an invad
ing predator superior to the defense mechanisms of the 
species. Similarly, new parasites can significantly reduce 
the population of a species and drive it to extinction. 

From the species point of view, all the above cases can 
be subsumed under the notion of stress. A species suffers 
stress of various kinds, stress because of climatic changes, 
stress because of competition and predation etc. If the 
stress exceeds the level a species can sustain, it will go 
extinct. 

We are going to develop a model in which all causes 
for the extinction of a species will be regarded as stress. 
Every species i has a threshold xi, or in general a vector 
Xi, against stress. If a species suffers a stress 'T/i > x;, or 
in the general case a vector of stresses 1Ji, where at least 
one component exceeds the corresponding component of 
the threshold vector xi, it dies out. So far, this is a 



stress on large regions, 
like continents 

Figure 1: Stress is generated in a tree structure. 
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very general approach for a model in which species are 
the smallest units considered, i.e. a model that does not 
work with individuals or populations. Clearly, in such 
a model there will be stress on several scales. We have 
global stress like a global shift in temperature due to a 
slight change in the orbit of the Earth around the sun, or 
the impact of a very large meteor. Then we have stress 
that spans large parts of the Earth, e.g. a continent or a 
hemisphere, like the El Nino phenomenon that roughly 
spans the region about the tropical Pacific Ocean. And 
finally, we have stress that affects smaller regions, or only 
a single species. This leads us to a hierarchically ordered 
system of environmental stresses. The simplest way to 
model it is to generate stress in a tree structure, as it is 
shown in Fig. 1. 

On all scales, the stress can be abiotic or biotic. This 
may sound a bit counter-intuitive, since abiotic changes 
are usually taken as large-scale phenomena, and biotic 
factors are usually taken as local phenomena. Abiotic 
changes happen often on a global scale, like the above 
mentioned examples of the orbit shift of the Earth or 
the meteor impact. But clearly there are more localized 
events. A small meteor or a small vulcano may affect 
only a limited number of species. If a species happens 
to live only in a very small territory, and this territory 
gets destroyed by a meteor impact, the species may be 
the only one that goes extinct because of the impact. 

On the other hand, biotic phenomena are not neces
sarily localized. Although direct species competition will 
usually be a local phenomenon, there can be also global 
biotic phenomena. The composition of the atmosphere, 
for example, depends strongly on biotic factors, and it 
can change significantly due to biotic effects. 

So far, we have a model which represents the biosphere 
as a tree, with species situated at the leafs, and envi
ronmental stress generated at the nodes. Now we have 
to choose the rules that determine how stress is gener
ated and what thresholds against stress the species are 
given. This is the crucial part where we decide what 

mechanisms we want to investigate. If we were inter
ested mainly in coevolutionary effects, we would choose 
rules that link the properties and actions of the species 
directly to the generation of the stress. In such a model, 
for example, the global stress at time t could be some 
sort of a sum over all the adaptive moves of the species 
at time t - 1. In this work, however, we are mainly in
terested in the generic features we can expect from the 
hierarchical structure of the biosphere. Therefore, we 
will focus on a version of the model where the stresses 
and the species' thresholds are simply random variables. 
Species' interactions and abiotic effects can be so compli
cated and so unpredictable that in a first approximation 
we want to assume them to be completely random. 

The model we study here is probably the simplest pos
sible. Yet it has some intriguing features which are very 
similar to characteristics seen in the fossil record. To 
keep our model simple, we choose a homogenous tree, 
with l layers and n subtrees per node. In general, of 
course, one has to deal with inhomogenous trees. To 
each node of the final layer we connect exactly one leaf, 
where we put m species. An example of such a tree with 
l = 4 and n = 2 is displayed in Fig. 2. The total number 
of stresses that have to be generated in one time step is 

1-1 

Nstress = L ni' 
i=O 

and the total number of species in the model is 

N l-1 
species= mn 

(1) 

(2) 

Every species i has a single threshold x;, chosen at ran
dom from the uniform distribution on the interval! [O; 1). 
At every node j, the stress 7Ji generated in one time step 
is a positive, real random variable drawn from a dis
tribution with probability densitiy function (pdf) p3 ( x). 
It is a reasonable assumption to expect smaller stresses 
to happen much more often than larger stresses. There
fore, we use pdf's that fall off relatively fast with x ~ oo. 
An Exponential or Gaussian decrease should be a good 
choice, but the exact form of the pdf is not really im
portant. We choose the pdf's Pi(x) at the beginning of 
the simulation at random from some family of distribu
tion functions and keep this choice fixed throughout the 
course of the simulation. 

Finally, we have to fix the way a species is affected by 
stress generated on different levels of the tree. We simply 
take the maximum of all the stress values generated at 
nodes that lie above the species in the tree: if at any of 
these nodes a stress 7Ji is generated which exceeds the 
species threshold x;, this species goes extinct. It is then 
immediately replaced by a new species with new random 
threshold. 

In addition to the extinction dynamic, we introduce 
some sort of adaption. In agreement with our idea of a 



first, simple model, the adaption is a random walk: in 
every time step, a fraction f of the species is selected at 
random and given new thresholds. 

There are certainly some oversimplifications in this 
model, such as the fixed number of species or the fact 
that all species have only one trait. We will return to 
this later and explain why we can still expect to cover 
the basic features of the extinction dynamic. 

Analysis 
The behaviour of the above introduced model can be un
derstood to a large extent from analytical calculations. 
But before we begin with our analysis, we note that the 
mechanism for species extinction and adaption presented 
here is similar to the one of the so-called 'coherent-noise' 
models introduced by Newman and Sneppen (Newman 
& Sneppen 1996). These models display a distribution 
of extinction events that follows a power-law with expo
nent ~ -2, which is in good agreement with the fossil 
record. For this reason, they have already been used 
to study macroevolutionary phenomena (Newman 1996; 
Wilke & Martinetz 1997). The difference to our ac
tual approach lies in the fact that we use a multitude 
of stresses in a hierarchically ordered system, whereas in 
the coherent-noise models there is only a single stress, 
acting on the whole system at once. Therefore, in the 
previous works the idea of stress imposed on the species 
has been linked to external influences like meteor im
pacts and was opposed to coevolutionary effects. 

Note that we have effectively a coherent-noise model 
at every leaf of the tree if the number m of species located 
at one leaf is large. 

The effective stress-distribution at a leaf of 
the tree 

Every leaf of the tree feels a stress-distribution which 
depends on the distributions of the nodes above it. Let 
there be N nodes above a leaf. Then the N stress val
ues having influence on this leaf are N random vari
ables X 1 , ... , XN with pdf's p1 (x), ... ,pN(x). We have 
to calculate the pdf Pmax ( x) of the random variable 
Xmax = max{X1,. . .,XN}, i.e., 

Pmax(x) dx = P(x :S: max{X1, ... , XN} < x + dx). (3) 

With the partition theorem we can write the probability 
on the right-hand side as a weighted sum of conditional 
probabilities: 

P(x :S: max{X1,. .. , XN} < x + dx) 
N 

= L P(x :S: max{X1,. . ., XN} < x + dx 
i=l 

Ix :S: X; < x + dx) 

xP(x :S: X; < x + dx). (4) 
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The conditional probabilities read 

P(x :S: max{X1, ... , XN} < x + dx 

Jx:S:X;<x+dx) 

1 = ~~~~~~~~ 
P(x :S: Xi < x + dx) 
xP(x :S: max{X1, ... ,XN} < x + dx 

/\ x :S: X; < x + dx) 

_ P(x :S: Xi< x + dx) flf=l,#i P(x > Xj) 

- P(x:S:Xi<x+dx) 
N 

II P(x >Xi). (5) 
j=l,j#i 

After inserting Eq. (5) into Eq. (4) we find 

P(x :S: max{X1 ,. . ., XN} < x + dx) 
N N 

= L P(x :S: X; < x + dx) II P(x > Xj). 
i=l j=l,#i 

(6) 

Consequently, for the pdf Pmax ( x) we have 

N N 

Pmax(x) = L p;(x) II P(x > Xj) 
i=l j=l,#i 

N N x 

= L p;(x) II j Pj(x') dx'. 
t=l J=l,J#t 0 

(7) 

We are interested in the tail of Pmax(x). For coherent
noise models we know that a power-law distribution of 
event-sizes will appear if the stress-distribution Pstress (x) 
satisfies 

00 J Pstress(x) dx ~ Cp':tress(T"/) for T"/--+ 00, (8) 

T/ 

where C and a are positive constants which depend on 
Pstress(x) (Sneppen & Newman 1997). Therefore, we as
sume this condition to hold also for the distributions 
Pi(x) in Eq. (7), with constants Cj and aj, respectively. 
Then we can approximate the tail of Pmax(x) by 

N N 

Pmax(x) ~ L p;(x) II ( 1 - Cjp;' (x)) for x--+ oo. 
i=l j=l,j#i 

(9) 
We proceed further by taking only linear terms in p;(x) 
and obtain 

N 

Pmax(x) ~ L p;(x) for x--+ 00. 

i=l 

(10) 
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Figure 2: The tree breaks down into virtually indepen
dent parts in the limit of large stresses. 

For large x, this sum will be dominated by the p;(x) that 
is falling off slowest. We say that distribution Pi(x) falls 
off slower than distribution PJ (x) if there exists a xo such 
that 

p;(x) > PJ(x) for all x > xo. (11) 

For a set of reasonable stress-distributions it is always 
possible to identify one that is falling off slowest accord
ing to this definition. 

The fact that the sum in Eq. (11) will asymptotically 
be dominated by a single term leads to the situation 
depicted in Fig. 2. The tree breaks down into several 
independent subsystems. The meaning of the numbers in 
the figure will be explained in detail later. In a nutshell, 
they indicate how slow a stress distribution is falling off. 
What interests us here is the breakup of the tree into 
several independent parts in the regime of large stresses. 
If these parts are not too small, they will behave like 
independent coherent-noise systems. 

An ensemble of a finite number of 
independent coherent-noise systems 
If the stress-distributions close to the root dominate the 
behaviour of the system, the tree will break down into in
dependent coherent-noise systems, as we have mentioned 
above. Consequently, we proceed with the calculation of 
the distribution of extinction events in a system consist
ing of independent coherent-noise subsystems. In the 
calculation, however, we will deviate slightly from the 
actual situation in the tree model by assuming the sub
systems to have each an infinite size. This allows for an 
easy calculation, and the main results should also hold 
for large but finite sizes. 

In the case of an infinite system size, the event dis
tribution of a coherent-noise model possesses a power
law tail that extends to arbitrary large events. There
fore, the task of calculating the event distribution of the 

compound system equals to the task of calculating the 
sum of a finite number of nonidentically distributed ran
dom variables with power-law tail. The latter can be 
treated mathematically exact under relatively weak as
sumptions (Wilke unpublished). But since the exact cal
culations are too extensive to be included in this work, 
we will here give only an intuitive argument about the 
tail behaviour of the sum. 

We begin with the sum of two positive, real random 
variables X1 and X2, where the pdf's p1 (x) and p2(x) 
have a power-law tail x-r1 and x-r2 , respectively. We 
assume the pdf's to be continuous, non-singular, and rea
sonably smooth. Under these conditions, we can write 
P1 (x) and P2(x) in the form 

Ii (x) 
P1(x) = (x + 1)r1 ' 

h(x) 
P2(x) = (x + 1)r2 ' 

(12) 

(13) 

where fi(x) and h(x) are continuous, non-singular, and 
reasonably smooth functions which tend towards a pos
itive constant for x ~ oo. The pdf Psum(x) of the sum 
X = X1 + X2 is the convolution of p1 (x) and p2 (x): 

Psum(x) = 1xP1(x')p2(x-x')dx1 

= t Ji (x') h(x - x') dx' 
lo (x' + l)r1 (x - x' + 1)r2 · 

(14) 

After a change of the integration variable to z = x' / x 
we obtain 

Psum(x) 
[ 1 fi(xz) h(x(l - z)) d , 

=lo (xz + 1)r1 (x(l - z) + l)r2 x x 

_ l-r1 -,.2 11 fi(xz) h(x(l - z)) d , 
-X 1 1 X. 

0 (z + X )Tl (1 - Z + X )1'2 

(15) 

For large x, there are two main contributions to this inte
gral, at z ::::i 0 and at z ::::i 1, which stem from the first and 
from the second term in the denominator. Since the de
nominators will become arbitrarily large for large x, we 
can assume the other terms to be constant in the regions 
where the main contributions come from. Therefore, we 
find 

where C1 and C2 are positive constants. Obviously for 
large x the term with the largest exponent will dominate. 
Hence we have 

(17) 



This result can be easily extended to the case of an arbi
trary finite number of random variables with power-law 
tail by iteration. Asymptotically, the tail of Psum ( s) will 
always be dominated by the contribution from the term 
with the smallest exponent. 

Back to the ensemble of infinitely large coherent-noise 
systems, we find that it will display power-law dis
tributed event sizes, as its single constituents do. If the 
subsystems' stress-distributions are functionally differ
ent, the exponent of the compound system's event distri
bution will be the smallest of the subsystems' exponents. 

The above result should also hold in the situation of 
finite coherent noise systems, as long as their total num
ber is small compared to their typical size. 

Trees with Random Stress Distributions 

We argue above that in the limit of large stresses the tree 
will break down into subsystems, virtually independent 
of each other. The behaviour of our model depends heav
ily on the size of the parts we find. If the different parts 
are all very small, the system will loose its coherent-noise 
characteristics. Instead of a power-law distribution the 
extinction events will then follow a gaussian distribution 
because of the central-limit theorem. Therefore, in this 
section we will study the distribution of the subsystems' 
sizes that arises if we randomly assign stress distribu
tions to the tree's nodes. 

We assume that the propability for a certain stress 
distribution to be assigned to a certain node does not 
depend on the position of the node in the tree. In other 
words, we use the same set of stress distributions on all 
levels of the tree. Furthermore, we assume that for any 
two stress distributions we use we can identify one of the 
two that falls off faster than the other one. Under these 
conditions, we can study the structure of such trees by 
simply assigning integers to the nodes of the tree, where 
larger integers stand for distributions that are falling 
off slower. If the set of possible stress distributions is 
infinite, the probability of finding two nodes with the 
same distribution is zero. Consequently, in a tree with n 
nodes, we will assign every integer from 1 ... n to exactly 
one node. This is displayed in Fig. 2 for a tree with 15 
nodes. For every leaf i of the tree we can then define 
a characteristic number ai. This number is the max
imum of the nodes' numbers encountered on the way 
from the leaf up to the root. All the leafs with the same 
characteristic number belong to the same subsystem. In 
the example of Fig. 2, we have five subsystems in total. 
Three of them contain only one leaf, one contains two 
and one contains three leafs. 

In general, we are interested in the distribution of sub
systems arising in large trees. Therefore, we have done 
simulations in which we have several thousand times as
signed random integers to the nodes of a large tree. For 
every single realization of the tree, we have computed a 
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histogram of the frequency of the different parts' sizes. 
Finally, we have calculated the average of all the his
tograms. Fig. 3 shows the result of such simulations for 
two different trees with 10000 histograms each. We find 
the expected frequency f(k) of large independent parts 
in the tree decreasing as a sawtooth function that follows 
approximately a power-law with exponent -2, indepen
dent of l and n. The sharp peaks in the distribution 
arise whenever the size of a complete subtree is reached. 
Therefore, we observe in Fig. 3, e.g., the peaks in the 
distribution of the tree with n = 10 appearing at powers 
of 10. 

The power-law can be explained easily if we assume 
the main contributions to come from complete subtrees. 
The expected frequency f(k) to find an independent sub
tree with b layers, which corresponds to a subsystem of 
size k = nb, can be written as the number of such sub
trees in the whole system, N(b), times the probability 
that any of these subtrees will be independent of the 
rest, P(b). Hence we write 

f(nb) = N(b)P(b). (18) 

The number of subtrees of size nb is N(b) = n 1-b. For 
the probability P(b) we find 

b-1 

P(b) = (t -b+ Lni)- 1
, (19) 

i=O 

which is simply the probability for the integer assigned 
to the node at the root of the subtree to be larger than 
all the other integers which are assigned.to the remaining 
nodes of the subtree and to the nodes above the subtree. 
If we increase b by one, we get N(b + 1) = n1-b-l = 
N(b)/n. With slightly more effort, we find also 

P(b + 1) 
b -1 

(z-b-l+Lni) 
i=O 

b-1 -1 1 
(z - b + n L:>i) ~ ;;_P(b). (20) 

t=O 

Therefore, we can write 

f(nk) ~ N(k) P(k) = n-2 f(k), (21) 
n n 

which implies f(k) "'k-2 . 

The peaks in Fig. 3 appear whenever the size of a 
complete subtree is reached, as we have noted above. 
This means they are connected to the extremely regular 
structure of the trees we use in this work. Therefore, we 
are currently investigating trees with irregular structure. 
For these trees, the spikes disappear and, in log-log plot, 
the function f(k) becomes almost a straight line with 
slope -2. From the simulations we have done so far, we 
can say that this result is very general and seems to be 
independent of the special trees' properties. 
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Figure 3: The expected frequency for the occurence of 
large independent subsystems decreases as a sawtooth 
function that follows approximately a power-law with 
exponent -2. The upper curve stems from a tree with 
l = 18 and n = 2. It has been rescaled by a factor of 
100 so as not to overlap with the lower curve. The lower 
curve stems from a tree with l = 6 and n = 10. 

Simulation Results 
Since we are interested in the typical behaviour of our 
model, we have to do many simulation runs with dif
ferent tree sizes and different stress distributions at the 
tree's nodes. But the simulation of large trees is very 
slow, and therefore it is hard to get a good sample of 
the parameter-space. To overcome this difficulty we have 
also done simulations based on the arguments of the pre
vious sections. As we have seen there, in the limit of large 
stresses it is possible to map the leafs of the tree onto a 
system consisting of several independent coherent-noise 
models, with the sizes k of these subsystems distributed 
according to k- 2 . 

In Fig. 4 we show a comparison between the full simu
lation and the approximation. To come as close as pos
sible to the full simulation, we use the maximum of 5 in
dependent, exponentially distributed random variables 
as stresses for the independent coherent-noise models, 
since for the tree we have likewise chosen l = 5 and ex
ponential stress-distributions. Clearly the behaviour of 
the approximation is close to the one of the full sim
ulation, which verifies the analytical reasoning of the 
previous sections. Both simulations display power-law 
distributed extinction events. For the full tree, we find 
an exponent Ttree = 2.35 ± 0.05, while for the approxi
mation, we find Tapprox = 2.30 ± 0.05. If we consider the 
high level of abstraction from the tree to an ensemble of 
coherent-noise systems, this agreement is excellent. 

Note that in comparison to a normal coherent-noise 
model with only a single stress variable, the tree model 
produces a significantly larger exponent T (If we run a 
normal coherent-noise model with the stress distribu
tion of the approximaton in Fig. 4, we get an expo-

10 100 1000 
extinction event size s 

Figure 4: The frequency of extinction events in the tree 
model and in an ensemble of coherent-noise models. The 
lower curve stems from the simulation of a tree with 
l = 5, n = 10 and m = 1, which amounts to a total of 
105 species. Stress distributions were assigned at ran
dom to the nodes of the tree. We used exponentially 
distributed stress with a between 0.03 and 0.05. The 
upper curve corresponds to the simulation of an ensem
ble of coherent-noise models with a total of 105 species, 
and with the sizes k of the subsystems distributed ac
cording to k- 2 • As stresses we used the maximum of 5 
exponentially distributed random variables. 

nent T ~ 1.8). The increased exponent T has its origin 
in the distribution of the subsystems' sizes. The sizes 
scale themselves, thus modifying the scale-invariant be
havior of the ensemble, compared to the one of a single 
coherent-noise system. 

Discussion 
We have presented a model of large-scale evolution and 
extinction that combines biotic and abiotic causes for ex
tinction within a single mathematical framework. F\.tr
thermore, the model takes into account the hierarchical 
structure of the biosphere. To the best of our knowl
edge, the implications of environmental changes happen
ing on different scales have not been studied previously in 
macroevolutionary models. Despite the choice of com
pletely random environmental changes, the model has 
some interesting features. The distribution of extinction 
events follows a power-law with exponent in the region 
of 2 (note that the exponent depends on the choice of the 
stress distribution, as it is the case with coherent-noise 
models). From the fossil record, a power-law distribution 
with exponent T ~ 2 is reported for the extinction event 
sizes of taxonomical families (Sole & Bascompte 1996; 
Newman 1996). Moreover, it is interesting to observe 
the breakup of the tree into subsystems with sizes k dis
tributed according to k- 2 • The power-law distribution 
of the subsytem sizes implies that even in very large trees 
we will find large subsystems, governed mainly by only 



a single stress distribution. Intuitively, we would expect 
the subsystems to have roughly similar sizes, and to en
ter the dynamic of the whole system on an equal basis. 
But we observe exactly the opposite. The subsystems' 
sizes are scale-invariant, thus producing a scale-invariant 
distribution of contributions to the overall system's be
havior. In particular, only a small number of large sub
systems produces events on large scales. This might be 
an explanation for the fact that in such large and com
plex systems like the biosphere we find usually smooth 
frequency distributions of typical objects or events. 

The model we have studied in this work is certainly 
oversimplified. For that reason, we will close this pa
per with some remarks about extensions to the model 
that should be examined in a next step closer to bio
logical reality. First of all, it is certainly a severe re
striction to keep the number of species fixed throughout 
the simulation. Nevertheless, this is a restriction used 
very often in models of macroevolution (Peli ti 1997). 
Only recently, work has been done where a change 
in biodiversity is considered (Head & Rodgers 1997; 
Wilke & Martinetz 1997). The behaviour of the model 
we study here is governed by the coherent-noise dynamic. 
For this dynamic, it has been shown that it can be gen
eralized to include a variable system size without loss 
of it's main features (Wilke & Martinetz 1997). There
fore, we believe a fixed system-size can be justified in the 
present work. It should be possible to extend our tree 
model to a model with variable system size. Another se
vere restriction is the usage of only one trait. But here a 
similar argument holds as in the case of the fixed number 
of species. A multi-trait version of the original coherent
noise model has already been studied (Newman in press). 
It behaves very similar to the single-trait version. 

Finally, we want to discuss the way we compute the 
stress on a single species out of the multitude of stress 
values, generated at the different levels of the tree. 
Throughout this paper, we have used the maximum of 
the stress values. This allows for an easy and very gen
eral analytical investigation. Another natural choice, 
however, would be to sum up all the stresses. We have 
also done some simulations in this fashion. The behavior 
of the system remains roughly the same. This happens 
because in a finite sum of non-identically distributed ran
dom variables, we expect large values to be dominated 
by a single term of the sum, similar to the case of the 
maximum of several random variables. For the sum of 
exponentially distributed random variables, an easy cal
culation shows that this conjecture is indeed true. With 
some more effort, we can prove the same for the sum 
of power-law distributed random variables, as we have 
already done in this paper. Nevertheless, in the general 
case with arbitrary distributions, the conjecture is hard 
to demonstrate. 
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Abstract 
The existence of modules is recognized at all levels of the 
biological hierarchy. In order to understand what modules 
are, why and how they emerge and how they change, it 
would be necessary to start a joint effort by researchers in 
different disciplines (evolutionary and developmental 
biology, comparative anatomy, physiology, neuro- and 
cognitive science). This is made difficult by disciplinary 
specialization. In this paper we claim that, because of the 
strong similarities in the intellectual agenda of artificial 
life and evolutionary biology and of their common 
grounding in Darwinian evolutionary theory, a close 
interaction between the two fields could easily take place. 
Moreover, by considering that artificial neural networks 
draw an inspiration from neuro- and cognitive science, an 
artificial life approach to the problem could theoretically 
enlarge the field of investigation. The present work is the 
first one in which an artificial life model based on neural 
networks and genetic algorithms is used to understand the 
mechanisms underlying the evolutionary origin of 
modularity. An interesting problem that we will address in 
this paper is whether modules that start as repeated 
elements because of genetic duplication can develop to 
become specialized modules. A linear regression 
statistical analysis performed on simulation data confirms 
this hypothesis and suggests a new mode for the evolution 
of modularity. 

Introduction 
Various disciplines concerned with the study of 
organisms and their behavior find it useful to refer to 
'modules' as components that play identifiable roles in 
systems at various levels and tend to maintain their 
identity over time. Although nonmodularity may also 

play a part in biological structure and function, the 
existence of modules is recognized at all levels of the 
biological hierarchy. The 'modularity of mind' is a 
well-known assumption of symbol-manipulation 
models of cognition. The mind is seen as composed by 
a multiplicity of modules that are specialized for 
various behavioral capacities and areas of activity. 
Neuroscientists recognize in the brain various types of 
units above the cellular level: columns, areas, systems, 
etc. In fact the total architecture of the brain appears to 
be a mosaic of interacting components with structural 
and functional specialization. Geneticists subdivide the 
DNA chain into genes that code for proteins and control 
the genotype-to-phenotype mapping. Modules are also 
recognized at levels lower and higher than the gene 
level. At a lower level, genes are composed of triplets 
(codons) of bases (adenine, tymine, cytosine, guanine 
and uracil), each of which codifies for a specific amino 
acid. At a higher level, each gene codifies for a specific 
protein. The sequence of amino acids for each protein, 
as it is codified exactly in DNA, contains all the 
information to determine the three-dimensional 
structure on which the function of that protein finally 
depends (see for instance Creighton 1993 and 
Calabretta, Nolfi, and Parisi 1995). As stressed by 
Doolittle and Bork (1993), proteins are often composed 
by a limited group of modular elements (domains) that 
have spread and multiplied during evolution in ways 
that are starting to be understood. At the phenotypic 
level evolutionary biologists recognize homologous and 
analogous phenotypic traits in organisms belonging to 
different species or higher taxa, and repeated 
components in individual organisms, such as vertebrae 
in mammals (see Futuyma 1998, p. 669). 



Given the postulated existence of modules at all these 
levels and their importance for describing and 
explaining both structure and process at each level, it is 
critical to understand what modules are, why and how 
they emerge, how they change, etc. To achieve this 
understanding it appears to be crucial to be able to 
coordinate modules existing at different levels of the 
biological hierarchy and to understand how modules at 
one level are related to those at other levels. This is 
made difficult by disciplinary specialization. The sheer 
amount of detailed empirical data that must be taken 
into consideration at each level, the heterogeneity of 
theoretical vocabularies and empirical methods used to 
study phenomena at different levels, and the great 
complexity of the between-level mappings, make it very 
difficult to clarify the relationships among modules at 
different levels in real organisms. 

One possibility, then, is to study these problems in 
artificial organisms. Artificial Life studies all kinds of 
biological phenomena as they occur in artificial 
organisms and it can help us overcome many of the 
difficulties encountered in trying to relate modules at 
different levels. First, artificial organisms are simpler 
than real organisms. Second, simulations of biological 
phenomena at different levels can adopt a unified 
theoretical framework to facilitate inter-level 
conceptual dialogue. Finally, the computer is a very 
powerful research instrument that allows us to observe 
and manipulate complex phenomena and nonlinear 
interactions among large number of entities at each 
level and between levels. 

In this paper we adopt an Artificial Life approach in 
the hope that this approach can shed some useful light 
on modules at different levels and how they are related 
to each other. 

Previous Work 
Research in the field of neuro- and cognitive sciences 
tends to assume that human cognitive process are 
accomplished by means of specialized modules (see 
e.g., Moscovitch and Umilta 1990, Fodor 1983; for a 
critique of Fodor's point of view see Karmiloff-Smith 
1992). Cowey (1981) and Kaas (1989) ask why the 
brain has so many visual areas. Ballard (1986) suggests 
that a limitation on the number of neurons compels the 
brain to adopt a modular architecture. Stevens (1994) 
maintains that «the complexity of human brain arises 
not from the complexity of its basic processing 
elements (the cortical module), or the richness of 
connections between modules, but simply in the number 
of the modules present». (For some connectionist 
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simulations of modularity, see Jacobs, Jordan, and 
Barto 1991 and Rueck!, Cave, and Kosslyn 1989). 

Even if the recognition of the existence and 
importance of modularity has a long historical tradition, 
there is little understanding of how modularity has 
originated. Evolutionary biologists ask whether 
modularity is an inherent property of organisms and 
thus not the result of evolution or it is the result of 
selection shaping the genotype-phenotype mapping 
function (see for instance Wagner 1995). The 
evolutionary implications of modular organization for 
development have been described by John Bonner in his 
book on the evolution of complexity (Bonner 1988). 
Modularity would allow the adaptation of different 
functions with little or no interference with other 
functions. Several population genetic models have been 
suggested in order to explain the evolutionary origin of 
modular design (e.g., Wagner and Altenberg 1996; 
Wagner 1996; Altenberg 1995) but our current 
knowledge is insufficient to assess the plausibility of 
these models. 

In the field of Artificial Life, some researchers have 
tried to exploit modular design for improving the 
performance of various artificial systems such as 
artificial neural networks, evolutionary algorithms, and 
robots. Gruau (1994) applies a genetic algorithm to the 
synthesis of neural networks using cellular encoding as 
a new technology. This technology «can automatically 
and dynamically decompose a problem into a hierarchy 
of sub-problems, and generate a neural network solution 
to the problem. The structure of this network is a 
hierarchy of sub-networks that reflect the structure of 
the problem.» Snoad and Bossomaier (1995) consider 
«how genetic algorithms (GAs) and artificial neural 
networks (ANNs) (connectionist learning models) 
complement each other and how combining them (i.e. 
evolving artificial neural networks with a genetic 
algorithm), may give insights into the evolution of 
structure and modularity in biological brains.» Cho and 
Shimohara ( 1997) investigate «the emergence of 
structure and functionality of modular neural networks 
trough evolution.» The model they present is applied to 
a visual categorization task with handwritten digits. 

In order to evolve neural controllers for mobile 
robots, Nolfi (1997) describes a modular neural network 
architecture that clearly outperforms other architectures 
in performing a garbage-collecting task (see below). 
This architecture is called an 'emergent modular 
architecture' because although modules are available 
from the beginning it is evolution that decides whether 
to use them or not by breaking down the required 
behavior into sub-components corresponding to 



different neural modules. In the present work we use the 
same simulation scenario of Nolfi ( 1997) but we add 
the genetic operator of gene duplication in order to 
explore the relationship between the evolutionary 
emergence of modularity and the phenomenon of gene 
duplication. 

To our knowledge, the present work is the first one in 
which an artificial life model based on neural networks 
(Rumelhart and McClelland 1986) and genetic 
algorithms (Holland 1992) is specifically used to 
understand the mechanisms underlying the evolutionary 
origin of modularity. 

Duplication-Based Modules 
In the present paper we are concerned with modules 
that play a role in the genotype-to-phenotype mapping. 
More specifically, we are interested in the evolution of 
modules at the genetic level that map into single 
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functions at the behavioral level of the entire organism. 
Mappings from genes to higher functions can be 
modular or nonmodular (Wagner and Altenberg 1996). 
The mapping is modular when there are few pleiotropic 
effects among characters serving different functions, 
with pleiotropic effects existing mainly among 
characters which serve one and the same function 
(Figure I, right). (Pleiotropy is «the influence of the 
same genes on different characters», Futuyma 1998). 
On the contrary, we have a nonmodular mapping when 
there are pleiotropic effects both among characters 
serving different functions and among characters 
serving a single function (Figure I, left). Therefore, 
modules can be defined as a collection of characters at 
different levels that are all responsible 

Cl 

___,,.) F2 

C2 

Figure I. Examples of nonmodular and modular genotype-to-phenotypes mapping. Complexes of phenotypic characters 
{A, B, C} and {D, F, G, H} serve behavioral functions Fl and F2, respectively. The genetic representation is modular in 
the case to the right because some genes (i.e., {GI, G2, G3}) have primarily pleiotropic effects on the first set of 
characters (Cl) supporting behavioral function Fl whereas other genes (i.e., { G4, 05, 06}) have primarily pleiotropic 
effects on the characters (C2) subserving function F2. The left case is nonmodular because there are about the same 
amount of pleiotropic effects on the characters subserving both functions. (Figure redrawn from Wagner and Altenberg 
1996). 



mainly for a single function. Put simply, in the genes
to-behavior mapping a module can be defined as a 
collection of genes which produce a set of molecules 
which in turn are responsible in the regulation of the 
nervous system serving a given behavioral function. 
Notice how this definition of module is more 
constrained than others. Neuro-physiologists, for 
instance, in defining a module take into account the 
nervous system and the higher level of organization 
(behavior) which is the result of the activity of the 
nervous system. However, they do not usually take into 
consideration lower levels such as the molecular and 
genetic level. They do not ascertain that what they have 
identified as a neural module is the result of a collection 
of genes that mainly codify for that phenotypic 
character. If we take an evolutionary perspective, 
however, the genotype ievel plays a very important role 
because it is at this level that novelties are produced 
through mutation, recombination, and selection. 

Modules can be seen as specialized components and, 
therefore, different from each other, or they can be 
recognized as repeated identical elements. An 
interesting problem that we will address in this paper is 
how the two types of modules are related. In particular 
we will ask if modules that start as repeated elements 
because of genetic duplication can develop to become 
specialized modules. 

Wagner and Altenberg (1996) stressed that «although 
modularity may sometimes be intrinsic to the 
mechanism of an organismal function, in many cases, 
especially development, modularity appears to be an 
evolved property.» A possible mechanism of 
morphological innovation is the differentiation of 
repeated elements (Muller and Wagner 1991; Ohno, 
1970; Weiss 1990), for instance the differentiation of 
metameric segments at the origin of insects (see for 
instance Akam, Dawson, and Tear 1989). Various 
authors have stressed the role of genetic duplication for 
the emergence of evolutionary novelties, especially in 
complex organisms. Li ( 1983) claims that «gene 
duplication is probably the most important mechanism 
for generating new genes and new biochemical 
processes that have facilitated the evolution of complex 
organisms from primitives ones». Tautz ( 1992) argues 
that «redundancy of gene actions may [ ... ] be a 
necessary requirement for the development and 
evolution of complex life forms» and in fact 
«redundancy seems to be widespread in genomes of 
higher organisms» (Nowak et al. 1997). In the neutral 
theory of molecular evolution (Kimura 1983), the 
duplication relaxes the selective constraints on one of 
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the two copies allowing the accumulation of mutations 
leading to the emergence of a new function (Coissac, 
Maillier, and Netter 1997; see also Ohta 1989). 

In the present work we present simulations of the 
evolution of populations of artificial organisms focusing 
on the evolutionarily emergence of functionally 
different modules at the neural-behavioral level from 
gene duplication. 

A typical Artificial Life simulation addressing 
problems at the behavioral level involves a population 
of organisms living and reproducing in an environment. 
The behavior of each individual organism is controlled 
by a neural network that encodes the state of the local 
environment in its input units and some movement of 
the organism in its output units. Each individual has an 
inherited genetic code that specifies (some of) the 
properties of the individual's neural network and, 
therefore, of the individual's behavior. The individuals 
that inherit better neural networks tend to behave more 
efficiently and are more likely to leave offspring. The 
genetic code is inherited with random mutations and/or 
sexual recombination of parts of the genetic code of one 
parent and parts of that of the other parent. The 
resulting offspring are in many cases worse than their 
parents but, although infrequently, they can represent an 
improvement over their parents. The selective 
reproduction of the best individuals and the constant 
addition of variability through mutations aPd/or sexual 
recombination make it possible to observe evolutionary 
change in the population at three levels: genetic, neural, 
and behavioral (Miglino, Nolfi, and Parisi 1996). 

We compare two populations. In both populations 
neural modules start as reduplications in the genetic 
code and they evolve their connection weights during 
the evolutionary process. In one population the genetic 
code is hardwired from the beginning for coding for 
two distinct neural modules for each separate aspect of 
the network's output. In principle each of the two 
modules can control the same network's output. In the 
other population the emergence of distinct modules 
becomes an adaptive process in the sense that the 
genetic code includes a 'reduplication gene' that can be 
turned on at some point during the evolutionary 
process. An important difference between the two 
populations is that in the first population the two 
alternative neural modules controlling the same 
network's output both start from zero, i.e., from random 
connection weights, and they must evolve their 
connection weights in parallel to become specialized for 
different tasks, whereas in the second population a 
duplicated module starts with the weights already 



evolved for the first module and must then adapt these 
weights to differentiate and specialize with respect to 
the first module. We will call the first type of modules 
«hardwired» and the second type of modules 
«duplication-based». 

The two populations are compared with respect to 
how much modules at the genetic level map into 
meaningful units at the behavioral level. More 
specifically we want to test the prediction that modular 
architectures that originate in genetic duplication tend 
to have modules corresponding to meaningful 
behavioral units more often than architectures with 
hardwired modules. 

Let us explain what it is for a module to correspond to 
a meaningful behavioral unit. Imagine a population of 
organisms (robots) living in a walled environment that 
contains a certain number of objects. The task for these 
organisms is to grasp the objects with their 'arms' and 
to release the objects over the peripheral wall outside 
the environment. The entire behavioral sequence that 
allows the organisms to accomplish this task can be 
divided up into a hierarchy of meaningful units. At the 
highest level of the hierarchy the sequence can be 
divided into two units: grasping an object and releasing 
the object beyond the wall. At the next lower level, in 
order to grasp an object the organism must find the 
object and in order to do so it must discriminate the 
object from the peripheral wall, approach and reach the 
object. At the lowest level the organism must explore 
the environment until it perceives an object. Also 
releasing the object on the other side of the wall can be 
divided into subsegments: avoid and ignore the other 
objects (since only one object can be grasped by the 
organism's arms), reach the wall, open the arms to 
release the object beyond the wall. Each of these 
segments is a meaningful behavioral unit. Our question 
is whether neural modules specialize for these units in 
the sense that different modules are used when a 
particular behavioral unit must be executed. We believe 
that this may be so for modules that emerge from 
genetic duplication and represent evolutionary 
specializations of already existing and functional 
modules whereas hardwired modules tend to be less 
clearly associated with meaningful behavioral 
segments. 

Simulations 
We ran a set of simulations in which two different 
populations of neural networks are trained to control a 
mobile robot designed to keep an arena clear by picking 
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up trash objects and releasing them outside the arena. 
The robot has to look for 'garbage', somehow grasp it 
with its arms, and take it out of the arena. 

The robot is a miniature mobile robot called Khepera, 
developed at E.P.F.L. in Lausanne (Mondada, Franzi, 
and Ienne 1993). The robot is supported by two wheels 
that allow it to move in various directions by regulating 
the speed of each wheel. In addition, the robot is 
provided with a gripper module with two degrees of 
freedom. The two arms of the gripper can move through 
any angle from vertical to horizontal while the gripper 
can assume only the open or closed position. The robot 
is also provided with six infrared proximity sensors 
positioned on the front of the robot and an optical 
barrier sensor on the gripper capable of detecting the 
presence of an object between the two arms of the 
gripper. The infrared sensors allow the robot to detect 
obstacles to a distance of about 4 cm. The environment 
is a rectangular arena 60x35 cm surrounded by walls 
and containing 5 objects. The walls are 3 cm in height 
and the objects are cylinders with a diameter of 2.3 cm 
and a height of 3 cm. The 5 objects are positioned 
randomly inside the arena. To speed up the evolutionary 
process a simulator of the physical robot and 
environment was used (see Nolfi 1997). 

The basic network architecture is identical in the two 
populations (see Figure 2). The architecture includes 7 
input units directly connected to 4 output units, each 
with its associated bias, for a total of (7x4)+4=32 
connections. Six of the 7 input units continuously 
encode the activation level of the 6 infrared sensors 
while the seventh input unit binarily encodes whether 
(1) or not (0) there is an object between the two arms of 
the gripper. Two of the 4 output units continuously 
encode the speed of Khepera's two wheels. The 
remaining 2 output units binarily encode whether ( 1) or 
not (0) each of two procedures are executed by the 
robot: one output unit encodes the procedure of picking 
up an object and the other unit the procedure of 
releasing the object. 
The two populations differ in the type of modularity 
that enriches this architecture (see Figure 2). In one 
population the architecture of all individual organisms 
includes two modules for each of the 4 output units 
since the beginning of evolution. More specifically, the 
architecture has two copies for each of the 4 output 
units, with each copy receiving its own set of 
connections from the input units. Which of the two 
alternative output units actually controls the robot's 
behavior in each particular input/output cycle is decided 
in the following way. Each copy of an output unit has 



associated with it a special unit called a 'selector' unit 
that receives connections from all the input units and 
has its own bias. In each cycle the simulator ascertains 
which of the two selector units is more activated and it 
uses the output unit corresponding to the more highly 
activated selector unit to determine the organism's 
behavior. One copy of each output unit, with its 
associated connections, plus its selector unit with its 
associated connections, constitute a module. For each 
output unit, therefore, there are two alternative modules 
that compete for controlling the organism's behavior 
and it is the input from the environment that ultimately 
decides which of the two alternative modules control 
the robot's behavior. 

selector 
neurons 

output 
neurons 

module 

Ill-sensors OB-sensor 

Figure 2. Modular neural network architecture of the two 
populations. The basic architecture is identical in the two 
populations. The two populations differ in the type of 
modularity which is added to this basic architecture. In one 
architecture two modules compete to gain control of each of 
the four actuators in all individuals since the beginning of 
evolution. In the second population the individuals of the 
initial generation have only one module for each motor. A 
second competing module may be added in individuals of 
later generations as a result of the duplication operator (see 
below). Another difference is that in the first population 
competing modules have different random weights at the 
beginning while in the second population when a second 
competing module is generated, the two competing modules 
have identical weights. 

A genetic algorithm (Holland 1992) was used to 
evolve the connection weights of such neural networks. 
In the first population the genotype encodes the values 
for all the connection weights of the modular 
architecture. Since each module includes 7x2 
connections plus 2 biases and there are 8 modules, the 
total number of connection weights encoded in the 
genotype is 128. Since each weight value is binarily 
encoded using 8 bits, the total genotype is a sequence of 
128x8= 1024 bits. The individuals of the first generation 
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are assigned random values for these 1024 bits and then 
the evolutionary process progressively finds better and 
better genotypes on the basis of the selective 
reproduction of the best individuals and the addition of 
random mutations to inherited genotypes. Each 
generation includes 100 individuals. At the end of life 
the 20 best individuals are selected for reproduction and 
each of these individuals generates 5 offspring, that is, 
new individuals with the same genotype of their parent 
(reproduction is nonsexual). Genetic mutations consist 
in changing the value of about 10 bits in each genotype 
(1 % mutation rate). The 20x5= 100 new individuals 
constitute the second generation. The process is 
repeated for I 000 generations. 

In the second population the genotypes of the initial 
generation encode random values for the connection 
weights of the single modules of the basic architecture : 
32 (7x4=28 plus 4 biases) connections. However, since 
each of the 4 output units has associated with a 
nonfunctional selector unit with its 7 connection 
weights, the total number of connection weights 
encoded in the genotypes of the initial generation is 64. 
Notice however that until the module is not duplicated 
this selector unit remains completely nonfunctional and 
its associated connection weights are subject to random 
drift only. The genotype of this second population has 4 
additional 'duplication genes' each associated with one 
of the 4 output units. When one of these duplication 
genes is turned on by some mutation the gene 
duplicates its corresponding module assigning to the 
duplicated module the same weight values of the 
original module. The duplication genes cause a 
duplication with some probability that we have varied 
in various simulations (i.e., 0.04%, 0.03% and 0.02% of 
the modules were duplicate in different simulations). In 
the generation in which the duplication of some module 
occurs there is no possible change in behavior since 
both alternative modules have the same connection 
weights but subsequently random mutations acting on 
the module's connections weights (both on those 
leading to the output unit and those leading to the 
selector unit of the module) can progressively 
differentiate the two alternate modules. (As in the first 
population, we used a mutation rate of I%). 

In conclusion, we have two populations. One 
population has a fixed, hardwired modular architecture 
since the beginning of the evolutionary process. What 
we can determine with respect to this first population is, 
first, whether the evolved individuals do actually make 
use of the alternate modules as a function of the 
circumstances or they only use a single module for all 



environmental inputs, and second, in the case they use 
alternate modules, whether or not we can attribute a 
functional meaning to the modules, i.e., whether or not 
distinct modules control meaningful behavioral units. 
The other population starts with a nonmodular 
architecture but it is free to evolve a modular 
architecture if that turns out to be adaptive. In the 
present model modules can be evolutionarily added to 
neural architectures (with a limit of one module for 
each motor output) but they cannot be deleted. Hence, 
because of purely random reasons the individuals in this 
second population will tend to approximate the modular 
architecture of the first population, with two alternate 
modules for each output unit. However, the modules of 
the second population have a different origin than those 
of the first population. Not only are they evolved rather 
than hardwired but while the modules of the first 
population all start with random weights and therefore 
two alternate modules for the same output unit both 
evolve from zero (random connection weights), the 
alternate modules in the second population start with 
the same weights of the original modules (since they 
duplicate these modules) and therefore with weight 
values that are already adapted. What we want to 
determine is if the different origin and evolutionary 
history of modules that arise out of genetic duplication 
results in modules endowed with a greater amount of 
functional meaning at the behavioral level. 

Results 
Both populations with modules reach a higher fitness 
level than a population with only the basic architecture 
and no modules (cf. Nolfi 1997 and Calabretta et al. 
1997). However, the two populations with modules do 
not differ in terms of overall fitness except that fitness 
growth is slightly slower in the population with 
duplication-based modules (results not showed). In 
order to demonstrate that modularity plays a critical 
role, we varied the duplication rate in the population 
with duplication-based modules, with the result that 
both average and peak performance decreased linearly 
with a decreased duplication rate until the advantage of 
modular design was lost (see Calabretta et al. 1997). 

We then examined the behavior of a typical evolved 
individual with hardwired modularity and a typical 
evolved individual with duplication-based modularity 
and found that an interesting difference emerged 
between the two individuals. While in the hardwired 
modular individual there was no correspondence 
between modules and meaningful behavioral units 
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('distal' description of behavior, according to Nolfi's 
definition), in the individual with duplication-based 
modularity neural modules or, better, combinations of 
neural modules turned out to be responsible for specific 
meaningful behavioral units (see Calabretta et al. 1997, 
Figure 5 and Figure 6). 

In order to extend and reinforce this result we 
examined the best individual of the last generation in 
each of the 10 replications of the simulation for both 
populations and we compared the results concerning the 
statistical relationships between meaningful behavioral 
units and the use of the modules. Specifically, we 
considered as a meaningful behavioral unit the fact that 
the robot had or did not have a target object on the 
gripper. We tested the best individuals of the last 
generation in 10 different repetitions of the simulation 
for both populations. Each individual was allowed to 
live for 1 epoch consisting of 500 actions. 

Hardwired Duplication-based 
modularity's modularity's 

Seed chi-square values chi-square values 
1 11.135 368.662 
2 4.679 246.374 
3 425.927 495.961 
4 2.747 218.359 
5 21.556 190.511 
6 439.391 55.947 
7 16.647 55.246 
8 2.348 296.993 
9 29.078 32.334 
10 27.081 321.769 

Table I. Chi-square values for the single best individuals of 
the last generation in each repetition (initial random seed) of 
the simulation for hardwired modularity (left) and 
duplication-based modularity (right). 

For each action we recorded (in binary) both the state 
of the modules (i.e., which of the two available modules 
for each motor output was active) and if the meaningful 
behavioral unit was being executed or not. For each 
repetition of the simulation we calculated the linear 
regression between meaningful behavioral unit as a 
categorical dependent variable and the state of modules 
as a categorical independent variable. As we already 
have said, we wanted to test the prediction that modular 
architectures that originate in genetic duplication tend 
to have modules corresponding to meaningful 



behavioral units more often than architectures with 
hardwired modules. 

Table 1 shows the chi-square values for each 
repetition of the simulation both in the case of 
hardwired modularity and of duplication-based 
modularity. If we look at the frequency distribution of 
chi-square values, two distinct pictures emerge for the 
two models (see Figure 3). For the hardwired 
modularity model chi-square values are very low in 8 
out of IO replications of the simulation; more precisely, 
these values are less than 20 in 5 replications and less 
than 30 in 3 replications (see left graph of Figure 3 and 
also Table 1). 
In other words, there is a very low correlation between 
the meaningful behavioral unit we have selected for 
examination and the use of specific modules in 8 out of 
IO replications of the simulations (in 4 replications of 
the simulations the correlation is not significant at all). 
Modules do not appear to be specialized for the specific 
meaningful behavioral unit we have considered. 
Conversely, for the duplication-based modularity model 
chi-square values are very high in 9 of 10 replications 
of the simulation; more precisely, they are higher than 
IOO in 7 replications and higher than 50 in 2 
replications (see right graph of Figure 3 and Table 1 ). In 
statistical parlance, the dependent variable (i.e., the 
meaningful behavioral unit) can be said to be a function 
of the independent variable (i .e., the state of modules), 
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that is, there is a significant correlation between the 
considered meaningful behavioral unit and the usage of 
modules in all the IO replications of the simulation. 
(Notice that the degrees of freedom and the significance 
values vary in different simulations depending on how 
many modules are functional in particular neural 
networks). This means that combinations of neural 
modules are specialized for the specific meaningful 
behavioral unit we have considered and that evolved 
individuals tend to use different modules in different 
environmental situations. In other words, the prediction 
that modular architectures originating in genetic 
duplication tend to have modules corresponding to 
meaningful behavioral units more often than 
architectures with hardwired modules appears to be 
confirmed by the present results. 

Interpretation and Conclusions 
The results presented above are suggestive of a new 
mode of evolution for modularity. Modularity may 
critically depend on the duplication and subsequent 
divergence of units that are already partially adapted to 
some functional task. This proposed mechanism is thus 
different from the combination of directional and 
stabilized selection on preexisting characters proposed 
in Wagner (1996) as well as from the 'constructional' 
selection for genes with lower degrees of pleiotropy 
proposed by Altenberg (1995). 
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Figure 3. Frequency distribution of chi-square values shown in the Table 1, both in the case of hardwired modularity (left) 
and of duplication-based modularity (right). 

We suggest the following scenario to explain the results of our simulations. In our model , the evolution of 



functional specialization depends on the partial 
adaptation of the units prior to the duplication event. We 
tested this by simulating the addition of neural units with 
random connection weights. The results of these 
simulations show that this does not lead to the origin of 
functionally specialized modules (results not shown). We 
assume that prior to duplication the units serve more than 
one function. We further assume that these multiple 
functions lead to functional conflicts in the optimization 
of functional performance. A duplication of a multi
functional unit then releases these constraints. 
Consequently the duplicated units are free to specialize 
for one of the functions and a modular mapping between 
functions and neural modules emerges. We are currently 
undertaking simulations to test this hypothesis. 

This interpretation of our simulation results is similar 
to one model of evolution by gene duplication which has 
been proposed by Hughes (1994). The standard model, 
going back to Ohno (1970), assumes that the gene has 
only one function prior to duplication but that after 
duplication one copy is free to explore new functional 
opportunities. It has been argued that this model is 
problematic in assuming that new functions can be 
acquired by random search, i.e., mutation and random 
drift. An alternative model proposed by Hughes (1994) 
assumes that prior to duplication the gene is serving 
multiple functions, and that the performance of these 
functions is not optimal because of conflicting adaptive 
demands. After gene duplication, the two copies are 
released from the conflicting functional demands and 
each gene copy specializes for one of the functions of the 
ancestral gene. This model is supported by the 
preponderance of evidence about the functional history 
of duplicated genes (Hughes, 1994). 
If correct, this interpretation about the origin of 

functional modularity raises important questions about 
the relationship between evolutionary mechanisms and 
evolvability. As emphasized by Bonner (1988) and 
Wagner and Altenberg (1996), modular genetic 
architectures are superior in their ability to produce 
functionally improved mutations. But the question 
remains whether these genetic architectures arise because 
of their impact on evolvability. There are a number of 
difficulties associated with the idea that evolvability 
arises as an adaptation to evolvability (for a recent 
discussion see Steward 1997). Our results further 
accentuate these problems, since the mechanism for the 
origin of modularity in our model does not derive from 
or is related to evolvability. Modularity appears to be a 
consequence of the evolution of functional specialization. 
Evolvability per se does not seem to be a factor in its 
origin. If this interpretation is correct, evolvability has to 

283 

be seen as a secondary consequence of adaptation (effect 
selection) and not an adaptation to the evolvability of 
complex organisms. 
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Abstract 
In this paper we first review the current view of the 
evolution of complexity and novelty in biotic evolution. 
Next we show that the basic processes thereof do hap
pen automatically and are generic properties of systems 
including the basic mechanisms of Darwinian evolution 
plus local, as opposed to global, interactions. Thus we 
show that the multilevel evolution so generated can be 
studied within the paradigm 'simple rules lead to com
plex phenomena'. We derive some results demonstrating 
the power of such multilevel evolutionary processes to in
tegrate information at multiple space and time scales. 

Nevertheless, we also point out shortcomings of such 
an approach which necessarily uses a priori chosen 
and preferentially relatively simple interaction schemes. 
However, straightforward extensions towards more com
plex interaction schemes generally leads to ad-hocness 
and over-determinedness, rather than fundamentally 
new behavior of the system, and often to less under
standing of that behavior. Still, biological theory forma
tion needs a method to go beyond the generic behavior 
of simple interaction schemes. 

We propose to use evolutionary optimization of very 
trivial fitness functions which are obtainable in many dif
ferent ways, to push back the necessary a priori choices 
and to zoom in on interesting non-generic phenomena 
and their general properties. We thus derive insights 
into relationships between sets of derived properties at 
several scales. We discuss how this approach can be used 
in biological theory formation, focusing on information 
accumulation and utilization in replicator systems and 
immune systems. 

Introduction 
Reasoning from a chemical point of view, de Duve (1995) 
portrays 'life as a cosmic necessity'. Maynard Smith and 
Szathmary (1995b; 1995a), reconstructing the course of 
evolution, conclude that a limited number of major tran
sitions shaped living systems as we know them today, 
and that these major transitions involved the processes 
of symbiogenesis, conflicts among levels of selection, di
vision of labor, and the transition from limited inheri-

tance to universal inheritance. Studying evolution from 
a bioinformatic point of view, we have shown that the 
first three of these major transition defining processes 
are generic consequences of extending basic mutation 
and selection with local interactions. Thus, we might 
also portray 'life as a local necessity'. 

Nevertheless, due to inheritance-based information ac
cumulation, we can hardly study, e.g., an elephant as 
a generic property of matter or information: many of 
its properties appear to be arbitrary accidents. Even 
though indeed chance is an inalienable part of life, there 
may be stronger constraints than now appears. Biologi
cal modeling usually either focuses on those phenomena 
which are 'generic', or simply aims at mimicking prop
erties observed in a particular system. For better un
derstanding biotic systems we have to face the difficult 
question of how we can obtain generic theories of non
generic phenomena. 

In other words, we usually study either how complex 
behavior is generated from simple rules, or how simple 
(in the sense of a priori definable) behavior is generated 
by complex rules. Understanding biological systems re
quires that we also face the difficult question of studying 
complex behavior generated by complex rules, without 
getting lost in arbitrary over-determinedness. 

In this paper we present one approach for doing this. 
It involves focusing on 'side effects' of evolutionary op
timization where the optimization criterion is extremely 
'uninteresting', and can better be seen as a minimal con
dition than as 'goal'. We present two examples in which 
we employ our approach. Using diversity of entities as 
optimization criterion, we derive relationships between 
the topology of catalytic networks, self-structuring and 
information storage and utilization: self-structuring is a 
prerequisite for information storage and utilization. Us
ing recognition of pathogens as optimization criterion, 
we derive a relationship between genetic operators and 
immune system diversity, and thus obtain a hypothesis 
to explain differences between vertebrate and inverte
brate immune systems. In all cases the observed patterns 
can only be observed in the evolved systems because the 
'random' initial condition of the evolutionary optimiza-
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tion displays none of the features which we would like to 
study. 

Evolution of Complexity in Biotic 
Systems 

Biotic systems are multilevel systems. Indeed, the in
terplay between partial independent processes at many 
space, time, and organizational scales appears to be the 
preeminent hallmark of biotic complexity. Classical pop
ulation genetic and evolutionary theory does not address 
the generation of complexity, and indeed its occurrence 
does not seem to follow automatically from a 'survival of 
the fittest' point of view (and indeed biotic systems can 
also become simpler in evolutionary time). Nevertheless 
complex multilevel systems did arise. 

Reconstructing biological evolution, Maynard Smith 
and Szathmary (1995b; 1995a) conclude that such com
plexity arises by 'major transitions in evolution', of 
which the basic ingredients are: 

1. Symbiogenesis, i.e., the process by which indepen
dent replicators give up their self-sufficiency and be
come 'parts of a whole'. Examples include eukaryotic 
organelles ( mitochondria,chloroplasts) which evolved 
from prokaryote precursors, worker castes in social in
sects, etc. 

2. Conflicts among levels of selection. In the wake of 
symbiogenesis, conflicts of levels of selection can arise 
where the parts of a whole re-evolve partial indepen
dence, and deteriorate the 'whole'. Evolution of uni
parental inheritance of organelles appears as one of 
many 'countermeasures' to such a process, 

3. Division of labor, by which 'tasks' or 'functions' ini
tially performed by one type of entity, are later subdi
vided among a number of 'specialized' entities. This 
process occurs again at many levels: differentiation in 
'germ-line' and 'soma', and again in social insects in 
the evolution of specialized worker casts. 

4. Transition from limited inheritance to universal inher
itance, and therewith the generation of 'universal' cod
ing schemes. As examples, Maynard Smith and Sza
thmary (1995b) list the evolution from autocatalytic 
sets to template-based replication in early stages of 
evolution, the evolution of a dual inheritance system in 
metazoans and the transition from signal-based com
munication to universal grammar-based languages in 
the later stages of evolution. 

In their treatment, they recognize the universality of 
these processes from a chemical and natural history per
spective, and discuss some of the evolutionary conse
quences and constraints given the occurrence of these 
processes. As one of the important premises, they take 
that any hypothesized intermediate structure should be 
selectionally advantageous in the short run. 

Similar conclusions about major transitions were also 
independently (and earlier) derived by Fontana and Buss 
(1994b; 1994a) both on theoretical and natural history 
grounds. In their treatment, they stress that it is es
pecially these processes which "would be repeated in 
alternate 'worlds' ". They studied random non self
replicating metabolic nets and show that the novel inter
actions are automatically created when independently 
evolved catalytic networks are brought into contact. 
Thus, they derive 'organization for free'. However, be
cause they utilize global interactions, only one 'organiza
tion' exists and the mechanisms of Darwinian evolution 
are absent. 

In the next section we review results of replicator net
works subject to simple Darwinian mutation/selection 
processes in space, and show that in space the processes 
associated with the major transitions are an automatic 
consequence of mutation and selection, via the gener
ation of higher levels of selection due to spatial self
organization. Moreoverm we show that in multilevel 
systems the assumption of necessary short-term fitness 
benefits is relaxed. 

Local Interactions and the Emergence of 
Multiple Levels of Selection 

Self-structuring is an ubiquitous property of locally 
interacting systems. The relationship between self
structuring and Darwinian evolutionary processes can 
be seen in terms of 
(a) self-structuring as constraint on achievable structures 
(b) self-structuring as alternative to Darwinian selection 
( c) self-structuring as a substrate for Darwinian selec
tion. 
The latter point of view is, in our view, the most fruitful. 
We will show that through self-structuring, multiple lev
els of selection arise with novel interactions and novel fit
ness dimensions. In this sense, self-structuring enhances 
rather than constrains the power of Darwinian evolution. 
(Whether or not it does so for engineering purposes is 
an open question, although some examples suggest that 
it does (Hillis 1992; Pagie & Hogeweg 1998b)). 

The simplest way of defining an evolutionary process 
is to define some set of predefined interactions between 
replicators and subject one (or a few) of the parame
ters of the system to mutations (selection automatically 
ensues from the dynamics of the system). Evolutionary 
systems so-defined can neither redefine their interactions 
nor redefine their genetic representations, both of which 
are important in open-ended evolution. The dynamics 
of the system can, however, redefine the fitness of the 
replicators, which is also crucial for open-ended evolu
tion. Indeed, we have shown that because of the lat
ter feature, even such simple evolutionary systems can 
give rise to processes akin to those recognized by May
nard Smith and Szathmary {1995b) as associated with 
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major transitions in evolution, provided that the inter
actions between the replicators are defined locally. This 
is because local interactions will lead to the formation 
of higher level structures (e.g., spiral waves, turbulence, 
patch-like structures of different sizes) which constitute 
new levels of selection. We have shown this in a vari
ety of coevolutionary systems, evolving, e.g., strength of 
'help' (e.g., catalysis) in cooperative systems (Boerlijst & 
Hogeweg 199la; 199lb; Couwenberg & Hogeweg 1998), 
predation efficiency (Boerlijst, Lamers, & Hogeweg 1993; 
Savill & Hogeweg 1997) dispersal rate (Savill & Hogeweg 
1998) or parasitoid aggregation strength (Savill, Rohani, 
& Hogeweg 1997). Here we summarize the major con
clusions of this work. 

• Feedback of mesoscale entities on microscale 
entities through multilevel selection 
The micro-scale replicators generate mesoscale enti
ties, but, via mutation and selection, the reverse is also 
true: the mesoscale entities generate the microscale 
entitles by which they are made. This may lead to 
and maintain microscale entities which are non viable 
or less viable without the mesoscale entities. For ex
ample, the microscale entities may evolve to a shorter 
lifespan, or minimize the catalysis it obtains for self
replication, because this enhances the competitive 
strength of the mesoscale entity which they generate. 
This was shown in cases where oscillatory dynamics 
between the microscale entities leads to spiral waves in 
spatial systems. These spiral waves compete for space, 
and the fastest rotating spirals win. Shorter lifespan 
and less catalysis leads to faster rotating spirals and 
hence to microscale entities with these (seemingly) 
unfavorable properties. (Boerlijst & Hogeweg 1991a; 
1991b). 

• Self-enhancement of mesoscale entities 
The direction of selection enforced on the microscale 
entities appears to be such that it tends to favor the 
competitive strengths of the mesoscale entities they 
generate. For example, in a host-parasitoid system 
(Savill, Rohani, & Hogeweg 1997), regions of spiral 
waves and regions of turbulence occur. In the spiral
wave area, the aggregation parameter evolves to lower 
values which favors the formation of spiral waves over 
turbulence and the reverse is true in the turbulence 
areas: there, aggregation evolves to higher values for 
which spiral waves can not be formed or even main
tained. 

• Symbiogenesis 
The properties of local interacting, evolutionary sys
tems mentioned in the items above embody a process 
reminiscent of 'Symbiogenesis', in that self-sufficiency 
is (partly) given up in favor of the larger scale entities. 

• Conflicts between levels of selection 

Conflicts between levels of selection are inherent in 
this process; in fact, it is the reversal of the direc
tion of selection which, within the system, defines the 
emergence of a new level of selection. 

• Division of labor 
Division of labor is also inherent in the formation of 
mesoscale entities. All entities 'do only what there 
is to do' and for the microscale entities this depends 
on the position they occupy in the mesoscale entities. 
For example, in spiral waves, only the entities in the 
core of the spiral in the long run produce offspring, 
those in the spiral arms become extinct. Thus a kind 
of 'germ-line' and 'soma' differentiates. 

• Direct vs Indirect interactions 
In contrast to globally defined ecoevolutionary system 
in which all replicators are interacting and compet
ing with equal probability with all other replicators, 
in spatial systems with only locally interactions 'who 
out-competes whom' can not simply be assessed on the 
basis of a few of the direct links (those in which the 
competing entities are directly involved) of the inter
action network of which they are a part: all links may 
play a role as they help to define the mesoscale pat
terns and their properties. Thus, local interactions in 
space generate new indirect interdependencies of the 
system. 

• Short term observations are insufficient to asses 
long term fitness 
Short-term fitness and long-term fitness may be quite 
different. This is shown in Fig. 1 for the host
parasitoid system studied by (Savill, Rohani, & 
Hogeweg 1997). Host-parasitoid interactions are mod
eled by a spatial extension of the classical Nicholson 
Bailey equations. Parasitoid aggregation strength is 
the evolving parameter. Over a time-span of up to 
50 generations (left panel), parasitoids with a larger 
aggregation tendency produce more offspring than 
those with less aggregation tendency, wherever they 
are located in space. Nevertheless, in the long run 
(right panel), those with the weakest aggregation ten
dency 'inherit the world'. It is caused by the above
mentioned property of spiral waves that only the en
tities in the core of spirals will give rise to offspring 
in the long run. Note that this is a property of the 
'attractor' of the system and true for any short-term 
vs long-term time slice. 
Long term information integration in evolutionary 
processes also is strikingly apparent in experiments 
which use coevolving populations of 'problems' and 
'solutions' for function optimization (Hillis 1992; Pagie 
& Hogeweg 1998b): the availability of only very sparse 
information per generation of the function to be opti
mized, even improves the chance of obtaining the glob
ally correct solutions. Experimental biologists surely 
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Figure 1: Short-term and long-term fitness 
The left panels show short-term fitness ( 50 generations) 
and the right panels long-term fitness (300 generations) 
at 3 different locations in space (top in spiral arm, mid
dle in chaotic region, bottom in spiral core.) The vertical 
axis gives average number of offspring per individual par
asite with different aggregation tendency towards their 
host: thick line low-, thin line intermediate- and dotted 
line high aggregation tendency. 
At all locations high aggregation tendency gives the 
highest number of offspring over a time slice of 50 gen
erations. Nevertheless, in the long run the fitness of 
parasites with the lowest aggregation tendency is high
est. Note that this is the case in the eco-evolutionary 
attractor of the system, i.e., for any time slice of 50 vs 
300 generations. 

cannot be envied: assessing inclusive fitness seems a 
time-consuming-and in fact impossible-task. 

We conclude that even in these systems with inflexi
ble information storage and transmission, major transi
tions involving the generation of new levels of selection 
is a basic property of mutation/selection processes iff 
interactions are local (as they indeed necessarily are!) 
Thus, as an addition to de Duve's assessment on chemi
cal grounds of 'life as a global imperative', with respect 
to its multilevel properties we can regard 'life is a local 
imperative'. 

We like to stress that the above listed properties all 
(a) were quite unexpected from a simple minded 'sur
vival of the fittest' point of view, and appear to enhance 
the 'versatility' of Darwinian selection processes in the 
sense that they go beyond optimization of the behavior 
of predefined entities by generating novel ones, and com
plex interactions between different levels of selection. 
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(b) can provide explanations for as yet not understood 
observations on many specific biological systems. For ex
ample, recently we have studied spatial eco-evolutionary 
systems which provide explanations for the shape of in
fluenza phylogenies, which show stagnating evolution 
(fl.at phylogeny) for virus strains taken from birds, and 
rapid, progressive evolution (steep phylogeny) for virus 
strains taken from pigs or humans. Assuming a shorter 
lifespan, or shorter immunological memory for birds than 
mammals (or a larger universe) the striking difference 
in phyloginies arises due to self-structuring into two
armed spiral waves in birds vs chaotic waves in mam
mals (Hogeweg 1998). Another example is the occur
rence of a large variety of toxic plasmids in bacteria and 
fungi which has puzzled micro-biologists and has led to 
hypotheses on additional (as yet unidentified) functions 
of those plasmids which might benefit their hosts. We 
have shown that such diversity of plasmid is an auto
matic consequence of the information integration capa
bilities of local interactions in spatial systems (Pagie & 
Hogeweg 1998a). 
( c) are a direct consequence of the formation of 'generic' 
patterns, e.g., spiral waves, turbulence, patches of differ
ent sizes, etc. 

Thus notwithstanding the novel insights in the dy
namic potential Darwinian selection processes in space, 
they do not give us 'novel' entities, as biotic evolution 
undoubtedly has (e.g., elephants). Thus, we have not 
yet surpassed the stage for which Maynard Smith urged 
all evolutionary biologists to go once a year to the zoo, 
stand in front of the elephant and proclaim: 'elephant 
I believe you came about by random mutation and se
lection', even if now we can add 'plus local interactions 
creating new levels of selection'. 

Beyond Generic Patterns: Complex to 
Complex Mappings 

Simple rules may give rise to complex behavior. This 
was an interesting issue 10 years ago (at the first AL
IFE conference) and has now become common place. In 
the time since then we have seen that evolutionary op
timization most often leads to complex implementations 
when it is free to choose its implementation (as in Ge
netic Programming) even in the case when fairly simple 
coding would be possible. 

Observation of biotic systems suggests a complex-to
complex mapping. Studying such complex-to-complex 
mappings without getting lost in over-determinedness 
and ad hocness therefore seems an important challenge 
for biological theory formation. 

Obviously in the above observations, simple and com
plex are not well defined but can be operationalized with 
respect to our own (in)ability and/or willingness to a
priori conceive, make, understand or define it, although 
we may be able to observe it once it is there. 
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A complex-to-complex mapping thus means that nei
ther the micro rules nor the macro behavior is a priori 
definable, whereas in the paradigms above at least one 
of them necessarily is a priori 'in hand', and therefore re
strict us to studying complex behavior which is generic 
for some (a priori chosen) set of simple rules, or study
ing implementations for some (a priori chosen) simple 
functions. 

The most important contribution of the simple-to
complex paradigm for bioinformatic modeling of spe
cific systems is the possibility (and in fact necessity) 
of 'non goal-oriented modeling', i.e., a modeling ap
proach in which we do not specify a priori the phenom
ena to be modeled. This is a necessary consequence 
of the simple-to-complex paradigm, as explicit model
ing efforts of the complex behavior would seldom lead 
us to very simple rules. In a non goal-oriented mod
eling paradigm we therefore formulate a set of simple 
rules which aim to implement only some of the con
text in which the complex behavior that we are inter
ested occurs. Observing the so-obtained systems we 
search for side-effects of the rules, which among quite 
expected and unexpected phenomena may also repre
sent some (traces) of the phenomena we were interested 
in to begin with, and point at connections (via the sim
ple rules) between the observed, a priori apparently inde
pendent, phenomena (Hogeweg & Hesper 1989; Hogeweg 
1988). Examples are given in (Hogeweg & Hesper 1985; 
te Boekhorst & Hogeweg 1994a; 1994b). 

The approach to complex-to-complex mapping we pro
pose is an extension of this modeling methodology which 
additionally uses evolutionary optimization to zoom 
in on non-generic 'initial' conditions or 'not-so-simple' 
rules. The optimization criterion to be used in the evo
lutionary optimization should: (1) not represent directly 
the phenomena in which we are interested, but only rep
resent some kind of boundary condition for them and (2) 
should be realizable in (many) different ways. Moreover, 
the coding used in the evolutionary optimization should 
be such that it is to some extent 'free' to choose a real
ization. We study the side effects of the 'not-so-simple' 
rules and 'not-so-general' initial conditions so obtained 
by observing the resulting systems in a similar way as 
above. 

We have applied this idea to investigate issues re
lated to the potential for and the role of (more or less 
(un)limited) inheritable information accumulation and 
utilization. This relates to the fourth ingredient of the 
major transitions in evolution listed by Maynard Smith 
and Szathmary (1995b), which was not addressed in our 
'simple-to-complex' experiments discussed above (which 
did nevertheless display the three other ingredients). We 
discuss these experiments and the results obtained in the 
next section. 

Bioinformatic Theory Formation of 
Non-Generic Phenomena 

We discuss two examples of using evolutionary opti
mization towards a rather 'uninteresting' target to zoom 
in on 'interesting' systems for bioinformatic theory for
mation. The background of the first example is basic 
bioinformatic theory related to complex replicator net
works (Eigen & Schuster 1979; May 1972) and the above 
discussion on the role of self-structuring in evolution, 
whereas the second example relates to a more specific 
question and apart from addressing our questions about 
(un)limited heredity, confronts our approach to the more 
usual approach in theoretical biology. 

The potential role of DNA in an RNA 
world: 
unlimited inheritance needs self-organization and 
multiple levels of selection 

In contrast to metabolic networks of non-selfreplicators 
(compare (Fontana & Buss 1994b; 1994a) networks of 
replicators generically cannot maintain high diversity. 
Exceptions are specific interaction topologies and sys
tems with high mutation (or influx) rates (e.g., (Kaneko 
& Ikegami 1992; Forst 1997)). What are the proper
ties of those replicator networks which can maintain 
high diversity, and what is the role of information stor
age and the occurrence of multiple levels of selection 
in this context? Moreover, what is the relation be
tween information storage and multiple levels of selec
tion? We studied these questions by evolving a popu
lation of CAs in each of which locally interacting net
works of catalytic replicators compete, with species di
versity in the CA as fitness criterion. We performed 
these experiments with and without allowing pattern 
formation, and with and without allowing information 
storage (in the form of long-lived non-catalytic coun
terparts of the catalytic self-replicators, i.e., in the 
form of DNA in an RNA world; DNA is 'transcribed' 
due to catalysis by the same RNAs which catalyze its 
RNA transcript). For more details see (Hogeweg 1994a; 
1994b) The results show: 

• After long evolutionary time, the temporal persistence 
of the evolved species diversity is indefinite, although 
the lifetime over which species diversity is contribut
ing to individual fitness is relatively short. This is due 
to evolution towards a relatively smooth part of the 
landscape (Huynen & Hogeweg 1994). In other words, 
this mechanism results in the resolution of conflicts be
tween levels of selection: in contrast to arbitrary sets 
of replicators, none of the final individual replicator 
species takes over in spite of the fact that the higher 
level selection pressure is removed. 
This indefinite persistence of the evolved networks al
lows us to study the evolved networks independently 
of the top-level evolutionary dynamics, and thus use 
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Figure 2: Evolved network. Node numbers correspond 
to curves in next figure (bottom to top). 

Persistent diverse net 
no pattern formation/ no information storage 

3000 ,----- --------

time 
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Figure 3: Attractor of the evolved network. Diversity 
is conserved also without information usage. Parasitic 
chains do not destroy the network because of strong non
linear catalysis, local interactions, and interlocked cycles 
(see previous figure) 

the CA evolution as tool to obtain non-generic, but 
also non-ad-hoc, and interesting initial conditions for 
studying the diverse replicator networks and the role 
of information therein. 

• The well-mixed systems, i.e., those without pattern 
formation, evolved replicator networks with the fol
lowing properties: 
(1) The networks contain a few short interlocked cy
cles with a few 'parasitic' chains with not more than 
8-10 replicators in total. (see Fig. 2); 
(2) Information storage is necessary for evolution of 
species diversity clearly above that occurring in ran
dom networks (because it enables the simultaneous in
corporation of more then one new species in the RN A 
network), but 
(3) the amount of information stored is minimized. 

Moreover, 
( 4) the stored information in almost never used and 
indeed not needed for the maintenance of diversity. 
Thus all the information available is dynamically con
tained as the (chaotic) attractor of the RNA network 
(see Fig. 3). 
(5) Such an attractor with relatively many species is 
rare and is not found by random initialization even 
of replicators interacting with this particular network 
topology. Evolutionary optimization is needed as a 
tool to find both the network and the initial condi
tions which lead to the attractor. 

• The spatial systems with local diffusion, i.e., the sys
tems with pattern formation, evolved replicator net
works with the following properties. 
(1) The networks contain many more species and con
sist of (several) 2-cycles with long parasitic chains. 
(2) Information storage is not necessary to evolve di
verse networks, nevertheless when information storage 
is allowed, 
(3) information storage is maximized. Moreover, 
(4) the stored information is regularly transcribed and 
thus a greater variety of RN A species is maintained 
then contained in an attractor of the RNA network 
alone. 
Fig. 5 compares the dynamics of a network which has 
evolved with information storage, when this informa
tion is available or not: the 'transcription' of the stored 
information not only increases diversity due to the 
temporary presence of 'transient' RNA species, but 
also stabilizes the competition between mesoscale pat
terns, and thus allows more 'permanent' RNA species 
in the system. 

Fig. 4 contrasts the use of stored information in sys
tems with and without pattern formation. As stated 
above, in the latter, diversity is maintained in the at
tractor of the catalytic replicators, and the stored infor
mation is not (or barely) expressed, whereas the former 
crucially relies for its (larger) diversity on the stored in
formation (if and only if it is available). 

The major conclusion is: 
In replicator systems (i.e., in the RNA world} the tran

sition from limited to unlimited inheritance is only evolu
tionary favored when multiple levels of selection develop 
due to spatial self-organization. 

Genetic operators and immune repertoire 
diversity: 
Somatic recombination biases evolution towards 
complexity 'beyond need' 

How large should the immune repertoire be? And why 
is it much larger in vertebrates then in invertebrates: 
both seem to cope? Assuming random repertoires, the 
issue of repertoire size has previously been studied in 
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terms of allowing optimal distinction between self and 
non-self antigens, focusing on evolutionary time or phys
iological time and including a more or less explicit struc
ture of the (vertebrate) immune system respectively: 
(Percus & Perelson 1993; de Boer & Perelson 1993; 
Borghans & de Boer 1998). Within a partial imple
mentation of the above-sketched modeling methodology 
Takumi and Hogeweg (1998) studied this question by 
evolving immune systems using either a genetic coding 
as in vertebrates (i.e., including somatic recombination) 
or as in invertebrates (direct encoding). Using a fixed 
set of pathogens to be recognized by the immune system 
and ignoring the issue of self/non-self discrimination we 
have shown: 

• Vertebrates and invertebrates cope equally well with 
the same set of pathogens, but do so in a different way. 

• The vertebrate immune system evolves large reper
toires, and the invertebrate immune system evolves 
small repertoires. 

• Moreover, the evolved repertoires cope much better 
with evolving or random sets of pathogens than a ran
dom repertoire does. This is true for both the ver
tebrate and the invertebrate case although the verte
brate case does somewhat better. 

We conclude with respect to the issues of complex-to
complex mappings and limited vs unlimited inheritance: 

• Answering biological questions by models which use 
'random' initial conditions may lead to misleading re
sults, because evolved systems may behave very non
random. In the case studied here: 

• Questions of repertoire size (as well as immune system 
behavior in general) may not be answerable in terms 
of random repertoires: evolved repertoires behave very 
differently. Moreover, 

• similar problems can be solved in entirely different 
ways. Genetic coding can determine which 'solution' 
is chosen, and therewith what behavior is obtained 'for 
free'. 

• Differences in repertoire size (or other properties of 
biotic systems) do not necessarily reflect differences in 
the environment to which they adapted, but rather 
are also a consequence of the way genetic information 
is stored and retrieved. 

• Somatic recombination adds coding potential to a 
genome of limited length. In the above example this 
added potential is employed without rendering direct 
fitness benefit, i.e., it leads to autonomic increase in 
complexity which is not 'needed' in the system as de
fined. (but may pave the way for future evolution, in 
this case, e.g., self/non-self discrimination.) 

Discussion and Conclusions 
Nowadays, we are not protected by technical limitations 
against formulating, and to a certain extent studying, 
systems including much specialized knowledge and/or 
many special assumptions. The behavior observed and 
studied in many systems formulated accordingly, does 
not (or barely), go beyond that observed in more simple 
systems where we can study and understand the behav
ior much better. Moreover by studying simpler systems 
it is easier to focus on 'generic' properties occurring in 
many contexts (including more complicated systems). 

We have argued that in addition to studying generic 
properties of minimally defined systems with random 
initial conditions, it is possible (and seems profitable) 
to try to derive general properties of relatively 'rare' 
and complicated systems, while minimizing a priori as
sumptions. One way of doing this is by studying the 
side-effects of evolutionary optimization towards a target 
which describes the boundary conditions of the systems 
in which we are interested, rather than those aspects 
in which we are interested. It is the ubiquity of side 
effects and the existence of alternative solutions which 
make this method fruitful. So derived 'special' but not 
(entirely) 'arbitrary' systems reveal general tendencies 
and relations absent in most arbitrary (be it knowledge
poor or rich) systems, but important for the class of 
systems exhibiting the boundary conditions used in the 
optimization process. At the very least, as shown, such 
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Figure 5: Spatial self-organization and the use of stored information: Interaction network evolved with pattern 
formation and with information storage. Three left hand panels: the stored information is available; diversity is 
high. Three righthand panels: the stored information is not available; diversity is lost. Left: space-time plot; middle: 
profile of RNA species present; right: number of species). A color version of this plot is available on the CD-ROM 
accompanying these proceedings. 



systems will provide counterexamples for unquestioned 
assumptions, which are often implicitly or explicitly de
rived from random (rather than evolved) systems. 

In our examples we have used this method in addition 
to minimally defined locally interacting evolutionary sys
tems, to study evolution itself, in particular questions 
about long-term information storage, transmission, and 
utilization, i.e., inheritability. In this respect, our re
sults showed that self-structuring may be a prerequisite 
to exploit stored information (i.e., for the transition from 
attractor-based ('limited') inheritance to 'storage-based' 
('less limited') inheritance. Moreover, when the actual 
use of stored information is assumed (as it usually is 
in evolutionary models) self-structuring allows long-term 
information integration. Thus we conclude that self
structuring should neither be seen as an alternative for
nor as a constraint on-'evolution', but as the substrate 
on which it operates. It is the interplay between self
structuring and mutation and selection processes which 
create the 'major transitions' (and novelty) in evolution. 
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Abstract 
Descriptive natural history of the results of evolution of 
differentiated multi-threaded (multi-cellular) self-replicating 
machine code programs (digital organisms), living in a 
network of computers, network Tierra. Programs are 
differentiated in that different threads execute different code 
(express different genes). The seed organism develops into 
a mature ten-celled form, differentiated into a two-celled 
reproductive tissue and an eight-celled sensory tissue. The 
sensory threads obtain data about conditions on the machines 
in the network, and then process that data to choose the best 
machine to migrate to or to send the daughter to. Evolution 
leads to a diversity of algorithms for foraging for resources, 
primarily CPU time, on the network. 

Introduction 

The work presented here consists of an exploration of the 
properties of evolution by natural selection in the digital 
medium. The evolving entities are self-replicating 
differentiated multi-threaded (emulated parallel) machine 
code programs. They live in a network of computers, and 
are able to sense conditions on other machines and move 
between machines. 

This work is explicitly not about the evolutionary origin 
of the differentiated condition, but rather about evolution 
that takes place just after that threshold has been crossed. 
This experiment begins with the most primitively 
differentiated condition: two cell types. 

This is an extension of the work generally known as 
"Tierra" (Ray 1991, l 994a, l 994b ). The original Tierra 
was based on single-threaded (serial) machine code 
programs living in a single computer. The original model 
was extended by Thearling and Ray (1994, 1997) to include 
multi-threaded programs, living on a sixty-four processor 
connection machine. However, these multi-threaded 
programs were of a single "cell type", and never evolved 
into differentiated forms. 

The seed program used by Thearling and Ray included a 
loop that was iterated many times. This loop was 
parallelized by using two threads, thus completing the work 
in half the time. Through evolution, the level of parallelism 
increased to as many as thirty-two threads. However, in the 

seed program and all programs that evolved from it in that 
experiment, all of the threads always executed the same 
code, thus there was no "differentiation" between threads 
with respect to the code executed (genes expressed). This 
report extends the work of Thearling and Ray by starting 
with multi-threaded programs which are already 
differentiated (into sensory and reproductive threads). 

Analogies 
Here we are making analogies between some features of 
digital organisms and organic organisms. The objective of 
making these analogies is not to create a digital model of 
organic life, but rather to use organic life as a model on 
which to base our better design of digital evolution. 

In organic organisms, the "genome" is the complete 
DNA sequence, of which a copy is found in each "cell". 
Each cell is a membrane bound compartment, and requires 
its own copy of the DNA, as the genetic information is not 
shared across the cell membranes. The entire genome 
includes many "genes", which are segments of DNA that 
code for specific functions, mostly individual proteins. 
While each cell contains a complete copy of the genome, 
each individual cell expresses only a small subset of the 
genes in the entire genome. The specific subset of genes 
that are expressed in a cell determine the "cell type". 
Groups of cells of the same type form a "tissue". Different 
tissues are composed of cells that have "differentiated" in 
the sense that they express different sub-sets of the genes in 
the genome. 

In our form of digital organisms, the genome consists of 
the complete sequence of executable machine code of the 
self-replicating computer program. Each thread of a multi
threaded process is associated with its own virtual CPU. 
These threads (CPUs) are considered analogous to the cells. 
However, the threads of a process all share a single copy of 
the genome, because they operate in a shared memory 
environment where the genetic information can easily be 
shared between CPUs. Duplication of the genome for each 
thread would be redundant, wasteful and unnecessary. In 
this detail, our digital system differs quite significantly 
from the organic system. Another difference is that here 
there is no spatial or geometric relationship between cells. 



The genome of the digital organism includes several 
segments of machine code with identifiable functions, 
which are coherent algorithms or sub-routines of the overall 
program represented by the entire genome. These 
individual algorithms can be considered analogous to the 
genes. Each thread (CPU) has access to the entire genome, 
yet each thread will execute only a subset of the complete 
set of genes in the genome. The specific subset of genes 
executed by a single thread determine its cell type. Groups 
of threads of the same cell type form a tissue. Different 
tissues are composed of threads that have differentiated in 
the sense that they execute different subsets of the 
algorithms (genes) in the genome. 

Network Tierra 
The work reported here is focused on the evolution of the 
differentiated mutli-cellular condition. The multi-threaded 
digital organisms live in a networked environment where 
spatial and temporal heterogeneity of computational 
resources (most importantly CPU time) provides selective 
pressure to maintain a sensory system that can obtain data 
on conditions on various machines on the network, process 
the data, and make decisions about where to move within 
the network. 

The experiment begins with a multi-threaded seed 
program that is already differentiated into two cell types: a 
sensory tissue and a reproductive tissue. The entire seed 
program includes about 320 bytes of executable machine 
code. However, no single thread executes all of this code, 
just as no cell in the human body expresses all of the genes 
in the human genome. The network ancestor genome has 
been somewhat arbitrarily labeled as composed of six 
genes, some of which have been further sub-divided 
(Figure 1 ). Two of the genes are executed only during the 
development from the single-celled to the mature ten-celled 
form (sel, dif). One gene is executed only by the 
reproductive tissue (rep), and one gene is executed only by 
the sensory tissue (sen). Two genes are executed by both 
tissues (cop, dev). 

