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Preface

The Eleventh International Conference on Artificial Life marks the twenty-first birthday of the
conference series, which was founded in 1987 by Chris Langton at the Santa Fe Institute. As you
might expect, over twenty-one years the community has grown, matured and stabilised around
some key ideas, individuals and questions. However, while artificial life now, as then, continues
to investigate the fundamental properties of living systems through simulating and synthesizing
biological entities and processes in artificial media, there are signs that the field may be on the
cusp of a second wave driven by new developments in molecular, cellular and systems biology,
and renewed widespread interest in complex systems of many kinds.

The rise of synthetic biology (constructing artificial living cells, engineering with living biolog-
ical materials, etc.) and systems biology, with its focus on biological organisations above the gene
(e.g., proteomics, metabolomics, etc.), means that topics proper to artificial life are becoming key
research areas across science and engineering. Additionally, the kinds of agent-based simulations
and complex systems methodologies pioneered within artificial life are growing in importance
within a large number of fields (ecology, economics, sociology, transport, etc.). This makes AL-
IFE XI a potential watershed event at which artificial life has the opportunity to engage with, and
offer a stimulating home for, some of the largest and most interesting of modern research questions.

Over the last twenty-one years, the ALIFE conference series has, along with its European sis-
ter conference ECAL, played an important role as a meeting place for researchers from diverse
disciplines. Biologists, physicists, chemists, computer scientists, engineers, economists, linguists,
geographers, psychologists, mathematicians, anthropologists, philosophers, musicians and artists
have come together to exchange ideas and inspiration. In doing so, many have found an informed
audience for work that may have been considered peripheral to the interests of their home disci-
plines. Maintaining this diversity of ideas, tools, approaches and cultures is something that we feel
is extremely valuable.

One measure of artificial life’s success is that the community’s research has had an influence
on the mainstream work within adjacent disciplines. What was once somewhat marginal is in-
creasingly central: witness the growth of interest in complexity, self-organisation, adaptation and
simulation across a broad range of fields. Moreover, Alife has had a hand in the genesis of entirely
new research communities in areas such as unconventional computing and self-* computing. If
Alife is to remain healthy, there must be a continuing reason for researchers to keep coming back
to the melting pot within which some of these ideas were incubated.

With this in mind, our aim was to make the meeting as open and attractive to researchers from
as wide a range of disciplines as possible—our watchword was “inclusivity”. In order to involve
as many relevant kinds of academics as possible at ALIFE XI we have experimented with radical
changes to the format and delivery of the conference. By allowing both full papers and abstracts
to be submitted for presentation at the conference and inclusion in this proceedings, we hoped to
engage not just with ALIFE’s established core community, but also researchers from disciplines
where conferences are not associated with published proceedings, e.g., many parts of biology.
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For such conferences it is standard practice to submit abstracts only and for no lasting record of
the conference to be published. We were also conscious that there are many Alife academics for
whom a full conference paper may not look like a good return on the investment of time and effort
required. For both of these groups of people, the opportunity to make a presentation based on a
500-word abstract may make the difference between attending the conference or not. The fact that
ALIFE XI received roughly the same number of full paper submissions as ALIFE IX and X, but
also received a similar number of abstracts on top of that is evidence that this has indeed been the
case. Given this, we believe that the new format will maintain the character and quality of ALIFE
whilst lowering the “barriers to entry” that may have existed in the past, opening it up to a more
diverse and representative community of researchers.

ALIFE XI sees many firsts for the conference series. For the first time in its history, the con-
ference visits Europe, being hosted in the United Kingdom by the University of Southampton at
the nearby historic city of Winchester, known for its 11th-century cathedral and 12th-century cas-
tle. For the first time, the conference will be truly multi-track with around 180 talks taking place
over three-and-a-half days. While it might not be ideal for delegates to have to choose between
competing parallel sessions, we feel that allocating every accepted submission an oral presentation
offers the best opportunity for each researcher to present their work clearly and effectively to the
delegates that have a substantive interest in it. Also for the first time, the conference proceedings
will be published by MIT Press as an open-access online volume containing all accepted papers
and abstracts. Rather than receiving an expensive and heavy book at registration, conference del-
egates (and anyone else) will instead be able to freely access the entire conference proceedings
online. In addition to obvious economic and environmental advantages, this arrangement should
enable delegates to make informed decisions regarding which talks to attend at the conference,
and should also increase the impact of conference papers outside the immediate community of
delegates attending the conference.

We received a total of 275 submissions (145 full papers and 130 abstracts), each of which was
reviewed by three referees. Of these, 95 full papers and 85 abstracts were selected for presentation
at the conference and publication in this proceedings. At the time of writing we have registered over
250 delegates for the meeting itself. Our thanks to all those who submitted papers and abstracts to
the conference.

We would like to take this opportunity to thank all who served on the programme committee
for their assistance in shaping the direction that the field is taking and helping achieve a high level
of quality across the accepted submissions:

Andrew Adamatzky
Fernando Almeida e Costa
Takaya Arita
Wolfgang Banzhaf
Lionel Barnett
Randall Beer
Josh Bongard
C. Titus Brown
Joanna Bryson
Chris Buckley
Larry Bull
Lola Ca namero
Angelo Cangelosi
Peter Cariani
John Cartlidge

Alastair Channon
Andy Clark
Dave Cliff
Bob Damper
Kerstin Dautenhahn
Manuel de Pinedo
Ezequiel Di Paolo
Marco Dorigo
Alan Dorin
Arantza Etxeberria
Chrisantha Fernando
Sevan G. Ficici
Dario Floreano
David Fogel
Daniel W. Franks

Nicholas Geard
Steve Grand
Patrick Grim
Jennifer Hallinan
Inman Harvey
Paulien Hogeweg
Owen Holland
Gregory Hornby
Phil Husbands
Auke Ijspeert
Frederic Kaplan
Jozef Kelemen
Jan Kim
Lex Kraaijeveld
Daniel Ladley
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Tom Lenaerts
Kristian Lindgren
Hod Lipson
James Marshall
Barry McMullin
J. J. Merelo
Julian F. Miller
Melanie Mitchell
Chrystopher L. Nehaniv
Ulrich Nehmzow
Stefano Nolfi
Charles Ofria
Pierre-Yves Oudeyer
Alexandra Penn
Rolf Pfeifer

Andrew Philippides
Daniel Polani
Jordan Pollack
William Rand
Luis Rocha
Jonathan Rowe
Graeme Ruxton
Fabrice Saffre
Hiroki Sayama
Anil Seth
Eric Silverman
Kenny Smith
Andrew Smith
Susan Stepney
Tim Taylor

Charles Taylor
Rene te Boekhorst
Peter Todd
Elio Tuci
Richard Vaughan
Paul Vogt
James Watson
Barbara Webb
Michael Wheeler
Janet Wiles
Kai Willadsen
Hywel Williams
Peter Wills
Simon Worgan
Klaus-Peter Zauner

We would also like to acknowledge the valuable input of several additional reviewers:

Christos Ampatzis
Prasanna Balaprakash
Alexandre Campo

Anders L. Christensen
Rob Mills
Martin Nilsson Jacobi

Christopher Strelioff
Colin Tosh

It is extremely important to recognise the support offered to us by our sponsors: the School of
Electronics and Computer Science at the University of Southampton, British Telecom, ProtoLife,
Icosystem, EPSRC, the Southampton Life Sciences Interface Forum, the ESIGNET and SECSE
projects, and the International Society for Artificial Life, as well as one anonymous donor. With
their help we have been able to run a very affordable conference, and to offer significant financial
assistance to over 30 delegates.

We were very lucky to secure the services of a truly excellent array of world-class keynote
speakers: Andrew Ellington, Takashi Ikegami, Eva Jablonka, Stuart Kauffman, and Peter Schuster.
Our thanks to them for taking the time and effort to contribute to the conference.

Andrew Ellington received his BS in Biochemistry from Michigan State University in 1981, and
his PhD in Biochemistry and Molecular Biology from Harvard in 1988. As a graduate stu-
dent he worked with Dr. Steve Benner on the evolutionary optimization of dehydrogenase
isozymes. His post-doctoral work was with Dr. Jack Szostak at Massachusetts General Hos-
pital, where his lab developed methods for the in vitro selection of functional nucleic acids
and coined the term ‘aptamer’. Dr. Ellington began his academic career as an assistant profes-
sor of Chemistry at Indiana University in 1992. In 1998 he moved to the University of Texas
at Austin and is now the Fraser Professor of Biochemistry. Dr. Ellington’s lab continues
to develop functional nucleic acids for practical applications, including aptamer biosensors,
allosteric ribozyme logic gates (aptazymes), and internalizing nucleic acids that can deliver
siRNAs to cells. A next leap forward will hopefully be to develop synthetic genetic circuits
that can perform amorphous computations. Ultimately, though, Dr. Ellington’s first love re-
mains origins of life research, which oddly melds with translational research initiatives in that
it is the ultimate biotechnology challenge.

Takashi Ikegami is Associate Professor in the Department of General Systems Sciences, Gradu-
ate School of Arts and Sciences at the University of Tokyo. He is a long-standing member of
the Artificial Life community, with work spanning a diverse array of concepts, such as chaotic
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itinerancy, self-organisation, autopoiesis, and embodiment, applied to a range of behaviours
including coevolution, learning, language, social behaviour and song, in systems of birds,
robots, children, flies, cells, and even oil droplets. These interests are unified by a focus on
understanding the fundamental behavioural dynamics of embedded, embodied, evolving and
adaptive systems.

Eva Jablonka is a geneticist known especially for her work on epigenetic inheritance. Her re-
search with Marion Lamb is in the vanguard of what has been described as an ongoing rev-
olution within evolutionary biology. In their current book, they describe how the growing
body of evidence for the evolutionary role of epigenetic processes is putting increasing pres-
sure on the dominant neo-Darwinian paradigm. Jablonka is a professor at the Cohn Institute
for the History of Philosophy of Science and Ideas at Tel Aviv University and was awarded
the Landau Prize of Israel in 1981 and the Marcus prize in 1988.

Stuart Kauffman originally trained as a physician and is now a biologist and complex systems
researcher. His primary work has been as a theoretical biologist studying the origin of life and
molecular organization. His seminal models of autocatalytic sets, gene regulatory networks
and fitness landscapes allowed him to develop an extremely influential account of the way in
which self-organisation within biology can generate “order for free”. He currently holds a
chair spanning the departments of biological sciences and physics and astronomy at the Uni-
versity of Calgary where he is the director of the Institute for Biocomplexity and Informatics.
A MacArthur Fellow and a Trotter Prize winner, his latest book Reinventing the Sacred: A
New View of Science, Reason, and Religion was published this year.

Peter Schuster is a renowned biophysicist, known for his work with Manfred Eigen in develop-
ing the quasi-species model. His main research interests are bioinformatics and structure
prediction of ribonucleic acids, the study of mechanisms of biological evolution by means
of molecular models, the design of molecules for predefined purposes as well as the applica-
tion of inverse methods in computational systems biology. He is full professor of theoretical
chemistry at the University of Vienna. In 1992-1995 he was the founding director of the
Institute of Molecular Biotechnology and head of its Department of Molecular Evolutionary
Biology in Jena, Germany. He is member of the German Academy of Sciences Leopold-
ina, is the editor-in-chief of Complexity and is currently President of the Austrian Academy
of Sciences. In 1995 Peter Schuster received the Phillips-Morris Award and in 1999 the
Wilhelm-Exner Medal.

We would also like to recognise the invaluable assistance provided by the people who helped
to make the conference happen: the postdocs, postgrads and MSc students in the SENSe group
at ECS, Southampton, Denise Harvey, the group secretary, the ECS finance group, Joyce Lewis
and Sarah Prendergast, for help with posters and other materials, C. Titus Brown for running
the submissions website, MIT Press for agreeing to experiment with an entirely new model for
delivering a conference proceedings, Hannah Lane and her team at the University of Winchester
Conference Office who were outstanding in their support, efficiency and professionalism, and in
particular, Nic Geard who has been central to the smooth running of the entire operation from start
to finish.

By way of conclusion, it seems appropriate to remind the readers of this proceedings volume
that, over the last two decades, some of the highly speculative ideas that were discussed at the
field’s inception have matured to the extent that whole new conferences and journals devoted to
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them are being established: synthesising artificial cells, simulating massive biological networks,
exploiting biological substrates for computation and control, and deploying bio-inspired engineer-
ing are all now cutting-edge practice. It is our intention that the ALIFE conference series continue
to provide an opportunity for those working across these topics to get together and exchange ideas
and results, showcasing the best current work in the field, highlighting new directions for inves-
tigation, and providing a platform for world-renowned keynote speakers. Our thanks to all who
have attended and made this possible.

A note on the cover

We chose to promote the conference with an image that is in some sense itself an example of
artificial life: a real organism artificially encouraged to adopt the shape of the host country (plus
Ireland). The cover of this proceedings volume features a photograph of a single-cell creature,
the slime mould Physarum polycephalum, that was grown over a period of between twelve and
twenty-four hours in a petri dish. While we have tidied the image up a little, it is essentially
undoctored. The slime mould was grown by Soichiro Tsuda, and photographed by Soichiro, Nic
Geard and Seth Bullock. The initial idea was proposed by Richard Watson during a particularly
creative lunch.

In order to achieve the shot, we used a piece of acetate with an appropriately shaped hole as a
template, and grew the slime mould across this area. The network of microtubules that you can
see forms spontaneously as the creature grows, and reflects the self-organised system of nutrient
transport that the slime mould uses. Since Physarum does not enjoy acetate as a habitat, it is
relatively easy to remove the template and leave behind the organism, which has adapted to the
niche it was offered by creating a living map of the the United Kingdom (and Ireland).

The organising committee of Artificial Life XI,

Seth Bullock (Conference Chair)
Jason Noble (Program Chair)
Richard Watson (Proceedings Chair)
Mark Bedau

Southampton, June, 2008
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Holey fitness landscapes and the maintenance of evolutionary diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
Paperin, Sadedin, Green and Dorin

Conformist transmission and the evolution of cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Peña

xiArtificial Life XI 2008 



Hawks and doves in an artificial dynamically structured society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Pestelacci and Tomassini
Evolving morphological and behavioral diversity without predefined behavior primitives . . . . . . . . . . . . . . . . . 474
Pichler and Cañamero
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Abstract

This paper proposes a novel solution to spam detection in-
spired by a model of the adaptive immune system known as
the cross-regulation model. We report on the testing of a pre-
liminary algorithm on six e-mail corpora. We also compare
our results with those obtained by the Naive Bayes classifier
and another binary classification method we developed previ-
ously for biomedical text-mining applications. We obtained
very encouraging results which can be further improved with
development of this bio-inspired model. We show that the
cross-regulation model is promising as a bio-inspired algo-
rithm for spam detection in particular, and binary classifica-
tion in general. Finally, we also present evidence that our
bio-inspired model is relevant for understanding immune reg-
ulation itself.

Introduction
Spam detection is a binary classification problem in which
e-mail is classified as either ham (legitimate e-mail) or spam
(illegitimate or fraudulent e-mail). Spam is very dynamic
in terms of advertising new products and finding new ways
to defeat anti-spam filters. The challenge in spam detec-
tion is to find the appropriate threshold between ham and
spam leading to the smallest number of misclassifications,
especially of legitimate e-mail (false negatives). To avoid
confusions, ham and spam will be labeled as positives and
negatives respectively.

The vertebrate adaptive immune system, which is one of
the most complex and intelligent biological systems, learns
to distinguish harmless from harmful substances (known
as pathogens) such as viruses and bacteria that intrude the
body. These pathogens often evolve new mechanisms to
attack the body and its immune system, which in turn
adapts and evolves to deal with changes in the repertoire of
pathogen attacks. A weakly responsive immune system is
vulnerable to attacks while an aggressive one can be harmful
to the organism itself, causing autoimmunity. Given the con-
ceptual similarity between the problems of spam and immu-
nity, we investigate the applicability of the cross-regulation
model of T-cell dynamics (Carneiro et al., 2007) to spam
detection.

Below we offer a short review of related work in spam de-
tection, a brief introduction to the adaptive immune system,
and the cross-regulation model (Carneiro et al., 2007). In
the following section, the bio-inspired cross-regulation al-
gorithm and its application to spam are discussed. In the
Results section, the experiments and implementation of the
model vis a vis the other binary classification models are
discussed.

Spam Detection

Spam detection has recently become an important problem
with the ubiquity of e-mail and the rewards of no-cost adver-
tisement that can reach the largest audience possible. Spam
detection can target e-mail headers (e.g. sender, receiver, re-
lay servers...) and/or content (e.g. subject, body). Machine
learning techniques such as support vector machines (Car-
reras and Marquez, 2001; Kolcz and Alspector, 2001), Naive
Bayes classifiers (Sahami et al., 1998; Metsis et al., 2006)
and other classification rules such as Case-Based Reason-
ing (Fdez-Riverola et al., 2007) have been very successful
in detecting spam in the past. However, they generally lack
the ability to detect spam drift since they rely on training on
fixed corpora, features and rules. Research in this area is
now focusing on concept drift in spam, with very promising
results (Delany et al., 2006a; Méndez et al., 2006; Tsymbal,
2004; Kolter and Maloof, 2003). In addition, social-based
spam detection models (Boykin and Roychowdhury, 2005;
Chirita et al., 2005) have recently become relevant and com-
petitive. Artificial Immune System (AIS) based algorithms
(Oda, 2005; Bezerra and Barra, 2006; Yue et al., 2007) are
another area of exciting development. The AIS models are
inspired by diverse responses and theories of the natural im-
mune system (Hofmeyr, 2001) such as negative selection,
clonal selection, danger theory and the immune network the-
ory. Our bio-inspired spam detection algorithm is based in-
stead on the cross-regulation model (Carneiro et al., 2007),
which is a novel development in AIS approaches to spam
detection.

Artificial Life XI 2008  1 

mailto:aabihaid@indiana.edu


The Adaptive Immune System
The immune system, and more specifically, the vertebrate
adaptive immune system, is a complex network of cells
that distinguish between harmless and harmful substances
or antigens—usually proteins or fragments of proteins and
certain types of carbohydrate polymers that can be recog-
nized by the immune system. When harmful antigens are
discovered, an immune response to eliminate them is set in
motion. Recognizing harmless self antigens, which obvi-
ously should not lead to an immune response to eliminate
them, is resolved by a process known as positive and nega-
tive selection of T-cells which takes place in the thymus. It
is in the thymus that T-cells develop and mature; only T-cells
that have failed to bind to self antigens are released, while
the rest of the T-cells is culled. The mature T-cells are al-
lowed out of the thymus to detect harmful nonself antigens.
They do this by binding to antigen presenting cells (typi-
cally B-cells, macrophages and dendritic cells) that collect
and present antigens through MHC complexes after break-
ing them by lysosome. The specific T-cells that are able
to bind to the presented antigens then stimulate B-cells that
start a cascade of events leading to antibody production and
the destruction of the pathogens or tumors linked to the anti-
gens. However, it is possible that T-cells and B-cells, which
are also trained in the thymus, could mature before being
exposed to all self antigens. Even more problematic is the
somatic hypermutation that ensues in lymph nodes after the
activation of B-cells. At this stage, it is possible to generate
many mutated B-Cell clones that could bind to harmless self
antigens. Either situation can cause auto-immunity by gen-
erating T-cells capable of attacking self antigens. One way
around this is by a process called costimulation which in-
volves the co-verification of self antigens by both T-cells and
B-cells before the antigen is identified as harmful pathogen
and attacked. To further insure that the T-cells do not attack
self, another type of T-cells known as T regulatory cells, are
formed in the thymus where they mature to avoid recogniz-
ing self antigens. These regulatory T-cells have the respon-
sibility of preventing autoimmunity by suppressing other T-
cells that might bind and kill self antigens.

The Cross-regulation Model
The cross-regulation model, proposed by Carneiro et al.
(2007), aims to model the process of discriminating be-
tween harmless and harmful antigen—typically harmless
self/nonself and harmful nonself. The model consists of only
three cell types: Effector T-Cells (E), Regulatory T-Cells (R)
and Antigen Presenting Cells (A) whose populations interact
dynamically, ultimately to detect harmful antigens. E and R
are constantly produced, while A are capable of presenting
a collection of antigens to the E and R. T-cell proliferation
depends on the co-localization of E and R as they form con-
jugates (bind) with the antigens presented by A cells (this
model assumes that A can form conjugates with a maximum

of two E or R). The population dynamics rules of this model
are defined by three differential equations, which can be, for
every antigen being presented by an A, summarized by the
following three laws of interaction:

1. When E bind to the A, they proliferate with a fixed rate.

2. When R bind to the A, they remain in the population.

3. if an R binds together with an E to the same A, the R
proliferates with a certain rate and the E remains in the
population but does not proliferate.

The E and R proliferation rates in this model are fixed to
200%, which is the exactly the process of duplication or pro-
duction of one extra copy. Finally, the E and R die at a fixed
death rate. Carneiro et al. (2007) showed that the dynamics
of this system leads to a bistable system of two possible sta-
ble population concentration attractors: (i) the co-existence
of both E and R types identifying harmless self antigens, or
(ii) the progressive disappearance of R, identifying harmful
antigens. An illustration of the three rules is shown in figure
1 and more details on the model are available in the original
paper (Carneiro et al., 2007).

Figure 1: Figure is courtesy of Carneiro et al. (2007). The Cross-
regulation Model. The diagram illustrates the interactions underly-
ing the dynamics of A, E and R as assumed in the model in which
A can only form conjugates with a maximum of two T cells.

The Cross-regulation Spam Algorithm
In order to adopt the cross-regulation algorithm for spam
detection, which we named the Immune Cross-Regulation
Model (ICRM), one has to think of e-mails as analogous to

Artificial Life XI 2008  2 



the organic substances that upon entering the body are bro-
ken into constituent pieces by lysosome in A. In biology,
these pieces are antigens (typically protein fragments) and
in our analogous algorithm they are words extracted from e-
mail messages and processed to become features1. Thus, in
this model, antigens are words or potentially other features.
For every antigen there exists a number of virtual E and R
that interact with A which present a sample of the features
of a given e-mail message. In other words, the A correspond
to the e-mail. The general ICRM algorithm is designed to
be first trained on N e-mails of “self” (a user’s outbox) and
harmless “nonself” (a user’s inbox). However, in the results
described here, it was not possible to directly obtain outbox
data; we are currently working on collecting outbox data
for future work. In addition, the ICRM is also trained on
“harmful nonself” (spam arriving to a given user). Training
on or exposure to ham e-mails, in analogy with Carneiro’s
et al model (Carneiro et al., 2007), is supposed to lead to a
“healthy” dynamics denoted by the co-existence of both E
and R with more of the latter. In contrast, training on or ex-
posure to spam e-mails is supposed to result in much higher
numbers of E than R. When e-mail features occur for the first
time, a fixed initial number of E and R, for every feature, are
generated. These initial values of E and R are different in
the training and testing stages; more weight to R for ham
features, and more weight to E for spam features is given in
the labeled training stage. While we specify different values
for initializing the proportions of E and R associated with e-
mail features, depending on whether the algorithm is in the
training or the testing stage, the ICRM is based on the exact
same algorithm in both stages. An illustration comparing
the artificial model to the biological one is shown in figure
2. The ICRM algorithm begins when an e-mail is received
and cycles through three phases for every received e-mail:

In the pre-processing phase, HTML tags are not stripped
off and are treated as other words, as often done in spam-
detection (Metsis et al., 2006) . All words constituting
the e-mail subject and body are lowercased and stemmed
using Porter’s algorithm (Porter, 1980) after filtering out
common English stop words and words of length less than
3 characters. A maximum of n processed unique features
(words, in this case) are randomly sampled and presented
by the virtual A which corresponds to the e-mail. These
virtual antigen presenting cells have nA binding slots per
feature, i.e. n× nA slots per e-mail message. The break-
ing up of the e-mail message into constituent portions
(features) is inspired by the natural process in Biology,
but is further enhanced in this model to select the first and
last n

2 features in the e-mail. The assumption is that the
most indicative information is in the beginning (e.g. sub-
ject) and the end of the e-mail (e.g. signature), especially

1Naturally, features other than words are possible (e.g. bigrams,
e-mail titles)

Figure 2: An illustration of the cross-regulation model (and its
mapping to spam detection). In step 1, the intruder (received e-
mail) is engulfed by an A (e-mail representer array). In step 2, the
intruder is broken down by lysosome (preprocessor which strips
html tags, filters out stop words and short words and porter stems
a selection words) into antigens (features) which are then sampled
and presented through MHC (an array residing in the memory) so
that in step 3 specific E or R T-cells (virtual E and R residing in
memory) can recognize it and bind to it. In step 3a, an R recogniz-
ing what probably is a self-antigen (ham feature) shares the A with
an E recognizing a probably nonself-antigen (new or spam feature).
In step 4a, the R suppresses the E which then excites the R to make
it proliferate with a higher rate giving the antigen recognized by
E more tolerance (making the novel feature more ham since it co-
occurred with a ham feature). In step 3b on the other hand, the E is
not suppressed by any R and thus it proliferates in step 4b making
the system more immune to the antigen recognized by E (making
the feature E recognize one more spam feature). After step 4, the
whole intruder (e-mail) is judged based on its antigens (features)
on whether it is bad or good (spam or ham) as explained in the
decision phase of the algorithm.

concerning ham e-mails. Nevertheless, the feature selec-
tion problem will be studied in more detail in future work.

In the interaction phase, feature-specific Rg and Ef are
allowed to bind to the corresponding antigens presented
by A, which are arbitrarily located on its array of feature
slots. Every adjacent pair of A slots is dealt with sepa-
rately: the Ef for a given feature f proliferate only if they
do not find themselves sharing the same adjacent pair of
A binding slots with Rg , in which case only the Rg , asso-
ciated with feature g, proliferate. The model assumes that
novel ham features k tend to have their Ek suppressed by
Rg of other pre-occurring ham features g because they
tend to co-occur in the same message. As for the algo-
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rithm’s parameters, let nA be the number of A slots per
feature. Let (E0ham , R0ham ) and (E0spam , R0spam ) be
the initial values of E and R for features occurring for
the first time in the training stage for spam and ham re-
spectively. For the testing stage we have (E0test , R0test).
Moreover, E0ham << R0ham , E0spam > R0spam and
E0test > R0test . Therefore, a feature f initially occurring
in a ham e-mail would have Rf >> Ef and vice versa
for spam. In the ICRM implementation hereby presented,
a major difference form Carneiro’s et al model (Carneiro
et al., 2007) was tried: the elimination of cell death. This
is a rough attempt to provide the system with long term
memory. Cell death can lead to the forgetfulness of spam
or ham features if these features do not reoccur in a certain
period of time as shown later on.

In the decision phase, the arriving e-mail is assessed based
on the relative proportions of R and E for its n sampled
features. Features with more R are assumed to correspond
to ham while features with more E are more likely to cor-
respond to spam. The proportions are then normalized to
avoid decisions based on a few highly frequent features
that could occur in both ham and spam classes. For every
feature f , the feature score is computed as follows:

scoref =
Rf − Ef√
R2

f + E2
f

, (1)

indicating an unhealthy (spam) feature when scoref ≤ 0
and a healthy (ham) one otherwise. scoref varies be-
tween -1 and 1. For every e-mail message e, the e-mail
immunity score is simply:

scoree =
∑

∀f∈e

scoref . (2)

Note that a spam e-mail with no text such as as the cases
of messages containing exclusively image and pdf files,
which surpass many spam filters, would be classified as
spam in this scheme—e-mail e is considered spam if
scoree = 0. Similarly, e-mails with only a few features
occurring for the first time, would share the same destiny,
since the initial E is greater than R in the testing stage
E0test > R0test which would result in scoree < 0.

Results
E-mail Data
Given the assumption that personal e-mails (i.e. e-mails sent
or received by one specific user) are more representative of a
writing style, signature and themes, it would be preferable to
test the ICRM on e-mails from a personal mailbox. Unfortu-
nately, this is not offered by the most common spam corpus

of spamassasin2 and similarly for ling-spam3. In addition,
the ICRM algorithm requires timestamped e-mails, since or-
der of arrival affects final E/R populations. Timestamped
data is also important for analyzing concept drifts over time,
thus we cannot use the PU14 data described by Androut-
sopoulos et al. (2000b) . Delany’s spam drift dataset5, in-
troduced by Delany et al. (2005), meets the requirements
in terms of timestamped and personal ham and spam how-
ever its features are hashed and therefore it is not easy to
make tangible conclusions based on their semantics. The
enron-spam6 preprocessed data perfectly meets the require-
ments as it has six personal mailboxes made public after the
enron scandal. The ham mailboxes belong to the employ-
ees farmer-d, kaminski-v, kitchen-l, williams-w3, beck-s and
lokay-m. Combinations of five spam datasets were added
to the ham data from spamassassin (s), HoneyProject (h),
Bruce Guenter (b) and Georgios Paliousras’ (g) spam cor-
pora and then all six datasets were tokenized (Metsis et al.,
2006). In practice, some spam e-mails are personalized,
which unfortunately cannot be captured in this dataset since
the spam data comes from different sources. Only the first
1000 ham and 1000 spam e-mails of each of the corpora are
used, as shown in table 1.

Table 1: Enron datasets
Dataset ham + spam ham:spam [ham, spam] time range
Enron1 farmer-d + gp 1000:1000 [12/99, 06/00], [12/03, 01/05]
Enron2 kaminski-v + sh 1000:1000 [12/99, 05/00], [05/01, 07/05]
Enron3 kitchen-l + bg 1000:1000 [2/01, 06/01], [08/04, 03/05]
Enron4 williams-w3 + gp 1000:1000 [4/01, 01/02], [12/03, 06/04]
Enron5 beck-s + sh 1000:1000 [1/00, 11/00], [05/01, 03/05]
Enron6 lokay-m + bg 1000:1000 [6/00, 7/01], [08/04, 10/04]

ICRM Settings and Parameters
For each of the six enron sets, we ran each algorithm 10
times. Each run consisted of 200 training (50% spam) and
200 testing or validation (50% spam) e-mails that follow in
timestamp order. From the 10 runs we computed variation
statistics for the F-score7, and Accuracy performance.

In the e-mail pre-processing phase, we used n = 50,
nA = 10, E0ham = 6, R0ham = 12, E0spam = 6,
R0spam = 5, E0test = 6 and R0test = 5. These initial E

2http://spamassassin.apache.org/publiccorpus/
3http://www.aueb.gr/users/ion/publications.html
4http://www.iit.demokritos.gr/skel/i-config/downloads/enron-

spam/
5http://www.comp.dit.ie/sjdelany/Dataset.htm
6http://www.iit.demokritos.gr/ ionandr/publications/
7The F1-measure (or F-Score) is defined as F =

2·Precision·Recall
Precision+Recall , where Precision = TP

(TP+FP ) and Recall =
TP

(TP+FN) and Accuracy = (TP+TN)
(TP+TN+FP+FN) measures of the

classification of each test set, where TP, TN, FP and FN denote true
positives, true negatives, false positive and false negatives respec-
tively (Feldman and Sanger, 2006)
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and R populations for features occurring for the first time are
chosen based on the initial ratios chosen by Carneiro et al.
(2007) and were then empirically adjusted to achieve the
best F-score and Accuracy results for the six enron datasets.
Finally, the randomization seed was fixed in order to com-
pare results to other algorithms and search for better param-
eters. The ICRM was compared with two other algorithms
that are explained in the following two subsections. The
ICRM was also tested on shuffled (not in order of date re-
ceived) validation sets to study the importance of e-mail re-
ception order. The results are shown in table 2. The mean
and variance of the results are also plotted on the F-score vs
Accuracy axes as shown in figure 3.

Naive Bayes
We have chosen to compare our results with the multino-
mial Naive Bayes (NB) with boolean attributes (Jensen et al.,
1996) which has shown great success in a previous research
(Metsis et al., 2006). In order to fairly compare NB with
ICRM, we selected the first and last unique n = 50 features.
The Naive Bayes classifies an e-mail as spam in the testing
stage if it satisfies the following condition:

p(cspam).
∏

f∈e−mail
p(f |cspam)

p(cspam).
∑

c∈{cspam,cham}

∏
f∈e−mail

p(f |c)
> 0.5, (3)

where f is the feature sampled from an e-mail, and
p(f |cspam) and p(f |cham) are the probabilities that this fea-
ture f is sampled from a spam and ham e-mail respectively,
while c is the union of spam and ham emails. The results are
shown in table 2 and plotted in figure 3.

Variable Trigonometric Threshold (VTT)
We developed the VTT as a binary classification algorithm
and implemented it as a protein-protein abstract classifi-
cation tool8 using bioliterature mining (Abi-Haidar et al.,
2007, 2008). VTT is itself inspired by another case-
based spam detection algorithm (Fdez-Riverola et al., 2007).
Briefly, VTT’s strategy is to make a selection of most sig-
nificant preprocessed words ranked by a score S(w) =
|pham(w) − pspam(w)| where pham(w) and pspam(w) are
the probabilities of a word w of occurring in the ham and
spam training datasets which in our case are batches of 200
e-mails each. Naturally, a selection of 650 words would be
fairly sufficient. The e-mails are then reduced to vectors
of these 650 words. Then, the probabilities of co-occurring
pairs of words (wi, wj) in these vectors are computed using
pham(wi, wj) and pspam(wi, wj). Then the trigonometric
measures of the angle α, of this vector with the pham axis:
cos(α) is a measure of how strongly terms are exclusively
associated with training ham e-mails, and similarly sin(α)

8The Protein Interaction Abstract Relevance Evaluator (VTT)
tool is available at http://casci.informatics.indiana.edu/VTT/

with training spam ones. Then, for every e-mail e, we com-
pute the sum of all pairs’ measures to study the e-mail e’s
likelihood of being ham or positive P (e) and spam or nega-
tive N(e):

P (e) =
∑

(wi,wj)∈e

cos(α(wi, wj)), (4)

N(e) =
∑

(wi,wj)∈e

sin(α(wi, wj)) (5)

and finally the decision of whether an e-mail is ham or
spam is made using the VTT equation:

{
e ∈ ham, if P (e)

N(e) ≥ λ0 + β−np(a)
β

e ∈ spam, otherwise
(6)

where λ0 is a constant threshold for deciding whether an e-
mail is positive (spam) or negative (ham) obtained through
exhaustive parameter search. For this experiment λ0 = 1.3
produces the best results. Another parameter is β which
was used in the abstract classification experiment to regulate
np(a) which counts the number of tagged protein in an ab-
stract a but will be ignored in spam detection for the sake of
simplicity. Therefore, equation 6 can be reduced to classify
e as ham if P (e)

N(e) ≥ 1.3 or as spam otherwise. The results
are shown in table 2 and plotted in figure 3 then discussed in
the discussion section.

Table 2: F-score and Accuracy mean +/- sdev of 10 runs for 50%
spam enron data sets with the first two columns using ICRM (the
first one applied on ordered e-mail, the second one on shuffled
timestamps of testing data, and the last two using Naive Bayes and
VTT.

ICRM Other Algorithms
Dataset Ordered Shuffled Naive Bayes VTT

Enron1 F-score 0.9 ± 0.03 0.9 ± 0.03 0.89 ± 0.04 0.91 ± 0.04
Accuracy 0.9 ± 0.03 0.9 ± 0.03 0.87 ± 0.05 0.9 ± 0.04

Enron2 F-score 0.86 ± 0.06 0.85 ± 0.06 0.92 ± 0.07 0.82 ± 0.23
Accuracy 0.85 ± 0.06 0.83 ± 0.07 0.93 ± 0.05 0.86 ± 0.13

Enron3 F-score 0.88 ± 0.04 0.88 ± 0.04 0.93 ± 0.03 0.86 ± 0.08
Accuracy 0.87 ± 0.05 0.87 ± 0.05 0.92 ± 0.04 0.85 ± 0.07

Enron4 F-score 0.92 ± 0.05 0.92 ± 0.04 0.92 ± 0.05 0.95 ± 0.03
Accuracy 0.92 ± 0.05 0.92 ± 0.05 0.91 ± 0.06 0.95 ± 0.03

Enron5 F-score 0.92 ± 0.03 0.87 ± 0.06 0.94 ± 0.04 0.84 ± 0.13
Accuracy 0.91 ± 0.03 0.87 ± 0.05 0.95 ± 0.03 0.87 ± 0.09

Enron6 F-score 0.89 ± 0.04 0.9 ± 0.04 0.91 ± 0.02 0.88 ± 0.05
Accuracy 0.88 ± 0.05 0.89 ± 0.05 0.9 ± 0.03 0.87 ± 0.07

Total F-score 0.9 ± 0.05 0.89 ± 0.05 0.92 ± 0.04 0.88 ± 0.12
Accuracy 0.89 ± 0.05 0.88 ± 0.06 0.91 ± 0.05 0.88 ± 0.08

Discussion
As clearly shown in table 2 and figure 3, ICRM, NB and
VTT are very competitive for most enron datasets, indeed
the performance of ICRM is statistically indistinguishable
from VTT (F-score and Accuracy p-values 0.15 and 0.63
for the paired t-test validating the null hypothesis of vari-
ation equivalence), though its slightly lower performance
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Figure 3: F-score vs Accuracy (mean and standard deviation) plot
comparison between ICRM (vertical blue), NB (horizontal red) and
VTT (diagonal green) for each of the six enron datasets. A visual-
ization of table 2.

against NB is statistically significant (F-score and Accuracy
p-values 0.01 and 0.02 for the paired t-test, rejecting the null
hypothesis of variation equivalence with 0.05 level of signif-
icance).

More particularly, we investigate VTT’s performance de-
viations between enron 2 and enron 4 and notice that the
average number of top 650 features that are ham features
is only 10.22 for enron 2 (having many spam and very few
ham indicative features) while it is 75.02 for enron 4 (having
relatively more ham and less spam indicative features) this
giving us the maximum deviations off 43.40, which is the
mean of ham features’ constituency of the top 650 features
for all enron sets. Enron 4’s Inbox (williams-w3), contained
619 automatically generated notification e-mails of the exact
same contents with a subtle variation in the filename id, as
shown via Enron Explorer9, an online visualization tool of
the publicly available enron data. The peculiarity of enron
4 is also manifested in Metsis’ Naive Bayes results (Metsis
et al., 2006). We think that the huge proportion of spam in-
dicative features for enron 2 (similarly but less so for enron
5) is due to the huge spam drift and diversity of spamassassin
and HoneyProject spanning four years mostly in 2001, 2002

9http://enron.trampolinesystems.com/focus/338815

and 2005 which is not available in the barely six months
lifespan of ham. This diversity gives VTT many highly in-
dicative spam features that only occur in spam and much
less, if at all, in ham. This leads to many ham misclassifi-
cations for the few indicative features (out of 650) that are
selected for the training. A fix to this could be by either by
increasing the threshold beyond 650 features or balancing
the number of top 650 indicative ham and spam features as
clearly is the case for enron 4, or by finding a synchronous
spam and ham data. VTT’s disadvantage of the features
selection is paid off by its advantage of using feature co-
occurrence of the top 650 features which is not the case in
any of ICRM and NB. This might not be a fair comparison
yet a modification to VTT would result in a modified VTT
for another project and similarly, the use of co-occurrences
with ICRM and NB will be pursued for a more advanced
ICRM. From here onwards, we proceed with the compari-
son between ICRM and NB only.

Table 3: ICRM vs NB F-score and Accuracy mean +/- sdev for
spam to ham ratio variations for mean of the six enron datasets.

50% spam 30% spam 70% spam

ICRM F-score 0.9 ± 0.05 0.91 ± 0.03 0.79 ± 0.12
Accuracy 0.89 ± 0.05 0.86 ± 0.05 0.83 ± 0.08

NB F-score 0.92 ± 0.04 0.86 ± 0.07 0.79 ± 0.07
Accuracy 0.91 ± 0.05 0.84 ± 0.07 0.74 ± 0.01

Figure 4: F-score vs Accuracy plot comparison between ICRM
(vertical blue) and NB (horizontal red) with different spam to
ham ratio variations 30:70 (spam30), 70:30 (spam70) and 50:50
(spam50) for the mean of the six enron datasets.

As shown in table 3 and figure 4, the ICRM can be more
resilient to ham ratio variations10. While the performance of
both algorithms was comparable for 50% spam (though sig-
nificantly better for NB), the performance of NB drops for

10The 30% and 70% spam results were balanced for the eval-
uation by randomly sampling from the 70% class, reducing it to
30%
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30% spam ratio (5% lower F-score than ICRM) and 70%
spam ratio (9% less accurate than ICRM) while ICRM rela-
tively maintains a good performance. The difference in per-
formance is statistically significant, except for F-Score of the
70% spam experiment, as the p-values obtained for our per-
formance measures clearly reject the null hypothesis of vari-
ation equivalence: F-Score and Accuracy p-values are 0 and
0.01 for 30% spam, and Accuracy p-value is 0.01 for 70%
spam (p-value for F-Score is 0.5 for this case). While one
could argue that NB’s performance could well be increased,
in the unbalanced spam/ham ratio experiments, by chang-
ing the right hand side of equation 3 to 0.3 or 0.7, this act
would imply that, in real situations, one could know a priori
the spam to ham ratio of a given user. The ICRM model,
on the other hand, does not need to adjust any parameter for
different spam ratios—it is automatically more reactive to
whatever ratio it encounters. It has been shown that spam to
ham ratios indeed vary widely Meyer and Whateley (2004);
Delany et al. (2005), hence we conclude that the ICRM’s
ability to better handle unknown spam to ham ratio varia-
tions is more preferable for dynamic data classification in
general and spam detection in particular.

In most Enron sets, the shuffled e-mails in the test set did
very slightly worse than the ordered-by-reception-date ones.
This observation was however statistically insignificant ac-
cording to a t-test with p-value greater than 0.05 and thus
it accepts null hypothesis of similarity between the two per-
formances showing no importance of order for the ICRM
dynamics. To further study the resilience of ICRM and
its adaptive ability to catch concept drifts, we trained both
ICRM and NB on the first 200 emails and then tested them
on sequential overlapping slices of 200 emails. Our results
showed very little decay in performance for both methods in
most data sets (Abi-Haidar and Rocha, 2008). Therefore, we
conclude that the data sets are not appropriate to study the
effects of concept drift. In future work, we plan to test the
ICRM on more appropriate data sets for the study of concept
drift in spam (Delany et al., 2005, 2006b).

The three modifications to the original cross-regulation
model, namely training on both ham and spam classes, fea-
ture selection and cell death elimination have quite improved
the performance of the algorithm to make it rival with tra-
ditional binary classifier. The first modification’s improve-
ment was mostly manifested in enron 4 which cannot only
rely on positive training for the majority of exact uninforma-
tive e-mails it has. Nonetheless, it is debatable whether the
automatically generated messages in enron 4 should be clas-
sified as ham or not. The selection of the first and last fea-
tures boosted the performance of both ICRM and NB about
2% in terms of F-score and Accuracy yet we are still work-
ing on making a better selection without totally disregard-
ing the message body. The elimination of cell death also
improved the overall performance of ICRM about 1%, es-
pecially in terms of long term memory. We are currently

experimenting with a carrying capacity for the E and R con-
centrations that could be promising for future work.

Conclusion
The observations made based on the artificial immune sys-
tem can help us guide or further deepen our understanding
of the natural immune system. For instance, ICRM’s re-
silience to spam to ham ratio show us how dynamic is our
immune system and functional independently of the amount
of pathogens attacking it. In addition, the three modifi-
cations made to the original model can be very insightful:
The improvements made by training on both spam and ham
(rather than only ham or self) reinforce the theories of both
self and nonself antigen recognition by T-cells outside the
thymus. The feature selection makes us wonder whether the
actual T-cell to antigen binding is absolutely arbitrary. Fi-
nally, the elimination of cell death may reinforce the theo-
ries behind long lived cells as far as long term memory is
concerned.

In this paper we have introduced a novel spam detec-
tion algorithm inspired by the cross-regulation model of the
adaptive immune system. We have compared it with Naive
Bayes and another binary classification tool called VTT. Our
model has proved itself competitive with state of art spam
binary classifiers in general and resilient to spam to ham ra-
tio variations in particular through interestingly unique re-
sults that can be further improved by integration, hopefully
in the near future. The overall results, even though not stel-
lar, seem quite promising especially in the area of tracking
concept drifts in spam detection. This original work should
be regarded not only as a promising bio-inspired method
that can be further developed and even integrated with other
methods but also as a model that could help us better un-
derstand the behavior of the T-cell cross-regulation systems
in particular, and the natural vertebrate immune system in
general.
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Abstract 
Iterated cooperation games (e.g. Prisoner’s Dilemma) are used 
to analyze the emergence and evolution of cooperation among 
selfish individuals. Uncertainty of outcomes of games is an 
important factor that influences the level of cooperation. 
Communication of intentions also has a major impact on the 
outcome of situations that may lead to cooperation. Here we 
present an agent-based simulation that implements the 
uncertainty of outcomes together with the communication of 
intentions between agents. This simulation is used to analyze 
the relationship between uncertainty and the complexity of the 
language that the agents use to communicate about their 
intentions. The complexity of the language is measured in 
terms of variability of its usage among agents. The results show 
that more outcome uncertainty implies lower complexity of the 
agent language.  

Introduction 
 
Iterated cooperation games are commonly used to study the 
emergence and evolution of cooperative behaviour in 
communities of selfish individuals (Axelrod, 1997). Such 
games, especially ones that have a non-cooperative single play 
equilibrium (e.g. Prisoner’s Dilemma game (Axelrod, 1997)) 
can simulate the selfish drive of individuals and offer a natural 
experimental environment to analyse the effects of various 
factors on cooperative behaviour. 
 The main theories about the emergence of cooperation 
consider as key factors the similarity (relatedness, kinship, 
joint interest) of individuals and the direct/indirect reciprocity 
of their behaviour (Axelrod and Hamilton, 1981; Leimar and 
Hammerstein, 2001; Nowak and Sigmund, 1998; Riolo et al., 
2001; Rockenbach and Milinski, 2006; Roberts and Sherratt, 
1998; Trivers, 1971). Other important factors include 
commitment inertia (Roberts and Sherratt, 1998) and 
segregation of cooperators (Pepper, 2007). Most of these 
theories assume repeated interactions between the same 
individuals and/or interactions between all possible pairs of 
individuals (Axelrod, 1997). These theories also assume well 
defined outcomes of the played games and usually pay little 
attention to communicative behaviour of individuals 
participating in game playing (Axelrod, 1997). 
 In real life situations the outcomes of cooperation or 
defection usually are uncertain and depend on many other 
factors outside of the control of the interacting individuals 
(Callaway et al., 2002; Pulford and Coleman, 2007; Seghers, 
1974; Spinks et al., 2000). Communication between 

individuals is an integral part of the action selection and 
decision making process and consequently may matter very 
much during the interaction process (Dugatking, 1997; 
Dunbar, 1988). Individuals may try increase cooperation 
willingness in their partner through communication. They may 
also use communications to hide their true intentions. Earlier 
works show that indeed uncertainty of outcomes and 
communicated intentions may play an important role in 
determining the level of cooperation in communities of selfish 
individuals (Andras et al., 2007; Andras et al., 2006; Andras 
et al., 2003). 
 Anecdotal evidence suggests that experienced uncertainty, 
due to the environmental context, has the effect of reducing 
the complexity of the communication of intentions. For 
example, surgeons use very restricted language to 
communicate during operations, the restrictions of the 
language being aimed to reduce uncertainty and the possibility 
of misunderstandings in a very uncertain environment (i.e. 
there may be many unexpected complications during the 
surgical operation). Another example is the army, where again 
the communication of orders is done in a highly simplified 
language, again aimed to reduce uncertainty in the 
interpretation of orders in the context of a highly uncertain 
environment (where the soldiers may encounter many 
unexpected situations created by their enemy). 
 Here we describe a simulation study aimed to analyse and 
quantify the effects of uncertainty on communication 
complexity in the context of situation where cooperation 
emerges and is maintained in a community of agents. In the 
agent-based simulation study the agents played Prisoner’s 
Dilemma games. The study confirms the expectation based on 
the anecdotal evidence, i.e. that more experienced uncertainty 
implies more reduction in the complexity of the 
communication language that agents use to communicate their 
intentions during their interactions. This result helps the 
understanding of the evolution of the language that is used as 
medium of interactions between individuals in the context of 
potentially cooperative social interactions. 
 The rest of the paper is structured as follows. First we 
discuss the concept of uncertainty in the context of 
cooperation games. Next we consider the role of 
communication of intentions between individuals playing 
cooperation games. This is followed by the discussion of 
communication complexity. Next we describe the agent-based 
simulation environment that we used for our study. This is 
followed by the presentation of the results of the simulation 
study. Finally, we end the paper with our conclusions. 
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Uncertainty in cooperation games 
The usual setting of agent-based simulations with iterated 
cooperation games assumes that the possible outcomes of 
games are known and fixed across all games played during the 
simulation (Axelrod, 1997). This assumption is useful to keep 
the games and the simulations analytically tractable. However, 
this assumption is frequently not satisfied in real life situations 
that are modelled by such games and simulations. 
 In real life situations the more usual is that the outcomes of 
games vary around some expected outcome. The amount of 
variation differs from case to case. If the variation is small the 
situation and its possible outcomes are relatively certain, for 
example in case of interactions which lead to a contract 
defining obligations of the parties that determine the outcomes 
of the interaction (or game). If the variation of outcomes is 
high the situation and its outcomes are uncertain, for example 
when army troops are advancing on unknown enemy territory, 
interactions between soldiers may have widely varying 
effects. 
 Uncertainty of outcomes can be represented in a 
straightforward way in cooperation games by replacing the 
fixed outcomes by outcome distributions (Andras et al 2007). 
For example, Table 1 represents a fixed outcome cooperation 
game. 
 

  Player 1 
  Cooperate Defect 

Cooperate R,r s,t 

Pl
ay

er
 2

 

Defect T,s p,p 

 
Table 1: A fixed income cooperation game 
 
 The letters r, t, s, p stand for: ‘reward for cooperation’, 
‘temptation to defect’, ‘punishment for joint defection’ and 
‘sucker’s payoff’. To include the representation of outcome 
uncertainty the values r, t, s, p are replaced by (normal or 
exponential) distributions R, T, S, P such that the mean value 
of these distributions is the corresponding fixed outcome, 
while the variance of the distributions represents the 
uncertainty of the game outcomes. When players play the 
game they pick first their distribution according to their game 
playing choice and then they pick their actual outcome from 
this distribution by taking a random sample from the 
distribution. In average the outcomes of many games will be 
close to the fixed outcome approximation of the game, but 
considering outcomes of individual games they will be 
distributed according to the adopted distributions with a 
variance corresponding to the uncertainty of the game. 
 It has been shown that uncertainty in the outcomes of 
games (due to environmental factors) influences the level of 
cooperation in the context of agent-based simulations of 
iterated cooperation games with uncertain outcomes (Andras 
et al., 2007; Andras et al., 2006; Andras et al., 2003). The 
stable level of cooperation within a population of agents 
increases as the uncertainty of the outcomes of the games 
played by agents increases (Andras et al., 2007). This is 
consistent with a range of observations of natural situations 

where the uncertainty imposed by the environments induces 
more cooperative behaviour among bacteria (Drenkard and 
Ausubel, 2002; Mehdiabadi et al., 2006), plants (Callaway et 
al., 2002), and animals (Seghers, 1974; Spinks et al., 2000; 
Kameda et al., 2002). 

Communication of intentions 
Commonly agent-based simulations of emergence and 
evolution of cooperation use cooperation games where the 
communication between agents is compressed into a single-
shot communication expressed by the game playing choice of 
the agent (Axelrod, 1997). This excludes the communication 
of intentions or provision of cues about intentions that may 
influence the other player. However, in real world situations 
such communications play a critical role in the development 
of interactions between individuals (Drenkard and Ausubel, 
2002; Dugatking, 1997; Dunbar, 1988). (Note, that while in 
the literally understood Prisoner’s dilemma situation there is 
no possibility of communications, in many situations analysed 
using this model of interaction there is an important role for 
communication of intentions.) 
 It is crucial to include into agent-based simulations the 
communication of intentions to understand how real world 
cooperation works. Including communications about 
intentions may also allow the study of the role of trust and 
deception in the emergence and evolution of cooperation. 
 Representing communication of intentions is not trivial in 
the context of agent-based simulations. To do this the agents 
have to be equipped with some form of communication 
language which relates to intentions of the agents and allows 
the communication about these intentions (exposing or hiding 
them) in a consistent manner. One way to achieve this is to 
define the language of agents in the form of a probabilistic 
grammar with two parallel inputs (Andras, 2003). This 
grammar can be described using production rules of the form 

}:,,:{', 1
1

k
k
nextnextcurrentcurrent pupuuu !→  (1) 

Where ucurrent is the last communication symbol produced by 
an agent, u’current is last communication symbol produced by 
the interaction partner of the agent, u1

next, …, uk
next are the next 

communication symbols that can be produced by the agent, 
and p1, …, pk are the probabilities of production of these 
communication symbols,  

1
1

=!
=

k

j
jp  

 
(2) 

 The grammar should include communication symbols 
representing the start of the communication and symbols 
representing the play choice of the agents (cooperate or 
defect). Other symbols may have various semantics depending 
on the intended semantic extent of the language (e.g. the aim 
may be inclusion of modeling of trust). 
 The rules of the language should be such that they are 
consistent with the practice of communication of intentions in 
the case of biological organisms. In particular, signs of 
positive intentions are usually followed by signs of similarly 
or more positive intentions. Such consistency rules should be 
implemented in the language of agent communications by 
imposing consistency constraints on the transition 
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probabilities. The positivity of a communication symbol is 
given by the level of pro-cooperation intention (positiveness) 
indicated by the symbol when it is produced during 
communication. To express the above rules more formally, if 
u0, u1, u2, u3 are communication symbols, such that their 
positivity ranking is  

321 uuu ≤≤  (3) 

and u3 can be produced according to production rules  

1301 :, puuu →  (4) 

and  

2302 :, puuu →  (5) 

where p1, p2 are the probabilities of application of these rules 
then 

21 pp ≤  (6) 

In other words, more positive symbols are more likely to be 
followed by even more positive symbols than less positive 
symbols. Similarly, if the production rules are  

1310 :, puuu →  (7) 

and  

2320 :, puuu →  (8) 

and (3) holds, then again (6) holds, i.e. the same rule applies if 
the symbols with different positiveness are produced by the 
communication partner.  

Communication complexity 
Communication complexity can be defined using the concepts 
of Kolmogorov complexity (Li and Vitanyi, 1997). The 
complexity of a description is given by the length of the 
description. The complexity of a language can be considered 
in terms of the average length of non-interrupted 
communications in that language. Of course, this is a 
relatively rough measure of description and language 
complexity, but it can be used reliably, assuming no intention 
aimed to distort the measured complexity. A better 
approximation of description or language complexity, 
perhaps, is to consider the description length after the 
elimination of redundant and irrelevant components from the 
description or communications. Of course, this may inject 
some subjective bias into the measurement. In the case of an 
agent-based simulation with communication of intentions the 
above defined complexity of the agent language can be 
measured as the average length of communications between 
agents that last from the start of the interaction until the 
decision about the game choice. 

An alternative way to measure the complexity of the 
language is to look at the variability of the language rules used 
by various individuals. If the rules contain high variability, i.e. 
there are relatively large differences in the way language rules 
are used, that indicates high complexity of the language 
(indirectly indicates high dependence of the rule use on the 
context of the use). Consistent regular application of language 
rules without much variation implies lower complexity of the 
language (i.e. less context-dependence). This alternative 
approach of measuring complexity of the language fits with 
the concept of Kolmogorov complexity in the sense that low 

variation of language rules means that the language can be 
described listing its rules and relatively few additional meta 
rules about the context-dependent application of the listed 
basic rules – i.e. the description of the language is relatively 
short. In the case of high variation of rule application, the 
language can be described by listing its basic rules and adding 
many meta rules about the context-dependent application of 
basic rules – i.e. the description of the language becomes 
relatively long. In the case of an agent-based simulation with 
communication language the measurement of complexity of 
the language according to this method involves the 
measurement of the variance of distributions of probabilities 
of grammar production rules. Higher variance in average 
across all rules means more variable application of the 
language and a more complex language. On the other end, 
lower variance in average means lower variability in language 
use and lower language complexity. 

In the real world high uncertainty situations appear to be 
associated with low complexity communication languages 
(e.g. surgical theatre, army – see examples in the 
Introduction). Generally, the higher lexical complexity and 
higher complexity of application of rules of a language 
implies more uncertainty about what is communicated using 
the language. The uncertainty implied by the complexity of 
the language adds to the uncertainty imposed by the 
environment.  

On the basis of observation of the link between experienced 
uncertainty and level of cooperation in communities of selfish 
individuals we expect that if the community experiences high 
uncertainty then the possible ways to deal with this is either to 
have high level of cooperation or to have low level complexity 
of the communication language, or some combination of 
these. Earlier work shows that the level of cooperation 
increases with the level of experienced uncertainty. Similarly 
we expect that in accordance with anecdotal evidence, the 
level of complexity of the language should decrease as the 
experienced level of uncertainty increases. 

Simulation implementation 
The agents ‘live’ in a two-dimensional rectangular world, 
which is wrapped on both pairs of edges (up and down, right 
and left). A position in the world may be occupied by more 
than one agent, and positions of agents can be arbitrarily close 
(i.e. the world is not divided into a grid of disjoint places). 
The dimensions of the world are set to be 100 x 100. 

The agents in the simulation own resources, which are used 
to maintain themselves and to generate new resources alone or 
through interaction with another agent. In each time turn each 
agent tries to choose an interaction partner. The partner is 
chosen from those agents, which are located close enough (i.e. 
in the neighbourhood) to the agent which is looking for a 
partner. An agent may be chosen as a partner if the agent is 
not already partnered up with another agent. An agent may 
remain without a partner in a time turn if it cannot find any 
agent in its neighbourhood which could become its partner. 
The neighbourhood of an agent is defined as the set of ten 
closest agents, where the distance between agents is measured 
in the two-dimensional world populated by the agents.  

After finding a partner the agents play a Prisoner’s 
Dilemma type game with uncertain outcomes. The uncertainty 
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of outcomes represents all uncertainties that may influence the 
interaction between the agents. The outcome uncertainty is 
implemented as described in the section ‘Uncertainty in 
cooperation games’. For the sake of simplicity we use normal 
distributions characterized by a mean value and a variance. 
Playing the game determines the mean value of the 
distribution, while the variance of the distribution (σ) is a set 
value that characterizes the outcome uncertainty of the game. 
Note that our simulation implements iterated game playing 
without the requirement that the repeated games should be 
between the same agents, and in fact it is more likely that 
agents will play with many other agents during their 
‘lifetime’. 

The agents participate in the game with their available 
resources, which determine the mean value of the outcome 
distribution. The function determining this mean value is 

01
1)( RRe

aRf +−+
⋅=  

(9) 

where a and R0 are parameters and Ris the amount of available 
resources. The parameters are set such that the game operates 
on the convex diminishing return part of the function where  

)(2)2( xfxf ≥  
(10) 

In order to preserve the Prisoner’s Dilemma conditions (i.e. 
t>r>p>s and 2r>t+s) the game matrix determining the mean 
values of outcome distributions are set as in section 
‘Uncertainty in cooperation games’ with the values 

( )
2
∆+= Rfr  

(11) 

( ) ∆+= Rft  (12) 

( )Rfs ⋅= α  (13) 

( )Rfp =  (14) 

where 
∆ = f (R1 + R2) − f (R1) − f (R2)[ ]+  (15) 

(i.e., it takes only the positive values of the expression in 
brackets and it is zero if the value of the expression is 
negative), 0<α<1 is a parameter. 

After determining the mean values of the outcome 
distributions for both agents, they pick an actual outcome 
value from the normal distribution determined by this mean 
value and the variance σ that characterizes the outcome 
uncertainty of the world of the agents. The actual outcome 
values will be the new amount of resources available for the 
agents. Note that the actual outcome value may be below or 
above the mean value given by the game matrix. If the 
outcome uncertainty is high (i.e. σ is large) the likelihood of 
getting much more or much less than the mean value is 
relatively large. If the outcome uncertainty is low (i.e. σ is 
small) in most cases the actual outcome value will be close to 
the mean value determined by the game matrix. 

The agents communicate using a simple language. The aim 
of this communication is to decide how to play the game. The 
lexicon of the language consists of the symbols: 
‘0’,’s’,’i’,’y’,’n’,’h’ and ‘t’. These symbols have the following 
meanings: ‘0’ – no intention of communication, ‘s’ – start of 
communication, ‘i’ – maintaining the communication, ‘y’ – 
indication of the willingness to engage into possible 

cooperation, ‘n’ – indication of no further interest in 
communication, ‘h’ – cooperation (ready to share the benefits 
of joint use of resources), ‘t’ – cheating (ready to steal the 
benefits of possible joint use of resources). The last two 
symbols, ‘h’ and ‘t’ represent the actual cooperation and 
defection game choices. The first four symbols are ranked 
according to their positive contribution towards engagement 
in cooperation (the least positive is the ‘0’ and the most 
positive is ‘y’, ‘0’≤’s’ ≤’i’≤’y’). 

Each agent has its own realization of the language. The 
language is represented in the form of a two-input 
probabilistic production rules according to equations (1) and 
(2). The implemented simple language contains 22 production 
rules. The probabilities associated with the production rules 
may differ between agents, representing the individual 
realization of the language. For example a probabilistic 
production rule is 

}2.0:,5.0:,3.0:{', niyii →  (16) 
that means that after producing the symbol ‘i’, and receiving a 
symbol ‘i’ from the communication partner, the agent will 
produce the symbol ‘y’ with probability 0.3, the symbol ‘i’ 
with probability 0.5, and the symbol ‘n’ with probability 0.2. 
The probability of the symbol pair (‘y’,’y’) being followed by 
the generation of the symbol ‘h’ is given by the intention to 
cooperate of the agent – Icoop. The individual realizations of 
language rules always satisfy the consistency constraints 
defined by equations (3) – (8). 

After selecting an interaction partner the agents may engage 
in a communication process. The communication process 
starts properly after both agents communicated the ‘s’ symbol. 
We set a limit (L1) for the preliminary communication (i.e. 
before communicating ‘s’ from both sides). If two agents do 
not reach the proper start of the communication in a 
communication of length L1 they stop further communication 
and decide to choose play defection in their current game. 

The agents use their own realization of the common 
language to produce communication symbols. The 
communication process ends either with the communication of 
an ‘n’ symbol (i.e., signaling no further interest), or with the 
communication of the ‘y’ symbol by both partners (or by 
automatically stopping the communication according to the set 
rules). After this each agent decides whether to cooperate or 
defect by producing the symbol ‘h’ or ‘t’. We impose a 
communication length limit (L2) on this second stage of 
communication. If the agents do not reach the communication 
of ‘y’ symbols in L2 steps, they stop their communication and 
decide to play defection in the current game. 

During each communication process, as an agent produces 
equally or more positive symbols their intention to cooperate 
increases. The intention to cooperate of the agent increases 
temporarily and the increased intention of cooperation is valid 
only for the current communication process. The upgrade 
equation of the intention to cooperate is 

))(1()1(1)1( tItI coopcoop −⋅−−=+ δ  (17) 

where Icoop(0)=Icoop, t is the counter of communication symbols 
produced by the agent so far within the current 
communication process, and δ is a parameter (δ=0.025). 

At the end of each time turn the agents make a random 
move, i.e. their position is updated according to the equation 

Artificial Life XI 2008  12 



),(),(),( yxnewnew yxyx ξξ+=  (18) 

where (x,y) is the old position of the agent, (xnew, ynew) is the 
new position of the agent, and (ξ1, ξ2) are random values from 
a uniform distribution over [-5,5]. 

The agents ‘live’ at most for 60 time turns. The agents may 
die earlier if they run out of resources. When they reach the 
end of their life they may produce a number of offspring 
agents. The number of these depends on the amount of 
resources owned by the agent, more resources implying larger 
number of offspring. If a dying agent has R amount of 
resources, and the mean amount of the resources in the agent 
community at that moment is Rm, and the standard deviation 
of resources is RS, then the number of offspring of the agent is 
calculated as 

0
)( n

R
RRRn

s

sm +⋅−−⋅= βα  (19) 

where α, β, n0 are parameters of the simulation environment. 
If n is negative or R=0 this means that the agent has no 
offspring. If n>nmax, where nmax is the allowed upper limit of 
offspring, the number of offspring is set to be nmax. The 
offspring of an agent inherit its resources divided equally 
between them. The locations of the offspring are set by a 
small random modification of the position of the parent agent. 

When agents reproduce at the end of their life, their 
offspring inherits the language of the parent agent, possibly 
with some small random modifications of the language rule 
probabilities. This means that the offspring of an agent will 
speak the agent language in a very similar manner (using 
production rules with similar probabilities), which may 
facilitate cooperation interactions between them. 

We ran 20 simulations for each level of outcome 
uncertainty. Each simulation ran for 400 time turns each time. 
Each simulation was initialized with 1500 agents with 
randomly set positions, initial resource amounts, and language 
transition probabilities.  

To summarize, in each time turn the agents search for an 
interaction partner, and if they find one, they communicate 
about their intentions and play the above described game to 
generate their new resource amount. If an agent cannot find a 
partner it generates its new amount of resources as if it would 
be playing a defection/ defection game with another agent (i.e. 
the mean value of the resource value distribution from which 
it picks its new resource amount is set to be f(R), where R is 
the amount of its current resources). Agents move randomly at 
the end of each time turn and deduct from their resource 
amount a fixed amount of living costs. Agents may die 
because they run out of resources, or because they reach the 
end of their life (at most 60 time turns). When an agent dies 
and still has available resources, it may generate offspring, 
which will inherit its language with small variation. The 
offspring initially form a cluster around the place of their 
parent and gradually move away by random movements. (For 
more details about the simulation see Andras et al. (2003) and 
Andras et al. (2006). A version of the simulation code is 
available as online supplementary information for Andras et 
al. (2006). For further details and simulation code please 
contact the author.) 

Uncertainty and communication complexity 
In earlier work (Andras et al., 2007; Andras et al., 2006; 
Andras et al., 2003) we have shown that higher outcome 
uncertainty implies higher level of cooperation in agent 
populations. This is because the agents share their experienced 
uncertainty through cooperation, averaging the effective 
uncertainty that applies to their outcome. This means that 
through cooperation the effective uncertainty experienced by 
agents within the agent community is reduced compared to the 
individually experienced uncertainty that would apply to them 
without involvement in cooperative interactions (Andras et al., 
2006). In order for the agent population to reproduce there is a 
critical level of outcome uncertainty, above which the 
population shrinks until it goes extinct. If the outcome 
uncertainty imposed by the environment is high, high level of 
cooperation is required to bring down the effective uncertainty 
to or below the critical level (Andras et al., 2006). 
Consequently, higher outcome uncertainty implies higher 
level of cooperation that is required to keep the population 
away from extinction. The current simulation confirms this 
earlier finding (see Figure 1). Note that this relationship 
between outcome uncertainty and the level of cooperation is 
valid even if there is no communication of intentions (Andras 
et al., 2007). 
 

 
 
Figure 1: The relationship between outcome uncertainty and 
level of cooperation. The three lines show the evolution of the 
average level of cooperation across 20 populations of agents 
for three levels of outcome uncertainty (σ=0.3, σ=0.5, σ=0.7 
– the box on the right indicates the corresponding lines). The 
level of cooperation is measured as the percentage of joint 
cooperation decisions among all game decisions made by 
agents in a given time turn. (Error bars are omitted as standard 
deviations are relatively small) 
 
 Here we investigate the relationship between the outcome 
uncertainty and the complexity of the language that the agents 
use. Our expectation is that higher outcome uncertainty 
implies lower language complexity. To measure the 
complexity of the language used by agents we adopt the 
approach introduced earlier based on the measurement of the 
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variation of the use of the language rules. In other words, we 
measure the complexity of the language used within an agent 
population as the average of the variances of probabilities 
characterizing the production rules of the agent language. For 
each language production rule 
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we consider all realizations of this rule (i.e. each realization is 
a realization of the rule in a ‘living’ agent) and calculate the 
variance for each involved probability p1

i, …, pk
i. Let us 

denote these variances as 
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then the complexity of the language is defined as 
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where L is the number of language rules (in the simulation we 
have 22 such production rules), and  
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 Using this measurement of language complexity we found 
that indeed higher level of outcome uncertainty implies lower 
level of language complexity in the context of our simulated 
agent communities. This result is presented in Figure 2. This 
confirms our expectation. 
 

 
 
Figure 2: The relationship between outcome uncertainty and 
language complexity. The lines show the evolution of average 
language complexity across 20 populations of agents for three 
levels of outcome uncertainty (σ=0.3, σ=0.5, σ=0.7 – the box 
on the right indicates the corresponding lines)). The language 
complexity is measured according to equation (22). (Error 
bars are omitted as standard deviations are relatively small) 
 
 We also considered the alternative measure of the language 
complexity, i.e. the average length of communication 
processes that lead to the reaching of the cooperation / 
defection decisions. However this measure gives much less 

clear results, as the length of communication processes drops 
to around the same level (in average) at all considered levels 
of outcome uncertainty. The most likely reason for this is that 
the language is very simple and has very few communication 
symbols. Consequently, there is little variation that could exist 
in terms of communication process length between surviving 
agent communities ‘living’ in environments characterized by 
different outcome uncertainty. The language use variation 
based measure (the cx measure defined above) appears to be 
more sensitive to detect differences in language complexity 
between agent communities dealing with different levels of 
uncertainty. 
 The principial reason behind the observation of the lower 
language complexity in agent communities dealing with more 
outcome uncertainty is that lower language complexity adds 
less to the uncertainty of the world than higher language 
complexity, and consequently the lower language complexity 
is preferred in more uncertain environments. In practical 
terms, analyzing the evolution of simulated agent populations, 
we note that an important aspect is that surviving offspring of 
successful agents are clustered at the time of their creation. 
Having very similar language facilitates their continual 
success, especially if they inherited sufficiently cooperative 
inclinations from their parent. A more uncertain environment 
means stronger selection for successful individuals with 
relatively high cooperative inclination, which means that 
clusters of related agents have increased selection advantage 
in such environments. This is likely to contribute significantly 
to the reduction in the variability of the language usage that 
we adopted as a complexity measure of the language.  
 The presented results are about agent-based simulations. 
They confirm our expectation about the relationship between 
outcome uncertainty and language complexity and provide 
some explanation about why this is the case. However, to fully 
confirm our theoretical expectation about the effect of 
uncertainty on language complexity ideally we would need to 
consider real-world data. While it is not easy to find or collect 
relevant real-world data, we note that measurements of 
language diversity in naturally more and less uncertain areas 
of Africa (semi-desert in Northern Nigeria and rainforest in 
Burkina Faso) indicate that natural experimental confirmation 
of the presented results may be within reach (Nettle 1998; 
Nettle 1996). Nettle (1996, 1998) has shown that in the more 
arid and hostile semi-desert are the number of languages is 
much smaller than in comparable much less uncertain (in 
terms of availability of food) areas of rainforest. This appears 
to be in good agreement with our expectation and simulation 
results. 
 Measuring complexity of natural languages is not very 
obvious. We considered in this paper two measures and have 
shown that the one based on variability of language use seems 
to be more sensitive to measure complexity differences 
between agent languages. Applying similar measures to 
natural languages may lead to robust measures of language 
complexity. Our results indicate that language complexity is 
likely to be linked to the level of cooperativeness within a 
community. Consequently, analysis of complexity of language 
used for example in companies may help the understanding of 
the potential of the analyzed organization to deal with their 
experienced uncertain environment and to harness 
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organizational resources that can be mobilized through 
cooperation. 
 Finally, we underline that our analysis and simulation is 
focused on the lexical complexity of the language used to 
inform about intentions (i.e. complexity in the sense of the 
variability of use of lexical components – communication 
symbols in the context of the simulations).  We did not 
consider grammatical complexity (i.e. the number and 
combinatorial variability of rules), as in our case the number 
of rules is always fixed. A more extensive analysis of 
language complexity and more complicated simulation would 
be needed to consider aspects of grammatical complexity. We 
expect that losses suffered in terms of lexical complexity, 
imposed by the necessity of dealing with an uncertain 
environment, are compensated by increased complexity at the 
level of grammar in the longer run. The reason of this is that 
having more complex grammar increases the computational 
capacity of the language which may be beneficial in a more 
uncertain environment. This increase in grammatical 
complexity is supported by the decrease in lexical complexity 
in the sense that less ambiguity in the lexicon reduces the 
likelihood of inappropriate application of grammatical rules. 
The investigation of this conjecture is not the subject of this 
paper. 

Conclusions 
We have shown in this paper that higher outcome uncertainty 
implies lower level of language complexity in the context of 
agent-based simulations of social interactions conceptualized 
as playing iterated Prisoner’s Dilemma games. The 
complexity of the language was measured in terms of 
variability of the use of the language, and in particular in 
terms of variability of ‘meanings’ of lexical units of the 
language.  
Considering that we modeled repeated social interactions 
through the iterated game playing, our result implies that in 
the case of social situations with high outcome uncertainty we 
expect a reduction in complexity of the language usage. More 
specifically, we expect a reduction in the range of 
possible/acceptable ways of usage (‘meanings’) of words, and 
possibly also an effective reduction of the size of the lexicon 
of used words. This matches well with the anecdotal evidence 
about very high outcome uncertainty environments like a 
surgical theatre or an army. 
Data about variability of languages over larger geographical 
territories also suggests that our finding about the link 
between uncertainty induced by the environment and the 
(lexical) complexity of the language used by humans to live in 
these geographical areas is valid. Of course, this needs to be 
checked further and confirmed numerically on the basis of the 
data. 
Our result indicates that environment induced uncertainty 
(represented as outcome uncertainty in our agent-based 
simulation study) plays an important role in the evolution of 
languages. This uncertainty implies complexity constraints on 
the language, which limit the lexical variability of the 
language. Such constraints may explain simplification of a 
language used in high uncertainty context and may also 
explain the variability of human languages in geographical 

areas characterized by high or low uncertainty implied by 
available resources (e.g. food, shelter, etc.). 
Our analysis did not extend to cover the grammatical 
complexity of languages. This would need more complicated 
simulations allowing the change of the grammar (and symbol 
set of the lexicon) of the language used by agents. However, 
we conjecture that less lexical complexity may be 
compensated by more grammatical complexity in languages 
used in more uncertain environments. 
Finally, our investigation of the link between outcome 
uncertainty and language complexity shows that the approach 
to measure language complexity as the average length of 
communication processes may not be sensitive enough to 
measure the effects of environment induced uncertainty. The 
proposed and used complexity measure which measures the 
variability of the usage of lexical elements is a more 
appropriate measure for this task, and possibly it is generally a 
more appropriate measure to measure lexical complexity of 
natural languages. 
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Abstract

Complex systems modelling and simulation is becoming in-
creasingly important to numerous disciplines. The CoSMoS
project aims to produce a unified infrastructure for mod-
elling and simulating all sorts of complex systems, making
use of design patterns and the process-oriented programming
model. We provide a description of CoSMoS and present a
case study into the modelling of space in complex systems.
We describe how two models – absolute geometric space and
relational network space – can be captured using process-
oriented techniques, and how our models can be refactored to
allow efficient, distributed simulation. We identify a number
of design, implementation and refactoring patterns that can
be applied to future complex systems modelling problems.

Introduction
Complex systems consist of populations of low-level simple
agents that interact concurrently with each other and their
environment to exhibit high-level emergent behaviours. The
modelling and simulation of complex systems is becoming
increasingly important in a number of scientific disciplines.
Real-world experimentation is often expensive and time-
consuming; accurate simulations provide a powerful tool for
understanding complex systems, and their results can help to
direct future experimental work. There is therefore signifi-
cant interest in the development of more effective tools and
methodologies for modelling and simulation.

Under the banner of CoSMoS1 (Complex Systems Mod-
elling and Simulation infrastructure), we aim to develop a
modelling and simulation infrastructure to allow complex
systems to be designed, analysed and explored within a uni-
form framework. When completed, the CoSMoS system
will allow users, guided by our methodology, to design, de-
velop and analyse their own complex systems.

Our modelling process aims to be applicable to generic
complex systems, and will make use of patterns and refac-
torings. Our simulation environment will be massively-
concurrent and distributed through the use of the process-
oriented programming model. This is important as our final

1http://www.cosmos-research.org

infrastructure will be supported on a number of processing
platforms including FPGAs, general-purpose PCs and clus-
ters. We are adopting a case-study-based approach, mod-
elling and simulating many complex systems to identify the
necessary generic components. As we develop the case stud-
ies, we are consciously documenting and analysing how we
are developing the models and simulations to extract the
CoSMoS process. Through each case study this process is
refined and augmented as new situations arise.

A number of tools for complex systems modelling and
simulation already exist; for example, environments such
as Breve2 and Repast3 allow for the development of agent-
based complex systems simulations. The use of design pat-
terns to document reusable solutions to complex systems
modelling problems has previously been advocated by Wiles
et al. (2005). CoSMoS differs in that it will bring together
the modelling, simulation and analysis of generic complex
systems under a single unified framework. Additionally, the
massively-concurrent simulation environment will enable us
to get closer to the scale of real-world complex systems.

In the context of CoSMoS, this paper presents a ratio-
nale for our approach and describes some initial steps to-
wards achieving our aims. We start by describing why a
process-oriented approach is applicable to complex systems,
followed by some of the techniques we are employing in the
pursuit of engineering reusable elements. We then present
an investigation into space representations in various com-
plex systems, and show how space can be modelled and sim-
ulated using a process-oriented approach. Finally we look at
what our case study has shown us in relation to the aims of
CoSMoS by identifying the kinds of patterns and refactor-
ings that might be applicable to general complex systems.

A Process-Oriented Approach
In the process-oriented programming model, concurrent
processes interact using mechanisms such as channels and

2http://www.spiderland.org
3http://repast.sourceforge.net
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barriers. Process-oriented programming has a formal basis
in process algebras such as CSP (Hoare, 1985) and the π-
calculus (Milner, 1999). As a result, the semantics of com-
munication and process composition are well-defined, and
the behaviour of process-oriented programs can be reasoned
about in a structured way. See Welch et al. (2006) for one
example of this.

As the real world consists of concurrent, interacting enti-
ties, communicating process calculi – and therefore process-
oriented programs – provide a natural way to construct mod-
els of the real world: entities map directly to processes, and
the interactions between them are modelled by communica-
tions. There has been much research into modelling com-
plex systems using process calculi such as the π-calculus
(Phillips and Cardelli, 2007); this suggests that process-
oriented programming techniques can be profitably applied
to complex systems modelling and simulation.

Concurrent programs are well-placed to take advantage
of multicore processors and multiprocessor hosts. The same
programming models can be used to construct distributed
systems; a process-oriented program can usually be refac-
tored into a form that runs efficiently on a cluster.

Concurrency is traditionally seen as hard for programmers
to get right, but this need not be the case. In a process-
oriented system, a compiler can guarantee that processes are
isolated from each other, and must communicate explicitly
rather than sharing data. Processes may communicate ref-
erences to data, but sending a reference to another process
causes it to be lost from the sender (data mobility). These
constraints combine to prevent common concurrency prob-
lems such as aliasing errors and race hazards. Other con-
currency problems such as deadlock can be dealt with using
simple design rules, proved correct by reference to the un-
derlying process calculi.

One such set of design rules is the client-server pattern,
in which client processes are connected to server processes
by two-way bundles of channels. After the client initiates a
communication, an arbitrary two-way conversation can take
place between the client and server. Processes may act as
both client and server, but they may be a client to only one
server at a time. If there are no cycles in the directed graph of
client-server relationships between a network of processes,
the network will be both deadlock- and livelock-free (Martin
and Welch, 1997). Many common patterns of concurrency –
such as pipelines – already obey the client-server rules, but
the rules also allow far more complicated process networks
to be constructed safely.

Initial work on CoSMoS has used the occam-π process-
oriented programming language4. In an occam-π implemen-
tation, process overheads are typically very small; a com-
modity PC can support millions of concurrent processes.
Process creation and deletion is cheap, and communication

4http://occam-pi.org/

is very efficient. This allows the programmer to take ad-
vantage of concurrency to simplify their program without
worrying about adversely affecting performance. occam-π
provides channel bundles as a language binding for client-
server relationships; the endpoints of channel bundles can be
communicated around at runtime (channel mobility), allow-
ing dynamically constructed and reconfigurable networks.

Engineering Reusable Complex Systems
To develop an engineering approach to the modelling and
simulation of generic complex systems, we must focus on
reusable problem-solving techniques. Reusable techniques
reduce the amount of work required in the development of
a complex system, and lessen the risk of mistakes during
specification or implementation. Additionally, because our
systems will be built using common building blocks, it will
be easier to combine models and simulations to study inter-
actions between complex systems.

Our main tool for achieving reusability is one of the most
successful and popular approaches in software engineering:
patterns. The original idea of patterns comes from archi-
tecture courtesy of Alexander et al. (1977), who describe a
pattern as “a problem which occurs over and over again in
our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution
a million times over, without ever doing it the same way
twice”. This idea was applied to object-oriented software
design by Gamma et al. (1995), who identify four essential
elements of a pattern:

Name: a brief phrase to summarise the pattern, and that can
be used as part of a pattern language when discussing
problems.

Problem: the situation in which the pattern may be applied.

Solution: the elements involved when solving the problem,
and a guide to their implementation.

Consequences: the advantages and disadvantages of apply-
ing the pattern, allowing the designer to make a decision
about the appropriateness of the pattern in their particular
situation.

Most existing uses of patterns in software engineering use
the object-oriented programming model, but patterns can be
applied equally effectively to process-oriented programming
and other models.

Although the original use of patterns in software engi-
neering was at the design stage (hence “design patterns”),
patterns have been developed for all stages of the software
development process, from low-level coding right up to the
design of development processes themselves. For example,
antipatterns (Brown et al., 1998) can be used to document
common mistakes and how they can be avoided and recti-
fied. Other patterns include analysis patterns (Fowler, 1997),
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coding patterns (Beck, 1997), and metapatterns that describe
patterns themselves. Our modelling process aims to take ad-
vantage of patterns wherever possible, and in particular to
develop pattern languages for: abstract computational repre-
sentations of complex systems models; analysis of collective
and emergent properties; and validity argument structures.

We are not alone in wanting to apply patterns in the field
of complex systems. Wiles et al. (2005) suggest that atten-
tion to software engineering practice can benefit both mod-
ellers and biologists. We are in complete agreement with
their assertion that the field of in silico modelling is reach-
ing a point where common practices should be identified and
formalised into patterns.

Refactoring is a particularly interesting concept from a
patterns perspective. Refactoring is improving the structure
of a model or program without changing its external be-
haviour. For our purposes, such refactorings might include
improving the clarity of the model, or adapting simulations
to take advantage of FPGAs or clusters. These approaches
will be codified as refactoring patterns.

Space: a Case Study
As noted in the introduction, we have employed a case-
study-based methodology in our investigation of the issues
surrounding the modelling and simulation of complex sys-
tems. For the purposes of discussion in this section, we
define a model to be an abstract logical representation of
something we wish to better understand. A (computer) sim-
ulation is the execution of such a model over time, allowing
us to analyse the model’s behaviour.

The case study we describe here deals with the represen-
tation of space in a variety of different “textbook” complex
systems. By “textbook”, we mean well-understood exam-
ples of complex systems from the literature, such as boids
(Reynolds, 1987), artificial ant behaviour (Amos and Don,
2007), L-systems (Prusinkiewicz and Lindenmayer, 1990)
and scale-free networks (Barabasi and Bonabeau, 2003). We
have chosen to study space initially because we feel that it is
a universal property of complex systems models – and one
that can be expressed in a wide variety of ways. (Future case
studies will cover time and other commonalities.)

For millennia, philosophers have pondered the nature of
space in the real world. At the turn of the eighteenth cen-
tury, two very different views on space were held by New-
ton and Leibniz. Newton believed that space was absolute –
independent of the objects that could exist within it. Leibniz
defined space as relational – only existing in the relation-
ships among the objects it contains (Garber, 1995; Giavotto
and Michel, 2002).

In complex systems modelling, space is commonly repre-
sented using either of the Newton and Leibniz approaches.
For example, simulations such as boids and artificial ants
use an absolute geometric space, with a fixed area of space
being defined in which all the agents reside. L-systems and

scale-free networks, on the other hand, use a relative model
of space: the model’s idea of space comes solely from the
relationships between L-system symbols or network nodes,
and the geometry and size of space can change over time.
Hybrid models of space can be built in which absolute ge-
ometric space is modelled by a sparse network of regions,
created only when an agent or a behaviour requires their
presence (Sampson et al., 2005).

The meaning of points in a model’s representation of
space may correspond to locations in physical space (with
one, two or three dimensions), or to something more ab-
stract. For example, a point in absolute “shape-space”
(Perelson and Oster, 1979) could represent a set of parame-
ters describing the shape of a molecule in an immunological
model (Hart and Ross, 2004).

Space models such as absolute geometric space may be
continuous, or quantised into a grid of discrete positions.
Some models may be built on either space representation;
for example, interactions between cells in the bloodstream
may be modelled using distance calculations in continuous
space, or by looking at neighbouring cells in discrete space.
The choice of space representation – and, if a discrete model
is used, the fineness of the grid – will often affect the dynam-
ics of the model.

Previous Work
The TUNA project5 was the feasibility study that led to
CoSMoS, investigating tools for engineering emergent be-
haviour in nanite systems. The primary case study was the
simulation of artificial blood platelets, which would staunch
wounds in a blood vessel as an emergent behaviour. A num-
ber of different models were considered.

Initial efforts focused on cellular automata in one, two
and three dimensions. The first models used simple, deter-
ministic rules, and were built using the CSP process cal-
culus and analysed using FDR and Probe6. Later models
were extended to include platelet activation and diffusion
of chemical factors, and were implemented using occam-π.
The completed blood clotting simulation (Ritson and Welch,
2007) runs in three dimensions, using VTK7 for volumet-
ric visualisation, and allows the user to interactively cre-
ate wounds in the blood vessel. The program can be dis-
tributed across a cluster of commodity PCs, enabling simu-
lations with tens of millions of agents to run at acceptable
speeds. The resulting simulation demonstrates several be-
haviours seen in real-world haemostasis, and can be used to
perform simple in silico experiments.

Design patterns were developed for the efficient simula-
tion of grid-based space using process-oriented techniques,
in which space cells are represented as processes (Samp-
son et al., 2005). The construction of space processes can

5http://www.cs.york.ac.uk/nature/tuna/
6http://www.fsel.com/software.html
7http://www.vtk.org/
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be delayed until agents move into them, allowing a sparse,
lazy representation of space. Agents can “sleep” by not
engaging in synchronisation when their state is unlikely to
change, saving processor time. Concurrent access to shared
resources can be managed safely using barrier synchronisa-
tion and phases (Barnes et al., 2005). Agents can migrate
transparently between different hosts in a cluster.

Modelling Continuous Space
The TUNA project examined grid-based models of space.
These are easy to reason about, but they are insufficiently
accurate for the purposes of many interesting models. Con-
tinuous space is generally more useful when modelling real-
world systems. In continuous space, it immediately becomes
harder for agents to find nearby agents with which to inter-
act; they cannot simply look in the neighbouring locations,
but must consider the distances between them. In a trivial
implementation of continuous space, all agents have knowl-
edge of all other agents, but this is inefficient (as well as a
poor model of the real world); we need a representation of
the world with an idea of locality. We would also like to
be able to take advantage of the space-modelling efficiency
patterns that were developed for TUNA.

As a first case study, we implemented the simulated bird
flocking model boids (Reynolds, 1987). At each time step,
boids adjust their velocity based on the following rules:

Collision Avoidance: avoid collisions with nearby objects

Velocity Matching: try to match velocity with nearby boids

Flock Centring: try to stay close to nearby boids

This results in the emergent flocking behaviour. We used
a two-dimensional model of space, although boids (and our
space model) would work equally well in three dimensions.

The approach we took was to divide the space up into re-
gions, with each region represented by a location process.
Each location contains an arbitrary number of agent pro-
cesses (boids and obstacles), and keeps track of a local po-
sition for each, relative to the centre of the region. Loca-
tions are connected much as cells are in a grid-based model;
each location process has a shared channel bundle which its
neighbours have access to, and provides a server interface
that allows clients to enter a cell, move around, and retrieve
a list of agents along with their positions.

The first thing that each boid must do on each timestep is
to “look around” for other agents in its neighbourhood. To
do this, the boid needs to gather the contents of all the cells
that intersect with the region it can see. We have restricted
our agents to seeing a circular region with a diameter of at
most one location, which means that it is sufficient to look
at the location the agent is in and the eight surrounding lo-
cations. Figure 1 shows a boid’s field of vision in the parti-
tioned continuous space model.

Boid

Figure 1: A boid’s field of vision (dotted line) in the parti-
tioned continuous space

Since all agents in each location need to look at the same
set of nine locations, we can save some effort by delegating
this task to a shared viewer process. Each location has a
viewer process permanently attached to it, and on each time
step the viewer updates its view of the surrounding world.
The viewer process then provides a server interface to the
agents in the corresponding cell which allows the agents to
obtain their local view.

In order to guarantee that the agents see a consistent view
of the world, we must make sure that all the viewers are up-
dated after the agents have finished moving, but before they
look again at the start of the next time step. We therefore di-
vide each timestep into multiple phases, with a global barrier
synchronisation between each phase:

• In phase 1, the viewers request the contents of the sur-
rounding cells.

• In phase 2, the agents request their view from the viewers,
compute their new velocity, and send movement messages
to their locations.

Once a boid has looked around, it decides in which direc-
tion to move by sending a movement vector to its location.
The location responds by updating the boid’s position. If
the boid remains within the same location, no further ac-
tion is necessary. However, if the boid has moved outside
the bounds of the location, it must be moved into the next
location in the correct direction. This is achieved by the re-
sponse to a boid’s movement request being “you must move
into this location”. This approach makes it possible to move
across multiple locations in one movement step: upon entry,
the first new location can respond immediately with another
“you must move into this location” message, thus the agent
reaches the correct target location by an iterative process.

In order to avoid complicating every agent with code to
handle movement, we inserted an additional agent manager
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process that hides the details of this from the agent itself.
The manager provides a simplified interface to the agent,
supporting only “move” and “look” requests. Adding this
level of indirection simplified later work: it made it possible
to have arbitrary behaviour inside the space model that is not
visible to the agent itself.

Distributed Continuous Space
We used pony (Schweigler, 2006) to distribute the boids sim-
ulation across a cluster of hosts, with each host simulating
a rectangular region of space modelled by several location
processes. pony provides networked channel bundles for
occam-π programs, with exactly the same semantics as lo-
cal channel bundles; the only visible difference is the signifi-
cantly increased latency compared to local communications.
To obtain good performance, it is generally best to engineer
a distributed application in such a way as to minimise the
number of cross-host communications, and perform cross-
host communications in parallel as far as possible.

To start with, we just modified the existing simulation to
set up the same network of processes across a distributed
application. The resulting simulation worked exactly as be-
fore, but ran very slowly; furthermore, it got even slower
as boids migrated between hosts. There were two major
sources of inefficiency:

• Neighbouring viewer processes must request the same
view information from a location on the other side of a
network link. For local communications this is not a prob-
lem, since only a reference is transferred; for network
communications the data must be copied.

• More seriously, agent processes continue to run on the
host they were started on, so once moved to a new host,
every communication they do is across a network link.

To solve the viewer problem, we applied the remote proxy
distributed computing pattern (Roth, 2002) in the form of
ghost processes, which cache the contents of a location on
the other side of a network link. Viewer and agent processes
that would ordinarily communicate with a remote location
are instead given a channel bundle to the corresponding lo-
cal ghost (which provides the same server interface as the
remote location). Since ghost processes must update their
cached contents before viewer processes try to read it, we
needed to introduce an additional phase to the simulation:

• In phase 1, the ghosts request the contents of their corre-
sponding locations.

• In phase 2, the viewers request the contents of the sur-
rounding cells.

• In phase 3, the agents request their view from the viewers
and send movement messages to their locations.

To solve the agent problem, we introduced the idea of
agent migration. In response to moving to a location on a
different host, an agent can be told to suspend itself: pack up
its internal state and terminate on the originating host. The
state is moved to the destination host, where a new agent
process is started using the existing state. This is straight-
forward to implement: when an agent attempts to move into
a ghost (rather than a real location), the ghost replies to the
agent with a “suspend” message, and then signals the real
target location to spawn a new process.

A sample process network at a host boundary in the final
model is shown in Figure 2. The cycle time of the resulting
simulation is approximately equal to that of the single-host
simulation plus the network latency. We ran the simulation
across a cluster of networked PCs: the cycle time remained
approximately constant as the simulation was scaled from
two to eight hosts. This is as expected, since each host only
needs to communicate with its immediate neighbours.

In order to increase performance further, we have experi-
mented with more efficient strategies for inter-host commu-
nication. Relaxing the normal CSP channel semantics for
networked channels to permit asynchronous delivery of mes-
sages means that channel communications no longer need to
be acknowledged by the receiving host, approximately halv-
ing the network latency and thus reducing the simulation cy-
cle time. Since network channels are only used by the ghost
processes, we can simply adjust the ghost protocol so that
it still behaves correctly with asynchronous communication.
In the future, we plan to experiment further with batching
of messages in order to reduce TCP overheads and permit
message compression.

Location LocationLocation

GhostGhost

Viewer

Manager

Boid

Figure 2: Process network at a host boundary in distributed
boids
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Different Model, Same Space
To demonstrate the reuse of our space model, we imple-
mented a different complex system simulation on top of our
continuous space model. The complex system we chose was
ant-based annular sorting (Amos and Don, 2007), in which
ants sort eggs into rings by size by picking up poorly-placed
eggs and dropping them when they find a better location.

As with boids, we modelled ants and eggs as agent pro-
cesses. To allow ants to carry eggs, we extended our system
so that agents could pick up other agents (removing them
from their locations), and put them down elsewhere. No fur-
ther changes were necessary to the space model, suggesting
that it had potential for reuse in other similar simulations.

Our model of continuous space is generic enough that it
supports different kinds of agent with differing behaviours.
They might sense different aspects of the environment and
have different goals. The location and viewer processes re-
port the locations of all nearby agents, whereas the agent
manager and agent processes provide the specific agent be-
haviour. Additional sensory modes and/or noise could be
added to the underlying location and viewer architecture,
which agent processes can filter accordingly.

Constructing Network Space: Edges as Channels
Network space is an example of relational space in which
the network nodes are the space-defining objects. Networks
can be modelled very straightforwardly in a process-oriented
way: nodes are processes, and edges are channels. As an
example, we implemented L-systems (Prusinkiewicz and
Lindenmayer, 1990): rewriting systems based on a formal
grammar (a set of rules and symbols) that can be used to
model growth processes such as plant development and or-
ganism morphology. For example, a very simple grammar
might be defined as follows:

Symbols: A, B, +, −

Start symbol: A

Rules: (A→ B −A), (B → A + B)

Here we have two symbols A and B which are transformed
by the corresponding rules, and two symbols + and−which
do not change. By specifying a start symbol, we can itera-
tively apply the L-system rules in parallel so that our symbol
string grows with each iteration as follows:

Iteration 0: A

Iteration 1: B −A

Iteration 2: A + B −B −A

Iteration 3: B −A + A + B −A + B −B −A

L-systems are often visualised by translation into “turtle
graphics” instructions. For example, if we define variables

Figure 3: Example L-system after 4 iterations

to mean “move straight ahead one unit”, + to mean “turn
right 60◦” and − to mean “turn left 60◦”, we end up with
the visualisation shown in Figure 3.

We model an L-system as a process network in which the
L-system symbols are represented as separate processes con-
nected by channels. Here, the channels provide the ordering
of the L-system string. At each iteration of the L-system,
each process holding a variable symbol applies its corre-
sponding transition rule, and replaces itself with the pro-
cesses and channels corresponding to the expansion of the
symbol.

Figure 4 shows a step-by-step application of the B →
A + B transition rule. In the first step a new process is
spawned that contains the last symbol in the transition rule.
This process is then given the end of the right hand chan-
nel, and a new channel is created to connect this new pro-
cess to the original B process that is being transformed. We
work from the right-hand side of the rule so that the process
network re-configures from the inside, with the right hand
channel to the rest of the process network only having to be
rewired once. After the first new process is connected, we
work through the transition rule creating new processes and
channels and reconfiguring existing channels where neces-
sary. So, in our example, the next step involves inserting a
process containing a + symbol. As a last step, the original
process that has undergone the transition rule has its symbol
changed to the leftmost symbol in the rule – in this case, B
is changed to an A. New processes are created on demand
by a factory process.

The simulation is visualised on each iteration using a dis-
play process, which is connected to both ends of the chain of
symbol processes, forming a ring. To visualise the network,
the display process sends a channel end to the first symbol
process, which outputs its symbol down the channel, then
passes the channel end on to the next process. This repeats
until the channel end makes it all the way around the ring
and returns to the display process, which then knows it has
gathered the complete state of the network, and draws it to
the display using turtle graphics rules.

Constructing Network Space: Edges as Processes
A scale-free network is one in which some nodes are highly
connected, whilst most have few connections. There is no
notion of a typical node in the network: its properties are
independent of the number of nodes. Examples include
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Figure 4: Network reconfiguration during a rule application

NEN

Figure 5: An implementation of an undirected edge, where
N denotes a node process and E an edge process

the World-Wide Web: nodes are pages, and edges are hy-
perlinks; research collaborations: nodes are scientists, and
edges are co-authorships; and protein regulatory networks:
nodes are proteins, and edges are interactions amongst pro-
teins (Barabasi and Bonabeau, 2003). They are scale-free
because their properties are similar regardless of how many
nodes are present in the network; for example, the distribu-
tion of path lengths between pairs of arbitrary nodes will not
change as more nodes are added. Barabasi et al. (2000) have
shown that by utilising a scheme known as preferential at-
tachment – in which nodes prefer to connect to other nodes
that are already well-connected – you can grow a generic
network that is scale-free.

In the L-systems example above, edges were represented
as channels. Channels in occam-π are directed, and are used
directly in the L-systems network to match the left-to-right
ordering of symbols. In a scale-free network, edges may
be undirecte with no natural ordering . We modelled this
by representing edges as processes with separate channels
connecting them to the nodes on each side; an example is
shown in Figure 5. This is a more flexible model, since there
is no need for an explicit ordering, and edges may have their
own behaviours if necessary. For example, if an edge needs
to be reconnected between a different pair of nodes, it can
take part in the decision and reconnection process itself.

To implement a growing scale-free network with prefer-
ential attachment, we start by creating two node processes
and linking them by an edge processes. Next a controller

process iteratively forks a new node process and connects it
to a pre-defined number of new edge processes. For each
new edge process, a randomly selected pre-existing node is
selected and connected to the edge process. This random
selection is biased towards highly connected nodes, thus im-
plementing preferential attachment.

In the same way that we can apply a continuous space
model to both boids and ant-based annular sorting, we can
easily adapt the scale-free network with preferential attach-
ment model to implement a small-world network (Watts and
Strogatz, 1998) instead. This reuses the same node and edge
processes, but changes the way they are connected together.

Space: the Results
Our space models produced several useful, reusable compo-
nents. Both space models were successfully applied to more
than one complex system example with minimal work. In
addition, we have identified a number of initial design pat-
terns, which we can can categorise into four groups: mod-
elling, implementation, optimisation and refactoring pat-
terns. Patterns we identified included:

Distributed Continuous Space (modelling): by dividing
continuous space into regions, we can efficiently imple-
ment local vision in a distributed simulation.

Agent Process (modelling): agents are modelled as concur-
rent processes that interact within a space. The space may
be modelled explicitly using additional processes, or may
be implicit in the relationships between the agents.

Factory Process (implementation): factory processes
spawn new processes at runtime in response to requests
from other processes. They provide a common context for
the newly-created processes, and hide details of creating,
configuring and connecting up new processes behind an
interface. (This is the process-oriented equivalent of the
abstract factory pattern (Gamma et al., 1995).)

Ghost Location (optimisation): when refactoring a simu-
lation to run in a distributed manner, a ghost process can
cache the contents of a remote location to avoid repeated
network communication. (This is an application of the
existing remote proxy pattern.)

Agent Migration (optimisation): in a distributed simula-
tion, an agent can be suspended and moved to a different
host, in order to minimise the number of network commu-
nications it must do.

Reification (refactoring): creating a process (a “thing”) to
represent a relationship between two other processes. For
example, a directed link between two processes can sim-
ply be a channel, but an undirected or buffered link can be
better modelled as a process.

In addition, we found possible patterns related to visualisa-
tion and the modelling of time, which we are investigating.
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Conclusion
In this paper we have outlined CoSMoS, a planned mod-
elling and simulation infrastructure for the investigation of
generic complex systems. We are using the process-oriented
programming model, owing to the natural analogies be-
tween processes and complex system agents and the abil-
ity to construct massively-concurrent and distributed simula-
tions. CoSMoS will promote reusable modelling techniques
through the development of pattern languages.

We have studied the modelling and simulation of space in
complex systems in the context of reusable modelling tech-
niques. We have shown how two very different spaces, a
geometric continuous space and a arbitrary network space,
can be modelled and simulated in a reusable way, and have
identified a number of design and refactoring patterns.

The next step for CoSMoS will be to start modelling and
simulating some more detailed complex systems based on
real-world observations and data. This will help identify fur-
ther generic complex system components, and aid the devel-
opment and validation of our method and toolset.
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Abstract

We investigate the correlation between the information theo-
retic measure of empowerment and the graph theoretic mea-
sure of closeness centrality, to better understand the struc-
tural conditions that must exist in a world for learning and
adaptation. We examine both measures in both a simple grid-
world scenario, represented as a graph, and on a scale-free
graph. We show a strong correlation between the two mea-
sures, and discuss the strengths and weaknesses of both. We
go on to show how the local measurement of empowerment
can in many cases predict a measure for the global measure-
ment of closeness centrality.

Motivation
”Nature uses only the longest threads to weave her patterns,
so that each small piece of her fabric reveals the organiza-
tion of the entire tapestry.” - Richard Feynman

Learning and adaptation are central themes to artificial
life, and it is our hypothesis that a better understanding of
the conditions that must exist to make learning, adaptation
and evolution possible will help to guide future research.
It is plausible to assume that an arbitrary or random world
would be extremely difficult, if at all possible, to learn. We
know there is significant structure in the world, and believe
that learning takes advantage of this structure. In this paper
we begin to investigate what conditions, embedded within a
world through some underlying structure, are necessary for
certain types of adaptation problems.

It has been hypothesised that embodied agents receive an
adaptive and evolutionary advantage by optimising their sen-
soric and neural configurations for their environment. Spe-
cific attention has been paid to processing and optimising of
Shannon-type information they receive from their environ-
ment (Attneave, 1954; Barlow, 1959, 2001; Atick, 1992).
Similar work includes the concept of homeokinesis, pro-
posed by Der et al. (1999), where a homeokinetic system,
or agent, learns to improve the predictive capabilities of its
future perceptions.

A specific flavour of this view suggests that such informa-
tional predictive principles could provide organisms/agents

with intrinsic motivation. Examples include that by
Prokopenko et al. (2006), Bialek et al. (2001) and Ay et al.
(2008), which use similar approaches based on excess en-
tropy / predictive information.

In this paper we have chosen to use empowerment (Klyu-
bin et al., 2005b,a), an information theoretic measure for the
efficiency of a perception-action loop. Essentially empow-
erment uses the channel capacity for the external component
of a perception-action loop to identify areas that are advan-
tageous for an agent embodied within an environment.

It assumes situations with a high efficiency of the
perception-action loop should be favoured by an agent.
Based entirely on the sensors and actuators of an agent, em-
powerment intrinsically encapsulates an evolutionary per-
spective; namely that evolution has selected which sensors
and actuators a successful agent should have, which in turn
suggests which states should be visited.

This hypothesis was tested in a variety of different sce-
narios (Klyubin et al., 2005b,a; Capdepuy et al., 2007),
and notwithstanding the quite different scenarios it coin-
cided surprisingly well with an intuitive understanding of
favourable behaviours or of natural solutions to particular
challenges of adaptation. Furthermore, it correlated well
against measures that had been hand crafted to evaluate cer-
tain scenarios.

Notwithstanding the successful performance, we do not
currently have a strong understanding of why this may be.
What are the properties of the world that make empower-
ment such a universal measure? Why should it work at all?
These are the questions we are going to begin to study in this
paper.

Locating Structure
We hypothesise that an agent that optimises its sensorimotor
apparatus improves its ability to detect the underlying struc-
ture of the world, and that this is an important aspect of such
optimisation. We further hypothesise that a better under-
standing of this structure would improve such optimisation,
and thus allow for better adaptation and learning.

To investigate this we set out to start identifying the basic
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properties of the world, and how they are detected by em-
powerment. We selected to go about this by investigating
a representation for an environment that manifests its struc-
ture in an easily observable manner, is well understood, and
has established methods for measuring preferable states.

We chose to represent the state space using graphs, which
fit all these criteria; they are well understood through graph
theory and social network analysis, and they have accessible
methods for identifying certain aspects of their structure. As
a measure to identify preferred states we chose to use cen-
trality, a measure of a node’s importance from graph theory,
which is a well established method (Wasserman and Faust,
1994). There are varying measures for centrality; in this
paper we use closeness centrality, which most closely cor-
responds with the spirit of empowerment.

Most stationary worlds, containing an embodied agent,
can be viewed of as the current state of the world connected
to neighbouring states by the actions the agent would need
to take to arrive at them; this can be modelled as a graph.
This same representation of the world was used by Şimşek
and Barto (2007) in investigating skill development among
agents.

We can now analyse empowerment, and some aspects of
what it captures about the world, by comparing it with cen-
trality measurements in the same scenarios.

Quantifying Preference
Empowerment, a local measure, quantifies the changes that
an embodied agent can make on its environment, and ob-
serve the effects of, in a given time period. Here we reduced
ourselves to a simple representation of the world which is
entirely deterministic, creating a special case for empow-
erment. However, it can work in both entirely determinis-
tic and probabilistic environments, which may even be non-
stationary (Capdepuy et al., 2007).

The closeness centrality of a node in a graph is calculated
by adding the distance of the shortest paths from that node to
every other node in the network, and then inverting this value
so that a shorter total path to all other nodes has a higher
value. To calculate the closeness centrality of a signal node
requires viewing the whole graph; it is a global measure.
Klyubin et al. (2005a) showed an example where a similar
measure, the average shortest distance in a maze, correlated
well with empowerment.

We will examine two scenarios, and will employ both em-
powerment and closeness centrality in each for identifying
and measuring states that an embodied agent would find ‘in-
teresting’ or ‘preferential’ to be in. When we use the word
‘state’ we refer to the state of the whole system, including
both the environment and the agent.

Information Theory
The notion of empowerment is based on information theory,
introduced by Shannon (1948). To introduce this, the first
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Figure 1: Bayesian network representation of the
perception-action loop.

important measure is entropy, which is a measure of uncer-
tainty:

H(X) = −
∑

p(x) log p(x). (1)

Where X is a discrete random variable with values x ∈ X
and p(x) is the probability mass function such that p(x) =
Pr{X = x}. The logarithm can be taken to any chosen
base; in our paper we consistently use 2, and accordingly the
units of measurement are then called bits. If Y is another
random variable jointly distributed with X the conditional
entropy is:

H(Y |X) = −
∑

x

p(x)
∑

y

p(y|x) log p(y|x). (2)

This measures the remaining uncertainty about the value
of Y , if we know the value of X . Finally, this also allows
us to measure the mutual information between to random
variables:

I(X;Y ) = H(Y )−H(Y |X). (3)

Mutual information can be thought of as the reduction in
uncertainty about the variable X or Y , given that we know
the value of the other. The mutual information is symmetric,
so we could also use I(X;Y ) = H(X) −H(X|Y ) (Cover
and Thomas, 1991).

Empowerment
Empowerment is based on the information theoretic
perception-action loop formalism introduced by Klyubin
et al. (2005a, 2004), as a way to model embodied agents and
their environments. The model views the world as a com-
munication channel; when the agent performs an action, it is
injecting Shannon information into the environment, which
may or may not be modified, and subsequently the agent re-
acquires part of this information from the environment via
its sensors.

In Fig.1 we can see the perception-action loop represented
by a Bayesian network, where the random variable Rt repre-
sents the state of the environment, St the state of the sensors,
and At the actuation selected by the agent at time t. It can be
seen that Rt+1 depends only on the state of the environment
at time t, and the action just carried out by the agent.

By modelling this as a communication channel, we can
employ information-theoretic methods, which are the basis
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for empowerment. First, we must introduce channel capac-
ity (Shannon, 1948; Cover and Thomas, 1991) for a discrete
memoryless channel:

C(p(y|x)) = max
p(x)

I(X;Y ). (4)

The random variable X represents the distribution of mes-
sages being sent over the channel, and Y the distribution of
received signals. Clearly, the higher the mutual informa-
tion between the two variables, the higher the capacity of
the channel. The channel capacity is measured as the max-
imum mutual information taken over all possible input dis-
tributions, p(x), and depends only on p(y|x), which is fixed.
One algorithm that can be used to find this maximum is the
iterative Blahut-Arimoto algorithm (Blahut, 1972).

Empowerment can be intuitively thought of as a measure
of how many observable adjustments an embodied agent can
make to his environment, either immediately, or in the case
of n-step empowerment, over a given period of time. An al-
ternative way to view empowerment is that it guides agents
to places in the world where they get the most benefit from
their sensors and actuators. Using the above perception-
action loop formalism and the Blahut-Arimoto algorithm,
this can be directly quantified. We remind the reader that
sensors and actuators implicitly encode evolutionary knowl-
edge of the type of information to perceive and ‘create’.

In the case of n-step empowerment, we first construct a
compound random variable of the last n actuations, labelled
An

t . We now need to maximise the mutual information be-
tween this variable and the sensor readings at time t + n,
represented by St+n. Here we consider empowerment as
the channel capacity between these:

E = C(p(st+n|an
t )) = max

p(an
t )

I(An
t ;St+n). (5)

An agent that maximises its empowerment will position
itself in the environment in a way as to maximise its options
for influencing its relationship with the environment (Klyu-
bin et al., 2005a).

Note that in this paper we are use empowerment in an
exclusively deterministic scenario, within a discrete world,
but that empowerment is defined in full generality for non-
deterministic probabilistic environments and does not as-
sume perfect information.

In this paper we can use a shorthand method for calculat-
ing empowerment; we are able to do this for several reasons.
All the scenarios we examine are deterministic and feature
no non-stationary elements, and so do not require the proba-
bilistic elements of empowerment. Additionally, as they are
all represented as a graph, we are able to further simplify the
formula. We can calculate n-step empowerment for a node
vi on the graph thus:

En(vi) = log




g∑

j=1
d(vi,vj)≤n

1



 (6)

Where d(vi, vj) is the geodesic distance between the
nodes vi and vj . Note that this is a shorthand method we are
able to use as we have complete knowledge of the scenarios
and the representation; Eq. (5) reduces to Eq. (6), and would
work identically in the same scenarios, using the perception-
action loop formalism.

Closeness Centrality
Graph Theory and Network Analysis have long had a
requirement for identifying important nodes in a graph
(Wasserman and Faust, 1994). The simplest methods for
this have been to count the edges leaving or entering a node,
known as outdegree and indegree respectively. This is very
simplistic and is normally inadequate for complex graphs.
Therefore, the primary method for measuring node impor-
tance is a group of various measures collectively known as
centrality. There have been several methods of centrality
suggested over time, but one of the most popular is close-
ness centrality, which can be presented in various ways. As
mentioned in Wasserman and Faust (1994), and reviewed by
Freeman (1979), the simplest formula for closeness central-
ity is that suggested by Sabidussi (1966):

CC(vi) =




g∑

j=1
j "=i

d(vi, vj)





−1

. (7)

For a given node vi, in a graph with g nodes, this gives
a measurement of the sum of the shortest paths to all other
nodes, which is then inverted to give a higher centrality to
those with shorter total paths to the rest of the graph. In-
tuitively, this can be closely linked to the average distance
from all other cells that empowerment was anti-correlated
with, from the maze scenario used in Klyubin et al. (2005a).

To calculate the closeness centrality on the graphs en-
countered throughout this paper, we used the network anal-
ysis software Pajek (Batagelj and Mrvar, 1998). Pajek
uses a modified version of closeness centrality, suggested
in Beauchamp (1965):

C ′
C(vi) =

(g − 1)[∑g
j=1 d(vi, vj)

] = (g − 1)CC(vi). (8)

This formula is used simply to normalise the closeness
centrality figures to the graphs size in order to allow com-
parison of the figures between graphs of different sizes.
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Figure 2: View of the empowerment distribution for the
gridworld scenario, with the box positioned at the center.
A darker shade means higher empowerment. Empowerment
scales from 5.92 to 7.79 bits.

Scenarios
In order to compare these two measurements we apply them
to the same two agent scenarios to identify the correlation
between them, and any areas of disparity. In order to con-
struct the first scenario, it is necessary to observe that most
state spaces encompassing an agent in a stationary world can
be naturally represented as a graph of nodes, with transi-
tions leading between them corresponding to the actions of
an agent within that world.

Box Pushing
Consider the box pushing scenario from Klyubin et al.
(2005a) as a graph. The scenario consists of a gridworld
of infinite size, within which there exists an agent and a box,
each of which occupy a single cell. The box is visible to the
agent; his view of the world consists of his position and the
position of the box. The agent has 5 actions available to it at
any time; it can stand still, or move to one of the four neigh-
bouring cells. If the agent moves into a cell that is occupied
by the box then the box is pushed, in the same direction, into
the adjacent cell.

In Klyubin et al. (2005a) it was shown that for any n-step
empowerment, the agent prefers being near the box, which
gives it more influence on the state of the world. It most ‘en-
joyed’ beginning on top of the box, where moving in and of
the 4 directions would allow it to fall down next to the box,
from where it could start pushing it like normal; this could
be used as a starting position but was a position impossible
for it to return to.

In translating this world into a graph representation, we
needed to limit our originally infinite world to a finite graph.
We investigate the influence of this finiteness by examining
the growth of centrality. We show that beyond a certain hori-
zon it can be seen that the centrality increases in a continu-
ous fashion and that the centrality for the nodes represented
in previous approximations grows proportionately. Whilst
we do not offer a proof of this fact, in Fig.3 we demonstrate
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Figure 3: Correlation of closeness centrality for 25-step and
30-step graph approximations against a 20-step approxima-
tion.

the point by showing the correlation between graph repre-
sentations of increasing diameters.

Results
Klyubin et al. (2005a) had previously shown how empower-
ment worked in the box pushing gridworld experiment, and
so it made for a good environment in which to run our initial
experiments. We generated a unweighted directed graph to
represent the world. Note that we are using a non-classical
view of graphs; rather than viewing them as comprised of
units, with connecting links between them, we are view-
ing each node as a possible state of the world, including the
agent itself, (of which, only one can be the real state at any
moment) and the edges as transitions between these states.

To do this, we initialised the world with the box in the
center, and the agent standing upon the box, as described
earlier. We then let the agent run through every possible
trajectory of 30 actuations, generating a graph of states and
actions; the final graph had 419,121 nodes. Using Pajek, we
calculated the closeness centrality for all nodes in the graph.

We next measured empowerment for every state with the
box positioned in the center of the world, and the agent
positioned at each location that it could reach within 30
timesteps from the center. This was sufficient as the dy-
namics of the world comes from the agent’s initial position
relative to the box, and thus moving the box was unneces-
sary. Our empowerment measurements were run to measure
3-step, 5-step and 7-step empowerment.
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Figure 4: Correlation plot between Empowerment and
Closeness Centrality. The horizon effect of empowerment
can be seen clearly.

In order to correlate empowerment and centrality, we col-
lated the results, removing the centrality results for nodes
where the box was not positioned in the center of the world;
this gave us a state for state comparison of each measure
against the other for different initial positions of the agent.

We additionally ran the same experiment for graphs pro-
duced for both 20 and 25 timesteps, to identify the influence
of representing the infinite gridworld as a finite graph did not
skew the results. We found that the correlation of centrality
for the overlapping nodes of these varying size graphs indi-
cates a close to linear relationship and finite graphs work as
a good approximation.

Note that closeness centrality is a global property, calcu-
lated it for any given node requires seeing all other nodes
in the graph, while empowerment is local and looks only at
neighbouring nodes within a given distance.

Local Structure
As hypothesised, we found a very strong correlation be-
tween the closeness centrality and empowerment, which can
be seen in Fig.4. The graph shows clearly the horizon effect
of empowerment; it can be seen to be constant whenever the
box is outside of the agent’s reach. For n-step value with
larger values of n the horizon can be seen to extend further
from the box. Once the box is within it’s reach, according to
n, the empowerment grows as the agent increases its influ-
ence over the world by getting closer to the box.