Figure 1: Ancestor Genome 
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Lower labels indicate the six major genes and their sizes in bytes. 
Upper labels indicate sub-divisions of the major genes, and their sizes. 

Methods 

The rationale for the current experiment was originally 
presented by Ray (1995). Technical details of the 

296 

implementation have been reported in Charrel ( 1995) and 
Ray (1997, In Press). And further details are available on 
the web at: http://www.hip.atr.eo.jp/-ray/tierra/netreport/n 
etreport.html. Thus only a sketch of the experimental 
methods will be presented here. 

The Tierra web 
Tierra is another web on the internet. The Tierra web is 
created collectively as the result of running Tierra servers 
on many machines. The Tierra server is a piece of software 
written in the C language, which creates a virtual machine 
called Tierra. Tierra does not self-replicate, evolve, or 
experience mutations. Tierra does not migrate on the net. 
In order to run a Tierra server, someone must download the 
software, install it and run it. 

The collection of Tierra servers creates a sub-net of the 
internet, within which digital organisms and Tierra 
browsers (Beagle) are able to move freely, accessing CPU 
cycles, and the block of RAM memory that is made 
available by the server. Note that the digital organisms and 
Beagle can not access other RAM on the machine, nor may 
they access the disk. 

We can think of the web of Tierra servers as an 
archipelago of "islands" (which we usually refer to as 
nodes or machines on the network) which can be inhabited 
by digital organisms. The digital organisms are mobile, 
and feed on CPU cycles. Therefore, selection can 
potentially support the evolution of network foraging 
strategies. 

In this experiment, we must create conditions under 
which selection will favor more complex migratory 
algorithms, over small highly optimized algorithms that 
only reproduce locally, such as evolved in non-network 
Tierra. Toward this goal we introduced the "apocalypse" 
which at random intervals kills all organisms living on a 
single machine. This provides an absolute selection against 
non-migratory organisms, insuring that only migratory 
organisms can survive in the network environment. 

Tierra runs as a low priority background process, like a 
screen saver, by using a "Nice" value of 19. This causes 
the CPU cycles available to Tierra to mirror the load of 
non-Tierra processes on the machine (the speed of Tierra is 
high when the load from other processes is low). Thus the 
speed of Tierra will vary with the load on the machine. 
Also, when the user of a machine touches the keyboard or 
the mouse, Tierra immediately sleeps for ten minutes (from 
the last hit). We expect the heterogeneity in available CPU 
cycles to provide selective forces which contribute to 
maintaining cell differentiation. 

The work reported here is based on a small-scale 
experiment conducted on a local-area network of about 
sixty spare stations running unix. 

Sensory system 
The sensory mechanism has been described previously 
(Ray 1997, in press), and so will be described only briefly 
here. Each Tierra server periodically sends a Tping data 



structure to all the other Tierra servers. In the current 
experiment, the structure contains the following entries 
(132s is a 32 bit signed integer, 132u is a 32 bit unsigned 
integer): 

struct TPingData /* data structure for Tping message */ 
{ 132s t; /*tag for message type */ 

} ; 

132u address.node; /* IP address of node */ 
132u address.portnb; /* port number of socket */ 
132s cellID; /* unique identifier of organism in soup */ 
132s ranlD; /* unique identifier, across network */ 
132s FecundityAvg; /*average fecundity at death*/ 
132s Speed; /* average instructions/second */ 
132s NumCells; /* number of organisms on node */ 
132s AgeAvg; /*average inst age at death*/ 
132s SoupSize; /* size of memory for Tierra soup */ 
132u TransitTime; /* in milliseconds */ 
132u Fresh; /* clock time at last refresh of this data */ 
132u Time; /* clock time at node */ 
132s InstExec; /* age of this Tierra process */ 
132s InstExecConnect; /* age while connected to net */ 
132s OS; I* operating system tag */ 

We will describe only those structure elements that are new 
in the current work, or which are mentioned elsewhere in 
this report. 

address.node - is the 32 bit IP address of the machine 
from which this data came. This data is used by the 
organisms to specify the address of the machine that they 
will migrate to. 

FecundityAvg - is the fecundity (number of offspring 
produced) at death or migration, averaged over all the 
organisms on the machine over the last million instructions 
executed. 

Speed - is the speed of the virtual CPU in instructions per 
second executed, calculated over the last million 
instructions. 

NumCells - is how many organisms are living on the 
machine at the time that the data structure is generated. 

AgeA vg - is the age at death or migration, averaged over 
all the organisms on the machine over the last million 
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instructions executed. The age is measured in virtual 
instructions executed by the individual organism. 

lnstExec, InstExecConnect - how many millions of 
instruction the Tierra process has been running, the age of 
the "island". InstExecConnect is how many millions of 
instructions the process has been running while connected 
to the network. The unix machines in our network are 
always connected to the network, so these two values are 
the same. They would differ on machines that are only 
intermittently connected to the network. 

Each Tierra server maintains a "map file" which is a list 
of Tping data structures from all the machines on the Tierra 
network. Digital organisms are born with a pointer into the 
list of Tping structures. The location of the pointer in the 
list is randomly initialized at birth. Each time the organism 
executes the getipp instruction, one Tping data structure is 
written into the soup at a location specified by a value in a 
CPU register, and the pointer into the list is incremented, 
with wrap-around. 

Genetic operators 
The central problem of the Tierra experiment is to find the 
conditions under which evolution can generate complexity. 
One primary consideration is to have a highly evolvable 
genetic language. The evolvability of a genetic language is 
not determined by its structure alone, but also by the nature 
of the genetic operators, and the interaction between the 
two. 

The Genetic Programming of Koza ( 1992, 1994) and the 
Genetic Images of Karl Sims (1991) have shown a very 
high level of evolvability, perhaps due in part to the power 
of their genetic operators. Both use genetic languages 
based on Lisp trees. The genetic operators manipulate the 
Lisp trees by replacing nodes in the trees (mutation), or by 
swapping nodes along with all their descendant branches 
between trees (cross-over). 

The genetic operations on Lisp trees cause entire 
(perhaps coherent) sections of code to be moved around 
between genomes. Contrast this with the genetic operators 
of the original Tierra which do nothing more than flip bits 
in the linear genome. In order to enhance the power of 

Table 1: Genetic Change in each gene of seven genomes 

sel dif rep reps repL cop cops copL cop dev sen senS senO senY senA senR 
c 

run A11e 21 18 56 13 43 46 22 12 12 14 144 41 17 12 52 22 
I II 0 0 27 0 35 II 5 25 8 7 31 22 147 17 13 9 
2 6 0 0 25 0 33 28 0 100 8 0 49 22 *59 *58 *63 *55 
3 8 10 6 23 0 30 20 14 17 33 0 33 46 18 42 15 59 
4 9 14 0 61 8 77 13 0 50 0 0 13 17 29 33 2 9 
5 6 29 6 27 15 30 50 9 158 17 0 29 34 29 33 23 32 
6 6 10 0 13 0 16 4 0 8 8 0 78 22 -- -- -- --
7 14 19 0 29 0 37 35 14 50 58 0 54 34 -- -- 25 --

Left columns are the run number, and age of the genome in days. Top row is the name of each of the six genes and ten sub-genes. Second row is the size of 
the gene in the ancestor. Remaining rows are the percentage change in the gene. * indicates that the gene is present in the genome, but is not expressed. -
indicates that the gene has been lost from the genome. 



genetic operators in Tierra, insertion, deletion and 
crossover have been added. In addition, the mutation 
operator has been enhanced to take two forms. One 
involves a bit flip, as in the original Tierra. The new form 
of mutation involves the replacement of a machine 
instruction with any other instruction chosen at random 
from the set of sixty-four instructions. The new genetic 
operations are performed on a daughter genome, just before 
it is born. In the runs described in this manuscript, the rates 
of each of the different kinds of genetic operations were all 
set to the same values: each class of operation affects one in 
thirty-two individuals born. 

Results 

Genetic change 
Table 1 illustrates the magnitude of genetic change in each 
of six major genes and ten sub-genes, in each of seven 
genomes sampled from the end of seven runs ranging from 
six to fourteen days. The changes are expressed as a 
percentage of the original gene. For example, if ten 
instructions are mutated (or inserted) in a twenty byte gene, 
the change will be 50%. If thirty bytes are inserted into a 
twenty byte genome, the change will be 150%. 

Table 2 summarizes the source of the genetic changes, 
based on the same data as Table 1. Examination of the 
seven genomes of Table 1 revealed the following classes of 
genetic changes: Mutation - mutations are the result of 
flipping one bit in the six-bit machine instruction, or of 
replacing a machine instruction with one of the sixty-four 
instructions chosen at random. This analysis did not 
discriminate between the two types of mutation. Single
byte-insertion - the insertion of a single machine 
instruction into the genome. This kind of genetic change 
may be caused as a side-effect of flaws in the increment 
and decrement instructions during the copying of the 
genome. Single-byte-deletion - the deletion of a single 
machine instruction from the genome. Like the single
byte-insertion, this may also be a side-effect of flaws. 
Multiple-byte-insertion - The insertion of a sequence of 
more than one machine instruction into a genome. This 
could be caused by the insertion genetic operation. 
Multiple-byte-deletion - The deletion of a sequence of 
more than one machine instruction from the genome. This 

Table 2: Sources of Genetic Change 

Genetic Number of Bytes 

9P~E~~ion Events Affected 
Mutation 263 263 
one-byte-insertion 9 9 
one-byte-deletion 15 15 
multi-byte-insertion 20 154 
multi-byte-deletion 11 64 
Rearrangement 2 83 
end-loss 2 125 

,,,,,,,...,.,,..,,,.,,,,»'~»>~»»>--
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could be caused by the deletion genetic operator. 
Rearrangement - A change in the order of segments of the 
genome. This might be caused by some combination of 
insertion, deletion, or crossover genetic operators. End
loss - A couple of examples were seen in which a segment 
of code was lost from the end of the genome. This might 
be essentially the same process as the multiple-byte
deletion, or it might be a different process. 

Mutation is by far the predominant source of genetic 
change (preserved by selection), in terms both of the 
number of genetic events, and the amount of code affected. 
The next most common source of genetic change is 
multiple-byte-insertion, with an order of magnitude fewer 
events, but affecting more than half as much genetic code. 
The distribution of the various types of genetic change 
within the genome is very heterogeneous. For example, the 
twelve byte gene copL, makes up 4% of the genome, but 
contains 55% of the multi-byte-insertion events. 

Gene duplication 
The insertion and cross-over genetic operations cause 
segments of code to be moved about within or between 
genomes. In some instances, this results in a duplication of 
a segment of code within a genome. This duplicated code 
might or might not correspond to our arbitrary labeling of 
the code as genes or sub-genes (Figure l ). 

While we have observed many of these duplications, the 
most interesting examples have involved the complete 
duplication of functional algorithms which are called as 
sub-routines: either the cop gene, or the dev gene, or both 
together. We have observed instances of each of these 
duplications in which one copy of the duplicated gene is 
expressed in the reproductive tissue while the other copy is 
expressed in the sensory tissue (Figure 2). 

Figure 2: Gene duplication 
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At the time of duplication, both copies of the gene are 
generally identical. However, when the duplicated 
condition survives for prolonged periods of time, the two 
copies do diverge substantially in their structure and 
function. 

Reproductive algorithm 
The reproductive algorithm relies on a twelve-byte copy 
loop (the copL gene) to perform a string-copy operation on 
the genome, resulting in the genetic code being copied from 



mother to daughter. The algorithm of the ancestor copies 
one byte for each iteration of the loop. 

In the original Tierra experiments, it was observed that 
this algorithm sometimes evolved an optimization known 
as "unrolling the loop", in which efficiency is increased by 
copying more than one byte in each iteration. In the 
original Tierra, the unrolled loops copied two or three bytes 
(Ray 1994a). In the current experiment, we have observed 
loop unrollings of two, four and six bytes. 

Figure 3: Developmental pattern 

¢>S 

reproductive ; 
tissue · 

sensory tissue 

Developmental pattern 
The development of the ancestor from the one-cell 
embryonic stage to the mature ten-cell stage is illustrated in 
Figure 3. The undifferentiated original cell splits into two 
cells. Soon after this first division, the differentiation event 
occurs (a conditional jump in the machine code), causing 
one cell to become a reproductive cell, and the other to 
become a sensory cell. Subsequently, the reproductive cell 
divides once to form a two-celled reproductive tissue. The 
sensory cell goes through three division cycles to form an 
eight-celled sensory tissue. 

Figure 4: Sensory tissue developmental cycle 

Once the sensory tissue has reached the mature eight-cell 
form, it exhibits further developmental changes (Figure 4 ). 
Each of the eight sensory threads executes a getipp 
instruction to obtain a Tping data structure. These are then 
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Table 3: Thread & decision structure 

date reoro sense Ldat Rdat Act 

960aad 2xl 8x8 Sin sin Cd 

960aae 2xl 8x8 f f Cd 

960aaf 2xl 8x8 S*f s*f Cd 

971001 256xl OxO - - -
1-971101 8x2 8x8 sin sin Cd 

1-971102 16x4 8x8 sin sl28 Cd 

1-971103 32x4 8x4 - - Cd 

1-971104 32x4 4x4 s 0 Cd 

1-971105 32x4 4x4 s s*2 Cd 

1-971106 32x4 32x4 s 0 Cd 

1-971107 32x4 32x4 s n Cd 

1-971108 32x4 32x4 s s*2 Cd 

1-971109 32x4 32x4 s 0 Cd 

1-971110 32x4 32x4 s 0 Cd 

1-971111 32x4 32x4 - - Cd 

2-971112 4xl 8x8 f f Cd 

2-971113 8x2 8x8 s i/2 Cd 

2-971114 16x4 8x8 s sl2 Cd 

2-971115 16x4 16x8 s sl2 Cd 
2-971117 16x4 lxO - - I gt 

3-971118 16x4 16x8 s*5 s*6 Cd 

3-971119 32x4 8x8 s*20 s*f Cd 

3-971120 32x4 8x4 s s Cd 

3-971121 32x4 8x4 s s Cd 

3-971122 32x4 8x4 s s Cd 

3-971124 32x4 8x4 s s Cd 

3-971125 32x4 8x4 s*20 s Cd 
4-971127 64x2 8x8 s*f s*20 Cd 
4-971128 64x2 8x8 s*f s*20 Cd 

4-971129 64x2 8x4 s*f s*20 Cd 
4-971201 64x2 8x8 s*f s*20 Cd 
4-971202 64x2 8x8 s*f s*20 Cd 

4-971203 64x2 8x2 s*f s*40 Cd 

4-971204 64x2 8x2 s*f s*20 Cd 

4-971205 64x2 16x8 s*f s*40 Cd 
5-971209 16x2 8x4 a a-I Cd 

5-971210 32x2 8x4 s s-1 Cd 
5-971211 32x2 8x4 s s-1 Cd 
5-971212 32x2 16x4 s s-1 Cd 
5-971213 32x2 8x4 s 64 Cd 
5-971214 32x2 8x4 s I Cd 
6-971216 255xl lxO - Gt 
6-971217 255xl lxO Gt 
6-971218 255xl lxO - - Gt 
6-971219 255xl lxO - - Gt 

6-971220 255xl lxO - - Gt 
6-971221 255xl lxO - - Gt 
7-971223 8x2 8x8 s 4096 Cd 

n 28 
7-971224 8x2 lxO sin 28 Gt 
7-971227 64x2 lxO sin 65 Gt 
7-971230 64x2 lxO sin 28 Gt 
7-980102 64x2 lxO sin 128 Gt 

7-980105 64x2 lxO s 784 Gt 
7-980110 64x2 lxO sin 64 Gt 
7-980114 64x2 lxO s 7168 Gt 



reduced to the single "best" data through a series of three 
pair-wise comparisons (see the Sensory Processing section 
below). 

Just before each pair-wise comparison, half of the 
threads halt (half of the cells die). The cells which remain 
alive compare two neighboring data structures, and if the 
one on the right is "better" that the one on the left, the data 
is copied. The data is copied by calling the cop gene 
(which is also used by the reproductive tissue to copy the 
genome). The cop gene parallelizes its data copy function 
by splitting into multiple threads. When called from the 
sensory tissue, eight threads are used to copy the Tping data 
(if all four of the sensory threads doing the comparison 
should decide to copy the data, a total of thirty-two threads 
would be active simultaneously in the sensory tissue). 
After the data is copied, seven of the eight data copy 
threads halt. 

At the end of the data reduction, only one of the eight 
sensory threads remains, but it splits into eight threads 
again to repeat the process, in an infinite loop. Similarly, 
after the genome has been copied by the two reproductive 
threads, one thread halts, and the remaining thread executes 
the divide instruction, spawning the daughter as an 
independent process, and potentially causing her migration. 
Then, the single reproductive thread splits into two threads 
again, and repeats the reproductive process in an infinite 
loop. 

Table 3 presents a summary of the evolutionary changes 
in the configuration of the tissues. The first column lists 
the run number and the date of the sample in run-yymmdd 
format (for each of seven runs), or the name of the 
ancestral genome. The second column shows the 
configuration of the reproductive tissue, in the format: 
NxR, where N is the number of threads used to copy the 
genome, and R is the "redundancy" of the reproductive 
tissue. 

The reproductive tissue often manifested a redundancy of 
function. For example, a reproductive tissue might use 
eight cells to copy the genome, with each cell copying one
eighth of the genome. However, this entire configuration 
might be duplicated, so that there are actually sixteen 
reproductive cells, working as two groups, with each group 
of eight dividing the genome into eight parts in the same 
way. In this case, eight of the sixteen reproductive threads 
would be redundant. This case would appear in column 
two as: 8x2. 

The third column shows the configuration of the sensory 
tissue, in the format: SxC, where S is the number of sensory 
threads which obtain Tping data (right part of Figure 3), 
and C is the number of threads used to copy the Tping data 
(middle of Figure 4) if the decision conditions (columns 
four and five) are met. 

The first three rows of Table 3 show the structure of the 
three ancestral organisms used to seed the run: 960aad, 
960aae, and 960aaf. All three have the same configuration 
of tissues: 2x 1 8x8. After listing the seed organisms, we 
show the result typical of all runs before November 1997, 
listed next to the date 971001. 
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In all runs before November 1997, the sensory tissue was 
completely lost, and the reproductive tissue expanded to the 
limit of 256 cells. In order to migrate or send daughters to 
other machines on the network, the digital organism must 
suggest the IP address of the other machine. In early runs, 
we allowed any suggested IP address to be mapped to a 
valid address by finding the closest hamming-distance 
match in the map file. In these runs, loss of the sensory 
system and expansion of the reproductive tissue resulted in 
the 256x 1 OxO configuration shown for the 971001 date. In 
later runs, we required suggested IP addresses to be valid. 
In these runs, loss of the sensory system and expansion of 
the reproductive tissue resulted in the 255xl lxO 
configuration (which also occurred in run six). 

At the end of October '97 some bugs were fixed which 
resulted in the survival of the sensory tissue through 
prolonged periods of evolution. An example of a bug that 
led to the selective elimination of the sensory system was 
the resetting of the pointer into the list of Tping data 
structures to zero, after its original random initialization. 
This had the consequence that all individuals in the 
population (of ancestral algorithms) could only sense the 
first fifteen machines on the net, regardless of the number 
of machines actually present in the network. 

After fixing the bugs in the sensory system, the sensory 
tissue survived through prolonged periods of evolution in 
most runs. The structure of the developmental pattern and 
the resulting relative and absolute numbers of cells in the 
two tissues changed to the many forms listed in columns 
two and three of Table 3. 

Sensory processing 
The ancestral organism includes a 512 byte data area where 
it can hold sensory data. Each cell of the eight-cell sensory 
tissue reads a sixty-four byte Tping data structure into one 
of eight offsets into the data area. Each of the Tping 
structures contains data about the conditions on a different 
machine on the network. The sensory algorithm then 
undertakes a series of three pair-wise comparisons (Figure 
5), to select the best machine to send the daughter to at the 
time of its birth. At the completion of the series of 
comparisons, the best looking data structure will be at the 
left-most position (zero offset) in the data area. The 
reproductive algorithm looks in this location for the IP 

Figure 5: Sensory processing 
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The thick box on the left is the 320 byte genome marked with the 
divisions into genes and sub-genes. The thin box to its right is the 512 
byte data area marked with the eight 64 byte Tping data buffers. 



address of the machine that it will send the daughter to. 
The algorithm of the sensory tissue is an infinite loop, so 

that after the completion of the first cycle of three pair-wise 
comparisons, the entire sensory process repeats. After the 
first sensory cycle, only seven of the eight sensory threads 
write another Tping structure to the data area (the left-most 
data is preserved into successive cycles). During the time 
that it takes the reproductive tissue to copy the genome, the 
sensory system is able to complete two cycles, having 
collected and processed data from fifteen machines on the 
net. 

The overall scheme of sensory data processing by multi
threaded sensory tissues tends to be preserved through 
evolution. However, there is a tendency for the 
reproductive algorithm to optimize, completing its function 
more quickly, with the result that the sensory system will 
be able to process less data before the results are needed by 
the reproductive tissue. 

In some runs, the sensory processing algorithm evolved 
into a relatively simple form in which only a single buffer 
was used for storing the Tping data structure. In this case, 
the getipp instruction is used to read a structure into the 
buffer. Then a test such as 256 > Speed is performed, and 
if true, another getipp instruction is executed with the 
result that the previous data is replaced with new data. 

Sensory data selection 
The algorithm by which Tping data is selected is 
represented in columns four, five, and six of Table 3. If the 
value in column four is less than or equal to the value in 
column five, then the action in column six is performed. 
Two different actions are represented in column six: cd -
copy the Tping data on the right over the Tping data on the 
left; gt - get another Tping data structure from the map file 
list. The values listed in columns four and five include data 
from the Tping structures, and constant values. The 
symbols used for the Tping entries are: s - Speed; n -
NumCells; f - FecundityAvg; i - InstExecConnect; a -
AgeA vg. In some cases two or more of these variables or 
constants are combined by the arithmetic operations of 
addition, subtraction, multiplication or division ( + - * I 
respectively). 

In the studies reported here, all but the first of the seven 
runs were initiated with a mixture of three different 
ancestral genomes, using three different selection 
algorithms (top three rows of Table 3). 960aad copies the 
Tping data if Speed/NumCells <= Speed/NumCells; 960aae 
if FecundityAvg <= FecundityAvg; and 960aaf if 
Fecundity Avg* Speed <= Fecundity A vg*Speed. 

It is likely that after a few generations of reproduction, 
an ecological process of competitive exclusion will result in 
a population that is entirely descended from only one of the 
three ancestors. Comparison of sequence similarity 
between the evolved organisms of Table I and the three 
ancestors reveals that in some runs, the population 
descended from the Speed/NumCells algorithm, and in 
other runs from the FecundityAvg*Speed algorithm. 

Evolution has also produced a diversity of sensory data 
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selection algorithms. The element of the Tping data 
structure most commonly used by these algorithms is 
Speed. However, the algorithms also commonly integrate 
data other than elements of the Tping structure, such as 
some constant value. For example, copy data if Speed (on 
the left) <= 256 

The "-" symbol in columns four and five of the table 
indicate that the action in column six is performed 
unconditionally. The result in all of these cases is that the 
node to which the organism or its daughter migrate is 
chosen essentially at random. This is the situation found 
when the sensory system is completely lost through 
evolution (971001 and run 6). We call these organisms 
"map-file-scanners", because they constantly get new IP 

Figure 6: Mob behavior 

addresses from the map file, and then send the daughter (or 
migrate) to whatever address has been most recently 
accessed, by chance, when the reproductive process is 
completed. The notation "I gt" in column six indicates that 
the program only gets one Tping data structure, and uses its 
IP address as the migration destination. Since the pointer 
into the map file is initialized at random, this is another 
random method of node selection. 

The selection mechanism for the 7-971223 organism is 
unique, in that it uses two conditionals, both from the data 
on the left. If s <= 4096 and n <= 28, the data on the right 
is copied over the data on the left. 

Migration patterns 
At the completion of the reproductive cycle, the network 
ancestor causes its daughter to be sent to another machine 
at birth. The IP address of the target machine is taken from 
the Tping data analyzed by the sensory system. One 
change that commonly occurs through evolution is for the 
daughter to be born locally (on the machine where the 
mother lives), and for the mother to then immediately move 
to the machine whose IP address was recommended by the 
sensory system. Another common pattern is for the mother 
to send the daughter to another machine, and then to 
immediately follow the daughter to that machine. 



Discussion 

Genetic change 
The magnitude and source of genetic change preserved by 
selection varies greatly between genes. For example the 
developmental genes dif and dev are rarely altered, while 
copL which contains the critical code for copying data, 
often experiences large changes. In addition, the genetic 
operations predominantly responsible for the genetic 
changes vary widely between different parts of the genome. 

The copL gene achieved higher levels of unrolling in this 
experiment than in the original Tierra. The large magnitude 
of change in this gene can be understood in terms of strong 
selection pressure for efficiency of copying data, combined 
with an accessible pathway for change with the genetic 
operators available (increasing levels of loop unrolling). 

The sensory genes also show a high level of genetic 
change, but we suggest a different interpretation. It appears 
that the selective pressures on the sensory system are not as 
intense. The organisms can survive and reproduce without 
the sensory system, whereas the copL gene is essential for 
reproduction. Thus the high level of genetic change in the 
sensory genes may be due to lower selective pressures 
permitting higher levels of variation to survive. 

These observations seem quite significant in the context 
of understanding the issue of evolvability (in fact like 
complexity, we don't have an adequate definition of 
evolvability). If we were to attempt to judge the 
evolvability of the system described here, we would reach 
very different conclusions from examining the changes 
exclusively in different parts of the genome. For example, 
evolvability seems to be high in the copL and sen genes, 
but low in the dif, dev, and repS genes. At the same time, 
the causes of the high degree of genetic change in the copL 
and sen genes seem to be quite different. 

Gene duplication 
The phenomena of gene duplication in which both copies of 
the gene are expressed, but by different tissues is surprising 
and quite interesting. Gene duplication and subsequent 
divergence of the sequence and function of the two copies 
of the gene is believed to be a primary mechanism for the 
increase in the complexity of genomes in organic evolution. 
It appears an analogous process has occurred, or at least 
begun, in this experiment. 

Sensory data selection 
The ancestor organisms were written with sensory data 
selection algorithms that seem "smart" to their designers. 
Sometimes, apparently smart algorithms have been present 
in the later stages of evolution. However, it is often the 
case that the evolved algorithms appear to be less smart. 
However, they may none-the-less be good adaptations to 
the environment in which the organisms live. 

A predominant feature of the environment is the 
presence of other organisms, and their behavior. One of the 
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most difficult problems in designing a sensory data 
selection algorithm is that if one specific algorithm comes 
to dominate the network-wide population, then most 
organisms will tend to make the same choices. This can 
result in a "mob" behavior, Figure 6. 

Tests with the Speed/NumCells ancestor algorithm in a 
four node network (with genetic operations turned off to 
prevent evolution) revealed a severe problem. One of the 
four machines had a far faster processor, resulting in a 
consistently high value of Speed on that machine. The high 
Speed caused a high Speed/NumCells ratio, making it the 
machine of choice for the entire network-wide population. 
The result was that all daughters born on all machines were 
sent to this one machine. In effect, there was no birth or 
immigration on the other three machines. Thus the original 
organisms on those three machines lived indefinitely, 
accumulating very high fecundities (and associated 
Darwinian fitness). 

Meanwhile, on the selected machine, there was a huge 
influx of immigration, in addition to the local reproduction. 
The result was a rapid flux of organisms (for each birth or 
immigration, the reaper must kill an existing organism to 
make space) such that few if any individuals survived long 
enough to reproduce. Thus the average fecundity (and 
Darwinian fitness) on the selected machine was near zero. 
Because the soup size on this machine was fixed, it was not 
possible for growth of the population to lower the 
Speed/NumCells ratio to a level comparable to the slower 
machines. 

The consequence of the use of the Speed/NumCells 
algorithm throughout the small network was a mob 
behavior that created a fitness landscape within which using 
the algorithm was the worst thing possible. Even random 
selection of machines would have been better. The severe 
mob behavior seen in a small network is diffused somewhat 
in a larger network, because the individual organism does 
not have time to examine data from all machines. The 
ancestor is able to look at fifteen machines for each 
reproductive cycle. Because the pointers into the list of 
machines are initialized at random, each organism will look 
at a different list. However, there remains an underlying 
dynamic, in which some machines tend to be chosen by any 
organism that looks at them, generating some mob 
behavior. In Figure 6 the favored machines are represented 
by the heavy circles. 

Selection algorithms such as 256 <= Speed appear to be 
relatively dumb, but they may have the selective advantage 
of reducing the mob effect by making the choice of 
machines more fuzzy. 

Loss or degradation of sensory system 
While this experiment demonstrated that the sensory 
system is able to survive long periods of evolution, some of 
the runs showed a complete loss or a serious degradation of 
the sensory system (Tables 1 and 3). We believe that the 
primary selective factor for maintaining the sensory system 
is the temporal heterogeneity in the availability of CPU 
cycles to the Tierra process, due to the activity patterns of 



the human users of the machines in the Tierra network. 
This experiment was conducted in a local-area network 

at A TR, where there are some fairly obvious patterns of 
human activity. ATR is in a somewhat remote location, 
and most researchers commute by company bus. The bus 
service is available from 7:40 am to 10:00 pm on weekdays 
only. There is no bus service on weekends or holidays. 
Most researchers arrive between 8:00 am and 10:00 am, 
and leave between 6:00 pm and 8:00 pm, on weekdays 
only. The data reported in this study covers the period of 
November l through January 14. In this period, weekends 
and holidays fell on: Nov 1-3, 8-9, 15-16, 22-24, 29-30; 
Dec 6-7, 13-14, 20-21, 23; Dec 27 - Jan 4; Jan 10-11. 

We can expect that an important component of the 
selective pressure for maintaining the sensory system will 
be relaxed on weekends, holidays, and weekdays from mid
evening to mid-morning. We suspect that this relaxation of 
selective pressures may partially explain the occasions of 
loss of the sensory system. It is worth noting that the 
sensory system was lost from the outset of run six, during 
the business week. However, this run was initiated in the 
mid-evening and probably lost its sensory system before 
ever experiencing the relevant selective pressures. We are 
preparing to test the pattern of loss of the sensory system 
against quantitative measurements of temporal 
heterogeneity in human activity in the network. 

Migration patterns 
There is an obvious benefit to the behavior of the mother 
migrating after reproduction, rather than remaining on the 
local machine to attempt a second reproduction. When a 
creature moves to another machine, it enters the bottom of 
the reaper queue (Ray 1991). By moving after 
reproduction, the mother effectively delays her death. 

There are however some costs to the migration of a 
mature organism. If the Tierra process is sleeping on the 
target machine (due to user activity) the migrating genome 
can die as a result of having its packet(s) lost in the 
network. Furthermore, upon arrival, the formerly mature 
organism reverts to an essentially embryonic, one-celled 
state. It must then go through the developmental process 
leading to the mature ten celled state, before it can begin 
the reproductive and sensory cycles. In addition, through 
migration, all sensory data is lost, whereas the mature 
organism which does not migrate would retain the selected 
sensory data in its left-most Tping data buffer. 

Conclusions 

The central objective of this project is to study the 
conditions under which evolution by natural selection leads 
to an increase in complexity of the replicators. For the 
purpose of this study, the primary quantitative measure of 
complexity is the level of differentiation of the multi-celled 
organism. The study begins with the most primitive level 
of differentiation: two cell types. There are two milestones 
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m the study: I) The differentiated state persists through 
prolonged periods of evolution. 2) The number of cell 
types increases through evolution. 

In the work reported here, only the first of these two 
milestones has been achieved. There has been no sign of an 
increase in the number of cell types. However, the process 
of gene duplication with differential expression of the 
resulting genes is a kind of proto-differentiation event. 
This process offers some prospect of leading to new cell 
types. 

Observations of a high degree of heterogeneity in the 
magnitude, source, and possible selective dynamics for 
genetic change in different parts of the genome provides 
raw data for our efforts to understand the nature of 
"evolvability". A practical understanding of evolvability, 
leading to an ability to design higher levels of evolvability 
into our synthetic evolving systems is crucial for progress 
in the area of evolutionary systems. 

The ultimate imperatives in evolution are survival and 
reproduction. In the context of self-replicating computer 
programs, it is not obvious how selection can favor any 
behavior beyond the efficient replication of the genome. 
However, in this experiment we demonstrate that selection 
can favor the ability to gather information about conditions 
in the environment, analyze that data, and use the results of 
the analysis to control the direction of movements. 

Digital organisms essentially identical to those of the 
original Tierra experiment, were provided with a sensory 
mechanisms for obtaining data about conditions on other 
machines on the network; code for processing that data and 
making decisions based on the analysis, the digital 
equivalent of a nervous system; and effectors in the form of 
the ability to make directed movements between machines 
in the network. This sensory-nervous-effector system 
required 157 bytes of genetic code, compared to 136 bytes 
for the reproductive system alone. In addition, the sensory 
system required a data area almost twice the size of the 
entire genome. This sensory system is not "hard-coded", in 
the sense· that it is not essential for survival and 
reproduction in the network, and it can be lost if selection 
does not maintain it in the face of degradation by genetic 
operations. Yet selection maintained this large burden of 
additional complexity due to the selective benefits of 
gathering, processing, and acting upon information about 
the environment. 

The migratory patterns of the digital organisms 
themselves become an important part of the fitness 
landscape in the network. The algorithms of the seed 
organisms generate an unfit (in the Darwinian sense) mob 
behavior by causing all individuals in the network to 
migrate to the "best" looking machines. Evolution resolves 
this problem by changing the algorithm to simply avoid 
poor quality machines. 
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Abstract 

In many group-living animals dominant individuals occupy the 
center of a group. This is generally thought to reflect a 
preference for locations that provide optimal protection against 
predators. However, in this paper I will show that such spatial
structure also emerges among artificial entities that lack 
preference for any spatial location. 
The artificial entities dwell in a homogeneous world and are 
completely identical at the start of the simulation. They are 
gregarious and perform dominance interactions in which the 
effects of winning and losing are self-reinforcing. Varying 
essential parameters of the model revealed that: I) Social-spatial 
patterns are stronger among entities that perceive each others 
rank directly compared to those that estimate rank of others 
based on personal experiences. 2) Stronger social-spatial 
patterns result when entities obligatory attack others than when 
attack-rate was negatively dependent on rank-distance. 3) 
Raising the intensity of attack increased the centrality of 
dominants for the Obligatory attack system, but weakened it for 
the Rank-Distance Decreasing attack system Also, other social 
interaction patterns emerged, such as bi-directionality of 
aggression and a correlation between rank and frequency of 
attack. Such epi-phenomena may underlie the variation of social
spatial patterns found in real animals. 

Introduction 

Following Hamilton's (1971) influential model of the 
'selfish herd', a spatial position in the center of a group is 
functionally attributed to optimal protection against 
predators. To test the hypothesis that animals compete for 
this safe location, much research has been devoted to 
studying nonrandom positioning of individuals and 
position-related fitness differences (for a review see 
Krause 1994 ). Observations on natural groupings (e.g. 
fish: Krause 1994 ), results of experiments (e.g. spiders: 
Rayor and Uetz 1990) and models on benefits of position 
preferences (e.g., Bumann, Krause, and Rubenstein 1997) 
have been interpreted as support for Hamilton's ideas. 
However, conflicting observations on spatial structure 
(primates: Altmann 1979, Janson l 990ab, Rhine and 

Westland 1981) and its fitness consequences (e.g., highest 
mortality in the center in groups of certain species of 
fishes: Parish 1989) were reported as well. These 
contradictory results have been suggested to be a 
consequence of differences in measurement methods 
(Collins 1984, Krause 1994) and neglect of essential 
variables in the optimization models. 

Note that these amendments function as excuses 
to leave the soundness of the theoretical principles 
undisputed. It should be recognized, however, that the 
optimization approach is not without problems. 
Optimization models treat features as independent 
properties of individuals and therefore come up with a 
separate explanation for each trait. However, there is a 
growing awareness, fostered by 'Artificial Life' studies, 
that what are supposed to be traits actually are emergent 
properties from interactions between agents and their local 
environment (including other agents) (e.g., Pfeifer and 
Verschure 1995) and that such interactions may bring 
about more than one pattern. An example is the study on 
the formation of diverse spatial structure of groups of ants 
by Deneubourg et al. (1989). Using Monte Carlo 
simulations, they showed that one simple rule set of trail 
laying/following behavior can generate different 
characteristic swarm patterns of ants depending on density 
and distribution of food. 

Similar considerations may hold for spatial-social 
structures with dominants in the center and subordinates 
at the periphery that conventionally would be associated 
with Hamilton's notion of the 'selfish herd'. Such a 
configuration was indeed found as a side effect in an 
artificial world in which group-living entities perform 
self-reinforcing dominance interactions but lack spatial 
preference (Hogeweg 1988). The aim of this paper is to 
understand the dynamics of such spatial structuring in 
detail in order to bring it up as an alternative to the selfish 
herd theory. Hereto, I have set up an artificial world 
comparable to that of Hogeweg, but in addition I varied 
the cognitive sophistication involved in dominance 
interactions, the tendency of entities to attack others and 
the impact of these interactions on their subsequent 
dominance position. 



To examine the influence of mental 
sophistication on spatial patterning, I created two types of 
entities that differ in their way to perceive dominance of 
others. The simplest agents are called Perceivers, because 
they observe the rank of others directly and do not 
recognize others individually. The more sophisticated 
entities, the Estimators, assess a partner's dominance by 
recalling their last experience with them and are similar to 
those used by Hogeweg. Two attack systems are devised. 
In the simplest one, Perceivers always attack others upon 
encountering them. In the other, in line with a model of 
Bonabeau et al. (1996), I implemented the probability to 
attack a partner as a decreasing function of rank distance. 
To mirror differences in intensity of aggression (as 
described for primates by Thierry 1985, 1990), the impact 
of single acts of attack on future probabilities of 
winning/losing was varied. Apart from analyzing the 
effects of probability of attack and its impact on social
spatial structure, I will also report on other emergent 
social interaction patterns, such as bi-directionality of 
aggression and correlation between rank and frequency of 
attack. 

Methods 

In this Section I will present a description of the model 
and outline how spatial structure and stability of the 
hierarchy is measured. 

The model 

The model is individual-oriented and event-driven (see 
Hogeweg & Hesper 1979, Hogeweg 1988, Villa 1992, 
Judson 1994). The modeling environment (written in 
object-Pascal, Borland Pascal 7 .0) consists of three parts: 

*the 'world' (toroid) with its interacting agents, 

* its visualization, 

* special entities that collect and analyze data on what 
happens in the 'world' (cf. the 'recorders' and 'reporters' 
of Hogeweg 1988). 

Unlike in former lattice-based models (Hemelrijk 1996, 
1997), the 'world' presented here consists of a continuous 
space ·of 200 by 200 units. Therefore, agents are able to 
move in any direction. They have an angle of vision of 
120 degrees and their maximum perception distance 
(MaxView) is 50 units. I will confine myself to a small 
ensemble of 8 entities. Agents group and perform 
dominance interactions according to the sets of rules 
described below (Figure l ). 

Grouping rules 

In the literature, two opposing forces affecting group 
structure are often postulated: on the one hand animals are 
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attracted to one another, because being in a group 
provides safety. On the other hand, aggregation implies 
competition for resources and this drives individuals 
apart. 

Figure 1. Flow chart for the behavioral rules of the entities 

The forces leading to aggregation and spacing are realized 
in the model by the following set of rules (cf. Hogeweg 
1988): 

• If an agent sees another within a critical distance 
(parameter PerSpace), it performs a dominance 
interaction with that entity. In case several agents are 
within PerSpace, the interaction partner is chosen at 
random. If the agent wins the interaction, it moves 
towards its opponent, otherwise it makes a full turn and 
moves away from its rival. 

• If nobody is in its PerSpace, but an agent perceives 
others within a distance of NearView, it continues 
moving in its original direction. 

• If an agent detects it nearest neighbors outside 
NearView, but within its maximum range of vision (= 
MaxView), it moves towards them. 

• If an agent does not perceive any other agent within 
maxView, it searches for group members by making a 
turn over an angle (= SearchAngle) of 90 degrees at 
random to the right or left. 

Dominance types 

Conventionally, rank-acquisition is attributed to a 
(possibly inherited) quality of an individual (Ellis 1994). 
However, experimental results from various animal 
species (for a listing see Bonabeau et al 1996) have shown 
that winning is determined by chance and self-
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reinforcement: once an animal has won, it has a larger 
chance of winning again in a subsequent fight (the so
called 'winner-effect', see Chase et al 1994). Because this 
study emphasizes the self-organizing properties of 
interactions, I confine myself to the self-enhancing effects 
of winning/losing by starting with completely identical 
entities. 

About the perception of rank by others, a number 
of hypotheses are entertained by various authors (e.g. 
Barnard and Burk 1979, Hemelrijk 1996, 1997). The 
simplest one is that the capacity to win is directly 
perceived from external cues, such as pheromones in 
social insects (e.g., van Honk and Hogeweg 1981) and 
body postures in crustaceans (e.g., Copp 1986). In many 
species, however, dominance may not be recognized 
externally, but may be estimated on the basis of an 
individual's former encounters with a partner. Such a 
representation asks for more 'cognition' and was used in 
Hogeweg's (1988) model. Agents endowed with direct 
and estimated rank perception will be called Perceivers 
and Estimators respectively. The effects of both types of 
dominance perception will be compared in this paper. 

Dominance interactions. 

Interactions between agents with direct perception of 
dominance ranks (i.e. Perceivers) are modeled after 
Hogeweg & Hesper (1983) as follows: 

l. Each entity has a variable DOM (representing the 
capacity to win a hierarchical interaction). 

2. After meeting one another in their PerSpace, entities 
display and observe each other's DOM. This represents 
an active display and only through such a display the 
partner obtains information about the DOM value of its 
opponent. Subsequent winning and losing is determined 
as follows by chance and values of DOM: 

DOM. 
-----'1~- > RND(0,1) 
DOM.+ DOM. 

I J 
else 

(1) 

where wi is the outcome of a dominance interaction 
initiated by agent i (I =winning, O=losing). In other 
words, if the relative dominance value of the interacting 
agents is larger than a random number (drawn from a 
uniform distribution), then agent i wins, else it looses. 

3. Updating of the dominance values is done by 
increasing the dominance value of the winner and 
decreasing that of the loser: 

IX)M:. := IX)M:. +[W· I I I 

00\.lj'=OO\.lj-( wi 

IX)M:. J ~~~~I~- *SIEPJX)J\1 
IX)M:. + IX)M:. 

I J 

IX)M:. J ~~~~I~- *SJEPIX)M 
IX)M:. + IXM. 

I J 

(2) 

The consequence of this system is that it behaves 
as a damped positive feedback: winning by the higher 
ranking agent reinforces their relative DOM-values only 
slightly, whereas winning by the lower ranking gives rise 
to a relatively large change in DOM. To keep DOM 
values positive, their minimum value was arbitrarily put at 
0.01. STEPDOM is a scaling factor which varies between 
0 and 1 and is analogous to intensity of aggression. High 
values imply a large change in DOM-value when updating 
it, and thus indicate that single interactions may strongly 
influence future outcomes of conflicts. Conversely, low 
STEPDOM-values represent low impact. Unless stated 
otherwise, STEPDOM is set at 0.5. 

4. Winning includes chasing the opponent one unit 
distance and then turning randomly 45 degrees to the 
right or left in order to reduce the chance of repeated 
interactions between the same partners. The loser 
responds by fleeing under a small random angle over a 
predefined FleeingDistance. 

In the case of indirect rank perception, the agents (i.e. 
Estimators) recognize each other individually and 
remember their personal experience with each partner. 
Dominance interactions are defined similarly as in the 
SKINNIES ofHogeweg (1988): 

1. If an entity meets another in its PerSpace, it first 
consults its memory to establish whether it might win or 
loose a potential dominance interaction with that 
partner. Hereto, it performs the same dominance 
interaction as described in ( 1) and (2), but now based on 
the mental impressions it has of its own dominance rank 
and that of the other. If it looses this 'mental battle', it 
moves away while updating the impression of its own 
rank and that of the partner. If it wins, it updates and 
initiates a 'real' fight. Thus, unlike the Perceivers, the 
Estimators 'decide' whether or not to attack. 

2. If it wins, a 'real' fight is initiated by displaying its 
expectancy to win as its updated relative dominance 
rank (=DJ and the partner displays in return (=DJ That 
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Thus entities display their 'self-confidence'. Note that 
this self-confidence varies depending on the 
experience ego has with a particular partner. The 
variability of the display is not a strategic option (such 
as dishonest signalling in a typical game-theoretic 
setting), but a direct consequence of behavioral 
constraints. 

3. Winning is decided as in (!), using Di and Di 
instead of DO Mi and DO Mi. 

4. Updating of the experiences of each of both entities 
is done similar to (2), but involves two representations 
for agent i: 

[ 
DOM.· l 1,1 

DOM .. := DOM .. + W· - *STEPDOM 
1,1 1,1 1 DOM· . +DOM· · 

1,1 1,J 

[ 
DOM.· ] 1,1 

DOM . .:= DOM .. - w. *STEPDOM 
l,J 1,J 1 DOM .. + DOM. · 

1,1 1,J 

Updating for agent j is obtained by replacing DOMi .. by 

DO Mi .. · 

From now on, the initiation of a dominance interaction 
will also be referred to as 'attack' for short. 

Probability of attack. 

In former versions of the model (Hemelrijk 1996, 1997) 
entities always engaged in dominance interactions when 
encountering others nearby. However, the 'Obligate attack 
system' may not meet certain observations on real 
animals. In a variety of species (e.g., chickens: Guhl 1968; 
primates: Kummer 197 4 ), it has been found that some 
time-period after putting unacquainted individuals 
together, hierarchical activity subsides and non-aggressive 
proximity prevails. This suggests that eventually animals 
acknowledge the rank of others. To reflect this directly, I 
also implemented a version of the model in which the 
probability of attacking a partner decreases linearly with 
the rank-distance to that partner (for a comparable 
implementation see Bonabeau ct al. 1996). This will 
hereafter be referred to as the Rank-Distance-Decreasing 
attack system. In this paper, I will compare spatial 
structuring and several other characteristics in the two 
systems. 
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Timing regime 

Since parallel simulations cannot be run on most 
computers, a timing regime regulating the sequence of the 
activation, has to be included. The type of timing regime 
influences the results of a simulation. A biologically 
plausible timing regime must be locally controlled, i.e. by 
other entities and not by a monitor (e.g. Goss & 
Deneubourg 1988). In the timing regime used here, each 
entity draws a random waiting time from a uniform 
distribution. The entity with the shortest waiting time is 
activated first. The decay of waiting time is the same for 
each entity. However, if a dominance interaction occurs 
within NearView of an agent, the waiting time of this 
agent is reduced stronger. 

Experimental setup and data collection 

Because animal groupings vary in their cohesiveness, also 
a comparison between spacious and cohesive groups is 
included. Cohesive groups (Hemelrijk 1996, 1997) result 
from a small personal space of two units (this makes 
entities tolerate others very nearby before chasing them 
away), a small nearView (which causes entities to turn 
towards others soon) and a large searchAngle of 90 
degrees (by which lost entities quickly find the group 
back). Starting from cohesive groups, I created spacious 
groups by enlarging personal space to 4 units and 
nearView from 8 to 24. Five runs were done per type of 
entity (Perceiver, Estimator), grouping (Cohesive, 
Spacious) and FleeingDistance (from one to four units), 
resulting in a total of 80 experiments. 
The effects of attack-probability and STEPDOM were 
studied for Perceivers only and were evaluated on the 
basis of sixty runs, consisting of ten runs of each system 
of attack and for three val ucs of STEPDOM (0.1, 0.5 and 
1.0). 
During a run, every change in spatial position and heading 
direction of each entity was recorded. Every time step 
(consisting of 160 activation) the distance between agents 
was calculated. Dominance interactions were 
continuously monitored by recording: 1) the identity of 
the attacker and its opponent; 2) the winner/loser; 3) the 
updated DOM-values of these entities. 

Measures of spatial centrality of dominants 
and hierarchical stability 

The degree with which dominants occupied the center was 
measured in two ways, by the spatial directions of others 
around ego and by the average distances of partners 
towards ego. Using circular statistics (Mardia 1972), for 
each scan the centrality of each individual was calculated 
by drawing a unit circle around it and projecting the 
direction of other group members (as seen by ego) as 
points on the circumference of that circle. Connecting 



these points with the origin gives vectors. The length of 
the mean vector represents the degree in which the 
position of group members relative to ego is clumped; 
longer mean vectors reflect more directedness and 
indicate lower centrality (i.e. 'encirclement' ). Thus 
stronger centrality of higher ranking entities is reflected in 
a larger negative correlation between rank and 
encirclement. 
The second measure is the Kendall rank correlation 
between dominance value and the average distance of Ego 
to others. Again, centrality of dominants is represented by 
a negative correlation. Both measures appeared to be 
strongly correlated and only the rank-encirclement 
correlation will be mentioned in the analysis. 

The stability of the dominance hierarchy was 
expressed as the relative number of rank reversals. This 
was established by calculating the Kendall rank 
correlation between the dominance ranks of entities at 
successive intervals of two time steps (320 activation). 
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Results 

Parameters for strong social-spatial structure. 

As in the previous lattice-based world, a dominance 
hierarchy developed among initially completely identical 
entities (see Figure 4 of Hemelrijk 1996). Furthermore, 
due to the continuous version of the world used here, a 
much clearer social-spatial structure (with dominants in 
the center and subordinates at the periphery) originated. 

Rank-correlated encirclement appeared stronger 
among Perceivers than Estimators (Figure 2). Assuming 
that this type of social-spatial structure emerged because 
dominants chased away subordinates to the periphery, this 
is probably due to the Perceivers' higher frequency of 
aggression and clearer rank-differentiation. In the 
remainder, only the behavior of Perceivers will be 
considered; for a detailed discussion about differences 
between Perceivers and Estimators see Hemelrijk 
(1996, 1997). 

Social-spatial structuring appeared somewhat 
weaker in cohesive than in spacious groups (Figure 2). 
Cohesive groups have a small diameter and this implies 
that minor displacements suffice too bring an entity to the 
periphery. Thus, incidental fleeing by dominants disturbs 
spatial structure more in cohesive than spacious groups. 
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Figure 2. Kendall rank correlation between rank and 
encirclement for various parameter settings of groups of 8 
entities. Shaded bars: Estimators, white bars: Perceivers; FleeD: 
FleeingDistance; coh: cohesive, spa: spacious groups. 

In spacious groups, the strongest social-spatial structure 
showed up at an intermediate FleeingDistance of two 
units (white bars in Figure 3). 

Figure 3. Frequencies of aggression and centrality of dominants 
for 4 FleeingDistances (FD) in spacious groups of 8 Perceivers. 
Shaded bars: frequency of aggression * 2000. White bars: 
absolute value of rank-encirclement correlation. 

This may indicate the existence of two 
conflicting constraints: on the one hand, larger 
FleeingDistance brings subordinates quicker towards the 
periphery, thus enhancing spatial structure. On the other 
hand, larger FleeingDistances increase the average 
distance among entities thus reducing the frequency of 
interaction (shaded bars in Figure 3) and hence the 
ordering force responsible spatial structure. 

From now on, the analysis will be restricted to 
data from runs that yielded the strongest spatial structure 
(i.e. from Perceivers with PersSpace=4, NearView=24 and 
FleeingDistance=2) (Figure 4) . 
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Figure 4. Visualization of social-spatial structure during the last 
60 time-steps of a run. The correlation between rank
encirclement was -0.724 for this sub-period. Shown are the 
position of 8 entities every other time-step. Numbers indicate 
relative rank (from I to 8). Surface contours are isoclines of 
identical mean rank and were obtained by using a cubic spline 
smoothing procedure. Darker shading indicates lower mean 
rank. 

Impact of single acts and probability of attack. 

Unexpectedly, a higher STEPDOM-value led to reduced 
levels of aggression in both systems. In turn, this enforced 
the stability of the hierarchy (Figure 5). 

Furthermore, a higher STEPDOM had 
depending on the type of attack- opposite consequences 
for spatial structuring (Figure 6). For Obligatory attack, it 
strengthened social-spatial structure, whereas for Rank
Distance-Decreasing Attack-rates the opposite was found . 

Obligate Attack , STEPDOM 1 
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Figure 5. Relationship between frequency of aggression and 
stability of dominance ranks in successive periods for the 
Obligate Attack System and STEPDOM 1. For various 
parameter settings, the product-moment correlation between 
aggression and rank-stability was as follows : Obligate attack: at 
StepDom0.5, r=-0.545, at StepDoml.O, r=-0.827 , N=l 28. Rank
Distance-decreasing Attack: N=l 28, StepDom0.5. r=-0.777; 
StepDoml .0, r=-0.829 
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Figure 6. Intensity of aggression (STEPDOM) and centrality of 
dominants as measured by the rank-encirclement correlation 
(mean and S.E.). White bars : Obligate attack system, shaded 
bars: Rank-Distance Decreasing attack system. Note that the 
degree of rank-related encirclement is similar for both systems at 
STEPDOM 0.1, because under this condition no clear hierarchy 
forms. 
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Figure 7. Average inter-individual distances and intensity of 
aggression (STEPDOM) of the Obligate Attack System 

To explain these results, note that the higher the value of 
STEPDOM the stronger a single event of winning and 
losing influences the outcome of future interactions. Thus, 
starting from completely identical ent1t1es, ranks 
differentiate faster at higher STEPDOM. In the system 
with Obligatory attack, this resulted in larger average 
distances among entities (Figure 7): By being defeated 
again and again , losers moved away further and further 
from others. Consequently, the frequency of aggression 
dropped (Correlation between distance and aggression at 
StepDom0.5: r=-0.351 , at StepDoml.O: r=-0.461 , N=130) 
and this lowered the probability of rank-reversals (Figure 
5). The thus induced higher stability and larger 
differentiation of ranks enhance social-spatial structure as 
follows . If entities are similar in rank, both partners are 
about as likely to chase away the other and are treated by 
other group-members similarly. As a consequence they 
remain near one another. The larger the rank-distance 
between two entities, however, the more subordinates will 
flee from dominants and in time a correspondence 
between rank and physical distance will develop . 
Obviously, when rank is not stable, the frequent rank
reversals hamper the development of a clear spatial 
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structure. 
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Figure 8. Intensities of aggression (STEPDOM) and decrease of 
frequency of attack over time in the Rank-Distance Decreasing 
Attack System. 

The situation is different for the Rank-Distance
Decreasing Attack System. In this case, entities also 
reduce their attack-rate as their ranks differentiate (Figure 
8). However, in contrast to the Obligate attack system, 
they particularly refrain from attacking partners more 
distant in rank. In other words, they increasingly tolerate 
nearby partners of more distant rank and this impairs 
spatial structure. However, it does not reverse the spatial 
configuration into one with dominants at the periphery 
and subordinates in the center. This is due to two forces. 
First, if a fight takes place, then in both systems, 
dominants win more often from subordinates the larger 
their rank-distance with these partners and second, 
aggressive interactions especially occur among rank-near 
entities. Note that in the Rank-Distance Decreasing attack 
system the latter is implemented a priori as a behavioral 
rule, whereas in the Obligate system it is due to the 
emergent proximit of rank-near entities. 

Spatial Centrality 
of Dominants 

Figure 9. Summary of results for the Obligate Attack System. 
Arrows indicate direction of the effect. 

Some other effects of spatial structure 

An important property of a self-organizing system is the 
feedback between macro-patterns and the rules operating 
at the micro-level. In the Obligate attack system, this is 
illustrated by the reduced aggression that ensues with the 
growing spatial structure (which in itself arises as a 

consequence of dominance interactions). Lowered 
aggression in turn, strengthens spatial structure by 
decreasing the probability of rank-reversals (Figure 9). 

Another example is the spontaneous development 
of a positive correlation between rank and aggression, as I 
reported before for a lattice-based artificial world 
(Hemelrijk 1996). In the continuous version, this 
correlation was found more profoundly for higher 
STEPDOM-values in the Obligate Attack System (being 
significant in respectively 0%, 30% and 60 % of the runs 
for STEPDOM of 0.1, 0.5 and 1.0), but was never 
significant for the Rank-Distance-Decreasing Attack 
System. This supports my previous suggestion that rank 
correlated aggression arises as a consequence of a spatial 
structure with dominants in the center. In such a 
configuration, others surround dominants at all sides, 
whereas subordinates at the periphery experience fewer 
encounter frequencies and therefore their opportunities to 
attack others are reduced. 

Compared to the Obligatory Attack System, in 
the Rank-Distance Decreased Attack System, 
bidirectionality of attack was stronger, particularly so at 
higher STEPDOMs (Figure 10). This is understandable, 
because if attack rate decreases in proportion to rank
distance, this means that entities more often attack 
partners the nearer the rank of the partners. Since all 
individuals do so and rank-distance is a symmetrical 
characteristic, rank-nearer entities will mutually attack 
each other more often. 
For the same reason higher STEPDOMS were associated 
with stronger reciprocity of non-aggressive proximity as 
well. 

Bidirectionality of Attack 
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Figure 10. Bi-directionality of aggression for both systems of 
attack and increasing STEPDOM (mean 't1<r plus/minus S. E.) 
Bi-directionality of attack is measured as a 't1<r -correlation 
between an actor and receiver matrix (Hemelrijk 1990). White 
bars: Obligate attack system; Shaded bars: Rank-Distance 
decreased attack system. 

Discussion 

In line with Hogeweg's (1988) observations, this model 
clearly shows that a spatial structure with dominants in the 
center and subordinates located at increasingly larger 



distances from the core, may emerge as a side effect from 
self-reinforcing dominance interactions and a tendency to 
aggregate. Moreover, such a structure arises in the 
absence of any positional preference of the entities. 

This implies an alternative explanation to the 
commonly held view that centrality of dominants reflects 
their positional predisposition for a safer location in the 
group, which in turn is assumed to be optimized by 
natural selection. In the model, centrality of dominants 
arises because dominants have a larger chance to win 
from (and chase away), subordinates that are more distant 
in rank. Provided the level of aggression is sufficiently 
high, this process is strengthened when dominance 
hierarchies are less ambiguous (because of more 
outspoken rank-differentiation) and more stable. 
Although the process is weaker in the Rank-Distance 
Decreasing Attack System, the pattern is generally robust; 
the correlation between rank and encirclement was 
negative for every parameter setting. Robustness was 
further supported by results from an extended model, in 
which I made FleeingDistance and SearchAngle rank 
dependent. As a consequence, low-ranking entities flew 
further (FleeingDistance of 5 versus 1 units) and returned 
to the group slower when lost (searchAngle of 60 instead 
of 90 degrees) than high-ranking ones. The resulting 
social-spatial structure for both attack systems and 
increasing STEPDOM appeared similar to vary that 
reported here. 
The model yielded a host of other emergent effects. For 
instance, under the Obligate attack system, higher ranking 
entities aggressed others more frequently than lower
ranking ones did. This came about as a consequence of 
spatial structure: dominants simply have more interaction 
opportunities because of their central location (which 
itself is a result of dominance interactions). Note that this 
perspective is very different from the conventional one, 
which assumes that a rank-correlated rate of aggression is 
an internal characteristic of dominants. Another example 
is the decline of aggression due to rank-differentiation and 
the higher attack-rate towards rank-nearer entities. This is 
not only a feature of the Rank-Distance Decreasing attack 
system (in which it was explicitly implemented), it also 
originated as a self-organized feature in the Obligate 
attack system. In the latter, reduced aggression resulted 
from larger individual distances, which in tum was a 
consequence of dominance differentiation. Note that this 
feature of the Obligate attack system fulfills the original 
motivation for implementing the Rank-Distance 
Decreasing attack system, and makes them appear equally 
'natural'. Furthermore, rank-near entities were more often 
attacked, because they were closer than rank-distant ones. 

It is especially this abundance of emergent 
effects that highlights the complex intertwinement of 
behavioral variables. This complexity hampers 
predictability. What, for instance, will happen when 
entities belong to different STEPDOM classes (compare 
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sex-age categories in primates, Bernstein and Ehardt 
1985)? Although we could expect entities of the same 
STEPDOM to cluster (because they react similarly to their 
social environment, cf. Hogeweg 1988) and within such 
clusters, dominants to occupy the center, it is very hard to 
foresee how clusters of different STEPDOM types will 
arrange themselves spatially relative to one another. 
Insight in these matters may shed light on an ongoing 
polemic about the spatial positioning of sex-age categories 
in primate groups (Altmann 1979; Rhine and Westland 
1981) and is the topic of my current research. In such 
indecisive disputes, individual-oriented models are 
particularly useful, because the consequences of 
biologically plausible extensions can be studied directly in 
silica. In this context, artificial worlds may function as a 
kind of virtual laboratory that allow for 'social 
experiments' that are impossible in the real world (Epstein 
and Axtell 1996), but provide behavioral scientists with 
'tools for thought'. 
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Abstract 
Punctuated equilibrium is found to be a generic property of 
Lindgren's non-spatial model of coevolution of strategies 
for two player games. Macro measures of evolutionary 
activity and concentration within a population are 
introduced and used to characterize evolutionary dynamics 
in the model population. Punctuated equilibria are found 
across a wide region of parameter space, but are not found 
in the absence of adaptation. A variety of control 
experiments are introduced. including a neutral analogue 
that characterizes genetic drift in this model class. Finally, a 
model of population moving through genotype space is used 
to describe the punctuated equilibrium phenomenon and to 
introduce a taxonomy of punctuations. This classification is 
then applied to the observed base case model results. 

Introduction 

Lindgren developed several evolutionary models of 
simple strategies that play iterated two player games in 
noisy environments (Lindgren 1992, Lindgren and Nordahl 
1994). In the non-spatial version, each strategy in the 
population plays every other strategy. A strategy's fitness 
in this model is an implicit function of the other strategies 
active in the population, thus the model perfonns a 
coevolution of strategies. Applying this model to the 
Iterated Prisoner's Dilemma (IPD), Lindgren found that 
punctuated equilibria are an endogenous behavioral mode 
of evolving populations. Relatively long periods of 
evolutionary stasis were found, followed by abrupt 
extinction events that lead to new periods of stasis. This 
behavioral pattern is encountered in many other evolving 
systems, and has been hypothesized to be a generic 
property of evolution (Langton 1992). 

The tenn "punctuated equilibria" was introduced into 
evolutionary theory by Eldredge and Gould (Eldredge and 
Gould 1972) in the context of describing speciation events. 
They advanced a theory of speciation in which rapid bursts 
of evolutionary activity caused speciation events as 
punctuations between long periods of evolutionary stasis. 
The punctuations in Lindgren's model aren't just 
speciation events, but wholesale replacements of one 
dominant ecology with another. While the details of what 
is a punctuation differ, the phenomena in both cases are 

driven, at least in part, by the dynamics of populations 
diffusing in a discrete genotype space under the action of a 
phenotypic fitness gradient. Thus an explanation of 
punctuated equilibria based on population dynamics in 
genotype space derived from the relatively simple case of 
Lindgren 's model applies to many other natural and 
artificial evolving systems. The final section of this paper 
attempts just such an explanation. 

A measure of evolutionary activity useful for identifying 
punctuations in Lindgren's model is the activity statistic 
introduced by Bedau and Packard as a measure of useful 
genetic adaptation in a population (Bedau and Packard 
1992). They use this measure to differentiate between 
population dynamics due to "meaningful" evolution and 
those due to the structure of the simulation methodology 
used. In their approach, a neutral analogue of the adaptive 
model is constructed, and the two behaviors compared. 
Consistent differences between the two can be attributed to 
meaningful evolution (Bedau et al. 1997). 

We use their activity measure to identify punctuated 
equilibria across a wide region of the parameter space for 
Lindgren's model. We then construct several neutral 
analogues of the adaptive model and find no punctuated 
equilibrium behavior in the non-adaptive populations. 
Based on these observations, we proposes a model of 
punctuated equilibria resulting from an adaptive process 
moving population around in genotype space. 

The Model 

Lindgren' s model assigns scores to different strategies 
based on each strategies' interaction with all the active 
strategies in a generation. Each strategy's percentage of the 
population is then adjusted based on the deviation of the 
strategy's score from the mean score for that generation. 
During this phase, the model allows for mutation of 
strategies, causing new strategies to enter the active 
population, and in some sense allowing the simulation to 
explore the "strategy space" of the game. 

The Prisoner's Dilemma is used for the base case game. 
The Prisoner's Dilemma is a two person nonzero sum 
game in which players must choose between cooperating 
with their opponent or defecting. The dominant strategy for 



both players is defection, which leads to a non-optimal 
outcome for each (Axelrod 1984). The game is 
summarized in matrix form as: 

c D 
c 3, 3 0, 5 
D 5,0 1, 1 

where in (a, b), a is the row player's payoff and b the 
column player's payoff, and the relation of the payoff 
values to one another is significant, but the absolute 
magnitudes are not. The dominant strategy for both players 
is to defect, which leads to the payoff ( 1, 1) that is not as 
desirable as the cooperative outcome (3, 3). 

Strategies in the model are specifications of whether to 
cooperate or defect on the next play given the immediate 
past history of both players' actions. The length of the 
history considered is the memory of the strategy. The base 
case starts with memory 1 strategies, permits a maximum 
memory length of 4 and allows for both memory 
increasing and memory decreasing mutations. Each 
strategy is represented as a bit string with a one meaning 
cooperate, and a zero meaning defect. The length of such 
strings determines the memory of the strategy. A memory 
I strategy is two bits, the low order bit specifies the action 
given the opponent cooperated on the last play, and the 
high order bit specifies the action given the opponent 
defected on the last play. A memory 2 strategy contains 4 
bits, the low order pair specifies how to respond to the 
opponent when the player's own last play was cooperated, 
while the high order pair specify the case where the player 
last defect. Essentially, a memory 2 strategy is two 
memory I strategies concatenated together. Larger 
memory strategies can be created in a like manner, a 
memory 3 strategy is 8 bits long, a memory 4 is 16 bits 
long. Note, a memory 1 strategy is phenotypically 
identical to a memory 2 strategy formed by concatenating 
it with itself, e.g. 01 is the same as 0101. These bit strings 
are genotypic representations in that 01, 0101, and 0101-
0I01 all represent the same effective strategy even though 
they are distinct strings. 

For each generation in the simulation, the model 
calculates a score for the interaction of each active strategy 
with every other active strategy. This is done by treating 
the interaction, the repeated playing of the game, as a 
markov process with order equal to the longest memory 
length of the interacting strategies. The stationary 
distribution for this process can be solved for explicitly, 
and then converted to an expected score given the payoffs 
of the game. Each strategy accumulates a score and the 
population mean is found. Strategies with scores greater 
than the population mean have their representation in the 
population increased proportionally, while those with 
scores below the mean have their representation reduced. 
When a strategy's representation in the population falls 
below a minimum level, it is eliminated. After this 
population adjustment step, each surviving strategy is 
checked for three kinds of mutations: memory doubling, 
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memory splitting and point mutation of individual bits. 
Mutations are based on the model mutation rate 
parameters, and result in a transfer of population 
percentage from the parent strategy to the mutant strategy. 
The mutant strategy may be a new or an existing strategy. 

Macro-measures for Evolutionary Simulations 

Macro population measures include the diversity or the 
number of distinct genotypes or phenotypes active, 
population uncertainty - the information theoretic 
uncertainty in randomly choosing a genotype from the 
active population, population concentration the 
normalized uncertainty, and total evolutionary activity in 
the population. 

Bedau and Packard introduced evolutionary activity as 
the summation over time of the continuous persistence or 
usage of genes, genotypes, and phenotypes. This statistic 
attempts to capture the presence of meaningful adaptations 
that make a difference to the longevity of a type. Counters 
are attached to each type in the population, and are 
incremented in proportion to the type's use or longevity 
and zeroed out when the type disappears. 

The specific measures used are: 

Simple Diversity D(t) = #{i: p;(t) > O}, 

Population Uncertainty 

U(t) ~ -( LP;(t) logp;(t)), 

Population Concentration 

U(t) 
C(t) = 1 - log D(t)' 

Genotypic Activity 

a/t) = IpJt) 
{n:s:pi (s):i=O,pi (s-1)=0} 

Total Activity 

A(t) = Ia;(t), 
where the index i is to be taken over all active genotypes in 
generation t, and P;(t) is the proportion of the population 
with genotype i in generation t. 

Base Case Model Results 

These current results are based on a C language 
implementation that closely resembles Lindgren's original 
Pascal code. This new implementation replicates the basic 
scenario reported by Lindgren, including the key strategies 
and epochs of parasitism, mutualism and unexploitable 
stability. The parameter values used by Lindgren in his 
original work are our base case: population size (N) = 

1000, selection pressure ( d) = 0.1, noise (error rate, p) = 



0.0 I, doubling/split mutation rate (pd = p,) = 10·5, point 
mutation rate (pp) = 2x 10·5• 

The usual progression of equilibrium periods or epochs 
encountered in base case model runs is: 

- Beginning with equal proportions of each of the four 
memory I strategies, a variety of memory I dynamics 
occur in which strategies go extinct and are reborn through 
point mutation. The memory I regime is eventually 
displaced by some combination of highly cooperative but 
exploitable memory 2 strategies. Strategies 000 I and I 00 I 
then appear and dominate the memory 2 epoch. 

- When this regime persists for long enough, 0001-000 I 
and 1001-100 I appear through memory doubling 
mutations, and then I 00 l-000 I and 0001-100 I appear as 
point mutations. These two strategies together are capable 
of taking over the population from the memory 2 
strategies. Separately, neither plays well, thus this memory 
3 epoch is characterized as mutualistic. 

- Finally, 1001-0001-1001-000I and 0001-1001-0001-
l 00 I appear as doubling mutations of the symbiotic 
regime, and then mutate into I 001-000l-0001-100 I and 
related types (of the fonn lxxl-Oxxx-Oxxx-xOOI), which 
take over the population and lead to an evolutionarily 
stable regime. 

While this is the basic scenario previously reported, two 
important points can be added. First, this is only the 
general progression -- in many model runs there is a great 
deal of cycling between memory I and memory 2 regimes. 
Populations of memory I and memory 2 strategies build up 
only to be invaded by selfish strategies that collapse back 
to memory I dynamics. Typical long periods of stasis 
occur when the population crashes to all 00, which 
develops a significant 0000 population that introduces 
0001 as a point mutation. 0001 invades the x-0 population 
and gets back to the memory 2 regime. Figure 2 illustrates 
this. 

The second point is that high concentrations of any one 
genotype in the population lead to a build up of the 
memory doubled variant of that genotype, i.e. 00 leads to 
0000 etc .. It is from these memory doubled variants, which 
are phenotypically identical to the dominant genotype(s), 
that point mutations can produce the next wave of 
dominant genotypes. This population drift to 
phenotypically similar but genotypically more complex 
types is essential for describing the mechanism that 
produces the punctuations. 

The activity measures, together with diversity and 
concentration, characterize the population dynamics 
associated with each of the above epochs. In Figure I, total 
activity exhibits two large waves (I - 855, and 855 - 2000) 
a small wave (2000 - 2200) and the beginning of a 
fourth wave (2200 + ). Each of these activity waves 
corresponds to an evolutionary epoch in which one or more 
strategies dominate the population. The first wave 
represents the initial period of dynamics between memory 
I strategies that is dominated by 0 I, and I 0. The notch at 
the peak of the wave corresponds to 10 going extinct due 

318 

to the growth of the 0101 mutant 110 I. The end of this era 
is marked by the extinction of 0 I and 110 I together, and 
the emergence of I 00 I and then 000 I as the dominant 
strategies. Of these 000 I tends to dominate for most of the 
epoch. As memory 3 strategies emerge through gene 
duplication of the dominant strategies, 0001 eventually 
goes extinct -- the initial drop at the end of the wave, 
followed by I 00 I at the second drop. The third, much 
smaller wave represents the emergence of the dominant 
mutualistic pair I 001-000 I and 0001-100 I. The fourth 
wave marks the emergence of the evolutionarily stable 
regime of memory 4 strategies. Here the less efficient 
memory 3 types quickly go extinct. 
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Figure I: A(t), D(t) and C(t), base case, 30k generations. 

The waves exhibited by the total activity measure 
summarize the punctuated equilibrium phenomena of this 
evolutionary simulation very well. The waves correspond 
to the periods of "equilibrium" while the collapse of a 
wave to near zero marks the "punctuation". The 
concentration measure roughly characterizes the nature of 
the dynamics within each epoch. For example, the 
concentration during the initial wave fluctuates during the 
initial memory I shake out, levels off during the "quiet" 
period of dominance by 01 and 10, then oscillates again as 
1101 and then 100 I emerge and take over. During the 
second wave, the concentration fluctuates initially as first 
I 00 I and then 0001 becomes dominant, and then increases 
for most of the epoch, corresponding to the dominance of 
0001. Near the end of the wave the population becomes 
less concentrated as 0001 is forced out. The third wave 
concentration stays fairly constant during the relative stasis 
of 1001-0001 and 0001-1001 mutualism. Finally, after the 
shift to the evolutionarily stable set of memory 4 strategies, 



a very distinctive logarithmic decrease in concentration 
occurs for the rest of the simulation. This corresponds to 
the diffusion of population amongst the stable set of 
strategies. Note that the diversity of the population remains 
fairly low (5 to 10 types) until the emergence of the 
memory 4 strategies, at which point it increases. 

501 1001 1501 2001 2501 

501 1001 1501 2001 2501 

Figure 2: A(t), and C(t), base case, 30k generations. Note 
cycling between evolutionary epochs. 

Another example in Figure 2 illustrates the cyclic nature 
of this evolutionary progression. Here there are four 
activity waves. The first exhibits typical memory I 
dynamics, the second is a period of rebuilding diversity 
after collapse to an entirely selfish population. The third is 
a period of memory I and 2 cycling, and the fourth is again 
a period of selfish dominance (00) with a slow invasion of 
000 I. Unlike the previous run, this one doesn't reach the 
stable regime of memory 4 strategies over the course of 
30,000 generations. 

Neutral Models 

To gain a better understanding of the above dynamics, 
we need to see what types of behavior the model structure 
produces in the absence of meaningful adaptation. There 
are several possible approaches to shutting off adaptation. 
Three options investigated are: a random behavior model 
in which all genotypes are phenotypically identical; a 
random fitness model in which selection pressure is 
applied to the population based on fitness values randomly 
assigned at each generation; and the use of a payoff matrix 
from a game with a known, stable solution which is present 
in the starting population. 

In the first approach, the noise level, i.e. the rate at 
which errors are made in the game, is set at 0.5. This 
produces a random behavior model in which all strategies 
play the same. This model amounts to a diffusion process 
in genotype space driven by the model mutation rates. 
From the initial set of memory I strategies with uniform 
concentrations, a cloud of types billows out slowly over 
time. Concentration remains fairly low, diversity increases 
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slowly but steadily, and there are almost no extinction 
events during the first 30,000 generations. With no types 
going extinct, total activity increases with slope I over the 
entire simulation period. No punctuations take place. Since 
all genotypes are phenotypically equivalent, there is no 
opportunity for meaningful adaptation. 

The second neutral analogue was created by driving the 
population dynamics of the model using a gaussian 
probability density. In the adaptive model, a genotype's 
concentration in a population changes in proportion to the 
deviation of the type's score from the population's mean 
score for the generation. This neutral model was 
constructed by replacing the actual score deviation with a 
deviation generated from a gaussian density. These random 
deviations were scaled and constrained to be centered and 
realizable based on an assumed population mean moving 
randomly through the interval of possible means. The 
standard deviations for both the movement of the 
population mean and the deviation distribution are 
definable parameters, as are the realizable limits for both 
the mean and the deviations. This model essentially takes a 
random walk in genotype space. No adaptation can take 
place since fitness is randomly determined at every 
generation. But unlike the random behavior model above, 
selection pressure is still exerted based on the random 
fitness assignments. 

Analysis of neutral model runs show that after a number 
of generations equal to that needed for the adaptive model 
to reach a population of evolutionarily stable memory 4 
strategies, the neutral population contains mostly memory 
4 strategies that are at least somewhat related. The drift to 
memory 4 strategies makes sense given that there are 
vastly more memory 4 strategies than memory I through 3 
strategies combined (65,536 compared to 276). This also 
accounts for the pattern of diversity increase seen in the 
adaptive simulations. Until viable memory 3 strategies get 
established in a population, there is little possibility of 
exploring most of the genotype space through the process 
of single point mutations. Since there are only twenty total 
genotypes of memory l and 2, its not possible to get 30 or 
40 types in a population until successful memory 3 and 4 
strategies appear. 

In Figure 3, the activity graph for the neutral model 
shows that total activity initially increases, then fluctuates, 
but never collapses back near the zero level. The extinction 
events that wipe out the dominant types of an epoch are not 
present. The dips are much more gradual, and the over all 
shape of the curve is smoother. The neutral model shows a 
much more linear growth in diversity up to an equilibrium 
level. 

There are significant extinction events during the course 
of the simulation, in which the number of types drops 
significantly over the course of a few hundred generations, 
and then rebounds to its previous level. While most of the 
time the concentration remains low, during these extinction 
episodes the concentration increases significantly. 
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Figure 3: A(t), D(t) and C(t), base case random walk 
neutral model ( crs = 1.0), 30k generations. 
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Figure 4: A(t) and D(t), random walk model with high 
selection pressure (crs = 1.0, d=0.4), 30k generations. 

That there are no punctuations found in either of the 
above neutral models strongly suggests that punctuated 
equilibria are products of meaningful adaptation in 
evolutionary processes, not products of genetic drift. 
However, if the selection pressure is increased sufficiently, 
this neutral model does produce activity waves that drop to 
near zero. This case is illustrated in Figure 4, note there is 
clearly no significant build up of activity. There are 
punctuations but no periods of equilibrium. We can not get 
both together from this neutral model -- adaptation is 
necessary to get punctuated equilibrium. 

For the third approach, running simulations on games 
for which solutions are known and easily verified, we tum 
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to the class of noncompetitive games (Rapoport, Guyer 
1978). The most stable of these is: 

c D 
c 5, 5 3, 1 
D 1, 3 0,0 

in which the dominant strategy for both players is to 
always cooperate and thus obtain the maximum payoff. 
When this game is used in place of the prisoner's dilemma, 
11 (always cooperate) is found to dominate the population. 
Small populations of memory doubled 11 begin to appear 
with some memory 3 variations of 11 11-1111 persisting 
for periods of time. These results are reassuring both 
because they agree with the game theoretic analysis, and 
because they show that adaptive selection can resist the 
drift to memory 4 strategies. While no punctuated 
equilibrium behavior is found in these cases, there is also 
no opportunity for useful innovation since the optimal 
strategy already exists in the starting population. 

Robustness Across Parameter Values 

Determining the robustness of punctuated equilibrium 
behavior to differing parameter values requires searching 
across the possible values for the three mutation rates, the 
population survival limit (which determines the implicit 
population size), the population delta (a proxy for selection 
pressure), the noise level of the game, the relative 
magnitudes of the game payoffs (3, 0, 5, I versus 4.9, 0, 5, 
I), and the maximum memory length allowed. 

Increasing the maximum memory length to five has little 
impact on the pattern found in the base case scenario. All 
the same initial epochs appear as in the base case. 

Increasing the selection pressure makes the qualitative 
behavior of the simulation more crisp. It also seems to 
increase the probability of collapse back to memory I 
dynamics. The base for this parameter is 0.1. When it is 
increased beyond 0.5 there is a very low likelihood of 
arriving at the evolutionarily stable set of memory 4 
strategies. The population seems to cycle indefinitely, 
spending most of the time with memory I strategies. 
Figure 5 illustrates a run with the parameter set at 0.4. The 
total activity shows four waves, while the concentration 
measure shows the distinctive patterns associated with the 
dynamics of the different memory length regimes. 

Decreasing the selection pressure smoothes out the 
activity waves. Figure 6 illustrates this for the case where 
selection pressure has been decreased by a factor of ten. 
While the same evolutionary progression occurs, the 
punctuations disappear. 
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Figure 5: A(t) & C(t), high selection pressure (d=0.4), 30k 
generations. 
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Figure 6: A(t) & C(t), low selection pressure (d=0.01), 
300k generations. 

Increasing the mutation rate speeds up the exploration of 
the genotype space. When the mutation rate is increased by 
a factor of ten, the evolutionary progression from memory 
1 to a stable memory 4 regime is one continuous process. 
As Figure 7 shows no periods of stasis or punctuations 
appear. Decreasing the mutation rate slows down the 
exploration of genotype space. In Figure 8, epochs become 
longer lived, punctuations become very crisp, more 
instances of collapse are encountered, and the expected 
time needed to reach the stable memory 4 regime grows 
significantly. 

The survival limit determines the size of one individual 
in the population, and thus both the minimum size a 
strategy can be in the population and survive, and the 
proportion of population that is transferred between 
genotypes when a mutation occurs. Its value thus impacts 
the simulation in several ways. First is the mechanism by 
which a cooperative strategy invades a selfish population. 
To be successfully, the cooperative strategy needs to attain 
some minimum concentration so that its gain through self 
interaction can offset its losses due to exploitation by the 
rest of the population. Since the population size of a new 
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mutant type is determined by the survival limit, the new 
mutant will go extinct or become established based on 
whether the survival limit is less than or greater than the 
critical self interaction level. The general thrust of this 
reasoning is born out by the finding that increasing the 
survival limit tends to decrease the simulation time needed 
to reach the stable memory 4 regime and increases the rate 
of diffusion amongst those strategies once the regime is 
reached, while decreasing the survival limit tends to 
reverse these findings. In both cases punctuations still 
occur. 
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Figure 7: A(t) & C(t), high mutation (base case rates xlO), 
300k generations. 
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Figure 8: A(t) & C(t), low mutation (base case rates x10- 1), 

300k generations. 

Changing game parameters changes the expected payoff 
from each interaction. These parameters include the 
relative payoff structure, the absolute magnitude of the 
payoffs, and the noise level or error rate. The absolute 
magnitude of the payoffs can be considered a scaling factor 
that increases or decreases the variance of scores from the 
population mean, and thus is equivalent to selection 
pressure treated above. This leaves noise level and payoff 
structure as parameters to investigate. 

A higher noise level leads to significantly different 
behavior. Increasing the noise level flattens out the 
distribution in scores. Figure 9 illustrates one extended run 



for an error rate of I 0% instead of I%. The dynamics 
differ from the base case -- they are smoother and less 
distinctive, but punctuations still occur. Note the epochs 
with much larger diversities than are ever seen in base case 
scenarios, and the lack of significant population 
concentration up until the very end of the run. A lower 
noise level also leads to a shift in the strategies successful 
in each epoch. However, the overall dynamics is still the 
same, the roles the strategies fill remain the same, and 
punctuations occur up until the emergence of the stable 
regime (Figure I 0). 

30 15030 30030 45030 60030 75030 90030 
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Figure 9: A(t) and C(t), high noise level (error= 0.1 ), 1 OOk 
generations. 
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Figure 10: A(t) and C(t), low noise level (error = 0.01 ), 
300k generations. 

Perturbations to the payoff matrix produce fundamental 
changes in the dynamics of the simulation. Any significant 
increase of the jointly cooperative payoff CC above 3 (to 
3 .05 or greater) causes the strategy 1001 to become a more 
stable attractor for the population. A typical run with CC = 
3 .1 is shown in Figure 11. Note that there are only two 
distinct activity waves and that the population collapses to 
a highly concentrated state after 100 I becomes dominant. 
Through out there is a generally low level of diversity 
indicating that memory 3 and longer strategies are not 
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being significantly explored. Here the evolutionary 
progression is merely a long period of memory 1 dynamics 
followed by a single punctuation, the takeover of the 
population by 1001 during a cooperative period of the 
memory I regime. 

501 1001 1501 2001 2501 
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Figure 11: A(t) and C(t), payoff CC = 3.1, 30k generations. 
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Figure 12: A(t) and C(t), game of chicken, IOOk 
generations. 

When the DD payoff is increased from 1 to 2, 0 I 
becomes a very long lived strategy. Simulations for this 
case progress to memory 4 strategy sets and punctuations 
are sti II seen. 

A more significant payoff structure perturbation is 
switching to the game of Chicken (Rapoport, Guyer, 
1978): 

c D 
c 3,3 1, 5 
D 5, 1 0,0 

In Figure 12 the activity graph from a chicken run shows 
three activity waves and thus equilibria with two 
punctuations. The length of the stable epochs is much 
longer than in the prisoner's dilemma, and the evolutionary 



sequence from memory 1 through memory 3 strategies 
transpires during the course of the first wave. _No 
punctuation occurs until the shift to memory 4 strategies, 
but a punctuation between memory 4 regimes also occurs. 

Punctuated Equilibrium 

We now suggest a conceptual model of the evolutionary 
process' implicit search through genotype space for fitter 
types, and how this search and ensuing population shifts 
generate punctuated equilibria. The basic model is that of a 
population density moving through genotype space based 
on both the fitness gradient in phenotype space and on the 
diffusion process associated with mutation. 

The genotype space being explored by this model is the 
direct product of Boolean hypercubes of dimension 2m, 
where m = l, ... , max memory allowed. The memory 1 
genotype space is equivalent to the comers of a square 
(0,0), (0, I), ( 1,0), and ( l, l ). The memory 2 genotype space 
is equivalent to a 4 dimensional hypercube. The phenotype 
space corresponds to the genotype hypercube of maximal 
dimension, as all shorter memory strategies are embedded 
in this space. A metric within each of these hypercubes is 
hamming distance, which can be extended into a metric for 
the entire genotype space by counting the minimum 
number of mutations of any type needed to convert one 
genotype into another. 