The horizon effect emphasises that empowerment is a lo-

cal measure; it cannot see the whole world. However, when
the agent is within an area where it can improve it’s ability to
manipulate the state of the world, this local measure corre-
lates with the global measure of the world given by closeness
centrality.

This highlights that in an infinite, or an unexplored, world
where centrality cannot be employed, empowerment pro-
vides a measure that can be used. Whilst empowerment is
limited by the horizon effect, exploring the world (which
would be necessary to use closeness centrality) would allow
our agent to also overcome the horizon.

In addition, this correlation also confirms our hypothesis
that empowerment, within its horizon, does see global as-
pects of a system at a local level within this world. What
structure or prerequisites that must exist for this effect to
take place are yet to be determined.

It is important to note that the results from empowerment
can be computed by the formula in Eq. (6), or equally by
that in Eq. (5), without modelling the world as a graph at all.

Scale-free Graphs
The second scenario uses scale-free networks (graphs); a
very important subclass of graphs, in which there are a few
nodes with a high degree, and most nodes have a far lower
degree. Their typical structure is independent of the graph’s
size; with fewer or more nodes, the graph would still ex-
hibit similar properties. The exact distribution of edges per
node follows a power law distribution (Barabasi and Albert,
1999):

P (k) ∼ k−γ . (9)

Here P (k) is the probability that a node connects with k
other nodes, and decreases exponentially according to the
coefficient γ.

As discussed in Barabasi (2003), scale-free graphs can be
seen in many real world situations, including protein inter-
action networks (Jeong et al., 2001), social networks, and
even the world wide web (Barabasi and Albert, 1999).

We hypothesise that the scale-free property of graphs can
work to synthesise an underlying structure that may be found
in real world task spaces, and can be used as a good platform
for initial investigation of such structure.

Results
Using preferential attachment algorithm introduced by
Barabasi and Albert (1999) we constructed a scale-free undi-
rected graph with 400,000 nodes to run our measures on.
Our graph was built using an initial complete graph of 3
nodes, and adding additional nodes one at a time. Each
new node would create 3 new edges connected to 3 differ-
ent nodes on the existing graph, chosen using a probability
according to their current degree.

For all nodes in the graph we calculate both the n-step
empowerment (for a range of values of n) and the closeness
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Figure 5: Correlation between closeness centrality and 2-
step to 7-step empowerment.

centrality. To calculate the closeness centrality, we again use
the Pajek analysis software.

Our results here corroborate those from our first experi-
ment with regard to the correlation between closeness cen-
trality and empowerment. Here, we see the inverse of the
horizon effect; given too much time, empowerment can
reach any part of the graph (analogous to being able to do
anything within a world) and assigns almost all nodes equal
value. This is an interesting point for empowerment; given
too high of a ’budget’, where an agent can do everything
possible within the world (or reach every node in a graph)
then it does not differentiate between them. This is the
type of world we would describe as ’boring’; one where
and agent can do anything it wants from any position of the
world.

Again though, empowerment sees at a local level aspects
of the global property of the world. In this scenario, this is
maybe not surprising given the nature of a scale-free graph;
but it is important to see that empowerment was not told
anything of the structure of the world, and that still this fact
comes through.

In Fig.5 we show the correlation between closeness cen-
trality and n-step empowerment for n=2 to n=7. Note that
even 2-step empowerment has a strong correlation at the
higher centrality nodes, and 3-step even more so. As n
increases it can be seen that the small-world property of
the graph results in an empowerment ceiling being reached
which results in a reduced correlation for high centrality
nodes.

Discussion
Both of our experiments highlight the strong correlation be-
tween empowerment and closeness centrality, and that even
n-step empowerment with a low value for n will normally
serve a a strong predictor for centrality. This is significant
given that individual node centrality is a global property of
a graph, but we can use a local measure to give similar rel-
ative values to nodes. Note that empowerment doesn’t see
any more than centrality, but in the ’interesting’ parts of the
world it does see, the two measures agree.

In both scenarios the correlation is strong provided that
the n chosen for n-step empowerment is suitable. We be-
lieve a simple method for overcoming this in an unknown
world is for an agent to select the lowest n value possible;
if the horizon of this n does not allow the agent to observe
any degrees of freedom it can then increase n incrementally
to overcome this (or embark on a random exploration).

With empowerment, selection of a suitable n is interest-
ing in another regard; a low value of n can mean encounter-
ing the horizon effect, and possibly not seeing ’interesting’
parts of the world, whilst a too high value of n can result
in the agent being able to do anything and not needing to
distinguish between different states. The result of this is a
particular world having an n value with the correct balance
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between these two effects, which we hypothesise may reflect
one aspect of the underlying structure which is important for
learning and adaptation.

Closeness centrality is limited to deterministic task spaces
that can be completely represented by either a directed or
undirected graph, which constricts the space of problems it
can be used to measure. In the space of problems in which
both measures can be used, these results indicate not only
empowerment correlates well with centrality, but it does so
without complete knowledge of the world. Furthermore, it
can work in non-deterministic, non-stationary, environments
which cannot be represented as a graph, including infinite
worlds.

A comparison could have been drawn between the global
measure of closeness centrality, and some local version of
centrality that worked on a local subset of the graph, and we
expect a similar correlation would have been found. How-
ever, any such localised version of centrality would suffer
from many of the same restrictions that centrality does com-
pared to empowerment. We studied empowerment specifi-
cally as part of a much more general picture which includes
an evolutionary aspect and which in addition will allow us to
extend the research into non-deterministic environments in
future work. Essentially we are using centrality as a ‘sanity
check’ that empowerment does something sensible in these
scenarios.

Overall, we believe that these results show a strong in-
dication of certain global aspects of various worlds being
‘coded’ at a local level, and an appropriate sensory config-
uration can not only detect this information, but can also
use it. Such uses could include learning and adaptation, and
uses for evolution between generations. There are indica-
tions that understanding which aspects of global structure
are visible at a local level would allow improved adaptation
and learning for agents embodied within the corresponding
world.

Future work
Vergassola et al. (2007) drew a parallel between the be-
haviour of biological organisms and search methods that
use local informational cues to draw conclusions about the
global structure of the world. It is our belief that further
study of this area will allow us to not only draw further par-
allels with the learning and adaptation methods employed
by biological organisms, but will also allow a better under-
standing of these processes leading to improved methods.

Further work needs to be done to extend these results into
other worlds and task spaces, and to better understand in
which scenarios they hold true. This should include worlds
with various elements providing opportunities for agents
to manipulate their environment, and even non-stationary
worlds.

Attention needs to be paid to how to choose an initial
strategy when presented with a completely unknown task

space (such as choosing an initial n for empowerment) and
conversely, how much of this information is embedded with
an agent or organisms embodiment.
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Abstract

Information processing in natural systems radically differs
from current information technology. This difference is par-
ticularly apparent in the area of robotics, where both organ-
isms and artificial devices face a similar challenge: the need
to act in real time in a complex environment and to do so with
computing resources severely limited by their size and power
consumption. The formidable gap between artificial and nat-
ural systems in terms of information processing capability
motivates research into the biological modes of information
processing. Such undertakings, however, are hampered by the
fact that nature directly exploits the manifold physical char-
acteristics of its computing substrates, while available the-
oretical tools in general ignore the underlying implementa-
tion. Here we sketch the concept of bounded computability
in an attempt towards reconciling the information-theoretic
perspective with the need to take the material basis of infor-
mation processing into account. We do so in the context of
Physarum polycephalum as a naturally evolved information
processor and the use of this organism as an integral compo-
nent of a robot controller.

Introduction
Technological progress makes ontological distinctions be-
tween classes of entities, like those between the natural and
the artificial, or between the living and the non-living, more
and more porous. Unconventional computing devices con-
tribute to this process. Hybrid artifacts, for example, try
to overcome the theoretic and physical limits of informa-
tion processing in solid-state realisations of digital von Neu-
mann machines by exploiting the self-organisation of natu-
rally evolved systems in engineered environments (Zauner,
2005). Biological systems evolved enviable computing ca-
pabilities to cope with noisy and harsh environments and
compete with rivalling life forms. Information processing
in biological systems, from single-cell organisms to brains,
directly utilises the physical and chemical processes of cel-
lular and intracellular dynamics. Arguably, therefore, if
one aims at narrowing the still formidable performance gap
between artificial and biological systems, the material ba-
sis of their information processing cannot be ignored. An
information-theoretic analysis of hybrid computational sys-
tems must, hence, take the physical properties of material

substrates used for computation into account. By ‘informa-
tion theory’ is meant here, not only Shannon’s statistical the-
ory of communication (Shannon and Weaver, 1949), but the
structural science that constructs mathematical models of the
form, meaning, and use of information and applies them to
empirical phenomena. The empirical diversification of in-
formation theory would allow the engineering of unconven-
tional computers to utilise empirical knowledge of naturally
evolved systems more efficiently since the requirements for
particular computational tasks could then be stated directly
in terms of physical specifications of computational media
(Tsuda et al., 2006a).

To explore the border zone between information theory
and the physics of self-organising systems, it is necessary
to elaborate a theory of bounded computability that relates
generic traits of information-processing systems, not with
general time and space bounds (as in the theory of com-
putational complexity (Papadimitriou, 1994)), but with spe-
cific physico-chemical constraints on the realisation of such
systems in different classes of computational media (analo-
gously to the theory of bounded rationality (Simon, 1997)).
In a theory about possible relations between material me-
dia and computational functions of physical information-
processing systems, the concept of information must inte-
grate the distinction between the behavioural structure of a
system, its functional structure, and the structure of its ma-
terial medium. Otherwise, the complex structural interplay
of matter, function, and behaviour that constitutes the very
nature of information, could not be adequately analysed and
the concepts of information theory would add nothing new
to physics and chemistry. For example, the more medium
and function are considered being inseparable, the less it
is reasonable to use information theory and its fundamental
distinction between form and ‘in-formed’ media. Not only
must one and the same information be regarded as repre-
sentable by different physical entities; various material sub-
strates must also be considered being possible media for the
same information-processing function.

If computers will develop along an increasing number
of technological ramifications, a theory of bounded com-
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putability must become more and more empirically diver-
sified. On the other hand, the theory has also to define
its basic concepts more and more generally to let a uni-
fied approach to the analysis and construction of comput-
ers appear still promising. This paper first introduces some
information-theoretic ideas that might be useful for con-
structing a general architecture of unconventional comput-
ing systems from elements already tried and tested in the
architecture of conventional ones. Such a rather reformist
approach of step-by-step generalisation is, of course, not the
only one possible; alternatively, the theory might start from
scratch by introducing a most general mathematical frame-
work in which more revolutionary concepts that try to cap-
ture essential aspects of self-organising systems can be de-
fined and compared exactly (Tsuda et al., 2004). The util-
ity of an information-theoretic framework is to be tested by
using it in the analysis and synthesis of real information-
processing systems. Thus, a particular unconventional com-
puting system based on the true slime mould Physarum poly-
cephalum and used as a bio-hybrid robot controller will be
presented. Finally, information-theoretic aspects of the bio-
hybrid controller will be described on a coarse-grained level
using the ideas introduced first. By showing that the pro-
cesses in such a controller can be systematically categorised
from a general information-theoretic perspective, this de-
scription is meant to be a preliminary step towards a theory
of bounded computability.

Syntactic, Semantic, and Pragmatic
Representation of Information

A full-fledged concept of information integrates the distinc-
tion between the behavioural structure of a system, its func-
tional structure, and the structure of its material medium.
Information is not a concrete entity that can be localised in
a particular part of a system; it is an abstract structure that
covers the complex systemic interplay of matter, function,
and behaviour. Basic information-theoretic concepts that are
general enough to describe this interplay for a spectrum of
systems as broad as possible, are the concepts of syntax, se-
mantics, and pragmatics (Artmann, 2008). In the following,
they are considered denoting different ways of representing
physical systems from a unified information-theoretic point
of view.

First, information can be represented syntactically by the
material structure of a physical system. The spatio-temporal
organisation of the material components of a system is then
regarded as an actualisation of the syntactic structure of in-
formation in a physical medium. The material structure of
the medium actually stands for the syntactic structure of in-
formation that is constituted by the set of relations of its el-
ements. The dynamics of self-organisation of the physical
medium drives the processing of the syntactic representation
of information, but does not require a specific information-
theoretic explanation. An important criterion for classifying

computational media from a syntactic perspective is how ef-
ficient media are in processing syntactic representations of
information to perform specific computational tasks.

Second, information can be represented semantically by
the functional structure of a physical system. The causal
order between the material components of a system is then
regarded as an implementation of the semantic structure of
information by a physical medium. This semantic structure
is constituted by codes. A code connects two syntactic struc-
tures with each other. ‘Code’ is the information-theoretic
name of a mapping that relates, in case of encoding, each
of the possible syntactic elements of a message to a possi-
ble element of a signal and, in case of decoding, each of the
possible syntactic elements of a signal to a possible element
of a message (Cover and Thomas, 2006). The dynamics of
self-organisation of the physical medium implements the se-
mantic structure of information by encoding and decoding
syntactic structures in physical processes. From the perspec-
tive of semantics, it is necessary to interpret the present state
of (a part of) a system as encoding the future state (of an-
other part) of it. An important semantic criterion for classi-
fying computational media is how general the codes used in
a medium to implement semantic representations of infor-
mation are, i.e., to which degree the codes are able to dif-
ferentiate between possible messages under given boundary
conditions.

Third, information can be represented pragmatically by
the behavioural structure of a physical system. The pat-
tern of interaction between the system and its environment
is then regarded as an effectuation of the pragmatic structure
of information through the agency of a physical medium.
The pragmatic structure is constituted by transformations of
boundary conditions on coding. When is a message selected
for being encoded, when is a signal decoded, and how does
the code originate? Generalising the idea that information is
constituted pragmatically by the effect of a signal on its re-
ceiver (MacKay, 1969), the definition of the pragmatic struc-
ture of information involves at least two syntactic orders and
one semantic mapping. The dynamics of self-organisation
of the physical medium changes internal and external con-
ditions of information processing in the system. From the
perspective of pragmatics, it is necessary to interact with
the present behaviour of a system in order to let its dynam-
ics lead it to a particular future behaviour. An important
criterion for classifying computational media from a prag-
matic perspective is how versatile media are in effectuating
transformations of the system’s behaviour under changing
boundary conditions, i.e., to which degree the behaviour of
the system is able to adapt itself to different environments.

A theory of bounded computability, which relates
generic traits of information-processing systems with spe-
cific physico-chemical constraints on the realisation of such
systems in different classes of computational media, must
deal with the interplay of syntactic efficiency, semantic gen-
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erality, and pragmatic versatility. To get a first idea of this in-
terplay, a real computing system whose further development
requires information-theoretic backing, should be analysed.
For this purpose, the following section introduces a naturally
evolved information processor, and the section after the next
describes how it is used in a bio-hybrid robot controller.

Physarum polycephalum as Information
Processor

The plasmodium of the true slime mould, Physarum poly-
cephalum, is an amoeba-like unicellular organism, whose
body size ranges from several hundred microns to a radius
of more than one meter (Fig. 1). Despite its large size, the
single cell acts as an integrated organism and is known for
its distributed information processing.

A plasmodial cell of Physarum polycephalum consists of
an ectoplasm tube that encloses an endoplasmic core. The
former is a gel membrane layer, while the latter is a more
fluid state of the protoplasm (Wohlfarth-Bottermann, 1979).
In the ectoplasm tube, cytoplasmic actomyosin periodically
aggregates to form sheet-like structures and then unravels
into fibrils. These structural changes create a hydrostatic
pressure gradient within the cell, and eventually give rise to
a flow of ectoplasm shuttling from one location in the cell
to other parts of the cell and back. If a cell is not stim-
ulated, this contractile rhythm is synchronised throughout
the cell. However, when a local part of a cell is exposed to
an external stimulus such as food or white light, it leads to
desynchronisation of the rhythm. The frequency of the os-
cillating rhythm at the stimulated part increases if it is an
attractive stimulus, or decreases if it is repulsive. Such local
frequency change affects oscillations of other parts through
protoplasmic streaming and forms a spatial phase pattern in
the cell (Hejnowicz and Wohlfarth-Bottermann, 1980; Mat-
sumoto et al., 1986; Tanaka et al., 1987). The emerging
global phase pattern eventually determines the direction of
migration, i.e., the behaviour of the organism (Matsumoto
et al., 1988).

This mode of information processing affords scalability
to the plasmodium. As long as the plasmodium is able to
form the phase gradient of the contractile oscillation rhythm
within its single-cell body, it reacts to various external stim-
uli in the same fashion no matter how large it grows. Central
to this size-invariant behaviour is the spatial phase pattern
of the oscillation rhythm formed within a cell. It emerges
from the interaction of the intracellular dynamics of the plas-
modium and the environment triggered by a contact with an
external stimulus and the plasmodium. Several theoretical
models have been proposed to explain the behaviour (Miura
and Yano, 1998; Miyake et al., 1996) based on the theory of
positional information (Gierer and Meinhardt, 1972). It is
interesting to note, that the information processing in the cell
can access information about past states. Nakagaki and his
colleagues found if it is exposed to periodic environmental

changes the plasmodium is able to anticipate the next change
by changing its behaviour at the time a periodic change is
next due to occur; the memory persists over several hours
(Saigusa et al., 2008).

A B

Electrodes

Physarum
plasmodia

Figure 1: The plasmodium of the true slime mould
Physarum polycephalum growing on the 1.5 % agar gel plate
(A) and growing in the Physarum chip (B). A white bar on
each panel is 5 mm.

Cellular Robot Control
The information-processing abilities of the plasmodium to-
gether with its humble requirements, suggest to use this sim-
ple organism in hybrid systems that fulfil some function for
the generation of adaptive behaviour in engineered systems.
For this purpose, the contractile oscillation dynamics of the
cell was employed to control a robot.

Previously we worked on a bio-hybrid robot system con-
trolled by the plasmodium, in which a robot and the plas-
modium are connected with a bi-directional optical inter-
face (cf. Tsuda et al., 2006a,b). However, the optical in-
terface design sets the limit for the complete integration of
the cell into bio-hybrid robot devices because the robot was
remotely controlled by the plasmodium, which was located
under a microscope in a humidity-controlled chamber.

Our recent work addresses this issue. As seen in other
robotic systems using uncomventional computing devices
(Adamatzky et al., 2004), we focused on an on-board robot
controller design to integrate the plasmodium into an au-
tonomous robot. For implementing the design, a new in-
terface between the robot and the cell is required. The opti-
cal measurement of the plasmodium’s oscillations required
bulky equipment and it was therefore desirable to explore
other technologies for monitoring the activity of the plas-
modium. A custom circuit board for electrical impedance
spectroscopy (EIS) has been developed (Macey, 2007) and
mounted on a small wheeled robot platform (Jones, 2006).

Figure 2 shows the new setup of the bio-hybrid robotic
system. The system consists of four components: a
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EIS Board Physarum Chip

Constraint sensor Gumstix

Figure 2: The complete setup of the robotic system driven
by the Physarum plasmodium.

Physarum chip (Fig. 1B), the EIS board, a small gumstix
computer, and a wheeled robot base. In this configuration
the cell’s oscillations are read through impedance measure-
ments and mapped onto the wheel motion of the robot base.
The current implementation of the un-tethered robot still
lacks the interface between the cell and sensors on the robot,
i.e., the robot is driven by the cell’s oscillating pattern with-
out any feedback to the cell.

The Physarum chip is a small printed circuit board (PCB)
containing two plasmodial cells and mounted with a plexi
glass frame to the EIS circuit board. Each plasmodium is
confined in a dumbbell-shaped cut-out of the PCB sheet,
as shown in Fig. 1B. The dumbbell-shape design follows
(Takamatsu et al., 2000a,b) who studied the oscillation pat-
terns of the plasmodium confined to this shape.

The impedance measurement circuitry (EIS board) allows
for non-invasive monitoring of the plasmodium’s oscillation
activity. Fig. 3A and B show signals from two consecutive
time periods of a single experiment. The two curves show
the magnitude of the impedance from the left and right cir-
cular areas (wells) of the dumbbell shaped plasmodium af-
ter a noise filter has been applied. Measured impedance data
from the EIS board is converted into commands for the robot
control and stored for subsequent analysis by the on-board
gumstix computer.

It is known that the plasmodium if confined to the dumb-
bell shape show in-phase and out-of-phase oscillation pat-
terns between the two wells (cf. Takamatsu et al., 2000b).
Based on this observation, we introduced a simple mapping

from oscillations to robot movement. The mapping is in-
spired by the motor-control in bacterial chemotaxis (Adler
and Tso, 1974; Scharf et al., 1998): If the signal from the left
well and the signal from the right well are in synchrony, the
robot pivots either left or right randomly, otherwise the robot
moves straight. The update cycle from impedance measure-
ment to change of robot behaviour is once per second; for
details see the materials and methods section at the end.

The trajectories of the robot that results from this mapping
are shown in Fig. 3C and D. During the time period shown in
panel A of Fig. 3, the oscillations of the two parts of the plas-
modium cell are predominately synchronised and accord-
ingly the robots trajectory shows many random pivot turns
(Fig. 3C). On the other hand, in the period shown in pan-
els B and D, the robot runs straight more often because the
oscillation pattern switched to an out-of-phase mode about
midway through the period shown in (Fig. 3B).

Although the current implementation of the bio-hybrid
robot has only a one-directional interface from the plasmod-
ium to the robot, the preliminary experiments indicate the
feasibility of integrating a living cell into the controller of an
autonomous robot. The next required step is the implemen-
tation of the converse interface from the robot to the cell,
i.e., inputs to the plasmodium. This may be achieved by
illuminating the cell with white or blue light from LEDs ac-
cording to signals from sensors on the robot. This part of the
interface is still under investigation, however we expect it to
be much simpler to realise than the cell-to-actuator interface
described above.

To close the interaction loop of artificial control, natural
organism, and environment so that it can be used for the con-
struction of an adaptively behaving robot, this loop can be
analysed in terms of information theory. In the following, it
will be described on a coarse-grained level that allows for a
general differentiation between the syntactic, semantic, and
pragmatic representation of information. The focus is on the
plasmodium as a medium that does bounded computation
under specific internal and external physico-chemical con-
straints on information processing.

Application of Information-Theoretic
Framework to the Bio-Hybrid Robot

The following general information-theoretic description of
the interaction loop of artificial control, natural organism,
and environment assumes a bidirectional interface between
the organism and the robot’s sensor and actuators as already
implemented in the earlier, tethered robot (Tsuda et al.,
2007). As mentioned above, a bi-directional interface for the
robot with the integrated cell is still under development. For
the following discussion, however, it is not crucial whether
the plasmodial cell is located in the robot; for practical ap-
plications of course it is.

Where is information represented semantically in the in-
teraction loop? First and foremost, in the code-based func-
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Figure 3: Oscillation of a plasmodium in a Physarum chip and the corresponding trajectories of the robot. The moving-averages
of the magnitude of the impedance at 100k Hz are plotted for 30–500 s (A) and 500–970 s (B). The solid and dotted curves in
the plots correspond to oscillations of the plasmodium from right and left wells, respectively. The phase relationship between
two wells are shown in the bottom of the plots as black (in-phase) and white (out-of-phase) vertical lines. The behaviour of the
robot is determined according to the phase relationship as traced in panel (C) for 30–500 s and panel (D) 500–970 s. A solid
circle indicates the start and an open circle the end of the trajectory.

tional structure of the artificial control. Encoding happens
when stimuli from the robotic light sensors are transduced
to white light signals for the cell. Decoding occurs when
amplitude signals calculated from measured data of the plas-
modium oscillators are processed by software to alter the
motion of the robot actuators. The control software acts as a
decoding device that semantically relates a syntactic repre-
sentation of information (plasmodium oscillation signals) to
another syntactic representation of information (robot mo-
tor signals). All in all, four syntactic representations of in-
formation (external light signals, white light signals for the
plasmodium, oscillation signals from the plasmodium, and
robot motor signals) are related by two semantic represen-
tations of information (namely, the code used for encoding
the light sensor data into white light signals and the code
used for decoding the oscillation data into motor signals).
In-between, the plasmodium connects the two semantic rep-
resentations by bounded computation (see Fig. 4).

Where is information represented pragmatically in the in-
teraction loop? First, the behaviour of the robot that results

from decoding plasmodium oscillation signals into robot
motor signals, changes the boundary conditions on encod-
ing since the effects of the robot’s activity on the environ-
ment are perceived by the robot’s light sensors whose data
is then encoded into white light signals for the cell. Second,
the plasmodium behaves according to its own dynamics in
its direct environment, i.e. in the artificial control. This en-
vironment receives the behaviour of the plasmodium in form
of oscillation data that is decoded into robot motor signals.
The pragmatic interaction of the plasmodium with its engi-
neered environment is, thus, semantically represented in the
very same environment and then pragmatically represented
by the behaviour of the robot in its real-world environment.
Connecting the relation of the robot to its real-world envi-
ronment with the relation of the plasmodium to its artifi-
cial environment, it results that the semantic structure of the
robot control device (in short, its control semantics) is given
by the two codes mentioned above. They map two differ-
ent pragmatic representations of information to each other,
namely the behaviour of the plasmodium and the behaviour
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Figure 4: Interaction loop of Physarum-controlled robot.
Each part of the diagram corresponds to either syntax (no
box), semantics (solid box), or pragmatics (dotted box).

of the robot (see Fig. 4).
Given a particular control semantics and a specific envi-

ronment, the behaviour of the robot can be anticipated by an
external observer. This does not necessarily mean the bio-
hybrid robot system would always behave as its designer or
observer expects. The key issue here is how we can exploit
the cell’s self-organising dynamics to achieve a fully au-
tonomous robot. Arguably, biological cells outperform con-
ventional autonomous robots in many features by exploiting
pragmatic versatility, i.e. the high degree to which the cells
are able to adapt their behaviour to different environments.

In fact, several researchers have observed that the plas-
modium is able to spontaneously change its behaviour pat-
tern against external stimuli to overcome unfavourable con-
ditions (Aono and Hara, 2007; Nomura, 2001; Takamatsu
et al., 2004). For example, Takamatsu found that if the plas-
modium is entrained to oscillate at a fixed frequency by ex-
ternal periodically-changing stimulus, it spontaneously de-
viates from the frequency after a certain period even if the
stimulus is maintained. She speculated that such sponta-
neous change might stem from multistability or chaotic be-
haviour of the plasmodium’s dynamics and may contribute
to the diversity of behavioural modes of the plasmodium,
such as food-searching mode and feeding mode (Takamatsu
et al., 2004).

Although physiological mechanisms underlying such be-
haviour are yet to be investigated, these observations point
to richness of the cell’s internal dynamics. However, they
also point to the lack of theory about relations between the
dynamics of physico-chemical material structures and their
use as computational media. The conventional computing
paradigm assumes perfection of each part in a system. It
is, therefore, inadequate when we want to harness the prag-
matic versatility of the plasmodium, which results from the
richness of its self-organised processing of syntactic repre-
sentations of information, by a control semantics that allows
the robot to adapt its behaviour to a real-world environment.

The development of a control semantics for devices like
the plasmodium-based robot controller is an important en-
gineering contribution to the construction of a general ar-

chitecture for unconventional computers. This architecture
could be described in the conceptual framework of a the-
ory of bounded computability that relates generic traits of
information-processing systems with physico-chemical con-
straints on the realisation of such systems in different classes
of computational media.

The information-theoretic sketch of some processes in the
bio-hybrid controller given above hints at general features
that seem to be fundamental to the architecture of such de-
vices, and perhaps of other unconventional computing sys-
tems, too. However, the largely varying physico-chemical
properties of the computational media used in those sys-
tems make it difficult to propose bold yet reasonable gen-
eralisations. The following remarks that address syntactic
efficiency, semantic generality, and pragmatic versatility try
to make a virtue out of necessity by drawing some conse-
quences from the significance of specific physico-chemical
properties of unconventional computational media.

First, the material features of computational media like
the plasmodium appear, from the perspective of the con-
troller, as constraints on the processing of syntactic repre-
sentations of information. Information processing by the
computational medium has, of course, also internal semantic
and pragmatic aspects. There exist, e.g., semantic represen-
tations of information in the cell like the organic code that
structures the expression of genetic information in the plas-
modium (Barbieri, 2003). Yet from the perspective of the
controller those cell-internal aspects are to be considered
just as constraints on the efficiency of processing syntac-
tic representations of information that are actualised in the
cell’s environment. Therefore, the syntactic effectiveness of
the computational medium shows itself in its pragmatic ver-
satility, i.e. the degree to which its behaviour is able to adapt
itself to changing boundary conditions that bear information
syntactically.

Second, the semantic substructures of the controller, the
codes used for encoding external stimuli and for decod-
ing internally collected measurement data, are pragmatically
connected by the behaviour of the computational medium,
i.e. by how it measurably reacts to the encoded stimuli. To
encode information means in pragmatic respect that the con-
trol device sets the boundary conditions on how the compu-
tational medium processes syntactic representations of in-
formation. To decode information means that the control
device semantically represents the pragmatic results of the
information processing by the computational medium. This
functionally differentiated interplay of semantics and prag-
matics in the controller is as important as the syntactic effi-
ciency of the isolated organic computational medium, since
it is the means by which the pragmatic versatility of the cell
is also detectable in the behaviour of the robot.

Third, from the perspective of the computational medium,
the control device is a behaviour amplifier. The microscopic
behaviour of a cell is amplified to the macroscopic behaviour
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of a robot by semantic means. This suggests to think about
the generality of codes, i.e., about the degree to which they
are able to differentiate between possible messages under
given pragmatic boundary conditions, in terms of the grain-
iness of behaviours between which the implemented codes
can differentiate. The finer the behavioural differences of
the cell that a code can semantically represent are, the more
general the code is in respect to this particular control set-
ting.

These remarks highlight some features of the interplay
between syntactic, semantic, and pragmatic representations
of information in unconventional computing systems. They
indicate to which information-theoretic problems, not only
the further development of the plasmodium-based robot con-
troller, but also the construction of a general architecture of
unconventional computers should concentrate its attention.

Materials and Methods
Plasmodia of Physarum polycephalum were cultured on 1.5 % agar
gel plate and fed with oat-flakes. They were starved for more than
24 hours before the experiment. When plasmodia are transferred
into the chip, tip portions of the cell taken from the anterior region
of a thin-spread culture are used. The chip, shown in Fig. 1B, can
host two independent plasmodia for monitoring. Each plasmodium
cell is confined in a dumbbell-shaped cut-out of a thin sheet of
printed circuit board (470 µm). To maintain the moisture required
by the cell, the PCB is covered on one side with an approximately
0.5 mm thick layer of 1.5 % agar gel, and on the other side with an
approximately 50 µm thick sheet of the gas-permeable elastomer
polydimethylsiloxane (PDMS). The copper side of the PCB with
its patterned electrodes faces the agar gel and is insulated from it
with laminate. The stack of PDMS–PCB–Agar is clamped with a
plexiglass frame. This assembly, referred to as “Physarum chip”,
completely encloses the plasmodial cell and provides the necessary
humidity and adequate oxygen supply to keep the cell active for
more than 5 hours.

The dumbbell-shaped design, two 1.6 mm diameter circular
holes at a centre-distance of 2.5 mm connected by a 0.4 mm wide
channel, is modelled on the design reported in Takamatsu et al.
(2000b). A prepared Physarum chip is mounted on the EIS board
and left to stand in a dark place for 2–3 hours or more until the cell
starts steadily oscillating in the chip. The PCB sheet is equipped
with a total of eight pairs of electrodes for the two plasmodia sam-
ples, two electrode pairs for each well (Fig. 1B). During the incu-
bating period, electrical impedances of plasmodia at 100 kHz AC
frequency are constantly monitored via these electrodes to trace the
oscillatory activity of the cells. Based on the strength of the oscil-
lation signal recorded, one of two plasmodia is selected to be used
for the control of the robot.

In the robot control experiment, impedances of the plasmodia
at the eight points are measured once per second and saved in the
flash memory of the gumstix computer. Although the data from all
eight electrode pairs are recorded throughout the experiment, only
one of two electrode pairs available at each well is selected for the
control of the robot. As in the case of selecting a plasmodium, the
criterion is the strength of the oscillation signal received from the
electrode pair.

The robot carries a computer 8×3.5×2 cm3 in size
on which a customised Linux kernel has been installed
(www.gumstix.com). This computer serves for signal process-
ing and as a data logger, recording the impedance measurements in

flash memory for off-line analysis. To this end the computer con-
figures the EIS board over an I2C bus, configures the impedance
circuitry, controls the analog-switches that multiplex among the
electrodes and retrieves the impedance measurements. After the
signal processing described below, the computer sends commands
to a microcontroller in the wheeled robot base.

The wheeled robot base is a minimalist design based on
the Braitenberg vehicles (Braitenberg, 1984). It allows for the
Physarum chip, the EIS board, and the gumstix computer to be
mounted, and accommodates the necessary power supplies. The
base has its own microcontroller that translates simple commands
(forward, left, right) to the drive level of the stepper motors. The
microcontroller also monitors two infra-red proximity switches and
ignores forward commands if one of these switches detects a cliff.
This effectively constrains the robot to the area of the table that
serves as arena for experiments.

A two-step process converts the measured impedance signals
into drive commands for the robot base: Signal processing to re-
cover the oscillation state of the cell from the impedance measure-
ments, and mapping of the cells oscillation state into actuator com-
mands.

First, the moving average over 15 samples (≈ 15 seconds) of
recorded data is calculated to reduce noise in the impedance mea-
surements. At present the circuitry on the robot has not been op-
timised to reduce noise, but the signals are strong enough that the
simple moving average filter works sufficiently well for our pur-
pose. The curves in Fig. 3A and B show the signals after the noise
filtering step. Next a differential of the averaged signal is com-
puted by subtracting the 15 s delayed signal to remove the long-
term trend of the signals (Nakagaki et al., 1996).

After the signal processing, a command to drive the robot is de-
termined according to the phase relationship between the differen-
tial signals from both wells: If the two wells are in phase (syn-
chronised mode), the robot takes a random turn. If they are out
of phase (phase delayed mode), then it moves straight. The phase
relationship is classified by the following simple rule: If the signs
of the two differential signals are equal (both oscillations are in-
creasing or both are decreasing) the oscillation state is classified as
synchronised mode. If the signs of the differential signals differ the
oscillation state is classified as phase delayed mode. The former is
mapped into a random choice of either a “left” or a “right” com-
mand, the latter is mapped into a “forward” command. The whole
conversion cycle is performed once per second and commands for
the robot’s actuators are issued accordingly.

The robot system was tested on a 1 m diameter round table, the
robot being constraint to this area by the cliff sensing described
above. Position and direction of the robot are tracked by an Eth-
ernet camera mounted above the table using an illuminated target
pattern on top of the robot.
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Abstract

In this paper we study the role of movement strategies during
learning in object recognition models. We show that a simple
model, the RBF, can outperform a more complex hierarchi-
cal model, the HMAX, when rotation and scale invariance
are provided by the training phase. Moreover, we assess the
exploitation of temporal information by the RBF using optic
flow. The results show that the RBF model can only exploit
the temporal information using optic flow when the training
and testing trajectories are the same. This work exemplifies
the idea that the complexity of the neural mechanisms in ob-
ject recognition can be understood not only in the brain but
also in the interaction between brain, body and environment.

Introduction
Object recognition is a very complex computational task that
has been widely studied. Whereas visual systems in na-
ture solve this task with exceptional reliability and speed,
the performance of artificial visual systems is still far from
their counterpart in nature. We are interested in the explo-
ration of ways active vision can help biologically inspired
models of object recognition in autonomous agents. In or-
der to understand the visual processes in the brain and de-
sign artificial visual systems, various models have been pro-
posed for object recognition based on different perception
theories. These models can be classified as object-based
or view-based. The former category describes models that
“extract” structural features or parts of the object that are
view-invariant in a 3D coordinate system centred on the ob-
ject. In contrast, view-based models represent objects as a
combination or set of features extracted directly from the
image.For a review of models and theories of perception
see (Riesenhuber and Poggio, 2000; Peters, 2000). Most
state-of-the-art models are view-based, which in turn, are
divided by the way they extract the view-based features.
Some computer-vision based models use statistical regular-
ities extracted from the images, mainly using, template or
histogram systems (bag-of-features, nearest-neighbour, etc.)
(Wang et al., 2006; Zhang et al., 2006; Lazebnik et al.,
2006). Others are biologically inspired, resembling the hi-
erarchical nature of the visual cortex (Riesenhuber and Pog-

gio, 1999; Poggio and Edelman, 1990; Serre et al., 2005;
Mutch and Lowe, 2006).
Template-based models perform very well on object

recognition of single object category (e.g. faces, cars, etc.).
However, these methods show limitations when the object
is subject to appearance modifications, suffering from high
specificity and therefore, lacking invariance to object trans-
formations. Histogram-based models show a large amount
of invariance to transformations but their performance drops
for general object recognition tasks (i.e. with multiple object
categories) (Serre et al., 2005). Biologically inspired mod-
els for object recognition have been gaining interest because
they perform very well for general purpose object recogni-
tion tasks (Pinto et al., 2008).(Serre et al., 2005), presented
a modified hierarchical model based on (Riesenhuber and
Poggio, 1999) and reported it to be at least comparable to
the best computer vision-based systems.
A common baseline of these systems is that they do not

acquire the incoming visual information by themselves, the
way the visual information is presented to them is restricted
by the experimenter. In some cases, these imposed restric-
tions can play an important role in the recognition process
and hence, in the performance and evaluation of models.
For example, in (Bermudez-Contreras et al., 2007), it was
shown that a simple model of the primary visual cortex
[(RBF), (Howell and Buxton, 1995; Poggio and Edelman,
1990)]can perform just as well as a complex hierarchical
model [(HMAX), (Riesenhuber and Poggio, 1999)] when
natural conditions are present and the former is augmented
by a simple ‘attentional mechanism’. In addition, in (Pinto
et al., 2008), a comparison between state-of-the-art object
recognition systems and a simple V1-like model is carried
out. They show that by imposing conditions on the way the
visual information is presented to the systems (taken from
databases of natural images), the simple biological model
outperforms all of the state-of-the-art systems presented.
Given this importance, an additional fact to be considered

when studying or modelling visual systems is that, in na-
ture, visual systems are active. In active vision, the control
of acquisition of visual information is part of the system.
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It is well known that the restrictions imposed by the inter-
action between body and environment can facilitate visual
processing (Aloimonos, 1993). Active vision strategies are
important both in recognition and in visual learning. For in-
stance, insects utilise specific movement strategies in order
to learn how to perform various visually guided tasks includ-
ing homing, navigation, and finding conspecifics (Lehrer
and Bianco, 2000; Collett and Rees, 1997; Carwright and
Collett, 1983). Therefore, in the study and modelling of vi-
sual systems, it is important to consider the way incoming
visual information is acquired.
There have been relatively only a few studies that anal-

yse the role of motion and object recognition. Arbel and
Ferrie (2002, 2001) propose a paradigm to facilitate object
recognition of a system. Most of the research work on visual
systems in autonomous robots is oriented to navigation, with
some exceptions. For example, in (Gvozdjak and Li, 1998),
the importance of active vision in an agent for recogni-
tion tasks is highlighted using a hierarchical template-based
model. In (Andreasson and Duckett, 2003), an exploratory
study of object recognition using a mobile robot with an
omni-directional camera is presented. The robot tracks ex-
tracted low-level features and constructs higher level fea-
tures for object identification. While these works are ex-
ploratory, they show the potential of active vision in object
recognition tasks. Furthermore, given the success of object
recognition models that reflect the hierarchical nature of the
visual cortex, we evaluate the importance of the role of vi-
sual information acquisition processes in these models.
In this work, we analyse how different movement strate-

gies during training affect the performance of a version of
the HMAX model and the RBF model. We employ a mobile
agent in a simulated world with a simple object recognition
task. We find that movement strategies are exploited dif-
ferently for both models. When a movement strategy does
not provide the opportunity to develop rotation and transla-
tion invariance, the HMAX model performs better than the
RBF. However, when such opportunities are provided, the
RBF model outperforms the HMAX model. These results
suggest that exploiting the dynamics of agent-environment
interaction can, in certain circumstances, obviate the need
for complex models of visual object recognition. We also
consider whether the RBF model performance can be further
enhanced by training and testing using dynamic visual sig-
nals generated during each movement strategy. We find that
such time dependent information is only exploited by the
RBF model when the training and testing movement strate-
gies are the same.

Methods
The following experiments involve a simulated agent per-
forming a simple object recognition task. The agent-
environment system comprises a simple wheeled agent in
a flat planar environment containing two objects (a ‘kettle’

and a ‘bolt’), simulated using the OpenGL library. It is im-
portant to mention that the goal of this exploratory study is to
investigate how the way of acquiring visual information can
affect the recognition process in two models of object recog-
nition rather than comparing their performance. The visual
object recognition system of the agent comprises three parts:
a ‘blob detection mechanism’ (BDM), an ‘analysis module’
consisting of either the HMAX or the RBF model, and a
‘classifier module’ which classifies the output of the anal-
ysis module into one of two categories (kettle’ or ‘bolt’).
Each experiment consisted of two phases. First, a learn-
ing phase in which the agent followed one of four different
movement strategies (see figure 3) while collecting training
views which are used to train either the HMAX or the RBF
model. Second, a testing phase, during which the agent fol-
lows a separate movement strategy (see figure 2A) while col-
lecting views used to test object recognition performance.
Blob detection mechanism. The BDM selects the area

of the visual field containing the object. It is the ‘attentional
mechanism’ referred to in the introduction. Cropped regions
returned by the BDM are normalised to 60 × 80 pixels (a
blob) before being processed by the analysis module. The
BDM therefore provides some robustness to changes in the
size of objects. The order in which blobs are processed by
the visual system is determined by the area of the blob de-
tected. The larger the area of the blob in the visual field, the
higher the priority of being processed by the visual system
[see (Bermudez and Seth, 2007) for a more detailed expla-
nation of the visual system of the agent].
Analysis module. The analysis module processes visual

information coming from the BDM (current views). These
views are processed by either the HMAX or the RBF model.
The RBF model emulates simple cells in the primary visual
cortex, V1, based on the function of receptive fields imple-
mented by using Derivative of Gaussian filters with different
orientations and sizes. The RBF model uses four different
sizes of square filters with sides of 7, 11, 15 and 21 units
and 0, 45, 90, and 135 degrees of orientation. There are
therefore 16 different filters in total with outputs respond-
ing to oriented ’edges’ at different spatial scales. Therefore,
this model responds only to a collection of simple primary
features. In contrast, the HMAXmodel proposed in (Riesen-
huber and Poggio, 1999) is a hierarchical model resembling
the ventral pathway in the visual cortex. The HMAX model
consists of four layers (S1, C1, S2 and C2) resembling sim-
ple and complex cells in the ventral pathway. Units in S1
would correspond to simple features detected by the differ-
ent filters of the RBF model. The next layer C1, responds to
the most salient features in S1 at each orientation and spatial
scale. It achieves this by applying max pooling operations
(extracting the most salient features across the different ori-
entations and spatial scales) over the selected features in S1.
The next layer, S2 combines the output of C1 into a higher
order features sets which are passed into C2 where the out-
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puts are again max pooled to produce a vector of the domi-
nant features detected along the hierarchy (see details of the
original model in (Riesenhuber and Poggio, 1999) and de-
tails of this implementation in (Bermudez-Contreras et al.,
2007)). By virtue of its hierarchical structure, this model
shows a degree of translation and scale invariance.
Classifier module.

Figure 1: View Tuned Unit (VTU): each view vector ci is the
centre of a Gaussian function. The more similar a vector x is to a
centre, the stronger the response of the unit.

The classifier module is based on the work of (Edelman
and Duvdevani-Bar, 1997; Poggio and Edelman, 1990). It
uses view tuned units (VTU) to recognise objects. There is
one VTU for each object. Each VTU is trained to respond
so that it responds strongly to test views that are similar to
the training views of the object. Each VTU (see figure 1)
corresponds to a set of radial basis functions (RBF unit). A
RBF unit is a Gaussian function G centered on each view
ci collected during the training phase. The response of each
RBF is given by G(ci, v) = e−‖ci−v‖/σ2

i where v is the
vector that is being classified.
The response y of each VTU for a test vector x is given

by y = ΣiWiG(vi, x), that is, y is a linear combination
of weights Wi and G(vi, x). The weights Wi are com-
puted using an inversion matrix procedure (the details are
described in the appendix section in (Bermudez-Contreras
et al., 2007)).
Movement strategies. The training views were collected

when the agent was navigating around or approaching the
object, following one of four different trajectories (these
trajectories are called movement strategies throughout the
rest of this paper). The training views were processed by
the analysis module (using the RBF model or the HMAX
model) and learned and classified by the classifier module.
The properties of the set of training views changed de-

pending upon the movement strategy used during their col-
lection. These strategies were designed in order to pro-
vide different properties in the training views (see figure 3).

movement strategy 1 allows the agent to exploit the different
training distances while using the same point of view. There-
fore, the training views using this strategy only provide vari-
ance in scale. Strategy 2 provides a small degree of variance
in perceived rotation (points of view) and a small degree of
variance in scale as well, since the agent is passing in front
of the target object. The point of view changes slightly as the
distance between the agent and the object changes. Strategy
3 provides only variance in points of view since the distance
between the agent and the object is always the same, while
the point of view changes for each training view. Strategy
4 provides a combination of variance in scale and point of
view since the distance and the perspective of the agent to
the object are changing continuously. For each strategy, 16
training views are taken for each object at regular time inter-
vals. Therefore, training phases varied in length from 160 to
200 time steps depending on the movement strategy used.
In the testing phase, the agents followed a trajectory (test-

ing trajectory) that differs from the movement strategies
used in the learning phase. The testing trajectory was de-
signed so it would resemble a plausible situation in the real
world where the objects are approached in a natural way
that provides views of the objects from multiple angles and
scales (see figure 2). The testing phase lasted for 200 time
steps. During the first 55 steps (period 1) object 1 was
present in the visual field and during 125-180 (period 2) ob-
ject 2 was present in the visual field (see testing trajectory in
figure 2).
Optic flow. An important consequence of actively explor-

ing the world is the visual motion that this evokes. Optic
flow is defined as this type of motion. In our study, we
calculated a simple approximation of optic flow by taking
the absolute difference between consecutive views i and j,
F = 1/2 · ‖RBF (i) − RBF (j)‖ after being processed by
the RBF model. For the rest of the paper, F is referred to as
RBF optic flow.

Experiment 1: Movement strategies
To assess the role of active vision in the object recognition
models, we tested the RBF and HMAX using the different
movement strategies shown in figure 3 during the learning
phase. The models are then tested while the agent traverses
the testing trajectory shown in figure 2A. The results are
shown in figure 3.
For strategy 1, HMAXoutperforms the RBFmodel. Since

this movement strategy presents the objects from a single
point of view, the models can only acquire scale invariance.
For a simple model like the RBF, this strategy would only
work if the objects were viewed from a similar perspective
to training during the test phase. Since this is not the case
(the point of view is changing and is different from training),
the RBF model cannot closely match test views to training.
However, the HMAX model is able to generalise when a
limited point of view is provided during training. This is
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Figure 2: A. Testing trajectory: the grey segments represent the periods where objects were present in the visual field. B. Visual field of
the agent: shows object 1 in the field of view. C. Sample views of object 1 and object 2: object 1 is a rounded object so it does not have a
significant variability to rotation, in contrast, object 2 has a significantly higher variability to rotation due to its vertical inclination.

because the features extracted by HMAX from a single per-
spective capture higher order properties of the objects which
are in some sense independent of the angle it is viewed at.
For strategy 2, the results are very similar to the previous
case as the training views are again taken from a limited
set of angular positions. However, when the point of view
is varied significantly during the training phase in strategy
3, the RBF model’s performance increases greatly. Since
the number of points of view is significantly increased, the
RBF can achieve a close match between the training and
the test views. In contrast, HMAX’s performance decreases,
demonstrating that its discriminability can be reduced when
the variability of the training views is increased. Similar re-
sults are obtained for strategy 4 where both point of view
and scale are changed during training.
The reason the models’ performance changes with differ-

ent movement strategies has to do with the way the objects
change with the movement of the agent and also with the
features detected by each model. In particular, the variabil-
ity of the objects to rotation is significantly different. As ob-
ject 1 is quite round (see figure 2), its image does not change
significantly when the agent rotates around it (especially at
large distances). In contrast, object 2 has a vertical orienta-
tion which makes it very variable when the point of view is
changed.
Since the RBF model responds mainly to oriented edges

(as it simply comprises a set of differently oriented filters
at different spatial scales), its response depends on a close
match between the test and the training views and we would
expect it to fail when a close match is not possible. When the
points of view are limited (strategy 1 and strategy 2), since
the features detected for object 1 do not change significantly
with the change of perspective (along the testing trajectory),
the RBF model has a relatively close match between train-
ing and test views. Object 2 is difficult to discriminate, how-
ever, as it changes significantly along the testing trajectory.
Thus the overall performance on these strategies is around

50%. Because the HMAX model acts on a combination of
the dominant features detected by the RBF (since its first
layer is the RBF), it responds to a more generalised pattern
of features, rather than a close match. Since object 1 does
not change significantly, the dominant features will be the
ones responding to the main orientation of the object (hori-
zontal). For object 2, if the object is seen from a single point
of view, the dominant features will be the ones correspond-
ing to the main orientation of the object, roughly 30 degrees
from the vertical in the case of strategy 1. These features
(which form the HMAX template for object 2), will be dif-
ferent to the dominant features detected for object 1 (which
form the HMAX template for object 1), so the discriminabil-
ity of the HMAX model is high in this case.
In contrast, when the point of view is varied significantly

during the training phase (strategies 3 and 4), the RBF
achieves a close match. Since there are more points of views
in the training set, the model can cope with object rotation.
In the case of the HMAX model, since object 2 changes its
orientation during training, the model extracts dominant fea-
tures in many orientations, which form a very general tem-
plate and thus decrease object discriminability. This sce-
nario is depicted in figure 4 which shows the models’ output
after training with strategy 3. The objects are within the field
of view in different periods (grey segments in figure 2) dur-
ing the 200 time step trial. In period 1 (1-55 time steps)
object 1 is within the field of view, and in period 2 (125-
180 time steps) object 2 is within the field of view. For the
RBF model, the agent can correctly discriminate both ob-
jects. Note the peak in output that corresponds to a close
match between test and training view (around time step 37).
In the case of the HMAX model, while there is no problem
with period 1, in period 2 discriminability is reduced signif-
icantly.
Similarity maps further explain the discrimination ability

of the models (figure 5). A similarity map is a diagram rep-
resenting the similarity between the current view (the one
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Figure 3: Movement strategies and models’ performance. The performance of the models refers to the number of times the model has
a correct guess over the test phase. During the following trajectories, the agent takes snapshots at uniform intervals. Strategy 1: the agent
approaches the object in a straight line. Strategy 2: the agent passes the object following a straight line. Strategy 3: the agent circles the object
with a fixed radius. Strategy 4: the agent spirals the object. The performance of the RBF model increases when the movement strategies allow
it to exploit the rotational information during training. In contrast, the HMAX model performance decreases when the model is exposed to
multiple rotational views during training in strategies 3 and 4.
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Figure 4: RBF and HMAX models activity during the test phase
using strategy 3. When the movement strategy provides multiple
points of view during the learning phase, the RBF can have a close
match between the training and the test views. In contrast, the
HMAX model decreases its discriminability when more points of
view are considered. Period 1 represents the time when object 1 is
within the visual field. Period 2 is the time when object 2 is within
the visual field.

extracted from the visual field) and the training views of the
objects (Y axis) at every time step (X axis). Every point in
the map has a grey-scale value dependent on the distance be-
tween the current view and the training view after processing
by the analysis module. The darker a point, the smaller the
distance between the views, where distance is the sum of the
absolute difference between the views. Each map is divided
in two periods which correspond to points where the objects
are in the agents’ visual field (see figure 2). In the first 55
time steps (period 1), object 1 is present in the visual field
and during period 2 (from 125-180), object 2 is in the visual
field.

The upper part of figure 5 shows the similarity between
views for the RBF, while the lower shows the similarity
map for the HMAX model (HMAX views). If a model was
responding correctly, we would expect darker areas in the
lower region of period 1 and in the upper region of period
2. The similarity map for the RBF has these general fea-
tures as it has acquired a degree of both rotation and scale
invariance from the training trajectory. The responses of the
HMAX model however, show that the higher level features
extracted for each object are too similar for the two objects
to be discriminated reliably.

Thus we see that the performance advantage of the com-
plex HMAX model over the RBF can be achieved by an ac-
tive vision strategy which uses its motion to provide gen-
eralised rotational information. Moreover, we note that
HMAX can fail if the views provided to it are too dissim-
ilar.
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Figure 5: Similarity maps of the models using strategy 3. The
darker the regions in each map, the more similar the corresponding
views. For the RBF map there is an obvious darker region in the
left lower area (corresponding to the views of object 1) for the first
period, and a smaller darker region in the right upper area (corre-
sponding to the views of the object 2). In contrast, for the HMAX
similarity map dark areas appear during both periods for views as-
sociated with both objects.

Experiment 2: RBF Optic flow
Above, we have seen how the RBF exploits multiple view-
points in training to achieve reliable object discrimination.
However, embodied visual systems gather information by
moving not only in space (defining the perceived properties
of the world) but also in time. In these experiments we ex-
plore the role of time dependency in the presentation of the
training views during learning. To do this we have assessed
the performance of the RBF model when we provided it with
optic flow type information (seeMethods). The performance
of the RBF model with and without optic flow are shown in
table 1. The results are broadly similar showing that optic
flow information can be exploited by the RBF and provides
the same invariances to rotation and scale as when the model
was trained on a series of static images (Figure 4).

strategy non-optic optic
1 50 51
2 51 56
3 92 73
4 94 95

Table 1: Comparison of the performance (%) of the RBF model
with and without optic flow when using the 4 movement strategies.
The performance refers to the number of times the models guess
correctly over the number of time steps in the test phase.

Time dependency in the recognition process. One of
the important properties of optic flow is the time depen-

dency imposed in the recognition process. While the ex-
periment above shows that the model is able to take advan-
tage of differences between successive images, it does not
tell us whether it is using this temporal structure. That is,
it does not tell us whether the order in which the views are
presented during the learning phase is important. To test
this, we trained the RBF model using optic flow with views
taken using strategy 3 as usual or with the order of training
views randomised. To further emphasise the effects of tem-
poral structure the test trajectory used was the same as the
training trajectory.
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Figure 6: RBF model activity trained using strategy 3 and tested
in the same trajectory with randomised ordered training views. (A)
model activity for normal conditions (B) model activity of random
ordered training views.

Given that object 1 is a rounded object and so appears
similar from any perspective while object 2 is more rotation-
ally variable, object 2 was used for this experiment. Figure 6
shows the model activity in using both non-randomized (top)
and randomized (bottom) view sequences when circling ob-
ject 2. While the object can be discriminated in both cases,
in the randomised training case outputs from both VTUs are
very similar. Results (not shown) confirm that for object 1,
variations in the order of the presentation during the training
phase are not as relevant as for object 2. These results show
that if the same movement strategy is used during training
and testing phase, the RBF model with optic flow can ex-
ploit the time dependency imposed in the strategy. We next
consider what happens when the trajectory is not the same:
Is the optic flow-based model robust to changes in the tra-
jectory?
Using a different test trajectory. Robustness in the

recognition signals is an important issue when using move-
ment strategies. It is desirable to have some degree of ro-
bustness in the movement strategies when testing an object
recognition model. In this section, we test the optic flow
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strategy in the visual system to certain perturbations in the
testing trajectory or in the order of the training views. Ini-
tially, to test whether the RBF optic flow changes the activity
of the RBF model when having different training and test-
ing trajectories, we used strategies 3 and 4 during the learn-
ing phase (we used these strategies because they provide
higher rotational and scale variation thus maximizing op-
tic flow), and the testing trajectory during the testing phase
(as in Experiment 1). If the order of the presentation of the

0 20 40 60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

time

RBF ob1
RBF ob2

o
p

ti
c-

ra
n

d
o

m

0 20 40 60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

RBF ob1
RBF ob2

o
p

ti
c-

 n
o

n
-r

an
d

o
m

0 20 40 60 80 100 120 140 160 180 200
0.0

0.2

0.4

0.6

0.8

1.0

RBF ob1
RBF ob2

n
o

n
-o

p
ti

c-
ra

n
d

o
m

cl
as

si
fi

e
r 

   
 m

o
d

u
le

   
  o

u
tp

u
t

strategy 4

period 1 period 2

Figure 7: RBF model activity for strategy 4 under various condi-
tions. Top: no optic flow and randomized training view, model ac-
tivity is the same as in Experiment 1. Middle: optic flow and non-
randomized training views. Bottom: optic flow and randomised
order of training views.

views during the training phase is important, we expect the
model activity to be affected when the order of the train-
ing views is randomised. Figure 7 shows model activity in
three cases: randomized training views without optic flow
(top), non-randomized views with optic flow (middle), and
randomized views with optic flow (bottom). In the case of
non-optic flow scenario (top), the activation is the same as in
Experiment 1 (figure 4) since there is no temporal informa-
tion present. However, when using optic flow the model ac-
tivity is not significantly affected by randomizing the train-
ing views (compare middle and bottom panels of 7). These
results therefore show that the order of the training views
does not significantly affect the RBF model activity when
using optic flow, and when the training and testing move-
ment strategies are not the same. Thus, in contrast to the

previous result (in figure 6), under these conditions the tem-
poral information provided by optic flow is not exploited by
the RBF model.

Conclusion
In this paper we have compared the performance of the RBF
and HMAX models, on their performance when utilizing
embodied movement strategies for training and testing. In
the first experiment, four different movement strategies were
used to collect the training views and a single, distinct test-
ing strategy was used to assess object recognition perfor-
mance. Each training strategy offered different degrees of
variation in point of view and distance, potentially support-
ing the development of rotation invariance and scale invari-
ance respectively. When no rotation variance is present in
the training views, the HMAX model shows a good perfor-
mance. However, when more points of view are provided,
not only does the RBF model outperform the HMAXmodel,
but the HMAX model performs worse than before. Thus, in
what arguably reflects natural viewing conditions, when in-
corporating variance in both point-of-view and distance, the
simple RBF outperforms the more complex HMAX model.
In the second experiment, the role of time dependent visual
information in the learning process was tested using the RBF
model. We found that an RBF model trained on an approxi-
mation of optic flow could exploit the temporal information
in the difference of consecutive views but only in the restric-
tive condition in which training and testing trajectories were
identical. However, when there are significant differences
between training and testing strategies, the RBF model is
unable to take advantage of this temporal information. This
result suggests that optic-flow style information cannot be
assumed to improve visual processing in these conditions
and invites further modelling to investigate how such infor-
mation can best be leveraged by simple models of object
recognition.
Our results exemplify the idea that the natural computa-

tions underlying adaptive behavior are best understood as
being implemented not only in the brain of an organism, but
as well in the interactions that cut across brain, body and
environment. Improved insights into these natural compu-
tations are likely to support the development of enhanced
artificial object recognition technologies. This work can be
extended in different directions. One is considering more
objects in the simulated world. In addition, a study of con-
ditions where temporal information can be exploited to im-
prove object recognition in mobile agents.
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Abstract 
The emergence of specialization remains a true challenge. 
Suppose a world initially filled with specialized and generalist 
agents, and let’s define these later as able to endorse the various 
competences characterizing the specialists and to endorse them 
as well as the specialists. In an evolutionary perspective, it is 
obvious to see why a specialist will always be less adapted than 
a generalist, which can indeed alternatively act as many experts. 
The generalists will meet much more agents and much more 
situations to which they are adapted to and then cumulate much 
more payoff (unless the tasks done by generalists are 
systematically of pitiful quality). This is indeed a paradox to face 
in order to make sense of a world nonetheless full of specialists. 
This paper will discuss various ways, beyond the obvious 
possibility of unfavoring multi-specialization by paying a high 
cost, to allow specialists to survive the presence of generalists.   

Introduction: Specialist vs generalist 
We will here define a specialist as an agent which, in contrast 
to a generalist, can only accomplish a subset of specific tasks.  
This restriction can be explained by either genetic or 
phenotypic specificity or any educational or cultural bias.  As 
a direct consequence, a specialist suffers from lack of 
autonomy; it is never self-sufficient and requires 
complementary specialists to interact with in order to survive. 
A first version of this necessary specialists grouping with 
other complementary specialists is generally designed as 
“mutualism”, for which each specialist contributes by its own 
competence to the interest of another. It is certainly one 
possibility among others to understand the “invisible hand” 
metaphor of Adam Smith, which famously claims that it is not 
from the benevolence of the butcher, the brewer or the baker, 
that we expect our dinner, but from their regard to their own 
interest. The butcher enjoys good bread as much as the baker 
enjoys good meat. Naturally so, the baker will make the best 
bread to the advantage of the butcher who reciprocally will 
prepare the best meat to the benefit of the baker.  
 Another version or justification for this grouping, different 
(as figure 1 shows) from “mutualism”, is “division of labor”, 
for which specialists join together to the benefit of an external 
user, outside of the group. Only this external user, exploiting 
the group of specialists as a whole, can “make sense” of their 
joining together and rewards back any member of the group in 
the case it benefits from their collaboration.  
 

 
 
 
 
   
  
 
 
 
 
 
       

     

Figure 1: Mutualism vs “division of labor”. “10” and “01” are 
just ways of identifying two specializations. 

For specialization to succeed, cooperation is obviously 
needed, relating the problem of the emergence of 
specialization with the one of “cooperation”, made so popular 
since the invention of the “prisoner dilemma” (Nowak, 2006).  
Here we initially see these two problems as orthogonal, 
assuming that cooperation needs to be resolved before 
specialization can take place. Without cooperation no 
specialization turns out to be possible and, indifferently, either 
generalist or specialist can choose to defect in an interaction. 
There will be more to say on that precise topic in the 
conclusions. 

A generalist, on the other hand, can stand alone and execute 
any of the tasks, as a function of which specialist it interacts 
with. Both in the natural and in the human world, 
specialization seems to be the common case. Example of “old 
fashioned” mutualism in the human world could be “husband 
at work” and “housekeeping wife”. Any form of win-win 
commercial exchange is a successful case of mutualism.  
Biology is full of example of mutualism, such as associations 
between plant roots and fungi, with the plant providing 
carbohydrates to the fungus in return for nitrogenous 
compounds and water. Other examples are the Lynn Margulis 
endosymbiotic theory (Margulis, 1998) or the co-virus 
replication, only possible due to the existence of 
complementary virions.   

 
 Regarding the division of labor, an entrepreneurial team of 
construction specialists, composed of plumbers, carpenters 
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and electricians is an alternative to a single handyman. 
Another nice example of contrast between generalists and a 
“division of labor” team of specialists is illustrated in figure 2. 
In nature, examples of “division of labor” are numerous such 
as in insect societies or in the very well studied biological 
reality of slime mold moving (Alexopoulos et al, 2004). As 
will be discussed later, natural selection can favor grouping of 
complementary specialists to improve the fitness of the whole 
group.  
 

 

 

 

 

 
Figure 2: A generalist vs a divided band of specialists 
 

So either in a case of division of labor or in a mutualistic 
one, how could specialization be favored in the presence of 
generalists able to adopt any form of specialization? Obvious 
solutions are that either it costs too much to be generalist or 
the way a generalist accomplishes the task is always worse 
than when done by the agent specialized in that specific task. 
This is an obvious possibility and does not need any further 
justification. However, the main motivation of this paper is to 
propose and discuss further evolutionary roads for 
specialization to emerge in a world possibly inhabited by 
generalists.  
 We will first discard other versions of the problem that this 
paper is definitely not interested in and then describe the ways 
the issue will be addressed. The technical road taken to study 
this problem will be the use of evolutionary games, 
increasingly popular these days for studying the emergence of 
cooperation in a “genuinely” and “rationally” competitive 
world. A computer simulation of a spatial version of 
evolutionary games will be explained and tested on the 
problem. We will illustrate the different ways for 
specialization to emerge, insisting more on the original ones, 
requiring division of labor and the presence of an environment 
able of a large scale observation of the group of specialists. 
We will then conclude by relating this solution with a 
conceptualization of “emergence” that has been advocated in 
previous papers.  

What the problem is definitely not 

An interesting related problem is one of combinatorial 
optimization, as illustrated in figure 3.  It can be enunciated as 
follows. A group of specialists is available and one needs to 
find the best sub-group obtained by sampling some of these 
specialists and grouping them together. A score is associated 
with each possible sub-group, so that in order to find the best 

solution (i.e. the best group of specialists) some form of 
grouping optimization algorithm is required.  
 
 
 
 
 
 
 
 
  
 
  
   

 
    
 
 
 
Figure 3: A combinatorial optimization problem to group the 
specialists in an optimal way.  
 
 While it is an interesting problem per se, the problem is 
definitely not what we are interested in since, in such a case, 
specialization is already there and does not need any form of 
justification. The only challenge is to make use of it in the best 
way but not to question its “raison d’être”. However, many 
engineers remain confronted to this version of the problem and 
it is quite an interesting one for GA users.  

What are the evolutionary driving forces of 
specialization? An evolutionary game study 

The question addressed in this paper is: What can be the 
evolutionary driving forces for specialization to come out in a 
world in which generalists could be as likely and perform the 
task as well as specialists? In other words, what could drive a 
generalist to become specialized? This question could result to 
be unexciting because trivial to answer, or tedious, because 
dealing with a non realistic world (like for instance a world in 
which agent would have no other choice that popping up 
endowed with an innate specialization). We believe this not to 
be the case since both the natural and the human world offer 
many examples of generalist (stem cell, omnivore, medical 
generalists and handyman) and many opportunities for these 
generalists to turn into specialist, provided there is any 
advantage in doing so. So for what specific reasons could a 
generalist choose to specialize?  
 Our favorite way to face the problem is to rely on 
evolutionary games, pioneered by John Maynard-Smith 
(Maynard-Smith, 1989) and very actively studied and 
exploited by researchers such as Martin Nowak (Nowak, 
2006). While the Darwinian inspiration of evolutionary games 
is obvious, these same mathematical and algorithmic tools can 
help to make sense of the social world in which men tend to 
imitate the most successful of their neighbors or colleagues.  
 In what follows, a specialized agent will be defined as a 
binary string of length n, allowing then 2n types of 
specialization. The use of binary strings allows to easily define 
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complementary specialization, by computing the Hamming 
distance between two specializations. For instance, the task 
“00” will perfectly complement the task “11”. Additionally, 
the generalists will be characterized by the presence of the 
John Holland’s don’t care symbols into the binary strings 
(Holland, 1975). For instance, a complete generalist would be 
“##”, while a partial one could be “#1”, making thus possible 
some degree of generalization.  

A simple canonical case 
Let’s focus on the simplest case with n=1 and 3 types of 
agents: “0”, “1” and “#”.  The evolutionary two players game 
payoff matrix for such a simple situation could be given as: 

 

 # 0 1 

# b-c b-c b-c 

0 b-c 0 b 

1 b-c b 0 

with b > c.  
Table 1: The two players payoff matrix 

 
“b” is the reward gained by an agent when benefiting from the 
task done by its complementary partner in the game. Thus 
when two similar agents meet, they gain nothing: “0”. On the 
other hand, in order to make the appearance of specialists a 
challenging issue, a cost “c” penalizes a task done by a 
generalist, so that any agent (either a specialist or a generalist) 
meeting a generalist for a coupled interaction will receive a 
“b-c” reward. The reasons for the “c” could be twofold: either 
generalists can do the same task as specialists but with much 
less competence, or they can perform this task as well but it 
simply costs to be a generalist capable of so many diverse 
specializations. When asking to the layman why they do 
believe that the world is filled with more specialists than 
generalists, this would generally be the kind of answers they 
give: being a generalist means a lack of competence or it is 
simply much harder to achieve.  
 Many other matrices are possible, with easier to justify and 
in general more sophisticated reward values attributed to each 
of the nine possible entries. But for mathematical reasons to 
follow, this elementary matrix is enough to convey the sole 
effect of the cost “c” on the success or disappearance of 
generalists.   
 

 

 

 

 

 
Figure 4: The basis of the mathematical analysis and its result 
illustrated for α = 2 and n = 1. 
Suppose a population of agents decomposed in the following 
way (as illustrated in figure 4), a part xg of generalists and α 
subgroups of complementary specialists xs. The time evolution 

of generalists and specialists can be mathematically described 
as follows, by supposing that any specialist can only interact 
with its unique complementary specialists (and we suppose a 
same concentration xs for any group of specialists), and 
generalists can interact with all generalists and all specialists.  
 
 
 
 
 
 
 
 

             
After some easy manipulations: 
 

 

So that the two possible solutions are: 
 
xs = 0 or xs = 1/α depending on the value of c as compared to 
b(α-1)/α. 
 
We clearly understand here the two main reasons for the 
dominance of generalists over specialists: the cost c and the 
frequency α. The bigger the cost the harder for the generalist 
to survive and the steady-state solution in such a case turns 
out to be a subdivision of the population in α subgroups of 
complementary specialists (illustrated in fig. 4 for two groups 
of complementary specialists). The smaller the specialist 
frequency of encounters (i.e. the higher the “α”) the easier it is 
for generalists to replace specialists, since specialists have 
fewer agents to interact with and fewer opportunities of 
reward.  
 Such a simple mathematical analysis is the reason behind 
the simplicity of the payoff matrix as compared with much 
more sophisticated versions of it (Wahl, 2002, D’Orazzio and 
White, 2006)  (as shown in figure 5 extracted from (Wahl, 
2002)). 
 
 
 
 
 
 
 
 
Figure 5: A finer mathematical analysis of the evolutionary 
game between two groups of specialists and generalists. 
 
Nevertheless, as a matter of fact, the main qualitative results 
remain unchanged through all the various versions of the 
problem. The only way to make specialists survive the 
dominance of generalists is either to increase the cost of 
generalization or to augment the possibility of specialist 
opportunities to cumulate payoff, here the number of 
complementary specialists they can interact with.  

 xg

xs

xg

xs

#

1 0

c

For n = 1 and α = 2#

1 0

c

For n = 1 and α = 2
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The spatial cellular automata simulation 

Again largely inspired by Nowak’s spatial version of the 
prisoner dilemma (Nowak, 2006), we propose a simple 
cellular automata type of simulation in which every cell 
contains one agent of length n, either specialist (without “#”) 
or partially or completely generalist. The spatial environment 
is a 2-D toroidal cellular automata in which every agent/cell 
can interact with its 8 neighbors (generally called a “Moore 
neighborhood”). 

The simulation goes as follows. At every time step, each 
agent will interact with its 8 neighbors and cumulate the 
payoff perceived according to the two players payoff matrix.  
Then asynchronously (by means of a random selection 
iteratively performed over all agents a number of times equal 
to the number of cells), each agent is both selected and 
“reproduced” by being replaced by the best agent in its 
neighborhood. Thus, at each time step, all agents compute 
their payoff and reproduce according to their fitness value, the 
best agents locally invading the neighborhood. Two results are 
shown in figure 6, for n= 1 (so three types of agents: 1, 0 and 
#). The first result is shown for a low value of c (generalists 
win) and the second for a high value of c (the two groups of 
specialists win and equally divide the population).  
 
 
 
 
 
 

 
 

 
 
 
 

 
In this snapshot of the simulation, the generalists are 
invading the whole population (the large clusters of 
homogeneous cells – the generalists – are percolating 
through the small two-color clusters – the specialists). 
  
   
  
 
 
 
 
 
  
  
  
   

 
In this snapshot of the simulation, the specialists are 
invading the whole population. The two colors represent the 
two complementary groups of specialists: “1” and “0”. 
 
Figure 6: Results of the spatial simulation: above for a low 
cost of “generalization” and below for a high cost. 

 
These simulations just reproduce the results anticipated by the 
mathematical analysis. The outcome of the simulation is 
binary and depends on the value of the cost, below or above 
the threshold. Above specialists win, below generalists win.  

The question addressed in the following is: “Is there any 
less trivial driving factor than just the cost of generalization?” 
According to the mathematical analysis, another important 
contributing factor, beyond the cost, is the frequency of 
encounters. This frequency depends on the number of 
opportunities that a specialist has for cumulating reward, but 
that generalists miss for one reason or another. So is there any 
other original way for specialists to increase this frequency of 
encounters that would however escape the generalists? We 
admit to enter from now on in the realm of speculation. 

Division of labor  
In order to make a real profit from their specialization, 
specialists should better cluster together in the hope of 
creating by such grouping more opportunities of payoff.  This 
is exactly the message provided by the idea of “division of 
labor” which definitely needs to be distinguished from the 
simple mutualism.  
 The following possibility will be added in the spatial 
simulation namely that complementary specialists can cluster 
together when they are neighbors. At every time step, before 
any reward gain and before any reproduction, a specialist is 
allowed to connect to at maximum two of these 
complementary neighbors, like illustrated in figure 7. Two is 
the minimal number for making possible groups of 
complementary specialists to appear.  
 
 
 
 
 
 
 
       
  
Figure 7: A possible cluster of complementary specialists 
 
 
 
  
 
 
 
 
 
 
 
 
 
   

 
  
Figure 8: A snapshot of the simulation where the black lines 
reflect the clustering among the specialists.  
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The following snapshot of the simulation (figure 8) shows the 
presence of black lines which testify for the connections 
among specialists only. The clusters just survive one time step 
namely the time for the agents to interact (in drawing some 
payoff opportunity of their presence in the cluster) and then 
reproduce. Once reproduced, an agent looses its membership 
to any cluster and its connectivity is simply reset to null. The 
payoff gained by a specialist agent will be equally shared 
among all the members of the cluster it belongs to. The 
simulation at every time step thus takes place in three 
successive steps: 1) cluster, 2) get payoff by interacting and 3) 
reproduce.  
 An obvious concern could come from the impossibility for 
generalists to cluster. Why should it be so? Are we not 
resolving the problem in a too much ad hoc way? A simple 
reason is that, by clustering with, for instance, a specialist, a 
generalist would loose its capacity to adopt any other form of 
specialization since it would be forced to take one specific 
profile. It would sacrifice its “chameleon” side. A human 
generalist, once convinced of the advantages in being so, 
would decline any opportunity to freeze himself in one of his 
multiple possible profiles. In a more primitive world, we will 
take for granted that a non-specialized organism cannot 
connect with another non-specialist or with a specialist, since 
the pattern recognition ability which allows two specialists to 
recognize each other and to connect could be absent from the 
generalists. But remember that these are all speculations, 
wished for discovering more opportunities for a specialized 
world to replace one populated mainly by generalists.  
 If nothing is modified in the simulation and the specialist 
and generalists just interact as before, the results won’t be 
affected by this added clustering possibility. The gain of the 
clustering and thus the increase opportunity of frequency is 
perfectly compensated by the sharing of the benefits. For 
instance, in figure 7, any one of the six agents composing the 
cluster will take six times more benefit, nevertheless always 
divided by six. Of course, increasing the benefit of the 
specialist with respect to the generalist (for instance, by not 
dividing the benefit by six and just distributing the whole “b” 
to any one) would favor specialization. However, such a move 
is far to be satisfactory since this benefit has to be equally 
shared through the cluster in a way or another. Additionally, 
this would reduce the whole problem to that same question of 
cost that we want to avoid. Is there any further way for 
specialists to increase their frequency of encounters which 
could make sense while giving them a natural advantage over 
generalists?  

Simulation with varying length of agents 
 
Suppose now a new version of the simulation in which agents 
can be of any length (with n the maximum length): “1”, “00”, 
“##1”…  Suppose further that any agent of length x can only 
interact with and take profit from agent of equal or inferior 
length: x, x-1, x-2, … (Just as if it would swallow it). So at 
any time step, an agent looks in its neighborhood to discover 
equal or smaller agents. It thus computes its total profit only 
with this restricted part of its neighborhood. As a 
consequence, the payoff matrix is no more symmetrical, since 
an interaction between agent x and agent x-1 (if both 

specialists and complementary) will reward “b” to agent x but 
0 to agent x-1. The complementarity between two agents is 
simply assessed by comparing the first common bits. An agent 
can be of length n in two different ways: either it is naturally 
of length n (from birth) or it takes part of a cluster of 
dimension n. Finally, only agents of length 1 can cluster 
(remember that, among them, only specialist can cluster) and 
reproduce.  
 This makes obviously a lot of assumptions, leaving a strong 
impression of arbitrariness. Generalists cannot cluster and 
only the smallest agents can reproduce. These last limitations 
are simply there to make easier to grasp the results of the 
simulation, which could similarly happen for less restrictive 
conditions (for instance bigger agents, due to their size, could 
simply be slower to reproduce). The simulations are performed 
with a low value of the cost c, which has always favored 
generalists in all previous cases. The results of the simulations 
are shown both for a maximum length of 2 and 3 in the two 
following plots of figure 9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
Figure 9: Results of the simulations for maximum length of 2 
and then 3 and a low cost of generalization. It is important to 
look also at the decreasing of the curves at the bottom of the 
two plots, showing the decreasing concentration of agents of 
length 2 and 3. The life time of specialization increases with 
the length of the simulation.  
 

These plots show the cumulated concentration of specialists 
of length 1, the concentration of generalists of length 1 and the 
concentration of agents of length 2 and 3. One can observe 
that during the first time steps, the number of specialists grow 
in size and easily win the game, the duration of this winning 
period depending on the agent maximum length: the greater 
the longer. The reason is easy to understand. Initially, the 
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specialists, by clustering together, can access to sources of 
reward that are simply inaccessible to generalists (remember 
that the generalist cannot cluster so that they can only interact 
with agents of length 1).  For instance, a cluster of two or 
more specialists can interact with agents of length 2, an 
impossible source of payoff for generalists.  

Then, since the big agents cannot reproduce, they are 
overcome by the specialists until the instant where only agents 
of length 1 remain in the simulation. From this instant on, the 
simulation proceeds as usual (the small value of the cost 
favors generalization) with the generalists invading the world 
by benefiting from much more sources of rewards than the 
specialists. So besides the obvious possibility to excel in the 
task, another possibility for specialists to impose themselves is 
to create communities of complementary members which, as a 
whole, can achieve new functionalities much beyond the 
possibility of any isolate generalist. Here this is what happens, 
since the bigger agents in the simulation can be exploited by 
clusters of specialists. The generalists simply can’t see them.  

Emergence and conclusions 
We were interested in this paper in investigating other 
evolutionary driving forces, beyond the simple cost, in order to 
favor the survival of specialists to the expense of generalists. 
Our mathematical analysis shows that, whatever formulation 
given to that problem, these forces will always have to do with 
either the cost (that we discard here because too obvious and 
commonly accepted) or the frequency of encounters. This last 
effect is more original since it might give rise to ways for 
specialist to create opportunities of rewards that escape 
generalists. In substance, this is what we have attempted to do 
through our last simulations.  

Suppose for instance that in order to construct your house, 
you can choose between a handyman capable of optimally 
achieving all parts of the construction alone: bricklaying, 
carpentry, electricity and plumbing, and an entrepreneurial 
team composed of as many specialists as required. Whatever 
the quality of the handyman work, there is clearly one thing he 
will never be able to achieve alone: work on all parts in 
parallel, something obviously possible for a team. Therefore a 
group of specialists is able to work in parallel and achieve the 
same construction in a much shorter time, whatever the quality 
of each single part of the construction. This is a simple human 
example of a clustering benefit inaccessible to a single 
generalist. When adopting the “division of labor” perspective 
and by joining together, specialists can discover a whole new 
set of opportunities that a generalist (which has other good 
reasons to stay alone) can’t even see. Specialists, by grouping 
together, access to opportunities that generalists simply miss.   

As regards the problem of “cooperation vs defection”, in a 
classical world where mutual defections turn out to be the only 
Nash equilibrium, this “joining together” might provide an 
extra road for cooperation to emerge. Only by connecting 
together, can the specialists achieve some reward. So 
defectors, just like generalists, by refusing to be part of the 
groups, would disappear to the advantage of cooperators. We 
further suppose here that all members of the group have to do 
their own, so that groups allowing for the integration of 
defectors will never succeed in accomplishing the task. In a 

mutualistic situation, defection wins over cooperation (as 
defectors don’t give but just receive), while, in a division of 
labor situation, cooperation has obvious advantages (defectors 
don’t receive any payoff). 
 In a very stimulating book of Matt Riddley (Riddley, 1998) 
entitled “The origins of virtue”, in the chapter entitled 
“Division of labor”, we can find these excerpts: 
 

“In a phrase, therefore, the advantage of society 
to me is the division of labor. It is specialization 
that makes human society greater than the sum of 
its parts… It is this synergy between specialists 
that makes human societies tick, and it is this that 
distinguishes us from all other social creature … 
Adam Smith was the first to recognize that the 
division of labor is what makes human society 
more than the sum of its parts… As division of 
labor between specialists evolves, integration into 
higher unit systems also advances, and, as social 
homeostasis evolves, the individual human loses 
some portion of his self-regulation and becomes 
more dependent for his existence upon the division 
of labor and the integration of the social system”. 

 
The repetition of the famous expression “The whole is more 

than the sum of its parts” relates the concept of “division of 
labor” with the concept of “emergence”. In previous 
publications (Bersini, 2004; Bersini and Philemotte, 2006), I 
have discussed this later concept and the necessary three 
ingredients which together allow a collective phenomenon to 
be described as “emergent”. First the phenomenon, as usual, 
requires a group of agents entering in a non-linear relationship 
and entailing the existence of two semantic descriptions 
depending on the scale of observation: micro or macro. 
Second, the macro phenomenon (the one that raises 
philosophical debate) has to be observed and “objectivised” by 
a mechanical observer, which has the natural capacity for 
temporal and/or spatial integration. This mechanical observer 
positively substitutes for the human one, which is 
blameworthy of endowing “emergence” with an unacceptable 
dose of subjectivism. Finally, for this natural observer to 
detect and to select the collective phenomenon, it needs to do 
so in rewards of the adaptive value this phenomenon is 
responsible for. Basically, physics can simply explain the 
proximate causes of the phenomenon while natural selection 
provides the “adaptive”, “engineering”, “ultimate” causes of 
the functionality. The presence of natural selection brings me 
to defend in these previous papers the idea that emergent 
phenomena can only belong to biology.  

In the European Swarm-bots project, which is being 
coordinated in our laboratory (Gross et al. 2006), largely 
inspired by the capacity of some insect species (such as ants) 
to assemble in order to accomplish tasks that none of them, 
alone, is able to accomplish, small robots connect together to 
do as well. For instance, two robots join together in order to 
pass over a gap that would make any of them fall down if 
trying alone. I claim that, in the case of real insects, “passing 
over that gap” is an emergent behavior, since it requires a 
cluster of agents, an external observer integrating the agent’s 
behavior in space and time (the gap here plays the role of this 
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required natural observer) and natural selection to favor the 
agents able to pass over the gap.   

In the last simulations presented in this paper, again the 
same three ingredients are present: the agents cluster together; 
once they do cluster they can exist for and be observed by the 
“bigger agents”, and once they do exploit these resources, they 
are favorably selected. Consequently, one extra road for both 
cooperation and specialization to appear, beyond the quality of 
the task or the cost of generalization, might really be any new 
opportunity made possible by groups of specialized agents 
which can do more than their parts. Specialization really 
emerges in a genuine sense once specialized agents decide to 
enter, not in a mutualistic relationship, but in a genuine 
strategy of “division of labor”, so as to make it relevant for an 
external observer: human or biological, whose presence 
justifies the fitness increase of the specialists. This jump in 
fitness provided by the grouping of single specialized agents 
into new types of organisms is one possible way to construe 
the concept of the major transitions in evolution (Maynard-
Smith and Szathmary, 2005).  
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Abstract

A simple computational model for the emergence of auto-
catalytic sets as described in (Farmer et al., 1986) is re-
implemented. Results are found to generally agree with the
major theme in the original work: increasing the initial poly-
mer variety in a toy chemical soup scenario increases the like-
lihood that a complex autocatalytic set will suddenly boot-
strap itself into existence. Quantitatively, however, critical
probabilities derived from this careful re-implementation are
very much higher than those reported in the original work.
A full resolution is not reached, but a theoretical argument
supports the simulation results gained in this instance.

Introduction
The principle of an autocatalytic set, a set of molecules
which collectively catalyses its own production, holds in-
tuitive interest. There exists obvious relations to primitive
metabolic systems, and contemporary minimal definitions
of life such as autopoiesis (McMullin, 1999).
By achieving catalytic closure, a set of relatively inert

molecules can organise into a self-sustaining identity, a per-
sistent presence in a chemical soup.
Different questions can be asked of autocatalytic sets. In

general, one might be interested in (1) how a set came to
be and the preconditions necessary for it’s emergence, (2)
which critical molecular species the set consists of, or (3)
how the set chemically operates in real physical space and
time.
Original work on autocatalytic sets (Kauffman, 1986;

Farmer et al., 1986) pursued the first question as the main
point of interest, although all questions are inter-related to
some extent. Question 2 has recently been given a deep
formal treatment (Hordijk and Steel, 2004). Question 3 is
of considerable depth and of most contemporary interest,
involving concepts such as dynamics, spatial compartmen-
talisation, reaction kinetics and concentrations in particular
physical autocatalytic instantiations (see, for example (Ono
and Ikegami, 2000) for application in a spatial abstract cell
model).
This paper describes a careful re-implementation of the

original (graph theoretic) model investigating the inevitable

emergence of complex autocatalytic sets (Farmer et al.,
1986). Section 1 recaps the motivations and assumptions
of the original model. Section 2 describes in detail the re-
implementation carried out. Remaining sections present and
discuss the results, which generally follow the same quali-
tative pattern as original results, but differ by a factor some
100 in quantitative predictions of the critical probability of
autocatalysis.

1 Original Work
The original work on autocatalytic sets by Stuart Kauffman
is concerned with making a tentative link to the grand prob-
lem of the origin of life itself (Kauffman, 1986, 1993) and
levelling a respectable argument against entrenched expla-
nations of template based replication.
In the original model (Farmer et al., 1986), the emergence

of autocatalytic sets is investigated as a connectivity feature
of directed graphs.
A reaction graph captures the core chemical relationships

in a system of polymers, expressing the reaction possibili-
ties in that system. Operational details such as space, time
and quantity are not represented in this canonical descrip-
tion. The chemical system is assumed to exist in a well-
stirred overflowing reactor environment.
The central idea is built upon the phase transition phe-

nomena in connectivity problems. As systems become in-
creasingly connected a critical limit is reached when, very
suddenly, each component of the system is connected di-
rectly or indirectly to every other. A large component crys-
tallises from a mass of independent sub-systems.
By the same logic, when a reaction network is expressed

as a reaction graph, there must exist some critical catalytic
connectivity beyond which each polymer will directly or in-
directly catalyse every other - at which point the existence
of a complex autocatalytic set can be inferred with almost
certainty.
The original model focuses on finding this critical con-

nectivity. A basic reaction system - where polymers consist
of directional strings of characters - is successively grown
from an original ‘firing disk’ (food set). In this scenario,
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the reaction system is always autocatalytic in a strict sense,
but criticality is judged when the rate of change of polymer
species becomes exponential (autocatalytic networks which
continually create large complex proteins were of prime in-
terest to the authors).
Significant assumptions of the model include the pre-

requisite of flow reactor conditions and the assumption that
the distribution of catalytic capacities in peptide space can
be modelled by a fixed probability P that any one polymer
will catalyse any other.
Farmer et al. find that that the critical value of P required

for an autocatalytic set decreases as the initial polymer varia-
tion in the system increases, lending support to their general
autocatalytic account for the origin of life from a sufficiently
diverse pre-biotic chemical soup.

2 Re-implementation
Original Graph Growth Algorithm
For clarity, the original graph growth algorithm is presented
below. Square braces represent cross-references to the more
detailed implementation to follow.

Our rule for random assignment of reactions is
implemented as follows: For a given starting list of
molecular species, we compute the maximum number
of allowed condensation and cleavage reactions by
counting the number of distinguishable combinations
of string concatenations and string cleavages [see Note
2]. The number of reactions that we actually assign is
obtained by multiplying the number of allowed reac-
tions of each type by a probability P . To assign con-
densation reactions, we chose two molecules at ran-
dom [Box 1], while for cleavage reactions we chose a
molecule and a cleavage point at random [Box 2]. In
both cases enzymes are chosen at random from the set
of species currently present.

Assignment of reactions can be viewed as a dynam-
ical process. We initialise the system by choosing a
starting list, called the “firing disk”, typically chosen
to be all possible strings shorter than a given length
L [Iteration 0, Step 1]. Reactions within the firing
disk are assigned as described above [Iteration 0, Step
2]. Condensation reactions may generate new species
outside the firing disk, thereby expanding the list [It-
eration 0, Steps 3 and 4]. The introduction of new
species creates new reaction possibilities; to take these
into account, on the next time step we count the number
of combinatorial possibilities involving the new species
[Iterations 1 to 1000, Steps 2 and 3]. Multiplying by
P gives the number of new reactions [Iterations 1 to
1000, Steps 6,7,8,9]. This process is repeated on sub-
sequent time steps. As long as new species are created
on each step the graph continues to grow; otherwise
growth stops. (Farmer et al., 1986), p. 54

Graph Growth Algorithm as Implemented
Definitions

S Set of all distinct polymer species currently in the system.
Initially empty.

N Set of distinct polymer species, new on the current itera-
tion. Initially empty.

sn Size of set S. Number of distinct polymer species in the
system.

nn Size of set N . Number of new distinct polymer species
on current iteration.

B Alphabet size of polymers.

M Order of initial firing disk (or ’maximum sized polymer’
in firing disk, also referred to as Lf elsewhere in this pa-
per).

P Probability that a random polymer catalyses an arbitrary
reaction.

Iteration 0

1. Seed firing disk. Make set S contain all possible polymers
of alphabet size B up to lengthM . S will contain a total
of sn=

∑M
L=1

BL polymers.

2. Calculate the number of distinct condensation reactions
possible in the firing disk, R∗

cond = sn×sn. (See Note 2
below).

3. Calculate a number of random condensation reactions to
assign, R+

cond = P × R∗
cond.

4. Assign R+
cond condensation reactions to the firing disk as

in Box 1 below, thereby expanding the disk. Cleavage
reactions need not be assigned here. The graph currently
consists of all possible polymers up to size M , and thus
cleavage reactions cannot introduce any new species at
this stage.

Box 1: condensation reaction assignment

1. Pick a random polymer of sequence a from S

2. Pick another random polymer of sequence b from S (a =
b is allowed)

3. Concatenate a and b to create polymer sequence p = a+b

4. If p /∈ S then add p toN (the set of new polymers created)

5. Otherwise, disregard reaction. The condensation does not
create a new species and thus is of no significance. An-
other reaction is not assigned in place.
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Iterations 1 to 1000

1. Record nn, the number of new species for this iteration.

2. Calculate the number of possible cleavage reactions that
the set of new polymers N introduces to the system.
R∗

cleav =
∑J

L=2
[N(L) × (L − 1)], where J is the maxi-

mum length polymer in setN , andN(L) is the total num-
ber of polymers of size L in N . (See Note 2 below).

3. Calculate the number of possible condensation reactions
that the set of new polymers N introduces to the system.
R∗

cond = nnnn + 2nnsn (See Note 2 below).

4. Add the new polymers N to the total species set S, so S
becomes S ∪ N .

5. Set N = φ

6. Calculate a number of random condensation reactions to
assign for this iteration,R+

cond = P × R∗
cond.

7. Calculate a number of random cleavage reactions to as-
sign for this iteration, R+

cleav = P × R∗
cleav .

8. Assign R+
cond condensation reactions as in Box 1 above.

9. Assign R+
cleav cleavage reactions as in Box 2 below.

10. Goto step 1. Perform next iteration.

Box 2: cleavage reaction assignment

1. Pick a random polymer of sequence p from S

2. If the length of p < 2, disregard.

3. Pick a random break point on p, splitting it into two frag-
ment substrate sequences p = a + b

4. If a /∈ S then add a to N , otherwise disregard

5. If b /∈ S then add b to N , otherwise disregard

Determining Criticality of Graph Graph is SUPRA crit-
ical if, during the 1000 graph iterations,

1. The number of polymer species in the system, ns > 105

2. A polymer in the system exceeds a length of 1000

3. The new condensation reactions possible on any iteration,
R∗

cond > 2 × 109

4. The new condensation reactions assigned on any iteration
R+

cond > 5 × 105

If 1000 iterations are completed, the graph is still judged
SUPRA critical if ns > 5sf , i.e. if the number of species
in the system after the last iteration are five times greater the
number of species in the firing disk, sf .
Otherwise, the graph is judged as SUB critical.

Note 1: Distinct Reactions In a fairly common sense way,
this study regards two reactions a + b ⇀↽ c and x + y ⇀↽ z
as distinct if their substrates do not match. That is to say,
they are only the same reaction if a = x and b = y (and thus
c = z).
Two reactions may of course have the same product (e.g

aaa+a ⇀↽ aaaa and aa+aa ⇀↽ aaaa) and still remain dis-
tinct. If two reactions have different products, the reactions
will certainly be distinct.

Note 2: Counting Distinct Condensation and Cleav-
age Reactions Although the original description does not
specify exactly, this paper calculates the number of new con-
densation and cleavage reaction possibilities at each itera-
tion in a straightforward way.
The number of new possible cleavage reactions intro-

duced into the system is simply the sum of the number of
ways the new species can be broken apart. Each new species,
by definition, is a product not encountered before. By Note 1
above, breaking this new product on any of it’s bonds will in
turn reveal a substrate combination not encountered before,
and thus a distinct reaction.
The number of new possible condensation reactions intro-

duced into the system by the new species can be calculated
in two parts. Firstly, each new species polymer can be com-
bined in two ways with every member of the existing species
(by concatenating to the left and right hand side of the exist-
ing species). By Note 1 above, both of these condensation
reactions are distinct, new reactions, because either the left
or right hand substrate is a new species. New species thus
make possible at total of 2nnsn new condensation reactions
with the existing species.
Secondly, the new species can be combined amongst

themselves. Each new species polymer can be appended to
the left or right hand side of every other new species poly-
mer, including itself. However, because both substrates in
these reactions are new species, there will be some double
counting.
For example, new species g may be combined with new

species h by left concatenation g + h or by right concate-
nation h + g, yielding two distinct concatenations. When
h is considered and combined with g to the right and left
the mirror is true, yielding two non-distinct concatenations.
The distinct concatenations are thus just the set of left-hand
concatenations between the new species, a total of nnnn re-
actions.

Estimation of Pcrit algorithm
As in the original paper, estimation of the critical probability
of catalysis, Pcrit, is performed by using a simple trial-and-
error algorithm.
For a graph of alphabet sizeB and firing disk orderM , 10

independent estimates of Pcrit are made as in Box 3 below
and then averaged to provide a more reliable result.
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Box 3: To estimate Pcrit

1. Set Pmin to a low probability, known to cause the graph
to go firmly SUB critical.

2. Set Pmax to be a higher probability known to cause the
graph to go firmly SUPRA critical.

3. Add a little random noise to Pmax.

4. Perform 15 iterations of gradient descent, where on each
iteration

(a) Set P to the value in-between Pmin and Pmax

(b) Grow the graph at P three times
(c) If the graph goes SUPRA critical at least 2 out of 3

times, set Pmax = P

(d) If the graph goes SUB critical at least 2 out of 3 times,
set Pmin = P

Notes:

• After 15 iterations, the value of P is found to be suffi-
ciently converged to the critical probability.

• Pmin and Pmax are initially set to be fairly close to the
critical probability in order that the 15 iterations of gradi-
ent descent may be usefully spent.

• The noise initially introduced to Pmax introduces some
variability into the ’halving’ of P .

Computational Considerations
For a quality source of random numbers, an implementation
of the Mersenne Twister random number generator (Mat-
sumoto and Nishimura, 1998) was used. The random num-
ber generator was re-seeded on at the beginning of each
graph growth run. In this way, no two simulation sessions
used the same sequence of random numbers.

3 Results and Discussion
Figure 1 directly comparesmain results from this study (blue
lines) to the main results in the original paper (red lines).
Both data sets are in qualitative agreement insofar as the
central idea goes. The downward trend of lines indicates
that increasing the size of the firing disk, or increasing the
alphabet size of the polymers lowers the critical probability
that a complex autocatalytic set (supra-critical graph) will
spontaneously emerge (in a well-stirred environment).
The main point of departure from the original results lies

in the actual values of critical probability. Values gained in
this study are typically two factors of ten higher than those
gained in the original experiment. To validate their results,
Farmer et al. provide a theoretical estimation of Pcrit for a
chemistry with alphabet size B = 2. However, the mathe-

matical derivation is largely unexplained and hard to follow,
and thus of limited insightful use.
To support results gained here, it is clear that a critical

probability for autocatalysis Pcrit has to satisfy the greater
of the two following conditions:

1. Firstly, as a bare minimum, the value of Pcrit must be
able to create at least one new species outside the firing
disk. In a firing disk of sf species, there exist sf

2 viable
condensation reactions, and so it follows that Pcrit > 1

sf
2

in order to catalyse at least one of these.

2. Furthermore, the value of Pcrit must be set such that at
least one new species continues to be created at each iter-
ation. The graph must exhibit continual growth.

At this stage, it must be noted that the values of Pcrit re-
ported in the original results do not satisfy the first condition.
In the simplest case, for example, when the firing disk con-
sists of the two monomers a and b, the critical probability is
cited to be less than 10−1. However, with four condensation
reactions aa, ab, ba, bb being initially viable in this scenario,
this probability would assign around 0.4 reactions on itera-
tion 1, which would be computationally truncated to 0. The
graph would stop growing immediately, and would have no
chance of being critical.
Additionally, the value of Pcrit for condition 2 is often

higher than that for condition 1. As condition 2 concerns
the time behaviour of the graph leading to it’s eventual fate,
it can be calculated by equating the growth of the graph to
the evolution of a discrete dynamical system (and finding the
bifurcation point in that system).
The formulation of this dynamical system is possible pro-

viding that the following assumptions are made about the
graph growth procedure described in Section 2:

1. Cleavage reactions can be ignored. (This assumption is
feasible since, at each graph iteration, the number of vi-
able cleavage reactions is very much smaller than the
number of viable condensation reactions. Furthermore
(through general simulation observations), of the cleav-
age reactions assigned, even fewer produce new polymer
species outside the current system).

2. Every condensation reaction assigned creates a new
species previously not in the system.

Assuming all assigned condensation reactions produce new
polymer species leads to the ”luckiest case” of the reaction
graph, which is in fact the situation desired, whereby the
graph grows at the absolute minimum value of P possible.
The dynamical system describing the graph growth, then,

starts at iteration 0 with the total number of species in the
firing disk and the total number of condensation reactions
these species will have assigned amongst them:
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ns = sf =
M
∑

L=1

BL

nn = trunc
[

Pns
2
]

where trunc denotes a truncation to the nearest integer
(polymers only exist as wholes).
At each successive iteration, the total number of polymer

species ns is equal to the total number of species at the be-
ginning of the last iteration, plus the number of new species
assigned on the last iteration

ns(t + 1) = ns(t) + nn(t)

and the number of new species nn is equal to the number
of new condensation reactions viable on the last iteration
multiplied by P (since we are assuming every condensation
reaction assigned creates a new species):

nn(t + 1) = trunc
[

P (nn(t)2 + 2ns(t)nn(t))
]

The dynamical system is parameterised by the alphabet
sizeB, the initial order of the firing diskM and the probabil-
ity of catalysis, P . Increasing the parameterP over a critical
value causes a bifurcation in the dynamics. Below this bifur-
cation point, the reaction graph goes sub-critical and settles
to a fixed point whereby the number of new polymersnn per
iteration become 0, and the total number of species ns rest
at an arbitrary value. Above the bifurcation point, the reac-
tion graph grows exponentially. The bifurcation point thus
corresponds to the phase transition in this scenario, and the
value of P at which it occurs is the critical probabilityPcrit.
Figure 2 shows the nature of the bifurcation point for the

dynamical system described above with firing disk B = 2,
M = 6. More importantly, Figure 3 shows that the theo-
retical bifurcation points for different alphabet sizes and fir-
ing disk orders correspond more or less precisely to the re-
sults derived from the simulation in Section 2 (even though
the simulation does allow cleavage reactions and does not
require condensation reactions to necessarily produce new
species).
Despite the described differences in critical probability

estimates to original work, reaction graph growth curves de-
rived from this work (Figures 4-6) tally fairly well with those
presented for the original model ((Farmer et al., 1986), p55,
Fig 2) both in terms of form and numerical axis values.
Figure 4 shows that a low probability of catalysis leads

the reaction graph (which has an initial firing disk of size
Lf = 6 and alphabet B = 2) to decay until there is no fur-
ther growth. By contrast, increasing the probability of catal-
ysis past the critical threshold leads to supra-critical growth

    





















































Figure 1: Main comparison of results [blue lines] with those
obtained by (Farmer et al., 1986) [red lines]. Graph shows
how critical probability of catalysis Pcrit scales with order
of firing diskLf for different alphabet sizes (labels on lines).
Red lines should only be viewed as an estimate of original
data.

(Figure 6) where a small initial decay is followed by expo-
nential growth without bound.
Right on the critical threshold, the reaction graph was

found to be incredibly fickle, sometimes turning sub-critical,
and sometimes supra-critical (Figure 7). Figure 5 was
obtained by running the reaction system with firing disk
B = 2, Lf = 6 over many trials at the critical threshold
Pcrit = 0.002194 and recording the longest instance of an
eventually supra-critical graph. In this study, reaction graphs
surviving for any length of time at the critical threshold were
delayed supra-critical graphs where fortuitous assignment of
condensation reactions meant that only a single new species
would be assigned at each iteration (the other condensation
reactions being assigned to produce polymers already in the
system). This marks another minor departure from the orig-
inal work where the number of new species per iteration is
reported to be erratic at criticality.
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Figure 2: Overlay of phase portraits for the graph growth
dynamical system with firing disk B = 2, Lf = 6. Each
trajectory corresponds to the system portrait at a different
value of the parameter P . When P approaches Pcrit, the
dynamical system bifurcates and instead of settling to a fixed
point (corresponding to a sub-critical graph - red lines), the
system spirals to infinity (corresponding to a supra-critical
graph - black lines).

     





































Figure 3: Similarity between theoretical and simulation re-
sults. Bifurcation values of P for the graph growth dynami-
cal system (black dotted lines with circle markers) coincide
nearly exactly with results obtained in the re-implemented
simulation (blue lines) - so much so that the black dotted
lines are often obscured on this plot.

       


































       































Figure 4: B = 2, Lf = 6, P = 0.002000. Sub-critical.
Graph decays. After 8 iterations, graph stops growing.
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Figure 5: B = 2, Lf = 6, P = 0.002194. ”Critical”.
Graph initially decays to a steady growth rate of 1 polymer
per graph iteration (on the line of the x-axis) until an even-
tual explosion happens around iteration 230.

       




































       










































Figure 6: B = 2, Lf = 6, P = 0.0025000. Supra-critical.
The graph initially decays, but quickly recovers and then
snowballs.



























































































































Figure 7: Characterising the phase transition for firing disk
B = 2, Lf = 6 in terms of trial frequency. The reaction
graph was grown 100 times for all values of P between
0.00205 to 0.00235 with interval 0.00001. Red bars rep-
resent how many trials went sub-critical, and black bars rep-
resent how many trials went supra-critical. The phase tran-
sition is clearly visible as a disjoint region separating two
regions of stable sub and supra-critical behaviour.
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4 Conclusions
This work has sought to conduct a careful re-implementation
of one of the first models investigating network autocatalysis
(Farmer et al., 1986). Results here follow the same qualita-
tive pattern, and thus do not invalidate the general abstract
aims of the original work, but they do present a (fairly major)
quantitative discrepancy to the critical catalytic probabilities
reported from the original model.
Such discrepancies probably do not hold significant con-

notations for subsequent work published in the last 20 years,
since the spirit of the Farmer et. al. study is one of proving
a very general point, but nevertheless they would be nice to
resolve. Indeed, the introduction of the original work states
that many of the results should be experimentally testable.
In theoretical support of critical catalytic probabilities

presented here, a simple discrete dynamical systems model
is proposed as an approximation to the more involved reac-
tion graph growth algorithm. The critical catalytic probabil-
ities of the original work can be seen as too low to produce
bifurcations in this dynamical model, whereas the bifurca-
tions correspond more or less exactly to the simulation re-
sults of this study.
The source of the discrepancy is not ultimately resolved,

but it seems that the most outstanding grey area lies with the
calculation of the number of new condensation and cleavage
reactions at every iteration. However, even with no explicit
details mentioned in the original publication, there is little
room for manoeuvre, and this study implements a straight-
forward common-sense interpretation.
Specifics aside, it is worth finally noting that in the last

two decades, models relating to the origin of life have gained
(considerably) in fidelity from pure abstract autocatalytic
notions. Whilst autocatalytic sets remain an important cor-
nerstone, one branch of enquiry for instance ((Mavelli and
Ruiz-Mirazo, 2007), (Ruiz-Mirazo and Mavelli, 2008)) fo-
cuses on the origins of minimal cells in terms of how active
self-producing ’proto-cellular’ systems could have started to
couple internal chemical reactions to membrane processes.
Such efforts are beginning to address the deeper issues
raised in Question 3 of the Introduction.
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Abstract

One of the open problems in autonomous robotics is
how to consistently and scalably integrate new behav-
iors into a robot with an existing behavioral repertoire.
In this work a new technique called behavior chaining
is introduced, which allows for gradually expanding the
behavioral repertoire of a dynamically behaving robot.
The approach relies heavily on scaffolding: gradually
restructuring the robot’s environment such that selec-
tion pressure favors the incorporation of a new behav-
ior. This method teaches a robot a compound behav-
ior not yet reported in the literature: dynamic legged
locomotion toward an object followed by grasping, lift-
ing and holding of that object in a physically-realistic
three-dimensional environment. The method assumes
that success is dependent on the order in which behav-
iors are learned. This is justified by results which show
that if a robot is forced to learn lifting first and then
incorporate locomotion, it eventually succeeds at both
more often than a robot forced to learn locomotion first
and then lifting.

Introduction
Useful autonomous robots must exhibit three prop-
erties: they must be able to perform behaviors au-
tonomously; they must be able to adapt an existing
behavior on the fly in the face of unexpected situations;
and they must be able to exhibit different behaviors in
different circumstances. Recent work has reported an
autonomous physical robot capable of the former and
middle property: maintaining a behavior in the face of
unexpected body damage (Bongard et al. (2006)) using
automated modeling (Bongard and Lipson (2007)). In
this work a virtual robot is introduced that exhibits the
former and latter property: it is able to autonomously
learn one behavior (lifting) and then integrate a second
one (dynamic locomotion) into its repertoire.

Evolutionary robotics (Harvey et al. (1997); Nolfi
and Floreano (2000)) is an established technique for
generating robot behaviors that are difficult to derive
analytically from the robot’s mechanics and task en-
vironment. In particular, such techniques are useful

for realizing dynamic behaviors (eg. Reil and Hus-
bands (2002); Hornby et al. (2005)) in which indi-
vidual motor commands combine in a nonlinear fash-
ion to produce behavior, thereby making analytical
derivations of optimal controllers infeasible. However,
evolutionary approaches to dynamic behavior genera-
tion have focussed up until now on realizing a sin-
gle behavior, such as locomotion (Reil and Husbands
(2002); Hornby et al. (2005)) or grasping (Fernandez
and Walker (1999); Chella et al. (2007)). Alternatively,
multiple non-dynamic behaviors have been generated
for simpler wheeled robots (Nolfi (1997); Lee et al.
(1998)).

The approach described here is a type of robot shap-
ing technique (Singh (1992), Dorigo and Colombetti
(1994) and Saksida et al. (1997)) in which the orga-
nization of the learning or evolution process is guided
manually or automatically. However, in behavior chain-
ing it is assumed that there is an underlying order in
which behaviors should be learned, and that this order
is dictated more by the agent’s morphology, controller,
task environment and controller optimization process
than it is by the agent’s current behavioral competency.

Although it is possible to realize multiple behaviors in
a robot by gradually incorporating more modules into
its controller (Brooks (1986); Calabretta et al. (2000)),
this approach does not scale well. A scalable approach
to behavioral flexibility should allow the same dynamic
controller to exhibit multiple attractor states, in which
individual behaviors correspond to individual attractor
states, an idea that is gaining currency in the robotics
literature (Inamura et al. (2004); Okada and Nakamura
(2004)). One of the main difficulties in this approach
however is realizing multistability (Foss et al. (1997)) in
the controller: it should settle into different attractor
states that correspond to the different desired behaviors
in the face of the appropriate sensory stimulation.

The approach to realizing multistable controllers de-
scribed here relies on scaffolding (Wood et al. (1976)), a
concept borrowed from developmental psychology: eas-
ing the learning agent’s task environment at the outset
to allow initial learning, and then gradually removing
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the constraints to stimulate further learning. The mini-
mal cognition approach (Beer (1996)) has led to agents
capable of multiple dynamic behaviors such as legged
locomotion and visually-guided orientation (Gallagher
and Beer (1999)), but this integration was achieved by
awarding the agent for demonstrating both capabili-
ties simultaneously, and without the aid of scaffolding.
The work here suggests that it may be easier to evolve
a controller that generates one behavior first through
scaffolding, and then incorporate additional behaviors
by reducing the scaffolding. Further, it is shown here
that to realize an agent capable of multiple behaviors
some behaviors may have to be learned before others:
this suggests that learning multiple behaviors at once
may not be scalable, although more investigation into
this issue is warranted. Scaffolding has been used with
some success in the robotics literature for realizing sin-
gle behaviors rather than sequences of dynamic behav-
iors (Pratt et al. (2001); Reil and Husbands (2002);
Lungarella et al. (2003); Ziemke et al. (2004)). Alter-
natively, a teacher may lead a robot through a series of
behaviors directly, after which the robot learns to re-
produce those behaviors autonomously (Saunders et al.
(2007)), but in this approach the exact motions com-
prising the behaviors must be demonstrated and there-
fore known a priori by the teacher.

In the work presented here we introduce a dynamic
scaffolding method that enables a virtual autonomous
robot to first learn one dynamic behavior (lifting) and
then gradually incorporate a second dynamic behavior
(locomotion) using a single monolithic controller. In
the next section the method is introduced; the following
section reports results demonstrating how this behav-
ioral competency arises; and the final section provides
some discussion and concluding remarks.

Methods
In this section the virtual robot is first introduced, fol-
lowed by its controller. The section concludes with a de-
scription of behavior chaining, the dynamic scaffolding
method that enables the robot to gradually incorporate
new behaviors into its repertoire.

The robot In this work a virtual quadrupedal robot
is used (Fig. 1). The robot is comprised of four legs
and a front gripper. The legs are comprised of an upper
and lower cylinder. The gripper is composed of a small
spherical claw base, which connects the main body to
the claw pincers. The claw base can be rotated upward
relative to the main body, and both the left and right
pincers are comprised of a claw arm (proximal to the
claw base) and claw tip (distal to the claw base). The
robot attempts to grasp and lift a rectangular target
object that is placed at varying distances from the front
of the robot’s body. The physical specifications of the

a h

b i

c j

d k

e l

f m

g n

Figure 1: Two evolved behaviors. a-g: The robot
moves toward the target object placed 2.8 meters ahead
(a-d), lifts it (e,f), and drops it onto its back (g). h-n:
The robot moves toward the target object placed 3.0
meters ahead (h-k) and swings it (l,m) onto its back
(n).

Part length width height mass

Target object[T] 0.4m 0.4 1.4 1kg
Main body[MB] 3.0 1.0 0.3 1

Upper leg[UL] 0.7 0.1* 1
Lower leg[LL] 0.7 0.1* 1

Claw base[CB] 0.1* 0.25
Claw arm[CA] 0.8 0.1* 0.25
Claw tip[CT] 0.8 0.1* 0.25

Joint min max orientation

[MB][UL] -20o 20 sagittal
[UL][LL] -20 20 sagittal

[MB][CB] -1 120 sagittal
[CB][CA] -45 0 frontal
[CA][CT] -75 0 frontal

Table 1: Physical parameters of the robot and environ-
ment. *=radius

body parts and the joints connecting them together are
given in Table 1.

Eight motors actuate the four upper and lower legs,
another motor actuates the claw base, and four motors
actuate the base and distal parts of the left and right
claw pincers, for a total of 13 motors. A touch sensor
and distance sensor reside in both the left and right claw
tips, a rotation sensor resides in the claw base, and a
distance sensor resides on the robot’s back (gray sphere

Artificial Life XI 2008  65 



in Fig. 1), for a total of six sensors. The touch sen-
sors return a value of 1 when the corresponding body
part touches another object, and zero otherwise. The
distance sensors return a value commensurate with the
sensor’s distance from the target object: they return
zero if they are greater than five meters from the ob-
ject; and a value near one when touching the object.
Object occlusion is not simulated here; the object can
be considered to be emitting a sound, and the distance
sensors respond commensurately to volume.

The controller A continuous time recurrent neural
network (Beer (2006)) is used to control the robot. The
CTRNN is composed of 11 motor neurons (the two claw
arm motors share the same motor neuron, as do the
two claw tip motors to ensure the claw closes symmet-
rically). The remaining 10 motors each receive com-
mands from their own motor neuron. The value of each
motor neuron is updated according to

τiy
′
i = −yi +

10
∑

j=1

wjiσ(yj − θi) +
6

∑

j=1

njisj (1)

where τi is the time constant associated with neuron i,
yi is the value of neuron i, σ(x) = 1/(1+ e−x) is an ac-
tivation function that brings the value of neuron i back
into [0, 1], wji is the weight of the synapse connecting
neuron j to neuron i, θi is the bias of neuron i, nji is
the weight of the synapse connecting sensor j to neuron
i, and sj is the value of sensor j.

In this formulation, each sensor may have a direct
effect on every motor neuron. However this effect may
be minimized or eliminated by low values for n, or by
behaviors that cause a target motor neuron to reach
minimum or maximum values.

The virtual robot with a given CTRNN is evaluated
over a set number of simulation steps in a physical sim-
ulator1. At the outset of each step, the sensor values
are retrieved from the physical simulator and the values
of the motor neurons are calculated. The resulting val-
ues are scaled to the minimum and maximum rotation
angles of the corresponding joint (Table 1), forming the
desired angle for that joint. Torque is then applied to
the joint commensurate with the difference between the
joint’s current angle and the desired angle. The posi-
tions and velocities of the objects in the simulation are
then updated using a step size of 0.005; the CTRNN is
updated once for each time step.

Behavior Chaining Behavior chaining is a method
for dynamically tuning the robot’s task environment
to facilitate learning which assumes that the order in
which behaviors are learned affects the probability of
success. The algorithm is outlined in Fig. 2. A

1Open Dynamics Engine, www.opende.com

1. BehaviorChaining()
2. Create and evaluate random parent p
3. WHILE ∼Done()
4. Create child c from p, and evaluate
5. IF Fitness(c) ≥ Fitness(p) [see eqns. 2,3]
6. p = c
7. IF Failure()
8. EaseEnvironment()
9. Re-evaluate p

10. WHILE Success(p)
11. HardenEnvironment()
12. Re-evaluate p

13. Done()
14. 18 hours of CPU time have elapsed

15. Failure()
16. 100 generations since last success

17. EaseEnvironment()
18. EvaluationTime ← EvaluationTime+100

19. Success(g)
20. ∃k, k ∈ {1, . . . , t} |
21. T (LeftClawTip, k)&
22. T (RightClawTip, k)&
23. D(SensorNode, k) ≥ 0.825

24. HardenEnvironment()
25. TargetDistance ← TargetDistance+0.01m

Figure 2: Behavior chaining pseudocode. The al-
gorithm executes a hillclimber [1-14]. If the current
genome fails [15,16], the task environment is eased
[17,18]; while it is successful [19-23], the task environ-
ment is made more difficult [24,25]. T (x, k) returns 1 if
body part x is in contact with another object and zero
otherwise at time step k. D(x, k) returns the distance
of body part x from the target object at time step k.

random CTRNN is created by choosing all τ from
the range [0.1, 0.5], all w from [−16, 16], all θ from
[−1, 1], and all n from [−16, 16]. This gives a total
of 10 + 10 ∗ 10 + 10 + 6 ∗ 10 = 180 evolvable param-
eters. The robot is then equipped with this controller
and allowed to behave in the task environment for 100
time steps, where the target object is placed directly in
front of the robot. After evaluation the fitness of the
controller is computed as

f = max
t
k=1(D(LeftClawTip, k)∗D(RightClawTip, k)) (2)

if the touch sensors in the left and right claw tip fail
to fire at the same time during any time step of the
evaluation period, and

f = 1 + max
t
k=1(D(SensorNode, k)) (3)

otherwise, where t is the evaluation time, and D(x, k)
indicates the distance of body part x from the target
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object at time step k. Eqn. 2 rewards controllers for
steering the robot toward the target object. Eqn. 3
rewards controllers for also lifting the target object onto
the robot’s back (where the sensor node is located) after
it has touched the target object with both claw tips.

A hill climber (Russell and Norvig (1995)) is used to
optimize the initial random CTRNN against this fitness
function (Fig. 2[1-12]). Although a more sophisticated
optimization process such as a genetic algorithm could
be used, hill climbing was found to be sufficient in this
case. At each generation a child CTRNN is created
from the current best CTRNN and mutated (Fig. 2[4]).
Mutation involves considering each τ, w,θ and n value
in the child, and replacing it with a random value in
its range with a probability of 10/180 = 0.0556. This
ensures that on average, 10 mutations are incorporated
into the child according to a normal distribution. It
was found that for lower mutation rates runs tended
to become mired in local optima. If the fitness of the
child CTRNN is equal to or greater than the fitness of
the current best CTRNN, it is replaced by the child;
otherwise, the child is discarded (Fig. 2[5,6]).

After each possible replacement, the current CTRNN
is considered in order to determine whether a failure
condition has occurred, or whether it has achieved the
success criteria. In the present work the failure con-
dition is defined as 100 generations of the hill climber
elapsing before a successful CTRNN is found. A suc-
cessful CTRNN is defined as one for which, at some time
step during the current evaluation (Fig. 2[20]) both
claw tips touch the target object (Fig. 2[21,22]) and
it is lifted far enough onto the robot’s back such that
the distance sensor there fires above a certain threshold
(Fig. 2[23]).

If the failure condition occurs, the task environment
is eased; if the current CTRNN succeeds, the task en-
vironment is made more difficult (Fig. 2[7-12]). Eas-
ing the task environment involves increasing the current
evaluation period by 10 time steps. This has the effect
of giving the robot more time to succeed at the current
task if it fails. Making the task environment more diffi-
cult involves moving the target object 0.01 meters away
from the front of the robot. This has the effect of teach-
ing the robot to grasp and lift the target object when
it is close, and learning to locomote toward the target
object, followed by grasping and lifting it, when it is
placed further away. As some CTRNNs that succeeded
for a given target object distance also succeed when the
object is moved further away, the object is continually
moved until the current CTRNN fails, at which time
hill climbing recommences (Fig. 2[10-12]). In order to
further speed the algorithm an individual evaluation is
terminated early if the robot ceases to move before suc-
ceeding at the task.

The overall success of a run is indicated by how many
times a successful genome was found. That is, how

far away the target object has been moved while still
preserving a controller that can guide the robot to the
object and also enable successful grasping and lifting.

Results
A series of independent runs were conducted and are
reported on here, where each run is conducted for 18
hours of CPU time. One set of runs were performed
using the quadruped robot described above, and are
henceforth referred to as regime I. Another set of runs
were performed in which two additional, middle legs
were added to the quadruped, resulting in a hexapod,
referred to as regime II. The new legs are the same
size and have the same orientation as the front legs.
The CTRNN for the hexapod requires an additional
four motor neurons: two for the middle upper legs and
two for the middle lower legs. As all motor neurons
are connected to one another, and the sensors are also
connected to the additional motor neurons, this gives
a total of 14 + 14 + 14 ∗ 14 + 6 ∗ 14 = 308 evolvable
parameters.

Within both regimes, a series of seven trials were
performed: in the first trial the target object is initially
placed directly in front of the robot (d = 0.0); in the
second trial the object is initially placed 0.5 meters in
front of the robot (d = 0.5), and so on in increments of
0.5 meters until in the seventh trial the object is initially
placed 3.0 meters in front of the robot (d = 3.0). For
each regime and each trial, 100 independent runs were
performed, giving a total of 2∗7∗100 = 1400 conducted
runs.

Sample run Figure 1 illustrates two compound be-
haviors that evolved during one of the runs from regime
I and trial 1 (d = 0.0). Fig. 1a-g illustrates the success-
ful locomotion toward and lifting of the target object
after it has been moved 2.8 meters from the robot. Fig.
1h-n illustrates the successful behavior from later in the
run when the target object has been moved 3.0 meters
from the robot. Both of these controllers are bistable in
the sense that when the robot is far from the target ob-
ject the distance sensors output low values, which push
the controllers into a periodic attractor. This periodic
attractor moves the robot’s limbs in a cyclic pattern
leading to locomotion toward the object (i.e. taxis be-
havior). When the robot nears the object either the
high values of the distance sensors, the sudden firing
of the touch sensors when the claw tips come in con-
tact with the object, or a combination of both push the
controller out of the cyclic attractor and into a point at-
tractor in which the robot’s claw lifts the target object
onto its back and then the robot stops moving.

Fig. 3 reports the fitness progression of this partic-
ular run in more detail. As can be seen in Fig. 3a, a
succession of successful CTRNNs allow the target ob-
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Figure 3: The fitness progression in a sample run. a:
The fitnesses of the best controllers over the 18 CPU
hours of the run (thick line). Thin lines indicate 16
successful controllers discovered when the target object
was placed 0.0, 0.2, ... 3.0 meters from the robot. b:
The same fitness progression is plotted as a function
of the number of mutations that separate one success-
ful controller from the next one. The same 16 suc-
cessful controllers are indicated by the thin lines. c-r:
Time series produced by the sensors when executing
the 16 successful controllers (blue line=claw base rota-
tion sensor; black line=distance sensor on the robot’s
back; red line=distance sensor on the left claw tip; green
line=distance sensor on the right claw tip; the touch
sensors are not shown).

ject to be moved just beyond 3.0 meters, at which time
the 18 hours elapse. When the target object is much
closer (in the first two hours of the run) there is a more
rapid succession of successful controllers than when the

target object is further out, which is to be expected for
three reasons: (1) there are more behaviors that allow
for successful lifting when the target object is close at
hand than when it is further away; (2) bistability is not
required when the target object is close (i.e. a ballistic
behavior that blindly lifts the target object may succeed
without requiring cyclic behavior beforehand to reach
the target object); and (3) a number of failure condi-
tions that occurred between discovery of successful con-
trollers have extended the time period for an evaluation
far beyond the initial 100 time steps.

This last factor is removed from consideration in Fig.
3b, in which the same fitness progression is plotted, but
each improvement is measured as a function of the num-
ber of mutations that occur between the appearance of
a fitter controller and its replacement in turn by a su-
perior controller. The thin lines in Figs. 3a,b denote a
selection of 16 successful controllers chosen from vari-
ous stages in the run: when the target object is placed
[0.0, 0.2, . . . , 3.0] meters from the robot. The behaviors
in Fig. 1 correspond to the last two such controllers
(d = 2.8m and d = 3.0m; Fig. 3q,r). Strikingly, a
relatively constant number of mutations separate one
successful controller from another: Fig. 3b indicates
that for this particular run, an average of between 50
and 100 mutations separate the discovery of a success-
ful controller when the target object is placed i meters
away and the discovery of a successful controller when
the target object is placed i + 0.2 meters away.

Figs. 3c-r report the time series sensor data for these
16 successful controllers. The blue line corresponds to
the angle sensor in the claw base motor, and the other
lines correspond to the three distance sensors. While
the target object is still within reaching distance of the
robot there is no evidence of cyclic activity in the con-
troller (Figs. 3c-j), indicating that the dynamics of the
controller are driven toward a point attractor that re-
sults in the target object being lifted onto the robot’s
back: the claw is held by the controller in a horizon-
tal position for a short period (indicated by the low
horizontal blue lines in Figs. 3e-j) before being rapidly
rotated upward (the upward blue curves in Figs. 3c-j).
After this point, when the target object is beyond 1.4
meters (Figs. 3k-r), the time series data from the sen-
sors indicates cyclic activity within the controller. This
indicates the discovery of controllers that are pushed
into cyclic attractors which lead to rhythmic gaits that
bring the robot to within reaching distance of the tar-
get object. It can be seen that among the bistable
controllers, the cyclic attractors exhibit very different
patterns: in Fig. 3l the attractor is hardly periodic;
in Fig. 3m the frequency of oscillation is much higher
than in the other controllers; and in Fig. 3q one part
of the controller is saturated (the blue line maintains
a constant, maximum value for most of the evaluation)
while the other part is periodic.
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Figure 4: Evidence for behavior trajectory unidirectionality. a: The mean performance of the seven trials conducted
using the quadruped robot (regime I; trial 1 = upward pointing triangle = initial target object distance is 0.0m from
the robot [d = 0.0m]; trial 2 = square [d = 0.5m]; trial 3 = downward pointing triangle [d = 1.0m]; trial 4 = circle
[d = 1.5m]; trial 5 = rightward pointing triangle [d = 2.0m]; trial 6 = diamond [d = 2.5m]; trial 7 = rightward
pointing triangle [d = 3.0m]). b: Mean performance of the seven trials using the hexapod robot (regime II). Error
bars indicate standard errors of the means (n = 30).

This last example behavior allows the robot to keep
the claw in a vertical position while walking toward the
target object (Figs. 1b,c), but when it nears the object
the claw is rotated downward for grasping (Fig. 1d),
upward for lifting (Figs. 1e,f) and finally downward
to leave the object on its back (Fig. 1g). This exam-
ple illustrates that under the right conditions the same
monolithic controller can be partitioned into different
components in which some parts together exhibit simi-
lar dynamics (in this case the oscillatory motor neurons
involved in locomotion) while other components exhibit
different dynamics (in this case the saturated values on
the claw base motor keep it raised until it is needed for
lifting). This partitioning, however, is evolved and may
change over the course of an evolutionary run: when
the target object is moved further out to 3.0 meters,
behavior shifts such that the claw rotates upward and
down in synchrony with the oscillations of the leg motor
neurons (Fig. 3r).

Unidirectionality of behavior trajectories Fig. 4
reports the mean performances of the runs when using
the quadruped and hexapod. The performance of an

individual run is determined as the distance to which
the target object was moved beyond the robot at the
time of the run’s termination: in other words the more
successful controllers produced by a run, the further out
the target object is moved.

Within both regimes, and within each trial, the 30
runs out of the 100 with the best performances at termi-
nation were extracted and the mean performance within
that group was calculated at the beginning of the run
(the leftmost groupings in Fig. 4), after the first hour
(the second leftmost grouping in Fig. 4), and so on
up to the mean performance achieved by the group af-
ter the 17th hour (rightmost grouping in Fig. 4). As
can be seen, for the case of the quadruped the mean
performance of the best runs of trial 1 are statistically
significantly higher than the same set of runs extracted
from trials 3 through 7 (the upward pointing triangle
is significantly higher than the third through seventh
markers in the rightmost grouping in Fig. 4a).

Also, although not quite significant, the mean per-
formances for the hexapod are higher in trials 1 and 2
after hour 17 compared to the other trials (the heights
of the first and second markers are higher than the third
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through seventh markers in the rightmost grouping of
Fig. 4b).

Discussion
Figs. 1 and 3 demonstrate that by using the method in-
troduced here it is possible to teach a robot to learn one
dynamic behavior and gradually incorporate a second
behavior into the same controller. The optimization
process first discovers a controller which settles into a
point attractor corresponding to grasping and lifting.
This unistable controller then gradually evolves into a
bistable controller which can also settle into a periodic
attractor that corresponds to locomotion toward the
object.

Fig. 3 indicates that during this process a succession
of controllers are discovered with marked differences:
the shapes and frequencies of the oscillations are quite
different. In addition, there are controllers for which
only part of the network displays oscillatory behavior,
while the other is held at a saturation point until the
robot nears the target object. This approach is attrac-
tive in that it may be more scalable than approaches
that add new controller components for each new be-
havior (Brooks (1986), Calabretta et al. (2000), and
Reil and Husbands (2002)). In these latter approaches
the controller size grows linearly with the number of
behaviors. In the proposed approach new controller
structure may grow sub-linearly with the number of
behaviors: new neurons and connections only need be
added when the current monolithic controller can no
longer incorporate an additional attractor. However, a
more rigorous comparison between these approaches is
warranted.

Fig. 4 justifies that scaffolding is necessary to achieve
successful multistable controllers. In trials 1 and 2, the
target object is initially placed close to the robot, forc-
ing it to evolve a controller capable of grasping and
lifting first; as the object is moved further out it in-
corporates locomotion. In trials 3 onward, the target
object is initially placed further out, forcing the robot
to learn locomotion first, followed by grasping and lift-
ing. In general, among the best 30 runs these latter
trials are less successful after 18 hours than the best 30
runs of trial 1: this difference is statistically significant
for the quadruped, and marked yet not significant for
the hexapod. This shows that there is an inherent uni-
directionality in at least some behavioral trajectories:
for a given set of behaviors it is easier to learn task i
and then task j, compared to learning task j and then
task i. Only the best 30 of the 100 runs were compared
here, as some runs within all trials and all regimes failed
to achieve controllers capable of both behaviors: future
work is planned to increase the consistency of this ap-
proach.

Behavior chaining is a kind of robot shaping tech-

nique (Singh (1992), Dorigo and Colombetti (1994) and
Saksida et al. (1997)), but in behavior chaining it is as-
sumed that there is an a priori optimal ordering by
which behaviors should be incorporated into the con-
troller. Further, it assumes that this order is dictated
by the agent, its task environment and the optimiza-
tion process, and less by the agent’s current behavioral
competency.

For instance in (Goldenberg et al. (2004)) an agent is
initially trained against a subset of environments, after
which it is tested in unseen environments: the unseen
environment in which the agent performs worst is then
incorporated into the training set. It was shown that
this can, in some cases, increase an agent’s behavioral
flexibility. However, the approach introduced here in-
dicates that the order in which the agent is presented
with environments affects the probability that an agent
will be able to increase its behavioral flexibility. Con-
sider an example: an agent undergoing shaping may
perform very poorly in unseen environment i and less
poorly on unseen environment j. The shaping schedule
as described in Goldenberg et al. (2004) will incorpo-
rate environment i into the training set first. However,
it may be that the agent should learn to behave success-
fully in environment j first, and will only then be able
to behave successfully in environment i. The hypotheti-
cal shaping schedule described above may therefore fail
to yield a behaviorally flexible agent. Future investi-
gation will determine whether the optimal sequence in
which behaviors should be learned can be predicted be-
fore learning begins, or whether it can be determined
by the agent’s current behavioral competency.

Conclusions
This paper has introduced a method that automatically
trains a robot to exhibit a sequence of dynamic behav-
iors by drawing on evolutionary robotics, developmental
psychology, and in particular on advances in embodied
artificial intelligence (Pfeifer and Bongard (2006)) that
equate specific behaviors with attractor states arising
from the interaction of a robot’s brain, body and en-
vironment, rather than the more subjective labeling of
behaviors by an external observer. This method en-
abled a simulated robot to exhibit a compound behav-
ior not yet reported in the literature: dynamic legged
locomotion toward an object followed by grasping, lift-
ing and holding of that object in a physically-realistic
three-dimensional environment.

Automated methods such as evolutionary robotics
are particularly well suited for domains where it is dif-
ficult for a human operator to translate a desired high-
level behavior into a detailed sequence of motor com-
mands. This is particularly true when the robot is capa-
ble of nonlinear behavior such as dynamic locomotion.
However, this advantage has to date seemingly been
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counterbalanced by a corresponding drawback: scala-
bility. That is, there is no known scalable method for
gradually expanding the behavioral repertoire of an au-
tonomous robot. This work suggests scalable behav-
ior generation is possible if both the fitness function
and a dynamic scaffolding schedule are carefully chosen.
Rather than attempting to create a purely automatic
method, this approach takes advantage of the natural
ability of a human operator to break down a compound
behavior (such as locomotion toward and then manip-
ulation of a distal object) into separate behaviors (such
as minimizing the distance to the object, grasping, and
then lifting) each of which can then be sequentially mas-
tered using automated optimization methods.

The operator’s intuition is formalized by requiring
them to determine what constitutes failure or success,
and what modifications to the task environment should
be made in either case. Future work is planned to deter-
mine just what failure and success definitions, and their
associated scaffolds, are appropriate to realize robots
capable of an increasing number of behaviors such as
locomotion, object manipulation, object transport, lo-
comotion over uneven terrain, and teamwork.

Source code The source code, data files and
Python scripts for visualizing results are available at
www.cs.uvm.edu/∼jbongard.
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Abstract

This paper introduces a functional-structural plant model
based on Artificial Life concepts and reports studies on evo-
lutionary dynamics in virtual plant communities. The charac-
teristic of the present approach lies in plant evolution at both
functional and structural levels. The conducted experiments
focus on the emergence of different life history strategies in
an environment with heterogeneous resource availability and
disturbance frequency. It is found that, depending on the en-
countered conditions, the plants develop three major strate-
gies classified as competitors, stress-tolerators and ruderals
according to Grime’s CSR theory. Most of the evolved char-
acteristics comply with theoretical biology or field observa-
tions on natural plants.

Introduction
Life history theory seeks to understand the variation in traits
such as growth rate, number and size of offsprings and life
span observed in nature, and to explain them as evolution-
ary adaptations to environmental conditions (Stearns, 1992).
In the realm of plant life, Grime (1977) identified two ma-
jor environmental factors limiting growth. Stress is defined
as “conditions that restrict production”, e.g. shortages of
resources or suboptimal temperatures. Disturbance is “the
partial or total destruction of the plant biomass” and arises
from the activities of herbivores or from abiotic phenom-
ena such as wind damage or fire. Grime suggested the ex-
istence of three primary strategies, i.e. sets of life history
traits, which prevail in the environment depending on the
encountered levels of stress and disturbance:

• Competitors (C) live in fertile undisturbed habitats and
are adapted for long-term occupation.

• Stress-tolerators (S) persist in low resource environments,
or where survival depends on the allocation of resources
to maintenance and defense.

• Ruderals (R) are found in frequently disturbed habitats
and exhibit rapid development and reproduction.

These types are extreme variants of the whole spectrum of
plant life history strategies. The disturbance axis recalls the

concept of the r-K selection continuum that depends on the
predictability of the environment (MacArthur and Wilson,
1967; Pianka, 1970). Grime additionally assumed that plants
cannot grow where disturbance and stress are both high.

Although Grime’s classification is central in plant life
history theory, only few studies using computer simulation
have been published on the subject. Mustard et al. (2003)
addressed the evolution of CSR strategies in a virtual en-
vironment by means of a mutable model of single plant
growth based on a number of life history traits. They ob-
served the emergence of a variety of physiological adapta-
tions consistent with field and theoretical evidence. How-
ever, the model was restricted to a highly simplified mor-
phology which could not evolve.

In the area of plant modeling, there exists a variety of
functional-structural plant models (FSPM) combining a 3D
representation of the plant with the simulation of a num-
ber of physiological processes (Allen et al., 2005; Perttunen
et al., 1998), but they are typically not designed for exper-
iments at evolutionary scale. The present paper intends to
study CSR strategies through experiments with an evolution-
ary FSPM and addresses the question of if and to what extent
recognizable growth patterns evolve, and which morpholog-
ical characteristics emerge in addition to the physiological
ones. Pertinent results would constitute a success in bring-
ing Artificial Life concepts to bear in the science of plant
modeling.

The experiments extend the studies on life history evolu-
tion described in (Bornhofen and Lattaud, 2006) by apply-
ing “implicit” selection in contrast to “explicit” selection.
Explicit selection uses iterated generation steps and eval-
uates the whole population of every generation by an im-
posed fitness function. Implicit selection is not guided. It
corresponds to the struggle for existence observed in natu-
ral systems, as originally proclaimed by Darwin (1859), and
results in the emergence of characteristics that lead to high
survival and reproduction in the encountered environment.

The next section gives an overview of the state of the art
in evolutionary plant modeling. In Section 3 the used plant
model is briefly presented. The conducted experiment is de-
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Figure 1: Evolved plants: isolation (a) and competition (b)

scribed and analyzed in Section 4. Section 5 concludes the
paper and discusses the perspectives of the approach.

Plant modeling
FSPM are designed for the study of growth dynamics and
the impact of environmental factors on plant form develop-
ment (Sievanen et al., 2000). Their detailed calculations of
spatial architecture and resource flow draw a faithful picture
of real plants in a virtual environment, giving rise to the no-
tion of “virtual plants” (Room et al., 1996). In order to accu-
rately represent real plants, the model complexity most of-
ten involves a computational cost per individual which ren-
ders simulations of large communities difficult to realize for
simple reasons of memory and time. Moreover, FSPM are
typically customized by botanical data for individual or pop-
ulation level scenarios of specific natural species.

Aside from FSPM conceived within the scientific com-
munity of biologists, an amount of studies on plants have
been carried out in the research field of Artificial Life. Their
primary objective is the application and adaptation of AL-
ife concepts and notably evolutionary algorithms (Holland,
1975) in the context of plant development. As the purpose
of the conducted studies is different, priority is given to sim-
plification. Plants are represented as structures based on a
set of morphological growth rules, most often expressed by
variants of the L-system formalism (Prusinkiewicz and Lin-
denmayer, 1990), with no or only minimal physiology and
interactions with their environment.

Jacob (1994) published works concerning the evolution
of context-free and context-sensitive L-systems represent-
ing simple artificial plants. He developed the “Genetic L-
systems Programming” paradigm, a general framework for
evolutionary creation of parallel rewriting systems. His ap-
proach was extended by Ochoa (1998) who evolved 2D plant
structures and concluded that L-systems are an adequate ge-
netic representation for studies which simulate natural mor-
phological evolution.

With regard to more user interactivity, Mock (1998) mod-

eled artificial plants for a virtual world where the human ob-
server chooses the most interesting-looking individuals for
further reproduction and evolution. Likewise, some applica-
tions such as the Second Garden (Steinberg et al., 1999) or
the Nerve Garden (Damer et al., 1998) appeared in the past
years on the Internet, allowing users to grow and interact
with artificial plant communities in online worlds.

The above cited models focus on the morphological as-
pect of a plant and hold no or only minimal physiological
and environmental dynamics, so that experimental results
possess a limited significance with respect to natural plants.
Recently, ALife plant models featuring more biological con-
siderations have appeared. Most notably, Ebner et al. (2002)
incorporated interactions between plant and environment by
evaluating the individuals for their amount of captured vir-
tual sunlight. As a major result, it was shown that under
competition plants grow high whereas they grow small and
bushy when developing independently (Figure 1).

Model Description

To take a further step on the path of evolutionary plant mod-
els, the following section introduces virtual plants that not
only interact with the environment, but also combine mor-
phology with physiological processes. The plants are based
on ALife concepts, as they are emergent and adaptive struc-
tures with simple underlying rules, but at the same time they
contain all the major elements of an FSPM, that is a 3D ar-
chitecture combined with a framework of resource assimila-
tion, flow and allocation. An artificial genome contains mu-
table information which describes numerous characteristics
concerning morphological as well as physiological growth
processes, and evolutionary forces can act on these traits by
favoring reproduction of those individuals which turn out
to be adapted to a given selection process. Previous papers
(Bornhofen and Lattaud, 2006, 2007) already introduced the
model and suggested its utility for studies on adaptations of
morphology and life history parameters in comparison with
natural plants. A detailed mathematical description of the
model is given in (Bornhofen and Lattaud, 2008).

Table 1: L-system alphabet of the used plant model
Character Function
l leaf, captures virtual light
f flower, represents a reproductive module
b branch, creates a supporting structure
r fine root, assimilates nutrients in the soil
c coarse root, creates a supporting structure
A...Z apex, predecessor of a production rule
[] indicates a ramification
+-<>$ & represents a 3D rotation
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Environment
The plants grow in a continuous 3D virtual environment
which is composed of two components, the soil and the
sky, providing light and minerals respectively. These two
resources are of prime importance for the growth of natu-
ral plants (Westoby et al., 2002). Other significant resources
such as water and CO2 are currently not modeled, which cor-
responds to the assumption that their supply is constant and
sufficient. Environmental heterogeneity is achieved by sub-
dividing the soil and the sky into voxels that contain locally
available resources.

The sky holds a vertical light source parameterized by its
initial irradiance. If an object is situated in a sky voxel, it
casts shadows such that the luminosity in all subjacent vox-
els is decreased. In order to avoid time-consuming computa-
tion such as geometrical calculations or the use of computer
graphics, the shading factor does not depend on the exposed
surface of the object but on its volume. Just as sky voxels
contain a local light intensity, soil voxels contain minerals.
A resource flow from regions of high concentration to re-
gions of low concentration is modeled by Fick’s first law of
diffusion (Fick, 1855). All the assimilated nutrients of a vir-
tual plant are eventually redeposited in the soil so that their
total amount in the environment is constant within a simpli-
fied mineral cycle. The nutrients of dead roots are put in the
corresponding voxels and those of the aerial compartment
in a mold layer which gradually penetrates the upmost soil
layer.

Plant phenotype
A virtual plant is divided into a shoot and a root component.
The morphologies are expressed by two independent L-
systems (Prusinkiewicz and Lindenmayer, 1990), whose al-
phabet is detailed in Table 1. The model allows for stochas-
tic L-systems, but in the scope of this paper only determinis-
tic context free L-systems are applied. This choice was made
to disengage the evolutionary dynamics from contingencies
at individual level.

The physiological processes of the plants are based on
a two-substrate version of the transport-resistance model

Figure 2: The transport-resistance model

(Thornley, 1998), where an aboveground and a belowground
compartment assimilate, exchange and allocate the two re-
sources carbon and minerals (Figure 2). However in the
presented plant model, new biomass is not stored in a real-
valued aggregate variable, but distributed to the apices of
the current plant morphology. An L-system rule is applied
once the biomass of an apex reaches the required cost for
the production of the corresponding successor string. This
value is calculated from the genetically defined costs of all
plant modules that will be produced. Growing apices also
have to pay for the thickening of the supporting modules be-
low them. This stipulation guarantees that the growth cost
increases with the distance from the ground and refers to
the pipe model theory (Shinozaki et al., 1964) which states
that any cross sectional area in a branching system, whether
shoot or root, is proportional to the biomass of the captors,
leaves or fine roots, that it serves.

Plant genotype
The development of the virtual plants is ruled by a set of “ge-
netic information” recorded in a genotype. It contains the
variables of the transport-resistance model such as growth
and litter rates or resource assimilation and inhibition, as
well as twelve additional real-valued physiological param-
eters like longevity, duration of bloom and seed biomass.
Moreover, it specifies the parameters and production rules
of the root and shoot L-systems.

Just as in (Mustard et al., 2003), real-valued parameters
are mutated by selecting a new random value within a range
of twenty percent around the current value. L-system muta-
tions occur via genetic operators each of which is associated
with a probability of ten percent. They are chosen such that
any set of production rules can be constructed by evolution.
The following three operators modify the number of rules:

- DeleteR (a rule of the L-system is deleted)
- InsertR (an empty rule is appended)
- DuplicateR (a rule is duplicated and appended)
Five other operators act on the successor strings. Only

minor changes, i.e. character by character, are possible be-
tween successive generations. For example, if the produc-
tion A → blfA is selected to be mutated, some of the pos-
sible mutations are

- DeleteC (a character is deleted): A→ blf
- InsertC (a character is inserted): A→ b&lfA
- PermuteC (two characters are swapped): A→ bflA
- DuplicateC (a character is duplicated): A→ blffA
- MutateC (a character is replaced): A→ b+fA
In order not to obscure the results by too large a genetic

search space, the evolving elements in the genotype have
been limited for the purpose of this paper. Apart from the
morphological growth rules, i.e. the L-system production
rules, only five real-valued physiological parameters, con-
trolling five major life history trade-offs, are allowed to mu-
tate (Table 2). The significance of these parameters in the
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Table 2: Genetic parameters and their trade-offs
Parameter Trade-off
0 <longevity Long life - early reproduction
0 <maturity< 1 Vegetative - reproductive allocation
0 <kG Rapid growth - resource conservation
0 <seedX Seed size - seed number
0 <seedD Seed propagation - seed survival

plant model is specified in the following subsection. Note
that a number of other life history traits such as plant height
or seed number are not encoded in the genotype but are
emergent properties of the model.

Life cycle
The shoot and root morphologies of a seedling both start
with the single non-terminal character A. A small amount
of initial biomass seedX allows the young plant to develop
its first modules, but subsequently it has to rely on the ac-
quisition of resources and the production of biomass. In this
process, the parameter kG of the transport-resistance model
denotes the utilization rate of stored resources (Thornley,
1998). Sexual maturity is determined by maturity, a fraction
of the overall life span longevity. When a plant reaches the
age of maturity*longevity, the reproductive modules initiate
the development of a seed. Reproduction occurs asexually,
i.e. seed genotypes are a mutated version of a copy of the
mother plant genotype. Mutation is sufficient to explore the
entire genotype space, and previous studies using explicit
selection (Bornhofen and Lattaud, 2006, 2007) suggest a
low efficiency of the applied crossover operators inspired by
(Ebner et al., 2002). Therefore, no pollinisation mechanisms
have been implemented for implicit selection. During seed
production, reproductive modules become a resource sink
and compete with the apices for a share of newly produced
biomass. When they attain the final seed biomass seedX, the
seed is considered ripe and dispersed in the neighborhood
of the plant at a maximum distance of seedD. After a lim-
ited span of life longevity the plant dies and its resources are
restituted to the environment.

Experiments
The presented simulations focus on evolutionary adaptations
in an environment with heterogeneous levels of disturbance
and mineral stress. If recognizable CSR strategies emerged,
the result would not only provide new theoretical support for
Grime’s theory by simulation in silico but also, more gener-
ally, point out how the scope of FSPM can be extended to
the study of evolutionary dynamics in plant communities.

Setup
The environment is a bordered square terrain (extent: 40
length units) divided into 5x5 patches called A1 to E5 and

Figure 3: The different patches

featuring unequal levels of disturbance and stress. Along the
horizontal dimension, “disturbance events” kill plants with
a probability increasing from column 1 to 5. Such events are
not applied to an entire patch, but they potentially occur in
each cell of a 5x5 subgrid. The subdivision was chosen such
that a single disturbance does not erase the whole population
of a patch, but provides sufficiently large gaps for the estab-
lishment of new plants. Along the vertical stress dimension,
an abiotic mineral cycle has been added to the environment.
Starting from an initially homogeneous amount of nutrients,
the resources of the downmost soil layer of each patch drain
into a separate pool which is flushed back to the surface by
random events. They correspond to rainfall which fertilizes
the soil at irregular intervals, and mineral stress increases
from row A to E with decreasing probabilities for these “nu-
trient flushes”. In order to maintain the induced soil het-
erogeneity during simulation, diffusion only takes place be-
tween the voxels of the same patch. Nutrient flow across the
overall environment would blur the different levels of stress.
Figure 3 schematically plots the environmental setup and in-
dicates the applied probabilities of disturbance events and
nutrient flushes per time step. The values along both dimen-
sions are experimentally determined such that they allow the
virtual plants to evolve different life history strategies un-
der the extreme conditions of the patches A1, A5 and E1,
whereas no population succeeds to settle in patch E5.

At the beginning of the simulation, one thousand seeds
are dispersed across the terrain. Their non-mutable genetic
parameters are identical and have been adopted from pre-
vious simulations on life history evolution (Bornhofen and
Lattaud, 2006). However, the L-system derivation depth of
the plant morphology has been restricted to five productions.
Higher values lead to an exponential increase of simulation
complexity, and previous works attest that they do not in-
duce evolutionary tendencies that are fundamentally differ-
ent from those observed in this paper (Bornhofen and Lat-
taud, 2006, 2007). The mutable physiological parameters
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Figure 4: Sample view on the virtual environment

are randomly initialized within suitable limits which have
been assessed experimentally by analyzing the outcome of a
series of evolutionary test runs in the same environment. To
grant the morphological evolution as much freedom as pos-
sible, the initial seeds all start with the L-systems of a “min-
imal” reproducing virtual plant containing the single rule
A → r in the root compartment and A → lf in the shoot
compartment. During the simulation, the plants grow, com-
pete and reproduce freely via intrinsic selection, i.e. without
imposed fitness criteria. Differences in life history dynamics
emerge from mutations in every new seed genotype, and if
a strategy turns out to ensure better survival and reproduc-
tion, it has a greater chance to increase its abundance in the
population.

Twenty replicate runs are performed for a period of 10000
time steps. The size of the terrain and the length of the sim-
ulations represent a trade-off between maximizing the num-
ber of simulated individuals and harnessing simulation time
and allocated computer memory. One run would take about
ten hours and nearly use the full memory on a PC - 3GHz,
1Go RAM. Throughout the simulations, the following mea-
sures are regularly recorded for each patch:

- the number of plants
- the number of produced seeds
- the total plant biomass
- the averaged five mutable parameters
The results of the next section present mean values over

the twenty simulations.

Propagation dynamics
The initial plants, dispersed throughout the entire environ-
ment, rapidly perish in most parts of the terrain and only per-
sist in the upper left corner, i.e. the neighborhood of patch
A1. All other regions turn out too hostile for random plants.
The remaining individuals start to reproduce and spread new
seeds. As seed dispersal is not limited by the patch borders,
the population steadily invades the terrain along the two di-

mensions toward the patches A5 and E1. Note that it is the
gradual increase in difficulty that allows the plants to dis-
cover suitable survival strategies for these extreme environ-
mental conditions. After only a few generations, the forma-
tion of the CSR triangle is recognizable. Figure 4 shows a
view on the virtual environment during a typical simulation.
According to the experimental setup, the plants establishing
in patch A1 will be called “competitors”, those of patch E1
“stress-tolerators” and those of patch A5 “ruderals”.

Figure 5a plots the number of plants that grow in the three
key patches throughout the simulations. Starting from the
dispersed random seeds, the plants directly increase their
population in the competitor’s corner A1. Stress-tolerators
do not exist yet, and the initial plants of patch E1 disappear
without offspring. Around time 1000, the population orig-
inating from A1 evolves a strategy to survive in this diffi-
cult environment and reinvades the patch. Similarly, the first
plants of patch A5 are rapidly wiped out by disturbance be-
fore being able to reproduce, and it is not before time 2000
that a small population starts to persist.

After an initial peak, the number of competitors dimin-
ishes and nearly comes into balance at the simulation end.
Although one might expect evolutionary adaptation to lead
to a continuous plant increase per patch, a decrease is ob-
served. This phenomenon is explained by the fact that
from the initially defined minimal morphology, featuring
one leave and one fine root, the plants evolve toward archi-
tectures consuming more resources per individual, which af-
fects the carrying capacity of the patches. It is not the num-
ber of plants, but the amount of plant biomass per patch that
is maximized by evolution (Figure 5b).

Physiological adaptations
Due to the five mutable real-valued parameters allowing the
plants to physiologically adapt to the environmental condi-
tions, each genotype maps to a vector in a five-dimensional
space (however a one-to-one mapping is not given because
the genotypes also contain the morphological L-system
rules). In order to better apprehend the physiological com-
ponent of the evolving strategies, the vectors of all the plants

Figure 5: Number of plants and plant biomass per patch
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in a patch are averaged. It is important to note that the result-
ing aggregated data is meaningful because the low numbers
of plants per patch, i.e. not more than one hundred indi-
viduals occupying the same ecological niche, allow suppos-
ing that multiple strategies cannot coexist during one sim-
ulation. By evolution, these mean values move within the
vector space toward positions which correspond to adapted
strategies for a particular patch.

Just as in (Mustard et al., 2003), the resulting strategies at
the simulation ends are analyzed using principal component
analysis (PCA) (Jolliffe, 1986). The algorithm transforms a
multi-dimensional data set to a new coordinate system such
that maximum variability is visible. By considering lower-
order principal components and ignoring higher-order ones,
potential clusters in the cloud of data points may become
recognizable. Figure 6 plots the first two components of
the PCA applied to the set of evolved strategies in the key
patches A1, E1, A5 during all replicate simulations. It can
be observed that the results associated to each patch tend
to cluster. The pattern attests that the environmental factors
disturbance and stress lead to the emergence of contrasting
strategies in the virtual plant model. As a next step, it is stud-
ied if these physiological adaptations match the predictions
of Grime’s CSR theory or show other similarities to natural
plants found in analogous environments. The evolved mean
values of the mutable parameters are summarized in Table
3.

Ruderals possess a low maturity, i.e. only a minimum
share of lifetime is devoted to individual growth before in-
vesting biomass into seeds. Frequent catastrophes force
them to spawn as early as possible, so that there is selection
pressure toward small values. For the same reason, selective
forces lead to the evolution of low longevity, as the thresh-
old of sexual maturity scales linearly with life span in the
model (see Section 3). A low seed biomass seedX allows
the production of many seeds in a short time. Ruderals also
evolve a high growth rate kG since this parameter is respon-
sible for the amount of resources consumed per time step,
and selection turns out to favor high resource utilization in
order to accelerate the life cycle. This suite of traits matches
the life history strategy of r-selected plants in unpredictable
environments (Pianka, 1970).

Competitors feature a significantly higher maturity than
ruderals. They need a distinctive period of vegetative growth
in order to gain height and get access to light. Moreover, as
no disturbance events occur in their patch, longevity tends to
evolve high values in order to obtain more time for repro-
duction. Due to strong competition in the patch, these plants
develop a high seed biomass seedX in order to increase seed
survival. Again, the observed values comply with the the-
ory of K-selected plants in constant environments (Pianka,
1970).

Stress-tolerators evolve the longest life span. Due to few
soil resources, growth and reproduction are slow. Therefore,

Figure 6: PCA of the final plant strategies

only high values of longevity may grant enough time to run
through a complete life cycle. The delayed maturity sug-
gests that there exists significant competition between the
individuals so that they have to ensure survival before pro-
ducing offspring. Natural stress-tolerators typically feature
an inherently slow biomass production in order not to over-
consume the available resources (Chapin et al., 1993). In the
simulations, their virtual counterparts likewise develop low
kG, but the difference to competitors is not significant. The
environmental nutrient flushes in patch E1 might not be rare
enough to induce a more distinct result.

Interestingly, in contrast to the other physiological values,
the evolution of seedX does not exhibit a monotonically in-
creasing or decreasing curve. Figure 7a indicates that, start-
ing from the initial random values, seedX first rapidly drops
in all patches before it starts to rise again around time 2500.
This phenomenon is caused by the fact that the pioneering
plants do not encounter severe competition so that, in the
short term, there is selection for small and frequently pro-
duced seeds. However, when the plant population densifies
and morphological evolution decreases the carrying capac-
ity of the patches, seedlings require more biomass to survive
and grow toward resources. The simulations attest that this
constraint is particularly crucial for competitors. Just as in
nature, there is a relationship between large seed size and
establishment in shady stable plant associations (Foster and
Janson, 1985). Figure 7b shows that the number of produced
seeds is opposite to seed biomass. In particular, ruderals are
selected for a high number of offsprings.

The evolution of seedD involves a trade-off between prop-
agation speed and individual survival. Too small values
impair the spread of genetic information, and moreover
seedlings may suffer resource deficiency from the proxim-
ity to each other and their mother plant. With high seedD,
on the other hand, offspring potentially ends up in regions
they are not adapted to, or even outside the virtual envi-
ronment. The simulations yield no significantly contrasting
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Figure 7: Mean seed biomass and number per patch

results for this parameter. The evolved values in all three
key patches correspond to slightly less than their extent (8
length units). An explanation can be found in the experi-
mental setup. In the corners of the virtual terrain most of the
adjacent areas are lethal, so that strong selection pressure ex-
ists toward spawning offspring inside the same patch, and no
further differences depending on disturbance and stress can
be observed. Although seedD does not yield differentiated
results as regards the CSR strategies, the values demonstrate
an evolutionary adaptation to the risks of long-distance seed
dispersal. As an example in nature, it has been observed that
plants which colonized islands started to evolve reduced dis-
persal distances presumably because selection favored indi-
viduals whose seeds do not get lost in the surrounding ocean
waters (Cody and Overton, 1996).

Morphological adaptations
The virtual plants evolve in their environment not only
by changes in physiology. The mutating shoot and root
L-systems additionally lead to the emergence of distinct
adapted above- and belowground architectures. A look at the
plant forms growing in the key patches at the end of the runs
reveals that the three life history strategies are associated
with recognizable morphological characteristics. Figure 8
illustrates some typical plant architectures which evolved
during the simulations. In all the runs, competitors develop
a high stem without branches in order to rapidly reach the
light in their crowded environment. Small plants are penal-
ized as they do not photosynthesize enough carbon for re-
production. As mineral nutrients are abundant, competitors
do not invest much biomass into roots. Note that, since no

Table 3: The resulting averaged mutable parameters
A1(comp.) E1(stress) A5(rud.)

longevity 627.58 801.47 196.33
maturity 0.09 0.12 0.03
kG 0.95 1.09 3.62
seedX 22.16 8.65 3.85
seedD 6.25 7.40 6.25

Figure 8: Evolved morphologies

mechanical constraints such as gravity or wind are modeled,
high and slim shoot structures do not require deep roots to
provide physical support.

Ruderals have the most simple, condensed morphologies.
They do not struggle for minerals, and biomass needs to be
invested into the rapid production of seeds, so that the root
structure remains elementary. Moreover, catastrophes con-
stantly remove plants and create clear gaps in the patches.
Enough light attains the surface and it is sufficient for pho-
tosynthesis to deploy a small number of leaves near the
ground.

Stress-tolerators feature the greatest variety of shoot mor-
phologies without distinct evolutionary tendencies. Some
runs lead to competitor-like stems, others to only a tuft of
low growing leaves. However, due to the phenomenon of
“functional balance”, plants in low resource patches typi-
cally possess a decreased shoot-to-root ratio. This princi-
ple states that the resource assimilation of shoot and root
tend to an equilibrium with respect to their relative utiliza-
tion. Lower light provokes a stronger growth of leaves, and
few soil nutrients lead to a boosted root growth (Davidson,
1969). Thus, the stress-tolerators tend to invest an important
share of their biomass into root structure which results in the
evolution of differentiated belowgound architectures.

Conclusion
An experiment on the emergence of life history strategies
has been conducted with a simulation platform of virtual
plants. The plants, growing in a 3D environment, are based
upon the fusion between a two-substrate transport-resistance
model as functional component, and an L-system formalism
as structural component. Evolution occurs at both functional
and structural levels. It was observed that, depending on
the degree of encountered disturbance and stress, the plants
develop three major strategies which can be termed com-
petitors, stress-tolerators and ruderals according to Grime’s
CSR theory. Most of the evolved characteristics correspond
to hypotheses in life history theory or field observations on
natural plants. The emergence of the CSR triangle corrob-
orates the conjectured impact of disturbance and stress on
plant evolution and illustrates that plant strategies depend
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on the intensity of both environmental factors.
Extending the current simulations, the impact of crucial

parameters in the experimental setup such as patch size and
disposition needs to be studied more closely. In particular, a
toroidal environment can be used to avoid edge effects. The
virtual environment could also feature low light as a second
kind of stress, which might lead to other morphological and
physiological adaptations of the stress-tolerating plants.

The presented results do not only support plant strategy
theory by simulations in silico. More generally, they sug-
gest that the scope of FSPM is not restricted to population
level experiments, but they also allow for studies on plants at
evolutionary scale by integrating adaptive algorithms based
on Artificial Life concepts. Due to their inherent contingen-
cies and the qualitative character of emergent phenomena,
such models might offer reduced accuracy from a strict bi-
ological point of view, but in return they yield insight into
the selective forces and constraints which rule adaptation in
natural plant life.
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Abstract

The development of artificial personalities requires that we
develop a further understanding of how personality is com-
municated. This can be done through developing human-
robot interaction (HRI). In this paper we report on the de-
velopment of the SpiderCrab robot. This uses an interlingua
based on Laban Movement Analysis (LMA) to intermediate
a human-robot dance. Specifically, we developed measure-
ments to analyse data in real time from a simple vision system
and implemented a simple stochastic dancing algorithm on a
custom built robot. This shows how, through some simple
rules, a personality can emerge by biasing random behaviour.
The system was tested with professional dancers and mem-
bers of the public and the results (formal and anecdotal) are
presented herein.

Introduction
Can the study of human-robot interaction lead to the devel-
opment of embodied agents with emergent artificial person-
alities? We define an artificial personality as a machine that
is (and was been intentionally built to be) socially interac-
tive. Socially interactive robots should:

“express and/or perceive emotions; communicate
with high-level dialogue; learn models of or recog-
nize other agents; establish and/or maintain social re-
lationships; use natural cues (gaze, gestures, etc.); ex-
hibit distinctive personality and character; and may
learn and/or develop social competencies.” (Fong et al.,
2003; Dautenhahn, 2007)

Focusing on studying systems that express and perceive
emotion, we must understand the principles of emotional
communication. We focus here on non-verbal commu-
nication as much human-human communication is done
through body language (Mehrabian, 1981): i.e., communi-
cation which is expressive in its nature. In the spirit of AL-
ife research, we look for simple models that are hopefully
applicable across a broad range of systems.
Considering expressive human movement, we take our

inspiration from analysis of dance—an art-form of expres-
sive human movement. Dance, and specifically expressive

Attribute Description
Simple The protocol for communication between

agents should use a tractable mechanism
Expressive The protocol should be identifiable by hu-

mans as containing emotive human content
Embodied The protocol should work in an embodied

system—we use an improvisational dance

Table 1: The attributes required for our development of com-
munication channels for an embodied artificial personality

movement quality in dance, has been studied in detail (La-
ban, 1971; Laban and Lawrence, 1974). We therefore both
explore the principles of dance to outline potential models
of expressive communication and also test those models by
embodying them in a dance context.
We specify the important attributes for our models of

communication channels in Table 1. These three attributes
(Simple, Expressive and Embodied) are important in the pro-
duction of an artificial personality. We outline three commu-
nication channels in this work and discuss them in light of
the attributes given in the table.
From a broader scope, we also consider the relevance

of the communication channels we have identified to an
evolutionary or ALife perspective. Many artificial life
projects look for emergent communication [see work by
Quinn (2001), Marocco et al. (2003) and Nolfi (2005) for
examples], where a new communication channel emerges
in a system without any prior specification. Such emergent
communication channels are interesting from an evolution-
ary perspective as they can define simple mechanisms by
which communication can occur with very little extra func-
tion being developed. A sociobioligical definition of com-
munication (Wilson, 1975) sheds further light on the topic:

“Communication occurs when the action or cue
given by one organism is perceived by and thus alters
the probability pattern of behavior in another organism
in a fashion adaptive to either one or both of the partic-
ipants.” (p. 111)
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Category Description
Body Studies the way an individual uses their

body joints to generate movements
Space Studies the way an individual interacts with

space outside the body
Shape Studies the sorts of shapes made by individ-

uals as they move
Effort Studies the way an individual moves

Table 2: The four LMA categories.

Subcategory Description
Space Is the movement direct or indirect
Weight Is the movement strong or light
Time Are the movements quick or sustained
Flow Are the movements under body control

(bound) or are they allowed to flow

Table 3: The four subcategories of the LMA effort category.

Given this definition there need be no intentionality on the
behalf of the sender to transmit a signal—thus a commu-
nication channel may emerge just from observations of an-
other’s behaviour. We consider whether the expressive chan-
nels of communication developed here are relevant as forms
of emergent communication.

Dance background
The field of postmodern dance stands out as being particu-
larly relevant to the direction of study outlined in the pre-
vious section. Other dance forms, such as ballet, focus on
structured movements. Ballet dances are commonly formed
from a grammar of dance positions called Key Aesthetic
Poses. Expression is conveyed through changing the style
of movement between each dance position. Alternatively,
postmodern dance seeks to remove all syntax and structure
from dancers movements (Banes, 2003). Dancers are taught
to unlearn their usual movement vocabulary so they can
move on a purely expressionistic level. Commonly, dancers
improvise in pairs (or greater numbers) where they each
either copy, oppose or innovate qualities from the other’s
movements. Since their movements are no longer con-
sciously motivated they therefore become examples of emer-
gent communication.
We look here at a method which is widely used for in-

terpreting and understanding expression qualities in dance
(Laban, 1971; Laban and Lawrence, 1974): Laban Move-
ment Analysis (LMA). This has four main categories which
are outlined in Table 2. As we are focused on movement
quality, we looked more closely at the effort category, which
has four subcategories outlined in Table 3.
In a modern improvisational dance context, the dancers

make offers to each other through their movement quality.
From an LMA perspective, movements can be classified and

dances can be interpreted through this language. In impro-
visation, movement quality is often copied with occasional
innovations and oppositions—this gives the dancers a sense
of performative merging.

Other work
Previous work for generating expressive movements has fo-
cused on a computer model of the human arm and torso
(Chi et al., 2000) and a computer model of a ballet dancer
(Neagle et al., 2004). In both systems, key positions and
times were defined for body parts and heuristics, inspired
by LMA, were specified for movement between positions.
An important factor was found to be the velocity profiles of
movement (Neagle et al., 2004).
The analysis of expressive qualities of human movements

has been attempted before (Castellano et al., 2007). This ap-
proach used features generated from many different move-
ment characteristics (Acceleration, Contraction Index, Flu-
idity, Quantity of Movement and Velocity) taken from ac-
tors making gestures expressing one of four emotions (Joy,
Anger, Pleasure and Sadness). Various classifiers were
tested with the data in order to generate models which would
identify the correct emotion using the features available. The
most significant feature was found to be Quantity of Move-
ment with the Contraction Index (the degree of contraction
and expansion of the body) playing a minor role. However,
the system was not able to classify all emotions accurately.
The complexity of this approach is not compatible with our
requirement that models be tractable (Table 1) because of
the large number of features used by the classifiers.

The SpiderCrab system
Given analogues between LMA (see the Dance background
section) and mathematical analysis, and success using it in
the past, LMA was chosen to act as an interlingua for an im-
provisational human/robot dance. The SpiderCrab robot was
chosen to embody an artificial personality developed within
the requirements of Table 1. The design phase of the robot
was done through embodying it (into human form) at dance
workshops. This was, in part, to study the application of per-
formance arts methodology to the design process (Bayliss
et al., 2007). It was also useful to form a picture of how the
robot may be capable of expressive behaviour. In this project
we focused specifically on the development of a controller
for the robot to explore its potential as an improvisational
dance partner.
An overview of the system we developed is presented in

Fig. 1. The Robot system has three subsystems: the sen-
sory input, robot controller and improvisation subsystems.
Both the sensory input and robot controller subsystems use
the expressive communication model, which is a common
framework, based on LMA, for classifying both input from
the dancer and output to the robot. Decisions about how
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the robot should react to different sensory inputs from the
dancer were made by the improvisation subsystem.

Dancer

rod

joint

Robot

Figure 1: An overview of the SpiderCrab system showing
expression flowing within a closed loop between the dancer
and the robot. The robot system controls the robot, respond-
ing to the quality of the dancer’s movement by biasing the
robot’s random movements. The dancer responds to the
robot’s movement.

The expressive communication model
The expressive communication model uses LMA to provide
a common language for dancer and robot movement. For
simplicity we focus on only one primary subcategory of
LMA and analyse its role in the expression and communi-
cation of emotion. We chose the weight subcategory in the
effort (see Table 3) category for several reasons. Previous
work (Neagle et al., 2004) has shown that it is possible to
generate movement in a virtual dancer in which humans can
distinguish three emotions: Sadness, Happiness and Anger.
These same emotions can also be distinguished when hu-
man dancers perform movements on different regions of the
weight subcategory spectrum.
Two secondary subcategories of LMA were also consid-

ered, to try and understand their roles in the expression of
emotion. These were the space subcategory (see Table 3)
which is in the effort category and the kinesphere subcat-
egory in the space category. The kinesphere subcategory
relates to the area the dancer is moving within and how that
relates to other dancers.
The two Effort subcategories were modelled as three dis-

crete nouns (see Table 4). The kinesphere subcategory was
modelled as a 3D coordinate which represented the position
of the armband, and the 3D locations of the joints and rods
of the robot limb.

Sensory input subsystem
A simple vision subsystem was used to generate real time
data for our system. Some bright green material was fixed to
the dancer (often as an armband) and its location was tracked

LMA subcategory Settings
Weight Strong; Medium; Light
Space Direct; Indirect

Table 4: The two subcategories of the LMA Effort category
can have different settings in the expressive communication
model. An LMA noun can be formed by choosing a set-
ting from each subcategory, e.g., Strong+Direct would mean
strong, direct movements.

by digital cameras. We recorded the centre of the green pix-
els at each timestep on each camera’s image and this coor-
dinate [x(t), y(t)] was used to generate measurements for
each camera.
Measurements were taken using the values of x(t), y(t)

to model the two LMA effort subcategories, weight and
space. First, we propose that the LMA subcategory weight
of movement may be modelled by the power delivered to the
armband over a period of time of length T . This is approx-
imated by assuming the mass of the armband is 1.0 (we do
not use standard units). The force on the armband is thus
equal to the absolute value of the acceleration of the arm-
band at the camera frame. The power over time T is given
by,

power(t) =
1

T

t
∑

t−(T−1)

Fl , (1)

where F is the force on the armband at t and l is the distance
travelled by the armband over the timestep at t. An alterna-
tive measurement was also considered, the average absolute
speed over time T ,

speed(t) =
1

T

t
∑

t−(T−1)

|s| , (2)

where s is the speed of movement of the armband at time t.
The indirectness of movement was also considered to

model the space subcategory. To do this, the direction of
movement θ was calculated at each timestep. The rate of
change of direction can be approximated by taking dθ/dt =
θ(t) − θ(t − 1). We introduce an indirectness measure over
a period of time T which is given by,

indirectness(t) =
1

T

t
∑

t−(T−1)

∣

∣

∣

∣

dθ

dt
s

∣

∣

∣

∣

. (3)

Our indirectness measurement is greater when the arm-
band changes direction while moving quickly.
When the robot was in improvisational dance mode, the

time period was set to two seconds for the power measure-
ment and one second for the indirectness measurement.
For evaluations of the Sensory input subsystem, movements
of the dancers were broken down into gestures and the mea-
surements were calculated for each gesture. Gestures were
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Joint Degrees of Rod
freedom length (m)

Shoulder 2 2.10
Elbow 2 1.30
Wrist 2 0.80
Finger 1 0.53

Table 5: The four joints of the SpiderCrab robot. The joints
are connected in sequence. The Shoulder joint is fixed to the
environment with each following joint connected by a sturdy
rod.

identified by looking at the acceleration time trace: gesture
start and end points were taken from when the acceleration
moved from negative to positive values. Very short gestures
(< 0.6 seconds) were combined together into longer ges-
tures.
Tests with a simple 2 camera setup did not produce ac-

curate enough 3-dimensional locations for the power and
indirectness measurements. So we estimated motion or-
thogonal to the viewing direction of each camera using
position in the image and assuming a fixed depth. This
is a reasonable approximation assuming the dancer would
stay roughly the same distance away from the cameras and
face the cameras, although it will not include contribu-
tions to power and indirectness that arise from motion in
depth. Course grained 3-dimensional location information
was generated for the kinesphere aspect of the Expression
communication model by using a second camera and trian-
gulating the position.

The robot and the robot controller subsystem
The robot1 is a single limb with four joints, see Table 5. The
robot was designed to interact with the public, so needed
to be as light and flexible as possible. The four joints of
the limb are thus moved using air muscles with each axis of
rotation having a pair of air muscles—a flexion muscle and
an extension muscle. Valves connected to the air muscles
are computer controlled, letting air in or out and contracting
or extending the muscle respectively. Sensors on each joint
return its angle(s) to the controller.
The quality of movement of the robot is defined by one of

the six LMA nouns given in Table 4. The current LMA noun
is received from the Improvisation subsystem (see the next
section for more details on the Improvisation subsystem).
To control the robot’s quality of movement,

three variables are changed according to the LMA
noun received from the Improvisation subsystem:
joint instruction length, robot movement power
and joint direction consistency. A pair of air muscles
rotate the joint around an axis of rotation for a random

1The robot was designed in partnership with, and built by, the
Shadow Robot Company. See http://www.shadowrobot.
com for further technical information.

period of time (selected from a flat distribution between 0
and 1) multiplied by the joint instruction length. The
amount of air fed to the muscles (per second) is sampled
randomly from a uniform distribution between 0.5 and 1.5
and multiplied by the robot movement power. At the end
of each movement the joint either continues its rotation in
the same direction or will reverse direction with a prob-
ability depending on the joint direction consistency.
If at any time a joint rotates past a limit (commonly the
maximum rotation of a joint), the rotation direction will be
reversed.
The three variables were set by hand for each of the

six LMA nouns. They were tuned by assessing the
robot’s movement by eye. The robot movement power
variable corresponded with the weight subcat-
egory, and the joint instruction length and
joint direction consistency variables corresponded
with the space subcategory.
The other important aspect of the robot’s movement is de-

termined by the kinesphere subcategory of the LMA space
category. Here the robot will either point the elbow joint
toward the dancer’s general location, or ignore the dancer’s
general location and move the elbow freely. When the elbow
must point, it rotates toward the target with an angular ve-
locity proportional to the target’s angular distance from the
rod extending from the joint.

Improvisation subsystem
The robot was designed to perform within a postmodern
dance improvisation context. This means that the robot will
embody the expressive communication model by interfac-
ing between the sensory input module and the robot con-
troller. The improvisation subsystem implements an im-
provisational dance by switching between three different
modes: Copy, Follow-copy and Oppose. Table 6 describes
the three modes.

Improvisation
mode

Description

Copy The robot movement quality directly
copies the movement quality of the
dancer (using the effort and space subcat-
egories of the LMA effort category)

Follow-
copy

As Copy but with the elbow joint point-
ing at the dancer (using the kinesphere
subcategory of the LMA space category)

Oppose The robot movement quality is the oppo-
site to that of the dancer (using the effort
and space subcategories of the LMA ef-
fort category)

Table 6: The robot responds to the quality of movement of
the dancer by selecting an LMA noun depending on its im-
provisation mode.
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The power and indirectness measurements were used
to identify which LMA noun the dancer was using. When in
copy mode the dancer’s noun was output to the robot con-
troller, when in oppose mode, the opposite noun (i.e., Strong
→ Light, Light → Strong and Direct → Indirect) was out-
put to the robot controller. The robot cycled through the 3
modes spending 30 seconds in Copy mode, 30 seconds in
Follow-copy mode and then a random number of seconds
(between 5 and 15) in Oppose mode.
Essentially, the robot responds to three key elements mea-

sured from the dancer’s movement: the weight of move-
ment, the directness of movement and the location of the
dancer. It responds by either producing movements with a
similar quality, or by producing movements with an oppos-
ing quality.

Evaluation
The SpiderCrab system was evaluated from two perspec-
tives. First, we focused on the sensory input subsystem to
evaluate its capabilities of perceiving emotional quality in
movements. Second, the full system was evaluated by mem-
bers of the public and dancers from the Salamanda Tandem
dance company.

Sensory input subsystem evaluation
We tested the Sensory input subsystem over two dance ses-
sions. In the first session the dancer was asked to make
the same gesture with different qualities of movement. In
the second session the dancer moved freely making varying
gestures to different qualities of movement. Evaluations are
made with reference to the attributes required by Table 1.
In both sessions the dancer stood at a fixed distance from

a single camera. Approximately 20 gestures were made for
each movement class by both dancers.
In the first session, we considered whether the sensory in-

put subsystem was capable of assessing the emotional con-
tent of a dancer’s movement (the Expressive attribute in Ta-
ble 1). Dance movements were taken from three different
movement classes expressing the three different emotions:
Sadness, Happiness and Anger. For each individual gesture,
the power and speed measurements (see Eqs. 1 and 2) were
calculated using the Sensory Input subsystem. Box plots
of the power data, collected within each movement class,
are shown in Fig. 2. Box plots of the speed data, collected
within each movement class, are shown in Fig. 3.
Figure 2 shows that the power measurement is a good

choice for the Sensory Input subsystem to distinguish be-
tween the three emotions expressed by the dancer. In
fact, the mean absolute acceleration also worked well (not
shown). We decided to work with the power measurement
as it relates more closely to our sensations of moving in the
three movement classes: in an ad hoc experiment, the per-
ceived work done by our muscles when expressing the emo-
tions correlated with the power recordings of Fig. 2. An
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Figure 2: The same gesture made with movement quality
expressing different emotions. The Sensory Input subsys-
tem can distinguish between different emotional qualities of
movement by calculating the power (see Eq. 1) delivered to
the armband. Two-sample t-test comparisons between the
three movement classes all give p < 7.7 × 10−05.

   
0.05

0.1

0.15

0.2

0.25

0.3

 s
pe

ed

Movement class
Sad Happy Angry

Figure 3: The same gesture made with movement quality
expressing different emotions. The Sensory Input subsys-
tem is unable to distinguish between the Happy and Angry
gestures when calculating the average absolute speed (see
Eq. 2) of the armband. A two-sample t-test comparison be-
tween Happy and Angry gestures gives p = 0.82
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alternative measure of considering the average speed (or, by
extension, momentum) of the armband did not distinguish
between the Happy and Angry gestures (Fig. 3).
In the second dance session, a dancer was asked to per-

form gestures freely with relevant LMA nouns of the weight
and space subcategories of the effort category. This formed
four classes of movement: Strong+Direct, Strong+Indirect,
Light+Direct and Light+Indirect. The output of the power
measurement for the strong and light movements is shown
in a box plot in Fig. 4. The output of the indirectness mea-
surement for the direct and indirect movements is shown in
a box plot in Fig. 5.
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Figure 4: Varying gestures made with strong and light LMA
movement qualities. The Sensory Input subsystem can dis-
tinguish the quality of movement by calculating the power
delivered to the armband. A two-sample t-test comparison
between the two movement classes gives p = 0.018.

The Sensory Input subsystem was able to distinguish be-
tween strong and light movements (see Fig. 4). In compari-
son to Fig. 2, some gestures were of a much greater power.
Greater power can be delivered to the armband when the in-
dividual moves their body as well as their arm, rather than
just the arm on its own. While the system had some success
in distinguishing direct and indirect movements, the results
were not significant. This was because it could not distin-
guish between an individual moving to start a new gesture
(not relevant within and LMA context) and an individual
moving within a gesture).

Full system evaluation
We evaluated the full system based on an embodiment test
for an artificial dancer partner proposed by Wallis et al.
(2007). This argues that “success will be measured by
whether or not the human dancer feels that he/she is danc-
ing with a true partner”. With this in mind, we evaluated the
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Figure 5: Varying gestures made with direct and indirect
LMA movement qualities. The Sensory Input subsystem is
unable to distinguish between the two movement classes. A
two-sample t-test comparison between the two movement
classes gives p = 0.32.

robot using a professional and independent dance company
that focuses on improvisational dance. The company, Sala-
manda Tandem, use dance as a means of studying and devel-
oping social interaction—particularly with disabled people
including those on the autistic spectrum.
Dancers from the company danced with the robot (see

Figure 6) over a period of two days and wrote a report (Jones
and Hood, 2008) on their interaction with the robot. So that
their experience was not biased in any way, the dancers were
told as little as possible about the way the system worked
before starting to dance, just that it would respond to move-
ments with the green armband.
Their responses to dancing with the robot indicate that it

had passed the embodiment test: the robot did feel like a true
partner. One of the assessors stated that

“I felt apprehensive when approaching to move with
the robot but it’s amazing how quickly I forgot it was a
robot and was just dancing with another, it felt friendly”
(Julie Hood).

Another dancer felt that

“[a]t first it’s like a robot, then you forget and you
are having a duet, getting to know someone—shaking
hands... You can build a connection in play and
be imaginative with it... It becomes a human limb”
(Mickel Smithen).

In general, when the robot was in the copy mode people
dancing with the robot (both professional dancers and mem-
bers of the public) felt that it was responsive to their ex-
pressive offers. This meant that there was a bi-directional
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Figure 6: A dance student dances with the robot.

expressive communication channel. When noise was intro-
duced so that the system responded erratically (detecting
movement when none was there), dancers felt it was less
responsive.
Some comments picked up on how we might develop the

robot’s personality:

“I’ve noticed in my work with people that there needs
to be a pace, a sense of timing to encourage interaction
to take place...I believe that SpiderCrab would need to
be able to vary [its timing] in response to different sorts
of people” (Isabel Jones).

Development along these lines could mean that the Spider-
Crab system could become

“a fantastic tool to deconstruct and analyse human in-
teraction” (Isabel Jones).

After a while, the dancers started to feel that the robot’s be-
haviour was becoming a little predictable and that its qual-
ity of movement was limited when compared with a human
dancer.

The Sensory Input subsystem was shown, in the previous
section, to be able to distinguish between movements ex-
pressing different emotions. When the robot was placed in
an environment with real dancers, the robot was clearly able
to pick up on the weight of the dancer’s movement of the
armband.
While there is a long way to go before the robot can

fully identify the dancers’ movement qualities, the six dif-
ferent qualities of robot movements were, however, quali-
tatively identifiable from each other. Reports from dancers
were that robot movements could range from “menacing” to
“smooth”.
When the robot’s elbow joint pointed toward the dancer’s

location, we had mixed responses. For safety reasons we
had to slow the movement of the elbow. This meant that
the robot was slow to copy the dancers’ movements. Some
dancers did not notice the difference between the copy mode
and the follow-copy mode. However, when the follow-copy
mode was observed, some dancers felt that the robot was
crowding them whereas others felt that the robot was being
more friendly.

Discussion
In this project, we have developed a robot system that,
through improvisational dance, is capable of bidirectional
expressive communication. The SpiderCrab system can dis-
tinguish between different human emotions, based on the
quality of movement. Furthermore, the robot’s movements
were responsive to the dancers’ movements and interpreted
as such by the dancers. This meant that the robot was suc-
cessful as an improvisational dance partner and was able to
achieve social interaction [as specified by Fong et al. (2003);
Dautenhahn (2007)] through the embodied expression and
perception of emotions.
To consider the robot’s potential as an artificial person-

ality, we review the communication channels used by the
system in light of the attributes outlined in Table 1. Starting
with the primary communication channel, the power mea-
surement (see Eq. 1) does indeed satisfy all the required at-
tributes for use in an artificial personality. This measurement
was both simple in that it can easily be calculated and used,
but it is also simple in that it is clear how expression can be
transmitted through the channel—it can map neatly onto hu-
man emotions (see Fig. 2). The success of the channel in the
full system evaluation (including the fact that perception of
the responsiveness of the system was impaired when noise
was introduced) also means that it is successful as both an
expressive and embodied channel.
The indirectness measurement (see Eq. 3) was less suc-

cessful than the power measurement. While simple to cal-
culate, the measurement did not map neatly onto human ex-
pression or emotions. However, when the robot generated
movements within its more limited movement vocabulary,
they were distinguishable to our eyes.
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The pointing or following behaviour of the robot (based
on the kinesphere LMA subcategory) showed some poten-
tial. This is simple to implement, is tractable, and maps
neatly onto behaviour. The expressive quality of this com-
munication channel relates to attention. The robot can use its
physical location to pay attention to the dancer, or to move
away to dance in a different space. It was difficult to imple-
ment in the full system due to the inaccuracies in our mea-
suring systems.
As far as the production of artificial personalities is con-

cerned, there is potential to build more sophisticated mod-
els into the robot’s Improvisation subsystem. This could al-
low us to experiment more closely with different personality
models and explore the system as a tool for analysis of hu-
man interaction. The development of a methodological ap-
proach for studying this in more detail is an exciting project.
Insights into emergent communication channels can also

be gained from studying the communication channels we
have outlined. Put simply, the power measurement measures
the amount of energy being expended by an agent during its
movement. Observers can quickly make judgements as to
an agent’s internal state based on this measurement and any
other measurement that measures energy usage (e.g., sound
volume, metabolic output, etc). It should be noted that it is
also difficult for an agent to hide or fake its energy consump-
tion so this forms the basis of a communication channel that
is unintentional and emergent and therefore likely to be an
early channel to evolve. Looking for other, unintentional,
movement channels may well be productive.
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Abstract 
The evolutionary theory relies on the principles of variation and 
selection to explain adaptation. It is reasonable to fit these 
powerful principles to the learning theory. A number of 
selectionist approaches were proposed but found modest 
recognition so far. This theoretical paper attempts to review an 
application of basic ideas of the evolutionary adaptation to the 
lifetime learning. The analysis demonstrates that an adaptive 
value can be translated from the level of evolution to the level 
of individual through the innate repertoire of behaviors. This 
primary repertoire forms initial attractor for the behavioral 
dynamics. Learning starts when an environment offsets an 
organism from the existing attractor trajectory. Blind variations 
of behavior are generated until the return to the target attractor. 
These variations are retained to make up new branches of basin 
of attraction. It is important that the existed behavioral 
trajectory should not be altered as the learning unfolds because 
it keeps knowledge about adaptations survived selection 
through the evolutionary and learning history. 

Introduction 
Animals learn and this learning is usually beneficial or at least 
neutral for their evolutionary success. Generally, an adaptive 
learning is considered to be driven by some value system. The 
value system categorizes states of an environment in terms of 
their adaptive value. This categorization results in the 
feedback used in modification of behavior during learning. 
Adoption of the value system to explain the adaptive value of 
learning is not an exclusive solution. This paper addresses an 
application of the evolutionary principles of variation and 
selection to the explanation of adaptive outcome of learning. 
In spite of a number of selectionist theories of learning being 
proposed (Skinner, 1981; Edelman, 1987; Changeux and 
Dehaene, 1989) none of them gained widespread recognition. 
Here I try to analyze and clarify some basic ideas behind the 
selectionist approach. In particular, I focus on the issues 
concerning the initiation and finalization of learning, the 
selection criteria for the behavioral modifications, and 
memory retention. 
 An explanation of learning adaptive value is the ultimate 
problem of learning theory. Learning is adaptive when it leads 
to the modification of behavior that is evolutionary beneficial. 
But natural selection operates on the scale of generations and 
learning unfolds on the interval of minutes or even seconds. 
The evolutionary values should be transferred to the level of 
learning. This transfer is maintained by Darwinian evolution 

of developmental processes. And when an organism starts 
learning it already has criteria of adaptivness created during 
ontogeny. 
 Having representations of evolutionary values on the 
organismic level is a half of the story. The other half is 
generation of new adaptive behaviors. During learning an 
individual should produce behaviors taking into account 
evolutionary values. A mainstream of modern theories of 
animal learning in the fields of neuroscience (Schultz and 
Dickinson, 2000; Suri et al., 2001; Dayan and Balleine, 2002; 
Berridge and Robinson, 2003) and adaptive behavior (Maes, 
1994; Sutton and Barto, 1998; Dorigo and Colombetti, 1998; 
Adaptive Behavior, 2002) employs “feedback” logic for 
aligning behavior with values. In this logic, discrepancy in the 
expected value guides learning. The value of an error signal is 
used to produce modifications of behavior. 
 An alternative approach to the generation of adaptation is 
presented by the explanatory scheme of the evolutionary 
theory. Evolution requires two processes, the first is 
generation of variation and the second is selection. The logic 
of the evolutionary explanatory scheme is opposite to the 
“feedback” logic mentioned above. In the “feedback” logic 
the adaptivness is evaluated first in terms of “reward” 
expectation mismatch and then the obtained error signal is 
used to change behavior. On the other hand, in the 
evolutionary scheme the generation of possible solutions goes 
first and then evaluation takes place in the form of selection. 
This reversal of stages leads to the next important distinction. 
The process of variation generation precedes the evaluation so 
it is independent of selection criteria, but in the “feedback” 
approach modifications depend on evaluations. The 
differences are outlined in the table 1. 
 

“feedback” logic evolutionary logic 
evaluation then modification generation then selection 

modification depends on 
evaluation 

generation is 
independent of selection 

Table 1: The differences between “feedback” and 
“evolutionary” logic of adaptation. 

 It is obvious that the evolutionary logic of adaptation was 
successfully applied in a numerous studies to the synthesis of 
adaptive agents (Beer, 1996; Harvey et al., 1997; Pfeifer and 
Scheier, 1999; Nolfi and Floreano, 2000; Beer, 2000; Harvey 
et al., 2005) but its application to the problem of individual 
learning is still on the way. 
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 There are a number of attempts to use principles of 
variation and selection in the theories of learning. In 1960 W. 
Ross Ashby published his influential book “Design for a 
brain” (Ashby, 1960) where one can find a proposal of the 
cybernetic theory of learning that utilizes trials and errors. 
Ashby had introduced so called essential variables (variables 
indicating viability of an organism) and treated them as a 
source of control for the blind variation. “Design for a brain” 
is focused mainly on the issue of behavior’s stability. Here the 
important achievement was that adaptation in one behavioral 
subsystem should not disturb other subsystems of an animal 
and, hence, the subsystems for different behaviors should be 
loosely connected. Recently the similar idea of the structural 
adaptation was studied by Toussaint (Toussaint, 2004). 
Unfortunately, Ashby said nothing on retention of previous 
experience of an agent, and in his scheme of learning only the 
last successful adaptation is conserved. Therefore, each new 
learning episode should start from scratch and this would lead 
to the repetition of previous errors and make learning less 
effective. Also, Ashby allowed only a fixed set of essential 
variables to control blind variations. 
 On the conceptual level the evolutionary approach to 
learning lies at the intersection of evolutionary epistemology 
(Campbell, 1974; Popper, 1984) and constructivism 
(Glasersfeld, 1995; Foundations of Science, 2001). The 
famous Popperian formula describing the growth of 
knowledge through variation and selection is: 

1 2P TT EE P! ! ! , (1)

here P1 stands for the initial problem, TT are tentative theories 
or solutions proposed to solve it, EE is a process of error 
elimination, and P2 is a new problem. For the sequential 
scheme of generation of solutions formula is extended and 
takes form: 

1 1 1 2 2 ... nP TT EE TT EE TT success! ! ! ! ! ! , (2) 

here n is a number of attempts which an agent has performed 
until solution was obtained. 
 An important contribution of the evolutionary epistemology 
is a concept of “vicarious selector” (Campbell, 1974). 
Vicarious selectors serve as internal representations of 
external factors of natural selection thus allowing transfer of 
evolutionary values to the level of learning. Vicarious 
selection “substitutes” natural selection during lifetime 
learning. The hierarchy of vicarious selectors accumulates all 
previous (even unsuccessful) experience and, as a 
consequence, generation of new behaviors takes the form of 
progressive growth on the top of existing competence. This 
process can be interpreted as a construction of individual 
knowledge by an active agent. 
 B.F. Skinner advocated his theory of “selection by 
consequences” (Skinner, 1981). Skinner considered selection 
by consequences as an explanatory scheme that is common for 
the three different levels, namely, the Darwinian evolution, 
learning and social evolution. Unfortunately, radical rejection 
of any attempts to consider the processes underling selection 
for all these cases made his approach fruitless. 
 There are two selectionist theories in the field of 
neuroscience: the theory developed by Changeux and 

Dehaene (Changeux and Dehaene, 1989), and the theory of 
neuronal groups selection (TNGS) proposed by Edelman 
(Edelman, 1987, 1993). Both theories declare thoroughly 
application of the “neural Darwinism” to the processes on all 
levels of brain organization from the synapse to the 
consciousness. The suggested sources of variation are 
generation of excessive synaptic connections during 
development and variable activation of neural assemblies. In 
their basic form both theories attributes selection to the input 
matching: 

“At a given stage of the evolution of the organism, some 
of these spontaneously generated pre-representations 
may not match any defined feature of the environment 
(or any item from long-term memory stores) and may 
thus be transiently meaningless. But, some of them will 
ultimately be selected in novel situations, thus becoming 
“meaning full”. The achievement of such adequacy 
(fitness) with the environment (or with a given cognitive 
state) would then become the basic criterion for 
selection.” (Changeux and Dehaene, 1989, p. 87) 

The similar idea for the TNGS is presented in (Izhikevich et 
al., 2004). But input matching only is not enough for the 
creation of adaptive behavior because the action selection 
process should also be specified. The solution to this problem 
was put forward in (Dehaene and Changeux, 2000): 

“The models that we have introduced thus implement a 
generalized variation/selection scheme which was 
initially explored under the name of ‘reinforcement 
learning’ by computer scientists (e.g. Sutton and Barto, 
1998) and has also been called 'neural Darwinism’ by 
neurobiologists (Edelman, 1987, 1993; Changeux and 
Dehaene, 1989).” 

This solution creates confusion because “generalized 
variation/selection scheme” refers to the evolutionary 
explanatory scheme but used by authors as a shortcut to the 
principles primary to reinforcement learning. The mechanisms 
of adaptation in the reinforcement learning fall in the domain 
of “feedback” logic which is opposite to the evolutionary one 
(see Table 1). 
 An integration of theoretical proposals devoted to 
application of the evolutionary principles to learning gives 
only some features of the required picture. Below an attempt 
to analyze the process of individual learning in the framework 
of evolutionary logic is presented and some consequences are 
discussed in relation to the current theoretical landscape. 

Formalization 
Below an organism or a robot is considered as an abstract 
adaptive agent. The agent’s “brain” can be represented as an 
automaton A (similar approach was used by Peschl (Peschl, 
1997) in his investigation of representations in neural 
systems). Description of the automaton A should include 
definitions of a set of all the components C of A and a 
transformation of these components states B that generates the 
“brain” dynamics. 
 The set of components C of the brain-automaton A consists 
of the following subsets (fig. 1): 
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• CE is a subset of the components which states are 
determined by the external environment. 
• CI is a subset of components which states are determined 
by the internal state of the agent (its body). 
• CS is a subset of components which states are not 
determined directly by the external environment or the 
internal state of the agent but determined by any other 
components of the set C. 
• CA is a subset of components which states determine the 
actions executed by the agent.  

 Hence a “brain” of an agent is specified by the automaton 
A{CE,CI,CS,CA,B}. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1: The automaton representation of the agent’s “brain” 
(for details see text). 
 
 With the use of notation introduced above a behavior of the 
agent in discreet time t{t0,t1,t2,…,tn} is represented as 
modification of it’s states by transformation B and can be 
written like this: 

1 2... ...n n nt t tB B B" "##! ##! ##!C C C  (3)

or equivalently 

1 ( ) ( , , , )n n n n n nt t t t t tB B" $ $ E I S AC C C C C C , (4)

here ntC  is a vector of states of the automaton’s components 
at the time tn, or in other words the state of A at tn. 
 The behavior of the agent is constant if the transformation 
B doesn’t change with time. It should be mentioned that 
according to the equation (4) constancy of behavior is not 
necessary leads to the same actions in the same environmental 
and bodily conditions because the next state of the automaton 
also depends on the states of its internal components CS. It is 
reasonable to define learning as a transformation L of the 
brain dynamics B of the agent. Thus L is a transformation 
defined on the set of possible B’s. To introduce learning into 
the dynamics the both B and L are applied: 

1
1( ) ( )... ...

n n
n n

t tt tL B L B "
"###! ###!C C , (5) 

or 

1

1

( ) ( , , , )

( )

n n n n n n n n

n n

t t t t t t t t

t t

B B

B L B

"

"

$ $

$

%&
'
&(

E I S AC C C C C C
. (6)

 Addition of the learning transformation L to the automaton 
A results in an automaton with learning A{CE,CI,CS,CA,B,L}. 

“Feedback” logic of learning 
The common assumption about logic of learning is that 
change in the function which generates a behavior (i.e. B) is 
determined by the states of the agent’s “brain”. These states 
can be external reinforcing stimuli which the agent percepts 
through the activation of some sensory inputs (i.e. CE), or the 
signals carrying information about the state of the body (i.e. 
CI), or the activations of pre- and post-synaptic neurons (i.e. 
CS) in the activity-dependent plasticity. In the framework of 
automata approach accepted in the paper this means that the 
transformation L is a function of values of states C: 

( , , , )L f$ E I S AC C C C . (7)

In other words, the transformation from ntB  to 1ntB "  is 

determined by the state ntC  of the automaton A. 

Evolutionary logic of learning 
Following the evolutionary logic the adaptation is produced 
by variation and selection where generation of variation is 
independent of selection. One can start with the most radical 
assumption that a change in the function which generates 
behavior (i.e. transformation B) is not determined by the states 
of the agent’s “brain”. The simplest form of the learning 
transformation L in this case: 

1 ( )n n nt t tB L B B )" $ $ * , (8)

where ! is a random process (noise) and * denotes acting 
upon B. 
 It is obvious that the learning transformation L in the form 
of (8) leads not to adaptation but to degradation of the 
behavior. If we look at (8) as on applying a mutation (*!) to 
the strategy of agent’s behavior (B) it becomes clear that an 
analog of natural selection is needed to make the process 
adaptive. 
 The natural selection acts on variation in a population of 
individuals. The key difference of the individual learning from 
the evolution is that in the former the agent cannot evaluate 
more than one of the different variants of behavior at the same 
time. The solution is that during the individual learning 
selection acts not on the variation in the population of 
behaviors but on the sequence of varying behaviors. Thus the 
rule of individual evolutionary learning is: 
“Produce blind variations of the behavior until adaptation is 
obtained.” 
 Here selection is implemented as a control of blind 
variation. The next question, what does control variation, or 
who does evaluate produced behaviors? It is naturally to 

A{CE,CI,CS,CA,B} 

CE 

CI CS 

CA 

Environment 

Body 

Actions
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assume that evaluation of the behavior is performed by the 
agent itself. Then (8) becomes: 

1 ( ) ( )n n nt t tB L B B m )" $ $ * C , (9)

where m is a magnitude of application of ! to B. The value of 
m is determined by the state of the “brain” C. 
 The logic of learning expressed in (9) can be summarized 
as follows: 
1. The process of change in the behavioral strategy of the 
agent (learning) is not determined by the state of the agent’s 
“brain” and has a form of blind variation of already existed 
behavior. 
2. Amount of change through blind variation is not constant in 
time and is determined by the state of the agent’s “brain”. 

Discussion 
The formalization of learning as an evolutionary process 
presented in the previous section gives only general 
framework and it is insufficient for the modeling of animal 
learning or implementation of any learning algorithms for 
animats. 
 In the selectionist theories of learning the picture of 
generation of variation in the behavior seems to be 
straightforward. It is easily described and related to a number 
of mechanisms on the neuronal level such as a probabilistic 
pattern of connections formed during the development and 
spontaneous excitations of cells or assemblies. An 
understanding of the selection processes in the brain is a 
challenge. 
 Consider the evolution of a population consisting of agents 
equipped with A “brains”. The brain A is a dynamical system 
and its dynamics can be represented as a trajectory in the 
phase space of possible values of the components C. This 
trajectory determines a sequential unfolding of the agent’s 
behavior (eq. (4)). When a new born agent has some innate 
behavior this behavior is represented by a primary repertoire 
of the trajectories. In the course of evolution the agents with 
adaptive sequences of actions will be selected. Hence, these 
innate trajectories represent the evolutionary beneficial or at 
least “safe” (neutral in respect to the natural selection) 
sequences of agent-environment interactions. Moreover, the 
set of innate trajectories is the only source of adaptive values 
for the learning process. For the behavior being adaptive these 
trajectories should define the target dynamical attractor. Then 
the goal of learning is creation of a basin of attraction for it. If 
the point in C which corresponds to the current state of the 
agent’s “brain” A moves along the trajectory which is already 
“approved” by selection then no modification of the behavior 
(of the transformation B) is needed and m(C) = 0 in eq. (9). 
But movement along the target trajectory might be disturbed. 
For example, instead of a “normal” transition 

1 1 1 1...{ { ..., , , } , , , }n n n n n n n nt t t t t t t tB " " " "##!E I S A E I S AC C C C C C C C  

which should result in the environmental feedback 1nt "

EC  the 
agent’s “brain” might receive an “unexpected” reaction from 

the external world 1nt "

EC' . If the “unexpected” state of the 

“brain” 1 1 1 1{ , , , }n n n nt t t t" " " "

E I S AC' C C C  is not lying at any part of 
the “safe” target trajectory then adaptation is required. To start 
learning the magnitude of blind variation m(C) should become 
positive to allow generation of behavioral variations. During 
learning a new part of the trajectory is creating which departs 

from the “unexpected” state 1 1 1 1{ , , , }n n n nt t t t" " " "

E I S AC' C C C . The 
process of learning ends up (m(C) = 0) when “approved” 
trajectory is reached. When after learning the agent’s “brain” 
will sometime fall again into the state which is equivalent to 

1 1 1 1{ , , , }n n n nt t t t" " " "

E I S AC' C C C  it will already have a trajectory to 
follow and no additional modifications of the behavior will be 
necessary. 
 Now, the selection criteria for the learning as evolution can 
be summarized as: 
“The sequences of the agent-environment interactions that 
lead to the target trajectory should be retained”. 
 The primary repertoire of trajectories of the agent extends 
only to a limited fraction of possible dimensions of the phase 
space. Initially only deviations along these dimensions evoke 
the learning process and variations in all other dimensions are 
“don’t matter”. A new branches added to the initial target 
trajectory by lifetime learning extend it to a new dimensions 
forming a secondary repertoire. Then deviations in both the 
primary and the secondary repertoires are used for the 
learning initiation and finalization. 
 The innate and learned behavioral trajectories are an 
adaptive knowledge gathered trial by trial during the 
evolutionary and individual history; hence, losing them is 
losing evolutionary advantage. This raises a requirement to 
the process of learning, namely, that the growth of the new 
branches of the attractor should not change the existing traces. 
 This “behavioral trajectory” analysis brings some 
conceptual extensions in comparison to the other selectionist 
approaches to the learning as evolution. 
 Control of learning by deviation from the target behavioral 
trajectory is similar to the homeostatic adaptation controlled 
by essential variables suggested by Ashby (Ashby, 1960). 
However, the homeostatic control has no mechanism for the 
retaining of knowledge gained during the learning through 
trials and errors, when the same deviation of the essential 
variables occurs next time the procedure of adaptation should 
be repeated again. Thus, Ashbian theory addresses the 
question of sustainability of behavior but not of its adaptive 
modification. 
 Discussing the work of Ashby Di Paolo (Di Paolo, 2003) 
suggested a hypothesis that is very close to the “behavioral 
trajectory” scheme: 

“Habits, as self-sustaining dynamic structures, underly 
the generation of behaviour and so it is them that are 
challenged when behaviour is perturbed. An interesting 
hypothesis is that often when adaptation occurs in the 
animal world this is not because organismic survival is 
challenged directly but because the circular process 
generating a habit is.” (Di Paolo, 2003, p.31) 
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 In relation to the general conceptual framework of the 
evolutionary epistemology (Campbell, 1974; Popper, 1984) 
the scheme proposed in this paper contains the next level of 
details. Recognition of the divergence from the target 
trajectory allows the agent to detect the problem situation. 
New behavioral trajectories sinking into the target attractor are 
retained, so the behavioral attractor plays the role of vicarious 
selector. 
 The selection of behavioral sequences toward attractor 
seems, on the first sight, to be similar to the match/mismatch 
selection of the neural Darwinism theories (Edelman, 1987, 
1993; Changeux and Dehaene, 1989). When the agent 
encounters an unexpected situation it detects mismatch 
between perception and internal state. According to the neural 
selectionism the internal state is transformed to match the 
input. No action upon the environment is needed, neuronal 
dynamics only is sufficient to do that. Contrary, in the 
trajectory paradigm the internal state is a valuable knowledge 
which is kept intact and actions performed to change the 
situation, i.e. the input toward target values. 
 The analysis presented in this paper deals with the 
phenomenological level of description of behavior and 
learning. At the next level, the issue of cellular mechanisms 
compatible with the evolutionary scheme of learning should 
be addressed. The rules of cells interactions should allow 
detection of the deviations from the target behavioral attractor 
and creation of new neuronal functional systems while 
preserving existed ones. 

Summary 
The theory of learning should have an explanation why 
learning normally results in evolutionary adaptive 
modifications. The common explanatory scheme for the 
adaptivness of learning is based on the “feedback” logic. In 
this scheme the reward system of an organism or an agent 
evolves by the natural selection to effectively evaluate stimuli 
in terms of their expected contribution to the evolutionary 
success. The error between predicted and received reward is 
used as a “feedback” signal for correction of the behavior. 
 Variation and selection principle provides an alternative 
and opposite explanation to the “feedback” logic (see Table 
1). Applied to the lifetime learning it assumes that at the first 
new behavioral variants are produced and then selected to 
meet evolutionary demands. 
 A number of approaches to utilize the evolutionary logic 
for the explanation of learning were proposed but the theory is 
still not satisfactorily. An attempt to clarify and extend the 
basic ideas underlying these approaches presented in this 
paper resulted in the following contributions: 
+ The innate behavior shaped by natural selection brings 

evolutionary values to the level of learning. This innate 
behavior constitutes an initial target trajectory of the agent-
environment interactions. 

+ The generation(variation)/selection cycle of learning starts 
from the critical deviation from the existing behavioral 
trajectory and stops when deviation is eliminated. 

+ During learning new behaviors are created by blind 
variations. The behaviors leading to the target trajectory 
are selected. 

+ New branches of the behavioral trajectory produced by 
learning are included in the target set and start to play the 
role in controlling generation(variation)/selection cycle. 

+ The existed behavioral trajectory should not be altered as 
the learning unfolds. It keeps knowledge about adaptations 
survived selection through the evolutionary and learning 
history. 
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Abstract

Swarm Intelligent Systems are computational models of the
spatial evolution of populations explaining it as a global be-
havior emerging from locally controlled movements, which
are guided by decisions taken on the basis of local informa-
tion. The increase of agents’ cognitive capabilities, endow-
ing them with memory and with the ability of selecting the
rules of movement depending on an internal state allows the
application of Self-Organizing Particle Systems (SOPS) to
heuristic problem solving. Our focus in this work is on the
complex emergent behavior arising when endowing the in-
dividuals with another elementary cognitive ability: the per-
ception of the affinity of another individual. Each individ-
ual agent perceives other individual agents as friends or ene-
mies. The first class is attractive while the second is repulsive.
Metaphorically, the first class is associated with amity, secu-
rity and comfort while the second is associated with danger,
enemies and things to avoid. This local individual perception
produces the emergence of teams and classes at a global level.
This behavior produces an spatial distribution that can be in-
terpreted under the appropriate metaphor as solving a particu-
lar computational problem. Applying this metaphor, we have
found empirically that Self-Organizing Particle Systems can
be designed to perform the task of 3-coloring graphs with the
same precision as the Brélaz coloring heuristic, which is the
best greedy heuristic known for this purpose.

Introduction

Emergent cooperation in biological systems is a central con-
cept in Artificial Life from its very beginnings, researching
for the ways in which a whole population of simple organ-
isms is able to collectively perform a task (Nitschke, 2005).
The natural social phenomena that inspired artificial life sys-
tems are swarms (Eberhart et al., 2001): flocking birds, fish
schools, ant colonies, hives, or the pursuit and evasion be-
havior of predators and preys. The principal idea that under-
lied these works is the design of biologically inspired mod-
els, analyzing the emergence of collective behavior in terms
of the local decision rules that govern the action of agents.

Emergent cooperation interest is not restricted to the do-
main of Artificial Life. Distributed Artificial Intelligence

(Russell and Norvig, 1995) has gone in the direction of de-
veloping multi-agent systems able to solve problems by its
collective behavior.

Swarm Intelligence (also called Self-Organizing Particle
Systems (SOPS)) elements are agents geographically situ-
ated in a virtual environment. The emergent behaviors of
interest for researchers are the ones showing collective nav-
igation abilities or spontaneous clustering. These interests
remain invariant from the first works of Reynolds (Reynolds,
1987, 1999) in computer graphics animation or the early ap-
plications to the navigation of teams of robots (G. et al.,
2006; Lerman et al., 2001). On the other hand, Distributed
Artificial intelligence is more focused in the local mecha-
nisms of logical reasoning and conflict resolution over ab-
stract spaces for knowledge representation.

Behind the approaches of Distributed Artificial Intelli-
gence and Artificial Life to the design and simulation of
(biologically inspired) intelligent social systems, Theoret-
ical Computer Science has developed mathematical tools
for the complexity analysis of collective emergent behavior.
This field of Grammar Systems (Csuhaj-Varju et al., 1994)
deals with a mathematical theory of agent cooperation aris-
ing from communication protocols modeled as grammars.
Grammar Colonies (Kelemen and Kelemenov, 1992; Kele-
menová and Csuhaj-Varjú, 1994) is a development in the
framework of Grammar Systems closely related with Swarm
Intelligence. It has been proved that a society of individuals
equipped of a grammar generating finite languages are able
to generate context dependent languages as if they possessed
a collective “mind”.

Recent research trends in Swarm Intelligence go towards
the convergence of Artificial Life and Artificial Intelligence
applying Self-Organizing Particle Systems to Problem Solv-
ing, by means of a mechanism that is basically the same
used in Grammar Colonies: endowing each agent with a fi-
nite state machine that governs its inner flight rules depend-
ing on the current state. Adding a short term memory of
visited positions is enough to design a system of two com-
peting teams that collect minerals from some deposits trans-
porting them to their respective homes (Rodrı́guez and Reg-
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gia, 2004). This approach is called “designing for comput-
ing” in the self-design individual swarm-like agents whose
problem-solving collective capabilities are proportional to
the size of the population.

The research question guiding this work is the follow-
ing one: what are the minimal cognitive capabilities that al-
low the emergent behavior of Swarms to solve NP-complete
problems, such as the classical ones dealt with by classical
and heuristic Artificial Intelligence algorithms, without me-
diating an explicit knowledge representation. We show in
this paper that the simple distinction between friends (we)
and enemies (them) in a population of boids is enough to
produce an emergent behavior that can be interpreted as
solving the problem of graph coloring. And they do it with a
performance comparable to that of “traditional” algorithms.

We use the swarm metaphor to model the graph coloring
problem as follows: agents correspond one-to-one with the
nodes of the proposed graph. The graph topology defines
the agent affinities as follows: the agents whose nodes are
directly connected are “enemies”, agents whose nodes are
at graph distance1 2 are “friends”. Agents are attracted to
friends while try to fly from or to avoid enemies. The col-
ors for the graph coloring correspond to specific attraction
spatial regions. All agents are attracted to stay in these re-
gions. Figure 2 shows the virtual space where the boids are
moving around. The graph coloring solution is given by the
distribution of the agents over the color attraction regions.
When all the agents are placed in one of the color attraction
space regions, the system configuration can be interpreted as
defining a a complete coloration of the graph. When some
agents are outside these regions, the system configuration
corresponds to a partial solution to the coloration problem.
To shake the system out from local optimal configurations
corresponding to partial solutions, the agents are endowed
of an aggressive instinct that allows them to overcome fear
or repulsion to the enemies and to try to displace them from
the privileged space regions.

We found that SOPS perform the task of 3-coloring
graphs with comparable and sometimes better precision than
the Brélaz coloring heuristic (Weisstein, 2008), which is the
best greedy heuristic known for this purpose.

In the following sections we will first introduce Reynolds
model. Next section describes in detail our metaphor to
model the solution of the NP-complete graph 3-coloring
problem through the swarm behavior. Next section sum-
marizes some analytical results of the approach, trying to
shed some light on the problem of determining the minimal
cognitive capabilities that may have the agents to solve the
problem of 3-coloring. Then we give some computational
experiment results over a sample of hard colorable graphs.
We end up with some discussion, conclusion and venues for
further research.

1Graph distance means the length of the shortest path between
two nodes. Unconnected nodes have infinite graph distance.

Description of Reynold’s model

The idea of emulating of the movements and behaviours
of societies of living beings from simple local rules that
steer the individuals, giving rise to more complex global be-
haviours is a growing field of research, with applications in
quite different domains. (Reynolds, 1987, 1999) was one of
the pioneers in the simulation of the flight of flocks of birds.

According with Reynolds, each individual exhibits a very
simple behaviour that is specified by a few simple rules that
guide them to get along with the collective motion of the
flock. The global behavior of the flock emerges from these
individual decisions. We will stick to the birds metaphor, so
that in the following, we call boids to the agents that com-
pose a flock.

Each boid is aware of an spatial region around it, its neigh-
bourhood. Given a set of n boids, the steering rules for i-th
boid bi, at time instant t + 1 are defined as a function of the
position pj and the velocity yj of the neighbouring boids at
the previous instant t. The set of boids dwelling inside the
neighborhood of the i-th boid is denoted:

∂i = ∂ (bi) = {bj | dist (pi, pj) < θ}

where dist is the euclidean distance. Let |∂i| denote the
number of boids in the neighbourhood.

The steering basic rules, used in our model, are the classi-
cal of Reynolds model: alignment, separation, and cohesion.
Combining these rules, the flocking birds are able to flight
co-ordinately avoiding collisions. The flocking rules for the
boid bi are formalized as follows:

• Separation: steer to avoid crowding local flockmates.

vs = −
∑

bj∈∂i

(pj − pi)

• Cohesion: steer to move toward the average position ci

of local flockmates

vc = ci − pi where ci =
1

|∂i|
∑

bj∈∂i

pj

• Alignment: steer in the direction of the average heading
of local flockmates.

va =
1

|∂i|
∑

bj∈∂i

vj − vi

Together with the elementary steering rules, the seek and
flee rules, and the rules that define the behaviors of attraction
towards friends and evasion from enemies.

• Seek and flee: seek attempts to steer a vehicle so that it
moves toward a static goal. Here ‖p‖ denotes the norm of

Artificial Life XI 2008  103 



a vector p, and fmaxvelocity is a non-negative parameter that
limits the norm (the length in the Euclidean distance) of
vector vseek.

vseek = vgoal − vi where

vgoal =
pi − p0

‖pi − p0‖
× fmaxvelocity

Flee velocity is definided simply as the opposite of seek,

vflee = −vseek

• Pursue and evasion. These rules are a generalization of
the seek and flee rules with the only difference of that the
goal is non-static, and the boid moves toward or escapes
from some of the flock mates.

Self-organizing particle systems for 3-coloring
of graphs

Reynolds model is the basis of Self-Organizing Particle Sys-
tems (SOPS) for problem solving, introduced by (Rodrı́guez
and Reggia, 2004). Following the authors, SOPS self-
organization refers to the fact of that global behaviour
emerges from the concurrent local interactions between par-
ticles in such a way that the whole population acts like an
organism. Their contribution consists in incrementing the
cognitive capabilities of agents by a Finite State Machine
(FSM) controlling the boid flight rules. In this way, the sys-
tem improves past SOPS, in which the boids do not have a
significant intelligence. This is an interesting approach in
that it represents an overture to Distributed Artificial Intelli-
gence from the perspective of Artificial Life.

The paper by Rodrı́guez y Reggia presents a model
formed of two teams of agents exploiting mineral deposits,
carrying minerals to their respective homes. The agents have
the following types of knowledge:

• Geographical: inherited from the Reynolds’s model.

• Social: being able to recognize the neighbours as belong-
ing to a category: friend or foe.

• Internal: the set of rules that control the movement of the
agent, which are represented in a FSM, and a stack of
visited positions.

From the point of view of Theoretical Computer Science,
each individual has internally the elements that define a
pushdown automata, which are able to generate flight trajec-
tories in the virtual space. This enhancement significantly
increases the power of SOPS to solve classical NP-complete
problems. We focus on the 3-coloring of graphs.

Let G = (V,E) be a graph (Borodin et al., 2005), com-
posed of a set of vertices V and a set of non-oriented edges
E ⊆ V 2. A k-coloring of G is a function that maps

each vertex in V = {b1, . . . , bn} to a colour in the set
C = {1, 2, .., k} in a way such that two connected vertex
have different colours. The problem can be formulated al-
ternatively as minimizing the number of nodes that are badly
coloured and even the number k of colours used. The chro-
matic number of a graph is the minimal number of colours
needed for a coloration. The problem of k-coloring is NP-
complete for all k ≥ 3. We have selected 3-coloring as
a benchmark problem because of the great difficulty that
presents in spite of the simplicity of its formulation.

The representation proposed here is composed of a board
of dimensions Xmax, Ymax closed, as a torus, and k ≤ 4
goals inscribed in a regular polygon representing each goal
a colour in the set C = {1, 2, 3, 4}. Goals are static and
attract the individuals with a pseudo-gravitational force.

A graph G represents a population of flocking birds. Each
node bi is an agent (a boid) whose initial position and veloc-
ity are drawn at random from a uniform distribution defined
over the board. The graph represents the social network of
the population. Two nodes i, j ∈ V are enemies iff they are
connected in the graph G, that is (i, j) ∈ E.

Hence, from the point of view of boid bi, the set of boids
actually inside its neighbourhood is partitioned into two sub-
sets: the set of Enemies ∂Ei and the set of friends, with an
Amity relationship, ∂Ai .

∂i = ∂Ei

⋃
∂Ai

where ∂Ei = {bj : (bi, bj) ∈ E} . The Amity relationship is
defined asbeing the “enemies of my enemies”:

∂Ai = {bk : ∃j (bi, bj) ∈ E ∧ (bj , bk) ∈ E ∧ (bi, bk) /∈ E}

Velocity parameters
The model of 3-coloring has been implemented in Matlab
7. The velocity of each boid depends on three strengths that
modulate its current velocity:

• The Neighbourhood strength: determined by a Radius
around the boid with default weight= 1.0, pushing the
boid toward the friends and away from enemies.

• The Goal strength: The seek strength, that attracts the
boids toward the goals. The agent can seek for all the
goals or only for the nearest goal with a default weight=
1.0 in both cases.

• The Attack strength: if a boid can not reach a Goal or
be sharing it only with friends after a number of steps
it becomes “despaired” and attacks the enemies driving
them from their positions:

– Internal attack: displaces at random enemies occupy-
ing the same Goal it is lying in.

– External attack: It is outside all of the Goals, since
it has enemies inside all of them. The agent selects at
random a Goal to head to and displaces an enemy from
it.
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A Matlab implementation of the process can be ob-
tained from the authors and will be made public at
http://www.ehu.es/ccwintco/. The magnitude of the veloc-
ity vector is globally limited by a parameter Limitation of
velocity such that all the boids move with the same length
step, set by default to 1.0.

The Social velocity We call Social velocity to the boid ve-
locity component due to its repulsive and attractive interac-
tions with the boids actually inside its neighbourhood. It is
the sum of two components:

• Enemity velocity: taking as input the neighbouring ene-
mies ∂Ei we calculate a velocity

vEi = −wEi
a × vEi

a + wEi
s × vEi

s + wEi
e × vEi

e

where w’s represents the strengths and a means align-
ment, s is separation and e evasion. This is the velocity
term that corresponds to the alignment in opposite direc-
tion to enemies, separating and moving away from them.

• Amity velocity: taking as input the neighbouring friends
∂Ai calculates a velocity

vAi = wAi
a × vAi

a + wAi
c × vAi

c + wAi
p × vAi

p

where p means the behaviour of pursuing its friends.
There exists a strength of alignment, cohesion or pursu-
ing the boids that compose the amity group.

The Goal seeking velocity This term models the need to
get a colour for the node. In some experiments we do not
activate it (see application interface in figure 2). For the pur-
pose of solving the graph 3-coloring, we restrict the model
to have at most 4 goals. The coordinates (X, Y ) of the goals
are given as the vertices of a regular polygon. The goals have
influence inside a Goal Radius, and they attract the boids
with a strength of 1.0 by default. Depending of the settings
selected in the interface, the Goal velocity term is defined
as:

• If the velocity to the nearest goal has been selected as a
velocity parameter, the goal velocity is:

vGoal =
pi − g0

‖pi − g0‖
× flim itvelocity

where g0 is the position of the goal nearest to pi.

• In the case of all the goals were selected,

vGoal =

4∑

m=1

pi − gm

∥∥∥∥∥

4∑

m=1

pi − gm

∥∥∥∥∥

× flim itvelocity

Being gm, m ≤ 4, the positions of the goals.

Figure 1: Petersen’s Graph is 3-colorable. The system ob-
tains a correct coloration with probability close to 1.0 for
small graphs.

Figure 2: An snapshot of a run of 3-coloring SOPS on Pe-
tersen’s graph.

Graph Coloring
The Matlab implementation allows to set the limits of the
world and to load a file encoding a graph. Figure 2 shows
an instant in the 3-coloring of Petersen graph, displayed in
figure 1. This graph has 10 nodes. The interface shows an
animation where the boids, which are represented as yellow
small circles initially distributed at random, move toward the
goals producing in this way a coloration.

Attack behaviour
The results produced by the application of the boids swarms
to 3-colorable small graphs, like Petersen’s graph, is suc-
cessfull in the almost all of the cases when:

• The boid neighbourhood radius extends to the whole vir-
tual world.
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• The boids are attracted only to the nearest goal (instead of
all the goals).

Without the attack mechanism, and using the default val-
ues for the Goal Radius and its strength of attraction, the sys-
tem always converges either to an optimal configuration with
all the boids situated inside the goals or to a sub-optimal one,
with few boids wandering around of the nearest goal. This
last situation occurs whenever the graph is non 3-colorable.
Once a boid reaches a goal, it remains inside forever, being
the goal a sink for agents’ trajectories.

To shake the system away from (local minima) configu-
rations that do not solve the coloring problem, we propose
the Attack behavior, incorporated in a rule in the following
deadlock conflict configurations:

• Internal: At least two enemies are situated in the same
goal.

• External: An agent is wandering outside the goals because
it has enemies in all of them.

To model attack we give to the agents an internal counter
of the degree of “desperation” or “dissatisfaction” of the
agent in a conflictive situation. Agents in a goal have an
increasing degree of satisfaction over time. Whenever an
agent enters in a conflict, the satisfaction level decreases as
time goes, until the counter reaches a value below a given
threshold, the aggressive behavior is activated and the boid
attacks.

The attack consists in selecting randomly an enemy in
conflict which is less desperate than the aggressor (its level
of dissatisfaction is greater that the satisfaction of the as-
sailant agent. The boid under attack is expulsed from the
goal and the aggressor takes its place. We have introduced
a noise term in the velocity that helps to generate mildly er-
ratic trajectories for wandering agents.

Modelling agents as Finite State machines
Following the patter of the proposal by (Rodrı́guez and Reg-
gia, 2004), we present our SOPS model of 3-coloring in a
top-down manner.

First, the introduction of a satisfaction counter can be rep-
resented by a FSM as the one shown in fig. 3, being k the
maximum value for satisfaction and 0 the minimum. We can
represent the whole automaton of the figure as a single state
with dash border labelled with the level s of satisfaction.

In figure 4 we give the FSM specification of a boid. We
have abbreviated the states with satisfaction of level i simply
as S > 0.

Initially, the agents are wandering starting at a randomly
drawn position and with maximum level of satisfaction. If
the agent falls within the area of influence of a goal, the
Goal seek behaviour is activated and the boid tends to remain
inside it. The boids only come out from the goal if they are
involved in conflicts that make the satisfaction decrease.

Figure 3: State S0 means dissatisfaction while states Si

where 0 < i ≤ k represent Satisfaction of level i.

Figure 4: the FSM for a boid

If the agents suffers an attack, it passes to the wandering
state, looking for a new goal.

If the agents reaches the state of desperation, S = 0, it
attacks displacing another agent of the world and increment-
ing its satisfaction so long as conflicts disappear.

To obtain a faster convergence, we apply a cascade col-
oration strategy. Therefore, the execution of the program has
two stages : First, the system attempts to find a 4-coloration
of the graph situating 4 goals in the world. Once a coloration
is obtained or after the maximum allowed time (1500 itera-
tions) is elapsed, the second stage starts, eliminating the less
populated goal. The individuals newly freed wander to seek
a new goal until a 3-coloring is reached or the limit number
of iterations (in this case 3500) are completed.

This procedure of cascading coloration is based on known
works in reaction-diffusion particle systems (Turk, 1991)
and is a way to extend the problem of 3-coloring of graphs.
To find the chromatic number of a graph, i.e. the minimal
number of colours that are necessary for a coloration is suffi-
cient to start the process of colouring successively the graph
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Figure 5: Several instances of hard 3-coloring graphs

with k, k − 1, k − 2,. . . colours until a minimal successful
number of colours is reached.

Benchmarking Experiments: a comparison to
Brélaz heuristic
The problem of 3-coloring of graphs has a very simple for-
mulation but it is very difficult to solve. In 1979 Steinberg
(Borodin et al., 2005) formulated a conjecture: every pla-
nar graph without 4 and 5-cycles is 3-colorable. In the last
years, important advances has been made in the direction
of proving Steinberg’s conjecture. However, the problem of
3-coloring is NP-complete and the current research efforts
focus on heuristics that may give good approximations to a
global optimal solution in polynomial time. The best known
heuristic for graph coloring is the Brélaz algorithm (Weis-
stein, 2008; Galinier and Hertz, 2006), which is a greedy
algorithm that proceeds as follows: it performs first the col-
oring of the nodes with greater degree (number of connected
nodes) and more constrictions (saturation), giving to each
node the first available colour.

We have made some experiments to verify that SOPS al-
gorithm is at least as precise as Brélaz algorithm, meaning
that the chromatic number given by SOPS is less or equal
than Brélaz chromatic number. It is well known that Brélaz
heuristic works deficiently with some hard configurations
for the 3-coloring (Mizuno and Nishihara, 2008). These au-
thors present a graph building algorithm to construct hard
coloring graphs. It performs graph embedding to combine
basic hard configurations, given in fig. 5, into bigger hard

Figure 6: Success of SOPS 3-coloring

Figure 7: Percentage of well colored nodes for Brélaz versus
Self-Organizing Particle Systems over the sample of bench-
mark hard graphs

graphs. For all of these graphs the Brélaz heuristic gives 4
as chromatic number, while all of them are 3-colorable. A
sample of 100 graphs obtained from 10 random embeddings
of the basic configurations were generated. For each graph,
we have executed 25 runs of the SOPS algorithm registering
the best configuration (we call this an experiment): Each run
ends either when a 3-coloring solution is reached (success)
or when 5000 iterations are completed in cascade.

The average results over all the experiments are: Mean
number of nodes (boids): 110, Mean number of iterations:
3761, and Average of succeeding runs: 51%. In fig. 6 we
have ordered the experimental graphs by the percentage of
succeeding trials. This figure may serve as a model of the
accumulative probability distribution of our algorithm ob-
taining a successful coloration over the sample of hard 3-
colorable graphs. Note that if one execution of our algorithm
obtains a 3-coloring, that constitutes a proof that the graph
is 3-colorable. Note also that the Brélaz algorithm algorithm
is deterministic, so that repeated trials have no sense for it.

For another look into relative performance we consider
the following: if a node gets color number 4, then it is badly
colored in Brélaz coloration. In SOPS, we register for each
run the minimum number of individuals outside all the goals
as the best configuration, and we say that this is the num-
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Figure 8: Number of iterations of 25 runs on the bipartite
graphs

ber of bad coloured nodes for that execution. In each ex-
periment (25 runs) the mean is taken. Figure 7 shows the
percentage of well colored nodes for the whole sample. It
can be appreciated that SOPS is always very close to the
100% well colored nodes, while some instances of Brélaz
coloration are very poor. In order to discover if there ex-
ists a correlation between the variables, the sample has been
ordered by increasing values of Brélaz algorithm. A cor-
relation Pearson coefficient of 0.30 has been found and in
consequence, correlation does not exists between the results.
In average, Brélaz algorithm colorates well the 95,82% of
the nodes with a standard deviation of 1.45%, while SOPS
reaches a mean of the 99.17% and standard deviation 0.60%.

It is well known that Brélaz algorithm needs two colours
for a bipartite graph, being particularly efficient in this case.
To show that SOPS solves also correctly these problems, we
have selected two complete bipartite graphs of 100 elements:
the first with two classes of 50-50 nodes and the second with
25-75. In the 25 runs of each graph, the run was successful
in both cases, being successful the 100% of the times. Re-
garding computing time measures, the mean number of iter-
ations for graph 25-75 was 1266 and the minimum length of
a successful run was 715. For graph 50-50 the average final
step was 1172 being the minimum 654. Figure 8 shows the
distribution of the number of iterations on the 25 runs of the
SOPS algorithm for this graph.

Discussion
We have designed and implemented a Self-Organizing Parti-
cle System that may interpreted as solving the graph colour-
ing problem. We addressed the problem of 3-coloration of
graphs, but the cascading procedure of coloration presented
before makes the extension to k-colorations be an immediate
consequence. We chose the problem of 3-coloring graphs
because of the important open questions around the prob-
lem: it is NP-complete and Steinbergs conjecture is giving

arise an important research nowadays (Borodin et al., 2005).
A recent biologically inspired approaches to this problem

has used the ant colony optimisation approach (Dowsland
and Thompson, 2008), but we do not know of any other at-
tempt to solve the problem using flocking birds. Their ap-
proach that identifies an individual in a population to a whole
coloration of the graph, that is a tuple (u1, ..., un) where ui

is the colour of node i, losing in this way the biological inspi-
ration if favour of cognitive abstraction. On the other hand,
our approach to the coloration of graphs is mainly geomet-
rical, attending to the representation of the nodes of a graph
as a flocking bird situated geographically. The solution to
the graph coloring emerges from the whole population con-
figuration, which means a great economy of representation,
and of computational power needed to implement the ap-
proach. The geometrical approach can be a source of exper-
imentation and inspiration to improve sequential algorithms
and heuristics for 3-coloration, which is important from the
point of NP-completeness.

Second, we do not proceed in the direction of creating a
model of colouring graphs from an existing model. Our aim
was the research of the behaviour arising from endowing the
individuals in a swarm with another elementary cognitive
ability: the perception of the affinity of another individual.
The individual perceives another individual as belonging to
We or to Them. The first class is attractive while the second
is repulsive. The first class is associated with amity, secu-
rity and comfort while the second is interpreted as danger,
enemies and things to avoid . We found that amity- enemity
dynamics allows to model the solving process for coloring
graphs, and not the other way around.

The third contribution of this paper has to do with the
complexity of swarms, understood as the complexity of the
behaviour of the emergent super-organism with respect to
the computational capabilities of individuals. This work has
been made in the last years in the field of theoretical com-
puter science (Csuhaj-Varju et al., 1994; Kelemen and Kele-
menov, 1992; Kelemenová and Csuhaj-Varjú, 1994). We
have attempted to discover the lowest computational capa-
bilities of individuals that allows the swarm to perform a
coloration of a graph. Revisiting the work of Rodriguez and
Reggia (2004) may lead a strong theoretical basis for fur-
thers developments in the convergence with grammar sys-
tems.

The experimental results on hard coloring graphs with
known chromatic number 3, show that the proposed ap-
proach can be very effective and competitive with state of
the art algorithms. The Brélaz algorithm algorithm is the
common benchmark algorithm. Our approach improves on
it over a sample of hard graphs.
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Abstract

Simulation experiments are conducted on simple continuous
double auction (CDA) markets based on the experimental
economics work of Vernon Smith. CDA models within exper-
imental economics usually consist of a sequence of discrete
trading periods or “days”, with allocations of stock and cur-
rency replenished at the start of each day, a situation we call
“periodic” replenishment. In our experiments we look at both
periodic and continuous-replenishment versions of the CDA.
In this we build on the work of Cliff and Preist (2001) with
human subjects, but we replace human traders with Zero In-
telligence Plus (ZIP) trading agents, a minimal algorithm that
can produce equilibrating market behaviour in CDA mod-
els. Our results indicate that continuous-replenishment (CR)
CDA markets are similar to conventional periodic CDA mar-
kets in their ability to show equilibration dynamics. Secondly
we show that although both models produce the same be-
haviour of price formation, they are different playing fields,
as periodic markets are more efficient over time than their
continuous counterparts. We also find, however, that the vol-
ume of trade in periodic CDA markets is concentrated in the
early period of each trading day, and the market is in this
sense inefficient. We look at whether ZIP agents require dif-
ferent parameters for optimal behaviour in each market type,
and find that this is indeed the case. Overall, our conclusions
mirror earlier findings on the robustness of the CDA, but we
stress that a CR-CDA marketplace equilibrates in a different
way to a periodic one.

Introduction
The Continuous Double Auction (CDA) is a market insti-
tution that plays a fundamental role in the world economy.
It is the principal trading format for commodity markets,
equity exchanges, foreign exchange, and derivatives mar-
kets. Real-world examples of CDA-based markets include
the NYSE and the Chicago mercantile exchange. Although
we have a great deal of observational data on these markets,
it would be both difficult and illegal to manipulate them ex-
perimentally. Our understanding of how CDAs work has
therefore been greatly enriched first by the discipline of ex-
perimental economics (Smith, 1962), in which human sub-
jects participate in economic games in the laboratory. More
recently CDAs have been studied using the methods of ar-
tificial life: in agent-based computational economics (see

Tesfatsion, 2002, for a review) the behaviour of a simu-
lated market emerges from the interactions of many rela-
tively simple trading agents.

Our particular interest is in how the temporal structure
of a CDA can affect both overall market performance and
the optimal strategies for agents participating in that market.
We look at two variant CDAs: one is an explicitly periodic
market in which there is a discrete trading period with daily
opening and closing points; we refer to this as the day-based
or periodic-replenishment (PR) market. The second variant
involves a non-periodic or continuous-replenishment (CR)
market which allows for trading without interruption. We
refer to the continuous-replenishment variant of the CDA as
the CR market. These two types of CDA have important
real-world exemplars: most stock exchanges are day-based,
for instance, whereas the global foreign exchange markets
are continuous-time. Intuition suggests that these markets
are significantly different playing fields. Our goal is to use
an agent-based model to find out how different these two
CDA variants really are.