The operator for exploring the genotype subspace of a 
particular memory length is point mutation. The likelihood 
of a point mutation for a given genotype is proportional to 
the population density at that genotype. Thus the types that 
are most likely to be explored are the nearest neighbors of 
those types with a significant proportion of the population. 
While multiple point mutations are possible, they are 
relatively unlikely in this model. So to explore types with a 
hamming distance greater than one from a high density 
type requires either low probability events or a series of 
nearest neighbors of relatively equal fitness extending from 
the dominant type. This chain of neighboring types must 
sustain enough population to make a point mutation at the 
end of the chain a likely event. The possibility of such a 
chain is entirely dependent on the payoff structure of the 
game, i.e. the ruggedness of the fitness landscape and the 
coupling or coevolutionary sensitivity of the landscape. 
For highly coupled and rugged landscapes such as that for 
the Prisoners Dilemma, the occurrence of such chains 
should be uncommon, especially at short memory lengths. 

The other operator for exploration is the memory 
doubling/splitting mutation that moves population density 
between hypercubes of different dimensions. In the 
memory doubling case, this population transfer is 
phenotypically neutral and does not affect the fitness 
landscape. The split mutation case can shift population 
between phenotypes, and so may deform the fitness 
landscape. A memory k type has 2k neighbors, so a 
memory doubling mutation increases the number of a 
genotype's nearest neighbors by a factor of two. Thus the 
memory doubled genotype has many more phenotypic 
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possibilities to explore through single point mutations then 
does the phenotypically equivalent shorter memory length 
type. Note that types that are n mutations apart at memory 
length k are 2n mutations separate at memory length k+ I. 
Thus phenotypes that are neighbors at one memory length 
become widely separated at longer memory lengths. 
Chains of phenotypically identical memory doubled 
genotypes will be sustained as long as the phenotype 
remains dominant, i.e. until a new, more fit type is found. 
Memory doubling is therefore a pathway to searching a 
larger set of types. 

Given these operators, an initial population density in 
genotype space diffuses into adjacent types both within 
memory lengths and between memory lengths. Selection 
pressure based on fitness tends to limit this diffusion within 
hypercubes, but when types that are phenotypically more 
fit appear, selection transfers population into these types. 
For phenotypic fitness landscapes that are highly 
population coupled, these population shifts distort the 
fitness landscape. 

Fitness landscape deformation can have three possible 
effects: 

l) the newly discovered type may remain more fit, 

2) the old dominant type(s) may become more fit, 

3) some other type(s) in or neighboring the population 
may become more fit. 

In the first case, the population density will shift to the new 
type and the old type(s) will go extinct. We call this a 
stable punctuation. In the second case there is no major 
extinction event, thus no punctuation. A cycle may emerge 
shifting population between the old and new type(s), or an 
equilibrium distribution including the old and new types 
could be reached. 

In the third case, the "third party" type that becomes 
more fit will attract population, thus distorting the fitness 
landscape again. As in the second case, a cycle or 
equilibrium could emerge that includes the old dominant 
type(s); or a cycle or equilibrium that does not include the 
old type(s) could emerge; or the fitness gradient favoring 
the "third party" type could be stable with respect to the 
distortion. In either of the later cases, the old dominant 
type(s) go extinct, and the population shift is an unstable 
punctuation. 

While these cases have been described with respect the 
discovery of a single new, more fit type, the general 
reasoning can be extended to include mutualistic pairs or 
sets, and clouds of phenotypically similar, genotypically 
related types around a dominant strategy. In any of these 
cases, the distinction can be made between a stable 
punctuation in which population flows don't distort the 
fitness landscape in a significant way during the 
punctuation, and unstable punctuations in which the 
landscape is distorted and the distortion causes some 
previously unfit type to attract the population. 

A second distinction can be made between punctuations 
based on how they move population between memory 
lengths. Punctuations that result in moving population to 



longer memory lengths are called expanding since they 
increase the dimensionality of the genotype space likely to 
be explored. Punctuations that move population to shorter 
memory lengths are termed collapsing by the same 
reasoning. Punctuations that don't move population 
between memory lengths are lateral shifts within a 
genotypic hypercube. Thus punctuations can be classified 
as stable or unstable, and as expanding, collapsing, or 
shifting. 

Table 1 
Epochs observed in base case populations 

11 Memory I dynamics, 0 I cycling with other 
strategies. The starting epoch. 

10 Selfish regime dominated by 00 and its memory 
double variants. 

21 Memory 2 dynamics, characterized by cycling and 
usually dominated by 000 I and 100 I. 

3 1 Mutualistic memory 3 regime, little or no cycling, 
dominated by I 001-000 I and 0001-100 I. 

32 Alternate memory 3 regime, more diverse than 31 

and characterized by 0101-1 I 00. 

4 1 Generic stable memory 4 regime, core members 
are of the form I xx 1-0xxx-Oxxx-xOO I. 

42 Alternate stable memory 4 regime whose core 
members are of the form 1111-0xxx-OOxx-xOOI. 

4; Any of several unstable memory 4 regimes 
encountered very infrequently. 

Cycling of evolutionary epochs is likely to include at 
least one unstable punctuation. In a cycle, an equal number 
of expanding and collapsing punctuations must be 
included, though purely shifting cycles could occur. If the 
phenotypic differences between neighboring genotypes is 
on average greater at shorter memory lengths, one would 
expect to find unstable punctuations predominate until 
longer memory lengths develop. 

To illustrate the above model, we now classify both 
epochs and transitions for the base case. Table 1 details a 
basic classification of epochs observed in base case model 
runs ordered by memory length of the dominant strategy or 
set for each epoch. These epochs correspond to periods 
during which population concentrations in genotype space 
explore the fitness of neighboring types. 

Observed transitions between epochs are the result of the 
discovery of a significant fitness gradient and the resulting 
population transfer. These transitions are punctuations. 
Those observed in base case runs are tabulated in Table 2 
by stability and their action on memory length. Unstable 
punctuations predominate at shorter memory lengths, while 
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stable punctuations dominate for longer memory lengths. 
Shifting punctuations also don't appear for short memory 
lengths, and collapsing punctuations don't appear for 
longer memory lengths. The unstable punctuations 
encountered allow cycling between the memory 1 and 
memory 2 epochs. 

We can now map out the effects of the various 
parameters on the movement of the population through 
genotype space. Mutation rate controls the speed at which 
the population density can move through the extended 
genotype space to discover new types. The doubling/split 
rate controls the shift between hypercubes, while the point 
mutation rate varies the speed of spreading within a 
hypercube. Survival limit regulates the minimum viable 
density at each point in genotype space - thus limiting or 
extending the boundary of the population cloud, while also 
controlling the speed with which population shifts due to 
mutation. Selection pressure regulates the speed with 
which population density is transferred between less fit and 
more fit points in genotype space. Significant selection 
pressure is needed for an effective fitness gradient to exist. 

Table 2 
Punctuations observed in base case populations 

Expanding 

Collapsing 

Stable 

21 ~31 
21~32 
31 ~41 
32 ~41 
32 ~4; 

none 

Unstable 

11 ~ 12 
12 ~ 12 
21 ~ 12 

Shifting 32 ~ 31 none 
4;~42 
4;~4; 

The fitness of points in genotype space is a function of 
the payoff matrix structure, and the noise level. As noise 
increases, variations in fitness flatten out. In the extreme 
case of the random behavior model, all strategies play and 
score identically and the fitness landscape is therefore flat. 
Some payoff structures, such as the strongly stable 
noncompetitive game, may have a single smooth fitness 
peak. Others, such as the Prisoner's Dilemma, have 
rugged, highly coupled fitness landscapes, with multiple 
local extrema. 

These observations are consistent with the exploration of 
the model's parameter space in the previous section. When 
the mutation rate is high enough to quickly find 
increasingly fit phenotypes, the population can move in 
one continuous transition to the evolutionarily stable 
regime without having to stop while the next positive 
fitness gradient is found. When selection pressure is low, 
the movement of population to new fitness peaks is so slow 



that there is no clumping while waiting for new peaks to be 
discovered. An effective fitness gradient in this model is 
the combination of a fitness difference between phenotypes 
with sufficient selection pressure to move population from 
less fit to more fit types. We get punctuations whenever 
we find an effective fitness gradient that causes population 
to shift at a rate much faster than that of the mutation 
driven diffusion process. 

Conclusion 

Activity and concentration statistics summarize many of 
the interesting characteristics of the models' population 
dynamics. Activity statistics identify equilibrium epochs 
and punctuations, while concentration characterizes the 
dynamics within epochs as stationary or cyclical. The 
random walk neutral model shows that there is a natural 
tendency in these simulations toward longer memory 
length strategies. However, none of the neutral models 
produce punctuated equilibria. 

Punctuations have been found throughout a wide range 
of parameters for the adaptive model. While combinations 
of parameters exist which cause populations to shift either 
so smoothly or so slowly that punctuations are obscured or 
eliminated, the pattern of punctuated equilibrium is generic 
in this model when meaningful adaptation within the 
population is possible. 

Analysis at the genotypic level explains the mechanism 
that produces punctuated equilibrium behavior in this 
particular model. The mechanism depends on the existence 
of a fitness gradient in genotype space. In the neutral 
models and the non-competitive games, there is no fitness 
gradient to move population around in genotype space, so 
no punctuations occur. Punctuated equilibria should appear 
whenever an evolving population moving through 
genotype space encounters a fitness gradient very much 
stronger than that induced by the mutation driven diffusion 
process. While the presence of punctuations suggests the 
presence of meaningful adaptation, the absence of 
punctuated equilibria does not imply the absence of 
adaptation. This may answer the conjecture that punctuated 
equilibrium is a generic feature of evolution; punctuated 
equilibrium is a sufficient but not necessary indicator of 
adaptive evolution. 

The classification of punctuations and the description of 
the punctuation process in genotype space offered here 
could be applied to any evolutionary process once 
genotype, phenotypic fitness and genetic operators have 
been defined. For example, systems with fixed fitness 
landscapes can exhibit only stable punctuations. As the 
population concentration can only shift consistent with a 
fixed gradient field (a gradient defined on the extrema of 
the fitness function), no cycling of phenotypic regimes is 
likely. Hopefully this kind of conceptualization may lead 
to a more general understanding of adaptive punctuation. 
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Abstract 

TRURL is a simulation environment, which evolves ar
tificial worlds of multi-agents to socially interact with 
each other. The micro-level agent activities are deter
mined by both predetermined and acquired parameters. 
The former parameters have constant values during one 
simulation cycle, however, the latter parameters change 
during the interactions. Unlike conventional artificial 
society models, TRURL utilizes Genetic Algorithms to 
evolve the societies by changing the predetermined pa
rameters to optimize macro-level socio-metric measures, 
which can be observed in such real societies as e-mail 
oriented organizations and electronic commerce mar
kets. Thus, using TRURL, we automatically tune the 
parameters up and observe both micro- and macro-level 
phenomena grounded in the activities of real worlds. 
This paper first describes basic principles, architecture, 
and mechanisms of TRURL. Then, to investigate the 
features of Face-to-Face, E-Mail, Net-News, and Mass
Communication oriented societies, we have carried out 
intensive experiments. The results have suggested that 
features of evolved agents characterize each society. 

Introduction 
Recently, a great deal of arguments have been devoted 
to the study of (1) distributed information systems such 
as Internet applications (Kirn and O'Hare 1996, Brad
shaw 1997), (2) behaviors of animats or social insects 
in the ALife literature (Epstein and Axtell 1996), and 
(3) explainable and executable models to analyze the 
social interaction of human organizations (Carley and 
Prietula 1994, Axelrod 1997). Researchers of the above 
categories often utilize ALife-oriented techniques includ
ing multi-agent systems and evolutionary computation. 
From the state-of-the-art literature, they frequently re
port that simple autonomous agents or artificial worlds 
are able to evolve global interesting social structures and 
behaviors. 

However, the roles of computer simulations in orga
nization theory have been re-evaluated in social science 
literature. For example, M. Cyert has described in the 
Foreword of Carley and Prietula (1994) that although 
simulations are useful to test some of the propositions in 
organization theory (which cannot be observed easily in 

the real world), the simulations become so complex that 
the model is as difficult to analyze as the real world, and 
the simulations themselves begin to appear as though 
they are real worlds for organization theorists. In this 
sense, many of the approaches seem to report too ar
tificial results, because of the following three reasons: 
(I) Although many agent models are developed from the 
bottom-up, the functions the agents have are so sim
ple that the models can only with difficulty to practical 
social interaction problems. (II) Although the functions 
are simple from the viewpoint of simulation experiments, 
the models have too many parameters that can be tuned 
and, therefore, it seems as if any good result a model 
builder desires is already built in. (III) The results seem 
to have a weak relationship with emerging phenomena 
in real-world activities. Thus, these studies have not yet 
attained a level necessary to describe the flexibility and 
practicability of social interactions in real organizations. 

To overcome such problems, we have developed a novel 
multi-agent-based simulation environment TRURL 1 for 
social interaction analysis. In our simulation modeL we 
have extended the ideas of artificial societies in Epstein 
and Axtell (1996) and computational organization the
ory (Carley and Prietula 1994). 

In conventional artificial society models, the simula
tion is executed straightforwardly: Initially, many micro
level parameters and initial conditions are set, then, the 
simulation steps are executed, and finally the macro-level 
results are observed. Unlike in conventional simulation 
models, TR URL executes these steps in the reverse order: 
set a macro-level objective function, evolve the worlds to 
fit to the objectives, then observe the micro-level agent 
characteristics. Thus, TRURL solves very large inverse 
problems. So far, it has been considered difficult to 
adopt such an inverse approach to social system sim
ulation studies, however, here we succeeded by utilizing 
a Genetic Algorithms (Goldberg 1989) to evolve the so
cieties by changing the predetermined parameters to op-

1Trurl is a hero of science fiction: "The Seventh Sally or 
How Trurl's own perfection led to no good" by Stanislaw 
Lem. Trurl developed a sophisticated micro world for an 
arrogant king. 



timize macro-level socio-metric measures, which can be 
observed in such real societies as e-mail oriented organi
zations and electronic commerce markets. Thus, using 
TRURL, we automatically tune the parameters to ob
serve both micro- and macro-level phenomena grounded 
in the activities of real worlds. 
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The basic principles of TRURL can be summarized as 
follows: To address point (I) above, the agents in the 
model have detailed characteristics with enough param
eters to simulate real world decision making problems 
(French 1986); with respect to (II), instead of manually 
changing the parameters of the agents, we evolve the 
multi-agent worlds using GA-based techniques (Gold
berg 1989); as for (III), we set some socio-metric mea
sures which can be observed in real world phenomena as 
the objective functions to be optimized during evolution. 
Using TRURL, therefore, we are able to analyze the na
ture of social interactions in artificial worlds, which are 
based on such real-world activities as e-mail oriented or
ganizations and electronic commerce markets. 

In this paper, we first describe the design of the agent 
architecture, the artificial world model, and algorithms 
to evolve the worlds. Then, we discuss socio-metric 
measures which were used in a survey study to ana
lyze activities of electronic community-based forums in 
Japan. Based on this discussion, we report some exper
imental results which reveal the nature of both micro
and macro-level phenomena which often occur in face
to-face-, e-mail-, Net-News-, and mass-communication
oriented societies. Finally, concluding remarks and fu
ture issues are given. 

Agent Architecture 

Agent in TRURL 

Roughly, an agent in TR URL has event-action rules (Rus
sel and Norvig 1995). Each agent exchanges knowledge 
and solves its own multi-attribute decision problems by 
interacting with the other agents. The agents move 
around in the world to form groups with similar atti
tudes in decision making. They also have the motivation 
or energy to send and receive messages. The messages 
are used to make and/or modify the decisions of each 
agent. To implement these functions, the agents have 
both predetermined and acquired parameters, by which 
the characteristics of micro levels of the agent activities 
are determined. The former parameters have constant 
values during one simulation cycle, and the latter pa
rameters change during the interaction processes among 
the agents. Summing up the decisions of the agents, the 
total attitude of the artificial world is determined as the 
macro-level status. 

More formally, agent A in TRURL is represented as 
the following tuples: 

A= ( {Kd}, D, M, Gp, Cc,Ps, Pr, Pa,Pc,t5, µ,n), 

where, { K d} is a set of knowledge attributes, D: de
cision level the agent makes, M: motivation value or 
energy level of behaviors, Cp: physical coordinates, Cc: 
mental coordinates, P0 : probability of message sending, 
Pr: probability of message reading, Pa: probability of re
plying attitudes for pros-and-cons, Pc: probability of re
plying attitudes for comment adding, t5: metabolic rate, 
µ is the mutation rate of knowledge attribute values, and 
n is the number of knowledge attributes the agent has. 

The agent usually has some subset of knowledge only 
which the agent can use for decision making. The knowl
edge the agent has is a set of knowledge attributes, de
fined as: 

Kd = (N, W,E,C), 

where N is a knowledge attribute, W its importance 
value, E its evaluation value; and Cits credibility value. 

Knowledge attributes can be exchanged among the 
agents via message transformation activities, however, 
the values of W, E, and C are changed based on the 
conforming behaviors determined by the agents' prede
termined parameters. The decision each agent makes 
can be changed by changing the knowledge K ds. W and 
E respectively correspond to the importance factor of 
Bass's model and the attribute evaluation factor of the 
Fishbein model both in consumer behaviors of market
ing sciences (see, e.g., Lilien, Kotler, and Moorthy (1992) 
for a definition of these models). They are used to ob
tain the decision Di of agent Ai using a multi-attribute 
additive function: 

Di= 2: WjEj. 
K;EKA; 

C corresponds to the belief factor of the Bass model, 
which determines the level of the agent's belief of a given 
knowledge attribute. It is also used to determine com
forting behaviors of the agent, which will be described 
below. 

The motivation value M changes during the simula
tion to measure how strong the agent is motivated in the 
artificial world. If M becomes zero, the agent is retired, 
and a new one with random acquired parameter values 
participates in the world. 

The metabolic rate t5 is subtracted from M at every 
simulation step, when the agent has no messages. Also, 
t5 is added to M per message, when the agent received 
it from the other agents, and 2 * t5 is added to M per 
reply-message when the agent receive it. 

Gp and Cc represent where the agent is, in both the 
physical and mental world in decision making. The prob
ability values P0 , Pr, Pa, and Pc are used to deter
mine the conforming behaviors and knowledge exchange, 
which affect the agent decision value D. The movement 
and conforming behaviors are determined by the action 
rules described below. 



Predetermined parameters of the agent 

Predetermined parameters define the agents' congenital 
characteristics. The parameters are not changed during 
one simulation, but are tuned by GA operations when 
the world evolves. The predetermined parameters are 
listed below. They have values between 0.0 and 1.0. 

• Physical coordinates Gp = (Xip, Yip): The initial 
physical position of the agent in the artificial world; 
The values do not change during the simulation; 

• Probability of message sending Ps: The probability 
that agent Ai sends messages to other agents A;s at 
each simulation step; The probability of selecting a 
specific A; is inversely proportional to the physical or 
mental distance between Ai and A;; 

• Probability of message reading Pr: The probability 
that the agent reads messages from other agents at 
each simulation step; 
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• Parameters for conforming behavior a, /3, and "f: The 
parameters are used to change conforming behavior of 
the agent; a, /3, and 'Y are respectively used to con
trol the importance value W, evaluation value E, and 
credibility value C of the knowledge attribute; 

• Probability of having certain reply attitude with re
spect to similar or opposing opinions Pa: The proba
bility that the agent will reply to another agent with 
the same opinion K d; The value 1.0 represents the 
attitude of replying to only agents that have similar 
opinions, while the value 0.0 represents the attitude 
of replying to only agents that have opposing opin
ions. An agent with a high (resp. low) Pa value has 
conforming (resp. self-righteous) characteristics. In 
our implementation, an agent Ai gives an additional 
comment regarding K dk to another agent A; with the 
following probability: Prob = Pa -(Eki -Ek; )2 , where 
Ek• is the evaluation value of K d by the agent A.; 

• Probability of sending additional comments with the 
reply Pc: The probability that the agent will send a 
message containing additional comments K d;s, when 
it receives message K di; the value 1.0 means that the 
agent always replies with additional knowledge, while 
the value 0.0 means that the agent never sends mes
sages with additional knowledge; The agent with high 
(resp. low) Pc is talkative (resp. not talkative); 

• Metabolic rate c5: The metabolic rate determines the 
unit of change of the agent's motivation; 

• Mutation rate µ: The mutation rate determines the 
probability of random change of the number of knowl
edge attributes in order to simulate the random effects 
of the external environment; 

• Number of knowledge attributes n: The number of 
knowledge attributes that the agent knows. It is nat
ural to assume each agent knows only part of the 
knowledge necessary for decision making; Therefore, 
this parameter represents the concept of "bounded ra
tionality" of agents' knowledge; At the initial step of 
the simulation, for K ds which Ai does not have, we 
set W, E, and C to 0.0, 0.5, and 0.0, respectively. 

Acquired parameters and action rules 

The acquired parameters of the agents will change at 
each simulation step. At the initial phase of the simula
tion, they have random values. 

• Motivation Mi: The value indicates the agent's moti
vational level in the artificial world; 

• Mental coordinates Cc = (Xie, Yic): The initial mental 
position of the agent is given at random in the artificial 
world; The values are changed based on the conform
ing behavior during the simulation; When agent Ai 
increases its credibility value C by exchanging knowl
edge K d with another agent A;, Ai will approach A; 
by one unit distance; When C is not increased, or 
when Ai receives bad messages, Ai will move away 
from A; with the probability of 0.5 or randomly move 
away for one unit distance. By this behavior, the 
agents will form groups with high credibility. 

• Parameters for conforming behaviors: importance 
value wk-d, evaluation value ekd and credibility value 
ckd: These parameters are changed based on the fol
lowing conforming behaviors, when agent Ai makes 
decisions by receiving knowledge attribute K d. 

Each agent Ai interacts with another agent A; at every 
(discrete) simulation step based on the constraints of 
the agents and the artificial world. A; is stochastically 
selected by Ai proportional in terms of the physical and 
mental distance between them. At the interaction, a 
knowledge attribute K d is transformed between Ai and 
A;. When Ai receives an unknown K d, Ai will accept 
Kd as it is. However, when Ai receives a Kd which it 
already knows, the value of the knowledge attribute will 
change by the following rules of conforming behavior: 

Awkd = L:a(w:kd -wkd) · max(O,cb- ckd) 
jES 

Aekd = Lf3(e:kd - ekd) · max(O,dKd - ckd) 
jES 

Ackd = L "f(l - 2le:kd - ekdl · max(O,dKd - ckd)) 
jES 

where wkd, ekd, and ckd are respectively the impor
tance value, evaluation value, and credibility value of K d 
which Ai has; o, /3, and 'Y are parameters; Sis the agent 



from which Ai receives the message K d at simulation 
time t. 

Using the rules of conforming behavior, in general, if 
K d of A1 has a higher credibility value than that of A;, 
the attitude of Ai with respect to K d will become similar 
to that of A1. Ai's credibility value ck d with respect to 
Kd becomes higher when the evaluation value ekd is 
similar to that of A1, and ckd becomes lower when ekd 
is different from ekd and dKd is higher than ckd· If cb 
is higher than dK d, A; does not change the credibility 

CKd' 

Based on the probability Pa and Pc, Ai will reply to 
messages from the other A1s. The interaction activities 
continue. and the agents move together based on the 
moving rules described above. 

Four Models for an Artificial Society 

As a conceptual model of computer mediated social net
works such as the Internet society and/or electronic com
merce, we characterize the world by both physical and 
mental spaces (Dp and De). Dp and De consist of two
dimensional grids forming a torus structure. In Dp, the 
coordinates of Aj represent the physical places wherE 
A1 is. In De, the coordinates of A1 represent the mental 
positions among the agents. The movements of agents 
in the world are learning processes to form groups with 
same attitudes. In the current implementation, the size 
of both Dp and De is 50 * 50. 

We design the following four artificial societies: 

1. Face-to-Face communication oriented society (FFS) 
The communication among the agents are constrained 
by both the physical and mental coordinates. They 
interact with physical and mental neighborhoods. The 
ratio is parameterized. 

2. E-Mail oriented society (EMS) 
The communication among the agents are constrained 
by the mental coordinates. In this society, agents in
teract with each other one by one at each step. 

3. Net-News oriented society (NNS) 
NNS is an extension of EMS. It has a virtual white 
board at the center of the world. Agents in the world 
send messages to the white board, and the white board 
distributes the messages to all the agents. The credi
bility value of the messages is the same as that of the 
senders. 

4. Mass-Communication oriented society (MCS) 
MCS has one mass communication agent who gath
ers the decisions of all the agents at each simulation 
step. The decisions or attitudes are then averaged and 
are distributed with high credibility values. The mass 
communication agent acts as a monitor of the society. 
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Parameter Tuning of a Society by GAs 

As described in the previous section, the agents, their 
behaviors, and the world are controlled by many param
eters. Therefore it is very difficult to make them in or
der to properly carry out social interaction. Thus, we 
apply Genetic Algorithms for this purpose. The outline 
is shown in Figure 1. 

Pre-determined Features Acquired Features 

I Fitness=Macro-Level Sociometrics 

Evaluation 

'--------' Selection 
Crossover 
Mutation 

Figure 1: Evolving Artificial Societies via GAs 

The predetermined 12 parameters of each agent (Gp = 
(Xip, Yip), P8 , Pr, o:, (3, /,Pa, Pc, 6, µ,and n) can each 
be represented by integers between 0 and 9, which cor
respond to real numbers from 0.0 to 1.0. The predeter
mined characteristics of an agent are coded into a twelve 
integer string. Each initial world is coded into a gene, 
which consists of a sequence of agent codes with a fixed 
number specified by the user. The number represents 
the size of the agents. 

In the simulation, we first specify the type of world 
(FFS, EMS, NGS, or MCS), and set the world's param
eters, represented by the gene, to an initial state, then we 
execute simulation steps (for example, 100-200 steps) to 
evolve social behaviors by changing the acquired param
eters. The resulting status is a phenotype of the world, 
which is represented by sets of both predetermined and 
acquired parameters of the agents. 

Each world is evaluated by a specified evaluation func
tion, which represents some of the socio-metric measures 
describe in the next section. Based on the function val
ues, good worlds are selected. We use the size-two tour
nament selection method and the elitist strategy. For the 
reproduction, we adopt the uniform crossover operator 
and changing crossover rate from 103 to 0%, propor
tionally decreasing at each step of the reproduction. 

In the current implementation, a maximum of 500 
agents in each world is allowed. However, in most ex
periments, we evolve 100 generations for 20 worlds with 



10 to 20 agents. 

Discussion of Socio-Metric Measures 
There are several studies in the literature that analyze 
social interactions among participants in computer me
diated communities. Among them, an investigation car
ried out by our colleague (Kobayashi 1996) is very inter
esting because ( 1) he analyzed data of several network 
forums in Japan for several years and suggested that 
specific structures and leaders have evolved, and (2) he 
proposed five socio-metrics measures to reveal the char
acteristics of the network forums. These socio-metric 
measures can be evaluated in TRURL and reflect the 
characteristics of social interaction in real worlds. We 
adopted the proposed measures as the evaluation func
tions to be optimized in the evolution process of artificial 
societies. The definitions and brief descriptions of the 
measures are shown below. 

Ratio of transmitters 
This metric indicates the social structure where a 
small number of members (transmitters) sending one
way many messages to other members. 

T = (l::f=1 (Sd - rdi) - Lf= 1 (Rd - rdi) + g(g - l))Sd 
2g(g-1) 2 

Ratio of receivers 
This metric indicates the social structure where a 
small number of members (receivers) receiving one
way messages from other members. 

R = (l::f= 1 (Rd - rd;) - l::f= 1 (Sd - sd;) + g(g - l))Rd. 
2g(g - 1)2 ' 

Ratio of leaders 
This metric indicates the social structure where a 
small number of members (leaders) acting as both 
transmitters and receivers. They will manage the so
ciety. 

( Lf=1 ( (sd; · rd;)max - sd; ·rd;)) 112 
L= . 

(g - l)((g - 1) 2 - 1) ' 

Ratio of local communication 
The metric indicates the social structure where half of 
the members are active (they always send and receive 
messages) and the others are passive (they only receive 
messages). 

330 

D = I:f=1 (Sd - sd;)2). 
g(g-1)2/4 ' 

Ratio of activation The metric indicates the social 
structure where the participants are active (they al
ways send and receive messages) 

A = I:f=1 (sd; +rd;). 
2g(g - 1) ' 

In the above equations, sd; is the number of receivers 
to whom agent A; sends messages, rd; is the number 
of message senders to A;, g is the number of members, 
Sd and Rd respectively mean the sd; and rd; of the 
agent A; with the maximum value of sd; +rd;; and Sd, 
Rd respectively mean the average values for senders and 
receivers. We omit the discussion on how to derive the 
measures. Instead, Figure 2 shows examples of the socio
metric measures applied to simple network structures to 
simplify understanding. 

Experiments and Discussion 
In this section, we describe the experimental results of 
social interaction by TRURL. 

Validation of TRURL 
In TRURL, we can set any evaluation function. For ex
ample, we can evolve such worlds where (i) only two 
members interact with each other, (ii) members send 
one-way messages, (iii) members form a hierarchical 
structure. Evolutions of such societies are useful to vali
date the simulation environment. In this subsection, we 
evolve societies with characteristics (i) and (iii) to vali
date TRURL. 

Two Member Communication Society To evolve 
this, we use the following evaluation function: 

F .t _ sd;,j + rd;,j + sdj,i + rdj,i . :::i. . 
iness- """ ( ) , :::it,J, 

LAES sdk + rdk 

where i and j are indices of the agent, sdk and rdk are 
traces of sending and receiving, and S is a set of senders 
and receivers. 

Figure 3 shows the result of the evolved world and the 
message connections among the agents. The nodes and 
arcs respectively represent the agents and their message 
connections. Please note that the nodes do not represent 
where the agents are in the world. The left hand side of 
the figure is the initial stage and the right hand side is 
the final state. 
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Figure 2: The Characteristics of Socio-metric Measures 
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Figure 3: Two Member Communication Society 
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Hierarchical Society In the society with a hierar
chical structure, members only communicates with the 
higher and lower ranking members. To evolve the world , 
we use the following evaluation function: 

Fitness = sdh + rdh - sd1. - rd1., 

where, sdh and rdh are the numbers of senders and re
ceivers communicating with higher and lower members , 
and sd1. and rd1. are the numbers of senders and receivers 
communicating horizontally. 

The results are shown in Figure 4. At the first stage 
(box in the left), the members randomly communicate 
each other. However, at the last stage (box in the right) , 
they communicate only through the hierarchical struc
ture. 

Figure 4: Society with Hierarchical Structure 

From the above two preliminary experiments, we see 
that we can evolve any artificial worlds using TRURL, if 
we define appropriate evaluation functions . In the fol
lowing subsections, we apply the socio-metrics in order 
to analyze social interactions. 

Society with a leader 

To analyze the characteristics of the society with lead
ers, which we often observe in real electronic mail based 
forums, we will optimize the function of ratio of leaders 
in EMS . 

The result is summarized in Figure 5. The upper two 
figures shows two types of the communication among 
agents. The lower figure displays the intermediate screen 
image of the simulation . 

The circles represent the location of the agents in the 
world. Their radii and color represent the level of moti
vation and the decision made, respectively. The agents 
moves according to the behavioral rules. 

Figure 6 shows how the society evolves during the GA 
cycle. The upper, middle, and lower curves respectively 
represent the fitness of the highest, mean, and lowest 
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values of the evaluation function. The figure suggests 
that the GA design works well. 

We can observe there are two types of agents: those 
who communicate with every other agent, and those 
who communicate only with two other agents . We call 
the former types leaders and the latter types ordinary 
agents. 

• • 
• • 

Figure 5: Evolution of the Society with a Leader 

Analysis of the predetermined parameters of leader 
agents reveals the following characteristics: 

• The leader agent usually reads messages and replies 
with comments; 

• Leaders have larger, but not maximum number of 
knowledge attributes than the other agents; and 

• Leaders have higher, but not maximum, credibility 
values with regard to the knowledge attributes. 

The observations are slightly different from our origi
nal intuition that the leader should have maximum val
ues knowledge attributes and credibility values. 

Society with conforming attitudes 
There are often cases where very subtle environmental 
changes cause a radical change of public opinions. To 
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Figure 6: Changes of Fitness during the GA cycle 

analyze the situation, we evolve an EMS society where 
the agents conform to the opinions of a single strong 
agent. The evaluation function is as follows: 

n m 

Fitness= LL Wijeij, 
i=l j=l 

where, n is the number of the agents and m is the number 
of knowledge attributes. To give an explicit chance of 
the conforming activities, we set the parameters so that 
only one agent (powerful agent) always has the decision 
or attitude Di= LK,EKA; WjEj = 1.0. 

The characteristics or the predetermined parameters 
of the general agents in the world are summarized as 
follows: 

• Evaluation parameter /3 of general agents is slightly 
higher than that of agents in other societies. This 
means they tend to rely upon each other; 

• Probability of reply attitude Pa is nearly equal to 1.0. 
This means they tend to reply to the agents with sim
ilar opinions. 

• They have smaller number of knowledge attributes n. 
This means they have interests in narrow topic areas. 

The results suggest that in a conforming society, pub
lic opinion will be deflected, even if there are only a few 
powerful agents. 

Society with a highly influential sgent 
Opposite to the previous world, in this experiment, we 
will observe a powerful agent, which has stronger influ
ence over the behavior of other agents. In order to evolve 
the world, we first evolve a conforming EMS society, and 
then set the predetermined parameters of the powerful 
agent by GA operations. The results are summarized in 
Figure 7. 
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In Figure 7, the average values of 10 simulation are 
shown. The predetermined parameters are classified as 
those of a minority of powerful agents and those of other 
general agents. 

Figure 7: Characteristics of Powerful and General 
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The remarkable characteristics of the powerful agents 
are as follows: 

• The agents often read messages and reply to them; 

• The agents have interests in various knowledge at
tributes; 

• The agents have a lower metabolic value; and 

• The agents tend to reply to the agents with different 
opinions. 

Changes of attitudes in FFS, EMS, and 
NNS 
This subsection describes the attitude changes or the av
erages for the agents' decisions, in Face-to-Face, E-mail, 
and Net-News oriented societies. In the experiment, 
we generally give random predetermined parameters and 
one powerful agent, and then observe the simulation pro
cesses. We do not apply GAs in the experiment, because 
we did not evolve any new features for the worlds. 

The results are shown in Figure 8. In each graph of 
Figure 8, the curves represent 20 epochs with 300 simula
tion steps. The horizontal and vertical axes respectively 
represent the simulation steps and the average value of 
agent attitudes (2:: evaluation;* weight;). 

The results are clear. Each world shows its own 
characteristics. In FFS, the attitudes are moderately 
changed. However, in EMS, the attitude change depends 
on the initial condition; some societies show a very rapid 
change while others show very little change. In the very 

Term 

Net News 

0.9 

0.8 

r k!J - ~ 

1 .,..._ ~ 

J.~ 
r:::.i.r. •/ 

r7 
< o.e 

rl' ~ -0.5 

0.4 

0.3 ! 

Tonn 

Figure 8: Changes of Attitudes in FFS, EMS, and NNS 



earlier stages of the simulation for the NNS society, the 
attitudes are significantly changed, and then stabilized 
in the latter stages. This phenomenon is similar to the 
"techno bubble" in real electronic commerce activities 
that has been reported in literature. 
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Figure 9: EMS, NNS, and Mass Communication (Upper 
EMS + MassCom; Lower NNS + MassCom) 

Effects of mass communication 

Whether we can manage the "techno babble" phe
nomenon particularly in consumer behavior research is a 
very interesting problem. To investigate the role of mass 
communication, in this subsection we compare two EMS 
worlds one with and one without mass communication. 
In the experiment, we do not apply GA operations. 

By mass communication, in the simulation, we mean 
that there is a special agent which gathers all the de
cisions or attitudes of the agents, and then distributes 
the average values, or public opinions, to all the agents. 
The timing of gathering and distributing is stochastically 
determined. 

The results are shown in Figure 9. The meanings of 
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the curves are the same as in Figure 8. The upper and 
lower graphs respectively show the 20 epochs of simula
tions in EMS and NNS with mass communication. Com
pared with Figure 8, where there is no mass communi
cation, it is clear that the effects of mass communication 
suppress conforming behaviors. 
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Figure 10: Changes of Gini Index in FFS and EMS 

Analysis of agents' motivations 

To investigate the changes in motivations of the agents 
during the simulation steps, we observe agent behaviors 
in FFS and EMS. To measure the change, we use the 
Gini index for the motivation value M for the agents. 
The Gini index is usually used in economic analyses to 
represent the difference of income levels. If the Gini in
dex is near 1.0 (or 0.0), the difference is high (or low). 
Because the activities of the agents in TRURL is deter
mined by the motivation value, we can use M as money 
in economic analyses. 

The result is shown in Figure 10. The horizontal and 
vertical axes respectively mean simulation steps and Gini 
index. The upper and lower curves respectively represent 
the index values in EMS and FFS. Gini index in EMS is 
higher than that of in FFS, This means that in EMS the 
agents tend to form small groups and that new partici
pants usually loose their interest or motivation within a 
few steps. 

Concluding Remarks 
This paper described a novel computational organization 
approach for analysis of social interaction. Although the 
simulation environment TRURL utilizes ALife oriented 
techniques, the principles are different from conventional 
research in the following manner: (I) the agents in the 
model have enough parameters to simulate real world de
cision making problems; (II) instead of evolving agents, 
GA-based techniques are applied to evolve appropriate 
worlds; and (III) some socio-metric measures which can 
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be observed in the real world are defined as the objective 
functions to be optimized in the evolution. 

Therefore, using TRURL, we can analyze various as
pects of social interaction in artificial worlds, which have 
some grounds in the real world activities. The most 
remarkable feature of the approach is that it adopts 
an intermediate approach between mathematical models 
(Cyert and March 1963) and case studies (Nonaka and 
Takeuchi 1995). The model is rigorous in the sense that 
it is operational or executable on a computer and that 
it describes the nature of real world phenomena (Simon 
1982, Russel and Norvig 1995). 

However, we only began our approach a few years 
ago. Future work includes (i) using TRURL to carry 
out various social interaction experiments, (ii) analyzing 
micro-macro interactions between agents and societies 
(Kirn and O'Hare 1996, Cohen and Sproull 1991, Es
pejo, Schuhmann, Schwaninger and Bilello 1996), and 
(iii) extending our idea to general organizational prob
lem solving and organizational learning models (More
croft and Sterman 1994, Ishida, Gasser and Yokoo 1992, 
Terano 1994, Aiba and Terano 1996, Hatakama and Ter
ano 1996). 
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Abstract 

A particular game-theoretic model (Grafen 1990) of 
the evolutionary stability of honest signalling, which 
attempts a formal proof of the validity of Zahavi's 
1975; 1977 handicap principle, is generalised and ren
dered as an evolutionary simulation model. In addition 
to supporting new theoretical results, this allows the ef
fects of differing initial conditions on the attainability 
of signalling equilibria to be explored. Furthermore, it 
allows an examination of the manner in which the char
acter of equilibrium signalling behaviour varies with the 
model's parameters. 

It is demonstrated that (i) non-handicap signalling equi
libria exist, (ii) honest signalling equilibria need not in
volve extravagant signals, and (iii) the basins of attrac
tion for such equilibria are, however, relatively small. 
General conditions for the existence of honest signalling 
equilibria (which replace those offered by Zahavi) are 
provided, and it is demonstrated that previous theoret
ical results are easily accommodated by these general 
conditions. It is concluded that the supposed general
ity of the handicap principle, and the coherence of its 
terminology, are both suspect. 

Models of the evolution of signalling have received re
newed interest since the re-assessment of group selection 
arguments during the mid-sixties encouraged theorists 
to consider the worth of honest communication to the 
selfish individual (for a for a recent review of the liter
ature, see Johnstone 1997). Initial claims that honest 
communication could not be stable outside of scenarios 
in which signallers and receivers enjoy a shared inter
est in honest information exchange (Dawkins & Krebs 
1978) have been challenged by the development of Za
havi's (1975, 1977) handicap principle. 

The evolution of signalling has been of interest 
within artificial life since its inception (e.g., (MacLen
nan 1991),(Werner & Dyer 1991). However, with some 
exceptions (e.g., (de Bourcier & Wheeler 1995; Bullock 
1997), such research has not attempted to address theo
retical concerns which are live within theoretical biology. 
Within this paper, a combination of traditional evolu
tionary stable strategy (ESS) modelling (Maynard Smith 
1982) and evolutionary simulation modelling (Bullock 
1998) will be applied to a specific theory within current 

evolutionary biology - the handicap principle (Zahavi 
1975; 1977; Zahavi & Zahavi 1997). 

The handicap principle may be presented in many 
forms. Indeed the multitude of scenarios which appear to 
admit of explanation in its terms is one of its strongest 
attractions. This apparent ubiquity of application has 
led Zahavi to suggest that his theory might usefully re
place the theory of sexual selection suggested by Darwin 
(1871) as a means of accounting for the specific class of 
behavioural and morphological adaptations which arise 
as a result of selective pressure to accumulate mating 
opportunities. 

Here the handicap principle will be cast in terms of 
courtship display - the context in which it was first de
scribed (Zahavi 1975). Assume that males vary in some 
respect of interest to choosy females (e.g., in their ability 
to forage). Females cannot ascertain this male quality 
directly. However, they are sensitive to an alternative 
trait. If this alternative trait were to systematically re
flect the value of the underlying male quality, females 
would be selected to exploit it as a cue or advertisement 
upon which to base their mating choices. 

Why should such an 'advertisement' accurately reflect 
some underlying quality? If females respond favorably 
to suitors with such an advertisement, what prevents 
every suitor from investing in this compelling signal, thus 
rendering it useless? In short, what might maintain the 
stability of a mate choice system in which males make 
some courtship display which reveals their quality, and 
females mediate their mating choices on the basis of the 
information gained from such a courtship display? 

Zahavi's insight was to suggest that the costs incurred 
in producing courtship displays might enforce honesty 
amongst suitors if these costs were of a certain character. 
For example, an honest advertisement of a suitor's ability 
to forage might be the extent to which the suitor delib
erately wastes food items which it has accrued through 
foraging. Since poor foragers can less afford to waste 
hard-won prey items than good foragers, a system in 
which suitors demonstrate their foraging ability through 
wasting food items cannot be invaded by cheats who ex
aggerate their foraging ability since the costs involved in 
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such exaggeration are prohibitive of such a strategy. 1 

From this perspective, Zahavi suggests, signals should 
be regarded as handicaps which signallers must bear if 
they are to demonstrate their true quality. It is through 
suffering costs that signallers are able to convince their 
assessors of their status. 

The validity of Zahavi's argument has proven hard to 
establish. However, recent game theoretic models (e.g., 
Grafen 1990) have suggested that the central tenets of 
his argument are sound. Within this paper the phrase 
"Zahavi's handicap condition" will be used to refer to the 
stipulation that as signaller quality increases, the cost of 
making any particular signal decreases. 

Johnstone (1997) has usefully characterized the liter
ature concerning the handicap principle as comprising 
two contrasting classes of account. The first class, de
scribed above, attempts to account for the evolutionary 
stability of the honest advertisement of quality as a re
sult of the manner in which the costs of signalling vary 
with quality (e.g., Grafen 1990, Hurd 1995). The second 
class attempts to account for the evolutionary stability 
of the honest advertisement of need as a result of the 
manner in which signaller benefits vary with need (e.g., 
Godfray 1991, Maynard Smith 1991). 

The latter class includes models of the kind used by 
Godfray (1991) to demonstrate the evolutionary stability 
of a strategy in which nestlings honestly advertise their 
hunger by varying the strength of their begging calls. 
Godfray showed that such a strategy is evolutionarily 
stable if the costs of begging are independent of a chick's 
hunger, but the value of any particular parental resource 
to a begging chick increases with the chick's hunger. In 
such situations no chick will exaggerate its hunger since 
the value of a parental resource solicited through exag
gerated begging will not compensate for the increased 
cost of begging. Hungry chicks beg more than sated 
chicks because the resources are worth more to them. 

Previous models (Bullock 1997) have demonstrated 
that the two classes identified by Johnstone (1997) are 
special cases of a general class of account in which the in
teractions between the advertised trait (quality or need) 
and both costs and benefits are such that honest sig
nalling strategies are the best policies. 

Here an evolutionary simulation model capable of ad
dressing this superordinate class of scenarios will be im
plemented. The general conditions under which honest 
signalling may take place between parties which suffer 
a conflict of interests will be determined. In addition, 
the evolutionary attainability of such honest signalling 
equilibria and the character of the signalling behaviour 
at such equilibria will be examined. 

In the following section, Grafen's (1990) continuous 

1This notion of waste as a signal of quality is reminiscent 
of the concept of "conspicuous consumption" discussed by 
Veblen (1899). 

signalling game is presented, its implementation as an 
evolutionary simulation model is described, and data 
generated by this simulation are summarized. The sat
isfaction of Zahavi's handicap condition will be shown 
to be neither necessary nor sufficient to ensure the evo
lutionary stability of honest communication. Subse
quently, the relationship between the simulation results 
and those of previous models will be discussed. It will 
be concluded that these previous results are accommo
dated as special cases of those presented here. A condi
tion for the presence of honest signalling equilibria will 
be offered which replaces that proposed by Zahavi. This 
condition admits the existence of signalling equilibria in 
which (contra Zahavi) low-quality signallers enjoy lower 
signalling costs than high-quality signallers. 

An Evolutionary Simulation Model of a 
Continuous Signalling Game 

Grafen (1990) cast his model in terms of mate choice. 
Male fitness, Wm, was defined as a function of quality, 
q, level of advertisement, a, and degree of female re
sponse, p. This function was constrained such that male 
fitness decreased with increasing advertisement, and in
creased with increasing female response. Female fit
ness, Wf, was defined as increasing with the accuracy 
with which female response approximated male quality. 
Briefly, Grafen demonstrated that honest signalling of 
quality could be an ESS if the negative fitness conse
quences of male advertisement decrease with increasing 
quality, i.e., Zahavi's handicap condition is met. How
ever, Grafen's analysis demanded one extra assumption: 
that the positive fitness consequences of female prefer
ence were neutral with respect to male quality, or in
creased with male quality. 

A more general treatment of the model (Bullock 1997) 
demonstrated that, once Grafen's assumption concern
ing the manner in which male quality mediates the pos
itive fitness consequences of female response is relaxed, 
Zahavi's handicap condition ceases to be either necessary 
or sufficient for the stability of honest signalling. Here, 
an evolutionary simulation model will replicate this ana
lytic result, before allowing a more involved examination 
of the behaviours exhibited by signallers and receivers. 

Before an evolutionary simulation model can be at
tempted, fitness functions which adequately capture the 
assumptions made during the above analysis must be 
defined for both signallers and receivers. Particular at
tention will be paid to the fitness functions' ability to 
capture the assumptions made by the full range of con
tinuous signalling models under consideration here. 

In addition, schemes for representing a range of contin
uous signalling and response strategies must be defined. 
They must be simple in order that the representation 
of strategies be amenable to manipulation by a genetic 
algorithm, yet they must also be able to capture an ad-
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After Grafen (1990), (female) receiver fitness, Wf, may 
be calculated as 

1 
wi=----

1 +IP- qi 
Receiver fitness increases with the accuracy with 

which the receiver response, p, approximates signaller 
quality, q. 

Grafen (1990) constructed a specific function deter
mining (male) signaller fitness with which to demon
strate how his general model worked. 

This fitness function allows that increases in signaller 
quality, q, reduce the costs incurred in making an ad
vertisement, a, and that increases in signaller quality 
increase the positive fitness consequences of female pref
erence, p. The degree to which female preference influ
ences signaller fitness is governed by a parameter, r.2 

As such, Grafen's function cannot accommodate the 
possibility that the fitness consequences of receiver re
sponses might vary with signaller quality independently 
from the manner in which the negative fitness conse
quences of advertising vary with signaller quality. Fur
thermore, the function fails to accommodate the possi
bility that the negative fitness consequences for signallers 
of advertising might increase with signaller quality. 

An alternative function must be constructed before 
an unconstrained exploration of the various possible sig
nalling scenarios entertained within the literature can be 
undertaken. 

wm(a,p, q) = pqR - aq8 

For this function, Wm, a, p, and q denote, as before, 
signaller fitness, level of advertising, degree of receiver 
preference, and level of signaller quality, respectively, 
whilst Rand Sare exponents which govern, respectively, 
the manner in which signaller quality mediates the posi
tive effect of receiver responses and the manner in which 
signaller quality mediates the negative effect of signaller 
advertisement. The function is naturally understood as 
the sum of a positive benefit term and a negative cost 
term. 

The first term of the fitness function, pqR, connotes 
the benefit of signalling. The receiver response, p, con
tributes positively to signaller fitness, but the manner in 
which it contributes may be sensitive to signaller quality. 
For scenarios in which R = 0, the fitness consequences 
of receiver responses are independent of signaller quality. 

2Grafen assumes that both q andp lie in the interval [0,1], 
and that both a and r are greater than or equal to unity. 

For scenarios in which R > 0, the positive contributions 
of receiver responses increase with signaller quality. For 
scenarios in which R < 0, the positive contributions of 
receiver responses decrease with signaller quality. 

The second term, aq8 , represents the cost of signalling. 
The signaller's level of advertisement, a, contributes neg
atively to signaller fitness, but the manner in which it 
contributes may be sensitive to signaller quality. For 
scenarios in which S = 0, the fitness consequences of 
advertising are independent of signaller quality. For sce
narios in which S > 0, the cost of advertising increases 
with q. Conversely, for scenarios in which S < 0, the 
cost of advertising decreases with q. This last class of 
scenarios is asserted by Zahavi (1975, 1977; Zahavi & 
Zahavi, 1997) to be the only class admitting of honest 
signalling behaviour. 

In order to derive the conditions for the existence of an 
honest signalling ESS we must derive the conditions un
der which "better males do better by advertising more" 
(Grafen 1990, p.520). Grafen formulated the condition 
thus: 

8wm/8a . . 1 . . . 
Bwm/op is stnct y mcreasmg m q. 

For the functions defined above, this yields, 

(R - S)qS-R-1 > 0, 

which is satisfied exclusively by R > S. Thus we can 
expect honest signalling ESSs to exist for scenarios in 
which R > S, i.e., scenarios in which, naturally enough, 
the manner in which quality mediates the positive fit
ness consequences offemale preference (R) outweigh the 
manner in which quality mediates the negative fitness 
consequences of advertising (S). 

Thus, through manipulation of the signaller fitness 
function's two free parameters, R and S, this contin
uous model can be made to capture the assumptions 
of various models within the literature. In addition, a 
clear prediction concerning the conditions under which 
honest advertisement is an ESS has been made. These 
ESS conditions accommodate results presented within, 
for example, Grafen (1990) and Godfray (1991), whilst 
allowing the existence of a broader class of honest sig
nalling conditions than predicted under such models (see 
Figure 4). This broader class of ESS conditions includes 
scenarios in which Zahavi's handicap condition do not 
have to be met (i.e., conditions in which S </.. 0). 

Signalling and response strategies 

A population of signallers/receivers was distributed 
across a 25-by-25 grid. Each cell in the grid contained 
one signaller and one receiver. Each signaller was allo
cated an internal state, q, drawn at random from a uni
form probability distribution in the range [Qmin, Qmaxl· 
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Figure 1: Examples of three continuous signalling strategies mapping signaller quality, q, onto advertisement, a, and 
three continuous response strategies mapping advertisement, a, onto receiver response, p. Each strategy is defined 
by a gradient (constrained to lie strictly within the range[-~,~]) and an intercept (unbounded). 

In addition, each signaller inherited a signalling strat
egy from its parent. A signalling strategy comprised 
two real values, {e, c}. An advertisement, a, was calcu
lated as q tan e + c. Advertisements of below zero were 
truncated to zero. Similarly each receiver inherited a 
response strategy from its parent. A response strategy 
comprised two real values, {a, d}. Receiver response, p, 
was calculated as a tan a + d. Responses lying outside 
the range [Qmin, Qmax] were truncated to their nearest 
extreme. For all simulations reported here Qmin = 0.1 
and qmax = 5.0. 

The honesty of such a signalling strategy cannot be 
ascertained through consideration of the strategy in iso
lation. Either of the signalling strategies depicted in Fig
ures la and lb could take part in an honest signalling 
scenario since they each provide a unique advertisement 
for each possible value of signaller quality. For example, 
Figures ld and le depict response strategies which would 
successfully recover the value of q from advertisements 
made by signallers adopting the signalling strategies de
picted in Figures la and lb respectively. In contrast, the 
signalling strategy depicted in Figure le does not provide 
unique advertisements for each possible value of signaller 
quality. The best reply to such signalling strategies is to 
play the response strategy depicted in Figure lf, which 
ensures that each signaller is assessed as of average qual
ity. 

Whether communication is deceitful or honest is thus 
contingent upon the manner in which the signalling and 
response strategies match up across the population. If a 
period of adaptation under the selection pressures imple
mented by the fitness functions outlined above leads to 
a population of signallers playing the strategy depicted 
in Figure lb partnered by a population of receivers play
ing the strategy depicted in Figure le, such populations 
can be considered, in concert, to be taking part in an 
honest signalling scenario since receiver prediction error 
is minimized in such circumstances. In such a popula
tion, a mutant signaller playing the alternative signalling 
strategy depicted in Figure la is cheating since the qual
ity of such a mutant would be systematically misjudged 
by receivers. The classification of such a signaller as a 

cheat must be made despite the fact that the particular 
signalling strategy employed by the mutant generates 
advertisements which are directly proportional to its in
ternal state. 

This scheme for the representation of signalling and 
response strategies compares favourably with alternative 
schemes proposed within similar models. For example, 
Debourcier and Wheler (1995) construct a model of ag
gressive signalling with which to explore the handicap 
principle, and propose that a signalling strategy can be 
represented as the (positive) gradient, m, of an advertis
ing function of the form a= mq. Under such a scheme, 
although signallers may employ different degrees of ex
aggeration, no signaller is able to signal mwe strongly 
when low quality than when high, and every signaller 
must make an advertisement of zero when of zero quality. 
This overly restricts the strategy space and consequently 
limits the evolutionary dynamics of their model. 

Algorithm and parameters 
The fitnesses of signallers and receivers were calculated 
as per the fitness functions defined above, each interact
ing once with four partners chosen randomly (with re
placement) from its local neighbourhood. Once each sig
naller and receiver had been assessed, the whole popula
tion was updated synchronously and asexually. One par
ent from the previous generation was chosen for each off
spring cell. The location of a potential parent was chosen 
through perturbing both the x and y grid co-ordinates 
of the offspring cell by independent values drawn from a 
normal probability distribution with standard deviation 
1. 75 and mean zero. Four potential parents were cho
sen for each offspring signaller. An offspring signaller 
inherited its signalling strategy from the fittest of these 
four. Similarly, an offspring receiver inherited its re
sponse strategy from the fittest of four receivers chosen 
from the previous generation in the same manner. 

A mutation operator ensured that offspring sometimes 
inherited a strategy which differed from that of their 
parents. For both signallers and receivers each of the 
two values comprising their inherited strategy were in
dependently exposed to the chance of mutations, which 
occurred with probability 0.01. Mutations, when they 
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occurred, consisted of perturbations drawn from a nor
mal distribution with mean zero and standard deviation 
0.05. Mutated values which lay outside the legal range 
for the parameter they coded for were truncated to the 
nearest legal value for that parameter. 

Populations were simulated for 1000 generations in 
this manner, during which time the signalling and 
response strategies present in the population were 
recorded. The parameters R and S were varied across 
simulations but remained constant throughout each. 
The 441 possible pairs of parameter values, { R, S}, 
drawn from the set {-2.0, -1.8, ... 1.8, 2.0}, were ex
haustively explored under each of three differing classes 
of initial condition. Each of the resulting 1323 (3 by 441) 
conditions were simulated 10 times. The pseudo-random 
number generator employed by the algorithm was itself 
seeded randomly for each simulation. 

The first class of initial conditions consisted of a pop
ulation of signallers sharing an 'honest' signalling strat
egy which mapped q directly onto a, { B = ~, c = 0}, and 
a population of receivers sharing a 'believing' response 
strategy, {a = ~, d = 0}, which faithfully recovers val
ues of q from signaller advertisements produced under 
the honest signalling strategy. This class of initial con
ditions will be termed 'Honest' since receivers are able 
to predict signaller quality accurately from signaller ad
vertisements. 

The second class of initial conditions consisted of a 
population of signallers and receivers, each with a strat
egy generated by drawing values for B and a at random 
from a uniform distribution [- ~, ~], and similarly draw
ing values for c and d at random from a uniform dis
tribution [-qmax,qmax]· This class of initial conditions 
will be termed 'Random' since signallers' strategies and 
receivers' strategies are unrelated and implement a wide 
range of mappings. 

The third class of initial conditions consisted of a pop
ulation of signallers sharing a signalling strategy which 
mapped any value of q onto 0, i.e., {B = 0, c = O}, and a 
population of receivers sharing a response strategy which 
mapped any advertisement onto 0, i.e., {a= O,d = O}. 
This class of initial conditions will be termed 'Cynical' 
since signallers never make advertisements, whilst re
ceivers never make responses. 

Results 

Results were consistent with the predictions arrived at 
through the analysis presented above. Two measures of 
performance were utilized in assessing the degree of hon
esty within a population. Both measures were derived 
from population summary statistics calculated for a par
ticular generation. First, the average signalling strat
egy and response strategy were calculated. This was 
achieved simply by taking the population mean values 
of B, c, a, and d. 

From the mean signalling strategy, { 0, c}, the mean 
strategy signal range, f, was calculated as (Qmax -
Qmin) tan 0. The mean strategy response error, e, was 
calculated as the absolute mean difference between sig
naller quality, q, and receiver response, p, for signallers 
using the mean signalling strategy { 8, c} and receivers 
using the mean response strategy {a, d}, calculated for 
q ranging from qmin to qmax. 

Since both these metrics are population-level summary 
statistics, care must be taken to appreciate that many 
heterogeneous populations could be responsible for any 
observed value. For example, a value of e = 2ma.1Qmin 

may indicate a homogeneous population of receivers 
adopting the strategy {a = 0, c = Qma. tQmin } , or a 
heterogeneous population comprised such that, although 
each receiver employs a different strategy, on average 
they achieve chance levels of performance. Through
out the following sections, such ambiguity was avoided 
though recourse to the relevant standard deviations. 

Honest Initial Conditions: The equality R = S 
divided the parameter space into two areas (see Fig
ure 2). The area defined by R > S contained signallers 
which made advertisements which increased with sig
naller quality (f > 0), and receivers which were able 
to recover signaller quality accurately from such adver
tisements (e ~ O); i.e., honest signalling obtained under 
these conditions. In contrast, the area defined by R < S 
contained signallers which made advertisements which 
did not differ with signaller quality (f ~ 0), and, as a 
result, receivers which were unable to accurately recover 
signaller quality from signaller advertisements (e > O); 
i.e., non-signalling obtained under these conditions.3 

Furthermore, for scenarios in which R > S, mean sig
nal range, f, increased with R-S. For scenarios in which 
the difference between R and S is small, the range of 
signals is also small. However, for scenarios in which R 
far outstrips S, signals given by high quality signallers 
are orders of magnitude higher than those given by low 
quality signallers. 

Random Initial Conditions: Within the area of 
parameter space in which honest signalling equilibria are 
not predicted to exist, f ~ 0 whilst e ~ qma>!Qmin' i.e., 
non-signalling strategies, and response strategies which 
perform at the level of chance are observed. 

Within the area of parameter space predicted to ad
mit of honest signalling equilibria, both honest signalling 
equilibria and non-signalling equilibria were achieved. 
The frequency with which honest signalling equilibria 
were achieved from Random initial conditions increases 
with the magnitude of R-S. For simulations in which R 
is only slightly higher than S, honest signalling equilibria 

3 Mean response error is sometimes higher than that re
sulting from performance at chance levels. This is due to an 
artefact of the simulation design (limiting receiver response 
to fall within the range [qmin, qmax]). A full account is given 
in Bullock (1998). 
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Figure 2: Mean response error (left) and signal range (right) after 1000 generations, averaged across 10 simulation 
runs from Honest initial conditions. For reasons of clarity the left graph has been rotated go 0 anti-clockwise about 
the vertical axis. 
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Figure 3: Mean response error (left) and signal range (right) after 1000 generations, averaged across 10 simulation 
runs from Random initial conditions. For reasons of clarity, the left graph has been rotated go0 anti-clockwise about 
the vertical axis. 

are achieved only rarely. As R - S increases, signalling 
equilibria are achieved with increasing frequency. This 
is reflected in the variation, across the parameter space, 
of both the mean values for r and e (see Figure 3) and 
their standard deviations. 

Cynical Initial Conditions: The behaviour of the 
model is similar to that resulting from Random initial 
conditions. For simulations in which R < S, behaviour is 
indistinguishable from that resulting from Random ini
tial conditions. For simulations in which R > S, sig
nalling equilibria are sometimes attained, although the 
frequency with which this occurs is lower than that ob
served for simulations from Random initial conditions. 
As before, the frequency with which signalling equilibria 
are achieved increases with R - S. 

A note on equilibria 
At several points throughout the preceding sections use 
is made of the term equilibrium. The honest signalling 
equilibria described have the general character of point 
equilibria. However, the stochasticity of the tournament 
selection process and the allocation of signaller quality, 

the statistical independence of mutation events, and the 
co-evolutionary nature of the signaller-receiver relation
ship all ensure that a population of signallers or receivers 
will tend to move around the vicinity of its equilibrium 
state, rather than fix upon it rigidly, as might be ex
pected from an idealized numerical approximation to 
the dynamic equations of an ESS model. Thus to call 
the equilibria achieved by the simulation ESSs is not 
strictly accurate. However, in their defence, the hon
est signalling equilibria achieved by the simulation are 
predicted by the ESS model and are characterized by 
approximately constant trajectories within both the sig
naller and receiver populations. 

By contrast, what might be called the simulation's 
non-signalling equilibria permit significant amounts of 
evolutionary drift on the part of both signaller and re
ceiver populations. There are, for example, many sig
nalling strategies which result in signallers never making 
a signal. If, under certain conditions, selection favours 
making no signal, evolutionary drift amongst these func
tionally identical strategies is inevitable. 
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Similarly, although there is an optimal response strat
egy in reply to such non-signalling signallers, the rela
tively small sample of four signallers against which each 
receiver is assessed ensures that there exists a high de
gree of variability in fitness scores achieved by strategies 
in the vicinity of this optimal strategy (which is only 
strictly optimal if assessed on the basis of an infinite 
number of trials, each featuring a signaller drawn at ran
dom from the entire population). One might conceive of 
this situation as involving a receiver population which is 
subject to a rather weak negative feedback from its co
evolutionary partner. This feedback keeps the receiver 
population within a volume of strategy space containing 
strategies with fitnesses sharing a similar mean and a 
relatively high variance. 

A related but distinct point concerns whether equi
libria achieved by the simulation are repeatable, i.e., 
whether the same population states are always achieved 
from the same initial conditions under the same param
eter values. For the purposes of this model no claim to 
this effect will be made since the simulation's stochastic
ity is, at times, quite capable of perturbing trajectories 
from one basin of attraction to another. Despite this 
indeterminacy, basins of attraction remain characteriz
able. 

Considerations such as these do no damage to the gen
erality of the results presented here, but should be borne 
in mind when analyzing the behaviour of any evolution
ary simulation model. 

Summary 
These simulation results suggest that both the possibil
ity of a stable honest signalling system, and the extrava
gance of signals within such a system, depends critically 
on the difference between the manner in which the ad
vertised trait influences the benefits of signalling (R) and 
the manner in which it influences the costs of signalling 
(S). Where this difference is negative (R < S), no hon
est signalling is possible. Where this difference is positive 
(R > S), honest signalling equilibria exist. 

Thus, honest signalling equilibria may exist for scenar
ios in which Zahavi's handicap condition does not hold 
(i.e., Sf- 0), and conversely honest, signalling equilibria 
may not exist for scenarios in which Zahavi's handicap 
condition does hold (i.e., S < 0). 

Furthermore, the magnitude of the difference, R - S, 
is positively correlated with the extent of the basin of at
traction for any signalling equilibrium. Thus, although 
under conditions in which R - S is positive but small, 
stable signalling equilibria in which signals are relatively 
cheap are viable, such equilibria will seldom be attained 
through the evolution of non-signalling ancestral popula
tions since the basins of attraction for such equilibria are 
prohibitively small. This result is derived solely from the 
simulation behaviour since predictions concerning the at
tainability of equilibria could not be made on the basis 
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Figure 4: Showing (a) the conditions under which honest 
signalling obtain for the model presented here, and {b) 
the conditions predicted to admit of honest signalling 
equilibria by (i) Zahavi (1975, 1977): diagonal hatching 
defined by S < 0, (ii) Grafen (1990): cross-hatching 
defined by S < 0 and R :'.:'. 0, (iii) Godfray (1991) and 
Maynard Smith (1991): bold vertical line defined by R > 
0 and S = 0, and (iv) Hurd (1995): bold horizontal line 
defined by S < 0 and R = 0. 

of the analytic findings reported in Bullock (1997). 

Discussion 
It has been demonstrated through the use of an evo
lutionary simulation model that non-handicap equilib
ria exist for an extension to Grafen's (1990) continuous 
model of signal evolution. In this section, the findings 
reported in this paper will be compared with those re
ported within previous studies. These previous results 
are easily accommodated by those presented within this 
paper, which themselves provide a general formulation 
of the conditions governing the existence of what have 
been termed 'handicap' signalling scenarios. 

Once this reconciliation of previous results has been 
described, a reconciliation of the positions which lead 
to their presentation will be attempted. The handicap 
principle will be assessed in three regards. The first is
sue discussed will be the various interpretations of the 
relationships between costs, benefits, and fitness which 
appear to motivate models of the handicap principle. 
Secondly, the validity of the term handicap itself will be 
considered before, finally, the implications of the results 
presented here for the supposed generality of the handi
cap principle will be addressed. 

Reconciliation of results 
Figure 4a depicts the broad conclusion suggested by the 
continuous model of signalling explored here. Honest 
signalling is stable for scenarios in which the manner in 
which the advertised trait mediates the influence of sig
nalling benefits on signaller fitness outweighs the man
ner in which the advertised trait mediates the influence 
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of signalling costs on signaller fitness, i.e., the net cost of 
signalling (the cost of honest signalling minus the bene
fit of an accurate receiver response) decreases monoton
ically with the advertised trait. 

This result is captured graphically in Figure 4a by 
dividing the space of possible signalling scenarios into 
two halves, separated by a diagonal line along which the 
influence of the advertised trait on costs is exactly bal
anced by its influence on benefits (i.e., R = S). Above 
this line (i.e, for R > S), honest signalling equilibria ob
tain; below it (i.e., for R < S), no such honest signalling 
equilibria exist. 

In Figure 4b this graphical device is used to locate pre
vious theoretical results. For example, Zahavi's (1975, 
1977; Zahavi & Zahavi, 1997) claim that honest sig
nalling may only exist for scenarios in which the costs 
of signalling decrease with the trait being advertised 
may be represented by the area satisfying the inequality 
S < 0. It is plain from the diagram that this inequal
ity is neither necessary nor sufficient for the existence of 
honest signalling equilibria. Grafen's (1990) contention 
is hown to be correct. Given that signaller benefits are 
either unaffected by the advertised trait or increase with 
the advertised trait (R :'.'.'.: 0), in order that signalling 
be honest, signalling costs must decrease with the ad
vertised trait (S < 0). However, the space of possible 
signalling scenarios defined by his conditions, does not 
exhaustively account for all honest signalling equilibria. 

Models in which the negative fitness consequences of 
signal costs are assumed to be independent of the trait 
being advertised (i.e., models for which S = 0) have 
often concluded that, in order for such signalling to be 
honest, the positive fitness consequences for signallers 
of receiver behaviour must increase with the signaller's 
advertised trait (i.e., R > 0). Such models typically take 
the advertised trait to be signaller need (e.g., Godfray 
1991, Maynard Smith 1991). They make a claim which 
can be recast as asserting that honest signalling may 
be stable for signalling systems which lie along the bold 
vertical line in Figure 4b. 

Similarly, models in which the positive fitness conse
quences of the benefits accrued by signallers are assumed 
to be independent of the trait being advertised (i.e., 
models for which R = 0) have often concluded that, 
in order for such signalling to be honest, the negative 
fitness consequences (for signallers) of signal cost must 
increase with the signaller's advertised trait (i.e., S < 0). 
Such models typically take the advertised trait to be sig
naller quality (e.g., Hurd 1995), and make a claim which 
can be rephrased as asserting that honest signalling may 
be stable for signalling systems which lie along the bold 
horizontal line in Figure 4b. 

Costs, benefits, and fitness 
This paper opened with a description of two complemen
tary arguments which each result from Zahavi's handi-

cap signalling notion. The first argument suggested that 
honest advertisement of quality might be stabilized by 
differential signaller costs. The second argument sug
gested that the honest advertisement of need might be 
stabilized by differential signaller benefits. The results 
of the model constructed within this paper demonstrate 
that the honest advertisement of either quality, or need, 
may each be stabilized by differential costs, and/ or dif
ferential benefits. This result is due to the fact that 
the terms 'cost' and 'benefit' may each be cashed out 
in the same currency - fitness. Costs are merely nega
tive increments to fitness, whereas benefits are positive 
increments to fitness. 

However, at a less abstract level of description, costs 
and benefits may come in many different forms. For ex
ample, negative fitness consequences may arise as a re
sult of energetic costs, risks of predation, parasitism, or 
infection, costs of missing a high-quality mating opportu
nity, of mating with a sub-optimal mate, etc. Although 
each of these costs has negative fitness consequences, the 
character of these negative fitness consequences may dif
fer radically across these different forms of cost. 

Similarly there are benefits to be gained from obtain
ing a copulation, a food resource, a territory, an oppo
nent's surrender, etc. Again, although each of these ben
efits has positive fitness consequences, the character of 
these positive fitness consequences may not be uniform 
across these different forms of benefit. 

Within evolutionary models, the manner in which 
costs and benefits influence fitness is formalized iden
tically. Costs, whatever their nature, influence fitness 
negatively, whereas benefits, whatever their nature, in
fluence fitness positively. 

However, theorists constructing models of handicap 
signalling are faced with a decision concerning the man
ner in which the influence of signalling costs (and sig
nalling benefits) upon fitness is to vary with the trait 
which signallers are advertising. For example, how does 
the effect of signal production cost vary with signaller 
need? What will interest us here are the different de
cisions which may be made regarding these aspects of 
handicap modelling. 

Consider the example of a begging nestling which is 
signalling in an attempt to solicit parental resources. 
We will assume that the trait of interest to parents is a 
chick's need, and that quality varies inversely with need. 
For this scenario Godfray (1991) models the cost of sig
nalling as equal across all signallers. Grafen (1990), on 
the other hand, models cost as decreasing with signaller 
quality. Godfray (1991) models the benefit of soliciting 
a particular parental resource as increasing with need, 
whereas Grafen (1990) models such benefit as either in
dependent of signaller need, or decreasing with signaller 
need. 

A second example, also addressed by Grafen (1990), 



involves an interloper making a signal of aggressive in
tent to an observing harem holder. Grafen asserts that 
in such a situation, the costs of signalling decrease with 
the increasing quality of a signaller. He further claims 
that the benefits for the signaller of a retreat response 
by a receiver increase with the quality of a signaller. 
In contrast, Adams and Gibbons (1995) suggest that 
in such situations, the benefit of eliciting a retreat re
sponse might decrease with increasing signaller quality. 
They reason that "strong animals can win many conflicts 
without threatening (i.e., by direct fighting), while weak 
animals cannot. Furthermore, weak animals have more 
to gain by avoiding direct fights since they are less able 
to defend against injury." (p. 406). 
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It is clear from these two examples that the authors of 
these models have made radically opposed assumptions 
with respect to the relationship between costs, benefits, 
and fitness (for a discussion of possible reasons for these 
differences, see Bullock 1997). In contrast, the model 
presented within this paper makes no assumptions con
cerning the manner in which costs and benefits influence 
fitness, save that costs are a negative influence, whilst 
benefits are a positive influence. As a result of this neu
trality, a degree of generality has been gained. 

Are signals handicaps? 

The force of the results presented within this paper is 
to qualify previous statements of the conditions which 
must be met before honest handicap signalling may be 
evolutionarily stable. Rather than merely requiring gross 
signalling costs to vary with signaller quality in some 
manner, the model presented here requires consideration 
of the manner in which the net cost of signalling varies 
with signaller quality. 

Although Zahavi often appears to consider the net 
costs involved in signalling when formulating his prin
ciple (e.g., "it is reasonable to expect a population in its 
optimal fitness to benefit from a handicap", and "so long 
as the offspring ... does not deviate to grow its handi
cap larger than it can afford, the handicap [may persist) 
as a marker of honest advertisement", p. 604, Zahavi 
1977), when describing examples of natural signalling he 
rarely appreciates the benefits which might be accrued 
from signalling, and the manner in which such benefits 
might negate the increased costs involved in bluffing. 

Zahavi's ambivalence toward the potential benefits of 
signalling (or bluffing) led Wiley (1983) to characterize 
Zahavi's (1975) claim as "signals should evolve to be
come a net handicap to signallers" (p. 176, my empha
sis), whilst Adams and Gibbons (1995) reach the oppo
site conclusion, stating that the scenario they consider 
differs from that prescribed by the handicap principle 
in that within their model, "the net benefit for a given 
advertisement may not increase monotonically with the 
signaller's strength" (p. 406). 

Furthermore, the sense of much of Zahavi's verbal ar
gument does not seem to accord with a notion of the 
handicap principle couched in terms of net costs. For 
example, as Hurd (1995) points out, if the costs involved 
in signalling must be acceptable costs (i.e., they must be 
compensated for by consonant benefits), then in what 
sense are these costs a 'handicap'? Although the costs 
incurred by a bluff er might be characterized as a handi
cap, since these costs would not be compensated for by 
the receiver response, this is not the sense in which Za
havi proposed the term. For Zahavi, honest signallers 
suffer a handicap. This suffering is necessary as a means 
of demonstrating honesty. However, once one appreci
ates the role played by benefits in assuaging these costs, 
the notion that signallers are "suffering" becomes sus
pect. 

The generality of the handicap principle 
The inclusion of a benefit clause in the definition of the 
handicap principle does not preclude the existence of 
handicap signalling equilibria. However, it does have 
implications for the proposed ubiquity of the handicap 
principle as it has been presented by Zahavi and others. 

The condition that signal cost is related to signaller 
quality in the manner stipulated by Zahavi (i.e., that 
as signaller quality increases the cost of signalling de
creases) appears to be a candidate for very wide appli
cation. Indeed, Zahavi has demonstrated the breadth 
of this application, even going so far as to suggest that 
the handicap principle accounts for all natural signalling. 
However, the model constructed here demonstrates that 
the influence of benefits on signaller behaviour may en
sure that despite signal cost being related to signaller 
quality in the manner prescribed by Zahavi, honesty may 
never-the-less be unstable. Similarly, some systems, de
spite failing to meet Zahavi's handicap condition (e.g., 
systems in which there is no relationship between sig
nal cost and signaller quality) may be stable due to the 
influence of benefits upon signaller behaviour. 

As such, the ease with which these revised condi
tions for the existence of evolutionarily stable handicap 
signalling may be confidently predicted to hold across 
classes of signalling scenario is much reduced. Field bi
ologists charged with the task of establishing whether 
real signalling systems are handicap signalling systems 
must characterize both the manner in which signal cost 
differs with the trait being advertised and the manner 
in which signaller benefits differ with the same trait. 
This increased burden is compounded by the fact that, 
as demonstrated above, theorists' predictions concerning 
the manner in which costs and benefits vary with, for 
example, quality or need across signalling populations 
themselves demonstrate a lack of coherence. 

From this discussion, it is clear that the model con
structed within this paper, in addition to clarifying the 
conditions under which signalling may be honest and sta-



348 

ble, questions the integrity of handicap terminology. It 
also challenges the handicap principle's supposed ubiq
uity through highlighting the complications which arise 
from a consideration of the manner in which costs and 
benefits are mediated by advertised traits. 

Conclusion 
In summary, the satisfaction of Zahavi's handicap con
dition was demonstrated to be neither necessary nor 
sufficient for the existence of honest signalling equilib
ria within a general continuous evolutionary simulation 
model. 

It was demonstrated that in order for a signalling sys
tem to be stable, a relationship between signalling costs, 
signaller quality, and (contra Zahavi) signalling benefits 
must hold, not merely a relationship between signalling 
costs and signaller quality. 

Stable signalling systems involving relatively cheap 
signals were shown to be viable under certain conditions. 
However, the evolutionary attainability of these equilib
ria was shown to be compromised by the size of their 
basins of attraction. 
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Abstract 

Artificial life has long held out the promise of revolu
tionizing how scientists approach a variety of problems. 
In this paper we describe an application of artificial life 
techniques to the study of a fundamental problem in 
economics: How does a firm transition from monopoly 
behavior to competitive behavior as other firms enter the 
market? Solving traditional economic models provides 
the equilibrium, but does not give the path to equilib
rium. The firms in our artificial life simulation do not 
have access to any global information about the mar
ket. The resulting global behavior that arises from this 
local price-setting behavior is the equilibrium predicted 
by the traditional analytical models. Hence, our sim
ulation provides a proof by example that simple, local 
rules of interaction can create the global regularities ob
served and predicted by economists, thus providing a 
relatively low upper bound on how complex firm agents 
must be to reach equilibrium. In this paper we describe 
the various agents in the model-firms, consumers, cap
ital suppliers, labor suppliers-and present the outcome 
of several simulations of the model. 

Introduction 
For over a decade, artificial life proponents have sug
gested that artificial life techniques will revolutionize 
our understanding of the way the world works. Semi
nal ideas, such as the notion that global regularities can 

arise from many local interactions, have the potential to 
provide theoretical underpinnings for many fields, par
ticularly those in the social sciences. 

An economic model is a set of decision-making mech
anisms, organizational arrangements, and rules for al
locating society's scarce resources. An economic model 
can be as simple as one agent on an island (a Robinson 
Crusoe economy), or as complex as the everyday deci
sions of the 5 billion people in the world, the interac
tions between all firms in all countries and the actions of 
all governments. The traditional approach to economic 
modeling is geared towards obtaining an equilibrium so
lution. This involves solving the maximization problems 
of all agents to yield market-clearing prices (markets 
clear when demand is equal to supply) for all goods and 
also the quantities that are exchanged at these prices. 
One assumption imposed for analytic tractability that 
rarely captures the economic phenomenon we observe is 
homogeneity of agents. Relaxing this assumption is not 
possible in a lot of economic models and, if it can be re
laxed, the level of heterogeneity that can be modeled is 
still very restricted. Moreover, equilibrium solutions are 
not always very informative for policy purposes. For pol
icy makers, the path to equilibrium is just as important 
as the equilibrium itself. 
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In this paper, we present an agent-based general equi
librium model of a simple transition economy (an econ
omy, such as those of Poland and Hungary, that is mov
ing from a centrally planned system to a competitive 
market system) that draws on methods developed in the 
field of artificial life. The agents in our artificial life 
model use only local information to arrive at the equi
librium price. The dynamics of reaching the equilibrium 
price are of particular interest when studying transition 
economies. Because of the generality of artificial life 
methods, our model is not restricted to homogeneous 
agents like most standard economic models are. As a 
result of these enhancements, macroeconomic outputs of 
our simulated economy, such as production, pricing, and 
profits, qualitatively resemble those of real-world transi
tion economies. 

Modeling the transition from centrally planned to 
market economies of former communist countries poses 
a particular challenge. Economies in transition are 
economies that are making marked changes in their mar
ket structure. Since the demise of the Soviet Union, this 
has become a relevant and hot research topic. Many 
countries have begun to move away from a centrally 
planned economy to a more market-based economy. The 
transition from communism can be analyzed in terms of 
four basic tasks of economic reform (Sachs 1996) : 

• Systemic Transformation: The institutional, legal, po
litical, and administrative change of the economic sys
tem from state-ownership and central planning to pri
vate ownership and market allocation of resources. 

• Financial Stabilization: The end of the pre-reform 
monetary overhang, high inflation, and large fiscal 
deficits. 

• Structural Adjustment: The initial reallocation of re
sources in the economy following the introduction of 
market forces. 

• Implementation of a Framework to Promote Rapid 
Economic Growth. 

The transition economies of Eastern Europe and the 
former Soviet Union have demonstrated that it is possi
ble to introduce the institutions of a market economy 
within five years. According to Jeffrey Sachs (Sachs 
1996): 

... liberalization of the economy surely proved to 
be the quickest and most effective area of change. 
In the fastest-reform economies, currency convert
ibility was quickly established; prices were freed, 
and shortages eliminated; and international barriers 
were cut, resulting in significant growth of trade. 

... Without question the most difficult aspect of 
institutional reform has been privatization. 

Economic theories do not provide definite answers to 
the questions that are most central: What is the opti
mal speed of reforms and what is the best sequencing 
of reforms? The "shock therapy" proponents favor si
multaneous reforms throughout the economy (Lipton & 
Sachs 1990; Boycko 1992; Frydman & Rapaczynski 1994; 
Sachs 1993), whereas "gradualists" emphasize the se
quencing of reforms (Portes 1991; McKinnon 1991; De
watriport & Roland 1992; Murrell 1992). 

Empirical evidence shows important similarities and 
differences in the experiences of transitioning economies 
which contribute to the lack of consensus. Gross Do
mestic Product (GDP) in a lot of transition economies 
has followed a U-shaped pattern, an initial decline fol
lowed by growth. However, the severity of the fall and 
its duration has differed (Blanchard 1996). The private 
sector's share of the GDP has increased, but the increase 
has been anywhere from double to tenfold (Selowsky & 
Martin 1997). Countries that have adopted similar re
form packages have differed drastically in their responses 
(Frye & Schleifer 1997). 

Examining phenomena such as the U-shaped pattern 
in output requires modeling the dynamics of the econ
omy. We adopt an artificial life methodology that lends 
itself with greater ease to modeling these dynamics. 

Artificial life techniques hold out the promise of over
coming some of the problems associated with the tra
ditional approach. Artificial life researchers have shown 
that local rules of behavior can lead to identifiable global 
regularities. The emphasis on exploiting local informa
tion, emergent behavior, and self-organization make arti
ficial life techniques an ideal tool for studying transition 
economies. 

In this paper, we take a first step towards address
ing some of the vexing problems posed by transition 
economies. We present a general equilibrium model of a 
simple transition economy. It is a general equilibrium 
model, not because the solution assumes equilibrium, 
but in the traditional sense that all prices and quan
tities are determined within the model. We focus on the 
behavior of firms in a single market, but we also have 
markets for labor and capital. We analyze the transition 
from a controlled economy where production is under
taken by one state-owned enterprise (SOE) to a market 
economy. The agents in this economy do not have ac
cess to global information and act on simple rules. We 
show that equilibrium can be reached. We are also able 
to replicate qualitatively the U-shaped pattern of output 
observed in transition economies. 

Model 
This section describes the decision-making processes of 
the agents in an economy with one product market,and 
two input markets (capital and labor). Firms are the 
only agents we model explicitly and they interact with 
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the three markets. There is a special firm, namely the 
state-owned enterprise (SOE), which has different con
straints than the rest of the firms. All firms, including 
the SOE produce identical products. We do not explic
itly model consumer agents but rather impose specific 
input supply functions and an output demand function. 

This model can be solved analytically if firm agents 
are assumed to be homogeneous. All of the functions 
are differentiable, so the solution involves simultaneously 
solving the equilibrium conditions and all the first order 
conditions to the maximization problems, to get market
clearing prices and quantities. However, heterogeneous 
agents are a defining component of transition economies 
so this simplification would rob the simulation of all po
tential interest. 

Firms 

The private firms maximize profits at every period, tak
ing prices of their output and inputs as given. The firms' 
objective function is: 

max II= maxPF(K, L) - rK - wL 
K,L K,L 

where F(K,L) = AKaLb (Cobb-Douglas production 
function). 

L is labor demand, K is capital demand, and, P, w 
and r are the market-clearing prices of output, labor ser
vices and capital services, respectively. If the parameters 
of the Cobb-Douglas production function (A, a, and b) 
are the same across firms, the firms are homogeneous. 

Typically, the standard economic approach to solving 
such a maximization problem is to use calculus. In our 
simulation, the firm agents instead use local methods, 
drawn from the field of artificial life, which are described 
in the Simulation Details section. In particular, the firm 
agents use locally available prices instead of the market
clearing prices. 

The State-Owned Enterprise (SOE) 

The SOE maximizes profits at every period but it has to 
satisfy an employment constraint. The labor demanded 
in the industry has to be at least L. The SO E's objective 
function is: 

subject to 

max II= maxPF(K,L) - rK -wL 
K,L K,L 

QD > L L -

where Qf is industry labor demand. The production 
function, F, is also Cobb-Douglas, the parameters of 
which may be different than those of private firms. 

Like the private firms, the SOE uses an optimization 
method that requires only local information to maximize 
this objective function. 

Input Supply 
The supply functions of inputs are increasing (at a de
creasing rate) functions of the input prices. 

Qr = AL wP, p < 1 and AL > 0 

Qk = AKrq, q < 1 and AK > 0 

where Qr is quantity supplied in the labor market and 
Qif< is quantity supplied in the capital market. 

Consumer Demand 
The market demand for the firms' output is linear1 : 

P = AvQD + D, D > 0 and Av < 0 

As with the input suppliers' supply curves, this market 
demand function is provided exogenously. 

Equilibrium Conditions 
Demand in every market is equal to supply in every mar
ket. There are three markets: two input (capital and 
labor) markets and one output market. The equilibrium 
conditions for these three markets are: 

QD QS 

Qf Qr 
Q~ = Qk 

where QD is the quantity demanded in the output mar
ket and the subscripts L and K refer to the labor and 
capital markets. 

Simulation Details 
In this section, we describe how the firm agents in our 
simulation make decisions and interact with the three 
markets. In contrast to traditional economic modeling 
where the objective functions are optimized simultane
ously, our agents act in sequence. The simulation runs 
as follows: 

• Until the stopping criterion is met: 

1. For every firm: 

(a) Labor and capital markets provide prices based on 
recent sales. 