Experimental economics
The motivation of experimental economics is to model eco-
nomic phenomena using human participants in controlled
laboratory situations. Smith (1962) conducted pioneering
studies in which a small number of inexperienced human
traders participated in a CDA and were able to reach a
competitive equilibrium price and equilibrium quantity of a
traded commodity. Smith derived a qualitative indication of
the relationship of supply and demand curves in producing
equilibrating transaction prices and presented results sug-
gesting the replication of classical microeconomic theory,
all from a surprisingly simple model.

Smith’s studies are recognized as the standard modelling
framework for CDAs and the simplicity of Smith’s con-
cept has been integral to its success. Recent research has
focused on establishing the robustness of Smith’s general
findings and examining the fidelity with which these exper-
iments reproduce phenomena from real CDA markets. The
reproducibility of economic phenomena is important as it
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means that on the one hand market makers (e.g., a regu-
latory agency setting up a new marketplace) can use these
experiments to develop fairer and more robust market mech-
anisms. On the other hand, traders (and the operators or
regulators of financial institutions) can use results from ex-
perimental economics to identify and exploit strategic niches
in their existing marketplaces.

Computational economics
If we take the human traders of the experimental economics
paradigm and replace them with programs representing dif-
ferent trading strategies, we get agent-based computational
economics (ACE) (Gode and Sunder, 1993; Cliff, 1997; Tes-
fatsion, 2002). An important aspect of this research has been
finding the simplest algorithm capable of producing equili-
brating market dynamics in a similar fashion to human par-
ticipants. Cliff (1997) introduced the Zero-Intelligence Plus
trading agent (ZIP) as an algorithm with minimal intelli-
gence that nevertheless produced market behaviour that was
very close to that of human traders. ZIP trading agents are
a modified version of an earlier agent known as ZI (Zero In-
telligence), created by Gode and Sunder (1993). ZI traders
are simply stochastic agents that announce random prices
for bids and offers. ZIP is able to model CDA price forma-
tion based on an intuitive heuristic “decision tree” algorithm
coupled with elementary machine learning techniques (Cliff,
1997).

Computationally lightweight autonomously adaptive
(“intelligent”) trading agents (such as ZIP) are extremely
significant given the emergence of virtual market-places. On
the side of the market designer, iterative economic simula-
tions using ZIP allow experiments to be conducted faster and
yield significant results insofar as the ZIP trader can be seen
as a realistic model. On the side of financial institutions that
act within the market there is an incentive to replace human
traders with automated trading agents. A fair chunk of work
in ACE modelling to date concerns the use of agents inspired
by the ZIP architecture in CDA markets. Studies have con-
centrated on evolving more robust agents and trading strate-
gies. A basic ZIP agent acting in a periodic-replenishment
(PR) CDA market with fixed supply and demand curves (as
in the classic Smith experiment) has been used by a num-
ber of authors as the de facto benchmark for demonstrating
equilibrating price formation with artificial agents.

The impact of replenishment in markets
Past work using intelligent agents in CDA markets has
rarely explored the importance of the replenishment sched-
ule within the market model. Round-the-clock 365-days-
per-year environments are emerging at a fast rate in the
real world, and yet continuous-replenishment modelas are
perhaps one of the least discussed CDA variants (Cliff
and Preist, 2001) in experimental economics. The stan-
dard Smith CDA model is conducted over discrete intervals

known as trading days, and the dynamics of the market are
centered around this day-trading structure. As not all real
CDA markets are periodic the applicability of a day-based
model to these variants is dubious. In what we believe to
be the first human-based experimental economics studies to
address this issue, Cliff and Preist (2001) explored the ef-
fect of removing periodicity from the standard CDA model
by allowing continuous trading — i.e., switched from PR
to CR CDA models. Cliff and Preist’s general conclusion
was that the ability of a CDA market to reach an equilibrium
price did not seem to be affected by the switch from PR to
CR. However, due to the inherent difficulties in human ex-
perimentation, the sample size in these experiments is really
rather small.

Experimental aim
Our goal is to look at whether PR and CR markets produce
different trading dynamics, and ultimately we would like to
examine optimal trading behaviour across a wide range of
different replenishment structures of the marketplace. In this
paper we directly extend the work of Cliff and Preist (2001)
by developing both continuous- and periodic-replenishment
markets with ZIP traders instead of humans. We are es-
pecially interested in potential differences between the two
market types that may have been too subtle to be detected
given Cliff and Preist’s limited sample size.

Method
We wrote computer simulations recreating the methods
of Cliff (1997) and Cliff and Preist (2001), which are
both adaptations of the experimental economics methods of
Smith and Williams (1983). The method is a static model of
a continuous double auction: i.e., supply and demand curves
are fixed, and market participants (“traders”) each privately
know how many units they are willing to trade and the cost
or value of each of their units, but not the allocations of any
other traders.

There are 22 trader-agents in the simulated market: 11
buyers and 11 sellers. Each individual agent is allocated a
private fixed limit price. The limit price specifies, for sell-
ers, the minimum price at which they can sell, and for buy-
ers, the maximum price at which they can buy. The differ-
ence between an agent’s limit price and the actual transac-
tion price they may achieve for the commodity is their utility
— “profit” for sellers, “savings” for buyers. Limit prices for
each of the agents are different, i.e., the agents vary in how
much the commodity is worth to them. Limit prices range
between $0.75 and $3.25 as shown in figure 1.

At the start of the experiment the 11 buyers and 11 sell-
ers enter the market, with the sellers each in possession of
one unit of the commodity, and the buyers each seeking to
purchase one unit. We refer to these units as the agents’ en-
titlements to buy or to sell. A single experiment — in the
standard, periodic-replenishment case — consists here of a
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Figure 1: Stepped market Supply curve S and demand curve
D, for 11 buyers and 11 sellers. Vertical axis is price in
cents ($0.50 to $4.00); equilibrium price P0 = $2.00. Supply
and demand curves are fixed and symmetrical for all experi-
ments. Figure is reproduced from Cliff (1997).

sequence of 20 trading periods, referred to as days. Each day
is separated into 120 trading intervals (referred to as ticks).
A tick is a discrete boundary of time at which a complete
trading interaction can be executed (i.e., up to 120 attempted
trades can take place during a day). Buyers and sellers nor-
mally have their entitlements reset to at the start of each
trading day, by replenishing money to buyers and stock to
sellers.

The arrangement of buyer and seller limit prices creates
a stepped supply and demand curve for the imaginary com-
modity with a theoretical equilibrium price (P0 = $2.00) and
theoretical equilibrium quantity (Q0 = 6) of units traded.
Economic theory suggests that for rational agents participat-
ing in such a market, trading dynamics will show the com-
petitive equilibration colloquially known as “the laws of sup-
ply and demand”. In excess demand (trading taking place
below the equilibrium) there is an incentive for the buyers
to raise their bids to ensure they make a trade, and in excess
supply (trading taking place above equilibrium) there is an
incentive for sellers to lower offers to ensure a successful
trade with a buyer (Cliff, 1997).

Trading process
With the market set up as described, buyers and sellers then
engage in a CDA, in which they are free to announce and
accept bids and offers for the commodity. The auction pro-
cedure is the same as that used by Cliff (1997).

1. At each tick a randomly selected agent quotes a price. This will
be a bid if the agent is a buyer or an offer if the agent is a seller.
The quoted price is made public to all agents from both com-
munities and is the future transaction price for the trade. The
agent’s choice of price to quote is a function of its strategy.

2. Agents of the “contraside” (i.e., buyers responding to an offer,
or sellers responding to a bid) make an assessment on whether

dealing at the quoted price would be profitable for them. Again,
this decision is a function of the agent’s strategy. For ZIP agents,
the decision will be influenced by their limit price but also by
their current estimated valuation which is based on the recent
history of successful trades in the marketplace.

3. If no willing agents are present in the market, i.e., the quoted bid
is too low or the offer is too high, that tick-step is designated as
a failed trade, and the market progresses onto the next tick.

4. If an agent decides that the shouted price is acceptable, it desig-
nates itself as a willing agent.

5. Prices of willing agents are arranged into a queue similar to
NYSE rules (i.e., a trader makes a bid or offer at any time, but
once made it is persistent until the trader alters it for a better
price or it is accepted).

6. An agent is chosen from the queue, and the quoted price is the
transaction price for the trade. The entitlements of both agents
decrease by one and the profit and bank balances of the agents
are adjusted according to the transaction price.

7. Finally, agents are assessed on their market activity state.
Agents with no remaining entitlements to trade drop out of the
market (although entitlements may later be reset, e.g., at the be-
ginning of the next trading day).

A day’s trading can be terminated prematurely if there are
no active agents remaining in the market. Otherwise the
market is open for 120 ticks, the duration designated for a
trading day. For our markets we arbitrarily set the number
of trading days to 20, to measure market performance over a
reasonable period of time.

The periodic CDA
The replenishment schedule in a CDA market model effec-
tively determines how and when the buying and selling en-
titlements of traders are reset. The periodic-replenishment
(PR) variant is the default condition that has been described
above; this is a replication of the Smith and Williams (1983)
and Cliff (1997) models. The PR market forces the simulta-
neous and uniform renewal of all trading entitlements at the
start of each day.

The continuous-replenishment CDA
For the continuous-replenishment (CR) CDA we recreate the
market model of Cliff and Preist (2001) where there is no
division of time into trading days. Once opened, the mar-
ket continues for 2400 ticks until the end of the experiment.
Every 120 ticks (the equivalent time frame for a day in peri-
odic market) the entitlements for each agent are updated in-
dependently and with staggered phases. In short, the market
is always open, and although agents temporarily drop out of
trading after successfully buying or selling their single unit,
they will return to trading at a randomly determined point in
the future.

We have implemented two variations of the staggered
renewal of agent entitlements, one referred to as peri-
odic continuity or continuous(P) and the second referred to
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Figure 4: Modelization of an example of the Gene Regula-
tory Network. A, B, C and D are 4 actions with their effi-
ciency coefficient. The transfer coefficients are given by the
arrows.

experiment consists in developing a system able to move
substrates in the environment whereas the second one cre-
ates simple shapes like starfish or jellyfish.

To find the creature the most adapted to a specific prob-
lem, we use a genetic algorithm. Each creature is coded with
a genome composed of three different chromosomes:

• The list of available actions, a subset of the environment
possible actions. This list allows the cell to activate or
inhibit some actions.

• The action selection system that contains a list of rule to
apply actions.

• The gene regulation network that allows cell specification
during duplication.

The creature is tested in its environment that returns the
score at the end of the simulation. To increase the genetic
algorithm power, we use a computational grid parallelized
genetic algorithm. This parallelization allows the computa-
tion of hundreds of creatures at the same time.

Experiments
Developing a transfer system
The first experimentation consists in developing a simple or-
gan : a transfer system. In other words, the cell structure

must be able to transport substrate from one point to an-
other. To do that, we imagine an environment composed of
2 substrates:

• The red is the substrate that must be moved by the organ-
ism. This substrate has the specificity not to spread in the
environment, in order not to impact on the organism work.

• A gray that will be used by the cell as fuel and duplication
material.

The cell can perform the following actions:

• duplicate (needs one gray substrate and vital energy),

• absorb or reject substrate (consume vital energy),

• transform one gray substrate in vital energy.

We place 10 red substrate units into a specific cross of
the grid (at the top left of the environment) and diffuse gray
substrate all over the environment. The creature’s score is
given by the squared sum of the red substrate distance to
the goal point (at the bottom right of the environment). The
parameters of the genetic algorithm are:

• selection: 7 tournament competition with elitism,

• mutation rate: 5%; crossover rate: 65%,

• substitution: worst individuals,

• population size: 500 individuals,

Figure 6 shows the convergence curve of the genetic algo-
rithm. It shows the variation of the minimum, the average
and the maximum fitness of the population for each gener-
ation. The genetic algorithm’s aim is to maximize fitness,
which is the creature score. A relevant organism appears
quickly. After 3 generations, the organism is able to move
the red substrates but not in the right direction. After 10
generations, it is able to move closer to the goal point. The
genetic algorithm converges after 22 generations (the aver-
age fitness is close to the best).

Figure 5 shows the development of the best organism1.
We can see that only the cells on the way from the initial
point to the end point are created. Moreover, the organism
uses absorption and rejection actions to transfer the substrate
gradually. Cells that overtake the final point die quickly so
as not to interact in the transfer. During the convergence of
the genetic algorithm, it is interesting to observe the evolu-
tion of the organism strategy towards the best solution. The
first step is to learn to survive in the environment, absorbing
gray substrate and transforming it in vital energy. The next
step is to learn to duplicate in the right direction. Intermedi-
ate solution organisms are able to transport the red substrate

1Videos of all presented creatures in this paper are available on
the website http://www.irit.fr/∼Sylvain.Cussat-Blanc
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Figure 2: Mean transaction price over time (days or pseudo-days) for 500 ZIP experiments, for symmetrical supply and demand
(P0 = $2.00) in a PR CDA (left), and a CR CDA with stochastic renewal (right). Dashed lines indicate the mean upper and
lower transaction price boundaries at each day.

to occur in a range of prices around the equilibrium P0 rather
than convergence on the theoretical optimum price. Cliff and
Preist (2001), in their continuous-time markets with human
participants, found impressively low values of α that were
below 0.1 within 600 seconds of the start of the experiment.
Our overall data shows a failure to reach average α-values as
low as 0.1, although we occasionally see single experimental
runs with these low values.
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Figure 3: Mean α values over time (days or pseudo-days)
for 500 ZIP market experiments: one periodic- and two
continuous-replenishment CDA variants shown. Note that
α values are very high (up to 20) in the earliest days of the
experiments.

Hypothesis 3: CR markets exhibit greater experimen-
tal late-phase stability than PR markets. To investigate
this question we split our data sets and looked only at re-
sults from the second half of each experimental run, i.e.,
days 11–20. This means we can look at market equilibra-
tion — effectively, long-term market efficiency — without
the initial transients distorting the picture. We measure ef-
ficiency using both Smith’s α and another measure, “profit
dispersion”. Gode and Sunder (1993) describe profit dis-

persion as the cross-sectional root mean squared difference
between actual profits and equilibrium profits of an individ-
ual trader. For a group of n traders profit dispersion is given
by

√
1
nΣ(ai − pi)2 where ai is the actual profit earned by

trader i and pi is p0 for that trader. The more efficient the
market, the lower the profit dispersion.

Figure 4 shows both mean α and mean profit dispersion
for late-phase markets. Periodic-replenishment markets are
consistently more efficient according to Smith’s α, which
means that transactions occur at prices closer to P0 than
in continous markets. There is also a very low variance
in α-values for periodic markets. In terms of α perfor-
mance the continuous markets with periodic renewal per-
form marginally better than the stochastic renewal version.
In contrast, profit dispersion levels for all three market vari-
ants are approximately equal. This indicates that individ-
ual traders are not any more or less likely to trade at prices
further from their personal equilibrium price in one type of
market or another.

Hypothesis 4: Price formation in periodic markets is dis-
tributed around the opening of the market. We defined
the “morning” period as being the first 25% of each trading
day or pseudo-day, i.e., ticks 1–30. The trading volume dur-
ing the morning period was approximately 3.5 times higher
in periodic markets compared to continuous ones. This is
not unexpected, as in the periodic CDA the entitlements of
all traders are reset simultaneously as the market opens. This
leads to an opportunity for many deals to be done immedi-
ately. More interestingly, despite the influx of entitlements
to a morning market the transaction prices for periodic mar-
kets have a mean of 2.0147 (σ = 0.037). The transaction
prices for both continuous markets in the morning period
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Figure 4: Mean convergence statistics for late-phase mar-
kets (days 11–20) with 500 ZIP experiments for each mar-
ket model. Results for α indicate that the PR CDA is the
most efficient, followed by the CR CDA with periodic re-
newal, and then the CR CDA with stochastic renewal. Av-
erage profit dispersion is roughly equal for all three types of
replenishment.

are at a mean of 1.72 (σ = 0.047). Morning trade activ-
ity in periodic markets is very close to the equilibrium price
despite the higher volume of trading. Approximately 79%
of all experimental transaction occurs in the morning for a
periodic market model, whereas in continuous markets the
“morning” period has no particular significance and so ob-
viously it accounts for 25% of trading.

Hypothesis 5: The optimal parameters for trading
agents will take on different values depending on the
market type. The behaviour of ZIP agents depends on a
number of different parameters. Several different variables
dictate the speed with which a ZIP trader modifies its price
in the market, but the two most important are the Widrow-
Hoff momentum (γ) and the agent learning rate (β). Preist
(1999) demonstrates the significance of these variables. We
looked at the effectiveness of different γ and β values in
both periodic and continuous markets by creating surface
plots of market efficiency, measured by Smith’s α, for ho-
mogeneous communities of ZIP agents: see figure 5. We
find that the resulting profiles of market efficiency are dif-
ferent for periodic and continuous CDAs. In other words, if
I am a ZIP agent, the optimal settings for my core parameter
values will depend on the market type I am in. In a periodic
market, a value of β = 0.2 will produce the most efficient

equilibrating market performance. Momentum γ, which acts
to damp the oscillations for heuristic adjustments, can then
vary across the range of 0.1–0.5 and this makes little differ-
ence to performance if β = 0.2 (see figure 5, left panel).
In continuous-replenishment markets, the best example of
market equilibration results from ZIP traders with β = 0.1.
Continuous markets react more than periodic markets when
γ is varied over the range 0.1–0.5. In a continuous market
ZIP agents with lower momentum result in more efficient
market behaviour (figure 5, right panel).

Intuitively we might expect that fast learning (a high value
of β) and strong damping of adjustment oscillations (a high
value of γ) would produce ZIP agents with more efficient
market behaviour. Instead the trend for both markets is the
opposite. Of course, we should be aware that ZIP parame-
ters are not limited to γ and β. Our rationale for using these
variables was not to find the most efficient ZIP trading strat-
egy, but merely to illustrate that market replenishment style
affects the way a ZIP trader should best operate.

It is also noteable from these results that some of our com-
binations of fixed γ and β ZIP variables produce markets
that are almost 50% more efficient than those of the pop-
ulations of ZIP agents used in the main set of experiments
that featured the random assignment of parameters. This ev-
idence is suggestive that there may be a market efficiency
gain if all traders are uniform agents and consequently can
be said to share the same idea of rational behaviour.

Discussion
Our experiments are, as far as we know, the first studies
conducted with adaptive artificial trading agents operating
in a simulation of a continuous-replenishment CDA. We
have demonstrated the robustness of the CDA institution in
fair price formation, by showing that groups of ZIP trading
agents can consistently converge to the competitive equilib-
rium price and quantity governed by the supply and demand
curves of the market. These results validate the observation
of Cliff and Preist (2001) that both periodic and continuous
markets can reach an equilibrium price. The use of simula-
tion methods allows us to examine price formation variables
more easily than in human-based experiments and we have
therefore compared and contrasted the two CDA variants in
more detail than was possible for Cliff & Preist in 1998.

Firstly, we found that profit dispersion between markets is
almost identical in the later phase of the market for all three
of our CDA variants. Secondly, we examined the α statistic
over time, which calculates the divergence of market activ-
ity from the competitive equilibrium price. A comparison
between the α values of periodic and continuous markets
over time suggests that periodic markets equilibrate more ef-
ficiently over the long run than do continuous-replenishment
markets. Comparing markets in late-phase allows measure-
ments that are free from the effects of initial market turbu-
lence, and thus facilitates a fair comparison between peri-
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Figure 5: Surface plot of α against different values for γ (momentum) and β (learning rate) in a homogeneous ZIP agent
community. The periodic market is shown on the left and the continuous market on the right. Results were generated over 500
experiments with all other agent parameters remaining at default values for ZIP version 1 (Cliff and Bruten, 1998). Note that
the two surfaces are quite different, indicating that the two market types produce different optimal strategies.

odic and continuous markets. With no difference in profit
dispersion across the three market types but with periodic
markets achieving the most impressive (i.e., lowest) α val-
ues, this suggests that periodic markets represent a (near)
Pareto-optimal solution to the problem of market design,
with respect to our two measures of market efficiency.

Our original intuitions about the likely relationship be-
tween market efficiency and temporal structure were, in fact,
the direct opposite of our results. We expected that the re-
occuring event of an opening and closing of the market for
our periodic variant would be enough to bring about a mini-
fluctuation in the movement of opening prices each day and
that possibly this pattern of trading would lead to oscilla-
tions around the equilibrium price at daily intervals. For CR
markets, our intuition was that competitive price formation
would occur early on and be maintained without such inter-
ruptions. Our original expectations can be summed up by
the analogy that an engine that is continually restarted runs
less smoothly than one that only starts once.

While it is not immediately clear why periodic markets
over time deviate less from the competitive equilibrium price
when compared to continuous markets, we can illustrate one
reason for this behaviour from the perspective of the propor-
tion of active agents within the market. The aggregate move-
ment of price formation towards transactions at the equilib-
rium price only occurs if an agent is active within the market.
For PR markets there is no potential delay in an agent being
active for any given day, as by default all agents are deemed

active at the start of each day. In a CR market, agents may
in theory wait for a maximum time period equivalent to two
days before being active within the market. An agent can
only make meaningful contributions to the movement of the
current trading price when it is active. Therefore in periodic
markets, in which all agents start the day as active partic-
ipants in the market, the collective action of all agents in
reaching the equilibrium price will be maximally efficient.
It may be that this activity being concentrated in time leads
to the improved α values of the periodic market in compari-
son to the continuous ones.

Our average α-values for both the CR and PR variants
of the market compare poorly to the reported α-values ob-
tained by Cliff and Preist (2001) with human traders. This
may well indicate relative inefficiency on the part of our ZIP
agents, but it is also possible that the α-values reported by
Cliff and Preist were the result of a regrettably small sample
size.

The majority of PR market transactions occur within the
“morning” period (i.e., the first 25% of the trading day),
whereas in CR markets the trading activity is unsurprisingly
spread across the trading day as the morning has no special
significance. After the rush of morning trading, the remain-
der of the day in a periodic market is an empty trading envi-
ronment, although quotes are still continuously made. In a
sense, our PR markets “waste” most of the time of their par-
ticipant traders, as (in these experiments) there isn’t enough
market surplus to fulfill the desired shouts; and so on average
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our PR markets were nonuniformly — and arguably ineffi-
ciently — used over the duration of each day. In contrast,
the CR market successfully facilitates continuous trading.
Many of these dynamics may be attributable to the assump-
tion that each trader makes only one trade per day. How-
ever, even if agents traded many units per day we believe
that a concentration of trading volume in the morning would
remain characteristic of periodic markets as opposed to con-
tinuous. Empirically testing this belief remains a topic for
further work.

How does periodicity of replenishment affect the agent?
Our results suggest that groups of agents with uniform trad-
ing heuristics perform differently in each market. Therefore,
each market requires a different trading strategy to produce
the greatest efficiency or to extract the greatest utility. From
the agent perspective, these two styles of market replenish-
ment create two different playing fields. Results show that
each market is capable of reaching the equilibrium price
with intelligent trading agents, but it is important to empha-
size that the greatest market efficiency is achieved by differ-
ent agent strategies in the different marketplaces.

Questions concerning which of PR or CR as a market
model is more efficient and which model offers the fairest
profit distribution are hard to clarify. Indeed, if these ques-
tions were easy to answer, we assume that all real-world
CDA markets would have converged to the optimal market
model. The distinction between market types exists because
each possesses different practical features in their own right.

Further work
While the results presented in this report illustrate new work
on the CR market model, there are still many ways in which
our experiments could be extended. Firstly, we limited our
ZIP agents to handling only a single trade per day. Cliff
and Preist worked with traders with multiple entitlements
per day, who were also able to buy or sell multiple units in
one transaction. The rationale for allowing our ZIP traders
multiple daily entitlements would be to look at whether more
sophisticated trading takes place, based on accumulated en-
titlements being filled at a later time in a continuous market.

We have kept our models of agents and markets simple
in the interests of clarity. However, there are numerous fea-
tures of the trading agent behaviour that could be improved.
ZIP agents are unable to formulate a decision process that
considers waiting in the market and making full use of con-
tinuous time (i.e., they cannot make a decision as to whether
waiting is better than buying now). The ZIP agents used
here are the original 1997-vintage “Version 1.0”, now re-
ferred to as ZIP08 (Cliff, 2008). One consideration would
to implement an optimising ZIP60 agent (Cliff, 2008) based
on a genetic algorithm, to properly observe how different the
optimised variables would be in each market. This would be
a full extension of Hypothesis 5. Additionally a ZIP agent
could also be made sensitive to CR markets by receiving

more informative signals on how long the market has been
running, and through greater temporal awareness being able
to exploit strategies such as delaying the sale of a commod-
ity in order to exploit a shortage and higher prices later on.

We could also be more rigorous in creating a framework
that is completely free from synchronous behaviour. This
is obviously desirable because of the asynchronous nature
of real markets. The rate at which our agents update their
price information is synchronised in our models, at each
tick. It is possible that experimenting with an asynchronous
and varied update rate for each agent could capture the asyn-
chronous intelligence of real-world populations of traders.
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Abstract

Understanding how complex structures emerge from lo-
calised interactions in a robust way is essential to unravel-
ing the mechanisms that underlie developmental processes
in both biological and artificial systems. This study inves-
tigates the effects of genome complexity on robustness using
a simple, evolved developmental system in which cellular au-
tomata (CA) rules are applied in sequence in order to gener-
ate a 1D pattern of cells. The system employs a 1D two state
CA with 128 distinct nearest neighbour update rules. Each
developmental run is initiated with a single cell. The cell
update rules adopted by every cell at each time-step are al-
lowed to change sequentially at different times according to
the instructions contained in a ‘genome’. In order to gener-
ate a set of productive developmental programs for this anal-
ysis, a genetic algorithm was used to select for individuals
whose cell states, after a fixed number of time steps, match
a set of pre-defined target patterns. This was repeated for
genomes of different sizes. The robustness of evolved and
randomized CA patterns were compared by systematically
applying single cell state perturbations during pattern devel-
opment. This analysis revealed that in these evolved systems
genome size has a positive effect on robustness by freeing the
system to generate patterns using a relatively unbiased set of
rules, which have very different individual properties. In con-
trast, smaller genomes are frequently forced to rely on com-
plex patterning rules to generate complex patterns, which am-
plify damage and hence reduce their robustness. In addition,
pattern size (the number of cells) was found to be a major fac-
tor in the measured robustness in this system. This is because
the cumulative damage induced by developmental perturba-
tions does not scale with pattern size. As a result, increasing
pattern size reduces the percentage damage following pertur-
bations and improves overall robustness. In conclusion, we
have shown that pattern robustness is an additive effect of
the ability of individual rules to propagate and heal defects
resulting from environmental perturbation in this simple CA
system, and is potentially increased by increasing pattern size
and genome size. These results have implications for our un-
derstanding of robustness in biological and artificial systems.

Introduction
Both natural and artificial developmental systems are known
to generate physical forms that are self-regulating and as
such are highly robust to perturbations of many kinds in-
cluding artificial wounding or cell removal (Wolpert, 2002;

Kumar and Bentley, 2003). Understanding how complex
structures emerge from localised interactions in a robust way
is essential to unraveling the mechanisms that underly devel-
opmental processes. In biological and artificial developmen-
tal systems, development is often governed by cellular in-
teractions. Fundamentally different processes may occur in
sequence at different developmental stages in order to gen-
erate overall pattern and form (Wolpert, 2002). This paper
explores how using different numbers of rules in sequence
during the development of a cellular automata (CA) pattern
affects the overall robustness of the patterning process.

Robustness to cell perturbation (or ‘wounding’) and self-
regulation of developed patterns or 3D forms has previously
been observed as an emergent property of evolved devel-
opmental CA systems (Andersen et al., 2006; Miller, 2004;
Basanta et al., ress; Devert et al., 2007; Federici and Down-
ing, 2006; Grajdeanu and Kumar, 2006; Streichert et al.,
2003). However, because these systems are complex it is un-
clear precisely how the implicit developmental rules in these
systems lead to a robust developmental program. In order to
create a simple system in which the processes underlying
the evolution of developmental robustness could be simply
and rapidly analysed in detail, we developed a 1D model, in
which CA rules are applied in series. CA rules are known
to produce characteristic patterns relating to their dynami-
cal properties and overall system stability (Wolfram, 2002)
but it is not immediately apparent how such properties may
contribute to the effect of cell perturbations during their de-
velopment. In particular, no previous study has established
how using CA rules in temporal sequence may effect the
overall system stability and hence the robustness of pattern-
ing. Using this system, we explored the roles of evolution
and genome complexity on developmental robustness. In
each case, we compared results from evolved genomes with
those obtained using an equivalent set of random genomes.

Method
The experiment uses a 1D two-state CA of the type defined
by Wolfram (Wolfram, 2002). This system consists of a line
of cells in one of two states; black or white. (The lines are
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effectively infinite to avoid edge effects.) In this paper a
black square is referred to as a cell a white square represents
an empty space. At each time-step in the running of the CA,
each location is updated according to a set of conditions de-
pendent only on its previous state and the state of its two
adjacent neighbours. The complete set of conditions defines
an update rule, which operates on all cells in the system at
any one time step. Here, a sub-set of 128 rules are used
which exclude those rules whereby a cell can emerge from
an empty neighborhood of cells. These are labelled accord-
ing to Wolfram’s numbering scheme and comprise the even
numbers between 0 and 255.

The CA are developed for 51 time-steps at which time the
1D pattern generated is referred to as the ’end-state pattern’.
In this system the rules are allowed to vary over different
time periods, as shown in figure 1, where in this case 6 dis-
tinct rules are implemented in series. The particular rule
applied to every cell at each time-step is contained in the
‘genome for each individual run of a CA. The whole popu-
lation in any single experiment has the same genome length,
or number of genes, n. The specific case illustrated by fig-
ure 1 is represented by the n=11 genome: 10 50 174 242
230 122, 9 15 24 32 45. Here the first six numbers represent
the set of rules (R1-R6). The remaining five numbers repre-
sent the transitions times (T1-T5 ) at which the rules change.
The transition times are constrained to occur in evenly dis-
tributed fractions of the total 51 time-steps. For example. in
the n=11 case shown, the 5 transition times occur in bins of
10 time-steps. Where the CA patterns are directed by artifi-
cial evolution, the fitness function (defined subsequently) is
applied at time-step 51, where the end-state pattern of cells
is compared to a pre-defined target pattern (shown in grey).

Figure 1: A screen shot of an individual CA run. The end-
state pattern at time-step 51 is developed according to the
cell update rules. Six rules (R1 to R6) are applied to the sys-
tem over six different time periods; the transition points of
which are labelled T1-T5. The light grey pattern below the
box shows the target pattern, P1, towards which the system
may be evolved.

Evolving patterns
To test the behaviour of the system under specific types of di-
rected patterning the CA were evolved using a Genetic Algo-
rithm (GA) (Davis, 1991; Mitchell, 1998). This was applied
as follows. A population of size N=500 individual genomes
was created and these were each developed in accordance
with the CA program. Genes were initially seeded by a ran-
dom number generator. The rule defining genes were se-
lected randomly from the complete set and the time values
were randomized within the time period constraint as previ-
ously described. A fitness function scored each individual
according to the similarity of their end-state pattern, at time-
step 51, with a pre-defined target pattern. The target patterns
used are shown in figure 2. These were selected to test the
effects of varying pattern regularity, symmetry and breadth
of distribution. The first six patterns, P1-P6, are the same
size, 30 cells, to enable direct comparison, whilst patterns
P7 and P8 are 60 cells in size to control for the effects of
pattern size.

Figure 2: Target patterns selected to test for pattern regular-
ity, symmetry, distribution and size.

The fitness function sums the number of cells that dif-
fer in their location between the target pattern and end-state
pattern of the developed CA. This is equivalent to the ‘Ham-
ming distance’ between the two bitwise pattern encodings
(Hamming, 1950). Thus the most ‘fit’ individuals have the
lowest ‘fitness score’ and a perfect correlation scores zero.
Tournament selection was used to determine which individ-
uals pass to the next generation; whereby, two individu-
als are randomly chosen and the fitter individual selected.
Crossover was not found to benefit the GA and was not
used. The genomes of the next generation were mutated
by randomly selecting either new CA rules from the com-
plete set or transition times from within the constraints pre-
viously described. The mutation rate, per genome, used at
each genome size, n=3,11 and 23, were; 0.6, 0.8, and 1.0
respectively.

The process of selection and mutation leads to a new gen-
eration after which the whole process is repeated. Through-
out the experiment a fixed population of N=500 was used
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and the system was evolved for 1000 generations for target
patterns P1 to P8 as well as for an extended 5000 generations
for pattern P1 (this set of data is referred to in the results
as P1+). Ten evolutionary runs were carried out for every
genome size and target pattern. These parameters were all
optimised prior to the experiment and were found to be suf-
ficient to achieve stable average fitness scores of low vari-
ance. Genomes of sizes 3,11 and 23 were used to compare
the effects of genome complexity in this system.

Robustness Testing

Evolved solutions and unevolved, randomly generated
genomes were tested for their robustness to cell perturba-
tions. Each single (black) cell was systematically perturbed
(cell state changed to white), one at a time, during the pattern
development. The emergent end-state pattern after each cell
perturbation was compared with that of the unperturbed CA
(see figure 3). The damage caused by each cell perturbation
was measured in terms of the Hamming distance between
the perturbed pattern and the original end-state pattern. This
difference was then expressed as a percentage of the original
pattern size (the total number of black cells in the end-state
pattern). The overall developmental robustness of a partic-
ular individual was regarded as being inversely proportional
to the averaged percentage damage caused by all develop-
mental cell perturbations. Mean data from 750 randomized
genomes of each genome size was compared with mean data
from the 10 evolutionary runs at each target pattern.

(a) Original n=23 solution consisting of 25 (black)
cells.

(b) A single cell perturbation (from black to white)
causes a shift in the end-state pattern such that 10
(black) cells are in a different location. Equivalent
to a damage score of 40% of the final pattern size.

Figure 3: Measuring the effects of cell perturbations.

Results
A set of CAs with genomes of different sizes (n=3, 11 and
23) were evolved under a genetic algorithm by selecting for
their ability to match a set of 8 pre-defined target patterns.
The genomes contained instructions for the transient update
of the CA rules. In this section the evolved solutions are
investigated with regard to their relative success in match-
ing target patterns, the developmental methods adopted to
try meet those target patterns and their robustness to devel-
opmental cell perturbations.

Pattern Characteristics
Examples of the evolved solutions are shown in figure 4.
There were variations in the 10 solutions obtained at each
evolutionary run and the subset shown here are intended to
illustrate some of the generic differences between the target
pattern types and genome sizes. Most immediately striking
is the difference in the developmental profiles (that is all the
cells at each time-step leading up to the end-state pattern)
among the different genome sizes. The n=3 solutions have
very distinct profiles characterised by the two different rules
applied to meet the target pattern. In contrast the n=23 de-
velopmental profiles share a common feature of branching
or segmentation at the transition between the 12 rules com-
prising their genome. There is a complexity of patterning
that arises as a result of these rule transitions. The n=11 so-
lutions reflect an intermediate case. It is immediately appar-
ent that the n=11 and n=23 genomes are good at matching
the more regularly spaced target patterns but bad at match-
ing a highly distributed random target pattern such as at P5.
For the larger patterns, P7 and P8, all individuals of the 3
genome sizes rely on rules that cause an expansion or growth
in the number of cells present, as might be expected.

Whilst the target patterns P1-P6 all consisted of 30 cells,
the evolved end-state patterns varied in size between 8 and
35 cells. Among randomly generated genomes there was
also a significant variation in pattern size. In data obtained
from 750 random genomes of each genome size, the average
end-state pattern size for n=3, 11 and 23 was 14, 7 and 3
cells respectively. Although the average size was seemingly,
relatively low, significantly larger patterns of over 60 cells
were also generated by the random samples. The size of the
end-state patterns was found to have a significant effect on
the robustness of the CA, as is shown later in these results.

Fitness of Evolved Solutions
The GA is designed to identify solutions that match the tar-
get pattern. This was shown to be the case, since for all
genome sizes the GA yielded patterns with an improved fit-
ness score. The average scores obtained for each of the
genome sizes are shown in figure 5. Average scores are
given for the champion individuals at the first and last gen-
erations. Overall the larger genomes show slightly less fit
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Figure 4: Examples of evolved champion solutions obtained
at the last generation of evolutionary runs carried out for
each genome size at each target pattern. The pattern at each
time step is shown with developmental time represented in
the vertical axis.

Figure 5: The average champion scores attained by each
genome size. The data compares the lowest fitness scores
from the first generation (labelled ‘Start’) and the last gen-
eration (labelled ’End’), averaged over all target patterns for
all 10 evolutionary runs. Error bars show the 95 percent con-
fidence intervals for the mean values.

(higher) scores at the start of the evolutionary runs, thus in-
dicating that a random population is less likely to match the
target patterns. After evolution the n=11 and n=23 genomes
achieve very similar average scores both significantly fitter
than for the n=3 case.

There were identifiable differences between the target pat-
terns. The n=11 and n=23 genomes consistently outper-
formed the n=3 genome except in the case of one target pat-
tern, P6. In general for the two larger genome sizes the reg-
ularly spaced target patterns P1, P2 and P7 achieve the fittest
relative scores. Where more complex arrangements of cells
were encountered these systems did less well in matching
the end-state patterns.

In order to further qualify the relative evolvability at each
genome size the fitness scores obtained by evolution were
compared with those of a randomly generated population of
500,000. This is the equivalent number of individuals that
are searched by the GA evolving a fixed population of 500
individuals over 1000 generations. The n=3 evolved solu-
tions never out-performed the random search solutions. In
contrast, for the n=11 and n=23 genomes all of the evolved
solutions outperformed the random search.

Robustness to developmental cell perturbation
To analyse the effects of genome size on developmental ro-
bustness in this system cell perturbations were made to both
evolved and unevolved individuals (see method for details).
Figure 6 shows a plot of this data. Here, the average percent-
age damage score has been plotted against the size of the
end-state patterns. For the random genomes each individ-
ual data point is plotted together with a trend line indicating
the population mean and associated confidence intervals for
this value. For the evolved solutions, data points are plotted
showing the mean value obtained over the 10 evolutionary
runs with associated confidence intervals.

The evolved solutions for the n=23 genome all sit on the
same trend line as for the random genomes and the range
of random data in this case is much more constrained than
for the n=3 and n=11 genomes. In contrast, for the n=3 and
n=11 genomes the distribution of the random data is larger
than for n=23. For some target patterns the mean robustness
of the evolved solutions patterns is different to the mean ran-
dom data of equivalent size. The n=3 evolved solutions for
target patterns P1, P2, P3, P5 and P6 all have a mean ro-
bustness that is significantly lower than for the random data
(evolved individuals show higher percentage damage scores
within an equivalent pattern size range). For n=11, the solu-
tions at target patterns P1 and P2 are significantly less robust
than the average data. This would suggest that evolution to-
wards these specific target patterns has repeatedly selected
for combinations of rules and transition times that are less
robust than the average random sample. Part of this loss
of robustness may be attributed to the fact that these indi-
viduals sometimes show a sustained period without pattern
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growth that is inherently weak to any perturbation; as can
be observed in the examples shown in figure 4 where a sin-
gle cell is maintained over a number of time-steps before
any larger pattern finally develops. A perturbation during
this early period without growth will remove the entire pat-
tern. In contrast, the n=23 solutions consistently employ pe-
riods of growth and patterning throughout the pattern devel-
opment. Another factor underlying the loss of robustness of
some of the evolved solutions may be a selection for individ-
ual rules that are inherently sensitive to perturbations. This
will be analysed further in the discussion section.

For all three genome sizes the predominate factor deter-
mining robustness is the end-state pattern size itself. To fur-
ther investigate the effects of end-state pattern size as well
as genome size, the mean trend lines from the randomized
data are plotted together in figure 7. The curves from each
genome size all follow the same trend and there is no signif-
icant variation in robustness. Thus it can be concluded that
the use of a greater number of rules does not translate into a
change in robustness in this system.

The real data are contrasted with curves that represent the
effects of altering the state of 2, 4 and 6 cells in the end-state
pattern; that is, a theoretical plot in which for each cell per-
turbation the end-state pattern is altered by a fixed amount.
The curves obtained from the randomized genomes all fol-
low a trend very similar to that of a fixed 4 cell perturba-
tion. Only for very low pattern sizes, below approximately
10 cells, do the curves align more closely with a fixed abso-
lute damage of 2 cells. This would suggest that regardless
of the size of the pattern generated (and thus the average
rate of growth of black cells) the average, absolute dam-
age caused by cell state perturbations remains fairly con-
stant over a wide number of randomized genomes. It is im-
portant to note that this is an average quantity. The effect
of a cell perturbation early in development, where there are
fewer cells, causes significantly more absolute damage than
one very late in development (where there are likely to be
many more cells). What is suggested here is that, averaged
over developmental time, the absolute damage caused by a
perturbation is largely independent of the ultimate pattern
size. The effects of a cell perturbation do not scale in accor-
dance with the rate of pattern growth and end-state pattern
size, as might be expected. Hence, the percentage damage
caused by a single perturbation rapidly decreases with in-
creasing pattern size as the curves here demonstrate.

The results have shown that for all three genome sizes,
there is very similar trend between the average robustness of
randomly generated CA and their end-state pattern size. For
evolved CA, the average robustness is shown to differ among
solutions obtained at the different target patterns. Whilst
the variation in evolved robustness can principally be ex-
plained by differences in evolved pattern size, some evolved
solutions show a lower than average robustness than was
obtained for CA derived from random genomes of equiva-

(a) n=3

(b) n=11

(c) n=23

Figure 6: A plot of end-state pattern size against cell per-
turbation damage expressed as a percentage of size. Data
was obtained from 750 randomly generated genomes of
each genome size. The trend line shown the mean of this
data with associated 95 percent confidence intervals (derived
from data bins across ranges of sizes). For the evolved solu-
tions, mean values and confidence intervals derived over 10
evolutionary runs are shown.
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Figure 7: The mean trends of end-state pattern size against
the average cell perturbation damage expressed as a percent-
age of the original pattern size. The data was derived from
750 randomly generated genomes of each genome size. This
is contrasted with model curves representing a fixed absolute
damage, at all pattern sizes, of 2, 4 and 6 cells.

lent pattern size. Therefore, it can be inferred that in or-
der to match targets the evolutionary algorithm is repeatedly
selecting for particular combinations of rules that degrade
overall robustness in these particular cases.

In order to better understand the effects of individual CA
rules on robustness in this system, the rules were catego-
rized and analysed in isolation. Figure 8 demonstrates how
the individual rules were categorized. The figures show the
behaviour of each rule after input from an arbitrary pattern
comprising 11 cells in 9 discrete blocks at time-step one.
Each was run for only 40 time-steps to account for the addi-
tional ’width’ of the input pattern. This ’input’ pattern was
selected to illustrate the behaviour of the rules at some time
into the development of a pattern, as distinct from seeding
by a single cell.

A measure of the end-state pattern size and the average
percentage damage caused by cell perturbations was made
for each individual pattern. These are plotted in figure 9.
This shows how the regular patterning (RP) rules are sig-
nificantly more robust to cell perturbation than the complex
patterning (CP) rules, regardless of the pattern size. The
emergence of a regular pattern of growth from the irregular
input pattern indicates that the system has a stable attractor
state that is largely insensitive to initial conditions. Thus per-
turbing the system later in development has a similarly low
effect on the emergent pattern. There is a self organization
inherent in these types of rules. For the complex patterns the
system is more sensitive to the initial conditions and forms
complex pathways in the development of the pattern, with
subsequent interactions when pathways intertwine; this re-
sults in the nested triangles characteristic of a complex pat-
tern developmental profile. In this case information about
previous cell states is transmitted throughout the CA in such
a way that cell perturbations have an escalating effect on the

(a) Z (Clears Pattern)
Rule 104

(b) CL (Centered Lines)
Rule 108 Av.Damage=14.6

(c) DL (Diagonal Lines)
Rule 10 Av.Damage=19.8

(d) RP (Regular Pattern)
Rule 58 Av.Damage=0.7

(e) CP (Complex Pattern)
Rule 22 Av.Damage=37.8

(f) Input pattern used to anal-
yse rule set.

Figure 8: Rules classified according the defined criteria.
Shown here are examples of each rule ‘type’. The rule num-
ber is quoted along with average percentage damage score
for that particular rule when each cell was systematically
perturbed.

emergent patterns at subsequent time-steps. The DL and CL
rules that produce substantially less pattern growth show a
perturbation response that scales very sharply with pattern
size.

The mean trend line gives an indication of the average
damage at each size for all the individual rules. It is inter-
esting to note that when contrasted with the curves shown in
figure 7 the mean trend among the individual rules closely
follows the mean trend for the randomized genomes. This
suggests that the average robustness of each of the combi-
natorial rule systems is essentially the same as the average
robustness of the individual rules themselves. This rein-
forces the finding that the genome size has no intrinsic ef-
fect on the average robustness. In addition, it appears that
the approximation towards a constant absolute damage (of
approximately 4 cells), that was noted previously, can be
attributed to a combinatorial effect of the different types of
rules. Individually the different types of rules have quite dis-
tinct relationships in regards to pattern size and robustness.
However the trend line shows that their aggregated relation-
ship closely mimics that of a system with a fixed average
response to perturbations in regard to pattern size.

It should be noted that the classification scheme adopted
here is not concrete and there are a few rules that generate
pattern that appear to be on the border between these types
of classification. There is a correspondence with Wolfram’s
classification system for this type of CA, such that CL and
DL are Class 2, RP Class 1 and 2, and CP Class 3. Rules that
fall between between RP and CP are Class 4 systems (Wol-
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Figure 9: The robustness of individual CA rules of each clas-
sification type. The average percentage damage caused by
cell perturbations is plotted against the end-state pattern size
at time-step 40. The trend line shows a rolling mean average
of all the data.

fram, 2002). This system of classification has convergence
with other definitions relating to the dynamical properties of
CA (Wuensche and Lesser, 1992). The principle distinction
made here is that the RP rules are more dynamically stable
than the CP rules.

To further investigate why the evolved solutions showed
differences in their robustness in comparison to the random-
ized data, an analysis was carried out with regard to the pro-
portion of rules adopted by the evolved genomes. For each
of the evolved solutions the ratio of CP rules to RP rules was
determined. The increase in this ratio, as compared with the
actual rule set was then calculated. This value is plotted
in figure 10 against the increase in the average perturbation
damage score obtained by evolved solutions as compared to
the mean randomized data of equivalent size (as illustrated
in figure 6).

This analysis reveals that where CP rules have been used
in high proportion, there is, in most cases, an equivalent
decrease in robustness (increase in the percentage damage
caused by cell perturbations). Therefore, it seems that in
general a loss of robustness can be explained by an increased
uptake in CP rules, which are required in order to match
certain target patterns and are thus selected for by the GA.
This generalization is true in all but one example, where for
the n=11 genome at target pattern P5 the evolved solutions
are seemingly more robust than average whereas the CP/RP
ratio is higher than for the rule set itself. This may be at-
tributable to the very small end-state pattern size that was
adopted by these solutions, making them more robust than
equivalently sized random patterns, even though a signifi-
cant amount of their development was undertaken by com-
plex growth rules.

Figure 10: The effect of complex patterning rules on the ro-
bustness of evolved solutions. The x-axis shows the average
difference in the evolved CP/RP ratio with the rule-set ra-
tio. The y-axis shows the average difference between the
evolved robustness scores (expressed as an average percent-
age damage due to cell perturbation) and the mean robust-
ness of random data of equivalent pattern size (from figure
6). Data points located in the upper right quadrant reveal a
correlation between complex patterning and a loss of robust-
ness.

Discussion
In summary, this analysis has demonstrated that there is no
intrinsic emergent robustness as a result of increasing the
number of sequential ‘rules’ in a CA system but there is a
potential loss of robustness associated with evolved rule bi-
ases in smaller genomes. On average the two larger genomes
were shown to evolve better (more fit) solutions than the
smaller genome. The evolvability of the larger genome sizes
is related to the size of the parameter space that they may
select from. The greater complexity of the genome provides
the means for complex adjustments in the patterning of cells
that is not present in the individual rules themselves. Thus
the n=3 genomes and to some extent the n=11 genome were
more reliant on the use of specific rules for the generation
of particular patterns and it was shown that when complex
rules were used their robustness was degraded. Though the
n=23 solutions were not inherently more robust to cell per-
turbations than the n=3 or n=11 genomes, they did not de-
viate from a random distribution in their selection of rules
and so showed higher levels of robustness when the smaller
genomes were forced to do so in order to achieve the re-
quired patterning.

Robustness, here, was explicitly defined as a percentage
change in the phenotypic patterns as this was considered to
provided the most informative comparison between differ-
ent evolved solutions. It was shown that, on average, the
propagation of a perturbation through development only ef-
fects a limited number of cells in the end-state pattern. This
means that it is predominantly the size of a developed pat-
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tern that contributes to its overall robustness such that the
percentage impact of cell perturbations is reduced as size in-
creases. In biological systems there may be a corresponding
relationship between organism size and robustness such that
larger organisms, containing a greater number of cells, may
show less phenotypic response to both developmental and
genetic perturbation. Research into the evolutionary adap-
tion of size highlights the physiological or environmental
constraints acting on an organism (LaBarbera, 1989). It may
be that there is an underlying selective pressure to increase
organism size for overall robustness.

There was no evidence for emergent robustness as a prod-
uct of the GA itself. Adding stochasticity or noise to the
CA development, by introducing cell death, may cause the
system to evolve more robust solutions. In this scenario it
may be that ’fit’ solutions that can withstand developmen-
tal noise are more likely to be repeatedly selected for during
evolution.

The particular CA used here update rules that operate at
every site with relatively complex asymmetrical configura-
tions. Rather than cell growth, it more closely represents
a collection of established cells making internal decisions
about their differentiation between states. Future work may
explore how a similar system may be reconfigured to better
represent more realistic cellular growth rules.

Conclusion
This study has provided a measure for the developmental ro-
bustness of evolved CA patterns in a simple one dimensional
system. It has shown that there is no robustness intrinsically
associated with using additional rules. However, increasing
the complexity of a genome has a beneficial effect on robust-
ness simply because it frees the system to generate patterns
using a relatively unbiased set of rules.

For randomized genomes of each genome size individ-
ual cell perturbations, on average, produced approximately
the same amount of absolute damage to the emergent pat-
terns. This was shown to be equivalent to approximately 4
cells. Robustness, here, was explicitly defined as a percent-
age change in the phenotypic patterns. Hence, there was a
strong correlation between robustness and pattern size.

It was revealed that the robustness of randomized
genomes could be attributed to the aggregate effect of se-
lecting from the complete rule set. Different types of rules
demonstrated very distinct relationships between robustness
and pattern size. However, a trend line showing the mean
robustness of each of the individual rules approximated the
trend one would expect given a fixed amount of absolute
damage, regardless of overall pattern size. Thus the aver-
age robustness of the randomized genomes could be simply
interpreted as a reflection of the average robustness of the
individual rules.

In the analysis of individual rules it was shown that rules
generating complex patterns were sensitive to cell perturba-

tions. By contrast, the regular patterns in this system act as
a stable attractor in which the state of cells enter a single ho-
mogenous state or a predictable cycle that is insensitive to
changes in their input. Where genomes of the evolved CA
patterns adopted a large proportion of ’complex’ patterning
rules, their robustness is shown to be reduced in comparison
to the average robustness of patterns of equivalent size.
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Abstract 

 In this paper, we examine key issues underlying the 
design and operation of “soft”  robots  featuring  continuous 
body  (“continuum”)  elements. We contrast continuum and 
continuum-like robots created to date with their counterparts 
in the natural world. It is observed that natural continuum 
locomotors or manipulators almost invariably rely on 
hard/discrete elements (in their structure and/or operation) in 
their interactions with their environment. Implications for the 
successful operation and deployment of continuum robots are 
identified and discussed. 

 
1. Introduction 
 
 There are innumerable alternatives available to 
the robot designer. However, only a small subset of these 
alternatives has been realized in hardware to date. Most 
modern industrial robots are (human) arm-inspired 
mechanisms with serially arranged discrete rigid links. 
This is fine for industrial work where the workspace is 
predefined and structured. However, robots are currently 
generally confined to such engineered and carefully 
controlled environments, and kept well away from 
humans and their world.  

A robot that must interact with the natural world 
needs to be able to solve the same problems that animals 
do. Animals come in many shapes and sizes with widely 
varying specialized limbs suited to their particular 
everyday tasks. However, most robots are built according 
to “general-purpose” specifications with little attention to 
what they will ultimately be used for. The rigid structures 
of traditional robots limit their ability to maneuver in 
tight spaces and congested environments, and to adapt to 
variations in their environmental contact conditions. 

In response to the desire to improve the 
adaptability and versatility of robots, there has recently 
been  interest  and  research  in  “soft”  robots [1]. In 
particular, several research groups are investigating 
robots based on continuous body “continuum” structures. 
Motivation for this work often comes from nature. If the 
body of a robot was soft and/or continuously bendable 
then it might emulate a snake or an eel with an 
undulating locomotion [2]. A slithering robot could 
navigate through a variety of terrains. 

An alternative solution would be to have a 

continuous manipulator. A robotic continuum 
manipulator could be similar to a prehensile tail, an 
elephant's trunk, or an octopus's arm. 

Several different types of continuum-like robots 
have been proposed. Robotic snakes have been built by a 
few different groups [3],[4],[5],[6]. These have almost all 
been built using multiple discrete links. These hyper-
redundant robots can move in most of the ways snakes can, 
but they are not as conformable. Hyper-redundant robots, 
like the SnakeBot [7], represent a bridge between discrete 
links and continuous elements [8].  
 

 
F igure 1: Robotic Snake built by Dr. Gavin Miller, 

E lephant Trunk Manipulator and Tendril by Clemson 
University, and Softbot built by Tufts University 

 
True continuum robots, such as the Octarm [9] 

and the Tendril [10],[11] (Fig. 1), have continuous 
backbone sections which can conform around objects 
[12],[13],[14]. Soft robots, such as Softbot, are almost gel-
like in their form [15],[16]. However, soft continuum 
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robots are hard to build, model and control [17],[18]. 
Management of the malleable and compliant properties 
which form a great part of their appeal is proving a major 
obstacle to progress in this emerging field [1]. 

There is an inherent tradeoff between 
continuous and discrete elements. For example, 
continuum structures can conform to their surroundings 
while discrete rigid links aid precise positioning. 
Interestingly, continuum structures in nature seem to 
synergize their activities with various kinds of discrete 
elements, as discussed in the following section. With this 
in mind, we argue in section 3 that with a judicious 
mixture of continuous/soft and discrete/hard elements, 
robots can be made to perform many tasks. We conclude 
that the structure of soft and continuum robots should 
depend strongly on the task the robots will be used for 
and the application environment.  
  
2. Continuous Structures in Nature 

 
 Animals in nature have a wide variety of 
continuum structures. Arms, tails, tentacles, and various 
other appendages all have important functions they 
perform for the animal. In the following, we classify these 
functions into three main classes. 

 

 
F igure 2: Animals using Prehensile Tails for Balance 

 
2.1 Balance/Stability 
 
 There are many instances in the animal kingdom 
of single hyper-redundant or continuous limbs being used 
for balance, like the tail of a kangaroo or (most probably) 
that of a dinosaur [19]. Some gecko species use their tails 
for stability when they climb. Monkeys can use their 
prehensile tails to hold onto branches and improve their 
stability [20]. A prehensile tail is often wrapped around a 
stable solid object at a discrete location and used as an 
anchor for support (Fig. 2). A caterpillar is similar in that it 
will anchor part of its body while the top half moves 

around to eat. Many other creatures, such as opossums and 
seahorses, have prehensile tails. The tails can be used to 
balance on land, in the trees, or under the sea. In this sense 
natural continuum structures compensate for the 
complexity inherent in their  “softness”  by  essentially 
environmentally grounding themselves at discrete body 
locations, typically coupling with hard environmental 
elements. Similarly, when an animal's tail is used for 
balance the complexity inherent in the structure is typically 
handled by adopting restricted classes of movement. One 
example of this is running. The tail compensates for the 
complexity of the balancing task by making simple cyclical 
movements or being swung out behind to counter the 
animal's movements [19]. Soft continuum robots could 
clearly benefit from adopting similar strategies. 
 
2.2 Exploration/Sensing 
 
 Exploration and sensing are other key functions of 
natural continuum limbs. Snakes have many different ways 
to slither. (Generally slithering refers to snakes but also 
describes the movement of slugs and earthworms.) The 
four slithering types are lateral undulation, rectilinear 
locomotion, concertina locomotion, and sidewinding [6]. 
The type of motion a snake uses depends on its 
environment. Lateral side to side undulation is the main 
way snakes move [6]. Rectilinear locomotion is how large 
pythons and anacondas move using their belly scales [6]. 
Concertina movement is how snakes climb or move in 
limited surroundings such as tunnels [6]. Sidewinding is 
used to move in the desert over loose sand [6]. Under 
water, eels and sea snakes can wind their way through 
holes in the coral to find food. 

Often natural continuum elements are used as 
both sensors and effectors. Garden eels, brittle stars, and 
basket stars all sway in the ocean current to detect food. 
When a brittle star senses food, it can fling its arm out in 
the general direction of the food. Then it will coil an arm 
around it and bring the food to its central mouth. Once 
again, this flinging is not arbitrary, but is simply controlled 
since the arm merely unfurls in the needed direction. A 
similar pattern of simple control, and combination of 
sensing and exploration, are adopted by plants such as 
vines (Fig. 3) [21]. 
 

 
F igure 3: Climbing Morning Glory Vine 
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 Alternative natural sensing continuum 
appendages are whiskers and antennae. Many animals have 
whiskers to help with their spatial awareness. A catfish's 
whiskers are used to check the muck at the bottom of a 
river for food. The tentacles on a star-nosed mole are very 
sensitive, for example the animals can even smell 
underwater [22]. 
 

 
F igure 4: Octopus Opening a Jar with its Arms [23] 

 
Here once again, it appears the natural 

soft/continuum elements are seldom used in isolation of 
discrete or hard elements. For example, an octopus will 
wrap its arm around an object but uses its suckers, located 
discretely along the arm, for fine sensing and manipulation 
(Fig. 4). Millipedes have a hyper-redundant body studded 
with numerous discretely positioned legs. Their bodies will 
conform to the obstacles that they crawl over while using 
the fine movements of their legs for adjustments. Large 
anacondas use their belly scales to crawl forward silently 
when stalking prey [6]. These three creatures all use a 
combination of soft and hard(er) elements. These hybrid 
continuum/discrete structures incorporate discrete 
elements for f ine resolution, using discrete parts for fine 
work and their continuum anatomy for general purpose 
positioning. 

A robot could use a continuum appendage with 
sensors to probe places its main body cannot reach. This 
would be very useful in exploration of hazardous areas. 
 

 
F igure 5: Sting Ray, Komodo Dragon tail, and Bullwhip 

 

2.3 Obstacle Removal/G rasping 
 
 Another way to use a continuum limb is to use it 
to remove obstructions and rapidly grasp/manipulate the 
environment. A whip-like structure can be flicked out to 
move an obstacle from the animal's path. The movement 
does not have to be particularly accurate since it often just 
needs to be cast in the correct general direction. Many 
animals use their tails as weapons. Komodo dragons will 
whip enemies and so will sting rays (Fig. 5). If considered 
as a weapons system, a scorpion's tail would make an 
interesting model. Continuous natural appendages are also 
used as weapons. The tentacles of a squid are used to dart 
out in the direction of prey [24]. Similarly, a brittle star can 
fling its arms in the general direction of food and then 
draw the arm in to feed itself. 

Octopus arms, which are formidable weapons as 
well as effective manipulators, appear to be similarly 
discretely directed in the direction of objects of interest 
rather than having their shapes closely controlled [25]. 
Elephants also simplify control of their trunks by moving 
them within a plane oriented towards objects they desire to 
grasp [26]. Brittle stars manipulate objects in a similar 
manner as octopuses, but unlike octopuses the brittle star 
does not have strong suction cups on its arms. Each arm is 
like a snake's tail and can be used to wrap around objects. 
They can slither or crawl depending on the terrain. Their 
arms are quite dexterous and can be used to grab food and 
move it to the star's central mouth. 

Humans can also be very effective when 
augmented with continuum tools. Whips, lassos, and 
chains are all flexible tools that can be used in a variety of 
ways. In the movies, Indiana Jones has used his whip to 
swing across gaps [27]. If a robot could do this, then it 
could transport itself to places it could otherwise never 
reach, or at least get there quicker. Ropes can be made into 
lassos to loop around objects. Cowboys use lassos to 
capture errant steers. A robot could potentially use a lasso 
to hook rock outcroppings to pull itself up a cliff. A 
grappling hook is a strongly related alternative.  

A common element in all the above examples is 
once again discrete control, with the problem of close 
control of all degrees of freedom in the continuum 
structure sidestepped by making simplified motions 
(controlled by a discrete set of variables) in specific 
directions. In many cases, only the direction and speed 
need to be directly controlled. A continuum limb could 
similarly be used swiftly to fling obstacles out of the 
robot's path, or form quick but effective curling grasps. 
 
3. Implications for Soft and Continuum 
Robots 
 
 The examples from nature in the previous section 
motivate a new look at soft continuum robots. Up to this 
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point, most development has been motivated by the desire 
to create “fully soft” continuum robot bodies with no hard 
or discrete elements, and to precisely control their shape 
through the continuum of possibilities, independent of their 
environment. However, it seems clear that many natural 
soft and continuum elements are successful precisely by 
incorporating discrete elements, simplifying their 
movements, or interacting in a way very specific to their 
environment. The key in all cases we have reviewed is 
complexity reduction, which leads to strong implications 
for robot development. Each of these issues is investigated 
in the following subsections. 
 
3.1 Complexity Reduction 
 

A key goal for soft continuum structures is 
adaptability: compliance to environmental constraints via 
an enhanced (essentially infinite dimensional) 
configuration- or shape-space. In robotics, almost all 
efforts so far have tried to achieve this via soft compliant 
bodies in controlled continuum contact with their 
environment. (The two main types of continuum 
manipulator today are tendon-driven [8],[28],[29] or 
pneumatically [13],[29],[30],[31] controlled.) However, 
the resulting decision space (and its requirements for 
sensing and planning) is vast. A key simplifying 
observation from the natural world is that in nature, soft 
continuum limbs are used mostly for approximate 
positioning, strongly exploiting discrete elements in their 
structure, operation, or their environment to simplify and 
resolve their operation. In all cases this allows complexity 
reduction: environmental contact and fine manipulation 
details are handled by discrete scales, legs, or suckers; the 
movement space is restricted to a given direction or plane, 
as in the movements of octopus arms and elephant trunks, 
or dynamic balancing of tails; imprecision due to 
environmental forces is alleviated via stabilization using 
tails, anchors, or tongues. All these concepts could be 
exploited in novel robotic counterparts. 

Another issue which appears to have been rarely 
considered as a major issue in robotics, but which appears 
critical in nature, is that of the underlying nature of control. 
Continuous control (regulation of the system to an arbitrary 
shape throughout its workspace) enables precise operation. 
Continuous control in the above sense is the most 
commonly used form of control in conventional rigid link 
robots. This allows the control system to compensate for 
(indeed, take advantage of) the simplicity of the discrete 
rigid link structure to achieve the precise positioning 
desired in structured applications such as manufacturing. 
However, effective continuous control of continuum 
robotic structures is proving extremely difficult to achieve 
[9],[10]. The increased complexity in continuum structures 
is hard to either model well, or to provide sufficient 
actuator inputs for, to enable consistent control. 

Nature however suggests an alternative approach 

to complexity reduction in control. If a continuous 
manipulator is controlled discretely (restricting the 
allowable shapes of the system to a finite set, or a shape set 
defined by a finite set of inputs) then it will be much easier 
to control. Clearly many, if not most, continuum structures 
in nature are controlled in a discrete (as defined above) 
manner, as discussed in section 2. Notice that in this case 
the compliance inherent in the continuum structure allows 
the system to adapt to compensate for the simplicity of the 
control. The concept of central pattern generators has been 
used to define the shapes and simplify the control of some 
snake-like robots [2]. An extension of these ideas to the 
wider class of continuum robots could enable practical 
control of behaviors similar to octopus arm or elephant 
trunk  manipulation.  Binary  control  (enabling  “whip-like” 
movements similar to those discussed in section 2.3) has 
corresponding potential for continuous manipulators in 
dynamic tasks. 
 
3.2 Design Implications 
 

A common theme in the above discussion is the 
effectiveness of the combination of continuous and discrete 
elements. One direct way to achieve this synergy is by 
incorporating both types of structure on an overall robot 
design, a hybrid continuum/discrete robot. 
 

 
F igure 6: F ictional Snake-Arm Robots 

(B-9, Sentinel, Doc Ock) 
 

 
F igure 7: Real Snake-Arm Robots from OC Robotics [28] 
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Some hybrid continuum/discrete robot designs 
have previously been considered. One possibility is to have 
a continuous arm and simple gripper, like the trunk of an 
elephant which can pick up a peanut with its finger-like 
projections. A robot with a continuous arm and discrete 
gripper is generally called a snake-arm robot. There are 
numerous examples of snake-arm robots in science fiction, 
but few in real life (Fig. 6). Science fiction can serve as 
inspiration just as well as nature. For example, the flip-top 
communicators from Star Trek could have inspired the cell 
phone [32]. However, while there are multiple examples of 
fictional continuum robots, there are very few continuum 
robots in reality. Most real snake-arm robots are discrete, 
using many joints to become hyper-redundant [8]. Snake-
arm robots are used in the nuclear industry and for robotic 
surgery [28],[33] (Fig. 7). The advantage of having a 
continuous arm with a discrete gripper is that it would be 
like having a tentacle with a hand on its end, providing 
impressive maneuverability with a simple, if not 
particularly dexterous, grasp (Fig. 8). 
 

 
F igure 8: Discrete Arm with Continuous F ingers [34] 

 
The question of whether to use discrete or 

continuous parts is an interesting one, with the answer 
depending on how the robot is desired to move and what 
its function will be. Let us consider an example consisting 
of an arm and a manipulator. When would it be best for the 
arm to be continuous (i.e. the snake arm approach)? 
Having a continuous arm would let the manipulator reach 
places that might otherwise be unreachable. The three most 
prominent continuum structures in nature are the octopus 
arm, elephant trunk, and tongues. Underwater animals can 
have soft continuum arms because they are affected little 
by gravity. Most tongues are short and stout so they can 
also  ignore  gravity.  However,  an  elephant’s  trunk  is 
affected by gravity and can be seen swinging as the 
elephant moves its head from side to side. Adding a 
discrete gripper onto the end of a continuum trunk would 
cause an even greater sag in the robot. 

 

 
F igure 9: Giraffe Using its Tongue to Extend its Reach 

 

 
F igure 10: F lexible Microactuator [14] 

 
An interesting alternative design approach would 

be to use a serial discrete link arm and a continuous end 
effector. This model is less frequently explored than the 
snake-arm robots, even in fiction. The giraffe is a natural 
example. The concept can be thought of as a discretely 
built neck with a continuous tongue as a manipulator. It 
could use its prehensile tongue to reach places it cannot fit 
its neck into (Fig. 9). Unlike the giraffe's tongue, most 
robotics end effectors are in the form of hands or simple 
grippers. One example of a hand with continuum elements 
is the AMADEUS dexterous underwater gripper [1]. The 
flexible microactuator built by the Toshiba Corporation is 
much smaller and could be used for more delicate tasks 
[14] (Fig. 10). This type of robot would be like having an 
octopus for a hand. It would be able to manipulate objects 
dexterously and do things that current discrete link 
manipulators can't. One issue with the manipulator is how 
many fingers it should have and how many joints for each. 
Four fingers is usually enough to manipulate objects in 3D. 
As with a continuous arm, continuous fingers would have 
sagging and torsion issues. However, this would be less 
than for a continuum trunk, and the continuum end effector 
could compensate for gravity and/or changes in the 
environment such as the movement of its goal, just like a 
giraffe's tongue can move to catch leaves blown by the 
wind. There are few examples of a discrete arm with a 
continuous end effector in nature. However, there are also 
few examples of the wheel and yet it is one of humanity's 
most useful inventions. Roboticists should not be limited 
by nature, but also look to their imagination for inspiration. 

A third alternative design would be a non-serial 
hybrid continuum/discrete structure. These structures 
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might be ideal for fine manipulation. One natural model for 
a continuous end effector is the basket star (Fig. 11), which 
has similarities with the brittle star (Fig. 12). Rather than a 
brittle star's five limbs, the basket star has a fractal-like 
pattern of tentacles. It is almost tree-like in its form. A 
basket star would make a great manipulator if you could 
control it [35]. A manipulator with rigid linked fingers 
cannot conform to an object it intends to grasp, but 
continuum fingers can wrap around an object like the grasp 
of an octopus. This would result in a better grip with less 
chance of the object being dropped. 
 

 
F igure 11: Illustration of a Basket star 

 

 
F igure 12: Illustration of a Brittle star 

  
A key question raised by the earlier discussion is 

how motions for soft continuum robots should be planned 
and controlled. Motivated by the examples from nature 
reviewed here, we argue that simplifications should be 
sought where possible, as discussed in the previous 
subsection. The strategy of restricting and controlling 
movements to a plane is appealing and clearly successful 

for many animals, and likely to be most practical for 
continuum robotic elements. For hybrid 
continuous/discrete robots, it would appear to be best for 
the discrete part of the robot to be controlled continuously 
(and vice versa) so that the discrete part is concerned with 
precision, and the continuum part with more global 
environmental accommodation. For example, the fractal-
like pattern of the basket star end effector design would be 
hard to control continuously so discrete control of the 
continuum elements would be most appropriate.  

Additionally, it seems clear that the structure of 
these new forms of robots with soft continuum elements 
robot should be dependent on the environment they will 
operate in. The traditional approach of building general-
purpose robots has only been partially successful – while 
traditional robots are used for a variety of tasks in 
structured environments, typically those environments 
have been heavily engineered to fit the robots capabilities. 
Therefore robots have not significantly penetrated the 
inherently unstructured  environments  of  the  “real world”. 
Soft continuum robots are explicitly intended to enter that 
world, and the lesson from their counterparts in the natural 
world is that success generally implies specialization and 
matching to the environment. We believe that, at least in 
the medium term, the same is likely to be true for 
continuum robots. 

Finally, notice that there are other types of 
locomotion not discussed here for which soft continuum 
robots might be useful. Legged locomotion and slithering 
are the two main types of terrestrial locomotion, but some 
creatures can configure their bodies to roll around like 
wheels [36]. In nature the caterpillar of the Mother-of-
Pearl moth and the stomatopod shrimp (Nannosquilla 
decemspinosa) are two of the few rolling animals [37]. 
There are many types of robots that mimic the legged 
locomotion of animals, but wheeled robots are more 
common and more practical at this time. Rolling is usually 
a secondary form of motion in nature with the primary 
form being legged locomotion. Rolling is complex to 
control and a non-wheeled rolling continuum robot would 
be hard to steer with no stable base for sensors.  However, 
new types of modular and shape shifting robots might find 
this mode useful in the future. 
 
4. Conclusion 
 

 We have discussed the design and operation of 
the emerging class of soft and continuum robots, 
contrasting the state of the art in robotics to date with the 
counterparts in the natural world. We note that natural 
continuum locomotors or manipulators almost invariably 
use  design  modifications  or  specialized  “tricks”  to 
simplify their operation. The complexity reduction 
achieved is usually based on synergy of soft/continuum 
with hard/discrete elements (in the structure and/or 
operation of the robots). We have discussed implications 
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for the design and successful operation of novel continuum 
robots. A key inference is that construction of a soft 
continuum robot should depend on the environment it will 
be used in. It also appears that appropriate combination of 
continuum and discrete, or soft and hard, elements is likely 
to significantly improve the performance of these robots.  
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Abstract

In order to produce diversity in virtual creatures to populate
virtual worlds, different techniques exist. Some of these use
blocks or sticks. In this morphological approach, blocks and
sticks can be considered as organs, which means body parts
able to perform different functions. Another approach, artifi-
cial embryogenesis, consists in developing organisms from a
single cell. In this paper, we propose a bridge between these
two approaches : a model that will create creatures with a
particular morphology and which is organized in organs. The
creature development will start from a single cell. In this pa-
per, we propose a unique model able to produce organisms
that perform a specific function and to produce organisms
with a user-defined morphology.

Introduction
Several models exist for creating artificial creatures. These
models use different levels of abstraction to produce crea-
tures of various shapes and sizes. Whereas the morphologi-
cal approach produces relatively large creatures as in (Sims,
1994; Lassabe et al., 2007), embryogenic models produce
creatures composed of hundreds of cells starting from a
unique cell (Chavoya and Duthen, 2007; Dellaert and Beer,
1994; Stewart et al., 2005).

This paper details our model of cellular development,
Cell2Organ (Cussat-Blanc et al., 2007). For the purpose of
creating complete creatures composed of different organs,
we propose a model able to produce organisms that per-
form specific functions. These organisms respect the bio-
logical definition of an organ. In other words, they are a
“specialized cell regrouping that performs specific function
or a group of functions”. Our model contains an environ-
ment with a simple artificial chemistry (Rasmussen et al.,
2003; Dittrich et al., 2001; Hutton, 2007; Ono and Ikegami,
1999) and cells that perform different actions. Cells are able
to self-replicating and to specialize themselves to optimize
specific actions instead of others. Moreover, we show that
Cell2Organ can also produce simple creature shapes. The
final aim of our project is to develop a complete creature
starting from a unique cell.

This paper is organized in four sections. Section 2
presents related works about artificial creatures develop-
ment, presenting artificial morphogenesis, cellular automata
and already existing works about artificial embryogene-
sis. Section 3 presents our model of cellular development,
Cell2Organ, starting with a description of the environment
functioning and the mechanisms used by our artificial cell
to interact with the environment. Section 4 presents differ-
ent experiments using this model. The possibilities of the
model are shown by the development of two types of organ-
isms : a primitive organ able to move substrate in the en-
vironment and two creatures with particular morphologies.
These experiments point to the possibility of simulating, in a
simplified way, different approaches to organism growth. In
the final section, we conclude by outlining different possible
development paths for this model.

Related works
Artificial morphogenesis
Several projects have tried to generate artificial creatures
well adapted to their environment. For example, in his fa-
mous works, Karl Sims (Sims, 1994) uses blocks with differ-
ent properties such as size, shape, contact sensor positions or
block layout. Komosinski also creates Framsticks creatures
(Komosinski and Ulatowski, 1999) using an equivalent ar-
chitecture: sticks replace blocks but creature functioning is
comparable to Karl Sims’ work: he uses a neural network to
coordinate creature movements. Nicolas Lassabe improved
Sims’ work by using a more complex environment (Lassabe
et al., 2007). Lassabe’s creatures are able to climb a stairway
or to practice skateboarding.

The aforementioned creatures use high-level components
to create their morphology and their behavioral controller.
A more biological-inspired approach was introduced by
Dawkins in (Dawkins, 1986). Using simple rules to draw
continuous segments, he developed a model able to create
small graphic creatures. The addition of behaviors in these
simple life forms allows the creation of a complex 2-D vir-
tual world (Ventrella, 1998) where small filiform creatures
co-evolve in an environment composed of energy sources.
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Figure 1: Scheme of the GRN action in cell duplication.

Each creature has a vital energy level and must survive in
the environment, looking for food produced by the death of
other creatures. This model produces a complete ecosystem
with its own food chain. Creatures are also able to repro-
duce among themselves to create new life forms. EvolGL
(Garcia Carbajal et al., 2004) is another 3D pond life project
where creatures have different classes, such as herbivorous,
carnivorous or omnivorous, which allows the emergence of
survival strategies.

Using lower level components, cellular automata use
neighborhood rules to evolve a cell matrix. The rules give
the t+1 state of each cell according to the cell neighbor’s t
state. Using this method, John H. Conway (Gardner, 1970)
creates interesting patterns such as gliders, pulsars, etc.

Artificial Embryogenesis
One of the first works on artificial embryogenesis was that of
Hugo de Garis (de Garis, 1999). Using a cellular automaton,
he developed 2D shapes. The cellular automata rules were
evolved with a genetic algorithm. The aim was to generate
desired shapes like letters.

Another important goal of artificial embryogenesis is cell
specialization. Different works on cell specialization al-
ready exist. In most cases, they use a Genetic Regulatory
Network (GRN), just as in nature.

In nature, the organism’s cells can have different func-
tions, all of which are specified in the organism’s genome
and regulated by a Gene Regulatory Network (GRN)
(Davidson, 2006). Cells get input signals from the environ-
ment thanks to receptor proteins. The GRN, described in the
organism’s genome, uses these signals to activate or inhibit
the transcription of different genes in the messenger RNA,
the future cell’s DNA protein template. The expression of
these genes will specify the cell’s functions. Figure 1 shows
(in a simplified way) the functioning of the GRN.

This nature inspired model was designed by Banzhaf in
(Banzhaf, 2003). In this work, each gene beginning is
marked by a starting pattern, named “promoter”. Before

the coding of the gene itself, enhancer and inhibitor sites al-
low the regulation of its behavior. In (Chavoya and Duthen,
2007), Chavoya and Duthen introduced another model in
which the gene regulation system is encoded at the begin-
ning of the genome. It consists of a series of inhibitor
sites, enhancer sites and regulatory proteins. The produc-
tion of each regulatory protein is conditioned by the in-
hibitor/enhancer sites. The concentration of this protein de-
termines the cell function’s activation or inhibition : if the
concentration level is over a certain threshold, the gene is
activated and so are the corresponding functions.

A different approach is the Random Boolean Network
(RBN) first presented by Kauffman (Kauffman, 1969) and
reused by Dellaert (Dellaert and Beer, 1994). A RBN is a
network where each node has a boolean state: activate or
inactivate. The nodes are interconnected by boolean func-
tions, represented by edges in the net. The state of a node
at time t + 1 depends on its particular boolean function ap-
plied to the values of its inputs at time t. The mapping to
the gene regulatory network is simple: each node of the net
corresponds to a gene and each boolean function represents
the activity regulation of the gene. The cell function will be
determined during the interpretation of the genome.

Eggenberger Hotz (Eggenberger Hotz, 2004) imagines a
concept able to produce a simple creature with a user defined
shape able to move in an environment just using a GRN.
Cells rhythmically emit molecules that modify the adhesion
properties between cells and between cells and the environ-
ment. He develops a simple simulator and produces a T-
shape that grows and move in the environment.

The aim of our work is to make a bridge between arti-
ficial morphogeny and artificial embryogenesis to produce
virtual creatures. We decide to use the hypothesis that blocks
and sticks can be considered as organs, that is to say body
parts of the creature able to carry one or more specific func-
tions. Using developmental techniques of creature growth,
we could create these organs starting from a single cell. In
this way, the cell must be able to specialize itself into a cell
more adapted to the environment. The cell organization in
tissues (that is in cell groups that have the same function)
and then the tissue organization will allow the creation of
organs. After creating a library of organs, we will just have
to assemble them to create a creature adapted to the environ-
ment with a morphological approach. This paper presents
the embryogenic approach of the problem, and especially
the creature shape development. The next section details the
model, starting with the environment and, then, showing the
cell mechanisms.

Cell2Organ : a cellular developmental model
The environment
To reduce the simulation computation time, we implement
the environment as a 2-D toric grid. This choice allows an
important decrease in the simulation’s complexity.
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The environment contains different substrates. They
spread in the grid, minimizing the variation of substrate
quantities between two neighbor crosses of the grid. This
spreading is enacted in two stages, as illustrated by Figure 2

• First, the substrate spreads to the 4 cardinal points.

• Then, if the substrate quantity is sufficient, the substrate
spreads to the diagonal crosses.

Figure 2: Example of spreading substrate in the environ-
ment.

Our model integrates a highly simplified model of arti-
ficial chemistry. Many works exist on artificial chemistry
(Dittrich et al., 2001; Rasmussen et al., 2003). In these
works, the artificial chemistry is highly developed and al-
lows a good simulation of cell mechanisms. For example
in (Ono and Ikegami, 1999), the cell division and the cell
membrane formation and maintaining are highly realistic.
However, the complexity of such a model is very great and
does not support a high number of cells. In our model, the
properties of artificial chemistry defined in (Dittrich et al.,
2001) have been simplified.

Our molecules, named substrates, have different prop-
erties like diffusion speed or color, and can interact with
other substrates. This interaction between substrates can be
viewed as a typical chemical reaction: using different sub-
strates, the transformation will create new substrates, emit-
ting or consuming energy. For example, the transformation
2A + B → C (+50) denotes that, using 2 units of sub-
strate A and 1 unit of B, a unit of C is created, emitting 50
units of energy. To reduce the complexity at the maximum,
the environment contains a list of available substrate trans-
formations. The substrate reactions can only be triggered
by cells. Then, in the previous example, from a biological
point of view, C can viewed as waste from a cell which has
the ability to convert A and B into energy.

To modify this environment, cells interact with the envi-
ronment. They have different abilities and must perform a
global action defined by the user. This action can be very di-
verse: harvest substrate, modify environment, create shapes
or simply survive as long as possible. The next section de-
scribes cell functioning.

The cells
Cells evolve in the environment, more precisely on the envi-
ronment diffusion grid. Each cell contains sensors and has

different abilities (or actions). An action selection system
allows the cell to select the best action to perform at any mo-
ment of the simulation. Finally, a representation of a GRN
is inside the cell to allow specialization during duplication.
Figure 3 is a global representation of our artificial cells.

Figure 3: Scheme of a cell in an artificial environment. It
contains substrates (hexagons) and corresponding sensors
(circles)

Sensors Each cell contains different density sensors posi-
tioned at each cell corner. Sensors allow the cell to measure
the amounts of substrates available in the cell’s Von Neu-
mann neighborhood. For each substrate in the environment,
a corresponding sensor exists. Only this corresponding sen-
sor can compute the density of the substrate. The list of
available sensors and their position in the cell is described in
the genetic code.

For example, in Figure 3, the cell has sensors for B and
D substrates in the left corner. The results of the measure of
the corresponding substrate densities are :

• 2 units for B substrate because of the presence of 2 units
of B substrates in the left cross of the cell,

• 1 unit for D substrate.

Actions To interact with the environment, cells can per-
form different actions:

• The substrate transformation allows the cell to trigger a
substrate reaction as previously described. To start, all
the needed substrates on the left part of the equation must
be present in the cell, that is, the needed substrates must
be in the same intersection as the cell. In result of the
reaction, the vital energy is increased or decreased (de-
pending of the reaction properties), the needed substrates
are destroyed and the new substrate is created.

• The cell can absorb or reject substrates in the environ-
ment. These actions allow the cell to move substrates
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from one place to another. These actions, particularly the
first , are important to trigger a substrate transformation.

• The duplication action allows the cell to create a new cell.
We give details about this action in the next section.

• Survive is an action that allows the cell to wait for a signal
from the environment to do something.

• Apoptosis allows the cell to autodestruct. This action can
be useful to free a place for a more specialized cell for
example.

The previous list is not final. Our model must be able to
allow us to add new actions easily. Like sensors, all actions
are not available for the cell: the genetic code will give the
available action list.

Cells contain an action selection system. This system is
inspired by classifier systems (Holland and Reitman, 1978).
It uses data given by sensors to select the best action to per-
form. The selection system can be viewed as a rule database,
where each rule is composed of three parts:

• The precondition describes when the action can be trig-
gered. It is composed of a list of sensor value intervals
that describe the best substrate densities in the neighbor-
hood to trigger the action.

• The action gives the action that must be performed if the
corresponding precondition is respected.

• The priority that allows the selection of only one action if
more than one can be performed. The higher the coeffi-
cient, the more probable is the selection of the rule.

Action selection rules can be, for example :

(SensorA = 1) and (3 < SensorC < 7) and

(SensorB = 0) → (ActionA) (23)
(SensorC = 3) → (ActionB) (17)

→ (ActionC) (13)

In this example, ActionA will be performed if and only if
SensorA value is equal to 1 unit, SensorB does not detect
the presence of its associate substrate and SensorC value
is more than 3 units and less than 7. ActionC does not
contain a precondition. It means that this action can always
be performed. The priority coefficients sort actions in the
order ActionA > ActionB > ActionC if different actions
are possible.

In the list of possible actions, the cell can duplicate itself.
We will now examine this action in detail.

Duplication The duplication is an action that can be per-
formed by the cell if the next conditions are respected:

• The cell must have at least one free neighbor cross to cre-
ate the new cell.

• The cell must have enough vital energy to perform the
duplication. The vital energy level need is defined during
the specification of the environment.

• A list of conditions can be added during the modelization
of the environment. For example, some substrates can be
needed to create a new cell.

The new cell created after duplication is completely in-
dependent and interacts with the environment. During du-
plication, the cell can be specialized to optimize a group of
actions instead of others actions. In nature, this specializa-
tion is carried out by the GRN. In our model, we imagine
a mechanism that plays the part of a GRN. Each action has
an efficiency coefficient that corresponds to the action op-
timization level : the higher the coefficient, the lower the
cost of vital energy. Moreover, if the coefficient is null, the
action is not yet available for the cell. Finally, the sum of ef-
ficiency coefficients must remain constant during the simu-
lation. In other words, if an action is optimized increasing its
efficiency coefficient during duplication, another efficiency
coefficient (or a group of them) has to be decreased.

The cell is specialized by varying the efficiency coeffi-
cients during duplication. A network built as follow gives
the rules of these variations:

• the network’s nodes represent cell actions with their effi-
ciency coefficients,

• the network’s edges are weighted. The edge’s weight (a
real number in the interval [0,1]) represents the efficiency
coefficient quantity that will be transferred during the du-
plication.

Figure 4 is an example of our GRN. (A, 35%), (B, 25%),
(C, 17%), (D, 23%) are cell actions with their associated ef-
ficiency coefficient. The edge between 2 actions represents
the amount of efficiency coefficient that will be transferred
during duplication. For example, the weighted edge between
A and B means that after one duplication, 30 percents of the
A action efficiency coefficient will be transferred to the B
action. After four duplications, we can see that the actions
B and C respectively have been optimized to the detriment
of the actions A and D. According to this simple example,
we can say that the cell function of the organism has been
specialized during the duplication process.

We have implemented this model in Java using a multi-
threaded architecture: cells are coded as independent
threads. Cells can communicate using the environment and
substrate exchanges. We made such a choice because of
the development of massive parallel computer architectures
such as multi-processor machines, increasingly connected in
computation grid. This parellelization allows an increase in
the number of tasks executed at the same time.

Our model must be able to generate two types of artificial
creatures: organs and user defined shapes. The next exper-
iments show that it is possible to accomplish this. The first
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Figure 4: Modelization of an example of the Gene Regula-
tory Network. A, B, C and D are 4 actions with their effi-
ciency coefficient. The transfer coefficients are given by the
arrows.

experiment consists in developing a system able to move
substrates in the environment whereas the second one cre-
ates simple shapes like starfish or jellyfish.

To find the creature the most adapted to a specific prob-
lem, we use a genetic algorithm. Each creature is coded with
a genome composed of three different chromosomes:

• The list of available actions, a subset of the environment
possible actions. This list allows the cell to activate or
inhibit some actions.

• The action selection system that contains a list of rule to
apply actions.

• The gene regulation network that allows cell specification
during duplication.

The creature is tested in its environment that returns the
score at the end of the simulation. To increase the genetic
algorithm power, we use a computational grid parallelized
genetic algorithm. This parallelization allows the computa-
tion of hundreds of creatures at the same time.

Experiments
Developing a transfer system
The first experimentation consists in developing a simple or-
gan : a transfer system. In other words, the cell structure

must be able to transport substrate from one point to an-
other. To do that, we imagine an environment composed of
2 substrates:

• The red is the substrate that must be moved by the organ-
ism. This substrate has the specificity not to spread in the
environment, in order not to impact on the organism work.

• A gray that will be used by the cell as fuel and duplication
material.

The cell can perform the following actions:

• duplicate (needs one gray substrate and vital energy),

• absorb or reject substrate (consume vital energy),

• transform one gray substrate in vital energy.

We place 10 red substrate units into a specific cross of
the grid (at the top left of the environment) and diffuse gray
substrate all over the environment. The creature’s score is
given by the squared sum of the red substrate distance to
the goal point (at the bottom right of the environment). The
parameters of the genetic algorithm are:

• selection: 7 tournament competition with elitism,

• mutation rate: 5%; crossover rate: 65%,

• substitution: worst individuals,

• population size: 500 individuals,

Figure 6 shows the convergence curve of the genetic algo-
rithm. It shows the variation of the minimum, the average
and the maximum fitness of the population for each gener-
ation. The genetic algorithm’s aim is to maximize fitness,
which is the creature score. A relevant organism appears
quickly. After 3 generations, the organism is able to move
the red substrates but not in the right direction. After 10
generations, it is able to move closer to the goal point. The
genetic algorithm converges after 22 generations (the aver-
age fitness is close to the best).

Figure 5 shows the development of the best organism1.
We can see that only the cells on the way from the initial
point to the end point are created. Moreover, the organism
uses absorption and rejection actions to transfer the substrate
gradually. Cells that overtake the final point die quickly so
as not to interact in the transfer. During the convergence of
the genetic algorithm, it is interesting to observe the evolu-
tion of the organism strategy towards the best solution. The
first step is to learn to survive in the environment, absorbing
gray substrate and transforming it in vital energy. The next
step is to learn to duplicate in the right direction. Intermedi-
ate solution organisms are able to transport the red substrate

1Videos of all presented creatures in this paper are available on
the website http://www.irit.fr/∼Sylvain.Cussat-Blanc
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Figure 5: Our artificial transfer system. (a) Beginning of the simulation. (b) The creature develops itself to create the structure
and begin the substrate transfert. (c) The creature transfers the substrate from the initial state (circle on top left) to the final state
(circle on bottom right).

Figure 6: Smooth curve of the minimum, average and max-
imum organism fitness. The genetic algorithm must mini-
mize the sum of the squared distance from the red substrate
to the goal point.

from the initial point near to the goal. The organism also
develops itself throughout the environment, scattering some
units of the substrate in the environment. As shown in Fig-
ure 5, this organism deploys itself only on the best trajectory,
decreasing the substrate scattering probability.

Creating simple shapes
In this experiment, we want to generate simple creatures
with a user-designed morphology. The goal of such an ex-
periment is to simulate the growth of more complex crea-
tures, like those of Sims (Sims, 1994).

5 different substrates are needed to generate these shapes:

• Water gives energy to cells by transformation (Water →
(+30)). This substrate diffuses in the environment.

• Four different morphogen substrates, here named NW,
NE, SW and SE, show four division directions to cells.

These substrates do not diffuse in the environment so as
not to interact with the simulation. The designer of the
creature positions them in the environment.

4 different actions are associated to these substrates:

• duplication consumes energy and one unit of Water,

• water transformation allows the cell to trigger a transfor-
mation of one substrate of Water into vital energy,

• water absorption allows the cell to pick up water from the
environment,

• apoptosis allows the cell to autodestruct if it wishes (for
example if the cell is not in the desired shape).

To obtain the required creature morphology, the genetic
algorithm fitness is calculated after a chosen simulation time
and is given by the next simple formula :

• if the cell is inside the desired shape, the fitness value is
increased by 2 units,

• if the cell is outside the desired shape, the fitness value is
decreased by 1 unit.

The first simple morphology we try to develop using this
environment is a starfish1. To do that, we place morphogens
in the environment to lead the cell divisions. Figure 7 gives
the result of the genetic algorithm. We can observe that the
desired shape is obtained. It is interesting to study the action
selection system rules produced by the genetic algorithm:

(SensorNE = 1) → (DuplicateNE) (6)
(SensorNW = 1) → (DuplicateNW ) (5)
(SensorSE = 1) → (DuplicateSE) (4)
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Figure 7: The starfish growth. (a) Beginning of the simulation. (b) The starfish develops itself following the morphogens. (c)
The starfish stops its growth when the desired shape is obtained.

Figure 8: The jellyfish growth. (a) Beginning of the simulation. (b) The jellyfish develops itself following the morphogens. (c)
The jellyfish stops its growth when the desired shape is obtained.

(SensorSW = 1) → (DuplicateSW ) (3)
→ (TransformWater) (2)

(SensorWater = 1) → (AborbWater) (1)
→ (DoNothing) (0)

This selection system shows that the genetic algorithm
correctly uses the information given by the environment to
follow the growth scheme given by the user. Moreover, du-
plications are always prior in relation to other actions to ac-
cumulate vital energy without using it. The last remark we
can make about these rules is that the organism never uses
apoptosis during growth. The organism assumes that mor-
phogens give the correct growth direction.

Observing these rules, we notice that it could be possible
to produce all desired creatures with the same genome. In-
deed, the rules discovered by the organism allow it to follow
any morphogen configuration. To verify the hypothesis, we

decided to develop another simple creature: a jellyfish. To
do that, we keep exactly the same environment architecture,
with the same substrates and the same possible actions, and
we only change the morphogen distribution in the environ-
ment. Using the starfish genome, we launch the simulation
and we obtain the creature1 shown by Figure 8.

Conclusion and future works
We propose a model of cellular development. This model
is based on a marked simplification of natural development.
We ignore the physics rules and the atomic and molecular
interactions to focus on the cell abilities. Using a genetic
algorithm and specific environment, we create an organism
able to develop different organs with different functions. As
we have shown during experiments, this model can produce
various creatures with very different morphology or differ-
ent functions.

The continuation of this work presents a wide field of de-
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velopment. Developing new organs can be interested. For
example, the next one could be an organ able to harvest dif-
ferent substrates and transform them into vital energy and
dispose wastes at a specific position. Using different types of
such an organ, the wastes of one used as energetic substrate
by another, we will produce a complete creature composed
of different organs. The different organs will be connected
using the presented transfer system.

Another improvement may concern shape generation. For
the moment, we use four different morphogens to obtain
the creature morphology. We think that with only one mor-
phogen and only giving the development main line, we could
obtain the same creature and have an organ that develops it-
self correctly to produce this morphogenetic substrate. For
example, in the case of the starfish, we could have a trans-
fer system that moves the morphogenetic substrate from the
center of the environment to the five branches of the starfish.
In a second stage, the starfish will grow using the morphogen
distribution.

A remark we can make when we watch the starfish growth
is that all the branches do not grow at the same speed. The
same fact can be noticed in jellyfish growth, where the bell-
shape grows too fast in comparison with tentacle develop-
ment. An idea to control shape development is to calculate
fitness at different moments of the simulation. The best crea-
ture will then be the one that produces the best shape at each
checkpoint.

After few experimentations, the model also seems to be
able of self-repairing (Miller, 2004). Killing some cells of
the starfish in different parts (center, middle of an arm or a
complete arm), the starfish create new cells in these wholes.
This self-repairing property must be confirmed by more ex-
periments but are encouraging.

A final development path is the abstraction of this model.
Starting from a unique cell, we grow shapes like the starfish
or the jellyfish presented in the paper and, after a cell re-
groupement to different limbs, we want to put the creature
in a physical simulator to make it move. The creature move-
ments could be generated, for example, by a neural network,
just like in Sims’ works (Sims, 1994). We hope that this
abstraction will allow us to have a complete creature devel-
opment, from single cell to a creature able to move in its
environment.
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Abstract

This paper describes work carried out to investigate whether
a classic simulated reaction-diffusion (RD) system could be
used to control a ‘minimally cognitive’ animat during the
course of a simple memory test. This test required the animat
to remember an arbitrary signal and adapt its behaviour as a
result. A further requirement was that the effects of the first
signal be reversed by a second signal, returning the animat to
its default behaviour. In this way the two signals combined to
form a behavioural-switch, regulated by a memory-trace pre-
served in the homogeneous chemical substrate. The reaction-
diffusion system chosen was that first described by Gray and
Scott (Gray-Scott) and the minimally cognitive behavior of
a class introduced by Beer et. al, involving the fixation and
avoidance of a falling circular object by a whiskered animat.
The parameters of this RD-controller were evolved using an
evolutionary, or genetic, algorithm (GA).

Introduction
The study of memory in simple cognitive models has fo-
cussed primarily on the artificial neuron (AN) as a main
component. In this paradigm networks of these ANs, con-
nected by excitatory or inhibitory signalling links, mediate
behaviour. The AN building blocks are usually heteroge-
neous, having variables such as activation time-constants or
signalling thresholds which are adjusted on an individual
basis. This paper deals with a different type of controller,
which we call a reaction-diffusion controller (RDC), consist-
ing of a one-dimensional array of cellular automata (CA) im-
plementing a classic chemical model of reaction-diffusion.
The constituent cells of this CA are homogeneous, sharing
global defining variables.
Within Evolutionary Robotics the prominent model dy-

namical system is the continuous time recurrent neural net-
work (CTRNN) (8; 9; 4). Many examples testify to the
rich dynamics of which CTRNNs are capable (7; 9), such
as generating the patterns to regulate legged robot gaits,
and controlling such simple cognitive tasks as navigation
and shape-discrimination. Many classic reaction-diffusion
(RD) systems also display rich dynamics, manifesting the
full range of classic qualities such as Hopf bifurcation, stable
and unstable limit-cycles, chaotic boundaries etc.. The main

motivation for the work described in this paper was to see
whether the tried and tested technique of evolving neural-
network controllers for simple robotic behavior could be
adapted to harnessing some of the rich dynamics displayed
by these RD systems. In this sense the interest was both
methodological, to show that evolutionary algorithms could
be used successfully with a different class of non-linear sys-
tem, but also focused on exploring the ability of RD con-
trollers. For example the ability to sustain spatio-temporal
patterns suggests a role in controlling gaited movement but
can systems be tuned to particular requirements? Given
the difference between the essentially ‘spaceless’ CTRNNs
and the necessarily spatial RD systems there is also the in-
triguing possibility that they might be able to complement
one another. By placing artificial neurons in an excitable
medium with which they can interact, CTRNNs might be
able to exploit the spatio-temporal properties of the medium.
Given the dynamical potential of these RD systems there has
been very little work dedicated to exploring it (1; 2).
In place of the continuous time recurrent neural net-

work used by Beer we used a one-dimensional ring of cells
within which the concentration of two coupled chemicals
changed according to two differential equations describing
intra-cell reactions and inter-cell diffusion Fig. 1. Output
from whisker-like proximity sensors was fed to the cells in
the RD-ring via weighted links, perturbing the concentra-
tion of the two chemicals. Weighted links in turn allowed
the concentration of particular chemicals in designated cells
to specify motor activation, completing a sensor-motor loop.
Links were made symmetrically about the animat’s longi-
tudinal axis. Parameters specifying the weighted links be-
tween cells, motors and sensors were evolved as were the
values of a dimensionless feed rate and rate constant for the
RD-system.

Reaction-diffusion Models

Perhaps the best known example of a reaction-diffusion
model is that proposed by Alan Turing (6) as an attempt
to explain cellular differentiation in early biological devel-
opment. It is also one of the first examples of the use of a
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computer to solve differential equations. Turing was trying
to understand how the chemicals in arrays, in this case one-
dimensional, of identical cells could, by reacting within the
cells and diffusing between them, form stable patterns. He
was able to show that by constraining the chemical reactions
within cells and the relative rate of diffusion between them
one could guarantee a stable pattern. Subsequent work has
shown analogous systems responsible for leopards’ stripes,
patternation of nautilus shells and many other natural pat-
terns.
Within the class of model reaction-diffusion systems de-

fined by two coupled chemicals (two rate equations) Turing
was interested in those tending toward a stable configura-
tion. But by altering the governing reactions and diffusion
rates many other systems are possible, displaying a wide va-
riety of spatio-temporal properties. One of the most intrigu-
ing is that proposed by Gray and Scott in their 1984 paper
(10) and extensively analyzed by Pearson in his 1993 paper
(5). A variant of the autocatalytic Selkov model of glycol-
ysis (5) the Gray-Scott model corresponds to the following
reactions:

u + 2v ⇀ 3v (1)

v ⇀p (2)

Both reactions are reversible so p is an inert product. A
feed term for u introduces a non-equilibrium constraint with
the feed process removing both u and v. This results in the
following reaction-diffusion equations, expressed in dimen-
sionless units:

∂u

∂t
& = &du∇

2u − uv2 + F (1 − u) (3)

∂v

∂t
& = &dv∇

2v + uv2 − (F + k)v (4)

where k is a dimensionless rate constant and F a dimen-
sionless feed constant. du and dv are the diffusion rates for
the two chemicals (see Method section below for specific
details). A trivial steady state of u = 1, v = 0 exists for all
values of F and k. Gray-Scott proves a very robust simu-
lation, showing no qualitative difference when implemented
by forward Euler integration over a broad range of spatial
and temporal scales (5).
When suitably perturbed Gray-Scott exhibits a large va-

riety of spatio-temporal patterns that have to be seen to
be appreciated. Pearson’s paper is replete with beautiful
images but the simulation is best appreciated in real-time
with a two-dimensional simulation and a suitable colour-
map. By fixing the diffusion rates of the chemicals and
using F and k as control parameters Pearson was able to
show that within suitable limits the two-dimensional phase-
diagram described shows regions associated with specific
spatio-temporal patterns, ranging from spot replication and
stripes in a continuous transition to traveling waves and
spatio-temporal chaos.

Visually-Guided Agents
The choice of an evolved animat model, for example to
demonstrate the potential of a novel reaction-diffusion con-
troller, should be informed by two key considerations. The
behavior in question must be cognitively ‘interesting’ and
there should be a reasonable expectation that resultant con-
trollers can be analyzed and understood.

The term ‘minimally cognitive behavior’ is meant
to connote the simplest behavior that raises cognitively
interesting issues.

Generally speaking, visually-guided behavior pro-
vides an excellent arena in which to explore the cogni-
tive implications of of dynamical and adaptive behavior
ideas, since it raises a host of issues of immediate in-
terest. ((8) p.422)

In keeping with Beer’s thesis we chose for our memory test
a visual-guidance task conforming to the requirements of
‘minimal cognition’. After priming by an arbitrary signal
s+ a whiskered animat, capable of moving along the floor
of a two-dimensional arena (in the xz plane), is required to
orientate toward and track a circular object falling from the
arena’s ceiling with a large range of vertical and horizon-
tal speeds. In the absence of s+ or if s+ is followed by the
second signal s- the animat is required to avoid the falling
object. (see Figs. 2 and 3 for details).
Beer evolved continuous time recurrent neural networks

(CTRNNs) to control his animats, a control-system the au-
thor has some experience of (4). His subsequent analysis (9)
of the CTRNNs’ dynamics makes them probably the best
understood of all animat controllers, evolved or otherwise.
This represents a useful benchmark and an obvious model
to emulate. The use of such canonical models to provide
a common point of reference would seem to be an efficient
way to exploit the resources available. Broadly speaking this
work preserves the details of Beer’s model while replacing
the CTRNN controller with a novel one using a reaction-
diffusion medium.

Evolving Controllers
The Gray-Scott model, in keeping with most reaction-
diffusion systems, is highly non-linear, at least unintuitive
and often counter-intuitive 1. It is not immediately clear
how one could ‘hand-wire’ such a controller, but it would
require an intuition about the rich dynamics of the system
which escapes us. In cases such as this, where we require a
controller capable of exploiting even a relatively simple dy-
namical system, it would seem that the need is pressing to
leverage the increasing computer power at our disposal and

1The speed of modern processors makes it possible to interact in
real-time with 2D implementations of these reaction-diffusion sys-
tems. Having implemented and played with just such a model of,
among others, Gray-Scott, we can attest to its counter-intuitiveness.
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Figure 1: (A) The animat model. Output from the proximity sensors is fed, via weighted links, to the reaction-diffusion ring
(RD-Ring) where it perturbs the cellular concentration of chemicals u and v. Solid links increase the chemical concentration
in the cell while dashed links decrease it. The effects of any particular link are specific to one of the two chemicals u and v,
this specificity being under evolutionary control. Following a number of reaction-diffusion cycles, the chemical concentration
levels in designated cells are in turn fed via weighted links to activate the animat’s motors. Activation at a motors is summed
and multiplied by a constant (10) to produce an output. The combined output of oppositional left and right motors is used to
move the animat. (B) Excitatory links from the sensors increase chemical concentration in the cell specified while inhibitory
links (dashed) decrease it. In this way the whisker sensors affect the chemistry of the RD-Ring which in turn affects the motors.

automate the process of discovery. This approach is par-
ticularly appropriate to a robot that is intended to remain
in-silico. The search algorithm employed here is a genetic
algorithm (GA). A simplistic, but initially useful, way of
understanding how a GA works is to picture the parame-
ter space, describing in this case the details of our reaction-
diffusion controller such as linkage points and weights, as a
fitness landscape. Every point in this landscape describes an
animat controller and height above ground corresponds to
fitness. If the landscape is reasonably well-ordered it should
be possible for the GA to find its way from low ground ini-
tially, corresponding to randomly-wired, poor performing
controllers, to high, where the controllers are (much) better
performing. This image leaves out important details, partic-
ularly the concept of neutral-networks 2, but the key detail is
captured. From random parameters and allowing for a suit-
able encoding scheme, it should be possible to automatically
produce good controllers by applying evolutionary pressure.
The work described in this paper and elsewhere (8; 9) is tes-
tament to that fact.

Method
To a large extent details from Beer’s earlier simulations (8)
were preserved and the required behaviors essentially the
same. The arena was 400 units long by 275 units high
(Fig. 2) in all the experiments. The animat’s five whisker
sensors were 220 long and uniformly spaced over a 30o

spread. Activation of the whiskers was a simple linear
function with a minimal value of 0 when the whisker was
unimpinged and 1 when it was intersected at base.

2A complex subject highlighting our poor intuition of move-
ment in higher-dimensional space

Fig. 1 shows a diagram of the animat. Activation from the
sensors ∈ [0, 1] was fed through weighted links ∈ [−1, 1] to
the one-dimensional reaction-diffusion ring (RD-ring) con-
sisting of 128 cells subject to intra-cellular reaction and
inter-cellular diffusion between near-neighbours (see the
chemical reactions 1, 2 and rate equations 3 and 4). The
weighted links were specific to either chemical u or v, this
specificity being under evolutionary control.
The sensors, motors and input to the RD-Ring were up-

dated using the forward Euler method with an integration
step-size of 0.1. During this time-step each cell in the RD-
ring was updated twice using the rate equations 3 and 4).
Input via links to the cells perturbed the specified chemi-
cal’s concentration by a simple multiple of time-step (0.1),
sensor activation ∈ [0, 1] and link weight ∈ [−1, 1]. The cel-
lular concentration of u and v was bounded within the range
∈ [0, 1].
The animat’s motors received input from cells in the RD-

ring. Input from a individual link was a product of link-
weight ∈ [−1, 1] and the concentration of the evolutionarily
specified chemical in the cell. To update the animat’s posi-
tion, the activation of the oppositional motors was subtracted
(right − left) and the result multiplied by 10. This multi-
plier was fairly arbitrary, taking into account the need for the
animat to move fast enough to catch objects with a maximal
horizontal velocity around 5. It worked well enough but is
probably too large. On reflection this value should probably
have been an evolutionarily-specified parameter but given
the fitness scores generated any gains could only have been
very marginal.
Diffusion rates du and dv were fixed at the standard val-

ues (5) of 2 × 10−5 and 10−5 respectively and the length
of the RD-ring was 0.32. Each animat genotype specified
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a value for the rate constant k and feed constant F (equa-
tions 3 and 4) which were seeded at values 0.055 and 0.02
respectively in the otherwise randomly generated initial pop-
ulations. By moving through this F, k parameter-space evo-
lution had some control over the properties of the reaction-
diffusion system (see subsection Reaction-diffusion Models
above).
The GA consisted of a population of thirty animat geno-

types which were updated generationally according to rank-
based selection. The genotypes were essentially a list of
weighted, chemically specific links, describing the wiring
of an animat controller. As the animat controllers were sym-
metrical, each link on the list corresponded to two links on
the controller. At each generation these lists were converted
into their respective animat controllers and assigned a fit-
ness value according how well the controller performed its
task. It was neither practical or desirable to have the geno-
type describe a fully connected controller (1408 links in all)
so the number of links was pre-set. The starting number for
the orientation experiment was 8 sensor→RD-ring, 4 RD-
ring→motor making 24 symmetrically arranged links in all.
At the end of each generation a new generation was

formed from the old and subjected to mutation operations.
The numbers on the genotype were in the range ∈ [0, 1],
being mapped onto their respective controller parameters.
Mutation consisted of the addition of a normally distributed
random value with average 0 and standard-deviation 0.25.
A second mutation operator was applied to each genotype
with a probability of 10%, randomly deleting a link from or
adding a link to the list. The link-addition operator allowed
two links to share start and end points and chemical speci-
ficity.
The same fitness function f(ds, de) was used to evaluate

all four trials (see Fig. 3) where the two values ds and de
specify the absolute horizontal distance between animat and
shape at the trial’s start and end, marked by the shape reach-
ing the arena floor, respectively:

f(ds, de) =

{

1 − ds

de
if de < ds

max(ds−de

50
,−1) if de ≥ ds

The value of this fitness function is highest if the animat
fixates the object centrally and lowest if the animat avoids
the object, to a maximum at distance 50. Where the trial
required the animat to avoid the falling object (T1, T3, T4 in
Fig. 3) the resultant fitness was multiplied by −1.0.
To evaluate the animat’s performance at the memory task

we used an amalgam of the fitnesses F1 − 4 over four trials
T1−4. The animat was required to show the opposite behav-
ior over T2 to the other trials, dependent on a prior stimulus.
The four trials were alloted a fitness for orientation towards
the circle and the total fitness calculated thus:

f(F1, F2, F3, F4) = (F1 − F2) × (F3 + F4)

signal 1

signal 2

Figure 2: The memory experiment (to scale). An animat
with five whiskers spread over a 30o span is placed at the
centre of the arena’s floor. During a trial a circle was placed
at the top of the arena within the grey drop zone on a straight
downward trajectory of between 3 and 4 units per second.
Prior to the circle-drop the animat received either signal 1 or
signal 2 or signals 1 and 2 consecutively. The signals con-
sisted of an arbitrary pattern applied to the animat’s whiskers
after which the systemwas allowed to settle. The animat was
rewarded for its ability to reverse behavior on receiving sig-
nal 1, for example switching from a circle fixator to a circle
avoider.

This function was designed to encourage a switching of
behavior over T2 while avoiding evolutionary local minima
3 that might result by a simple adding of F1 − 4. The func-
tion does not specify whether T2 should show avoidance
or fixation behavior, only that it is opposite to that seen in
the other trials. To disambiguate these two possibilities the
amalgamated fitness was multiplied by −1.0 in those cases
where the animat showed aversion to the object in trial T2.

Training Protocol
A number of trials were conducted to assess the ability of
individual controllers and allot their respective genotypes a
fitness score. Fig. 2.a shows the trial set-up for the orienta-
tion experiment. The grey drop-zone delimits the possible
circle trajectories during a trial. The object trajectories were
constrained so as to ensure some whisker stimulation for the
animat. 4

Memory Previous work (3) has shown that motor feed-
back to the RD-ring can be used by the animat to stabilize
behaviour. Purely diffuse controllers were able to use motor
feedback in this way to maintain a memory trace. To pre-
vent this the animats were not allowed to form links from
motors to RD-ring over the course of evolution. A second
consideration is the length of time between the animat re-
ceiving one of the priming stimuli s+ and s- and its response

3A simple explanation...
4In keeping with Beer’s original model (8) the simulation was

noiseless, meaning that the symmetrical animat controller was in-
capable of breaking symmetry without stimulus from the whiskers.
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Figure 3: The four trials (T1-4) providing the components
of the memory task’s fitness function. end+ and end- show
the desired end positions of the animat relative to the falling
object. The duration of all phases is the range ∈ [400, 600]
and the stimuli last for 10 time units. (T1) In this trial the
animat receives no signal. The falling circle should elicit
an aversion response. (T2) In this trial the animat receives
the s+ signal. As a consequence the animat should fixate
the falling circle. (T3) In this trial the animat receives the
reset signal s-. This should not affect the animat’s aversion
to a falling circle. (T4) In this trial the animat receives two
signals, the priming s+ followed by s-. The second s- signal
should reset the animat’s response, causing it to avoid the
falling circle.

to the falling object. The limits on this random wait time
∈ [400, 600] were set to oblige the animat to use the reac-
tion between u and v to sustain a memory .
Fig. 3 shows the four trials T1-4 that comprised a single

fitness test:

T1 No signal
T2 signal s+
T3 signal s-
T4 signals s+ followed by s-

The animat was required to avoid the falling object in all
trials but T2 where, after receiving signal s+ it was required
to fixate the circle.

Figure 5: The colour-mapped (red high, blue low) changes
in concentration over time of chemicals u and v in response
to the signal s+. In the trace on the right the reaction com-
ponent of the RD system has been disabled. When al-
lowed to react the two chemicals maintain a strong, autocat-
alytic memory trace for approximately 750 time units, long
enough to reliably remember the signal and score highly on
the task. In the absence of reaction between u and v ini-
tially high concentrations of v diffuse away while u, unable
to autocatalyse, shows no change in activity; the links to the
animat’s motors are all u specific so in the absence of reac-
tion the animat is paralysed.

Results
In this section we focus on the best performing animat of
a single evolved population. Populations with near-optimal
solutions were readily evolved and the choice of this one is
arbitrary but informed by pedagogic considerations. Simi-
lar mechanisms to those described were found in the large
majority of those animats analyzed.
An important consideration in this kind of evolutionary

modelling is that one be hopeful that the models produced
will submit to analysis. As mentioned above, evolving a
fully connected RD-controller would be infeasible, given the
processing power available, but another objection might be
that by encouraging evolution to distribute the animat’s cog-
nition within an overly complex structure one ends up with
a model which is too complex to understand. One of the
benefits of allowing network connectivity to be an evolu-
tionary variable is that we can encourage evolution to search
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Figure 4: (A.) A chemical memory-switch. Moving clockwise from the default settled stateM-, the animat receives the stimulus
S+ causing an auto-catalytic cycle which leads to the semi-stable stateM+. While in stateM+ the resetting signal S- disrupts
the RD-ring’s structure, causing it to return to M-. (B.) shows the response of the animat, for states M+ and M-, to a falling
object. (i) In the default settled state M- the animat displays aversion to the falling circle. (ii) In the stimulated state M+ the
same falling circle elicits a fixation response.
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Figure 6: The change in U/V concentration over time of the
two RD-ring cells c23 and c49 in response to the animat re-
ceiving stimulus s+. Two other significant times are marked,
t1 and t2, the return of c23 and c49 to default. (Ai) shows the
colourmapped (red high, blue low) concentrations of chem-
icals U and V, with the position of cells c23 and c49 indi-
cated, for U, by dashed horizontal lines. (Aii) the change in
concentration over time for chemicals U (dark grey) and V
(light grey) in cells c23 and c49. (B) Plotting the activation
of the two chemicals U and V against each other reveals the
unstable attractor cycles at c23 and c49 that characterize the
memory trace. The orbits, though unstable, are maintained
throughout the course of the trial, allowing the stimulated
animat to respond differently to the falling object.

for simpler solutions. With this in mind, the animat pop-
ulation of these results, having achieved a close to optimal
fitness, was further evolved with a single change made to
the GA. The probability of adding a link to the controller
during mutation was set to zero, while the probability of
deleting a link remained the same. In this way evolution
is ’locked’ from exploring bigger networks while being able
to randomly wander through or test smaller ones. This tech-
nique has been found to rapidly reduce the size of networks
while maintaining their fitness and has the added advantage
that one does not have to introduce an arbitrary component
into the fitness function to encourage simplicity.

Figure 7: The reaction of two selected cells, c80 and c111, to
stimulus s+ after a further period of evolution, wherein the
animat was required to increase the length of its memory.
The top plot of (Ai) shows, to scale, the previous memory
trace following s+. (B) the attractor cycles are now more
densely packed and greater in number.