(b) The firm decides the price of its product. 
(c) The product market provides quantity demanded 

from this firm at this price. The firm produces 
this amount, provided that it makes a profit. Oth
erwise, the firm produces the profit-maximizing 
amount. In doing so, the firm purchases capital 
and labor at the price computed in step la. 

1 Linear demand can also be expressed as: 
QD = d + AdP, d > 0 and Ad < 0 



2. Firms enter and exit the market. 

One cycle through this loop is referred to as a period. 
The quantity exchanged does not always have to be 

equal to the quantity demanded. It will be the minimum 
of the two: quantity produced or quantity demanded. If 
there is excess demand, it is left unsatisfied. 

Firm Agents 

Firms optimize profit by continuously changing price in 
small increments ( 13) in the direction they think will 
increase profit. They only know the last change they 
made in price and the last change they observed in profit. 
If there was an increase in profits they change the price 
in the same direction; otherwise, they change the price 
in the opposite direction. This hill-climbing approach 
to uncovering the optimal price is successful because the 
firms' objective function has a single maximum. 

Product Market 
The quantity demanded from a single firm at a given 
price is computed such that the exponential average of 
quantity exchanged stays on the curve. Specifically, the 
quantity demanded is given by: 

( Pm - D ) 
max AD - Qavg,m(n - 1), 0 

where Pm is the price submitted by the current firm, n 
is the number of firms and: 

_ (1 (31/n) 131/n Qavg,m - - q + Qavg,m-1 

where q is the last quantity exchanged, m denotes the 
mth exchange, and {J, the exponential constant, is 0.1. 

Capital and Labor Markets 
The rent at which a firm can purchase capital is com
puted as follows: 

1. Total capital rented in that period is estimated using 
the exponential average of the capital rented. 

2. The rent at which this amount of capital would be 
supplied is computed from the supply function. 

3. If the last rent was lower the rent is increased; if the 
last rent was higher the rent is decreased subject to a 
maximum 13 change2 . 

The exact formulation is: 

r = ( nk~~,m) l/q 

where n is the number of firms and : 

2Without this restriction, some systems are unstable. We 
see increasing oscillations in prices and quantities rather than 
convergence to equilibrium. 
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kavg,m = (1 - 13lfn)k + (3lfnkavg,m-l 

where k is the last capital exchange, m is the mth ex
change, and (3, the exponential constant, is 0.1. 

The wage is determined by the same algorithm, using 
the average labor hired and the last wage in the following 
relationship: 

w = ( nl~~,m) l/p 

where n is the number of firms and : 

lavg,m = (1 - (31fn)l + f3 1lnzavg,m-l 

where l is the last labor exchanged, m is the mth ex
change, and {J, the exponential constant, is 0.1. 

SOE agent 

The SOE behaves like the firms, but with an additional 
employment constraint. After it decides how much labor 
to hire, it checks to see if its estimate of total employment 
is at least L. If not, it hires the difference. 

Results 
In this section we describe four experiments of increasing 
complexity. 

Effects of market size: This experiment attempts to 
reproduce well known classical results in our simula
tion environment. In a simple market with identical 
firms, we show the monopoly, the oligopoly and the 
competitive outcome. 

Imposing minimum employment: During 
liberalization, the government may want to prevent 
unemployment by imposing a minimum employment 
constraint on the SOE. This experiment demonstrates 
that an artificially imposed employment level may re
duce market efficiency. 

Liberalization of the market: This experiment ana
lyzes the effects of liberalization in a market where all 
firms are identical. 

Introducing heterogeneous firms: This experiment 
analyzes the effects of liberalization in a market where 
firms have varying degrees of efficiency. 

Effects of market size 
Figure 1 shows how the market reacts to an increase in 
the size of the private sector. We present plots of to
tal quantity produced in the market, average price and 
average profit under a monopoly (n = 1), an oligopoly 
(n = 5) and perfect competition (n = 50). We observe 
that quantity increases as price and profits fall when the 
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number of firms in the market increases. This is exactly 
what is predicted by economic theory: competition in
creases the quantity produced and decreases the average 
profits in the industry. 

2.5 ,--~-~---,.---~-..,.--.---~-..,.--.------, 
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the equilibrium labor usage is approximately 0.6. When 
L is set to 0.8, the SOE is forced to employ more labor 
than it would have liked and total labor usage in the in
dustry increases but remains below 0.8 due to averaging 
errors in the calculation. The labor constraint is bind
ing which results in a less efficient outcome, illustrated 
by a lower equilibrium quantity and a higher equilibrium 
price. 
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Figure 1: Dynamics of quantity, price, and profit in mar
kets of different sizes. 

Imposing minimum employment 
This set of simulations shows a state owned enter
prise (SOE) coexisting with a fixed number of identical 
firms. We observe how the behavior of the SOE, which 
has to maintain employment in the industry above L, 
changes when the number of private firms in the indus
try changes. 

Figure 2 shows how the SOE's employment constraint 
affects the total labor employed by the industry, total 
quantity and average price. Without a labor constraint, 
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Figure 2: Imposing minimum employment decreases ef-
ficiency. 

Liberalization of the market 
This set of experiments differs from the first experiment 
in one important sense: firms are allowed to enter and 
exit the market. 

Figure 3 shows how our simulated economy smoothly 
transitions from a protected environment to perfect com-



petition. During the first 500 periods, entry into this 
market is prohibited and the SOE is the only firm in 
the industry (i.e., n = 1). The market is liberalized in 
the 501st period. High profits attract new firms and we 
observe an increase in the number of firms. This re
duces firms' profits. In addition, quantity increases as 
the price declines. These findings are consistent with 
economic theory. All of the firms are identical to the 
SOE in this experiment and a minimum employment 
constraint is not imposed. The SOE's production can be 
approximated by dividing total quantity by the number 
of firms in the industry. The SOE's price and profit are 
almost identical to the average price and average profit 
in Figure 3. 
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Figure 3: Liberalization in a market with identical firms 
at period 500. 

The significance of this experiment is that the simple 
SOE agent exhibits monopoly and competitive behavior 
in an emergent and endogenous manner. The SOE's be
havior rules are the same in both monopoly and compet
itive environments. It is the interaction with the other 
agents that causes the decline in average price. 

Introducing heterogeneous firms 

The SOE operates alone for the first 500 periods and 
reaches the monopoly equilibrium. These 500 periods 
simulate the centrally planned interval of a transition 
economy. After 500 periods, the market is liberalized 
and other firms start entering because of high profits 
in the industry. The probability that a new firm will 
want to join the market during a period is an increas
ing function of average profits in the market. Firms only 
produce in the feasible region of their supply function, so 
they never make negative profits. If they do not produce 
for two periods in a row, they exit the market. For these 
experiments, the SOE does not have an employment con
straint because we discovered that, in the scenarios we 
analyzed, it was rarely binding. 

In Figure 4, the heterogeneity of the firms enables us 
to observe how price and wage evolve as the industry 
becomes increasingly dominated by more efficient firms. 
Rent and wage follow a similar pattern so we only pro
vide a plot for wage. Initial entrants to the market are 
not necessarily very efficient, because with a high profit 
margin even inefficient firms can survive. Competition 
results in lower prices, reducing profit margins so only 
those firms with more efficient production technologies 
enter the market as price declines and the inefficient 
firms exit. As more efficient firms enter the market, la
bor and capital become more productive so wage and 
rent are bid up. 

Figure 5 shows the U-shaped output curve that imme
diately follows liberalization. The U-shaped pattern of 
output was observed in the transition economies in East
ern Europe and still puzzles economists. The simulation 
allows us to vary a large number of parameters, and we 
are able to replicate this result qualitatively for certain 
ranges of parameter values. 

The decline in output after liberalization is due to a 
decline in the output of the SOE which is not offset by 
the output of new private firms. The initial entrants to 
the market are inefficient, and they lure resources away 
from the more efficient SOE. This is the reason for the 
initial decline in quantity, the corresponding fall in wage, 
and rent (not shown here). 

Econometric evidence suggests that the start of 
growth is due to improved resource allocation, both 
within SOEs and through utilization of assets by new 
private firms as SOEs are downsized or liquidated (Bar
bone, Marchetti, & Paternostro 1996; Pinto, Belka, & 
Krajewski 1993). 
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Figure 4: Competition between heterogeneous firms 
leads to lower price and higher wages after liberalization 
at period 500. 
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Figure 5: The U shaped output curve after liberalization 
at period 500. 

This is illustrated here as well. The increase in quan
tity coincides with the increase in the efficiency of new 
firms. At the end of each period, one firm can enter but 
more than one firm can exit. As a result, n initially in
creases steadily because even inefficient firms can enter 
and survive. Later on, n declines as firms exit in large 
numbers and entry to the market becomes less frequent. 
As more efficient firms dominate the market, inefficient 
firms exit and the average price declines. In Figure 4, the 
equilibrium has not been reached yet, but the declining 

trend in average price is apparent. The increases in rent 
and quantity show that the greater efficiency in produc
tion increases the total quantity produced and the prices 
of the inputs. 

Related Work 

The field of computational economics is a young and 
growing field. While this paper presents the first agent
based model of transition economies, many others re
searchers have begun to draw on ideas from the field 
of artificial life to model economic phenomena. Criti
cally, the emergent behavior exhibited by many artificial 
life systems has the potential to explain how large-scale 
economic behavior arises from local interactions among 
a multitude of heterogeneous agents (Arthur De Vany, 
personal communication). 

One of the most complete artificial life models of an 
economy is the Aspen system developed by Richard 
Pryor and colleagues at Sandia National Labs (Basu et 
al. 1996). Aspen has a rich set of agents, including 
households, firms in four different sectors, a real tor, a 
capital goods producer, banks, and a government. The 
firms use a genetic algorithm to select a price that max
imizes profits. The Aspen model duplicates several re
sults first described by Modigliani in his research on the 
FMP model. 

Sugarscape, a versatile system that has become a 
testbed for studying problems in the social sciences, has 
been used to examine simple trading models. In these 
trading models, agents in a two-dimensional landscape 
trade two goods (sugar and spice) that the agents then 
metabolize. The agents endogenously determine the 
prices of sugar and spice, and the quantities exchanged. 
This simulation replicates several findings described in 
standard economic literature. For example, the number 
of agents that can exist on a landscape increases when 
trading is added to the simulation. However, the Sug
arscape simulations also demonstrate that, under certain 
conditions, prices do not converge to the general equilib
rium price, a result that differs from standard economic 
theory. 

Work by Youssefmir, Huberman, and Hogg provides 
a possible explanation for why markets crash, a partic
ularly timely topic given the market gyrations of 1997 
(Youssefmir, Huberman, & Hogg 1996). In their model, 
a set of heterogeneous agents trade in an asset market 
based on the agents' expectations of what future prices 
will be. These expectations are based on two compo
nents: the fundamental price and a trend. Each agent 
has a slightly different perception of the fundamental 
price, and a trend gets established based on the past be
havior of prices. Agents differ in their belief in how long 
a trend will last. So a rising trend can lead to speculative 
bubbles since most trend followers are likely to believe 
strongly in the trend, and some fundamentalists will be-



lieve in the trend for a while. As prices move away from 
the fundamental price, fundamentalist agents will expect 
the trend to reverse itself and eventually some trend fol
lowers will also lose faith in the trend, and the specula
tive bubble will deflate. The price response to buy /sell 
orders and the individual trend horizon are set exoge
nously, and asset prices are determined endogenously. 
These results show that asset prices can deviate sharply 
from their fundamental values. 

In Tesfatsion's Trade Network Game (TNG), the 
player set is a collection of traders consisting of pure 
buyers, pure sellers, and buyer-sellers (Tesfatsion 1997). 
Buyers repeatedly submit trade offers to sellers, who ei
ther refuse or accept these offers. If a seller accepts 
a trade offer from a buyer, the seller and buyer en
gage in a risky trade modeled as a standard prisoner's 
dilemma game. The iterated prisoner's dilemma strate
gies used by buyers and sellers to conduct their trades are 
evolved by means of a genetic algorithm. The fact that 
traders are able to choose and refuse their trading part
ners makes this a better model of real-world trading than 
standard game models in which partners are matched 
randomly or by round robin assignment. Simulations 
are run for two types of markets: Endogenous-type mar
kets comprising only buyer-sellers; and two-sided mar
kets comprising equal numbers of pure buyers and pure 
sellers. The findings illustrate how en ante capacity con
straints, in the form of buyer offer quotas and seller ac
ceptance quotas, are a primary driving force determining 
the evolution of trading behavior. For example, given 
relatively large seller acceptance quotas and relatively 
small buyer offer quotas, sellers tend to be parasitized 
by buyers in the sense that buyers are able to latch on to 
cooperative sellers and successfully defect against them. 

Contributions and Future Work 

In this paper, we applied artificial life techniques to 
an outstanding problem in economics. Critically, we 
have defined and implemented a firm agent that exhibits 
monopoly and competitive behavior under appropriate 
conditions. The development of this firm agent, an agent 
which relies only on local information to make pricing 
decisions, is the primary contribution of this work. 

Our simulation provides an upper bound on the com
plexity of an agent required to generate the qualitative 
features of a transition economy. These features include 
a U-shaped output curve, an increasing share of the pri
vate sector in production and efficiency gains in resource 
allocation. These results give a proof-by-example that 
an approach to economics that draws on ideas from the 
field of artificial life may succeed in providing important 
insights into economic phenomena. 

As the next step in developing this approach, we plan 
to fully model consumer agents who choose consumption 
and leisure. This will endogenize consumption and labor 
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decisions thus enabling us to address labor market issues. 
We also plan to calibrate our simulation to a real-world 
transition economy, such as Poland or Hungary. 
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Appendix 
Parameter values for Figure 1: 

F(K, L) = Ko.5 Lo.25 

F(K, L)soE = K 0·25 £0·2 

Qr= W0.5 

Qk, = ro.5 

P=2-Q 

Parameter values for Figure 2: 

F(K, L) = Ko.5 Lo.25 

F(K, L)soE = Ko.25 Lo.2 

Qr= W0.5 

Qk, = ro.5 

P= 2-Q 

n = 10 

Parameter values for Figure 3: 

F(K, L) = Ko.25 Lo.25 

F(K, L)soE = Ko.25 Lo.25 

Qr= W0.5 

Qk = ro.5 

p = 20-Q 

Parameter values for Figure 4 and Figure 5: 

A ""'unif orm(O.l, 2) 

a""' uniform(O.l,0.9) 

b""' unif orm(O.l, 0.9) 

F(K, L)soE = 5Ko.25 Lo.2 

Qr= W0.5 

Qk, = ro.5 

p = 100 - 0.25Q 

Initial wage, rent and price are 1 for all experiments. 



References 

Barbone, L.; Marchetti, D.; and Paternostro, S. 1996. 
Structural adjustment, ownership transformation, and 
size in Polish industry. Policy Research Working Pa
per 1624, World Bank, Washington D.C. 

Basu, N.; Pryor, R. J.; Quint, T.; and Arnold, T. 1996. 
Aspen: A microsimulation model of the economy. 
Technical Report 96-2459, Sandia National Labora
tories. 

Blanchard, 0. J. 1996. Theoretical aspects of transi
tion. In Papers and Proceedings of the Hundredth and 
Eighth Annual Meeting of the American Economic So
ciety, 117-122. 

Boycko, M. 1992. When higher incomes reduce wel
fare: Queues, labor supply, and macro equilibrium in 
socialist economies. Quarterly Journal of Economics 
107:907-920. 

Dewatriport, M., and Roland, G. 1992. The virtues 
of gradualism and legitimacy in the transition to a 
market economy. Economic Journal 102:291-300. 

Frydman, R., and Rapaczynski, A. 1994. Privatiza
tion in Eastern Europe: Is the State Withering Away? 
London: Central University Press. 

Frye, T., and Schleifer, A. 1997. The invisible hand and 
the grabbing hand. In Papers and Proceedings of the 
Hundredth and Ninth Annual Meeting of the American 
Economic Society, 354-358. 

Lipton, D., and Sachs, J. 1990. Creating a market econ
omy in Eastern Europe: The case of Poland. Brook
ings Papers on Economic Activity 1:75-133. 

McKinnon, R. 1991. The Order of Economic Liberal
ization. Baltimore, Mland.: John Hopkins University 
Press. 

Murrell, P. 1992. Conservative political philosophy and 
the strategy of economic transition. East European 
Politics and Society 6:3-16. 

Pinto, B.; Belka, M.; and Krajewski, S. 1993. Trans
forming state enterprises in Poland. evidence on ad
justment by manufacturing firms. Brookings Papers 
on Economic Activity 1:213-270. 

Portes, R. 1991. The path of reform in central and 
eastern europe: An introduction. European Economy 
2:3-15. 

Sachs, J. 1993. Poland's Jump to the Market Economy. 
Cambridge, Mass.: MIT Press. 

Sachs, J. 1996. The transition at mid decade. In Papers 
and Proceedings of the Hundredth and Eighth Annual 
Meeting of the American Economic Society, 128-133. 

Selowsky, M., and Martin, R. 1997. Policy performance 
and output growth in the transition economies. In 
Papers and Proceedings of the Hundredth and Ninth 
Annual Meeting of the American Economic Society, 
349-353. 

Tesfatsion, L. 1997. A trade network game with endoge
nous partner selection. In Amman, H. M.; Rustern, 

357 

B.; and Whinston, A. B., eds., Computational Ap
proaches to Economic Problems. Kluwer Academic 
Publishers. 249-269. 

Youssefmir, M.; Huberman, B. A.; and Hogg, T. 1996. 
Bubbles and market crashes. Technical report, Xerox 
Palo Alto Research Group. 



Evolved Signals: Expensive Hype vs. Conspiratorial Whispers 

Jason Noble 
School of Cognitive and Computing Sciences 

University of Sussex 
BRIGHTON BNl 9QH, U.K. 
jasonn~cogs.susx.ac.uk 

Abstract 

Artificial life models of the evolution of communication 
have usually assumed either cooperative or competitive 
contexts. This paper presents a general model that cov
ers signalling with and without conflicts of interest be
tween signallers and receivers. Krebs & Dawkins (1984) 
argued that a conflict of interests will lead to an evolu
tionary arms race between manipulative signallers and 
sceptical receivers, resulting in ever more costly signals; 
whereas common interests will lead to cheap signals or 
"conspiratorial whispers". Simple game-theoretic and 
evolutionary simulation models suggest that signalling 
will evolve only if it is in the interests of both parties. 
In a model where signallers may inform receivers as to 
the value of a binary random variable, if signalling is 
favoured at all, then signallers will always use the cheap
est and the second-cheapest signal available. Costly sig
nalling arms races do not get started. A more complex 
evolutionary simulation was constructed, featuring con
tinuously variable signal strengths and reception thresh
olds. As the congruence of interests between the par
ties became more clear-cut, the evolution of successively 
cheaper signals was observed. The findings are taken to 
support a modified version of Krebs & Dawkins's argu
ment. 

Artificial Life Models of Communication 
Artificial life (AL) models of the evolution of communi
cation are often constructed such that honest signalling 
is in the interests of both signallers and receivers-any 
communication systems that evolve can therefore be de
scribed as cooperative. For example, Werner & Dyer 
(1991) postulated blind, mobile males and sighted, im
mobile females: the evolution of a signalling system 
was in the interests of both parties as it allowed mat
ing to take place at better-than-chance frequencies. In 
MacLennan & Burghardt's (1994) model, signallers and 
receivers were rewarded if and only if they engaged in 
successful communicative interactions. 

Other AL models (Ackley & Littman 1994; Oliphant 
1996) have looked at the special case where communica
tion would benefit receivers, but the potential signallers 
are indifferent. Oliphant argues that this is a good way 
to model the evolution of alarm calls, for example: if 

one bird in a flock spots an approaching hawk, it is clear 
that its conspecifics would benefit from an alarm call. 
However, why should the bird in question, considered as 
a product of its selfish genes, give the call? The mod
els suggest that signalling will not evolve in these cases 
unless a mechanism such as reciprocal altruism or (spa
tially induced) kin selection is in place. Note that such 
mechanisms have no mystical effect: they simply shift 
the expected fitness payoffs for particular strategies such 
that communication is mutually beneficial. 

Finally, some AL work considers the evolution of com
munication in situations where the two parties appear 
to have conflicting interests. Wheeler & de Bourcier 
(1995) modelled aggressive territorial signalling. Bul
lock (1997) constructed a general model in which sig
nallers of varying degrees of quality solicited receivers 
for a favourable response; receivers were rewarded for 
responding positively only to high-quality signallers. A 
conclusion drawn in both studies was that if signals were 
sufficiently costly (e.g., long, elaborate tails or energetic 
ritual displays) then reliable communication could evolve 
and persist over time. Bullock made the more specific 
prediction that in order for communication to be stable, 
the net cost of signalling must be lower for higher-quality 
signallers (see also Grafen, 1990). However, it could be 
argued that such differential signal costs effectively ren
der honest signalling mutually beneficial. We will return 
to this notion below. 

One goal of the current paper is to position previous 
AL work in an overarching theoretical context. To this 
end some general models of the evolution of simple sig
nalling systems will be presented; the models will cover 
situations with and without a conflict of interests be
tween the two interacting agents. 

Manipulative and Cooperative Signals 
Krebs & Dawkins (1984) discuss the behavioural ecol
ogy of animal signals-they view signalling as a typically 
competitive affair involving mind-reading and manipula
tion. Mind-reading consists of one animal exploiting tell
tale predictors about the future behaviour of another, 
e.g., a dog noticing the bared teeth of an opponent, con-
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eluding that it is about to attack, and fleeing in order 
to avoid injury. Manipulation is what happens when 
those being mind-read fight back, influencing the be
haviour of the mind-readers to their own advantage. For 
example, a dog could bare its teeth despite not having 
the strength or inclination to attack, and thus scare off 
its mind-reading opponent. The authors predict evolu
tionary arms races between manipulative signallers and 
sceptical receivers: "selection will act simultaneously to 
increase the power of manipulators and to increase re
sistance to it" (p. 390). The result will be increasingly 
costly signals. 

Krebs & Dawkins admit, however, that not all inter
actions are competitive in nature. They suggest that 
when the reliable transmission of information is to the 
benefit of both parties (e.g., bee dances indicating the lo
cation of nectar), a different kind of signal co-evolution 
will result. Specifically, there will be selection for signals 
that are as cheap as possible while still being detectable: 
"conspiratorial whispers". 

Krebs & Dawkins's argument has been influential but 
no formal justification (i.e., model) of it exists. A sec
ond goal of the current paper is to test their prediction 
that evolved signals will necessarily be more costly when 
there is a conflict of interests than when the participants 
have common interests. In order to do so, it will be 
necessary to determine whether communication should 
be expected at all when signallers and receivers have a 
genuine conflict of interests. 

Conflicts of Interest 

The first requirement in constructing a general model of 
communication is a classification scheme for determining 
when a conflict of interests exists between signallers and 
receivers-Figure 1 shows such a scheme, adapted from 
Hamilton (1964). Assume that a successful instance of 
communication in a particular scenario has fitness im
plications for both participants. The fitness effect on 
signallers, Ps, and the fitness effect on receivers, PR, 
together define a point on the plane in Figure 1. For 
example, consider a hypothetical food call, by which one 
animal alerts another to the presence of a rich but limited 
food source. By calling and thus sharing the food, the 
signaller incurs a fitness cost; by responding to the call, 
the receiver benefits through obtaining food it would oth
erwise have missed. Thus, the call would be located in 
the "altruism" quadrant. The situations modelled by 
Ackley & Littman (1994) and Oliphant (1996), where 
receivers benefit but signallers are ambivalent, can be 
thought of as points on the positive vertical axis, i.e., 
where Ps = 0 and PR> 0. 

Conflicts of interest can be defined as interactions in 
which natural selection favours different outcomes for 
each participant (Trivers 1974), or in which participants 
place the possible outcomes in a different rank order 

Effect on 
receiver 

+ 
Altruism Cooperation, 

mutualism 

+ Effect 
-----+----- on signaller 

Spite Selfishness, 
competition 

Figure 1: Possible communication scenarios classified by 
their effects on the fitness of each participant. 

(Maynard Smith & Harper 1995). Conflicts of interest 
therefore exist when Ps and PR are of opposite sign, 
i.e., in the upper-left and lower-right quadrants. Selec
tion will, by definition, favour actions that have positive 
fitness effects. In the upper-left and lower-right quad
rants, one agent1 but not the other will be selected to 
participate in the communication system: their interests 
conflict. The "spite" quadrant does not represent a con
flict of interests because agents will be mutually selected 
not to communicate. 

If the specified fitness effects of participating in a 
communicative interaction are truly net values, and 
already include such factors as the cost of signalling 
and the cost of making a response (as well as inclu
sive fitness considerations and costs due to exploitation 
of the signal by predators, etc.), then predicting the 
evolution of the communication system is trivial. Re
liable communication requires, on average, honest sig
nallers and trusting receivers, and thus will only de
velop when Ps > 0 and PR > 0, i.e., when both 
agents are selected to participate. However, real ani
mals sometimes communicate despite apparent conflicts 
of interest (Hinde 1981). Recent models (Grafen 1990; 
Bullock 1997) have established that, in certain situations 
where communication would otherwise be unstable, in
creasing the production costs of the signal can lead to a 
prediction of evolutionarily stable signalling. Therefore, 
in the current model, Ps and PR refer to gross fitness 
effects before the specific costs of producing the signal, 
Cs, and making the response, CR, have been taken into 
account. 

A Simple Signalling Game 
If the signalling interaction is to involve information 
transmission, and allow for the possibilities of decep
tion and manipulation, it must be modelled as a game 
of imperfect information, in which the signaller knows 

1The term "agent" is used to refer to an entity that may 
be playing a signalling or a receiving role. 
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Figure 2: Extended form of the simple signalling game. 
Chart icons index payoffs in Table 1. 

No signal 
Neg. response 
Pos. response 

Signal 
Neg. response 
Pos. response 

State of environment 
Low High 

0,0 
0, -CR 

-Cs, O 
-Cs, -CR 

-Cs, O 
Ps - Cs , PR - CR 

Table 1: Payoff matrix for the simple game. Entries in 
the table represent the payoff to the sender and receiver 
respectively. 

something that the receiver does not. Figure 2 shows 
the extended form of a simple action-response game that 
fulfils this requirement. The game begins with a chance 
move (the central square) in which some state is ran
domly determined to be either "high" or "low". The 
signaller has access to this state, and we can suppose 
that it represents either a feature of the environment 
that only the signaller has detected (e.g., noticing an 
approaching predator), or a hidden internal state of the 
signaller (e.g., ovulation). Based on this state, the sig
naller (player I) must decide whether or not to send an 
arbitrary. signal of cost Cs. The receiver (player II) is 
ignorant of the hidden state and only knows whether or 
not a signal was sent-the dashed rectangles show the 
receiver's information sets. The receiver can respond ei
ther positively, i.e., perform some action "appropriate" 
to the high state, or negatively, i.e., not respond at all. 
Positive responses incur a cost, CR. If and only if the 
hidden state is high, a positive response results in the 
payoffs Ps and PR to the signaller and receiver respec
tively. Table 1 specifies the payoff matrix. Hurd (1995), 
Oliphant (1996), and Bullock (1997) used similar games 
with different payoff structures. 
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The game models a range of possible communicative 
interactions. For example, suppose that the high state 
represents the signaller's discovery of food. Sending 
a signal might involve emitting a characteristic sound 
while not sending a signal is to remain silent. For th~ 
receiver, a positive response means approaching the sig
naller and sharing the food, whereas a negative response 
means doing nothing. Various possibilities exist besides 
honest signalling of the high state: the receiver might 
always approach the signaller in the hope of obtaining 
food, regardless of whether a signal was sent. The sig
~aller might be uninformative and never signal, or only 
signal when food was not present. One important fea
ture of the game is that the signaller is ambivalent about 
the receiver's response in the low state-in terms of the 
example, this represents the assumption that when no 
food has been discovered, the signalling animal does not 
care about whether the receiver approaches or not. 

The strategies favoured at any one time will depend 
on the relative values of Ps, PR, Cs and CR, as well 
as on what the other members of the population are 
doing. 2 Allowing the base fitness effects Ps and PR to 
vary across positive and negative values will allow the 
payoff space of Figure 1 to be explored, and thus deter
mine whether changes in signal and response cost can 
produce stable signalling in situations that would oth
erwise involve conflicts of interest. This will be a first 
step towards assessing Krebs & Dawkins's conspiratorial 
whispers theory. 

Stable Strategies in the Simple Game 
A signalling strategy in the simple game specifies 
whether to respond with no signal (NS) or a signal (Sig) 
to low and high states respectively. Likewise, a response 
strategy specifies whether to respond negatively (Neg) 
or positively (Pos) when faced with no signal and when 
faced with a signal. A strategy pair is the conjunction 
of a signalling and a response strategy; e.g., (NS/NS, 
Pos/Pos) is the strategy pair that specifies never sig
nalling and always responding positively. 

The strategy pair (NS/Sig, Neg/Pos) specifies sig
nalling only in the high state, and responding positively 
only to signals-call this the honest strategy. It can 
be shown that honesty will be an evolutionarily stable 
strategy (ESS; Maynard Smith 1982) if: 

Ps >Cs> 0 
PR> CR> 0. 

That is, honest signalling is stable if the costs of sig
nalling and responding are both positive, and if the pay
offs in each case outweigh the costs. The requirement 
that Ps and PR must both be positive means that the 

2 Another parameter of interest in the signalling game is· 
the relative frequency of high and low states; in the models 
presented here each state occurred 503 of the time. 



honest strategy is only expected to be stable when the 
interests of the parties do not conflict. 

Of the 16 possible strategy pairs, there are three be
sides the honest strategy that involve the transmission 
of information, in that the receiver responds differently 
to different hidden states. None of these three strategy 
pairs are ESSs if Cs and CR are both positive; these two 
values represent energetic costs and so cannot sensibly 
be negative. If Cs = 0, i.e., if giving a signal is of neg
ligible cost, then the reverse honesty strategy (Sig/NS, 
Pos/Neg) can be stable, although Ps and PR must still 
be positive. It is also worth noting that any mixed strat
egy involving (NS/NS, Pos/Pos) and (NS/NS, Pos/Neg), 
both non-signalling strategies where the receiver always 
responds positively, can be an ESS if the payoff to the 
receiver is large enough, i.e., if: 

Cs> 0 
Ps >-Cs 

PR> 2CR > 0. 

The analysis indicates that while the cost of signalling 
plays some role in stabilizing the honest strategy, there 
are no circumstances in which stable communication is 
predicted when a conflict of interests exists. This is de
spite the fact that we have separated the costs of sig
nalling and responding from the base fitness payoffs of a 
communicative interaction. 

Evolutionary Simulation Model 
Game theory is limited to describing equilibria; an evo
lutionary simulation model of the simple game was also 
constructed in order to determine whether communica
tive behaviour might sometimes be found outside the 
range of identified ESSs. 

A straightforward genetic algorithm (GA) was used. 
Each individual could play both signalling and receiving 
roles; a strategy pair was specified by a four-bit genotype 
as shown in table 2. The population size was 100, the 
mutation rate was 0.01 per locus, and, due to the triv
ially small genome, crossover was not used. Each genera
tion, 500 games were played between randomly selected 
opponents. An agent could therefore expect to play 5 
games as a signaller and 5 as a receiver. The agent's 
fitness score was the total payoff from these games. For 
breeding purposes, the fitness scores were normalized by 
subtracting the minimum score from each. Proportion
ate selection was then applied to the normalized scores. 
The genetic algorithm was run in this manner for 500 
generations. In the results presented below, the games 
played in the final, i.e., 500th, generation have been used 
as a snapshot of the evolved signalling strategies. 

An attempt was made to investigate evolutionary dy
namics, in that the initial populations were not deter
mined randomly but started as either "honest" or "non
signalling". Honest initial populations were made up en
tirely of individuals who played the honest strategy, i.e., 
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If low state .. . 
If high state .. . 

Response to no signal 
Response to signal 

Bit value 
0 1 

No signal 
No signal 

Negative 
Negative 

Signal 
Signal 

Positive 
Positive 

Table 2: Genetic specification of strategies. 

a genome of '0101 '. Non-signalling populations under
went 100 generations of preliminary evolution in which 
their receiving strategies were free to evolve but their 
signalling strategies were clamped at '00', i.e., no sig
nalling. For each class of initial conditions, a simulation 
run was performed for all combinations of integer values 
of Ps and PR between -5 and +5, making 121 runs in all. 
Each run was repeated 25 times with different random 
seeds. The values of Cs and CR were fixed at 1. 

Communication was indexed by cross-tabulating the 
hidden state value with the receiver's response and calcu
lating a chi-squared statistic. The receiver has no direct 
access to the hidden state, so any reliable correspondence 
between state and response indicates that information 
has been transmitted and acted upon. Values of the x2 

statistic close to zero indicate no communication, and 
values close to the maximum (in this case X~ax = 500, 
due to the 500 games played in the final, snapshot gen
eration) indicate near-perfect communication. 

Figure 3 shows the average values of the communi
cation index for honest initial conditions. Seeding the 
population with honesty tests the stability of honest sig
nalling given a particular payoff pair, much as a game
theoretic analysis does. The results are compatible with 
the conditions outlined in the previous section: honesty 
is stable when the payoffs to signalling and receiving 
are positive and greater than the respective costs. How
ever, there is some suggestion of intermittent or imper
fect communication when PR = CR = 1, indicating that 
ambivalent receivers may occasionally cooperate. 

Figure 4 shows the average values of the communica
tion index for non-signalling initial conditions. Starting 
the GA with a non-signalling population tests the like
lihood that communication will emerge, given a partic
ular payoff pair. Clearly the conditions for emergence 
and stability-once-present are not the same. If Ps > 1 
and PR = 2 communication develops but when Ps > 1 
and PR > 2 it does not. In the latter region PR > 2CR 
and the population remains at the non-signalling ESS 
described in the previous section. Despite the fact that 
communication would result in a higher average fitness, 
the high value of PR keeps the receivers responding pos
itively all the time, removing any incentive for the sig
nallers to bother signalling. 
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Sender payoff 

Figure 3: Mean communication index by Ps and PR; 
honest initial conditions. Each point is a mean calcu
lated over 25 runs. Mean standard error = 2.96. 

Communication 

500 

-5 

Figure 4: Mean communication index by Ps and PR; 
non-signalling initial conditions. Each point i~ a mean 
calculated over 25 runs. Mean standard error = 2. 75. 
Graph rotated for clarity. 

The difference in results between the two classes of ini
tial conditions is interesting, but should not obscure the 
fact that no communication was observed under condi
tions of conflicting interests. We must conclude that, at 
least in the simple model discussed so far, stable commu
nication is only to be expected when it is in the interests 
of both parties. 

A Game With Variable Signal Costs 
In the simple signalling game, signallers can choose be
tween a costly signal or no signal at all. The model does 
not allow for a range of possible signals with differing 
costs, and in this respect it is unrealistic. It may be that 
Krebs & Dawkins's implicit prediction, that signalling 
can occur when a conflict of interests exists, is in fact 
true, but can only be demonstrated in a more complex 
game with a range of signal costs. The simple signalling 
game (see Figure 2) was therefore extended to incorpo
rate signals of differing costs. 

In the extended game, the signalling player has three 
options: not signalling, which costs nothing; using the 
"soft" signal, which costs Cs, and using the "loud" sig
nal, which costs 2C s. Strategies in the extended game 
require specifying the signal to give when the hidden 
state is low, the signal to give when it is high, and 
the response to give to each of no-signal, soft and loud. 
The two strategies representing conspiratorial whispers 
or cheap signalling are (NS/Soft, Neg/Pos/Pos) and 
(NS/Soft, Neg/Pos/Neg). Both strategies call for the 
soft signal to be used in the high state, and for positive 
responses to the soft signal; the strategies differ only in 
the response to loud signals. Neither of these strategies 
can strictly be considered an ESS on its own (because 
neutral drift can take the population from one to the 
other) but it can be shown that the set of all mixed 
strategies involving these two is an ESS under the famil
iar conditions: 

Ps >Cs> 0 
PR> CR> 0. 

Costly signalling would involve the use of the loud 
signal for the high state, and either the soft signal or 
no signal to denote the low state, with a correspond
ing response strategy. None of the four strategies in 
this category can be an ESS. For example, (NS/Loud, 
Neg/Pos/Pos) cannot be an ESS assuming positive costs 
of signalling and responding. The similar strategy 
(NS/Loud, Neg/Neg/Pos) is almost stable if Ps > 2Cs, 
but can drift back to the previous strategy which can 
in turn be invaded by the cheap strategy (NS/Soft, 
N eg/Pos /Pos). 

Analysis of the extended game indicates that if sig
nalling is favoured at all, then at equilibrium the sig
nallers will always use the cheapest and the second
cheapest signal available (i.e., no signal and the soft sig
nal). Further extensions of the game, by adding ever 
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more costly signalling options, do not alter this conclu
sion. None of the costly signalling strategies can even be 
an ESS, let alone support communication in the face of 
a conflict of interests. The possibility of expensive sig
nalling arms races starts to look remote. However, it may 
be that the discrete signals used in the games presented 
so far have had an unwarranted effect on the results. 
Certainly discrete and continuous models of the same bi
ological phenomenon can lead to different conclusions
compare Maynard Smith (1991) and Johnstone & Grafen 
(1992). 

Simulation Model With Continuous 
Signal Costs and Reception Threshold 

A second evolutionary simulation was constructed, in 
which the cost of signalling was continuously variable. 
Signalling strategies were represented by two positive 
real numbers C1 0 w and Chigh: the cost of the signals 
given in the low state and in the high state respectively. 
Response strategies were represented by a real-valued 
threshold T; positive responses were given to signals with 
costs greater than the receiver's threshold value. Note 
that threshold value could be negative, indicating a pos
itive response to any signal. 

A real-valued GA was used to simulate the evolution 
of strategies over time. Generally, the same parameters 
were used as in the previous simulation model, e.g., a 
population of 100. Mutation was necessarily a different 
matter: each real-valued gene in each newborn individ
ual was always perturbed by a random gaussian value, 
µ = 0, u = 0.05. If a perturbation resulted in a nega
tive cost value the result was replaced by zero. In ad
dition, 13 of the time (i.e., a mutation rate of 0.01) a 
gene would be randomly set to a value between 0 and 5 
for signal costs, or between -5 and +5 for the threshold 
value. This two-part mutation regime ensured that off
spring were always slightly different from their parent, 
and occasionally very different. 

The Cs parameter was no longer relevant, but CR, 
the cost of responding, remained fixed at 1. Honest ini
tial conditions were implemented by setting C1ow = 0, 
Chigh = 1.0 and T = 0.5. Non-signalling initial condi
tions were implemented by setting T to a random gaus
sian (µ = o, u = 1) and then clamping C1 0 w = Chigh = 0 
for 100 generations of preliminary evolution. 

The use of continuous values immediately suggests 
the possibility of random noise, and in trial experiments 
gaussian noise was added to both the signalling channel 
(i.e., to the signal's cost value before it was "perceived" 
by the receiver) and to the payoff values Ps and PR. It 
was felt that these measures might introduce some realis
tic uncertainty to the game. However, the results below 
were found to be robust with respect to the presence of 
noise; results from noise-free runs only are reported. 

Figures 5 and 6 show the average values of the commu-

Communication 

Receiver payoff 

Figure 5: Mean communication index by Ps and PR 
in the continuous simulation; honest initial conditions. 
Each point is a mean calculated over 25 runs. Mean 
standard error = 3.54. Graph rotated for clarity. 

Communication 

0 

Receiver payoff 

-5 

Figure 6: Mean communication index by Ps and PR in 
the continuous simulation; non-signalling initial condi
tions. Each point is a mean calculated over 25 runs. 
Mean standard error = 2.81. Graph rotated for clarity. 

nication index for honest and non-signalling initial con
ditions respectively. The results are qualitatively similar 
to those of the discrete simulation model: communica
tion occurs in both cases, but in a more limited range 
of the payoff space for non-signalling conditions. In nei
ther case does communication occur outside the "coop
erative" quadrant. 

The continuous model also allows investigation of the 
cost and threshold values over the payoff space. C1ow, 
the cost of the signal given in response to the low state, 
always remained close to zero-this was unsurprising as 
signallers are ambivalent about the receiver's response to 
the low state. However, the value of Chigh varied both 
inside and outside the region where communication was 
established: Figure 7 shows the mean values of Chigh for 
honest initial conditions. The signals given in response 
to the high state are most costly when Ps, the payoff 
to the sender, is high and when the receiver's net payoff 



364 

5 

5 

Receiver payoff 

Figure 7: Mean cost of high-state signals by Ps and PR; 
honest initial conditions. Each point is a mean calcu
lated over 25 runs. Mean standard error= 0.032. Graph 
rotated for clarity. 
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4 4 4 ~ 0 , 2 4 
Receiver payoff 

Figure 8: Cross-sectional means (±1 s.e.) for high-state 
signal costs with Ps = 5; honest initial conditions. Each 
point is a mean calculated over 25 runs. 

is marginal, i.e., PR ~ 1. In order to study this effect 
more closely, additional simulation runs were performed, 
with Ps fixed at 5 and PR varied between -5 and +5 in 
increments of 0.1. These runs can be thought of as ex
ploring the cross section through Ps = 5 in Figure 7. 
Figure 8 shows the cross-sectional mean values of Chigh· 

Note that the "energy" devoted to signalling is at a max
imum around PR = 1 and drops off as PR increases-it 
can be seen from Figure 5 that PR = 1 is approximately 
the point where significant communication is established. 
The same pattern was observed for non-signalling initial 
conditions (not shown for reasons of space). 

The threshold values showed corresponding variation. 
Figure 9 shows the mean value of T across the pay
off space. The threshold values are typically very high 
(a "never respond" strategy) or very low (an "always 
respond" strategy), but in the region where communi
cation evolved, receivers become progressively less de
manding, i.e., T gets lower, as PR increases. Figure 10 

.5 

Figure 9: Mean threshold value by Ps and PR; honest 
initial conditions. Each point is a mean calculated over 
25 runs. Mean standard error= 0.18. Graph rotated for 
clarity. 
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Figure 10: Cross-sectional mean threshold values (±1 
s.e.) with Ps = 5; honest initial conditions. Each point 
is a mean calculated over 25 runs. 

shows the cross-sectional results for Ps = 5. 
Figure 11 plots the mean cost of high and low sig

nals and the mean reception threshold all on one graph. 
This makes the relationship between costs and threshold 
clear: at approximately PR = 1, the threshold falls to 
a level where the mean high-state signal will generate 
a positive response. As PR increases, i.e., as the two 
players' payoffs approach each other, the signallers be
come less extravagant and the receivers less "sceptical". 
This is contra the game-theoretic result of the previ
ous section, which implies that when signals of varying 
costs are available, either the cheapest pair of signals 
will be used, or no signalling will occur-something like 
Figure 12 would be expected if the soft-loud signalling 
game accurately modelled the continuous case. 

Note that the initial values of Chigh and T under hon
est initial conditions were 1.0 and 0.5 respectively. For 
all but the highest values of PR, chigh has increased on 
average over the 500-generation run. This rules out any 
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Figure 11: Cross-sectional means: cost of high and low 
signals, and reception threshold. Ps = 5, honest initial 
conditions. Each point is a mean calculated over 25 runs. 
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Figure 12: Approximate predicted results for Figure 11 
according to discrete-cost game-theoretic model. 

explanation of the results of Figure 11 in terms of there 
having been insufficient evolutionary time for a cheaper 
signalling equilibrium to have been reached when the 
profit for receivers (PR - CR) was marginal. Evolution 
has taken the populations away from the cheap signalling 
solution. 

Discussion 
In all of the models presented, communication evolved 
or was predicted to evolve only within the cooperative 
region of the signaller-receiver payoff space. This means 
that no signalling at all (costly or otherwise) was ob
served when the signaller and the receiver were experi
encing a conflict of interests. The second game-theoretic 
model, in which discrete signals of varying costs are avail
able, suggests that communication, if selected for, will 
involve the cheapest pair of signals available. However, 
the second simulation model, incorporating the more re
alistic assumption that signals can vary continuously in 
cost, implies that cheap signals will only be used when 
both parties stand to gain a high payoff from effective 

communication. When the net payoff to the receiver 
is marginal, evolved signals will be more costly than 
strictly necessary to convey the information. The re
lationship is not symmetrical: when the net payoff to 
the signaller is marginal, a non-signalling equilibrium, 
in which the receiver always responds positively, is likely 
to occur. 

Krebs & Dawkins (1984) predicted that signalling 
would be costly if a conflict of interests existed; strictly 
speaking the results do not support nor contradict their 
prediction, as no signalling occurred in the conflict-of
interest cases. It might be the case that conflicts of in
terest in the context of a different signalling game would 
indeed result in costly signals. However, it will be ar
gued below that the simple signalling game used in the 
current models is plausible, and thus the failure to evolve 
communication given conflicts of interest in this simple 
game strongly suggests that in many natural contexts 
(e.g., food calls, alarm calls) reliable signalling should 
not be expected unless it is in the interests of both par
ties. This conclusion is not altered by separate consid
eration of the specific costs of producing a signal and of 
making an appropriate response to that signal. 

The results from the second simulation model do not 
confirm Krebs & Dawkins's conspiratorial whispers the
ory, but they definitely suggest a modification of it. As 
Figure 11 shows, when the net payoff to the receiver is 
marginal, receivers will be sceptical and express "sales
resistance" by responding only to costly signals; sig
nallers in turn will be prepared to invest more energy in 
"convincing" receivers to respond positively. When com
munication is unambiguously good for both parties, sig
nals are cheaper and response thresholds lower. There
fore both expensive hype and conspiratorial whispers are 
expected to evolve, but in a much smaller region of the 
payoff space than Krebs & Dawkins's theory suggests, 
i.e., within the cooperative region. Expensive hype is 
what happens when honest signalling is highly profitable 
to the signaller, but only marginally so to the receiver. 
For example, if a juvenile benefits by honestly signalling 
extreme hunger to its parent (because the parent re
sponds by feeding it), but the net inclusive-fitness payoff 
to the parent is only slight, then costly signals by the 
juvenile are expected. 

The evolutionary simulation models presented were 
unusual in their use of non-random initial conditions. 
The use of non-signalling initial conditions in particu
lar can be seen as an attempt to get at the origin or 
emergence of communication rather than just studying 
the conditions for its stability, as does orthodox game 
theory. Non-signalling initial conditions embody the as
sumption that communication must emerge from a non
communicative context-the un-clamping of signalling 
strategies after a period of preliminary evolution can be 
seen as the introduction of a mutation that allows the 



366 

possibility of signalling. To the extent that this paradigm 
is seen as plausible, results from the two simulations sug
gest that sometimes real-world signalling will not evolve 
despite a cooperative context: receivers may fall into 
blindly optimistic strategies (i.e., always responding pos
itively) that are less efficient than the communicative 
equilibrium but nevertheless stable. This is particularly 
likely to occur when the net payoff to the receiver is 
high. (The expected payoff for always responding posi
tively will of course depend on the relative frequency of 
high and low hidden states, a factor that was not varied 
in the models presented). 

There are several qualifications that must be made 
concerning the results. Firstly, the way that conflict
ing and congruent interests have been defined may be 
too simplistic. In the simple signalling game, it is true 
that with positive net payoffs to the signaller and the 
receiver, and if the hidden state is high, both agents 
will benefit from a positive response, and they therefore 
have congruent interests. However, if we consider the 
moment before the hidden state has been determined, 
it is not clear whether the interests of the two agents 
conflict or not. If the signaller, for example, could some
how choose the strategy of its opponent, the receiver, 
it would want the opponent to play an "always respond 
positively" strategy-that way the signaller would al
ways receive the payoff and would not have to expend 
energy in signalling. However, the receiver, if similarly 
allowed to determine the signaller's strategy, would pre
fer that the signaller used an honest strategy, precisely 
so that the receiver could avoid the costs of responding 
positively to the low hidden state. Recall that Trivers 
(1974) defined a conflict of interests as an interaction in 
which natural selection favours a different outcome for 
each participant. It seems that the signaller and receiver 
in this situation favour different strategies in their oppo
nent, and thus have a conflict of interests, even though 
a high value of the hidden state would mean that their 
interests became congruent. If this strategy-based defi
nition of conflicting interests were adopted, any situation 
in the cooperative payoff region, assuming signalling had 
a positive cost, would involve a conflict of interests-this 
would in turn mean that all of the signalling observed 
in the simulation models evolved despite a conflict of in
terests. The problem is perhaps that Trivers's (1974) 
and Maynard Smith & Harper's (1995) definitions are 
not specific enough about just what constitutes an "out
come" of the signalling game. The simpler definition of 
conflicting interests, as used in the body of the paper, is 
useful in isolating the cooperative region of payoff space 
as the place to expect signalling. It is not yet clear how 
the results should be interpreted if the strategy-based 
definition of conflicting interests was pursued. 

A second limitation of the results is that the signalling 
game used is not likely to be a universal model of all 

possible communicative interactions. In particular, and 
despite having the same basic structure with two sig
nals possibly used to transmit information about a bi
nary hidden state, the signalling game is different from 
those employed by Hurd (1995) and Oliphant (1996). 
Hurd's game models sexual signalling, and the male sig
naller is not ambivalent about the female receiver's re
sponse when the hidden state is low; the signaller al
ways prefers a positive response. A low hidden state 
maps to low male quality, a positive response represents 
a copulative episode, and even low-quality males want 
mating opportunities. The current signalling game, in 
contrast, cannot model so-called "handicap" signalling, 
because low-state signallers do not care about what the 
receiver does. Furthermore, in both Hurd's and Oliphan
t's games, receivers are explicitly rewarded for accuracy 
in discerning the hidden state, but the game presented 
here allows the ecologically plausible outcome that re
ceivers simply become disinterested in the signal. The 
current game is a reasonable model of situations such 
as alarm calls3 and food calls, in which potential sig
nallers have no reason to care about what receivers do 
when no predator has been sighted or no food source has 
been found. Whereas Hurd's game serves as a (discrete) 
model of situations where signallers vary on some dimen
sion, the current game models situations where signallers 
fall into two groups, only one of which is relevant to the 
potential response. Hurd's game has been used to model 
the signalling of mate quality, while the current game 
could be used to model the signalling of sexual maturity. 
Future work could certainly look at games like Hurd's, 
where signallers always want a positive response, in order 
to determine whether the apparent conflict of interests 
is real, and under what circumstances signalling evolves. 
Bullock's (1997, this volume) work considers these ques
tions. 

Finally, it must be stressed that the simple games and 
simulations described here are in one sense an unfair way 
to test Krebs & Dawkins's (1984) conspiratorial whis
pers hypothesis. Krebs & Dawkins were discussing the 
likely evolution of signals in complex real-world cases, 
and could therefore appeal to the effects of differing mu
tation rates in signallers and receivers, and the exploita
tion of behaviours that had originally been selected for 
other purposes, etc. Communication in the predicted 
costly signalling arms races was not expected to be sta
ble. For example, in a real-world situation where it was 
not in the interests of receivers to respond positively to 
a particular signal from a predator, they might never
theless continue to do so for some time if the signal was 
structurally similar to a mating signal made by mem
bers of the same species. The manipulative signalling 

3Excepting those cases in which false alarm calls are given 
in order to frighten off other animals and give the caller a brief 
period of exclusive access to a food source. 
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system would break down as soon as an appropriate se
quence of mutations resulted in organisms that could 
distinguish between the predator's signal and the con
specific mating signal. In the simple signalling model all 
this complexity is abstracted into the base fitness pay
offs for signallers and receivers, and there is no guarantee 
that any transient, unstable evolved communication sys
tems will be detected. The results suggest that in the 
long run signalling will not be stable unless it is to the 
mutual advantage of both parties, but this is not to deny 
that costly signalling arms races under conditions of con
flicting interest could occur in the relatively short term. 
AL models of communication are uniquely equipped to 
investigate such issues further. 
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Abstract 

Recent work on viewing language as a complex adaptive 
system has shown that self-organisation can explain how 
a group of distributed agents can reach a coherent set 
of linguistic conventions and how such a set can be pre
served from one generation to the next based on cultural 
transmission. The paper continues these investigations 
by exploring the presence of stochasticity in the var
ious aspects of lexical communication: stochasticity in 
the non-linguistic communication constraining meaning, 
the transmission of the message, and the retrieval from 
memory. We show that there is an upperbound on the 
amount of stochasticity which can be tolerated and that 
stochasticity causes and maintains language variation. 
Results are based on the further exploration of a min
imal computational model of language interaction in a 
group of distributed agents, called the naming game. 

Keywords: origins of language, evolution of language, 
self-organization. 

Introduction 
Exciting recent research in the origins and evolution 
of language (see overviews in (Hurford, Knight, & 
Studdert-Kennedy 1998) and (Steels 1997c)) is show
ing that when language is viewed as a complex adap
tive system, it becomes possible to understand how a 
set of distributed agents is capable to reach a shared 
set of conventions, even if there is no global controlling 
agency or prior design. The main mechanism responsi
ble for the emergence of coherence is self-organisation: A 
positive feedback loop causes some naturally occurring 
variation to propagate and eventually dominate the pop
ulation. This is similar to how a product comes to dom
inate a market in increasing-returns economics (Arthur 
1996), or how a group of social insects like an ant society 
can form a collective structure (Deneubourg 1977). In 
each of these cases, the system locks globally into spe
cific choices based on positive feedback loops coupled to 
environmental conditions. 

A coherent framework to study language as a complex 
adaptive system is to define populations of agents en
gaged in adaptive language games. Each game involves 
a linguistic as well as a non-linguistic interaction. The 

agents have feedback about success and failure and adapt 
so as to be more successful in future games. We have ex
tensively experimented with a particular type of such a 
game, called the naming game, first introduced in (Steels 
1996b). The game is played between a speaker and a 
hearer, randomly drawn from a population of agents. 
The speaker attempts to identify an object to the hearer, 
based on pointing and based on using a name. The game 
succeeds if the hearer guesses correctly the object chosen 
by the speaker. A speaker may create a new name when 
he does not have one yet. A hearer may adopt the name 
used by a speaker. Both monitor use and success and 
prefer in future games those names that had the highest 
score. This generates the desired positive feedback loop 
bringing the group progressively towards global coher
ence. 

The naming game has been explored through com
putational simulations and is related to systems pro
posed and investigated by (MacLennan 1991), (Werner 
& Dyer 1991), and (Oliphant 1996). We have devel
oped more complex variations of the game where the 
meaning consist of symbolic descriptions derived from 
discrimination games (Steels 1997a). The game has also 
been implemented on physically grounded mobile robotic 
agents (Steels & Vogt 1997) and on vision-based robotic 
'talking heads', watching dynamically evolving scenes 
(Steels 1997b). Of course in natural languages both the 
form and the meaning are vastly more complex than the 
atomic forms (words) and meanings (objects) used in the 
naming games discussed in this paper. However, the ba
sic properties of naming games are independent of the 
complexity of the forms or the meanings. 

The main topic of this paper is to explore what hap
pens when stochasticity is introduced in language games. 
Stochasticity means that some aspects of the game ex
hibit unpredictable errors. It is caused by faults in pro
duction or perception, errors in guessing meaning from 
the context or from pointing, or malfunctioning of mem
ory. We have experienced this stochasticity very strongly 
while grounding the language games on physical robots, 
but want to study theoretically its consequences through 
software simulation. In order to cope with stochasticity, 



perception delivers typically several possible forms and 
possible meanings with various degrees of confidence. 
The selection and the evaluation of these forms and 
meanings are determined by the Tolerance level and the 
Focus of the Hearer. Stochasticity, Tolerance and Focus 
interact and are important for explaining innovation and 
evolution. This paper focuses on stochasticity, whereas 
a companion paper explores the role of tolerance, focus 
and stochasticity in language change (Steels & Kaplan 
1998). 
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The rest of the paper has the following sections. First 
the naming game is defined. Then results are shown 
for the emergence of a set of conventions without any 
stochasticity. Next different sources of stochasticity are 
introduced: first in the extra-linguistic activities delimit
ing the context and the topic, second in terms of noise on 
the message being transmitted, and finally memory ac
cess. Some conclusions and suggestions for further work 
end the paper. 

The Naming Game Model 
The Naming Game, as used in the present paper, is an 
enriched version of a model first presented in (Steels 
1996b). We assume a set of agents A where each 
agent a E A has contact with a set of objects. These 
objects constitute a set of meanings to be expressed 
M = { m 1 , ... , mn}. All the experiments in this paper 
involve a population of 20 agents and 10 meanings. A 
form is a sequence of letters drawn from a finite alphabet. 
The agents are all assumed to share the same alphabet. 
A lexicon .C is a time-dependent relation between mean
ings, forms and a score. Each agent a E A has his own set 
of forms Fa,t and his own lexicon La,t C Max Fa,t x N, 
which is initially empty. An agent a is therefore defined 
at a time t as a pair a1 =< Fa,t, La,t >. There is the 
possibility of synonymy and homonymy: an agent can as
sociate a single form with several meanings and a given 
meaning with several forms. It is not required that all 
agents have at all times the same set of forms and the 
same lexicon. 

Operation of the Naming Game 

The Naming Game is an interaction between a Speaker 
and a Hearer about a Topic in a given Context. The con
text consists of a set of objects and both the speaker and 
the hearer are assumed to be capable to identify mean
ings to distinguish the topic from the other objects in 
the context, using for example mechanisms as described 
in (Steels 1996a). 

2.1.1 Production. Let CC M with M the set of pos
sible meanings. The meaning the speaker has associated 
with the topic is ms E C. He signals this topic using non
linguistic communication (such as through pointing). At 
the same time, the speaker retrieves from his lexicon all 

the associations indexed by ms. This set is called the 
association-set of ms. Let m E M be a meaning, a E A 
be an agent, and t a time moment, then the association
set of mis 

Am,a,t = {< m,f,u >I< m,f,u >E La,t} (1) 

Each of the associations in this set suggests a form f s to 
use for identifying m with a score 0.0 ~ u ~ 1.0. The 
speaker chooses the association with the largest score 
and produces the form f s which is part of this association 
to the hearer. 

2.1.2 Transmission. Both linguistic and 
non-linguistic information are transmitted to the hearer. 
During the emission, transmission and reception phases, 
stochasticity (e.g. noise, unpredicable errors) can occur. 

2.1.3 Comprehension. The Hearer perceives the lin
guistic and non-linguistic information. Because this in
formation might have been altered during the transmis
sion, the hearer must consider several possible forms and 
meanings and evaluates each of them. The form Focus 
FF and the Meaning Focus T F parameters determine 
the number of forms Fcons and meanings Mcons consid
ered. These parameters indicate the maximum distance 
from the perceived information that the hearer is willing 
to consider: 

Mcons = {< m >I< m >E M,d(m,m') ~ TF} (2) 

Fcons = {j1} u {< f >I< f >E :F,d(J,J') ~FF} (3) 

a. Meaning score. The hearer constructs a meaning
score 0.0 :S Sm :S LO for each possible meaning m in 
Mcons reflecting the likelihood that m is the meaning of 
the perceived topic m'. If there is absolute certainty, one 
meaning has a score of LO and the others are all 0.0. If 
there is no non-linguistic communication, the likelihood 
of all meanings is the same. If there is only vague non
linguistic communication, the hearer has some idea what 
the topic is, but with less certainty. In our experiments, 
the distance d(m', m) between the meaning of the per
ceived topic m' and the other meanings determines the 
meaning-score: 

1 
(4) Sm=--..,..,---

l+(d(:,m)2 

a is the tolerance factor for meaning perception. 

b. Form score. The hearer constructs also a form
score 0.0 ~ s J ~ 1.0 for each form f of Peons. The 



distance d(J', f) between the perceived form f' and the 
considered form f gives a score 

1 
(5) 

f3 is the is the tolerance factor for form perception. 

c. Decision matrix. For each form fj in F, the hearer 
retrieves the association-set that contains it. He con
structs a decision-matrix which contains for each mean
ing a row and for each form a column. The first column 
contains the meaning-scores sm,, the first row the form
scores s /;. Each cell in the inner-matrix contains the 
association-score for the relation between the object and 
the form in the lexicon of the hearer: 

Ji h ... 
Sfi sh ... 

m1 Sm1 S<m1,/1> S<m1,/2> ... 

m2 Sm2 S<m2,/1> S<m2,/2> ... 
... ... ... ... ... 

Obviously many cells in the matrix may be empty (and 
then set to 0.0), because a certain relation between a 
meaning and a form may not be in the lexicon of the 
hearer. Note also that there may be meanings identified 
by lexicon lookup which are not in the initial context C. 
They are added to the matrix, but their meaning-score 
is 0.0. 

The final state of an inner matrix cell of the score 
matrix is computed by the formula: 

scorem;,/; = Wf.Sfj + Wm.Smi + Wa.S<m;,f,> (6) 

w I is the weight of the form information, Wm is the 
weight of the non-linguistic information and Wt is the 
weight of the lexicon. In this paper, they are by default 
set at 1.0 and the score is then simply the sum of the 
three sources of information. 

One meaning-form pair will have the best score and 
the corresponding meaning is the topic mh chosen by 
the hearer. The association in the lexicon of this 
meaning-form pair is called the winning association. 
This choice integrates extra-linguistic information (the 
meaning-score), form ambiguity (the form-score), and 
the current state of the hearer's lexicon (the association
score). 

2.1.4 Adaptation. The hearer then indicates to the 
speaker what topic he identified. In real-world language 
games, this could be through a subsequent action, like 
handing the topic to the hearer, or through another lin
guistic interaction. When a decision could be made and 
mh = m 8 the game succeeds, otherwise it fails. The 
following adaptations take place by the speaker and the 
hearer based on the outcome of the game: 
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a. The game succeeds This means that speaker and 
hearer agree on the topic. To reenforce the lexicon, the 
speaker increments the score s of the association that he 
preferred, and hence used, with a fixed quantity cl. The 
hearer reenforces the winning association that has led 
to the right comprehension. Both decrement with cl the 
score of all the associations that share either the meaning 
or the form of the winning pair. 0.0 and 1.0 remain the 
lower and upperbound of s. These changes implement an 
excitation-exhibition dynamics similar to the one used in 
Kohonen networks, except that the change is constant. 

b. The game fails There are several cases: 

1. The Speaker does not know a form 

It could be that the speaker did not have an associa
tion covering the topic. In that case, the game fails but 
the speaker may create a new form f' and associate 
this with the topic m 8 in his lexicon. This happens 
with a form creation probability Pc· 

2. The hearer does not know the form. 

In other words there is no association in the lexicon 
of the hearer involving the form f h of the winning 
association. In that case, the game ends in failure 
but the hearer may extend his lexicon with a form 
absorption probability Pa. 

3. There is a mismatch between mh and m 8 • 

In this case, both speaker and hearer have to adapt 
their lexicons. The speaker decrements with cl the as
sociation (m 8 ,f8 ) and the hearer decrements with cl 
the association (mh,fh) 

Macroscopic variables 
The naming game model can be viewed as a complex 
dynamical system. The agents have a certain local be
havior (an agent can only interact with one single agent, 
not with all agents at the same time), which is deter
mined by their internal lexicons. Behavior changes be
cause agents adapt their lexicon. In order to 'see' the 
global order in the system, we need macroscopic vari
ables. These macroscopic variables are invisible to the 
agents because no agent has a complete overview of the 
behavior of the group. The first such variable quanti
fies the average success after n games. When average 
success approaches total success, this must mean that 
the conventions are sufficiently shared to speak of the 
emergence of a shared lexicon. But, because a form may 
have many meanings and the same meaning may be ex
pressed by multiple forms, communicative success does 
not necessarily mean complete coherence. An agent can 
very well know a form but prefer not to use it himself. 

In practice, an examination of the lexicons of the dif
ferent agents shows a quite complex situation, so that it 
is non-trivial to extract what the shared language is. We 
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determine the language of a single agent by translating 
his lexicon into a matrix where there is a row for every 
possible meaning, a column for every word, and the cells 
are filled by the association-scores, possibly 0.0. Based 
on this matrix it is possible to determine what the most 
preferred form is for naming a meaning, and thus what 
the preferred language is of the agent. Note that this 
represents the language for production, not for compre
hension. Associations are not symmetrical. For example, 
in the matrix below, the agent prefers h when m 1 needs 
to be expressed (and not Ji). When Ji is heard, the same 
agent nevertheless expects m1 . The pair < m1, Ji > is in 
the expected language but not in the produced language. 
The expected language includes the production language 
but not vice-versa. (See (Hurford 1989) and (Oliphant 
1996) for a further exploration of the coordination be
tween production and comprehension systems.) 

Ii h 
m1 0.6 0.7 
m2 0.4 0.3 

Given the preferred language for a single agent, it is 
straightforward to determine the language of the group 
as being the set of word-meaning associations that are 
preferred by most agents. The coherence of the language 
is equal to the average number of agents that prefer these 
most preferred word-meaning association. 

Formation and Maintenance of 
Equilibrium States 

We now investigate the behavior of naming games in the 
ideal case of closed populations of agents without any 
stochasticity. Agents take the information they perceive 
at face value (TF = 0 and FF = 0). o = 0.2 and 
new associations are created with an initial score of 0.2. 
Pc = 0.1 and Pa= 1.0. 

For each experiment, it is instructive to look at the 
evolution of game success as well as coherence. Figure 1 
shows a first simulation experiment involving a group of 
20 agents. We see that very quickly coherence as well as 
average game success climbs up to both reach 100 %. 

It is also instructive to look at the evolution of the 
average association-scores competing for the preferred 
expression of a particular form (or alternatively for the 
highest expectation). This is done through competition 
diagrams as the one shown in figure 2. The diagram 
shows that there is a winner-take-all situation. This is 
due to the positive feedback loop between score and use. 
The higher the score of an assocation, the more it is 
used, and the more its chances increase to be successful 
in further use. Such a winner-take-all situation takes 
place for every meaning so that a global shared lexicon 
emerges. 

Once total game success is reached, the language does 
not change anymore. The only source of possible inno-

No stochasnclty 
No Focus 

20 agents 
1 Omeanings 

Figure 1: Evolution of average game success and coher
ence in a population of 20 agents for 10 objects. An 
equilibrium state is reached whereby the agents gain to
tal average success and a high, stable coherence. 

0.0 

.. 
'' 
0.6 .. 
,, 
02 

" 

No Stochasticity 
No Focus 

Figure 2: Competition diagram showing the competition 
between several forms for being the preferred way to ex
press a certain meaning. The diagram plots the average 
renormalized score of the form-meaning associations of 
all agents for the same meaning. A winner-take-all situ
ation emerges. 
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vation is the introduction of new forms, which only hap
pens when an agent does not have a form yet, or the pro
gressive adoption of one form by the group, which stops 
as soon as a winner-take-all situation has been reached. 

A language is even resistent (up to a certain degree) 
to changes in the population. This is investigated by in
troducing an in- and outflux in the population. When 
agents leave, they take their lexicons with them. When 
new virgin agents enter, they have to acquire the lan
guage of the other agents in the group. They may oc
casionally create a new word (with a small probabil
ity the word creation probability Pc) but this new word 
quickly gets damped against the dominance of the pre
ferred word. Acquisition of an existing language by a 
new agent happens without any addition or change to 
the model, as shown in figure 3 which plots also the lan
guage change. Change is quantified by comparing the 
state of the language at two time points and counting the 
number of preferred form-meaning pairs that changed. 
We see that the language changes rapidly in the begin
ning as the population moves towards total average game 
success. Thereafter the language remains stable. Figure 
3 shows what happens when a flux is introduced in the 
population. When new agents come in, game success and 
coherence drops because the new agent has to acquire the 
language of the group. But if there are not too many 
agents coming in, the group will maintain a high rate of 
success. More importantly, the language itself does not 
change at all. It is transmitted culturally from one gen
eration to the next. When the rate of population renewal 
is too high, the language disintegrates, as also shown in 
figure 3. There is rapid language change because the new 
agents start to create new word-meaning associations, 
but these conventions cannot propagate fast enough in 
the population. 

We will now look at the effect of stochasticty during 
three steps of the Naming Game: non-linguistic com
munication, form transmission, and memory access. To 
cope with stochasticity, agents have now a large focus 
and a standard tolerance level (T F = 10, FF = 3, 
a=~= 1). 

Stochasticity of Non-Linguistic 
Communication 

In the results reported so far, it is assumed that non
linguistic communication is without error. This is clearly 
not always the case in real-word language interactions. 
Stochasticity in non-linguistic communication can be in
vestigated by probabilistically introducing a random er
ror in the perceived attributes of the topic. The object 
coordinates of the meaning expressed can, for instance, 
be shifted by a fixed value. The probability is called 
the topic-recognition stochasticity Er. Figure 4 shows 
the first results for an experiment exploring variations 

121) 

0.8 

0.7 
811 

0.1 
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Figure 3: A language once formed remains stable even if 
there is an in- and outflow of agents in the population. 
This graph shows both language change and the aver
age game success. In a first phase, the language forms 
itself in a closed population. In a second phase, an in
and outflow of agents (1 in/outflow per 100 games) is 
introduced, the language stays the same and success is 
maintained. In the third phase the flux is increased to 
1 per 10 games and the language disintegrates. Average 
game success rapidly reaches very low levels. 

in Er. When Er is high (phase one), there is so much 
confusion that a language does not form at all. When 
Er is decreased to 0.0 (phase two), a language starts to 
form quickly. This language maintains itself, even if Er 
is again increased (third phase). 

This experiment shows that there must be a minimum 
of reliability in non-linguistic communication at the ini
tial phases of language formation, otherwise a language 
does not form. At the same time, it shows clearly that 
as soon as a language has bootstrapped itself, linguistic 
communication is capable to counteract the unreliability 
of non-linguistic communication. 

We now investigate in how far the stochasticity of 
non-linguistic communication has an impact on language 
variation. Figure 5 shows a typical example of a compe
tition diagram for a positive topic-recognition stochas
ticity. A language has already formed itself with a sin
gle winner (the form "topo") for the meaning being in
vestigated. Stochasticity causes competition to arise, 
challenging - but not yet defeating - the dominating 
form-meaning association. Innovation is due to the fact 
that confusion about the topic may lead to a new form
meaning association which then starts to propagate. 
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Figure 4: Exploration of variations in the stochastic
ity of non-linguistic communication. In the first phase 
stochasticity is high ET = 0. 7, a coherent language does 
not form. In the second phase stochasticity is absent, 
ET = 0.0, a language forms. In the third phase stochas
ticity is increased again to ET = 0. 7. Communication 
can tolerate a high level of stochasticity, justifying lin
guistic communication complementary to non-linguistic 
communication. 
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Figure 5: Example of competition diagram with ET = 
0.7. There is a more complex dynamics instead of an 
equilibrium winner-take-all situation. New associations 
enter and remain in the population, even though they 
have not yet been able to overtake the dominating word. 

Stochasticity on Form 

The second source of stochasticity is in the message 
transmission process. So far it is assumed that a message 
is produced perfectly by the speaker and received per
fectly by the hearer. This is well known not to be true 
in the case of natural languages. Speakers make a large 
amount of errors and blur the pronounciation to mini
mize energy and maximise the number of sounds trans
mitted in a given period of time. Hearers have a very 
hard time to decode speech signals, simply because the 
speech signal is noisy and contains only hints for some 
sounds. Hearers are known to partially make up for it 
by expectations and knowledge about the language. 

In the experiment reported earlier, several forms may 
already be triggered due to the large focus on form re
ception. These are all the forms that are at a certain 
distance from the form produced by the speaker. This 
uncertainty makes it less clear what form has been used 
but does not yet imply mistakes. We now introduce a 
second stochastic operator that causes a transformation 
of the form transmitted. For example, the speaker may 
produce "moba" but the hearer may receive "mopa". 
The parameter controling this stochasticity is EF, the 
form-recognition stochasticity: it is the probability that 
a character in the string of the form mutates. 

Figure 6 shows results of experiments in varying this 
particular parameter. In the first phase EF = 0.5 a 
language may eventually form itself but it would take 
a rather long time. EF = 0 immediately causes the 
language to appear. In the third phase, we again in
crease the stochasticity. It is seen that the language is 
resilient. There are occasionally games that fail, but the 
language itself is not affected. As with human language 
users, the non-linguistic communication as well as ex
pectations from the lexicon partially offset the problems 
in determining what form has been used. These experi
ments clearly show that once a language has formed, it 
counterbalances errors in message transmission. 

Figure 7 investigates the impact of form-stochasticity 
on variation in the language. We see clearly that a posi
tive form-recognition stochasticity EF = 0.3 causes new 
forms to appear in the language. When EF = 0.0, many 
of these forms disappear. Interestingly enough, com
petitors may still maintain themselves in the population. 
This is due to the large focus of the agents. "ludo" and 
"mudo" are words that are sufficiently close to each other 
that one group may have adopted one form and another 
slightly smaller group the other form. As uncertainty in 
form is tolerated, one group will always accept the form 
of the other even though they would not use exactly the 
same form themselves. 
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Figure 6: Exploration of variations in form stochasticity. 
In the first phase stochasticity is high EF = 0.5. A 
language only slowly forms itself. In the second phase it 
is low EF = 0.0, a language forms. Then EF = 0.5. The 
language is resilient against a higher form stochasticity 
and average game success stays very high. 
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Figure 7: Competition diagram in the presence of form 
stochasticity. When EF = 0.3 there is no clear winner
take-all situation as new forms are occasionally in
troduced resulting in new form-meaning associations. 
When EF = 0.0 the innovation dies out although some 
form are still able to maintain themselves due to the 
large focus of the agents. 

... .. 
0.7 .. 
.. I EA• 0.7 ... ... p.1 

FF= 3 .. I TF = 10 

.. 
O.t I 

I 
• 0 I 

2 

No SIDchasUclly 
No Focus 

I 

3 
EA• 0.7 
... p. 1 
FF• 3 
TF = 10 

20 agents 
1om11nlno1 

I 

Figure 8: This figure shows the results in exploring mem
ory malfunction. The first phase shows that a language 
has some difficulties forming for a positive memory
stochasticity (EA = 0.7). In the second phase mem
ory stochasticity is zero and language forms. The third 
phase shows resilience against positive memory stochas
ticity (EA = 0.7) 

Stochasticity on Form-Meaning 
Associations 

The final source of stochasticity comes from the utili
sation of the lexicon. It is well known that biological 
systems occasionally malfunction even though there is 
globally a robust behavior. We hypothesise that this is 
also the case for memory. The form-meaning association 
retrieved from memory may not necessarily be the way 
that it was first stored. Thus the speaker could acci
dentally retrieve the wrong form for a particular mean
ing, or the hearer's memory system may suggest a form
meaning association which was never stored. These er
rors are modeled using a third stochastic operator based 
on a parameter EA, the memory stochasticity, which al
ters the scores of the associations in the score matrix in 
a probabilistic fashion. Even scores that were zero could 
become positive. The higher the memory stochasticity, 
the more likely an association score changes. 

Figure 8 shows the impact of memory stochasticity on 
language formation. When EA is positive, language for
mation is more difficult, although progress can be seen. 
We see also that coherence and success can be main
tained even if memory is malfunctioning and yielding 
spurious association scores. This experiment demon
strates again that the overall language system is fault 
tolerant because it maximises information from three 
sources: non-linguistic communication, form recogni
ti•Jn, and form-meaning conventions. The better a lan
r;uage is established, the more resilient it is to use in 
difficult circumstances. 

Also in this case, we see continued language innova-
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Figure 9: Typical competition diagram. First there is 
a positive association stochasticity EA = 0. 7. The lan
guage is slowly forming itself. We still see a rich compet
itive dynamics between the different form-meaning pairs 
even if one is dominating. This innovation dies out when 
EA = 0. When EA = 0.7 new associations get into the 
system and variation is maintained. 

tion due to stochasticity. This is illustrated clearly in a 
competition diagram shown in figure 9, running for the 
same simulation as figure 8. One form ("pi") is dominant 
for the meaning being investigated. When the memory 
stochasticity becomes positive, the competition intensi
fies and new words (" te", "la vi") enter. 

Combination of Stochasticity 
The different forms of stochasticity combined lead to in
novation in different areas as seen in figure 10 and figure 
11. 

Conclusion 
This paper has investigated the effect of stochasticity 
on linguistic and non-linguistic communication, as it un
folds in a population of distributed agents playing adap
tive language games. This was done for the three main 
components of a language game: the non-linguistic com
munication, which constrains the set of possible mean
ings, the message itself, and the use of the lexicon. Each 
of these sources of stochasticity is realistic from the view
point of real world language use. Human users (as well 
as robots) cannot be expected to guess accurately the 
possible meaning of an utterance purely based on non-. 
linguistic means. The message is often errorful due to the 
inherent unreliability of sound-based message transmis
sion. The brain, as many biological systems, may have 
unreliable components but nevertheless show global fault 
tolerance. 

In each of the cases that were studied, the effect of 
stochasticity was similar and can be summarised as fol
lows: 
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Figure 10: Average success and coherence. The three 
different forms of stochasticity are introduced in phase 
2. We can see that average success drops because incom
patibilities between non-linguistic and linguistic commu
nication and the introduction of new forms. Notice that 
the language coherence remains unaffected. 
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Figure 11: Competition diagram for one meaning dur
ing the same experiment as in 10. We see that there is 
a winner-take-all situation in the first phase and then 
an attack by new forms ("mika", "nabu", etc.) even 
though they never manage to overtake the existing word 
(" giva"). 
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1. There are upper bounds on the amount of stochastic
ity that can be present during the initial phases of lan
guage formation. When the stochasticity is too high 
a language cannot self-organise. 

2. Once a language has established itself, stochasticity 
for one component is partially counterbalanced by the 
other components. If the message is scrambled, non
linguistic communication and expectations from the 
lexicon can make up for it. If non-linguistic commu
nication is unreliable or absent, linguistic communica
tion can suffice. If memory is malfunctioning, clues 
from the environment may counterbalance. 

3. Stochasticity introduces and maintains variation in 
the language. There is no longer a clear winner
take-all situation, whereby the language stays in an 
equilibrium state, even in a changing population. In
stead, there is a rich dynamics where new forms ap
pear, new associations are established, and the domi
nation pattern of associations changes. The different 
sources of stochasticity each innovate in their own way: 
Topic stochasticity introduces new form-meaning as
sociations for existing forms. Form stochasticity in
troduces new forms and hence potentially new form
meaning associations. Memory stochasticity shifts the 
balance among the form-meaning associations compet
ing for the expression of the same meaning. All of 
these sources of stochasticity are clearly observed in 
real natural language use. 

A complementary paper explores how stochasticity and 
tolerance are essential for explaining language change 
(Steels & Kaplan 1998). 
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Abstract 

Using two-dimensional cellular automata with an 8-cell 
neighbourhood and a ternary cell state set, we have 
described all possible transition rules for a class of simple 
lattice-based excitable media, and have carried out an 
exhaustive investigation of the spatio-temporal dynamics of 
excitation in such lattices. We have subdivided the 256 
possible rules of local excitation into 11 classes as a 
function of the morphological characteristics of the resultant 
excitation configurations far beyond the transient period. 
Spatial factors (number and size diversity of clusters of 
excited states) and dynamic characteristics (length of 
transient period and activity level) were also examined. We 
present a parametrisation of the function space according to 
a measure equivalent to Langton's A parameter, and offer a 
classification of the morphological characteristics and 
potential computational capabilities as a function of A.. For 
much of the function space, the values of A. are in 
accordance with Langton's predictions; in particular, some 
identifiable computational capabilities are located at the 
boundaries between order and disorder. 

Introduction 

A continuing theme in the exploration and understanding of 
cellular automata has been the investigation of the 
relationship between the structure of the automata and the 
resultant behaviour. The behaviour itself has also been 
subjected to examination, in respect of its morphology, its 
complexity, and its computational possibilities. One of the 
main concerns has been to discover a simple metric which, 
when applied to the structural characteristics, will produce 
similar values for structures which produce similar 
behaviour. The demonstration by Langton ( 1990) that a 1-
dimensional metric, A., appeared to be able to do just that for 
a range of structural types stimulated attempts to understand 
why the metric worked (Gutowitz and Langton 1995) and 
how well it worked. A further claim made by Langton was 
that the capacity to support universal computation would be 
associated with the transition from order to disorder (the 
'edge of chaos'). One of the problems has been that the 
number of different rule sets for a given structural type is 
typically so large, and the computation required to produce 

and evaluate the behaviour of a rule set so extensive, that it 
has only been possible to sample a small proportion of the 
rule sets falling under a given value of the metric. Another 
problem has been the high variability of the outcomes from 
different rule sets with the same value of A.. Taken together, 
these have produced some difficulties in the interpretation 
of A.. 

This paper describes an attempt to characterise the 
relevant aspects of an interesting subset of CAs, that of 
simple lattice based excitable media, by using an exhaustive 
rather than a sampling strategy, thereby avoiding some of 
the problems mentioned above. Excitable media are 
common in nature. They usually consist of sheets or 
volumes of cells, each of which may be stimulated by its 
excited neighbours into a brief excited state, after which it 
becomes unable to be excited again for some time (the 
refractory period). The typical form of activity consists of 
propagated waves, which may form into characteristic 
patterns in two or three dimensions; however, other forms of 
activity may occur. 

Cardiac muscle is perhaps the most familiar example of 
a cell-based natural excitable medium. Cellular automata 
models of excitable media can capture the essential aspects 
of natural media in a computationally tractable form, while 
at the same time forming an intrinsically interesting subclass 
of cellular automata. They are particularly useful in the 
present context for two reasons: considered structurally, 
they are really a degenerate subclass of CAs, and may 
contain several orders of magnitude fewer distinct sets of 
rules than the full class; and considered functionally, they 
are capable not only of expressing the wave-based abilities 
of excitable media, but also have the potential for 
supporting universal computation (e.g., Adamatzky 1997). 

CA Models of Excitation in a Lattice 

Typical cellular automata models of excitable media take 
the form of a two-dimensional cellular automaton, every cell 
of which is connected to its closest neighbours, takes three 
states, and changes its states at the same discrete times. The 
cell state set consists of three elements written as { o,+,-} 
which represent the rest, excited and refractory states of a 
cell. The cell state transitions are as follows: a cell which is 
excited at one time step will be refractory at the next time 
step; a cell which is refractory at one time step will be at rest 



in the next time step; and a cell which is at rest at one time 
step may be either excited or at rest on the next time step, 
depending on which of its neighbours are currently excited. 
The neighbours which affect a cell are defined as its 
neighbourhood; all cells have the same neighbourhood u, 
which for the excitable media considered in this paper has 8 
members: 

• • • 
u =• • 

• • • 
Excitable media have one overriding characteristic: the 

relative and absolute positions of excited cells in the 
neighbourhood are ignored, and it is only the number of 
excited cells which affects the state transition. (This of 
course means that this class of excitable media is isotropic, 
but it is in fact a much stronger condition than isotropy). 
The number of excited cells in a neighbourhood may range 
from 0 to 8, and so a given cell state transition rule may be 
defined in terms of the numbers of excited cells which will 
cause a cell to change from the rest state to the excited state. 
given range (e.g., 2, 3, or 4) or an unrestricted combination 
of numbers (e.g., 2, 5, or 8). The third case includes both of 
the others, and so we made it the basis of our investigation, 
using it to generate and explore all of the possible rules for 
an excitable medium with an 8-connected neighbourhood. 

There are of course 256 possible transition functions, 

and they may be represented by the vectors s = (sj)I,J ,8 
ordered naturally by what we call the rule index 

ft : s = (00000000) 

fz: s = (00000001) 

h : s = (00000010) 

f256 : s = (11111111) 
In other words, if vector s has entry 'l' at position j, 

then a resting cell becomes excited if it has j excited 
neighbours in its neighbourhood. Thus, in the case of the 
function represented by the vector (01110010), a cell at rest 
will become excited if it has 2, 3, 4 or 7 excited neighbours 
in its neighbourhood, but will not become excited if it has 0, 
1, 5, 6 or 8 excited neighbours. If the neighbourhood of 
such a cell x at rest at time t is in state 

+ 0 

u(x) = o o + 
+ 0 

with 3 excited cells, then x will take the excited state at the 
next step of discrete time, t+ 1. 

Each of these distinct transition functions may be used to 
generate a value for a parameter analogous to Langton's A.. 
In Langton's scheme, A. essentially measured the proportion 
of all possible input configurations (the states of the 
neighbourhood cells and the state of the current cell) which 
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would produce a particular state of the current cell at the 
next time step. In the case of excitable media, we define the 
state of interest as the excited state. However, unlike 
Langton, we cannot manufacture rule sets with given values 
of A. to order; instead, we simply calculate the A. values of 
each of the 256 possible transition rules. The strong 
constraints on cell transitions in excitable media mean that 
fully two thirds of possible input configurations (those in 
which the current cell is excited or refractory) cannot 
produce the excited state in the next time step, and so the 
range over which A. can vary is rather limited, from 0 to 
0.33, rather than from 0 to 1. However, if Langton's 
argument is correct, we should expect to see the full range 
of dynamic behaviour, namely from ordered to disordered 
and back again to ordered, as A. moves through this range. 
We should also find non-trivial computational capabilities at 
the boundaries between order and disorder. 

Characterisation of Excitation Dynamics 

We investigated the behaviour of all possible excitable 
media with 8-cell neighbourhoods by carrying out 
simulations on 30x30 lattices. All CAs examined had 
periodic boundaries, and were initialised by exciting each 
cell with probability p. Although we have investigated other 
values, p=0.3 produces a comprehensive (but incomplete) 
set of behaviours, and the work reported here refers to p=0.3 
unless otherwise stated. 10 differently initialised runs were 
performed for each distinct transition rule. 

To describe the behaviour in order to form a 
classification we used a variety of techniques. It is typical of 
CA to pass through a transient period 't until their behaviour 
settles down to some final characteristic type; we are 
interested in the length of this transient period, and in the 
final behaviour, but not in the behaviour during the transient 
period. After the transient period we visually examined the 
2D maps of excited cells on the lattice, and also calculated 
various objective measures of levels and patterns of 
excitation. The activity level a for a function f is defined as 
the average number of excited cells over some sufficiently 
large interval after the transient period. The basic unit of 
analysis of patterns is the cluster. A cluster of excited states 
is defined as a connected subset of the lattice, every cell of 
which is excited and has at least one excited neighbour. We 
have derived two useful measures from analysing the 
clusters present in configurations: K, the number of clusters, 
and f}, the size diversity of clusters. 