A Chemical Switch
The evolved model, with 22 symmetrically arranged links,
is summarized in Fig. 4. Fig. 4A shows the switching cycle
which allows the animat to flip from state M- to state M+
and back again in response to signals s+ and s-. Clockwise
from M- s+, a maximum stimulus of the central whisker,
increases, via v-specific positive links, the concentration of
chemical v at four cells in the RD-ring. This establishes
autocatalytic waves, as u and v react and diffuse, which
roughly stabilize atM+. The application of s-, a half maxi-
mum stimulus of the first proximal whiskers, atM+ disrupts
these waves, bringing the chemical system back toM-.
Fig. 4B shows the response of the animat to the same

falling object trajectory whilst in default state M-(i) and
primed state M+(ii). In M- stimulation of the leftmost
whisker reduces the concentration of v via an inhibitory con-
nection. Motor links, sensitive to changes in v’s concentra-
tion, imbalance the left and right motors, drawing the animat
towards the falling object. This behaviour at t0 is mirrored
in M+ (Bii). At time t1 the behaviours start to diverge, in
response to stimulation of the whisker second from left. In
Bi this engages a strong avoidance response in the animat,
causing it to move quickly away from the object. The animat
primed by s+ does the opposite, moving the object towards
its centre where, thus fixated, it remains through the course
of the trial.
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The dependence of the memory stateM+, induced by sig-
nal s+, on interaction between chemicals u and v is high-
lighted in Fig. 5. In the absence of a reaction component the
memory is not established. Purely diffusive controllers were
thus unable to evolve a solution to this task.

The Stability of the Chemical Memory
As shown in Figs. 5 and 6 the memory trace produced by
signal s+ is unstable. The memory is long enough to enable
the animat to pass the test requirements, being roughly de-
fined by the upper bound of the randomized time between
the application of a stimulus and the first engagement of the
falling circle with the animat’s whisker. In Fig. 6 we focus
on the change in concentration of two cells over the course
of the memory trace. These cells are roughly at the centre
of two of the four symmetrical the peaks and troughs of v
and u respectively (see Fig.4 M+). Fig. 6B shows that at
these points in the chemical ring the interaction of u and v
describe orbits around an area of the phase-space. At time
t1 this orbit cannot be sustained and the cell c23 returns to
default. The destruction of the c23’s orbit presages the de-
struction of the longer cycle of c49 at time t2. The depen-
dence of c49’s cycle on c23’s emphasizes the global nature
of this memory.

Extending the Memory’s Duration
In order to see whether the duration of the animat’s memory-
trace was coincidental to the requirements of the task, the an-
imat population was further evolved (see subsection Evolv-
ing Controllers above), under standard conditions, while the
time between the application of stimuli and the dropping of
the object was gradually increased, requiring the animat to
maintain a longer memory of the stimuli. Fig. 7 shows the
successful result of an evolutionary run which required the
animat to maintain a memory five times longer than that
of the original task, whose trace is shown to scale in Ai.
At this point the simulations became impracticably long but
there was no indication in this or other of a hard constraint
on the possible duration of memory. Note that the inter-
action of u and v now describe many more and tighter or-
bits in phase-space, maintaining the memory-trace for much
longer. It should be stressed here that the necessary limits
to spatial and temporal resolution in the simulated chemical
RD-Ring probably play a part in the precise characteristics
of the memory trace and that these results should be inter-
preted qualitatively.

Discussion
Although Cajal’s neuron doctrine is predominant in cogni-
tive studies and, by definition, neuroscience computational
and otherwise, it does beg a very big question. How does a
single-celled animal, of a set representing the larger biomass
of the animal kingdom and those evolutionary precursors of
all multi-cellular lifeforms including ourselves, negotiate its

world and engage cognitively with it? Any explanation can-
not involve neurons, single cells in themselves, but must ex-
plain how a seemingly homogeneous blob of chemicals can
produce robust behaviour and exhibit the classical learning
models. We would not suggest the models described in this
paper hold any answers to the larger questions of animal
cognition but the ability of these simple chemical systems to
mediate simple cognitive tasks required memory is intrigu-
ing. Extending these model systems, used extensively and
successfully in Biology to explain such phenomena as car-
diac rhythmia, animal patternation, morphogenetical devel-
opment etc. to the cognitive realm could prove fruitful.

Acknowledgments
Particular thanks must go to Phil Husbands for green-
lighting the direction taken in this work, the paper’s referees
and to the EPSRC (grant GR/T11043/01).

References
[1] Breyer, J., Ackerman, J., McCaskill, J.: Evolving Reaction-

diffusion Ecosystems with Self-assembling Structures in Thin
Films. Alife 4: 25–40. (1998)

[2] Adamatzky, A., De Lacy Costello,B., Asai, T.: Reaction-
diffusion Computers. Elsevier, (2006).

[3] Dale, K.: Evolving Reaction-diffusion Controllers for Mini-
mally Cognitive Animats. Proceedings of Simulation of Adap-
tive Bahaviour 2006 498-509.

[4] Dale, K., Collett, T.S.: Using Artificial Evolution and Selec-
tion to Model Insect Navigation. Current Biology 11: 51–62.
(2001)

[5] Pearson, John E.: Complex Patterns in a Simple System. eprint
arXiv:patt-sol/9304003 (04/1993)

[6] Turing, A.M.: The Chemical Basis of Morphogenesis. Philo-
sophical Transactions of the Royal Society of London. Series
B, Biological Sciences, Volume 237, Issue 641, pp. 37–72
(1952)

[7] Beer, R.D.: On the Dynamics of Small Continuous-time Re-
current Nerual-networks. Adaptive Behaviour 3:469–510

[8] Beer, R.D.: Toward the Evolution of Dynamical Neural Net-
works for Minimally Cognitive Behavior In P. Maes, M.
Mataric, J. Meyer, J. Pollack and S. Wilson (Eds.), From an-
imals to animats 4: Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior (pp. 421–
429). MIT Press.

[9] Beer, R.D.: The Dynamics of Active Categorical Perception in
an Evolved Model Agent. Adaptive Behavior 11(4):209–243

[10] Gray, P., Scott, S.K.: Autocatalytic Reactions in the Isother-
mal Continuous Stirred Tank Reactor Oscillations and Insta-
bilities in the SystemA+2B− > 3B, B− > C. Chem. Eng.
Sci., 39, 1087–1097 (1984)

Artificial Life XI 2008  149 



Protein folding with stochastic L-systems

Gemma Danks1, Susan Stepney1 and Leo Caves1

1University of York, YO10 5DD, UK
gbd501@york.ac.uk

Abstract

Protein molecules adopt a specific global 3D structure in or-
der to carry out their biological function. To achieve this na-
tive state a newly formed protein molecule has to fold. The
folding process and the final fold are both determined by the
sequence of amino acids making up the protein chain. It is
not currently possible to predict the conformation of the na-
tive state from the amino acid sequence alone and the pro-
tein folding process is still not fully understood. We are us-
ing L-systems, sets of rewriting rules, to model the folding
of protein-like structures. Models of protein folding vary in
complexity and the amount of prior knowledge they contain
on existing native protein structures. In a previous paper we
presented a method of using open L-systems to model the
folding of protein-like structures using physics-based rewrit-
ing rules. Here we present an L-systems model of pro-
tein folding that uses knowledge-based rewriting rules and
stochastic L-systems.

Introduction
Protein molecules perform molecular functions in the cell
that require a specific 3D structure. This native state of a
protein is achieved only after a process of folding from an
initially unfolded state that it adopts during synthesis on ri-
bosomes in the cell. The thermodynamic hypothesis states
that a protein folds to its lowest energy state (Anfinsen,
1973). The folding pathway(s) of a protein are unclear but it
is known that the only information necessary to predict the
native 3D structure of a protein is contained in its amino acid
sequence. A protein cannot find its native state through ran-
dom sampling as even for a small protein this would take in
excess of 1027 years (Levinthal, 1969; Zwanzig et al., 1992).
The energy landscape theory of protein folding (Onuchic
et al., 1997) predicts a rugged funnel-like energy landscape
biassed towards the native structure due to the effects of evo-
lution. This theory predicts multiple pathways to the native
state that an ensemble of unfolded protein molecules may
follow. This is an opposing view to the classical view that
there is a single defined pathway for each protein proceeding
through a sequence of intermediate states.

Protein molecules are possibly the simplest example of a
biological complex system and exhibit many emergent prop-

erties that have been selected for during the evolution of life
on Earth. Proteins are composed of, and function at, many
different levels. The folding of a protein may be viewed
as an emergent phenomenon. It is governed by underlying
physics involved in the interaction of amino acids that make
up the protein chain. These local interactions together give
rise to the changing conformation of the whole molecule
in a way that leads to the native state. We use L-systems
(Prusinkiewicz and Lindenmayer, 1990) to represent these
local interactions as a set of rewriting rules. In a previ-
ous paper we described an open L-systems model of fold-
ing protein-like structures using simple physics-based rules
(Danks et al., 2007). Here we describe a complementary ap-
proach using a stochastic L-systems model of protein fold-
ing with knowledge-based rewriting rules. We first give an
overview of protein structure, then briefly describe the main
aspects of modelling protein folding. We give an overview
of L-systems and how we previously used them to model
protein folding using physics-based rules. We then describe
the development of a knowledge-based L-systems model of
protein folding and our initial results.

Protein structure
There are 20 different naturally occurring amino acid
monomers that make up proteins. These have the same NH2-
CαH-COOH backbone but differ in their side chain from the
central carbon atom (Cα). These different side chains give
amino acids different chemical properties. The genetic code
specifies a unique linear sequence of amino acids that are
covalently linked by peptide bonds during protein synthe-
sis to form polypeptides. This is the primary structure of
a protein. The length of a single polypeptide varies from
around 70 amino acid residues to 1000s of residues. The
conformation of the polypeptide chain is defined by the lo-
cal conformation of each amino acid. Peptide bonds that
link amino acids together are fairly rigid. This causes the
CO of one amino acid and the NH of the next to lie in the
same plane. The two backbone bonds N-Cα and Cα-C allow
rotation - these rotations give each amino acid its backbone
torsion angles φ and ψ respectively. These torsion angles
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Figure 1: A dipeptide unit showing the structure of an amino
acid (NH-CαHR-CO, where R is the amino acid specific
side chain). Shaded areas show the atoms lying in the plane
of the peptide bonds. The location of the two backbone tor-
sion angles φ and ψ are shown and the distribution of steri-
cally allowed values are shown as shaded regions in the φ/ψ
plot. The two main areas of allowed torsion angles corre-
spond to those that consecutive amino acids adopt to form
the two main secondary structure units in folded proteins:
the α-helix and β-sheet.

cannot adopt all possible values due to steric hindrance -
some of the atoms branching from the backbone as well as
the side chain atoms would collide if certain torsion angles
were adopted (Ramachandran et al., 1963). The allowed tor-
sion angles can be plotted to show the regions of φ/ψ space
that each amino acid can occupy (figure 1). Two main re-
gions of this φ/ψ, or Ramachandran, plot of torsion angles
at the local amino acid level also correspond to the two main
secondary structural elements found in native protein struc-
tures - the α-helix and the β-sheet. These are formed when
a number of consecutive amino acid residues adopt the same
torsion angles, and are stabilised by hydrogen bonding be-
tween the backbone N-H of one amino acid and the back-
bone C-O of another. The arrangement of these structural
units gives the tertiary structure of a protein, i.e. the native
state of a single polypeptide. The units are generally con-
nected by turns and loops, smaller structural elements.

There are currently over 49,000 known protein structures.
These can be divided into classes based on the arrangement
and proportion of α-helix and β-sheet units (Murzin et al.,
1995; Orengo et al., 1997). Two of the classes are ‘all-alpha’
and ‘all-beta’ containing mainly α-helices and β-sheets re-
spectively. Two other major classes in the SCOP database
(Murzin et al., 1995) contain a mix of α-helices and β-
sheets: the α and β (α+β) proteins contain segregated alpha
and beta regions; the α and β (α/β) proteins contain alter-
nating alpha and beta structures (figure 2). These classes are
further subdivided into structurally related proteins. Proteins
with similar structures often share a common evolutionary

(a) (b)

(c) (d)

Figure 2: Examples of the four main SCOP classes. All
images have been taken from www.rcsb.org. Structures are
drawn using ribbons to represent secondary structure (ar-
rows show the direction of a β-strand within a β-sheet).
Multiple strands show different experimentally determined
structures. (a) An all-alpha protein, PDB ID: 1aj3 (b) An
all-beta protein, PDB ID: 1exg (c) Barnase (1bnr) an alpha
and beta (a+b) protein - α-helices and β sheets are separated
in the protein. (d) 2bjx, an alpha and beta (a/b) protein -
α-helices and β-sheets are dispersed throughout the protein.

origin and will have a similar amino acid sequence. Com-
parative modelling uses related sequences with known struc-
tures to predict the fold of a new sequence (Ginalski, 2006).
However some very different protein sequences can fold to
similar structures and occasionally similar sequences fold to
different structures.

Modelling protein folding
There are a wide number of existing models of protein fold-
ing (Duan and Kollman, 2001). These range in their repre-
sentation of space (e.g. lattice or off-lattice, 2D or 3D) as
well as the level of detail in the protein molecule itself (from
all-atom models to those representing each amino acid as a
single bead), which also largely defines the representation
of interactions within the protein. Models also differ in their
assessment of the protein-like nature of the final fold and
the method used to sample conformations and find the na-
tive state. The simplest models can sample every possible
conformation to find the most native-like state - usually the
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lowest energy state where the free energy of the model is
represented by the sum of interactions. For example the HP-
model (Lau and Dill, 1989; Dill et al., 1995) represents the
amino acids in a protein as two different kinds of beads on a
string - H and P for hydrophobic and hydrophillic - confined
to a 2D lattice with each bead on a point in a grid. The inter-
actions between two H beads (i.e. two H beads next to each
other on the grid but not in the string) are favourable and
are summed for each conformation to give the energy. With
proteins of a small number of beads it is possible to calculate
the energy for every possible conformation and find the ar-
rangement on the lattice of the native state. With a more
detailed representation this is impossible and a sampling
method must be adopted. Two main methods are used in
these more detailed models. Monte carlo techniques, based
on small random changes in conformation combined with
an acceptance criterion using a Boltzman distribution, are
widely used to find a conformations of progressively lower
energy states (Hansmann and Okamoto, 1999). Molecular
dynamics is also used extensively to model protein fold-
ing using Newton’s laws of motion (Scheraga et al., 2007).
However, calculating the forces between all atoms in a pro-
tein is computationally intensive and so it is not currently
possible to model folding on biological time scales for any
but the smallest and fastest folding proteins.

Alternatively, a move-set can be biased using knowledge
of native protein structures. The most successful methods
of protein structure prediction are those based on fragment
assembly (Bujnicki, 2006). These model folding by alter-
nating local conformations of the protein chain between dif-
ferent conformations of short fragments of native protein
structures. The φ/ψ plot gives the conformations that a sin-
gle dipeptide unit is allowed to adopt, sterically, which dif-
fers slightly between amino acid types. This places restric-
tions on many of the possible local conformations. However,
the choice between allowed conformations can not be read-
ily determined from such a local level. Further restrictions
on local conformations are governed by the neighbouring
residues and their local conformations (Fitzkee et al., 2005).

L-systems
L-systems were developed as a mathematical theory of
plant development (Prusinkiewicz and Lindenmayer, 1990;
Lindenmayer, 1968). The simplest L-system consists
of an axiom containing an initial string of symbols to-
gether with a set of rewriting rules, or productions, one
for each symbol. These rules are applied in parallel to
each symbol in the string over a number of derivation
steps. The current symbol, or predecessor, is rewritten
by another symbol, or string, the successor as defined by
the rule for that symbol. For example a simple rule might be:

a→ ab

This rule would be applied to every a that appears in
the string.

Context sensitive L-system rules are applied only if the
symbol is preceeded by and/or followed by a specific string.
For example the rule:

c < a > d→ ab

is only applied to a if it is preceeded by c in its left
context and followed by d in its right context.

Parametric L-systems allow each symbol to have one
or more parameters associated with it. The rules can then
incorporate conditions on these parameters. For example:

a(x) : x > 1→ a(2)b(1)

will be applied only if the parameter associated with a
is greater than 1.

Stochastic L-systems allow a number of different rules
to match a certain predecessor. Each rule is applied with a
given probability. For example using the rules:

a→ ab : 0.75
a→ b : 0.25

the predecessor a will be replaced by ab 75% of the
time and by b 25% of the time.

Open L-systems (Mech and Prusinkiewicz, 1996) incor-
porate an interacting model of the environment. The L-
system and an environmental program communicate using
environmental query modules, ?E(...). Information is sent
to the environment using the parameters of ?E(...). The en-
vironment uses this information to determine a response and
communicates this information back to the L-system using
?E(...) parameters, which can be used in productions.

Using L-systems to model protein folding
The backbone conformation of a protein can be described
using only the backbone torsion angles (φ, ψ) of each amino
acid in the chain. The native state of a protein molecule has
specific torsion angles associated with each residue. Sec-
ondary structure assignment is largely determined by torsion
angles together with hydrogen bonding patterns. Folding of
the protein involves the torsion angles within each residue
changing to their native conformations. L-systems provide
a natural way to model this process. Rewriting rules can be
used to alter the φ, ψ angles in each residue in parallel across
the whole molecule. This leads to the emergence of a global
3D fold as a result of local changes in conformation.

In a previous paper (Danks et al., 2007) we described the
development of an open L-systems model of protein folding
using physics-based rules. A brief outline is given below.

The axiom contains an amino acid sequence, using
the single letter amino acid code, with initial backbone
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torsion angles, φ and ψ, as parameters. For example, the
first 4 amino acids in the protein barnase in a β-strand
conformation (where φ is approximately −120◦ and ψ is
approximately 120◦) gives the following axiom

A(−120, 120)Q(−120, 120)V (−120, 120)I(−120, 120)

An initial derivation step is used to rewrite each sym-
bol representing an amino acid with symbols that represent
individual atoms, bonds, bond angles and torsion angles.
An initial local conformation of each amino acid is formed
by using the initial backbone torsion angles contained in
the axiom. Each atom is associated with an environmental
query module containing information on the atom that
is communicated to an environmental program. At each
subsequent folding derivation step an environmental step is
performed where the L-system sends this information and
the position of each atom in the protein to the environmental
program. The environment processes this information and
sends a response for each atom back to the environmental
query modules in the L-system.

Two models were developed that use a different level of
representation of interactions between atoms. One model
calculates whether any of the atoms are colliding and an-
other more detailed model calculates the forces between
nearby atoms. This information is returned to the L-system.
A rule set uses the collision or force information returned
to each atom. The rules alter the backbone torsion angles
of each amino acid depending on the interactions of atoms
within that amino acid with any other atom in the protein that
is spatially local. This is repeated over a number of deriva-
tion steps leading to a physics-based folding at the global
level of the whole protein molecule. The resulting structures
at each step were assessed for protein-like qualities that in-
cluded a measure of compactness, which is characteristic of
folded protein structures. We found that using local rules in
this way to model folding, while not giving native-like folds,
did lead to compact structures.

Developing a knowledge-based model of
protein folding using stochastic L-systems

The physics-based L-systems models allow a protein to sam-
ple conformations by moving through time: forces between
atoms determine the next conformation. We have used a dif-
ferent approach in developing a knowledge-based L-systems
model. A protein alters in conformation over a number of
derivation steps, but this is not representative of time. In-
stead of local moves based on physical forces, local confor-
mations sample those that are most often found in native, i.e.
fully folded, structures.

The backbone torsion angles that describe the confor-
mation of a protein are used to assign secondary struc-
ture. Taking into account hydrogen bonding and the state
of neighbouring residues each residue can be assigned one

of seven different secondary structure states (Kabsch and
Sander, 1983). These are: α-helix (H), extended strand
(E), residue in isolated β-bridge (B), 3/10 helix (G), π-
helix (I), hydrogen bonded turn (T) and bend (S). Residues
not taking part in secondary structure units are not as-
signed a state. We have developed an L-systems model
that uses these secondary structure states instead of indi-
vidual torsion angles. We use stochastic rules with prob-
abilities based on data obtained from the DSSP database
(ftp://ftp.cmbi.kun.nl/pub/molbio/data/dssp) instead of us-
ing physics-based deterministic rules.

Obtaining frequencies of context dependent states
Data obtained from the DSSP database include backbone
torsion angles, amino acid type and secondary structure state
of each amino acid residue in 35,492 proteins from the pro-
tein data bank (www.rcsb.org). Each protein sequence was
split into fragments using a window of 3 residues long. Frag-
ments where secondary structure was not assigned were re-
moved leaving 10,954,172 fragments.

Frequencies of each of the 20 residue types in each of the
7 secondary structure states were calculated in all possible
contexts of one residue either side. Where R represents an
individual amino acid residue, A is the amino acid type and
S is its state, a 3-residue fragment contains the following
information:

Ri−1(Ai−1, Si−1)Ri(Ai, Si)Ri+1(Ai+1, Si+1)

For each unique combination of Ai−1, Si−1, Ai, Ai+1, Si+1

the frequency of each possible Si is calculated. There are
203 possible 3 residue sequences and 73 possible state
contexts. All possible 3 residue sequences (8000) appear
in the data used here. However, of a possible 2,744,000
unique 3 residue sequence and state combinations only
230,250 appear in the data. Where there is no data for an
amino acid in a particular 3 residue fragment in a specific
conformation, that state is allocated a low frequency of
10−2, rather than zero, to allow these states to be sampled
with a low probability in the L-systems model.

Developing stochastic L-systems rules
An L-systems model has been developed to use the frequen-
cies calculated from the data in stochastic rewriting rules.
The axiom contains an amino acid sequence using the single
letter amino acid code. An initial derivation step rewrites
this code to replace each amino acid by the symbol R with
parameters defining the amino acid type and its initial state.
For example the first five amino acids in barnase, AQV IN ,
in an initial extended (E) conformation are replaced by:

R(A, E)R(Q, E)R(V,E)R(I, E)R(N, E)

where the first parameter represents the amino acid type and
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the second parameter represents the initial conformation
(numbers are used in the model).

Each R is also accompanied by an environmental query
module containing the same information. At each sub-
sequent derivation step the information on each residue
is first sent to an environmental program. This stores all
the residue amino acid types and states. Open L-systems
are used here only to store and return specific frequencies
from a matrix of values. For each residue, excluding the
first and last, given the amino acid type of that residue and
the amino acid type and state of one residue either side
the frequency of that residue in each of the 7 secondary
structure states is found. The first and last residues are
given equal probabilities for each state. These 7 frequencies
are returned, for each residue, to the environmental query
modules in the L-system. A set of 7 stochastic rewriting
rules, one for each state, use the corresponding frequency
from the environment as its probability of being applied.
These rules then rewrite the secondary structure state of
each residue depending on the 3 residue sequence that it is
within (constant) and the secondary structure state of the
residues either side (variable). The form of the rewriting
rules are as follows:

R(a, s) >?E(p0, p1, p2, p3, p4, p5, p6)→ R(a, E) : p0
R(a, s) >?E(p0, p1, p2, p3, p4, p5, p6)→ R(a, H) : p1
:
R(a, s) >?E(p0, p1, p2, p3, p4, p5, p6)→ R(a, S) : p6

where p0, p1, p2, p3, p4, p5, p6 are the probabilities of
being in states E,H, G, I,B, T, S respectively. Each
R(a, s) is followed by an associated environmental query
module ?E(p0, p1, p2, p3, p4, p5, p6) in its right context.
This contains frequencies of each of the 7 secondary
structure states, returned from the environment, for that
residue while its neighbours are in their current states. Each
R(a, s) is then rewritten to change its state, s, to one of the
secondary structure states with probabilities calculated from
the frequencies in ?E(...). The environmental modules are
also rewritten to again store the amino acid residue type
and the updated state of the preceding R(a, s) to send to
the environment at the next derivation step. The states of
the neighbours also change at each derivation step as it is a
parallel rewriting process.

The aim of this model is to detect the emergence of any
locally encoded secondary structure preference and to as-
sess its ability to produce protein-like global features. The
3D protein structure is obtained by using homomorphism
rules. These are applied after each derivation step but are
used only for graphical interpretation and do not rewrite any
symbols in the string. A rule for each amino acid type draws
out the structure of that amino acid with amino acid specific
φ, ψ angles for each of the seven secondary structure states.
These angles were obtained from the data used to calculate

the probabilities. Each secondary structure occupies a spe-
cific region(s) of the φ/ψ plot. As an approximation we took
the most common φ, ψ angles for each residue type in each
state.

Folding proteins using stochastic L-systems
The folding behaviour of four example amino acid se-
quences using the knowledge-based stochastic L-systems
rules are shown in figure 3. Each sequence represents a
protein from one of the four major SCOP classes: all-α,
all-β, α + β and α/β. Each plot shows the change in
state of each residue in the protein over 5000 derivation
steps. Each protein starts in the same all-extended state.
There is a marked difference in patterns of secondary struc-
ture, across all derivation steps, between different protein
sequences. However, comparison to the native secondary
structure states for each protein shows that the structures
emerging are not necessarily native-like. The horizontal
bands that are visible for some residues show that some lo-
cal secondary structure preference is emerging using these
local rules.

Secondary structure is one characteristic of protein struc-
tures. Another key feature of globular proteins is their
compactness. The 3D structures of each protein at each
derivation step was obtained by mapping secondary struc-
ture states for each residue type to typical φ, ψ torsion an-
gles taken from the data. The radius of gyration (Rg) is a
measure of compactness and this was calculated for each
structure resulting from each derivation step. Figure 4 shows
the change in Rg of one protein, barnase (1bnr), over 2000
derivation steps. This gives an indication of how protein-like
the global structures are at each step in the L-systems model.
The results of the physics-based L-systems model for bar-
nase as well as the value of the native state are also shown.
It is clear that the knowledge-based rules are not folding the
protein to a very compact structure, and there seems to be
little convergence to one structure over time. At most steps
the radius of gyration is above the native state and consecu-
tive steps may allow the protein to fold and unfold rapidly.
This can also be seen by looking at the global conformations
at a number of derivation steps (figure 5).

The physics-based rules seem to be forming more com-
pact structures. There is no constraint on which states a
residue may take at the next step in the knowledge-based
model other than the probability of being in that state in the
context of its neighbours. Torsion angles at subsequent steps
could jump dramatically across φ/ψ space and this is caus-
ing the global structure to also change dramatically. There
is also little convergence to a preferred global structure, al-
though this appears to vary between protein sequences -
those with more β-sheet conformations seem to maintain a
more consistent pattern in the state images (figure 3). This
problem is largely due to the fixed probabilities that drive
the rules. For convergence to a preferred structure the prob-
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(a) (b)

(c) (d)

Figure 3: Results from four protein sequences, each from a different SCOP class, using the knowledge-based stochastic L-
system rules for 5000 derivation steps. Each image shows the states of individual residues (y-axis) at each derivation step
(x-axis). Lightest grey represents the extended state, black represents the α-helix. The 3/10 helix, π-helix, isolated beta bridge,
turn and bend are shown in shades of grey from dark to light. Horizontal bands show the emergence of preferred local secondary
structure. A bar to the right of each plot shows the native secondary structure for each protein (white represents unassigned
states). Native global structures are shown in figure 2. (a) 1aj3 (all-alpha) (b) 1exg (all-beta) (c) 1bnr (α + β) (d) 2bjx (α/β).
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Figure 4: The radius of gyration, Rg - a measure of compact-
ness, for each structure at each derivation step. The solid line
shows the change in Rg in the knowledge-based model while
the dashed line corresponds to the physics-based model for
the the amino acid sequence of barnase, 1bnr. The horizontal
line shows the Rg value of the native state.

abilities must be altered during folding to give each residue
a final probability of being in only one state. Although
not converging to one preferred structure each protein se-
quence seems to maintain a consistent cycling through sim-
ilar states. Horizontal bands emerge for certain residues in
the states images (figure 3) indicating that there is some sec-
ondary structure preference locally in the sequence. Each
protein sequence also tends to adopt its particular pattern of
states with different initial conformations (figure 6).

A difficulty with assessing global conformations in the
knowledge-based model is the inaccuracies in mapping from
individual residue secondary structure states to backbone
torsion angles. This is particularly difficult when dealing
with turns and bends where more than one region of torsion
angle space appears in the data. The local conformations of
residues that form a turn are dependent on their positions in
that turn structure. This issue may be resolved by incorpo-
rating context dependence in the homomorphism rules.

The next stage in this work is to incorporate some physics
into the knowledge-based model. A global driving force, for
example to a compact global conformation, may be needed
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Figure 5: General features emerging from the L-system using the protein sequence of barnase, 1bnr. The initial state corre-
sponds to an all extended conformation (image of state changes across all derivation steps shown in figure 3c). Images show
the global changes in conformation, φ/ψ plots show the φ, ψ angles (black) for each amino acid at corresponding derivation
steps with the native state angles shown in grey for reference.

(a) (b)

(c) (d)

Figure 6: Results of protein 1exg in different initial conformations. Each image shows the states of individual residues (y-axis)
at each derivation step (x-axis). Horizontal bands show the emergence of preferred local secondary structure. (a) initial state as
all extended (b) initial state as all alpha (c) initial state all 3/10 helix (d) initial state in alternating alpha-beta.
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to alter the probability table during folding. The combi-
nation of our simple physics-based L-systems model with
the knowledge-based rules would also allow selection be-
tween states. This would allow local structural preference
to work together with spatially local interactions and may
lead to more protein-like structures that converge to a fi-
nal folded state. Incorporating physics into the knowledge-
based model may also help to prevent large global changes
in conformations caused by unrestricted changes in local
residue conformations.

Summary
We have presented an L-systems model that uses data-driven
stochastic rewriting rules to fold protein sequences by alter-
ing the secondary structure state of individual amino acid
residues. The state of each residue is rewritten in paral-
lel across the whole protein. The state that an individual
residue changes to depends on the amino acid type of that
residue and the amino acid types and the current states of
the neighbouring residues on either side. Seven secondary
structure states are used based on those used in the DSSP
database. The probabilities of adopting each of seven states
were obtained from the frequencies of each state, given the
states of residues either side, found in 10,954,172 3-residue
fragments from 35,492 native protein structures in the DSSP
database. Typical backbone φ, ψ torsion angles were also
obtained for each amino acid type in each of the seven states
from the data and used to reconstruct the 3D structure of a
protein at each derivation step. This was used to assess the
protein-like nature of global conformations.

Results are shown for four protein sequences from each
major structural class. Local structure preference can be
seen to emerge for some residues in a sequence. Overall
differences in the proportion of local α-helix and extended
conformations can also be seen between protein sequences
using these rules. However, the resulting structures do not
converge to a preferred global compact conformation. Fur-
ther work will be to incorporate some physics-based bias
into the probability table to allow a preferred global confor-
mation to emerge.
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Abstract

This work investigates closure in Cell Signaling Networks,
which is one research area within the ESIGNET project1.
We employ a string-based Artificial Chemistry based on
Holland’s broadcast language (Molecular Classifier System,
Broadcast Language, or MCS.b). We present a series of
experiments focusing on the emergence and evolution of
self-maintaining molecular organizations. Such experiments
naturally relate to similar studies conducted in artificial
chemistries such as Tierra, Alchemy and Alpha-Universes.
However, our results demonstrate some counter-intuitive out-
comes, not indicated in previous literature. Each of these “un-
expected” evolutionary dynamics (including an elongation
catastrophe phenomenon) are examined and explained both
informally and formally. We also demonstrate how the elon-
gation catastrophe can be prevented using a multi-level se-
lectional model of the MCS.b (which acts both at the molec-
ular and cellular level). This work provides complementary
insights into the understanding of evolutionary dynamics in
minimal artificial chemistries.

Introduction
Cell Signaling Networks (CSNs) are complex biochemical
networks of interacting molecules (proteins, ions, secondary
messengers, etc.) occurring in living cells. Through com-
plex molecular interactions (e.g., signal transduction), CSNs
are able to coordinate critical cellular activities (e.g., cell dif-
ferentiation, apoptosis) in response to internal and external
stimuli.

As CSNs occur in cells, these networks have to replicate
themselves prior to the cellular division. This allows the
replicated CSNs to be “distributed” to the offspring cells.
Errors may occur during this replication process, e.g., an
offspring cell may inherit only a partial CSN. Thus resulting
in potentially defective cells which would lead to a variety
of undesired effects (e.g., premature cell death). As a result,
the “fitness” of a cell is implicitly represented by the survival
and performance of a cell in achieving self-maintenance and
cell-level replication.

1ESIGNET: Evolving Cell Signaling Networks in silico, an EU
FP6 project, contract no. 12789, http://www.esignet.net

Based on the above assumption, we hypothesize that
CSNs may be regarded as subsets of closed (and thus self-
maintaining) systems. The latter would have the additional
ability to replicate themselves as a whole (cellular division).
The signal processing ability of CSNs would emerge from
the closure properties of these systems.

Examining such phenomena relates closely to other
studies which have been conducted on Holland’s Alpha-
Universes (Holland, 1976), Tierra (Ray, 1991) and Alchemy
(Fontana and Buss, 1994). Although these Artificial
Chemistries (ACs) were developed for different purposes
and were implemented differently, these systems exhibited
common evolutionary phenomena such as the emergence of
(collectively) autocatalytic reaction networks (Dittrich et al.,
2001; McMullin, 2000). In this investigation, such classes of
network are of interest as they would allow CSNs to self-
maintain and replicate themselves. Moreover, as demon-
strated in several ACs, it is commonly accepted that the
emergence and maintenance of such collectively autocat-
alytic reaction networks is relatively trivial.

We introduce the Molecular Classifier System, Broadcast
Language System, or MCS.b (J.Decraene et al., 2007). This
addresses the reflexive nature of molecular species and au-
tomatically gives rise to an implicit molecular fitness func-
tion represented by the “replication” ability of the individual
molecular species. We present a series of experiments fo-
cusing on the emergence of self-maintaining organizations
and finally we examine the outcomes of these experiments
together with possible modifications for further work.

Molecular Classifier Systems
Molecular Classifier Systems are a class of string-rewriting
based AC inspired by the broadcast language (BL; see Hol-
land, 1992). As opposed to more traditional string-rewriting
systems, operations are stochastic and reflexive (no distinc-
tion made between operands and operators). The behav-
ior of the condition (binding) properties and action (enzy-
matic functions) is defined by a language specified within
the MCS. This “chemical” language defines and constrains
the complexity of the chemical reactions that may be mod-
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eled and simulated. In this AC, all reactants are catalytic
in the sense that they are not consumed during reactions.
These reactions result from successful molecular interac-
tions which occur at random. When a reaction occurs, a
product molecule is inserted in the reactor whereas another
molecule, selected at random, may be removed from the re-
actor space (designating the system outflow).

A molecule may contain several condition/action rules
which define the binding and enzymatic properties. A reac-
tion between molecules occurs if at least one conditional part
from any rules in a molecule A matches a target molecule
B. A is regarded as an enzyme whereas B is regarded as
a substrate molecule. When a reaction occurs, the action
part from the satisfied rule in A is utilized to perform the
enzymatic operations upon the bound substrate molecule B.
This operation results in the production of another offspring
(product). If several rules in A are satisfied by B, then one
of these rules is picked at random and employed to carry out
the enzymatic function.

We proposed a simplification of the BL (J.Decraene et al.,
2007) which is used as the MCS chemical language resulting
in the MCS.b system. MCS.b has some similarity with the
Learning Classifier Systems, also pioneered by John Hol-
land (Holland and Reitman, 1978); however there are also
a number of differences. For example, the LCS strings are
fixed length on an alphabet of λ = { 1, 0, #}; whereas the
BL strings are of variable length using a significantly larger
alphabet of Λ = {1, 0, ∗, :, ♦, ", ", ′}. BL strings
are referred to as broadcast devices. A broadcast device is
parsed into zero, one or more broadcast units, where each
unit represents a single condition/action rule. The symbol
∗ separates broadcast units within a broadcast device. The
symbol : separates a condition from an action within a sin-
gle broadcast unit. {♦, ", "} are single/multiple character
wildcards that may also copy matched (sub-)strings into out-
put strings. A detailed description is omitted in this paper,
see (J.Decraene, 2006) for full specification of our BL im-
plementation.

Autocatalytic organizations
A series of experiments using the MCS.b is now outlined.
These experiments first examine both the self-maintenance
and the spontaneous emergence of autocatalytic molecules
(i.e., molecules that can self-replicate). Both spontaneous
emergence and self-maintenance were reported as easily ob-
tained in Alchemy. Spontaneous emergence was not ex-
pected or reported for the original Tierra system; however, it
did arise in the related Amoeba system, specifically devised
for this purpose (Pargellis, 2001).

No selective advantages for universal replicases
An artifact of the BL’s syntax is that it is moderately difficult
to observe the spontaneous emergence of an individually au-
tocatalytic molecule. Specifically, there are 48 (65, 536) dis-

tinct molecules of length 4 symbols (the minimal length to
construct a functional/enzymatic molecule), of which only a
single one (R0 = ∗" : ") is autocatalytic. Although the
probability of spontaneously obtaining such autocatalytic
molecules is therefore quite low in MCS.b, the intuition was
that, once such a molecule does appear, it should be able to
rapidly fill the reaction space. This phenomenon was indeed
observed in Alchemy and was expected to occur in MCS.b.
We present here a series of experiments which explore and
test this conjecture.

The behavior of the minimal self-replicase, R0, is as fol-
lows. The matching condition is defined by a single symbol,
", which designates a multiple character wildcard. This in-
dicates that R0 may bind to any molecule. In addition when
a reaction occurs between R0 and a substrate molecule I0,
" is assigned a value, being the matched substring of I0.
In this case, this will be the complete string I0. A unique
symbol " also constitutes the action part of R0. This spec-
ifies that the output string of R0 is exactly the string bound
by the " in the condition part, i.e., a copy of I0. Therefore
the broadcast device R0 is actually a “universal” replicase;
which, by definition, means that it is also a self-replicase (in
the special case that it binds to another instance of itself, i.e.,
I0 = R0). The “specificity” of R0 is said to be null.

Fig. 1 presents a first experiment examining the behav-
ior of R0 averaged over 30 simulation runs. The broadcast
“universe” (reaction space) is configured as follows:

• The system is seeded with 900 randomly generated
molecules, each of length 10 symbols.

• In addition, 100 instances of R0 are inserted.

• nmax designates the fixed maximum number of
molecules that may be contained in the universe, nmax =
1000.

• Molecular interactions occur as follows: two molecules A
and B are picked at random, A is considered as an enzyme
and B as a substrate. If A can bind and react with B then
a molecule C is produced. If the current size of the popu-
lation, n, is less than nmax then C is simply added to the
population (and n increases by 1); otherwise a molecule
is picked at random and is replaced with C (and the pop-
ulation size remains unchanged at n).

• No mutation may occur in these experiments.

• A single “timestep” is arbitrarily defined as 50 molecular
interactions.

A high concentration (0.1) of R0 was chosen to minimise
early extinction due simply to stochastic fluctuation.

From Fig. 1 it is clear that the species R0 never grows
to take over the population; on the contrary, it consistently
diminishes, contrary to the original, informal, prediction. A
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Figure 1: Relative population growth of replicators R0 aver-
aged over 30 simulation runs. Solid line is average concen-
tration; error bars denote standard deviation.

formal explanation of this outcome is given by modelling the
system with the (approximate, continuous) catalytic network
equation (Stadler et al., 1993). The state of the system is de-
scribed by the concentration vector x = (x1, . . . , xn) with
x1+. . .+xn = 1 and xi > 0, where xi refers to the concen-
tration of a molecular species (or collection of “chemically
equivalent” species) si. The general dynamic behaviour is
then given by:

ẋk =
n∑

i=1

n∑

j=1

αk
ijxixj − xk

n∑

i,j,l=1

αl
ijxixj (1)

with k = 1, . . . , n

αk
ij are the rate constants for each reaction si + sj →

si + sj + sk. In this experiment, these simplify to:

αk
ij =

{
1 if si + sj → si + sj + sk

0 otherwise (2)

For simplicity, consider the simple case where only uni-
versal replicases (R0) and non-enzymatic molecules (NE)
(that may only act as substrates) are present. This is clearly
the most favourable case for the growth of R0. Denote the
molecular concentrations of R0 and NE by x1 and x2 re-
spectively. Then α1

ij = 1 if i = 1, j = 1; otherwise α1
ij = 0.

Similarly, α2
ij = 1 if i = 1, j = 2; otherwise α2

ij = 0. In-
serting into Eq. 1, we obtain:

ẋ1 = x2
1 − x1(x2

1 + x1x2) (3)

But given that x2 = 1− x1:

ẋ1 = x2
1 − x3

1 − x2
1 + x3

1

ẋ1 = 0 (4)

whereas the growth rate of molecules NE is:

ẋ2 = x1(1− x1)− (1− x1)[x2
1 + x1(1− x1)] (5)

ẋ2 = x1 − x2
1 − (1− x1)(x2

1 + x1 − x2
1)

ẋ2 = x1 − x2
1 − x1 + x2

1

ẋ2 = 0 (6)

Thus, both molecular species R0 and NE share a com-
mon zero “expected” growth. Under the stochastic condi-
tions of the reactor this would yield a random drift in relative
concentrations—as opposed to a quasi-deterministic growth
of the R0 species. Qualitatively this is due to the fact that
any (self-)replicase having low or zero specificity, such as
R0, will not only replicate itself but also replicate any other
molecules; and therefore cannot selectively displace these
molecules. But recall that this was the best case situation
for growth of R0, where none of the other molecules had any
enzymatic activity. In the practical case of Fig. 1 the collec-
tion of such additional side reactions will give a nett negative
growth rate for R0, which therefore, quasi-deterministically,
decays.

Specificity and domination of the replicases
To confirm the importance of specificity, we proceeded to a
series of experiments in which we incrementally increased
the specificity of the (self-)replicases. Table 1 shows the dif-
ferent replicases employed in these experiments. R1 des-
ignates a molecule that would only react with molecules
whose strings end with the symbol “1”. As the latter oc-
curs at the rightmost position of R1, it may react with itself,
producing another instance of R1. Similarly, R2 only binds
to molecular strings containing the suffix 01. This “signa-
ture” forms a constraint on the replicases, allowing them to
react only with a progressively more restricted set of sub-
strate molecules. This impacts directly on these molecules’
binding specificity.

Replicase Informational string
R0 ∗" : "
R1 ∗"1 : "1
R2 ∗"01 : "01
R3 ∗"101 : "101
R4 ∗"0101 : "0101

Table 1: (self-)replicases with increasing specificity

The results depicted in Fig. 2 confirm the importance
of specificity upon the system dynamics. The ability of a
(self-)replicase to dominate and sustain itself, against a ran-
dom initial population of molecules, increases progressively
with its binding specificity. As in the previous section, we
can explain and demonstrate this behavior through the use
of a simple ODE model.
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Figure 2: Population growth of replicators R0, R1, R2, R3

and R4. Each line represents the average concentration of
corresponding replicase over 30 simulation runs.

In this case, we consider a reactor containing only the fol-
lowing molecular species:

• Replicases R1 which only replicate molecules terminat-
ing with the symbol “1” (which includes R1 molecules
themselves).

• A variety of non-enzymatic molecules NE which are
randomly generated. NE1 ⊆ NE is the subset of
molecules whose strings terminate with the designated
symbol. These molecules contained in NE1 can be repli-
cated by molecules R1.

The concentration vector is given by x =
(x1, x2, . . . , xn) with x1 + x2 + . . . + xn = 1 where
x1 is the concentration of R1 and x2 is the sum of con-
centrations of molecules in NE1. The growth rate of the
different molecular species in this reactor are as follows:

ẋ1 = x2
1 − x1(x2

1 + x1x2) (7)
ẋ1 = x2

1 − x3
1 − x2

1x2

ẋ1 = x2
1(1− x1 − x2) (8)

The growth rate of molecules NE1 is:

ẋ2 = x1x2 − x2(x2
1 + x1x2) (9)

ẋ2 = x1x2 − x2
1x2 − x1x

2
2

ẋ2 = x1x2(1− x1 − x2) (10)

Since x1 + x2 + . . . + xn = 1, we have x1 + x2 < 1 and
therefore ẋ1 > 0 and ẋ2 > 0. Whereas the growth rate of
any other molecules (that may be not replicated by R1) in
the reactor space is given by:

ẋ = 0− xi(x2
1 + x1x2) (11)

with 2 < i ≤ n

In Eq. 12, we note that any given molecules s =
(s3, . . . , sn) possess a negative growth rate which indicate
that these molecules would be displaced by molecules R1

and NE1.
In this model, only NE1 molecules are able to parasite

the replicases R1. By increasing the specificity of repli-
cases, we decrease the range of molecule that may parasite
the replicases. This explains the behavior observed in Fig. 2,
in which replicases with higher specificity are more likely to
take over the reactor space.

Therefore in this system, for replicase molecules to suc-
cessfully sustain themselves and/or to dominate the molec-
ular population, a significant binding specificity is required.
We conjecture that this underlying phenomenon may have
been implicated in the dynamics of a variety of previously
reported artificial chemistries; but, to our knowledge, it has
not previously been explicitly isolated in the manner pre-
sented here.

Spontaneous emergence of replicases
In the previous set of experiments, mutation was turned off
in order to facilitate our investigation on replicases, which
were hand-designed and inserted into the initial population.
This led to a limited diversity in the population. To examine
the spontaneous emergence of autocatalytic molecules, we
performed a second series of experiments in which no repli-
cases are specified and molecular mutation could occur. The
latter is implemented as follows:

• When a new molecule is produced, a mutation with prob-
ability psym = 0.001 may be applied to each of its sym-
bols. Therefore, the longer the molecule, the higher the
probability of mutation occurring.

• Three types of mutation are distinguished and are applied
with equal probabilities:

– Symbol flipping: The current symbol is replaced with a
symbol picked uniformly at random from Λ.

– Symbol insertion: A symbol is picked uniformly at ran-
dom from Λ and inserted after the current symbol.

– Symbol deletion: The current symbol is removed.

• To maintain diversity in the event of low ongoing reaction
activity, a global mutation technique occurring every 100
timesteps is also available. A subset (rmut = 0.01) of the
population is selected at random and one of the three types
of mutation mutation (chosen as above) is then applied
to a single symbol picked uniformly at random in each
molecule of this subset.

As mutation now occurs, diversity is maintained during
long term evolution. The spontaneous appearance of repli-
cators was expected. Results indicated that (self-)replicases
do emerge, however they never manage to self-sustain.
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This is explained as follows:

• As already noted, the BL syntax does not strongly facili-
tate the spontaneous emergence of replicators. This syn-
tactical constraint may discourage the spontaneous emer-
gence of self-replicators. The BL syntax may also have an
impact on the robustness of these self-replicators against
mutation effects.

• Secondly if self-replicators do emerge, they would be re-
quired to possess a specificity higher than null to sustain
themselves.

• Finally, replicators are likely to possess a low molecular
concentration when emerging. This low concentration di-
minishes the capacity of these molecular species to persist
against side reactions and mutation events.

These three factors, when combined, significantly lower
the probability of having a replicator spontaneously emerge
and self-sustain in the MCS.b.

We examined the nature of the (self-)replicases that may
emerge during evolution. An additional set of experiments
was specified as follows:

• Each simulation run was initialised with 100 randomly
generated, 10-symbol long, molecules.

• nmax = 1000 (i.e., the population initially grew without
any displacement; but once the total number of molecules
reached 1000 it was limited to this value, by displacing
one random molecule for each new molecule generated,
as previously described).

• 30 simulation runs were performed, each for 100000
timesteps.

To identify spontaneously emerging self-replicases, ev-
ery molecule was tested at each timestep for self-replication
functionality. The spontaneously emerging self-replicases
identified in these experiments are listed in Table 2. This
shows that 15 distinct self-replicases appeared. However,
note that it is a property of the BL syntax that some symbols
are ignored when functionally interpreted (they are, in a cer-
tain sense, “junk” symbols). Thus, although 15 distinct self-
replicases were identified, it turns out that the core broadcast
units (the “active sites”, after discarding “junk” symbols)
are, in fact, identical for 14 of these; and are all equiva-
lent to the original universal self-replicase, R0 = ∗" : ",
discussed earlier. Only the broadcast device ∗"0"" : "0
possesses a core broadcast unit of a different form, namely
∗"0 : "0. This is an alternate form of R1, having just the
minimal specificity of one symbol.

In the 30 experimental runs, the highest concentration
achieved by any of these spontaneously occurring self-
replicases was 0.001—i.e., just a single isolated molecule.

Self-replicases
00′" ∗ ! : "!! ∗ 0 1!0 ∗ ! : !
00′" ∗ ! : "!♦! ∗ 0 1"!0 ∗ ! : !
: 1 ∗ ! : !♦ : 1 ∗ ! : !♦ : 0!! ∗ ! : ""!
: ∗! : !! ∗ 01 ∗! ∗ ! : !"!""
1♦! : ∗!! : ! : ∗! : ∗! : !"!""
∗! : ! ∗!! : !
∗!0!! : !0 ♦! ∗ ! ∗ ! : ♦!!
"1 ∗ ! : !♦

Table 2: Spontaneously emergent self-replicases in MCS.b

This is consistent with the comments earlier in this sec-
tion, and the results of the previous section. It is progres-
sively more difficult for self-replicases of higher specificity
to spontaneously arise by chance (due to their greater length,
and relatively rare frequency as defined by the BL syntax);
but self-replicases of very low specificity (which do sponta-
neously occur) cannot grow to significant concentrations.

The spontaneous emergence of a “sustainable” self-
replicase (i.e., of sufficient specificity to establish itself)
remains theoretically possible in MCS.b. However, both
the experimental results and the informal analysis presented
here suggest that the expected emergence time would be ex-
tremely (perhaps infeasibly) long. While we have not for-
mally quantified this, it appears that MCS.b therefore shares
this property with the Tierra system.

Rise and fall of the fittest
In the Tierra system, a hand-designed molecule called the
“ancestor” is manually introduced into the space. This ini-
tially grows to saturate the available core memory. The pop-
ulation subsequently evolves into a variety of collectively
autocatalytic reaction networks (where Tierra “creatures” or
programs are here considered analogous to “molecules”).
Accordingly, our next step is to mirror this methodology, and
introduce a hand-designed self-replicase of relatively high
specificity into the MCS.b system.

However, the results indicate that MCS.b does not exhibit
an evolutionary dynamic at all comparable to Tierra in this
case. Fig. 3 presents an example of such an experiment.
The “ancestor” self-replicators do, at first, quickly fill the
reaction space (nmax = 1000), just as expected. However,
this population immediately collapses again. The average
molecular length then increases dramatically, while the over-
all reaction rate (indicating the average rate of binding be-
tween random molecules in the population) also collapses.
In this particular run, molecules were arbitrarily limited to
a maximum length of BDlmax = 500. Other experiments,
without such a limit, indicated that the growth in molecu-
lar length appeared to continue indefinitely, subject only to
available physical (computer) resources.

As with the experiments discussed earlier, these results
were not expected. In fact, certain mutants of the original au-
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Figure 3: Effects of molecules length growth upon over-
all system reactions rates. In this experiment, an ances-
tor (R4 = "0101 : "0101) is inserted (with initial con-
centration [R4] = 0.1) in addition to randomly generated
molecules. Moreover mutation per molecule and per sym-
bol is turned on.

tocatalytic molecule developed a distinct advantage over the
ancestor. That is, these mutants could be replicated by the
ancestor molecules but only to the cost of these ancestors,
i.e., an asymmetric relationship. Moreover, some of these
mutants also lose their ability to self-replicate, explaining
the rapid decrease in the global number of self-replicases.
By exploiting their molecular signature and the ancestors,
these non-autocatalytic molecules succeed in displacing the
dominant ancestors.

To illustrate this phenomenon, we present a simple ex-
ample of such a case in which we define two molecules:
R4 = ∗"0101 : ∗"0101 and R′

4 = ∗"0101 : ∗"00101.
The latter is a readily accessible mutant of R4. Once it ap-
pears, the mutant R′

4 allows for a runaway degenerative sce-
nario to occur. The possible reactions are as follows:

R4 + R4 + X −→ 3R4

R4 + R′
4 + X −→ R4 + 2R′

4

R′
4 + R4 + X −→ R4 + 2R′

4

R′
4 + R′

4 + X −→ 2R′
4 + R′′

4

X is a molecule picked at random and removed from
the population. The product R′′

4 is of the form ∗"0101 :
∗"000101 and similarly has a selective advantage over both
R4 and R′

4. The reaction R′′
4 + R′′

4 + X would result in
the production of a molecule R′′′

4 of the form ∗"0101 :
∗"00000101 and clearly shows the potential for unlimited
elongation in molecule length. Of course, as molecule
length increases, the per-molecule mutation rate also in-
creases, leading to progressively more frequent disruptive
changes to molecular structure. The observed consequences
are twofold:

• Molecules may become inactive (i.e., lose all enzymatic
activity). This is a direct consequence of the BL syntax.
A mutation leading to the removal or insertion of struc-
tural symbols such as ∗ or : will commonly “break” the
active site. This degenerative effect may be regarded as a
consequence of syntactic “brittleness” of BL.

• The binding specificity may be increased. This arises
when mutations lead to the insertion of informational
symbols such as 0s and 1ss. As a result, although some
molecules may still possess an active site capable of some
enzymatic function, their high specificity decrease the va-
riety of target molecules that it can bind to; ultimately
meaning there may be few, if any, functional targets for it
left in the population.

Both of these phenomena result in a continual decrease
in the overall reaction rate until reactions effectively cease
completely (i.e., system death). Fig. 4 summarises this cas-
cade of events. Note that this system level degeneration (the
“elongation catastrophe”) occurs precisely because of the
stepwise emergence of molecules which are progressively
“fitter” at the molecular level.

Figure 4: Elongation catastrophe in MCS.b

Fixing the elongation catastrophe: 1
In this section, we first describe different qualitative modifi-
cations conducted on the MCS.b, which were aimed at pre-
venting the elongation catastrophe from occurring. These
various technical modifications directed at limiting the string
length of product molecules. Following this, the different
outcomes are briefly presented.

1. In the system presented earlier, reactions leading to the
production of molecules that were longer than BDlmax

were simply not permitted. An initial modification was
to permit such reactions to proceed, but to truncate the
product molecules at length BDlmax. The system could
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then remain active (with ongoing reactions) even though
the molecules have reached a critical size.

2. The multiple symbols wildcard " was altered so that it
would not be able to pass an unlimited number of symbols
from the input molecule (substrate) to the output molecule
(product). An integer parameter 1 ≤ c ≤ cmax represents
the number of symbols that can be matched and passed
by ", i.e., the capacity of the wildcard. This capacity may
be subjected to form of “parametric” mutation, where its
value would change randomly in [1, cmax] over time.

3. Similarly to (1), a finite total number, A, of “free” symbol
objects (atoms) available in the broadcast universe was
defined. This reservoir of (untyped) atoms is reduced
when new molecules are produced, and increased when
molecules are destroyed. If insufficient atoms are avail-
able to complete a reaction, the reaction fails. This should
favor smaller molecules over longer ones suffering from
elongation catastrophe.

4. Proposal (3) was extended, further constraints were de-
fined to limit the number of particular symbols available
in the universe. Different arbitrary symbols distributions
were employed (e.g. structural and informational symbols
such as ∗,:,1,0 could be made more frequent than multiple
symbols wildcards such as ".)

5. Another extension to (3) was to vary the probability of a
reaction to occur according to the product’s length and A.
Smaller molecules could then be given a selective advan-
tage over the longer ones.

In summary, the above system changes generally pro-
duced one of the following outcomes:

• Did not prevent the elongation catastrophe.

• The system evolved towards a population of inactive and
relatively small ([1 − 4] symbols long) molecules. The
system activity was also quasi null.

• The system converged towards a population where enzy-
matic molecules were still present but could not react with
any other molecules present in the reaction space. The
specificity continuously increased until no further reac-
tions occur.

Thus, although a range of modifications were imple-
mented, the different outcomes do not differ substantially
from the degenerative cases presented above (section Rise
and fall of the fittest).

Fixing the elongation catastrophe: 2
In this section we present an alternative approach to the
MCS.b elongation catastrophe, based on multi-level selec-
tion. This has previously be demonstrated to be an effective

means to provide resistance against parasites for catalytic
networks Hogeweg and Takeuchi (2003). In such systems
parasitized cells decay and may be displaced by neighbor-
ing healthy cells.

In the single-level selectional MCS.b model, competing
molecules were contained in a single reactor, which we re-
fer to as the molecular level of selection. In the multi-level
selectional model, we introduce multiple reactors, each con-
taining a population of molecules. These reactors (“cells”)
may be subjected to cellular division, which results in the
replacement of the parent cell and creation of two offspring
cells. However, the number of cells in the broadcast universe
is fixed. As a result such a cellular division also triggers the
removal of another cell selected at random. In a similar man-
ner to molecules, cells are competing with each other which
is regarded as the second level of selection.

In contrast to the single level model, successful reactions
do not lead to the removal of a random molecule in the re-
action space. Thus the number of molecules contained in a
cell may increase until it reaches a finite limit l. When a cell
reaches this size, a spontaneous division occurs. Half of the
molecules are selected at random. These are removed from
the “parent” cell and inserted into a newly created “daugh-
ter” cell. This is then inserted in the population of cells.
Finally, a cell is picked at random (other than the parent and
daughter cell) and removed from the population.

For time efficiency our multi-level model was imple-
mented on a distributed, symmetrical, computer cluster
where each cell was run on a single CPU. In this concurrent
model, the fittest cells would not only be the cells that ex-
hibit a high molecular growth rate, but cells that also contain
molecules that are fast to compute (in real time). In other
words, if we consider two cells which present an equal over-
all molecular growth rate, but contains molecules with dif-
ferent computational complexities, the cell which possesses
a smaller overall molecular computational complexity will
have the selective advantage.

We conducted a series of experiments as follows:

• 32 cells are employed.

• l = 1000 is the cell capacity.

• Mutation is turned on.

• Each cell is seeded with 250 replicases R4 = ∗"0101 :
"0101 and 250 randomly generated molecules of length
10.

• 5 simulation runs were conducted for at least 50 million
molecular interactions per “cell object” (i.e., the run ter-
minates when every concurrent cell object, one per CPU,
has run for at least 50 million interactions each).

Results indicated that none of the evolved cells resulting
from the simulation suffered from elongation catastrophe.
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During an evolutionary run, we may observe the elongation
catastrophe phenomenon to occur as expected. However we
know that if the parasitic mutants appear in a cell, the cell
would degenerate and not produce sufficient molecules to
trigger cellular division and ultimately the displacement of
another cell. As a result those cells would not have any se-
lective advantages over the other “healthy” cells. On the
contrary, healthy cells may still possess a high molecular re-
activity and would consequently displace the infected cells.

Moreover, our results indicate that infected cells do not
get displaced only when their connectivity is quasi null. In
fact, these cells can get displaced at an early stage, when
they would still present a high molecular activity although
still being considered as being infected. As mentioned ear-
lier, another fitness aspect to be considered is the compu-
tational complexity of molecules contained in a cell. In-
fected cells would rapidly produce molecules which have
an increasing length, and this elongation has the effect of
increasing their computational cost. As a consequence, al-
though such cells may contain molecules with a richly con-
nected reaction network, and therefore with a high continu-
ing molecular replication rate, the overall cell growth rate is
now penalized for having a higher molecular computational
cost; as opposed to the healthy cells which generally still ex-
hibit relatively short molecules and thus have lower compu-
tationally cost. This ultimately leads to a rapid displacement
of infected cells whenever they would appear.

This multi-level selectional model successfully prevented
the elongation catastrophe phenomenon from occurring.
The nature of the evolved populations resulting from the
simulation runs were at least somewhat comparable to those
expected from systems such as Alchemy. Specifically, we
have observed the rapid domination of molecular organiza-
tions which involve a range of replicases, capable of self-
sustaining over time.

Conclusion
We conducted a series of experiments using the MCS.b sys-
tem. These focused on the emergence and evolution of self-
maintaining molecular organizations. Our results indicated
counter-intuitive outcomes when compared with a variety
of other AC systems in the literature. Each of these unex-
pected evolutionary dynamics was described and explained
in detail. We also demonstrated how the elongation catastro-
phe can be prevented using a multi-level selectional model,
which allowed for the evolution of organizations that were
capable of self-sustaining over time. We propose to extend
this multi-level selectional model by introducing new cel-
lular division criteria, which would constrain and drive the
evolution of the molecular networks. This may ultimately
give rise to the emergence of proto-CSNs, being subsets
of closed molecular systems, capable of some distinct CSN
control-like features.
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Abstract

Measures of complexity are of immediate interest for the field
of autonomous robots both as a means to classify the behav-
ior and as an objective function for the autonomous devel-
opment of robot behavior. In the present paper we consider
predictive information in sensor space as a measure for the
behavioral complexity of a chain of two-wheel robots which
are passively coupled and controlled by a closed-loop reac-
tive controller for each of the individual robots. The predic-
tive information, the mutual information between the past and
the future of a time series, is approximated by restricting the
time horizons to a single time step. This is exact for Marko-
vian systems but seems to work well also for our robotic sys-
tem which is strongly non-Markovian.When in a maze with
many obstacles, the approximated predictive information of
the sensor values of an individual robot is found to have a
clear maximum for a controller which realizes the sponta-
neous cooperation of the robots in the chain so that large areas
of the maze can be visited.

Introduction
Despite much progress in biologically inspired robotics, bi-
ological systems are still singled out by a high degree of
self-actualisation. This phenomenon is approached by the
scientific community on different levels. Concepts like
autopoiesis (Maturana and Varela, 1980) try to provide a
general theoretical framework for the phenomena of self-
creation and self-maintenance of living beings. On the other
hand, concrete modes of action are formulated by mecha-
nisms like homeostasis as a general theory of self-regulation
(Ashby, 1954). It is widely believed that the integration of
self-phenomena into artificial beings would not only lead to
a better understanding of living beings but also to robots
with internal motivation, curiosity, the self-exploration of
bodily and environmental affordances, and quite generally
to creative behaviors.

There are many different approaches towards the self-
actualisation of behavior in autonomous robots. Relevant
for this paper is the attitude that behavior is less a sequence
of actions in order to reach a prespecified goal but instead a
means for (i) structuring the input information (creating sta-
tistical correlations) the robot gathers with its sensors (Lun-

garella and Sporns, 2005); (ii) the maximization of the infor-
mation flow in the sensorimotor loop (empowerment) (Klyu-
bin et al., 2007); (iii) the maximization of the sensorimotor
coordination (Lungarella and Sporns, 2006), and others. The
main question is how this can be realized. There are interest-
ing approaches of realizing systems on the basis of concrete
modes of action like homeostasis, see for instance (di Paolo,
2003), but a more systematic way is by convenient measures
for the information contained in or the complexity of the
sensor stream. Of methodological interest are approaches
of formulating general measures for the realisation of self-
organisation (Shalizi et al., 2004).

This paper tries to further develop this direction in a con-
crete embodied robotic system. In order to further system-
atize the field we introduce the notion of self-referential
robotic systems – adaptive, embodied systems where the ob-
jective of adaptation is a function of the robot’s sensor val-
ues alone. In particular, there is no domain specific goal or
externally specified aim formulated into this function. We
favor predictive information measuring the complexity in
sensor space as such an objective function. The predictive
information of a process quantifies the total information of
past experience that can be used for predicting future events.
Technically, it is defined as the mutual information between
the future and the past (Bialek et al., 2001). It has been ar-
gued that predictive information, also termed excess entropy
(Crutchfield and Young, 1989) and effective measure com-
plexity (Grassberger, 1986), is the most natural complexity
measure for time series. The behaviors emerging from max-
imizing the PI are qualified by the fact that predictive in-
formation is high if – by its behavior – the robot manages
to produce a stream of sensor values with high information
content under the constraint that the consequences of the ac-
tions of the robot remain still predictable. This is why we
favor predictive information as an objective function.

Under this paradigm, behaviors are entirely contingent,
depending on the physical embodiment of the robot and the
starting and environmental conditions. From the point of
view of applications, the question of central interest is what
kind of behaviors may be expected to arise with a given em-
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bodiment and as a next step whether these behaviors are of
any interest as behavioral primitives for the construction of
higher-level goal-oriented strategies. It is in the nature of the
question that there is not a unique answer but we are con-
vinced that a certain systematics can be found at the level
of phenomena. This paper considers the case of a chain of
passively coupled two-wheel robots, each robot being con-
trolled independently by a simple neural network under the
closed-loop control paradigm. There is no central control
so that a coherent motion of the chain is an emerging phe-
nomenon based on a synchronisation of the wheels of the
individual robots, the task being aggravated by the fact that
the robots are moving in a maze with only narrow passages
between obstacles. Nevertheless, we show that the predic-
tive information of a single sensor value (the wheel velocity)
of an individual robot is in close relationship to the ability
of the chain to spontaneously self-organize into a coherent
mode. In this mode, the chain may successfully navigate in
the maze. This result extends the earlier finding (Ay et al.,
2008) that the maximum MI in the sensor channels defines a
working regime where the controller reacts in a specific way
to the sensor values.

Our approach relates to other approaches of using statisti-
cal measures for robotics, a good introduction is (Lungarella
et al., 2005) where a set of univariate and multivariate statis-
tical measures are used in order to quantify the information
structure in sensory and motor channels, see also (Klyubin
et al., 2007) and (Klyubin et al., 2005). In particular we
consider the predictive information as a prospective tool for
concepts like internal motivation. Potential applications of
this approach are expected in developmental robotics which
has found some interest recently (Lungarella et al., 2003).
There is a close relationship to the attempts of guiding au-
tonomous learning by internal reinforcement signals (Stout
et al., 2005) and to task independent learning (Oudeyer et al.,
2005), (Schmidhuber, 2005), (Still, 2007). Quite generally,
using a complexity measure as the objective function for the
development of a robot corresponds to giving the robot an
internal, task independent motivation for the development
of its behavior.

The robot
In the present paper we are considering a chain of pas-
sively coupled two-wheel robots, Fig. 1, simulated in the
lpzrobots simulation tool (Martius and Der, 2007) based on
the physics engine ODE (Smith, 2005), which simulates in
a realistic way effects due to the inertia of the robot, slip and
friction the effects of the wheels with the ground and the
effects of both the couplings and collisions. Each individ-
ual robot has a controller consisting of two neurons with the
vector x ∈ R2 of the measured wheel rotation velocities as
input and the vector y ∈ R2 of nominal motor activities as
output, i.e.

yi = g (Ci1x1 + Ci2x2) (1)

Figure 1: In the arena the chain of passively coupled two-
wheel robots is simulated in the lpzrobots simulation tool.
Each robot is ”blind” and feels the environment only by the
reactions of its wheel counters on collissions with the obsta-
cles.

where g (z) = tanh z, the controller matrix C defining the
behavior of the system. In the present paper we want to de-
termine empirically the predictive information over the con-
troller parameters Cij which parameterize the behavior of
the robot.

The sensorimotor loop
If the wheels are moving freely we may assume that the
nominal velocity y and the measured true velocity x are
equal. In a realistic situation there will be perturbations so
that we write the sensorimotor dynamics

xt+1 = yt + ξt+1 (2)

where xt = (xt1, xt2)
T ∈ R2 and ξ contains all the effects

due to friction, slip, inertia and so on which make the re-
sponse of the robot to its controls uncertain. In particular, if
the robot hits an obstacle, the wheels may get totally or par-
tially blocked so that in this case ξ may be large, possibly
fluctuating with a large amplitude if the wheels are not to-
tally blocked. Moreover ξ will also reveal whether the robot
hits a movable or a static object. Additional strong effects
result from the couplings between the robots which exert
strong forces if the robots are not in complete synchrony.

In order to discuss the nature of the spontaneous cooper-
ation phenomena observed we consider the trivial (but rel-
evant, see below) case of a diagonal matrix C with C11 =
C22 = c so that the sensorimotor loop of each wheel is de-
scribed by the one-dimensional system (xt ∈ R1)

xt+1 = g (cxt) + ξt+1
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the properties of which are obtained by analysing the fixed
points obtained from

x = g (cx)

As discussed in earlier papers (Ay et al., 2008), the system
has one stable FP for 0 < c < 1 which becomes unsta-
ble at the bifurcation point c = 1 so that for c > 1 we
have a bistable system with FPs x = ±q with q increas-
ing for increasing c. The noise causes fluctuations around
the FPs with occasional switching of the FPs, the proba-
bility of switching decreasing exponentially with increasing
c > 1. There is however a subtlety in the fact that, under the
noise, the bifurcation is effectively taking place only at the
so called effective bifurcation point which is at c = 1 + δ
with 0 < δ " 1 and δ increasing with the noise. This re-
gion is of particular interest since it is there that the wheel
velocities are already quite large but can easily be switched
by noise events caused for instance by collisions with ob-
stacles or by the influence of the forces exerted by the other
robots in the chain. In fact, due to the effect described, the
wheel velocity will feel a tendency to switch sign if a torque
in the opposite direction is exerted on it by the other robots
in the chain. By switching the velocity, the wheel is now
acting in the direction of the force exerted on it and this is
the self-amplification effect necessary for the occurrence of
self-organization.

The videos at (Martius and Der, 2007) demonstrate quite
clearly the strength of this self-organized synchronization
effect which not only makes the robot chain move into one
direction but also keeps it still explorative in the sense that
after some time it also inverts its direction of motion. More-
over, when colliding with a wall the chain of robots often
will change velocity in an integrated manner. Finally and
most importantly for the topic of the present paper, it will
also effectively explore the spatial extensions of a maze the
chain is put into.

Information theoretic measures
The central aim of this paper is the relation between the in-
ternal world of the robot, based on a complexity measure of
its sensor values, and its relation to the external world. As
motivated above, a convenient complexity measure is pre-
dictive information in sensor space, i.e. we consider the time
series S = {Xt|t = 0, 1, 2, . . .} of the sensor values of the
behaving robot.

Predictive information
The predictive information is the mutual information be-
tween the future and the past, relative to some instant of time
t, of the time series S

I (Xpast;Xfuture) =
〈

log2
p (Xpast, Xfuture)

p (Xpast) p (Xfuture)

〉

where the averaging is over the joint probability
p (Xpast, Xfuture), time horizons of both past and fu-
ture extending to infinity. This expression simplifies
considerably if X is a Gauss-Markov process, see (Ay
et al., 2008). In this case the time horizon can be restricted
to just a single step so that the PI is given by the mutual
information (MI) between two successive time steps, i.e.

I (Xpast;Xfuture) =
〈

log2
p (Xt−1, Xt)

p (Xt−1) p (Xt)

〉
(3)

which simplifies the sampling process considerably. More-
over, in the experiments we observed that it is sufficient to
study the MI of just a single sensor, one of the wheel coun-
ters of an individual robot, and still get the full information
on the behavior of the robot chain.

Of course our time series of sensor values is far from be-
ing a Gauss-Markov process. However, as shown in (Ay
et al., 2008) in specific cases the full PI can very well be ap-
proximated by that of a process with white Gaussian noise of
conveniently chosen strength. The reason for this agreement
probably is in the fact that both in linear and in weak noise
nonlinear dynamical systems the PI does not depend on the
noise at all. The PI however was found to depend very sen-
sitively on the parameters of the controller which define the
behavior of the robot.

This result is very important for the practical use of the PI.
In fact, it tells us that in many cases the actually infinite time
horizons may be restricted to just a few steps without losing
much of the information on the behavior of the system as a
function of the controller parameter.

The self-referential robotic system
The PI is given in terms of the sensor values the robot pro-
duce in the course of time alone. There is no domain spe-
cific knowledge invoked into this function. We obtain a self
referential robotic system when using the PI as the objec-
tive function for the adaptation of the parameters of the con-
troller. In particular we may consider the gradient ascent on
the MI as given by eq. 3

∆mt = ε
∂I (Xt;Xt−1)

∂mt

where m is any parameter of the controller of the robot. The
properties of the self-referential robotic system depends also
on the choice of the learning rate ε which actually has to be
chosen small enough so that the time scales are well sepa-
rated.

The learning rule has been substantiated earlier (Ay et al.,
2008) for the case of a simple sensorimotor loop and was
shown to reduce to a simple synaptic dynamics consisting
of a general driving term plus an anti-Hebbian learning term.
The example shows that the sampling problem with the PI
can be partially avoided and the gradient obtained explicitly
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if convenient approximations are made. We do, however, not
aim to derive concrete learning rules in this paper but instead
try to further elucidate the role of the PI with restricted time
horizons.

The experiment
In order to keep the sampling effort manageable we use,
based on symmetry arguments, two different parametriza-
tions of the matrix C chosen such that there are only two
parameters to be varied. The experiments have been carried
through on a LINUX cluster of the Max Planck Institute for
the Mathematics in the Sciences with about 100 nodes and
have been run for 500, 000 time steps each. Results are av-
erages over three runs for each pair of parameter values, see
below.

Symmetric cross channel couplings
The first parametrization of the matrix C is given by

C =
(

c b
b c

)
(4)

We may extend the FP analysis of a single robot given above
to the present case by assuming that the wheel velocities are
x1 = x2 = v (straight on motion) or x1 = −x2 = v (on-site
rotation) so that the FP is now obtained from the solution of

v = g (rv)

where r = c + b or r = c − b plays now the role of the
feed-back strength in the loop for the straight or rotational
motion, respectively. Obviously, with b > 0 we find that in
the bifurcated region (r > 1) FPs are more stable for the
straight on motion whereas with b < 0 the rotational motion
is favored.

The central questions of our investigation is the behavior
of the MI as a function of the behavior parameters of the
robot and its relation to the behavior in physical space. Our
robot chain has complicated physical properties, the videos
might give an impression of the range of behavioral possi-
bilities. When in the maze, the information transmission be-
tween the individual robots, which takes place by the phys-
ical forces transmitted via the passive coupling elements in
a rather intricate way, is further corrupted by the collisions
of the robots with the obstacles and the bumpers of adjacent
robots in the chain, see the videos. Nevertheless, we observe
for certain parameter combinations of the controller that the
robot chain covers a wide area of the maze which is a clear
indication of successful cooperation between the individual
robots.

Figure 2 shows the MI as a landscape over the parameters
c and b of the controller. We find a clear ridge structure the
ridge running along the curves given by

c + |b| ≈ 1.1

which means that the MI has a relative maximum close to
the effective bifurcation point (now realized in the coupled
system) be it either in the rotational (b < 0) or straight on
(b > 0) mode. The rotation mode seems a little surprising
at this point since in the chain the individual robot can not
rotate. Most probably this is explained by the fact that we
evaluated the MI for the first robot in the chain, which would
execute an oscillatory motion by switching between the two
rotational modes repeatedly. In further experiments we will
evaluate the MI for the inner robots as well. The landscape
moreover displays a clear local maximum which is at b = 0
and c ≈ 1.1 meaning that the two channels are decoupled
so that the best cooperation in the chain is if each wheel
is controlled individually such that its single channel MI is
maximal. This is also a little surprising since one would have
expected that cooperation in the chain is best if the straight
on motion is supported.

Figure 2: Th average mutual information of the sensor value
for the case of symmetric cross channel couplings where c =
C11 = C22 and b = C12 = C21.

The diversity of sites visited by the robot in the course of a
fixed time is measured by the entropy of the probability dis-
tribution over the sites. As seen from Fig. 3, the landscape
is very similar to the that of the MI. We have the absolute
maximum at the same position so that the main message of
the MI (individual control of the wheels) is corroborated.
However there are also differences. On the one hand we see
that the ridge corresponding to a preferred rotational motion
(c < 0) is not so high as the one for the straight on motion.
Moreover we find that there is a second clear maximum at
around c = 0 and b = 1.1 corresponding to the case that
the direct coupling is zero so that the control of the wheel
is completely based on the angular velocity of the opposite
wheel. The MI seems to have also a small local maximum in
this region but this needs corroboration by a better statistics.
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Figure 3: The entropy of the probability distribution over the
sites that could be visited by the chain of robots in the maze.
The entropy is over the parameters c and b of the couplings
in and across channels. The entropy is maximal if all sites
are visited by the chain with equal probability and is zero if
the robot remains in its starting position.

Nevertheless there is a strong correlation between the MI
in sensor space and the behavior of the robot as measured in
physical space. This has an even stronger implications than
in the single robot case considered in (Ay et al., 2008). Not-
ing that the MI is taken by considering just one of the sensor
values (wheel velocities) of an individual robot (the first one
in the chain) we may conclude that the adaptation according
to the maximum MI principle makes the robot capable of
effectively cooperating in a collective of robots without any
central control.

Antisymmetric cross channel couplings
Our second parametrization is taken as

C =
(

c −b
b c

)
= α

(
cos φ − sinφ
sinφ cos φ

)

which is known to support a Neimark-Sacker bifurcation if α
exceeds 1 into an oscillatory regime (Pasemann et al., 2003),
with frequency roughly given by f ∼ φ/2π. The landscape
of the MI and the spatial entropy now are even more similar
(although the ridge of the spatial entropy landscape is more
pronounced) so that we depict only that of the MI. We see
again the maximum of the single channel control (α = 1.1,
φ = 0 ) as observed above. However, surprisingly there
is clear second maximum at α ≈ 2.35 which corresponds
to a very strong direct coupling combined with a very high
frequency of about 3 Hz of the oscillations of the wheel ve-
locities. This maximum is clearly seen for the MI and is
even more pronounced for the entropy of the spatial distribu-
tion. In order to understand the phenomenon that the chain

well manages to navigate in the maze with the strategy of
rapidly (but still sensitively since under the closed loop con-
trol paradigm) switching wheel velocities we have to note
that in our simulations we use values for the friction and
slip parameters corresponding to a snow underground. This
setting was chosen with the intention that emerging cooper-
ation is possible best for a chain of sensitive ”drivers”. The
strange high frequency regime is counterintuitive to this ar-
gument. Possibly this strategy is useful since it may excite a
kind of navigation by controlled skidding but this will need
further investigations.

Figure 4: The MI for the case of the antisymmetric cross
channel coupling. The landscape is only for positive
φ because of the symmetry against sign inversion of φ.
There are two local maxima of about the same height at
(α = 1.1, φ = 0) and (α = 2.35, φ = .35).

The decisive point however is that obviously under the
present parametrization the MI singles out specific nontrivial
behavior modes which unexpectedly represent an effective
control strategy. This is one further hint for the usefulness
of the predictive information as a general tool for the self-
organisation of behavior.

Concluding remarks
This paper has investigated the usefulness of predictive in-
formation for the self-organisation of behaviour in a chain of
passively coupled robots. Predictive information has been
approximated by the mutual information of sensor values
over one time step which is much better accessible in real
systems. Despite of this drastic simplification, we have
shown that the maximum of the MI specifies a working
regime of the single robot where it can effectively cooperate
in the chain under difficult environmental conditions. Thus,
the predictive information of even a single sensor channel
is seen to be a far reaching indicator of the global behavior
in physical space. In other words it is a link between the
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internal world of the robot (sensor space) and the behavior
in the external world which is maximum if the behavior of
the robot is ”rich” but with a high degree of self-established
sensorimotor coordination.

This concept will be continued in further work where we
will in particular investigate in how far the extension of the
time horizon, in particular into the past, will give measures
which are more discriminative. For instance, we want to
understand if such a more extended measure is able of dis-
criminating between the two control modes of preferentially
straight or rotational modes which are different in their spa-
tial behavior but not so much in the MI. The present results
clearly support the point of view that the link between the
information measure in sensor channels and the behavior of
the robot is of a more fundamental nature, as claimed for in-
stance in (Lungarella and Sporns, 2006). This suggests, as a
possible application, the use of the PI as an auxiliary fitness
function in artificial evolution which helps driving agents
into working regimes with high prospectives for emerging
functionalities. This will be one of our future projects.

Another focus is on the relation of the PI to another
complexity measure, the so called time loop error, and
the principle of homeokinesis (Der and Liebscher, 2002),
(Der et al., 1999), (Der, 2001), which has been the basis
for concrete learning rules leading to the self-organization
of explorative behaviors in complex robots with many
degrees of freedom in dynamic, unstructured environ-
ments, see (Der et al., 2006), (Der and Martius, 2006),
(Der et al., 2005) and the videos on http://robot.
informatik.uni-leipzig.de/. We hope in the near
future to produce similar results on the basis of information
theoretic measures. Preliminary results indicate that the gra-
dients of the time loop error and the mutual information can
be related to each other by a change in the metric of the pa-
rameter space.
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Abstract 

This paper summarises the history of the terms ecology and 

ecosystem, before examining their application in the early and recent 

literature of A-Life agent-based software simulation. It investigates 

trends in A-Life that have led to a predominance of simulations 

incorporating artificial evolution acting on generic agents, but lacking 

a level of detail that would allow the emergence of phenomena 

relating to the transfer and transformation of energy and matter 

between the virtual abiotic environment and biota. Implications of 

these characteristics for the relevance of A-Life’s virtual ecosystem 

models to Ecology are discussed. We argue a position that the 

inclusion of low-level representations of energetics, matter and 

evolution, in concert with pattern-oriented modelling techniques from 

Ecology for model validation, will improve the relevance of A-Life 

models to Ecology. We also suggest two methods that may allows us 

to meet this goal: artificial evolution can be employed as a 

mechanism for automating pattern-oriented ecological modelling 

from the level of individual species up to that of the ecosystem, or it 

may be employed to explore general principles of ecosystem 

behaviour over evolutionary time periods. 

Introduction 

As even a cursory survey of the early and current literature 
reveals, within the fields of Artificial Life and Ecological 
Modelling, agent (individual)-based virtual ecosystem model 
construction has been widely practiced ([1-4] are some early 
examples from A-Life, also see [5], for surveys of ecological 
examples [6], and more recently [7, 8]). Of course there is 
overlap between Ecological Modelling and A-Life 
publications in this regard, but a careful elucidation of the 
differences between the historical and current trends in the 
fields’ approaches to virtual ecosystem construction allows us 
to recommend a mechanism for overcoming some of their 
limitations. We suggest this may be achieved by melding the 
approaches of both fields into models that explicitly represent 
energetics, matter (chemical stoichiometry) and evolution 
within a single simulation framework. The need for including 
these three frameworks was noted in the literature some time 
ago [9, 10]. Additionally, any purportedly descriptive 

simulations must be validated against ecological data.1 One 
method to achieve this is through pattern-oriented modelling 
[11], a technique summarised below. 
We will discuss two under-explored ways in which hybrid A-
Life/Ecology ecosystem simulations of this kind may be built. 
Firstly, models of energy and matter transfer adopted from A-
Life’s artificial chemistry simulations may be incorporated 
within generic ecosystem simulations. In this context, 
artificial evolution may be employed to select agent 
parameters producing general patterns that may be validated 
against ecological field data, without regard for the behaviours 
of particular species or habitats. This would allow for studies 
of the generic properties of ecosystems. 
Secondly, artificial evolution may be used to select parameters 
for pattern-oriented modelling from the level of specific 
species up to the level of specific ecosystems. Once a set of 
patterns has been matched, the evolution algorithm can be 
disabled and the ecosystem simulation may be used to answer 
questions concerning that specific ecosystem over sub-
evolutionary time periods (or over longer periods, 
disregarding the effects of evolution). 
By adopting such approaches it is possible to extend the range 
of questions that may be answered by ecosystem simulations 
for both Ecology, by locating parameters that match field data, 
and A-Life, by answering questions of ecological relevance 
whilst permitting exploration of the general properties of 
ecosystem behaviour outside the familiar domain of evolution. 
Before investigating the application of ideas from Ecology 
and A-Life to the construction of virtual ecosystems, we shall 
give a brief overview of significant and relevant stages in the 
development of these fields. 

Ecology and the Ecosystem 

Ernst Haeckel coined the term ecology in Generelle 
Morphologie der Organismen (1866) to give form to the study 
of Natural History in the context of Darwin's ideas that 
organisms must struggle for survival. Ecology was to be the 
study of animals, their relationships amongst themselves, with 
plants and with the inorganic environment that affected their 
                                                             
1 Some A-Life researchers will feel that there is no need for A-Life 

models to reflect reality in the way this paper proposes. It is true that 

many A-Life models are interesting regardless of their ability to represent 

reality. However, this paper examines how A-Life and Ecology may be of 

mutual benefit to one another. Hence we discuss ways of improving the 

correspondence between virtual and real ecosystems. 
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survival and reproduction (see [12], p207). Sixty years later 
South African ecologist Phillips, championing the view of 
another ecologist, Clements [13], insisted that a collection of 
plants and animals that had come into a harmonic relationship 
with one another and their habitat through succession to 
climax could be seen quite literally as a Complex Organism 
[14]. Phillips viewed the process of succession as a kind of 
ontogeny for his Biotic Communities, basing his ideas for the 
wholeness of this community on the holistic philosophy of 
Smuts. His aim was, in part, to unify Botany and Zoology 
under a new banner. 
The ecologist Tansley, unhappy with Philips’ argument, 
chimed into the debate and countered the use of Complex 
Organism by coining the word ecosystem in his retort, The 
Use and Abuse of Vegetation Concepts and Terms (1935). 
Several alternatives to ecosystem have been offered (e.g. 
biogeocenosis, microcosm, epimorph, elementary landscape, 
microlandscape, biosystem, holocoen, biochora, ecotope, 
geocenosis, facies, epifacies, diatope and bioecos [15]), each 
with a slightly different slant. However in the UK, Europe, 
Australia, the USA and many other research communities, 
Tansley’s term and its designated focus have stuck [12]. This 
is true not only in science but also in politics, philosophy and 
even in marketing and popular culture. 
Tansley’s aim for the term was to give expression to a 
physical system that could legitimately take its place 
alongside those studied by Physics. Its components were 
animals, plants and abiotic material. He called attention to the 
significance of the exchange of materials and energy between 
organisms and the abiotic environment. 
It is worth noting that Tansley was not concerned with 
Systems Theory, a field that came to the fore only after 
WWII. However his term’s natural fit to this mould may be a 
part of the reason why the idea gathered popularity in the 
post-war years. The preference for ecosystem by U.S. 
ecologist Odum in the editions of his textbook Fundamentals 
of Ecology played a significant role in the term's post-war 
success also. He refined his definition for the term across the 
three editions of his text. In the third (1971) he wrote, "Any 
unit that includes all of the organisms… in a given area 
interacting with the physical environment so that a flow of 
energy leads to clearly defined trophic structure, biotic 
diversity, and material cycles (i.e. exchange of materials 
between living and non-living parts) within the system is an 
ecological system or ecosystem” [16], and established for a 
generation of ecologists the importance of the relationships 
between the Earth's biotic and abiotic components and the 
processes by which they exchange materials and energy. 

Artificial Life and the (Virtual) Ecosystem 

When building models we necessarily abstract away detail 
and represent only what we believe is responsible for 
determining the behaviour we wish to study or predict. Both 
the subjects of study and the decisions made regarding the 
level of abstraction can enlighten us about the different 
perspectives ecosystem modellers have adopted. 
Langton’s call for research to explore “life-as-it-could-be” 
was in keeping with John von Neumann’s original interest in 
abstract self-reproducing computational systems. The idea that 
life might be some property of form, independent of matter, 
however much it is debated philosophically, has set the stage 

for explorations into virtual ecosystems within the field of A-
Life that are more often generic than representative of 
particular organisms, species or their abiotic habitats. Below 
we shall discuss several of the early A-Life virtual ecosystems 
to highlight the ways in which this has been evident. The 
proffered research interests of these systems’ creators parallel 
those from Systems Ecology, “The goal of Systems Ecology is 
an ecosystem phenomenology that does not necessarily 
require detailed information about individual species” [17]. 
Ray’s Tierra [4], Yaeger’s Polyworld [18], Holland’s Echo 
[2] and Packard’s Bugs [3] ecosystems (to list a few from the 
early days) fall within this category of what might be labeled 
Generic Virtual Ecosystems. Within a mini-review of 
individual based models in Ecology conducted in 1999, 
Grimm called for similar studies of the generic properties of 
ecosystems by ecologists [6]. 
Given the early interest in artificially evolving ecosystem 
models by A-Life researchers (shown below), it is ironic that 
Systems Ecologists at around the time of A-Life’s inception 
wrote, “In spite of some attempts to address evolution in the 
systems literature, evolution is not well represented or 
adequately incorporated” [9]. The authors continue, 

…incorporating evolutionary theories into systems 
ecology is an underexplored but potentially fruitful 
avenue. Reiners (1986) has proposed that unifying 
ecosystem ecology requires at least three separate but 
complementary theoretical frameworks: energetics, 
matter (stoichiometry), and some aspect of population 
interactions or ecosystem “connectedness”. 

In keeping with Reiners’ view, Loehle and Pechmann argue 
that evolution theory can provide the third of these 
frameworks. As these three authors highlight, whilst it is (of 
course) possible to study ecosystems without simultaneous 
reference to all three frameworks, numerous cases stand as 
examples in which the interaction of ideas from all three 
enhances our level of understanding. We treat each of these 
frameworks below in the context of virtual ecosystems in A-
Life and Ecology. These two fields have many simulations 
that address the above concerns. As far back as 1999, Grimm 
requested that “individual-based modelling must refer to the 
framework of classical theoretical ecology” [6]. We maintain 
that it would be beneficial to construct complete simulations 
that encompass all three of the (sub-)frameworks suggested by 
Reiners, Loehle and Pechmann. Finally, this paper explains 
how pattern-oriented modelling may validate these well-
rounded virtual ecosystems against their real counterparts —
an issue that must be addressed to satisfy the demands of 
Ecology, and one that A-Lifer’s should take seriously if they 
wish even their generic models to be pertinent. 

Energetics 

Energetics in A-Life’s Virtual Ecosystems 

At least since Odum, energetics has played a significant, even 
defining role in Ecology. It is considered by some to be the 
best-developed aspect of ecosystem ecology [10]. Energy 
flows within an ecosystem give rise to various well-studied 
phenomena including trophic levels, food chains and webs, 
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productivities, and efficiencies. In addition, processes for 
energy flow are one determining factor for organism 
evolutionary adaptation (e.g., metabolism, organism 
morphology and locomotion). Ecology’s focus on energetics 
has not been duplicated in A-Life’s studies of virtual 
ecosystems, an issue flagged as early as 1994 by Lindgren and 
Nordahl in a paper that describes a similarly limited model 
[19]. (Also see [20] for a model explicitly modelling food 
webs.) 
Energy enters A-Life’s virtual ecosystems in different ways. 
In some cases it makes a “magical” appearance at a specified 
rate and is acquired by agents without taking the form of 
virtual matter at any stage (e.g., [21] in which a virtual Sun 
shines on the space). 
In their model employing Echo, Forrest and Jones do not 
include anything that an Ecologist would recognise as an 
energy model [2]. As a substitute, they model different types 
of matter that agents must collect to persist and reproduce. 
This will be discussed in the following section. 
In Ray’s Tierra energy is equated with CPU cycles in which 
to execute instructions [4]. CPU cycles are consumed by an 
agent to reshape its local environment by executing 
instructions which may, in some cases, involve writing new 
instructions into daughter memory cells. The focus is not on 
how these CPU cycles are converted into particular types of 
instructions (all CPU cycles are equal, and all instructions 
require them in equal measure). However, improved copying 
efficiency can be achieved by minimising energy expenditure 
(CPU usage). Hence there is selection pressure acting on 
Tierra agents to be short and reliable. 
The model described by Cooper and Ofria employs Avida [22] 
and is similar to Tierra in some respects, however organisms 
“metabolise” (see the section below on Matter for a discussion 
of the use of this term) different resources to gain benefit from 
them by performing computations. There is inter-agent 
competition for these resources, which in their model, are in 
limited supply. Hence, to some extent this model represents 
the acquisition of energy by organisms. The simulation 
Cosmos by Taylor and Hallam [23] was based on Tierra. Its 
authors explicitly note Tierra’s problematic “energy for free” 
and partially rectify this in their own system by requiring 
Cosmos programs to capture energy and store it, in order to 
use it to perform useful work. 
PolyWorld incorporates a different energy model than those 
listed above [18]. An initial dose of energy is allocated to 
newborns from their parents at birth. To persist and act, agents 
require an amount of energy that depends on their physiology. 
Agent size dictates energy storage capacity. Agents maintain 
this store by eating plant-like food that grows in the 
environment at a regulated rate, or by consuming one another. 
Agent bodies have a food energy value separate from their 
current health value. Although they may die in a fight or for 
lack of health, this ensures that their body provides energy to 
a predator or scavenger. 
Even in PolyWorld the mechanisms by which energy is 
extracted from materials do not emerge from the system. They 
are simplified to a single, high-level, hard-coded behaviour — 
agents just “eat”. Therefore, although the agents must 
optimise their use of energy, the model cannot tell us about 
the way in which energy is transformed from one form to 
another across trophic levels, from sunlight to chemical 

energy stored in plant or animal biomass, to heat or even to 
kinetic energy. 
The energy models employed within EVOLVE IV [1] and the 
simulation framework introduced by us (Dorin and Korb) [24] 
aimed to facilitate a greater range of emergent properties 
relating to energetics than any of the models above. These 
authors explicitly wished to explore the impact of energetics 
on ecosystem behaviour and consequently settled on the 
provision of an artificial chemistry that lies at the heart of 
their simulations. 
We do not mean to imply that simple models of energetics 
render a simulation useless (far from it). This simplicity 
however limits their utility when addressing the specific 
problems posed by ecologists concerning particular species in 
particular habitats and the manner in which ecosystems give 
rise to the transformation of energy from one type to another 
— an issue that has concerned ecologists for decades. (See [6] 
for a discussion of the ways and degree to which these 
concerns have been expressed in the individual-based models 
of Ecology.) 
Simplified models of energetics leave questions concerning 
trophic levels, productivities etc. essentially untouched. 
Simulations that incorporate low-level mechanisms for the 
storage and retrieval of energy by manufacture and 
dissociation of various chemical bonds allow for the 
emergence of interactions relating to agent short-term 
resource collection and utilization. They also provide a means 
to study the evolution of these survival strategies. In addition, 
they allow study of modes and pathways of energy 
transformation at the level of the ecosystem. 

Matter 

Matter in A-Life’s Virtual Ecosystems 

Since Tansley’s paper, ecosystems have been identified as 
entities whose significant components are biotic and abiotic. 
Odum later made it clear that the cycles of materials through 
ecosystems were significant in shaping them as a whole, even 
in defining them. This interest in biogeochemical cycles has 
not shaped the history of Ecosystem Ecology as closely as has 
energetics, but it provides a valuable means to understand 
ecosystems [10]. For instance: knowledge of the similarities 
and differences between organisms’ chemical composition 
can inform us about their evolution and their relationships to 
specific habitats; an organism’s ability to extract elements 
from complex materials to construct biomass is an important 
aspect of its physiology and morphology; organisms excrete 
waste and accumulate matter in their biomass, impacting on 
the relative abundance of materials in the environment and its 
suitability as habitat for other species. In all of these ways and 
many others, the properties of matter play the dominant role. 
Some of A-Life’s simulations incorporate impassable barriers 
[18] or explore collective construction using abiotic building 
material [25]. These materials play no role in the construction 
of agent bodies and therefore do not constitute an ecologically 
relevant model of matter. For a model to assist exploration in 
the areas listed above, it must include mechanisms for 
combining simple materials into more complex aggregates, 
and for their dissociation — an artificial chemistry. Models 
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lacking this facility preclude the emergence of organism 
strategies for biosynthesis and decay, a field of study that has 
frequently been addressed within Ecology. Biogeochemical 
cycles just haven’t been the focus of A-Life’s virtual 
ecosystems. 
When A-Life writers say their agents have a model 
“metabolism” all many of them mean is that agents persist by 
decrementing an energy counter at each time step (e.g., 
PolyWorld). This is a poor model of metabolism! There is 
usually no transformation of matter from “food” (itself a high-
level abstraction) to different types of biomass or waste. 
Indeed, waste is hardly ever mentioned. Exceptions to this 
trend have appeared, including the artificial chemistry-based 
model ecosystems EVOLVE IV used to examine the impact 
of waste accumulation on mobile agents [26], and the system 
we proposed (Dorin and Korb) [24], mentioned above. 
Our model includes decomposition as one of many chemical 
transformations that emerge naturally from the artificial 
chemistry. Patterns of material cycling through the biota and 
abiotic environment likewise emerge from this simulation. 
Forrest and Jones’ simulation [2] allows for simple material 
cycling through agent bodies. Materials are collected by the 
agents and stored for a time before being released back into 
the environment when the agent dies. However these materials 
are not used in any way to construct complex aggregates and 
there is no way for decomposer agents to emerge. 
Without low-level representations of the type found in A-
Life’s artificial chemistries (such as those surveyed in [27]), 
virtual ecosystems cannot tell us about the emergence of 
chemical cycles between the abiotic environment and the 
biota. As we have noted, since Odum the emergence of these 
cycles and their impact on ecosystem behaviour has been a 
significant, defining issue in Ecology. In addition, as 
discussed in the previous section, the mechanism by which 
organisms store and extract energy is through the 
transformation of matter. Hence, the two birds of matter and 
energy can be killed with the single stone of artificial 
chemistry. Without this stone, A-Life’s virtual ecosystems 
realise only a (small) fraction of their potential. 

Evolution 

Evolution in A-Life’s Virtual Ecosystems 

If there are two widespread traits of A-Life’s virtual 
ecosystems in addition to a lack of interest in energy and 
matter transformation, perhaps they are these: (i) a focus on 
studying the general properties of the evolutionary process 
itself, (ii) the use of the artificial evolutionary process to select 
parameters that allow agents to meet the requirements of 
existence and replication in a dynamic virtual environment. 
Ray’s Tierra was constructed, "with hand-crafted organisms 
already capable of replication and open-ended evolution... to 
generate increasing diversity and complexity” [4]. The 
evolutionary process was needed to drive change and maintain 
order in Tierra as much as it was the focus of the researcher’s 
attention. Ray’s system was intended to model replicators and 
their interactions within the digital medium, not as 
representatives of particular biological organisms or their 
habitats. Ten years later, Ray’s focus continued to be the 

evolutionary process, his aim being to, “use organic life as a 
source of ideas on how to create a richer evolutionary process 
in the digital medium” [28]. 
Yaeger states as one of his aims for PolyWorld, "create 
artificial life that is as close as possible to real life, by 
combining as many critical components of real life as possible 
in an artificial system" [18]. Like Ray, he includes in his 
essential traits of living systems their ability to replicate and 
evolve. Although his study is a level of abstraction above 
Tierra (his virtual organisms have behavioural primitives 
including the ability to eat, mate, move, see etc.), and is more 
literal in its representation of agents and space, still the system 
is generic — it aims to tell the researcher about the evolution 
of behaviour appropriate to PolyWorld agents in the virtual 
world, rather than about the behaviour of specific species in 
real habitats. 
Packard’s Bugs [3] are similar in some respects to agents from 
PolyWorld. The independent bug agents roam a space and 
search for food that allows them to sustain themselves and 
reproduce. 
Forrest and Jones write of the Echo platform, “Echo is 
intended to capture important generic properties of ecological 
systems, and not necessarily to model any particular ecology 
in detail” [2]. They go on to explain that if their software 
could be correctly validated, it could inform us about the 
impact of evolution on ecosystem behaviour. For them this is 
perhaps the most important contribution such models may 
make. 
There are countless much more recent examples of artificial 
evolution implemented in virtual ecosystems to study the 
evolution of altruism, parental investment, group selection, 
aging, epidemiology etc. (e.g., [21, 29, 30]). This path is well 
trodden by A-Life researchers. 

Why incorporate artificial evolution? 

In addition to the obvious and widely stated interest in 
studying the evolutionary process itself, the difficulty in 
writing and manually parameterising software to establish 
ongoing, dynamic but stable relationships between software 
agents in a virtual space motivates the simulation of evolution. 
The Genetic Algorithm (GA) has seen wide application for the 
solution of optimization problems and this motivates its use in 
virtual ecosystems also. Handcrafted systems may operate 
dynamically for a while, however adjustment of parameter 
values is needed to keep agents from extinction and virtual 
ecosystems from collapse. 
Returning to a familiar example, Yaeger implemented in 
PolyWorld a mode to kick-start the evolutionary process and 
overcome the problem of parameter specification for creating 
viable agents. At first he imposes an external fitness function 
to optimise agents until they evolve parameters to successfully 
sustain themselves and replicate independently. 
Similarly, Ray seeds Tierra with a hand-designed replicator. 
Evolution then takes over, altering the copying algorithm and 
enhancing its efficiency. Again, evolution optimises the 
agents in the current, dynamic environment. 

The implications of employing digital evolution 

Artificial evolution is currently limited in its ability to 
accurately mimic the detailed behaviour of real evolution. The 
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application of artificial evolution as an instigator of agent 
change in A-Life simulations, without matching agent 
parameters to field data, further ensures that the simulations of 
ecosystems remain generic. In contrast, especially during the 
period to 1999 [6], Ecology’s agent-based models have tended 
to be non-evolutionary and focused on modelling specific 
aspects of specific species (for instance the behaviour and 
resulting distribution of lynx [31]). Typical A-Life models are 
of limited relevance to this form of Ecology.2 In the context of 
conventional ecological modelling, evolutionary algorithms 
are not sufficiently true-to-life to replicate the evolutionary 
path that gave rise to specific creatures. Additionally, in many 
simulations the agent and environmental models capture only 
a few traits of the real systems they represent. All of these 
simplifications to models of highly sensitive, non-linear 
systems ensure that whilst digital evolution may optimise 
agent parameters for survival in virtual environments, the 
values of these parameters will quite likely not reflect values 
that may be obtained from field data. In fact, the parameters 
often do not reflect any aspect of any real system [2]. 
Obviously, this does not render existing models useless — it 
merely renders them inapplicable where ecological problems 
need to be addressed concerning the evolution of specific 
species in specific habitats. 

Pattern-Oriented Modelling 

Artificial Evolution for Pattern-Oriented Modelling 

Despite the tenuous connections between the specifics of 

artificial and real evolution, we suggest that the former may 

be included in ecological models for the benefit of Ecology 

and A-Life alike, by assisting in the process of Pattern-

Oriented Modelling (POM) [11, 32]. POM is a general 

strategy for developing, validating, and parameterising 

ecological models: “In POM, we explicitly follow the basic 

research program of science: the explanation of observed 

patterns. Patterns are defining characteristics of a system and 

often, therefore, indicators of essential underlying processes 

and structures. Patterns contain information on the internal 

organization of a system, but in a coded form. The purpose of 

POM is to decode this information” ([11], p. 987). Patterns 

can thus also be viewed as regularities or signals; in 

economics, often the similar notion of stylized facts is used 

[33]. 

Multiple patterns observed in real systems are used in POM in 

three ways: they indicate which state variables a model should 

have so that in principle the same patterns can emerge in the 

model; they are used to select the most appropriate alternative 

sub-model representing a certain process; and they can be 

used to determine entire sets of unknown parameters (i.e. for 

inverse modelling). 
Basically, POM reminds system modellers of the very basic 
principle of science: if we focus on single patterns to build a 
                                                             
2 In Systems Ecology (as in A-Life) the need to model specific species 

and habitats does not apply (see above). Grimm has also argued that the 

general principles of ecosystem behaviour are (or at least should be) of 

interest to Ecologists [6]. 

model we risk producing one that provides a good fit to data 
for the wrong reasons (i.e., mechanisms) instead of a model 
that is structurally realistic and captures the essentials of the 
system’s organisation. Thus, the more pattern matches 
between a model and field data and the more variety these 
exhibit, the more certain the correspondence between model 
and reality. 
Ideally, simulation patterns match at multiple levels of 
organization to the system being modelled. For example, 
patterns might be matched at the level of an individual 
organism’s behaviour, the dynamics of a population, and at 
the level of an entire ecosystem. Commonly cited A-Life 
models (for instance models of animal flocking such as 
Reynolds’ boids [34]) do not seek this multi-level pattern 
match since their aim is to locate any parameters or agent 
behaviours that produce a desired global behaviour. Yet if A-
Life models are to be relevant to Ecology, Ecologists 
rightfully insist that multi-level pattern matches are required 
for validation. 

Pattern-Oriented Modelling of Evolutionary 
Processes 

As described earlier, artificial evolution may optimise agent 
parameters in virtual ecosystems enabling agents to survive 
and replicate. If these models also include low-level 
representations of energetics and matter, the simulations may 
inform us about general principles of ecosystem behaviour of 
relevance to Ecology, including, for example, how physical 
ecosystem engineering3 impacts on habitats, the number of 
niches, the number of trophic levels in an ecosystem, species 
diversity, ecosystem resilience and stability etc. over 
evolutionary time periods. Data regarding the impact of 
physical ecosystem engineers on ecosystems is available [35-
37] and could form the basis for pattern-oriented modelling, 
even if the specifics of species fell beneath the level of 
abstraction of the model. To the authors’ knowledge no 
generic simulations exploring these properties of ecosystems 
over evolutionary time periods have yet been devised. In fact, 
we believe that as yet there are no simulations investigating 
the emergence of ecosystem engineers at all. Do they evolve 
readily and under what circumstances? Is there a basic 
organizational property of ecosystems that requires them? 
This domain is ideally suited to a simulation of the form we 
describe, since it requires detailed models of the 
transformation of the abiotic and biotic environment and its 
impact on the evolution of biota. 
                                                             
3 To varying extents, all organisms are physical ecosystem engineers. 

Physical ecosystem engineers physically alter the biotic or abiotic 

environment and thereby control or modulate the availability of resources 

to (or forces acting on) other organisms. These physical changes destroy, 

maintain or create habitat for other organisms [36]. Their presence is 

often a key factor in ecosystem behaviour. A tree is an example of a 

significant physical ecosystem engineer: it provides habitat for mosses, 

insects and birds; its roots trap soil and leaf matter, altering the impact of 

wind and water erosion; its branches harbour larvae or tadpoles within 

pools etc. Coral produces reefs, wombats dig holes, lyrebirds and 

blackbirds sift leaf litter. These species (and humans!) are physical 

ecosystem engineers that have a large impact on organisms around them. 
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Pattern-Oriented Modelling with Evolutionary 
Parameter Optimisation 

POM has already been applied within ecology to validate 
models of specific species against their real counterparts. For 
instance, the technique matched the behaviour of a specific 
species (lynx) to an agent-based model [31]. Whereas in the 
POM of evolutionary processes we proposed to ignore the 
specific behaviours at the level of the individual organism 
(these fall beneath the level of detail incorporated into a 
generic simulation), in this case the simulation is intended to 
be accurate in its specific detail from the level of the 
individual agent up to the level of the ecosystem. In this 
second method, the aim is not just to find general parameters 
that create a virtual ecosystem that behaves like a real one, but 
also to locate agent parameters matching observed organism 
patterns so that the model correctly reflects the behaviour of 
real species. 
At the point where parameters for agents give rise to realistic 
patterns of behaviour, and this has been shown to give rise to 
patterns matching the behaviour of the ecosystem, artificial 
evolution can be disengaged. It has served its purpose as a 
means for automatically parameterising the model. The 
simulation can then be used to answer ecological questions by 
researchers who wish (for whatever reason!) to disregard 
evolutionary effects. 
If this approach is to succeed, the pattern-matching process 
must be automated so that evolution (which acts within the 
virtual ecosystem in this instance) can play its role as an 
optimization algorithm. Field data at various ecological levels 
must be available for this process to work. We identified 
(above) studies of physical ecosystem engineers as a source of 
data for such an implementation. 
A difficulty may arise when attempting to match the 
behaviour of several simulated species in the virtual 
ecosystem simultaneously, and without allowing the 
dynamical whole of which they are a part to collapse. A mode 
in which an externally defined fitness function operates (akin 
to that discussed above for PolyWorld) may assist when 
virtual ecosystem collapse appears imminent, by ensuring 
population levels, diversity or some other measure of virtual 
ecosystem state does not fall outside a specified range. 
There is evidence in the ecological literature that a GA is 
capable of correctly parameterising a model based on field 
data. Strand et al have successfully used this technique to 
generate parameters for a model of fish behaviour [38], 
suggesting not only the feasibility of the approach, but also its 
acceptability to Ecologists. 

Discussion and Conclusions 

We do not expect there to be significant debate concerning 
our position on the abundance or value of evolution-focussed 
A-Life virtual ecosystems. However we have also argued the 
position that while some examples of individual-based 
simulations incorporating energetics and matter have been 
created, this area is under-explored in A-Life’s virtual 
ecosystems, even whilst it may be a component of the field’s 
artificial chemistry models. Our overview of several early 
models from the A-Life literature highlights the initial trends 
in the field but as we have seen, even the updates to these 

models and many recent virtual ecosystems are blinkered 
when it comes to energy and matter. This state of affairs must 
be rectified if our models are to be of relevance to Ecology, as 
it has been traditionally understood, and as it is now being 
practiced. 
By incorporating low-level models of the three frameworks of 
energetics, matter and evolution into virtual ecosystems we 
open significant pathways for ecologically relevant research in 
A-Life, particularly in domains where the interactions of the 
abiotic and biotic play a role. To our minds, and those of 
Reiners [10], Loehle and Pechmann [9], the interactions of 
these frameworks is a core concern. 
We have indicated two strategies for employing these 
frameworks within virtual ecosystems. The first of these 
requires the application of the evolutionary process in much 
the same way as it has been traditionally applied within A-
Life: as a means to dynamically adjust agent parameter values 
to support their viability and reproduction within the virtual 
environment. These simulations will allow us to determine 
generic properties of ecosystems only if the models are 
validated against field data employing a technique such as 
pattern-oriented modelling. This must ensure multi-level 
correspondence between simulation and reality, even if the 
level of abstraction of the model does not reach down to the 
detailed simulation of specific real species. 
The second approach we suggest employs artificial evolution 
to match simulation patterns against data gathered from the 
level of specific species up to data concerning specific 
ecosystems. Once the parameters of the system have been 
optimised so as to reproduce the patterns observed in field 
data, the evolution algorithm is turned off. The model may 
then be employed to answer questions relating to the specific 
ecosystem and species that it represents. Unfortunately it may 
not then be used to study the evolution of these specific 
species in specific environments. This is a shortcoming of the 
artificial evolution algorithm (it does not model real evolution 
in detail) that would be worth overcoming. 
It remains to be seen whether artificial evolution will be suited 
to pattern matching across several levels of an entire 
dynamical system consisting of hundreds of components. 
However, the widespread success of the algorithm in the 
solution of complex optimization problems bodes well for the 
approach. Additionally, the technique has already been 
employed successfully in Ecology to match a single species’ 
behaviour to that of software agents and we have indicated 
some preliminary strategies that may assist where multiple 
species are interacting in a simulation. The value of correctly 
parameterised, detailed models of ecosystems ensures the 
importance of attacking this problem in the future. 
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Entropy production in an energy balance Daisyworld model

J. G. Dyke

University of Sussex, Brighton, East Sussex, UK, BN1 9QH
j.g.dyke@sussex.ac.uk

Abstract
Daisyworld is a simple mathematical model of a planetary
system that exhibits self-regulation due to the nature of feed-
back between life and its environment. A two-box Daisy-
world is developed that shares a number of features with en-
ergy balance climate models. Such climate models have been
used to explore the hypothesis that non-equilibrium, dissipa-
tive systems such as planetary atmospheres are in a state of
maximum entropy production with respect to the latitudinal
flux of heat. When values for heat diffusion in the two-box
Daisyworld are selected in order to maximize this rate of en-
tropy production, the viability range of the daisies is maxi-
mized. Consequently planetary temperature is regulated over
the widest possible range of solar forcing.

Introduction
Although not intended as such, Daisyworld can be regarded
as an example of an artificial life model. It develops a
conceptual framework that explores life and environment as
they could be on a planet similar to the Earth. Daisyworld
was originally proposed as a mathematical proof of con-
cept for James Lovelock’s Gaia Hypothesis: that the Earth
and its biota are a self-regulating system that will reduce
the effects of otherwise deleterious perturbations (Lovelock,
1995). Since its creation some twenty five years ago (Love-
lock, 1983) Daisyworld has been extended and modified in
order to address a number of different research questions.
See (Wood et al., 2008) for a recent review. The consensus
is that it has matured to the extent that it can be considered
as a model in its own right rather than as an ancillary com-
ponent of Gaia theory. A central message from Daisyworld
is that when life affects the environment as well as being
affected by the environment, self-regulation may emerge.

Modelling of the Earth’s climate can take place at various
levels of complexity, from zero-dimensional models such as
the original Daisyworld to three-dimensional general circu-
latory models that are very computationally expensive and
defy exact analysis. A relatively recent development of a
two-box Daisyworld (Harvey, 2004) is conceptually simi-
lar to one-dimensional energy balance climate models that
have been used to explore the Maximum Entropy Produc-
tion Principle (MEPP) (Lorenz et al., 2001). It is proposed

that certain energetically open and driven systems, such as
planetary atmospheres, are in states that maximise the rate of
entropy production. It is straightforward to introduce ther-
modynamic constraints into the two-box Daisyworld such
that maximum entropy production can be achieved. If the
Earth’s atmosphere is in a non-equilibrium state that maxim-
ses entropy production then it seems reasonable to ask what
would the effects on Daisyworld regulation and stability be
if it were in a MEPP state?

Daisyworld

Daisyworld is an imaginary grey planet orbiting a star sim-
ilar to the Sun. It is home to two daisy types: black and
white. Albedo is a measure of the reflectivity of an object.
In Daisyworld the black daisies have a low albedo (0.25),
the grey bare earth intermediate albedo (0.5) and the white
daisies a high albedo (0.75). The white daisies, having the
highest albedo in the model, reflect more of the short wave
energy from the star and so have a lower temperature than ei-
ther the grey planet or the black daisies. The same applies to
the black daisies but in reverse. The black and white daisies
share a viability range of temperature. They are only able to
grow when the local ambient temperature is within 5-40 de-
grees Celsius. Within this range growth rates of the daisies
vary, with optimum growth being achieved when the temper-
ature is 22.5C. Simulations begin when the star is dim and
the temperature of the planet is below 5C. As the star in-
creases in brightness the planetary temperature reaches 5C
and black daisies begin to grow. The increase in the num-
ber of black daisies is further increased via a feedback loop:
more black daisies leads to a lower planetary albedo and so
more energy is absorbed that warms the ground that leads to
an increase of the growth rate. This feedback loop is reg-
ulated by the parabolic growth rate of the daisies. As the
temperature increases past 22.5C, the daisy growth rate de-
creases. At steady state the ambient temperature, growth
rate and death rate are at equilibrium. As the energy output
of the star continues to increase, coverage in black daisies
decreases and white daisies begin to grow. This initiates a
feedback loop that is the inverse of the effect of the black
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daisies and so decreases their temperature. Again, this feed-
back loop is regulated by the parabolic growth rate of the
daisies. Increasing the amount of energy from the star results
in a progressive increase in white daisies (and decrease in
black daisies) until the maximum coverage of white daisies
is reached. Any further increase in energy takes the ambi-
ent temperature past the point where growth rates balance
death rates and so the coverage of white daisies decreases.
This leads to a rapid collapse of white daisies similar in na-
ture to the population explosion of the black daisies. The
differential coverage of white and black daisies results in a
system that effectively regulates ambient planetary temper-
ature to within the viability range. Whereas the tempera-
ture of a bare lifeless planet would increase in an approx-
imately linear fashion with increases in luminosity, when
black and white daisies are present, ambient temperature re-
mains within the viability range over a wide range of solar
forcing.

The Maximum Entropy Production Principle
The Earth’s atmosphere can be viewed as a heat engine: mo-
tions are driven by the flow of heat from the hot equator to
the cold polar regions. The amount of work that can be done
by this flow of heat depends on the temperatures of the reser-
voirs: the greater the drop in temperature for a given amount
of heat flow, the greater the thermodynamic efficiency of the
system and so a greater amount of work output and entropy
produced. Such heat processes do not produce entropy at
an arbitrary rate. Two extreme principles have been formu-
lated to describe their characteristic behaviour. For systems
near thermodynamic equilibrium with fixed boundary con-
ditions, (Prigogine, 1962) formulated the principle of min-
imum entropy production (MinEP) stating that the steady
state of the process is associated with a MinEP state. How-
ever, many processes do not have fixed boundary conditions
and are far from equilibrium. For those processes it has been
proposed that they maintain steady states in which the pro-
duction of entropy is maximized if there are sufficient de-
grees of freedom associated with the processes - the Maxi-
mum Entropy Production Principle (MEPP). It may not be
necessary to understand the detailed internal dynamics of
such systems in order to make accurate models and predic-
tions. An impressive demonstration of this was with (Pal-
tridge, 1975) who successfully reproduced the Earth’s latitu-
dinal temperature profile in a simple energy balance climate
model by assuming that the rate of diffusion was that which
maximized the rate of entropy production via latitudinal heat
transport. However, in the absence of any proposed mech-
anism or other system that maximized entropy production
in this manner, Paltridge’s results failed to gain significant
traction within the scientific community. This situation has
changed somewhat as MEP has been observed in the atmo-
spheres of Mars and Titan (Lorenz et al., 2001) and there
have been attempts (Dewar, 2003) and (Martyushev and Se-

leznev, 2006) to place the MEPP on firm information theo-
retic foundations. See (Ozawa et al., 2003) for a review.

Two-Box Daisyworld
The two-box Daisyworld was motivated by a desire to pro-
duce the simplest implementation of the Daisyworld control
system. Whilst the original Daisyworld was itself a simple
model of complex real-world phenomena, analysis was not
trivial. The two-box model simplifies Daisyworld further by
removing space competition dynamics by having each daisy
occupy separate ‘beds’ or boxes and dispensing with a sep-
arate birth and death rate and finding steady state daisy cov-
erage with a single linear function. Each grey box is seeded
with either black or white daisies. When the seeds are dor-
mant, the boxes have the same temperature. As the seeds
germinate and daisies begin to cover each box, a temper-
ature gradient is established. The two-box Daisyworld is
represented schematically in Figure 1.

Black Daisy Box White Daisy Box

Star

F

I
b
 - E

b
 - F = 0 I

w
 - E

w
 + F = 0

E
b

E
w

I
b I

w

Figure 1: Schematic of Two-Box Daisyworld

The two-box Daisyworld which is conceptually similar to a
two-box energy balance climate model (North et al., 1981).
Incoming energy in the form of short-wave energy Ii warms
each box and is radiated back into space as long-wave emis-
sions Ei with an amount of heat flux F proportional to the
temperature gradient between the boxes. Only black daisies
are seeded in the black daisy box and only white daisies in
the white daisy box. White daisies, being lighter than the
black daisies will reflect more energy from the star. Black
daisies, being darker, absorb more energy. Hence the black
daisies are warmer and the white daisies are cooler than the
grey bare earth. The two boxes are coupled via a heat con-
ducting medium which when there is non-zero coverage of
daisies allows heat to flow from the black to white daisy box.

Those with a familiarity of climate modelling will imme-
diately see the similarity to a zonal energy balance model.
The temperature of each daisy box is found with
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T 4
b σ = I(1−Ab)− F, (1)

T 4
wσ = I(1−Aw) + F, (2)

where Ai is the albedo of the boxes, σ is the Stefan-
Boltzmann constant having a value of 5.67 × 10−8 J
s−1m−2K−4, I is insolation, the amount of energy re-
ceived on the surface of the planet from the star in units
of W−1m−2. As in previous studies on Daisyworld, the
amount of insolation will be parameterized by a luminosity
variable, L. L is a non-dimensional index of stellar bright-
ness. I = L × 1000W−1m−2 where L ∈ [0, 2]. We can
think of luminosity as a ‘dimmer switch’ that modulates the
brightness of the star and thus the amount of energy received
on the surface of the planet. The temperature of the planet is
the mean of the two box temperatures, Tp = 0.5(Tb − Tw).
The heat flux F between the two boxes is found with

F = D(Tb − Tw). (3)

The flux of heat is proportional to the temperature differ-
ence between the two boxes and a diffusion parameter D
normally measured in units of W−1m−2K−1. As we will
be investigating the comparative effects of entropy produc-
tion, we will set the surface area between the two boxes to
unity, and heat flux and entropy will be measured in non-
dimensional or arbitrary units. The diffusion term D will be
scaled from 0, which produces no heat flux, to 1 which pro-
duces maximal heat flux with the boxes being isothermal.
The albedo of each daisy box is found in a similar fashion to
the original Daisyworld

Ab = AG(1− αb) + ABαb, (4)

Aw = AG(1− αw) + AWαw. (5)

AG, AB,AW are parameters that determine the fixed
albedo of bare ground, black daisies and white daisies, and
these are set to 0.5, 0.25 and 0.75 respectively. αi is the
proportional daisy coverage from 0 to 1 which is found with
equation 6. There is an optimal temperature Topt that pro-
duces 100% coverage, with coverage decreasing linearly to
zero as temperature decreases or increases away from this
value.

αi = Max[1− 2(|Topt − Ti|)/R, 0], (6)

where Topt = 22.5 and R is the range of temperature over
which non-zero daisy coverage is achieved. It is fixed at 35
thus daisies grow at 5C, have maximal coverage at 22.5C
and are back to zero coverage at 40C. It is assumed, as with
other studies on Daisyworld, that the rate of change of daisy
coverage is sufficiently faster than that of luminosity so as
to allow the above equations to be numerically integrated
to steady state whilst luminosity is fixed. The implementa-
tion details can be found in previous studies (Harvey, 2004),

(Dyke and Harvey, 2005) and (Dyke and Harvey, 2006). Es-
sentially, for any fixed luminosity and fixed rate of heat dif-
fusion, the daisy coverage is initialised to 1 (maximum cov-
erage), albedo, temperature, heat flux and then temperature
plus heat flux and new coverage values are computed. The
current daisy coverage is then adjusted a small amount to-
wards this new coverage. When the percentage change of
daisy coverage is 0.001 per iteration of this loop, 200,000 it-
erations produce changes in coverage, albedo, heat flux and
temperature that are no greater than 10−22. Figure 2 shows
numerically computed steady state values for daisy cover-
age and planetary temperature when the diffusion parameter
is fixed at 0 and 0.5.
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Figure 2: Two-Box Daisyworld D = 0, D = 0.5

Numerically computed results when D = 0 (solid lines) and
D = 0.5 (dashed lines). The top plot shows daisy cover-
age over luminosity. When D = 0 the black daisies (black
line) grow at lower luminosity and white daisies (grey line)
grow at higher luminosity than when diffusion is set at an
‘intermediate’ value of 0.5. When D = 0.5 white daisies
grow at lower and black daisies grow at higher luminosities.
The bottom plot shows planetary temperature for the same
results. The rate of change of planetary temperature when
both daisy types are present is less than when only one daisy
type is present.

Initializing daisy coverage to 1 for any luminosity removes
hysteresis from the system. Hysteresis is recovered if, as in
the original Daisyworld model, daisy coverage is allowed to
‘evolve’ by initializing new luminosity coverage with previ-
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ous steady state luminosity coverage whilst making changes
in luminosity very small.

Entropy production in Daisyworld
Previous studies have investigated entropy production in
Daisyworld: (Pujol, 2002) within the original version,
(Tonaizzo et al., 2004) with a version that allowed an arbi-
trary number of daisy types and a two dimensional cellular
automata version in (Ackland, 2004).

The first two studies faced certain limitations due to the
particular implementation of heat flux in the respective mod-
els. However they both concluded that when Daisyworld
maximizes the rate of entropy production, there is an in-
crease in the range of luminosity over which daisies grow.
Rather than assuming Daisyworld is in a maximizing en-
tropy production state, (Ackland, 2004) tests the contrary
hypotheses that Daisyworld self-organises to either maxi-
mize entropy production or maximize the total amount of
life for any given luminosity (‘MaxLife’). It is found that
a maximising life not maximising entropy principle is se-
lected. However, due to the modelling assumptions of cel-
lular automata Daisyworlds, computing the rate of entropy
production via heat flux is not possible. Consequently it is
the rate of biodiversity entropy that (Ackland, 2004) mea-
sures. See (Wood et al., 2008) for a more detailed discussion
of these studies.

The two box formulation of Daisyworld is similar to en-
ergy balance climate models in which there is a flux of heat
from warm to cool regions (North et al., 1981). Whereas in
these models such heat gradients are produced via different
amounts of energy received on the surface of the planet due
to different latitudes, in the two-box Daisyworld model the
difference in temperature is due to different albedo. How-
ever, heat will flow from warm to cool regions irrespective
of how such a situation was produced, and the method of cal-
culating entropy production budgets in energy balance box
models such as (Lorenz et al., 2001) can be naturally em-
ployed in order to calculate entropy production in the two-
box model. The rate of entropy production is a function of
heat flux over the difference in temperature between the hot
and cold boxes.

dS

dt
=

F

Tw
− F

Tb
. (7)

The greatest rate of entropy production will be achieved with
the greatest temperature difference and the greatest heat flux
between the two daisy boxes. Attempting to increase en-
tropy production by increasing heat flux via increasing dif-
fusion may lead to a decrease in the temperature gradient
and thus a decrease in thermal efficiency of the ‘heat engine’
and so a decrease in the rate of entropy production. Conse-
quently maximizing entropy production is a balancing act
with the value of D required to produce maximum rates of
entropy production varying with the driving of the system.

Figure 3 shows the unimodal function of entropy production
over D with daisies present and fixed luminosity.
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Figure 3: Two Box Daisyworld MEP results

The rate of entropy production and daisy box temperatures
are shown in the top plot and black daisy coverage (solid
black line) and white daisy coverage (solid grey line) is
shown in the bottom plot for various values of heat diffu-
sion where luminosity is fixed at 0.7. The greatest rate of
entropy production is produced when D ≈ 0.7. Increasing
diffusion leads to a decrease in the temperature difference
between the boxes and entropy production until the daisy
boxes are isothermal with no entropy production and steady
state coverage being that of a ‘grey’ daisy type with albedo
of 0.5. The coverage of daisies undergoes a sharp decline
as increasing heat flux drives the black and white box tem-
peratures away from the optimal temperature of 22.5C. The
value of D required to produce maximum entropy produc-
tion will vary with L.

Maximising entropy production
It has been postulated that certain dissipative systems max-
imize the rate of entropy production. How these systems
reach such non-equilibrium stable states is a different topic
of enquiry. Here I will assume that the imaginary two-box
planetary system, like the Earth, possesses an atmosphere
with sufficient degrees of freedom to produce heat fluxes
that lead to the maximisation of entropy production. In do-
ing so we can construct a thought experiment analogous to
Maxwell’s Demon which is used to explore certain aspects
of the second law of thermodynamics. Rather than monitor-
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ing the velocity of air molecules, our demon monitors the
flux of heat and temperature of the daisy boxes. It has a
dial at its disposal that modulates the diffusivity of the at-
mosphere. For any luminosity value, the demon can alter
the diffusion and in doing so find the rate of diffusion that
maximizes equation 7. The behaviour of the demon can be
implemented in a search algorithm that modulates D for any
fixed L in order to find the value of D that produces the
highest rate of entropy production.

Results

Figure 4 shows the effects of the maximising demon on
the two-box Daisyworld. It can be seen that the ‘any-
daisy’ range, the range of luminosity over which any daisy
is present, is the same as when D is fixed at zero. It will
be shown that this represents the greatest range of daisy
growth possible. Planetary temperature is regulated with
either daisy type present. The effects of increasing lumi-
nosity on planetary temperature are further reduced within
the ‘both-daisy’ range, the range of luminosity over which
black and white daisies are present. It will be shown that
when the rate of entropy production is maximized the both-
daisy range is also maximized and so the range of luminos-
ity that sees the smallest rate of change of planetary tem-
perature is maximized. By altering D to maximize the rate
of entropy production we also maximize the any-daisy and
both-daisy ranges and thus maximize the range of luminos-
ity over which planetary temperature is regulated at all and
regulated most effectively.

It is straightforward to show that maximising entropy pro-
duction will lead to a maximisation of the any-daisy range.
In order for there to be non-zero entropy production, there
must be a temperature gradient between the two daisy boxes.
Therefore there must be non-zero coverage in either or both
boxes. This equates to black daisies growing at the lowest
possible luminosity and white daisies growing at the highest
possible luminosity. In order for black daisies to grow when
the planet is cool, the amount of heat flux must be reduced.
Consequently at the limits of the any-daisy range, D → 0.
The limits of the any-daisy range are also when the daisies
reach maximum coverage. The intuition is that the external
forcing drives the daisy coverage higher until the biota can
no longer respond at which point any further increases lead
to a population collapse. The daisy box temperature that
produces maximum coverage is 295 degrees Kelvin. Setting
D = 0 enables us to find the luminosity for the start and
end of the any-daisy range. With the parameter and con-
stant values as detailed in the Two-Box Daisyworld section,
computing equations 8 and 9 give the start and end of the
any-daisy range to be be 0.5764 and 1.729 respectively (to
within 4 significant figures). These are the values returned
with numerical results

Lstart =
295.54σ

S(1−AB)
, (8)

Lend =
295.54σ

S(1−AW )
. (9)

Finding the limits of the both-daisy range is not a trivial ex-
ercise 1. At lower luminosities we want to find that combi-
nation of luminosity and heat flux that increases the white
daisy box to 5C. This will be achieved at lower luminosi-
ties with higher heat flux. But if heat flux is too high, the
temperature of the black daisy box can be cooled so far as to
lead to a collapse in the black daisy population. Similarly we
want to find the greatest heat flux that can maintain the black
daisy box to within 40C without increasing the temperature
of the white daisy box beyond 22.5C and so its collapse. The
hypothesis that maximising the both-daisy range is achieved
when entropy production is maximized can be checked by
computing steady states in which D is adjusted in order to
maximize the both-daisy range. These produce values (to 4
significant figures) of 0.6285 for the start and 1.283 for the
end of the both-daisy range which match the values for the
both-daisy range when D is adjusted to maximize the rate of
entropy production. These values are also returned when D
is adjusted in order to maximize the total coverage of daisies
for any luminosity (a Maxlife scenario). Results are shown
in figure 5. An important difference between the MEPP
and Maxlife models is that D reaches a maximal value in
Maxlife such that the black and white boxes are isothermal
and thus entropy production falls to zero; Tb = Tw = Topt

and so dS/dt = 0.

Discussion
We have seen that when diffusivity is altered in the two-box
Daisyworld model in order to maximise the rate of entropy
production via latitudinal heat flux, the range of luminosity
over which daisies grow is maximised. Care must be ex-
ercised when interpreting results from such simple models,
especially in the absence of empirical data. The model pre-
sented in this paper is based upon established climate models
and the observed real world phenomena of entropy maximi-
sation via latitudinal heat flux. However the maximisation
of entropy production was imposed on the model by a no-
tional demon. This is not necessarily a limitation, but does
need to be appreciated. MEPP models can be regarded as
‘black box’ models in that one need not know the details of
the system’s dynamics. Within the two-box model we have
assumed that there are sufficient degrees of freedom within
the processes that determine the diffusivity between the two
boxes to afford the system the ability to configure itself into
a state that maximizes the rate of entropy production. When
the two-box model is in a MEP state with respect to lati-
tudinal heat flux, it is not in a MEP state with respect to

1For this author.
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Figure 4: Two-box Daisyworld MEP results

Black (solid line) and white (dashed line) daisy percentage
coverage are shown in the top plot. Planet temperature is
shown in the middle plot. Normalised entropy production
(solid line) and the diffusion parameter D (dashed line) are
shown in the bottom plot. When adjusting heat flux to maxi-
mize the rate of entropy production, the any-daisy and both-
daisy ranges are maximsed. Entropy production is greatest
when L ≈ 1.2.
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Figure 5: Two-box Daisyworld MaxLife results

Black (solid line) and white (dashed line) daisy percentage
coverage are shown in the top plot. Planet temperature is
shown in the middle plot. Normalised entropy production
(solid line) and the diffusion parameter D (dashed line) are
shown in the bottom plot. When adjusting heat flux to maxi-
mize the rate of entropy production, the any-daisy and both-
daisy ranges are maximised. Diffusion reaches a maximum
value and entropy production a minimum value when L ≈
0.95.
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short wave to long wave radiative balance. This would be
achieved by making Daisyworld as dark as possible thus ab-
sorbing as much of the star’s energy and so converting the
maximum amount of short wave radiation to long wave radi-
ation. On Earth, the majority of entropy production is due to
short wave radiation from the Sun warming the surface and
atmosphere of the planet and then radiating this now long
wave energy back into space. The Earth does not maximize
the rate of this entropy production. This is due to the insuffi-
cient degrees of freedom the radiative mechanism possesses
with MEP only to be expected in complex, turbulent, dis-
sipative systems such as planetary climates (Ozawa et al.,
2003). Arguably the utility of the results presented here will
depend on the plausibility and conceptual coherence of the
MEPP. If the MEPP is ‘real’ and applicable to a range of
systems then it seems reasonable to investigate its effects on
systems such as life-mediated climate models.

The effects of maximising entropy production in the two-
box model was to maximize the any-daisy and both-daisy
ranges and so maximize the range of solar forcing over
which the system is self-regulating. It is tempting to claim
that by maximizing entropy production we have maximized
self-regulation. However the current results must not be
overstated. For example the model’s response to stochas-
tic external or internal perturbations was not explored. We
assumed that the rate of change of daisies was sufficiently
faster than the star to allow the star to remain fixed whilst
steady state coverage was found. We also assumed that dif-
fusion was fixed whilst the system moved to steady state.
A wide range of different model dynamics could well be
produced by relaxing or altering these assumptions. That
said, there are immediate intuitive connections between self-
regulation and entropy production. The system can only
regulate temperature when daisies are present. Latitudinal
heat flux entropy can only be produced when daisies are
present. If the two-box Daisyworld atmosphere had suffi-
cient degrees of freedom to maximize entropy production,
then it would maximize the range of luminosity over which
daisies can grow.

Future Work
At a planetary level, it is not immediately obvious how in-
dividual organisms would self-organize in such a way as to
lead to situations observed in this model. Given the ‘choice’
of evolutionary or thermodynamic maximizing principles,
there seem to be no initial reasons to think that life would
adhere to the latter. One very important mechanism absent
from the two-box model is evolution. The daisies have fixed
responses and effects on environmental variables. Finding
real-world organisms in states that appear to maximise the
rate of entropy production via metabolic processes may be
the result of such states being more efficient than lower en-
tropy producing states. A more efficient organism may be
more fitter and so natural selection rather than thermody-

namics would be the mechanism that explains how such
states arose and persist. However, a recent study has shown
how Daisyworld regulation can emerge via evolutionary dy-
namics with minimal assumptions (McDonald-Gibson et al.,
2008). An intriguing next step would be to develop new
models that incorporate evolutionary mechanisms into en-
ergy balance models in order to assess the relationships be-
tween entropy production, self-regulation and evolutionary
dynamics. This would combine evolutionary and thermody-
namic mechanisms and so build a potentially more complete
picture of the Earth’s climate.

Conclusion
A simple two-box Daisyworld model has been presented. It
has been shown that this model can be regarded as an ex-
ample of an energy balance climate model. Energy balance
models have been used to explore the hypothesis that plane-
tary atmospheres maximise the rate of entropy production
via the transport of heat from the hot tropics to the cold
poles. In the two-box Daisyworld model, the difference
in zonal temperature is produced by a difference in albedo
rather than latitude. It was found that when the amount of
diffusion was adjusted to maximize the rate of entropy pro-
duction, the range over which any and both daisies grow was
maximised and consequently the viability range of life on
the planet was maximised. Maximising the rate of entropy
production led to a maximisation of the range of luminosities
over which self-regulation is observed. It is speculated that
developing new models that incorporate thermodynamic and
evolutionary dynamics could produce new results that have
direct applicability to the Earth and its climate.
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Abstract

The tendency to organise into groups is a fundamental prop-
erty of human nature. Despite this, many models of so-
cial network evolution consider the emergence of community
structure as a side effect of other processes, rather than as a
mechanism driving social evolution. We present a model of
social network evolution in which the group formation pro-
cess forms the basis of the rewiring mechanism. Exploring
the behaviour of our model, we find that rewiring on the ba-
sis of group membership reorganises the network structure in
a way that, while initially facilitating the growth of groups,
ultimately inhibits it.

Introduction
Groups, it has been argued, are a “basic process of social
interaction” (Turner et al., 1987). Individuals rely on groups
to achieve ends they could not achieve alone, and as a means
for defining their personal identity. Groups, meanwhile, ex-
ist only so long as individuals are interested in becoming
members of them. Much attention has recently been devoted
to the task of identifying and understanding groups and com-
munities in social networks.1
In sociology, the significance of groups as an expres-

sion of human social interaction, and their importance as
an object of study, have a long history (Turner et al., 1987;
Wasserman and Faust, 1994). The application of ana-
lytic tools from physics revitalised the study of social sys-
tems from a network perspective (Newman et al., 2002),
and groups were recognised as a significant structural phe-
nomenon, though one not amenable to easy characterisa-
tion (Jin et al., 2001; Davidsen et al., 2002; Girvan and New-
man, 2002).
From a network perspective, a community is a subset of

individuals who have more connections to other individu-
1The terms “group” and “community” are often used inter-

changeably in the literature; in the remainder of this paper, we will
use “group” to refer to a subset of individuals in a population who
each identify as belonging to a particular organisation, and “com-
munity” to refer to the a subset of individuals in the social network
who are more densely linked to each other than to the remainder of
the network.

als within their community than to individuals from out-
side their community. A significant proportion of the lit-
erature on community structure focuses on the challenge of
identifying the presence of communities in large data sets,
such as those obtained from email records, automatic recom-
mendation systems and social networking sites (Fortunato
and Castellano, 2008, provide a recent overview of develop-
ments in this area).
A smaller fraction of the literature is concerned with the

question of how communities arise, and understanding the
social dynamics that influence their formation and evolu-
tion (Jin et al., 2001; Skyrms and Pemantle, 2000; Grönlund
and Holme, 2004; Backstrom et al., 2006). A common fea-
ture of these models is that community structure frequently
emerges as a side effect of another process, such as intro-
ductions between friends, or a desire to differentiate oneself
from a population average.
In many real world contexts however, groups do not ap-

pear passively. Rather, they are the outcome of an active
recruitment process, which arises in response to some per-
ceived need that can best be met by a combined effort (Ol-
son, 1971). For example, companies organise lobby groups
in order to more effectively have their concerns heard by
government, workers form unions to increase their bargain-
ing power in negotiations with employers, and social move-
ments arise to engage in collective action for a variety of
humanitarian, environmental and other causes. We focus
here on individuals and their participation in social move-
ments (McAdam and Paulsen, 1993; Della Porta and Diani,
2005; Hedström, 2006).
Social movements are groups of people who come to-

gether to act collectively in support or opposition of some
political or social issue (Tilly, 1978; Della Porta and Diani,
2005). It is widely accepted that social ties between indi-
viduals are critical to the success of social movements in
recruiting new members (Snow et al., 1980; Marwell et al.,
1988; McAdam and Paulsen, 1993). While some choices of
group affiliation are undoubtedly a product of an individual’s
intrinsic preferences, the affiliations of their social contacts
also exert an influence (Della Porta and Diani, 2005). Prop-
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erties of the social network, such as the number and intensity
of ties between individuals, the existence of central nodes,
and resource heterogeneity are therefore important determi-
nants of how effectively a social movement can grow, and
hence its ability to achieve its aims (Marwell et al., 1988;
Gould, 1993; Kim and Bearman, 1997).
At the same time, an individual’s participation in activ-

ities associated with a particular social movement is likely
to strongly influence the people they meet, and hence on
the set of individuals with whom they may form social
ties (Della Porta and Diani, 2005). Thus, there is a bidirec-
tional relationship between the short term dynamic of group
formation occurring on a social network, and the longer term
dynamic of the evolution of the structure of that social net-
work (Sayama, 2007; Gross and Blasius, 2008).
Existing studies of community structure in networks have

typically focused on exploring how communities can emerge
from individual level rules. The reciprocal influence that
group formation dynamics may have on social network evo-
lution has been hitherto neglected. We are not aware of any
model that explicitly considers group formation as a process
that may actively influence the evolution of social networks.
However, several recent models of opinion formation and
cooperation in networked systems do confront a similar is-
sue with regard to the coevolution of network’s structure and
the dynamic processes occurring on that network (Guimerà
et al., 2005; Holme and Grönlund, 2006; Santos et al., 2006;
Kozma and Barrat, 2008).
Explicitly considering the relationship between group for-

mation and social evolution raises two interesting questions:
how does social network structure influence the effective-
ness of group formation, and how does group formation in-
fluence the evolution of the social network? In this paper, we
propose a simple model of group formation and social net-
work evolution and investigate the extent to which a group
formation process can bring about (or hamper) the emer-
gence of structural conditions contributing to its success;
that is, the speed and size with which a group can recruit
members.

Model Description
We model a social network as a simple graph containingN
vertices representing individuals, and M undirected edges
representing social ties (i.e., each vertex has K = 2M/N
neighbours on average). Each vertex is associated with a
trait vector a. Each component of this vector is a contin-
uous variable in the range [0, 1] reflecting some aspect of
an individual’s social character (Watts et al., 2002; Boguñá
et al., 2004); for example, their tendency to adopt a liberal or
conservative stance on a particular social or political issue.
Two individuals with similar values in a particular compo-
nent of their trait vector will tend to share similar opinions
on a particular issue. Viewed together, the totality of an indi-
vidual’s views describes a vector in an abstract social space.

The social distance between two individuals x and y may
then be calculated either in terms of the Euclidean distance
between the vectors ax and ay , or, with respect to issue n,
the absolute difference between axn and ayn, where axn is
the nth component of ax.
Our model is updated on two distinct time scales: a short

time scale corresponding to group formation, and a longer
time scale corresponding to social evolution, in which each
step represents a complete iteration of the group formation
process.

Group formation phase: The group formation process
follows the following sequence of steps:

1. G individuals are picked uniformly at random to seed G
different groups. These individuals are added to a set of
active individuals,A.

2. A single individual ix is randomly chosen from A. This
individual issues invitations to all of their network neigh-
bours who are not currently affiliated with any group to
join their group. The individual ix is then removed from
A.

3. Each individual iy who receives an invitation accepts it
with a probability equal to α(1 − |axn − ayn|), where
α is a model parameter governing the base probability of
acceptance, and n is the index of the group to which ix
belongs. Therefore, if the nth component of trait vectors
associated with ix and iy are identical, the distance be-
tween themwill be zero, and the probability of acceptance
will be α. As the difference between traits increases, the
probability of acceptance decreases linearly.

4. Individuals who accept invitations are added to A.

5. Steps 2–4 are repeated until there are no individuals re-
maining in A.

At this point, the network can be in one of two states: ei-
ther all individuals are members of a group, or the group
formation process has died out before spreading through the
entire network because all individuals on the periphery of a
group have had their initiations to join refused. The proba-
bility of this occurring will depend on the value of α and
structural features of the network, such as the density of
edges (Figure 1). In order to ensure some variability that can
be ascribed to network structure, we typically chose values
of K and α that placed the initial network in the boundary
region of Figure 1, where the group formation process was
able to spread some distance beyond the seed individual, but
did not percolate across the entire network.

Social update phase: After group formation has con-
cluded, individuals who have joined a group adjust their
social ties. We assume that being a member of a group
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Figure 1: Proportion of network (N = 2, 000; G = 1) be-
coming members of a group (black = 0%; white = 100%) for
a range of values of α and K . Each parameter combination
was repeated 200 times with randomly chosen seeds and the
final group sizes were averaged. For low values ofK and/or
α, groups rarely grow beyond a fewmembers. When bothK
and α are high, all individuals in the network join the group.

entails involvement in group-related activities that will re-
sult in an individual spending more time with members of
their group (irrespective of whether they were previously
known to them) and hence, given finite time, less time with
current acquaintances who are not members of their group.
We make the further assumption that individuals involved in
groups are likely to update thier social neighbourhoodsmore
frequently than unaffiliated individuals.
Each individual who is a member of a group therefore

drops the edge connecting them to their least similar neigh-
bour (irrespective of whether that neighbour is in their group
or not) and creates a new edge connecting them to the mem-
ber of their group, who is not currently a neighbour, to whom
they are most similar. Similarity is again measured as the
difference between the nth component of the respective trait
vectors (i.e., that corresponding to the group of which they
are members).
After the social update phase has occurred, all groups are

cleared, and the next iteration of the group formation phase
begins on the new social network, with a new set of ran-
domly chosen group seeds. Social movements often form
in response to a particular issue, and either break apart or
evolve into a new form as that issue becomes less rele-
vant (Della Porta and Diani, 2005; Fuchs, 2006). Our de-
cision to break apart all groups between each iteration of
group formation is clearly a coarse approximation of this
situation, but was chosen for initial simplicity.

Model Behaviour
To begin, we consider an initially random network with
N = 2, 000 and K = 6 in which only one group is formed
during each iteration (G = 1) and trait values are drawn at
random from a uniform distribution. In the simulations de-
scribed here, these edges are initially randomly distributed
between vertices following the Er̈dos-Rényi random graph
model; however, other initial configurations are possible.
This section describes the behaviour in an individual sim-
ulation run in detail, before exploring the sensitivity of this
behaviour toK , α and the initial network structure.
The behaviour we are interested in observing is how the

size of groups formed changes as the social network evolves.
The size of the group formed depends not only on the global
structure of the network, but also on the local neighbour-
hood of the seed individual. To obtain an indication of the
general propensity of a particular network structure to facil-
itate group formation, we measure the average size of the
group formed across fifty random seedings, with groups be-
ing erased after each. The social update phase is then carried
out based on the group formed from the final of these seed-
ings.
The structure of the social network passes through three

distinct periods of evolution (Figures 2 and 3). Initially,
the network is well connected but disordered (Figure 2, top
panel), and the mean trait difference between neighbours
is high (0.329). As a consequence, invitations have a low
probability of being accepted and the resulting groups are
small (12.42 members—0.62% of the population—on aver-
age over the first 10 iterations of the simulation). Mean clus-
tering coefficient and path length both remain low (approxi-
mately 0.04 and 7.2 respectively), as is typical of a random
graph.
However, the groups that do form enable their local re-

gions of the network to become more ordered, by allowing
individuals with similar trait vectors to increase the density
of their interconnections, (Figure 2, middle panel). By do-
ing so, they increase the probability of future invitations be-
tween individuals in this region being accepted and so assist
the formation of groups in subsequent iterations.
Surprisingly, rather than produce a steady increase in the

average size of groups as the social network becomes more
ordered, a phase transition occurs at the point where a large
proportion of the network simultaneously becomes well or-
ganised (Figure 2). Mean group size increases dramatically,
peaking at 438.12 members (21.9% of the population) in it-
eration 75 (Figure 3). Mean clustering coefficient increases
by an order of magnitude to approximately 0.5 by iteration
80, while mean path length remains relatively low and the
degree distribution becomesmore skewed, properties indica-
tive of small world structure.
A side effect of larger groups forming is that the rate of

network reorganisation increases (as each individual who is
in a group updates one of their social ties). Furthermore,
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Figure 2: Network structure observed at different points in
evolution: (a) the initial random network, with trait values
dispersed throughout; (b) the network at the point of phase
transition, when group formation spreads rapidly between
neighbours with similar trait values; and (c) the network at
the end of a run, with individuals clustered into weakly con-
nected communities. Note that smaller networks (N = 500)
are shown for clarity; however, their qualitative features are
otherwise similar.

Figure 3: A representative run of the model initialised with a
random network (N = 2000, K = 6, α = 0.25). Each sym-
bol represents the mean group size observed over 20 random
seedings (as described in the text), together with a moving
average calculated over 10 iterations (gray line) and mean
trait difference between neighbouring nodes (black line).
The three networks in Figure 2 correspond to networks ob-
served prior to, during, and after, the spike in mean group
size.

each individual is now able to select their new neighbour
from a wider pool of potential candidates (their fellow group
members). The mean trait difference between neighbours
drops (to 0.049, Figure 3) and the network begins to partition
into a number of weakly connected communities (Figure 2,
bottom panel, and Figure 3). Around iteration 90, mean path
length begins to increase steadily, reaching approximately
14 by iteration 200.
In the extreme case, the network may disintegrate com-

pletely into a set of disconnected components; however, this
is not required in order for group size to fall: by iteration
200, 94.4% of individuals still belonged to a single con-
nected component. The appearance of community structure
sufficient to hamper the formation of groups by creating bot-
tlenecks that impede the spread of invitations. If there is only
a single link between two communities, then, even if it is be-
tween two very similar individuals, group membership has a
chance of spreading at best equal to α.
This social evolution dynamic was observed across a

range of parameter settings, with the primary differences be-
ing the time required for the network to organise, and the
maximum size to which groups are able to grow (Figures 4
and 5). AsK and/or α increase, the size of groups that form
throughout each simulation run also increases, in line with
the trend illustrated in Figure 1. For all combinations of K
and α, the peak group size achieved is substantially greater
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Figure 4: Peak (filled) and average (hollow) group sizes for
various values of α and K (diamond: 2; circle: 4; trian-
gle: 6; square: 8). Note that the Y-axis is log-scaled. Other
model parameters: N = 2, 000; G = 1. Each data point is
averaged over 20 runs. The peak group size is that obtained
during the phase transition in network structure. Average
group size is that resulting after the phase transition has oc-
curred.

than the average. Furthermore, increasingK andα results in
the peak group size being obtained earlier in the simulation
run.
We investigated the effect of the initial network configu-

ration (Figure 6) on social evolution by varying the rewiring
probability p used to create the initial network. In compar-
ison to random graphs (p = 1.0), regular lattices (p = 0.0)
with comparable N and M take considerably longer to or-
ganise and, at their peak, result in smaller groups. In many
simulation runs (such as that shown in Figure 6), no peak
phase occurs, and the network transitions directly to the dis-
joint community phase. Small world networks (p = 0.05)
organise more slowly than random graphs, but otherwise be-
have similarly, and the occurrence of a peak phase is more
reliable than in lattices.
We have also carried out preliminary investigations into

the behaviour of the model when there is more than one
group forming in each iteration (G > 1). In this case, com-
petition between groups appears to lead to a “rich get richer”
process, whereby large groups tend to increase in size, at the
expense of smaller groups. The mechanism responsible for
this is straightforward: once one group begins to increase
in size with respect to the others, its members dominate the
set of active individuals (A), and hence benefit from more
frequent opportunities to recruit unaffiliated individuals.

Figure 5: Mean group size trends for various values of K
(top) and α (bottom). For clarity, a moving average over 5
iterations is shown, rather than individual data points. Note
that both axes are log-scaled. Increasing either the den-
sity of connections (K) or the base probability of invita-
tions being accepted (α) increases both the speed with which
the network organises, and the peak group size that can be
achieved.

Discussion
How can we interpret the pattern of social evolution ob-
served in our model? As communities begin to emerge, the
ability of groups to recruit large numbers of people initially
improves. However, as these communities become stronger,
they also becomemore homogeneous and detached from the
wider social context in which they exist. This social isola-
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Figure 6: Mean group size trends for various initial network
configurations (rewiring probabilities, p = 0, 0.05 and 1).
For clarity, a moving average over 5 iterations is shown,
rather than individual data points. Note that both axes are
log-scaled. See text for discussion of trends.

tion severely limits the ability of groups to recruit new mem-
bers and hence, potentially, to achieve their aims in an effec-
tive fashion (Snow et al., 1980). Networks with a higher
density of social ties are more rapidly reorganised to facil-
itate, and later inhibit, group formation. Similarly, popula-
tions in which people have a strong predisposition toward
joining groups reorganise more rapidly.
There is general evidence that segregation of social net-

works can arise despite the absence of any explicit prefer-
ence for such an outcome (Schelling, 1971). Even when
interaction structures are externally imposed, such as the
hierarchical reporting relationships of a large organisation,
there is evidence to suggest that the existence of communi-
ties can have a negative effect on global integration (Kilduff
and Tsai, 2003). In the context of organisations, such an ef-
fect has led to the value placed upon bridges—individuals
who fill structural holes in a network by linking otherwise
disconnected components. Individuals in such positions of-
ten gain social capital from the role they play in mediating
between different interest groups (Burt, 2002).
Social movements, too, can benefit from being linked

together. Della Porta and Diani (2005) summarise exten-
sive evidence suggesting that linkages between social move-
ments allow sharing of information and resources, and facil-
itate cooperation and coordination of the aims of different
movements. A key factor in linking movements is over-
lapping memberships—the existence of individuals who are
members of two or more groups (Palla et al., 2005). This
suggests that our assumption of exclusive group member-

ship will require reevaluation. One promising direction for
future work is to allow individuals to belong to multiple
groups at the same time, and to explore the extent to which
this enables the social network to organise in such a way that
it facilitates the formation of groups without disintegrating
into weakly connected components.
In summary, this paper has presented a novel model of

group formation and social evolution that takes as its start-
ing point two main ideas: first, that group formation is a
process in which individuals actively seek to engage, and
second, that this tendency has repercussions for the evolu-
tion of social network structure. The investigations reported
here indicate that rewiring on the basis of group member-
ship reorganises the network structure in a way that, while it
initially benefits the growth of groups, ultimately inhibits it.
It is worth noting that, in order to remain as simple as

possible, the model described here makes several assump-
tions that may limit its general applicability. For example,
an individual’s decision to join a particular group is based
purely upon their similarity with the individual who has in-
vited them, and does not take into account factors such as
the alignment of their values with those of the group, or the
opinions of their social neighbours (McAdam and Paulsen,
1993). Group membership is exclusive; that is, it is not pos-
sible for an individual to simultaneously be a member of
more than one group which, as discussed above, is likely to
be play a role in ensuring social cohesion (Della Porta and
Diani, 2005; Palla et al., 2005). Despite these limitations
of the model in its current formulation, we believe it to be
a fruitful starting point for further exploration into the the
co-evolution of topology and dynamics in social networks.
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Abstract

A new model for Gene Regulatory Networks (GRN) is pro-
posed. The model is potentially more biologically sound
than other approaches, and is based on the idea of an artifi-
cial genome from which several products like genes, mRNA,
miRNA, non-coding RNA, and proteins are extracted. These
products are connected giving rise to a heterogeneous di-
rected graph. The topology of the obtained networks is stud-
ied using degree distributions. We make some considerations
about the biological meaning of the outcomes of these simu-
lations.

Introduction
Sequencing the human genome was a tremendous break-
through, but today’s great challenge is deciphering how
genes determine the phenotypic traits of an organism and
how the genome controls the development of organisms. Al-
though biology’s central dogma explains the basic process
of gene expression into protein phenomena like cellular dif-
ferentiation, the ability of cells with the same genetic in-
formation to behave differently according to their function
in the organism, is not accounted for in the dogma. The
answers to such questions lie in complex networks of in-
teractions, known as regulatory networks, between genes
and other molecules including proteins, the very products of
gene expression. Regulatory networks are highly non-linear
and have thousands of variables: finding a computational
model for them is a difficult albeit important task. Various
approaches for modeling gene regulatory networks (GRNs)
appeared in the last decades focusing on regulation at tran-
scription level, the best known form of regulation. However,
recent studies revealed that regulation occurs at any stage of
protein synthesis including transcription, RNA processing,
mRNA decay, translation and post-translation. In this pa-
per we propose a new model for gene regulatory networks,
called HeRoN, that introduces a level of biological detail
that not present in previous models, and study the topologi-
cal properties of the networks using degree distributions.

The paper is organized as follows: in section 2, we will
give a brief explanation of the biological concepts of gene

regulation; a review of different approaches is given in sec-
tion 3, and, in section 4, our own model is presented; section
5, will describe the experimental setup and the topological
aspects of GRNs based on degree distributions; some con-
cluding remarks are presented in the last section.

Gene Expression Regulation
Gene expression can be decomposed in three stages: tran-
scription, processing and translation. In the transcription
phase, a RNA molecule is created by complementing the
DNA sequence of the gene starting in a place called the pro-
moter of a gene. Transcription also ends when a particular
signal is found. After transcription the RNA transcript is
processed and certain non-coding sequences, called introns,
are removed. The remaining sequences are joined and form
a mature mRNA molecule. This mRNA molecule is then
translated into a protein according to a known relation called
the genetic code.

The central dogma posit gene expression as a one-way
process where information flows from the genes to the pro-
teins. What actually happens in organisms is that genes, pro-
teins, mRNAs and other types of molecules in the cells, are
able to interact with each other given rise to a regulatory
process, which can occur at any stage of expression. One of
the most well-known regulation mechanism acts at the tran-
scription initiation stage. This type of regulation consists in
the binding of certain proteins, called transcription factors,
to particular sequences in the genome physically helping or
making impossible the initiation of transcription. With this
mechanism some genes are able to regulate the expression
of other genes or even themselves. Other type of regulation
occurs at the transcription termination and is influenced by
many types of molecules in a cell. The regulation processes
is highly non-linear and in Gonçalves and Costa (2007a) we
studied the dynamics characteristics of GRN, namely the
emergence of three types of behaviors: fixed, periodic and
chaotic. One of the goals of this paper is to study the static
topological properties of GRN, aiming at acquiring some in-
sights about biological aspects of the process of genetic reg-
ulation.
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State of the Art
In recent years several models for Gene Regulatory Net-
works have been proposed. The majority of models make
the simplifying assumption that the control of gene expres-
sion resides only in the regulation of gene transcription. Due
to lack of space we only briefly mention some of the known
models. For an in-depth description (see Gonçalves and
Costa, 2007b)

One early and influencing discrete approach adopted a
complex system view of the genome (Kauffman, 1993). Us-
ing Random Boolean Networks, Kauffman represented the
regulatory system as a network of logical components con-
nected at random. Despite the interesting insights of Kauff-
mans model it was unable to give much explanation for the
regulatory mechanisms and, to many, did not exhibit suffi-
cient parallels with the real networks due to its abstract na-
ture (Reil, 1999). Rather than using a network for a base
level representation, another discrete and promising model,
the Artificial Genome, originally proposed by Reil (1999)
used a more biological framework being based on a DNA-
like sequence representing the genome from which the net-
work structure could be extracted. A similar model was
proposed by Banzhaf (2003) and described by Hallinan and
Wiles (2004), Watson et al. (2004) and Willadsen and Wiles
(2003). In the original Artificial Genome model a random
string of bases is generated to represent the genome of an
organism. The string is searched for promoter sequences
which are, by convention, ’0101’. The six digits following
the promoter will represent the gene sequence (see Figure
1A). The sequence between genes will be the regulatory re-
gion for the following gene. An operation is applied to the
gene sequence to create a gene product. This operation rep-
resents the entire expression process and consists of incre-
menting each gene’s digit by one, modulo 4 (the number of
bases) (see Figure 1B). The resulting sequence is the gene
product which will be used to search for matches in the reg-
ulatory regions of all genes (see Figure 1C). Each match rep-
resents a regulatory link between the gene that originated the
gene product and the gene regulated by the region where the
match occurred. Whether the regulation is inhibitory or ex-
citatory depends on the value of the last digit of the gene
product. After performing the matches a regulatory network
can be extracted and displayed in the form of a graph. The
Artificial Genome still comprise many simplifications, e.g.,
the merging of the entire process of gene expression, pre-
senting no intermediate products and determining an arbi-
trary operation for the creation of a gene product.

Several models have been proposed that treat variables
as continuous values and calculate them through differen-
tial equations. The Additive Regulation Model, and models
based on the S-System power law are some examples. In the
Additive Regulation Model (D’Haeseleer, 2000) variables
are continuous and updated synchronously. This model can
be represented as a matrix of positive, negative or zero con-

Figure 1: Artificial Genome model.

nections (see Figure 2).

Figure 2: A Graph of a Regulatory Network

When a matrix entry is nonzero, there is a regulatory con-
nection from gene product i to gene product j. If the entry is
positive the regulation is enhancing and if it is negative the
regulation is repressive. The expression level of each gene
xi could be given by the weighted sum of all variables:

dxi

dt
= S(

∑

j

wjixj + bi)−Dixi (1)

with xi the expression level of the ith variable, bi a bias
term that indicates if the gene is expressed in the absence of
regulatory inputs, wji the weight in the matrix from gene j
to gene i, S() a sigmoidal function and Di the decay rate of
gene i.

Finally, an S-system is a parameterized set of nonlinear
differential equations:

dxi

dt
= αi

n∏

j=1

xj(t)gij − βi

n∏

j=1

xj(t)hij (2)

where xi is the expression level of gene i, n is the number
of network components, αi ≥ 0 , βi ≥ 0 are rate constants
and gij , hij represent the interactive affectivity of xj to xi.
The first product describes all influences that are excitatory
(increase xi) and the second product all influences that are
inhibitory (decrease xj). These systems have a rich structure
but number of parameters that have to be estimated is large
(Noman and Iba, 2005).

With the continuous models just described biologically
plausible features such as decay rates of molecular products
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(D’Haeseleer, 2000) can be included and reverse engineer-
ing/learning algorithms can be used to determine their pa-
rameters from real data (Ando and Iba, 2001; Sakamoto and
Iba, 2001; Noman and Iba, 2005), however, as with the dis-
crete models discussed, the blackbox approach of the pro-
cess they use makes understanding the mechanisms of gene
regulation at the various levels more difficult.

The above considerations prompted the creation of a new
model called HeRoN with a string based framework simi-
lar to the Artificial Genome breaking the process down to
its important steps and overcoming some of its simplifica-
tions. The networks derived by the HeRoN model can be
represented by a graph where the nodes represent the dif-
ferent products involved in the process of gene expression,
thus heterogeneous, and the arcs establish the interactions
between the products.

HeRoN: a Model for a Heterogeneous Gene
Network

The proposed model HeRoN takes a string from a four sym-
bol alphabet representing the genome and derives from it
various products such as genes, proteins and some more in-
termediate products. The expression algorithm is a six-step
process that will now be described with some detail.

1. Generate the genome The genome, implemented as a
string of integers, is randomly generated given a size param-
eter. Each integer corresponds to a base: 0 - T(U), 1 - A, 2 -
G, 3 - C.

2. Search the genome for genes and create them The
genome is searched for given sequences that represent the
gene promoters. In real biological systems there are some
promoter sequences that appear in most genes of many or-
ganisms, called consensus sequences, and the more a se-
quence in a genome resembles them, the more efficient
the transcription. To achieve this, a threshold symboliz-
ing the binding strength between a RNA polymerase and
the genome, was set as a parameter. A sequence in the
genome, with the same size as the given promoter sequence,
is considered to be a valid promoter in the genome when
its percentage of match with the given sequence is equal or
above the threshold. Each time a valid promoter is found
the genome is searched for a termination sequence. When
such termination sequence, chosen to be a poly-A sequence
of adjustable size, has been found a gene is created. Each
gene consists of a promoter sequence, the coding sequence
and the regulatory region. The coding sequence is the region
located between the promoter and the termination sequence.
The regulatory region is the region located between the end
of the previous gene (after its termination sequence) and the
promoter (see Figure 3A).

3. Generate RNA transcript from the genes The RNA
transcript is generated by complementing the bases on the
coding sequence of the gene according to the pairing A-T
and C-G. In the four integer alphabet 1 and 0 are the com-

Figure 3: The HeRoN model. See text for an explanation.

plement of each other as are 3 and 2 (Figure 3A-B).
4. Splice the RNA transcript which generates the

mature mRNA and introns Splicing the RNA transcripts
means that each RNA transcript is searched for introns that
are removed from the sequence and stored into a list of com-
ponents called ncRNAs. Introns are detected by means of
two sequences, U1 left and U1 right, that simulate the role
of U1 srRNA molecule that has two highly conserved con-
sensus sequences complementary to the 5 and 3 ends of es-
sentially all mRNA introns (Zhang and Rosbash, 1999). The
new sequences created from the RNA transcripts with the in-
trons removed are called mRNA (Figure 3B-C).

5. Translate the mRNA into proteins Each mRNA
molecule is scanned for the start codon sequence (AUG).
When this sequence is found the mRNA is read three bases
at a time until a stop codon is found (UAA, UGA, or UAG).
Each three bases are translated into one amino acid accord-
ing to the genetic code table. The stop codon is not consid-
ered as part of the protein (Figure 3C-D).

6. Search the ncRNAs from miRNAs and create them
The model incorporates a mechanism of RNA interference
that regulates the stability of mRNA by triggering its
degradation. This mechanism was added to the model when
it was noticed that a large number of RNA transcripts did
not produce proteins because they missed the start codon.
Searches in biology literature for similar phenomena led to
the subject of non-coding/junk DNA. Junk DNA has been
a name given by researchers to large portions of DNA for
which no function has yet been identified, including introns
and large portions of intergenic sequences. Having found
evidence that genes considered to be junk DNA have a
regulatory influence (Martens et al., 2004) and that this kind
of DNA makes up to 95% of chromosomes, researchers
reversed their opinions on the usefulness of junk DNA,
changing its name to non-coding DNA. In particular, the
regulatory role of noncoding genes relates to the RNAi
mechanism. This mechanism of transcriptional gene silenc-
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ing is induced by the association between proteins and RNA.
The resulting molecules are called small interfering RNA
(siRNA), when they derive from exogenous sources (outside
the cell), or are called microRNA (miRNA), when they are
produced from non-coding genes in the cells own genome.
miRNAs are short single-stranded RNA stretches of 21 to
23 nucleotides that are processed from primary transcripts
known as pre-miRNA to short stem-loop structures called
pre-miRNA and finally to functional miRNA (Gregory
et al., 2006). The effect of this regulation mechanism is
that while some genes are transcripted at a normal rate
they are not expressed because they are degraded before
they leave the nucleus. To incorporate this influence in the
model it was determined that if the resulting protein has
no sequence, because the mRNA misses the start codon,
that mRNA molecule is considered to be non-coding and
therefore is added to the ncRNA list where the introns were
already stored. All ncRNAs are then scanned for hairpin
loops with a minimum length. This indicates the presence
of miRNAs that are then considered as another product in
the model (Figure 3C-E).

From the expression algorithm to the network
The expression algorithm described above creates a list of
products and stores their corresponding sequences and ref-
erences to the products from which they derived. To extract
the interaction network between these products it is neces-
sary to determine the bindings between them, namely be-
tween proteins and genes and between miRNAs and genes.
Finding the interactions between miRNAs and genes is sim-
ple since the two products are made of the same compo-
nents, nucleotides, and their binding is a simple match be-
tween complementary sequences. The other type of binding
involves elements that do not interact in a linear manner and
are made up of different components, amino-acids and nu-
cleotides. In biological systems the proteins ability to locate
and bind with certain DNA sequences depends not only on
the involved amino-acid and nucleotide sequences but also
on the protein’s three-dimensional structure and on the DNA
double stranded structure. Many solutions exist that try to
predict DNA-protein binding sites (Baker and Sali, 2001)
and this is still an open topic in Bioinformatics. In addition
to these approaches some authors find it important to ex-
amine the individual interactions between the amino-acids
and the nucleotides since underlying the bindings are the
discrete interactions between them (Hoffman et al., 2004).
Databases such as the Amino Acid-Nucleotide Interaction
Database (AANT) categorize amino-acid-nucleotide inter-
actions from experimentally determined protein-nucleic acid
structures. In our model a protein and a DNA sequence are
perfectly aligned and the statistical table of the entire AANT
database along with a binding threshold is used to determine
if they bind. For each amino-acid in the protein its binding
probability with the corresponding nucleotide in the DNA is

Aminoacid A(%) C(%) G(%) T(%)
Alanine (Ala, A) 24.2 17.3 24.0 24.6
Arginine (Arg, R) 19.6 24.1 35.7 12.2

Asparagine (Asn, N) 25.5 20.0 23.9 17.7
Aspartate (Asp, D) 13.3 34.2 37.0 1.5
Cysteine (Cys, C) 29.1 18.8 24.8 23.1

Glutamine (Gln, Q) 28.0 17.7 29.4 13.7
Glutamate (Glu, E) 19.1 34.8 33.0 4.8
Glycine (Gly, G) 20.1 22.9 32.1 17.0
Histidine (His, H) 25.3 16.2 37.7 14.2
Isoleucine (Ile, I) 21.4 26.4 30.8 11.4
Leucine (Leu, L) 9.5 31.1 30.2 19.4
Lysine (Lys, K) 23.7 22.8 30.7 16.3

Methionine (Met, M) 22.1 27.9 22.1 9.8
Phenylalanine (Phe, F) 17.7 24.1 40.5 17.7

Proline (Pro, P) 37.0 11.0 21.0 2.0
Serine (Ser, S) 28.2 20.9 27.2 19.7

Threonine (Thr, T) 24.6 20.2 27.8 23.1
Tryptophan (Trp, W) 14.4 30.2 24.8 21.8

Tyrosine (Tyr, Y) 28.4 27.4 23.6 15.0
Valine (Val, V) 25.0 35.3 20.0 1

Table 1: Statistical table of the entire AANT database.
Along with the name of the amino-acids are the conventional
three-letter and one-letter abbreviations.

given by the AANT statistic table. Given the interactions,
one of four methods, called average, maximum, minimum
and random, is used to compare them with the threshold (see
Figure 4).

Figure 4: Protein binding example. Each amino-acid-
nucleotide pair is searched for in the AANT statistic table
(see Table 1 for a complete description).

If using the average method an average of all the probabil-
ities is calculated. For the maximum and minimum methods,
the respective maximum or minimum probability is chosen.
For the random method the probability of a random amino-
acid-nucleotide pair, from the sequence, is chosen. In the
example of Figure 4 it was the V-G pair. The components
are said to bind if the resulting probability is above or equal
to the threshold.

The information gathered about the interaction between
the components is then used to create a graph representa-
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tion of the network where each gene creates many prod-
ucts, most of them ncRNAs and a single mRNA molecule.
Each mRNA either creates a protein or a miRNA molecule,
miRNA molecules can also derive from ncRNAs. All con-
nections starting at a miRNA molecule end at an mRNA
molecule and are repressive, while connections between pro-
teins and genes can be either activating or repressive (see
Figure 5).

Figure 5: Activation/deactivation relations between the dif-
ferent products. The positive and negative signs near the
edges represent, respectively, activation or deactivation of a
product. The black colored edges represent the regulatory
connections while the grey edges represent the “creation” of
a product.

Experimental Setup and Results
Now that the model has been described it is time to present
the experimental study that was carried out. Here we will be
concerned only with the topological properties of GRNs.

Parameter Used values
genome size 20000, 100000 and 500000
miRNA binding site size 4, 5, 6 and 7
inhibition rate 0, 0.25, 0.50 and 0.75
binding threshold 29, 32, 33 and 34
binding choice avg, max, min and rand

Table 2: Variable parametrization

Table 2 shows the variable parameterization used through-
out the experiments performed. The fixed parameters are:
sequence 0101 for the promoter, promoter match of at least
75%, sequence 1111 for the termination sequence, and a
binding site size of 6 for the proteins. Experiments were run
for all possible combinations of the ’used values’ mentioned
in Table 2 . Each combination of the variable parameters was
run 10 times. The initial set of active genes for each of the
runs was randomly determined from a uniform distribution.

Topology of the obtained networks
The different topology classes of networks, i.e., regular

lattice, small-world and random networks, arise from the
different ways large sets of elements connect. A network
where each node is connected to its nearest spatial neigh-
bors is the so called regular lattice. Starting with a regular

lattice and randomly rewiring a portion of the links creates
small-world networks. At the extreme random networks are
formed, where every pair of elements is connected at ran-
dom. Like most social and biological networks, such as the
World Wide Web, the immune system, the brain and ant
colonies, to name just a few examples, genetic regulation
networks possess certain non-trivial topological features.
For instance, while nodes on regular lattices have constant
degree and ordinary random networks have Poisson degree
distributions, it is found that many real-world networks have
degree distributions measurably different from these. This
strongly suggests that there are features of such networks
that would be missed if they were to be approximated by an
ordinary random graph or lattice (Newman et al., 2001), thus
many recent works on real-world complex systems focus on
the subject of small-world and scale-free networks. While
there are several statistical properties of graphs that may be
used to characterize their topology (e.g., average path length,
clustering coefficient), the work done on HeRoN concen-
trates on the degree distributions of the obtained networks.
Most frameworks, with very few exceptions (Newman et al.,
2001), for the study of graph statistical properties have been
developed for unipartite, undirected graphs. It is, however,
an important aspect for us to consider directed and hetero-
geneous graphs (graphs with nodes of different types), since
this is the case of the network graphs obtained with the
HeRoN model. One consequence of the graph being di-
rected is that nodes have two different kinds of edges, the
ones arriving at the node and the ones leaving the node -
these will be referred to, respectively, as input and output
connections. This is particularly important in analyzing the
degree distribution of the nodes and therefore nodes of dif-
ferent kinds will be analyzed separately in relation to input
and output connectivity.

Figure 6 and Figure 7 show the input and output degree
distributions for each kind of node for a 20,000 base long
genome on the left column, and for a 500,000 base long
genome on the right column. Each column refers to the
same network, obtained with a binding threshold of 29, ’avg’
binding choice, miRNA binding size of 6 and an inhibition
rate of 0. Table 3 gives the number of products of each kind
in networks of different sizes with this parameterization.

#genome #genes #mRNA/prot #ncRNA #miRNA
(8%) (6%) (80%) (1%)

20000 57 46 556 9
100000 253 194 2993 50
500000 1361 1043 14531 259

Table 3: Number of each kind of product for different
genome sizes, binding threshold = 29 and binding choice
= avg. The number of proteins is the same as the number of
mRNAs.

Whilst the ’genome size’ parameter does not seem to
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Figure 6: Histograms giving the degree distribution of
gene input and output connectivities for a 20,000 base
long genome, on the left column, and a 500,000 base long
genome, on the right column. (A) and (B) Gene input con-
nectivity distribution. (C) and (D) Gene output connectivity
distribution.
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Figure 7: Histograms giving the degree distributions of the
different species for a 20,000 base long genome, on the left
column, and a 500,000 base long genome, on the right col-
umn. (A) and (B) mRNA input connectivity distribution.
(C) and (D) Protein output connectivity distribution. (E) and
(F) miRNA output connectivity distribution.

qualitatively alter the connectivity distributions, as can be
seen by comparing the columns within Figure 6 and Fig-

ure 7, the two parameters ’binding threshold’ and ’bind-
ing choice’ determine the input connectivity distribution of
genes and the output connectivity distribution of proteins.
With a binding threshold of 29 and a ’max’ or ’avg’ binding
choice, a heavily left skewed distribution with a fat tail is
found for both the gene input and protein output connectiv-
ity (Figure 6B and 7D). These types of distributions are con-
sistent with studies on other complex systems with directed
graphs (Newman et al., 2001). The output distribution for
the miRNA (Figure 7F) has two peaks. The left most one is
the output distribution for the miRNA sequences that contain
the subsequence 30 (U1 left), while the rightmost peak is the
output distribution for the rest of the miRNA sequences. The
reason for this is that the miRNA binds with mature mRNA
sequences that have a low probability of containing the U1
left sequence because it is usually sliced with the introns.
mRNA molecules have the U1 left sequence when this se-
quence is not followed by an U1 right sequence in the RNA
transcript and therefore is not removed.

Regarding the gene output connectivity the shape of the
distribution (Figure 6D) is always maintained, because the
parameters that could alter it (promoter, promoter match,
termination sequence, left and right u1 and u1 match) were
kept fixed throughout the experiments. Figure 8 shows the
linear-log and the log-log plots for the gene output. On the
linear-log plot the distribution falls on a straight line, indi-
cating an exponential decay of the distribution of connectiv-
ity. On the log-log plot the distribution decays faster than a
power law would, since if the distribution had a power law
tail it would fall on a straight line on this plot.

Some authors have shown evidence for the occurrence
of three classes of small-world networks in real world net-
works: scale-free networks, characterized by a vertex con-
nectivity distribution that decays as a power law; broad-scale
networks, characterized by a connectivity distribution that
has a power law regime followed by a sharp cutoff like an
exponential or Gaussian decay of the tail; and single-scale
networks, characterized by a connectivity distribution with
a fast decaying tail, such as exponential or Gaussian. The
question of why this range of possible structures for small-
world networks exists is explained by the preferential attach-
ment of new nodes that gives rise to the power law distri-
butions. In the broad-scale and single-scale networks there
are constraints limiting the addition of new links (Amaral
et al., 2000). One constraint exists for the connection of new
nodes to genes that could account for the faster decay of
the tail of the gene output distribution. Genes have outputs
to two different types of nodes: mRNA nodes and ncRNA
nodes. While a gene only produces one mRNA, it can pro-
duce several ncRNAs and, as such, those connections are the
most significant in terms of the overall degree distribution.
Bigger genes have higher probability of producing several
ncRNAs but their ability to produce them decays each time
a ncRNA is produced because it shortens the sequence being
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searched (search for ncRNAs continues after the last found
ncRNA). As with the output of the genes, mRNAs receive
two kinds of inputs: each mRNA receives one single input
from a gene and possibly several inputs from miRNAs, so
the shape of the distribution (Figure 7B) depends, mainly,
on the miRNAs. Parameters that influence the input distri-
bution connectivity of the mRNAs are the genome size and
the miRNA binding site size. Figure 9 shows the linear-log
and the log-log plots of the mRNA input frequency. Similar
to the output connectivity of genes, the linear-log plot falls
on a straight line, with an exponential decay and the log-log
decays faster than a power law would, therefore indicating
that there may be constraints limiting the addition of new
links between the miRNAs and the mRNAs. Since bigger
mRNAs have higher probability of having more inputs, the
shape of the input distribution may be greatly influenced by
the size distribution of the mRNAs. The scale-free nature of
these networks is thus arguable.

Conclusions
The proposed model, HeRoN, introduces a new level of bi-
ological detail. The separation of the several processes and

(A)

(B)

Figure 8: (A) Linear-log plot of the gene output connectivity.
(B) Log-log plot of the gene output connectivity.

the representation of all the products involved in heteroge-
neous networks allowed, in particular, to extend the model
to incorporate a RNA interference mechanism. From the
networks obtained some interesting observations about their
topology and dynamics can be made. From the static point
of view, although many authors claim that the genetic reg-
ulatory networks have scale-free topologies, most of them
(Geard, 2004; Hallinan and Wiles, 2004; Watson et al., 2004;
Willadsen and Wiles, 2003) are not based on experimental
results for this concrete type of network but rather on other
biological networks, such as the protein-protein interaction
networks and metabolic networks. Others (Liebovitch et al.,
2006) use experimental mRNA concentration data to extract
the networks thus ignoring all regulation other than regula-
tion of transcription initiation. This could lead to misleading
results since the presence of an mRNA does not mean that
the protein it produces, which is a potential transcription fac-
tor, is actually synthesized, as other regulation mechanisms,
such as the miRNA negative regulation, may be acting on the
mRNA. A model that does not account for these mechanisms
may incorrectly assume regulations between genes that are
actually regulated by other products. Another question of

(A)

(B)

Figure 9: A Linear-log plot of the mRNA input connectivity.
B Log-log plot of the mRNA input connectivity.
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importance is that most models make a one-mode projection
of an intrinsically heterogeneous network, i.e., they assume
a network where all nodes are genes and the edges between
them represent regulation relations. When such one-mode
projection is made some information is obviously discarded
(Newman et al., 2001). As was observed in real-world sta-
tistical data of other problems, real complex systems do not
always have power law distributions because they are sub-
ject to constraints. In the HeRoN model we could not only
find degree distributions that are constrained but we also in-
troduced the study of degree distributions for some interme-
diate products.

This work, and the corresponding model, can be extended
in several directions. An important issue that must be ad-
dressed is its scalability. Experiments with genomes of re-
alistic dimensions should be performed. The genome of
the E.Coli would be a good starting point since it is one
of the smallest (4,600,000 bases long) and the most studied
genome available. Then, the model could be improved and
made more biological sound, by taking into account aspects
such as the concentration of products (a continuous variable)
and the time delays involved.

Finally, it would be interesting to observe how the alter-
native splicing of genes could alter the output degree distri-
bution of genes, proteins and miRNAs. The HeRoN model
would have to be extended to include this feature. Although
several interesting observations were made by analyzing the
degree distribution of the nodes, there are several other sta-
tistical properties that could be used to better understand
them. Future work should include a study on the cluster-
ing coefficient, the average path length between nodes, the
distribution of component (subgraph) sizes and the existence
and size of a giant-component.
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Abstract

We investigate aspects that control the Spatial Prisoner’s
Dilemma game sensitivity to the synchrony rate of the model.
Based on simulations done with the generalized proportional
and the replicator dynamics transition rules, we conclude that
the sensitivity of the game to the synchrony rate depends
almost exclusively on the transition rule used to model the
strategy update by the agents. We then identify the features
of these transition rules that are responsible for the sensitiv-
ity of the game. The results show that the Spatial Prisoner’s
Dilemma game becomes more and more sensitive for noise
levels above a given noise threshold. Below this threshold,
the game is robust to the noise level and its robustness even
slightly grows, compared to the imitate the best strategy, if a
small amount of noise is present in the strategy update pro-
cess.

Introduction
Spatial evolutionary games are used as models to study, for
example, how cooperation could ever emerge in nature and
human societies (Smith, 1982). They are also used as mod-
els to study how cooperation can be promoted and sustained
in artificial societies (Oh, 2001). In these models, a struc-
tured population of agents interacts during several time steps
through a given game which is used as a metaphor for the
type of interaction that is being studied. The population is
structured in the sense that each agent can only interact with
its neighbors. The underlying structure that defines who in-
teracts with whom is called the interaction topology. After
each interaction session, some or all the agents, depending
on the update dynamics used, have the possibility of chang-
ing their strategies. This is done using a so called transition
rule that models the fact that agents tend to adapt their be-
havior to the context in which they live by imitating the most
successful agents they know. It can also be interpreted as the
selection step of an evolutionary process in which the least
successful strategies tend to be replaced by the most suc-
cessful ones.

The discussion about using synchronous or asynchronous
dynamics on these models started with a paper by Huber-
man and Glance (1993). Synchronous dynamics means that,

at each time step, the revision of strategies happens for all
agents simultaneously, while this is not the case for asyn-
chronous dynamics. In that paper the authors contested the
results achieved by Nowak and May (1992) who showed that
cooperation can be maintained when the Prisoner’s Dilemma
game is played on a regular 2-dimensional grid by agents
which do not remember their neighbors’ past actions. Hu-
berman and Glance criticized the fact that the model used
in (Nowak and May, 1992) was a synchronous one, which
is an artificial feature. They also presented the results of
simulations where cooperation was no longer sustainable
when an asynchronous dynamics were used. After this work,
Nowak et al. (1994) tested their model under several con-
ditions, including synchronous and asynchronous dynamics
and showed that cooperation can be maintained for many
different conditions, including asynchronism. However, the
results are presented through system snapshot images, which
render it difficult to measure the way they are affected by
the modification from synchronous to asynchronous dynam-
ics. Recently, in (Newth and Cornforth, 2007), a similar sce-
nario was studied using various asynchronous update meth-
ods besides synchronous dynamics. The authors found that
the synchronous updating scheme supports more coopera-
tors than the asynchronous ones.

On the contrary, in (Grilo and Correia, 2007) we found
that, in the Spatial Prisoner’s Dilemma game, asynchronous
updating supports, in general, more cooperators than syn-
chronous updating. This conclusion was only possible be-
cause a large number of conditions was tested. Namely, we
used small-world networks as interaction topologies so that
the whole spectrum between regular and random networks
could be explored. We also used the generalized propor-
tional transition rule (see Section III), which allows us to
tune the level of noise present in the strategy update process.
We consider that there is noise when an agent fails to imi-
tate the strategy of its most successful neighbor. We found
that asynchronous updating is detrimental for cooperation
only for very small noise values. That is, for the majority of
the noise domain, asynchronous updating benefits coopera-
tion. Also, as we go from regular to random networks, asyn-
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chronous updating becomes beneficial to cooperation even
for very small noise values. In (Grilo and Correia, 2008)
we showed that the conclusions do not change if scale-free
networks (Barabasi and Albert, 1999) are used. We also
showed that the final outcome of the model is basically the
same whether a deterministic or a stochastic asynchronous
dynamics is used, which is in contrast with results reported
in (Gershenson, 2002) for random boolean networks.

The proportion of cooperating agents eventually achieved
in a spatial evolutionary game can be influenced by, for ex-
ample, the game that is being used, the interaction topology,
the transition rule or the update dynamics. The influence of
some of these aspects has previously been studied. For ex-
ample, in (Pacheco and Santos, 2005) the influence of the
interaction topology is examined. Also, in (Tomassini et al.,
2006) the influence of the interaction topology, the transi-
tion rule and the update dynamics in the Hawk-Dove game
are studied.

But, as far as we know, prior to this work, there has been
no explanation of the influence of the update dynamics in
the outcome of spatial evolutionary games. This work is
a step in that direction. Here, we identify the aspects that
control the Spatial Prisoner’s Dilemma game sensitivity to
asynchronism. Based on previous simulations performed
with the generalized proportional transition rule and new
ones done with the replicator dynamics transition rule, we
first conclude that the sensitivity of the Spatial Prisoner’s
Dilemma game to asynchronism depends almost exclusively
on the transition rule. We then identify the features of these
transition rules that are responsible for the sensitivity of the
game.

The paper is structured as follows: in Section II we de-
scribe the model used in our simulations. In Section III we
first compare the results achieved with the generalized pro-
portional and the replicator dynamics transition rules and
then we identify the features of these rules that influence the
sensitivity of the model to asynchronism. Finally, in Section
IV some conclusions are drawn and future work is advanced.

The Model
The Prisoner’s Dilemma Game
In the Prisoner’s dilemma game (PD), players can cooperate
(C) or defect (D). The payoffs are the following: R to each
player if they both play C; P to each if they both play D; T
and S if one plays D and the other C, respectively. These val-
ues must obey T > R > P > S and 2R > T +S. It follows
that there is a strong temptation to play D. But, if both play
D, which is the rational choice or the Nash equilibrium of
the game, both get less payoff than if they both play C, hence
the dilemma. For practical reasons, the payoffs are usually
defined as R = 1, T = b > 1 and S = P = 0, where b rep-
resents the advantage of D players over C ones when they
play the game with each other. This has the advantage that

the game can be described by only one parameter without
losing its essence (Nowak et al., 1994).

Interaction Topology
We use small-world networks (SWNs) (Watts and Stro-
gatz, 1998) as the interaction topology. We build SWNs
as in (Tomassini et al., 2006): first, a toroidal regular 2-
dimensional grid is built so that each node is linked to its 8
surrounding neighbors by undirected links; then, with prob-
ability φ, each link is replaced by another one linking two
randomly selected nodes. Parameter φ is called the rewiring
probability. Some works (Nowak et al., 1994) allow self-
links because it is considered that each node can represent
not a single agent but a set of similar agents that may interact
with each other. Here, we do not allow self-interaction since
we are interested in modeling nodes as individual agents.
Repeated links and disconnected graphs are also avoided.
The rewiring process may create long range links connecting
distant agents. For simplicity, we will refer to interconnected
agents as neighbors, even if they are not located at adjacent
nodes. By varying φ from 0 to 1 we are able to build from
completely regular networks to random ones. SWNs have
the property that, even for very small values of the rewiring
probability, the average path length between any two nodes
is much smaller than in a regular network, maintaining how-
ever a high clustering coefficient observed in many real sys-
tems including social ones.

Interaction and Strategy Update Dynamics
On each time step, agents first play a one round PD game
with all their neighbors. Agents are pure strategists which
can only play C or D. After this interaction stage, each agent
updates its strategy with probability α using a transition rule
(see next section) that takes into account the payoff of the
agent’s neighbors. The update is done synchronously by all
the agents selected to engage in this revision process. The α
parameter is called the synchrony rate and is the same for all
agents. This type of update dynamics is called asynchronous
stochastic dynamics (Fatès and Morvan, 2005). It allows us
to cover all the spectrum between synchronous and sequen-
tial dynamics. When α = 1 we have a synchronous model,
where all the agents update at the same time. As α → 1

n ,
where n is the population size, the model approaches se-
quential dynamics, where exactly one agent updates its strat-
egy at each time step.

Asynchronous stochastic dynamics models the fact that,
at each moment, more than one agent, but not necessarily all
of them, can update their strategy. Usually, asynchronism is
understood as sequential dynamics. As an example, in all
the works mentioned above, asynchronous dynamics means
sequential updating. However, the reality seems to lie some-
where between synchronism and sequentiality and, so, both
types of dynamics can be considered as artificial. In a pop-
ulation of interacting agents, many decision processes can
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occur at the same time but not necessarily involving all the
agents. If these were instantaneous phenomena we could
model the dynamics of the system as if they occurred one
after another but that is not usually the case. These pro-
cesses can take some time, which means that their output is
not available to other ongoing decision processes. Even if
we consider them as being instantaneous, the time that in-
formation takes to be transmitted and perceived implies that
their consequences are not immediately available to other
agents. Asynchronous stochastic dynamics also models the
fact that, at each time step, the number of agents updating
their strategy is not always the same, which is a reasonable
assumption. With this type of dynamics, this number fol-
lows a binomial distribution with mean α. Apart from these
considerations, as we will see in the following sections, the
fact that the α parameter allows us to explore intermediate
levels of asynchronism is also useful in the analysis of the
influence of this feature.

Simulations Setup
All the simulations were performed with populations of
50×50 = 2500 agents, randomly initialized with 50% of Cs
and 50% of Ds. When the system is running synchronously,
i.e., when α = 1, we let it first run during a period of 900 it-
erations which, we confirmed, is enough to pass the transient
period of the evolutionary process. After this, we let the sys-
tem run for 100 more iterations and, at the end, we take as
output the average proportion of cooperators during this pe-
riod, which is called the sampling period. When α #= 1
the number of selected agents at each time step may not be
equal to the size of the population and it may vary between
two consecutive time steps. In order to guarantee that these
runs are equivalent to the synchronous ones in what concerns
to the total number of individual updates, we let the system
first run until 900×2500 individual updates have been done.
After this, we sample the proportion of cooperators during
more 100×2500 individual updates and we average it by the
number of time steps needed to do these updates. For each
combination, 30 runs were made and the average of these
runs is taken as the output.

Simulation Results
In our first simulations (Grilo and Correia, 2007, 2008),
we used, a generalization of the proportional transition rule
(GP) proposed in (Nowak et al., 1994). Let Gx be the aver-
age payoff earned by agent x, Nx be the set of neighbors of
x and cx be equal to 1 if x’s strategy is C and 0 otherwise.
According to this rule, the probability that an agent x adopts
C as its next strategy is

pC(x, K) =
∑

i∈Nx∪x ci(Gi)
1
K

∑
i∈Nx∪x(Gi)

1
K

, (1)

Parameter Values
φ 0 (reg.), 1 (rand.), SW: 0.01, 0.05, 0.1
α 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
b 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2
K 0, 1/100, 1/10, 1/8, 1/6, 1/4, 1/2, 1

Table 1: Parameter values used in the simulations.

where K ∈ ]0,+∞[ can be viewed as the noise present in
the strategy update process. Noise is present in this pro-
cess if there is some possibility that an agent imitates strate-
gies other than the one used by its most successful neigh-
bor. Small noise values favor the choice of the most suc-
cessful neighbors’ strategies. Also, as noise diminishes, the
probability of imitating an agent with a lower payoff be-
comes smaller. When K → 0 we have a deterministic best-
neighbor rule such that i always adopts the best neighbor’s
strategy. When K = 1 we have a simple proportional update
rule. Finally, for K → +∞ we have random drift where
payoffs play no role in the decision process. For the mo-
ment, our analysis considers only the interval K ∈]0, 1]. In
this interval the decision process is strongly guided by the
payoffs earned by the agents.

Each simulation is a combination of the φ, α, b and K
parameters, and all the possible combinations of the values
shown in Table 1 were tested. As Fig. 1 illustrates, when
the GP rule is used, in situations where both cooperation
and defection coexist, the level of cooperation can change
significantly as we change α. For given α and b values, the
levels of cooperation may be different when distinct φ and
K values are used. Also, the exact way how the model reacts
to α changes may change as well. However, no matter the φ
and K values used, there is a common qualitative behavior:
the model is sensitive to changes in the synchrony rate α.
Due to this and space limitations we only show results for
φ = 0.1, inside the small world regime.

After experimenting with the GP rule, we also ran simula-
tions with one of the most popular transition rules, the repli-
cator dynamics rule (RD) (Hofbauer and Sigmund, 1998),
which, when used on structured populations, is defined in
the following way (Tomassini et al., 2006): the probabil-
ity p(sx → sy) that an agent x, with strategy sx and aver-
age payoff Gx, imitates a randomly chosen neighbor y, with
strategy sy and average payoff Gy , is equal to:

p(sx → sy) = f(Gy −Gx) =






Gy−Gx

b if Gy −Gx > 0

0 otherwise,
(2)

where b is the largest possible payoff difference between
two players in a one shot PD game. As Fig. 2 illustrates,

Artificial Life XI 2008  214 



Figure 1: % of cooperators for φ = 0.1 and K = 1 (GP
rule).

when the RD rule is used, the level of cooperation is ap-
proximately constant as we change the synchrony rate α. As
for the GP rule, the qualitative behavior of the model does
not change no matter the interaction topology used.

Figure 2: % of cooperators for φ = 0.1 (RD rule).

From these results, it follows that the sensitivity of the
model to the synchrony rate depends almost entirely on the
transition rule that is used. This brings us to the question we
try to answer with this work: which features of these transi-
tion rules are responsible for the Spatial PD’s game sensitiv-
ity to the synchrony rate? After describing the function we
use to measure the sensitivity of the model to the synchrony
rate, we will start by looking to one of these features: payoff
monotonicity.

Sensitivity Measure
We want to measure the sensitivity to the synchrony rate for
situations like, for example, the one of Fig. 1, where φ and
K are fixed. Let C(φ, R, bi, αj) be the proportion of co-

operators achieved for specific input parameters, where R
represents the input parameter set of the transition rule (for
example, for the GP rule R = {K}). We first compute, for
each b value, the standard deviation of the proportion of co-
operators achieved along all α values. We then sum these
standard deviations, which gives us the overall sensitivity
for a specific combination of φ and R values:

s(φ, R)=
10∑

i=0

√√√√ 1
10

10∑

j=1

(C(φ, R, bi, αj)−C(φ, R, bi))2, (3)

where bi = 1 + 0.1i and αj = 0.1j. This measure com-
presses the results obtained for given φ and R parameters in
a single value, which may lead to some loss of information.
Therefore, whenever necessary, we will complement the re-
sults obtained with equation 3 with an analysis of the data
from which the sensitivity values were derived.

Payoff Monotonicity
A transition rule is said to be payoff monotonic if it forbids
the imitation of agents with smaller payoffs (Szabó, 2007).
Looking at equations (1) and (2) we easily see that, while
the RD rule is payoff monotonic, the GP rule is not (except
when K → 0). Given this, we first modified the RD rule
in order to turn it into a non-payoff monotonic rule. The
modified rule is as follows:

p(sx → sy) = f(Gy −Gx, M) =






(1− 1
M )Gy−Gx

b + 1
M if Gy −Gx > 0

1
M − 1

M
Gx−Gy

b otherwise,
(4)

where 1
M is the probability that x imitates y when Gx = Gy .

M ∈ [1,+∞[ can be viewed as the payoff monotonicity de-
gree: the bigger M , the smaller the probability that x imi-
tates an agent with a lower payoff. We refer to this rule as
non-payoff monotonic RD (NPMRD).

Fig. 3 shows the sensitivity of the model calculated as in
equation 3. It shows that the sensitivity grows up to 1

M =0.3
and decreases after this value, although staying higher than
the sensitivity of the standard RD rule. This means that the
RD rule becomes sensitive to the synchrony rate only if it is
non-payoff monotonic. But, if we look at Fig. 4, where the
proportion of cooperators is depicted for b = 1, we can see
that, for situations where cooperators and defectors coexist,
the sensitivity continues to grow even for 1

M > 0.3. That is,
in these situations the influence of the synchrony rate in the
output of the system grows as 1

M grows.
After this, we modified the GP rule in order to verify if

its sensitivity to the synchrony rate is also due to the fact
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Figure 3: Sensitivity of the NPMRD rule to the synchrony
rate as a function of 1

M , for φ = 0.1.

Figure 4: % of cooperators for φ = 0.1 and b = 1 (NPMRD).

that agents can imitate a neighbor with a lower payoff. We
will refer this rule as payoff monotonic GP (PMGP). Before
describing PMGP, we recall that the GP rule takes the sum
of the payoffs of C/D agents instead of treating the strat-
egy/payoff of each neighbor individually. Putting it another
way, the GP rule models a competition between two strate-
gies (C and D) so that the winning probability is proportional
to the sum of the payoffs of the agents using each strategy.
The PMGP rule applies the original GP rule, eq. (1), only if
one of the two following conditions is true:

if GCs < GDs and sx = C, (5)

if GCs > GDs and sx = D, (6)

where GCs and GDs are, respectively, the sums of the pay-
offs of C and D neighbors (including the payoff of the agent
to be updated x), each one powered to 1

K . Agent x keeps its
strategy if none of these conditions is true.

Fig. 5 shows that the PMGP rule becomes much less sen-
sitive to α changes than the original version for K > 0.1.
Just as an example, compare Fig. 1 with Fig. 6: even taking
into account some significant standard deviations in the pay-
off monotonic case, the difference in sensitivity between the
two situations is clear. The divergence for K > 0.1 means
that, above this value, payoff monotonicity also plays an im-
portant role in the insensitivity of the GP rule to changes
in the synchrony rate, as it does with the standard RD rule.
Stating it from the opposite perspective, when agents are al-
lowed to imitate less successful strategies, the model’s sen-
sitivity grows as this possibility increases. Given that the
probability of choosing less successful strategies grows with
the noise level, this means that high noise levels increase the
model sensitivity to the synchrony rate.

But, Fig. 5 also shows that, for K <= 0.1, the sensi-
tivity of the PMGP rule stops diverging from the sensitivity
of the original GP rule. It also shows that payoff mono-
tonicity is not the only force that influences the sensitivity of
the model to the synchrony rate. Notice that the sensitivity
of the PMGP rule also varies as we change the noise level.
That is, even when we prevent the imitation of less success-
ful strategies, the model’s sensitivity continues to vary with
noise: it grows as the noise level decreases. Therefore, there
must be another feature related to the noise level that also
influences the model’s sensitivity, although less than payoff
monotonicity. We address this problem in the next section.

Figure 5: Sensitivity of the GP and PMGP rules to the syn-
chrony rate as a function of K, for φ = 0.1.
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Figure 6: % of cooperators for φ = 0.1 and K = 1 (PMGP
rule).

Imitate the Best Tendency

Given that, with the PMGP rule, agents cannot imitate less
successful strategies, what other forces influence the sensi-
tivity of the Spatial PD game? If we analyze the original GP
rule, we see that the probability of choosing a strategy with
a lower payoff becomes very low as K approaches 0. That
is, the payoff monotonicity degree increases as K decreases.
On the other hand, as K decreases, the tendency to imitate
the wealthiest neighbors is increased for both the original
and the modified GP rule. Therefore, the two rules become
more and more similar as K is decreased. In fact, when
K → 0, the two rules become one and the same determinis-
tic rule: choose the strategy used by the best neighbor (see
Fig. 5). This explains why the the two rules’ sensitivities are
similar for K < 0.1.

The above reasoning suggests that, besides payoff mono-
tonicity, the “imitate the best tendency” level also influences
the sensitivity of the Spatial PD game to the synchrony rate.
More specifically, it suggests that the sensitivity of the model
increases with the “imitate the best tendency” level. This
could explain why the sensitivity of the model slightly in-
creases for K values near 0 when the original GP rule is
used (see Fig. 5). In order to verify this hypothesis, and
given that it is based only on results achieved with the GP
rule, we now turn our attention again to the RD rule. The
goal is to verify if the ”imitate the best tendency” level also
influences the sensitivity of the model when this rule is used.

The first modification we have done to the RD rule was to
change the way the neighbor y is chosen: each neighbor of
the updating agent x has a given probability 0 < θ ≤ 1 of
entering a tournament. After this, the wealthiest agent in the
tournament is selected and becomes the candidate neighbor
y. θ represents the tendency of x to select its best neigh-
bors. For example, when θ = 1, y is always the wealthiest
neighbor of x.

Once defined the way of choosing y, we still have no to-
tal control on x’s “imitate the best tendency”. Notice that,
in the standard RD rule, p(sx → sy) only depends on the
difference Gy −Gx. That is, we have no control on the sen-
sitivity of x to the payoff difference between the two agents.
Given this, we further modified p(sx → sy) in the following
way:

p(sx → sy) = f(Gy −Gx, S) =






(Gy−Gx

b ) 1
S if Gy −Gx > 0

0 otherwise,
(7)

where the sensitivity of x to Gy − Gx is given by S ∈
[1,+∞[: for the same payoff difference, the larger S, the
bigger the probability that x imitates y. With these two
modifications we can cover all the space between the best
neighbor rule (θ = 1, S = +∞) and the standard RD rule
(θ ≈ 1

|Nx| , S = 1). We will refer to this rule as extended RD
(ERD).

Fig. 7 shows the sensitivity of the ERD rule calculated
as in equation 3. As can be seen in the chart, excepting
some small fluctuations, the sensitivity of the model when
the ERD rule is used grows as both θ and S are increased.
This means that, as for the GP rule, a strong “imitate the
best tendency” level also increases the RD’s rule sensitivity
to the synchrony rate.

Neighborhood Monitoring
There is yet another feature in which GP and RD differ:
while the GP rule models a complete monitoring of the
neighborhood (because all the neighbors’ payoffs are con-
sidered), the RD rule models a partial neighborhood moni-
toring (only the payoff of one neighbor is considered). No-
tice that, despite the fact that the above described variant
ERD allows a variable neighborhood monitoring, it consid-
ers only the payoff of one agent. Thus, we also modified the
two rules in order to verify if this feature has some influence
on the sensitivity to α.

The GP rule was modified in the following way: each
neighbor of x has a given probability β of being consid-
ered in equation 1 (the updating agent x is always consid-
ered). The β parameter can be viewed as the neighborhood
monitoring level. We will refer to this rule as partial neigh-
borhood monitoring GP (PNMGP). Fig. 8 shows that the
PNMGP rule is less sensitive to the synchrony rate than the
original GP rule by a factor of approximately 1/2, main-
taing, however, a similar qualitative behavior.

The RD rule was modified so that, as in the case of the
original GP rule, the payoff of all the neighbors contribute
to the decision of the updating agent x. According to the
complete neighborhood monitoring RD rule (CNMRD), the
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Figure 7: Sensitivity of the ERD rule for φ = 0.1 as a
function of θ and S. θ = 1

|Nx| means that only a can-
didate neighbor y is randomly chosen as in the standard
RD rule. Therefore, the point s(θ = 1

|Nx| , S = 0) cor-
responds to the sensitivity of the standard RD rule (Fig.
2). s(θ = 1, S = +∞) = 0.312, which is very close to
s(K = 0) = 0.314 of Fig. 5. Both points correspond to the
best neighbor rule.

probability p(sx → sa) that an agent x, with strategy sx,
changes its strategy to an alternative strategy sa, where sa =
D if sx = C and vice-versa, is equal to:

p(sx → sa) =






GX−GA
bkA

if GX −GA > 0

0 otherwise,
(8)

where GX and GA are the sum of the average payoffs earned
by the neighbors of x playing, respectively, strategy sx and
sa (including x), and kA is the number of neighbors with
strategy sa. Fig. 9 shows the proportion of cooperators
achieved with this rule when φ = 0.1. The sensitivity to
the synchrony rate for this situation is equal to 0.030, which
is about the double of the sensitivity of the standard RD rule,
0.014, for the same situation (Fig. 2). This result is consis-
tent with the one achieved with the PNMGP and GP rules.
However, for the two situations, that is, for the GP versus
PNMGP and the RD versus CNMRD rules, the difference
in sensitivity is partly due to the fact that, with the com-
plete neighborhood monitoring versions, there are more b
values for which Cs and Ds coexist (compare, Fig. 2 and
Fig. 9) than for the partial neighborhood monitoring ver-
sions. Therefore, more work must be done, namely explor-
ing intermediate levels of neighborhood monitoring, in order
to determine the real influence of the neighborhood monitor-
ing level over the model’s sensitivity to the synchrony rate.

Figure 8: Sensitivity of the PNMGP rule to the synchrony
rate as a function of K, for φ = 0.1 and β = 0.1.

Conclusions and Future Work
In this work we identified the features that determine the
sensitivity of the Spatial Prisoner’s Dilemma game to the
synchrony rate. We first found that the sensitivity of the
model depends almost completely on the transition rule used
to model the strategy update process. For this, we used the
generalized proportional and the replicator dynamics rules
which are, respectively, sensitive and insensitive to the syn-
chrony rate no matter the interaction topologies used in the
simulations. We then used some variants of these rules in
order to identify the features that make them responsible for
the sensitivity of the model.

The results can be summarized in the following way: the
lower the payoff monotonicity degree and the higher the
“imitate the best tendency” level, the more sensitive is the
game to the synchrony rate. But, given that these are just
consequences of the noise level, we can state the results in
the following way: on the one hand, the Spatial Prisoner’s
Dilemma game becomes more and more sensitive for noise
levels above a given noise threshold (0.1 in the GP transition
rule). On the other hand, the game is robust to small noise
levels, and its robustness even grows, compared to the im-
itate the best strategy, if a small amount of noise is present
in the strategy update process. The line corresponding to
the original GP rule in Fig. 5 illustrates this well. As far
as we know, this is the first time such a result is achieved.
We stress that these results are the same for all the interac-
tion topologies we used in the simulations, which go from
regular to random networks.

This result indicates that the noise level may play an im-
portant role in the robustness of real dynamical systems
where social dilemmas exist. More precisely, it suggests that
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Figure 9: % of cooperators for φ = 0.1 (CNMRD rule).

a moderate noise level can enhance the system’s robustness
to small variations on the underlying conditions. On the
other hand, significant noise levels make a dynamical sys-
tem too sensitive to small perturbations. More work must be
done, however, in order to verify if this can be generalized
to perturbations other than the ones related to the synchrony
rate.

Future extensions to this work will explore asynchronous
stochastic dynamics with other games in order to verify if
the results achieved with the Prisoner’s Dilemma game can
be further generalized. The results achieved in (Tomassini
et al., 2006) with the Hawk-Dove game, where the best-
neighbor (K → 0), the simple proportional (K = 1) and the
replicator dynamics transition rules, as well as synchronous
and sequential updating were used, seem to indicate that,
also in this game, the transition rule is what determines the
sensitivity of the model. However, only by exploring inter-
mediate asynchronism and noise levels we can confirm this.
Other transition rules, as the Sigmoid transition rule (Szabó,
2007) and interaction topologies, as the scale-free network
model, will also be explored.

Finally, even if we now know that the noise level of the
transition rule is the key feature in what concerns the sen-
sitivity of the Spatial Prisoner’s Dilemma game to the syn-
chrony rate, we still do not know why it influences the sen-
sitivity of the model as it does. Trying to explain this will be
one of the main directions of our future work.
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Abstract

The categorical semantics of quantum protocols proposed by
Abramsky and Coecke reveals that a prearranged quantum
entanglement brings a strange quantum information flow in
the quantum teleportation protocol. Their formal argument
leads us to the distinction between an information flow se-
quence and a causal sequence on the same event. If this dis-
tinction is applied to information processing biological net-
works, we can claim that a prearranged biological feedback
can play the same role as the quantum entanglement on the
emergence of a specific local structure of networks. The aim
of this paper is to provide a first step toward formal arguments
on changes in biology without the external time parameter.

Introduction
If something is arranged in advance and if it works well, an
apparently diffi cult or non-intuitive event can occur. A clear
example of such a phenomenon is the quantum teleportation
(Bennett et al., 1993; Nielsen and Chuang, 2000), in which
a prearranged entangled pair of qubits allows an arbitrary
quantum bit to be transferred from one site to the other site
by a classical communication. In this paper we claim that
biological feedbacks also play a role in the above mentioned
type of phenomena. This paper is an engagement of two re-
cent works. One is categorical semantics of quantum proto-
cols by Abramsky and Coecke (2004), the other is algebraic
study of biological networks by the author (Haruna, 2008;
Haruna and Gunji, 2008), which is also based on category
theory (Mac Lane, 1971).
Abramsky and Coecke (2004) clarifi es the nature of quan-

tum information flow by recasting the standard axiomatic
quantum mechanics due to von Neumann (1932). What is
the most relevant to us is that their formalism enables us
to distinguish between an information flow sequence and a
causal sequence on the same event. Our application of their
result to biological networks immediately follows from this
distinction.
The problem of prearrangement is central to changes in

the realm of biology since biological changes including de-
velopment and evolution are in general the process of impos-
ing new constraints on the preceding constraints (Matsuno,

1989; Salthe, 1993; Kauffman et al., 2008). Matsuno (1989)
argues that changes in biology could be described as the
process of equilibration toward tentative fi nal causes. Since
the propagation speed of interactions in biological systems
cannot be regarded as infi nite, the tentative fi nal causes can
change as equilibration proceeds. Preceding equilibration
constrains and triggers a new equilibration. Salthe (1993)
considers evolution and development of hierarchical sys-
tems in terms of how the lower and upper levels constrain
the dynamics of the focal level of a given system. Recently
Kauffman et al. (2008) regards constraints as information for
biological organizations to maintain themselves and evolve.
Cascades of constraints lead to changes in biological orga-
nizations.

Biological feedback will be a typical example of prear-
rangement in biological systems. The term ‘feedback’ im-
plies that succeeding events in a system have an impact on
upstream processes in the system. Hence at least a ‘path’ for
the feedbackmust be prearranged so that the feedbackworks
effectively. We do not defi ne what is prearrangement in bi-
ological systems in general but involve it with our formal
argument implicitly. In particular we consider a biological
feedback in information processing biological networks.

Our previous study (Haruna, 2008; Haruna and Gunji,
2008) on biological networks considers how to describe net-
work motifs found in information processing biological net-
works. Network motifs are defi ned as local patterns that are
found in real networks signifi cantly more often than in an
ensemble of suitably prepared random networks (Milo et al.,
2002). They are considered to have certain biological func-
tions (Alon, 2006, 2007). In information processing biolog-
ical networks, each node in a network is considered to be an
information processing unit. The direction of an arrow in a
network indicates the direction of information flow. If a pat-
tern of information processing is specifi ed then we can de-
duce that how the information processing pattern constrains
the local structure of networks (Haruna, 2008; Haruna and
Gunji, 2008). However, it is not yet clear that how informa-
tion flows at the network level is related to a causal sequence
that brings the emergence of a network motif. We show that
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a simple application of the category theoretical formalism
of fi nite-dimensional quantum mechanics by Abramsky and
Coecke (2004) can reveal this problem.
In this paper category theory is the main tool to argue the

formal similarity between quantum entanglement and bio-
logical feedback. We believe that the generality of category
theory is sometimes helpful to reveal unexpected common
structure between different areas. The argument presented
in this paper would provide a concrete example of such use-
fulness of category theory.
This paper is organized as follows. The next section is a

brief overview of the quantum teleportation protocol and its
categorical description by Abramsky and Coecke. In section
III we review our algebraic study of network motifs. Section
IV is the main part of this paper, where we show that how
a causal sequence in an information processing biological
network is reconstructed by a result obtained in the categor-
ical description of quantummechanics. In section V we give
conclusions.

Categorical description of quantum
teleportation

In this section we briefly review the quantum teleportation
protocol (Bennett et al., 1993) and its category theoretical
description (Abramsky and Coecke, 2004). The presentation
here is minimal enough for the aim of this paper. For further
details see the references. See also Coecke (2004).
The quantum teleportation protocol enables one to trans-

fer an unknown quantum state from a source A to a re-
mote target B by only two bits classical communication
between them. The protocol involves three qubits a, b and
c. Initially qubit a is in a state |ϕ〉 which is a unit vector
in two-dimensional complex Hilbert space H = {α|0〉 +
β|1〉|α,β ∈ C}. Qubits b and c are prearranged as an en-
tangled state, 1√

2
(|00〉 + |11〉), which is a unit vector in the

tensor product H ⊗ H. We abbreviate |i〉 ⊗ |j〉 as |ij〉 for
i, j = 0, 1. Entangled states are defi ned as states that cannot
be written in the form |φ1〉⊗ |φ2〉 for any choice of |φ1〉 and
|φ2〉. Entangled states play important roles in the fi eld of
quantum information (Nielsen and Chuang, 2000).
We relocate the three qubits so that a and b are at the

source A and c is at the target B. Now we perform so
called Bell-base measurement on a and b. Each projector
Pi(i = 1, 2, 3, 4) associated with Bell-base measurement
projects onto one of the one-dimensional subspaces spanned
by the following vectors:

b1 =
1√
2
(|00〉 + |11〉), b2 =

1√
2
(|01〉 + |10〉),

b3 =
1√
2
(|00〉 − |11〉), b4 =

1√
2
(|01〉 − |10〉).

The four outcomes of the measurement occur with equal
probability, 1

4
. We observe the outcome of the measurement

a b c

|00>+|11>

Pi time

Ui

Figure 1: Quantum information flow in the teleportation pro-
tocol. The dashed arrow represents the quantum information
flow.

and send it from A to B. This requires classical two bits.
Based on this classical information, we ‘correct’ the qubit c
by performing one of the following unitary transformation
on it:

U1 =

(

1 0
0 1

)

, U2 =

(

0 1
1 0

)

,

U3 =

(

1 0
0 −1

)

, U4 =

(

0 −1
1 0

)

.

After the unitary correction, one can see that the state of c is
|ϕ〉.
For each observational branch, the quantum information

flow seems to be ‘acausal’ as shown in Fig.1. Abramsky and
Coecke (2004) proves that such a strange character of the
quantum teleportation protocol can be captured at a more
abstract level independent of the classical information flow
by reformulating the fi nite-dimensional quantum mechan-
ics from category theoretical point of view. A key point is
that they distinguish two type of measurements appearing in
the quantum teleportation protocol: one is the preparation of
quantum states and the other is the indeterministic observa-
tion. These two type of measurements can be clearly dis-
tinguished by the notion of compact closed category (Kelly
and Laplaza, 1980).
A symmetric monoidal category is a category C equipped

with a tensor product

−⊗− : C × C → C,

a unit object I and natural isomorphisms

lA : A ∼= I ⊗ A, rA : A ∼= A ⊗ I,

aA,B,C : A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C,

sA,B : A ⊗ B ∼= B ⊗ A
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for objects A, B, C in C. These natural isomorphisms are
required to satisfy certain coherence conditions (Mac Lane,
1971).
The defi nition of compact closed category by Kelly and

Laplaza (1980) is as follows. A category C is a compact
closed category if it is a symmetric monoidal category such
that for each object A there are a dual object A∗, a unit

ηA : I → A∗ ⊗ A

and a counit

εA : A ⊗ A∗ → I.

These data are required to satisfy the commutative diagram

A
rA−−−−→ A ⊗ I

1A⊗ηA−−−−−→ A ⊗ (A∗ ⊗ A)

1A





$

aA,A∗,A





$

A
l−1

A←−−−− I ⊗ A
εA⊗1A←−−−− (A ⊗ A∗) ⊗ A

and the dual one for A∗. In other words, if a symmetric
monoidal category C is seen as a bicategory with a single 0-
cell, the 1-cells being the objects of C with the tensor product
as their composition and the 2-cells being the morphisms
of C, the above conditions say that each object A of C has
a right adjoint A∗. The required diagrams are ‘triangular
identities’.
The monoidal category of fi nite-dimensional vector space

over a fi eld is compact closed. This example corresponds to
fi nite-dimensional quantummechanics. The category of sets
and relations with cartesian product (Rel,×) is also com-
pact closed. This example is our main consideration in this
paper. In (Rel,×), a one-point set {∗} is the unit object.
For a set X , its dual X∗ is itself, X∗ = X . The unit for a
set X is ηX ⊆ {∗}× (X × X) given by

ηX = {(∗, (x, x))|x ∈ X}.

Similarly, the counit forX is

εX = {((x, x), ∗)|x ∈ X}.

The name !f" and coname #f$ of a morphism f : A →
B in a compact closed category are defi ned by the following
diagrams:

A∗ ⊗ A
1A∗⊗f−−−−→ A∗ ⊗ B

ηA

%





∥

∥

∥

I
!f"−−−−→ A∗ ⊗ B

A ⊗ B∗ #f$−−−−→ I
∥

∥

∥

εB

%





A ⊗ B∗ f⊗1B∗−−−−→ B ⊗ B∗

In particular, we have ηA = !1A" and εA = #1A$.
In the following we will see that a name corresponds to

a preparation of an entangled quantum state and a coname
corresponds to an observational branch resulting from the in-
determinism of quantum measurements (Abramsky and Co-
ecke, 2004).
For a morphism ρ : X → Y in (Rel,×) we have

!ρ" = {(∗, (x, y))|xρy, x ∈ X, y ∈ Y },
#ρ$ = {((x, y), ∗)|xρy, x ∈ X, y ∈ Y }.

The compositionality lemma proved in (Abramsky and
Coecke, 2004) is the most signifi cant for our argument. It
says that the following diagram commutes in any compact
closed category:

A
f−−−−→ B

g−−−−→ C

rA





$

l−1

C

%





A ⊗ I
1A⊗!g"−−−−−→ A ⊗ B∗ ⊗ C

#f$⊗1C−−−−−→ I ⊗ C

The compositionality lemma captures the quantum infor-
mation flow in the quantum teleportation protocol at an ab-
stract level. The lemma yields the equation

U ◦ (l−1

A ◦ (#f$ ⊗ 1A)) ◦ ((1A ⊗ !g") ◦ rA) = U ◦ g ◦ f,

where all morphisms U, g, f have the same domain and
codomain A (Fig.2). The original quantum teleportation
protocol requires U ◦ g ◦ f = 1A, however, any compo-
sition of morphisms in a compact closed category enjoys the
inversion of the order of composition.
The right hand side of the above equation represents the

sequence of quantum information flow on one hand, the left
hand side represents the causal sequence of quantum mea-
surements and a unitary transformation on the other hand.
This distinction between an information flow sequence and
a causal sequence is the essential point of our application
of the compositionality lemma to biological networks in the
following sections.

Algebraic description of network motifs
Network motifs are local patterns in networks that are con-
sidered to have certain biological functions (Milo et al.,
2002; Alon, 2006, 2007). In particular, a four-nodes network
motif called bi-fan (Fig.3) is found ubiquitously in informa-
tion processing biological networks such as gene transcrip-
tion regulation networks, signal transduction networks and
neuronal networks (Milo et al., 2002; Alon, 2006). In this
section we explain how the bi-fan motif emerges from an
information processing pattern in a network (Haruna, 2008;
Haruna and Gunji, 2008).
A node in an information processing network is consid-

ered to have an information processing ability. We assume
that it has a specifi c internal structure that represents how
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Figure 2: The essential feature of the quantum information
flow can be captured in any compact closed category.

Figure 3: A network motif bi-fan.

it processes information. A simple but non-trivial internal
structure considered here consists of two distinct nodes and
an arrow between the two nodes:

• → •

The source node, the arrow and the target node are consid-
ered to represent reception of information, transformation
of information and sending of information, respectively. For
example, each node in a gene transcription regulation net-
work is a gene or a protein coded by the gene. They together
represent a single node. Hence we can consider information
processing in each node: possible regulations from other
proteins ( reception of information), synthesis of the protein
from the gene via the transcription and translation processes
(transformation of information) and possible regulations of
other genes by the protein (sending of information).
If two nodes with this internal structure are connected by

an arrow in the network, this connection by the arrow in the
network is represented by a pattern shown below, in which
the target in the internal structure of the source node is iden-
tifi ed with the source in the internal structure of the target
node:

• → • → •

Again in gene transcription regulation networks, each arrow
in a network indicates a regulation from the source gene to
the target gene. The protein synthesized by the source gene

f

f g

g

R

Figure 4: An arrow with its source and target nodes in a
network is an image ofM by R (See text).

is responsible for the regulation and is included in both send-
ing of information at the source gene and reception of infor-
mation at the target gene. This motivates us to introduce the
above pattern.
We call the pattern information processing pattern, which

is referred to as M in what follows. Thus an arrow with its
source and target nodes in the network can be seen as the
image ofM by a graph transformationR defi ned as follows
(Fig.4).
Let G = (AG, OG, ∂G

0 , ∂G
1 ) be a directed graph, where

AG is a set of arrows, OG is a set of nodes and ∂G
0 and

∂G
1 are maps from AG to OG. ∂G

0 sends an arrow to its
source. ∂G

1 sends an arrow to its target. We defi ne RG =
(ARG, ORG, ∂RG

0 , ∂RG
1 ) as

ARG = {(f, g) ∈ A2

G|∂G
1 f = ∂G

0 g}, ORG = AG,

∂RG
0 (f, g) = f, ∂RG

1 (f, g) = g.

The graph transformation R can be seen as a functor from
the category of directed graphs Grph to itself. The directed
graphRG is so called the line graph of G.
In general, we consider the constraint to a local pattern F

in a network imposed by the information processing pattern
M as that the local pattern F is isomorphic to an image ofR,
that is, we can write F ∼= RG for some G. It can be shown
that the condition is equivalent to ηF : F ∼= RLF , where
L is a left adjoint to R and η is the unit of the adjunction
(Haruna and Gunji, 2008). It is proved that for any informa-
tion processing patternM we can construct a corresponding
adjoint pair (L, R) (Haruna, 2008). However, the condition
ηF : F ∼= RLF is not equivalent to the condition F ∼= RG
for some G in general. Here we do not go into the general
argument but directly defi ne the left adjoint L.
For a directed graph G = (AG, OG, ∂G

0 , ∂G
1 ), a directed

graph LG consists of the following data:

ALG = OG, OLG = (OG × {0, 1})/ ∼,

∂LG
0 x = [(x, 0)], ∂LG

1 x = [(x, 1)],

where∼ is an equivalence relation generated by a relation ρ
defi ned by (x, 1)ρ(y, 0) ⇔ x → y and [(x, i)] is the equiva-
lence class containing (x, i). We write x → y if there is an
arrow from x to y in G.
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L

R

b d

a c

Figure 5: Explanation of the necessary condition for ηF :
F ∼= RLF .

Intuitively, L is a structuration of a pattern by the infor-
mation processing patternM because it replaces nodes with
arrows. On the other hand, R is a de-structuration of a pat-
tern with respect to M because it collapses an arrow to a
node.
The necessary and suffi cient condition for ηF : F ∼=

RLF is that F is a binary graph (that is, there is at most
one arrow between two nodes) and if a → b ← c → d then
a → d in F . We here explain that the latter condition is nec-
essary. Suppose a → b ← c → d in F (the upper left pattern
in Fig.5). If L is performed on this pattern then we obtain
the pattern at the right-hand side of Fig.5. If R follows then
bi-fan emerges (the lower left pattern in Fig.5) as the dashed
arrow is newly added as the fourth arrow.
One can see that ηF : F ∼= RLF is the condition that

the information processing pattern M is fully developed or
stabilized in a pattern F . What does happen in this devel-
oping process? The key point is what occurs at the central
node in the right-hand side pattern in Fig.5. It is an equiv-
alence class consisting of (a, 1), (b, 0), (c, 1) and (d, 0).
The newly added fourth arrow from a to d appears since
(a, 1) is identifi ed with (d, 0). This identifi cation process
is due to the transitive relation (a, 1)ρ(b, 0)ρ−1(c, 1)ρ(d, 0).
Since (x, 1)ρ(y, 0) means x → y in the network level,
(b, 0)ρ−1(c, 1) indicates the existence of feedback from b
to c, the direction of which is opposite to the direction of the
information flow at the network level.
If we try to interpret the process of emergence of bi-fan

described above in terms of the information flows at the net-
work level then an apparent diffi culty arises. Since an arrow
in information processing biological networks represents the
direction of the information flow, it seems that there is no
information flow sequence from a to d at the network level.
Then how is it possible to construct a connection between
a and d? This diffi culty arises since the information flows
at the network level only cannot treat the above mentioned
feedback relation. The diffi culty in the interpretation can

be resolved when we consider an information flow sequence
including the feedback relation and a causal sequence on it.

Reconstruction of causal sequence in
biological networks

We reconstruct a causal sequence that brings the emergence
of bi-fan through the compositionality lemma by Abramsky
and Coecke (2004). We work in the category of sets and
relations (Rel,×) which is compact closed.

We apply the compositionality lemma to the composition
ρ ◦ ρ−1 ◦ ρ which brings the fourth arrow in bi-fan. We
regard the order of composition represents an information
flow sequence including feedback relation ρ −1 from b to c,
which should be distinguished from the information flows at
the network level.

Given a directed graph F = (AF , OF , ∂F
0 , ∂F

1 ), we put
X = {(x, 0)|x ∈ OF } ∪ {(x, 1)|x ∈ OF }. The composi-
tionality lemma applied to the right-hand side composition
of ρ ◦ ρ−1 ◦ ρ gives rise to the following commutative dia-
gram:

X

ρ

%





X
ρ−−−−→ X

ρ−1

−−−−→ X

rX





$
l−1

X

%





X × {∗} 1X×!ρ−1
"−−−−−−−→ X × X × X

#ρ$×1X−−−−−→ {∗}× X

The sequence of arrows from the upper left X to the upper
right X along the lower side is interpreted as a causal se-
quence. The feedback relation ρ−1 is at the same position
as the preparation of entangled qubits pair in the quantum
teleportation protocol (Fig.6). The feedback relation ρ−1

between b and c is prearranged, so that the information flow
from a to d occurs.

In the quantum teleportation case, the causal sequence
is the sequence of our operations on the quantum system.
A specifi c causal sequence of our operations enables an
‘acausal’ quantum information flow to occur. However, in
our information processing biological network case, the re-
lation between the information flow sequence and the causal
sequence is reversed. We have to reconstruct a causal se-
quence from a given information flow sequence. Hence
there may be an ambiguity in the reconstruction. Indeed,
we can also reconstruct a causal sequence in a different way
if we apply the compositionality lemma to the left-hand side
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Figure 6: Reconstruction of a causal sequence on the emer-
gence of bi-fan. The information flow structure is isomor-
phic to that of the quantum teleportation protocol.

composition of ρ ◦ ρ−1 ◦ ρ:

X

ρ





$

X
ρ−1

−−−−→ X
ρ−−−−→ X

rX





$

l−1

X

%





X × {∗} 1X×!ρ"−−−−−→ X × X × X
#ρ−1

$×1X−−−−−−−→ {∗}× X

Contrary to the fi rst reconstruction, the feedback relation
ρ−1 is at the trail in the corresponding causal sequence
(Fig.7). In order to determine a reconstructed causal se-
quence uniquely, we need a selection rule. Since ρ−1 is re-
garded as a biological feedback, it should appear as early as
possible in the causal sequence. So the fi rst reconstruction
is desired in this respect. If we want to select the fi rst recon-
struction, the following rule is suffi cient for this example:

ρ−1 must be transformed into !ρ−1".

The general argument on how to defi ne a selection rule is
beyond the scope of this paper. It is left as a future work.
The difference between (Rel,×) and the category of

fi nite-dimensional vector spaces over a fi eld should also be
noted. Both categories can implement full abstract quantum
mechanics with some additional structures on one hand, the
former cannot enjoy the full quantum teleportaion protocol
since it has no Bell-base consisting of four vectors (Abram-
sky and Coecke, 2004). Hence the usage of the term ‘in-
formation flow’ in this paper is different from that in the
references (Abramsky and Coecke, 2004; Coecke, 2004).
They consider information flows including the conservation
of contents of information. However, we never refer to con-
tents of information but consider only the formal structure
among information flows.

ρ time

ρ

ρ

L L

LL -1

Figure 7: Another reconstruction of a causal sequence on
the emergence of bi-fan.

Conclusions
Our argument in this paper is based on a specifi c example
and has not yet developed with full generality. However, we
can extract a general strategy to describe changes in biolog-
ical systems without the explicit external time parameter:

(i) Make a distinction between information flow sequence
and causal sequence.

(ii) Assume selection rules considering what should be pre-
arranged.

(iii) Reconstruct the causal sequence from the information
flow sequence based on the selection rules.

We hope that our argument presented in this paper will
help to understand the universal role of information process-
ing in natural phenomena ranging from quantum to biologi-
cal regimes.
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Abstract 
The concept of “representations”, and particularly “internal 
representations”, can be controversial in Cognitive Science and 
AI. It is suggested here that much time-wasting confusion could 
be avoided if participants in such controversies came to 
recognize the variety of different senses, often incompatible, in 
which such terms are used. A hypothesis is presented as to why 
there is so much reluctance to recognize this. Once such 
fruitless controversies are swept aside through linguistic 
hygiene, there remain interesting real problems, which are 
eminently appropriate for being tackled by an Artificial Life 
methodology. 

Introduction 
 
There are many confusions and misunderstandings associated 
with the term "representation" in Cognitive Science and AI, 
and by extension in Artificial Life.  It will be argued here that 
most of these problems can be solved (or dissolved) by careful 
linguistic hygiene.  But there remain interesting and genuine 
problems that can be fruitfully approached using an artificial 
life, evolutionary robotics methodology. 
 

Representation wars 
 
Artificial life overlaps with AI, in that both tackle the 
problems involved in synthesising lifelike capabilities; there 
may be different emphases, perhaps on adaptive behaviour 
versus rational thought.  AI overlaps with cognitive science.  
All of these are permeated by the positions researchers may 
take on philosophical issues: what is life, what is cognition, 
what is mind?  Traditional GOFAI (Good Old Fashioned AI) 
approaches to these questions have often framed answers in 
terms of "representations", or "internal representations".  
These sort of notions made no sense to me, working in a 
GOFAI department, and some of our early artificial life 
experiments at the beginning of the 90s had as one motivation 
the intent to make such issues explicit (Cliff et al 1993; 
Harvey et al 1993).  Using evolutionary robotics techniques, 
we evolved simple minimally cognitive agents to perform 
simple tasks, and then challenged the GOFAI theorists to try 
and identify just where these so-called "internal 
representations" were. 

 
We used genetic algorithms to evolve the connectivity, the 
connection weights, and the temporal parameters for real-time 
recurrent artificial neural networks, that formed the "nervous 
systems" for agents interacting dynamically with their 
environment.  This is within the Dynamical Systems approach 
to understanding cognition, and our motivation for this 
continuing line of research at Sussex (Harvey et al 1997, 
Harvey et al 2005) is very much in sympathy with similar 
research by Beer (Beer 1995, Beer 2000) and others.  What 
were the responses of the GOFAI theorists? 
 
Some of them claimed that there simply must be internal 
representations in these agents, though there was little 
agreement on just where to find them.  Others claimed that 
maybe for the simple cognitive tasks internal representations 
were not necessary, but for more complex forms of cognition  
— "representation-hungry tasks" — they would be essential.  
Some claimed it was logically necessary for brains (or minds) 
to have representations; others claimed it was a pragmatic 
necessity — they simply could not imagine how one could 
design brains to work in any other way. 
 
It became clear that there were many conflicting notions of 
representation being bandied about.  I was prepared to offer 
my definition of the term (Harvey 1996), but to my surprise it 
was extremely difficult, if not impossible, to pin down the 
other protagonists in these representation wars to offer their 
own definition of the term. In the way that I use the term, I 
have never ever had any internal representation of any kind in 
my head — except in the most casual, metaphorical sense.  
When I say I have a map of Brighton in my head, this is 
shorthand for saying I can navigate as if I had a map in my 
hand, I can visualise the configuration of a map as if it were in 
front of me — but I certainly do not mean that there literally is 
a map in my head.  Others disagreed; but what was the nature 
of this disagreement? 
 
The lack of communication became so dispiriting that 
eventually it seemed to me a waste of time continuing these 
debates.  It is perfectly possible to do artificial life style 
research into cognitive systems, from an enactive or 
Dynamical Systems perspective, without ever having to 
engage in such discussions on representations.  However it 
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seems that many people are still being sucked into the same 
old futile confusions (Grush, 1997; Clark and Grush, 1999; 
Grush, 2004; Wheeler, 2005; Rowlands 2006; Gallagher, 
forthcoming), so that here we revisit the representation wars 
yet again. 
 
The position presented here is that there are important 
interesting issues concerning representations that can be 
usefully tackled with an artificial life, evolutionary robotics 
approach. But that almost all the debate I see on this topic has 
nothing to do with such issues, but is rather symptomatic of 
confused and unclear talk, specifically: multiple incompatible 
usages for the term “representation”. 
 

The Pavement Problem 
 
Imagine an international conference of urban traffic 
specialists.  They meet for extended discussions on the 
question of what restrictions are desirable, for safety reasons, 
to place on bicycles riding on the pavement.  The discussions 
are intense, confused and chaotic; there is a complete lack of 
agreement.  The participants returned home demoralised, and 
astonished at the obtuseness of many of the suggestions that 
they had heard.  It turns out that many of those present were 
not aware that "pavement" means the part of the street that 
cars drive on in North American English, and the side of the 
street (or sidewalk) where pedestrians walk in British English.  
Even worse, it turns out that some present actually were aware 
of this crucial ambiguity, but did not feel it necessary to 
comment that this lay at the root of all the confusion. 
 
Fortunately — we hope — urban traffic experts are not so 
stupid.  Their work is important and can save lives; they need 
to think and explain themselves clearly.  What a pity that so 
many philosophers do not live up to these basic standards. 
 
When people use the term "representation" in the context of 
cognitive science, it is not nearly so simple as having merely 
one or two well-defined meanings.  There is a constellation of 
different, overlapping academic interests, from neuroscience 
to philosophy of mind, each with their own different 
perspectives on the term.  Furthermore, the richness of the 
variety of usages of the term "representation" means that it 
often has multiple, incompatible referents within any one such 
academic discipline.  In the rest of this paper I shall categorise 
some of these usages; and then I shall speculatively offer a 
possible explanation why people are so often so very reluctant 
to clarify which of these many possible senses they are using. 
 

The Everyday Sense of the Word 
Representation 

 
Before going into any technical sense in which the word 
might be used, let us look at its everyday meaning.  
Consulting a dictionary (www.dictionary.net, based on 
Websters) for the term “represent” (since “representations” 
include ‘the act of representing, in any sense of the verb’) we 
find a list of 8 variants of increasing sophistication. I shall 
return, below, to the last two listed, but can summarise briefly 
here the first six, as everyday meanings: to represent is to 
present again or anew, to present by means of something 

standing in the place of, to exhibit the counterpart or image of, 
to typify.  This extends to serving as a sign or symbol of — 
words represent ideas or things. 
 