Morphological Classification 

We describe the configurations of excitation on the CA 
lattice using subjective phrases such as 'homogeneous', 
'heterogeneous', 'fine-grained', 'coarse-grained' etc. because, 
thanks to the power of human visual pattern 
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Figure 1: Excitation patterns for the major morphological categories, labelled by the rule index. Where the first and last 
members of a class are shown, it is possible to judge the change in character as the rules progress through the class, and also 
to see the clear transition between the last member of one class and the first of the next. 
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Figure 2: Number of clusters K as a function of rule index 
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Figure 3: Size diversity of clusters t'} as a function of rule 
index 



perception, they are so easily characterisable and so 
strikingly distinct. The validity of the classifications is 
supported by the correspondence between the 
morphological classes and the objective measures. We 
believe that all rules can be assigned with little uncertainty 
to one of eleven morphological classes: 
0-class: any initial configuration evolves to a state of 
uniform rest 
2 +-class: any initial conditions evolve to configurations 
comprising particle-like waves, or localised excitations, 
travelling around the lattice, colliding with each other, and 
generating new moving patterns as a result of collisions 
H-class: any initial conditions produce a homogeneous 
activity pattern 
L-class: labyrinth-like patterns appear with a large number 
of wave generators 
F-class: fingerprint-like patterns appear, together with a 
small number of wave generators 
CGFG-class: the members of the class exhibit a transition 
from coarse-grained to fine-grained patterns 
HCGFG-class: the members of the class exhibit a transition 
from highly-coarse-grained to fine-grained patterns 
CGSW-class: the members of the class pass from coarse 
grained patterns to saw wave patterns 
SW-class: the behaviour of the members ranges from 
disordered wave patterns to the formation of spiral waves 

Two other distinctive morphologies are also observable. 
Striking focused waves are seen for rule vectors (I 11 11110) 
and (11111111 ), but the waves eventually annihilate one 
another. Strictly speaking, we should classify these rules in 
the 0-class. However, they exhibit the longest transient 
periods of any rules, so we have decided to show this type 
of activity as the FW-class (Figure 4). For very high values 
of p, an additional morphology is seen: islands of stripe-like 
waves arc surrounded by almost homogeneous patterns. We 
call this the GW-class (Figure 4) but do not discuss it 
further here. 

Some examples of the behaviour of the cellular automata 
used in the study, along with their classifications, arc shown 
in Figure 1. But how can we be sure that the classes as 
revealed by our perceptions correspond to a meaningful 
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Class Rule vectors s Number of 
members 

0 (00000000) ... (00111111) 64 
2 ... (01000000) ... (01011111) 34 

H (01100000) .. . (01101111) 15 
L (01110000) ... (01110111) 7 
F (011 11000) ... (0 I I I I I I I) 7 
CGFG (10000000) .. . (10111111) 63 

HCGFG (11000000) . .. (11011111) 31 

CGSW (11100000) .. . (11110111) 23 

SW (11111000) ... (1111110 I) 5 
FW (11111110), ( 11111111) 2 

Table 1: Morphological classes and rule vectors 

division of the range of behaviours of excitable media? The 
answer is that we cannot, unless we can show that various 
objective measures also partition the space of behaviours in 
the same way. This is strikingly the case here. The key 
enabling device in this area is the rule vector. Consider the 
distribution of the above classes as a function of rule vector 
which is shown in Table I. Almost all class boundaries 
occur as the zero in the lowest or lowest-but-one position in 
the function f flips to one. Within classes, as the higher bits 
are progressively filled, there are minor progressive 
qualitative changes. For example, in the 2+-class the low 
values off show sparser patterning than those close to the 
H-class, but these changes are slight compared with the 
transition between (0101111 I) and (0 I 100000). 

Cl 20 

Figure 5: the activity level a as a function of rule index 

Additional evidence is provided by the measures of 
spatial and dynamic factors. The cluster based measures 
examined, K and tt, are most revealing; again, the 
discontinuities mark the morphological class boundaries. 
Figures 2 and 3 show Kand t} as functions of the rule index. 
The activity a of the sample configurations generated by the 
excitation rules is shown in Figure 5, and the values of 't in 
Figure 6. Note again that, wherever there are sharp 
discontinuities in either of these graphs, there is a 
morphological class boundary. 
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Figure 6: the transient period 't as a function of rule 
index 

A., the Morphological Classification, and 
Computational Capability 

The values of/.... plotted against the rule index are shown in 
Figure 7, along with the morphological classification. We 
look first of all at the way order and disorder vary as A is 
increased from the minimum to the maximum. From 0 to 
0.08, there is only order - the 0-class. As/.... increases to 0.09, 
there is both order and disorder, as the CGFG-class 
appears. Continuing up to 0.18, there is at first also t?e 
possibility of universal computation in the 2+-class, with 
further disorder possible from the HCGFG-class for higher 
values. However, from 0.18 to 0.23 there is only disorder, as 
the H-class is added to the CGFG and HCGFG classes, 

+ and the 2 -class drops out. 
Up to this point, everything has followed Langton's 

predictions very neatly: there is a gradual increase from 
completely ordered to completely disordered behav10ur, 
with the possibility of universal computation occurring 
between the two extremes. However, things become less 
clear as we increase /.... further. First, as H, CGFG, and 
HCGFG are left behind, the ambiguous CGSW appears, 
with its overtones of both order and disorder. But as the L
and F-classes appear, we are again in a regime with long 
transients, propagated structures, and high visual complexity 
- all characteristics associated with potential computational 
ability. Finally, the simpler wave structures of SW appear, 
followed by the rigidity of FW, if we decide to admit the 
class. 

It could therefore be argued that we do indeed see a 
transition in the reverse direction, from disorder to order. 
However, at the boundary between order and disorder we 
see no behaviour known to support universal computation, 
but we do see the potential for wave-based computation 
which is characteristic of excitable media. (This is no longer 
of merely theoretical interest - real excitable media have 
recently been used to build specialised computational 
devices (Tolmachev and Adamatzky 1996). Langton Figure 
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7: the values of /.... plotted against the rule index, with 
morphological classifications 

(1990) regarded such specialised computational abilities as 
trivial; Mitchell et al (1993) acknowledged their potential 
importance; but neither made any attempt to locate them in 
'A-space, and we find it interesting to see where they sit. 

Conclusions 

We have carried out an exhaustive search of an interesting 
but degenerate subclass of cellular automata, a 2D excitable 
medium. It has been possible to classify the behaviours 
beyond the transient period on a number of subjective and 
objective grounds. A variant of Langton's /.... parameter 
tracks the transitions from order to disorder and back to 
order adequately; at the edges of these regions we find one 
morphological class which is able to support universal 
computation, and another class which constitutes the 
essence of excitable media, the wave processing functions. 
This may indicate that an extension of this approach may 
assist in the understanding of both natural and artificial 
excitable media. 
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Abstract 

The traditional fitness function based methodology of 
artificial evolution is argued to be inadequate for the 
construction of entities with behaviors novel to their de
signers. Evolutionary emergence via natural selection 
(without an explicit fitness function) is the way forward. 
This paper further considers the question of what to 
evolve, the focus being on principles of developmental 
modularity in neural networks. To develop and test the 
ideas, an artificial world containing autonomous organ
isms has been created and is described. Results show the 
developmental system to be well suited to long-term in
cremental evolution. Novel emergent strategies are iden
tified both from an observer's perspective and in terms 
of their neural mechanisms. 

How to Evolve Novel Behaviors 
The Artificial Life goal presents us with the problem 
that we do not understand (natural) life well enough to 
specify it to a machine. Therefore we must either in
crease our understanding of it until we can, or create a 
system which outperforms the specifications we can give 
it. The first possibility includes the traditional top-down 
methodology, which is clearly as inappropriate for ALife 
as it has proved to be for AI. It also includes manual in
cremental (bottom-up) construction of autonomous sys
tems with the aim of increasing our understanding and 
ability to model life by building increasingly impressive 
systems, retaining functional validity by testing them 
within their destination environments. 

The second option is to create systems which out
perform the specifications given them and which are 
open to producing behaviors comparable with those of 
(albeit simple) natural life. Evolution in nature has 
no (explicit) evaluation function. Through organism
environment interactions, including interactions between 
similarly-capable organisms, certain behaviors fare bet
ter than others. This is how the non-random cumulative 
selection works without any long-term goal. It is why 
novel structures and behaviors emerge. 

As artificial evolution is applied to increasingly com
plex problems, the difficulty in specifying satisfactory 
evaluation functions is becoming apparent - see (Zaera, 

Cliff & Bruten 1996), for example. At the same time, 
the power of natural selection is being demonstrated in 
prototypal systems such as Tierra (Ray 1991) and Poly
World (Yaeger 1993). Artificial selection involves the 
imposition of an artifice crafted for some cause external 
to a system beneath it while natural selection does not. 
Natural selection is necessary for evolutionary emergence 
but does not imply sustained emergence (evermore new 
emergent phenomena) and the question "what should we 
evolve?" needs to be answered with that in mind (Chan
non & Damper 1998). This paper sets out to answer 
that question. FUrther discussion concerning evolution
ary emergence can be found in (Channon & Damper 
1998), along with evaluations of other natural selection 
systems. Note that an explicit fitness landscape is not 
a requirement for artificial selection and so an implicit 
fitness landscape does not imply natural selection. 

General issues concerning long-term evolution have 
been addressed by Harvey's 'Species Adaptation Genetic 
Algorithm' (SAGA) theory (Harvey 1993). He demon
strates that changes in genotype length should take place 
much more slowly than crossover's fast mixing of chro
mosomes. The population should be nearly-converged, 
evolving as species. Therefore the fitness landscape (ac
tual or implicit) must be sufficiently correlated for mu
tation to be possible without dispersing the species in 
genotype space or hindering the assimilation by crossover 
of beneficial mutations into the species. 

What to Evolve 
Neural networks are the clear choice because of their 
graceful degradation (high degree of neutrality). But 
how should the network structure be specified? The 
evolutionary emergence of novel behaviors requires new 
neural structures. We can expect most to be descended 
from neural structures which once had different func
tions. There are many known examples of neural struc
tures that serve a purpose different from a previous use. 

Evidence from gene theory tells us that genes are used 
like a recipe, not a blueprint. In any one cell, at any one 
stage of development, only a tiny proportion of the genes 
will be in use. FUrther, the effect that a gene has depends 
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upon the cell's local environment - its neighbors. 

The above two paragraphs are related: For a type of 
module to be used for a novel function (and then to con
tinue to evolve from there), without loss of current func
tion, either an extra module must be created or there 
must be one 'spare' (to alter). Either way, a duplica
tion system is required. This could be either by gene 
duplication or as part of a developmental process. 

Gene duplication can be rejected as a sole source of 
neural structure duplication, because the capacity re
quired to store all connections in a large network without 
a modular coding is genetically infeasible. Therefore, for 
the effective evolutionary emergence of complex behav
iors, a modular developmental process is called for. For 
the sake of research validity (regarding long-term goals), 
this should be included from the outset. 

Gruau's cellular encoding: Gruau used genetic 
programming (GP) (Koza 1992) to evolve his 'cellular 
programming language' code (Gruau 1996) to develop 
modular artificial neural networks. The programs used 
are trees of graph-rewrite rules whose main points are 
cell division and iteration. 

The crucial shortcoming is that modularity can only 
come from either gene duplication (see objections above) 
or iteration. But iteration is not a powerful enough 
developmental backbone. Consider, for example, the 
cerebral cortex's macro-modules of hundreds of mini
columns. These are complicated structures that cannot 
be generated with a 'repeat one hundred times: mini
column' rule. There are variations between modules. 

Cellular automata: Many investigators have used 
conventional cellular automata (CA) for the construction 
of neural networks. However, such work is more at the 
level of neuron growth than the development of whole 
networks. Although CA rules are suited to the evolution 
of network development in principle, the amount of work 
remaining makes this a major research hurdle. 

Diffusion models: While there are a number of ex
amples of work involving the evolution of neural net
works whose development is determined by diffusion 
along concentration gradients, the resulting network 
structures have (to date) been only basic. So as to con
centrate on the intended area of research, these models 
have also been passed over. 

Lindenmayer systems: Kitano used a context
free L-system (Lindenmayer 1968) to evolve connectiv
ity matrices (Kitano 1990). The number of rules in 
the genotype was variable. Boers and Kuiper used 
a context-sensitive L-system to evolve modular feed
forward network architectures (Boers & Kuiper 1992). 
Both these works used backpropagation to train the 
evolved networks. Also, the resulting structures were 
fully-connected clusters of unconnected nodes (i.e. no 
links within clusters and if one node in cluster A is linked 
to one node in cluster B then all nodes in A are linked 
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Figure 1: Schematic block diagram of a neuron, from 
(Cliff, Harvey & Husbands 1992). 

to all in B). It may be that the results achieved reflect 
the workings of backpropagation more than evolution. 
However, these works demonstrated the suitability of L
systems to 'non-iterative modular' network development. 

The Neural and Development Systems 
The artificial neural networks used here are recurrent 
networks of nodes as used successfully by Cliff, Harvey 
and Husbands in their evolutionary robotics work. 

Developmental system: A context-free L-system 
was designed for the evolution of networks of these neu
rons. Specific attention was paid to producing a system 
in which children's networks resemble aspects of their 
parents'. Each node has a bit-string 'character' (label) 
associated with it, initialized at construction and modi
fiable during development. These characters may be of 
any non-zero length. A node may be a network input, a 
network output, or neither, as determined by an axiom 
(birth) network and development. 

A production rule matches a node if its predecessor is 
the start of the node's character. The longer the match
ing predecessor, the better the match; the best matching 
rule (if any) is applied. Thus ever more specific rules can 
evolve from those that have already been successful. 

The production rules have the following form: 

p 
Sr 
Sn 
bits: 
(b1,b2) 

(b3,b4) 
(bs,b6) 

Predecessor (initial bits of node's character) 
Successor 1: replacement node's character 
Successor 2: new node's character 
link details [O=no,l=yes]: 
reverse types [inhibitory/ excitatory] of 
(input, output) links on Sn 
(inhibitory, excitatory) link from Sr to Sn 
(inhibitory, excitatory) link from Sn to Sr 

If a successor has no character (0 length) then that 
node is not created. Thus the predecessor node may be 
replaced by 0, 1 or 2 nodes. The 'replacement' successor 
(if it exists) is just the old (predecessor) node, with the 
same links but a different character. The 'new' successor 
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(if it exists) is a new node. It inherits a copy of the old 
node's input links unless it has a link from the old node 
(b3 or b4 ). It inherits a copy of the old node's output 
links unless it has a link to the old node (b5 or b6 ) . 

New network input nodes are (only) produced from 
network input nodes and new network output nodes are 
(only) produced from network output nodes. Character
based matching of network inputs and outputs ensures 
that the addition or removal of nodes later in develop
ment or evolution will not damage the relationships of 
previously adapted network inputs and outputs. 

Genetic decoding of production rules: The ge
netic decoding is loosely similar to that in (Boers & 
Kuiper 1992). For every bit of the genotype, an attempt 
is made to read a rule that starts on that bit . A valid 
rule is one that starts with 11 and has enough bits after 
it to complete a rule. 

To read a rule, the system uses the idea of 'segments'. 
A segment is a bit string with its odd-numbered bits (1st, 
3rd, 5th, ... ) all 0. Thus the reading of a segment is as 
follows : read the current bit; if it is a 1 then stop; else 
read the next bit - this is the next information bit of the 
segment; now start over, keeping track of the information 
bits of the segment. Note that a segment can be empty 
(have 0 information bits). 

The full procedure to (try to) read a rule begins with 
reading a segment for each of the predecessor, the first 
successor (replacement node) and the second successor 
(new node). Then, if possible, the six link-details bits 
are read. For example: 

Genotype: 1 1 1 0 1 1 0 0 1 0 1 1 1 0 0 0 0 0 
Decoding: +++ -> 1 * 0 * 0 1 1 1 0 0 

+++ 1 -> 0 * 1 * 1 0 0 0 0 0 
Rules: 1. p -> Sr ' Sn ' 

link bits 
any -> 1 0 ' 0 1 1 1 0 0 

2. p -> Sr 
' 

Sn link bits 
1 -> 0 1 1 0 0 0 0 0 

Experimental World 
To develop and validate the above, a simple ALife system 
has been created. 'Geb' (after the Egyptian god of the 
earth) is a two-dimensional toroidal world of artificial 
organisms each controlled by a neural network using the 
developmental system above. Evolution is strictly by 
natural selection. There are no global system rules that 
delete organisms; this is under their own control. 

Geb's world (figure 2) is divided into a grid of squares; 
usually 20 x 20 of them. No two individuals may be 
within the same square at any one time. This gives the 
organisms a 'size' and puts a limit on their number. They 
are otherwise free to move around the world, within and 
between squares. As well as a position, each organism 
has a forward (facing) direction, set randomly at birth. 
Organisms are displayed as filled arcs, the sharp points 
of which indicate their direction. 
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Figure 2: Geb's world. 

Initialization 
Every square in the world has an individual with a single-bit 
genotype 'O' born into it . 

Main Loop 
In each time step (loop), every individual alive at the start 
of the cycle is processed once. The order in which the indi
viduals are processed is otherwise random. 
These are the steps involved for each individual: 

• Network inputs are updated . 
• Development - one iteration. 
• Update all neural activations, including network outputs. 
• Actions associated with certain network outputs are car

ried out according to those outputs. These actions are 
reproduce, fight , turn anti-clockwise, turn clockwise, and 
move forward. 

Neural network details: The axiom network con
sists of three nodes with two excitatory links: 

network input 001 >--+ 000 >--+ 01 network output 

The network output node's character (01) matches re
production. The network input node's character (left in
put 01) matches this, without matching any of the other 
action characters. Finally, the hidden node's character 
neither matches nor is matched by the other nodes' or 
the action characters. 

Development takes place throughout the individual's 
life, although necessary limits on the number of nodes 
and links are imposed. 

Organism+--+ environment interactions: Five 
built-in actions are available to each organism. Each is 
associated with network output nodes whose characters 
start with a particular bit-string: 

• Oh Try to reproduce with organism in front 
• 100• Fight: Kill organism in front (if there is one) 
• 101• Turn anti-clockwise 
• 110• Turn clockwise 
• 111• Move forward (if nothing in the way) 
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For example, if a network output node has the charac
ter 1101001, the organism will turn clockwise by an angle 
proportional to the node's excitatory output. If an ac
tion has more than one matching network output node 
then the relevant output is the sum of these nodes' exci
tatory outputs, bounded by unity as within any node. If 
an action has no output node with a matching character, 
then the relevant output is noise , at the same level as in 
the (other) nodes. 

Both reproduce and fight are binary actions. They are 
applied if the relevant output exceeds a threshold and 
have no effect if the square in front is empty. Turn and 
move forward are done in proportion to output. 

When an organism reproduces with a mate in front of 
it, the child is placed in the square beyond the mate if 
that square is empty. If it is not, the child replaces the 
mate. An organism cannot reproduce with an individual 
that is fighting if this would involve replacing that indi
vidual. Reproduction involves crossover and mutation. 
Geb's crossover always offsets the cut point in the sec
ond individual by one gene, with equal probability either 
way - which is why the genotype lengths vary. Mutation 
at reproduction is a single gene-flip (bit-flip). 

An organism's network input nodes have their excita
tory inputs set to the weighted sum of 'matching' output 
nodes' excitatory outputs from other individuals in the 
neighborhood. If the first bit of an input node's charac
ter is 1 then the node takes its input from individuals to 
the right hand side (including forward- and back-right) , 
otherwise from individuals to the left . An input node 
'matches' an output node if the rest of the input node's 
character is the same as the start of the character of the 
output node. For example, an input node with char
acter 10011 matches (only) output nodes with charac
ter's starting with 0011 in the networks of individuals 
to the right. Weighting is inversely proportional to the 
Euclidean distances between individuals. Currently the 
input neighborhood is a 5 x 5 area centered on the rele
vant organism. 

Results 

Kin similarity and convergence: When two Geb or
ganisms (with networks developed from more than just 
a couple of production rules each) reproduce, the child's 
network almost always resembles a combination of the 
parents ' networks. Examination of networks from Geb's 
population at any time shows similarities between many 
of them. The population remains nearly-converged, in 
small numbers of species, throughout the evolution. The 
criterion of a sufficiently correlated (implicit) fitness 
landscape has been met by the developmental system, 
making it suitable for long-term evolution. 

Emergence of increasing complexity: Once Geb 
has started, there is a short period while genotype 
lengths increase until capable of containing a production 

Figure 3: A dominant organism 

rule. For the next ten to twenty thousand time steps (in 
typical runs), networks resulting in very simple strate
gies such as 'do everything' and 'always go forwards and 
kill' dominate the population. Some networks do better 
than others but not sufficiently well for them to display 
a dominating effect. 

In every run to date, the first dominant species that 
emerges has been one whose individuals turn in one di
rection while trying to fight and reproduce at the same 
time. Figure 3 shows an example of such an individual, 
after the user had dragged the nodes apart to make de
tailed examination possible. Note the outputs 0101, oOl 
[x2] and olOO (turn anti-clockwise, reproduce and fight). 
Note also the large number of links necessary to pass 
from inputs to outputs, and the input characters which 
match non-action output characters of the same network 
(oOOO [x2], oOO) . Individuals of this species use nearby 
members, who are also turning in circles, as sources of 
activation (so keeping each other going). 

Although a very simple strategy, watching it in ac
tion makes its success understandable. Imagine running 
around in a small circle stabbing the air in front of you . 
Anyone trying to attack would either have to get their 
timing exactly right or approach in a faster spiral - both 
relatively advanced strategies. These individuals also 
mate just before killing. The offspring (normally) ap
pear beyond the individual being killed, away from the 
killer's path. 

Because of the success of this first dominant species, 
the world always has enough space for other organisms 
to exist. Such organisms tend not to last long; almost 
any movement will bring them into contact with one of 
the dominant organisms. Hence these organisms share 
some of the network morphology of the dominant species. 
However, they can make some progress: Individuals have 
emerged that are successful at turning to face the dom
inant species and holding their direction while trying to 
kill and reproduce. An example of such a 'rebel' (from 
the same run as figure 3) is shown in figure 4. 

Running averages of the number of organisms repro
ducing and killing (figure 5) suggest that further species 
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Figure 5: Typical run (running averages). 

emerge. However, organisms have proved difficult to an
alyze beyond the above, even at the behavioral level. All 
that can currently be said is that they share character
istics of the previous species but are different . 

Conclusions 

The main conclusion is that the proposed approach is 
viable. Although the behaviors that emerged are very 
low-level , they are encouraging nonetheless, for the in
creases in complexity were in ways not specified by the 
design. It is difficult to evaluate any ongoing emergence, 
because of the difficulty in analyzing later organisms. 
Either tools to aid in such analysis will have to be con
structed, or a more transparent system created. 

In work involving pure natural selection, the organ
isms' developmental and interaction systems are analo
gous to the fitness functions of conventional genetic al
gorithms. While the general aim involves moving away 
from such comparisons, the analogy is useful for recog
nizing how the epistasis of fitness landscape issue trans
fers across: Certain ontogenetic and interaction systems 
can result in individuals with similar genotypes but very 
different phenotypes. The results show that Geb's de
velopmental system does not suffer from this problem, 
making it suitable for long-term incremental evolution. 
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This alone is a significant result for a modular develop
mental system. 

This work has made it clear that the specification of 
'actions', even at a low-level, results in the organisms 
being constrained around these actions and limits evolu
tion. Alternatives in which the embodiment of organisms 
is linked to their actions need to be investigated. 
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Abstract 

ALife has always been centrally concerned with the na
ture and origins of emergent phenomena and their anti
reductionist implications for our understanding of com
plex systems. I argue that the traditional approach to 
understanding emergent phenomena in physical systems 
is still fundamentally reductionist, and outline an anti
reductionist alternative. 

Keywords: philosophy; philosophy of artificial life; 
anti-reductionism; emergence 

Contemporary debate about emergence can only be 
understood as part of the much older debate about re
ductionism. Indeed much of the importance of, and in
terest in, the question of emergence in Artificial Life is 
because of the light that it can shed on this much wider 
issue. 

The central point of this paper is that the usual argu
ments against reductionism are too weak, that they con
cede a crucial part of the reductionist case, and that a 
more radical approach is required. When we apply these 
arguments to the question of emergence we find that the 
usual models of emergent phenomena are flawed, and 
that an alternative is needed. 

Pragmatic Anti-Reductionism 
The central claim of reductionism is that if all phe
nomena are on every occasion physically realised, then 
the laws governing those phenomena are determined by, 
and derivable from, the laws governing their constituent 
parts. Does a materialist have any alternative but to 
accept this priority of lower level entities over those they 
comprise? 

The usual alternative to reductionism is some form of 
pragmatic anti-reductionism which argues that although 
reductionism may be correct in principle, it can rarely 
be used in practise: it is simply not feasible to collect all 
the data, and perform the calculations necessary, for all 
but the most trivial of systems. In other words, that the 
properties of the whole may be determined by those of 
the parts, but it is (usually) impossible for us to derive 
them. 

Basic pragmatic anti-reductionism can be strength
ened in various ways. We can borrow from chaos theory 
and argue that aggregate properties of the system may 
be sensitive to some properties of a part, such as the 
infamous sensitivity of weather systems to a butterfly's 
wing. If this is the case then an accurate derivation of 
a higher level description would require that the prop
erties of the parts are known with unbounded accuracy, 
and there are various reasons, such as the Uncertainty 
Principle, why this is not possible. 

A pragmatic anti-reductionist can also argue that just 
knowing the properties of the parts is not enough to de
rive higher level properties; we also have to know the 
composition of the higher level entities that we are in
terested in, i.e. a set of bridging laws. Thus although the 
set of valid higher level descriptions may be determined 
by the lower level properties, they cannot be discovered 
or derived without additional knowledge. Thus we find 
that there is not a single case in the history of science 
in which a higher level scientific law or description has 
been derived from laws governing its constituent parts; 
rather such phenomena are discovered by investigation 
at the appropriate level and only subsequently related to 
lower level properties. 

The problem with pragmatic anti-reductionism is that 
it implies that as soon as we can discover some system
atic relationship between phenomena at higher and lower 
levels of organisation, then the status of the former is 
threatened. They become potentially reducible, or re
ducible in principle. Pragmatic anti-reductionism fails 
to rebut the central reductionist claim that higher prop
erties are determined by, even whilst they may not be 
derivable from, the lower. Is there an alternative anti
reductionism that can? 

Principled Anti-Reductionism 
Let us consider the particular example of the gas laws. 
This is a locus classicus of emergent behaviour and exem
plifies many of the properties found in the more complex 
models used in ALife. Understanding the relationship 
between the bulk gas laws and the collisions of individ
ual particles was a triumph of reductionism, so hopefully 



by questioning this example I can cast doubt on reduc
tionism as a whole. 
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The reductionist picture of how gases behave is that 
a property such as pressure is an intrinsic property of 
the gas as a whole that rises with temperature and pro
duces a force exerted on the container wall. This latter 
property is supervenient upon the set of molecular mo
menta, each of which is a prior property, intrinsic to 
each molecule, and determining the course of its colli
sions. The pressure is then equal to, and determined by, 
the mean of the set of momenta of molecules in a given 
volume. 

The pragmatic anti-reductionist would argue that we 
cannot measure the momentum of every single molecule 
in practise. However they would (probably) concede that 
the derivations on which statistical thermodynamics are 
based are theoretically sound. Therefore the pragmatic 
anti-reductionist must agree with reductionist that the 
properties of the whole gas are not only determined by, 
but also derivable from, those of the molecular parts in 
this case. Therefore the gas laws are a case in which the 
reductionist and pragmatic anti-reductionist agree. 

However there are two key differences between the re
ductionist idealisation and how things work in real life. 

The first is that in real life gas molecules do not behave 
like atomistic billiard balls, but are complex structured 
entities. Van der Waals forces between adjacent electron 
clouds mean that the molecular collisions are not per
fectly elastic, but instead are slightly 'lossy', with the 
exact behaviour being dependent on the particular phys
ical characteristics of the molecules, and on the velocity 
and direction of the collision. Indeed, as the temper
ature drops, the molecules can stop rebounding at all 
and instead form weak bonds as the gas condenses or 
even crystallises. The gas laws are an approximation, 
describing 'ideal' gases whose molecules collide perfectly 
elastically under all conditions. In short, the pressure of 
a real gas is not equal to its mean molecular momentum. 

The second problem is that, in real life, volumes of 
gas are not in static, isolated, thermal equilibrium. As 
Feynman puts it, 

we shall find that we can derive all kinds of things
marvelous things-from the kinetic theory, and it is 
most interesting that we can apparently get so much 
from so little .... How do we get so much out? The 
answer is that we have been perpetually making a 
certain important assumption, which is that if a sys
tem is in thermal equilibrium at some temperature, 
it will also be in thermal equilibrium with anything 
else at the same temperature. (Feynman 1963, p40-
1) 

So what happens if the system is not in equilibrium?1 

1The study of non-equilibirum systems has been largely 
neglected, with the notable exception of Prigogine (1962). 

The easiest way to find out is to compress it. As soon 
as we do this the measured pressure will rise. As we 
continue to push we do work in compressing the gas, and 
this energy diffuses through the gas and raises the mean 
molecular momentum per unit volume. The properties of 
the parts are therefore causally dependent on those of the 
wholes. The constituent molecules have the momentum 
that they do because of the pressure on the whole. The 
dependency only appears to run the other way when the 
system is static. 

The purpose in these examples is not nit pick, or to 
criticise the classical reductionist understanding of the 
gas laws per se, but to make explicit the assumptions 
that it depends on. In particular it is only accurate to 
say that properties of parts determine those of wholes 
when the entire system is in a narrow range of thermal 
equilibria. Outside of these specific cases it is equally 
true to say that the properties of parts are determined by 
those of the whole, in contrast to both reductionism and 
pragmatic anti-reductionism. Therefore the 'upward' de
pendency on which reductionism depends is an artefact 
of how we choose to model a system, not a property of 
the system itself. 

Reductionism (including pragmatic anti-reductio
nism) is often seen as a necessary implication of physi
calism (Melnyk 1995). After all, if every object is instan
tiated in a set of lower-level parts, then it seems obvious 
and necessary that the properties of those parts will de
termine those of the whole. But this statement of phys
icalism neglects that every object is also situated in an 
overall context, and that it will only have the properties 
it does because of that context. The causal dependence 
between parts and wholes goes down, as well as up. 

Emergence 

Following Nagel (Nagel 1961) the relationship between 
levels of organisation in nature has increasingly been 
described in terms of emergence, and more recently 
the sciences of complexity and artificial life have made 
emergent phenomena their special area of concern. 
Within ALife, emergent phenomena have usually been 
understood in terms of what Casti and others have 
called complex adaptive systems, indeed Langton has de
scribed such systems as the "distilled essence of artificial 
life" (Langton 1988). Such systems start with a collec
tion of well-defined objects each with intrinsic individ
ual properties and governed by laws. These interact, 
producing an overall behaviour which is then described 
as emergent since it is not explicitly defined in any of the 
rules governing any part, but rather is the novel product 
of the interaction of them all. A typical example is the 
higher level behaviours of gliders and blinkers in Con
way's Game of Life. A great deal of energy is then spent 
trying to define precisely what sort of higher order en
tities should count as emergent and which as reducible, 
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usually by trying to pin down the intuitive notions of 
"explicit" or "novel". 

Understood this way, emergent phenomena fit a 
category-theoretic commutativity diagram: 

F 
X(t) - X(t + 1) 

Bl B 

x(t) f x(t + 1) 

in which the states of the lower and upper levels are 
described by x ( t) and X ( t) respectively, the trajectory 
of the lower level is described by the state equation 
x(t + 1) = j(x(t)), the upper by X(t + 1) = F(X(t)), 
and the synchronic bridging law describing the compo
sition of the higher entities in terms of the lower by 
X(t) = B(x(t)). In some cases, such as Life, the lower 
state equation is exact, quantitative and deterministic, 
whereas the higher level rules, such as "eaters tend to de
stroy blinkers", are statistical and qualitative. In other 
cases, such as the model of an ideal gas used to derive 
the gas laws, the higher will also be exact. 

The commutativity of the diagram is ensured by the 
fact that F is determined by B and f, since it is that 
mapping that satisfies F B = B !-though F will only be 
formally derivable if B is invertible. In other words, if 
there are a set of laws governing the behaviour of the 
objects at the lower level then, given the composition of 
an aggregate, the behaviour of that aggregate is deter
mined. Therefore higher-level behaviours produced in 
this way can never count as truly emergent, but rather 
are determined by the properties of the atomistic ob
jects. Many aspects of the higher behaviour may not be 
analytically derivable from those of the parts, and must 
be discovered through empirical computer experiments; 
but this is just a failure of our analysis and does not 
mean that they are not determined by the lower proper
ties. Such higher level behaviours are emergent in only 
an epistemic sense; only for a pragmatist, such as Den
nett, will they also be ontologically emergent (Dennett 
1991). 

I do not wish to make this a terminological dispute: if 
we wish to describe phenomena such as gliders as emer
gent, then so be it. However, in this case we can no 
longer associate emergent with non-reducible, and if we 
want to be anti-reductionist about physical phenomena, 
then we have to find a different way of understanding 
them than emergence as it is traditionally used. Also 
note that this is not a criticism of the study of systems 
such as Life per se; after all they are a fascinating class 
of formal system, and can give us clues about the ori
gins of much natural pattern and order. The problem 

comes when they are used as the sole intuition pump 
and model for understanding emergence, reductionism, 
and the relationship between levels of organisation in 
natural systems. But what is the alternative? 

Consider this example. Every cell in an organism car
ries exactly the same genome as every other. However 
in, say, a mammal, there will be around 300 different 
types of cells-blood cells, hair cells, liver cells, and so 
on-depending on which genes are expressed. When a 
new cell is produced, why does it become one type of cell 
rather than another? There are two sorts of answer. The 
first points to the particular biochemical mechanisms in 
the new cell's environment that caused particular genes 
to switch on. The second identifies the cause at a higher 
level: a cell becomes a liver cell because it is born in a 
liver, and so on. Both of these stories are correct. There 
is no conflict between them and which one we choose to 
tell depends on what aspects of development we want to 
understand. The latter explains how the body maintains 
a stable overall structure despite individual cell death. 
The former explains how this is achieved in a particu
lar case. The lower level story is not 'more right' than 
the higher, and nor is the higher assymetrically depen
dent on the latter. The reductionist intuition is to say 
that given the range of biomolecular mechanisms, then 
the effects of the liver context are fixed. But this misses 
the fact that if it were not for the presence of the entire 
liver, then those mechanisms would not be produced in 
the first place. Indeed it was precisely the problem of 
restoring the totipotency of differentiated cells-and so 
neutralising the effect of the context upon them-that 
made the cloning of adult mammals seemingly impossi
ble. Even now that it has been done with a particular 
group of cells taken from the udder of a sheep we still 
have very little idea of how the process works, how to 
make it reliable, or whether the technique will generalise 
to cells taken from other contexts. 

In the case of Life, the rules governing the fate of a 
cell are written in lower level terms such as "a cell will 
not survive into the next generation if it has no neigh
bours". In practise the fate of a particular cell will be 
instrumentally dependent on its context, but this depen
dence is derived from the more fundamental dependence 
expressed in formal atomistic terms. In other words, the 
fate of a particular cell will be dependent on its position 
within a glider or blinker, but only because the future 
state of a cell is a function of the number of neighbours 
that it has, and gliders and blinkers are made from dif
ferent arrangements of cells. The future of a cell is not 
affected by its position within a glider qua glider. 

In general the reductionist approach is to start with a 
set of deterministic laws governing the atoms of the sys
tem expressed as functions of atomistic properties. We 
can then derive-if not formally then at least empirically
qualitative, statistical, rules governing higher level ob-



jects expressed only in terms of higher level properties. 
However, if we accept that these latter rules are real, 
then we should also accept that distal rules that de
scribe the fate of cells in terms of the properties that 
they are part of, are also real. For example "a cell that 
is part of a blinker will tend to go into the reverse state 
in the next generation", "a cell that is part of an ag
gregate that is attacked by an eater will soon die" (or 
"cells born in livers become liver cells"). These down
ward rules, which attribute the cause of the fate of the 
part to the properties of the whole, may be qualitative 
and non-deterministic, but no more so than the derived 
higher level rules that we all wish to defend; and they 
should be accorded the same status. 

In the case of physical systems we are not presented 
with a set of laws, but with a set of empirical regulari
ties: the job of the scientist is then to find accurate ways 
to describe and account for those regularities in descrip
tive laws. If we want to describe a physical system in 
such a way that preserves the non-reducible and non
eliminable nature of its emergent phenomena we should 
therefore include three sorts of laws: atomistic laws that 
describe the interactions of parts; 'bridging' laws that de
scribe the composition of higher order entities in terms 
of their parts; and 'downwards' laws that describe how 
properties of those entities act as contexts to affect their 
parts. 
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We also need to be careful how we individuate the 
parts, as this too can be dependent on the context. In 
Life, for example, 'a cell' usually refers to a value as
cribed to a fixed coordinate position; 'the fate of a cell' 
then refers to what happens at that position in the fu
ture. However we could also refer to a cell by reference 
to the higher order object that it is part of. For example, 
we could refer to 'the cell' at the nose of a glider even as 
it traverses the grid, occupying a series of positions. If 
we individuate the parts of the system in this way-a way 
which is irreducibly dependent on prior individuation of 
higher level objects-then a whole new type of order is 
revealled. The fixed coordinate positions only seem like 
the 'real' cells compared with the 'virtual' mobile ones 
because of the way the formal system is defined. In na
ture there are no such given formal rules. 

Conclusion 

The starting-point of reductionism is that wholes are de
pendent on parts, but not vice versa. This assumption 
is also carried over into traditional models of emergent 
phenomena, such as the Game of Life. Pragmatic anti
reductionism agrees with this starting point but denies 
some of the implications that a reductionist draws, such 
that there are higher properties and behaviours of a sys
tem that cannot be analytically derived from those of 
the parts. 

A more principled anti-reductionism holds that prop-

erties are held by objects in, and because of, their con
text; which implies that the dependence relation between 
levels of organisation is symmetrical. According to this 
reductionism is not just wrong in practise, but wrong in 
principle. 

New assumptions about the relationship between lev
els of organisation in nature require new models to de
scribe them. Therefore if we want to understand emer
gent phenomena in nature, then we will need models in 
which ontological symmetry between levels is built into 
their formal definition. 
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Abstract 

A population of visually guided agents has been evolved 
to forage for food pellets using an extended genetic 
algorithm. Each agent is equipped with an artificial neural 
network that controls its behaviour and a simple eye that 
provides input from the environment. The genetic algorithm 
is responsible for the positioning of light sensitive cells on 
the retina of the eye and also the design of the neural 
network. This includes the number, size and sensitivity of 
the light sensitive cells and also the number of neurons, 
connectivity and weights contained within the neural 
network. The system produces complicated and highly 
recurrent neural network controlled agents that can 
successfully forage for food pellets. 

Introduction 

Many organisms in the natural world exhibit complex 
visually guided behaviours, these systems have not been 
designed but have arisen over many millions of years 
throughout the course of biological evolution. Creatures 
with simple visual and nervous systems have given rise to 
creatures with more sophisticated visual and nervous 
systems. Although it is difficult to see exactly how these 
systems have evolved it is apparent that these systems must 
have evolved together in order to produce viable visually 
guided behaviours (Reynolds 1994 ). 

Classically, AI vision systems have used high bandwidth 
images consisting of many hundreds of thousands of pixels. 
Such systems are difficult to design, as it is not always 
obvious how to translate the visual information into the 
desired behaviour. We therefore advocate using an 
incremental evolutionary approach to develop simple visual 
systems as in Cliff, Husbands and Harvey (1993). Instead 
of starting with high bandwidth vision systems each agent 
starts life with only a very simple visual system and 
controlling neural network. As evolution proceeds the 
neural networks and visual systems co-evolve and can 
become more complex until the agents reach a sufficient 
level of proficiency. It is also possible that agents may 
become less complex and still become better at the given 
task. In this way, it is the complexity of the task that 
dictates the complexity of the visual system and the size of 
the neural network required. 

Foraging Task 

In the experiments, described below, we evolve a 
population of visually guided fish-like agents whose task is 
to collect as many food pellets as possible from their 
aquatic environment. Each agent in the population must 
evolve to be able to gather relevant visual information from 
the environment and suitably co-ordinate its behaviour in 
order to collect food pellets. Each agent receives sensory 
input from the environment through a single 180 degree 
field of vision eye. An internal neural network processes 
this visual information in order to control two side-mounted 
thrusters with which an agent is able to propel itself through 
the environment. A simple schematic of an agent within the 
environment is shown in Figure 1. 

The environment consists of a shallow pond containing 
agents that are free to roam about and collect food pellets. 
This is effectively a 2-D plane within which all objects are 
subject to viscous damping. Collisions between an agent 
and a food pellet cause the agent to pick up and 'eat' that 
food pellet. Every time an agent cats a food pellet, a new 
food pellet is placed at a random location in the pond, this 
prevents the agents from consuming all the food pellets in 
the environment, leaving room for agents to improve their 
foraging behaviour. 

For the purposes of agent vision all objects in the 
environment, including other agents, are considered to be 
circular. Objects are rendered in order of distance so that 
closer objects obscure more distant ones. The intensity of 
the object to be rendered is determined by an inverse square 
relationship to range. The size and position of the region of 
retina illuminated by the object is dependent on the 
apparent angle and angular width of the object. 

Genetic Representation 

In order to evolve agents in an incremental and open
ended manner, the representation must be able to specify 
both simple and complex visual and neural structures, such 
that the evolutionary process can gradually build up these 
structures so as to produce the desired behaviour. 
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Figure 1: Agents propel themselves through the 
environment using two side mounted thrusters, all 
objects in the environment are considered to be 
circular for the purposes of agent vision and are 
projected onto each agents retina. 

Visual morphologies 
The image mapped onto the retina is sub sampled by a 

number of light sensitive cells, whose size, position and 
sensitivity are determined by the agents' genotype (Harvey, 
Husbands and Cliff 1994). Each cell calculates the mean 
intensity of red, green and blue light falling on it and 
returns a weighted sum as the input to its associated neuron. 
The structure of a light sensitive cell definition is shown 
below. 

Cell definition: 
<expressed><position><size><Rs,Gs,Bs> 

where: 

expressed 
position 
size 
Rs,Gs,Bs 

-controls gene expression i.e. gene on/off 
-position of cell on retina 
-size of cell 
-weights controlling sensitivity of cell to 
red, green and blue light respectively. 

Neural networks 
The neural networks that control the behaviour of each 

agent are effectively 'hard wired', since the morphology 
and weights of the network do not change during the 
lifetime of an agent. Each neuron in the network calculates 
a weighted sum of its inputs and subjects this to a standard 
sigmoid function. The output of a neuron is thus given by: 

where: 

o/t) is the output of neuron i at time t. 
wJ.i is the weight that connects the output of neuron j to the 
input of neuron i. 
s/t) is a possible external input into neuron i from a light 
sensitive cell. 
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b; is the bias (effectively a weight connected to a 
permanently active neuron) of neuron i. 
The function sig(x) is a standard sigmoid function given by: 

1 
sig(x) = _ 

l+e x 

Connections are made in these networks by matching key 
values of weights with the key values of neurons, a 
connection being made to the neuron with the closest key 
value. This is done using a similar method to that of 
Fullmer and Miikkulainen (1991). The structure of a 
neuron definition is shown below. 

Neuron definition: 

where: 

key 

<key><bias><w 0,k0><w1,k1> ••. <w,,,k0> 

-Node identification value used in making 
connections. 
-is the bias of the node. 
-specifies the weight of a connection. 
-specifies the target of the connection. The 
connection will be made to the node whose 
key value is closest to this value. 

Overall representation 
The genetic representation used consists of a variable 

number of chromosomes, each of which is allowed to 
change in length. Each chromosome consists of a string of 
real valued numbers and specifies a neuron, its output 
connections and an associated light sensitive cell that may 
provide input to that neuron. 

Extending the Genetic Algorithm 

In order to evolve agents in a truly incremental manner, 
it is necessary to make several modifications to the standard 
genetic algorithm. Our implementation borrows many ideas 
from Harvey's SAGA (Species adaption genetic 
algorithms) artificial evolution techniques, more 
information can be found in Harvey (1992a). 

Similarities to a standard GA 
The general principles underlying SAGA are much the 

same as those of a standard GA. Potential solutions to a 
problem are encoded on strings of data called 
chromosomes, this encoded version of a solution is referred 
to as the genotype. A genetic algorithm operates on a legion 
of genotypes, the population, containing numerous potential 
solutions to a problem. Each genotype in the population is 
initialised with random data and the algorithm begins its 
main loop. First, each genotype is decoded into the actual 
solution to the problem, the phenotype, in our case this is a 
specific visual morphology and neural network. The 
phenotype is then evaluated to see how well it solves the 



problem and is assigned a fitness, as defined by some 
objective function, a fitness function, that defines the 
problem to be solved. Once all members have been 
evaluated and assigned a fitness, those genotypes in the 
population with the best fitness scores arc radomly 
selected to be recombined in order to form a new 
population. Small random changes or mutations may also 
modify the genotypes of the new population members. 
Each iteration of this loop is referred to as a generation. 
The basic idea of a GA is that genotypes that led to good 
phenotypes in previous generations can be recombined and 
modified in order to produce new and hopefully better 
phenotypes in subsequent generations. A good introduction 
to standard genetic algorithms is Goldberg ( 1989). 

Differences from a standard GA 
Whilst SAGA is very similar in concept to a standard 

GA it also contains some important differences. A standard 
GA operates in a search space of fixed dimensionality, 
whereas SAGA also allows for the dimensionality of the 
search space to change, as evolution proceeds. This allows 
the complexity of a solution to change dependent on the 
fitness function. It is worth noting that SAGA may increase 
or decrease the size of a genotype in order to increase 
fitness. 

In a standard GA, measures are normally taken to 
prevent or slow convergence of the population, however 
SAGA searches problem spaces with a relatively converged 
homogenous population or species. In the case of the 
evolution of cognitive structures there is often no simple 
correlation between the genotype and the behaviour of the 
phenotype. It is therefore argued in Harvey (1993) that it is 
only when a population is nearly converged that 
recombination is likely to be beneficial. 

Recombination 
In our implementation recombination is performed in a 

rather different fashion to that advocated in Harvey 
(l992b). However, the basic underlying concept is the 
same, namely that like genes are exchanged with like genes 
in order to produce viable offspring with a full complement 
of genes. In our implementation the genotype consists of a 
variable number of variable length chromosomes that 
together specify a complete visual morphology and neural 
network. Recombination is achieved by matching the 
homogenous chromosomes from both parents and allowing 
crossover only within matching genes. 

Mutation 
After recombination, the offspring may undergo a 

mutation, this may take the form of a point mutation or of a 
more radical type that causes entire chromosomes to be 
deleted from or inserted into the genotype. In the case of 
point mutation a small random gaussian number is added to 
one of the real numbers that constitute the genotype. On 
average one such point mutation will occur every time a 
new genotype is generated through recombination. 
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More radical mutations that add or remove entire genes 
from the Genotype are much less likely, each gene in the 
genotype stands a small probability of being removed or 
replicated. 

Multiple species evolution 
SAGA typically has a single focus around which 

members of the population search. Such a population will 
follow a single line of descent, unlike the branching 
structures produced by biological evolution. 

In a multimodal search space, peaks can be thought of as 
niches, capable of supporting a certain number of 
individuals from the population. Each peak is then 
populated according to its fitness relative to other niches 
within the population. The number of individuals found 
within any niche reflect the amount of computational effort 
the GA is currently spending attempting to improve that 
niche. This is known as niche proportional selection. 

One method of niche formation is sharing, first 
introduced by Holland ( 1975) and extended by Goldberg 
and Richardson ( 1987). Fitness sharing causes similar 
individuals to share fitness with each other. Sharing reduces 
the fitness of members of the population that have a high 
degree of similarity to others in the population, this 
effectively rewards those members of the population that 
are able to exploit unique areas of a search space. Sharing 
creates a selection pressure that acts to increase population 
diversity and also causes members of the population to 
focus on local optima. Such a population will be fairly 
diverse, however it will be relatively converged within each 
niche, thus the individuals within each niche constitute a 
separate species. To prevent recombination of very 
different species, which would be likely to generate 
unviable offspring, a breeding restriction scheme is also 
implemented that makes it improbable for dissimilar 
genotypes to be recombined, whereas similar genotypes 
stand a high probability of recombination. 

The genetic algorithm evolves several different species 
concurrently, these different species can be thought of as 
different prototype solutions, those prototypes which seem 
more promising (according to the fitness function) will 
have more members of the population searching that 
particular species' niche, attempting to modify and improve 
the species. Poorly performing species, that arc unable to be 
improved will eventually become extinct as population 
resources are allocated to better performing species. 

Overall strategy 
The selection scheme used is tournament selection with a 

tournament size of 2. This provides a uniform, weak, 
selection pressure across the population. 

The fitness function consists of two parts. The first term 
relates to the task at hand, i.e., picking up as many food 
pellets as possible within the 3 minutes of simulated time. 
The second term penalises genotypes that do not perform as 
well as smaller genotypes, this controls the growth of 
genotypes and causes the algorithm to optimise neural 



networks for efficiency. Without this term genotype lengths 
were found to increase uncontrollably. It is only significant 
within a converged species, as within a species N, will be 
approximately equal. 

The fitness function is given by: 

L 
F =N- I 

' ' max(L) 

where: 

N, is the number of food pellets consumed by agent i during 
its lifetime. This is always a whole number. 
L, is the length of genotype of agent i. 
max(L) is the longest genotype in the population. 

Evolved Systems 

Behaviours 
The simulation was allowed to run for 500 generations, 

with a population of I 00 agents. The resulting evolved 
behaviours are dependent on the dynamics of the agents and 
the environment containing them. Namely the maximum 
force produced by the thrusters, the viscosity of the fluid 
and the density of food within the environment. 

Two types of efficient foraging behaviours were evolved. 
The first type of behaviour causes an agent to move fairly 
slowly through the environment, this allows an agent the 
time to turn towards and collect any food pellets that may 
be within its visual field . This will often involve stopping 
and changing direction in order to acquire a food pellet. 

The second type of behaviour causes an agent to move 
through its environment rapidly, agents will not stop in 
order to eat food pellets, and they will attempt only to steer 
towards a food pellet, without slowing down significantly. 
This behaviour is viable since an agent will be likely to 
encounter another food pellet which it can easily collect in 
less time than it would take to stop, turn and collect a pellet 
that is off course. 

Evolved structures 

An example of an evolved visual morphology and neural 
network is shown in Figure 2; the network has been 
simplified by pruning weak connections. As can be seen, 
the network is complicated and has many recurrent 
connections. It is fairly easy to see how feed-forward 
connections specify certain aspects of the observed 
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Figure 2: Evolved neural network and visual morphology. 
Light sensitive cell sample positions and widths are shown 
by square brackets. 

behaviour, the small light sensitive cells at the edges of the 
retina cause turning behaviour. The cell at the right edge of 
the retina excites node I 0, which in turn inhibits node 3 
which causes the left thruster to increase its thrust, turnin~ 
the agent to the right. In addition a direct excitatory 
connection from the left of the retina is connected to node 
3, this causes the left thruster to decrease its thrust, turning 
the agent towards the left. Connections between the output 
nodes cause the agent to steer more effectively. 

Within sections of the network that contain many 
recurrent connections, however it soon becomes very 
difficult to work out exactly how the observed behaviours 
are generated. This is because feedback due to recurrent 
connections causes time delays, so the network must be 
considered as a dynamic system that interacts with the 
environment (Beer 1996). The structure of such a control 
network is only likely to make sense within the context of 
the agents environment. 

Genotype lengths 
As can be see from Figure 3, the mean genotype length 

stays fairly constant for the majority of the time, and never 
drops below a lower limit; genotypes below this value are 
unviable. 

The large spike that occurs at generation 300 is due to 
the emergence of a new neutral species with a longer 
genotype, as can be seen it is accompanied by a large 
increase in population diversity. Since there is no 
noticeable increase in the mean fitness of the population, 
this strongly indicates that this is a result of a neutral 
recombination where the genotypes of two individuals were 
fused together. The redundant sections of this longer 
genotype are quickly removed by the action of the 
optimising criterion in the fitness function. 
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Figure 3: Evolution of mean fitness, mean genotype 
length, and population diversity. 

Discussion 

The experiments successfully evolved some simple 
visually guided behaviour. The same two basic strategies 
were evolved in successive simulation runs, an example of 
convergent evolution. The networks generating these 
similar behaviours were, however, very different. 

Reasonable visually guided behaviours can be evolved in 
a relatively small number of generations. This opens up the 
possibility of evolving real world, visually guided, 
autonomous robots. This will be a topic of future research, 
we intend the robots to have real hardware analogue neural 
networks rather than an on board microprocessor. 

Future work will also focus on predator prey co
evolutionary systems in order to evolve more interesting 
and complex visually guided behaviours. 
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Abstract 

In this study we propose an artificial market approach, 
which is a new agent-based approach to foreign exchange 
market studies. Using this approach, emergent phenom
ena of markets were explained. This approach consists 
of fieldwork, construction of a multi-agent model, and 
computer simulation of a market. The simulation results 
show that the emergent phenomena can be explained 
by a phase transition of forecast variety. This approach 
therefore integrates fieldwork and a multi-agent model, 
and provides a quantitative explanation of micro-macro 
relations in markets. 

Introduction 
Recently, large economic changes have brought to our 
attention the behavioral aspects of economic phenom
ena. One example is that large fluctuations in ex
change rates are said to be mainly caused by 'bandwagon 
expectations' 1 . This fact shows that an exchange mar
ket has the features of multi-agent systems: autonomous 
a.gents, interaction, and emergence. 

These features a.re related to the micro-macro prob
lem in economics. Most conventional market models in 
economics, however, ignore the multi-agent features by 
assuming a Rational Expectations Hypothesis (REH). 
REH assumes that all agents are homogeneous and for
bids essential differences of agents' forecasts. Recently, 
this assumption has been criticized and the multi-agent 
features have been said to be important for analysis of 
the micro-macro relation in markets. 

Among several alternative approaches, there are multi
agent models. These model the market with artifi
cial adaptive agents and conduct computer simulations. 
There are, however, two problems in the multi-agent 
models constructed up to now. First, they do not reflect 
the results of fieldwork studies about behavioral aspects 
of agents. Second, they do not use actual data series 
about economic fundamentals and political news. They 
can not, therefore, investigate the actual exchange rate 
dynamics quantitatively. 

1The word "bandwagon" here means that many agents in 
a market ride along with the recent trend. 

The purpose of this study is to propose a new agent
based approach of foreign exchange market studies, an 
artificial market approach. This approach integrates 
fieldwork and multi-agent models in order to provide a 
quantitative explanation of the micro and macro relation 
in markets. 

Framework of the Artificial Market 
Approach 

The artificial market approach is divided into three steps. 
First, fieldwork; field data of actual dealers' behavior are 
gathered by interviews. As a result of analysis, hypothe
ses are proposed about the dealers' behavioral pattern. 
Second, construction of a multi-agent model; a multi
agent model of the market is implemented based on these 
hypotheses. The model provides linkage between the 
behavioral pattern of agents at the micro level and the 
rate dynamics at the macro level. Third, analysis of 
emergent phenomena; in order to evaluate the model, 
we conduct simulations using actual data of economic 
fundamentals. Based on the simulation results, we ver
ify whether the model can explain emergent phenomena 
of an actual market. 

This approach has two advantages over previous stud
ies. First, a multi-agent model in this approach reflects 
the results of fieldwork, because the model is constructed 
on the basis of observations of dealers' behavior, and 
because actual data about economic fundamentals and 
news are used in the simulation. Next, the model is 
evaluated at both the micro and macro level. At the mi
cro level, the behavioral patterns of agents in the model 
are compared with those of the actual dealers in the field 
data. At the macro level, it is verified whether the model 
can simulate the emergent phenomena of rate dynamics 
in the real world. These advantages of the artificial mar
ket approach are necessary for a quantitative analysis of 
the micro-macro relation the actual markets. 

Fieldwork 

We observed the actual dealers' behavior by interviews 
and proposed a hypothesis of dealers' learning, which is 
used in the construction of the multi-agent model. 



399 

Interview Methods We held interviews with two 
dealers who usually engaged in yen-dollar exchange 
transactions in Tokyo foreign exchange market. We 
asked each dealer to do the following with respect to the 
rate dynamics from January 1994 to November 1995: To 
divide these two years into several periods according to 
their recognition of the market situations, to talk about 
which factors they regarded as important in their rate 
forecasts in each period, to rank the factors in order of 
weight (importance), and to explain the reasons for their 
ranking. When they changed the ranking between peri
ods, to explain the reasons for the reconsideration. 
Results From the interview data, we found three basic 
features in the acquisition of prediction methods in the 
market. First, there are fashions in the interpretation 
of factors in the markets, which are called market con
sensus. Second, the dealers communicated with other 
dealers to infer a new market consensus, and replaced 
(part of) their prediction method with that of other deal
ers which better explained recent rate dynamics, when 
switching prediction method. Finally, large differences 
between forecasts and actual rates promoted a change of 
each dealer's opinion. For example, in July 1995, when 
the rate reached the level of 92 yen, one dealer suddenly 
recognized that the trend had changed. He then dis
carded his old opinions about factors and adopted new 
opinions. 

From the above features, we propose the following 
hypothesis at the micro level in markets. When the 
forecasts based on a dealer's own opinion markedly dif
fers from the actual rates, each dealer replaces (part of) 
their opinions about factors with other dealers' success
ful opinions. This hypothesis implies that the learning 
pattern of actual dealers is similar to the adaptation in 
ecosystem. In our multi-agent model, the adaptation 
of agents in the market will be described with genetic 
algorithm, which based on ideas of population genetics. 

Construction of a Multi-agent Model 
Using weekly actual data, the proposed model iteratively 
executes the five steps (Fig.I and Fig.2). 

I 
I 
I 

I 
Extemal 1 

Data 1 

A foreign exchange market 

Internal 
Data , _______________________ ; 

Figure 1: Framework of model. 

STEP 1: Perception Each agent first interprets raw 
data and perceives news about factors affecting the yen
dollar exchange rate. The news data are made by cod
ing the weekly change in 17 data streams2 • Those values 
range discretely from -3 to +33 • External data are de
fined as the data of economic fundamentals or political 
news (No.1-14). Internal data are defined as data of 
short-term or long-term trends of the chart (No.15-17). 
STEP 2: Prediction Each agent has his own weights 
of the 17 data, whose values range among nine discrete 
values { ±3, ±1, ±0.5, ±0.1, O}. After receiving the data, 
each agent predicts the rate fluctuation of the coming 
week by using the weighted average of the news data in 
this week as well as equations (1) and (2) in Fig. 2. 
STEP 3: Strategy Making Each agent has dollar 
assets and yen assets. Each agent decides, on the basis of 
his or her own prediction, the trading strategy (order to 
buy or sell dollar) according to Equations (3), (4), and 
(5) in Fig. 2. The trader then maximizes his negative 
exponential utility function4 of his expected return of 
the following week. 
STEP 4: Rate Determination After the submis
sion of orders, the demand (resp., supply) curve is made 
by the aggregation of orders of all agents who want to 
buy (resp., sell). The demand and supply then deter
mine the equilibrium rate, where supply and demand 
just balance. 
STEP 5: Adaptation In our model, different agents 
have different prediction methods (combinations of 
weights). After the rate determination, each agent im
proves his prediction method using other agents' predic
tions. Our model uses GAs to describe the interaction 
between agents in learning. 

A chromosome is a string of all weights of one agent, 
that is, the trader's prediction method. The fitness value 
reflects the forecast accuracy of each prediction method 
as per Equation (7) in Fig. 2. Our model is based on 
Goldberg's simple GA 5 . The selection operator is eco
nomically interpreted as the propagation of successful 
prediction methods. The crossover operator works like 
the agent's communication with other agents, and the 
mutation operator works like independent changes of 
each agent's prediction method. 

2The 17 data are 1. Economic activities, 2. Price, 3. 
Interest rates, 4. Money supply, 5. Trade, 6. Employment, 7. 
Consumption, 8. Intervention, 9. Announcement, 10. Mark, 
11. Oil, 12. Politics, 13. Stock, 14. Bond, 15. Short-term 
Trend 1 (Change in the last week), 16. Short-term Trend 2 
(Change of short-term Trend 1), and 17. Long-term Trend 
(Change through five weeks). 

3Plus (minus) values indicate that the data change causes 
dollar depreciation (appreciation) according to traditional 
economic theories. 

4Equation (3) is calculated by using this function. 
5 The percentage of selection is called the generation gap, 

G. A single-point crossover (mutation) operation occurs with 
probabilities Pcross (Pmut). 



Example (Week t, Logarithm of last week's rate = 5.20) 

ercept10n 
This week's news data (common to all agents). 

J Interest J Trade J Stock J Trend J 

I ++ I I - - - I ++ I 
STEP 2: Prediction 

Agents i's weights. 
I +o.5 I -o.5 I +0.1 +3.o 

Agent i's forecast: 

Mean= trunc{L:)Weight x News)} x scale ... (1) 

=trunc{ ( +2) x ( +0.5)+(-1) x (-1.0)+(-3) x ( +0.1)+ 
(+2)x(+3.0)}x0.02 = +7x0.02 = +0.14 +-Rise from 5.20 
ariance- 1 = 

j{I;(Weight x News> 0)}2 - {I;(Weight x News< 0)}2 
... (2) 

= j{2 x +0.5 + (-1) x (-1.0) + 3 x 2.0}2 - {-2 x 0.1}2 
= 8.00 

STEP 3: Strategy Making 
Optimal amount of agent i's dollar asset 

= (Forecast mean) / (Forecast variance) ... (3) 
= +0.14x 8.00 = +1.12 
gent i's order quantity 
= (Optimal amount) - (Last week's amount) ... (4) 
= +l.12 - (-0.74) = +1.86 (Buy) 

( + : Order to buy, - : Order to sell.) 

gent i's strategy 
= {l.86 (Buy) (If rate :S +0.14) (5) 

No Action (If rate > +0.14) ··· 
Each agent rders to buy (resp., sell) when the rate is lower (resp., 
igher) than his forecast mean. 

STEP 4: Rate Determination 

Rate 

This week's rate 
5.20+0.50=5.70 

Last week's rate 
5.20 

Transaction No transaction 

Demand curve T Supply cu~~. 
Equilibrium "' "' .. .. 

+0.50 - - - ---
Transaction amount 

STEP 5: Adaptation 

Quantity 

gent i's Chromosome={ +0.5, -1.0, +0.1, +3.0} ... (6) 
gent i's Fitness 

=-I (Forecast mean)-(Rate change)! ... (7) 
= -1( +0.14) - ( +0.50)1 = -0.36 

.lJ. GAs (Selection,Crossover,Mutation) 
New weights 

.lJ. 
STEP 1 in the Next Week t 1 

Figure 2: Algorithm. 
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After the Adaptation Step, the week ends and our 
model proceeds to the next week's Perception Step. 

Analysis of Emergent Phenomena 
In order to examine the emergent phenomena of mar
kets, we conducted extrapolation simulations of the rate 
dynamics from January 1994 to December 1995. 

Simulation Methods 
We repeated the following procedure a hundred times 
in order to generate a hundred simulation paths6 First, 
the initial population is a hundred agents whose weights 
are randomly generated. Second, we trained our model 
by using the 17 real world data streams from January 
1992 to December 19937 . During this training period, 
we skipped the Rate Determination Step and used the 
cumulated value of differences between the forecast mean 
and the actual rate as the fitness in the Adaptation Step . 
Finally, for the period from January 1994 to December 
1995 we conducted the extrapolation simulations. In this 
forecast period, our model forecasted the rates in the 
Rate Determination Step by using only external data. 
We did not use any actual rate data, and both the inter
nal data and the fitness were calculated on the basis of 
the rates generated by our model. 

Overview of Results 

The simulation paths are divided into two groups: the 
bubble group, in which the paths have a quick fall and a 
rise (a rate bubble) (Fig. 3a), and the non-bubble group, 
in which the paths don't have such a bubble (Fig. 3b) 8 . 

The movement of the actual path is similar to that of 
the mean path of the bubble group. On the other hand, 
the path extracted by linear regression using the external 
data of our model moves in a way similar to that in which 
the mean path of the non-bubble group moves. 

Phase Transition of Forecast Variation 
In order to analyze any emergent phenomena, we exam
ine a phase transition in the agents' forecast variability 
(variation) in the simulated paths. We analyze five sim
ulation paths randomly selected from the bubble group. 
Because the pattern of these results are common among 
the selected five paths, we illustrates the results of one 
typical path. 
Flat Phase and Bubble Phase Each simulated path 
in the bubble group is divided into two phases: The pe
riod with small fluctuations(Mar.'94 - Dec.'94) is termed 

6 We used the parameter sets (Pcross=0.3, Pmut =0.003, 
G=0.8). The simulation suffered from the smallest forecast 
errors by using this set in our previous study. 

7 Each weekly time series was used a hundred times, 
so in this training period there were about ten thousand 
generations. 

8 The bubble group occupies 253 of all the simulation 
paths. The non-bubble group occupies 753. 
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Figure 3: Distribution of simulation paths. 

the fiat phase while the period with large fluctuations 
(Jan.'95 - Dec.'95) is termed the bubble phase. 

- Percentage of agents who forecast a drop of dollar 
- Percentage of agents who forecast a rise of dollar 

100~~~......'-~:.--.-~~~~~~~~ 

.. 

[ 
20 

'94 2 ) 4 5 6 7 8 9 10 II 12 '95 2 l 4 5 6 1 I 9 10 II 12 
I I 

Figure 4: Percentages of agents' forecasts 

Fig. 4 shows the percentage of forecasts of rise and 
drop of the dollar, in the form of four weeks averages. 
In the fl.at phase, the variation among forecasts is rich 
because there are forecasts on both sides. In the bub
ble phase, the variation among forecasts is poor because 
most agents agree. 

In the fl.at phase, because there is sufficient supply and 
demand at or around last week's rate, supply and de
mand tend to meet around the the last week's rate, (i.e., 
the rate fluctuation is small), and the trading amounts 
are larger at the equilibrium point. In contrast, during 
the bubble phase, the supply and demand are one-sided, 
so the trading amounts are smaller at the equilibrium 
point. Supply and demand tend to meet away from the 
previous week's point because there are not enough op
posite orders at last week's equilibrium rate. Hence, the 

rate fluctuation tend to get larger. 

Mechanism of Phase Transition In order to de
termine the mechanism behind the phase transition, we 
need to investigate the dynamic patterns of the agent's 
weights. 

First, the weights are classified by a factor analysis. 
The matrix which is analyzed is a list of 12 weights9 of 
100 agents every 10 weeks. As a result, six factors are 
extracted10 . Weights of Economic activities and Price 
data have the largest loading value of the first factor. We 
call the first factor Price monetary factor, because these 
two data are used by the price monetary The second fac
tor has relation to Short-term trends and Stock data, so 
we call it Short-term factor. The third, to Trade and 
Interest rate data, which are included in the portfolio 
balance approach in econometrics, so we call it Portfolio 
balance factor. The forth, to Announcement and Em
ployment data, so we call it Announcement factor. The 
fifth, to Intervention, Politics, and Employment data, 
so we call it Politics factor. The sixth, to Long-term 
trend data, so we call it Long-term factor . Moreover, 
according to their meanings we divide these six factors 
into the three categories. Price monetary and Portfolio 
balance factor are classified into Econometrics category. 
Announcement and Politics factor, into News category. 
Short-term and Long-term factor, into Trend category. 

Next, for each category, the dynamics of its weight is 
examined. First, the weights of Econometric category 
are relatively stable, however, its absolute value is so 
small that the influence on rates is not so large. Only 
Portfolio balance factor has large absolute values dur
ing the bubble phase. Second, the very strong market 
consensus about News category is established just be
fore the bubble phase started. Finally, because of the 
large correlation before the bubble started, the weights 
of the trend category got larger in the bubble phase. The 
plus weights of Trend category mean that agents forecast 
that the trend in the future will be the same as the re
cent trend. Therefore, the upward (downward) trend of 
dollar makes demand (supply) of dollar. The demand 
(supply) makes the following upward (downward) trend, 
and so on. It is defined as positive feedback. However, at 
the end of the bubble phase, this positive feedback weak
ened because the weight of the long-term data changed 
into negative territory. After the rate passed its low
est point in May '95, the correlation coefficients became 
much smaller. A lack of opposing orders thus led the 
forecasts using the trend data to fail. 

In summary, we propose the following mechanism to 
explain the transition between phases. First, in the fl.at 
phase, there are varying opinions with respect to the 
News and Trend category. This leads to large trading 

9 Five time series are discarded because they are alway 
zero or both their market average and variance are too small. 

10The proportion of explanation is 67.0 %. 



amounts and small exchange rate fluctuations. Second, 
in the later half of the flat phase, many agents focus on 
Trade, Announcement, and Politics data. Third, a con
vergence of opinions with respect to these data and a 
positive feedback of Trend factors ushered in the bubble 
phase, which leads to small trading amounts and large 
rate fluctuations. Fourth, in May 1995, almost all fore
casts in the market converged. Because there were no 
opposing orders in the market, the downward trend van
ished. Finally, after the rate passed its lowest point in 
May 1995, the weight of the long-term data became neg
ative, and the positive feedback was weakened. Thus, 
the bubble phase ended. 
Departure from Normality Many statistical stud
ies reveal that the distribution of rate changes is differ
ent from normal distribution. The rate changes in the 
simulations of the bubble group also have peaked, long 
tailed (i.e., leptokurtic) distributions not unlike the ac
tual rate. In fact, the kurtosis of a typical simulation in 
the bubble group (0.477) is close to that of actual rate 
changes (0.564) 11 . The mechanism giving rise to such a 
leptokurtosis can be explained by the phase transition. 
The distribution of rate changes in the bubble phase has 
a large variance (long tailed distribution), while the flat 
phase has a small variance (peaked distribution). Com
bining these two distributions gives rise to a distribution 
of rate changes that is peaked and long tailed. 
Volume and Fluctuation Previous statistical stud
ies also show that there is negative correlation between 
trading volume and rate fluctuation. Namely, when 
the rate fluctuates more, the volume is smaller. Con
trariwise, when the rate turns flat, the volume becomes 
larger. Also, a typical simulation shows a significant 
negative correlation, -0.2800. This negative correlation 
can be explained as follows: In the bubble phase, many 
agents forecast changes in the same direction. The rate 
movement continues in that direction for many weeks 
and rate fluctuations are amplified. However, the trans
action amount drops because the order quantity in the 
other direction is small. In contrast, in the flat phase, 
because there is a sustaining amount of both supply 
and demand around last week's equilibrium rate, trad
ing amounts are larger at equilibrium, but rates fluctuate 
less. 

Contrary Opinions Phenomenon Many dealers 
and their books say, " If almost all dealers have the same 
opinion, the contrary opinion will win." In fact, field 
data sometimes show that convergence of dealers' fore
casts leads to an unexpected result in the rate change. 
Also in typical simulations, in May 1995, when almost all 
the agents' forecasts converged to the same forecast in 
the same direction, the rate did not move in that direc
tion. As mentioned, this is caused by the fact that there 

11 The kurtosis is 0.0 for a normal distribution. 
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are no orders in the opposite direction and no transac
tions can occur. 

Conclusions 
We proposed an artificial market approach and analyzed 
three emergent phenomena in markets. First, the a tran
sition between phases of agents' forecast variety ( varia
tion among forecasts) in the simulations was examined. 
As a result, a mechanism for these transitions was pro
posed: convergence of opinions about news factors and 
trade factors, and positive feedback by trend factors 
caused the phase transition. Second, based on these con
cepts, we explained certain emergent phenomena. The 
long-tailed and peaked distribution of rate changes was 
explained by combining the long-tailed distribution in 
the bubble phase and the peaked distribution in the flat 
phase. Negative correlation between trading volume and 
rate fluctuations was explained by their negative relation 
in the two phases. The phenomenon of 'Contrary opin
ions' was explained by the lack of opposite orders when 
all agents' forecasts converged. 

The artificial market approach therefore explained the 
mechanisms of the emergent phenomena at the macro 
level by a hypothesis about the learning rules at the mi
cro level, that is, this approach provides a quantitative 
explanation of the micro-macro relation in markets both 
by integration of fieldwork and a multi-agent model, and 
by using actual data about economic fundamentals and 
news. 
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Abstract 
Through conceptual examples and demonstrations, we 
argue that the symbiotic combination of the Internet and 
humans will result in a significant enhancement of the 
previously existing, self-organizing .social stru~~u.re of 
humans. The combination of the umque capab1ht1es of 
intelligent, distributed information systems (the relatively 
loss-less transmission and capturing of detailed signatures) 
with the unique capabilities of humans (processing and 
analysis of complex, but limited, systems) will enable 
essential problem solving within our increasingly complex 
world. The capability may allow solutions that are not 
achievable directly by individuals, organizations or 
governments. 

Introduction 

The premise of our work is presented in this section. We 
acknowledge that the following ideas are still somewhat 
controversial within their own fields of relevance, but we 
are encouraged also by the growing integration of these 
ideas across many disciplines and are confident that the 
viewpoint presented here will be demonstrated and 
generally accepted. 

The argument follows the path of (1) the evolution of 
human social behavior, (2) the effect of technology on 
social dynamics and structures, and (3) the relat_ionship ?f 
system complexity and traditional problem solvmg wtthm 
these social structures. These arguments lead us to our 
beginning point of the technology of the Internet (Net) and 
how it will' change how humans solve problems. 

We use "problem solving" in a broader context than the 
traditional usage of finding a solution to a problem by 
analysis. We include the ability of a dynamical sys~em to 
"find" a new "solution" upon a change of state. Whtie the 
usage can be problematic, no existing words/language 
seems suitable to cover both applications. The need of 
this inclusion will be apparent. 

We start with the premise that we have evolved social 
structures, and the supporting dynamics, which enabled us 
to "solve" problems that threaten our existence (Joslyn, et 
al. 1995, Byron 1998). Unlike biological evolution, social 
change has the distinct advantage of enabling us to adapt 

within our own lifetime. Although possibly different in 
detail, social and biological evolution use the same 
dynamical processes and exhibit the same properties, 
inherent to self-organizing systems (see, e.g., Babloyantz 
1991, Forrest 1990 and the Artificial Life Proceedings I
V): 

• "Solutions" arise as a selection by the system dynamics, 
driven by local processes, from a diversity of potential 
solutions. Selection does not typically reduce diversity, 
but only shifts the relative prevalence of the subsystems. 

• These systems have the properties of distributed 
"control" (control from the bottom up), redundancy and 
persistent non-equilibrium. 

• The global properties are: functionality greater than the 
individual subsystems, the capability to find solutions in 
the presence of conflicting needs, and scalability 
without loss of viability. 

The view of human society as an adaptive, collective 
organism is not new. George Dyson (1997) in Darwin 
Among the Machines surveys the works of thinkers (e.g., 
Hobbes and Leibnitz to Margulous) who have touched on 
this vision of society during the past five centuries. 
Despite the long history of interest in these ideas, it has 
only been in the last decades that there is now promise of 
a quantitative theory of social dynamics. This new 
foundation was driven by the dramatic success of the 
application of complex systems methods to biological 
problems as expressed, for example, in the Artificial Life 
movement. In the last two decades there has been a virtual 
explosion of interpretations or dynamical theories of 
social and economic systems (e.g., citations in Abraham 
1994). 

Evidence of our social evolution in action is easily seen 
in how we have adapted to the significant changes in 
technology, even though we are biologically unchanged 
for many millennia. The changes are most apparent in the 
dramatic increase in the maximum size of a social group 
as a result of technology advances in transportation, 
communication and knowledge storage. With each 
advance, the maximum size of a functioning social group 
has increased from initially tribes, to city-states, to 



nations, to regional coalitions, to finally global coalitions. 
These major societal shifts have occurred by processes 
similar to biological evolution without centralized 
planning, often with extreme diversity of capabilities and 
goals, and with solutions often far beyond the ability or 
understanding of any individual. 

An central question at this juncture is "what is the role 
of individual or organizational problem solving within the 
context of self-organizing social dynamics?" Certainly 
many important societal shifts have resulted from the 
work or influence of a single individual, organization or 
government. Arguably these contributions may be 
necessary components to the overall dynamics, 
representing the actions of a mostly autonomous entity in 
a hierarchical self-organizing system. 

But what is more important is that the capability of the 
individual, organization or government will falter, and 
possibly fail, if centralized problem solving is applied to a 
system that is not understandable. Without the 
understanding, there cannot be the analysis and prediction 
necessary for an effective and timely solution; there can 
only be trial and error. Humans are premiere problem 
solvers in systems with heterogeneous data of limited 
quantity, but we are overwhelmed by vast amounts of 
homogenous data. Obversely our computer processing 
counterparts are overwhelmed by complex data of any 
extent. Furthermore, we are limited in our ability to 
combine individual resources to solve problems of greater 
complexity, such as is observed in the limit on the 
maximum size of a useful committee. 

If organizations or societies were to rely on just 
centralized control to solve problems, we would expect 
these efforts to fail as our society or the domain of our 
organizations becomes too complex. Social structures that 
take advantage of our inherent, self-organizing social 
dynamics will be best enabled to cope with our 
increasingly complex world (Abraham 1994). Indeed, we 
argue that this has happened in modern, overly centralized 
governments, such as the USSR, and is the reason that 
democracy and capitalism provide the most robust 
solutions in modern times (Slater and Bennis 1964 and 
1990). There are also trends towards decentralized 
corporate management (Anderson and Arrow 1988, 
Youngblood 1996). 

Herein lies our proposition and starting point. Self
organizing social dynamics has been an unappreciated 
positive force in our social development and has been 
significantly extended, at least in scope, by ~ew 
technologies. At the same time, our culture and society 
are facing greater challenges due to the increasing 
complexity of our world, both in vastness and 
heterogeneity, possibly to the point of global disfunction. 
We argue that the Internet (Net) will change and enhance 
our social dynamics, to the point of becoming a significant 
resource for organizations and society as a whole. Once 
better understood, the consequence for management and 
governments will be an emphasis on encouraging 
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diversity, increased access to information, and 
decentralized control. 

The Unique Capabilities of the Net and its 
Effect on Social Dynamics 

The Net has three significant, arguably unique, 
capabilities beyond prior human-technological systems: 
(1) The Net integrates the breadth of diverse systems. It 
has the ability within one hyper-system to integrate 
(Schement and Lievrouw 1987): 

a. Information storage, both in the form of simple data and 
complex text and images. This was done earlier in off
line libraries and a variety of data banks. 

b. Communication. Communication was done earlier 
either by the relatively slow movement of people or 
documents or, in recent times, by telephone or other 
electronic technologies. However, complex documents, 
simple data and images can now be transported 
instantaneously and close to cost-free from anywhere to 
everywhere. Geographical barriers are virtually gone. 

c. Traditional computing: the automated (simple) 
information processing of huge amounts of data. 

d. Human processing. The human ability to analyze, 
understand and process limited, but highly complex 
information. 

Until very recently (a), (b) and (c) were physically 
separated processes, all combined by human intervention 
(d). Now (a), (b) and (c) are integrated in a more 
standardized medium. Thus, the time scale for knowledge 
organization and creation using traditional, non-self
organizing methods, is drastically shorter. The new 
integration has been overwhelming to humans, but tools 
are readily evolving in this infant hyper-structure to 
overcome the initial shortcoming [e.g., firefly.net, 
amazon.com, alexa.com]. 
(2) The Net captures the depth of systems. It can capture 
the complexity of how information is associated by 
retaining all references between data on the network. A 
simple example of how much of this relational 
information is currently lost is in the use of scientific 
publications. While papers contain citations that connect a 
paper with other papers, the information about the 
numbers and types of readers of the papers could be only 
obtained in the past at great expense. With the advent of 
on-line publications, such information is explicitly 
available at effectively no cost. In general, the Net can 
capture all traces of the use of information. These traces 
represent implicit knowledge of how we interact and how 
new knowledge is created. As (1) above is better 
realized, these traces will capture the full complexity of 
our interactions. 
(3) The Net has accuracy of communication. Traditional 
human-to-human communication results in a rapid loss of 
information a bit removed from its creator (the children's 
game of whispering a phrase around a circle is a telling 
example of the high noise-to-signal ratio of verbal 
communication). By contrast, information exchanged or 



related on the Net suffers minimal loss of information 
during transmission or linking, in the same way that the 
content of a book is not altered when exchanged. We do 
note that we sacrifice bandwidth using current 
technologies because of the elimination of vocal, facial 
and gestural expressions. In this discussion, we do not 
include the misinterpretation that can still occur in 
understanding of exchanged information; this source of 
miscommunication occurs regardless of the mechanism of 
exchange. 

With the stronger presence of these unique capabilities 
of the Net in human dynamics, we propose that minimally 
the creation, manipulation and rejection of knowledge can 
be captured for the first time, encompassing the full 
complexity of the cognition process in our society. More 
importantly, the processes of our social dynamics, which 
previously relied on slower, spatially concentrated, and 
noisy forms of communication, now has the potential to 
form a symbiotic relationship between humans and the 
Net, enabling our prior self-organizing capabilities to 
operate at a significantly enhanced functionality. In the 
next section we give two examples of demonstrations of 
how this symbiosis might be possible. Furthermore, in the 
same manner as to how society self-organized to solve 
problems of survival, the same processes on the Net will 
result in self-organization of knowledge. Because self
organizing knowledge arises from diverse contributions 
and can encompass knowledge greater than the 
contribution of any individual, there is the arguable 
potential of creating knowledge that will contribute to 
solutions that are not understandable within our current 
processes. In the next section, we will also give a 
suggestive example of this capability. 

Self-Organizing Systems Demonstrations 

We now present two studies that demonstrate collective 
knowledge development: the first demonstrating 
knowledge formation from humans interacting on a 
network and the second examining how many individual 
solutions can combine to solve a global problem in an 
idealized system without human involvement. 

Self-organization on networks: adaptive 
hypertext experiment 
A simple experiment was conducted by Bollen and 
Heylighen (1996a) of the Free University of Brussels 
under the Principia Cybemetica Project's goal to explore 
the "brain metaphor" (Gaines 1994; Heylighen and Bollen 
1996) to make hypertext webs more intelligent (Drexler 
1991, Bollen and Heylighen 1996b). This metaphor led 
them to consider hypertext links like neural associations in 
the brain according to a Hebbian dynamics: "The strength 
of the links, like the connection strength of synapses, can 
change depending on the frequency of use of the link. This 
allows the network to 1earn' automatically from the way it 
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is used" (Ibid.), which illustrates the concept of emergent 
knowledge through human interaction. 

The experiment was set up by first constructing a list of 
the 150 most common words in newspaper English. When 
a user initially enters the system, a target word is 
displayed on a web page, followed by a list of 10 more 
randomly chosen words from the list (more words were 
available from the list without replacement at the user's 
request, to the point of potentially exhausting the list). The 
user is then asked to pick the word from the list that most 
closely is associated with the header word. Upon choosing 
a word, the order of the list is recalculated based on the 
frequency of selection according to a Hebbian rule, with 
weight added to the initial link, the reflexive link 
backwards, and the transitive link across two pairs of 
words. The user is then taken to a new page 
corresponding to the selected word, and the process is 
repeated. The researchers found that the lists stabilized to 
a fixed order after about 4000 selections in a site. 

The resulting ordered lists determined a common 
semantics despite the heterogeneity of users. This simple 
task of ordering is easy for an individual but of little utility 
due to large individual variation in semantic differences 
between individuals. The network solution actively 
constructed useful collective knowledge representing a 
consensual semantics, but with minimal instruction and 
effort from the collective group of individuals. This 
example captures the essence of developing a self
orgamzmg knowledge system that combines the 
advantages of both human and computer networks to 
quickly solve a syntactically complex problerr .. From this 
example, one can imagine a host of previously 
challenging, if not intractable, problems that could be 
addressed once the methodology is developed. 

Simulation of collective decision making 
The second demonstration is not an example of self
organization on an existing network, but a demonstration 
(Johnson 1998) that supports some of the fundamental 
assumptions of the present argument and illustrates 
desirable features of a large and diverse self-organizing 
system. We want to answer the following question: "what 
is the effect of noise or information Joss on a collective 
decision involving many individuals." 

The system that was examined was a maze (a 
connected, undirected graph) which has one or more 
solutions (paths) between two nodes (one being the 
starting point and the other being the end or goal). 
Solutions to the maze were found for a large (I OOs) 
number of independent "individuals" (no information is 
shared between individuals as in the prior demonstration). 
All individuals initially use the same set of "Leaming 
Rules" that (1) determine their movement through the 
maze as based only on local information, and (2) how they 
modify their own path "preference" at each node. The 
restriction to using only local information means that they 
have no "global" sense of the maze and explore the maze 
until they just happen to reach the end node. 



The set of "Nodal Path Preferences" is a weighted, 
directed graph overlaying the maze and is retained for 
each individual for later use. Basically the Learning Rules 
select a link that has not been tried and then sets the Path 
Preference of this choice to be larger than the other links 
at this node. After the Learning phase is completed, 
another set of rules, the "Application Rules," arc used. 
These apply, but do not modify, the nodal preferences to 
find the "optimal" path of each individual. Basically the 
Application Rules select the preferred link at a node with 
minor additional logic to prevent infinite loops. Because 
random choices are made in the rules between equal 
preference, a diversity of preferred paths through the maze 
and a diversity of total lengths of paths ("performance") 
are created. Once the individual nodal preferences are 
found from the Learning Phase, these can he combined at 
each node in various ways to create a collective nodal 
preference, and then the same set of the Application Rules 
are used to determine the collective solution. 

For a demonstration maze of 35 nodes with 14 paths of 
a minimum path length of 9 (see Fig. 1), the average 
number of steps to "solve" the problem of JOO individuals 
is 34.3 with a standard deviation of 24.5 in the Learning 
phase. The average performance of the individuals using 
the Application Rules is 12.8 with a standard deviation of 
3.1. There is no correlation observed between the 
performance in the Learning and Application phases: a 
slow learner is not necessarily a poor performer. For the 
reference simulation, a simple average of the individual 
nodal preferences is used to create a collective nodal 
preference. Its application using the identical Application 
Rules results in solution of 9-11 steps when more than 20 
individuals are included, most often sampling one of the 
minimum path lengths. Figure 2 shows the change in path 
length as the numbers of individuals in the collective 
solution increases. Note the effect of randomness, even 
though the identical individuals contribute to each 
collective decision. The average random walk solution is 
138 with a standard deviation of 101. We note that the 
primary source of variation at larger contributors is due to 
the multiple minimum paths. Had there been only one 
minimum path, the solution is much more stable. 

Figure 1. The "maze" used for the demonstration problem. Two of the 

14 paths of minimum length are highlighted. 
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A few properties of the system illustrate some of the 
fundamental assumptions an(.i arguments presented earlier. 
The significant improvement of the collective solution 
over the average individual solution (9 versus 12.8) 
illustrates that information can be combined from 
uncoupled individual solutions using only local 
information to achieve an optimal global solution to a 
problem. This emergent property of the collective system 
was generally observed on all mazes, even ones of higher 
complexity, with only difference being that different 
numbers of individuals are needed in the collective 
solutions to achieve the same performance. 

In general, the collective solution was remarkably 
robust. Degradation of the individual's contribution, 
however implemented, generally had no effect or just 
postponed the collective convergence to the minimal 
solution. A few effects were found to significantly 
degrade the collective solution. One was the random 
selection and use of the nodal preference of one of the 
contributing individuals, with a different individual 
selected at each node. The resulting average path length 
was about 45 steps (3.5 normalized), independent of the 
number of individuals contributing to the solution. This 
illustrates how the change of a dominant individual during 
a solution process can yield results much worse than that 
of an average individual. A second degradation of the 
collective solution was achieved by the random addition 
of noise (the random replacement of a nodal preference by 
a small value) to the collective solution, in an attempt to 
model miscommunication of the individual contribution to 
the whole. At moderate random addition, around half of 
the time and greater, the collective solution does worse 
than the average individual performance. These results 
support the argument proposed in the prior section: many 
more individuals can contribute to a collective decision 
when sources of noise and loss are reduced. 

Figure 2. Plot of nonnalized path lengths of the collective solutions 

versus the number of individuals contributing to the collective for two 

initial random seeds in the Application phase. The normalization is by 

the average individual path or about 12.8 steps. 
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Another observation was that a collective solution from 
a diverse population is more flexible and performs better 



in changing goals than the average, more narrowly
focused individuals. For example, it was observed that the 
collective solution is degraded if only the "better" 
individuals (those with shorter path lengths in the 
Application Phase) contribute to the collective solution, 
illustrating that even a diversity of performance is 
important to a collective solution. Another example is to 
apply the Learning Phase to more than one goal (i.e., each 
individual learns with one goal out of many) or to change 
the goal after learning with different goal, measuring the 
robustness of the solution. In both of these simulations, the 
collective decision performed significantly better with a 
normalized path of about 0.5. 

There are obvious similarities between the processes we 
are describing here and what is being studied under the 
terms Genetic Algorithms and Programming (Koza 1994, 
Mitchell 1996). However, there are also some significant 
differences, perhaps the most important being that these 
agents do not evolve, but learn and create knowledge as 
they share information among themselves. The key to 
performance in these systems is diversity and not 
selection. 

Conclusions 

This paper presents preliminary arguments on the possible 
future of "problem solving" or collective decision making 
in our society and organizations. We have argued that a 
dynamic process underlies all life: the ability of self
organizing systems to "solve" essential problems, will take 
on new functionality as our society increasingly utilizes 
the Net for human interaction. The symbiotic intelligence 
of the combined human-Net system is believed to be able 
to operate at a level of functionality, both in numbers of 
individuals and the complexity of capability, higher than 
previously possible. 

To support this argument, we have described two 
demonstrations of collective intelligence. The hypertext 
example of ordering word lists captures the creation of 
self-organizing knowledge by the interaction of humans 
processing complex semantic content, facilitated by the 
Net. This example illustrates the ease of solution to a 
problem that would be difficult using traditional 
approaches. The Los Alamos simulation demonstrates ( 1) 
the potential for more individuals to contribute to a 
collective solution, (2) the collective solution has better 
performance and is more robust than an average 
individual's solution, and (3) more complex problems can 
be solved with larger numbers of contributing individuals. 
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Abstract 
Modeling the activity of an ant community based on the in
dividual behavior of a single ant is a very modem approach, 
but until now the modeling has often been restricted to sin
gle phenomenon, e.g., foraging or recruiting. But these ac
tivities can not be seen independently from other necessary 
abilities. For example foraging, breeding, building a nest or 
defending a territory from enemies are all dependent on 
each other. In this paper we want to present a model of an 
ant community that unifies different activities during a com
plete life cycle of a colony. We present experiments with a 
simulated ant colony that exhibits concurrently 
- foraging and recruiting 
- storing energy and distributing it inside of the anthill 
- breeding and individual development 
- mass recruitment for defending the colony's territory 
For modeling the behavior of an ant we use the SeSAm-ar
chitecture. This is a discrete, rule-based multi-agent simula
tion system that allows easy graphical modeling. Because of 
its simple structure and powerful graphical editors the large, 
unifying ant-model is easily accessible. 

Introduction 

How can complex and seemingly organized behavior of a 
group of agents result from simple behavioral rules of the 
individual agents without central control? Answers to this 
question may not only help in better understanding social 
animal or human behavior, but also in computational ap
proaches for reducing complexity. For studying such emer
gent phenomena, a sophisticated multi-agent simulation 
shell is necessary, which allows straightforward modeling 
of the behavior of single agents and the environment as 
well as offers sophisticated tools for recording the behavior 
of the group. A typical example is the organization of an 
ant colony with emergent phenomena like effective forag
ing or recruiting. Currently, most approaches have studied 
such phenomena in isolation and shown that they can be 
reached with simple individual rules. The next step is to 
study them in combination. Is it necessary to completely 
redesign the local behavior of the agents or reassemble the 
single emergent phenomena more like modules in software 
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engineering with nice integration opportunities? In the 
following we report about the experiences of modeling a 
broad range of behaviors of an ant colony with SeSAm 
(Shell for Simulated Agent Systems). This system provides 
a generic environment for modeling agent-based systems 
and experimenting with these models. We specially fo
cused on providing a framework for the easy construction 
of complex models. Besides several graphical tools for 
animating and evaluating the simulation experiments, the 
modeler may use a rule-based activity selection paradigm 
that is also supported by a graphical modeling tool (for 
further information see Kluegl, 1998). 
There are four categories for modeling the behavior of 
single agents related to the stimulus-response paradigm 
which is easily translated using rule-based mechanisms. 
They vary in different degrees of flexibility: 

1. Strict caste-controlled agents: they perform only activi
ties associated with their role 

2. Less strict caste-controlled agents: they perform activi
ties associated with their role, but can execute other ac
tivities on very strong stimuli. 

3. Unspecialized, activity-bounded agents: they perform 
activities which may last over some time, but can be in
terrupted on certain stimuli. 

4. Unspecialized agents: Their actions are determined from 
one basic time-step to another dependent only on exter
nal stimuli and internal state. 

All four of these paradigms can be found in the simple 
behavioral rules that form the basis for the development of 
several individual based stochastic models, specially mod
eling task allocation. Sees for example (Pacala et. al. 
1996), who use the following simplified rule to develop 
stochastic processes for task allocation: Ants that don't 
encounter a task-specific resource during a certain time 
interval, switch their task or become inactive. The problem 
with all these analytic simulation models is that they 
cannot formulate the complex situation the ant is 
confronted with. Neither spatial structures, nor complex, 
interacting stimuli or activities can be considered without 
an essential reduction to very simplified assumptions. 



For our aim of modeling different interacting phenomena 
the approach of multi-agent simulation seems more pro
mising. The behavior of an ant is modeled explicitly using 
the rule-based paradigms above. The first (strict caste-like 
system) is - as it excludes task switching - not very useful 
for modeling. The second paradigm provides the standard 
action selection paradigm used in SeSAm. For flexibility 
there is also the possibility to introduce stimuli which can 
interrupt all activities. Therefore a modeler is provided 
with an additional (3)-like paradigm. This third paradigm 
corresponds to some of the ,,classical" task competition 
approaches (e.g. Maes 1991 ). For the selection of the next 
action, possible tasks, including the specially treated cur
rent activity are rated and the best one is chosen to 
determine the next action of the agent. Dependencies be
tween the different tasks are taken into account, therefore 
the modeling of many different behaviors becomes rather 
costly. The last category where the selection of the next 
action is only based on the currently perceived stimuli is 
for example used in the MANTA model (Drogoul and 
Ferber 1994). 
In the next section, we generally describe the natural be
havior of ant colonies. Thereafter models of the behavior of 
individual ants sufficient for single emergent phenomena 
like foraging, recruiting, storing and distributing energy, 
breeding, and defending territory are given, followed by a 
report on our experiments with combining them. The last 
section discusses the results and describes open questions. 

Ant Behavior 

The natural behavior of ants is enormous variable and per
fectly fitted to the environment the colony lives in. The 
ecological range of the nearly 9000 described ant species is 
form the arctic circle to the rain forests of south America 
(for review see Holldobler & Wilson 1990). The very 
common feature of ant societies is ,,eusociality". This term 
describes three behavioral characteristics that are the main 
reasons for the success of the ants: 1. Reproductive divi
sion of labor with one or more queens responsible for the 
reproduction and non-reproductive workers helping the 
queens 2. Cooperation of the workers in caring for the 
young and 3. the overlap of two or more generations living 
in one colony capable to contribute to the colony labor. 
Next to eusociality, the potential of most of the members of 
a colony to switch from one task to another guarantees the 
functioning of a colony. Doing so, the colony has the abil
ity to divide their capacities among the routine tasks or, if 
necessary adjust it to the actual situation. One example is 
the use of foragers to look for food supply outside the nest. 
Usually food items are distributed in an unpredictable way 
in the environment. So it is very important to concentrate 
the workers available for searching and exploiting a food 
source in a efficient way. This problem is solved by em
ploying subgroups of ants, called foragers, to go out to look 
for these items. Successful foragers run back to the nest 
and recruit unemployed workers to exploit this food source 
in a fast and effective way. 
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Simulated Ant Behavior 

In ant colonies several self-organizing behaviors can be 
observed, each is in itself an interesting phenomenon. 
Therefore several separated approaches to simulate it were 
already undertaken. The following aspects are part of our 
model (Kluegl et al. 1996), (Raub and Kluegl 1997). 

Foraging and recruiting 
The emerging cooperation of ants in order to exploit a food 
source is one of the most famous and probably most often 
modeled and simulated self-organizing pattern. It even 
supplies a model for emergent cooperation (Steels 1990). 
Dispersed food resources are exploited very effectively 
using a chemical trail for information about the position 
and the quality of the source. 
We constructed a simple model for the behavior of a fora
ger: depending on its individual energy level the worker 
leaves the nest searching for food. When it perceives a 
pheromone trail, the modeled worker chooses to follow it 
with a high probability. When discovering a food particle, 
it transports it back to the nest thereby refreshing the trail. 
For modeling the ,,exact" pattern of behavior, some ques
tions arise: For example, when a worker perceives more 
than one trail, which one does it follow? In our model the 
ant chooses always the strongest, but with a small prob
ability it does not follow a perceived trail at all, but starts 
searching for new food sources. Figure l shows a typical 
situation during a simulation experiment. 

,~ 

11+ \~¥ ~l' ~'l' 
~if \i_W Ul\' ~'ll1 

'ill' \ll! ~!\' \\ry \;!.\' 

c\l' \'1 
•lW ~:J' i~r 

~!\' •!I~ 1±¥ 01} 
l'!Y \!'.¥ ill.' 

\ilf ~!\'!ill' 11,~ 
~)' 
\~'\'\ill' 

2 
# 

;~: llV ~ll' 1:+ i\I:\' 
'~r \~1¥ Ull' ~'! i~Y 
ij[\ ~!\' lill' Ill~ 

~ ~ ~')' ilt \\l' 
~~!\: 'l~ 

hdr·:··· 
~IL~ \J'i 

1:t1 tilY 

Figure I: Situation during an animated simulation experi
ment: Foraging ants are exploiting a food source, whereas 

the numbered ant search for new patches. 

There are many reports about models examining the distri
bution of foraging ants between several food sources, often 



developed from experiments with real ants. The asymmet
ric, most effective foraging between two food sources 
could be reproduced using logistic equations (Pasteels et al. 
1987) or stochastic processes (Fletcher et al. 1995). They 
also consider the question, whether ants could loose the 
trail and state that there may be a relation between the 
length and the concentration of the pheromone and the 
probability to leave it. In our model an agent only leaves a 
selected trail, when it arrives at the end and no food is per
ceived. Then it starts searching. (Millonas 1994) focuses 
still more on the way ants follow trails. He uses micro
scopic dynamics described by an pheromone energy func
tion to describe how ants follow trails. 

Development inside of the nest 
The activity inside of an anthill is strongly depending on 
the queen. She produces eggs that become new workers via 
several stages of development. 
In our model the queen produces eggs and feeds them with 
her own energy until the first workers hatch and take over 
this job. The time she needs for producing an egg increases 
with falling energy. When she has used up her energy she 
has to be fed by other agents, otherwise she stops produc
tion and finally starves. We subsumed all stages of devel
opment into one of the following agent types: "brood" and 
"sexual brood". When the colony reaches a certain size, the 
queen starts producing sexual brood, that become new 
queens representing the next generation of ant colonies. 
Thus the number of produced sexual animals determines 
the overall success of an ant colony. 
A critical question in modeling the behaviors of ants con
cerning the growth of a colony is the mechanism how the 
queen decides, when to produce what kind of brood. In our 
model we designed simple rules like: If the queen per
ceives more than 30 brood agents with enough energy in
side a restricted radius, it starts producing sexual brood 
entities. 
In the MANTA project (Drogoul and Ferber 1994) the 
activities inside of an anthill are modeled based on agents 
that purely react on stimuli that spread on the spatial 
structure of the nest. They incorporate the different stages 
of development requiring different caring activities, but do 
not consider other than brood that becomes workers. 
Additional to the explicit feeding of the queen and the 
brood there is another mechanism to share energy between 
the workers committed to tasks beyond foraging (and thus 
information about the complete energy supply in the nest). 
We combined two mechanisms as can be found in real ants 
(Holldobler and Wilson 1990). One is a central storage in 
form of ants (e.g., the "honeypot ants" of the American 
desert ant Myrmecocystus mimicus) representing a reserve 
for the dry season. A second mechanism is a decentralized 
distribution. Every time one ant meets another, the one 
with more energy gives some amount of energy to the other 
("trophallaxis"). 
As the colony grows, the nest itself will become too small 
thus the nest size has to be adjusted dynamically. Although 
in our model the number of ants on the same grid is not yet 
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restricted, we modeled nest building, as the size of the nest 
generally determines the amount of social contact inside of 
the anthill. In the modeled colony the motivation of a 
nestworker to dig out a part of the nest is coupled with the 
amount of social contact during a certain time (see Figure 2 
for an example of nest enlargement during a simulation 
experiment). A piece of soil is deposited outside the nest. 
With the simple rule "if another piece of soil is perceived, 
add it to it" it was possible to establish a waste deposit site. 
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(2) 
Figure 2: Structure of the nest at the start of the simulation 
(l) and after 2000 time-steps (2). The circle in the middle 
of the maps depicts the connection to the outside world. 

A simple form of nest building behavior was also repro
duced by (Deneubourg et al. 1991 ). They compared the 
construction of nest-structures by social insects (termite or 
wasp colonies) using different, very simple, fixed be
havioral patterns for agents filling the cells they occupy 
and moving to neighboring cells. 

Mass recruitment for defending the territory 
One of the biggest competitors of an ant colony is another 
colony, therefore a mechanism for interacting with ants 
from other colonies is necessary. 

25 

- Number or direcdy 
recruited ants in colony A 

- Number of workers in 
colony A alarmed by 
meeting enemy ants 

1200 
Timesteps 

Figure 3: Recruitment of workers m reaction to contact 
with ants from another colony 

We modeled the interaction pattern that is exhibited by ants 
of the species Myrmecocystus mimicus, that assess in 
"tournaments" the strength of the other colony. We incor
porated one of the explaining hypotheses for their emer
gence (Holldobler 1983) in our model: Having contact to a 
foreign ant, the ant checks the number of foreign animals 



in an area by running in circles for a short time. If a certain 
number of foreign ants is counted the ants runs back and 
recruits other nest mates to this area. If additional ants en
counter foreign ants there will be a exponential increase of 
alerted ants. By this it is guaranteed that a single ant is not 
sufficient to alert the whole colony. This is exemplified in 
figure 3. 

Issues in Combinability 

An ant colony in reality must perform all the above-de
scribed behavioral processes concurrently, as they are 
strongly associated. For example foraging is useless, when 
there is no effective mechanism for distributing energy to 
ants busy with other tasks. An attempt to recruit ants for a 
tournament is futile, when all workers are foraging and no 
waiting reserve can be found in the nest. Only a effective 
foraging mechanism supplies sufficient energy for feeding 
the brood. Many more of these interconnected tasks can be 
found. 
In principle the integration of several separate phenomena 
raises problems of two categories: A complete model must 
be carefully calibrated to exhibit a functioning task alloca
tion and on the other side energy consumption and gain 
must be balanced. Thus combining several processes is not 
trivial: Both time and energy balance is disturbed when 
adding a further process, as ants that are committed to the 
new task can not perform others, but nevertheless consume 
energy. 
Our rules for switching from one task to another mostly 
represent priorities between the different behaviors. The 
most critical issues can be associated with the workers: 
They can stop being inactive (resting) and start foraging at 
any time with a rather low probability, which is increasing 
when their energy falls beneath a certain value and any 
honey-pot ant cannot provide enough new energy. An ant 
always performs trophallaxis-behavior when it has contact 
to another of its own colony, and continues its former work 
after that. When a worker encounters a foreign ant, it starts 
immediately with the alarmed counting behavior, inde
pendent form what it has done before. 

- Number of 1nta 1urching for new food aourcu tlm11hp• 

- Numbu ol anh transporting fOQd putlcln 
"""' Number of 1nh enluglng the uthlll 

Figure 4: Number of workers committed to different tasks. 
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Figures 4 and 5 show clarifying example results of 
simulation experiments for the functioning of the combi
nation of the behaviors. In figure 4 the number of workers 
committed to different tasks, like the different phases of 
foraging or enlarging the nest, are presented. After about 
1000 time-steps constantly more than 200 workers are 
available, between 30 and 50 of them are busy with caring 
for brood and queen. In figure 5 the distribution of differ
ent behavioral roles during a simulation experiment is pre
sented. At the beginning of the colony's life-starting with 
just one queen, only brood exists. The queen feeds the 
brood, until its own energy level decreases-some brood 
starves. After nest workers have developed, they start feed
ing the hungry brood. When a certain amount of brood can 
be maintained, the colony starts crowing. 

- Number of worker Timesteps 
- Number of nestworker 
- Number of brood 

Figure 5: Number of ants belonging to certain develop
mental states or behavioral roles. 

Thus we generated in principle an explicit, rather sophisti
cated task allocation model. In the real world social insects 
distribute workers on tasks quite optimally, but how this is 
accomplished based on pure self-organization is not com
pletely known. Reproducing it is therefore a very attractive 
research area. In contrast to the work of for example 
(Pacala et al. 1996), we modeled the stimuli that lead to 
task switching explicitly, not translating them into abstract 
probabilities and transition rates. The behavior and situa
tion of a single ant can be pursued and recognized directly 
in the model, and is not hidden in decision matrices for a 
small number of different tasks (Gordon et al. 1992). We 
can directly model spatial properties, feed back loops, etc. 
without simplifying in order to cope with large equation 
systems (Lachmann and Selly 1995). Using multi-agent 
simulation we can directly translate the results of observing 
the individual ants into the model and thus produce plausi
ble over all behavior of an ant colony without restrictions 
that must be taken into account when modeling mathemati
cally. 

Conclusions and Further Work 

Examining different phenomena and integrating them into 
one unified model, we gain results that mirror better the 
fragile balance between different aspects of a colony's life 



than previous simulations. There are no structural problems 
combining different emerging phenomena, but the critical 
issue is finding out the overall optima of the combined 
behavior. Although we have managed to built a model that 
leads to plausible behavior of the colony, we have to do 
controlled experiments to find out whether the model is 
both realistic compared to external field data and optimal 
with respect to internal parameter adjustments. Evaluating 
the experiments based on animation, statistics and the ge
netical fitness measure of produced sexual animals, we can 
gain more evidence about the quality of our model. Cur
rently the model can already be used as a basis for testing 
specialized hypotheses about, e.g., different counting 
mechanisms during a tournament. 
The most important result of our attempt to integrate sev
eral phenomena in one model consists of the questions 
arisen during the model construction: What mechanisms 
are responsible for the optimal distribution of ants in nest -
workers, forager exploiting known resources or looking for 
new resources, lazy colonist numbers, etc.? How can an ant 
gain reliable information about important aspects of the 
colony state (e.g., the details of the counting mechanism in 
tournaments, see Section 3.3)? And, after all, how does the 
queen decide, how many eggs she should produce? 
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Abstract 
Within the evolution of places including metropolises, cities, 
towns and neighborhoods, human beings and human 
organizations are the actors that make deals resulting in 
architectural changes to the built environment. The patterns 
that evolve are intentional at two levels: at a simple level, 
the actors (city planners) in the system directly intend to 
create certain features; and at more complex levels, the 
interactions of many autonomous actors (developers, 
transportation officials, financiers, etc.) indirectly give rise 
to yet different patterns, notably metropolitan sprawl. This 
paper proposes an organizational mechanism intending to 
evolve the built environment into a highly correlated fitness 
landscape of human deal centers that reflect actual building 
densities and land values. The final section considers the 
implications of this mechanism relative to the human 
limitations of structuring the built environment. 

Context/Fitness Landscape 

Technological advances in the past 300 years have 
prompted a variety of means and methods to manipulate 
building and construction within cities, towns, metropolises 
and neighborhoods. Theoretical debates range from 
absolute generalization and self-sufficiency, i.e., Walden 
Pond types, to absolute specialization and system 
dependence, such as Brave New World types. The current 
paradigm for manipulating places, Zoning-by-Function, 
was an intentional response to a fitness landscape defined 
by the industrial conditions affecting places 50-150 years 
ago. 

Cities such as Brasilia and Canberra have been built strictly 
according to this paradigm and have demonstrated the 
limitations of changing fitness landscapes. Unable to 
predict the viability of businesses and industries over many 
years makes it impossible to layout a city based on clearly 
identified areas for different functions. However these 
intentions are still visible in most communities' Master 
Plan. Alternatively many places have simply evolved 
without any governmental guidance such as shanty towns 
which can be witnessed in many economically stressed 
places; others such as the city of Houston, have evolved 
with a minimum of governmental guidance on a large scale. 

Recent technological advances define a new fitness 
landscape, one that is more sensitive to transportation and 
communication networks. The resulting increased mobility 
of people, goods and services, dramatically limits the effect 
of direct intentions by municipalities because people and 

organizations move from place to place much more 
frequently. However the effect of indirect intentions, those 
patterns that emerge due to the interactions between many 
different organizations, are substantially changing the way 
places are built. Within this fitness landscape many 
different organizations are building and re-locating 
according to their own needs and desires. 

This research is developing an organizational mechanism 
for manipulating the built environment at the level of 
indirect intentions. The goal is to direct the evolution 
towards a highly correlated, multi-scaled network of 
distinct places. It is suggested that on such a fitness 
landscape, places are most suitable for human living. The 
organizational mechanism coordinates the range of possible 
interactions such that places maintain a balance point 
between extremes, i.e., the edge of chaos. Near this 
balance point, places are stable enough to maintain a sense 
of community and build history; and yet, also open enough 
to accommodate significant changes in the operating 
environment, whether developed internally or pressured by 
the fitness landscape. To understand the patterns that 
emerge in the built environment, this paper reviews three 
influences on the built environment: historical chance, self
organization, and selective pressures. 

Historical Chance. The operating environment for places 
is rooted in chance events occurring in three areas: physical 
features, human actions, and natural stress. Places are 
defined by strong differentiation, or contrast in the physical 
features: water and land, forest and fields, mountains and 
valleys. Great examples of differentiated environments are 
harbor cities such as Hong Kong, which emerged because 
the physical features were the most suitable for land/water 
shipping within an entire region. 

Human actions first emerged in places where there was 
easy availability of food, water and shelter. Subsequently 
organizational structures for groups of people exceeding 
2500 also began to shape places because physical structures 
were required for the operation of the community. 
Archeologists studying these early villages built by humans 
in many parts of the world, have identified patterns of open 
spaces associated with different scales which supported the 
need for human interactions. 

Also natural stress continually changes the built 
environment in unpredictable ways. From meteors to 
plagues to economic swings, nature itself is constantly 



changing the character of a place with the passing of time. 
The discovery of gold in California and the abandonment of 
the Yucatan Peninsula are intriguing examples of natural 
stresses which dramatically changed the built environment. 

An example of the interplay between these three types of 
chance events can be illustrated through the brief 200 year 
history of Chicago. Geographically situated at the 
crossroads of land, river and Great Lakes trading routes 
gave it a reason in 1831, for existing. In the 1870' s, St. 
Louis was forecast to be the biggest Midwestern city due to 
its location on the Mississippi as well as the gate way to the 
west. However human actions like the opening of the St. 
Lawrence seaway, the emergence of railroads, and the 
invention of refrigeration changed the fitness landscape 
substantially. Additionally the natural stress of the 
enormous 1887 Chicago Fire, presented huge opportunities 
to update the underlying infrastructure preparing the city 
for the 20th century. In a matter of 50 years, Chicago's 
population far out paced St. Louis' and the city became the 
hub of the midwest. 

Self-Organization. Through time humans and human 
organizations continually make deals between each other to 
accomplish individual objectives. In this research, deals 
include all human interactions, recreational activities as 
well as actual monetary transactions. Additionally the 
actors are considered to be entities such as developers and 
land owners in the real estate industry, entities creating 
regulations in the government, and entities needing spaces 
for deal-making of any reason. Notably any specific deal 
requires three events: two or more actors come together at a 
specific place; they exchange ideas, goods, or services; and 
then they depart. 

Through these interactions buildings such as homes, 
offices, arenas, factories, exhibition halls, schools, etc. are 
built to facilitate deal-making activities. High-density 
environments reflect a higher quantity of deal-making, and 
the diversity of buildings reflects the kinds of deals being 
made. In places with a long history of deal-making and 
stability of location, buildings are built to endure longer 
periods of time. By contrast in places where the location is 
unstable, and deal-making is temporary or swings 
dramatically, buildings are built cheaply reflecting a 
temporary character of place. 

The value of a place is determined by how effective it is at 
facilitating deals. Places therefore are extremely sensitive 
to the actor's mobility and to the facilities available for 
making deals. In varied cultures and many different places 
throughout history plazas, squares and open urban spaces 
supported deal-making with a few minor amenities: water 
and open space. These spaces were typically surrounded by 
high-density buildings for every functional purpose, and 
were accessed on foot or by animals and carts. They 
became the center of community life with boundaries 
defined by a reasonable walking distance, after which 
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agricultural open spaces were required to provide necessary 
amenities. In today's global marketplace the scale has 
grown tremendously and a similar phenomenon can be 
seen, as large exhibition halls are located within close 
proximity to airports. In addition to water and open space, 
these new deal centers provide power, telecommunications 
and climate control, but basically the same underlying deals 
are being made. 

Selective Pressures. Identifying the focal level is 
necessary to assess which selective pressures occurring at 
higher levels are influencing patterns at the level of interest. 
This research primarily focuses on the level of multiple 
municipalities, but can be extended both to smaller levels 
such as neighborhoods and towns; as well as higher levels 
such as metropolises and regions. The level of multiple 
municipalities is where runaway patterns of sprawling 
autocentric development are evident. If these patterns are 
to be addressed in any intentional manner, we will have to 
look at higher levels of events for solutions. 

Selective pressures change the population dynamics, and 
therefore the underlying evolution of a place and its 
corresponding ability to facilitate deals. Pressures at the 
focal level of multiple municipalities include: warfare and 
political organization, major economic transformations, 
environmental devastation, and radical change in the beliefs 
of society. Population in the city of Detroit rose and fell 
substantially between 1910 and 1970. It grew rapidly in the 
effort to produce automobiles, which once established as 
the primary means of transportation expanded people's 
mobility. Then many different selection pressures left the 
cities built form obsolete: built for a different way of life 
people equipped with economical automobiles and new 
beliefs preferred to live in the suburbs. 

Organizational Mechanism 

The organizational mechanism utilizes five features to 
effect changes in the built environment. Two are used to 
specify conditions at the focal level of multiple 
municipalities, Levels of Mobility and Access Points; and 
two features specify conditions locally within 
municipalities, Urban Open Space and Degrees of 
Freedom; and then the Parameters relates all conditions 
together. The two operational features are demonstrated 
through a Starlogo simulation, and the two local level 
issues are explained relative to functioning communities. 
The organizational mechanism does not specify how 
communities should build, but coordination of these 
features would effectively change the way developers play 
the game of building projects and assessing risk 

Levels of Mobility. Today there is a huge variety of 
modes for traveling, however it is possible to identify 
distinct levels of mobility that are independent of specific 
modes. It is essential to consider mobility without 
reference to a particular mode of travel. This allows the 



organizational mechanism to be open to new technologies, 
and open to the most efficient modes of travel for any 
purpose. Early engineering studies have provided an 
analysis of the energy efficiencies of different modes 
relative to rates of travel. Using this as a starting point we 
can identify the following distinct levels of mobility, using 
the existing network of travel for reference: 

Level 0 • pedestrians 
Level 1 •small streets, mostly residential access 
Level 2 • busy roads, mostly commercial access 
Level 3 • highways, mostly local distribution 
Level 4 • high speed rail, mostly between regions 

Level 5 • airports, mostly between continents 

5mph 
20mph 
40mph 
BOmph 
200mph 

600mph 

These levels exist relative to each other and have energy 
efficient rates with respect to various technologies. 
Specific modes of transportation vehicles are better suited 
than others are for certain ranges, capacities and rates of 
travel. Also within a particular level, there are a variety of 
transportation modes such as Level 1 including bicycles, 
scooters and delivery vans; and Level 2 including ferries, 
light rail, trucks and cars. 

Access Points. The mechanism limits the distribution of 
access points to a particular level of mobility based upon 
the distance that level of mobility travels with no access. 
An example might be that a Level 3 interstate highway 
would have to run 10.5 mi. with no access, which could 
then be followed by 1 mi. of unlimited access points, and 
again followed by 12 mi. of no access. Similarly a Level 2 
"busy road" might run 3 mi. with no access, followed by 
0.3 mi. of unlimited access, and then another 3.2 mi. of no 
access. It is essential to note that since capacity is variable, 
the restriction on distribution of access does not affect the 
rate of flow, allowing transportation networks to 
accommodate the traffic potential for any particular route. 

Urban Open Space. When a community decides to add 
access or a new level of transit, a specified amount of urban 
open space is required. Simply, these are area requirements 
for plazas or squares that are located immediately adjacent 
to the access points to transportation. Although this may 
seem unnecessary when most financial transactions today 
are electronic, as stated previously, deals are simply 
meetings between people or organizations and the 
subsequent exchange of ideas, goods or services and 
therefore encompass all of human activities. These activity 
centers provide a focal point for public life and the 
opportunity for people to interact in planned and 
spontaneous ways. 

Local Degrees of Freedom. When the access to mobility 
is coordinated across a network, it becomes possible to 
ensure the stability of place, because really large-scale 
activities can only occur where there is support for equally 
large scaled mobility. Therefore as a part of the 
organizational mechanism, municipalities would eliminate 
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density restrictions, setbacks and functional restrictions 
imposed on the changing needs for buildings that facilitate 
deal making. This gives actors in a community the ability 
to shape things according to locally determined need, both 
direct intentions and indirect intentions are open to evolve 
to selective pressures. 

Rather than separate activities by function, the network 
created by the organizational mechanism filters mixed-use 
places by level. Large-scale activities occur with other 
large scale activities, and small scale activities occur with 
other small scaled activities. Previous strategies have 
yielded performance regulations that restricted noise levels 
and traffic within certain districts of a municipality 
unfortunately they cannot go beyond a municipal 

Figure 1 : Mechanism Features - Example @ Level 2 
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jurisdiction to address multi-municipality auto-centric 
sprawl. Additionally performance regulations are still tied 
to arbitrarily defining districts on a Zoning Map of a 
community by planners, rather than accommodating the 
evolution of the built environment. 

Parameters. Levels of Mobility and Access Points are 
focused on operational features that coordinate 
transportation between places. The Urban Open Space and 
Local Degrees of Freedom are focused on physical features 
that facilitate deal making within places. All of these 
features are interconnected by a intricate web of 
relationships, or the Parameters. Calibrating the ratios 
between these features is the artful and intentional task of 
building a highly correlated fitness landscape that 
successfully allows the built environment to evolve at that 
point between chaos and stasis. 

Observed values used to determine the levels of the 
mechanism are populations and rate of travel. Sociological 
literature is filled with observations of optimum 
populations for communities based on stable patterns that 
have evolved over millenniums. These observations 
include many different organizational methods in history 
and culture. The observed values indicating rates of travel 
for various levels of mobility have emerged in the relatively 



short period of a few hundred years. Similar to other 
complex adaptive systems, these values are clearest at the 
focal level and slowly become less precise as one tries to 
apply them to levels further from the focal level. This 
condition is not a problem because it is the few levels 
closest to the focal level that are most important to the 
functioning of the mechanism. 

Effects 

A simulation of Levels of Mobility and Access Points was 
developed to demonstrate the effects of deal making 
activities on the landscape. Five stages of the simulation 
using Starlogo from MIT, illustrate the fundamental 
approach towards the development of the mechanism. 

Initialization. A number of agents are randomly located 
on the landscape, each selects a random direction (360°) 
and begins moving at a rate of l space per time step. 

Deals. Agents make deals with other agents when they 
meet in the same location, and then add value to that place. 
Additionally, after completing a deal each agent selects a 
new random direction and continues moving. 

Levels of Mobility. At the third stage agents are given the 
ability to utilize a second level of mobility allowing them to 
travel at the rate of approximately 12 spaces per time step. 
This occurs only for one time step and after they complete a 
deal, i.e., they leave quickly. 

Motivation. The next stage gives agents the ability to see 
the value of the landscape and the motivation to seek places 
of high value. 

A Network of Places. Finally when all of these features 
are combined, the agents proceed to build a loosely 
structured network of high valued places approximately 12 
spaces apart according to the rate of travel for the second 
level of mobility. The value of the landscape becomes 
highly contrasted with spaces in-between being of 
substantially lower value. Abstractly, the random 
directions selected by the agents as they run around the 
landscape are essential because it frees the system from 
physical tracks or routes. Even though today many forms 
of transport are "track based" some are not, and air travel is 
reducing the need for physical routes to determine which 
directions are possible. 

Evolution of Landscape Value. Stuart Kauffman's notion 
about highly correlated fitness landscapes being more 
robust for evolution is related to the need for increased 
spatial contrast between places and therefore increased land 
value contrast. In this context, smooth landscapes are 
exemplified by suburban environments and extremely 
rugged landscapes can be seen in urban areas where 
neighborhoods can change value by crossing a street. He 
states in At Home in the Universe: 
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Since selection faces an error catastrophe on very 
smooth landscapes and can become excessively trapped 
in small regions of the space of possibilities on very 
rugged landscapes, we must also begin to suspect that 
selection seeks 'good' landscapes. We do not as yet 
know in any detail what kinds of landscapes are 'good,' 
although it seems safe to conclude that such landscapes 
must be highly correlated, not random. 

Figure 2 : Types of Fitness Landscapes 
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The organizational mechanism is an attempt to provide a 
highly correlated and multi-leveled fitness landscape where 
peaks and valleys of land value arc related to a system for 
distributing access to levels of mobility. Developers 
compete for projects based on a generally defined fitness 
landscape, where land value is high near access points, also 
due to the relative stability in the location of access to 
mobility, they are also challenged to create projects 
uniquely tailored to a specific place. 

Nested Levels of Places. Patterns of mixed-use pedestrian 
supported, amenity saturated, higher density places will 
instigate much greater integration of community functions 
visible to people living in a place. By contrast Zoning-by
Function induces formal patterns with each function in its 
logical but necessarily effective location. 

The following diagrams indicate levels of places that are 
nested within each other. T, the double ended arrow, 
represents the transportation level; SO, the small grid, 
represents the Urban Open Space requirement; SS, the 
small circle, represents the nested smaller scaled spaces, 
and the curving arrow represents the direction towards the 
next larger level. 



Figure 3 : Nested Levels of Places 
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Boundedness. The idea of boundedness is essential in 
creating a cooperative environment which can support the 
dynamics of living systems. Boundedness for human beings 
and the communities we live in consist of two aspects: 
activity centers and spatial perimeters. Activity centers 
such as plazas or squares, and perimeters including the 
Great Wall, nation-state borders, and garden fences work 
together to create a sense of boundedness. 

The Urban Open Space parameter is included to instigate 
the formation of activity centers. The large distances 
without access points to transportation provides a sense of 
perimeter by incorporating ecological open spaces between 
activity centers, defined by openness rather than property 
lines. 

Recent actions by some metropolises strive for a sense of 
boundedness by defining a city perimeter beyond which no 
more development can occur, or by identifying certain 
lands as "Preservation Areas" and then allowing developers 
to build as they see fit on the remaining lands. These 
strategies involve a high-level government agency 
determining which portions of the landscape will be used 
for which types of activities. They have an arbitrary and 
non-adaptive character. 

Considerations 

The prevailing operating system of places determines a 
range of possible lifestyles for the people living within 
those places, e.g., it is pretty difficult to live in a large 
suburban metropolis and not drive a car. Many do not 
perceive these as limits, and yet they strongly influence the 
patterns of how we live. To what extent can or should 
humans direct the system? Indeed intentions do exist both 
direct and indirect, the difference is simply our awareness 
of them as actors within the system. 
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Sustainability one often heard goal, seems contrary to 
evolution which is more about survival. Can we develop 
organizational tools that direct our human evolution? Or 
should we develop organizational tools that ensure the 
stability of where we are? The organizational mechanism 
is open for evolution to a number of unpredictable 
perturbations, however it also attempts to evolve toward a 
built environment that supports human interactions 
gracefully. Thus it is an attempt to intend patterns at a 
more complex level than humans have been able to 
manipulate in the past. 
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Abstract 
The output time series from the individual-based tree growth 
model TRAGIC++ are characterized by measures 
quantifying their randomness and complexity and by power 
spectra. TRAGIC++ provides, in addition to spatially very 
explicit tree stand representations, annual values for biomass 
production, root development, tree height and many others, 
for arbitrarily long simulation periods. Site conditions are 
translated into external growth constraints affecting the 
aggregated ecosystem level in the form of long-term nutrient 
input fluxes. Evolutionary effects are included by random 
mutations of parameters related to height growth strategies 
of individual trees. Genealogies are being traced to 
reconstruct evolutionary paths of successful strategies. 
Long-range correlations for some of the output variables are 
observed. At the ecosystem level, the nutrient budget 
remains stationary and uneffected by mutations. Tree 
strategies, however, appear to show long-term "genetic" 
drift. Different phenotypes appear to cluster relative 
independently of mutation rates and resemble adaptation 
within real forest ecosystems and experiences in forestry. 

Introduction to the problem 

Traditional AL investigations substitute real world systems 
("Life as it is") by artificial ones, sharing a few features 
considered essential with life and unrestricted otherwise 
("Life as it could be"). In most cases, these alternative life 
forms are realized on a closed finite state machine, i.e. a 
computer. However, we consider the openness of a living 
system to its non-living environment a necessary condition 
for open-ended evolution: Turing machines and their 
relatives are not capable of simulating "true" evolutionary 
phenomena. Here, we focus on the computational aspects 
of learning about the resource distributions in an abiotic 
environment. A closed evolving system with a given 
learning capacity will ultimately exploit the prevailing 
environmental structures exhaustively. After that, nothing 
happens from an outside perspective. In most situations of 
natural evolution, feedbacks between ecosystems and the 
external abiotic resources (exploitable thermodynamic 
gradients) occur at time scales different from those of 
internal feedbacks, e.g. by competition among organisms. 
Evolution shapes the environment of biological systems as 
much as these are shaped by their abiotic surrounding. This 

kind of "true" openess has not yet been translated into 
computational models of life. 
Considering ecosystem reactions to (slowly) changing 
(abiotic) environmental conditions is the main topic of 
current ecosystem research. In this context, the phrase "Life 
as it could be" refers to exploration of seminatural managed 
ecosystems (e.g. forests "as they are") by controlled 
experiments. Modeling the responses of such ecosystems 
requires knowledge on the relevant potential (growth) 
reactions of the biota to input. However, the task of 
predicting an ecosystem response to a changing abiotic 
environment is not determined by observations of current 
phenotypes alone. A key referent of such potential 
responses is the genotype level. The relevant phenotype 
level effects can at best be identified in retrospective. Well
documented examples of potential behavior are available 
from long-term experiences in ecosystem management (e.g. 
German forestry). We consider height growth strategies of 
trees as such a candidate where the potential behavior to 
changing abiotic factors (light, nutrients) is sufficiently 
known to explore its reconstruction through modelling. 
Forest ecosystems have the advantage that external 
resources can be idealized to a few and simple input fluxes 
of energy and nutrients. Even at the time scales considered 
here, external feedbacks can be neglected (probably with 
the prize of sacrificing open-ended evolution). The 
corresponding learning task for trees that explore these 
resources is thus easy to pose (at the ecosystem level) but 
difficult to solve (at the tree level). This work was 
motivated by the idea that AL on a computer may be a 
simpler task for situations that are computational simple 
rather than for systems that are simple biologically. 
Contrary to most artificial ecology investigations (e.g. 
tierra (Ray 1992)), our model is biologically detailed. 
We parametrized the phenotypic appearance and growth of 
trees in detail, as the range of growth strategies is only 
partially determined by these building blocks. Furthermore, 
spatial constraints and relations are explicitly given. 
Contrary to most other models, our model is "realistic" and 
simple in its description of external resources. The abiotic 
environment consists of only two spatially homogeneous 
input fluxes (energy and a growth-limiting nutrient). In 
practical forestry, it has repetitively been shown that the 
mean stand height reflects the relation between these two. 



Key elements of this learning task are specified in the 
growth simulator TRAGIC++. The parametrization, 
however, is subject to evolution. In a larger perspective we 
seek a model to reconstruct growth potentials inferred in 
practical ecosystem management. Here we run the model 
over evolutionary time-scales under stationary 
environmental constraints to study the relation between 
evolutionary paths of strategies and growth-related 
variables in an artificial ecosystem. We quantify the 
behavior of output variables of the model by time series 
analysis, comprising spectral and information-theoretic 
methods as well as usual statistics. 

The model TRAGIC++ 

The forest growth model TRAGIC++ (Hauhs, Kastner
Maresch and Rost-Siebert 1995) was designed to support 
silvicultural evaluation tasks in an intuitive manner through 
a visualized interface. In TRAGIC++ the actual growth of 
each individual tree is derived from local competition for 
two abstract and stationary resources: energy and nutrients. 
The ecosystem constraints on resource availability are 
transformed into local probability density functions. Only 
the latter are "visible" to organisms competing locally for 
these resources. Light extinction through the local shading 
biomass is simulated by a Lambert-Beer law approach. In 
the case of nutrients, which come in small discrete portions 
called "wusels", a simple random walk is used. The 
majority of the nutrient resource is recycled through 
"mineralization" determined by litter quality. This release 
rate to the soil is controlled by a model of the decomposer 
community (Agren and Bosatta 1987). 
In TRAGIC++, trees maximize instantaneous growth rates 
as they seek a balance between the efficiency of shoot and 
root organs by dynamically partitioning their internal 
resources for biomass growth. Energy and wusels are taken 
up in yearly time steps. Besides the balanced biomass 
growth of tree compartments, the respective growth forms 
are regulated by species-specific rules. The aboveground 
growth of shoots is controlled by a simple L-Grammar, 
whereas the growth of fine roots is opportunistic and occurs 
at points of recent wusel uptake. A minimum external 
wusel input is necessary to account for leaching losses from 
the soil, or to realize possible scenarios for long-term trends 
of external input to the system. 
Trees compete for space above- and belowground. A 
detailed description of every tree w.r.t. spatial relationships 
of five different tree tissues (roots, stems, segments, 
branches and leaves) is updated in each time step. The 
height growth of the current year is determined by the 
potcnlial height growth at that tree's age and its current root 
uptake efficiency. Thus, the leading shoot requires minimal 
biomass investment in the year it is built. However, it may 
largely change the dynamic biomass allocation in later 
years. 
The death of trees is triggered by the internal energy 
budget. Trees not capable of matching the respiration losses 
by photosynthesis are removed and their biomass added to 
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the decomposing organic matter pool. Only trees older than 
110 years may in addition die randomly due to senescence. 
Fitness is thus fully implicit to the competitional growth 
process. There is no explicit fitness functional provided. 
Evolution of the potential height growth function is 
modeled by assigning the parameters of this function 
individually to each "try" (newly built tree). These sets of 
four real parameters constitute the "genotype" of trees: 

h(t)=qexp(a 0 +a 1 ln(t/t0 )+a 2 (1n(t/t0 )) 2 ) (1) 

where h(t) is potential height growth, (is root to height 
ratio, and t0 is one year. The sensitivity of realized growth 
strategies to the parameters (, a1 and ~ will be discussed 
below. The ilo term may be absorbed into a redefined (and 
has no independent meaning. It was kept constant for all 
simulations. At each reproduction event, one of these three 
parameters may randomly change within a given range of 
mutational steps. By varying the rate of nutrient inputs at 
the ecosystem level, the range of height growth observed in 
Norway spruce stands (Picea abies Karst.) can be 
reproduced (Hauhs, Kastner-Maresch and Rost-Siebert 
1995). 

Introduction to complexity measures 

It is obvious that a complex model such as TRAGIC++ 
defeats analytical treatment. Further on, the relationship 
between model input and simulation results is far from 
being obvious or trivial. Here, an abstract characterization 
of behavioral patterns rather than a detailed description of 
observables is seeked for, as the specific realization of a 
single simulation is considered unimportant. A byproduct 
of this analysis is a classification of output variables 
according to their overall behavior (e.g., to distinguish 
between random, complex, and deterministic variables). 
Besides statistical techniques, we consider power spectra 
and a collection of complexity measures. To this end, we 
transform the model output time series to a sequence of the 
symbols 0 and 1 via partitioning. It is advantageous to 
choose the median of the value distribution as threshold 
parameter (Lange et al. 1997). 
From the symbol sequence {sJ, (i=l, ... ,N, si = 0 or 1), 
subsequences of fixed length L<<N, called words, are 
considered and their probability distribution p(si) analysed. 
We show results for two representative measures: 
The information contained in the symbol sequence at word 
length L, i.e. the mean information gain (Wackerbauer et 
al. 1994) is derived as an entropy-like variable in the 
following way: 

H L = - L p(s;) log 2 p(s;) 

MIG(L) = HL+l -HL 



By construction, MIG is a quantity in the range [O, I] , 
giving the amount of information gained when enlarging 
the word length one step. For perfectly random sequences, 
MIG equals I; for constant or periodic sequences with 
period smaller than word length, it is 0. 

The complexity of a symbol sequence can be characterized 
by itsfluctuation complexity (Bates and Shephard 1993): 

F c = L p ij (I 0 g 2 ( pi I p j ) ) 2 

i , j 

where the sum is over all occurring words of a given 

length, pi and p1 their respective relative frequencies, and pi1 

is the joint (conditional) probability. FC is zero for constant 

as well as perfectly random sequences and exhibits a 

maximum in between. 
Power spectra give insight into the correlational structure 
of the data set. Periodic parts are exhibited, as well as 
possible long-range correlations, which are present if the 
spectrum shows power-law behavior. 
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evolutionary paths depend on mutation rates, and whether 
phenotypic or genotypic clustering occurs . 

The Simulations 

All scenarios are based on a parameter set calibrated 
against a spruce stand at Lange Bramke (Germany). The 
parameters characterizing the decomposer community are 
typical for coniferous stands. More than 10000 years or 
approx. I 20 tree generations were simulated with an initial 
population of trees with identical parameters. Three 
different scenarios were investigated: without mutating 
parameters, with small mutation rates ("single mutation") 
and with large ones ("double mutation") . For single 
mutation, variation of one of the three parameters ~ (by a 
maximum of 3%), a1 or a2 (maximal 0.3%) takes place at 
each reproduction event. 
Due to performance requirements, the size ( 40m x 40m, 
Fig. I) is limited, but beyond correlation lengths due to 
shading and root competition which define a patch. 
However, due to spatial interactions among patches, the 
simulated stand nevertheless partially synchronizes in 
generation cycles. We thus show time series of a variable 
characterizing the whole stand rather than individual trees . 
The biomass-weighted mean of all a1 values shows a long
term declining trend depending on the mutation rate, which 
also is related to its variability : nonzero mutation rates 
introduce non-stationarity. This is also clearly visible from 
the time series of the decreasing maximal tree height (Fig. 
2), and the increasing total foliage weight (not shown) . 
Under the imposed limiting nutrient supply, long-term drift 
seems to preferentially select smaller and thicker trees. 

Max Height (moving average of 200 values) 
27 ~~~~~~~~~~~~~~~~~~~~ 

26 

without mutation -
single mutation ·-~ 

double mutation -

Figure I: Screenshot of a running TRAGIC++ simulation. This 40 25 
m x 40 m plot contains about 130 trees. 

Setting 

Setting Up Virtual Evolution with TRAGIC++ 

The site conditions that will ultimately decide the 
competition among trees were kept constant throughout all 
runs presented here. Internal recycling dominates the 
nutrient supply after a start-up phase in which organic 
matter is accumulated. After an initial phase of soil 
formation, the nutrient input level is diminished by 50% 
after 600 years. 

In this paper, we focus on the overall effect of mutation on 
long-term behavior, randomness and complexity of key 
output variables. In addition, we investigate how the 
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Figure 2: A typical output time series for the three evolutionary 
scenarios. Mutation leads to a declining maximum height. 

After reducing the nutrient input at year 600, a transient 



phase in biomass variables is observed. We start our 
inspection of the runs only after simulation of 1500 years; 
after that time spurious synchronization effects are absent. 

Power spectra for single mutation 
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Figure 3: Power spectra in the case of single mutation rate. al is 
close to a random walk without pronounced periodicity. Foliage 
weight is well approximated by l/f2 at higher frequencies; lost 
nutrients are also periodic with the same frequency but have no 
significant structure (close to white noise) at frequencies above 
1/(10 y). 

The power spectra show a clear maximum at the mean 
generation time of approx. 75 years for biomass-related 
parameters. As an example, the total foliage weight is 
shown in Fig. 3. 
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Fig. 4: The curves for randomness and complexity for key 
variables for single mutation rate were obtained by aggregating up 
to 20 consecutive values of the original time series. 

At time scales below mean generation times, the slope 
indicates a deterministic process (controlled by the growth, 

operating under current constraints), whereas at longer time 
scales foliage weight behaves randomly. The nutrients 
leaching out of the system share the "generation peak" with 
biomass variables, but show white noise behavior at shorter 
time scales, reflecting the random walk of "wusel" nutrients 
in the root zone. The mutating parameters, exemplified by 
al' exhibit pure Brownian motion over several orders of 
magnitude. 
A comparison of short-range patterns (up to 20 years) is 
illustrated in Fig. 4. Aggregation of values in general makes 
signals more random, unless the investigation methods 
detect significant longer correlations. Whereas mutating 
parameters have very low complexity and randomness 
values, maximal height and foliage weight show 
intermediate randomness at high complexity; at least the 
latter also contains Jong-term structure. The leaching of 
nutrients is near random, compatible with the high
frequency behavior of the power spectrum (Fig. 3). 
In contrast to these ecosystem-scale (aggregated) variables 
evolutionary paths of height growth strategies at the tree 
level are affected by mutation rates. In general, trees with 
similar parameter values and similar phenotypes are 
"relatives" (exemplified in Fig. 5). 

Figure 5: Mutating parameter genealogy: Grey levels indicate 
values. All branches without surviving members are pruned. The 
inheritance relations correspond to parameter regimes. 

The impact of varying genotypic parameters on phenotypic 
performance is investigated using correlograms (Fig. 6). 
To that end, the potential height h at a fixed age is 
calculated from Eq. (l) (the actual height may differ 
because fitness is fully implicit). Whereas a2 and I; are 
almost uncorrelated to potential height, a1 shows significant 
correlations which, however, depend on mutation rate. This 
poses the question how the distribution of a1 and height 
differ for the two mutation scenarios. The respective 
histograms (Fig. 7) show that the effect of doubling the 
mutation rate is quite different for the two variables: 
whereas the h distribution has a larger spreading for double 
mutation, but covers the single mutation case, the a1 (Fig. 
7) and I; distributions are nearly distinct; a2 remains 
unaffected. 
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Figure 6 : Correlation diagram for two evolutionary scenarios. 

Histogram a1 parameter 

40 
35 
30 .. 25 QI 

.a 
20 E 

:J 15 z 
10 
5 
0 

'<!' co N <O 0 (") f'- :;j: N N (") (") (") 

Lri Lri Lri Lri Lri Lri Lri Lri 

Potential Heights at age 120 yrs 

30 

25 

.. 20 
QI 
.a 

15 E 
:J z 10 

5 

0 
co ~ N '<!' <O f'- O> 0 N 
oi ~ ~ <ci ex:) 0 C\i ~ r-..: oi 

~ N N N N N 

m 

Figure 7: Histograms for two evolutionary scenarios. 

Discussion 
An artificial forest was exposed to a learning task in which 
growth strategies had to adapt to a global nutrient 
constraint. In the two mutating scenarios height growth 
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becomes subject to long-term trends, and a tendency to 
form clusters could be observed for both scenarios after 
120 generations. Thus, the height growth strategy appears 
to affect fitness and has been exposed to selection in these 
simulations. The trends in the tree population appear very 
differently when inspected at different scales. At the 
"microscopic" scale of genotypes all changes can be 
characterized as random walks. Due to the over
parameterization of phenotypes, genotypes show different 
sorts of clustering into common genealogies, without effect 
on the phenotype. At the "macroscopic" scale of the 
ecosystem the overall budget of the limiting nutrient 
remains unaffected and in all runs the leaching losses vary 
randomly around their long-term means. Thus complexity 
does only appear at the level of sub-populations and tree 
related variables, whereas higher or lower levels of 
aggregation behave deterministically or randomly. Even 
though these simulations allow to reconstruct growth 
strategies inferred from forest management, they do not 
show "true" open-ended evolution. Clearly the next step is 
to confront this evolving system with a varying pool of 
invading strategies. Some of which may be cheating (mixed 
forests). An interactive visualization (Fig. 1) tool is 
currently developed to allow intuitive user interference 
("flight simulator for foresters"), possibly leading to a truly 
open system. 
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Abstract 

If Alife is ever to contribute significantly to biology, 
we must find methods by which we can build confi
dence in our models. One alternative to experimental 
tests of a model is to validate it against previously 
verified theory. I have applied a series of ecologi
cal and evolutionary validation tests to a model of 
species diversification. Examination of the predator
prey dynamics, trophic cascades, competitive exclu
sion, adaptation, and the species-area curve in the 
model has shown that a course grained spatial struc
ture was inadequate to capture the realistic dynam
ics of an ecosystem. Only when spatial structure was 
extended to the local patch dynamics did the model 
begin to behave realistically under a wide range of pa
rameters. Validation of the ecological dynamics of the 
model provides indirect support for the evolutionary 
behavior of the species within the ecosystem. Coun
terintuitively, under parameter settings that restrict 
predation, predator biomass rises. Furthermore, the 
implementation of species resulted in realistic growth 
rates in the species-area curve. 

The Problem of Validation 
Traditionally we can try to disprove the validity of the 
model by collecting data from the real system and com
paring it to the predictions of the model. In artificial 
life we rarely have that luxury. Artificial life models 
tend to be highly abstract and general because the field 
is striving to discover general properties of life. Exper
imental validation extremely difficult due to the time 
scale of evolution as well as the complexity and size of 
ecosystems. 

An alternative form of validation can be pursued in
directly through reference to ecological and evolution
ary theory. Instead of asking if the model matches the 
experimental data, we can ask if the model matches 

This research was supported in part by NDSEG grant 
DAAH04-95-l-0557. I would like to thank Rod Brooks, 
Michael Donoghue, and Hal Caswell for their guidance and 
support. 

our understanding of the dynamics of ecology and evo-
1 ution. Then, to the extent that the theories of ecol
ogy and evolution have been validated by experimental 
observations, we can disprove the validity of a model 
when it fails to match those theories. What follows is 
an example of this technique applied to a model de
signed to examine the factors that impact the origin 
and maintenance of species diversity. While the pur
pose of this model is to explore new theoretical ground 
in biology, the ecological and evolutionary dynamics in 
the model have been validated against theories of pre
dation, competition, adaptation and island biogeogra
phy. 

The Evolution of Species Diversity 
Why has life diversified so dramatically over the last 
four billion years (Benton 1995)? Or more specifically, 
what are the most important factors that have influ
enced speciation and extinction in the history of life? 

Investigations into the dynamics of species diversity 
depend fundamentally upon the concept of a species. 
Unfortunately, there does not exist a species definition 
that unambiguously partitions organisms into mutu
ally exclusive groups (Mayr 1942; 1982; Paterson 1985; 
Simpson 1961; Wiley 1978; Valen 1976; Cracraft 1983; 
Baum & Donoghue 1995). The predominate species 
definition, the "biological species concept," or more 
appropriately the "reproductive species concept," de
fines two organisms as belonging to the same species if 
they can potentially mate and produce fertile offspring 
(Mayr 1982). 

Previous work on diversity has generally substi
tuted genotype diversity for species diversity and so 
has not addressed the issues surrounding speciation 
(Hraber & Milne 1997; Jones, Hraber, & Forrest 1997; 
Bedau, Ronneburg, & Zwick 1992). Hypotheses for the 
origination and survival of a species typically hinge on 
both abiotic factors like geographic isolation of a sub
population, and biotic factors like expansion into new 
ecological niches through evolutionary innovations. A 



model to examine species diversity grounded in our 
knowledge of microevolutionary dynamics must in
clude representations of organisms, species, geography, 
sexual reproduction, mutation, migration, death, and 
predation. Geography and migration are necessary to 
model allopatric speciation in the isolation and diver
gence of subpopulations. Mutation, reproduction with 
inheritance, and death are necessary conditions for the 
process of evolution, assuming an environment with 
finite space. Furthermore, reproduction must be sex
ual for the reproductive species concept to be relevant. 
And finally, predation, with the concomitant dynamics 
of specialization and generalization, introduces ecolog
ical niches to the model and so allows testing of hy
potheses that make reference to ecological niches. 

An instantiation 
One possible instantiation 1 of these requirements has 
been implemented. All italicized terms below are pa
rameters to the model. Their experimental settings 
are generally parenthesized. For a full description see 
(Maley 1998). 

Geography: Space is organized into a two-
dimensional grid of "patches." Each patch may contain 
many (2K) organisms. 

Organisms and Predation: To set up a food web, 
we use three 32-bit genes. Phenotype, a bit pattern 
representing the characteristics of the organism rele
vant to predator-prey interactions. Prey template, a 
bit pattern specifying the phenotype of an organism 
that can serve as food. And generalism, a bit pattern 
mask specifying which bits in the prey template are not 
necessary for the selection of a prey organism. These 
bits indicate "wild-card" positions. The prey template 
with wild card positions is compared to the prey's phe
notype gene and the number of mismatching bits deter
mines the probability of prey consumption (e-n). The 
bottom of the food web is populated by autotrophs, 
organisms that synthesize their own food, which I will 
call plants. Instead of matching their prey template 
and generalism genes against a prey organism's phe
notype, plants match them against the climate of their 
environment. The climate of a patch is represented by 
another 32-bit pattern. A partial match results in the 
consumption of an energy unit with probability equal 
to the match. Energy is modeled by a particular num
ber of meals granted to the plant. 

Reproduction: Once energy-conversion number of 
meals (3) have been consumed a reproduction attempt 

1The current model was written in CILK, a parallel ex
tension of C, and run on the Xolas cluster of Sun Ultra sym
metric multiprocessors. See http: //xolas. lcs .mi t. edu/ 
for information on the processors and links to the CILK 
distribution pages. 
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is triggered. If an organism can locate a viable mate 
in its patch, they will produce a new organism. The 
new organism's genes are constructed by forming the 
parent's genes by two-point crossover. The new organ
ism's genome then undergoes mutation. Reproductive 
barriers are implemented by giving the organisms a 
fourth gene called the reproduction gene, represent
ing phenotypic characters that influence reproduction. 
Organisms may only mate if their reproductive genes 
differ in at most one bit. 

Species: Consider a graph of the potential mating 
relationships with nodes representing the states of the 
reproductive genes in the populations and links be
tween the nodes represent potential mates. Then the 
dangling cluster (connected component) you would get 
if you picked up one of the nodes in this graph repre
sents a gene pool and thus a species. The reproduction 
gene has twice as many (64) bits as the other genes. 
If there were only a few bits in the reproductive gene, 
then the probability of two lineages randomly evolving 
to within a single bit would be relatively high. Con
ventional wisdom in Biology assumes that it is highly 
unusual for two species to coalesce into one. 

Topology: The random walk in the migration of a 
newborn organism is modified by the topological bar
rier value of each location. This value is the probability 
that the new born organism fails to enter the patch and 
must remain at is current location for that step of the 
random walk. 

Life in a patch proceeds by working through the 
stack of living organisms from youngest to oldest, giv
ing each a chance to locate and consume one prey or
ganism in the patch. If there are no edible prey in 
the patch, the predator starves to death. However, if 
the predator does find and consume a prey organism, 
the number of meals it has consumed may trigger a 
reproduction attempt. 

Theoretical Validation 
The problems of speciation include both ecological and 
evolutionary dynamics, and so both dynamics should 
be validated. 

Predator-prey oscillations 

The Lotka-Volterra equations were an early abstrac
tion of the dynamics of predator and prey populations. 
Predator and prey population sizes tend to oscillate. 
At a minimum, a model of an ecosystem should exhibit 
these oscillations. The model specified above doesn't. 
As written, a predator can automatically find a prey 
organism in its patch. This means that even when prey 
organisms are rare, the predators can still find them. 
The prey are driven to extinction and the predator 



population crashes shortly thereafter. 
A prey-location probability was introduced to the 

model to represent the chance that a particular preda
tor might find a particular prey organism in its patch. 
However, a predator still gets one attempt for every 
potential prey organism in its patch. This results in 
stable herbivore-plant oscillations across a wide range 
of parameters (0.15 ~prey-location~ 0.3). 

Trophic cascades 

While the introduction of the prey-location probability 
stabilized the two-trophic level dynamics, the difficul
ties multiply when we move to three trophic levels by 
the addition of a carnivore species. All three trophic 
levels could only be sustained by lowering the energy
conversion parameter to the unrealistic levels, requir
ing the consumption of only two prey organisms to 
produce a new predator organism. 

For a prey organism to survive during a time 
step, it must evade location by every predator in 
the patch. The spatial structure of the real world 
tends to soften intense predation. A prey organ
ism is generally not directly threatened by all the 
predators in the patch. The model was elaborated 
with an additional form of spatial structure. A prey 
organism that survives an encounter with a preda
tor, because of the prey-location probability, becomes 
more difficult to find by other predators. Specifi
cally, the prey-location probability is multiplied by 
e-(number of encountersxpredation-distribution). When 

the predation-distribution is 0, there is effectively no 
spatial structure, and the model behaves as it did be
fore. However, when the predation-distribution is pos
itive, a form of spatial structure is imposed on the 
patch, and a small prey population has a better chance 
of surviving intense predation. 

Booth has attempted to validate the ecological dy
namics of a dramatically modified version of ECHO 
(Holland 1993), called Gecko (Booth 1997). She 
demonstrated that the model exhibits a "trophic cas
cade." This is the phenomena that plant biomass first 
drops and then partially recovers as herbivores and 
then carnivores are added to the ecosystem. 

Results As long as the carnivores were able to sur
vive, a trophic cascade was found. The addition of 
the search-radius had little effect. Both herbivore and 
carnivore populations were stable with a predation
distribution 2'. 0.8. In fact, the average biomass of both 
herbivores and carnivores increased with the predation
distribution, up to the maximum value that was exam
ined (2.0), as seen in the lower graph of Figure 1. 

A similarly counter-intuitive result can be seen if we 
look at the effect of the prey-location probability on the 
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Figure 1: The biomass of the herbivores and carni
vores in the two and three trophic level ecosystems. 
A trophic cascade was found whenever the carnivores 
survived. Each data point indicates an independent 
run of the model, and the lines show the mean for all 
the runs. There are at least 40 data points for each 
parameter value. 
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Figure 2: The effect of the prey location probability 
on the population sizes of animals. 

populations of herbivores and carnivores as shown in 
Figure 2. The most dramatic trophic cascade appears 
when the prey-location probability is 0.2 (the setting 
used for future experiments). Once again, as the pa
rameter values make predation more difficult, the aver
age predator populations expand. This is probably due 
to a more efficient allocation of resources to the preda
tors. The average maximum and minimum population 
sizes of the predators are shown in Figure 3 along with 
the means. When predation is easy, the predator popu
lations can expand rapidly, reaching higher values than 
the maximum population sizes attained when preda
tion is hard. However, the success of the predators has 
a dramatic effect on the prey, and so the predator pop
ulations collapse, reaching lower minima as compared 
to the minima in the runs where predation is more 



difficult. Ease of predation tends to destabilize the 
populations, causing larger fluctuations and resulting 
in lower average predator populations over time. 
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Figure 3: The average maximum and average mini
mum population sizes have been added to the carnivore 
curve from Figure 1. 

Competitive exclusion 
A series of competitive exclusion experiments were de
signed wherein the environment was seeded with equal 
numbers of two species of plant. The "climate" of the 
environment had all its bits set to 0 and the prey tem
plate genes of the plant species differed by only one bit. 
That is, one of the two species was exactly one bit bet
ter adapted to the environment than the other. This 
should result in a slightly better energy absorption and 
a consequent slightly higher reproduction rate in the 
species with fewer bits set. A species was considered to 
have excluded the other species when it had expanded 
to 90% of the carrying capacity of the environment. 
100 trials were run with 1, 4, 8, 16, 24, and 31 bits 
set to 1 in prey template gene of the inferior species. 
Mutation was turned off for these experiments. The 
superior species excluded the inferior in all the trials. 

Adaptation 
A model of evolution should at least demonstrate that, 
all other things being constant, organisms evolve to 
be better adapted to their environment. This can be 
tested in the model when mutation is introduced into 
the dynamics. Consider a plant species evolving in the 
conditions of the competitive exclusion experiments. 
The optimal genotype matches the climate bit pattern 
of all O's. If the prey template and generalism genes 
were evolving neutrally, with no natural selection, then 
we would expect one in four bits in the plant's prey 
template to have a 1 not masked by the generalism 
gene. We can thus detect natural selection in any sig
nificant reduction in that proportion of unmasked 1 's. 
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Figure 4: The normalized distance (with standard de
viations) of plant populations from the optimal geno
type under different mutation rates. In all cases the 
null hypothesis of neutral evolution can be rejected. 

The model was initialized with a plant species with 
exactly 8 out of 32 positions in its prey template set to 
1 and no wild-card positions. After 5000 time steps the 
proportion of unmasked 1 's was counted and averaged. 
The data for at least 32 runs in each setting of the 
mutation-rate parameter is shown in Figure 4. For 
all mutation rates, the resulting data is significantly 
below a mean of 253 unmasked l's as tested by a one
sided t-test (p < 0.001 in all cases). There can be 
little doubt that the plant species have adapted to their 
environment. 

The species-area curve 
The previous experiments were conducted within a sin
gle patch. To investigate the relationship of species 
diversity to area, we must move to multiple patch ex
periments. The central result of island biogeography is 
that the number of species (S) on an island is a power 
law of the area (A.) of the island (MacArthur & Wilson 
1967). Specifically, S = cAz, where c is a constant and 
the exponent z is particular to the group of organisms 
being studied. Begon et al. (1990, p.778) have sum
marized observed values for z which range from a low 
of z = 0.10 for English flowering plants to a high of 
z = 0.43 for mountainous mammals in the USA, with 
an outlier of z = 0. 72 for cave dwelling invertebrates. 

The model was run in four spatial configurations, 1 
by 2, 2 by 2, 2 by 4, and 4 by 4 patches. The climates 
of the patches were made to differ by randomly flipping 
2 of their 32 bits. There were topological barriers to 
migration of 0.9 between all patches. Species diversity 
data were collected after 5000 time steps for 50 runs of 
the model under each spatial configuration. A linear 
regression of the log2 species as determined by the log2 

area gives z = 0.44 (p < 0.001, standard error= 0.05). 
While this is on the high end of the range found in na-



ture, most island biogeographical studies have focused 
on a single group of organisms, such as birds, ants, or 
land plants, and do not look at diversity across mul
tiple trophic levels, and so miss coevolutionary diver
sification effects. Furthermore, the species-area curve 
is based on the origination of species by colonization 
from some source pool, not by speciation events, as in 
the model. The z of 0.44 compares well to the values 
(0.7-0.95) found by Jones et al. (1997) for genotype 
diversity. 

Conclusions 

The initial failure of the model and subsequent elabo
ration of the predation algorithms illustrates an impor
tant benefit of validation studies. Failure in a valida
tion study helps to sharpen our understanding of the 
essential features of the system and so helps to guide 
the further development of the model. It is also im
portant to note that even when there exists a paucity 
of theory that can be used to verify the central re
sults of a model, there generally exists a rich field of 
theory that impacts upon the dynamics of the model. 
In this case, a model of species diversification was de
signed for the very reason that there is a lack of es
tablished theory covering the topic. However, such a 
model must include both ecological and evolutionary 
dynamics and so we have validated it against both eco
logical and evolutionary theory. Because the dynamic 
of diversification intimately depends upon ecological 
and evolutionary interactions, these validation studies 
can help to support the end results of the model. 

This model suggests that obstacles to predation can 
actually boost predator biomass by curtailing popula
tion oscillations. In addition, the use of species rather 
than genotype diversity results in realistic growth rates 
in the species-area curve. The fact that a model passes 
a series of validation tests against theory does not guar
antee the quality of its results. The above model is 
only one instantiation of the requirements for modeling 
species diversity, and so stands as a single data point 
for theory. This perspective on models is particularly 
important to artificial life where seemingly trivial im
plementation details often manifest in artefactual re
sults. In the end, the model does not provide Truth but 
rather a hypothesis that should be experimentally ver
ified, similar to any other theoretical result. Although, 
it must be granted that such experimental verification 
is difficult. Meanwhile, by testing our models against 
theory, we may at least make progress toward signifi
cant theoretical insight. 
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Abstract 

We introduce a framework for the study of sensor evolu
tion in a continuous 2-dimensional virtual world (XRAP
TOR) populated by agents with Braitenberg vehicle-like 
capabilities. The agents have a fixed or a varying num
ber of "eyes" as sensors and are controlled by simple 
neural networks. Results of runs evolving characteris
tics of sensors and networks are presented. 

Introduction 
In nature a rich variety of new sensor channels evolved 
during the development of life. There are, e.g., weakly 
electric fish using electroreceptors (Heiligenberg 1991), 
chameleon eyes with a telephoto lens effect (Ott 1995) 
or flies that can hear (Lakes-Harlan & Heller 1992). v. 
Salvini-Plawen and Mayr (1977) show morphological se
quences of eye differentiation of still existing species from 
simple light-sensitive cells over pinhole eyes to highly 
differentiated lenticular eyes. Nilsson & Pelger (1994) 
simulate such a sequence to estimate the time required 
for an eye to evolve in Nature: less than 400,000 years. 
Sometimes synesthesia, mixing of several senses, occurs: 
stimulation of one sensory modality causing perceptions 
in different senses (Cytowic 1995). 

But what about artificial or simulated new sensor 
channels? (Cariani 1992) considers the construction of 
new sensors in real devices and (Pask 1959) provides an 
example by constructing an artificial ear. (Lund, Hal
lam, & Lee 1997) evolve ears for the Khepera robot and 
(Lee, Hallam, & Lund 1996) simulate an agent acquir
ing distance information from any number of sensors. 
There also exist several approaches coding some sen
sor parameters genetically (Cliff, Harvey, & Husbands 
1993); (Menczer & Belew 1994); (Todd & Wilson 1993) 
or switching off given sensors (Balakrishnan & Honavar 
1996); (Nolfi, Miglino, & Parisi 1994). (Vaario, Hori, & 
Ohsuga 1995) introduce a complex model forming agents 
and sensors by production rules. 

Since the simulation of sensor evolution is a very com
plex task that cannot be solved satisfactorily with the 
currently available computer power, our aim is to con
centrate on the simulation of the evolution of two eye 

parameters of Braitenberg vehicle-like agents (Braiten
berg 1984). Here we evolve eye width described in Sec. 2 
and the eye number within a wide range. For agents 
with fixed sensors we earlier performed GA evolution of 
general population behavior (Uthmann & Polani 1997). 
After introducing our simulation scenario in Sec. 2, two 
models for agent control are presented in Sec. 3, followed 
by a description of GA and network coding. We test 
two different environments, one of them with increasing 
difficulty. The latter serves to obtain an environment 
difficult enough to achieve a selective pressure toward 
higher eye numbers. Often it proves to be impossible to 
start at once with a very difficult task (cf. Gomez and 
Miikkulainen ( 1997). Results and outlook are presented 
in Sec. 4. 

Scenario 
For the simulations we used the simulation environment 
XRAPTOR (Massinger et al. 1997). It provides a model 
for a 2-dimensional continuous world, in which the agents 
can move. The agent body contains only the sensory and 
motoric equipment of the agent. Agent control obtains 
its world information filtered through the sensors and 
performs actions via the motoric interface. A freshly cre
ated agent is provided with an initial life energy, which 
is used up during lifetime, modeling aging. An agent 
dies when its life energy drops below a given threshold. 
Energy is gained by dwelling in lamps, and heavily lost 
by collisions with other agents. Collisions with obsta
cles immediately kill an agent. This life energy balance 
establishes the selection mechanism needed for the GA 
discussed in Sec. 3. 

The agent dynamics used in our simulations is similar 
to that of Braitenberg vehicles (Braitenberg 1984). Each 
agent operates in a 2-dimensional world and has two mo
tors left and right from its orientation axis (Fig. 1) which 
can each be operated with intensities between -1 and 1. 
If both motors are activated with the same positive (neg
ative) intensity, the agent moves forward (backward). A 
difference in the motor intensities leads to rotation in 
addition to a possible net movement. 

The agent sensors ("eyes") detect the presence of other 
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Figure 1: Agent with 8 eyes (4 eye positions) 
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agents or objects. They are placed at the periphery of 
the agent body (Fig. 1 shows an agent with 4 eye pairs, 
see below). Eye orientation is perpendicular to the agent 
periphery, in Fig. 1 the eyes are oriented outwards. They 
possess an orientation characteristics, i.e. the intensity 
I of a signal induced in an eye by the presence of an 
object depends on the object distanced and on the angle 

. max(O,l-2bI} 
( ( 

132 ) ) /3 (Fig. 1): h(d,/3) =max log c· d2+c52 ,0 , 

b > 0 being the eye width, c a scaling constant and 8 > 0 
a regularization term (details in Mark ( 1998). 

Similarly to Vehicle 3c from Braitenberg (1984) our 
agents are equipped with 2 types of eyes, detecting either 
other agents and lamps or obstacles and lamps. At each 
eye position in Fig. 1 there is an eye pair of two different 
eye types. The number of an agent's eyes can be chosen 
at creation time and is not modified afterwards. The 
pairs are located at equally spaced angles and are more 
densely placed for a larger eye number. 

Evolution Model 
As we are primarily interested in evolution of sensors, the 
design of a particular control structure has not been the 
main objective of this paper. However an agent's control 
is required to evaluate the performance of its sensors 
w .r.t. the tasks in the virtual world, is therefore closely 
linked to its sensors and has to be evolved together with 
them. 

We used different kinds of simple agent control models, 
particularly simple neural network models. First we ex
amined a linear network mapping the input vector (one 
neuron for each eye) linearly to the 2-dimensional output 
which is then scaled between -1 and 1 via a squashing 
function and directly used as motor activation. Direct 
weight coding was used to code the weights directly into 
the GA chromosome. This approach requires a mecha
nism to increase the chromosome length for variable eye 
number (see below). 

In a second approach we applied Sanger's unsuper
vised specialization of Plumbley's rule (Plumbley 1991) 
to a one-layer linear net with inputs observed during the 
agent's life as training signal. This unsupervised rule 

essentially performs a PCA on the input data such that 
the output neurons become feature detectors for the first 
few principal components. A second linear layer (with 
two outputs for the motor and a typically small num
ber of neurons), is appended to the first; its weights are 
generated by the GA (Fig. 2) and determine how the 
detected features are to be translated into motor activa
tions. The genome information required for the GA in 
this approach is much smaller than with direct weight 
coding and the chromosome size does not depend on the 
number of eyes. The computational effort for the online
learning involved is very high for this model, thus at 
this point we only present preliminary results for task 1, 
which is described below. 

motors 
GA coding 

'"'"'"''111111 

eyes 

Figure 2: Plumbley network 

Motivated from the idea to overcome the linearity re
strictions of the simple linear and the Plumbley network, 
we also studied further network models closely related to 
vector quantization and Self-Organizing Maps as control 
structure (for details on models and results see (Mark 
1998)). 

To determine whether certain eye numbers yield sig
nificant advantage, a sequence of GA runs optimizing 
eye width and control was used. Another also allowed 
eye numbers to vary. At the beginning of a genera
tion population size is 60, which may drop to 40 be
fore the population is refilled by new agents resulting 
from recombination of survivor chromosomes, mutated 
clones of survivors or "immigrants" with new chromo
somes. Chromosomes determine sensor parameters like 
eye width and eye number and adjustable weights of the 
neural networks. Eye width (range (0, 3]) and weights 
are real numbers, coded by one byte each, eye number 
is an integer in {O, 2, 4, ... , 100}. 

For fixed-number eyes, the GA-process is canonical, 
but becomes more subtle when the number of eyes is 
varying, because for the direct weight coding the number 
of weights (and thus chromosome length) scales with the 
number of eyes. Since recombination of varying length 
chromosomes cannot be expected to conserve building 
blocks (Goldberg 1989), we introduce families, sets of 
agents with the same eye number, and forbid interbreed
ing between members of different families. A new family 
is created reducing or extending a chromosome by one 
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eye position (i.e., two eyes) and a slight mutation. The 
motivation is that switching from one eye number to a 
neighboring one the eye positions do not shift too far and 
thus sensory input will not change too strongly, enabling 
the GA to adapt itself to the new eye number. Since 
all chromosomes have the same length in the Plumbley 
model, we did not apply any interbreeding restriction, 
but inclusion of the family concept is planned for the 
future. 

Two tasks are to be solved by the agent population. 
In task 1 agents have to find lamps and to avoid other 
agents. Entering lamps is rewarded by energy and col
lisions between agents are punished. The two types 
of agent eyes can distinguish between other agents and 
lamps. 

Task 2 studies sensor evolution in a more difficult and 
controlled environment. The agents have to get to a 
light source, every agent being alone in its world. Task 
2 is made increasingly difficult by introducing obstacles. 
The two agent eye types detect lamps and obstacles. An 
agent starts at a random position in the grey shaded rect
angular region denoted in Fig. 3, the lamp is denoted by 
the grey shaded circle. The obstacles are inserted into 
the world on completing different levels given by certain 
performance conditions. Fig. 3 shows the obstacles for 
the different levels. The run starts with level 0. When 
completed, the obstacles of level 1 are introduced and so 
forth. Thereby the task becomes gradually more chal
lenging and the GA is forced to search for increasingly 
better solutions. · 

Figure 3: Setting for task 2. 

Results and Outlook 
The results presented here have been obtained mainly 
using Sun Ultra 1 workstations. A typical 5000 genera
tion run took between 1 or 2 weeks of computation time. 
Consequently, the number of runs we could perform was 
strongly restricted and limited our capability of making 
statements of statistical nature. However some tenden
cies are quite prominent and warrant some preliminary 
interpretation and further investigation. 

The results of the GA runs (5000 generations) using 
the linear net with fixed eye number are shown in Tab. 1. 
The numbers in the table denote the generations needed 
to get to the current task level. The runs show clearly 
that getting to task level 5 is achieved for all eye num-

eyes lev. 1 lev. 2 lev. 3 lev. 4 lev. 5 lev. 6 lev. 7 
4 10 17 17 59 123 - -
4 8 12 12 19 88 - -
4 9 13 14 20 99 - -
6 9 19 30 67 409 - -
6 6 16 19 36 510 4756 -
6 10 16 19 68 230 - -
8 10 19 24 66 496 4139 -
8 8 20 22 45 258 - -
8 7 14 23 38 106 - -

32 6 25 29 49 312 1504 -
32 8 15 18 42 524 792 963 
32 8 22 3 1 71 1122 2486 -

100 5 15 22 60 64 1492 -
100 8 17 19 96 210 - -
100 7 27 36 67 547 708 2256 

Table 1: Number of generations for reaching given level 

bers, but the introduction of obstacle 5 poses a very 
strong impediment. Reaching task level 6 (getting to 
the lamp after obstacle 5 has been inserted) seems to 
be clearly harder for agents with smaller eye numbers 
( < 32) and task level 7 is only reached by agents with 
32 or 100 eyes. Of course the significance of these re
sults will have to be improved by further runs; however 
they are corroborated by further 1000 generation runs 
which we performed to improve statistics of the initial 
phase of the runs. For every eye number we ran 10 such 
GAs. Nearly all reached task level 5. Only the 32-eyed 
achieved task level 6 (in 5 runs), indicating strongly that 
the larger number of sensors is an advantage to solve the 
problem. The GA for the 100-eyed agents is of course 
slower because of the larger search space. 

The runs using the Plumbley networks were restricted 
to task 1. Fig. 4 shows the behavior of clones from well
performing agents in the GA run at different ages, learn
ing their way to the lamp. The agent is denoted by 
a small diamond, lines indicating its movement vector, 
small circles denoting starting positions and the large 
circle the lamp. The untrained agent (not shown here) 
performs weakly and never reaches the lamp. After 104 

time steps living in the population it had learned to move 
to the lamp from most initial positions, and, when older 
(e.g., 106), to extend and smooth its path. Interestingly, 

age 104 age 106 

Figure 4: Plumbley learning 
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from the point of view of sensory evolution these runs 
did not indicate any selection advantage to a particu
lar number of eyes. This could be due to the fact that 
interbreeding of completely different eye numbers was 
allowed in these runs. To clarify this point, inclusion 
of the family concept from Sec. 3 is indicated for these 
runs. 
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Figure 5: Agents in lamps 

Now we have a closer look at the run with 32 eyes that 
reached level 7 after 963 generations (Tab. 1). Fig. 5 
shows the performance of that run. This picture is typi
cal for all runs (even with different models). The vertical 
lines mark the generations in which a new task level is 
reached. The x-axis shows the generations from 0 to 
2000. The last 3000 generations are cut off because the 
plot does not show any relevant development. The y-axis 
shows the number of agents (pop. size 60). The solid line 
indicates the number of agents that spend more than 
50% of generation time in a lamp. Note that each agent 
is placed back at a new random start position every 2000 
simulation steps. The dotted line shows the number of 
agents older than 10,000 simulation steps possessing an 
energy higher than their initial energy plus an offset. If 
this value reaches 30 (half the full pop. size) it is assumed 
that a satisfactory fitness level is reached and a new task 
level is introduced. As can be seen the solid line grows 
much earlier than the dotted one after the introduction 
of each new task level; it represents a global dynamical 
property of the system since it is not necessarily calcu
lated for the same agents in succeeding generations. 40 
is an upper limit for all lines because a new generation 
starts when less than 40 agents are alive and all data 
are generated at the end of each generation. All agents 
are set back to a new random start position and get a 
new start energy when a new task level is introduced. 
Thus the solid line shows that on average a relatively 
high part of the agents reaches the lamps quickly at the 
earlier levels and slower at the later levels. The dotted 
line increases much slower, mainly because of the con
dition that the agents have to be older than 10,000, i.e. 
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Figure 6: Eye width statistics 

individual agents have to reach a lamp several times in 
succession. Level 7 seems to be very difficult as almost 
no agent reaches the lamp. 

As mentioned in Sec. 3, we evolved the parameter eye
width. In Fig. 6 (same run as in Fig. 5) at every genera
tion (x-axis) a splotch marks an eye width (y-axis) that 
is attained at least twice within the population. The 
radius of each splotch is proportional to the number of 
agents possessing the corresponding eye width in the cur
rent generation. Until reaching a certain level (in above 
case 7 in generation 1000), few eye widths are dominant. 
After that the eye widths spread out over the full in
terval [O, 3]. This is typical for all runs performed with 
the linear model and fixed eye number, indicating that 
at a certain level the task becomes difficult and the GA 
search gets unspecific. 

In all runs to the linear network we find clear indica
tions that agents with higher eye numbers develop lower 
eye widths (except for 100 eyes, probably because 1000 
generations were not enough to evolve better solutions). 
These results, however, show a relatively high standard 
deviation because of the small number of runs (see Mark 
(1998). Nevertheless this indicates that agents with more 
eyes achieve a better image resolution and therefore can 
navigate better. This phenomenon deserves further in
vestigation. 