In this sense, it seems to me that human beings are supremely 
representation users, ever since the dawn of cave art and of 
language.  Our use of representations is, above all, what 
differentiates us from other animals; we can argue about grey 
areas such as chimpanzees’ use of sign language, or the sexual 
displays of peacocks, but our human usage of representations 
is orders of magnitude more complex and comprehensive.  
We humans live in language and culture, as a fish lives in the 
water. 
 
What can we do, now that we have this useful trick of 
representing?  If we want to draw somebody's attention to a 
cat, instead of bringing a cat out of one's pocket and waving it 
around, one can draw a picture of a cat, or even more 
conveniently use the word "cat".  This is a sophisticated and 
incredibly useful trick, so useful that we spend much of our 
childhood learning how to use and extend our capacities for 
representation.  At the most sophisticated end of the spectrum, 
we can reason with mathematical symbols, and write 
computer programs so that machines can reason for us. 
 

Representation is a relational term 
 
In this basic sense, representation is a relational term like 
North or Twin. ‘Brighton is to the north’ is ambiguous 
without a context — north in relation to where?  Brighton is 
north of Paris and south of London, so a disagreement as to 
whether it is or is not "to the north" can sometimes be easily 
settled by establishing this context.  Likewise, twin is a 
relational concept.  Any number of exhaustive tests on a child 
cannot settle the question of whether that child is or is not a 
twin.  Twinness can refer only to its relationship with a 
second child.  Very often the context — the relational partners 
to these relational terms — are implicit and obvious, leaving 
no scope for disagreement.  In the representation wars, across 
different disciplines and across different sets of starting 
assumptions, it is crucial to recognize that there simply is no 
such universal agreement on the context. 
 
A symbol P is used by a person Q to represent, or refer to, an 
object R to a person S. Nothing can be referred to without 
somebody to do the referring. Normally Q and S are members 
of a community that have come to agree on their symbolic 
usages, and training as a mathematician involves learning the 
practices of such a community. The vocabulary of symbols 
can be extended by defining them in terms of already-
recognised symbols. 
 
The English language and the French language are systems of 
symbols used by people of different language communities for 
communicating about their worlds, with their similarities and 
their different nuances and clichés. The languages themselves 
have developed over thousands of years, and the induction of 
each child into the use of its native language occupies a major 
slice of its early years. The fact that, nearly all the time we are 
talking English, we are doing so to an English-speaker 
(including when we talk to ourselves), makes it usually an 
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unnecessary platitude to explicitly draw attention to the 
community that speaker and hearer belong to. 
 
Since symbols and representation stand firmly in the linguistic 
domain, another attribute they possess is that of some element 
of arbitrariness (from the perspective of an observer external 
to the communicators). When I raise my forefinger with its 
back to you, and repeatedly bend the tip towards me, the 
chances are that you will interpret this as `come here'. This 
particular European and American sign is just as arbitrary as 
the Turkish equivalent of placing the hand horizontally facing 
down, and flapping it downwards. Different actions or entities 
can represent the same meaning to different communities; and 
the same action or entity can represent different things to 
different communities.  
 
In the more general case, and particularly in the field of 
connectionism and cognitive science, when talking of 
representation (in the sense outlined above) it is imperative to 
make clear who the users of the representation are. In 
particular it should be noted that where one and the same 
entity can represent different things to different observers, 
conceptual confusion can easily arise. When in doubt, always 
make explicit the Q and S when P is used by Q to represent R 
to S. 
 
Of course, it is open for people to choose to use the word in 
some different, technical, sense that may not fit into this 
format; but then it is obligatory to make clear just how this 
different sense is defined. 
 

The Homuncular Representation 
 
We shall return to the more sophisticated meanings listed for 
“represent” in the dictionary further on, but let us first explore 
common extensions of the basic meanings. When we try and 
explain or describe complex systems, to other people or to 
ourselves, then it is standard practice, good common sense, to 
draw on metaphors from everyday life.  We often represent 
the component parts of the mechanism in terms of homunculi, 
or little imaginary people, who are performing different 
functions in coordination with each other.  The thermostat 
measures the temperature, and tells the central heating boiler 
when it should switch on — for many purposes this shorthand, 
that personifies (or “homuncularises”) the different 
components, is so much clearer and more useful than any 
detailed mechanical description.  Notice how there are two 
levels of representation going on here: at one level we are 
representing the thermostat (to the reader) as, in effect, a little 
homunculus; and at another level the signal travelling down 
the wire from the thermostat represents the temperature or the 
command that the thermostat-homunculus "intends" 
(metaphorically) to convey to the boiler-homunculus. Here, 
for clarification, I have italicized the different “recipients” S 
for the two different instances of representation.  
 
Now what are the requirements for this signal to represent the 
temperature?  Firstly, there must be some correspondence or 
covariance between variations in temperature and variations in 
signal.  Secondly, the signal must play some functional role, 
in communicating with whatever plays the role of a receiver 

of the signal.  There is, in my view, a third requirement that 
may be more controversial.  There needs also to be a further 
metaphorical homunculus that acts as the sender of the signal.  
The metaphor requires one homunculus communicating with 
another one. 
 
When we follow somebody on a walk in the countryside, they 
could leave an indication of which route to take at a fork in 
the path by drawing an arrow; this is a representation of the 
desired direction.  Alternatively, we could just trace their 
footprints in the mud; but we would not call these a 
representation, or at any rate not in the same sense.  Likewise, 
I would suggest, the homunculi metaphor implicitly requires 
the active connivance of both sender and receiver — the 
arrow counts, but the footprints do not. 
 
Not everyone will agree with this third requirement.  Fair 
enough, but then you are using the word in a different sense 
from that which I propose.  We should acknowledge and 
recognize that there are these different senses of the word 
representation, we should make explicit which sense we 
intend if we are to avoid confusion. 
 
Is this signal travelling down the wire from the thermostat 
really a representation?  Well yes, in this sense: the coin that I 
use on my chessboard to replace a lost piece really does 
represent the black king.  Within the rules of the game it plays 
this role.  When we used the homuncular metaphor there are 
these rules for the game. 
 
I should stress that when I call this form of explanation 
"metaphorical" and "homuncular" this is certainly not 
intended to be disparaging, nor to mean that such explanations 
are any sense illegitimate or second rate.  They are legitimate 
and invaluable forms of explanation, absolutely essential 
when we are talking in terms of functions, and we simply 
could not attempt to start to understand complex systems 
without employing them. We explain the strange and 
unfamiliar in terms of the familiar, and what could be more 
familiar than examples of inter-personal communication from 
our everyday life. But we should be aware of the baggage that 
this form of explanation carries with it. 
 
 

More sophisticated senses of the term 
representation 

 
Returning to definitions of “represent” in the online 
dictionary, items seven and eight were “to bring a sensation of 
into the mind or sensorium", and (Metaphorically) "to form or 
image again in consciousness, as an object of cognition or 
apprehension (something which was originally apprehended 
by direct presentation". Now personally I have trouble with 
these definitions.  Apart from any other considerations, 
sensorium is not in my everyday vocabulary, and I have to go 
and look that up.  My suspicion is that these definitions carry 
with them a certain baggage, certain philosophical 
assumptions that I may not share.  For the purposes of this 
paper, however, I need only comment that these senses either 
do, or do not, share the basic properties outlined above.  If 
they do share these properties, then to avoid confusion we  
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From Descartes (1662), De Homine. Visual information travels 
to the brain through hollow optic nerves. It continues on to the 
Pineal body, that regulates the flow of animal spirits to the 
nerves, and thence the muscles. 

 
 
must be willing to spell out the P, Q, R, S. If they do not share 
these properties then we must acknowledge that these are 
different senses of the term. 
 
As an aside on that final definition of represent above, we can 
notice the differences and similarities between the  
propositions "I imagined seeing a car" and "I saw an 
imaginary car".  Superficially they appear to say the same 
thing, but the second version carries overtones of asserting the 
existence of "an imaginary car”.  With this second version, we 
might be more tempted to ask just where this imaginary car is.  
If it is not on the street, then where is it — in the 
consciousness, in the mind, in the brain?  I would like to 
suggest that asking these questions is as foolish as asking 
where the twinness of a twin resides — is it in the DNA, 
where should we look for it?  For the purposes of this paper, 
however I do not need to argue further in favour of my 
philosophical views or against other people's.  I merely need 
to observe that different people use the term representation 
(and imagination) in different ways, and we must 
acknowledge that there are different senses of the terms; think 
"pavement" and "pavement". 
 
 

Neuroscience 
 
One role of a neuroscientist is to attempt to explain how the 
mechanisms of the brain allow us to see (and indeed even to 
imagine seeing) objects in the world around us.  This is the 
same task as Descartes set himself, though perhaps nowadays 
we have less emphasis on the pineal gland and the immaterial 
spirit.  Consider the image of an arrow as projected onto the 
back of the retina.  In the picture shown, we have multiple 
representational layers of meaning.  This is a reproduction — 
a representation — of the original woodcut first printed in 
Descartes’ De Homini (‘On Mankind’), 1662. We can see 
sketched on the right-hand side a representation of a vertical 
arrow.  For the subject pictured here, of course, this is not a 
representation but rather it is a real arrow in front of it.  If we 
perform our linguistic hygiene carefully, we should be able to 
avoid any confusion as to whether this is, or is not, a 
representation by clarifying the contextual relationship within 
which we are using the term.  But then what about the image 
projected on the retina? 
 
We, the observers of Descartes's woodcut, can see this 
projection, this representation.  But the subject pictured there 
cannot see this, no more than they can see their own blindspot.  
It is the arrow in the world in front of it that the subject sees.  
We can, however, construct a metaphorical homunculus story 
where there is a chain of information flow, a pipeline, such 
that this retinal image is an intermediate carrier of information 
from the external world to some further internal mechanisms.  
Descartes certainly had one version of the story, and 
nowadays neuroscientists have different versions of such a 
story. 
 
So the world (conceived as a homunculus) is conveying the 
information about the arrow in the world via this retinal 
image, this representation, to — to whom?  To a posited 
receiving homunculus that, for the neuroscientist, may be 
some further subsystem of the brain.  This could be a further 
staging post on the pipeline, as the pineal gland in Descartes's 
version.  This is closely related to the example of the 
thermostat representing the room temperature, or the 
thresholded temperature, by an electrical signal sent to the 
central heating boiler.  Is it a representation or not — that 
depends on which context you are spelling out; think 
"pavement" and "pavement". 
 

A taxonomy of representations 
 
I have spelt out above my own understanding of what I mean 
when I use the term representation in an everyday sense.  I am 
aware that other people may disagree on some of these terms 
and conditions.  When we moved to discussion of "internal 
representations" in cognitive science I personally am 
unwilling to change any of these terms and conditions (unless 
a clearly different technical sense of the term is defined and 
agreed upon).  It follows necessarily that it makes no sense at 
all to talk of internal representations in the brain, except in the 
limited homuncular sense that I have outlined above.  These 
are limited in that they are not representations "for me", rather 
they are representations "for some homunculus".  Even though 
I can imagine seeing a unicorn, or visualise a map of 
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Brighton, this does not mean that there is a representation (for 
me) of either in my brain.  There are structures or changes in 
my neural circuitry associated with my ability to imagine 
these things; but these structures or changes are simply not 
representational in the sense that I have spelt out. 
 
Other people use the term in different ways, so let us make a 
start on classifying the different dimensions of meaning 
involved.  To clarify, this is not so much an attempt to find the 
real meaning of the word (though I have my personal 
preferences), but rather an attempt to make visible the variety 
of possible senses that are used, just as road traffic experts 
should make explicit the two interpretations of "pavement". 
  
1.  Is representation a relational term or not?  
2. If relational, is it essential that we should be able to 
contextualise the sender only, or the receiver only, or both or 
neither?  
3.  For internal representations, are they internal to the mind, 
the brain, or both or neither?   
4. Is an internal representation a concept at a personal level, a 
sub-personal level, a neuro-anatomic level, or what? 
5. Is it a concept within a functional explanation, or some 
other form of explanation? 
6. Are such representations intentional or non-intentional 
concepts? 
7. For internal representations, if you believe that there is a 
receiver, then is this receiver the person, or some substructure 
of the brain, or something else?  
8.  Is an internal representation of a cat in front of my eyes the 
same thing, or different from, the internal representation when 
the cat has gone but I am thinking of it?  
9.  Suppose somebody can navigate around Brighton without 
a map.  Is the claim that they must have an internal 
representation of Brighton a logical claim that adds nothing to 
the previous statement; or an empirical claim that the nervous 
system underlying this cognitive capacity must be organised 
in some particular way? 
 
In my experience, a room full of cognitive scientists and 
philosophers will, when challenged, produce a whole range of 
different responses to these questions.  Not only are there 
these differences between different people, but also the same 
person may use the same word in different contexts with 
different senses.  Yet typically, even when this is pointed out 
to them, this does not often seen to make them want to clarify 
their meaning in future discussions.  I shall shortly suggest a 
hypothesis as to why this is so. 
 

Presentations and Representations 
 
Grush (1997: expanded in Grush 2004) does make a start at 
defining the terms he uses, and in particular makes 
distinctions between “presentations” and “representations”; 
also between “simulations” and “emulations”. To briefly 
summarise, he distinguishes between the two senses in item 8 
listed above. He calls the former sense, as with direct sensory 
inputs of a cat, ‘presentational’, and reserves the term 
‘representational’ for ‘counterfactual presentations’ such as 
considering the cat when it is not there. 
 

Such a careful distinction is commendable, is consonant with 
the sentiments of this paper, and is regrettably all too rare 
amongst contributors to these debates. However Grush does 
not go far enough.  In leading up to this, he states: 
 

If this second definition, and my gloss on it, are 
correct, then a representation is a part of a three-way 
relationship which also includes a user and a target. So 
far so good. Some may quibble over the need for a 
user, but that is not where the real problem lies. The 
real problem has been, and continues to be, the choice 
of states for which theorists attempt to give a 
representational analysis. Specifically, sensory states 
have been used as a model for representational states, 
the idea presumably being that sensory states represent 
the world to the subject. (Grush 1997) 

 
So he is committed to a relational sense of the term, but less 
concerned about just how many partners there are in such a 
relationship, seeing this as a quibble and not where the real 
problem lies. Now my personal practice is normally to use the 
term with 4 such partners (P, Q, R and S), but I am prepared 
to engage in a discussion where the participants have agreed 
to use a different (e.g. 2 or 3-partner version) provided this is 
done openly and consistently. But it is simply unacceptable to 
leave it open to different participants in a discussion to have 
different senses in mind — and a sense that requires 2 partners 
must be a different sense to one that requires 3. 
 

Representations as the billiard balls of 
cognitive science 

 
We typically try to explain the complex and unfamiliar in 
terms that are simpler and more familiar.  This is 
commendable and natural.  Physicists will often try to explain 
atoms or other elementary particles in terms of billiard balls.  
We do not need to question how billiard balls will travel in a 
straight line, until they bounce off a wall or collide into each 
other.  If we were perverse, however, we might demand to ask 
further questions.  After all, billiard balls are made out of 
molecules and atoms, so is this not a circular explanation that 
does not bottom out anywhere?  Well, in one sense yes, but in 
another sense no, because that is to misunderstand the role of 
an explanation.  An explanation has to find some level of 
agreement, where no further questions are asked, and then try 
to reduce the complex and unfamiliar to this level.  So for 
most purposes we can treat a billiard ball as an explanans, the 
explanatory premises, and this is incompatible with treating 
the billiard ball as an explanandum, that which is to be 
explained. 
 
After many years of puzzlement, I have formed the tentative 
hypothesis that this lies at the root cause of cognitive 
scientists and philosophers being so reluctant to define what 
they mean by "representations" (Grush here being a partial 
exception, who has not gone far enough).  For them, 
representations are the billiard balls of cognitive science.  
They are so familiar to them that they do not need to explain 
them further.  Rather, they use them as part of the premises on 
which they build their cognitive theories.  This makes them 
annoyed and irritated, just as physicists with billiard balls, 
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when one seeks an explanation for these premises. 
 
This makes for difficulties if one thinks, as I do, that the 
capacity of human beings to represent things (common or 
garden everyday representations, in the external world) is 
supremely important and interesting; is the explanandum, not 
the explanans.  In the phylogenetic history of human 
cognition, surely this counts as one of the Major Transitions 
(Maynard Smith and Szathmary, 1995).  How did organisms 
start to create patterns in the world as representations of other 
objects or events in the world?  Both the origin of, and the 
maintenance of, a capacity to represent things are surely 
amongst the main challenges for cognitive science.  Artificial 
life techniques have a possible role to play here. 
 

Minimal Cognition 
 
What is the relationship between the physical mechanisms 
incorporated in the physical body of an organism and its 
behavioural capacities? The minimal cognition route aims to 
tackle this sort of question by starting at the bottom and 
building minimal models of minimally cognitive agents in 
some virtual environment.  Evolutionary robotics allows one 
to evolve nervous systems to generate, we hope, the desired 
behaviour.  When we come to analyse these, the advantage 
over real organisms is that we have full knowledge of the 
inner workings of all the mechanisms, and we can manipulate, 
alter constraints, lesion and otherwise experiment at will. 
 
This kind of minimal cognition experiment (Harvey et al, 
1997, 2005; Beer, 1995, 2000) typically has the status of a 
thought experiment, and an existence proof.  If an artificial 
organism generates behaviour comparable to that of a real 
biological organism by use of mechanism X, this does not by 
itself prove that the real organism uses a similar mechanism 
X.  It merely adds mechanism X to the list of possibilities; it is 
a separate scientific question as to which mechanism the real 
organism actually uses.  The Artificial Life experiment can 
still be a very useful exercise, particularly if mechanism type 
X was previously thought unfeasible. 
 
There have been many artificial life studies on 
communication, and language, but for the most part these 
have had built into them the possibilities of communication.  
To look at the major transition of the origin of representations 
one should perhaps start much earlier than this.  Relevant 
work here is by Di Paolo (Di Paolo 2000) on the origin of 
social coordination and by Quinn (Quinn et al, 2002, 2003) on 
team behaviour.  These studies look at communication 
between agents, two at a time (in simulation) in the first case, 
a group of three (both in simulation and on real robots) in the 
second case, where they have motives to influence each 
other's behaviour, and to do so via their actions.  In the Quinn 
example, three agents or robots can sense each other through 
short range sensors, and move around on the plane.  Their task 
is to travel across the plane in formation, which because of 
their sensors is only possible if they travel in a column of 
three.  They are initially identical, so to achieve this task the 
first requirement is that they sort out between them the roles 
of leader, man in the middle, and tail.  In some of the 
experiments a possible interpretation of what happens is that 

the symmetry is broken by the first one to make a 
stereotypical movement, which then determines its role.  The 
others in some sense recognize this movement, and then take 
on the other roles. 
 
It would be difficult (but not impossible) to claim that there is 
a fully-fledged representation going on here: "this 
stereotypical movement of mine, when suitably responded to 
by you, specifies or determines or represents what roles we 
should take".  But if not fully-fledged, then arguably this is a 
transitional example. The stereotypical movement can be 
analysed either as (i) meaningless dynamics that nevertheless 
results in coordinated behaviour; or (ii) as a symbolic gesture 
from one agent to others. These two interpretations are not 
contradictory, they are framed at different levels of 
description. I suggest that these sorts of minimal cognition 
experiments are stepping stones on the way to evolving 
artificial agents where we can be more confident in calling 
them users of representations. 

In Summary 
There are both scientific and philosophical questions on the 
concepts of representations in cognitive science.  Even the 
scientific questions cannot escape the philosophical issues of 
just what one might mean by the term.  I am suggesting here, 
following Wittgenstein, that most of the philosophical 
problems and confusions come from poor linguistic hygiene.  
They are not issues of substance at all, merely the 
consequence of carelessness.  On one interpretation of 
philosophy, I have not gone to any great lengths to argue for 
or against any particular philosophical position on 
representations.  On another interpretation, this insistence on 
linguistic hygiene, to try to help people escape from the 
messes and confusions they make for themselves, is actually 
what philosophy is all about. Recall the difference between 
"pavement" and "pavement". 
 
The common lack of care in defining terms may possibly, I 
have suggested, been partly because of the billiard balls role 
of representations in cognitive science; representations are so 
often treated as explanans rather than explanandum. It has 
always been irritating when those of us who share my opinion 
that we have no internal representations (as I understand the 
common sense of the term) in our heads have been branded as 
"Anti-Representationalists".  I insist on calling myself a 
Representationalist, since I consider our human use of 
representations to be immensely important and interesting, 
and deservedly a focus of interest for Artificial Life studies. 
Representations as explanandum, not explanans. 
 
This paper has been centred on the philosophical confusions, 
but there are proper scientific and technical questions to be 
asked.  What are the minimal requirements for artificial agents 
to be capable of being representation-users? Understanding of 
this would seem to be a pre-requisite to the discussion of what 
are the minimal requirements for a sub-part (or module, or 
homunculus) within a brain or nervous system to be capable 
of being (metaphorically) representation-users in 
communicating with other modules. Artificial life methods 
have already made a tentative start to exploring these 
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questions, and we can hope for further progress. Artificial Life 
models give a superb arena in which these tricky, potentially 
ambiguous, terms can be given a demonstrably explicit sense, 
open to operational testing.  
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Abstract

Kauffman’s seminal NK model was introduced to relate the
properties of fitness landscapes to the extent and nature of
epistasis between genes. The original model considered
genomes in which the fitness contribution of each of N genes
was influenced by the value of K other genes located either
at random or from the immediately neighbouring loci on the
genome. Both schemes ensure that (on average) every gene
is as influential as any other. More recently, the epistatic con-
nectivity between genes in natural genomes has begun to be
mapped. The topologies of these genetic networks are neither
random nor regular, but exhibit interesting structural proper-
ties. The model presented here extends the NK model to con-
sider epistatic network topologies derived from a preferential
attachment scheme which tends to ensure that some genes are
more influential than others. We explore the consequences of
this topology for the properties of the associated fitness land-
scapes.

Introduction
Recent advances in our understanding of natural genomes
are beginning to reveal patterns in genomic organisation
(Jeong et al., 2000; Barabási and Oltvai, 2004; Segrè et al.,
2004). In particular, the epistatic networks that describe the
manner in which genetically specified proteins interact with
each other during cell metabolism have been shown to ex-
hibit topologies that are scale-free in their degree distribu-
tion (Maslov and Sneppen, 2002; Fernández, 2007). In such
networks, while the vast majority of proteins are involved in
only a small number of protein-protein interactions, a few
proteins are highly influential (Barabási et al., 1999).

Here, we explore the influence of this type of epistatic
network topology on the structure of associated fitness land-
scapes using an extension of the NK model originally pro-
posed by Kauffman (1989). In the canonical form of this
model, the fitness associated with a particular genotype (i.e.,
the height associated with a particular point on the fitness
landscape) is assessed by combining the fitness contribu-
tions of the binary alleles at each of its N loci. The fit-
ness contribution of a locus, i, is determined by the allele

at i and the alleles present at K additional loci. For each
unique combination of K+1 alleles, a unique, but randomly
determined fitness contribution is assigned. By considering
the statistical properties of ensembles of NK landscapes, the
generic influence of epistasis can be assessed.

Kauffman was able to demonstrate that the ‘ruggedness’
of a landscape increases with increasing K. For K = 0
landscapes, each locus contributes to fitness independently.
The landscape is smooth, with the fitness of adjacent geno-
types being highly correlated as a consequence of sharing
N − 1 fitness components. An adaptive walk originating at
any point on such a landscape will reach a single, unique op-
timum. Every step on such a walk will reduce the distance
to the optimum by one as the allele at one locus mutates to a
fitter variant. The mean length of such a walk is therefore N

2 .
By contrast, for landscapes where K = N − 1 a mutation
at any locus has the side effect of changing the fitness con-
tribution of the alleles at all other loci. Consequently, there
is no correlation between the fitness of neighbouring geno-
types, and the landscape is maximally rugged. A large pro-
portion ( 1

N+1 ) of genotypes are now local optima, and adap-
tive walks tend to stall after ln(N − 1) steps. Intermediate
values of K give rise to intermediate levels of ruggedness,
altering the average distance between local optima, the cor-
relation amongst locally optimal genotypes, and the fitness
distribution of local optima. For more details, see Altenberg
(1997).

In the two most frequently explored forms of the model,
the K loci that epistatically influence a particular locus, i,
may either be randomly located on the genome, or may
be the K nearest neighbour loci of i. In both cases, every
gene influences the fitness contribution of (on average) the
same number of other genes, ensuring that genes are equipo-
tent in their contribution to genotypic epistasis. Many vari-
ants of this model have been considered, and its behaviour
has been explored in various ways (Altenberg, 1997; Bar-
nett, 1998; Geard et al., 2002; Gao and Culberson, 2002;
Campos et al., 2002; Rivkin and Siggelkow, 2002; Verel
et al., 2003; Skellett et al., 2005; Kaul and Jacobson, 2007).
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Kauffman himself mentions briefly a variant of the model in
which some genes are more influential than others (Kauff-
man, 1989, pp78). Here, we develop this idea and explore
the implications of systematically manipulating the extent to
which there is a particular scale-free non-uniformity in the
degree of influence exerted by each gene on the fitness con-
tribution of the remainder of the genome.

Scale-free degree distributions have been discovered to
characterise connectivity in a wide variety of systems, from
gene regulatory networks to scientific citation networks
(Barabási et al., 1999; Rzhetsky and Gomez, 2001; Gisiger,
2001; Wolf et al., 2002; Barabási et al., 2002; Barabási,
2003). In each case, the frequency with which network
nodes exhibit degree k is proportional to k−γ , where γ > 1
(Barabási and Crandall, 2003). Scale-free networks of this
kind may be grown via a process of ‘preferential attachment’
(Barabási et al., 1999; Newman, 2001; Caldarelli et al.,
2002; Eisenberg and Levanon, 2003). Under such a scheme,
nodes are added sequentially to an initial small graph. Upon
being added to the graph, each node is allocated a number
of edges linking it to existing nodes, where the probability
of adding an edge to an existing node of degree k is propor-
tional to kα. Here, α is a model parameter governing the
strength of preferential attachment.

Networks with a scale-free topology have some distinct
properties.

Self similarity at different scales: properties of local areas
of the network are echoed in the whole.

The small-world phenomenon: shortest paths between
any pair of nodes are remarkably short (Watts and Stro-
gatz, 1998; Albert et al., 1999; Lazer and Friedman, 2005;
Giacobini et al., 2006).

Robust to random failure: removal of nodes at random
has little effect on network structure. However they are
vulnerable to attacks that target the highly connected hubs
(Albert et al., 2000; Barabási, 2003; Barabási and Cran-
dall, 2003).

This paper first specifies an extended NK model, NKα,
and describes the metrics that will be used to characterise its
fitness landscapes. Results from the novel model are then
compared with those of the canonical NK models, and their
implications discussed before, finally, some future work is
suggested.

Methods
An extensible NK model was implemented using a variation
on the hashing method described by Altenberg (Altenberg,
1994, 1997), and using an efficient hashing algorithm proven
against funnelling effects (Jenkins, 1997). The model was
validated against published data from several sources for
the Kauffman local and random variants (Kauffman, 1989;

Weinberger, 1991; Kauffman, 1993, 1995; Altenberg, 1997).
The random number generator and hashing functions were
tested using the NIST validation suite (Rukhin et al., 2001).

The network of epistatic interactions between loci was
represented as an N×N Boolean matrix, A, with Aij = 1 iff
locus i influences the fitness contribution of locus j. Since
each locus always contributes to its own fitness contribu-
tion, Aii = 1 ∀i. Furthermore,

∑
i Aij = K + 1 ∀j, since

each row of A contains K entries in addition to the self-
connection, corresponding to j’s incoming edges. By con-
trast, the sum of each column of A corresponds to the out-
degree of each locus, which, in general, may be free to vary
such that 1 ≤

∑
j Aij ≤ N . Under all schemes considered

here
∑

i,j Aij = N(K + 1), i.e., the total number of edges
in the network is conserved.

Kauffman’s original NK model employed two schemes
for allocating the epistatic links: local or random. In the for-
mer, each locus is influenced by its K nearest neighbours,
giving rise to an epistatic network with a ring-lattice topol-
ogy (see fig. 1a). In the latter, for each locus, K unique in-
fluential loci are chosen at random, giving rise to a random
graph topology (see fig. 1b). Under the local scheme both
in- and out-degree are uniform, whereas under the random
scheme in-degree is uniform, but the out-degree is a Poisson
distribution with a mean of K Newman et al. (2001).

Here, we introduce NKα, a variant of the NK model that
employs a scale-free epistatic topology, parametrised by a
single exponent, α. As before, the network contains N(K +
1) edges, N of which are self-connections, and each locus
has the same in-degree (K + 1). However, the out-degree
distribution approximates a power-law as a consequence of
the following preferential attachment growth process.

Initially each locus is connected only to itself, giving a
degree of 1. Subsequently, we perform K passes through
the list of loci. Each pass visits each locus once in random
order. On each visit, the visited locus is assigned one in-
coming edge from a random locus, i, chosen with probabil-
ity ∝ (ki)α, where ki is the out-degree of locus i and is up-
dated after each visit, and the magnitude of α determines the
strength of preferential attachment. This process assigns a
total of N(K +1) edges with a power-law like degree distri-
bution, save that a ceiling threshold exists: no locus can have
more than N connections (including its self-connection).
With sufficiently high K or α, some loci will attract the
maximum N connections deforming the power-law curve.
When α = 0, the resulting epistatic matrix is equivalent
to the random map explored in the original model. Where
α > 0, increasingly skewed degree-distributions are gener-
ated, conferring increasing influence on a minority of loci
(see Fig. 1c).

Measuring landscape properties
For the model introduced here, a triple (N , K, α) speci-
fies an ensemble of landscapes that we sample and evaluate
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(a) Local (b) Random (c) Scale-free: α = 1.8

Figure 1: Epistatic maps for N = 32 with K = 8 using (a) local connectivity, (b) random connectivity, and (c) the NKα variant
with α = 1.8.

below. In addition to sampling the fitness distribution over
each landscape as a whole by sampling 10,000 genomes at
random on each landscape, we perform a number of walks
across landscapes. Walks are of two types.

Adaptive walks were carried out by simple hill-climbers.
At each step, a hill-climber calculates the fitness of all N
single bit mutation neighbours of the current genotype, and
selects one of the fitter neighbours at random to move to. If
no fitter neighbour exists, then the hill-climber has reached
a local optimum, and terminates. By undertaking multiple
independent walks on the same landscape, an assay of avail-
able local optima can be compiled. Additionally, the length
of adaptive walks is an indicator of a landscape’s ‘rugged-
ness’.

Random walks start from a random position in the land-
scape, and proceed by a series of random single-point muta-
tions. Here, random walks were terminated after 2048 steps,
as described by Weinberger (Kauffman, 1993). Such walks
allow an assay of fitness distributions, and the correlation
between the fitness of points separated by intervening geno-
types.

Results
Unless otherwise stated, genotype length is
held constant with N = 96, K ranges over
{0, 1, 2, 3, 4, 8, 16, 32, 64, 81, 95}, and α ranges over
{0.0, 0.5, 1.0, 1.5, 1.8, 2.0, 2.5}. By ‘a full range of land-
scapes’ we will mean all combinations of N and K for the
local and random variants of the original NK model, and all
combinations of N , K and α for the NKα variant. For the
majority of results presented, the data is an aggregation of
10 repetitions of all combinations, each of these repetitions
having a different seed and consequently different epistatic
matrix.

Figure 2a shows the manner in which the average length
of an adaptive walk varies with K for the landscapes con-

sidered here. While, in general, walk length increases with
K, it is also apparent that walks tend to be longer for land-
scapes with higher values of α. Moreover, for low K and
high α walks tend to involve a number of steps that exceeds
N
2 , the maximum average walk length observed for the local

and random variants.
Figure 2b demonstrates that increasing α has a dramatic

effect on the way in which K influences the mean fitness of
landscape optima. For intermediate values of K, increasing
α is associated with increasingly fit optima. In both figures
we see that as α reaches high values, its influence asymp-
totes. This results from the ceiling effect mentioned above,
which restricts the distribution of epistatic influences such
that a few loci have the maximum influence, while the re-
mainder have little or no influence at all.

For both the local and random variants of the NK model
the correlation between the fitness at a local optimum and
the fitness of its neighbours decreases with increasing K.
Here, Figure 3 compares the distribution of fitness values of
genotypes adjacent to a local optimum in a ‘local’ landscape
with the distribution of fitness values adjacent to a local opti-
mum on a landscape with relatively high α. The comparison
is made for N = 96 and K = 64, but the qualitative re-
sults are characteristic of the comparison in general. For the
local variant, fitness values adjacent to a local optimum are
relatively tightly distributed around a value somewhat lower
than the fitness at the local optimum. For the NKα vari-
ant, however, the distribution of adjacent fitnesses is much
broader with many values close to the fitness of the local
optimum, and many values far from it.

Figure 4a demonstrates that, for low K, the random NK
model variant exhibits optima with a range of basin sizes
and that there is a weak correlation between the fitness of an
optimum and the size of its basin of attraction. Increasing K
destroys this correlation, rendering every optima essentially
equally attainable regardless of fitness (Figure 4b). How-
ever, the NKα variant gives rise to optima with a variety of
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Figure 2: The mean length and mean local optimum fitness
found for 100,000 adaptive walks for each (K,α ) combina-
tion (N = 96). The arrow indicates increasing values of
0 ≤ α ≤ 2.5 for NKα variant.

basin sizes for high K landscapes, and here, optima fitness
is strongly correlated with basin size. This accounts both for
the fact that adaptive walks are taken on NKα landscapes
tend to be longer than those carried out for equivalent land-
scapes from the local or random model variants, and that
they tend to terminate at optima of higher fitness.

Kauffman used the term ‘Massif Central’ to describe a
global structure he discovered in landscapes with small K.
He used this term to refer to the tendency for high-fitness
local optima to be located in the vicinity of the global opti-
mum, rather than being randomly distributed as is the case
for high K. The inverse correlation between fitness and dis-
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Figure 3: The fitness of neighbours of a local optimum are
plotted for two landscapes (N = 96, K = 64), ordered
by fitness. Solid horizontal lines indicate the local optimum
fitness.

tance in Figure 5a and its gradual erosion in Figures 5b and
5c reflect this observation. However, when we consider the
NKα variant, we find a similar but stronger relationship with
many fit optima close to the global optimum. Unlike for the
original model variants, for the NKα variant this relationship
between optima fitness and hamming distance is strength-
ened by increasing K.

For the local and random variants of the NK model, loci
are (roughly) epistatically equipotent. However, in the NKα
model, some loci are more influential than others. How does
this affect the rate at which different loci are mutated during
an adaptive walk? At each step of an adaptive walk, plotting
the out-degree of the mutated gene (how many loci it influ-
ences epistatically) reveals that for α > 0, the most influen-
tial loci become fixed early in the adaptive walk. This effect
increases with increasing α. For fixed α and N , increasing
K increases the number of influential loci, and (if α > 0)
decreases the number of weakly connected loci. This length-
ens the phase during which influential nodes are ‘locked in.’
By contrast, in the random variant (a), the variation in out-
degree is much reduced, walks tend to be shorter, and there
is no relationship between the out-degree of a locus and its
tendency to be mutated early or late in an adaptive walk.
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(a) Random: K = 2 (b) Random: K = 16 (c) Scale-free K = 16, α = 2.5

Figure 4: The accessibility of local optima discovered by 10 repetitions of 10,000 independent adaptive walks on three classes
of landscape. Solid horizontal lines indicates mean fitness with standard deviation indicated by dashed horizontal lines. Vertical
dashed lines indicate the most frequently reached optima.
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(f) Scale-free: K = 8, α = 1.5

Figure 5: Each plot shows the hamming distance from the fittest optima found to the other optima found on 100,000 adaptive
walks with N = 96 and K = 2, 4, 8. The data has been binned, and plotted with boundaries {0,1,100,1000,2500,5000,10000}
to give a sense of the density of clustered optima. Darker tone indicates higher density of optima. The key on each plot
shows only those bins used, with an upper limit of the most dense point in the plot. For the local variant (a-c) increasing K
gradually erodes an inverse correlation between hamming distance and optima fitness. For the NKα variant, (d-f) increasing K
strengthens a similar relationship.
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Figure 6: When are influential loci mutated on an adaptive walk? For a sample of 100,000 adaptive walks, the heat map depicts
the degree of mutated loci at each time step for (a) the random model variant, (b) the NKα variant. Here, N = 96, K = 2.
The heat colour scheme is used: black indicates no mutation events, increasing to white indicating the most frequent mutation
events.
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Discussion
In general, imposing an increasingly scale-free structure on
the network of epistatic interactions brings about a number
of significant changes to the behaviour of adaptive walks
on the associated fitness landscape: longer adaptive walks,
higher fitness optima, more clustering of optima in the land-
scape and increased correlation between their fitness and the
distance between them.

When the K epistatic influences of a locus are uniformly
distributed, the resultant landscape is essentially isotropic.
Statistical properties in one part of the landscape are largely
predictive of the whole. Consequently, the effect of increas-
ing K is to impose ruggedness globally. Conversely, when
the same number of epistatic interactions are allocated non-
uniformly, the genome is structured such that there exist a
few influential loci and a majority of loci with little or no
influence. This structure gives rise to a radically anisotropic
landscape. Portions of the landscape exhibit properties that
are very different from one another. More specifically, fix-
ing alleles at influential loci confines an adaptive walk to
a relatively correlated sub-landscape, while fixing the same
number of low-influence loci confines an adaptive walk to
a much less correlated landscape. Adaptive walks on such
landscapes tend to initially spend time fixing influential loci,
since mutating these alleles can bring about significant fit-
ness changes. Once a satisfactory configuration of highly
influential loci is discovered, low influence loci can be fixed
relatively easily, since each is essentially independent from
the others.

As yet it is unclear the extent to which one might describe
NKα landscapes as modular. Are there multiple Massif Cen-
trals on these landscapes, each characterised by a cluster of
local optima of similar fitness? Or is there a more gross
organisation of optima across the landscape as a whole?
Relatedly, we have not considered assortativity in the net-
work of epistatic interactions. While it has been known for
some time that, for instance, the network of protein-protein
interactions for yeast exhibits a scale-free degree distribu-
tion, recent work has shown that although the network for
ancestral yeast has high degree proteins tending to inter-
act directly with one another, the network for contemporary
yeast is less assortative, with what has been interpreted as a
more modular structure. For instance, precursors to modern
yeast feature an epistatic network with a single hub related
to the ribosome, whereas the modern yeast network exhibits
two hubs, one ribosomal and the other related to signalling.
These hubs are connected, but only via other poorly con-
nected proteins, making the whole network appear modular
(Fernández, 2007). Scale-free network topologies tend to be
robust to failure unless the hubs are targetted (Albert et al.,
2000; Barabási, 2003; Barabási and Crandall, 2003; Jeong
et al., 2001), and a modular topology has the advantage of
preventing the failure of one hub triggering the failure of an-
other.

The preferential attachment algorithm used here defines
an epistatic network topology with a scale-free out degree,
which has significant effects on the resulting fitness land-
scape. However, the class of networks with scale-free degree
distribution encompasses a range of topologies. In future
work, we will extend the current NKα variant to consider
the influence of assortative epistatic network topologies; the
fitness landscapes and evolutionary dynamics to which they
give rise.

Conclusions
The human genome project revealed a far lower number
of genes than anticipated, increasing the significance of the
study of their interactions. By extending an existing model,
the paper demonstrates how a scale-free epistatic network
topology alters the properties of a fitness landscape in a way
that makes adaptive dynamics on it much more liable to dis-
cover high-fitness optima despite strong epistasis. To the
best of our knowledge, and also to our surprise, this is the
first systematic study of how the standard NK results vary
when a preferential attachment scheme is used for determin-
ing the epistatic linkages between loci.
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Abstract

The question of how autonomous robots could be part of our
everyday life is of a growing interest. We present here an
experiment in which an autonomous robot explores its envi-
ronment and tries to familiarize itself with the features avail-
able using a neural-network-based architecture. The lack of
stability of its learning structures increases the arousal level
of the robot, pushing the robot to look for comfort from its
caretaker to reduce the arousal. In this paper, we studied
how the behavior of the caretaker influences the course of
the robot exploration and learning experience by providing
certain amount of comfort during this exploration. We then
draw some conclusions on how to use this architecture to-
gether with related work, to enhance the adaptability of au-
tonomous robots development.

Introduction
The question of how autonomous robots could be part of
our everyday life is of a growing interest. To approach this
goal, many questions remain unanswered, from what kind
of hardware would be needed, to what kind of architectures
would be appropriate in order to promote socially situated
robot that would fit in our environment. We are especially
interested in the latter issue.

To design such an ideal robot, it is argued that taking an
epigenetic approach would be a suited solution (Cañamero
et al., 2006). Indeed, this approach would help the robot dis-
cover and learn affordances in the environment in which it
is situated, including the agents it interacts with, as opposed
to an approach where the designed architectures would need
prior knowledge about the environment. The concern that
arises with this approach is to find what sort of built-in
mechanism a robot needs to be able to develop its cogni-
tive and social capacities. To be precise, what are the inner
drive(s) and basic principle(s) which will push the robot to-
wards situations in which it will learn what it needs to in
order to be fully operational in the given environment. This
problem has many of similarities with the development of in-
fants. Psychological evidence suggests that caretaker-infant
attachment bonds are vital to the cognitive and emotional
development of infants (Hofer, 2006), especially during the

first years of life. Indeed, as John Bowlby (1969) discov-
ered during his studies on mother-infant interactions, the
primary caretaker, usually the mother, is utilized by the in-
fant as a secure base in his/her early life, especially during
stressful and/or unusual episodes. Furthermore, as stressed
in (Schore, 2001), if the primary caretaker doesn’t act ac-
cordingly to the infant’s demands in term of interactions, the
mental development of the child can be impaired, leading to
emotional and cognitive disorders. Therefore, identifying
the factors that are particularly relevant during these interac-
tions, as well as their dynamics, is important to understand
how the development of a child can lead to many different
and uneven outcomes.

Our work also took inspiration from work done in the au-
tonomous robotics research area, such as (Avila-Garcia and
Cañamero, 2004), for affective (hormonal) modulation of
behavior selection in the case of action selection in a com-
petitive scenario; and especially (Blanchard and Cañamero,
2006; Cañamero et al., 2006), modeling the caretaker in the
case of a perception used to modulate the robot’s affect and
thus its behavior. Drawing on these ideas, we have devel-
oped a robotic architecture to explore a new environment
and learn from it using the robot’s caretaker as a secure base,
i.e. providing “comfort” to reduce the robot’s distress. Nu-
merous scenarios in terms of caretaking style are then pos-
sible to try to enhance the robot’s experience and especially
its learning process.

In the remainder of this paper we introduce an experiment
illustrating how a caretaker can help to modulate the arousal
of an infant-like robot by interacting with it and providing it
with comfort. The architecture used here allows the robot to
discover and learn information about its environment, more
specifically getting used to meeting certain patterns of stim-
uli and classifying them in a stable manner. During that ex-
ploration, its arousal is stimulated by the novelty and the
lack of stability of the patterns it senses. When this arousal
level is high, the robot looks for comfort from the caretaker.
The arousal thus modulates the behavior of the robot, and
the caretaker modulates its arousal.
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Robotics Model
Our architecture can be described in three main steps. The
robot first learns the features encountered in its exploration
of the environment, and gets habituated to them and classi-
fies them. Then the convergence and stability of these struc-
tures are evaluated to calculate the arousal level; this arousal
level reflects the degree of surprise and mastery of the robot
in the current sensorimotor situation. Finally, an appropriate
action is selected and executed.

Exploring and Classifying the Environment
To explore and categorize the environment, our architecture
uses two different learning systems. First, a Hopfield-like
associative memory neural network is used to learn the pat-
terns of stimuli encountered during the experiment. The sys-
tem is based on models of associative memory (Davey and
Adams, 2004). The network is a two-dimensional grid of N
binary neurons, with a state or output Si, locally connected
to their four nearest neighbors and randomly connected to
four other units of the network with a symmetric connection
matrix of weightswij . The connectivity is a blend of the two
configurations represented in Fig. 1. This model is a modi-
fication of the standard Hopfield network. The local field hi
of a unit i is given by:

hi =
N∑
i 6=j

wijSj

then the next state of the unit i is calculated as:

Si =

 1 if hi > 0
−1 if hi < 0
0 if hi = θi

In our network we use asynchronous random-order updates.
Then to learn the presented input pattern vector, we use a
modified version of the following procedure from (Davey
and Adams, 2004):

Begin with a zero-weight matrix

Repeat either until all local fields are correct or for M time
steps

Set the state of the network to one of the input patterns ξ

For each unit i in turn

Calculate hiξi

If this is less than a threshold T, then change the weights
between unit i and all

other connected units j, according to:

∀j 6= i w
′

ij = wij + ξiξj

N

The point in which our algorithm differs from the origi-
nal (Davey and Adams, 2004) is the repetition until all local
fields are correct. In our experiment the number of steps
used to learn the current pattern is fixed (10 steps in the
current settings). Therefore, the pattern is learned correctly
and completely if the robot stays in its current position, in
front of the exact sensory input pattern; if all the local fields
are correct before ten time steps, then learning stops as de-
scribed above.

Figure 1: Associative memory network connectivity (locally
connected on the left and randomly connected on the right,
from (Calcraft et al., 2007))

The second learning algorithm is a classical Kohonen
Self-Organizing map (Kohonen, 1997). The goal of this
module is to classify the patterns of stimuli encountered dur-
ing exploration. We used the classical algorithm, but here we
don’t have a decreasing learning rate or neighborhood size
over time; therefore, the map is constantly learning but has
nevertheless a satisfying stability for already encountered
patterns and keeps its plasticity.

Arousal Model
To compute the arousal of the robot we use two different
contributions. First, we evaluate the discrepancy between
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Figure 2: The robot explores and classifies the environment
using a Hopfield-like associative memory and a Kohonen
Map.
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Figure 3: Entire Architecture

the current pattern of stimuli and the output of the asso-
ciative memory, a value we call surprise Surt, since it de-
creases as a function of the familiarity of the current pattern
of stimuli. Indeed, since the associative memory has a fixed
number of time steps to learn the pattern, more than one
presentation is needed. When a pattern is familiar enough,
the network converges fast and the surprise value is close to
zero. We also use Mast, a value we call Mastery, which
is the sum of the variations of the weights of the Kohonen
map. This value shows the ability of the robot to classify the
current pattern and how these classes evolve. Formulas of
how these values are calculated are displayed in Fig. 2. At
each time step, the arousal of the robot is computed as:

At =
{

Surt+Mast
2 if TCare = 0

A(t− 1)− α · TCare otherwise

where TCare takes the value 0.5 when the caretaker is in
sight, 0.8 when he/she touches the back sensors, 1 when both
conditions are met, and 0 otherwise. Here α is the decay rate
of the instantaneous arousal when the caretaker is interacting
(set to 0.2). A(t) is then used to evaluate a smoothed value
of the arousal that we call instantaneous arousal, as follows:

Ainst(t) = τa·Ainst(t−1)+A(t)
τa+1

This value allows us to calculate an average of this arousal,
called sustained arousal,

Asus(t) =






τsus·Asus(t−1)+Ainst(t)
τsus+1

if TCare = 0 and Ainst(t) > 0.4
0 otherwise

where τa = 30 is the time window on which the instan-
taneous arousal is calculated, as an average of Ainst(t), and
τsus = 10, the time window on which the sustained arousal
is calculated, as an average of the instantaneous arousal.

Figure 4: Our Experimental Setup

Choice of Actions
The actions the robot takes are based on the levels of both,
instantaneous and sustained arousal. The robot can turn in
only one direction, to discover a new pattern of stimuli when
the arousal is low and the robot is in a “bored state”. If the
arousal is neither low nor high the robot remains still and
tries to learn the current pattern of stimuli. If the arousal
level is high, the robot barks to attract the caretaker’s atten-
tion, and if the arousal is high and sustained, the robot looks
for the caretaker by moving is head from top to bottom and
left to right, trying to attract the caretaker in sight. Numer-
ically speaking, the actions described above are taken when
the conditions below are met:





if Ainst < 0.25 ⇒ turn to explore
if Ainst > 0.25 and Ainst < 0.7 ⇒stay still and learn
if Ainst > 0.7 ⇒ bark to attract attention
if Ainst > 0.7 and Asus > 0.6 ⇒ search for the caretaker

Experimental setup and Results
In our experiments we used an Aibo robot on play mat,
adding three cylindrical objects of different colors, as shown
in Fig. 4. The robot uses three sensory modalities: color
(the main color in the center of its visual field projected into
the RGB color space), distance ( the distance measurements
provided by three distance sensors located in front of the
robot), and contact (from one contact sensor on the top of
its head and three on its back). Each sensor value (including
the 3 RGB components of the color of the centre of its visual
field) is discretized and projected into a vector containing ten
binary elements. To summarize, the robot has to habituate
to a vector aggregating all the element of the sensory space,
i.e. 100 binary elements (30 for the color, 30 for the distance
sensors, 30 for the back sensors, and 10 for the head sensor).
The caretaker can provide comfort to the robot either by ap-
pearing in its visual field and staying in sight or by touching
the sensors on its back. The robot recognizes the caretaker
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Figure 5: Evolution of (from top to bottom): instantaneous arousal, sustained arousal, caretaker interventions, associative
memory error, and variations of the Kohonen map’s weights. The graphs on the left-hand side correspond to an experiment
with a caretaker only available at the beginning of the experiment whereas the ones on the right-hand side correspond to an
active caretaker often providing comfort to the robot.

using the color of its clothes (this is hardcoded in this ex-
periment, the caretaker is wearing a black top as it is the
only color absent from the experiment room). At every time
step, we recorded the values described in the model section,
namely instantaneous arousal, sustained arousal, caretaker
interventions, associative memory error, and variations of
the Kohonen map’s weights.

We have represented the results of two typical experi-
ments in Fig. 5 with two different caretaking styles: an ac-
tive caretaker, responding almost constantly to the robots de-
mands (results on the right-hand side of the figure), always
staying on the right of the robot to appear in sight every time
the robot is looking for him/her, and a caretaker who only in-
teracts at the beginning and then leaves the robot on its own
and only intervenes few times (once every two minutes).
The beginnings of both experiments are the same. When the
robot is put on the play mat, it is almost instantly asking for
the caretaker, since all the features are new and highly stim-
ulating its arousal. Then the caretaker appears in sight and
touches its back sensors to calm it down. We can observe
on the graphs that for both caretaking styles, the Mastery
value and Surprise value are high and sustained in the case
of the non-caring caretaker, since the “non-caring” caretaker
then backs away immediately after putting the robot down.
Whereas for the other type of caretaking, the experimenter
stays close during the whole experiment. In the case of the

Style M̄asσ (Mas) ¯Surσ (Sur)

Caring 0.5987 0.0355 0.3456 0.0565
Not Caring 0.6427 0.0407 0.6455 0.0324

Table 1: Results for 10 runs for each caretaking style

non-intervening caretaker, the robot is surprised and quickly
stimulated by the new environment, and the levels of arousal
(sustained and instantaneous) urge it to look for the caretaker
quickly. By doing this, the robot actually sees the colors of
the upper environment, which are novel stimuli, and tries to
learn them, and this results in an even higher increase of its
arousal levels. As for the experiment with an active care-
taker, since he interacts and provides comfort, the arousal
levels are lower and the robot can explore without . To find
out how the two different caretaking styles differ, in terms
of stability and performance of the exploration and classifi-
cation system, we ran our experiment 10 times for each of
the scenarios. The results for the average values and stan-
dard deviations for Mastery (Kohonen Map weights vari-
ations), Surprise (associative memory error)and Sustained
arousal for the entire experiment are presented in Table 1.
These values are used as a measurement of the quality of
the learning process, to evaluate how each caretaking style
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affect the learning experience of the robot. Each run lasted
50,000 timesteps and started from the exact same position.
We can see that in terms of the Kohonen Map stability (the
Mastery value), the caring caretaker behavior does not out-
perform the non-caring one by a large difference. However,
there is a large difference in terms of Surprise (the associa-
tive memory’s performance) between the different caretak-
ing styles. The sustained arousal gives coherent results since
the robot without the caretaker has to deal on its own to re-
duce its arousal by mastering the situation and getting habit-
uated to the patterns. We can only conclude with this small
sample that both behaviors are not optimal and that finding
the correct trade-off between staying close and not caring
needs further investigations. As an end result, in all our runs
the robot had learned and classified all the encountered pat-
terns meaning therefore its arousal always remained under
the lowest threshold and kept turning fast in the arena in the
“bored state”, looking for new features to learn.

Discussion
The architecture we used in our experiment allows a robot
to explore an unknown environment as a function of the dy-
namics of its interactions with the caretaker and the behavior
of this latter. We have seen that even using such a simple ar-
chitecture, the outcomes of every experiment are different
depending on the type of interactions. The developmental
approach we have followed reproduces mother-infant inter-
actions. However, what needs to be underlined is the diffi-
culty experienced during tuning the parameters of the archi-
tecture, namely the decay rates of the arousal levels. Indeed,
to obtain a behavior oscillating between exploring, learning,
and demanding the caretaker’s presence, we needed to ex-
plore several configurations of the parameters. Nevertheless,
these results show how using the caretaker as an arousal —
and indirectly as a behavioral— modulator is actually pos-
sible without having a complex architecture. Furthermore,
apart from these two opposite caretaking styles, our archi-
tecture allows to actively choose whether a situation, pattern
of stimuli, has to be learned or avoided. Indeed, if the care-
taker wants the robot to really learn the pattern, he/she can
provide a small amount of comfort for the robot to have its
instantaneous arousal in the middle level, between the two
thresholds. This way the robot remains in its current posi-
tion, without looking for the caretaker or moving away. In
the opposite case, the caretaker can provide comfort to the
robot so that it continues to look for another situation, keep-
ing the instantaneous arousal below the lowest threshold, so
that the robot does not learn one situation that is judged ir-
relevant by the caretaker.
As for the related work, a comparable model of arousal
modulation and mother-infant interaction, although, not ap-
plied to robotics, can be found in (Smith and Stevens, 1996,
2002). In these contributions, the authors used a similar
approach to modulate arousal based on neurophysiological

data (Hofer and Sullivan, 2001) regarding how endogenous
opioids modulate arousal in infants. However, their architec-
ture did not have any cognitive system related to the interac-
tions and their qualities, but was focused on the dynamics of
the dyadic interaction. Another contribution can be related
to this work. In (Likhachev and Arkin, 2000), the notion
of comfort and object of attachment is used by a robot to
remember its “comfort zones”. What differs between the
work presented here is that the object is a person, and also
the comfort of the robot is not a function of the distance be-
tween the robot and the object of attachment.

Finally, in (Thomaz and Breazeal, 2007), an interesting
experiment is described showing how a human can help a
robot learn a certain task. In this contribution, a robot can
explore and learn on its own but has also the opportunity to
use human guidance to adapt to new tasks, changes in the
environment, and to generalize one task to similar ones. The
robot communicates its internal state with basic facial ex-
pressions and gestures. This “Socially Guided Exploration”
presents similar features with the work presented here; in
both experiments the interactions with a human are used to
enhance the learning process, and also in both cases the hu-
man teacher/caretaker has to pay attention to the feedback
from the robot in order to intervene to help and guide the
robot. However, what differs between the two experiments
is the modalities the human uses to interact with the robot.
In the experiment presented in this paper, the human care-
taker orients the robot’s behavior by touching its back sensor
to reduce its arousal level in order for the robot to move to
another sensorimotor context, or appear in sight, whereas in
the contribution discussed here, the human teacher can either
point with his/her finger to a certain region of the environ-
ment or even give verbal instructions to the robot. We argue
that the simple non-verbal way of interacting we used in our
experiment is sufficient to bias the behavior and improve the
learning process of an autonomous robot.

Conclusion and Future Work
In the experiments described above, we have shown how it
is possible to modulate the exploratory behavior of an au-
tonomous robot using notions like surprise and mastery to
take into account its cognitive development, and especially
using a caretaker as a secure base to provide comfort and
reduce its arousal. To provide a more autonomous and adap-
tive solution, we could use material from previous work,
modeling the imprinting phenomenon, using a perception or
a compound of them as “desired perceptions” (Blanchard
and Cañamero, 2005; Hiolle et al., 2007). These percep-
tions could be the voice of the caretaker and his/her face.
We could then to add to our architecture the possibility for
the robot to learn how to attract the attention of the care-
taker and keep him/her close enough, as has been done in
(Hiolle and Cañamero, 2007). However, finding the cor-
rect parameters for the architecture to obtain a balanced be-
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havior was not easy and we experienced what was stressed
in (Kaplan, 2001):“Fixing the satiation level and the speed
of decay in order to obtain the right behavior remains the
tricky thing”. We think that using even earlier experiences
of the robot could help evaluate these parameters. Using this
as grounding for an early shaping of the personality of the
robot would help us build a more realistic robot, and assess
its attachment style using an Ainsworth-like Strange Situa-
tion Test (Ainsworth, 1969). To improve the autonomy of
our robot’s development, adding a curiosity drive (Oudeyer
et al., 2007) would guide the robot’s exploration towards
more interesting situation, acting in order to increase its
“learning progress”. Another possibility would be to mod-
ify our architecture using the arousal, or a variable related
to it (first derivative for instance), to directly modulate the
cognitive abilities of the robot. More precisely, this value
could modulate the learning rate, and/or the neighborhood
of the Kohonen map. The robot could then exhibit vari-
ous behaviors depending on the situation, and the dynamics
of the system would certainly be different, perhaps closer
to what happens with infants. On another level, what also
needs to be done is to come up with accurate and consis-
tent metrics to qualify and even quantify the behavior of the
caretaker. We would also like to measure how a caretaker
is interacting and possibly assess the effects of the differ-
ent caretaking styles. We could then even point out what
definitely should not be done based on the behavior and per-
sonality of the robot. We would also like to investigate how
a robot could develop bonds with several caretakers and ex-
hibit preferences for a given caretaker as a function of the
given context or situation.
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Blanchard, A. and Cañamero, L. (2005). From imprinting to
adaptation: Building a history of affective interaction.
Proc. of the 5th Intl. Wksp. on Epigenetic Robotics,
pages 23–30.

Bowlby, J. (1969). Attachment and loss, volume 1:Attach-
ment. New York : Basics Books.
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Abstract

An objective of multi-agent systems is to build robust intelli-
gent systems capable of existing in complex environments.
These environments are often open, noisy and subject to
rapid, unpredictable changes. This paper will explore how
agents can bias their interactions and choices in these com-
plex environments. Existing research has investigated how
agents can bias their interactions based on factors such as
similarity, trust or reputation. Unfortunately, much of this
research has ignored how agents are influenced by their pref-
erences for certain game payoffs. This paper will show that
individual payoff preferences have a significant effect on the
behaviors that emerge within an agent environment. We ar-
gue that agents must not only determine with whom to in-
teract, but also the levels of benefit or risk these interactions
should represent. This paper presents a series of game theo-
retic simulations examining the effects of agent payoff prefer-
ences within an evolutionary setting. Our experiments show
that these factors promote tolerance throughout the popula-
tion. We provide an experimental benchmark using an almost
identical game environment where payoffs are not considered
by agents. Furthermore, we also present simulations involv-
ing noise, thereby demonstrating the ability of these more tol-
erant agents to cope with uncertainty in their environment.

Introduction
Agent interactions are often heavily biased through certain
group structures. These structures are often defined by fac-
tors such as geographical location (Axelrod, 1984), kin se-
lection (Hamilton, 1963), choice and refusal (Stanley et al.,
1995), or trust and reputation (Dellarocas, 2003). In the real
world, individuals often bias their interactions through fac-
tors such as their need for certain services, or preferences for
particular goals. As a result, we must acknowledge that not
all agent interactions are identical and are driven by individ-
ual preferences and needs. Therefore in this paper we will
examine through game theoretic simulations how agent pay-
off preferences influence the overall agent population. Some
researchers have examined the payoffs commonly used in
the Prisoners Dilemma and concluded that certain payoffs
promote cooperation (Fogel, 1993). The implications of
agent payoff preferences when determining their peer inter-
actions remain to be fully explored and understood.

This paper shows how game payoff preferences directly
influence the levels of tolerance and reciprocity throughout
an agent population. Existing research has not examined the
significance of these agent payoff preferences. For exam-
ple, in a multi-agent environment an agent may only trust
one of its peers. Yet, in order to satisfy its individual pref-
erences this agent may choose to interact with a less trusted
peer. This decision could be based on a payoff preference or
similarly a preference for a service being offered. In short,
within a game theoretic model, agent interactions should re-
flect that agents are free to bias their interactions based on
their preferred peers and also their preferred games. As a
result we will simulate an environment where agents may
offer and choose games based upon their preferred payoff
values. Some agents are risk takers and prefer games which
have higher risk payoffs, while others are more risk averse
and prefer game payoffs which hold lower risk.
Previous research of this type has focused primarily on

IPD games which remain constant throughout the popula-
tion. Recent research has started to explore the effects of
allowing the game payoffs to change (Taylor and Nowak,
2006; Howley and O’Riordan, 2006a, 2008). The need to
study these interactions stems from the fact that real world
interactions rarely remain identical indefinitely. In reality,
an agents interactions will be determined through its bias
towards preferred individuals and its bias towards achiev-
ing specific goals. This paper will investigate aspects of
this statement and in particular address the following two
research questions:

1. What are the effects of game payoff preferences on the
overall agent population and the strategy genes?

2. What strategies are most successful in this variable payoff
environment when noise is introduced?

In the following section of the paper we outline our mo-
tivations and aims. We will then discuss various aspects
of background and related research from the subject do-
main. This will involve existing research in the areas of
spatial, tagging and trust models. Subsequent sections will
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describe our evolutionary algorithm, simulator design, pa-
rameters and experimental setup. The results section will
present a series of experiments showing the behavior of the
overall population when alternative interaction models are
used. Stemming from these results we will outline our con-
clusions.

Aims and Motivations
The primary goal of this paper is to propose a simple ex-
tension to the traditional Iterated Prisoner’s Dilemma and
analyse the effects of this salient extension on agent inter-
actions. Previous research from the authors has examined a
number of agent interaction models. In previous work, we
examined the underlying dynamics of tag mediated interac-
tion models. We identified the significance of tag group size
on the levels of cooperation that emerge within the agent
population. We also examined the effects of openness on
trust between agents (Howley and O’Riordan, 2006b). We
found that alternative forms of openness and change effected
agents in very different ways. We also identified the depen-
dencies that can emerge between agents within a trust model
when exposed to openness. More recent research has in-
vestigated payoff variances and preferences among agents
(Howley and O’Riordan, 2008). We outline how agents like
to avail of higher payoffs through defection but this results
in the agent population exploiting each other into choosing
games with low risk payoffs. These strategy preferences
emerged to dominate the agent populations.
This paper examines the agent strategies at gene level and

presents a more detailed examination of their preferences for
certain game payoffs. Furthermore we hope to clarify the
heightened levels of tolerance present in these game envi-
ronments. We hope to ascertain the scale of these differences
and the reasons behind them. Also we hope to test these lev-
els of tolerance through introducing noise into the game in-
teractions. This differs from simulating reduced population
viscosity, or mutation which would serve to undermine co-
operation in cooperative groups. In this work we are more
interested in identifying the strategy traits that emerge when
these factors are not present.
We have extended the Prisoner’s Dilemma to reflect vari-

able payoffs, thereby scientifically capturing the effects of
agent payoff/risk preferences. Agents’ who express their
game preference based on a games ‘temptation to defect’
are in effect specifying a unique game with an associated
degree of risk. We provide a more detailed description of
this extension in later sections.
Through the results presented in this paper, we aim to ex-

tend our previous research while also demonstrating the im-
portant dimensional space which has largely been ignored
by existing research in multi-agent systems. The differences
shown in this paper present many implications for the do-
main of multi-agent research. The most important of these
involves the need to delineate between agent environments

where all interactions are of equal value and those where
interactions are not equal.

Background Research
In this paper our main topic of concern involves how agents
bias their interactions. Previous research on this topic has
examined techniques such as spatial, tagging, kin selection
and trust. In this section we will discuss some of the ex-
isting research on these topics. We will also introduce and
discuss the Iterated Prisoner’s Dilemma (IPD), which is used
throughout our simulations.

Spatial, Tagging and Kin Selection
In relation to the emergence of cooperation, one of the most
important considerations involves how agents bias their in-
teractions towards cooperative peers and away from non-
cooperative peers. In this paper we are only concerned
with the latter. Kin selection is one such interaction mech-
anism involving groups of related individuals (Hamilton,
1963). Another more common interaction model involves
agents located on a spatial topology such as a grid (Axel-
rod, 1984; Nowak and May, 1993). Agents bias their in-
teractions and therefore play peers located on adjacent cells
of the grid. Tag-mediated interaction models are based on
a similar premise. These models locate agents on an ab-
stract topology and then bias interactions based on players
proximity to each other (Holland, 1993; Riolo, 1997). Ar-
bitrary tags are similar to visible markings or labels which
may be used by agents to bias their interactions based on
their preferences. Some real world examples of tags could
include football fans recognising each other from their jer-
seys or travelers recognising each other abroad through their
native accents. Tags can provide a more general represen-
tation of agent interactions than spatial models. Later in
this paper we will outline how tag-mediated selection may
be used to structure interactions based on players individual
preferences for certain games.

Iterated Prisoner’s Dilemma
The Prisoner’s Dilemma (PD) is a simple two player, non-
zero sum, non-cooperative game. Each player must make a
decision to either cooperate (C) or defect (D). Both players
decide simultaneously and, therefore, have no prior knowl-
edge of what the other has decided. If both players coop-
erate, they receive a specific payoff. If both defect, they
receive a lower payoff. If one cooperates and the other de-
fects then the defector receives the maximum payoff and the
cooperator receives the minimum.
For this game to be classified as a dilemma in all cases,

certain constraints must be adhered to. The following is the
first constraint:

λ2 < λ4 < λ1 < λ3 (1)
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Table 1: Prisoner’s Dilemma Payoff Matrix
Players Choice Cooperate Defect
Cooperate (λ1, λ1) (λ2,λ3)
Defect (λ3, λ2) (λ4,λ4)

These conditions result in λ2 being the sucker’s payoff,
λ1 is the reward for mutual cooperation, λ4 is the punish-
ment for mutual defection, and λ3 provides the incentive or
temptation to defect. The second constraint is the following:

2λ1 > λ2 + λ3 (2)

This constraint prevents players taking alternating turns
receiving the sucker’s payoff (λ2) and the temptation to de-
fect (λ3), therefore maximising their score.
The following λ values are commonly used in the Pris-

oner’s Dilemma: λ1 = 3,λ2 = 0,λ3 = 5,λ4 = 1.
In the non-iterated game, the rational choice is to defect,

while in the finitely repeated game, it is rational to defect
on the last move and by induction to defect all the time.
This game has been used throughout numerous research do-
mains, including economics, computer science and the so-
cial sciences. More detailed discussions on the Prisoner’s
Dilemma and its various guises are widely available (Axel-
rod, 1984; Hoffmann, 2000; Delahaye et al., 2000; Kendall
et al., 2006).

Evolutionary Algorithm
The experimental results presented in this paper involve
agent environments simulated over successive generations.
In each of these generations an evolutionary algorithm is ap-
plied to reflect the real world pressures on under performing
entities and alternatively reward the best performing ones.
In this section we will outline in detail the evolutionary al-
gorithm used throughout our simulations.
In the domain of game theory, one of the most com-

mon evolutionary techniques involves replicator dynamics.
These quite general evolutionary models replicate changes
in agent’s fitness through increasing or decreasing their rep-
resentation in successive generations. Therefore in a pop-
ulation of n species, each of which adopts a strategy i, the
population state can be represented as the following vector
at time step t (Generation t):

x t = (x t0 , .........., x tn) (3)

As a result, xt
i represents the fraction of the population

which can be considered belonging to a species i.

(x ti ≥ 0,
n∑

i=0

x ti = 1) (4)

The game payoffs represented in the payoff matrix are
used to determine payoff to individual species throughout

their lifetime. Payoff to a species i is viewed as an indicator
of fitness and thereby a measure of its reproductive success
(Smith, 1982).

jsij
t = jsij

t−1 × f(si)t−1

∑n
j=0 f(sj)t−1

(5)

The representation of a species i in generation t is its rep-
resentation in generation t − 1, by the fitness it achieved in
generation t − 1, as a proportion of the average population
fitness in generation t − 1. Hence, the growth rate of an
individual species i is proportional to its fitness.

Uncertainty and Noise
This paper presents a number of noise experiments which
investigate the effects of uncertainty on the agent popula-
tion. In previous research when we first examined payoff
preferences among agents, we observed significant levels of
intermittent defections (Howley and O’Riordan, 2008). Be-
cause of this we undertook this more detailed investigation
of these population dynamics which appeared to promote
forgiveness among agent strategies. In addition this paper
also examines this phenomenon through simulating noise in
the game environment.
Existing research has simulated uncertainty through a se-

ries of methods involving noise (Bendor et al., 1991) and re-
duced population viscosity (Howley and O’Riordan, 2006b).
In this paper we have used noise as a means of simulating
uncertainty. This will serve to test the ability of agents to
forgive opponents. Previous research has shown that more
forgiving and generous strategies perform best in noisy en-
vironments (Bendor et al., 1991).

Simulator Design

Figure 1: Game Cycle
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In this section we outline our overall simulator design. We
begin with an introduction to the game cycle (Figure. 1). We
describe how we extended the Iterated Prisoners Dilemma
(IPD) to allow agents express preferences for certain types
of games. We also outline our strategy set.
Firstly, agents play their selected opponents. They enter

IPD games using payoffs acceptable to their individual pay-
off preferences. The payoff preference of the offering agent
us used and the opponent can then chose to interact or not.
This decision is based on its own payoff preference. Once
all games are played game payoffs are totaled and averaged.
These are then used as measures of fitness for our evolution-
ary algorithm. This evolutionary algorithm uses replicator
dynamics based on fitness to determine agent representation
over successive generations. No crossover or mutation is
applied.
Agents select their opponents probabilistically based on

the proximity of their tags. This is done in a similar way to
much previous research involving tag mediated interactions.
Players with similar tags are far more likely to interact than
other pairings where there may be some difference between
players tags. This differs from common green beard dy-
namics, whereby by individuals identify each other through
their beard colour and cooperate if their beards are a simi-
lar colour and defect if they are different (Dawkins, 1976).
Our model limits peer interactions to individuals of a simi-
lar tag value, and makes no assumption about an individuals
actions towards those of a specific tag value.

Strategy Set
In order to define a strategy set, we refer to existing research
which uses three bit IPD strategies (Nowak and Sigmund,
1990). In our simulations each strategy genome includes
four genes representing probabilities of cooperation in an
initial move pi, in response to a cooperation pc and defection
pd. The final strategy gene pt represents an individuals game
payoff preference. Some strategies are be more inclined to
prefer lower risk games while others will prefer higher risk
games. This is similar to people who are often natural risk
takers while others are more risk averse. As we will explain
in the following section our game environment permits play-
ers to agree the ‘temptation to defect’ (TD) value in the Pris-
oner’s Dilemma game. The resulting strategy genome looks
like the following:

Genome = pi, pc, pd, pt (6)

The Variable Payoff Prisoner’s Dilemma
The extended IPD game remains similar to the original game
described earlier. It remains a simple two player dilemma
which is non-zero-sum, non-cooperative and played simul-
taneously. For this game to remain a Prisoner’s Dilemma it
must still remain within the constraints of the original game
as mentioned earlier. This game differs in that the payoffs

used in each game interaction are not always the same. The
extended game uses the following adapted payoff matrix. In
this game the λ1, λ2, λ4 payoffs remain constant while in
this extended game the value of TD is determined by the
individual players involved in each game interaction.

Table 2: Adapted IPD Payoff Matrix
Players Choice Cooperate Defect
Cooperate (λ1,λ1) (λ2, TD)
Defect (TD,λ 2) (λ4,λ4)

For this game to remain a valid IPD, then the value of TD
must remain within the following range of values:

λ1 < TD < 2× λ1 (7)

The IPD payoff values used throughout this research are
as follows: λ1 = 5000, λ2 = 0, λ3 = TD, λ4 = 1. As
stated above the value of TD must always remain within the
following range: λ1 < TD < 2 × λ1. These λ values
provide an expressive range of possible TD values.
Our decision not to allow agents determine all game pay-

offs stems firstly from the need to maintain a valid Prisoner’s
Dilemma, and secondly that all interaction choices be based
on a fair and equal footing. One can also argue that a Pris-
oner’s Dilemma which allows the TD to change is identical
to a bounded Prisoner’s Dilemma where all payoffs are per-
mitted to change but still remain bounded by an upper payoff
limit. This is due to all the payoffs being interdependent and
relative as specified by the PD constraints. Therefore by al-
lowing the TD payoff to change, all the game payoffs change
relative to each other.

Experimental Results
In this section, we present a series of simulations involving
our multi-agent population. We present direct comparisons
between a number of multi-agent environments when using
fixed payoff games versus variable payoff games. Firstly
we examine these differences under noiseless environmen-
tal conditions. Subsequently, we present this comparison
using a noisy game environment, whereby agent actions are
effected by a degree of noise which will demonstrate more
clearly the emergence of tolerance in our variable payoff
game simulations.
All the simulations outlined in this paper involve popula-

tions of 1000 agents. Each experiment is a aggregation of 50
experimental runs. Each game interaction lasts 20 iterations.
The first interaction model is a variable payoff model

where agents agree a TD payoff depending on their respec-
tive pt genes. As in a tag environment, players choose their
peers based on their tag (pt gene) similarity. In this model
the pt gene value reflects a players preferences for games of
a certain value. A high pt gene would result in a high TD
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payoff game while a low pt gene would result in a low TD
payoff game. This results in players with similar pt genes
interacting in games with TD payoffs proportional to their
pt genes. To determine the probability of two individuals in-
teracting we use a formula proposed in previous research on
tag-mediated interactions (Riolo, 1997). The dissimilarity
of two individuals (A and C) is defined as follows:

dA,C = |Apt − Cpt| (8)

The second interaction model is almost exactly the same.
This is a fixed payoff model which allows the players deter-
mine their peer interactions based on their pt gene similarity.
The one significant difference is that all games use the same
fixed payoffs. λ1 = 5000, λ2 = 0, λ3 = 7500 and λ4 = 1.
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Figure 2: Average Cooperation.

We observe in the data shown in Fig. 2. the levels of co-
operation attained using two agent models. These levels of
cooperation were significantly higher in the variable payoff
model. Furthermore these levels of heightened cooperation
were also much faster to emerge. The table below presents a
number of statistics reinforcing these observations. On aver-
age this model remained 0.10 greater than the static model.
The data shown in Table 3 indicates the scale of the differ-
ences between the fixed and variable payoff environments.
These differences were found to be statistically significant.

Model µ σ

Fixed 0.6102 0.1664
Variable 0.7103 0.1390

Table 3: Average Cooperation in Noiseless Environment

The following experiments show the average values for
each strategy gene respectively. These values represent av-
erages taken throughout the agent population at the start of
each generation. From the results shown, we can ascertain
the levels of reciprocity and tolerance present throughout the

agent population. These can be identified from examining
the pc and pd gene values respectively.
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Figure 3: Fixed Payoff Game - Strategy Genes.

Fig. 3 shows average gene values recorded in the sta-
tic payoff game environment. We observe how the pt gene
remains almost static. This gene experiences no evolution-
ary pressures as it serves simply as a tag for biasing inter-
actions. The value of this gene is completely random from
experiment to experiment. Therefore it’s mean value across
a large number of experiments always remains close to 0.5.
The levels of cooperation in this model as shown in the first
experiment (Fig. 2) can be attributed to the significant in-
crease in the pc gene from generation 20 onwards.
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Figure 4: Variable Payoff Game - Strategy Genes.

The levels of cooperation identified in the variable payoff
model in the initial experiment (Fig. 2.) are justified through
the data shown in the in Fig. 4. This graph shows the pd

gene reaching levels that are significantly higher than in the
static payoff model (Fig. 3.). As a result, agents are more
likely to cooperate after a defection. This indicates a degree
of tolerance or forgiveness which is far greater than in the
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static payoff environment. Furthermore, the average pc gene
values indicate a similar likelihood of cooperation following
an opponents cooperation. This characteristic emerges very
rapidly in the initial generations of the variable payoff en-
vironment and is associated with a increased likelihood of
mutual cooperation in an agent environment.

Summary The results shown here demonstrate the clear
differences between static and variable payoff game en-
vironments. The heightened levels of cooperation identi-
fied in the variable payoff environment have been shown to
emerge through specific genetic differences in that strate-
gies that perform best in the respective game environments.
These cooperation levels stem from the emergence of tol-
erance among the participant strategies. Defection in the
static payoff model exerts no evolutionary pressure on the
agent game preferences. Yet defection in the variable pay-
off model exerts pressure on agents to chose game interac-
tions with lower TD game payoffs. This results in an agent
population who are predominantly cooperative and also pos-
sess low pt genes. Therefore any subsequent defections in
this population incur few penalties and are tolerated through-
out the agent population. These conclusions are confirmed
through our analysis of the strategy genes in each game en-
vironment. The average pt gene value initially increases as
strategies choose high TD payoff games. They avail of these
high TD payoffs by exploiting their peers, and this rapidly
becomes more common throughout the population. Subse-
quently, these strategies start to mutually defect and begin
to suffer. The pt gene levels fall dramatically as cooperative
groups emerge to dominate the population. Strategies who
intermittently exploit to avail of certain TD payoffs thrive
in this environment. These are the underlying reasons be-
hind the increased tolerance and generosity throughout the
variable payoff model.

Noisy Environments In the previous section we examined
the similarities and differences between our static and vari-
able payoff game environments. In order to more rigorously
test our explanation of the differences between the two game
environments, we will now examine their respective dynam-
ics under noisy conditions. We represent noise as a proba-
bility that a move will be inverted from C to D or vice versa.
The following experiments show the levels of cooperation
recorded when alternative degrees of noise are simulated.
Fig. 5. shows the levels of cooperation involving simula-

tions using fixed payoff games and alternative levels of envi-
ronmental noise. From the simulations shown we can clearly
see the effects of noise on levels of cooperation. As would
be expected, 1% noise has a noticeable effect on coopera-
tion while 5% has a much more dramatic effect throughout.
These results show the extent to which strategies in the fixed
payoff environment can cope with intermittent defections.
High levels of tolerance would be very beneficial to individ-
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Figure 5: Average Cooperation

uals hoping to cope with intermittent defections.

Model Noise µ σ

Fixed 0% 0.6102 0.1664
Fixed 1% 0.4810 0.1661
Fixed 5% 0.2718 0.0390
Variable 0% 0.7103 0.1390
Variable 1% 0.6579 0.1396
Variable 5% 0.4924 0.1042

Table 4: Average Cooperation in Noisy Environments

Fig. 6. shows the effects of noise on levels of coopera-
tion in a variable payoff environment. The main differences
with the previous experiment in Fig. 5. are the levels of co-
operation recorded for 5% noise. The strategies in the vari-
able payoff environment appear to cope much better to these
levels of noise. This is reinforces our earlier conclusions
that these variable payoff environments promote tolerance
throughout an agent population.
The final set of graphs show how the gene strategy val-

ues evolved within two game environments when 5% noise
was introduced. The simulations shown in Fig. 7. represent
the fixed payoff environment. These results show the same
non convergence of the pt gene, as its value carries no great
significance in the fixed payoff model. The pi and pd genes
fall in value while the pc gene is the only gene which ap-
pears to recover in spite of the noise. The slow convergence
of the pc gene continues for about another 300 generations
and reaches a level slightly below that identified in the noise-
less experiment shown in Fig. 3. More significantly are the
values of of the pd gene which remain very low and indi-
cate low levels of tolerance throughout the agent population.
This contributes strongly to the levels of cooperation iden-
tified in Fig. 5. for this game environment using 5% noise.
It is clear that any occurrences of intermittent defections as
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a result of noise will result in mutual defection between the
participating individual agents.
Fig. 8. shows the gene values recorded in the variable

payoff model with 5% noise. This experiment shows higher
levels of tolerance as shown through the pd gene values.
Each of the strategy genes in this model continue to converge
in a similar way to their noiseless counterpart presented in
Fig. 4. but at a much slower rate. These indicate a much
higher level of tolerance throughout the game environment
and directly contribute to the heightened levels of coopera-
tion identified previously. They explain the fundamental un-
derlying dynamics which resulted to the significant results
presented in Fig. 2.

Summary This section has examined a series of specific
experimental results. These have shown the underlying dif-
ferences between static payoff game interactions and the al-
ternative agreed variable payoff model. These differences
stem from the increased ability of strategies in the variable
payoff model to forgive and tolerate intermittent defections.
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This is shown to be even more significant in a noisy environ-
ment where intermittent defections are more common. The
statistical analysis shown in the tables indicate the signifi-
cance of these differences. By demonstrating the each envi-
ronment’s ability to cope with intermittent defections, these
noise experiments show the main factors that explain the dif-
ferences first identified in Fig. 2. These noise experiments
are not intended as an extensive examination of noise and
its effects on IPD strategies. That would involve simulating
many more levels and forms of noise.

Conclusions
This paper has presented two alternative game theoretic
environments where agents play the Iterated Prisoner’s
Dilemma. Players bias their interactions through using a
designated strategy gene. Through a series of experiments,
we have shown that agent behavours can be fundamentally
effected by the introduction of a variable payoff game. To
date most research has been based on static payoff games
and the resulting conclusions have been adopted and cited
by many multi-agent researchers. We argue that variable
payoff games provide a more realistic basis for real world
agent interactions.
Initially we posed two fundamental research questions.

Firstly, we queried the influence of variable payoffs on the
agent environment. We have shown that this extension re-
sulted in a significant increase in the numbers of strategies
using higher value pd genes. These resulted in greater levels
of forgiveness throughout the agent population. We have
also shown as previously (Howley and O’Riordan, 2008)
that these agents favor lower value pt genes. This indicates
their preference for lower TD payoff games and reinforces
the reasons why these strategies are more tolerant of defec-
tions. Reduced payoff rewards for defections would natu-
rally make the agent more tolerant of such non cooperation.
Initial exploitation for high TD games provides a significant
advantage to strategies who only play games involving lower
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risk games. These strategies then thrive and dominate the
population.
Our second question queries which are the most success-

ful strategies. From analysing the trends throughout all the
experiments, it is clear that the strategies that are successful
in fixed payoff environments are not successful in variable
payoff environments and vice-versa. The most successful
strategies in the fixed payoff environments are highly recip-
rocal and therefore not very tolerant. The most successful
strategies in the variable payoff environment are highly tol-
erant and prefer low TD games. Once noise is introduced in
the variable payoff environment, the strategies that are toler-
ant and encourage cooperation perform the best.
This paper has shown the fundamental differences be-

tween fixed and variable payoff environments from both a
high level analysis and also a gene level examination. We
have shown the intrinsic ability of variable game environ-
ments to encourage cooperation through tolerance. This
leads to higher degrees of cooperation in both noiseless and
noisy environments. These differences show the importance
to future researchers, of differentiating between multi-agent
environments where all agent interactions hold identical sig-
nificance, and those which offer alternative rewards. This
presents researchers with the possibility of encouraging tol-
erance throughout an agent population without making any
assumptions about the agent population.
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Abstract

Living organisms perform a broad range of different be-
haviours during their lifetime. It is important that these be
coordinated such as to perform the appropriate one at the right
time. This paper extends previous work on evolving dynami-
cal recurrent neural networks by synthesizing a single circuit
that performs two qualitatively different behaviours: orien-
tation to sensory stimuli and legged locomotion. We demon-
strate that small fully interconnected networks can solve these
two tasks without providing a priori structural modules, ex-
plicit neural learning mechanisms, or an external signal for
when to switch between them. Dynamical systems analy-
sis of the best-adapted circuit explains the agent’s ability to
switch between the two behaviours from the interactions of
the circuit’s neural dynamics, its body and environment.

Introduction
All organisms are equipped with a repertoire of distinct be-
haviours that allow for their survival and reproduction. The
nematode worm Caenorhabditis elegans, for example, with
‘only’ 302 neurons shows a remarkable ability to perform
a broad range of different behaviours (Hart, 2006; Rankin,
2004). Although our understanding of the neural basis for
most of them is still at an early stage (de Bono and Mar-
icq, 2005), it is known that overlap exists between some of
the neural circuits responsible for these behaviours (Hobert,
2003). Also, it is well known that the morphology of living
organisms is in constant change, both throughout evolution
and during the lifetime of the organism. This work investi-
gates how a single neural network that is not structurally di-
vided into separate circuits can produce different behaviours
in different bodies.

When modelling adaptive behaviours, assumptions have
to be made with regard to the structure of the organism stud-
ied in order to simplify the modelling process or the anal-
ysis of the model’s behaviour. One such assumption that
has been made in the past is that functional modularity, the
existence of several qualitatively different behaviours in the
same organism or agent, should be mirrored by structural
modularity in its neural controller. Complex systems are
thus often divided into small parts that are synthesized in

isolation. Such a divide-and-conquer approach can be very
useful for engineering robots that need to perform multiple
complex tasks, not least because it simplifies the understand-
ing of how the robot works. But it is less useful in the context
of developing the tools and language to understand biologi-
cal organisms, as these may not necessarily have evolved to
be easily decomposable.

First, we investigate whether a single neurocontroller can
exhibit qualitatively different behaviours without imposing
constraints on its structure. We use artificial evolution to
synthesize a recurrent neural network that when coupled to
two different simulated bodies, namely a one legged insect
and a two-wheeled robot with a chemical sensor, has to per-
form legged locomotion in the former and chemotaxis in the
latter case1. A successful agent has to detect which body it
inhabits and generate the appropriate behaviour. It must do
this in the absence of an external signal and without any on-
line changes in the parameters of the controller. We aim to
find the smallest network that can solve the task. Although
the structure of the network is under evolution, we do not
investigate whether the evolved networks exhibit a degree of
structural or ‘functional’2 modularity.

Second, using the mathematical tools of dynamical sys-
tems theory, we explain how the circuit in interaction with its
body and environment can generate distinct behaviours. We
characterize the autonomous dynamics of the best-evolved
circuit and how its dynamics vary with inputs. We then
study how the observed behavioural patterns are generated
through the closed-loop interaction of the neural dynam-
ics with the body and environment, for the two different
tasks. Finally, we show how the evolved agent makes use of
context-dependent feedback to shape the different transients
using the same dynamical landscape. This leads us to sug-
gest a dynamical systems perspective on adaptive behaviour
that goes beyond attractors.

1Both tasks have been studied in some depth in the Evolutionary
Robotics literature. See Methods and Related work sections.

2Watson and Pollack (2005) argue that structural descriptions
of the network are not sufficient to determine dependence or inde-
pendence in the dynamics of different subsets of the network.
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Methods
Walking task
The walking task employed follows very closely the simple
one-legged body described and analysed in (Beer and Gal-
lagher, 1992; Beer et al., 1999). Three variants of this model
have been studied in (Beer, 1995), differing in whether sen-
sory feedback is available constantly, only occasionally, or
absent. Of the corresponding controllers, namely reflex-
ive pattern generators (RPGs), central pattern generators
(CPGs), and mixed pattern generators (MPGs), we focus
on the first type only. The leg is controlled by three ef-
fectors: one specifies whether the foot has contact with the
ground while the other two control clockwise and counter-
clockwise torques for the leg’s hinge-joint with the body
(Figure 1A). The opposing torques model antagonistic mus-
cles, commonly found in animal limbs. Sensory feedback is
provided continuously by the leg’s joint angle. At the begin-
ning of each walking trial, the state of the leg (i.e. its angle
with respect to the body) is initialised at random. The agent
is then given 220 units of time to walk. The total distance
covered during the trial measures performance.

Chemotaxis task
For the chemotaxis task we also follow a methodology sim-
ilar to that employed in (Beer and Gallagher, 1992). A food
patch, placed at arbitrary locations and orientations with re-
spect to the agent, emits a chemical signal (s), whose inten-
sity falls off as a function of the distance from the center of
the patch (d): s = eλd, where λ is a constant, −0.0138. The
agent can moves freely in an environment without walls and
must find and remain in the vicinity of the food patch.

The agent has a circular body and possesses a sensor that
can detect the intensity of the chemical signal at its location
(Figure 1B). Additionally, it is equipped with two effectors
located on opposite sides of its body. These effectors3 can
apply forces that move the body forward and rotate it. In
the simplified physics of this environment, the velocity of
movement is proportional to the force applied.

During a chemotaxis trial, a food patch is placed in a ran-
dom direction from the agent, anywhere between 10 and 15
units of space apart. This is repeated after 100 units of time.
Three food patches are shown in total. Performance is given
by: fc = (di − d̄)/di, where di and d̄ are the initial and
average Euclidean distance between the agent and the food
patch, respectively.

Neural model
We use continuous-time recurrent neural networks as a
model of the agent’s internal dynamics. Each component

3Although the mechanics of the body correspond closer to a
khepera-like robot, similar physics have been used in idealised
models of the nematode worm’s movement in (Ferree and Lock-
ery, 1999). Instead of ‘wheels’, the effectors located on opposite
sides model the ventral and dorsal neck muscles of the worm.
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Figure 1: Task set-up. The same neural network circuit is
used to control two different bodies: a one-legged insect-like
walking agent (A) and a khepera-like chemotaxis agent (B).
The circuits are fully inter-connected. The effector neurons
control the antagonistic muscles and the foot for walking
and the two effectors on the opposite sides of the body for
chemotaxis. All of the neurons receive sensory perturba-
tions: from the leg angle during walking, and from the prox-
imity to the food during chemotaxis.

in the network is governed by the following state equation:

τiẏi = −yi +
N∑

j=i

wjiσ (yj + θj) + swiS(t) (1)

where y is the activation of each node; τ is its time constant;
wji is the strength of the connection from the jth to the ith

node; θ is a bias term; σ(x) = 1/(1 + e−x) is the standard
logistic activation function; and N represents the number of
nodes in the network. All nodes have access to the sensory
perturbations via a set of connection weights: swi. The sen-
sory input is normalised to run between 0 and 1 for both
tasks. This prevents a solution that switches behaviour re-
actively as a response to different sensory input ranges. The
network is fully connected (including self-connections) and
no symmetry is imposed on its weight matrix. In simula-
tion, node activations are calculated forward through time
by straightforward time-slicing using Euler integration with
a time-step of 0.1.

Evolutionary algorithm
The parameters of each circuit (i.e. biases, time-constants,
inter-neuron and sensor-neuron weights for each node) are
evolved using a version of the microbial genetic algo-
rithm (Harvey, 2001). There are N2 + 3N parameters in
total. These are encoded in a genotype as a vector of real
numbers over the range [0, 1]. Offspring of microbial tour-
naments are generated as a mutation of the winner of the
tournament (i.e. no recombination). The mutation is imple-
mented as a random displacement on every gene drawn uni-
formly from a Gaussian distribution with mean 0 and vari-
ance 0.01. Each gene is forced to be in [0, 1]: when a mu-
tation takes a gene out of this range it is reflected back. The
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offspring replace the loser of the tournament. Genes are lin-
early mapped to network parameters in the range [-10, 10]
for biases, inter-node and sensory weights and to the range
[1, 20] for time constants. The size of the population used
is 50 and we define a generation as the time it takes to gen-
erate the same number of new individuals. A minimal 1D
wrap-around geography with demes of size 10 is used, such
that only nearby individuals can compete in tournaments.
Finally, because the fitness is noisy, agents are re-evaluated
every time they participate in a tournament.

A successful circuit must maximize: (a) the distance
walked when embodied in the insect-like body and (b) the
time spent around the chemical-emitting food patch when in
the khepera-like body. A fitness evaluation consists of 2 tri-
als of the walking task and 15 trials of the chemotaxis task.
At the start of each trial the state of the neural controller and
the body is randomised. The performance on each task is
averaged over all trials and normalised in the range [0, 1].
The fitness of an individual is calculated by multiplying the
performance on both tasks.

Results

Evolutionary performance

Evolutionary searches with 3-, 4-, and 5-node circuits were
performed. We examined the ability of populations to evolve
for both tasks, and conducted control experiments in which
either task was evolved on its own. For each condition, 20
evolutionary experiments with different initial random seeds
were carried out.

First we compare networks of different size. Figure 2
shows the performance of the set of best circuits grouped
according to size on the walking (2A) and chemotaxis task
(2B). For each, two whisker plots show the performance of
circuits on the task at hand. The grey whisker boxes cor-
respond to populations evolved for only that task. White
whisker boxes correspond to populations evolved on both
tasks. Circuits of the same size perform better at generating
the appropriate behaviour when evolved for only one task
than those required to do both. This is true in all condi-
tions and is expected. Also, the difference in performance is
smaller for walking than for chemotaxis, which suggests it
is the ‘easier’ task of the two. This is also as expected.

Nevertheless, sufficiently successful circuits that per-
formed both tasks did evolve. However, is there a trade-off
between walking performance and chemotaxis in the suc-
cessful circuits? In other words, are some individuals good
at walking but poor at chemotaxis and vice versa? In Fig-
ure 2C we show chemotaxis versus walking fitness for each
of the best individuals from all evolutionary runs on the two
tasks. No obvious tradeoffs are noticeable. Instead, most
of the successful individuals at one task are also relatively
successful at the other task.
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Figure 2: Evolutionary performance. Whisker plots (25% to
75% quantiles and outliers as points) comparing the fitness
achieved by 3-, 4- and 5-node networks after having evolved
for only one task (grey) and both tasks (white) in the case
of walking [A] and chemotaxis [B]. [C] Chemotaxis versus
walking fitness on the best 3- (diamonds), 4- (stars), and 5-
node (squares) circuits evolved for both tasks.

Performance and behaviours
The best evolved agent achieved a walking fitness of 93.59%
and a chemotaxis fitness of 91.18%. This individual cor-
responds to the red square from Figure 2C. In Figure 3
we show an example trial with this circuit performing both
tasks. It is relevant to note that all neurons are active during
both tasks.

Walking The optimal walking pattern for this one-legged
model has been studied in (Beer et al., 1999). As can be
seen from Figure 3B, the evolved pattern is almost per-
fectly aligned with the optimal pattern, at least geometri-
cally. The different sections in this pattern correspond to
particular stages of the walking cycle (labelled in grey): (1)
foot up and swing, (2) foot down, (3) stance power, and
(4) stance coast. This agrees with results in (Beer et al.,
1999). Yet, we know the performance is only 93.59% of
the optimal asymptotic velocity that the walking agent can
achieve (0.627). The difference is in the timing. The best
evolved circuit has 2 units of time delay between the mo-

Artificial Life XI 2008  259 



0 200 400 600 800 1000 1200
time

-1 - 0

-0.05
0.00
0.05
0.10
0.15
0.20

θ∙

π/6π/6
θ

-5 5 10

-10

-5

5

10

sensor
ang/dist

o1
fwd/rm

o5

o2
bwd/lm

o3
foot/  

o4

A

B C

walking chemotaxis

1
2

3
4

1
2

3

4
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sition denoted by horizontal dashed line. [B] Walking be-
haviour in black. Angle (θ) versus angular velocity (θ̇). Op-
timal walking in thick grey. [C] Chemotaxis behaviour over
six presentations of food.

ment it sets its foot down (phase 2) and the moment it starts
to move the leg backwards (phase 3). This unnecessary foot
‘rest’ causes the degradation in performance, nevertheless
maintaining the optimal geometry of the walking pattern.
Thus, the best-evolved circuit completes the full cycle at a
slightly slower rate than the optimal. If we turn the sensory
feedback off, the circuit cannot walk. This is expected from
the RPG.

Chemotaxis Even though it has often been used as an ex-
ample in the artificial life literature, chemotaxis has not been
studied in as much depth as the one-legged insect walker.
Our agent has only one non-directional sensor. Hence the
only way to detect the chemical gradient is by moving about.
Organisms that are too small to sense the gradient along the
length of their own bodies are in a similar situation. The
only strategy available is to use subsequent sensory signals
to estimate the chemical gradient in time rather than space.

We can identify four relatively different phases in the
best-evolved agent during a chemotactic run: (1) circling
search, (2) decreased turning in direction towards the gradi-
ent, (3) straight run, (4) circling around food patch. How-
ever, this is only a simplified observer-perspective heuristic

and the phases are not always clear-cut. The full story is
provided only by a geometrical account.

For the initial problem of finding the gradient the agent
employs a heuristic that involves circling on the spot while
the distance from the food is either constant or decreasing,
and moving straight otherwise (i.e. while it is increasing).
To confirm this hypothesis, we performed a series of experi-
ments in which we allowed the agent to move while control-
ling the sensory information arbitrarily. We considered the
initial transient behaviour under two conditions: when the
sensor value is fixed or decreasing, and when it is increas-
ing at a constant rate. During the former, the agent circles
around a small region of about 2 units of space. During the
latter, the agent reduces the turning behaviour as a function
of the rate of increase of the sensor activity.

Interestingly, the chemotaxis behaviour of the best-
evolved circuit employs a strategy similar to that observed in
very simple organisms. In E. coli, for example, chemotaxis
is achieved by modifying the frequency of ‘tumbling’ (Mac-
nab and Koshland, 1972). In C. elegans, the turning be-
haviour is referred to as a ‘pirouette’ but the heuristic is sim-
ilar (Pierce-Shimomura et al., 1999).

Switching behaviours We know the agent can perform
well doing each task independently. In order to test whether
it can also switch between them during its lifetime we
change the circuit’s body without resetting the state of the
neurons and evaluate the circuit’s performance. Although
populations were not evolved to cope with this transition,
most of the successful circuits managed to switch between
tasks in both directions, including the best one analysed
here. The example shown in Figure 3A is for a successful
transition in one of the directions: from walking to chemo-
taxis. We will answer why this is possible in the last section
of the results.

Dynamics of the decoupled circuit
As a first step towards understanding the evolved be-
haviours, we consider the dynamics of the circuit when de-
coupled from the environment. We do this by examining
the asymptotic behaviour of the circuit after replacing the
time-varying sensory input with a fixed parameter, thereby
reducing it to an autonomous system.

Bifurcation diagram In Figure 4 we show the asymptotic
behaviour of the circuit as a function of the possible sen-
sory perturbations that it can receive. Solid black trajecto-
ries represent attractors, dashed black trajectories represent
saddle-nodes and grey dots correspond to limit cycles. Three
bifurcations can be observed and are shown in the figure as
colored disks. From left to right, the first bifurcation is a
saddle-node bifurcation (red disk), from which a fixed point
(a2) and the saddle node (sn) arise. Fixed point a1 is a sta-
ble spiral point for s < 0.38. This spiral is weakened and a
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stable limit cycle (lc) arises near the origin in what is likely
to be a Hopf bifurcation (green disk). The size of the cycle
first increases slowly and then comes crashing inwards until
it reverts to a stable spiral point for s > 0.77.
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Figure 4: Bifurcation diagram and example phase portraits.
[A and B] Two-dimensional slices of the 6D bifurcation
space (5 neurons + sensor). [C] Two-dimensional slices of
phase-portraits P1 through P4 for the two effector neurons,
y1 and y2. See main text for an explanation of the labels.

Phase portraits The bifurcations divide the space of qual-
itatively different dynamics available to this circuit in four.
The dashed vertical lines in Figures 4A and 4B represent
the slices of parameter space that are studied in Figure 4C,
which shows two-dimensional slices of phase-portraits P1
through P4. The portraits are shown only for neurons 4 and
5, which control forward and backward movement in both
insect and khepera bodies. P1 corresponds to the family of
phase portraits available when s < 0.28 before the first bi-
furcation occurs. As there is only attractor (a1) in the system
all trajectories are drawn to it. The paths taken to get to it
are not direct, but follow a spiral in its vicinity. Prior to this,
however, a subset of the trajectories follow a much longer
transient involving a loop near the region labelled t.

P2 corresponds to the family of phase portraits available
between the first and second bifurcations (0.28 < s < 0.38).
It comprises two stable fixed points a1 and a2, and a saddle-
node (not shown). Trajectories starting in the top-left corner
approach the newly created stable point, a2, whose basin
of attraction (not shown) is smaller than a1’s. Hence, most
trajectories approach a1. The transient towards it is, again,
not direct. In fact, as we will see, this is always the case for
this attractor. What varies is the spatial extent of the spiral
loop. When looking through the perspective of neurons 4
and 5, any trajectory bound for a1 will first navigate towards
t. In P3 the spiral attractor becomes a stable cycle. The
transient remains similar.

In P4 the cycle disappears and gives way to a stable fixed
point. Also, a2’s basin of attraction becomes larger, with
certain initial configurations ending up in a2 that previously
ended in a1. Also, the effect of the saddle-node (sn) be-
comes more obvious in this portrait. The transient loop (t)
still exists, but it is relatively closer to a1.

Finally, approximations of the turning point of the tran-
sient loop are incorporated into our bifurcation diagram as
disks labelled t in Figures 4A and 4B. As these are not real
limit sets of the system, they do not show up in our bifurca-
tion analysis. They will play, however, a fundamental role
in the agent’s autonomous behaviour. If the phase-portrait
of the system is changing sufficiently fast (due to rapidly
varying input), and if the neural state falls in the basin of at-
traction of a1, then we can predict that it will most likely be
seen around t and never actually reach a1.

Brain-body-environment coupled dynamics
Let us now consider the behaviour of the agent when cou-
pled to the environment and how it relates to the underlying
dynamical landscape described in the previous section. Fig-
ure 5 depicts the trajectories of the controller when driven
by the agent’s sensor, which is itself influenced by the cir-
cuit’s effectors and the corresponding changes to how the
agent perceives the environment. Red lines correspond to
the walking task, blue lines to chemotaxis. The trajecto-
ries are imposed over a simplified version of the circuit’s
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Figure 5: Brain-body-environment coupled dynamics for the
two different tasks: walking (red) and chemotaxis (blue).
Trajectories are imposed over the bifurcation diagram of the
non-autonomous nervous system (grey). Two slices of the
6-dimensional space are shown. The same two slices shown
for Figure 4A and 4B, respectively.

autonomous dynamics from Figures 4A and 4B, using the
same projections. While the dynamics of the two tasks are
significantly different, they share the same underlying dy-
namical landscape.

During the walking task, the dynamics of the circuit
are constantly switching between approaching attractor a1
when swinging the leg forward, and approaching attractor
a2 during the stance power and coast. However, while the
system gets close enough to a2, it ends up relatively far from
a1. In fact, the cycle that arises from the coupled system is
observed to switch between a2 and t (the longer transient
towards a1). This agrees with our prediction from the cir-
cuit’s autonomous dynamics, which suggested that it is be-
ing driven at a relatively fast rate. We test this hypothesis in
the next section. We also note that the cycles in y2 and y1

follow opposite directions, clockwise and counterclockwise,
respectively. This reflects the antagonistic muscle coopera-
tion necessary to produce the swinging of the leg.

The trajectory during chemotaxis is more subtle and is
produced solely within the basin of attraction of a1. The
circling search behaviour is produced by the longer tran-
sient towards t, in combination with the spiral shape in the
vicinity of a1. However, the state of the neural controller
doesn’t really reach a1 until the agent gets close to the food

patch, at which point the sensor gets maximally activated.
As soon as the gradient towards the food is found, the sen-
sory value increases and the phase-portrait shifts, leaving the
state of the effector neurons in a region of space where the
power of the opposing effectors are balanced, which corre-
sponds to moving straight. Interestingly, the spiral attractor
and indeed the limit cycle around a1 ensure that if the gra-
dient ceases to increase, the agent will circle on the spot
until it increases again. This agrees with our observation
of the agent’s chemotactic heuristic. Finally, once the agent
reaches the top of the gradient, the dynamics come cycling
in towards a1, which ultimately leaves the agent turning on
the spot near the food patch.

Behaviour coordination: driven circuit
How does the neural controller perform the appropriate be-
haviour at the appropriate time? What our analysis shows is
that it is not the neural controller itself that coordinates the
change of behaviours. Instead, different patterns of feedback
are created when the neural system is coupled to a different
body, and it is these patterns that ultimately produce the dis-
tinct transient behaviours. It is worth emphasizing that brain,
body and environment form a closed loop such that no sin-
gle part is the sole cause for the difference in the dynamical
patterns. The shape of the feedback is as much the result of
neural output and body dynamics as the neural activity itself
is the result of environmental feedback.

Is a particular feature of the feedback signal associated
with the change of behaviours? From the previous section,
we observed that the walking task is generated by the sys-
tem’s movement between two basins of attraction, in such a
way that it never actually settled on any one of them. This
suggests that fast switching between the two basins gener-
ates walking. During chemotaxis, on the other hand, the
dynamics stay within the basin of a1 and movement is suf-
ficiently slow to allow for it to draw close to the attractor,
settling only when sufficiently close to the food patch.

In summary, the essential feature of the feedback is its
time-scale. While the sensory feedback from the insect-
like body is relatively fast, the sensory feedback from the
khepera-like body is much slower. We test this hypothesis
by driving the neural system with fast and slow sine waves,
and compare the observed dynamics in internal space (Fig-
ure 6A) to the dynamics during walking and chemotaxis
(Figures 6B and 6C). We find that, depending on the fre-
quency, it will either: (i) jump from one attractor to the
other, which is relevant to the walking behaviour, or (ii) stay
on the central attractor, which is relevant to chemotaxis. Fi-
nally, this provides an explanation for why the evolved agent
can switch between behaviours during its lifetime. The be-
haviours don’t depend on where in neural space the state of
the system is, but on the rate at which it is being driven by
the feedback from its interactions with the environment, as
a product of the mechanics of its body.
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Figure 6: System driven by sinusoidal waves of different
frequencies. [A] Trajectories of the neural state of the sys-
tem are imposed over the circuit’s bifurcation diagram (grey,
limit cycles not shown). When the system is driven slowly
(f = 0.272, thin black trajectory), the trajectory remains
near the a1 attractor. As the system is driven faster (f =
0.136 and f = 0.068, thicker trajectories), the state of the
system starts oscillating between attractors a1 and a2, but
because of the longer transient towards a1, the oscillation
is effectively between t and a2. [B] Two-dimensional slice
through the space of neural activity during walking (red) and
chemotaxis (blue) imposed over one of the phase-portraits
(P3). [C] Neural activity for the system when driven by a
fast (f = 0.272) and slow (f = 0.068) sinusoidal wave.

Related work
Synthesizing neural controllers to generate multiple qualita-
tively different behaviours is a challenge that has been posed
by many. However, the focus has been on the role of mod-
ularity. Togelius (2004) showed how subsumption architec-
ture models could be merged with an evolutionary robotics
approach for a simulated robot on a learning task. Nolfi
(1997) investigated modularity for evolution of a garbage
collecting robot that had to cope with subtasks such as rec-
ognizing, picking up and disposing of desired objects. Al-
though the networks had a hard-wired modular architecture,
evolution was free to choose how these modules were used.
Calabretta et al. (1999) addressed the same task, but used a
system in which neural modules could evolve from a popu-
lation of non-modular networks through gene duplication.
Although both reported improved performance relative to
monolithic networks, Ziemke et al. (1999) showed that in

a more difficult version of the task, a monolithic recurrent
network outperformed all modular architectures.

Many animals can rapidly change between different
modes of locomotion. In (Ijspeert et al., 2007), the prob-
lem of designing the neural controller for switching between
swimming and walking in a salamander-like robot is pre-
sented. In (Buckley et al., 2008), an agent is evolved to do
phototaxis with the sensor in two different positions (front
and back of the body) while constraining the dynamical sys-
tem controller to use a single basin of attraction. In both
papers, however, the two behaviours share a large range of
qualities. Our work is different from theirs in that the two
tasks (chemotaxis and walking) were chosen to be as differ-
ent as possible, while sharing sensor and effectors.

Yamauchi and Beer (1994) evolved a simulated robot that
had to learn which of two environments it was placed in and
take an appropriate action such as to approach a desired po-
sition. They only succeeded after dividing the network into
separate modules with explicitly assigned roles that were
evolved separately. They then evolved a classifier network to
determine which of the modules is to control the agent. Tuci
et al. (2002) later successfully evolved a controller for a very
similar task without dedicated modules. Finally, Beer and
Gallagher (1992) evolved agents for chemotaxis and walk-
ing, but not for the same dynamical system controller.

Discussion
We have shown that small dynamical neural networks are
able to implement qualitatively different behaviours as dis-
tinct transients on a single dynamical landscape. Specifi-
cally, we evolved an agent that could perform locomotion
when coupled to a one-legged body and chemotaxis when
controlling a khepera-like robot. We demonstrate this is pos-
sible without imposing structural modules on the controller,
and without employing complicated fitness functions or evo-
lutionary shaping protocols. Neither was it necessary to in-
troduce parameter changes in the controllers or to provide a
signal for when the swap of bodies and corresponding be-
haviour was to occur. The interactions of neural controller,
body and environment alone are sufficient to create distinct
transient dynamics appropriate for solving both tasks.

The divide-and-conquer approach championed in engi-
neering would suggest that separate modules should be
evolved to produce the two tasks independently. This how-
ever wouldn’t necessarily simplify the problem, as the main
challenge would then be to design a mechanism of coordi-
nation and a sophisticated sensing machinery to detect when
to switch between the modules. More importantly however,
while modular structures and synaptic-plasticity exist in liv-
ing organisms, they were selected based on the adaptiveness
of their behaviour and not on how apprehensible their inter-
nal mechanisms are. We therefore argue that understanding
networks whose structure is not imposed from the top down
will help us develop the tools to understand how multiple
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behaviours are generated in living organisms.
Our dynamical systems account of the evolved agent in-

dicates that it is misleading to associate a behaviour with an
attractor or a basin of attraction in the decoupled internal
dynamics of the controller. In fact, there can be many be-
haviours in the same basin of attraction, as shown in (Buck-
ley et al., 2008), or single behaviours that require several
different attractors, as in the RPG shown here and in (Beer,
1995). Furthermore, as this paper demonstrates, multiple
behaviours may use an overlapping set of diverse attractors
and their basins. This provides an example of the importance
of understanding behaviours as a result of the interactions
between brains, bodies and environments, where transients
play an equal, if not more important, role than attractors.

A possible objection that could be raised about this work
is that the behaviours presented here are either too simple or
not sufficiently different from each other and that modular
and hierarchical architectures and additional learning rules
will be required for more ‘complex’ scenarios. We believe
this is an important, but mostly open question.

Finally, an important feature of recurrent neural networks
is that their history of activations allows them to respond to
otherwise identical stimuli in a context-dependent fashion.
In other words, a system with internal state, when embod-
ied and situated, is not constrained to a single sensori-motor
mapping (as was shown in our example). In von Uexkull
(1957)’s terms, such systems could be said to “bring forth
their own Umwelt”. But while the act of interpreting sen-
sory input contextually is usually attributed wholly to the
agent, the example presented here shows that “meaning-
ful” behaviour is the result of interactions in the brain-body-
environment system as a whole.
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Abstract

We present a case of a genotype-phenotype map, that when
evolved in variable environments optimizes its genetic rep-
resentation to structure phenotypic variability properties, al-
lowing rapid adaptation to novel environments. How genetic
representations evolved is a relatively neglected topic in evo-
lutionary theory. Furthermore, the “black art” of genetic algo-
rithms depends on the practitioner to choose a representation
that captures problem structure. Nature has achieved remark-
ably efficient heuristic search mechanisms without top-down
design. We propose that an important example of this, ubiq-
uitous in biology is the structuring of the phenotypic variabil-
ity properties of gene networks. By studying a simple model
of gene networks in which topology is a function of interac-
tions between transcription factor proteins and transcription
factor binding sites (TFBS), we show that transcription factor
binding matrices (TFBM) evolve to positively constrain phe-
notypic variability in response to transcription factor binding
sequence mutations.

Introduction
Where there is redundancy in the genotype to phenotype
map, there is neutrality. For a given phenotype, if the distri-
bution of phenotypes accessible by one-mutant neighbours
differs depending on the particular genotype that encodes the
initial phenotype, then there is non-trivial neutrality (Tous-
saint, 2003), meaning that there is variation in the pheno-
typic exploration distribution. Toussaint has shown that se-
lection can act on the effective fitness of exploration distri-
butions (i.e. the quasispecies fitness), and claims that this
is the mechanism for the evolution of evolvability (Wagner
and Altenberg, 1996). Evolvability is the capacity to rapidly
adapt to novel environments by natural selection.

Add to this that the environment of the offspring differs
from the environment of the parent, due to mutation and ex-
ternal variations, e.g. bacteria may sometimes be in the gut,
and at other times outside the host (Ciliberti et al., 2007).
Co-evolution is the norm, rather than the exception, meaning
that the phenotype required for ‘optimum’ fitness is always
changing, i.e. the fitness landscape fluctuates. We show that
a fluctuating fitness landscape selects for exploration distri-
butions with greater evolvability.

What mechanisms are capable of “biasing the kind and
amount of phenotypic variation produced in response to ran-
dom mutation, such that more favourable and non-lethal
kinds of variation are available on which natural selection
can act” (Kirchner and Gerhart, 1998). We demonstrate that
a ubiquitous developmental mechanism, the formation of
gene networks based on TFBM-TFBS interactions, has the
capacity to allow heredity of exploration distribution vari-
ants in gene network topology space, and that this is likely
to be the case in real gene networks.

A notable limitation of evolutionary algorithms is that
the variational machinery is not self-referentially encoded1,
whereas in embodied evolution (because of the necessity
of a developmental decoding of the genotype to produce
the phenotype) the genetic representation (Toussaint, 2003),
or genotype-phenotype map (Wagner and Altenberg, 1996),
can maintain variants in the exploration distribution that can
be acted upon by positive selection. Reisinger and Miikku-
lainen (2007) claim to have developed an indirect encoding
for a neural network capable of structuring the genotype-
phenotype map, to speed up the evolution of Nothello
players. Other compact and indirect encodings of neural
networks are effective in some specific problem domains
(Gruau et al., 1996) , (Hornby and Pollack, 2002). Un-
derstanding the principles of network evolvability in natural
systems is an important goal.

Defining Evolvability and Robustness
Several definitions of evolvability and robustness exist in the
literature. We define evolvability as an ordering of the rate
of evolution, between individuals of equal fitness, when ex-
posed to directed selection from a starting point, S, to an
end point, F , in phenotype space, where S is not equal to F .
One could say that an individual A is more evolvable than
individual B (from S to F ) if the best offspring of A is on
average fitter than the best offspring of B (Turney, 1987).
Another quantitative measure of the evolvability of a varia-
tional system is the probability that an offspring has fitness

1Self-referential encoding refers to a genotype-phenotype map
that is capable of non-trivial neutrality.
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greater than the parent (Barnett, 2003). Given a probability
density function of offspring fitnesses from a single parent,
the evolvability of that parent is the fraction of offspring fit-
ter than itself (Smith et al., 2002; Altenberg, 1994a)2. Note
that with these definitions we can only unbiasedly compare
evolvability between individuals of the same fitness. Also,
there is no such thing as evolvability when S = F , since
there is no directed selection, and so one cannot measure
a rate of evolution. On the other hand, in the case where
S = F , robustness is defined. It is a measure of the capacity
of phenotypes to remain unchanged, given stabilizing selec-
tion. Evolvability and robustness are measures of evolution-
ary behaviour. They are emergent properties of exploration
distributions (McGregor and Fernando, 2005).

Evolvability Sustaining Mechanisms
Kirchner and Gerhart (1998) have described various mech-
anisms that increase the probability that an offspring, vary-
ing within certain bounds, will be viable. One important
class of these is exploration and exploitation mechanisms.
For example, the immune system adapts to evolutionarily
novel antigens by implementing somatic selection. Micro-
tubules control and manipulate cell organelles and chromo-
somes, independently of the number and location of these
items, thus allowing variation in these items to be viable,
with respect to mitosis for example. Pathfinding by axonal
growth cones allows neural structures to evolve, and still be
viable (Kirchner and Gerhart, 1998). These search mecha-
nisms allow robustness as well as evolvability (Wagner and
Altenberg, 1996).

Another mechanism that confers evolvability and robust-
ness is weak interaction. Kirchner and Gerhart (1998) con-
trast the complex transcription regulation of eukaryotes with
the simple regulation of prokaryotes. Eukaryotes have com-
plex cis-regulatory regions whereas prokaryotes do not. Eu-
karyotes have enhancer-binding proteins with limited affin-
ity and low sequence specificity for enhancer sites. Their
binding affinities may also be contingent on other proteins
(non-independent site affinities). This property is called
weak-linkage. Several authors have considered the role of
weak interactions. It has been hypothesised that weak in-
teractions confer evolvability (Conrad, 1990), and robust-
ness (Volkert and Conrad, 1998). For example, Kirchner
and Gerhart (1998) claim that Calmodulin is a versatile in-
hibitor, meaning that with few mutational steps it can bind
to a protein for which it is selected to bind, attributing this to
its “low sequence requirements” for binding to targets, that
result from its flexibility and stickiness.