As mentioned in Sec. 3, we did some prototypic runs 
with variable eye numbers. We introduced sensor noise 
(added to eye signal) to get a selective pressure toward 
higher eye numbers. In Fig. 7 we show a run where 
the dominant number of eyes (y-axis) increased strongly. 
The x-axis shows the number of generations. The sim
ulation starts with a population of agents possessing 2 
eyes. The eye number increases to 6 and stays at that 
level until the first five task levels are reached. Specific 
noise and GA settings consistently lead to increasing eye 
numbers in a sequence of several runs. 

For a more detailed presentation and discussion of the 
results see (Mark 1998). Future work will include a sub-
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Figure 7: Most frequent eye number 

stantial increase of the statistical basis, additional runs 
with variable eye numbers and study of different lev
els of sensor noise to increase selection pressure toward 
larger eye numbers as well as fixed-length variable eye 
number approaches using unsupervised on-line learning 
(e.g., Plumbley networks). To be better able to evalu
ate the success of the GA runs it would be important 
to introduce a measure of visual acuity adequate to de
scribe the improvements; we did not want to preassume 
such a measure for our GA selection, as our interest was 
to study simulated sensor evolution driven by the re
quirements of world tasks and not by the optimization 
of abstract quantities. 
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Abstract 

We present a model of optimal allocation of resources 
to reproduction and growth in a simple multicellular or
ganism with limited lifespan, using a gene network for
malism to simulate gene interactions within cells. The 
model is compatible with more conventional approaches 
to allocation problems in life history and in addition 
provides connections between processes at the gene and 
cell levels on one hand and life history strategies on the 
other. The model may offer an example of how a geno
type orchestrating development imposes constraints on 
the optimal solutions that evolution can reach. 

Introduction 
How an organism uses energy and other resources ex
tracted from the environment to promote its survival 
and growth, produce offspring or store for future needs 
is crucial for the organism's fitness. Life-history traits 
of an organism, that determine when and in what pro
portions the organism allocates resources during its life
time, include age and size at first reproduction, number 
and size of offspring and life-span; all these traits and 
others have been studied both theoretically and exper
imentally (Roff 1992; Stearns 1992). A particular line 
of theoretical work in this area has explored optimal 
allocation of resources to maintenance, storage, growth 
and reproduction (Gadgil & Bossert 1970; Cohen 1971; 
Vincent & Pulliam 1980; Kozlowski 1992). Analytical 
models on this question have relied largely on methods 
from optimal control theory (Perrin & Sibly 1993) to 
locate the sought optima. In these models the state 
variables are high level phenotypic traits like amount of 
reserves, size of vegetative and reproductive parts and 
other such subsystems of an organism, and what is op
timized is the proportion of resources allocated to each 
subsystem at each age. Stochastic optimization tech
niques have also been used in optimal allocation models 
(Blarer & Doebeli 1996). 

Although such models have dealt with growth of or
ganisms, they have not considered the effects of develop
ment and the constraints it might impose on the evolu
tion of life-history traits. In order to address questions 
about how development determines what life-history 
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strategies are reachable by optimization, and about what 
influence cell-level events during development may have 
on evolution towards optimal phenotypes, we have con
structed a model of optimal allocation of resources in a 
simple multicellular organism with limited lifespan. Our 
model deals explicitly with life history questions as have 
been formulated in the evolutionary biology literature 
and uses a fitness measure from this literature to eval
uate the organism's strategy for growth and reproduc
tion. The genetic and cellular interactions of the model 
are based on the modeling framework which was intro
duced in (Mjolsness, Sharp, & Reinitz 1991) to simulate 
developmental processes through the use of regulatory 
gene networks; this framework has been previously used 
in a preliminary attempt to explore the effects of devel
opmental gene interactions on the evolution of a multi
cellular phenotype (Mjolsness et al. 1995). 

Model 

Our model examines growth and reproduction of a sim
ple multicellular organism with limited lifespan; the or
ganism starts as a single cell (equipped with a certain 
amount of resource reserves) and grows by cell divisions; 
cells may differentiate into propagule cells which are con
sidered to be the progeny of the organism. No specific 
geometry has been assumed for the organism: the cells 
can be thought to form an aggregate of non-interacting 
units. 

Gene net framework. The modeling approach which 
we have used to represent gene regulation, and which 
we will be referring to as the gene net framework, uses 
recurrent neural nets to represent state variable dynam
ics, and a set of rules, a grammar, to represent inter
actions within and between cells. Our model has five 
rules: one for non-dividing vegetative cells (e.g. cells in 
phase G 1 of interphase), one for vegetative cells enter
ing mitosis, two rules for cell division (symmetric and 
asymmetric partitioning of gene products to daughter 
cells) and one for differentiation from vegetative cell 
to reproductive propagule. For a detailed description 
of the gene net framework see (Mjolsness, Sharp, & 



434 

Reinitz 1991) and for shorter versions (Marnellos 1997; 
Marnellos & Mjolsness 1998). 

Resource production and allocation. Gene prod
uct concentrations are state variables in our model and, 
through the control of cell divisions, determine how or
ganism size ( S), another state variable, changes over 
time. They thus determine events like resource extrac
tion from the environment and also propagule formation, 
and consequently control allocation of resources to veg
etative growth and reproduction. Surplus energy (E), 
i.e. energy and other resources not used for mainte
nance, is an allometric function of size E = o.S-Y, where 
a = 0.12 and "( = 0.80; we refer to surplus energy also 
as production. Surplus energy is added to the reserves 
(R) of the organism, another state variable; every time 
the organism increases by a certain number of cells, an 
amount proportional to that number is subtracted from 
the reserves; the same occurs when a propagule leaves 
the organism equipped with an amount of resources, this 
amount being a parameter of the model that may be 
thought of as offspring size. The currency unit used to 
measure reserve and production amounts in these trans
actions is the amount of resources needed to make one 
cell, so one cell "costs" one reserve unit. 

Mortality and fecundity. The maximum lifespan of 
an organism is a number n of time steps over which 
we examine its growth and reproduction (and integrate 
the differential equations describing the changes in state 
variables); in our simulations this is n = 100. There 
are two sources of mortality in the model: extrinsic and 
intrinsic. Extrinsic mortality µe at age (time) t is the 
probability that the organism will die at that age due to 
external factors and in our simulations is constant with 
age; intrinsic mortality is a decreasing sigmoid function 
of reserve levels (the lower the reserves, the higher the 
mortality) and is given by 

e-bR, (t) 

µi(t) = 1 + e-bR,(t) (1) 

where R8 (t) is the quantity of reserves per cell at time 
t and b is a positive constant. With these mortalities 
the survival function l(t), i.e. the probability that an 
organism will survive to a certain age t, is given by the 
decreasing function 

t t 

l(t) = 11(1-µe(T))(l-µi(T)) = (1-µe)t 11(1-µi(T)) 

(2) 
for constant extrinsic mortality µe. 

Fecundity m(t) is given by the number of propagules 
that are produced at age t. Propagules survive and give 
rise to a new organism with probability Pr that is an in
creasing function of propagule size Sp, i.e. the amount of 
reserves that a propagule is equipped with when it leaves 

the parent organism (Sp is the same for all propagules 
and constant in time), 

(3) 

where Cr and C2 are positive constants - we have used 
C1 = 1.8 and C2 = 0.8, but any values that result in a 
concave increasing function with range between O and 1 
would do. Thus effective fecundity ih at age t is taken 
to be the product of number of propagules produced at 
that age times propagule survival probability 

ih(t) = m(t)Pr(Sp)· (4) 

The amount of propagule reserves becomes the initial 
amount of reserves of the organism that the propagule 
gives rise to. We allow negative reserve levels up to 30% 
of an organism's size; this would correspond to an or
ganism under severe resource shortage that has started 
using up components of its cells as nutrients. When re
serves fall below -30% of size, mortality becomes 1 and 
the organism is not considered further. 

Fitness and objective functions. The fitness mea
sure we maximize by optimization is the lifetime off
spring production of the organism R..i = 2:~1 l(t)ih(t), 
where fl is maximum lifespan, l(t) survival to time t (Eq. 
2) and m(t) effective fecundity at time t (Eq. 4). The ob
jective function of this problem also contains a quadratic 
penalty term which is minimized and tends to make all 
propagules of the organism have gene product concentra
tions identical to those of all the other propagules and 
of the founder spore cell that gave rise to the organism; 
this term we refer to as identical propagule cost, I: 

propagules genes 

I= L L (vJ -vf)2 (5) 
j 

where vj is concentration of gene product j in propagule 
i and vf is concentration of the same gene product in the 
founder cell of the organism. Finally there is a quadratic 
penalty term P (a sum of the squares of all the parame
ters we optimize on) that prevents the parameters from 
getting excessively large (in our runs they rarely grow 
beyond order of magnitude 101 ). All terms of the ob
jective function are weighted, and in our runs we have 
tuned these weights so as to achieve the best results with 
the optimization methods used. The objective function 
we maximize is therefore 

max J = WR 0 R..i - w1l - wpP (6) 

where the weights w Ro, w 1, w p are positive numbers. 
The parameters we optimize on are: propagule size, Sp 

(i.e. the amount of reserves invested :n each propagule); 
initial concentrations of gene products in the founder 
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cell (spore) of the organism (which, if identical propag
ule cost I is very small, should be almost identical to 
those of the propagules that the organism produces); 
and parameters of the gene network, like gene inter
action strengths, thresholds for gene activation, decay 
rates of gene products, parameters that govern the trig
gering of grammar rules, and so on. In the case of runs 
with two (2) genes there are 27 parameters that are op
timized on. We have used stochastic optimization tech
niques to maximize Eq. 6, namely simulated annealing 
with an efficient temperature schedule and a genetic al
gorithm implemented in parallel - for a description of 
these algorithms, as well as a more detailed description 
of the parameters optimized on, see (Marnellos 1997; 
Marnellos & Mjolsness 1998). 

Results 

We have carried out optimization runs with two-gene 
networks for various strengths of extrinsic mortality µe . 
Illustrations of model simulations using parameter val
ues derived by optimization appear in Figs. 1 and 2. The 
best solutions (in terms of fitness) obtained in these runs 
are presented in Table 1. The life history features, apart 
from fitness, of the solutions listed in this Table are: age 
at maturity, i.e. age at first reproduction; life expectancy 
at birth (LE) which is given by LE= l:~=1 l(t), where 
n is maximum lifespan and l(t) is probability of survival 
to age t as determined by Eq. 2; intrinsic life expectancy 
which is due to intrinsic factors only, i.e. is calculated as 
LE but with µe assumed to be zero; propagule reserves 
(or propagule size) Sp; total number of propagules pro
duced during the organism's lifetime; and finally, total 
reproductive effort, which is the total number of propag
ules multiplied by the reserves Sp of each propagule. 

Solutions of higher fitness tend to produce more 
propagules but make a smaller reproductive effort. It 
appears that, because of intrinsic mortality (which in
creases when reserves fall), the strategy adopted in these 
solutions is to maintain high reserves throughout and re
lease them in reproductive events towards the end of the 
maximum lifespan; as a consequence, growth rates are 
kept low, but intrinsic life expectancies are high for all 
solutions (in all cases higher than 93, out of a maxi
mum of 100, see Table 1) . However, these solutions 
are not well adapted to the different levels of extrinsic 
mortality: reproduction does not shift to earlier times 
with increasing extrinsic mortality - as has been for 
instance observed in an analytical model quite close to 
ours in high level structure (Kozlowski & Wiegert 1987) 
- or, at least, there is no clear relation between age at 
maturity and level of extrinsic mortality. In fact, in all 
but one of the solutions, age at maturity is greater than 
life expectancy (see Table 1). 

In connection with age at maturity, it is interesting 
to observe that solutions fall into two phenotypes: one 

Figure 1: Simulation based on parameters derived by an 
optimization run, with frames (columns of cells) showing an 
organism at successive points in time (here are shown time 
points 51 to 60 out of a maximum lifespan of n = 100 time 
points). The organism has two genes; sizes of the two disks 
within each cell represent levels of gene products. The larger 
cell in the 5th column represents a propagule with its reserves. 
The arrows at the bottom of the 3rd and 4th columns point 
to an asymmetric cell division: on the left the mother cell 
and on the right the two daughter cells; the daughter at the 
bottom receives most of both gene products of the mother 
(there are other instances of asymmetric division in this Fig
ure which we have not indicated by arrows). The arrows at 
the top of the 9th and 10th columns point to a symmetric cell 
division: the daughter cells on the right each receive equal 
amounts of the two gene products from the mother cell. Note 
that levels and proportions of gene products are distinct for 
the cell differentiating into a propagule, for the cell dividing 
asymmetrically and for the cell dividing symmetrically; gene 
product levels determine which of these rules is triggered in 
each instance. In this figure the organism is represented as 
a column of cells for illustration purposes only (to better il
lustrate changes in organism size, cell divisions, etc.); in the 
simulations no specific organism geometry has been assumed 
and organism cells can be thought to form an aggregate of 
non-interacting units. 

with older age at maturity and smaller propagule size, 
as is in the solutions in the first column of Table 1 and 
the top of the second column, and another with earlier 
age at maturity and larger propagule size, as in the rest 
of the solutions (see also Fig. 2). This trade-off between 
propagule size and development time to maturity is a 
consequence of the fact that, on one hand, a larger size 
propagule costs more reserves to produce and so tends 
to reduce future growth and reproduction of the parent 
and thus fitness, but, on the other, leads to higher growth 
rates, higher production and so earlier reproduction and 
higher fitness; conversely, smaller propagule size costs 
less but leads to slower growth, later reproduction and 
decrease in fitness. Related to this trade-off is another 
trade-off between propagule size and propagule number 
(the smaller the size, the larger the number, and vice 
versa) which is clearly evident in the solutions of Table 
1. These trade-offs are affected by the propagule sur-
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µe 1 2 3 
0.010 Fitness (Ro) 13.7 12.4 11.7 

Age at Maturity 88 86 48 
Life Expectancy (LE) 62.3 61.4 59.3 
Intrinsic LE 99.3 97.3 93.8 
Propagule Reserves 1.36 1.21 3.80 
Propagules 58 64 33 
Reproductive Effort 78.9 77.4 125.4 

0.013 Fitness (Ro) 10.0 9.4 8.7 
Age at Maturity 75 61 64 
Life Expectancy (LE) 54.0 53.7 53.3 
Intrinsic LE 97.4 96.2 95.4 
Propagule Reserves 1.96 2.79 3.99 
Propagules 46 34 30 
Reproductive Effort 90.1 95.0 119.8 

0.015 Fitness (Ro) 9.1 9.1 8.0 
Age at Maturity 86 64 58 
Life Expectancy (LE) 48.9 48.6 49.2 
Intrinsic LE 94.7 93.6 95.1 
Propagule Reserves 2.26 3.89 3.41 
Propagules 49 39 34 
Reproductive Effort 110.7 151.7 115.9 

0.017 Fitness (Ro) 8.0 6.7 6.5 
Age at Maturity 89 61 71 
Life Expectancy (LE) 46.4 45.2 45.2 
Intrinsic LE 97.5 94.5 93.4 
Propagule Reserves 1.28 3.84 3.96 
Propagules 72 32 34 
Reproductive Effort 92.2 122.9 134.6 

Table 1: Life-history features of the 3 best optimization so
lutions obtained for various strengths of extrinsic mortality 
µe. 

vival function (Eq. 3), which determines how much an 
increase in propagule size will increase the propagule's 
chances of survival and thus fitness. 

Another salient feature is that life histories in the solu
tions presented here often include what is called a bang
bang switch: after an initial period of exclusive alloca
tion of resources to growth, the organism ceases to grow 
in size and completely switches to investment in repro
duction. This is true for the majority of solutions ob
tained apart from a few where the switch is more gradual. 
Both modes of switching have been reported in previous 
theoretical work (Cohen 1971; Vincent & Pulliam 1980; 
King & Roughgarden 1982). 

All solutions presented in Table 1 differ in the signs 
and magnitudes of their optimized parameters, which 
is true even for solutions that are similar in their life
history features (like solutions 1 and 2 for µe = 0.010, or 
solution 3 for µe = 0.010 and 2 for µe = 0.015). This may 
indicate that the objective function of this problem (Eq. 
6) has many similar optima. The similar life histories 
that result from different optimization solutions can be 

considered instances of "phenotypic convergence". 
Finally, identical propagule cost, which is not consid

ered in previous resource allocation work, has turned out 
to be an important component of our model: growth and 
fecundity in our simulations can be very sensitive to ini
tial concentrations of gene products in the founder cell of 
the organism. Identical propagule cost may correspond, 
to a certain extent, to maternal effects described in work 
on state-dependent life histories (McNamara & Houston 
1996). 

Discussion 

In this paper we have tried to make a connection be
tween the gene network approach and previous optimal 
resource allocation models and have probed the role of 
cell-level events during development in shaping the life 
histories of organisms. 

Solutions found by our optimization runs have fea
tures in common with previous work in resource alloca
tion and life history: such features are the bang-bang 
switch from growth to reproduction and the trade-offs 
between propagule size and time of development to ma
turity and between propagule size and number. An ad
vantage of our approach in comparison with previous 
work is that, through the use of lower level state vari
ables, our model encompasses many life history charac
ters in a natural way; for instance, in our model the 
form of fecundity as a function of age, organism size or 
reserves, falls out naturally from the underlying physi
ology of cell differentiation. In previous work relations 
between fecundity, survival, size, surplus energy and so 
on have been based upon reasonable assumptions but 
differ substantially across models; it is not always clear 
what these differences imply or how they map to real 
physiological processes in an organism. Our model goes 
some way towards addressing this problem. 

Our approach has additionally provided a reductionist 
window into the lower level workings of the solutions: it 
has, for instance, revealed the phenotypic convergence 
of solutions that differ in their low level parameters, the 
importance of regulating tightly gene product concen
trations in propagules, and the correlation of propagule 
size, a cell-level feature, to the two kinds of phenotypes 
observed in our solutions. 

Finally, as was mentioned in the Results, our life his
tory solutions can respond to certain features of the se
lective environment, like the presence of intrinsic mortal
ity, but cannot adapt to others, like increases in the level 
of extrinsic mortality. This may be due to constraints 
imposed by the number of genes and other parameters, 
as well as the genotypic structure. of the model, and 
can be viewed as an illustration of the phylogenetic con
straints within which selection has to move in order to 
optimize life histories; with the fixation of traits within 
lineages and other such lineage specific effects some the-
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Figure 2: Solutions obtained by optimization fall into two life-history phenotypes: (A) older age at maturity and smaller 
propagule size, and (B) earlier age at maturity and larger propagule size. Illustrations (A) and (B) in this figure correspond 
to solution 1 for µ. = 0.010 and solution 2 for µ. = 0.017 of Table 1, respectively. Organism size, amount of reserves 
and reproductive effort (i.e. number of propagules produced times propagule size) are plotted against time (age); all three 
quantities are measured in the same currency used in the model, namely number of cells (see text for more details). 

oretical optima may not be reachable. 

Acknowledgements 
Supported in part by the Yale Institute for Biospheric 
Studies (Center for Computational Ecology), and the 
Yale Center for Parallel Supercomputing, and by an 
Office of Naval Research grant (number N00014-97-1-
0422). 

References 
Blarer, A., and Doebeli, M. 1996. Heuristic optimization 

of the general life history problem: A novel approach. 
Evolutionary Ecology 10:81-96. 

Cohen, D. 1971. Maximizing final yield when growth is 
limited by time or by limiting resources. Journal of 
Theoretical Biology 12:19-29. 

Gadgil, M., and Bossert, W. 1970. Life historical con
sequences of natural selection. American Naturalist 
104:1-24. 

King, D., and Roughgarden, J. 1982. Graded alloca
tion between vegetative and reproductive growth for 
annual plants in growing seasons of random lengths. 
Theoretical Population Biology 22:1-16. 

Kozlowski, J., and Wiegert, R. G. 1987. Optimal age 
and size at maturity in annuals and perennials with 
determinate growth. Evolutionary Ecology 1:231-244. 

Kozlowski, J. 1992. Optimal allocation of resources to 
growth and reproduction: Implications for age and 
size at maturity. Trends in Ecology and Evolution 
7:15-19. 

Marnellos, G., and Mjolsness, E. 1998. A model of 
optimal resource allocation to growth and reproduc-

tion using gene networks. Technical Report CS97-568, 
Computer Science and Engineering, UCSD. 

Marnellos, G. 1997. Gene Network Models Applied to 
Questions in Development and Evolution. Ph.D. Dis
sertation, Yale University. 

McNamara, J., and Houston, A. 1996. State-dependent 
life histories. Nature 380:215-221. 

Mjolsness, E.; Garrett, C.; Reinitz, J.; and Sharp, D. 
1995. Modeling the connection between development 
and evolution: Preliminary report. In Banzhaf, W., 
and Eeckman, F., eds., Evolution and Biocomputation, 
Computational Models of Evolution, volume 899 of 
Lecture Notes in Computer Science. Berlin: Springer. 
429-453. 

Mjolsness, E.; Sharp, D.; and Reinitz, J. 1991. A con
nectionist model of development. Journal of Theoret
ical Biology 152:429-453. 

Perrin, N., and Sibly, R. 1993. Dynamic models of 
energy allocation and investment. Annual Review of 
Ecology and Systematics 24:379-410. 

Roff, D. 1992. The Evolution of Life Histories. New 
York: Chapman and Hall. 

Stearns, S. 1992. The Evolution of Life Histories. Ox
ford: Oxford University Press. 

Vincent, T., and Pulliam, H. 1980. Evolution of life 
history strategies for an asexual annual plant model. 
Theoretical Population Biology 17:215-231. 



Emergence and Maintenance 
of 

Relationships among Agents 
Shin I. Nishimura and Takashi lkegami 

Institute of Physics, The Graduate School of Arts and Sciences, 
University of Tokyo, 

3-8-1 Komaba, Meguro-ku, Tokyo 153, Japan 

Abstract 

We study the emergence and maintenance of relation
ships among individual agents based on simulations of 
a model ecosystem. Usually an ecosystem is modeled as 
an ensemble of individuals, whose interactions are given 
as direct couplings among individuals. In this paper, 
a new type of coupling and coupling dynamics are in
troduced. Here, each individual is seen as not directly 
interacting with other individuals, but rather with the 
relationships among the individuals (e.g., relationships 
such as "one agent follows the other"). We study the dy
namics of individuals moving on a 2-dimensional plane, 
where they are making/breaking the relationships con
structed between them. In practice, these relationships 
are assumed to be spatial patterns of more than two in
dividuals. When certain patterns appear, each individ
ual is forced to one of the locations where the pattern 
has emerged. Some patterns will be lost immediately, 
but some can be sustained dynamically. For example, 
we found that a relationship, such as "one individual 
follows the other", is dynamically sustained by the mo
tions induced by the relationship. Examples of possible 
relationships and the induced dynamics which hold the 
relationships together will be discussed. 

Introduction 
For the simulation of animal behavior, we have two ex
treme approaches. One is to simulate it as a dynamic 
system (e.g., animal behavior obeys the Newtonian equa
tions of motion) (Breder 1954; Sannomyia et al. 1996; 
Reynolds 1987; Shimoyama et al. 1996). The other is 
to simulate it as a finite automaton (e.g., behavior is 
pre-programmed as a table of states and transitions). 

These approaches are also referred to respectively as 
bottom-up and top-down approaches. In the bottom-up 
approach, the higher functions of animal behavior are 
expected to be explained by the dynamics of the low
est. In the top-down approach, the underlying dynamics 
are inversely restricted by the higher functions, which 
are often more easily described as functions of a finite 
automaton. These two approaches are seen as comple
mentary, and a goal of the present study, especially as a 
study of artificial life, is to reconcile these two (Hogeweg 
1988). In doing so, we present a novel framework for 
studying animal behavior. 

We first take the bottom-up approach; motions of each 
individual are determined by a simple set of equations. 
But to produce animation of the group motions of in
dividuals, we must introduce some quasi-top-down ele
ments. That is, interactions between individuals are not 
given as a simple function of their positions, since we 
assume that each individual cannot directly sense the 
locations and speed of other individuals. Any individual 
can only sense the relationship established among other 
individuals. There exist some ethological studies whose 
findings correspond to this assumption. McDonald and 
Potts (1994) reported that long-tailed manakins dis
play dual-male courtship; males form multi-male teams, 
which include an "alpha" and "beta" male that do the 
bulk of the obligate dual-male unison song duets and 
dual-male dance displays. A female comes to the perfect 
team, from which only the alpha individual mates with 
the female. We emphasize that a female is not attracted 
to a single male but to the synergistic dancing. 

In the present paper, we show how the relationship 
that we describe is dynamically sustained by the group 
of motions induced by the given relationship, and we try 
to show how behaviors can be "discretized" in the sense 
that the whole behavior can be decomposed into some 
basic units of behavior. The existence of such units of 
behavior is experimentally suggested by Csanyi (1993). 

We must take relationship dynamics into account for 
the following reason. There exist "how" and "why" ques
tions about animal behavior, such as: how do animals 
behave? (e.g. what does their navigation trajectory 
look like?); and why do animals behave in that way? 
(e.g. what motivates their behavior?). To describe an
imal behavior, i.e., to answer the "how" questions, we 
construct a simple mathematical model, as minimal as 
possible. To discuss motivations for animal behavior, 
i.e., to answer "why" questions, a simple model does not 
suffice. Uexkiill (1950) pointed out that surrounding ob
jects have different meanings depending on the internal 
state of the animals that see the objects. Since we can
not definitively know the internal state of individuals, 
we always have to speculate on the cause of an action 
only after the action is executed. 
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However, if some events always cause the same ac
tion, we can refer to these events as "motivations" for 
that action. There must exist some dynamic feedback 
mechanisms to repetitively reinforce the events as mo
tivations. This is one way to capture the motivations 
behind animal behavior. We thus ask the "why" ques
tion in the following way; "what kinds of motivations 
can be sustained in a society of agents ranging from 
ants colony to human society". Behaviors can be mo
tivated either by internal or external events. Hunger, 
anger, sorrow, etc. are examples of internal events. En
vironmental changes, changes in the spatial structures 
of individuals or in sensory patterns are examples of ex
ternal events. In this study, we neglect internal events 
and focus on external events. Practically speaking, we 
study the spatio-temporal relationship between two indi
viduals as an external event which motivates individual 
behavior. 

A Model Equation 
We first introduce the basic equations of motion for indi
vidual navigation, then we introduce some relationships 
between two individuals that act as target patterns. 

In the world we simulate, individuals live on a 2-
dimensional plane. They each have their own positions 
(r"; and headings (ii = (cos(O), sin(O))). The equa
tions of motion involve these two variables. The heading 
movement is navigated according to the discrepancy be
tween the velocity(~:= l~:j(cos(¢),sin(¢))) and the 
heading direction. Hence the equation of motion for the 
i - th individual is given by, 

dr; 
g · E;/IEil +iii, (1) 

dt 
dO; 

sin(¢i - Bi)· (2) 
dt 

The introduction of heading dynamics has recently 
been recognized as an important factor in bringing di
versity into grouping behavior (see, e.g., Sannomyia et 
al., 1996, Nishimura and Ikegami 1998). If the term 
(gE;/IE;I) in Eq. (1) can be neglected, in other words 
if no event is sensed by the individual i, that individual 
thus moves freely along its heading direction. We call 
this freely moving state an ideal gas state. 

When the term (gE;/IEil) in Eq. (1) exists, this means 
that the individual can sense the event, which in turn 
attracts the individual to it. No individual can directly 
sense other individuals' positions or headings. But in
dividuals can sense the relationships established among 
individuals. In this paper, relationships are given as spa
tial patterns of a pair of individuals. These relationships 
are also called "target patterns", since they tend to at
tract other agents. Although we prepare those patterns 
in advance, it is not obvious whether they can be sus
tained in a system. If target patterns exist, it is clear 
that each individual is attracted to them. 

If the jth and the kth individuals form a target pat
tern, Ei in the first term of Eq. (1) is given as follows: 

i ::/= j ::/= k ::/= i, 

(3) 

(4) 

where iiijk is the position that the ith individual is at
tracted to. If many target patterns appear, the ith in
dividual moves to the nearest pattern that she finds. 
The inequality ( 4) is introduced in order to exclude self
interaction. No individual can recognize a pattern which 
includes herself. 

We give two examples of the relationship below. 

The Relationships and the Induced 
Dynamics 

In the following, we introduce examples of two different 
target patterns and their resulting dynamics. The sys
tem contains a fixed number of individuals N, which in 
this simulation we fix at 15. The 2-dimensional world 
where the individuals live has periodic boundaries. 

Case 1 

It is a matter of controversy whether a single agent 
leads a whole group in general in animal groups. Menzel 
(1974) says that this is so for chimpanzees, but Partridge 
(1982) holds that no such leader exists in fish schools, 
where a leader and follower emerge only if no more than 
two fish are enclosed in a tank (Partridge 1982). 

On the basis of those discussions, we speculate that 
agents do not see one specific agent as a leader, but 
rather are aware of some dynamical pattern between 
agents that may indicate a direction to follow. There
fore, as a simplest possible case, we here adopt a pair 
that includes a leader and a follower as a target pattern 
in our simulation. Formally, it is described as follows: 

¢J < 0 
¢k < 0 

lr'.i - rkl < D, 

(5) 

(6) 

(7) 

where ¢1 (¢k) is the angle between the heading direc
tion of the jth (kth) individual and rk - fj. o and D 
are constant. Eqs. (5) and (6) indicate that the discrep
ancies between the heading directions of each individual 
and the line from the kth to jth individual is defined to 
be less than o. Eq. (7) states that two individuals should 
neighbor within a distance of D. As is expected, a target 
pattern is regarded as a linear pattern (see Fig. 1). The 
j th individual is called a leader, and the k th individual 
is called a follower. 

Here, the vector iiijk in Eq. (3) is given as the "fol
lower's" position in the target pattern. 

This linear formulation is less likely to be sustained if 
we have smaller values of 6 and D. Note that although 
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Figure 1: Black colored discs indicate the locations of 
individuals and the arrows represent their heading di
rections. This pattern is called Target Pattern. The jth 
individual is called a leader and the i th individual is 
called a follower. 

we explicitly defined the target pattern, it is not obvious 
whether it emerges or not. In order to avoid an instant 
response to the emergence of the target pattern, we as
sume that individuals can only be attracted to a target 
pattern that persists more than r time steps. Here, as 
in case 2 below, r is set at 2000. 

• Results 

The strength with which each individual is attracted 
to the target pattern is controlled by a parameter g. 
By changing the value of g, we obtain different sizes of 
groupings. Also, the parameters r, D and b determine 
the size and the number of isolated groupings. Here we 
choose the parameters so that we will have only one or 
two groupings within a system. Over the wide range of 
parameter regions that satisfy this restriction, we see the 
dynamics which stabilize the linear formation of group
ings. 

The snapshots of the grouping and its dynamics are 
shown in Fig. 2. When a pair happens to form a target 
pattern at a certain location, it attracts many other in
dividuals. The new individuals approaching the follower 
of the target will form a new linear formation. If the new 
target pattern does not contain the members of the ini
tial target pattern, both leader and follower of the initial 
target pattern are attracted to the new pattern. There
fore the first target pattern will be lost. But often the 
first pattern continues to produce new target patterns 
as in Fig. 2, where it can be seen that the individuals 
easily aggregate and the number of target patterns will 
decrease. At a certain point, however, a new pair of in
dividuals will escape from the aggregation and attract 
the others. According to this scenario, the linear target 
pattern is maintained. 
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Figure 2: Snapshots of the simulation are illustrated. A 
disc and a small spike denote an individual's position and 
a heading direction, respectively. A black colored disc 
indicates individuals forming target patterns. The arrow 
indicates the direction of motion of a whole group. (1) 
One target pattern emerges and attracts others. (2) New 
target patterns are created. (3) The leader of the first 
target pattern changes its heading direction toward the 
new target pattern. (4) Every individual aggregates at 
the center. The number of target patterns decreases and 
situation ( 1) appears again. The parameters g, r, D and 
b are set to 0.007, 8333, 3000 and 0.3176, respectively. 

Case 2 

For our second example, we take the target pattern to be 
two individuals with opposite headings. This differs from 
the case 1 situation in that two kinds of target patterns 
occur in this case; i.e., two individuals either move closer 
together or move apart. These two target patterns are 
depicted in Figs. 3a and b. We have no natural reference 
for these patterns. 

The formal descriptions of the patterns are as follows. 
Fig. 3a is described by, 

<Pi < b 

¢k < b 

Ir} - f'kl < D, 

(8) 

(9) 

(10) 

where D, band rare the parameters, as in case 1. The 
new variable <Pi is the angle from fj - f'k to iii, and ¢k 
is the angle from f'k - fie to iii. 

Fig. 3b is described as follows: 

</>j > 7r - b 

¢k > 7r - b 

Ir} - f'kl < D, 

(11) 

(12) 

(13) 

The location of these target patterns is defined as be
ing halfway between the jth and kth individuals. Hence 
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Figure 3: Target Patterns (a) and (b) are illustrated. 
Black discs indicate the positions of individuals and ar
rows represent the individuals' heading directions. (a) 
¢i and 7r - ¢k must be less than 8. (b) 7r - ¢i and ¢k 
must be less than 8. 

individuals who sense either of the target patterns will 
approach the middle of the space between the individu
als who form the target pattern. Below, we discuss how 
these two target patterns can be stabilized. 

• Results 

Figs. 4 (1) and (2) show snapshots of the dynamics 
where target patterns (a) and (b) respectively emerge. 
When either of the target patterns emerge, other indi
viduals aggregate to its middle point except for the in
dividuals that initially formed the target pattern. These 
individuals are marked in black. Unlike in case 1, we sel
dom have more than two targets coexisting at one time. 
A single pair of individuals can participate in forming 
the target pattern. Depending on the parameter values, 
the speed of the aggregation changes, but the basic pic
ture of the induced dynamic is that a pair of individuals 
will go straight and the rest will aggregate. 

We notice that these two patterns can seldom coexist 
at one time but one pattern subsequently induces the 
other one. So temporalily, we have a sequential changes 
of target pattern a) and b) in turn. Further, one pattern 
is followed by the other. To acount for this observation, 
we compute the order parameters for those two target 
patterns as: 

L cos(¢1)/ L 1, (14) 
IE Ca IE Ca 

h = L cos(¢1)/ L 1. (15) 

The sets Ca and Cb each represent a set of individu
als that satisfy target pattern conditions (a) and (b), 
respectively. If no target pattern is present, those or
der parameters give null values. Therefore, Ia > 0 and 
h < 0 imply the emergence of target patterns (a) and 
(b), respectively. 

I 

• 
I , 

Figure 4: Snapshots of spatio-temporal patterns of in
dividual movements are illustrated. A disc with a small 
spike denotes an individual's position and heading direc
tion. A black colored disc indicates a pair of individuals 
forming target patterns. Arrows represent the moving di
rections of those individuals forming the target pattern. 
(1) One target pattern a) emerges. (2) Other individuals 
aggregate to the middle point of the target pattern. The 
direction of this aggregation is denoted again by the ar
row. (3) Target pattern a) was lost as the two individuals 
which originally composed it went too far apart, failing 
to form the target pattern. Target Pattern b) subse
quently emerges. (4) Target pattern b) reverts to target 
pattern a) when the agents which form target pattern 
b) exchange their position at the middle point of target 
pattern b). The parameters g, T, D and 8 are set at 
0.007, 8333, 3000 and 0.432, respectively. 

In Fig. 5, Ia and h are plotted. This figure shows that 
two states iteratively emerge, so that we cannot observe 
both of the patterns at one time. This confirms our 
observations derived from the snapshots. The emergence 
of one target pattern suppresses the other. 

Discussions 
How individuals interact with other individuals should 
not be taken as a given but should rather be treated as 
a phenomenon that emerges from simple dynamics. We 
call the interaction an emergent phenomenon because 
whether it is sustained or not is decided by the actions 
of agents of the system. This is what we have shown in 
this paper, although still at a primitive level. 

An initial ideal gas state changes to a state where in
teraction takes place. Individuals are attracted to an 
event, which emerges merely by chance. If the event 
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Figure 5: Order parameters for the target patterns a 
and b are depicted. By definition, the order parameter 
for pattern a) satisfies Ia > 0 and that for pattern b) 
satisfies h < 0. 

subsequently disappears, again by chance, it can be re
garded as a mere perturbation of the system. But if the 
event is recursively generated by the dynamics which are 
triggered by the event itself, that event becomes more 
than a perturbation, and we thus can treat the event as 
the definitive cause for the individuals' behavior. In the 
example we referred to as case 2), we saw that two target 
patterns a) and b) can coexist. The dynamics induced 
by pattern a) can solely sustain pattern a) without be
ing additionally supported by pattern b). On the other 
hand, the dynamics induced by pattern b) cannot solely 
stabilize pattern b). Soon or later, pattern b) will drop 
out of the system, and can only be retrieved acciden
tally. For example, since we use a periodic boundary 
condition, two agents who go in the opposite direction 
will meet each other by accrossing the boundary. How
ever, if individuals can recognize both patterns a) and 
b), pattern b) could be retrieved in the system by the 
dynamics induced by pattern a). The dynamics induced 
by pattern b) are now, in turn, able to generate pattern 
a). Therefore a sequential appearance of patterns a) and 
b) emerges. 

Behavior patterns a) and b) can be seen as examples 
of the behavior units induced by the target pattern in 
case 2). More studies on the classification of target pat
terns and their accompanying behavior units will be per
formed. 
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Abstract 

We describe the preliminary version of our investigative 
software, GGE - Generative Genetic Explorer, in which 
genetic operations interact with AutoCAD to generate 
novel 3D forms for the architect. GGE allows us to asess 
how evolutionary algorithms should be tailored to suit 
Architecture CAD tasks. 

Introduction 
An evolutionary process exemplifies the "explore, evalu
ate and refine" subprocesses of architectural design and 
its overall non-linear nature. We report on Generative 
Genetic Explorer (GGE), an evolution-based software 
system that we have developed and interfaced with Au
toCAD (Autocad 1995). Presently, GGE is an investiga
tive platform for assessing Alife CAD tool issues. Ulti
mately GGE is intended to be used during the initial 
stages of the design process when form is being explored 
through the use of visual models. Its goal is the active 
generation and suggestion of new designs by means of a 
computational evolutionary process that sensitively in
teracts with the creative process of an architect. 

An evolutionary algorithm typically requires the des
ignation of a genotype, genotype-phenotype mapping, 
and a fitness function. To suit its architectural domain, 
the genotype of GG E is expressed in a vocabulary that 
an architect can relate to and understand. The architect 
is led to intuitively think of an initial form as a skele
ton and its covering skin. The genotype is a sequence 
of visual-based, "manual" transformations that will be 
applied to the skeleton and skin. For example, a form un
dergoes a sequence of lifts and folds to parts of its extent. 
The result (i.e. the phenotype) in GGE is an AutoCAD 
graphical entity which the architect simply views and as
sesses. At the system level, i.e. below the graphics level, 
the phenotype is specified in terms of vertices and faces. 
It is mapped from the genotype by the programming in 
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Girish Ramachandran 
School of Architecture 

Massachusetts Institute of Technology 
77 Massachusetts A venue 

Cambridge, MA 02139 
girish@mit.edu 

GGE of the transformations. Transformations are coded 
at the level of vertex and face manipulation. However, 
this mapping and the gritty details of the transformation 
are hidden from the architect. 

Because form design stresses exploration, GG E does 
not have a programmed fitness function. Instead, it 
leaves selection to the architect. This choice is well suited 
to our desire to make the architect an "architectural ge
neticist". This desire has also instigated a GGE feature 
that is not typically considered to be part of an evolu
tionary algorithm: because architects do not want too 
much randomness GGE's transformations are parame
terized over all their degrees of freedom and the architect 
is allowed to constrain which parameters are subject to 
mutation. The architect can also control the sequence of 
transformations to some degree, in some sense, manually 
directing crossover. This capability provides an effective 
compromise between the execution of random crossovers 
and mutations and the design process proceeding too 
deterministically. 

The paper proceeds as follows: It starts by relating 
GGE to other projects which also use evolution and mor
phogenesis as a process for generating architectural de
signs or structures. With this context established, GGE 
is described and its design motivations discussed. We 
conclude with a list of future work and a summary of 
the contributions of GGE in its current state. 

Work Related to GGE 
Many interesting projects are similar in respects to GGE 
and, indeed, are far more developed and investigated. 
Because of limitations of space, we can only briefly men
tion some of them and their pertinent features. Bior
morphs by Dawkins (1986) allows forms to evolve under 
ranked selection where the user provides the ranking. In 
this way GGE follows Biomorph's initiative in using an 
user-based fitness function. 

Frazer (1995) is a key proponent of making the archi
tectural design process follow a model of nature. Rather 
than seek expression by focusing on output (i.e., space, 
structure or form), Frazer proposes that architecture 
should focus on a process that parallels morphogenesis 
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and evolution in the natural world. He proposes "Evo
lutionary Architecture". GGE, like Evolutionary Archi
tecture, is an attempt to exploit evolution, though in its 
present form, it lacks the complex morphogenesis process 
of Evolutionary Architecture. Another related example 
is Rosenman (1996). 

An example of an Alife CAD tool in the architectural 
domain is Bucci (1997). This genetic algorithm system 
evolves virtual spaces. Two structural elements of the 
3D space are parameterized in terms of volume and lo
cation. Two other structural elements of the space are 
not evolved but are part of the environment. The system 
searches through spatial and volumetric configurations of 
the evolved forms to find a space in which one form is 
maximized for volume and the other one is closely posi
tioned to the center of the space. 

The Bucci system and similar work not directly from 
the architectural domain, e.g., (Bentley and Wakefield 
1996; Funes and Pollack 1998) show how an Evolution
ary Algorithm can pragmatically assist design by satis
fying objective constraints. These systems do not share 
GGE's focus on creativity and discovery. They are em
ployed to solve a problem rather than generate sugges
tions. Usually, the task is one-shot rather than a design 
process. These systems tend to exclude the designers. 
They reduce them to programmers who have to specify 
a fitness function. GGE has a clear goal of integrating 
the architect and the Evolutionary Algorithm into one 
seamless design process. 

Generative Genetic Explorer 
The genotype in GGE 
In GGE the representation for a genotype is a combina
tion of data and instructions. It is: 

• an initial form, and 

• a sequence of transformations 

Initial Form: To generate the initial form, the archi
tect computationally generates (e.g., using trigonometric 
functions in a procedure) or hand draws a 3D line seg
ment (vertices with X,Y,Z orientation) in AutoCAD. She 
then repeatedly copies the segment and changes the new 
segment's location in 3D space using the mouse. Op
tionally the angles or vertex distances are modified. The 
final set of segments is termed a "profile set". From the 
architect's point of view, the line segments constitute a 
skeleton over which a "skin" (or a polygonal "face" or 
surface) will be stretched. She then saves the profile set 
to a file with an AutoCAD command written for GGE. 
GGE is actually implemented in LISP (Steele 1990). 

Transformation sequence: The remainder of the 
genotype is a sequence of transformations. To create 
the phenotype these are applied to the initial form in 
sequence. First, we shall describe the transformation 

language and second, we shall describe how a sequence 
is chosen for a genotype: 

1. Transformation Language We chose the vocabu
lary of transformation by analyzing an architect's ver
bal description of changes she observed to a form. 
The architect spoke in terms of actions that changed 
the appearance of the form. Concentrating on the 
verbs, we developed a small example set of transfor
mations based on visual adaptations: insert, delete, 
fold, punch-hole and lift. 

Concentrating on the nouns the architect used, we re
alized the same transformation (from the architect's 
viewpoint) could act upon data at multiple scales: co
ordinate, vertex, profile or profile set and for a range 
of quantities (1 or more vertices, profiles, etc.). This 
led us to code the transformations with extensive pa
rameter lists when implementing them. Most param
eters were optional. If a parameter was optional and 
was not specified in the call to the transformation, 
its value was determined randomly. For example, if 
the parameter denoting the number of vertices to be 
lifted was not specified in a call to the lift transfor
mation, the routine randomly determined how many 
vertices would be lifted. If the parameter was speci
fied, it acted as a restraint on the randomness of the 
outcome of the transformation. 

In addition, adjectives were very important. The ar
chitect spoke using terms like "sharp bend", "gentle 
slope", "symmetrical", "regular", "curved". At this 
stage we have neglected these adjectives but plan to 
integrate them as parameterizations later. 

A great number of interesting forms are possible with 
just the five transformations we implemented because 
of the great extent to which each was parameterized. 

• Insert The insert transformation adds one or more 
profiles to the profile set of the initial form. These 
profiles can be randomly generated, randomly se
lected from a database of profiles or specified by 
the architect. The relative position of the new pro
file( s) in the current profile set can be randomly 
determined or specified by the architect. When a 
profile is added, the skeleton is essentially extended 
and the skin that formerly spanned the profiles that 
have been separated by the new profile's insertion 
is "repaired" to now stretch to the new profile. 
We found that totally randomized insert transfor
mations were unacceptable to the architect. While 
they were complicated and unanticipated, they were 
far too irregular and "crazy" . However, the archi
tect responded to inserts that were slightly random 
in only one or two degrees of freedom (e.g., inser
tion of an existing, but randomly selected profile, 
insertion of a given profile into a random location). 
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• Delete The delete operation is essentially the oppo
site of the insert operation. It is capable of removing 
equal numbers of vertices (an optional parameter) 
from a profile subset in the profile set. 

• Fold Fold is a planar operation. Given an angle, a 
group of vertices in a plane are rotated. The param
eters of the fold aeration control the angles, plane, 
the number and rank of the vertices and which sub
set of profiles are folded. 
Like Insert, Fold needed to be constrained. In par
ticular, a fold of either just one vertex or of just 
one angle provided sufficient novel and surprising 
variation without creating excessive irregularity. 
Our implementation of Fold is limited. The ar
chitect wants a fold transformation that also cre
ates enclosures with curved boundaries or twists. It 
may prove more useful to subclassify folds and make 
them distinct transformations. 

• Lift 
The lift transformation increments (or decrements) 
a subset of vertices in a subset of axes for a sub
set of profiles by either one constant quantity or by 
different quantities. Lift was very popular, partic
ularly when it was applied with a fixed increment 
to only one axis (specified by the architect) but left 
to decide randomly upon the subsets of vertices and 
profiles. 

• Poke-Hole This transformation was the only one 
we implemented that adapted the surface or skin of 
the profile. GGE assumes the initial form is com
pletely surfaced. The Poke-Hole action removed 
skin from the skeleton leaving (as the name sug
gests) a hole. It was controlled by parameters dic
tating how much skin was removed and where it was 
removed from. 

2. Determining an Initial Transformation Se
quence: The phenotype results from applying the 
transformation sequence of the genotype to its initial 
form. When GGE was allowed to specify an initial 
transformation sequence by drawing transformations 
from the vocabulary at random and by randomly de
termining each parameter value of the sequence, the 
resulting phenotype was almost always unacceptable 
to the architect except, perhaps, as a radical surprise. 
A more acceptable initial transformation sequence to 
the architect was one that she provided. The archi
tect chose the sequence of transformations (with ex
plorative intentions) and then set a range for each 
parameter of each transformation. The actual value 
of the parameter was then randomly determined but 
only from within the range specified by the architect. 
In some cases, the architect completely specified a pa
rameter of a transformation in order to indicate that 
no exploration was desired in the domain of the pa-

rameter. 

This approach i.e. allowing the architect to partially 
control the specification of the initial genotype, ad
dresses a problem we think is likely not unique to 
GGE. In general, the architect wants a high degree 
of control over what aspects of a design are explored 
and what aspects are controlled. In GGE we gave such 
power to the architect and facilitated the architect's 
sense of control by using a transformation language 
that the architect understood. 

Genotype coding: Following the genetic program
ming (GP) style (Koza 1992), in GGE a transformation 
is a primitive program element. It consists of a name 
and a list of the actual parameters for invoking the trans
formation. The initial form portion of the genotype is 
never subject to genetic variation (i.e. crossover or muta
tion) but the transformation sequence is. It, like a GP
style program, is a variable length, linear and ordered 
collection of transformation program elements. GGE 
crosses over two transformation sequences by selecting 
a crossover point between any two transformation pro
gram elements and swapping material between the par
ents at this point. It does not allow crossover to take 
place at a point within a transformation primitive. Mu
tation takes place within a transformation. The actual 
parameters to the transformation are randomly changed 
within their operative ranges. 

Fitness function and selection 

We found the architect quite imprecise regarding an 
aesthetic for forms. This suggested that GGE include 
a component that allowed the architect indicate pref
erences (e.g., by ranking or choosing). The solution 
curently implemented in GGE is far from perfect. GGE 
relies on the architect choosing whether a form should 
be propagated to the next generation. At present, we 
have only used crossover and mutation manually (that 
is, we crossover profile sets or transformation sequences 
and mutate transformation parameters by setting up a 
genotype). So, GGE actually blurs the evolutionary al
gorithm steps of first judging fitness and then selecting. 
This is not necessarily recommended. We simply wanted 
to learn a bit more about how GGE performed before we 
made commitments to selection. Every transformation is 
logged to record the values of parameters that defaulted 
randomly. This lets the architect understand what hap
pened. 

The rest of the evolutionary algorithm 

GGE does not yet support automatic population ini

tialization nor does it execute an automated generation 
loop which includes a selection routine. These compo
nents are not yet implemented because they are not the 
primary issues of GGE's investigation into Alife CAD 
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tools. In lieu of them, we have encouraged the archi
tect to build an ancestry of forms and to hand guide 
GGE through generations and very small populations (1 
to 3 forms) at present. This has proved somewhat ade
quate. If we were to remain with the ancestry guiding 
metaphor, GGE would need a tracking interface which 
shows the forms and their associated transformations. 
We do expect to implement the remaining components 
of the evolutionary algorithm in the next version of GGE. 
We also intend to design an interface by which to inspect 
the population. This will be useful for form ranking and 
it could link into the automated selection procedure. 

Figure 1: Initial Form: plane-0 

Figure 2: plane-1, transformation of plane-0 

Figure 3: plane-2, transformation of plane-1 

Figure 4: Initial Form: cube-0 

Figure 5: Cube-1, transformation of cube-0 

Figure 6: Cube-2, transformation of cube-1 

Examples 

Some examples of GGE are helpful. Figure 1 shows an 
initial form. Figure 2 is the genetic offspring of Figure l. 
The transformation sequence consisted of 4 Lift transfor
mations. The first two acted on the Z axis and the final 
two acted on the X and Y axes respectively. Figure 3 is 
the offspring of Figure 2. The transformation sequence 
included an Insert of a random profile, then two Lifts. 

Exchanging the planar form for a more cubic form, 
Figures 4, 5, and 6 have the same ancestral chain as Fig
ures 1,2 and 3. The transformation sequence of Figure 5 
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exchanged the X,Y and Z coordinates of a subset of ver
tices in 3 profiles of the form. This resulted in a radical 
twist and a radical change to the original regular, cubic 
form. Figure 6 demonstrates how quickly even a small 
number of transformations can lead to a very compli
cated form. Two profiles were deleted from Figure 5 and 
portions of the X and Y axes of another set of (the same) 
profiles were lifted. 

Summary 

GGE comprises some innovative system design choices. 
For example, GGE's genotype representation consists of 
an "embryonic" initial form (data) and a sequence of 
form transformations that are based on visual actions 
and which are applied to the initial form. Forms undergo 
lifts, folds, insertions or deletions. This vocabulary al
lows the architect to understand what adaptation has 
occurred between a timestep of evolution. This helps 
her with proceeding like a architectural geneticist. In 
effect, in GGE the architect can guide evolution but not 
totally control it. 

GGE illustrates that fewer degrees of freedom in a 
transformation lead to more acceptable forms. Plus, in 
using GGE we noticed that the architect desires a high 
degree of control over a smaller number of degrees of 
freedom. These facts were not initially obvious to us. 
(In fact, the behaviour of the transformations was not at 
all initially obvious.) Perhaps, higher degrees of freedom 
are a good strategy in fully automated evolutionary algo
rithm systems where many generations can be executed 
quickly or large population sizes can quickly eliminate 
extremely random forms. 

Watching the architect subjectively select forms for 
her ancestory chain revealed that regularity, to some de
gree, is clearly a form aesthetic. This indicates a poten
tial factor for a programmed fitness function. However, 
it still seems far from unclear how to specify regularity. 
Perhaps, it could be induced in a fitness function learn
ing session in which the architect provides a ranking of 
various forms. 

Because not all of its evolutionary algorithm's com
ponents are not yet implemented, GGE can not conclu
sively demonstrate that artificial evolution is well suited 
to guide the architectural design process. However, given 
what it can do, GGE lends support to this hypothesis. 

Future work 

We have a long list of future proof of concept investi
gations for GGE. In the upcoming academic term, our 
hope is that architecture graduate students in a studio 
design course will experiment with extending GGE in 
the following ways: 

• Provide larger sized population processing. 

• Implement new transformation actions. 

• Link the output of GGE to a 3D printer. 

• Extend the user interface and seamlessly integrate 
GGE with AutoCAD. 

Conclusions 
At this initial stage of its implementation GGE has 
shown that: 

• Evolutionary algorithms are well suited as CAD tools 
for architecture though they need to be quite con
strained in terms of random variation. 

• the architect must be able to interact with the Alife 
CAD tool at opportunities during its execution, not 
solely before it runs. 

• A genotype representation in the architect's vocabu
lary supports a better understanding of the tool's ac
tions. This brings stronger user acceptance. It also 
makes the tool easier for the architect to guide. 
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Abstract 
In this paper we criticize a theoretical standpoint, 
common in the field of Artificial Life (ALife), which 
assumes that the energetic and material aspects of 
living organization are contingent and irrelevant to 
define its logical essence. We argue, instead, that the 
relational-constructive logic of a basic biological 
system and the logic of its physical (thermodynamic) 
implementation are intertwined. Therefore, this must 
be taken into account to establish a universal 
definition of life. 

Introduction: Metabolism and Alif e 

The community of "alifers" has searched for the 
organizational principles of possible life in the context of 
relational or formal systems, inspired by some abstract 
chemistry, rather than in the physics of self-organization or 
thermodynamics. Computational models conceive the basic 

living organization 1 as an operationally closed network of 
component production, independent of aspects related to 
energy and specific materiality, which are regarded as 
contingent. Then, a minimal living being appears as a 
particular (hierarchical) organization, thoroughly established 
by the formal rules of component production and 
transformation. Of course, it is presumed that the 
implementation of this type of organization requires flows of 
matter and energy; yet, in these models material aspects are 
invariably abstracted and energetic constraints tend to be 
assimilated to the constructive relationships themselves. As a 
consequence, the energetic and material problems 
(dissipation, irreversibility ... ) of the physical realization of 
the system tend to be completely disregarded. Kauffman's 

1 By 'basic living or biological organization' we mean the 
minimal organization necessary for an individual biological 
system to self-constitute and operate in its environment; the 
wider concept of 'biological organization' includes 
evolutionary aspects related to a collective and historical 
dimension, which we will not discuss in depth here. 

autocatalytic sets (Farmer et al. 1986; Kauffman 1986), the 
computational models of autopoiesis (Varela, et al. 1974; 
McMullin and Varela 1997) or Fontana's work on 
'algorithmic chemistries' (Fontana 1992; Fontana et al. 
1994) are good examples of the approach we criticize. 

However, from a different ('thermodynamic') standpoint 
the basic living organization can be considered as a complex 
web of energy flows (understandable in terms of heat and 
work transactions) supported by a component production 
machinery -a chemical reaction network. In this context, the 
concept of metabolism becomes central; metabolism taken as 
the material-energetic expression of the basic organization of 
life, realized through the continuous structural, constructive 
and functional transformations that take place in the system. 
This perspective forces us to reconsider some features of the 
abstract-relational logic of computational models; a natural 
question will be whether this logic should be geared in with 
the set of requirements arising from the physical realization 
of the system. 

Hence, the attempt to find out if, and how, a link can be 
established between these two distinct theoretical approaches 
seems worthwhile. This will enhance the significance of 
metabolism for the definition of life. The discussion on the 
role of metabolism is precisely motivated by the challenge 
embraced by ALife when it intends to extend biology by 
producing a universal science of life as it could be (Langton 
1989). The goal is, then, to find a more general notion of 
metabolism in the framework of an 'extended biochemistry', 
based on different chemical components or even on virtual 
"biochemical" entities in some computational universe. In 
the following pages, we shall argue that the concept of 
metabolism is rich enough to accommodate what we call 
basic living organization. In other words, the analysis of the 
full implications of the notion of metabolism may discover a 
new avenue of research where matter and energy are 
necessary ingredients of a universal definition of the living. 

Why Take Thermodynamics Into Account 

Relational or computational models of the basic organization 
of life articulate the structural elements of the system 



according to rules of combination that ignore thermodynamic 
requirements. However, when energetic considerations are 
included, the framework of description of the system needs to 
be significantly modified: a new relationship between 
micro/macro levels must be considered, together with the 
establishment of some additional conditions on the rules of 
production and transformation of components (conditions 
involving couplings, energy currencies, intrinsic rates of 

reaction, etc.).2 
In principle, all these new requirements could be captured 

in the formal terms of computational systems, but the 
motivations behind them are grounded on physical -rather 
than formal- considerations. As said in the previous section, 
the complex physical and chemical levels underlying 
biological organization are usually ignored in most 
computational models. 
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However, the fundamental question is the following one: 
how can we study life as it could be? Obviously, starting from 
life as we actually know it. It would not make any sense at all 
to try to universalize biology in AL making proposals which 
are contradictory or inconsistent with our basic knowledge of 
terrestrial biology. Of course, one could abstract or ignore 
many energetic and material aspects and study only certain 
formal properties of the system like, for instance, its 
operational closure. Yet, the material implementation of such 
mathematical or formal properties implies some additional 
requirements. Therefore, investigating lifelike systems in 
computational media should be consistent with the complete 
logic of this material organization, namely, with the 
implications of its physical implementation. 

Even assuming the idea of life just in terms of 
'organization', this must be instantiated in some type of 
material system. Life is a phenomenon exhibited by certain 
complex material systems, even though -so far- we only know 
a particular way of expression of it. In this sense, it is difficult 
to determine which biological principles established at present 
are contingent and which are general laws of all possible 
forms of life. Nevertheless, since we are considering living 
systems as a material phenomena, all biological laws should 
be consistent with the universal laws of physics and in 
particular, of thermodynamics (Moreno et al, 94). Now, how 
could we decide which are the universal laws for life? This 
question should be investigated by specifying the physico
chemical laws underlying the material realization of the 
organizational features abstracted from the analysis of 
terrestrial life (as well as by exploring formal computational 
models). 

2 This point is developed further in (A. Moreno & K. Ruiz
Mirazo, submitted). The paper also addresses some 
difficulties to include thermodynamic constraints m 
computational models of basic living organization. 

Hence, thermodynamic constraints cannot be contingent 
elements of life understood as a material phenomenon. 
Besides, our basic view of the physical universe would have 
to change if thermodynamic requirements were taken as 
contingent. Of course, one can ignore these requirements in 
purely virtual universes, but this is not possible to do in a 
material one. Therefore, let us try to determine which are the 
fundamental requirements of the basic living organization 
from an energetic perspective. 

The Problem of Autonomy 

In the thermodynamic or energetic study of biological 
systems a central question is how an open system far from 
equilibrium becomes self-maintaining and able to manage 
the flow of matter and energy through it. The pattern 
generated by a self-organizing physico-chemical dissipative 
system may contribute to its own energetic sustenance, but 
not in an independent or minimally robust way. The self
organizing phenomenon may disappear out of small 
variations in the external constraints or boundary conditions 
-like the temperature gradient or the inward flow of some 
substrate. All this kind of dissipative phenomena (Benard 
thermal convection, Belousov-Zhabotinski chemical 
reactions, or simply a candle or a whirl) depend on external 
constraints not controlled by the system. 

In contrast, biological systems -although they are also 
subject to external constraints- present two distinctive 
features: first, they are able to store energy and thus maintain 
their characteristic organization for a relatively long time, 
even if external resources are insufficient; second, they take 
part in the construction and reconstruction of their internal 
constraints, the ones which actually define them and make 
them viable (Moran et al. 1997). Probably the best example 
to illustrate this is the cellular membrane, whose selective 
permeability and active role in metabolic processes cannot 
be understood unless it has been internally generated and 
maintained. In turn, it constitutes the physical border 
necessary to distinguish the system from its environment, to 
determine its limits and identity. 

Therefore, the living organization is a network of 
mechanisms constraining matter and energy conversion, so 
that the system itself controls when, where, and how to use 
of the resources needed for its continuous realization as a 
whole. In other words, metabolism implies a set of processes 
of autonomous management of energetic flows and 
transformation of components with some global functionality 
(i.e., the problem of autonomy is at the heart of the meaning 
of metabolism (Boden 1997)). Now, whereas in the context 
of relational-constructive theoretical models the term 
'autonomous' stands for an organization that builds itself up 
through its closure or recursivity properties (Varela 1979), 
what is the notion of 'autonomy' arising from a 
thermodynamic perspective? 



Atkins (1984) defends that the thermodynamic 
organization of a biological system is based on its capability 
to generate work. Following this idea, the thermodynamic 
notion of autonomy takes the living as a complex network of 
constraints making possible to capture, conduct and 
transform energy, so that it can do useful work within its 
environment. The details of the ways in which organisms 
actually carry out such an efficient management of energy 
flows can get very complicated but, in essence, they involve 
the cooperative accomplishment of endo-exo-ergonic 
couplings. This requires, at least, two important conditions: 
On the one hand, the presence of energetic intermediaries 
which make possible that the exergonic drive of some 
processes is invested in carrying through endergonic ones -a 
fact clearly supported by the common use of a few 'energy
currencies' in all known forms of life (Skulachev 1992). On 
the other hand, the presence of some specific components 
which modify the reaction rates so that coupling processes 
are suitably synchronized -role played by enzymes in all 
present metabolisms. 

Constraints are necessary to generate work, to harness 
flows of energy coherently. Now, in a self-generated and 
self-producing system these constraints cannot be assumed as 
given: the actual system must construct them. Therefore, the 
system needs to avail itself of energy in the form of work 
precisely to produce constraints, constraints which in turn 
allow it to cyclically generate more work, and so on. 
Kauffman (1996) has recently introduced the idea of 'work
constraint (W-C) cycle' to argue that this recursive 
relationship underlies the achievement of real autonomy by a 
system. 

It is important to notice that in this new context, the 
concepts of 'work' and 'constraint' may be defined 
internally, i.e., they acquire sense for the system itself. Work 
is any form of energy which contributes to the maintenance 
of the system, through the production of components that 
facilitate a suitable coupling among exergonic and 
endergonic processes. Similarly, we can define (functional) 
constraints as those components or aggregates of components 
within a network whose macroscopic action permits the 
renewal of useful forms of energy. In a relational
constructive type of approach, constraints contribute to the 
production of new components of the network; in this 
energetic perspective, they recursively maintain the W-C 
cycle by means of an effective control on energetic flows. 

Hence, this notion of autonomy takes place in a domain 
different from that of the purely relational-constructive one. 
It is a dimension including theoretical elements connected 
with the energetic viability of the system, with its physical 
realization. Besides, the introduction of the W-C cycle 
entails a new energetic logic in the system. Although 
somewhat different, this logic is not completely independent 
or separated from the thermodynamic implications of the 
second law in its multiple formulations. After all, to stay 

450 

alive, that is to say, far from equilibrium, living beings 
require an income of matter and energy: i.e., both 'to take in 
from a source' and 'give away into a sink' is necessary to 
keep the flows running and cycling (Morowitz 1992). In this 
sense, the energetic autonomy of living will always be 
relative. Yet, as we said before, another -possibly more 
important- side of the idea of autonomy is related to the self
construction and self-repair capabilities of the system. Thus, 
autonomy as an internal management of energy (control 
upon energy flows) is achieved only if the system can 
reinvest a big deal of the absorbed energy to generate and 
maintain these constraints. 

Merging Two Characteristic Logics of the 
Living 

As stated above, a system properly called autonomous must 
be able to constrain flows of energy so that the generated 
organization is functional and significant for the system 
itself. Yet,, the introduction of the W-C cycle implies that 
this is impossible without the intermediation of (functional) 
constraints. To be more precise, the cycle is maintained 
through the action of high-level structures (like enzymes) on 
the dynamics of lower-level elements (simple reactants). 
Thus, the structural (constructive) organization of a 
component production system must be somehow taking part 
in the energy flow control that its own maintenance requires. 

Then, in order to grasp the whole logical essence of the 
living we need both things: a material autonomous apparatus 
of energy management (i.e., a set of devices constraining 
energy flows in a self-maintaining way); and a relational
constructive system of production and transformation of 
components operationally closed. 

Although in the study of the basic organization of 
biological systems, these two conceptions have been 
traditionally unattached, we defend the necessity to establish 
a connection between them. For, in fact, there is a tight 
interweaving between the energetic and the relational logic 
of a living being, and metabolism (in its deepest and most 
universal sense) is the result of it. Accordingly, metabolism 
would be any material-organizational apparatus of energy 
management which can implement an operationally closed 
constructive-relational system, so that the network of 
component production relations recursively maintains and 
renews the aforementioned apparatus. 

This new and integrating definition conveys that: 
a) neither the energetic conditions or rules governing the 

system, nor the operational closure of its component 
production network can be taken separately; both aspects are 
causally dependent on each other. Thermodynamic 
requirements modify the logic of component production and, 
inversely, the type of functional components generated is 



crucial, for instance, to accomplish the W-C cycle, which 
constitutes the key for the energetic autonomy of the system. 

b) the concept of metabolism proves powerful enough to 
capture all what is to be captured behind the idea of 
'(universal) basic living organization'. 

Final Remarks 

Establishing a real -and universal- characterization of 
metabolism appears to be a crucial point to understand a 
minimal living organization. According to the new definition 
proposed here, metabolism is grounded on the recursive self
maintenance of controls upon energy flows necessary for the 
physical realization of an operationally closed component 
production system, and, in turn, these components make the 
control upon the energy flows possible. 

In principle, any chemical system able to realize this kind 
of organization is a possible candidate for constituting a 
metabolism. Therefore, this definition is not linked to a 
specific chemistry; we think that it provides an answer to the 
question of what metabolism consists in, not only 'as we 
know it', but also 'as it could be'. We put the emphasis on 
reminding that the "grammar" of any chemistry subject to 
physical realization must include some specifically energetic 
and material rules, rules without which the level of 
abstraction of the model is simply too big. 

Nevertheless, our answer to the challenge of 
universalization of the basic living organization does not 
follow from the presumption (taken up by Langton and the 
'strong' AL program) which splits 'organization conceived in 
purely logical-formal terms' and 'materiality conceived as 
something concomitant or accessory, passive with respect to 
that organization'. Rather, the contrary: it stands on their 
mutual interweaving. The origin of this interweaving is 
found, ultimately, in the intrinsic causal activity of matter, 
which does not allow us to dissociate or discern the 
relational-constructive properties from the thermodynamic 
ones in the domain explored here. 

Unlike in a computational universe, matter in the physical 
world always performs some intrinsic activity; and the 
concept of energy is precisely the appropriate one to express 
that inherent capacity of matter to generate spontaneous 
actions. Then, not surprisingly, adding the thermodynamic 
dimension of a living system does not only mean including 
some new rules or conditions in a metabolism built according 
to a relational-constructive scheme. These conditions 
implicitly redefine the whole system, because they arc 
entangled in its constructive logic, i.e., they substantially 
transform any (purely formal) abstraction of it. 

Therefore, one of the essential features of living systems 
is the capability to use autonomously the intrinsic activity of 
matter to constrain itself. This autonomous causal power 
constitutes the main difference between a real natural system 
(in which the thermodynamic phenomenology arises 
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spontaneously) and virtual lifelike organizations, which are 
the result of the operation of an externally constrained 
material system. 
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Abstract 
According to geological evidence life arose in the sea no 
more than several hundred million years following earth 
formation. A new sea spray model for the origin of life is 
developed here to calculate the time of appearance of the 
first living cell, termed a protocell. The model proposes 
that life arose from sea spray that concentrated organic 
materials from a dilute primordial sea, and this spray 
became suspended in the atmosphere for several days and 
dehydrated to the extent of forming polymers. Each 
dehydrated sea spray droplet then became an experiment or 
trial of the mixture of biochemical activities (e.g., 
enzymes) contained in each droplet. If the dehydrated spray 
contains a certain minimal set of essential biochemical 
activities, and returns to the ocean intact, it is considered a 
successful protocell in this model termed the sea spray 
hypothesis. A range of values is assigned to all model 
parameters and median values are used to calculate the 
time of appearance of the first protocell to have been 2.7 
million years. If the sea spray hypothesis is correct for 
primordial Earth, the model predicts that life could appear 
in less time on Mars or Titan under similar processes. 

Introduction 

The process leading to the origin of life was the result of 
the establishment of distinct physical and chemical 
conditions that lead from the formation of simple organic 
compounds on the primitive earth (Dyson 1985). These 
simple compounds combined together to give increasingly 
complex chemical structures until the first living cell 
termed a protocell was formed with the ability to 
metabolize and divide. The mechanism responsible for 
the origin of protocells must have taken place at such a 
rate that within no more than a few hundred million years 
successful protocells were formed. This time frame is 
demonstrated from microfossil and geological evidence 
(Schop 1983). The hypothesis advanced in this work is 
that protocells were generated as sea spray suspended in 
the atmosphere by winds (Seffens 1980, and also Lerman 
1986). The marine bubble bursting process, which 
generates aerosol spray enriched in organic material, is 
proposed as the source of polypeptide and protocell 
synthesis. As organic compounds formed and 

accumulated in the cooling oceans of the Archaean era 
(2.8 billion years ago) bursting sea bubbles would 
concentrate surface-active material into ejected droplets of 
spray. Those droplets, which became suspended in the 
atmosphere by winds, would lose water through 
evaporation. If this process of evaporation is given 
sufficient time, of the order of several days depending 
upon temperature, the dehydration could cause amino and 
nucleic acids to condense and polymerize. Each of these 
dehydrated spray droplets, of the size of contemporary 
bacteria, is potentially protocellular and each would be an 
individual experiment in evolution. Within no more than 
several hundred million years one or more of these 
protocells could have ended up with a sufficient mixture 
of various enzymes to be able to exhibit metabolic and 
replicative activities. Success would be the formation of a 
metabolically active cellular entity that is capable of 
forming other similar entities. A most probable time of 
appearance of successful protocells can be estimated from 
this hypothesis based on contemporary ocean spray 
production rates. 

Model Development 

A calculation of the time of appearance of protocells can 
be formulated using an estimate of the rate of protocell 
production and the probability of finding a successful 
protocell. Estimates of protocell production can be based 
on current oceanographic data. The probability model of 
protocell success is built upon the following calculations 
or estimates: ( 1) number of enzymes expected per 
dehydrated droplet, and (2) the probability that a droplet 
contains at least one subset of required enzymes for the 
protocell to exhibit life-like properties. For any origin of 
life hypothesis, the number of enzymes in each protocell 
would depend upon the protocell volume, and the 
concentration of polymers within that compartment. The 
model-input variables needed to calculate the number of 
enzymes per droplet include droplet radius, ocean 
monomer concentration, monomer enrichment factor, 
monomer-to-polymer fraction, polymer length, and 
fraction of polymers with enzyme activity. A probability 



model of protocell success is then constructed considering 
all possible enzyme activities and a subset of required 
activities that must be present in the protocell for success. 
An analysis of errors arising from these parameters helps 
to delimit the conditions that generated life on earth under 
this sea spray hypothesis (Abdu 1997). 

This model development is based on amino acid 
enzyme activity due to the greater knowledge of protein 
chemistry. The basis of the model is invariant with 
respect to what is causing the activity within each droplet. 
Enzymatic activity within the droplets could be caused by 
amino acid polymers (enzymes), nucleic acid polymers 
(ribozymes), or some other repeated structure such as clay 
or minerals. Therefore, with sufficient knowledge of 
ribozyme chemistry, this sea spray model could be 
reformulated to consider an RNA origin of life (Joyce 
1989). The following sections explain each model 
parameter and how values are assigned. 
Droplet radius (r). Contemporary aerosols of the 
undisturbed marine environment are composed of sea 
spray, tropospheric particles, and mineral dust with a 
spectrum of radii larger than 20 microns (µm) spanning 
smaller than 0.03 µm (Toba 1965). The sea spray 
component of tropospheric particles is present only within 
1 to 2 kilometers above the sea surface, and with the 
exception of particles larger than 10 µm have lifetimes of 
several days (Junge 1972). From oceanographic data, sea 
spray has a statistically normal distribution of sizes (Wu 
1981 ). Droplet radius is predominately in the range I 5 to 
25 µm. Using a mean value of 20 µm gives a mean 
droplet volume of 3.4 xlff8 cm). It is proposed that 
protocells came from this most numerous fraction of sea 
spray which is of the same size as bacteria and which also 
remains suspended in the atmosphere long enough to 
promote polymerization reactons (Seffens 1980). 
Monomer concentration (Cm). Primordial seawater 
organic composition depends upon prebiotic synthesis 
mechanisms. Organic synthesis was demonstrated by 
Stanley Miller in 1953 with his fundamental experiment 
using prebiotic atmosphere conditions. The concentration 
of compounds that could be labeled as monomers in 
Miller's experiment was typically 1 ff' M (Miller and Orgel 
1974). This concentration probably represents an upper 
limit because the electrical discharges were done in a 
closed system; whereas the ocean is practically an open 
system thermodynamically. Another estimate for the 
concentration of organic material is suggested by Miller 
and Stribling (1987) to be lff4 M. Thus, with an estimated 
range of 1 ff4 M to 10·3 M, the mean value would be 6 x 1 ff" 
M. In this model, organic compounds that can participate 
in polymerization reactions are labeled as monomers. 
Monomer enrichment factor (Em). Surface active 
organic material in the sea tends to concentrate at the 
surface due to hydrophobicity. The concentration of 
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organic material in spray has been measured to be greater 
than the content in bulk seawater (Blanchard 1974). A 
monomer enrichment factor is needed to calculate the 
actual concentration of organic material in each spray 
droplet. Each chemical compound has some enrichment 
factor due to bubble fractionation that depends mostly 
upon hydrophobicity. Dissolved organic carbon, 
carbohydrates, and adenosine triphosphate have been 
found to be significantly enriched in the upper 150 µm 
surface layer of the ocean compared to subsurface water, 
with mean enrichment factors being 1.5, 2.0, 2.5, 
respectively (Sieburth et al. 1976). From the above data 
2.0 is estimated as the mean value for this factor. 

Monomer concentration (6 x 104 M) times the 
enrichment factor (=2.0) gives the expected concentration 
of monomers in each droplet to be 1.2 x 1ff3M, so that 
each droplet would be expected to contain 2.4 x 1010 

monomers. This large number of compounds may 
participate in polymerization reactions as the droplet 
dehydrates in the atmosphere. 
Monomer-to-polymer fraction (Pm). Polymerization of 
monomers is hypothesized to take place in this model 
when sea spray suspended in the atmosphere by winds is 
dehydrated. Amino acid polymers have been prepared in 
the laboratory using heat. These thermal proteinoids were 
found to have many of the properties of proteins (Fox, 
1964). Typical reaction conditions are l 70°C for 6 hours, 
yet the minimum temperature for polymerization can be as 
low as 65°C (Fox, 1965). Yield of proteinoids depends on 
conditions of the reaction and typically range between 5% 
and 40% (Fox, 1965). Therefore the lower estimate for 
monomer-to-polymer fraction is 0.05, the upper estimate 
is 0.4, with an assumed mean value of 0.2. 
Polymer length (LP). The thermal method of Fox has 
yielded polymers of amino acids with mean molecular 
weights of 3000 to 10000 Daltons (Fox and Harada 1960). 
That molecular weight range would represent polypeptides 
with 30 to I 00 amino acids, with a mean of 65. 
Monomer-to-polymer fraction and polymer length are 
used to calculate the number of polymers expected per 
droplet, which is equal to the number of monomers per 
droplet multiplied by the monomer-to-polymer fraction 
and divided by polymer length. Using mean values the 
expected number of polymers per droplet in this model is 
7.4 x 107 polymers. 
Fraction of polymers with activity (F P). The fraction of 
polymers with activity is a parameter that estimates the 
enzymatic activity resulting from a collection of random 
polymers. In order to determine this parameter the 
probability that a randomly chosen sequence of amino 
acids has enzymatic activity must be determined. 
Estimates range from 10·20 , if 10 residues are essential 
(Hoy le and Wickeramasinghe 1981 ), to 2.1 x 10"65 , based 



on sequence vanat10n in cytochrome c (Yockey 1977). 
The action of cytochrome must be very specific to prevent 
damage to the cell from side reactions. Therefore the 
function of cytochrome c would be a poor choice as a 
model of typical enzyme functioning. 

Thermal proteinoids have been prepared 
experimentally and compared to pure enzyme (Rohlfing, 
1967). Rohlfing's data suggests that only one in a 
thousand proteinoid molecules had enzyme activity for 
reducing oxaloacetate. This may have been a common or 
easy to find enzyme type among random thermal 
proteinoids. Assume then that rarer activities are no more 
than ten thousand times less frequent than common 
activities for the sake of argument. The parameter value 
will span 10·3 to I ff', the greatest range in this model. In 
this regard this study considered three values of the 
parameter estimate 10·3, 10·5, 10' (upper, middle, and 
lower, respectively). Combining the parameters above to 
calculate the number of activities expected per droplet, A, 
yields: 

A= (4/3nr1). C . E . P . F IL 
m m m p p ( 1 ) 

Using the three different estimates for the parameter Fr 
(10"3, 10·5, !ff') resulted in a wide range of values for the 
number of activities per droplet (A=7.4 x 104, 7.4 x 102, 

and 7.4, respectively). The calculations for the time of 
appearance in this model use the middle value. 

Probability Model 
To estimate a time of appearance of a protocell it is 
necessary to calculate the probability of finding a 
successful collection of enzymes given the number of 
activities in a spray droplet. The probability would 
depend upon the total number of possible enzymes given 
all prebiotic molecules. A probability model can be 
constructed that considers some set of required activities 
necessary for "success". Success would mean a protocell 
able to perform life-like properties including growth and 
division. The required activities are a subset of all 
possible activities. The number of members in this 
required set is labeled R. The number of all possible 
activities is labeled as T. 
Total activities (T). This parameter is defined as the sum 
of all possible act1v1t1es, resulting from thermal 
polymerization, that could be found in the droplet. Let the 
total number of possible enzymes be equal to the number 
of possible substrates multiplied by the number of 
transformations for each substrate, divided by two since 
enzymes are reversible. For example, the enzyme that 
catalyzes the reaction A -> B will also catalyze B -> A. 
The number of substrates in the primordial environment 
depends upon chemical complexity. If pre-biotic 
molecules had less than eight carbons, then the number of 
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possible substrate molecules is about 10000. This 
estimate is based on lists of known chemicals (Lide 1995). 
Assume that eight possible transformations are expected 
for each substrate in this model. Therefore, the total 
number of enzymes would be equal to I 0000 x 8/2 = 
40000 (upper estimate). If pre-biotic molecules had less 
than six carbons, then the number of substrate molecules 
would be approximately 5000. Therefore, with a lower 
estimate of 20000 enzymes, the mean value would be 
30000 activities. 
Required activities (R). This parameter counts the 
act1v1t1es needed for metabolism (catabolism and 
anabolism) and replication, which would be essential for a 
successful protocell. Several studies using different lines 
of reasoning have suggested that the first cell could have 
needed a very small number of activities. 

A recent study (Fraser et al. 1995) on a bacterium 
called Mycoplasma genitalium, which has one of the 
smallest genomes of a free living organism, suggests it is 
close to being a model minimal cell. DNA sequencing of 
M. genitalium has shown that this organism has 482 genes. 
It is estimated that its minimal translation pathway 
requires nearly 90 different proteins, while the complete 
DNA replication process requires only about 30 proteins. 
It has only 44 genes associated with metabolic pathways. 
Therefore, the three essential model pathways 
(catabolism, anabolism, and division) in this organism 
requires a total of 164 genes. The first cell could have had 
a much lower number of required activities than this 
number and could have been very inefficient. 

Studies of the computer Game of Life indicate 
that a very small number of rules can give rise to complex 
and growing structures (Conway et al. 1982). If each 
computer rule needs only a small number of biochemical 
activities to encode the rule, then the total number of 
required activities in a protocell could be small. Assume 
three pathways encoding catabolism, anabolism, and 
division are necessary for a successful protocell. If only a 
few activities are needed for each pathway, and all three 
pathways are equally complex, then each pathway will 
require an equal number of activities. Since the first 
organism was unicellular, not complicated, and could be 
very inefficient, it is assumed in this model that 7 
activities are needed for each pathway (catabolism, 
anabolism, and division). This makes a total number of 
21 required activities. 

The parameters T and R are used to calculate the 
probability of finding the set of required activities in a 
droplet. The probability of finding this set in a droplet can 
be estimated from the following probability model. 
Consider a box that contains A numbered balls (A = 
activities per droplet). Any ball can have a number from I 
to T (T =total activities). We need to find the probability 



that the box contains at least one ball of each of the set of 
numbers NP N2, ••• NR, where R is the number of elements 
in this set (R =required activities). There are a total of T' 
different configurations. A combinatorial argument shows 
that for each of R given activities to be present at least 
once, we have a probability of: 

P=•(-l)k.Binomial(R/k)"[ 1-(kff)t (2) 

where "k" is a summation index integer going from zero 
to R (Abebe 1995). 

From Equation (2) the protocell probability of 
success is equal to 1.2 x 10"14 using the values I 0"5 for 
fraction with activity, 745 for activities per droplet, 30,000 
for total possible activities, and 21 for required activities. 
Spray production rate. The spray production rate from 
whitecap bubbles has been estimated to be 101" to 1020 per 
second over the ocean worldwide at present time 
(Maclntryre 1972). The primitive atmosphere probably 
had higher temperatures and consequently greater winds 
than now (Hoyle and Wickeramasinghe 1981). Therefore, 
the spray production rate could easily have been higher 
than I 020 droplets per second. Assume I 0211 droplets per 
second as mean value. Therefore the primordial 
production rate would be equal to 3 x 1027 droplets per 
year. 

The time of appearance is equal to the total number of 
droplets needed (to find a success) divided by the spray 
production rate, which is as a result of all the above 
calculations using mean values is equal to 2.7 x 10° years. 
This is the number of years of spray generation required to 
find at least one successful protocell. 

Discussion 
In this work we have examined several parameters that 
may have been involved in the appearance of the first 
living cells termed protocells. The values assigned to all 
of the parameters are estimates used to test the possibility 
of obtaining solutions that are geologically reasonable. 
For a spray production rate of 3x I 027 droplets per year and 
a probability of success P= 10-'" yields a time of 
appearance of 300 million years. Figure (I) shows the 
number of activities that must be present in each droplet to 
yield the above time of appearance for various parameter 
values of required activities (R) and total activities (T). 
As the number of required activities increases, the number 
of activities per droplet increases greatly. Therefore to 
find successful protocclls within geologically realistic 
time frames, Rand T must take on low values. 

The calculations above are only meant to 
demonstrate that a time of appearance can be estimated. 
The result of the calculations gives a time of appearance 
of 2.7 x 10° years. This period does not include the time 
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for the protocell to reproduce and eventually appear in 
microfossils. A range of parameter values produces times 
that are less than or equal to one billion years (Seffens 
1997). Evidence from microfossils demonstrates that 
bacteria-like life was present within a billion years after 
earth formation. Since the time of appearance from the 
model calculations is within the time estimated from 
geological records, the model supports a plausible 
hypothesis. If this hypothesis is correct for primordial 
Earth, then various parameters in the model can be 
established to predict a time of appearance on other 
planets. Under a lesser gravitational field, larger spray 
droplets will be able to remain suspended in the 
atmosphere for longer times. Hence in this model "r" will 
be greater, which will yield a greater number of activities 
per droplet "A". From equation (2), this will yield a 
greater probability value, and hence for equal spray 
production rates, will yield a smaller time of appearance. 
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Abstract 
We analyze the problem of the Tom Thumb robots, i.e., of 
robots that forage in a closed world and communicate the 
position of sources using a crumb laying technique. We 
demonstrate that past solutions to the problem suffer from 
physical instability, due to crumb exhaustion for individual 
robots, and we propose as solution a self-regulating 
mechanism. On a second level, we demonstrate that the 
introduction of an additional self-regulation loop, parallel to 
the first, improves the performance of the system. A number 
of theoretical conclusions are drawn, the most prominent 
being that the actual collaborative behavior of the system is 
the by-product of a self-regulation process within each of the 
agents and that the second regulation loop concerns the 
parameters that define the temporal dynamics of behavior. 

Introduction 

One classical problem on the intersection of artificial life 
and behavior-based robotics is the robot foraging problem, 
where one or more robots forage locally for some source of 
interest, such as food or minerals. In the usual version of 
the problem (Steels 1990, Mataric 1992, Drogoul and 
Ferber 1992) there are a few large sources distributed in the 
world, while in (Tzafestas 1995) we have tackled the case 
of more or less uniform source distribution. The solution to 
the usual case consists in allowing a robot to lay down trails 
or "crumbs" while carrying a source sample to a home 
base, that another robot or itself may follow to arrive to the 
source quickly. A variant of the problem considers that 
trails laid down by the robots evaporate slowly, in the same 
way as pheromone quantities laid down by real ants in the 
physical world (Deneubourg et al. 1990, Nakamura and 
Kurumatani 1996). 
We reexamine the usual version of the problem from a 
different point of view, in an attempt to identify or specify 
the conditions of validity of the solution found in the 
literature. The most complete solution to date has been 
given in (Drogoul and Ferber 1992), where a number of 
increasingly complex and increasingly satisfactory 
solutions have been analyzed. The Tom Thumb robot is 
able to successfully build, reinforce and correctly use trails 
from the home base to the source, while the Docker robot 
(Drogoul and Ferber 1992) uses an additional mechanism 

of sample "theft" from neighbors, which allows robots to 
build chains resembling harbor Dockers. The motivation for 
our work has been our feeling that the Tom Thumb robot as 
defined is not stable because it assumes unbounded 
numbers of "crumbs", which is not physically possible, and 
which would show in a real robotic implementation. 

Why Tom Thumb Robots Fail 

The Tom Thumb robot's behavioral diagram as described 
in (Drogoul and Ferber 1992) is depicted in Figure 1. 

If (carrying samples) 
!/(back home) lay down samples 
Else {go home, lay down 2 crumbs} 

Else 
If (found samples) pick up samples 
Else 

If (crumb or stimulus sensed) 
{follow stimulus, pick up I crumb} 

Else move randomly 

Figure 1. The behavioral diagram of the Tom Thumb 
robot (cf. Drogoul & Ferber 1992, p. 455). In the Docker 
robot, the condition (crumb or stimulus sensed) is 
replaced by (crumb or stimulus or loaded robot sensed). 

The Tom Thumb robot lays down two crumbs while 
homing, and picks up one crumb while following crumbs or 
stimuli. Unless otherwise stated, all simulations reported 
below use a 30x30 grid world with the home base in the 
center emitting an orientation signal, a large source at one 
of the corners and a population of IO robots starting with 50 
crumbs each. Robots may sense a sample or crumb from a 
distance of up to three grid cells. 
We have simulated first the behavior of the system as is, by 
measuring the quantities of crumbs deposited in the world 
or owned by individual agents. The results are given in 
figures 2 and 3. As was expected, the quantities of crumbs 
owned by robots generally fall below zero, while the 
quantity of crumbs deposited in the world may rise without 
limit. The exact values of these quantities depend on the 
problem parameters (distance from source to home base, 
number of robots and source size) that define the expected 



number of robot trips source-base necessary to complete 
the task. 
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Figure 2. Quantity of crumbs in the world in a typical 
run (the maximum is around 1400 crumbs, which is 
much more than the total number of crumbs owned by all 
robots). The job is over when the source is exhausted and 
all crumbs are collected, i.e., when the path to the source 
has vanished. 
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Figure 3. Quantities of crumbs owned by two robots in 
the above run. Both fall below zero. 

An apparent question arising at this point is, "what if we 
just constrain robot behavior so as not to lay down crumbs 
when it does not have any ? aren' l crumbs deposited so far 
enough ?" We have been able to see in several experiments 
that, first, depending on the problem parameters, the total 
quantity of crumbs might not be sufficient, in which case 
the path to the source will be disconnected, and, second, 
when it is sufficient - for instance if we start the above 
experiment with I 000 crumbs per agent - the total number 
of crumbs deposited in the world may rise tremendously. 
This last condition generates an important problem : the 
robots will continue being attracted for a long time to an 
empty source, that is, the surplus crumbs will be 
misleading. This observation brings us to the actual 
formulation of the above trailing problem : 
We are seeking a laydown-pickup mechanism such that a 
trail to a source is built quickly and reinforced while the 
source exists and vanishes shortly after the source is 
exhausted. 

The Solution : Self-Regulation 

The problem of agent crumb exhaustion lends itself to a 
simple solution. Every time a robot needs to lay down or 
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pick up crumbs, it should do it in a way so as to preserve its 
own quantity of crumbs within some desired bounds 
crumbs""" and crumbs,,,,,,, by using the following laws : 
For laydown (la) 

crumbs(t+I) =crumbs(!)+ r, *(crumbs,,,,,, - crumbs(t)) 
For pickup (I b) 

crumbs(t+/) = crumbs(t) + r,, *(crumbs,""-'-crumbs(t)) 

This simple regulation mechanism ensures that no agent 
will ever run out of crumbs completely. However, the 
absolute (real-valued) quantity of crumbs deposited or 
collected at each cycle will depend on the state of the 
agent : an agent with many crumbs will lay down more and 
pick up less than an agent with just a few crumbs 
remaining. This arrangement allows for trails to be built 
rapidly (because agents in the beginning have a statistically 
medium number of crumbs, so they tend to lay down large 
quantities of crumbs) and to vanish quickly (because agents 
toward the end of the task have statistically only a few 
crumbs, so they tend to pick up large quantities of crumbs). 
In what follows it will be assumed that crumbs"''"=IO and 
crumbs,,,,,,= 100, for all agents. 

Meta-Regulation : Temporal Dynamics 

While we can certainly fix r, and rr to two values and get 
the system running, it is an important concern to identify 
proper values for these parameters, i.e., values that will 
ensure a "statistically optimal" performance, according to 
the problem formulation given at the end of section 2. 
Intuitively, and all other things being equal, we expect to 
have different "optimal" values of r, and r,,. for different 
environmental conditions. In figure 4 we give the 
comparative results of a typical simulation run with r, = 
0. I 2 and r =0.06 for three cases of a small, a medium and a 
large sour~e size (20, 50 and 80 samples, respectively). 
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Figure 4. Comparative performance for a typical 
simulation run with r,=0.12, r,=0.06 in three 
environments where the source size is 20, 50 and 80, 
respectively. The duration of the task is 488, 696 and 
1105 cycles, respectively. 

We have conducted experiments with various parameter 
settings in various environmental conditions and we have 
obtained results that differ both quantitatively and 



qualitatively. However, all of these parameter settings share 
the essential characteristic of uniform laydown or pickup 
rates. A large laydown rate will be beneficial in the start 
and middle of the task, when the agents would like to build 
and reinforce a trail quickly, while a large pickup rate 
would be beneficial toward the end of the task, when the 
agents would like to destroy the trail to the exhausted 
source as quickly as possible. While a given parameter 
setting would be more desirable than another one in a 
particular context, our goal as designers should be to ensure 
the better behavior globally, i.e., to ensure that the system 
will "discover" or identify the proper parameter setting in 
each situation. 
Consequently, what we really want is not a particular 
parameter setting, but a mechanism that will allow a robot 
to lay down more and pick up less crumbs at the beginning 
of the task (so as to build and reinforce the path) and vice 
versa toward the end (so as to destroy it quickly). To this 
end, a measure of the state of the task must be available. 
The only such measure that a robot may have is the number 
of the crumbs in the world. However, since this quantity 
cannot be directly perceivable, we have used an estimate of 
it, simply the number of crumbs at the current position of 
the robot. This estimate is used as follows : 

Forlaydown 

If crumbs(t) >= world_crumbs_estimate 
r,(t+/) = r,(t) + r,1 * (r1max - r,(t)) 

else 
r,(t+I) = r,(t) + r,, * (r,m,. - r,(t)) 

For pickup 

If crumbs(t) >= world_crumbs_estimate 
r,,(t+I) = r/f) + r,,, * (rprni•- r,,(t)) 

else 
rp+I) = r/f) + r,P * (rr..,u - r/f)) 

(2) 

(3) 

As is obvious from the formulae, the rate of crumb laying 
increases when the robot owns more crumbs than may be 
found in its current position and decreases otherwise. 
Inversely, the rate of crumb picking increases when the 
robot owns less crumbs than may be found in its current 
position and decreases otherwise. 
Figure 5 gives the result of the application of the above 
model in the three environmental settings used in figure 4. 
Surprisingly enough, the self-regulation of the laydown and 
pickup rates not just does change the shape of the curves, 
i.e., the qualitative behavior of the agents (the quantity of 
crumbs in the world rises quickly to a fairly high value, 
stays close to it during the task, and falls back quickly to 
zero when the source is exhausted, while showing far less 
fluctuations than in the previous case), but it improves 
results quantitatively as well : in all runs, including the one 
depicted, the duration of the task has been shorter than with 
the previous model. 
Figure 6 gives the curves of the r 1 and rl' parameters of one 
of the agents in the above run. It is clearly seen that r1 is 
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high at the beginning and during foraging, while rl' is high 
toward the end of the task. 
This improvement is more pronounced in harder 
environments where the regulation needs are more urgent, 
for example in the case of longer distances from home base 
to source or in the case of more agents. Also, figure 7 gives 
comparative results without and with meta-regulation for 
the case of Docker robots. Note that the performance is 
inferior to the one of Tom Thumb robots (middle curve of 
figure 5). This result is most probably statistically 
insignificant, but the actual comparative performances for 
Tom Thumb robots and Dockers in the case of meta
regulated behavior remain to be investigated. Note also that 
in this last setting there are more fluctuations in the shape 
of the path than in the previous ones, because since 
Dockers "steal" samples from one another the crumbs path 
are generally neither continuous nor persistent. 
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Figure 5. The same experiment as in figure 4 but with 
meta-regulation of r, and r", between 0.06 and 0.12 for each 
one of them (rr1 = r,,, = 0.1 ). The task duration is 302, 676 
and 1063 cycles, respectively. The maximum number of 
crumbs in the world is approximately the same in all three 
cases, because they are laid down quickly enough, and on 
average higher than in the previous cases. 
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Figure 6. Curves of r, and r,,, for an agent in the run of 
the previous figure. Local peaks of rr correspond to 
situations where the agent has had to return to the home 
base while the trail was temporarily disrupted. 
However, the agent has been able to return to the correct 
behavior quickly. Similar observations may be drawn 
for r,. Notice that the value of r, only changes during the 
beginning of the task, when agents collect samples and 
need to lay down crumbs. 
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Figure 7. Comparative results without and with meta
regulation for the case of the agents having the Docker 
behavior as described in (Drogoul and Ferber 1992). 
The task duration is 1440 and 1021 cycles, respectively. 

Theoretical Discussion 

We have shown above that the agent's behavior is based on 
a critical variable (the individual crumb quantity) that 
drives its motivation to participate in the crumb laying and 
picking process. This variable is coupled with the actual 
quantity of crumbs in the environment through the agent's 
behavior. By regulating its own variable, an agent tries to 
bring the corresponding world variable to 0. In (Tzafestas 
1995) we have called this property of the agent-world 
system "operational coupling", since it defines a coupling 
between agent and world such that the agent's behavior is 
qualitatively operational, that is, it responds to the 
environmental perturbations in a uniform way. 
Furthermore, this variable has cognitive value, since it 
represents the agent's idea about the state of the 
environment (a low value of the agent variable most 
probably means a world where a source exists). Seen this 
way, the agent may be thought of as trying to approach or 
approximate the world variable, i.e., as trying to adapt to its 
environment. 
The operationality of the behavior is ensured through an 
additional self-regulation mechanism acting on the 
adaptation rates. This is an important observation, since it is 
compatible with the dynamical approach to cognition (van 
Gelder and Port 1995), stating that the most important 
factor in cognitive mechanisms is the nature of dynamics 
involved. Mechanisms like the ones developed here may be 
also regarded as a first step toward the realization of 
autopoietic systems : 

". . . an autopoietic system is a homeostat . . . the 
critical variable is the system's own organization. It 
does not matter, it seems, whether every measurable 
property of that organizational structure changes 
utterly in the system's process of continuing 
adaptation. It survives." (Maturana and Varela 1980, 
p. 66, authors' emphasis) 
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Of course, we have explored many unsuccessful regulation 
variants as well, the most important being the inverse 
regulation scheme, where in formulae (2) and (3) the 
inequalities are inversed. A comparison of the two 
mechanisms showed that the inverse mechanism is 
unsuccessful because agents then take the environment's 
state into account negatively, so that they appear non 
cooperative to other agents. For instance, an agent 
possessing many more crumbs than there are in its 
environment will try to give away as little or possible or 
pick up as many as possible, so as to maintain this 
difference, hence hiding information from other agents. Of 
course, this kind of behavior will have a negative impact on 
itself as well, because if other agents do not find a path to a 
source, he won't either. This is another demonstration of 
the well-known principle that cooperative behavior is first 
of all selfish (Axelrod 1984 ). 
The final observation concerns the point of view taken to 
analyze this problem. While it has been traditionally 
tackled as an engineering problem, where the goal has been 
to solve a primitive problem of communication between 
agents, in this work we are proposing an inverse point of 
view, where the agent may be thought of as trying to 
regulate within bounds some internal variables (the 
regulated variables appear to be critical for an agent's 
survival or opcrationality, so that Ashby (1960) calles them 
essential variables). The buildup and reinforcement of the 
communication means, i.e., of the trail, is a by-product of 
agent self-regulation when a perturbation occurs, i.e., when 
sample sources exist. The driving force of the agent's 
behavior is thus the state of its essential variables, whereas 
the picking and laying components constitute the metabolic 
part of the overall mechanism. 
It is noteworthy that exactly the same qualitative 
conclusions have been drawn in the case of agents 
exploring an environment with more or less uniform 
distribution of sources (Tzafestas 1995), though with a 
different cognitive variable and a different type of first
level adaptation. 

Conclusions and Perspectives 

We have investigated the classical robot exploration 
problem in the case of a few large localized sources and we 
have shown that the fundamental Tom Thumb solution is 
not complete from a physical and stability point of view, 
since individual agents run out of crumbs or the world gets 
overwhelmed with unnecessarily large quantities of them. 
What is necessary is a regulation mechanism that ensures 
that no agent will fall out of bounds as far as its own 
quantity of crumbs is concerned. The regulation model 
yields a better performance than the original Tom Thumb 
solution. On top of that, a second regulation loop is 
introduced that acts on the rates of the first one. The meta
regulation mechanism improves the performance of the 
agents and this improvement is more pronounced in harder 
problems where the regulation needs are more urgent, such 
as longer distances home-source, or larger numbers of 



agents, or Docker behavior. Theoretically, the overall 
model relies on the definition of a cognitive variable for 
each agent, that is coupled with an environmental variable 
and is adapted by the agent throughout the job. The 
adaptation rates that define the dynamics of the system are 
themselves regulated within bounds and this constitutes the 
meta-regulation loop. Overall, the agents may be regarded 
as self-regulating some internal "essential" variables, with 
the by-product being the communication with other agents 
through trails and the completion of the task. 
The linear regulation model is by no means new. It is a 
fundamental model in early cybernetics research and it is 
also widely used in reinforcement learning work. Note, 
however, that our problem is not a learning one, in the 
usual sense of the term. To our opinion, this is an indication 
that the basic mechanisms underneath learning (be it linear 
regulation or others) preexist in an agent for some other 
reason, namely to solve some more primitive adaptation 
problems before true learning becomes necessary. 
In the past, our approach has been already validated for the 
exploration problem in a uniform source distribution and 
the same principles have been found to apply. The next step 
is to formulate and solve in the same way a few other 
classical artificial life problems, such as robot cooperation 
in a closed ecosystem (Steels 1994) and action selection 
(Tyrrell 1993,1994). We hope that the comparative study of 
the results and conclusions for each of these problems will 
reveal a few secret principles for engineering or 
understanding regulation mechanisms. 
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Abstract 
The Generalized Reaction-Diffusion simulator enables us to 
experiment with various reaction-diffusion processes, and 
their spatio-temporal pattern formations. Such processes 
include the Turing Wave, Limit Cycle and Progressive 
Wave. The user can define a number of the factors involved 
and their interactions, boundary conditions, perturbation 
patterns, and other critical parameters. The power of such a 
simulator is demonstrated by creating patterns that simulates 
various steps of Drosophila eye formation. 

Introduction 

Rapidly increasing amounts of gene expression data are 
becoming available. But the complexity of the expression 
patterns and their underlying gene expression networks 
have made intuitive analysis difficult. One strategy for 
dealing with such complexity is to use a computer to 
simulate such biological systems. 

Various biological systems are modeled with a reaction
diffusion system, in which chemical substances react with 
each other and diffuse though a cell or a tissue. In this 
paper, these chemical substances are known as factors. In 
1952, Alan Turing suggested that a reaction-diffusion 
system is adequate to account for the main phenomena of 
morphogenesis (Turing 1952). In the same year, Hodgkin 
and Huxley developed the gate model of action potential on 
a neural membrane. Hodgkin and Huxley's model is based 
on the diffusion of ions and the interaction of ions and ionic 
channels (Hodgkin and Huxley 1952). 

Such networks in biological reaction-diffusion systems 
are complex because of these reasons. 
•There are many factors and interaction among them. 
• Each factor and reaction is different from others. 
•The initial conditions of factors vary. 
• The spatial boundary of a reaction-diffusion system 1s 

typically irregular. 
To simulate such a complex system, one needs a 

simulator, which can handle these issues. Expression 
patterns resulting from such networks are also complex 
because of these reasons. 
• The temporal pattern is not constant. 
• The spatial pattern is not homogeneous. 
Likewise, a simulator is useful for dealing with complex 
expression patterns. 

A major focus of our recent work has been to develop a 
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Generalized Reaction-Diffusion simulator satisfying all 
these criteria. The Generalized Reaction-Diffusion 
simulator was developed as a part of the Virtual Biology 
Project, and proved a flexible simulation system for the 
reaction-diffusion process. We have to augment the core of 
the system to simulate various genetic and metabolic 
cascades and to be compatible with the single-cell modules 
of the Virtual Drosophila, Virtual Cell Laboratory, and 
Perfect C.elegans projects (Kitano et al. 1997). 

The work reported here is an application of the 
Generalized Reaction-Diffusion simulator to actual 
biological systems, namely, various processes involved in 
Drosophila compound eye formation. 

System Organization 

Simulation kernel 
The Generalized Reaction-Diffusion simulator program 
deals with the production, decay and diffusion of factors. 
As a simplification, the rate of production is given lower 
and upper bounds and is assumed to be a linear function of 
regulatory factors between these limits. 

In biological systems, it is known that production rates of 
factors are influenced by regulatory factors not only in the 
same cell but also in neighboring cells. The same-cell 
process is called intracellular signaling and the 
neighboring-cell case is called lateral signaling. The 
Generalized Reaction-Diffusion simulator can deal with 
both processes. 

The concentration of factor i is calculated by the 
formula: 

dG.k L LL 2 --= R ck+ L C1-G.Ck +D.\l ck dt I,] ], . I,] ], I r.. I r. 
j j I 

o:::.;LRi,jcj.k + LLLi.jcj,l :::.;pmax 
j I 

The first and second terms represent the intracellular 
signaling part and the lateral signaling part of the 
production rate. The third and forth terms represent the 
diffusion and decay. c .. , is concentration of factor i at 
position k. D, and G, are the diffusion rate and decay rate of 



factor i. R . and L. are the reaction rate and the lateral 
I ,) r,J 

signaling rate from factor j to factor i. Indexes j and l 
represent a factor and a neighboring cell, respectively. 

As mentioned above, the production rate of factor i ts 
given upper and lower bounds(P''"'' and 0). 

User interface 
Reaction-diffusion parameters. For interactive 
simulation, the Generalized Diffusion Reaction simulator 
has various windows. The first window sets diffusion
reaction parameters such as diffusion constants, decay 
constants, intracellular signaling and lateral signaling parts 
of production rates and the maximum rates of production. 
The user can change parameters at any time, even if the 
simulation is running. 

Initial condition and boundary condition. Another 
window defines the initial concentration of factors and the 
boundary condition of the system. Here the user can assign 
different initial concentrations to different factors. If the 
user wants to assign different concentrations at different 
spatial positions of the same factor, the user can choose a 
gaussian or uniform distribution mode instead of a constant 
distribution mode. In a gaussian or uniform distribution 
mode, concentrations of a factor are chosen at random, and 
different values are assigned to different positions in the 
system. 

The user can also define the boundary condition of the 
system. The user can choose a von Neumann condition, 
Dirichlet condition or periodical condition as appropriate. If 
the spatial layout of the biological system is a ring or 
cylinder, the user can choose the periodical condition. If the 
system has no gradient of concentration of factors , the user 
can choose the von Neumann condition. If the system has 
fixed concentration of factors, the user can set the boundary 
condition to the Dirichlet condition. 

Boundary and perturbation shapes. The third window 
sets boundary and perturbation shapes. Here the user can 
define the shape of a system boundary, or of an area where 
the concentration of various factors is to be perturbed. The 
user can draw any boundary or perturbation shape by 
combining circles, squares and lines. This is important for 
biological simulation, because a system is likely to have an 
irregular boundary and irregular pattern of initial 
conditions. 

Visualization 
Spatial pattern visualization. The results of a simulation 
are often homogeneous and constant. But if appropriate 
parameters are chosen, simulation results can be otherwise. 
To analyze such results, the Generalized Reaction
Diffusion simulator has four views, two for spatial analysis 
and two for temporal analysis. 

The first and second views analyze the spatial pattern of 
concentration. The first is for grasping the global pattern of 
concentration while the second is for understanding more 
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local patterns of concentration. 
The first view is a contour plot in which concentrations 

of factors are represented in gray scale. The X axis and Y 
axis are both spatial axes. With this view, the user grasps 
the spatial distribution of a single factor. 

The second view is a "slice" of the first view in which 
concentrations of factors are represented on the Y axis 
while the X axis represents the position of several factors 
together. With this view, the user grasps the detailed spatial 
pattern of and relationship among factors. 

Temporal pattern visualization. The third and fourth 
views are for analyzing the temporal pattern of 
concentrations of factors in a chosen cell. The third is for 
visualizing temporal pattern of concentration of all factors, 
while the fourth is for visualizing detailed relationship 
between two factors . 

The third view is a ''Time Course" plot, in which 
concentrations of factors are represented on the Y axis 
while the X axis represents time. The present time is 
represented by line at X=O; past time instances flow out to 
the right. 

The fourth view is a "Concentration" plot where the X 
axis represents the concentration of one factor and the Y 
axis represents the concentration of another. With this 
window, the user can visualize the detailed relationship 
between two factors. 

Format ion of Singling Out of 
Proneu rn l Clus te r Rece pter 8 (R8) 

P roncura l Clus te r Receptor 8 (RS) 

Figure 1. Tuo steps in Neural Pattern 

Formation of Drosophila Compounds Eye 

Application to Actual Biological Systems 

As an example of the power of the Generalized Reaction
Diffusion simulator, we will demonstrate that the 
Generalized Reaction-Diffusion simulator can generate 
patterns in various steps of Drosophila eye formation. This 
biological system is a popular example and has been well
investigated (Bate et al. 1993) 

Eye development in Drosophila 

The Drosophila compound eye represents a regular 



hexagonal array of approximately 750 facets, the lenses of 
the eye. 

In this section, we briefly discuss the cellular 
mechanisms controlling eye formation. This mechanism is 
similar to other biological systems in Drosophila, such as 
embryonic neurogenesis and the development of progenitor 
cells of mechano-sensory organs (Campos-Ortega et al. 
1990; Cabrera et al. 1992; Jan et al. 1995; Artavanis
Tsakonas et al. 1991). 

Like other systems, there are two distinct steps in the 
neural pattern formation of the Drosophila compound eye 
(Figure 1). First, small groups of four to six cells form 
proneural clusters. Second, one of these cells is arbitrarily 
chosen to become photoreceptor (R8), the precursor cell of 
a single eye lens. R8 then inhibits other cells in the 
proneural cluster from becoming precursor cells as well. 

Proneural cluster formation 
Real genetic circuit and expression pattern. Proneural 
cluster formation is the key step in forming the hexagonal 
symmetry of a single eye lens, or ommatidia . Two genes 
involving this step have been isolated: Scabrous and 
Atonal. 

Atonal belongs to the "proneral gene" family that makes 
a cell able to become a neuronal precursor. Atonal is a 
transcription factor that activates production of other 
factors as well as its own production; activation produces 
proneural activity (Jarman et al. I 993). For this reason, 
Atonal's precise spatial position of concentration to precise 
position is thought to be one of the key elements in 
Drosophila eye formation. 

Scabrous is necessary to localize Atonal to only 
proneural clusters. Without Scabrous spacing between 
ommatidia is irregular. The protein product of Scabrous 
belongs to a secreted protein, fibrinogen (Mlozik et al. 
1990). 

A.Real 

~ 
Diffusion 
r:=::>-
Activa ti on 

===> 
B. Virtual 

0.1 

~GJ:GJ 
0.08 ,Jil. -0.08 n 

0.02 0.2 ~ 

Inhibition 

~ -0 .05 

Figure 2. Real and Virtual Genetic Circuit in 

Proneural Cluster Formation 

Interactions between Atonal and Scabrous and their 
properties are described Figure2A. This genetic circuit is 
based on various experiments (Mlodzik et al. I 990, Ellis et 
al. 1994). 

The expression patterns of Atonal and Scabrous are 
coincident with each other. Initially, Atonal and Scabrous 
both are expressed in proneural clusters. This expression 
then becomes confined to isolated, regularly spaced 
columns of R8. 
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Virtual genetic circuit. In the virtual (simulated) 
genetic circuit, factor A in Figure 2B corresponds to Atonal 
and factor S to Scabrous. Factor A activates the production 
rate of factor S and A. Factor S represses production rates 
of factor S and A. Factor S and factor A are both diffusive, 
but Factor Sis more diffusive than factor A. 

The difference between real genetic circuit and virtual 
genetic circuit is the diffusion process of factor A (Figure 
2A and 2B). In an actual biological system, Atonal (factor 
A) is not a secreted molecule but a nuclear factor ; that is, it 
is not diffusive. 
Comparison between real and virtual expression 
patterns. The Simulation result is shown in Figure3B. 

A. Real B. Virtual 

Figure 3. Real and Virtual Expression 

Pattern in Proneural Formation(Mlodzik et 

al. 1990) 

Concentrations of factor A and factor S are co-localized 
(data not shown) and form a hexagonal pattern (Figure3B.) 

The system based on the interactions and properties 
described in Figure 2B is a Turing System, proposed by 
Alan Turing in I 952. The Turing system is composed of an 
activator and an inhibitor. The activator activates the 
production of itself and the inhibitor. The inhibitor 
represses the production of the activator and itself. 
Furthermore, the inhibitor is much more diffusive than an 
activator. Various biological systems are proposed to be 
Turing systems (Murray 1989, Kondo and Asai 1995) but 
the factors of the system (the activators and the inhibitors) 
have not been determined. 

Our simulation results (which we will give in a future 
paper) suggest a specific mechanism whereby the 
Atonal/Scabrous Turing System results in proneural cluster 
formation. But to prove this proposition, the difference 
between virtual and actual genetic circuits must be 
explained with further biological and/or computational 
research. 

Singling out of RS 
The singling out of the R8 cell follows the formation of 
proneural clusters. During this step, cell-to-cell interactions 
result in a single cell within the group differentiating into 
R8. It is currently unknown how one cell of the cluster 
becomes singled out to form R8, although a stochastic 
model has been proposed. In the model , once some cell 
starts to differentiate, it prevents adjacent cells from doing 



so. This process is called lateral inhibition and is mediated 
by the "neurogenic genes". 

Genetic circuit based on experiment. The neurogenic 
genes include Notch, Delta, big brain, mastermind, 
neuralized , the Enhancer of split complex (E[spl]-C) and 
Suppressor of Hairless (Su[H]) (These really are the gene 
names!). Figure 4A describes the known circuit involving 
these genes, which results in lateral inhibition. Notch and 
Delta genes encode membrane proteins that mediate lateral 
inhibition (Wharton et al. l 98S). Atonal again activates the 
production rates of various factors, including itself. 

A. Real 
Cell N ci gh bor Cell 

~EJ = ~1E(•pl}-C I Diffusion 

t = 
At.:tivation 

I 1J(s,1rc.· j ¢=:i j s .. (11) I ¢:::=:> ==> 
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B. Virtual ....... 
Cell Neighbor Cell 

~ ~ =- --. 0. 1 
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L:.. <:= ~ ;J 
Cl.02 ~ 

Figure 4. Real and Virtual Genetic Circuit in 
Singling Out of RS 

Real expression pattern. The expression pattern of 
Atonal and Delta are coincident with each other. As 
described above, Atonal is expressed only in proneural 
clusters. This expression then becomes confined to isolated, 
regularly spaced columns of R8 cells. Without Scabrous, 
proneural cluster formation does not take place, and a 
broader region has the potential to become a R8 cell. Figure 
SA is the R8 pattern in the Scabrous mutant (Baker et al. 
I 99S.) In this mutant, only the step of singling out R8 has 
occurred. The R8 pattern in the Scabrous mutant is not 
precisely spaced compared with the wild type. 

Virtual genetic circuit. In the virtual (simulated) genetic 
circuit, factor A in Figure 4B corresponds to Atonal and 
factor N/D to Notch/Delta complex. Factor A activates the 
production rate of factor N/D and A in the same cell. Factor 
N/D represses production rates of factor A in neighboring 
cells. 

The difference between real genetic circuit and virtual 
genetic circuit is the diffusion process of factor N/D (Figure 
4A and 4B). 
Comparison between real and virtual expression 
patterns. Simulation results are shown in Figure SB. Factor 
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A and factor N/D are co-localized (data not shown) and the 
expression pattern of factor A resembles that of Atonal in 
that that is not regular. Notch and Delta are membrane 
proteins and it is not reported that either protein is 
diffusive. Our simulation results do not directly suggested 
that Notch or Delta must have a diffusive process because 
other genetic circuit presenting the same results may exist. 
But the striking similarity between the actual expression 
pattern and the simulation result suggest that current 
knowledge based on experiments are not sufficient, and 
processes equivalent to N/D diffusion may exist. 

A. Real B. Virtual 

Figure 5. Real and Virtual Pattern of 

R8(Baker and Zitron 1995) 

Conclusion 

In this paper, we have reported on the Generalized 
Reaction-Diffusion simulator, which enables us to simulate 
various biological systems based on reaction and diffusion 
processes and to analyze the spatio-temporal pattern of 
simulation results. The power of the Generalized Reaction
Diffusion simulator is demonstrated by actually generating 
the expression patterns of key factors in various steps of 
Drosophila eye development. In the proneural formation 
step, the striking similarities between the actual and virtual 
expression patterns of Scabrous suggest the possibility that 
Atonal and Scabrous are activators and inhibitors in a 
Turing System. During the R8 differentiation step, the 
remarkable similarities between the actual R8 pattern and 
the virtual expression pattern of Atonal suggest that a 
diffusive process exists in the Notch/Delta pathway. 
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Abstract 

This paper describes an alternative trial to simulate evo
lutionary and developmental process of multi-cellular 
plants in 3D Euclidean space. Starting from a seed 
on the surface of the ground, each individual grows by 
spawning daughter cells of each active cells. The rule 
set of growth is encoded as a gene on the chromosome 
that indicates the orientation of daughter cell and state 
transition. The model is very simple but includes a type 
of metabolism for absorbing water at the root under
ground and photosynthesis at the cells above the ground. 
Through the computer simulation of evolutionary pro
cess by a genetic algorithm with a fitness measure given 
by the number of cells, a variety of phenotypic shapes 
which are similar to moss have emerged. 

Introduction 

It is a feasible view that the growth of multi-cellular 
plants is realized by an iteration of cell division, cohe
sion, enlargement, reformation, and death. These activ
ities are triggered by some chemical and physical events 
on the cell itself guided by the genetic information on 
the chromosomes it contains. Through a lot of efforts of 
biologists, some details of species-specific developmental 
process have been revealed, and the wide variety of com
plicated strategies of development are sometimes surpris
ing. To deepen our understanding of the foundations of 
life, it is also important to build mathematical models 
of biological activities on a more abstract level, while 
investigating concrete organisms in more detail. 

One of the remarkable mathematical models of growth 
of multi-cellular plants is the L-system (Lindenmayer 
1989), which provides a formal method with a type of 
rewrite rule set to describe recursive processes such as 
growth. It has been widely used to draw computer 
graphics images of many types of plants of both real and 
imaginary species. L-system and its extended framework 
are very useful not only for drawing but also for under
standing formal aspects of morphology by clarifying how 
wide a variety of shapes a simple rule set can generate. 

In real biological organisms, the rule set for develop
mental processes is encoded on the chromosomes: the 
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Figure 1: Spawning a daughter cell in 3D space. 

genotype, which has changed from simple to sophisti
cated through billions of years of evolutionary processes 
by adapting to its environment. It will be helpful to 
combine models of evolution and development from the 
stand point of Artificial Life in which we move towards 
the intrinsics of life through synthesis. We designed a 
model of the evolution of the development process, and 
examined it via computer simulation. 

For real natural organisms, various types of features of 
physical and chemical entities and events affect the cell 
activities. To avoid the complicated task to build a real
istic model, many types of physical features are ignored 
such as gravity, shade, weather, seasons, and so on. Our 
model presented below does not use a discrete grid world, 
but a continuous three-dimensional Euclidean space be
cause it theoretically provides an infinite number of de
grees of freedom to form a shape. This feature is impor
tant to investigate evolution of sophisticated strategies, 
although it consumes more computational resources. 

In the following sections, we examine morphology, 
metabolism, and evolution of our proposed model, and 
then describe experimental simulations, the results and 
close with some remarks. 

Morphology 
At an abstract level in the developmental process, each 
cell decides its action according to the rules on the gene 
conditioned by its own status. For a mathematical model 
of cell division, we assume that the orientation of di-



vision is determined by two kinds of information: the 
internal state, and the genetic information the cell con
tains. Because of the difficulty of simulating all of these 
complicated features, we assumed that 

( 1) the cell shape is a sphere, 

(2) the cell size is constant, 

(3) cells do not split but spawn daughter cells at an ad
joining side, 

( 4) cells do not move from the original position where 
they were born, 

(5) cells spawn daughter cell only if there is enough 
empty space, and 

(6) each cell has its own direction as one of the at
tributes. 

Each cell has an attribute indicating whether it is ac
tive or inactive. An active cell intends to spawn its 
daughter cell at an adjoining side where the gene cor
responding to the current state designates the relative 
orientation. The internal states are represented by four 
bit integers of which the most significant bit indicates 
active (=0) or inactive (=l). The conditional part of 
the development rule contains the current internal state. 
The action part contains the relative orientation from the 
cell's direction to spawn a daughter cell, the daughter's 
initial internal state, and next internal state of itself. 
Each information to decide the orientation of a daughter 
cell requires a triplet of angles in 3D space as shown in 
Figure 1. The total action part of each rule includes two 
more four-bit integers and three eight-bit integers, that 
is, 4 x 2 + 8 x 3 = 32 bits. Thus, one genome consists of 
32 x 8 = 256 bits. Actually, we employ a look-up table 
to represent these rules as shown in Figure 2. 

On the initial seed, the state is zero, and the orienta
tion is vertically upward. 

Metabolism 

The above model is very simple, but we added a type of 
metabolism to 

(1) absorb water from root, 

(2) photosynthesize glucose for cells above ground, 

(3) evaporate water from cells above ground, 

( 4) move water and glucose between mother and daugh
ter cell, and 

(5) consume an amount of water and glucose when 
spawning. 

Each cell keeps track of the amount of water W and 
glucose G it contains. These parameters are normalized 
and range from zero to one. A cell under ground absorbs 
water according to 

AW= Pw(l.O - W) (1) 
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Figure 2: Form of chromosome and gene. 

for each step, where Pw is a constant. A cell above 
ground looses water through evaporation by 

AW= -PvW (2) 

for each step, where Pv is a constant. It also increases 
glucose content through photosynthesis by 

AG= Pg(l.O - G) (3) 

for each step, where Pg is a constant. Both water and 
glucose move between mother cell and daughter cell ac
cording to 

6.Wm = -6.Wd = 
6.Gm = -6.Gd == 

Mw(Wd - Wm) 

Mg(Gd -Gm) 

(4) 

(5) 

for each step, where Mw and Mg are constants, Wm and 
Gm are the values of the mother's parameters and Wd 
and Gd are the daughter's parameters. Each cell can 
spawn its daughter cell only when it is active, if it has 
enough water and glucose ( W > Ow, G > 0 g), and if there 
is enough empty space for the daughter. After spawning 
the daughter, water and glucose decrease by 

where Ow and Og are threshold values. 

(6) 

(7) 

Photosynthesis of glucose consumes water via its 
chemical reaction 

(8) 

However we ignore this phenomenon here because a de
crease of water through evaporation can account for this. 
We also ignored other materials such as nitrogen and 
other essential elements, because they will not affect the 
shape as the result of the development process in this 
simple model. 
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Figure 3: 1/3 selection. 
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Figure 4: Local selection using ring. 

Evolution 
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The evolutionary process of natural organisms strongly 
depends on inter-species interactions such as the food 
web. Starting from the simplest settings, we examined 
evolution by a Genetic Algorithm (GA) (Goldberg 1989) 
with pre-defined fitness function . 

We use two types of generational GA in which ev
ery individual in the population is initialized by a ran
dom genotype and is tested through selection process 
to decide whether it remains in the next generation or 
not. First, to accelerate the evolutionary process, we did 
not employ ordinary selection algorithms widely used in 
GAs (such as roulette-wheel selection, ranking selection, 
or any other probability-based selection mechanism) but 
instead used a 1/3 selection algorithm as shown in Fig
ure 3. In this algorithm: 

( 1) The best third of the population remains in the next 
generation without any modification of genotype, 

(2) the middle third of the population is replaced with 
individuals generated using crossover operation be
tween the best third individuals and the middle third 
individuals, and 

(3) the worst third of the population is replaced with 
mutants of the best third individuals. 

In our second type of GA, we use a type of local se
lection where individuals are arranged along a ring as 

shown in Figure 4. The algorithm is similar to the 1/3-
selection described above, but selection is done among 
local neighbors, that is: 

(1) after evaluating the fitness, each individual obtains 
for comparison the values of its nearest (left and 
right) neighbors. 

(2) it remains in the next generation without any modifi
cation if it is the best among these three individuals, 

(3) it is replaced with the one generated by crossover 
with the best one; and 

(4) it is replaced with a mutant of the best one if it is 
the worst. 

As some researchers pointed out, GAs with local se
lection have an advantage to approach the global op
timal solution because they can keep more diversity in 
the population than global selection (Sarma 1997) . It 
is better not only as an optimization algorithm but also 
as a model of natural selection, because the competition 
among real organisms must always be local. 

Experiments 
Using as fitness measure the number of cells after allow
ing growth for a constant number of steps, the results 
of our simulations showed a wide variety of phenotypic 
shapes as shown in Figure 5. 

State transition networks of development rules for in
dividuals can be drawn as shown in Figure 6, viewing 
the active part of gene as an automaton. Networks in 
Figure 6 correspond to phenotypes shown in Figure 5. 
From this figure, we can see that the genotype of larger 
phenotypes includes cyclic transitions which can produce 
a recursive structure of development. 

Evolutionary processes using fifty distinct random 
number sequences for each selection strategy are shown 
in Figure 7. It is clear that local selection leads to better 
fitness more often than global 1/3-selection. 

Conclusion 
We designed a model to study the evolution of botan
ical development in 3D Euclidean space and a sim
ple metabolism, and examined the evolution with two 
types of selection algorithms. Via experiments described 
above, we observed that a variety of phenotypic shapes 
reflecting effective strategies for efficient body growth 
have emerged. These shapes resemble a kind of moss 
because they tend to spread on the ground. Compar
ing two different strategies for selection, local selection 
appears to be better than global selection for reaching 
better solutions. 

The results of the simulations presented above are only 
a sample of forms we found. Though one might conclude 
that this provides possible evidence for the diversity of 
forms that emerged through evolution, we should inves
tigate more thoroughly the effects that different parame-
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Global 1/3 selection, 378 cells. 

Local selection, 542 cells 

Figure 5: Typical phenotypes that emerged from evolution through 500 generations in 400 steps per one generation, 
with a populat ion size 36. Cells are drawn as spheres in the left hand figure, while line segments between the centers 
of mothers and daughters are drawn in the right hand figure. The upper left figure of each is the top view, the right 
figure is the right view, and the lower figure is the front view. The parameter settings are: Pw = 0.1, Pv = 0.01 , Pg = 
0.1, Mw = 0.02, Mg = 0.02, Bw = 0.2, ()g = 0.2. 
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4-~ 
Global 113 selection local selection 

Figure 6: State transition networks of development rules 
produced through evolution. S indicates the initial seed, 
and IA indicates inactive. Dashed arrows indicate tran
sitions from mother to daughter. These networks are 
generated for the phenotypes shown in Figure 5. 

ters have on the process of evolution, before more fruitful 
results can be obtained from the point of view of biology. 

We are also considering some directions to extend 
the model described above, such as physical interaction, 
chemical diffusion, differentiation, life cycle and ecology. 
A combination of this research with other morphological 
research such as (Fleischer 1996) and (Onitsuka 1996), 
and artificial botany such as (Colasanti 1997) might pro
vide the inspiration for progress with this research in the 
near future. 
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Abstract 

We have studied pursuit-evasion games where the play
ers can move in the plane or in a square region. Con
fining the pursuer and evader to a restricted region, or 
making them different, makes the problem more com
plex, and excludes simple solutions such as running 
straight towards infinity as fast as possible. In particu
lar we study the case when the pursuer is made faster 
but less maneuverable. A steady improvement in perfor
mance measured against a fixed set of strategies is often 
found. We study the how the behavior changes with the 
parameters in the problem, such as the degree of asym
metry, and investigate the occurrence of unpredictable 
(protean) evasion behavior. 

Introduction 
Coevolution of strategies has been studied fairly exten
sively for simple discrete games, both in the case of two
person games, such as the Prisoner's Dilemma (Lindgren 
1991, Lindgren & Nordahl 1994a, 1994b), and multi
person games (e.g., Akiyama and Kaneko 1995). Con
tinuous strategies for differential games (Isaacs 1965), 
such as pursuit-evasion, require more elaborate strategy 
representations, and have so far been less investigated. 

A large number of interesting problems can be formu
lated as games with continuous actions. Pursuit-evasion 
problems with multiple players can address both the evo
lution of flocking behavior and coordination in collec
tive problem solving. Interesting two-person games with 
continuous actions include the Cournot game for pric
ing strategies in oligopolies, and signaling games with 
applications to sexual selection and the occurrence of 
deception in nature. 

In this contribution, we study the coevolution of 
strategies for two-player pursuit and evasion games. Pur
suit and evasion is omnipresent in nature, and an im
portant concept in (evolutionary) robotics. Evolution of 
pursuit and evasion strategies has been studied both in 
simulations (Cliff & Miller 1996) and with real robots 
(Floreano & Nolfi 1997). 

In cases where the evader and pursuer have identical 
properties, a good strategy for the evader is to move as 
fast as possible on a straight line away from the pursuer. 

Mats G. Nordahl 
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S-412 96 Gothenburg, Sweden, 
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To provide for more interesting dynamics, the pursuer 
and the evader can be given different properties by, for 
instance, making the pursuer faster but less maneuver
able. In order to escape, the evader must then turn in an 
unpredictable way to avoid the pursuer. Rapid, unpre
dictable changes in direction and speed are referred to 
as protean behavior and occur frequently in nature (e.g., 
Miller and Cliff 1994). 

Another more interesting game places the pursuers 
and evaders in a confined space. In this case, the evader 
can never use the strategy of escaping with full speed 
along a straight line, even if the pursuers and the evaders 
have identical properties. 

In this contribution, we study the coevolution of 
pursuit-evasion strategies, and in particular begin a 
study of the effects of asymmetries between the pursuer 
and evader. These are either confined to a square or 
allowed to move freely in the plane. 

Methods 
Dynamics and genetic representation 
The artificial creatures used in the simulations are con
trolled by recurrent neural networks, described by the 
equation 

r- = -x +a ""'w ·x· +J. dxi ( ) 
dt ' ~ l,J J ,, (1) 

where x; is the activation level of neuron i, Ii is the 
visual input, T is a time constant, and er is the neuron 
activation function. Information about the surroundings 
of a creature propagate from the visual input neurons 
through the network and produce motor signals, which 
control muscles that determine the movements of the 
creature. 

The equations of motion for the creatures are 

dv _ k (M1 +Mr) 
m dt + C[V - l 2 , (2) 

ds 
dt = v, (3) 

1 dO iJ _ k (M1 - Mr) 
dt +Ca - a 2 ' (4) 



where m, c1, k1, I, Ca, and ka are constants. M1 and Mr 
are the left and right motor signals. s denotes the curvi
linear coordinate along the direction of motion, which is 
denoted by 0. 
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The neurons are arranged in layers, with arbitrary con
nections, which allows the network to have nontrivial in
ternal dynamical behavior. Both pursuers and evaders 
are generated through a growth process from chromo
somes consisting of 13 genes (which take integer values 
between 0 and 9) per neuron. The first bit codes for 
the layer of the neuron, and bits 2-4 determine its hori
zontal position. For input neurons, bits 5-6 code for the 
opening angle, i.e. the circle sector in which the neu
ron receives visual input. The visual input equals the 
fraction of the circle sector which is occupied. The vi
sual neurons are situated along a line around the circular 
body of the creature, and can point in any direction. 

For non-input neurons, bits 5-6 code for the direction 
of neural growth (vertical for input neurons). Bits 7-8 
code for the opening angle of the neural growth cone, 
where the neuron makes connections to other neurons 
(centered on the growth direction defined by bits 5-6). 
The connection weight at distance r is given by the pa
rameters w0 (bits 9-11) and lscale (bits 12-13) according 
to w = w0e-r/l.caic. Thus, the weights of the network 
are not coded in the chromosome. Instead, they result 
from the growth process. 

The simulations 
Initially, two populations of typically 50-100 creatures 
with random genomes with at most 30 neurons were gen
erated. The individuals were then evaluated in pairs, i.e., 
each pursuer was paired with a member of the evader 
population and these were evaluated by simulating the 
pair for Nstep = 30, 000 time steps. The evader fitness 
was the time averaged value distance between the two 
creatures; the pursuer fitness was the inverse of the av
erage distance. 

When all pairs had been evaluated, the next genera
tion was created using a genetic algorithm with fitness
proportional selection and mutation. In the first Nstart 
generations of each run, the nth member of the pur
suer population was paired with the nth member of the 
evader population. In subsequent generations all pur
suers were evaluated against the best evader of the pre
vious generation and vice versa. 

The simplest topology for the world of the creatures 
is an infinite plane. Coevolution of pursuers and evaders 
in the plane was studied by Cliff and Miller (1994), 
who used pursuers and evaders with identical properties. 
Thus, a successful strategy for an evader would be to run 
as fast as possible straight away from the pursuer. To 
avoid this, Cliff and Miller introduced an energy vari
able, which decreased rapidly with increasing strength 
of the motor signals. Pursuers were given more initial 
energy than evaders. 

We consider other changes to the game itself more 
fundamental from a game theoretic point of view (and 
possibly more open to analysis). For instance, the space 
can be made finite by introducing walls, or the pursuer 
and evader can have different properties. In this paper, 
both motion on an infinite plane and in a finite square 
are considered. In the simulations, the creatures were 
not able to see the walls. At wall collisions, the velocity 
normal to the wall was reversed, and the speed of the 
creature was reduced by 503. 

Results 

Symmetric and asymmetric creatures in a 
finite world 

Since the creatures in our simulations moved in a finite 
space, interesting strategies could be obtained even with 
pursuers and evaders with identical properties. 

We carried out one such symmetric simulation (Run 
1), in which two populations of size npop = 100 were 
evaluated for 700 generations. The creatures moved in 
a square of 20 x 20 units. No strong trend in fitness for 
either evader or pursuer was found in this case. This 
is expected, since even though evolution can improve 
the creatures, it does so without preference for either 
pursuers or evaders, and the result is an 'arms race' in 
which neither can gain a permanent advantage. 

To study the effects of making the pursuers different 
from the evaders, 8 additional runs were carried out with 
the creatures confined to a square. The parameter values 
of the pursuers were varied in order to study the effects 
of differences in speed and maneuverability between pur
suers and evaders. In this case, the population size was 
50 individuals, and the simulations extended over 200 
generations each. 

Under these conditions, successful evaders often tried 
to stay close to the walls. By bouncing against the walls, 
they were able to confuse the pursuers. Unfortunately, 
this strategy was rather easy to achieve: Once the evader 
had reached a wall, it only needed to keep on turn
ing without changing direction. The pursuers displayed 
more interesting behavior, often involving sharp turns to 
keep the target in sight and occasional 360-degree turns 
to re-acquire a lost target. Some examples of pursuit 
strategies are shown in Fig. 1. In all figures showing 
trajectories, the pursuer and the evader start close to 
the origin. 

The relative importance of speed and maneuverability 
was also investigated. In Fig. 2, averages (over all in
dividuals, generations, and runs) of the pursuer fitness 
values are shown. Maneuverability appears to be more 
important than speed when pursuing a target in a con
fined space. 
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Figure 1: Pursuit strategies from various runs. The evader orbit is indicated by a dotted line, and the pursuer orbit 
by a solid line. 

Increasing pursuer maneuverability 

+ 0.121 0.124 0.141 

0 0.119 0.102 0.107 

0.098 0.097 0.093 

+ 

Increasing pursuer speed 

Figure 2: Average (over all individuals and 200 genera
tions) of pursuer fitness. 

Asymmetric creatures in an infinite world 
We also carried out a set of simulations in an infi
nite world, but with asymmetries between pursuer and 
evader. 

Some evader strategies sampled from different gener
ations of one of the runs are shown in Fig. 3, where 
the evaders are evaluated against the best pursuer of the 
preceding generation. 

The co-evolutionary process tended to evolve networks 
with high complexity. In the early generations, the net
works only performed a simple input-output mapping. 
The pursuer and evader are essentially Braitenberg ve
hicles (Braitenberg 1984), where sensory inputs map di
rectly to motor units. In later generations, backward 
connections started appearing, and more complex dy
namical behavior became possible. The connectivity of 
the network also showed an increasing trend, albeit a 
very weak one (a linear fit to the data yields a connec
tivity varying as l.56+0.18(g/100), where g denotes the 
generation number), see Fig. 4. 

Co-evolutionary progress 

An interesting issue is that of co-evolutionary progress. 
Presumably, in the co-evolutionary arms race an im
proved pursuer strategy is followed (through selective 
pressure) by a better evader strategy which, in turn, 
leads to stronger selective pressure on the pursuers, and 
so on. However, it is difficult to measure co-evolutionary 
progress, since both pursuers and evaders improve simul
taneously. 

We used a very simple method: In every generation 
of Run l, the best pursuer was re-evaluated against an 
evader on a fixed orbit. The resulting fitness curve is 
displayed in Fig. 5. Despite the noise, the curve shows 
that co-evolutionary progress occurs. 

Protean behavior 

In the simulations of pursuit and evasion in confined 
spaces (Runs 1-9), the evaders displayed very little active 
protean behavior, presumably because the wall-bouncing 
technique was sufficiently successful to make protean 
behavior unnecessary. From the point of view of the 
pursuers, however, the wall-bouncing evader strategy is 
equivalent to protean behavior, and, as can be seen in 
Fig. 1, our best pursuers were able to cope with it. 

In Runs 10-11, in which the pursuit-evasion contests 
took place in an infinite space, some of the evaders dis
play (seemingly) unpredictable behavior. Two examples 
are shown in Fig. 6. In both cases, the evader managed 
to shake off the pursuer by making rapid, unexpected 
turns. The pursuer in the upper panel was of the fixed 
strategy type, and was therefore able to re-acquire the 
target, whereas the neural network pursuer in the lower 
panel completely lost track of its target. 



Q 

) 

q 

.. n .. ·. ',y 

q 

475 

Figure 3: The best evaders in generation 109, 114, 217, 
334, 371, and 456 of Run 10 evaluated against their re
spective pursuer. 

Conclusions and Directions for Further 
Work 

We have studied the dynamics of pursuit-evasion con
tests in finite regions and on infinite planes. Our re
sults suggest that coevolution slowly improves the per
formance of pursuers: In a simulation over several hun
dred generations, pursuers in later generations are gen
erally able to follow any evader moving on a simple (e.g., 
straight-line) trajectory, whereas early pursuers are not. 

Coevolution in a confined space gave rise to interest-

Figure 4: Number of backward connections per neuron 
and network connectivity (connections per neuron) of 
the best evader as a function of generation for Run 10. 

Figure 5: The fitness of the best pursuer in each gener
ation evaluated against identical evader orbits. 

ing pursuit behavior, but the evaders evolved only very 
little-the simple strategy of bouncing against the walls 
sufficed against most pursuers. On the infinite plane, 
the evaders evolved more advanced behavior, including 
rapid turns which confused the pursuers. A trend to
wards more complex network architecture was found, 
both for the connectivity and the amount of feedback 
in the neural networks. 

An important issue for further work is the internal 
dynamics of the networks: As the number of feedback 
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Figure 6: The orbit of two advanced evaders from Runs 
10 and 11. 

connections increase, the possibility of chaotic oscilla
tions increases as well. One should attempt to character
ize the neural circuits that give rise to protean behavior 
as dynamical systems, and study the role of chaos as a 
generator of unpredictable behavior further. We are at 
present investigating the matter through a detailed anal
ysis of the neural networks obtained in co-evolutionary 
simulations. 

Another important issue is that of representations for 
strategies in continuous games. The neural networks 
used in this contribution are very far from the pleas
ant degree of interpretability of the strategies for discrete 
games in Lindgren (1991), Lindgren and Nordahl (1994a, 
1994b). While one cannot hope for that kind of simplic
ity, it may still be possible to find representations that 
allow some degree of theoretical interpretation. 

It is also important to develop ways of characterizing 
behavior in a more quantitative way. Characterizing the 
structure of the networks is straight-forward, but find
ing good quantities to characterize their behavior is more 

difficult. The degree of unpredictability could be char
acterized using methods from nonlinear dynamics, but 
this would then still be a property of a pair of players, 
rather than a single evader or pursuer. 
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Abstract 
We discuss the design of flexible deformation and 
adaptive motion in a mechanical system. This paper 
describes a Morpho-Functional Machine that is an 
amoeba-like deformable system. A remarkable 
characteristic of an amoeba is that it can transform 
from a unicellular mode to a multi-cellular mode 
depending on the state of the environment. This 
paper proposes using the Vibrating Potential Method 
to control the Artificial Amoeba, and uses goal 
acquisition as an example of searching the 
environment spatially. The proposed model consists 
of the new field technique named Vibrating 
Potential Field and a new parameter tuning method 
inspired by thermodynamics. The field model 
creates self organizing gathering behaviors through 
the physical interaction of potential fields. The 
computer simulation shows the emergence of typical 
characteristics, such as gathering toward energy, 
thermotaxis, obstacle avoidance, and swarm 
intelligence. Those characteristics are designed and 
built as an SMA structured Artificial Amoeba based 
on a physical system, the so-called Morpho
Functional Machine. 

Introduction 

The A-Life research area discovered evolutionary social 
competition, self-organized system design, flexible 
deformable groups, and adaptive complex behaviors. This 
paper describes one approach to realize flexible deformable 
functions based on adaptive computation techniques. The 
A-Life world consists of the interaction of many functional 
elements and mutual scrambling of limited resources: for 
example, competitive agents, cooperative agents, neural 
network, and swarm systems often achieve Nash's 
equilibrium. However, A-Life research has contributed 

little towards the development of functional emergence in 
the physical world. Functional emergence discovered from 
the interaction of many functional elements with mutual 
access to limited resources should be useful technology for 
physical systems in the real world. 

Our approach to an A-Life system has been to imitate 
amoeba-like behavior. We especially focus on flexible 
motion emerging from the competitive life game of 
amoeba cells. Artificial cells are designed to be adapted 
into energy utilization; each such artificial cell is called a 
unit. The unit consists of sensor(s), controller(s), 
indicator(s) and actuator(s); how to select and find the 
suitable set is our chosen problem. For this problem, we 
have described a mathematical model of mutual action of 
units as well as a parameter tuning method for each unit. 
To approximate the dynamics of cell interaction, sensing 
and indications are mediated by a vibrating potential field. 
Actuation is described by a kinematics equation. The 
strength, stiffness, and density of sensors are all 
parameters. Such parameters are tuned to get more energy 
than neighbors, as well as improving energy access in 
general. This paper shows the hardware design and control 
rules taken from living NC4 (the most famous species of 
amoeba) for flexible motion. Computer simulation also 
shows the adaptation process of obstacle avoidance. 

Related Works on Artificial Amoeba 

Unit-based modeling is a convenient approach for the 
systematic description of multi-cellular organisms. That is, 
"Cells are unit of the structure and functionality of all 
organisms, and, in a sense, are first-order elements of 
organisms." Fleischer (1994) made developmental models 
that can represent some characteristic behaviors of cells. 
Agarwal (1995) made the Cell Programming Language 
(CPL) to model and simulate biological phenomena, e.g., 
shme mold aggregation. 



For the field technique, the theory of cellular automata 
(CA) is a basic model used to generate or calculate field 
patterns from local interactions between cells. Turing's 
morphogen model is also a more basic model of the field 
technique. Ueda's work, concerned with a model of 
intelligence of Physarum, concluded that self-organizing 
chemical patterns at the molecular level cause intelligent 
behavior (Ueda 1993). However, Unit-based modeling 
must consist of sensor(s), controller(s), indicator(s) and 
actuator(s). All information propagated from the indicator 
is mediated by suitable fields, and picked up by the 
sensors. Such simulation technique of propagating 
information is a so-called field technique. The field 
technique and movable phenomena of particles is derived 
from the VPM (vibrating potential method) proposed by 
(Yokoi 1996). VPM is applied both to imitating cell 
movement and to engineering problems. 

Aspects of real slug to be modeled 
Slime mold is a colony of unicellular amoeba, during one 
period in the amoeba's life cycle. Cells are rather shapeless 
unicellular organisms that move by extending contractile 
portions of themselves (pseudopods). If the food supply 
becomes exhausted, the amoeba begin to aggregate at a 
number of collection points. After aggregation has been 
completed, the amoebae that have collected at a given point 
form a multi-cellular slug. Fig. 1 shows that cells in the 
slime-mold state exhibit searching and walking behavior 
using flexible arms (pseudopodia of Dictyostelium 
Discoideum) stretched from the cell membrane. 

From microscopic and chemical analysis of the 
biological system, the mechanism of amoeba motions are 
classified as follows: 

• Chemo-taxis and Thermotaxis. 
• Cells respond to information in chemical field through 
a grouping and searching process. 
• Expansion and contraction of internal fiber causes the 
deformation and flexible motion of the whole body. 
• As an assumption, an amoeba cell consists of Motor 
Units that interact with the other units. Through self
organization of a local group of motor units, whole cell 
motion and deformation can be obtained. 

Figure l. Photo-Image of Dictyostelium 
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Information in a biological medium 
The spatial movement of an amoeba cell is driven by 
cAMP. The detail of cell motion is shown in Varnum 
(1984 and 1987). Flexible motion is controlled by the 
spatial pattern of cAMP waves. The morphogenesis of 
amoebae is adaptive in an environment based on 
chemotaxis and thermotaxis, as shown in Siegert ( 1992) 
and Steinbock (1993). 

Amoeba Model 

The mathematical design of the amoeba model consists of 
four distinct parts: "Sensors", "Actuators", "Indicators", 
and "Controllers". A sensor picks up information, and an 
indicator performs a function. Those two functions arc 
described by "Field" and "Potential functions" . An actuator 
physically interacts with the environment causing "Unit 
Motion". A controller makes decisions, and includes an 
adaptive parameter tuning mechanism. 

{ H } = { Force } + { Signal } + { Energy } 
Field Physical interaction Information Reward 

{ P } = { 0( H ) } {Parameter} { Energy } 
Actuation Sensor System Parameter Consumption 

{ K } = Opt { Internal Entropy } 
Parameter Optimization of System Parameter 

Figure 2. Concept of Chemotaxis using field information 

Organizer Unit Normal Unit 

Field (sensor and indication) 
As the model of a biological medium, we propose a single 
virtual field . The whole field H (the VPF) consists of 
summing up individual fields generated by units. The 
interactions among units are obtained by the interaction 
between one unit and the VPF, as two body interaction 
problems. Two body interaction offers the special feature 
that a unit observes the status of other units without any 
knowledge of the relationship between them. The VPF is 
mathematically described using potential functions 
(h,w,E,hl) on individual fields ('If, x. 't, cp). In the equation, 
the information is defined only as a propagating wave, and 
described using a potential function on a spatial and 



temporal interval. 
Thus, 

Unil number J 

H(r,$.t)= ~ \hi(r,t) ljl($) +wi(r,t)X($) 

Unit l!WJlher } 
+ L hl;;(r, t)q>;($)q>;($) + E(r, t)1:($) 

I . (I) 

where H(r,cj>,t) is the vibrating potential field (whole field). 
The <!> is the total coordinate axis; the i is the unit number. 
E(r,t) is energy function of environment. hi(r,t), wi(r,t), and 
hlij(r,t) are information propagated from unit i (the 
potential function) . r is the position vector. From H(r, cj>, t), 
a unit interacts with other units via 'I'(<!>), X( <!> ), 't( <!> ), <p( 4>) 
depending on the amplitude of each individual field. The 
diffusion of each field is mathematically described using 
partial differential equation u=u(r,t) for each field 
parameters { a,~,y,o, £}as in Eq.(2). 

ai&.+ ~d + yV' 2u + oV'u +Eu= 0 
dt2 t (2) 

Unit communication is mediated by the multiple VPF H in 
Eq. (1). The sensors and indicators are described by the 
wave equation shown in Eq. (3) . Selection of the type of 
sensor and indicator is defined by the System Parameter 
vector K(t)=(K'lf Kx, K't, K<p). Boundary conditions should 
be different for each property to avoid confusion. 

K(t) d2s(<!>) + E (r· t) r("') = 0 
2 d<jl 2 env I• 'o 'I' 

( s(<!>) =\jl(<jl), X(<!>), <p(<jl), 't(<jl)) (3) 
'I'(<!>), X( <!> ), <p( <!> ), 't( 4>) are the unit coordinate axes, and 
Eenv(ri,t) is the interaction energy in Eq. (4), 

Unit number 

dEenv = L 
Figure 3. Fundamental movement of unit group. 

l o w~ 
le • Ot!f.2Q 0 

flgor 
Movement of unit !!TOUP 

driven by phase shift of 
attractive potential function . 
The gravity center of unit 
group is advanced. Where 
ON" means active unit of 
attractive/repulsive potential 
functions. Friction of floo 
set as 0.1 (in case unit 
velocity equal 0), and 
(velocitv not eaual 

Unit motion (actuation) 

(4) 

Unit motion is defined according to the field information 
and the unit's stored energy, and is realized as a result of 
external stimuli on unit internal parameters. In Eq. (5), the 
unit motion p(t) is derived by Lagrange equations of 
motion with regard to H(r,cj>,t), Eout, and K(t) as the 

479 

potential function. The integral H(r,cj>,t) is the observation 
of field information, Eout is the outflowing energy from 
the unit to environment, K(t) is the unit parameter. Fig. 3 
shows one example of unit motion, where the sign "ON" 
means active input from field . The computation shows that 
reciprocal activation input causes movement of the center 
of gravity of the units through an attractive/repulsive 
potential function. 

P(t) = M .vf H(r. 4> .t s(cj>))fq>(cj>) dcj>·E . K(t) (5) 

Unit information (potential functions) 
The unit information in this paper deals with amplitude of 
propagating information in a field. Two types of 
information are applied: one is a density type that simply 
diffuses; the other is a wave that propagates and gradually 
declines. Depending on the boundary conditions of the 
field, it undergoes resonance, reflection and refraction. The 
unit outputs this information, and influences surrounding 
units according to the distance between them. This 
information is realized by setting a suitable value on the 
individual field, and also those defined by Strength, Delay, 
Frequency , and Direction for each piece of information 
hi(r,t), wi(r,t), hlij(r,t), and E(r,t). Fig. 4 shows the 
reciprocal activation according to the wave input for 
neighboring units. 

Figure 4. Wave propagation from unit. (Time delay of 
activation drives reciprocal action of wavy field) 

The propagating wave pattern is output from the speaker in 
the Indicator, and is deformed by tuned delay timing of 
each unit. 

Objective function 
Adaptive behavior of units using local information requires 
an objective function for decentralized control. An ideal 
objective function of a decentralized system leads the units 



to an orderly configuration dependent on the environment. 
In this section, the objective function for the system 
parameter K(t) is set by the concept of adaptive mechanics 
of living creatures. According to statistical mechanics, 
each unit conserves order by minimizing the differential 
calculated gain of entropy ds. The ds is derived by input
output relation of environment energy. State inputs and 
outputs on each unit i are: inflowing heat Ein=Ein(ri,t), 
stored energy Q=Qi(t), work W=Wi(t), Eout=Eout(ri,t), 
and spatial heat environment Eenv=Eenv(r,t). The 
inflowing heat Ein is input energy from environment that is 
transmitted through wave propagation and threshold TH as 
shown in Eq.f6) 

E;n = H(r,<l>,t)X(<I>) d<I> -TH 
(6) 

The stored energy of each unit Q is: 
dQ=( E;n -Eoul -W) d1 (7) 

W is energy given by the unit to the environment; it is 
defined for each velocity v(t) in Eq. (8). 

W =l.Mv(t)2 
2 (8) 

The outflowing heat Eout from each unit is a function of Q 
and Eenv in Eq. (9). 

d E out = { Q - E env )dt (9) 

Since such state values are connected with the other state 
values, numerical computation is applied to obtain. Now, 
the differential calculated gain of entropy ds is define as 
Eq. (10) using state values Ein, Eout, and Eenv. 

ds = dEout - dE;n 
T( Eenv) (10) 

The system parameter K(t) is derived by Eq. (11) for 
minimize ds. 

oK(t) a <ls 
--=---

at oK(t) (11) 
Where the system parameter K(t) consists of the Sensor 
part, Indicator part and Actuator part shown in Fig. 5. The 
sensor part has K\jl Kx, K-r, Kcp (boundary condition of 
individual field), Kg (gravity), and Kt (temperature). The 
indicator part has Kw (Speaker). The actuator part has Kh 
(magnetic potential) and Khl (elastic potential). Each 
parameter has 4 degree of freedom {Strength, Delay, 
Frequency, Direction}. 

Using Eq. (11), the adaptive behavior of unit groups is 
shown in Fig. 6. The number of unit groups is 30, 15, 9, 6, 
3 and 2. Goal searching behavior was acquired except in 
the case of only 2 unit groups. Fig. 7 shows the acquired 
delay parameter for the 30 unit group case. Fig. 8 is a 
picture of the search goal. 
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ure 5. S stem arameters K(t) r---------....... INDICATOR SENSORS 

Gravity Kg 
Strength 

Sonic Kx 
Frequency 
Strength 

Connection K cp 
Area, 
Strength 

Attraction K\jl 

Frequency 
Strength 

Temperature KT 
Strength 

Energy Kt 
Strength 

ends on number of units 

Figure 7. Adapted delay parameters of actuation for 30 
units 

Unit Position 



Figure 8. Mutual action of 30 units group. 

_,JGr~vity • 
Goal 

Computer Simulations and Hardware Design 
of Artificial Amoeba. 

Computer simulation shows the functionality of 
mathematical representation of the amoeba model, and the 
experiment shows that collective behavior of the unit group 
is realized through interaction of the potential function as 
communication between units. Fig. 9 shows the result of 
parameter tuning process. Initially, the unit group acquired 
ability to climb steps. However, they fell down to the floor 
below the goal. Therefore, they found the standing up 
function next, and finally achieved the goal. 

Figure 9. Simulation of the amoeba model (Climbing Step 
motion) 

The flexible function of the amoeba model is applied to the 
hardware design of an Artificial Amoeba. The unit has 
CPU, photo and sonic sensors, as well as an actuator. Each 
unit has the learning mechanism of sensor-actuator 
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mapping that is tuned according to energy consumption. 
The SMA Net type consists of a lattice structure of Shape 
Memory Array as the actuator. This Artificial Amoeba 
established loop-like creeping motion through the mutual 
action of the SMA net. Such Artificial Amoebas are 
structured as collective unit groups that realize a distributed 
autonomous system. 

Figure l 0. Hardware approach for the SMA Net type 
Artificial Amoeba (Each node of SMA lattice has CPU and 
sensors. This mechanism can move to the direction of 
photo and sonic inputs.) 

Summary 

This paper tries to use the morpho-functional machine to 
achieve deformable system design. For this purpose, an 
Artificial Amoeba is proposed based on the amoeba model 
structure of collective unit groups. The amoeba model 
describes a competitive adaptation mechanism through the 
mutual action of units on the vibrating potential method. 
The results show that competitive learning causes 
reciprocal adaptation, and that autonomous synchronization 
of phase delay derives both a creeping motion and walking 
behavior. 

This work was supported in part by Grant-In-Aid for 
Scientific Research on Germination Area No.08875052, 
Ministry of Education, Science and Culture. 
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Abstract 

This paper describes self-organized complexity of an 
ecosystem consisting of computer programs that exhibit 
life-like behavior. As an artificial life approach to 
simulating the life-like behavior on a computer, attention 
should be given to the emergent dynamics by which a new 
action is brought forth. In considering how to implement 
such a notion onto a computer, it could be interpreted as 
the generation of a new algorithm, or the generation of a 
new code establishing a mapping between a symbol and an 
information. This paper discusses complex behaviors in 
our artificial-life system named PROTEAN, that is an 
ecological model consisting of Turing machines as a 
platform on which to simulate the emergent dynamics of 
computer programs. Although the system is not provided 
with any particular mechanism for self-reproduction, the 
system is self-organized so that the system constituents can 
utilize their environments for survival. For the approaches 
emphasizing simulations on a computer, it is important to 
understand an emergent process from the viewpoint of 
computational complexity. Using this ecosystem model, 
this paper demonstrates how computer programs may be 
able to achieve life-like behavior, and discusses the relation 
with their self-organized complexity. 

Introduction 

Even if we don't have a strict definition of life, we can ob
serve life-like properties in various phenomena, such as in
crease of complexity, adaptiveness, and emergence. In 
fact, the notion of emergence itself is also difficult to 
define in a way that distinguishes simply quantitative 
changes from those cases where something really new 
emerges. In this paper, we should formalize it as the 
appearance of a new action or agent as the realization of 
that action. 

In this context, most simulation models for life-like be
havior are unable to realize the emergence of new actions. 
Rather than modeling a process whereby something really 
new emerges, those models seem to focus on the 
implementation and simulation of particular aspects of life
like adaptive behavior. This arises from the process by 
which these systems are modeled to meet a specific 
purpose. On the other hand, to further our understanding 
of mechanisms that exhibit truly life-like behavior, 
attention should be given to the modeling of an emergent 
process whereby new actions may be brought forth. Life
like behavior should be understood as the result of 
complex relations brought about by the emergence of new 
actions, rather than beginning with the application of a 
specific scheme designed to simulate a certain 
phenomenon. 

In implementing this onto a computer, it could be inter
preted as the generation of a new algorithm within a com
puter program and the generation of a new code, 
establishing a mapping between a symbol and information. 
This paper discusses life-like adaptive behaviors of an 
ecological model consisting of computer programs 
described by Turing machines. A Turing machine is a 
mathematical model of computing or algorithms, enabling 
any computational procedure that we know today to be 
described. In particular, we use a universal Turing 
machine (UTM), that, depending on its program, can 
simulate any other Turing machine's operation. In 
PROTEAN, computer programs are decoded onto the 
UTM, where they interact with each other by performing 
their various functions. Through computer simulations, 
this paper demonstrates how computer programs may be 
able to achieve self-organization, resulting in life-like 
behavior. Furthermore, in order to understand those 
behaviors of computer programs, we have to take their 
computational complexity into account. This paper 
discusses unpredictable population dynamics from the 
viewpoint of the computational complexity, that would be 
correspondent to those behaviors bounded with energy in 
the physical systems. 



PROTEAN: Turing Machine Ecosystem 
PROTEAN (Platform on Recursive Ontogenetic Turing
machine Ecosystem for Autopoietic Networks) is an emer
gent system aimed at simulating autopoietic behaviors of 
computer programs described in a form of Turing 
machine. In PROTEAN, survival games take place on the 
UTM, with ecological resources being competed for. The 
essential features of PROTEAN are the representation of a 
UTM, the interaction procedure between constituents, and 
the constitution of the system as a whole. For more details 
about PROTEAN, refer to (Yoshii and Kakazu 1998) or 
our web site at http://junji.complex.eng.hokudai.ac.jp/ 
export/yoshii/WWW /index.html. 

Universal encoding of algorithms for UTM 

Conceptually speaking, PROTEAN has the capability of 
describing and producing any kind of computer program in 
the form of Turing machines due to the utilization of a 
UTM that reads bit strings. A tape for the UTM is nothing 
more than the coded version of a Turing machine that 
performs the task desired of the UTM. We can regard a 
tape as a genotype that encodes the Turing machine's 
functionality. 

Ecological resources 
Figure 1 shows the ecosystem, which consists of the 
description tapes of the Turing machines. Its total resource 
is a static volume of memory, while a Turing machine 
itself can make use of an almost infinite memory capacity 
in its functioning. Each Turing machine occupies its own 
memory block, dependent on its description length. 

Figure 1: Ecological Resource. 

Interaction between Turing machines 

First, a genotype gn is decoded into a phenotype, that 
is, a specific Turing machine Tn, through interpretation by 
the UTM. Next, the decoded Turing machine, Tn , reads 
and operates on another genotypic machine description, 
gm . The newly generated genotype will dictate a new 
Turing machine, or in other words, a new algorithm. This 
means that such an interaction can realize a process 
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whereby a program can directly operate on the description 
of another program to generate a new algorithm. 

ope rations for 
template matching 

classifier operation 

oo - insert o 

01 ~ insert 1 

10 - flipbit 

11 - delete bit 

Figure 2: Interaction between Turing machines. 

Parallel processing against halting problem 

The way interaction takes place in PROTEAN is based on 
the technical assumption that an algorithm is a definite 
step-by-step procedure guaranteed to terminate after a 
finite number of steps. However, in fact, there is no way 
to tell in advance whether a Turing machine will accept its 
input tape or not. In order to avoid this insoluble problem, 
known as the halting problem, PROTEAN adopts parallel 
processing and compulsory termination: Each Turing 
machine reads the other machines' descriptions chosen at 
random. When a Turing machine accepts a tape and some 
partition is vacant, the parent Turing machine allocates a 
memory block for its child there . On the other hand, if 
another machine or machines have already occupied that 
memory block, the parent can terminate their interaction 
process and rewrite the memory. As a result, those 
machines that face the halting problem are eliminated from 
the ecosystem. 

Characteristics of the model 

Some of the properties of our model may be regarded as 
being similar to those of Tierra (Ray 1991) or other 
evolutionary models which use bit strings (Banzhaf 1994) 
(Ikegami and Hashimoto 1995). However, the following 
points make PROTEAN stand out from former works : 

First, there are no arbitrary rules for self-organization 
or self-reproduction, as well as no special metaphor. Even 
how an interaction is interpreted, and what kind of result 
will be obtained, are not predictable beforehand, but 
deterministically dependent on the interaction between 
Turing machines. Furthermore, the interaction takes place 
independent of the location at the ecological resource, 
unlike avida (Adami and Brown 1994) and COSMOS 
(Taylor and Hallam 1997) that simulate life-like behaviors 
of computer programs on 2D cellular environment. 
Second, there are no explicit parameters to control the 



Figure 3: Turing machines in 100-adic notation in 
simulation. 
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dynamics, such as, a parameter which would reap 
constituent machines in the system if the memory filled up 
to some specified level. The sole condition for a Turing 
machine to survive is its being able to accept its local 
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resource more effectively than the others, and self
reproduce, where possible. Consequently, the fitness of 
each machine is dependent dynamically on its relation to 
the others within the system and the consequent global 
environment thereof. Thus, the problem of ill-defined 
machines becoming stuck is also left up to the system's 
dynamics, by which they will be eliminated from the 
ecosystem. 

Computer Simulations 

Emergence of Self-assembling Network 

This section simulates the self-reproductive dynamics that 
resulted in the emergence of self-assembling network of 
the Turing machines. The first computer simulation 
started from a configuration with the five kinds of 
description tape described in Figure 3, and adopted a 100-
adic notation system for their long descriptions, using 100 
characters such as 
"A,'"' ,Y,a,'"' ,y,8,'"' ,y,_g,'"' ,y_", as their length 
didn't allow representation in decimal notation. 

Figure 4 illustrates the reaction pathways between the 
Turing machines. These figures are abbreviations as their 
total size doesn't allow full inclusion here. Each number in 
this figure is the description tape of a Turing machine de
scribed in the 100-adic notation. Figure 4 a) shows Turing 
machine Ixwpiu••utqomdbTNQGospNEY reproduced itself by reading 
the description tapes, such as 
BCWu~PfWyQjF~tHlS~d, that had been generated 
from other interactions. On the other hand, these Turing 
machines generated new description tapes dictating new 
Turing machines, one after another. It should be noted 
here that almost all kinds of Turing machines shown in 
Figure 4 are those that didn't originally exist in the initial 
configuration, but were newly generated through 
interactions. 

Look at the reaction networks, such as Figure 4 a), b), 
and c). These denote the growth of altruistic networks, 
where the initial Turing machines generated new Turing 
machines, one after another, through their interactions. 
"Altruistic", here, means that the growth of these networks 
was of no benefit to their generators. From the exoscopic 
viewpoint, they seem to self-assemble into these 
subsequent networks by their accepting the changing 
ecological resources. Thus, Turing machine 
IxwpiuRButqomdbTNQGospNEY , for example, disappeared because of 
its accepting the resource and generating other machines 
that could utilize the resource more effectively, as seen 
from Figure 5. Figure 5 shows a change in the number of 
certain specific representative Turing machines, 
concentrating on the earlier dynamics of the ecosystem 
where more interesting behavior was observed. 



Figure 5: Change in number of constituent Turing 
machines in self-assembling network. 
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Up to about the 20th step, various Turing machines ap
peared and disappeared. Finally, the reaction network 
shown in Figure 4 d) emerged in the ecosystem. This 
reaction network is very interesting in respect to the 
following points: first, it consists of various kinds of self
reproductive network; and, second, the constituent Turing 
machines also behaved as tapes that were made use of by 
other interactions. Thus, in total, the self-assembling 
network forms a large and complicated hypercycle (Eigen 
and Schuster 1977) consisting of various Turing machines. 

Self-organized complexity in ecosystem 

It is important to see the behavior simulated, from the 
viewpoint of the complexity in an algorithm. This section 
examines how the complexity of the system may he able to 

self-organize. 
It is possible to define the degree of complexity of a 

Turing machine by measuring the amount of resources 
required to execute its function, even though this is based 
on the assumption that a difficult computation will require 
more resources than a less difficult one. According to one 
definition (Brookshear 1989), complexity of a Turing 
machine is characterized by the following properties : time 
complexity means the amount of time required to perform 
a computation, which will correspond to the steps of a 
head moving in the case of a Turing machine. On the 
other hand, space complexity refers to the amount of 
storage space required by a computation. The space 
complexity of a Turing machine is defined as the number 
of tape cells required. 
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Figure 6: Self-organized complexity of Turing machines. 
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Thus, Figure 6 shows the transition of correlation be
t ween both complexities, with respect to the average 
number of constituent Turing machines in the above 
simulation. These figures indicate that the averaged 
complexity of constituent Turing machines increases and 
self-organizes to a certain attractor. Finally, as long as 
there emerges a stable self-reproductive hypercycle, the 
complexity of the system will not expand ad infinitum , or 
rather it will fluctuate within a certain boundary . This 
helps us to predict to what kind of point the system will 
reach . Moreover, such a measurement of the complexity 
enables us to understand an unpredictable behavior. 

Population dynamics dependent on calculation 
complexity 

Interactions based on the complexity in calculation, some
times, bring about phenomena contrary to our 
expectations. This section examines how the calculation 
complexity in Turing machine affects the population 
dynamics of self-reproductive hypercycle network. 

The computer simulation here utilized two Turing ma
chines shown in Figure 7. In order to simplify their 
description, we call the left Turing machine, 78524 , while 
the right one is called 71812 , after the numbers of lower 
four figures in their decimal genotypic descriptions. These 
Turing machines are characterized by the following point: 
both Turing machines can self-reproduce by reading its 
description tape as well as the other's description, as shown 
in Figure 8. Therefore, the interaction between these 
Turing machines forms such a mutually self-reproductive 
network. 

Figure 7: Decoded programs of Turing machines. 

decima l 563487608903 
notation : 814309058851 ----.. 

4205 11 08524 

o_o - > o_o R 

0_ 1 - > 1_ 1 R 

1_ 0 - > o_o R 

1_ 1 - > 2_ 0 R 

2_ 0 - > 3_ 1 R 

2_ 1 - > 2_ 0 R 

3_ 0 - > 0_ 1 ST OP 

3_ 1 - > 2_ 0 L 
4_ 0 - > 4_ 1 L 
4_ 1 - > 2_ 1 L 

s_o - > 3_ 1 R 
S_ l -> 2_ 0 R 
6_o - > o_o R 
6_ 1 - > 1_ 1 R 

7 _ 0 - > 0_ 1 R 
7 _ 1 - > 1_ 1 R 
e_o - > o_o a 
B_ l - > 1_ 1 R 
9_ 0 - > o_o a 

225406852230 
- 781770707460 ----.. 

0112346018 12 

o_o - > o_o R 4_o - > s_1 L 
0_ 1 -> 1_ 1 R 4 _ 1 - > 4 _ 1 L 
1_ 0 - > o_o R s_o - > 6_ 0 R 
1_ 1 -> 2_ 1 R 5_ 1 - > 2_ 1 R 
2_ 0 - > J_o L 6_ o - > o_ o R 
2_ 1 -> 2_ 1 R 6_ 1 -> 7_ 1 R 

3_ 0 -> 0_ 1 STOP 7 _ 0 - > 3_ 1 R 

3_ 1 - > 4 _ 0 R 7 _ 1 - > 7_ 0 R 



Figure 8: Mutually self-reproductive hypercycle. 
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The left diagram in Figure 9 indicates a change in the 
number of these Turing machines in the case where the 
numbers of 71812 and 78524 are in the ratios 1.5: I; while 
the right in Figure 9 in the ratios 2: I. As the simulation 
time steps proceed, 78524 superseded the other Turing 
machine 71812 in both cases. These results didn't 
necessarily occur accidentally. Table I indicates the 
percentage of victories of 78524 , to the total number of 
matches. As can be seen from Table I, Turing machine 
78524 dominated the ecological resource with the 
considerably high possibilities, even if there were more 
Turing machines 71812 than 78524 in the initial condition. 
Such situations are related with the calculation complexity 
of constituent Turing machines. Table 2 indicates the costs 
required for each interaction. For example, when Turing 
machine 78524 operates on the description tape for T1s12, 

Turing machine 78524 makes use of 4 states within its 19 
states, and it takes 15 steps to accept that tape. 

It follows from these results that a Turing machine 
whose time complexity is larger is disadvantageous for its 
survival in our ecological model. The reason for that is a 
Turing machine with larger time complexity is more likely 
to be terminated by other Turing machines during its 

Table I: Domination ratio by Turing machine 7s524. 

initial population ratio 

225406852230 563487608903 
781770707460 : 814309058851 
011234601812 42051108524 

1 :1 

2:1 

5:1 

domination ratio 

563487608903 
814309058851 
42051108524 

4/4 

3/4 

2/6 

100% 

75% 

33% 

487 

Table 2: All the costs concerning interaction. 
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operation. As a result, such a Turing machine loses a 
chance for self-reproduction . This kind of situation is 
unpredictable beforehand, because no one can tell in 
advance whether a Turing machine will accept its input 
tape or not. In fact, the time complexity defines a kind of 
adaptivity to each Turing machine, from the viewpoint of 
speed of tape acceptance. 

On the other hand, the space complexity becomes 
important when the ecological resource contains many 
kinds of constituent Turing machine. The space 
complexity is correlative with the length of a tape of the 
calculation output. It means a Turing machine, whose 
space complexity is smaller, outputs a shorter output tape . 
Therefore, such a machine tends to modify its reproduced 
description tape during the pattern matching procedure 
after its interaction, resulting in generating a genotype 
different from its own genotypic description tape. Even if 
it can accept its input tape, there is a less possibility where 
it can self-reproduce. Although this simulation didn't 
explicitly show such a relation between self-reproduction 
and the space complexity, a Turing machine has to accept 
many kinds of tape with a smaller time complexity and a 
larger space complexity in order to self-reproduce for its 
survival. Thus, from these discussions, one general point 
regarding the adaptivity becomes clear: the small time 
complexity is necessary for the short-term adaptation, and, 
on the other hand, the large space complexity tends to 
benefit the long-term adaptation. 

Discussion and Conclusion 

This section discusses the obtained simulation results from 
the viewpoint of the life-like behavior of computer pro
grams. PROTEAN has nothing special added whatsoever 
for achieving either self-reproduction or self-organization . 
Nevertheless, we were able to observe some interesting 
behavior in the computer simulations. 

These Turing machines behaved as real computer pro
grams, processing information, or, as data, providing infor
mation. Although their description tapes as data showed 



altruistic behavior, they could survive when a parasitic 
relation, in which they were produced from other 
reactions, was possible. However, in PROTEAN where 
there is no static fitness function, such a relation is actually 
fragile, as their fitness is dynamically dependent on their 
relations to others and the consequent environment thereof. 
Thus, the system continues to transit up to a certain point 
where stable self-reproductive networks may be achieved. 
The constituent Turing machines are highly adaptive from 
the viewpoint of their capability to utilize and accept their 
surrounding resources. The Turing machines read, stored, 
and interpreted information in their environment, and then, 
exhibited autopoietic dynamics. Macroscopically, 
"autopoietic" means those dynamics that result from the 
transformation of self-reproductive networks. This self
assembling aspect is of central importance in 
understanding of life-like behavior. 

Since there is no mutative operation in our ecological 
model in its present form, the final version of this self
reproductive network shows no further change. However, 
it might be possible to realize boundless evolution, if a 
mutative process was being operated. In this paper, we 
didn't examine such a situation as we intended to discuss 
an emergent system consisting of computer programs 
representing the step-by-step deterministic procedure of an 
algorithm. 

This paper also discussed these dynamics from the 
viewpoint of the complexity in calculation. In fact, there is 
room for further investigation. However, we think it is 
necessary to simulate life-like behavior, taking the 
complexity in calculation into account. Although a 
simulated phenomenon on a computer is usually free from 
energy unlike the real physical systems, we believe the 
nature of life lies in the relations between information and 
the calculation complexity. Our future work will aim at 
studying the relation between emergent behaviors and their 
complexity for processing information in PROTEAN. 
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