The above mechanisms extend the viable range of the ex-
ploration distribution, rather than constraining its direction-

2There are many other definitions of evolvability with differ-
ent emphasis, e.g. “evolvability is the ability of the genetic sys-
tem to produce and maintain potentially adaptive genetic vari-
ants” (Hansen, 2006).

ality as emphasized in (Arthur, 2004). The exploration dis-
tribution can also make sense of another class of mecha-
nism prevalent in bacteria. These are the mechanisms that
maintain genotypic diversity in the population, increasing
the chance that at least some of the existing variants will be
pre-adapted to the new environment. This is a kind of bet-
hedging. Typically, E. coli isolated from populations in the
wild contain a small proportion with a 100 fold increased
mutation rate due to inactivation of an error correcting en-
zyme (Matic et al., 1997). This proportion is much greater
than expected in the absence of selection (Tenaillon et al.,
2001). The full gamut of genetic and epigenetic devices for
structuring variation (in terms of rate, site and inducibility)
is discussed in (Rando and Verstrepen, 2007). Remarkably,
Kussell and Leibler (2005) have shown that where the cost of
maintaining diversity is less than the cost of sensing the en-
vironment, stochastic switching is selected over more com-
plex sensing and response mechanisms. This is often the
case in bacteria. The exploration distribution is skewed by
such processes.

There are clear examples of highly conserved core pro-
cesses that have optimized exploration distributions. Ac-
cording to a model by Zhu and Freeland (2006) the genetic
code is optimized to allow the rapid adaptive evolution of
proteins. Using a simple model of a sequence-to-protein-
structure map, they mutated the sequence thus altering the
structure. They used a genetic algorithm to re-evolve the
original structure and found that with the existing genetic
code, the structure could re-evolve much faster than if a ran-
domly chosen code was used. Protein stability has also been
argued to be an adaptation for evolvability. Bloom et al.
(2006) showed using a lattice protein model that “extra sta-
bility is neutral with respect to selection for protein function,
but it can be crucial in allowing a protein to tolerate [desta-
bilizing] mutations that confer beneficial phenotypes”. That
is, a protein with more stability was able to evolve to a new
desired function faster.

Modularity of various forms appears to underlie many
kinds of evolvability (Wagner and Altenberg, 1996; Force
et al., 2005; Lipson et al., 2002), since adaptation to en-
vironment A can be carried out without interfering with
adaptation to environment B. At the cellular level, there
may exist exotic exploration distribution structuring mech-
anisms that remain mysterious. For example, the pattern of
gene expression in the lifetime of a paramecium influences
which genes are passed to its offspring in a very complicated
way (Prescott and Rozenberg, 2002).

Cognition is the cherry on the cake of exploration dis-
tribution structuring systems. The effectiveness of lifetime
variation generation mechanisms tends to increase over evo-
lutionary time, with solutions being transmitted across gen-
erations in novel ways. Many aspects of cultural inheritance,
permitted by human thought and language, are adaptations
that allow rapid adaptation to novel environments. Cognitive
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mechanisms for generalization such as associative learning
and symbolic reasoning allow us to choose behaviours with
remarkable directedness compared to random search.

The Evolution of Evolvability Sustaining
Mechanisms
How did such mechanisms evolve? Toussaint (2003) de-
scribes that selection pressure could act on effective fitness.
To produce robust encodings Toussaint selects explicitly for
neutral variants, a process that is intended to mimic stabi-
lizing selection. This corresponds to Kirchner and Gerhart
(1998) who say that evolvability is a by-product of selec-
tion for robust development in the face of internal (muta-
tional) and external (environmental) noise. Secondly, adap-
tations for evolvability may have been selected because they
allowed better exploration of new environments by clades.
Hitchhiking of evolvability conferring genes along with ad-
vantageous traits whose appearance they facilitate is one
mechanism that could achieve this (Conrad, 1990). Re-
cently, Earl and Deem (2004) have shown in a model of
protein evolution that the rate of mutation and the “swap-
ping” of protein modules increases in variable environments
to confer greater evolvability. Another proposed mechanism
is constructional selection where selection acts to filter new
loci. Alleles at new loci that have low epistasis are favoured
because they are less likely to be fatal, resulting in modular
genotype-phenotype mappings Altenberg (1994b). Finally,
Kashtan and Alon (2005) have shown that selection in vari-
able environments with modular goals results in the estab-
lishment of an intermediate genotype state that can rapidly
mutate to become optimal in either environment.

We demonstrate that adaptations for evolvability in gene
networks arise due to individual level selection in variable
environments. By using a genetic algorithm to evolve agents
under fixed versus variable environments, we identify how
exploration distributions are restructured by TFBM evolu-
tion, a process that is also expected in natural evolution.

The Construction of Gene Networks
Gene network topology emerges from the interaction of tran-
scription factors (TFs) binding to “degenerate families” of
transcription factor binding sites (TFBSs) that are of 5-25
nucleotides in length, situated on promotors (Moses et al.,
2003). Degenerate refers to the fact that different tran-
scription factor binding sites that bind the same TF protein
may differ in 20-30 percent of bases (Collado-Vides et al.,
1991). In E. coli, promotors are approximately 500 base
pairs long and contain several TFBSs (Berg et al., 2004). A
position-weight matrix (or transcription factor binding ma-
trix, TFBM) represents the binding preferences of a TF. Em-
pirically these can be inferred from genome sequences if
independent evidence of TF binding exists (Stormo, 2000).
The binding energy between a TF and the TFBS can be well
approximated by the sum of independent contributions from

positions in the binding site.
What are the modes of evolution of gene regulatory net-

works? Gelfend (2006) discusses the various approaches to
this question. Many phenotypic differences between species
are attributable to changes in gene expression patterns rather
than changes in structural or metabolic proteins (Tirosh
et al., 2008). How does evolution of the gene regulatory
network take place? Babu et al. (2006) have shown that dif-
ferent species of bacteria have evolved new transcription fac-
tor proteins by duplication, divergence and sometimes sub-
sequent loss of transcription factors. Wagner et al. (2007)
have shown that transcription factor binding site abundance
is under selection, and varies considerably between species.

Topological changes of real gene networks also occur
on very short evolutionary timescales, especially in higher
eukaryotes (Stone and Wray, 2001). In contrast to gain
and loss of transcription factor proteins, these changes are
caused by mutations in promotors that produce novel tran-
scription factor binding sites.

At an even finer grain, Moses et al. (2003) have shown
that within a transcription factor binding site (TFBS), some
nucleotide positions show greater variation than other nu-
cleotide positions, between related species and within the
same genome. There is evidence that the more degenerate
positions (i.e. those with lower information content) in the
TFBM are those where the TF does not make much contact
with the DNA, i.e. where the total stabilization energy in
that column of the TFBM is low (Mirny and Gelfand, 2002).

We simulate gene network evolution to investigate under
what conditions TFBMs evolve to improve evolvability.

Methods
Our gene network model considers N interacting units.
Each unit consists of a transcription factor binding site
(TFBS) that produces a transcription factor with a particu-
lar transcription factor binding matrix (TFBM). The interac-
tion between this matrix and the TFBS sequence determines
how a transcription factor will bind to the transcription fac-
tor binding site. All TFBSs have length K nucleotides. At
each position in the TFBS , one of four bases can be present
(A, T, G, or C). The TFBM is of size 4 by K. Each entry
in the matrix contains a real number between 0 and 1. Each
number represents the binding strength contribution of the
nucleotide at that position in the TFBS to the total TF bind-
ing strength upon that TFBS. For simplicity, our TFBM im-
plementation assumes that the contribution of different posi-
tions along the TFBS to the binding strength is independent.

The edges of the gene network graph are directed from the
gene producing the TF to the gene possessing the TFBS. The
strength of each edge is calculated as described above, by
summing independent binding strength contributions from
each position in the TFBS as specified in the TFBM. A low
accumulated strength represents weak binding between that
TFBMi and TFBSj . A larger binding strength represents
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tighter binding. To specify a desired gene network topology,
we define a certain binding strength as required for ‘ideal’
binding. A binding strength greater than this optimum is
considered maladaptive. The biological justification for this
is the implicit assumption that the TF should be sensitive to
modifiers of binding. If it binds to strongly then the protein
that it stimulates might as well have been constitutively ex-
pressed. More precisely, the fitness contribution of one edge
of the gene network corresponds to the inverse of the Eu-
clidean distance between the individual’s topology and the
desired topology, as given by:

f =
1

1 +
√∑

i

∑
j ((sij/λ)− tij)

2
(1)

where sij is the binding strength for connection TFBMi and
TFBSj ; tij is 0 or 1 depending on whether a connection
is desired to be present or absent (respectively); and λ is
the ideal binding strength (λ = 3). If the Euclidean dis-
tance of a topology from an ideal topology X is less than
its Euclidean distance from all other ideal topologies, then
it is classified as topology type X. An ideal topology is one
where the above fitness score is maximized. Note we do
not consider the dynamics of the gene network in generat-
ing its topology, e.g. we assume TFs are always produced
constitutively. Our selection function acts directly on the
non-functional topology of the gene network.

Environments are modeled simply as desired gene net-
work topologies. For example in environment A, individuals
are optimal that have topology Ta. In a different environ-
ment, B, an altogether different topology might be required
to survive, Tb.

The parameters of each gene network (i.e. TFBS and
TFBM for each gene) are evolved using a microbial genetic
algorithm (Harvey, 2001). There are NK discrete and 4NK
real-valued parameters forming the genotype of each indi-
vidual. The winner of a randomly chosen pairwise tourna-
ment replaces some of the loser’s genes with its own. Each
TFBM or TFBS of the loser is replaced by the corresponding
genome parts of the winner with 0.9 probability. The result-
ing genome then undergoes mutation. Each TFBM or TFBS
will mutate with 1/NK probability. On average, one of the
full set of TFBSs changes to a base chosen at random. Muta-
tion in the TFBM is implemented as a random displacement
on every binding strength drawn uniformly from a Gaussian
distribution with mean 0 and variance 0.01. Each strength
in the binding matrix is forced to stay within the range 0 to
1. When a mutation takes it out of this range, it is reflected
back. A generation is defined as P microbial tournaments,
where P is the size of the population. All evolutionary ex-
periments were conducted with populations of 100 individ-
uals. We have not investigated how the findings depend on
the choice of genetic algorithm. The major point to note is
that TFBMs evolve much more slowly that TFBSs.

Several previously defined measures of robustness and
evolvability are considered (Ciliberti et al., 2007; Zhu and
Freeland, 2006). Mutational robustness is the fraction of
one-mutant neighbours of the genome that are also viable.
In this case, viability means that the gene network topol-
ogy resembles the desired topology more closely than all
other topologies (with the same number of genes). This is
a measure of neutrality or redundancy of coding. Topology
connectivity is the number of distinct 1-mutant topologies
reachable from any one topology. High connectivity implies
easy conversion between topologies.

The above properties can be calculated by studying the
individual’s hierarchical metagraph (see Figure 1). In this
graph, a higher level node (large circle) represents a par-
ticular gene network topology (phenotype). Higher level
nodes are connected if by one TFBS mutation, topology A
can become topology B, and vice versa. Within a higher
level node of a metagraph, there is another embedded graph
whose nodes are the genome sequences of TFBSs that can
sustain the particular gene network topology represented by
the higher level node (i.e. sequence nodes). The higher level
node can alternatively be thought of as a labeling of lower
level sequence nodes. We define the connectivity matrix of
a metagraph as the number of one-mutant neighbours con-
necting topology ti to topology tj , over all possible topology
transitions.

It is clear that the hierarchical metagraph will depend crit-
ically on the evolved TFBMs. The TFBMs shape the pheno-
typic effect of a TFBS mutation. We define the connectivity
variance simply as the variance over all values of the con-
nectivity matrix. We use this measure as an index of the
navigability of the metagraph. The measure synthesizes the
system’s mutational robustness and its topological connec-
tivity. Our hypothesis is that evolvability in variable environ-
ments increases as the connectivity variance decreases, im-
proving the navigability of gene network topology space, as
promoter sequence space is explored. Expressed in another
way, we propose that TFBM evolution structures the explo-
ration distribution in phenotype space, by reducing connec-
tivity variance.

Let us illustrate what a hierarchical metagraph is and how
we can measure its navigability. We will use the simplest
gene transcription network: a one-gene network (see Fig-
ure 1). There are only two possible topologies: self-binding
(t1) or non self-binding (t2). Let’s suppose that the length of
the promoter region is 1. Therefore, there are only 4 possi-
ble sequences: A, G, C, or T. The self-binding would depend
on the transcription factor binding strength. There are three
possible scenarios that can arise. In the first scenario, all
possible sequences generate topology t1 and no sequences
result in topology t2. There are 12 (i.e. BNK) ways in
which a sequence can mutate from sequence Si to Sj where
Sj is only one mutation away. In the first case, all of the
mutations are neutral. There are 12 ways of going from t1 to
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Figure 1: Hierarchical metagraph and the notions of its con-
nectivity matrix and connectivity variance in the simplest
possible one-gene regulatory network scenario.

t1, and 0 ways of going from t1 to t2, t2 to t1, t2 to t2. The
connectivity variance is the highest possible, in this case 27.
In the second scenario, there is one sequence that produces
t2. The number of one-neighbour mutants shifts accordingly
and the connectivity variance drops. In the final case, the
connectivity variance is minimal.

From the example illustrated in Figure 1, it should be clear
that the connectivity variance will be lower for more easily
navigable metagraphs. Accordingly, easily navigable meta-
graphs will reduce the time required to adapt to any topol-
ogy, including novel topologies. Connectivity variance is an
index of evolvability in variable environments. We demon-
strate that the properties of the metagraph, as measured by
its connectivity variance, promote evolvability in this selec-
tion scenario.

Results
We first present an experiment where a population of 3-node
gene networks are evolved in two different environments.
The length of each TFBS, K, is 5. In one environment the
target topology is a feedforward loop and in the other en-
vironment it is a feedback loop (see Figure 2A, the differ-
ence is colored red). The evolved sequences and TFBMs
for the best individual are shown in Figures 2B and 2C, re-
spectively. The result is a set of TFBMs such that, with a
total of 3 site mutations (colored red) in each of the relevant
TFBSs, the desired change in topology is achieved. Once
the environmental transitions have been experienced several
times, adaptation occurs without significant changes to the
TFBMs.

Figure 2D shows that the time taken to adapt to a par-
ticular environment decreases over evolutionary time. Each
environment was presented for 1000 generations. While it
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Figure 2: Example evolutionary run with variable environ-
ments for a 3-node GRN. [A] Two topologies evolved for:
feedforward (t1) and feedback loop (t2). [B] Evolved pro-
moter regions for each topology (TFBSs). [C] Evolved set
of TFBMs. [D] Fitness versus Generations. Dashed ver-
tical lines represent changes of environment. [E] Control
experiment with direct encoding of connectivity shows no
evolution of evolvability.

takes the population around 800 generations to adapt to en-
vironment B the first time it is encountered, this time drops
to around 250 generations on the second occasion. From
the third occasion onwards, the adaptation time to environ-
ment B is under 100 generations. The time to adaptation
reaches steady-state after several environmental transitions.
This was also observed for runs using different sized net-
works, lengths, and numbers of environments. For compari-
son, Figure 2E shows that when a direct encoding of the gene
network is used, i.e. a binary connectivity matrix, there is no
improvement in time to adaptation.

For a given size of gene network N , there is a minimum
TFBS length K that is required to evolve perfect fitness in
W distinct environments, see Figure 3 . This is shown in ex-
periments conducted with 2- and 3-node gene networks with
different numbers of variable environments (W ) and differ-
ent lengths of promoter sequences (K). Each data point in
Figure 3 is an average over 100 evolutionary runs. For an N
sized network, 2(N2) different topologies are possible. For
any given experiment, the W different topologies the popu-
lation would be evolved for were chosen at random from all
possible topologies. All experiments ran for the same num-
ber of generations, 160000. The number of generations per
transition is the same for all experiments, 1000. In Figure 3
we show the proportion of populations in which each agent
fully adapts (top) and the time to adaptation (i.e. the time
taken for the best individual in the population to reach 0.95
of optimal fitness) (bottom) as a function of W and K. Each
point in the surface corresponds to the mean over only those
populations where each individual adapted to all W environ-
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Figure 3: Top: The proportion of 100 independent popu-
lations that adapted to all W environments during the last
round of environmental presentations as a function of the
number of environments presented during evolution (W )
and the length of the promoter sequence (K), for N = 2
[A] and N = 3 [B]. Bottom: The mean time to adaptation
of the best individual in the population during the last round
of presentations over all environments as a function of W
and K, for N = 2 [C] and N = 3 [D].

ments. No points are shown in conditions where this was not
the case.

Referring to Figure 3 C, for N = 2 gene networks, TFBS
lengths of K = 3 are capable of evolving to adapt to all 16
possible topologies. With larger Ks, the adaptation time
increases, presumably because the space of possible TFBS
sequences also increases. Thus, finding the appropriate
sequence that creates the desired topology becomes harder.
Interestingly, while the search space becomes larger expo-
nentially with K as given by 4NK , the time to adaption
increases only linearly.

Referring to Figure 3 D ,for 3-node GRNs there is a lower
limit to K below which adaptation to all environments is
not possible. For the minimum, K = 3, populations can
adapt reliably, only to fixed environments W = 1. When
tested in variable environments, gene networks with K = 3
fail to adapt to 0.95 optimal fitness before the environmental
transition at 1000 generations. For K = 4 the situation
is improved. Populations can adapt to up to 8 different
environments. For higher W , the population again starts
failing to adapt in time. For K > 4, the populations can
adapt to varying environments for all W conditions tested.

Does evolution under variable environments increase
evolvability? In order to address this question, we tested the
ability for evolved individuals to rapidly adapt to novel envi-
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Figure 4: Evolvability. Generations (x-axis) versus en-
vironmental variability W . Shades of gray represent the
mean of the best individual’s fitness over 100 independent
evolutionary runs. Black represents poorly adapted popula-
tions. White represents well adapted ones. Four conditions
are shown: smallest (top row) and largest (bottom row) Ks
that evolved successfully under all W conditions tested, for
networks of size 2 (left column) and 3 (right column).

ronments. We seeded a new population with genetic ‘clones’
from the TFBMs of the best evolved individual after 160000
generations. The TFBSs were chosen at random for each
individual in the population. Taking into account the topolo-
gies the original population had previously evolved for, we
set the new population to evolve to achieve a topology it had
not previously been exposed to. Different populations were
seeded with TFBMs evolved under several conditions. For
each condition, the experiment was repeated 100 times.

In Figure 4 (bottom) we show the population’s ability to
evolve to novel environments under two conditions: N = 2,
K = 3 and N = 3, K = 5. For all fixed environment
conditions W = 1, the mean time to adaptation is much
larger than for individuals evolved under variable environ-
ments W > 1. In fact, the ability to rapidly adapt to a novel
environment improves with the number of environments that
the population was previously evolved for. Finally, all of the
conditions show a ceiling effect for sufficiently-varied envi-
ronments, after which the time to adaptation ceases to im-
prove. For comparison, Figure 4 (top) shows that a direct
encoding does not have this property of improved evolvabil-
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Figure 5: TFBMs evolved for the same topology under fixed
[A] and variable [B] environments. Fitness for the feedback
topology is equally good for both TFBMs (0.99). However,
the connectivity variance for individual B is lower than the
connectivity variance for individual A.

ity to a novel environment, given a history of evolution with
previously variable environments.

Greater variability of environments experienced during
evolution improves evolvability according to the above mea-
sure. But why are TFBMs evolved for variable environments
more evolvable to new environments than TFBMs optimised
for a fixed environment? While two individual’s TFBMs can
be equally fit for environment Tx, the TFBMs from the in-
dividual that has evolved to change to different topologies
generates a different exploration distribution to the TFBM
evolved in stationary environments.

Figure 5 shows a case where two individuals (A and B)
are equally fit for environment Tx, but with different TF-
BMs. A has evolved in fixed environments while B has
evolved for variable environments. While both solutions are
equally well adapted to produce the feedback loop topology
(i.e. both have fitness of 0.99), the connectivity variance of
the gene network evolved for variable environments (B) is
less than a quarter of the connectivity variance of the gene
network evolved for fixed environments (A). The implica-
tion is that the TFBMs evolved for individual B shape the
TFBS fitness landscape such that all other topologies are
more easily reachable from the present topology. This is
not the case for TFBMs evolved for individual A in a static
environment.

The exploration distribution can be directly visualized in
Figure 6. Individuals evolved in high variability environ-
ments, W = 15, show a more diffuse exploration dis-
tribution to those evolved in low variability environments,
W = 2. Individuals evolved for W = 2 show a tighter ex-
ploration distribution, passing from t1 directly to t2 without

0. 0 0. 5 1. 0 1. 5 2. 00. 0

0. 5

1. 0

1. 5

2. 0

distance to topology 1

dis
tan

ce
 to

 to
po

log
y 2

0.0 0. 5 1. 0 1. 5 2. 00. 0

0. 5

1. 0

1. 5

2. 0

A

B

distance to topology 1
dis

tan
ce

 to
 to

po
log

y 3
Figure 6: The exploration distribution for the best individ-
ual (N = 2, K = 3) evolved for a small (W = 2, gray) and
large (W = 15, black) range of environments. The best indi-
vidual evolved for topology one, t1, is mutated 5000 times.
On the x- and y-axes are shown the Euclidean distance of
the resulting mutants to the topologies t1, t2 (top) and t1, t3
(bottom). Both individuals were evolved previously for t1,
t2. However, t3 (a fully connected topology) was evolved
for in either case, i.e. it is novel.

approaching close to other topologies.
Does the connectivity variance always decrease with the

number of environments that the populations are evolved
for? In order to answer this, the connectivity variance was
calculated for all successfully evolved TFBMs for 2- and 3-
node networks (see Figure 7). For the 2-node case, the study
was exhaustive: taking into consideration all possible se-
quence configurations (4(N∗K)) and all possible topologies
(2(N ∗N)). For the 3-node case a sample of 1000 different
sequence configurations was chosen at random.

The connectivity variance drops as a function of W , as
hypothesised (see Figure 7). The connectivity variance re-
sults also explain the evolvability ceiling effect observed in
Figure 4, where after a certain number of variable environ-
ments (W > 5) the ability to rapidly adapt to novel environ-
ments ceases to improve. The connectivity variance reaches
its minimum also for W > 5.

Finally, we can compare the evolution of the connectivity
variance for the two extreme conditions: fixed or variable
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Figure 7: Connectivity variance as a function of variable en-
vironments (W ). Two conditions are shown: [A] for N = 2
and K = 3, and [B] for N = 3 and K = 5. Each point rep-
resents the mean over 100 runs (bars represent the standard
error).

environments. In Figure 8 we show the connectivity vari-
ance calculated from the TFBMs of the best individual in the
population at every generation in four different conditions:
fixed (gray) and variable (black) environments are shown for
2-node [A] and 3-node [B] GRNs. Under all conditions the
populations evolved successfully (not shown). As can be
appreciated in Figure 8, the connectivity variance of pop-
ulations evolving in varying environments tends to evolve
towards lower values (and thus higher evolvability), com-
pared to the connectivity variance of the population evolv-
ing in fixed environments. This demonstrates the evolution
of evolvability under variable environments.

Discussion
We gave an example of the evolution of evolvability in
a system undergoing natural selection in variable environ-
ments. In our model, evolvability arose from the ability of
the TFBM to evolve to shape the exploration distribution
resulting from TFBS mutations. When populations were
evolved in variable environments, the TFBMs allowed im-
proved navigability in TFBS space as described by the con-
nectivity variance measure.

The model lacks many features of real GRNs. In reality,
promotor sequences are much longer than TFBSs, enhancer
proteins modify TF binding, the expression of downstream
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Figure 8: The evolution of evolvability. Connectivity vari-
ance of the best individual in the population over evolution-
ary time. Examples for fixed (gray) and variable (black) en-
vironments are shown for 2-node [A] and 3-node [B] GRNs.

TFs may be dependent on upstream TFs, and fitness depends
on the dynamics of the GRN rather than on its topology
alone. Introducing such features whilst maintaining TFBM-
TFBS interactions is a challenge, and is likely to uncover
further adaptations that could lead to unlimited heredity of
exploration distribution variations.
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Abstract

Recently, computer scientists have begun to build computa-
tional ecosystems in which multiple autonomous agents inter-
act locally to achieve globally efficient organised behaviour.
Here we present a thermodynamic interpretation of these sys-
tems. We highlight the difference between the regular use of
terms such as energy and work, and their use within a ther-
modynamic framework. We explore the way in which this
perspective might influence the design and management of
such systems.

Introduction
Modern IT systems are increasingly complex, in some cases
resembling computational ecologies or ecosystems compris-
ing myriads of interacting elements, each with their own
thread of control and autonomy (Huberman and Hogg, 1993;
Bullock and Cliff, 2004). As the scale, dynamism and inter-
connectedness of such systems increases, effective control
via some central executive becomes nontrivial and eventu-
ally infeasible. Consequently, there is increasing interest
in drawing inspiration from the homeostatic properties of
some analogous large-scale, adaptive, decentralised natural
systems, and extracting design principles for artificial com-
putational ecologies (Parunak and Brueckner, 2004; Zam-
bonelli and Parunak, 2004). Underpinning this paradigm are
concepts and theories of self-organisation that derive from
the study of physical systems in far-from-equilibrium con-
ditions (Nicolis and Prigogine, 1977; Kay, 1984).
However, the man-made nature of computational ecosys-

tems gives them a particular teleological status that dif-
fers somewhat from the physical (and biological) systems
to which thermodynamic accounts of self-organisation are
typically applied. Moreover, computational systems are in-
stantiated as physical systems, giving rise to a problem of
identifying the level of description at which to apply the
self-organisation/thermodynamic interpretation. Partly as a
consequence, a consistent thermodynamic account of their
behaviour is not straightforward. As engineers aiming to
build artificial systems exhibiting adaptive and organised be-
haviour, we must be careful in applying the concepts and

tenets of self-organisation. There may be some value in the
informal use of technical language (e.g., attractor, basin of
attraction) to re-describe problems, etc., but there are risks
of confusion when technical terms (that may also have lay
meanings) come to be used as mere façons de parler.
The purpose of this paper is thus to analyse self-

organisation in natural systems as governed by the physical
laws of thermodynamics and, based on this, to clairfy and
make explicit an analogous interpretation of the functioning
of artificial self-organising computational ecosystems.

Thermodynamics in natural systems

One powerful strength of a thermodynamic account of self-
organisation is its potential to apply across physical, chem-
ical, biological, social, and socio-technological domains.
However, it is most clearly and straightforwardly articulated
in the absence of the beliefs, desires, and functions that are
proper parts of the ‘higher’ systems. Here we first present
the framework in the context of physical and then biological
systems before demonstrating its application in the context
of a particular class of socio-technological system.

Thermodynamics of self-organisation

Studies investigating the thermodynamics of self-
organisation in far-from-equilibrium systems can be
found in (Nicolis and Prigogine, 1977; Swenson, 1997;
Kauffman, 2000). Irrespective of whether the investigated
system is described in terms of ‘dissipative structures’
(Nicolis and Prigogine, 1977), autonomous agents (Kauff-
man, 2000) or an autocatakinetic system (Swenson, 1997),
self-organisation is interpreted as a process of organised en-
ergy flow from which work can be extracted and employed
by the system for its structure maintenance (Kay, 1984;
Wicken, 1989; Swenson and Turvey, 1991). Central to un-
derstanding this process are the following concepts derived
from thermodynamics: displacement from equilibrium,
energy transfer, gradient dissipation, constraint formation
and work.
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Displacement from equilibrium
According to classical thermodynamics, the behaviour of
physical systems can be explained as transformations of en-
ergy between the system and its surroundings. Hence, when
both are allowed to interact, what is exchanged between
them is energy (Kay, 1984). Energy, here, has a general
meaning, defining the capacity of the system to perform
work, and may be added to the system by increasing its tem-
perature, pressure or a chemical potential.
Considering the energy of the system and its environment,

we can measure the relative difference between both, often
defined as a potential or gradient. If the gradient is equal to
zero, meaning that both the system and its environment have
the same energy (e.g., temperature, or pressure) we consider
them to be at equilibrium. In this state, the system is in-
distinguishable from its environment and has no capacity to
perform work. Any deviation from equilibrium implies that
free energy is stored, and that there may be the potential to
release this energy through useful work. The extent to which
a system is displaced from equilibrium is reflected in the
gradient (difference) between the state variables defining its
energy state (e.g., temperature) and that of its environment.

Energy transfer
To displace a system from equilibrium requires that it be
supplied with energy (be it thermal, mechanical or chem-
ical), distinguishing it from its surroundings. According to
the first law of thermodynamics, energy transfer can proceed
in two different ways: through heat (Q) and work (W ). This
is captured in the formula summarising the first law:

dU = dQ + dW,

where dU is the infinitesimal increase in internal energy of
the system, dQ is the infinitesimal amount of heat added to
the system and dW is the infinitesimal amount of work done
on the system. Although heating up a system and perform-
ing work on it will each increase its energy, each differs in
the manner in which energy is being distributed in the sys-
tem and thus whether the system moves away from equilib-
rium.
This difference is reflected through entropy (S) which can

be interpreted as a measure of the uncertainty about how
energy is distributed in the system (Jaynes, 1965, 1979).
Adding heat (Q) to the system increases our overall uncer-
tainty about the energy content of the system and causes pro-
portional increase in entropy. This is manifested through the
following relation:

dS = dQ/T,

where S is the entropy, dQ is the infinitesimal amount of
heat added to the system and T is the absolute temperature
of the system. For this reason, it represents the amount of
energy that we lose information about when it is transferred

T1 T2

T1 T2>

-dQ1 = dQ2

Figure 1: A glass of liquid at temperature T1 is placed in
a room at temperature T2, where T1 > T2. The disequi-
librium produces a field potential that spontaneously drives
a flow of energy in the form of heat, −dQ1, from the glass
to the room so as to drain the potential until it is minimized
(the entropy is maximized). At this point thermodynamic
equilibrium is reached and all flows stop. The expression
−dQ1 = dQ2 refers to conservation of energy in that the
flow of heat from the glass equals the flow of heat into the
room.

and that we are thus unable to extract. When, on the other
hand, work is done on the system (W ) our knowledge about
the energy content of the system increases, thus we are better
able to distinguish between the system and its environment.
In this case, work done on the system does not affect internal
system entropy and thus represents the only way to move a
system further from equilibrium (Kay, 1984).

Gradient dissipation
The second law of thermodynamics states that if two sys-
tems are allowed to interact and exchange energy, that is if
the constraints imposed between them are removed, then the
systems will evolve to equilibrium, a new state in which we
cannot differentiate between the systems. A statistical con-
sequence of this physical law is that entropy will increase.
The active nature of the second law is intuitively easy to

grasp and empirically easy to demonstrate. Figure 1 shows
a glass of hot liquid placed in a room at a cooler tempera-
ture. The difference in temperatures in the glass-room sys-
tem constitutes a potential and induces a flow of energy in
the form of heat. This ‘drain’ on the potential flows from the
glass (source) to the room (sink) until the potential is min-
imized (the entropy is maximized) and the liquid and the
room are at the same temperature. At this point, all flows
and thus all entropy production stops and the system is at
thermodynamic equilibrium. The same principle applies to
any system where any form of energy is out of equilibrium
with its surroundings (e.g., whether mechanical, chemical,
electrical or energy in the form of heat).
The second law alone does not tell which of the available
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energy transfer paths the system will select in order to move
back to equilibrium. The explanation to this can be provided
in a classic experiment on self-organisation first devised by
Henri Bénard in 1900 (Swenson and Turvey, 1991). A vis-
cous fluid is held between a uniform heat source below and
the cooler temperature of the air above. That is, there is a
potential difference between fluid and air with a field force
of a magnitude, F , determined by the difference between
the two temperatures. When F is below a critical threshold
heat flows from the source (fluid) to the sink (air) in the form
of disordered collisions between the constituent molecules,
and entropy is produced. If F exceeds the critical threshold
Bénard ‘cells’ emerge spontaneously, each cell consisting of
hundreds of millions of molecules moving collectively to-
gether in the form of rotating vertical convection columns.
In this organised mode, the transfer of energy through the
system and its dissipation to its surroundings is much more
efficient than through unorganised collisions (Schneider and
Kay, 1995). Such behaviour does not violate the second law.
As long as a self-organising system produces entropy (min-
imises potentials) at a rate that is sufficient to compensate for
its own ordering (persistence away from equilibrium) then
the balance demanded by the equation of the second law is
not violated (Kay, 1984; Swenson and Turvey, 1991).

Work
So far we have discussed displacement from equilibrium,
constraint on energy transfer and gradient dissipation as dis-
tinct concepts describing the active nature of physical laws.
But how can they be employed to control energy movement
within systems, such that useful work could be extracted
from their functioning (Jaynes, 1988)? Consider a system
consisting of two connected tanks of equal volume but with
different numbers of gas molecules. This difference defines
a gradient between both tanks. As soon as a conduit be-
tween them is opened, gas whooshes through it, equalising
the number of molecules in the tanks and erasing the gra-
dient between them. Gas can rush through even if it has
to turn a turbine along the way, thereby doing mechanical
work. The energy to do that work came from the thermal
energy of the environment, but the conversion from ther-
mal to mechanical energy was paid for by the increase of
disorder as the system equilibrated. Now, if we repeat the
first process again by first closing the conduit and transfer-
ring energy from one tank to the other, we can repeat the
same process of work extraction and gradient dissipation.
Although simplified, this principle of work extraction con-
stitutes a thermodynamic work cycle, which underpins the
supply of most of the world’s electric power and almost all
motor vehicles.

Information
Within statistical mechanics, the entropy of a system at equi-
librium can be recast in terms of the variety of microscopic

states available to the system:

S ≡ k lnΩ ,

where Ω is the number of states in which the system can
be found when at equilibrium, and k is the Boltzmann con-
stant, 1.38x10−16J/K. Consequently, entropy has been in-
terpreted as a measure of macro-level disorder, formalised
as Shannon entropy (Shannon, 1948) defined as:

S = −
∑

pi log pi,

where i ranges over the possible states of the system and pi

is the probability of finding the system in state i.
As such, it is possible to reinterpret the thermodynamic

work cycle in information theoretic terms (Jaynes, 1988;
Nelson, 2004). We have seen that the difference between
doing work on a system and merely heating it up is the
difference between how informed we are about the organ-
isation of the system’s energy. The potential gradient that
must be established within a system before useful work can
be extracted from it is thus also an informational property.
Given that we are interested in computational systems that
consume electricity and also process information, there is
scope for the equivalences between information, energy and
entropy to be useful, but also confusing.

Thermodynamics beyond physics
The application of thermodynamics is not limited only to
physical systems (Jaynes, 1988). Ever since Alfred Lotka
(1922) began writing about energy flows as the basis for nat-
ural selection, there has been a thermodynamic paradigm in
evolutionary theory. Lotka observed that selection will fa-
vor those organisms that, in pulling resources into their own
service, also increase the energy throughputs of their ecosys-
tems (Wicken, 1989). What all organisms have in common
is that they operate and evolve at some remove from ther-
modynamic equilibrium. By doing so they maintain the in-
tegrity of their organisational structures by irreversibly de-
grading free energy through informed kinetic pathways ac-
quired through evolution. From this perspective, succession
can be considered as the process by which an ecosystem
moves away from thermodynamic equilibrium with its en-
vironment (Kay, 1984). By developing this account, the
principles of variation and natural selection can be given a
sound thermodynamic basis. The principle of variation de-
rives from two sources: the entropic drive to generate config-
urational randomness and the quantum indeterminacy about
where that randomness will occur. Natural selection follows
from competition among alternative patterns of energy utili-
sation (Wicken, 1988).
One consequence of this perspective is an increasing ap-

preciation that organisms can be viewed as more sophisti-
cated ‘engines’ than the physical systems described so far
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(Swenson, 1997). According to Kauffman (2000), for in-
stance, life or its physical manifestation can be described
in terms of an autonomous agent. This agent is a collec-
tively autocatalytic system performing one or more thermo-
dynamic work cycles that: (1) measures useful displace-
ments from equilibrium from which work can be extracted;
(2) discovers devices that couple to those energy sources
such that work can be extracted; and (3) applies work to
develop and maintain the constraints that enable the further
extraction of work.

What are computational ecologies?
Figure 2 illustrates the architecture of a modern IT system.
The infrastructure is an open system of interacting elements
whose organisation is free to change and grow organically
through the removal and introduction of components. De-
pending on the level of interpretation, these elements may
be thought of either as physical servers or the software com-
ponents hosted by them. However, these two levels of de-
scription encourage different thermodynamic accounts, and
care must be taken in translating between them. While we
may ultimately be interested in the physical time and energy
required in order to achieve computational tasks, it has often
been convenient to recast this problem in terms of efficient
information processing with no explicit mention of energy,
heat, etc.1 However, while the ‘motive force’ driving the
physical system stems from physical energy, the equivalent
potential or gradient at the software level must be under-
stood in terms of informational differences. Understanding
how computation in such systems can be managed through
self-organising mechanisms requires us to disentangle the
physical system and software system levels.
For our purposes, the physical level of description can be

stated rather straightforwardly. Autonomic computing sys-
tems are made up of a large-scale network of interconnected
clusters of machines, each offering computational or storage
resources. These functions are dependent on the constant
supply of energy that is being fed to these machines in order
to maintain their on-line functioning. The outcome of this
energy consumption in the physical world is heat, generated
in proportion to the intensity of computation. In an efficient
system, this will in turn be related to system throughput, de-
fined in terms of the number of computational tasks achieved
per unit time.
By contrast, the software level of description, which will

be our primary concern in the paper, is a little more compli-
cated. We assume that the computational power offered by a
system’s physical servers constitutes a limited capacity raw
resource, and that the efficient distribution of this resource
to meet the needs of a set of users makes it natural to de-
centralise the control over their management to software el-

1However, heat management in both large-scale and micro-
scale systems is a growing concern (Skadron et al., 2003; Sharma
et al., 2005).

ENERGY HEAT

INFORMATION THROUGHPUT

environment

system

Figure 2: General architecture of the modern IT system.

ements (Kephart and Chess, 2003). This may be realised by
applying a decentralised multi-agent architecture (Sycara,
1998) comprising a population of agents possessing their
own thread of control and autonomy but perhaps lacking ac-
cess to some central repository of system information. Fig-
ure 3 depicts the roles of software agents in managing sys-
tem resources for such a system. The process is initiated by
allocation requests from infrastructure users, U , illustrated
by dashed arrows crossing the system boundary. Requests
arrive in parallel and are intercepted by “user” or “con-
sumer” software agents responsible for resource allocation
(depicted as open circles). This incoming information ‘ag-
itates’ the allocation process in resource consumers, induc-
ing them to discover and select amongst available resource
providers (represented as solid circles) until one agrees to
execute the requested job (solid connecting line). In addition
to executing the tasks for which they are currently config-
ured, resource providers may also adapt to locally perceived
demand by reconfiguring to offer the most demanded kinds
of service.
It is important to note that the physics of the system im-

poses constraints on the software level. Allocation and re-
configuration decisions are only necessary as a consequence
of the assumption that each resource provider is physically
constrained such that it may only serve a limited number
of consumers at the same time, and, furthermore, may only
offer a limited set of services at any one time. Alloca-
tion and reconfiguration decisions must be efficient only as
a consequence of the assumption that each interaction be-
tween agents, and each reconfiguration event incur associ-
ated physical costs in terms of time or power consumption.
The co-adaptation of resource providers and resource con-

sumers takes place under conditions in which the demand
for particular resource types may vary unpredictably. This
requires providers to reconfigure their provision and con-
sumers to track these reconfigurations. Consequently, the
stability of the whole ‘ecosystem’ is dependent on the estab-
lishment of the information flow pathways that enable lo-
calised system elements to efficiently adapt and adjust their
behaviours to the current system state. As the processing and
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Figure 3: Resource allocation process conducted on the IT
system software level.

propagation of information (represented by dotted arrows) is
fully decentralised across the population of autonomic ele-
ments, understanding how this process may self-organise re-
source management is non-trivial. Nevertheless, there exists
a range of studies focusing on information flows in differ-
ent decentralised architectures demonstrating that effective
decentralised control can be achieved if localised elements
organise their information exchange (Packard, 1988; Guerin
and Kunkle, 2004; Brueckner and Parunak, 2003). In the
next section we will present a thermodynamical interpreta-
tion of this kind of self-organisation.

Energy, entropy and work in computational
ecosystems

From the considerations outlined above, we might expect
to find that the continued efficiency of self-organising com-
putational ecosystems depend on them tending to establish
and maintain information flows that bring about informa-
tional gradients that constrain agent behavioural choice. Un-
der these constraints, agent behaviour results in efficient re-
source consumption, doing work for the user, but also re-
establishes the constraints that enable the further extraction
of work maintaining the system far from equilibrium. In
what follows we will elaborate on this picture, focusing on
the role of local information exchange.

Equilibrium
Each agent within a computational ecosystem may be char-
acterised by its behavioural repertoire, the set of actions that
are currently available to it. During each decision-cycle, an
agent is required to select one action from the set of available
ones and, by executing it, act upon its environment. The be-
haviour of an agent will exhibit the highest Shannon entropy
when selection of any action is equally probable during each
decision cycle, and the agent behaves randomly. Since the
entropy of the whole population can be measured as the av-

erage over individual agent entropies, a multi-agent system
can be said to be at equilibrium when all agent decisions are
made at random.

Work
Whereas the establishment of an energy gradient is a pre-
cursor for useful work in a physical system, here it is useful
to consider an information gradient. Recall that it is not
the mere injection of energy that allows a physical system to
performwork, but the organisation of this energy, which dis-
places the system from equilibrium. The same can be said of
the distribution of information within a computational sys-
tem. When one agent is informed such that it can be dis-
tinguished from the rest of the system, there is the potential
for it to act in a manner that is constrained by its informa-
tion, perhaps performing useful work. However, in a self-
organising system, an agent’s actions are liable to propagate
information to other agents ensuring that informational dis-
parities tend to be extinguished as they are exploited. Both
energy and information flows are the result of local inter-
actions between system components (molecules in a phys-
ical system; agents in a computational system) and, under
the right conditions, both are ‘motive forces’ for achieving
spontaneous system organisation.
Notice that information flow within a system constrains

agent behaviour only if it creates a gradient between that
agent and its surroundings. For instance, incoming informa-
tion must perform work on agents rather than merely raising
system temperature. While a constant supply of organised
information is required to drive a system far from equilib-
rium, notice also that if the subsequent propagation of infor-
mation between agents within the system is also organised,
then agents can do work on (organise, inform) one another
as they perform useful work for us, extinguishing their own
potential gradient in the process. Recall the Bénard cells de-
scribed earlier. There, molecules of a fluid, across which an
energetic gradient is imposed, spontaneously organise each
other such that they convey heat more efficiently than would
be achieved by a random organisation of molecules.

Entropy
We have seen that information gradients may allow agents
to make useful decisions, but that, for a system in flux, any
collectively arising gradient informing agents about an avail-
able resource will eventually become ‘dissipated’. That is,
a flow of information about this resource will attract agents
to consume it, extinguishing the original gradient, releas-
ing constraints on agent behaviour and increasing system
entropy. A computational ecosystem in which information
propagates amongst agents is thus one in which there is a
tendency for the system to equilibrate to an inefficient, es-
sentially random state. However, it is precisely this ten-
dency for information to propagate that can give rise to the
possibility of efficient, persistent, self-organised behaviour.
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Without information flows (of the right kind), agents cannot
inform one another, organising or constraining each other’s
behaviour in a manner that is capable of achieving efficient
work.

Case studies
Here, we provide three examples of decentralised system ar-
chitectures (Parunak and Brueckner, 2001; Gambhir et al.,
2004; Jacyno and Bullock, 2008), the functioning of which
can be interpreted from the thermodynamical viewpoint out-
lined above. In each case, the local decision-making of indi-
vidual system elements is achieved through the creation and
destruction of gradients, work done on the system and by
the system is manifested through the imposition and gradual
release of behavioural constraints, and there is an important
role for information flow.

Entropy in a two-agent system
A thermodynamic account of self-organisation within a
multi-agent system is presented by Parunak and Brueckner
(2001). The authors consider a simple coordination problem
between two agents who desire to be together, one a mo-
bile walker, the other in a fixed location. Both agents are
embedded within a spatial environment with neither know-
ing the location of the other. The coordination problem for
the walker is to locate the other agent and move towards it.
An intelligent observer capable to seeing the state of both
agents could send instructions to direct the movement of the
walker. However, in this model Parunak and Brueckner in-
vestigate stigmergic coordination inspired by organisation in
insect colonies. For this purpose, the stationary agent de-
posits pheromone molecules at its location. Initially, the
walker is unable to sense any molecules and performs un-
guided movements. However, once pheromone molecules
diffuse through the environment and are detected by the
walker, it follows the gradient formed by them, thus reaching
the target. We can understand how self-organised system be-
haviour emerges from the random processes of pheromone
molecule diffusion on two levels: a macro-level at which co-
ordinated behaviour of the walker agent arises; and a micro-
level represented by a random motion of pheromone mole-
cules that diffuse through the environment. An analysis of
system organisation at both levels based on Shannon’s en-
tropy reveals that an increase in the micro-level entropy (as
pheromone molecules diffuse to occupy an increasing num-
ber of locations) is accompanied with a decrease in entropy
at the macro-level (as the movement of the walker is increas-
ingly informed by the pheromone gradient).
This simple example illustrates not only how ‘intelli-

gent’ behaviour emerges from a simple, entropy increasing
processes, but also that the resulting self-organisation does
not defy the second law of thermodynamics since the price
paid for the entropy reduction at the macro system level is

Figure 4: Communities of agents formed as a population
of agents self-organise to reliably match consumption and
provision of different resource types.

the increase in entropy generated by the random process that
produces and maintains the gradient.

A full population model
A continuation of Parunak and Brueckner’s work is pre-
sented by Gambhir et al. (2004). Here, the authors apply
a computational model of an ant foraging system to demon-
strate how complex organisation of interacting agents can
be explained in terms of ideas from equilibrium and non-
equilibrium thermodynamics. Their analysis of this clas-
sic example of self-organisation distinguishes three distinct
modes of system behaviour: structure formation, structure
maintenance and structure decay. During structure forma-
tion, some members of a population of agents diffusing
over the environment discover a food source and establish
a pheromone distribution instructing other agents to organ-
ise their activities into a foraging trail. By maintaining this
structure, the population achieves reliable transport of food
to the nest. Once the food source becomes depleted, the
structure beings to decay and the agents return to their ini-
tial disorganised state.
To interpret how the system is displaced from equilibrium

and how work is extracted from these conditions, the au-
thors evoke ideas of unconstrained and constrained transfers
of energy that are responsible for thermodynamical organ-
isation and work extraction. Within a computational sys-
tem, unconstrained flow of heat is considered as a diffu-
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sive, entropy producing process of agents performing ran-
dom walks. By contrast, constrained transfer of energy, in
the form of interactions with an organised pheromone distri-
bution, is interpreted as work done on agents, constraining
their behavioural degrees of freedom (i.e., agent movements
are directed to climb the pheromone intensity gradient, as
in the case of the walker agent discussed above). The in-
sights drawn from this model are similar to those arrived at
by Parunak and Brueckner. An initial increase in entropy,
during which agents explore state space, enables the for-
mation of organisation, imposing constraints on agent be-
haviour through interaction with the pheromone field. To
measure construction and destruction of constraints in this
self-organising system, Shannon’s entropy is applied. The
measure of useful work done by the system is represented
by the number of pieces of food taken from the food-source
to nest over a run.
So far we have considered a population of agents that

move from thermodynamic equilibrium to a constrained
state and then back to equilibrium. However, in order to
characterise a computational ecosystem that organises itself
such that it remains far from equilibrium, in a dynamic,
poised state where constraints are continually formed and
released in a reflexive, self-perpetuating manner, we need to
go a step further.

A self-organising computational ecosystem
Here, the system is an example of a computational ecosys-
tem consisting of a population of consumer and provider
agents responsible for reliable and efficient management of
the resources offered by the system. Consumer agents be-
long to distinct groups, each characterised by the type of
resource they are interested in allocating. Providers, on the
other hand, are capable of offering any type of resource in
general, but at any one time they are configured to offer only
one type. As the interaction between agents and reconfig-
uration of offered resources has an associated cost (time),
the efficiency of the system depends on discovering an or-
ganisation of agents that maximises the system’s allocative
throughput, at the same time avoiding unnecessary recon-
figuration of providers or resource competition on the con-
sumer side. This is achieved when consumers and providers
self-organise into communities within which providers reli-
ably offer a certain type of resource and consumers are bi-
ased towards selection of available providers (Jacyno and
Bullock, 2008). Example communities are depicted in Fig-
ure 4.
Initially, the population of agents is uninformed and be-

haves randomly: consumers choose providers at random,
and propagate information to one another at random. Organ-
isation of the ecosystem into stable communities of agents
is achieved through the formation and maintenance of infor-
mation gradients between agents. These gradients are es-
tablished through “gossiping”, e.g., the local exchange of

information about providers by individual consumers. As a
consequence of sensing some gradient, an agent’s initially
unbiased selection of resources becomes constrained (work
is done on the agent by the gradient). Agent behaviour is
constrained in two ways. First, just as the agents in the pre-
vious case studies were able to exploit a pheromone gradient
to discover food, here, consumer agents are constrained such
that they tend to choose suitable providers. In doing so, they
consume resource, and as a side-effect tend to dissipate the
gradient that they were informed by. Second, the same gra-
dient constrains agents such that they now tend to propagate
information to a non-random sub-set of agents. By organ-
ising the information flows that propagate gossip such that
agents form communities with shared interests, the system
can maintain itself in a far from equilibrium organisation
that allows useful work to be undertaken efficiently.
A complete analysis along these lines would clearly be

more involved than in the previous examples, since here
structure formation, maintenance and decay are ongoing
processes that are capable of maintaining global system sta-
bility far from equilibrium. In particular, we have had to
identify the manner in which the system organises the prop-
agation of information in addition to merely establishing and
releasing a constrain in order to achieve a piece of work.
Here, we have attempted to lay some groundwork for further
analysis of such systems by articulating the way in which
thermodynamic ideas can offer a framework that focuses en-
gineers on critical aspects of the system design.

Discussion and Conclusions
The aim of this paper is not to provide a ready-to-apply
solution to the control of decentralised IT systems, but to
point to and organise important work that has already been
done in other research areas focusing on self-organisation
and the homeostatic properties of natural systems. If we
aim to engineer self-organising IT systems, we must un-
derstand the underlying thermodynamic principles of nat-
ural self-organisation, and, in particular, how to apply these
principles in the context of open IT systems.
We have described how information disparity drives self-

organisation in a population of software agents and that ran-
dom behaviour is an integral part of the maintenance of in-
formation flows that allow such a population to organise
effectively. This contrasts starkly with the (sometimes im-
plicit) assumption present in the multi-agent system commu-
nity that software agents share complete knowledge of the
system, and make decisions as a result of joint deliberation,
or at the behest of a central executive charged with deducing
optimal behaviour. This approach is analogous to relying on
a kind of maxwell demon to control a computational ecosys-
tem. The demon knows the position and state of every ele-
ment in the system and is able to impose/remove constraints
that allow the system to do useful work. However, thermo-
dynamic considerations imply that, even if such a demon
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could be implemented, it would be extremely costly.
The interpretation provided here should not be considered

exclusive. While thermodynamics and self-organisation
have been the object of extensive research, there are still
open questions with respect to the application of these ideas
to systems that are far from equilibrium but capable of main-
taining steady state (Kay, 1984). In such cases, considera-
tions of thermodynamical systems at, close to, or moving
towards their equilibrium state are insufficient, making far-
from-equilibrium thermodynamics an open and active area
of study with direct implications for engineering open com-
putational ecosystems.
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Abstract

This paper presents the comparative results of applying the
same genetic algorithm (GA) for the evolution of both syn-
chronous and randomly updated asynchronous cellular au-
tomata (CA) for the computationally emergent task of density
classification. The present results indicate not only that these
asynchronous CA evolve more quickly and consistently than
their synchronous counterparts, but also that the best perform-
ing asynchronous CA find equally good solutions on average
to the density classification task in fewer computational steps
than synchronous CA.

Introduction
For the past 50 years cellular automata (CA) have estab-
lished themselves as popular platforms to investigate com-
plex phenomena. Their attractiveness stems in part from
their ability to expose highly complex or even chaotic be-
haviour from an initially simple spatial configuration and
set of update rules. An important insight that CA may pro-
vide is that in contrast to real world systems their dynamical
laws are not bound by the classical laws of physics. Instead
the laws that dictate the behaviour of a system are fully de-
fined in terms of a state update policy which we may call Φ.
Φ is defined by: the neighbourhood r of cells whose states
causally impact the state of other cells, the rules that dictate
how these neighbouring cell states impact other cells, and
the global selection policy which specifies the set of cells
that are to be updated by those rules. Traditionally work in
this field has mostly been preoccupied in finding new sets
of rules that give rise to interesting emergent phenomena.
Indeed the general behaviour of a CA will exhibit a large di-
versity of dynamics with respect to rule updates. However,
it is important not to omit the role of the neighbourhood and
selection policy. The goal of this paper is to focus partic-
ularly on the latter by exposing the impact of the selection
policy on evolved rules for cellular automata.

The most popular selection policy employed in CA re-
search is synchrony. Here, all cells are selected and updated
to their next state at each time step. Synchrony in cellular
update implies that an automaton may potentially exploit the
entire cell space to perform interesting global computations

from local cellular interactions. This is possible because of
an advantageous set of update rules found by the genetic al-
gorithm (GA). A good set of rules that does in fact exploit
this space efficiently at every time step is rare and ultimately
difficult to find even via genetic search. In contrast an in-
dependent random updating selection policy where a single
cell is updated at each time step does not allow an automa-
ton to exploit space, since only a small region defined by
the neighbourhood r of a single cell can be looked-up at any
given time. This however may favour a genetic selection of
rules that allow a CA to exploit time over space.

Asynchronous Computation
In contrast to synchronous cell state update where all cells
of the automaton are updated in unison, asynchronous cel-
lular automata (ACA) employ a selection policy whereby a
single or a subset of cells are updated at a single time step.
Independent random updating where a single cell is picked
with uniform probability and updated over a single step is
standard, although a number of alternatives have been ex-
plored (Schonfisch and de Roos 1999)1. In the past few
decades ACA have been more carefully considered. Asyn-
chronous update has been argued to be a more realistic ap-
proach in models of biologically inspired complex systems
(Dellaert and Beer 1994; Harvey and Bossomaier 1997; Lee
et al. 2007). Dellaert and Beer initially hypothesized that
one of the main drawbacks from asynchrony comes from
the difficulty due to indeterminacy in analyzing their be-
haviour. Furthermore this indeterminacy also seems to sug-
gest that no general state attractor can be reached by asyn-
chronous cellular automata. Harvey and Bossomaier chal-
lenge these worries and show that for random boolean net-
works (RBNs) asynchronous update may lead to a point at-
tractor with a probability of 1/2N ; where N is the num-
ber of nodes in the network (Harvey and Bossomaier 1997).
They also show that loose attractors may be reached for the
same type of update mechanism. Furthermore they intro-

1They distinguish step-driven from time-driven asynchronous
updating. For instance a number of cells could be picked given a
certain probability, in a particular sequence, or at a particular time.
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duce practical methods for the analysis of indeterministic
updating via probabilistic reasoning by careful inspection of
node connectivity in RBNs. Interestingly experimental re-
sults by Harvey and Bossomaier indicate that the random
node update with replacement method arrived more quickly
at a point attractor in state space than did random update
without replacement and synchronous update in RBNs. Lee,
Adachi and Peper (2007) also propose asynchronous updat-
ing in two-dimensional cellular automata as a reliable, and
biologically sound mechanism for self-replication. To them
is appears that natural systems must have acquired toler-
ance to indeterministic interactions at the cellular level and
that novel strategies have developed allowing the system to
profit from this indeterminism. Kanada (1997) also empha-
sizes the significance of modeling ACA for real world ap-
plications and biological simulation. According to him syn-
chronous emergent computation causes what he calls ’phan-
toms’ which can be characterized as fragile system states.
Slight disturbances from environmental noise will however
prevent such systems from existing. His work on one-
dimensional ACA shows that random or noisy interactions
that naturally occur in these systems may play a positive role
for our modeling and understanding of real world systems
behaviour.

The current topic of research introduces a novel applica-
tion of ACA by applying them to a computationally emer-
gent task: density classification. Although, a priori, asyn-
chronous automata have been considered to bear signifi-
cance principally for the modeling of biologically inspired
systems, the originality of their behaviour and ability to han-
dle noise should give rise to interesting behaviour in a purely
computational task. In fact, exploring the potential of asyn-
chronous cellular updating in the well defined density clas-
sification task should eliminate any conceptual obscurities
and inspire the potentially widespread significance of asyn-
chrony in locally coordinated phenomena. For instance, we
may think of the implications for the understanding of ter-
mite colony stigmergy (Grassé 1959, Beckers et al. 1994),
or even for understanding synergistic effects of neuronal ac-
tivity in large neural groups (Edelman 1993, Kelso 1995).

Synchronous Density Classification
Mitchell et. al (Mitchell, Hraber and Crutchfield 1993;
Mitchell, Crutchfield and Das 1996) have thoroughly inves-
tigated the potential of genetic evolution for computational
emergence in the density classification task. This task re-
quires that a given one-dimensional cellular automaton de-
termines the initial density that is most present in the initial
cellular state within a number of update steps. By the end
of these update iterations all the cells of the CA should be
in the state identical to the state originally dominating the
density of the CA. For instance given a 10 cell, two-state
(0 or 1) CA, the 10 cells after K update steps should all be
set to 1 if the original density of the CA contained more 1’s

than 0’s - or they should all be set to 0 otherwise. Mitchell
describes this problem as a task that the CA needs to ac-
complish by making use of local information for global co-
ordination. In dynamical terms, a set of update rules of a
CA’s policy Φ must be found so that given any initial cellu-
lar state distribution the CA will follow a path in state space
to a point attractor for that initial configuration. Mitchell et
al.’s experiments have all been conducted using synchronous
cellular update. By using a genetic algorithm to evolve the
update rules of synchronous cellular automata (SCA) they
have been able to obtain a diverse number of rules that are
amongst the best known rules to date for the density classifi-
cation task given any initial configuration density. Mitchell
et al.’s φd rule has about 95% success rate in comparison the
best known rule: the GKL rule with 97.8% (Gaks, Kurdyu-
mov and Levin 1978). A few years later Land and Belew
(1995) noted that they obtained from genetic evolution rules
performing as well as GKL. In the same paper however they
prove that no two-state CA can perform the density classifi-
cation task perfectly.

In the following section I present results obtained by par-
tially replicating the evolutionary mechanism employed by
Mitchell et al. Because the purpose of the experiment was
not aimed at discovering better rules I conducted 30 runs on
each experiment instead of the 100 that Mitchell et al. ex-
amined in order to save computational time for the evolution
of asynchronous rules. Exactly the same genetic algorithm
was used to evolve rules in both the synchronous and the
asynchronous scenario. In contrast to the synchronous sce-
nario, asynchronous updating is performed by independent
random selection at a single time step of a single cell which
is then updated according to the rule table for that CA.

Evolving Update Rules
In their initial experiments Mitchell, Hraber and Crutchfield
(1993) evolve one-dimensional cellular automata with lat-
tice size N = 149. This ensures that the initial configura-
tion always contains either a majority of 0’s or a majority
of 1’s. The chromosomes evolved were binary strings en-
coding the rule outputs for a given CA. These update rules
consider a neighbourhood radius r = 3 as can be seen in
figure 1; hence the total number of cells lookup for the up-
date of a particular cell is 2r + 1 = 7: the three cells to the
left, the three cells to the right and the current cell itself2.
Hence given that each cell has either binary state 0 or 1, the
total number of possible update rules is 27 = 128. Thus a
chromosome is represented as a binary strings of length 128.
This implies that the search space in which the genetic algo-
rithm must find good solutions to the density classification
task is of size 2128 - too large for any brute force search. A
single run of their GA consisted of evolving a set of 100 up-
date rules over 100 generations. At each generation 100 new

2Rule lookup wrap arround the CA for beyond boundary con-
ditions.

Artificial Life XI 2008  283 



Figure 1: Illustration of cell state transition from step t to
step t + 1 according to an arbitrary update rule. With r =
3, three neighbours to the left and to the right of the current
cell i are looked-up to determine cell i’s subsequent state.

initial configurations with a biased distribution were created.
This biased distribution ensures that there is a uniform dis-
tribution over the initial 100 densities. According to them
the biased distribution allowed for the GA to find increas-
ingly better solutions to the problem much more easily than
if all the initial configurations had a probability distribution
of 1/2, which rendered the task almost intractable. Each of
the 100 rules are tested on each of these initial configura-
tions over a fixed number K = 149 update steps. After the
100 rules have been tested the top 20 rules were selected
from the population and copied to the next generation. Out
of these 20 elite rules two were picked with replacement
at random. Single point crossover was performed between
these two rules after which mutation at exactly two loci was
applied for each new offspring. In order to pick the best
rules for the subsequent generation each rule was given a
score corresponding to the number of correct density classi-
fications it accomplished over the 100 initial configurations.
The GA in the present experiment on synchronous updating
was implemented exactly as described above. Mitchell et al.
however collected their results after 300 runs. Because my
aim was to compare the dynamics of synchronous updating
with respect to asynchronous updating I opted for a more
economical set of 30 runs per cellular configuration, in a to-
tal of 6 configurations. Initial test runs showed however that
rule populations would often get stuck in very low minima.
Yet because each configuration was meant to be evaluated
over 30 runs only, I decided to add more noise to the mu-
tation rate by allowing for a random mutation to occur at
any loci with double probability, i.e. 1/64 for each 128 rule
outputs.

The GA used for finding rules in asynchronous updating
is identical to the algorithm for synchronous updating. As
opposed to the SCA where all cells are updated according
to the state of their neighbouring cells at the same time, the
ACA implemented here selects a single cell with uniform
random probability with replacement. Hence a cell has a
probability of 1/N of being selected for update at every step
while the remaining cells stay unchanged.

Figure 2: Sample iteration of a successful 1D-SCA in den-
sity classification. On the left the rule solving for a greater
density of 0s; and the right the same rule for a greater density
of 1s.

Finding Good Solutions Reliably
After running this evolutionary algorithm on 30 runs for
SCA, I obtained by the final generations a majority of rules
that would correctly classify the density of a given initial
configuration about 50% of the time. These results are sim-
ilar to those obtained by Mitchell et al. This would suggest
that most runs found rules that could classify for almost any
initial density whether the initial configuration contained
more 1s than 0s or vice versa, but not both. All runs typ-
ically start with a set of poor performing rules. Out of the
30 runs, 1 run failed to evolved any rule that would correctly
classify over 5% of the time; yet 7 runs succeeded in find-
ing rules that classified with a success rate of 97% or higher.
Although at first glance this seems to suggest that rules bet-
ter than GKL were found, it is important not to forget that
these rules where only tested on a set of 100 biased initial
configurations. Further testing of these rules on larger set
of initial configurations would provide a more accurate idea
of a rule’s actual performance. This is beyond the scope of
the present paper however. Figure 2 illustrates the cellular
progression of one of the best rules in synchronous updat-
ing. From this figure we notice that the evolved rules find a
solution quickly for a greater initial density of 1s but takes
much longer when the initial configuration contains more 0s.
This was true for all the highest performing rules evolved
for this SCA, and suggests that although a large number of
SCA rules are capable of correctly classifying higher den-
sities of 1s or 0s, a special strategy must evolve to success-
fully classify the opposite state density - we may call this
’density preference’. It is interesting to note that these rules
highly resemble a specific type of rule found by Mitchell et
al. which they call φa. This rule performs what they call
block expansion to solve the task (Mitchell 1998).

Hence it isn’t trivial for the GA to find good solutions to
the density classification task in SCA. It seems that a satis-
factory point attractor is only reached for half of the initial
conditions on a large majority of the runs. In contrast how-
ever asynchronous updating gave interesting results in other
dynamical systems. Harvey and Bossomaier for instance,
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Figure 3: Average fitness of ACA for K = 149, K =
298, K = 447, K = 596, and K = 745 over 100 gener-
ations in 30 runs.

noticed that asynchronous RBNs tend to arrive a point at-
tractors more quickly than synchronous updating. It should
be interesting then to investigate this phenomenon in ACA
for the density classification task.

Because ACA require that only a single cell be updated
at every step, they require N times less computation over
a given number of steps K. It was predicted then that a
greater number of update steps would be required to obtain
well performing rules in the density classification task with
asynchrony. For this reason I conducted 30 runs on 5 differ-
ent ACA configurations. The first configuration held the K
number of update steps to 149. I’ll refer to this scenario as
Async 149. For the second configuration I decided to dou-
ble the number of K steps in an ACA’s computation: Async
298, and run the GA 30 times. Following the same proce-
dure I ran the evolutionary algorithm on Async 447, Async
596, and Async 745, each extensions of Async 149 by fac-
tors of 3, 4, and 5 respectively.

As expected Async 149 did not find any high performing
rules for the density classification task. The GA did manage
to find a number of rules for Async 149 that correctly classi-
fied the CA up to about 22% of the time. These more easily
solvable cases stem from conditions where initial configura-
tions had highly biased densities. As factors in the number
of update steps K increased, one notices an almost linear in-
crease in performance at first. Evolving Async 298 gave rise
to some rules reaching a success rate nearing 45%. Async
447 provided consistent rules surpassing the 50% mark, with
a number of rules reaching rates of success of 68%, with an
average of about 63%. However this progressive linear in-
crease halted with K = 596. Evolving Async 596 indeed

Figure 4: Average fitness of SCA, in comparison to ACA
with K = 447 over 100 generations in 30 runs.

rarely gave rules with results any better than 80%, although
75% was consistently reached by at least half the rules af-
ter 100 generations. The increase to K = 745 confirmed
this sudden decrease in rate of improvement, with top rules
averaging the 86% mark. This diminishing rate of improve-
ment suggests that there exists a non linear increase in the
complexity for finding good rules that solve initial configu-
rations with highly even state densities. Figure 3 illustrates
the progression in fitness for each type of scenario over 100
generations.

In comparison the average success of rules discovered for
SCA reaches roughly 60% (Figure 4) which happens to per-
form worse than Async 447 after 100 generations. How-
ever it is important not to forget that although the average
success is relatively low, evolving SCA did give rise to the
highly performing rules discussed above with rates nearing
100% success. This indicate then that SCA is prone to a
much higher deviation than its ACA counterparts. We no-
tice form Figure 5 that the standard deviation of evolved
rules for asynchronous update increases as the number of
steps K increases. This can be explained by the increasing
specialization of a set of rules in the population. In other
words, better performing rule sets have greater opportunity
to ’prove themselves’ when given more time to accomplish
the task. We also notice from Figure 5. that the standard
deviation of each ACA begins by increasing over the first
generation quarter, but then all deviations progressively di-
minish.

The decrease in standard deviation in fitness means that
rules that are more fit are found more consistently and
provide increasingly similar performance. Hence evolving
ACA gives rise to an increasingly reliable set of rules for the
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Figure 5: Standard deviation of rule fitness for Async 149,
Async 298, Async 447, Async 596 and Async 745, over 100
generations.

Figure 6: Standard deviation of rule fitness for SCA over
100 generations.

given task. A few hypotheses may begin to explain these
results. Perhaps the GA evolves at every run a set of rules
that are increasingly similar genetically as generations go
by. This would inevitably cause a narrowing pool of rules
that the GA always succeeds in finding. This hypothesis
however doesn’t fit the results which show that there is an
initial increase of the standard deviation. A hypothesis that
I consider more probable is that the GA manages to narrow
down the pool of successful rules only after generating first
a highly diverse pool of rules in which some perform very
well and other quite poorly, after which a sort of population
neutrality appears then to form by mutation and crossover
which allows for this increasing and reliable specialization
of the rule population after the first generation quarter.

In contrast the evolved SCA are increasingly more volatile
as generations progress. Figure 6 not only shows a much
higher deviation for SCA than for ACA but how this devi-
ation increases after each generation. As mentionned ear-
lier this high deviation is explained by the majority of rules
which get stuck in local optima by achieving the correct clas-
sification of initial configurations for one of two states only,
i.e. density preference. The few cases that find on the one
hand high performing rules or on the other hand very poor
rules will inevitably cause this strong deviation. In compari-
son ACA do not seem to suffer from this density preference
(Figure 7). From this data then it is clear that evolving ACA
provides good rules much more reliably than does the evo-
lution of SCA for this task.

Finding Good Solutions Rapidly
Synchronous update implies that all cells are updated in uni-
son, however as seen in Figure 4 SCA rules that perform
well at the density classification task are sparse. Yet for ACA
well performing rules are much easier to find for the GA.
Figure 4 even shows how Async 447 has rules performing
better than SCA on average. However Async 447 performs
single cell update at every step. Thus after 447 update steps
it has performed exactly 1 ∗ K = 447 cell updates. In com-
parison SCA perform N ∗ K = 1492 cell updates. At first
glance this appears to mean that Async 447 found on average
better solutions than SCA with about 50 times less compu-
tation. This isn’t quite exact however. I mentioned earlier
that evolved SCA rules will on average solve half of the ini-
tial configurations within half a dozen steps due to density
preference. Solving the other half of initial configurations
though will typically take at least 100 update steps. By aver-
aging for both possible initial configurations is it reasonable
to assume that on average roughly 55 steps are required to
solve the density classification task when N = 149 with the
best evolved rules. This means that most rules for SCA re-
quire about 55 ∗ 149 cell updates which still represents 18
times more computation then that required by Async 447.
Overall this suggests that ACA can in fact perform faster
than SCA at this task given that less perfect target rules are
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Figure 7: Sample iteration of a 1D-ACA in density classifi-
cation. On the left the rule solving for a greater density of
0s; and the right the same rule for a greater density of 1s.
Although perfect decisions are not made for these more dif-
ficult initial configurations, it is easy to see how the left ACA
progressively eliminates cells in state 1. And vice versa for
the ACA to the right.

required by a system or user exploiting these dynamics.

Conclusion
From the results collected here asynchronous cellular update
in one-dimension automata may exhibit important computa-
tional qualities. Essentially these results first show that a
genetic algorithm can find high performing update rules for
ACA more reliably than for SCA. I’ve shown that rules for
independent random updating of cell states to classify initial
densities are found more consistently than when the updat-
ing is synchronous with similar success rates. This was par-
ticularly made evident by a different standard deviation be-
tween both update methods: Whereas SCA show consistent
overall increasing deviation as rule generations go by, ACA
show initial increase during the first quarter followed by sig-
nificant decrease in standard deviation of fitness. Because
the standard deviation of ACA isn’t simply lower than that
of SCA but actually decreases suggests that a quite radically
different phenomenon is taking place when finding rules for

asynchronous updating via genetic algorithms. Interestingly
the evolved rules for ACA do not appear to suffer from den-
sity preference as do SCA. It is suspected that this phenom-
ena is intimately tied to the reliability of ACA for finding
good solutions. It appears then that as a tradeoff from ex-
ploiting space to find high performing rules, synchronous
update renders the computation of a CA highly prone to in-
stability. In contrast asynchronous update policies seem to
allow for more robust activity by exploiting time, while pro-
viding sufficiently good performance.

Furthermore the results suggest that ACA can decide with
much less computation the density of an initial configura-
tion than SCA if this density is relatively biased. On average
ACA performed about 18 times faster (computing time) than
SCA with similar results. This concurs with the idea that al-
though ACA may take more time (update steps) to arrive
at a point attractor they require much less overall computa-
tion (computing time) than do SCA. This agrees with prece-
dent results found by Harvey and Bossomaier (1997) on dy-
namics of asynchronous random boolean networks. Fur-
ther work should be conducted to examine more precisely
the threshold in update steps at which ACA find high per-
forming rules for density classification. Also, a better un-
derstanding of how ACA exploit the state space should be
developed.

The choice of density classification as a nontrivial task for
the global arrangement of cell states from local interactions
is proposed here as a simple yet well defined problem for
exploring the potential of asynchronous updating in com-
plex dynamics. Because CA behaviours are fundamentally
dictated by their update policy Φ, it is reasonable and per-
haps useful to regard Φ as the underlying ’physics’ of these
systems. The spatially distributed nature of cells and their
update over time motivates the use of CA for real world
models of global dynamics from local interactions. Hence
the results obtained herein could potentially contribute to the
better understanding of complex dynamics in natural phe-
nomena. Arguably, dynamical properties of asynchronous
cell selection may give insight into temporally dissociated
interactions such as in chemical reactions, neural group ac-
tivity, population dynamics etc. The two observed advan-
tages of asynchronous random cell updating in the present
experiments (reliability and rapidity) have quite distinct im-
plications. Although both aspects may be practically ex-
ploited for engineering prospects, the reliability characteris-
tic of asynchrony in the context of natural phenomena relates
purely to the ’availability’ of the underlying physics (update
rules) which give rise to the behaviour of interest. Here, re-
sults imply that under conditions of asynchronous random
cell selection these rules are more readily available for den-
sity classification from genetic search. Although specific to
this task, such flexibility could speculatively be shared by
other natural phenomena as mentioned above. The second
aspect - which shows that density classification is obtained
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more rapidly in ACA than SCA on average - may predict,
however, that convergence towards stable attractors in natu-
ral temporally dissociated phenomena is likely to occur with
higher frequency. This, of course, is contingent upon the fact
that the dynamics of the present task can be extrapolated to
other real world phenomena.
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Abstract

We investigate whether observed transcription network struc-
tures and network motifs are a byproduct of the mechanisms
by which DNA strands evolve, or if they are fundamental to
the function of the network. We explore this with an evo-
lutionary model with stochastic Boolean network simulation.
Structurally distinct regulation strategies are observed in pop-
ulations evolved with and without internal energy signalling.
However, food signalling is not used in either population in
the case when the food supply itself is constant. Parallels be-
tween the evolved networks and CRP-cAMP regulation inEs-
cherichia coli and the endosymbiont Buchnera aphidcola are
presented and discussed. Comparing the evolved networks
with neutrally evolved populations indicates that networks
evolve to lose most regulatory activity, due to loss of binding
sites and transcription factor activity, including losing global
regulation mechanisms.

Introduction
Transcription regulation and cell-signalling networks have
been studied extensively; recently high-throughput ‘omics’
technologies have provided a wealth of data, includ-
ing genome sequences, gene-expression, metabolism and
protein-protein interaction profiles. Systems biology at-
tempts to use these data to developmodels for reconstructing
and analysing transcription, signalling and other networks.
Local analysis determines the function of over-abundant net-
work motifs (Milo et al. (2002)), such as the ‘feed-forward
loop’ (FFL), which can function as a low-pass filter (Man-
gan and Alon (2003)). Network motifs are a valuable tool
for analysing transcription regulation networks, but do not
always indicate dynamical behaviour: the bi-fan motif ex-
hibits wide ranging and non-characteristic behaviour when
modelled using biologically plausible parameters (Ingram
et al. (2006)) and the process of DNA replication can also
cause the over-abundance of motifs (van Noort et al. (2004)).
Global analysis, such as node degree, of entire transcrip-
tional networks has indicated an approximately scale-free
out-degree distribution and an exponential in-degree distri-
bution in both prokaryotic and eukaryotic organisms (Albert
(2005)).

The use of energy signals in biological regulatory net-
works is well studied. The transcriptional regulator com-
plex CRP-cAMP is one of Escherichia coli’s global regu-
lators, known to regulate several hundred genes as listed in
the EcoCyc database (Karp et al. (2007)). The large num-
ber of positive interactions by CRP-cAMP in biosynthesis
pathways indicates that energy signals are used for growth
by cells (Zheng et al. (2004), Hardiman et al. (2007)). A
subunit of the CRP-cAMP complex, cAMP, is a signalling
molecule derived from ATP; ATP concentration indicates
‘energy’ within the cell. When the concentrations of CRP
and cAMP reach sufficient levels, the activated transcrip-
tion factor complex forms. Whilst CRP-cAMP is a dual-
regulator (activation and repression), 142 of the 173 known
and predicted interactions in the EcoCyc database are iden-
tified as activating interactions.
Organisms without energy signalling are also prevalent

in nature. Buchnera aphidcola is a bacterium related to E.
coli, having a common ancestor diverging 250 million years
ago (Moran and Mira (2001), Shigenobu et al. (2000)). B.
aphidcola has a different lifestyle to E. coli; it has evolved
an endosymbiotic relation with aphids, while E. coli exists
as a free-living bacterium. B. aphidcola cells live in an en-
vironment of sufficient food, which is simpler than many
other bacterial environments. B. aphidcola strains have
lost most of their genome and regulatory network, retaining
around 600 genes, representing a subset of E. coli genomes
(Shigenobu et al. (2000), Wilcox et al. (2003)). This lack of
regulation allows the over production of several amino acids,
which are excreted and subsequently used by the aphid. The
lack of an ‘energy signal’ observed in B. aphidcola is due to
the absence of crp and cycA, the genes responsible for the
CRP-cAMP transcription factor (Shigenobu et al. (2000)).
Many computational models exist for evolving tran-

scription network structure, such as the Artificial Genome
(Quayle and Bullock (2006)) and Artificial Regulatory Net-
work (Kuo et al. (2006)), which are capable of evolving
very realistic structure. However, the behaviours evolved
are often arbitrary and non-realistic, such as matching a spe-
cific pattern of expression. Models also typically omit en-
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ergy usage, which is a fundamental requirement for tran-
scription regulation. Stochasticity, whilst has been shown
to have substantial effects on gene expression in biological
cells (Elowitz et al. (2002)), is also often omitted from mod-
els of gene regulation networks.
We investigate the effects of dynamics in the evolution of

transcription network structure using models with and with-
out energy signalling. We introduce a model that evolves
networks using realistic evolutionary operators and is sim-
ulated with simple inputs and output to determine fitness.
Our model introduces regulation type for binding sites, new
evolutionary operators, signalling mechanisms as inputs and
biosynthesis as output. We simulate the networks using a
stochastic Boolean network paradigm, representing simpli-
fied transcriptional network dynamics. The results of these
evolutions are presented and analysed, and relevance to bi-
ological systems is discussed. Graph theoretic approaches
are used to compare the directed evolution and networks that
have evolved neutrally over the same time period, highlight-
ing the effects of the directed evolution.
The exploratory results presented in this paper highlight

the potential insights into evolutionary behaviour that can
be obtained using simple, yet biologically realistic models.

Method
The model has two distinct components: 1) network genera-
tion and static structure and 2) network simulation, dynam-
ics and evolution.

Network Generation
To generate the gene regulatory network, we use the model
introduced by van Noort et al. (2004) and extended by
Cordero and Hogeweg (2006). This model produces a net-
work with realistic connectivity and structure of specific
protein-DNA binding interactions when evolved without a
fitness function, “neutral evolution”. A genome initially
consists of N regulatory genes, where each gene has a reg-
ulatory region with between 0 and I binding sites, bs, and
a protein, p. Each binding site and protein has a specific
shape, S, represented by an integer drawn from a discrete
circular space {0, 1, 2, ..., Smax − 1} (with Smax − 1 adja-
cent to 0). The binding strength, Bij , between two shapes,
Si and Sj is defined as:

Bij =

{

1/(Dij + 1) if Dij ≤ Dmax

0 otherwise

whereDij is the shortest integer distance between the shape
of the protein, Si, and the binding site, Sj . A binding dis-
tance, Dmax, is defined as the maximum distance between
two shapes that will interact. A matrix,M , is created where
Mij is the strength of bindingB between protein i and bind-
ing site j. From this matrix, the network connectivity can be
visualised and analysed. The binding strength,B, between a
protein and binding site is used during network simulation.

Figure 1: Evolutionary operators. Rectangles represent
binding sites (+ activating; - repressing), triangles repre-
sent gene/protein product. Shape is represented by greyscale
colour. Original operators defined in Cordero and Hogeweg
(2006) are shown in parts A - F. A) gene duplication, B)
gene loss, C) protein mutation, D) binding site duplication,
E) binding site loss and F) binding site mutation. The two
evolutionary operators introduced in this work, G) binding
site regulation ‘flip’ and H) horizontal gene transfer. Opera-
tors A - G apply to each gene or regulatory region within a
genome, whereas H only applies to the whole genome level.

In addition, our model introduces two types of regulation for
each binding site: positive, bs+; and negative, bs−. Thus,
as in real gene regulatory networks, binding sites can either
increase the rate of a gene’s transcription (positive regula-
tion) or decrease transcription (negative regulation). Figure
2 shows an example network and interactions.

Specialised Genes In addition to the regulatory genes in
the original models, we introduce three new types of genes:
Energy signal genes: these genes have a protein prod-
uct, but no regulatory region. The expression status is
based on the amount of energy within the cell. Energy in
the model abstractly represents the ATP, amino acids and
other molecules a biological cell requires to grow, transcribe
mRNA molecules and translate them into protein molecules
and other processes.
Food signal genes: these genes represent the food available
to the cell and are used as the input into the model when it
is simulated. they have a protein product, but no regulatory
region. The energy level of the model increases whenever
a food signal gene is activated. Each food signal gene has
an energy value associated with it, which is the amount of
energy added to the model when the gene is activated.
Biomass pathway genes: these genes have a regulatory re-
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Figure 2: An example 4-gene network showing protein-
DNA interactions. Genes 0,1 and 2 form a type-1 coher-
ent feed-forward loop (FFL). Additionally, gene 0 has an
activating self-regulating connection. A fourth gene in the
circuit acts as an AND gate in the FFL, by negatively regu-
lating gene 2. If gene 3 is transcribed, it negatively regulates
the FFL, and causes the FFL to be an AND gate. If gene 3
is not present, then then the FFL will be OR gate.

gion, and generate biomass when expressed. They are used
as the output of the model when it is simulated, represent
cell growth, and have both an energy consumption (amount
of energy used when gene is activated) and biomass produc-
tion (amount of biomass added when activated) value asso-
ciated with them.

Neutral Evolution and Evolutionary Operators
Once the network has been initialised, it is neutrally evolved
for a given number of steps by randomly selecting a gene
from the genome and applying a mutation operator. Cordero
and Hogeweg define six mutation operators which operate
at either the gene or binding site level: 1) gene duplication:
the entire gene (protein product and regulatory region) is
copied and added to the genome, producing an exact replica
of the original gene, 2) gene loss: the entire gene is removed
from the genome, 3) protein mutation: the protein shape is
changed, 4) binding site duplication: a binding site from an-
other gene is randomly copied into the regulatory region,
5) binding site loss: the binding site is removed from the
regulatory region, 6) binding site mutation: the binding site
shape is changed.
Shape mutation (protein and binding site) in the Cordero

and Hogeweg model consists of either incrementing or
decrementing the shape, S, by 1 with equal probability. We
use a more realistic mutation operator allowing the shape
to make larger jumps around the shape space, using the in-
teger part of a normal random variable with µ = 0 and
σ = log10Smax.
We define two new evolutionary operators: 7) binding site

regulation ‘flip’: the binding site ‘flips’ its regulation type
from positive to negative or vice versa, 8) horizontal gene
transfer (HGT): a portion of another genome is horizontally
transferred and copied into the genome (corresponding to
DNA-uptake or plasmid transfer). This operator is applied
at the genome level only.
Due to the specific function of the energy, food and

biomass genes, not all evolutionary operators are applied to
them. The evolutionary operators applied to energy signal

genes and food signal genes are 1) gene duplication (how-
ever, the duplicated gene loses the specialised functionality
as the original) and 3) protein mutation. The evolutionary
operators applied to biomass pathway genes are 1) gene du-
plication (functionality not duplicated), 3) protein mutation,
4) binding site duplication, 5) binding site loss, 6) binding
site mutation and 7) binding site regulation ‘flip’.
All mutation rates (and other model parameters) are given in
Table 1.

Network Simulation and Dynamics
In order to further investigate the structure of the networks
evolved using realistic evolutionary operators, we introduce
a simulation system for examining the dynamics of the net-
works. We use a Boolean network model (Kauffman (1969))
to simulate the dynamics of the network over a number of
discrete time steps. Stochasticity is added to the simulation
with random, basal levels of transcription. At each time step
a number of steps takes place in order:

1. Energy signal gene status (ON if energy threshold is ex-
ceeded, OFF otherwise) and food signal gene status (ON
if food available this time step, OFF otherwise) is deter-
mined.

2. Determine protein-DNA interactions for all ON genes.

3. Determine gene activation status.

4. Update energy and biomass levels.

5. All bound binding sites unbind (all binding sites are OFF).

6. Check model has energy remaining - if the energy level
is ≤ 0 then the model ‘dies’ due to lack of energy, and
simulation terminates.

where ON = 1 and OFF = 0. All genes are OFF initially.

Protein-DNA Interaction Protein-DNA interactions are
determined by the following logic equation:

binding statusij = (Bij × gene statusi) > R

where Bij is the binding strength between protein i and
binding site j, gene statusi is the activated status of gene
i (is the gene transcribing/translating) and R is a random
number between 0 (inclusive) and 1 (exclusive).
The resultant matrix indicates binding site occupancy.

Gene Activation Status Gene activation status is deter-
mined by:

gene statusi =







1 if f(x) > 1
or f(x) = 0 & Kbasal > R

0 otherwise

f(x) =
A

∑

a=1

Gibs
+
a −

B
∑

b=1

Gibs
−
b
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Parameter Value Note
Smax 128
Dmax 3

Starting genome size 32, 256
Max. starting binding sites/gene 3

Initial mutations 2000
Gene duplication 1 × 10−3 1

Gene loss 1 × 10−3 1

Protein mutation 5 × 10−3 1

Binding site duplication 8 × 10−3 1

Binding site loss 8 × 10−3 1

Binding site mutation 8 × 10−4 1

Binding site ‘flip’ 8 × 10−4

Horizontal gene transfer 5 × 10−5

Max. genes horizontally transferred 10
Basal transcription rate, Kbasal 1 × 10−2

Binding threshold, Tbind 0.5
Population size 1000
Generations 100

Simulation time steps 1000
Starting energy 500

Energy signal gene threshold 250
Food gene energy generated 5

Biomass gene energy consumed 50
Biomass gene biomass produced 50
Biomass genes in genome 2

Table 1: Model and evolution parameters

where A is the number of occupied positive binding sites of
geneGi, B is the number of occupied negative binding sites
of geneGi andR is a random number between 0 (inclusive)
and 1 (exclusive). Binding site occupation is determined by
the binding status matrix.

Molecular Production Costs Transcription and transla-
tion are not free processes: energy is used whenever they
take place. When an activated gene’s protein binds to a bind-
ing site, the energy value of the model is decreased by 1,
representing the cost of transcribing and translating the tran-
scription factor.
Biomass production also requires energy. Whenever a

biomass gene is activated, the energy level decreases by the
gene’s ‘energy consumption’ value, and the biomass level
increases by the gene’s ‘biomass production’ value.

Deterministic Simulation The simulation can be turned
into a deterministic Boolean network, by replacing the
DNA-protein interaction step (2) with a binding threshold:

binding status′ij = (B′
ij × gene statusi)

B′
ij =

{

1 if Bij ≥ Tbind

0 otherwise

1Values taken from Cordero and Hogeweg (2006)

Basal transcription, Kbasal, is also set to 0, meaning that a
gene must be bound by an activator to transcribe.

Evolution Framework
The evolution framework used in the model is a standard
genetic algorithm, with a fixed population size, and a purely
elitist strategy that emulates the spatial constraints on a bac-
terial population, in, for example, a chemostat, where the
fittest cells are ones that replicate fastest. A daughter cell is
generated at each generation representing a simplified bac-
terial asexual replication. Due to the nature of DNA repli-
cation both the daughter parent cells are subjected to possi-
ble mutation. During replication, each gene in the genome
can be affected by one of the evolutionary operators (#1-7).
HGT (#8) is applied after genome replication and mutation.
If HGT takes place, a donor genome from the population
is selected at random, and a randomly selected number of
genes are copied from the donor genome.
Fitness of an individual model is based solely on the

level of biomass production after the defined number of time
steps. If the simulation terminates due to lack of energy,
the model has died and has a fitness of -1. In the neutrally
evolved populations, the fitness function is a random num-
ber between 0 and 1, implying no selection pressure.
Model lineages are defined as a group of models with a

common ancestor and are determined after evolution.

Results and Discussion
Model and Environment Regimes
In a simple environment, where the model has a constant
supply of food, we evolved four types of models: 1) Energy
signal gene present in a small genome, 2) Energy signal gene
present in a large genome, 3) Energy signal gene not present
in a small genome, 4) Energy signal gene not present in a
large genome.
With an energy signal gene and a small genome, a final

population evolves with a very simple regulatory network
(Table 2). The main component of this network is a strong
positive regulation of one of the biomass genes from the en-
ergy signal gene, but also has some residual connectivity
between regulatory genes. However, no regulation (positive
or negative) due to the input food genes was evolved. This is
to be expected, as the environment remains constant, and so
provides no useful information to be exploited. This regula-
tion network is a simple, but effective system; whenever the
model has sufficient energy, the energy signal is present, and
it strongly activates the biosynthesis pathway gene; when
the energy drops below this level activation of the biosyn-
thesis pathway ceases. Only one of the biomass genes is ac-
tivated, so whilst the system may not be maximally efficient
at generating biomass, the model is far less likely to over-
express genes, in particular the energy-expensive biomass
genes, and so is far more likely to survive to the end of the

Artificial Life XI 2008  292 



simulation. This network also allows a far more robust reg-
ulation of biosynthesis, as the energy signal gene is not af-
fected by noise. The use of an energy signal for activating
growth parallels many organisms such as E. coli, with its use
of CRP-cAMP.

Regulator Population
type E N NI R

N
o
ES Activator 31.85 43.08 46.48 45.92

Repressor 17.27 43.58 46.13 46.05
Dual 1.73 3.02 2.37 1.77

ES

Activator 6.17 43.45 47.39 47.41
Repressor 1.66 51.64 46.94 47.70
Dual 0.05 3.48 2.32 1.75

Table 2: Mean distribution of connection type in different
populations of both energy signal and no energy signal. E is
evolved, N is neutral, I is initial and R is random population

With no energy signal gene and a small genome, a very
different regulation network is evolved. In this population,
the most successful models again consisted of no regulation
due to the input food genes, and so no input stimuli at all
were available (as the energy threshold gene is regulated by
the model itself, it can be classed as an input). Thus themod-
els rely solely on stochasticity for transcription and transla-
tion of random genes. The model did however evolve some
positive regulation from a small number of standard genes
to the biomass genes (Table 2); this increases the probabil-
ity that the biomass genes will be activated at a given time
step, and so the efficiency of generating biomass. Whilst
this network is not very efficient at generating biomass, or
robust to noise due to the reliance on stochasticity, it is well
adapted for survival. The lack of energy signalling used in
the evolution of this population of models shares several par-
allels with the lack of signalling in B. aphidcola cells, and a
similar, simple regulatory network in observed in both. The
exploitation of stochastic gene expression seems to be a ro-
bust sub-optimal solution for survival without environmen-
tal information. This solution may provide a mechanism for
survival in early gene regulatory networks, until more pre-
cise signalling networks evolve, or could itself be the basis
for a signalling network.
With a much larger genome, with or without an energy

signal, we observe very different results. Network connec-
tivity is necessarily high because of the number of genes and
small shape space. Models are unable to survive because
they very quickly over-express many genes and use up all
energy. Even under more energetically favourable condi-
tions (energy from food = 40; starting energy = 4000) the
models are still unable to survive. This indicates the impor-
tance of repressors within biological networks to tightly reg-
ulate the processes of transcription and translation, as are not
‘free’ (they require energy sources e.g. ATP). Other com-

Figure 3: Evolutionary history of mean population fitness
and number of regulatory connections in a small genome.
A) mean fitness and number of regulatory connections in the
population with no energy signal. B) mean fitness and num-
ber of regulatory connections in the population with an en-
ergy signal. C) best individual in the final population with-
out an energy signal. D) best individual in the final popula-
tion with an energy signal. The decrease in network connec-
tivity and increased fitness can be seen in all plots.

putational models have obtained the evolution of repressor
systems, even in constant environments (Jenkins and Stekel
(2008)). The regulatory network of E. coli displays a prefer-
ence for negative regulation by transcription factors in many
different systems (Karp et al. (2007)). This may indicate
a further use of negative regulation as an adaption for effi-
ciency, as well as enabling large scale switching of regula-
tory systems, fast responses and maintaining homeostasis.
Indeed, strong negative self-regulation has been shown to
decrease the amount of mRNA needed to express a protein
at a set level, thus reducing the use of energy expensive pro-
cesses (Stekel and Jenkins (2008)). One possible explana-
tion for the lack of large global repressors evolving in the
current implementation of the model is the energy cost of
maintaining sufficient numbers of repressor proteins. Pro-
tein stability is fixed to one timestep, so proteins must be
produced each timestep, using up large amounts of energy.
In biological systems, protein stabilities ranging from min-
utes to many hours are observed (Nath and Koch (1970)).
The stability of a protein is often associated with function:
signalling proteins are typically short-lived; metabolic pro-
teins are often more stable. Modifying the model to allow
proteins to evolve their stability may allow the evolution
of global regulators. In addition, real biological molecules
have a large shape space, due to the very high dimensional-
ity of protein shape. Increasing the shape space in the model
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could help alleviate the high network connectivity.

Effects of Stochasticity Removing stochasticity dramati-
cally alters the networks evolved. Whilst a similar regulation
mechanism is observed in populationswith an energy signal,
the number of connections does not rapidly decrease. Net-
work connectivity remains high, with the exception of input
genes. This occurs as the regulatory genes will only be tran-
scribed if activated by another gene, leading to large parts
of the network which are highly intra-connected with no ex-
ternal inputs. There is no pressure to reduce this connec-
tivity, provided no input genes connect into the large highly
connected parts. The high connectivity may appear to be a
complex solution, however, the increased connectivity may
merely mask the underlying core functionality of the model.

Figure 4: Evolutionary history of deterministically simu-
lated small genome population with energy signal. A) mean
fitness and number of regulatory connections in the popula-
tion. B) best individual in the final generation of the pop-
ulation. Network connectivity remains high in both plots,
unlike in the stochastic simulation populations.

Populations without an energy signal were unable to pro-
duce any surviving models, indicating that the exploited
stochasticity of the original solution is essential.

Neutral Evolution and Comparison
To compare the effects of directed evolution, we evolved
populations under the same four conditions but used a ran-
dom fitness function to simulate ‘neutral’ evolution. We ex-
amined the model networks at three points during the evolu-
tion: 1) after random model initialisation (R), 2) after initial
period of evolutions, creating a ‘realistic’ network (NI) and
3) after a given number of generations (N).
Several network properties are extracted from the net-

works: binding site distribution, binding site regulation type
ratio, gene ‘out’ degree (number of genes the transcription
factor interacts with), gene ‘in’ degree (number of transcrip-
tion factors which regulate the gene) and number and type
of self-regulating connections.

Binding Sites A general trend for loss of binding sites
can be see in Figure 5. In the directed evolution popula-

Binding Population
site type E N NI R

N
oE
S Activator 17.06 24.37 25.84 25.42

Repressor 18.55 25.27 25.73 25.51

ES

Activator 12.38 24.70 25.76 25.54
Repressor 13.69 26.56 25.67 25.64

Table 3: Mean distribution of binding site regulation type
in different populations of both energy signal and no energy
signal. E is evolved, N is neutral, I is initial and R is random
population

tions, a larger number of genes in both populations have no
binding sites, and have a much smaller distribution of max-
imum binding sites per gene. This shows how the model
has evolved to optimise its regulatory network, by reducing
it. There was no significant bias to regulation type in each
population (Table 3), however, a clear trend for activating
connections in the evolved populations is shown in Table 2.
This may be linked to the lack of the evolution of global
repressors as discussed above. Without a global regulatory
mechanism, the model is unable to effectively regulate the
expression of the genes, and so the alternative solution is
to reduce the probability of transcription factor activity by
losing binding sites. Whilst this solution does not prevent
transcription, it does reduce it. In fact this mechanism is
exploited in the populations without an energy signal.

Figure 5: Mean number of binding site for each gene in each
model in small genome populations. Error bars are 1 s.d. of
the population. A) evolved and neutral populations with-
out energy signal, B) evolved and neutral populations with
energy signal. The loss of binding sites in the non-neutral
populations can be seem in both panels; the evolved popu-
lations have a larger number of genes without any binding
sites, and have a lower maximum number of binding sites
per gene.
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Figure 6: Mean gene ‘out’ degrees for each gene in each
model in small genome population. Error bars are 1 s.d. of
the population. A) evolved and neutral populations with-
out energy signal, B) evolved and neutral populations with
energy signal. The loss of connectivity in the evolved popu-
lations is indicated by a larger number of genes which do not
act as transcription factors and a reduced number of ‘global’
transcription factors.

Transcription Factor Activity The loss of large amounts
of regulation can be seen in the interactions between tran-
scription factors (TFs) and genes. This is indicated by the
‘out’ degree for each transcription factor (Figure 6), and the
‘in’ degree for each gene (Figure 7). We observe an increase
in the number of proteins that do not act as TFs and the num-
ber of genes which are not regulated by any TFs. The maxi-
mum number of genes regulated by a TF is also significantly
reduced in the evolved populations, in particular the popula-
tion with an energy signal. The maximum number of TF’s
regulating a gene is also significantly reduced in the evolved
populations.
The number of self-regulating genes were separated into:

activating only, repressing only, and dual regulation. Again,
a clear trend can be observed from the directed populations
from Table 4. The two evolved populations have lost nearly
all of their self-activating connections, and a large propor-
tion of their self-repressing connections. Whilst more acti-
vating connections in total are conserved (Table 2), a larger
number of negatively self-regulating connections are con-
served, indicating the importance of negative self-regulation
in transcription networks.
These results indicate the loss of interaction within the

network, and highlight that complex regulatory networks are
unnecessary to survive within a stable environment. The
preference for losing self-activating connections and pre-
serving more self-repressing connections shows that the net-
work attempts to optimise its energy usage by preventing

Figure 7: Mean gene ‘in’ degrees for each gene in each
model in small genome populations. Error bars are 1 s.d.
of the population. A) evolved and neutral populations with-
out energy signal, B) evolved and neutral populations with
energy signal. The loss of connectivity in the evolved popu-
lations is indicated by a larger number of genes without any
transcription factor interaction and a smaller distribution of
interactions.

further transcription of unrequired genes.

Further Discussion The results obtained from the evo-
lutions described above have shown two very different,
but realistic regulation mechanisms have been selected and
evolved. When no energy signal gene is present in the
genome, the population has evolved to exploit the stochastic-
ity within the transcription and translation processes. Whilst
the biomass genes are seemingly not activated by the food
inputs, they have evolved a large number of activating con-
nections from many other genes. This strategy allows the
model to exploit the stochastic gene expression, poten-
tially tuning the number of activating connections to ensure
that enough genes will randomly activate the biosynthesis
pathways, and ensuring that these pathways are not over-
expressed.
The other regulatory mechanism evolved, whilst being

less complex, is one that is observed in many biological
regulatory systems. The energy signal is used as input for
the biosynthesis pathways, and regulation of other genes is
much more tightly controlled through loss of connectivity.
These rather surprising results highlight the complexity

of regulation networks even in the most simple of environ-
ments. They also show the ingenious mechanisms which
natural selection, and the evolutionary operators it uses, have
discovered and optimised in both the model networks pre-
sented here and the real biological systems.
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Regulator Population
type E N NI R

N
o
ES Activator 0.0165 1.0535 1.319 1.3295

Repressor 0.4295 1.1645 1.3125 1.3060
Dual 0 0.0785 0.0600 0.0435

ES

Activator 0.0005 1.0070 1.3125 1.3205
Repressor 0.2830 1.4440 1.3130 1.3395
Dual 0 0.1060 0.0575 0.0520

Table 4: Mean number of activating, repressing and dual-
regulating self-regulating connections per model within the
energy signal and no energy signal populations. The loss
of connectivity can be seen in the evolved populations. The
evolved populations show a significantly smaller number of
activating and repressing and no dual interactions compared
with the neutral and random populations. E is evolved, N is
neutral, I is initial and R is random population

Summary and Conclusions
This paper expanded an existing model for genome evo-
lution and added a simulation method, developed from
Boolean network models. Models are evolved in popu-
lations with and without energy signalling genes, and the
evolved models are compared with models evolved neu-
trally, and random models.
Results from the evolutions indicate a decrease in the

number of regulatory connections within the networks, and a
preference towards negative regulatory interactions. A num-
ber of parallels are drawn between the evolved models and
biological systems, including: regulation by the global reg-
ulator CRP-cAMP in E. coli; a regulation mechanism sim-
ilar to the endosymbiont B. aphidcola; the use of negative
regulation as a mechanism for efficiency; and the need for
differing protein stabilities dependent on function.
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Abstract

We present a model of multicellular development controlled
by a gene network in which the connectivity is determined
by the proximity of sequences in N -dimensional space. Thus
the sequences of individual genes can be visualised as points
in space which approach or move away from one another as
the genomes evolve. The genotype-phenotype (morphology)
mapping in our model is indirect, relies on artificial physics,
and allows cell adhesion and free movement in 3D space. Cell
differentiation is allowed by positional information provided
by factors that diffuse in this space, and the differential gene
expression in each cell determines the cell fate (such us di-
vision, death, growth and movement). We apply a genetic
algorithm to find genotypes that can direct morphogenesis
of non-trivial asymmetrical shapes. We then investigate the
mechanism of such developmental process and the features
of gene regulatory network that direct the embryogenesis.

Introduction
Generation of two-dimensional (2D) patterns, such as the
French flag (Wolpert, 1969, see also Steiner et al., 2006), is
much simpler then the problem of 3D morphogenesis. Re-
cent progress in this field was facilitated by the introduction
of gene regulatory networks (GRNs) as an indirect regula-
tory mechanism in 3D artificial embryogenesis that relies in
part on simulated physics (e.g. Eggenberger-Hotz, 2003b,a,
2004, see also Bongard and Pfeifer, 2003), in contrast to the
initial more abstract approaches, such as generative encod-
ings (see e.g. Prusinkiewicz and Lindenmayer, 1996).

In biological systems, the structure of GRNs is encoded
indirectly in nucleic acid-based genomes. Coding sequences
are accompanied (usually, preceded) by regulatory areas
(cis-regulators, promoters) which regulate the level of gene
expression. The coding sequences code for functional prod-
ucts: catalysers of biochemical reactions (enzymes, ri-
bozymes), proteins that have structural/mechanical roles,
and finally, regulatory products that bind other products or
bind to regulatory areas in the genome to control the pro-
duction of other products (gene expression). The gene prod-
ucts are the nodes in the biological GRNs while the edges
are defined by regulatory interactions. The amino acid se-
quence of a protein product (or a nucleotide sequence of

an RNA molecule) defines its 3D structure in a way that is
still far from being fully understood (this is the so-called
folding problem). Interactions between three-dimensional
molecules (between proteins, proteins and nucleic acids, and
between RNA molecules, etc.) are even more difficult to
model.

Several approaches to encode the structure of the artificial
GRNs in the genome using an abstraction of this “lock and
key” mechanism of molecular recognition have been pro-
posed. For example, product-promoter affinity can be deter-
mined in an all-or-none manner by a direct match between
numbers assembled from the digits in the genomic sequence
(Quayle and Bullock, 2006) or coded directly in the genome,
possibly with real-number rounding (Bongard and Pfeifer,
2003). Jakobi (1995) used a different approach, with pro-
moter affinity (a discretised value from 0 to 1) determined
by the match between triplets of “chemicals”: characters
in a regulatory protein sequence (from a 64-letter alphabet)
and in the genome (from a four-letter alphabet). The triplets
are found indirectly in a metaphor of genome scanning by
the RNA polymerase, folding of the regulatory protein, and
protein-protein interaction between them. The method pro-
posed by Eggenberger-Hotz (2003a) is much simpler and
relies on direct proximity of real numbers encoded in the
genome. Bit-by-bit comparison of 32-bit integers is another
method of similar complexity (Banzhaf, 2003; Kuo et al.,
2004). Bentley (2003) proposed a much more indirect ap-
proach based on encoding the coordinates for subsets of
Mandelbrot set and matching their similarity.

We extend the approach that uses the proximity of real
numbers (a 1D approach) by introducing a model of GRN in
which product-promoter affinity depends on the Euclidean
distance between points in N -dimensional gene sequence
space. As the genomes evolve, these points approach or
move away from one another.

The Model
Outline
In the model of embryogenesis proposed here, multicellu-
lar development starts from a single cell. Each cell of an
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individual has the same linear genome: a list of genetic el-
ements. Each element is characterized N+1 real values (N
coordinates in the gene sequence space and a gene modi-
fier, see below) and an integer (element type), with “gene”
(a metaphor of a coding sequence) and “promoter” (an ab-
straction of a regulatory region) as the main types.

One of the key interests in our research is the gradual in-
crease in complexity of regulatory networks and inherent
mathematical properties of the corresponding graphs. We
thus allow the genomes of arbitrary size and regulatory units
that have no upper limits on the number of nodes they di-
rectly interact with. Furthermore, we provide multiple lay-
ers of possible interactions in developing artificial organisms
for evolution to tinker with. On the most basic level, in-
side a single cell, the products that we call “internal” have
affinity to promoters and control the expression of other
genes. On the level of a whole organism, special class of
products (“external products”) may diffuse from the source
cell. External products may have affinity to promoters but
also to products belonging to another class: receptors. Thus
external products are a metaphor for morphogens in natu-
ral embryogenesis, and their interactions provide a mecha-
nism for cell differentiation and differential growth. Further-
more, cells develop in an environment with simple simulated
physics: overlapping cells repel each other while daughter
cells are attached to the mother cells with simulated springs
(a metaphor of adhesive forces between cells).

Regulatory Units
Regulatory units are formed from a series of promoters fol-
lowed by a number of genes and are the basic building
blocks for the structure of the GRN. There are a metaphor
of regulatory units in nucleic acid-based genomes, in which
several protein- or RNA-coding regions can be under the
control of several regions that affect gene expression at dif-
ferent levels: pre-transcriptional, post-transcriptional (sta-
bility, transport, and translation of transcripts), and post-
translational (stability, transport and activity of proteins).

The majority of existing models of artificial embryogeny
follows the scheme of multiple promoters and one product
(e.g. Beurier et al., 2006; Steiner et al., 2006; Eggenberger-
Hotz, 1997, 2003b,a, 2004). However, many-to-many rela-
tionship between the promoters and regulated genes is com-
mon both in prokaryotes and eukaryotes (Gerstein et al.,
2007). Indeed, clustering of several genes in so-called oper-
ons is not, as originally thought, restricted to bacteria, but
common also in eukaryotes (for a recent review, see Blu-
menthal, 2004; Gerstein et al., 2007). Such arrangement
allows for co-regulation of co-transcribed genes that are
closely related functionally (for example, involved in the
same biochemical process). A similar logic applies to multi-
ple transcripts sharing common regulatory regions (promot-
ers, enhancers, silencers; Gerstein et al., 2007), polypro-
teins, and ineed, multidomain proteins (with domains re-

sponsible for separate functions).
To locate regulatory units in our model, each genome is

scanned linearly. Whenever a sequence of elements consist-
ing of at least one promoter followed by at least one gene is
detected, it is treated as one unit that extends until the next
promoter. Promoters and genes outside regulatory units are
ignored. For example, in a genome “GGGppGpGGpGpp”
(where each p is a promoter and each G a gene), three regu-
latory units (square brackets) exist: GGG [ppG] [pGG] [pG]
pp.

Two types of promoters are introduced: additive and mul-
tiplicative. To compute the level of activation of a regulatory
unit (the expression level of all of the products), we first
compute the activity of all of its promoters:

pi =
K∑

k=1

Lkwk,i . (1)

where pi is the activity of a given promoter, K is the total
number of regulatory factors in the genome (e.g. internal
or external products, see below), Lk denotes the perceived
level of the factor k, and wk,i is the promoter-factor affinity:

wk,i =






dk,i ≤ 5 : sgn(mkmi)
2|mkmi|(5−dk,i)

10d+|mkmi| ;

dk,i > 5 : 0 .

(2)

where dk,i is the Euclidean distance between the sequences
of the promoter i and the gene of factor k, while mk and mi

are the values of their modifier fields. In other words, affinity
is 0 (no interaction) when the distance is larger than 5, and
at a maximum (10) when the distance is 0. For intermediate
distances, the affinity falls hyperbolically, rapidly for small
|mkmi| and approximately linearly for large |mkmi|. The
signs of the modifiers determine if the effect is inhibitory or
excitatory.

All the genes belonging to a given regulatory unit have
the same level of expression:

LΩ = f(
I∏

i=0

pm,i

J∑

j=0

pa,j) . (3)

where I and J denote the number of multiplicative and addi-
tive promoters (respectively) and pm,1..i and pa,1..j describe
their activations. It is possible to allow for the bias in activa-
tion (pm,0, pa,0), but we use the identity element of, respec-
tively, multiplication and addition (pm,0 = 1,pa,0 = 0). f
is a sigmoidal function returning value from (0,1) with the
threshold at 0.5 (the steepness of the sigmoid was kept con-
stant in all the experiments).

The presence of a multiplicative promoter in a regulatory
unit results in a strict requirement for the expression of the
associated product, otherwise the whole unit remains inac-
tive. This feature (where a subset of transcription factors is
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necessary to initiate gene expression in an ‘all-or-nothing’
fashion) is known to be common in gene regulation but
would not be easily captured by a purely additive function.
Additionally, introducing multiplicative promoters provides
evolution with a mechanism to switch off the whole regula-
tory unit with a single mutation.

Products

We introduce three types of products that can be coded by
genes in a regulatory unit: internal, external and receptors.
Internal products affect the expression of the regulatory units
only in the cell in which they are produced. External prod-
ucts (morphogens) diffuse from the producer cell and bind
to promoters and receptors in other cells. Receptors, on the
other hand, interact with external products and influence the
axis of cell division (the division vector) by shifting it toward
or away from the source. Since the cells may differ in the
pattern of gene expression, also their set of active receptors
may be different. This allows each cell to orient its division
in relation to the pattern of morphogens that are available at
a given moment.

The affinity between a morphogen and a promoter or a
receptor is defined by Eq. 2, but to simulate simple diffusion,
the perceived concentration of the morphogen depends not
only on the level of production but also on the distance from
the producing cells (the sources). The level of morphogen
m perceived by the cell c is:

Lc,m =
I∑

i=1,i"=c

li,m
1

1 + Di,c
. (4)

where I denotes the number of cells at the current develop-
mental stage, Di,c is the distance from the cell c to the source
i in the 3D space of the developing organism and li,m is the
level of morphogen m this source produces (the expression
level of the morphogen, Eq. 3).

Additionally, to simulate some of spatiotemporal effects
generated by diffusion, the actual value of li,m is delayed in
time, depending on the distance from the source. This adds
some additional memory cost of storing morphogen levels
from previous time steps for each morphogen in each cell,
but at basically no additional computational cost. Alterna-
tively, one could obtain more realistic diffusion by simu-
lating a 3D grid in which morphogens would diffuse (e.g.
Beurier et al., 2006; Steiner et al., 2006). However, compu-
tational cost of updating fine-grained diffusion levels in 3D
would be considerable.

Other Types of Genetic Elements

Three additional element types exist: pseudogenes, external
factors and effectors. They are ignored when the genome is
scanned for regulatory units.

Pseudogenes. If any genetic element is mutated to a pseu-
dogene, its sequence will be shielded from the selective pres-
sures until another mutation changes the element type.

External factors. External factors act in exactly the same
way as external products (that is, they may interact with reg-
ulators and receptors), however their levels of expression are
not regulated by the cell: the factors are provided externally
at predefined levels. Also, for the positional factors (see be-
low) the source locations are predefined. External factors
can be thus viewed as inputs of the GRN and their possi-
ble interactions with receptors is an initial mechanism for
breaking the symmetry of cell divisions.

Two subclasses of external factors are introduced. The
first one consists of positional morphogens, emitted from
four different points in three-dimensional space. They are
a metaphor for maternal factors in natural embryogenesis.
Thus each cell is provided with enough positional informa-
tion to locate itself in 3D (four points is the minimal number
that allows 3D trilateration). The perceived level of the posi-
tional external factors in a particular cell depends on the Eu-
clidean distance to the source, in the same way as the level
of external products (Eq. 4).

The perceived level of external factors in the second class
does not depend on cell location. The level of one is constant
throughout the development (a “1” signal), so it can be used
as a simple threshold for any of regulatory unit in the GRN.
The other provides a time signal, its expression increasing
linearly from 0 to 1 during the developmental process. The
next two are somewhat related: a generation counter (incre-
mented in each daughter cell after division), and the energy
depletion level, which increases from 0 to 1 (each cell di-
vision has some cost for both the daughter and the mother
cell). The level of the last factor in this class depends on
the number of neighbours (saturating at 1 for 8 cells in close
proximity) and thus allows the cell to detect when it lies in a
densely packed cell structure.

Effectors. Effectors can be viewed as outputs of the
GRNs. They either correspond to actions each cell can take
during the development or allow to adjust the parameters
of the developmental process. Each effector is defined by
its sequence in the N -dimensional gene space, and products
that have their sequences close enough will add to its activa-
tion (using Eq. 2). In a way, this parallels the promoters, and
indeed one can consider each effector as a special regulatory
unit with a single promoter.

Cell actions consists of all-or-none responses when ac-
tivation levels of corresponding effectors reach a certain
threshold. These are: division, apoptosis (programmed cell
death) and freezing (after which expression levels in the cell
are no longer updated). In the second group of effectors, the
following parameters are updated by a value corresponding
to the activation level defined by Eq. 3: cell radius, spring
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length, internal division vector length and internal division
vector angles.

Since the list of possible effectors and external factors is
predefined and we prefer to avoid defining a separate ele-
ment type for each, the assignment of a given element cod-
ing an effector or an external factor to a particular function
depends on its order in the genome. After all the functions
are assigned, the rest is treated as pseudogenes.

Development
Development starts from a single cell and proceeds over dis-
crete time steps. It stops either when a maximum time step
is reached or when an individual embryo exhausts its initial
energy.

The state of each cell is determined by the expression lev-
els of all of the products in the genome, cell coordinates in
3D space (these are real values, no grid is used), cell radius,
the orientation of the cell division vector, energy level, and
several parameters related to the physical model. As the fate
of the cells depends on the differential gene expression, it is
essential to provide a mechanism that will break the initial
symmetry of cell divisions. This is the function of the initial
gradients of positional external factors. A similar mecha-
nism is known to direct the initial stages of insect embryo-
genesis (for a popular introduction, see Carroll, 2005).

When a new cell is formed, it is attached to its mother with
an elastic spring and placed at a very small distance, so the
two cells initially overlap in space. The default length of the
spring is equal to the sum of cells‘ radii and can be increased
by designated effector gene, if present. During subsequent
time steps after division, the elasticity of the spring will push
away the cell in the direction of the mother’s division vec-
tor. The spring ensures that the new cell moves away in the
desired direction while remaining close to the mother, sim-
ulating simple adhesion. Repulsion between any two cells
(at a certain distance) ensures that the cells do not overlap
in space. To prevent brusque movements of the cells, their
motion is slowed down with simulated viscosity. In a man-
ner similar to spring length, the radius of the daughter cell is
controlled by a dedicated effector. No activity means default
value, maximum activity translates into a twofold increase.

The position of the daughter cell after division is influ-
enced by two mechanisms, each corresponding to one of two
auxiliary vectors maintained for each cell: the internal and
external division vector. The direction of the sum of these
two vectors (the cell division vector) gives the direction of
the spring that attaches the daughter to the mother cell.

The first mechanism is directly based on the mechanism
used in 3D L-systems (Prusinkiewicz and Lindenmayer,
1996). A daughter cell inherits the internal vector from the
mother. At this point the vector is rotated in the daugh-
ter cell. Each of the three angles of rotation is affected by
the expression of one of three effectors in the mother cell
(Prusinkiewicz and Lindenmayer, 1996). If the effector is

activated (Eq. 1), the rotation is positive, repression by in-
hibitory regulators results in negative rotation. An additional
effector is used to determine the length of the internal vec-
tor. The default vector length is 0, which means that if there
are no products acting on this effector (or the element corre-
sponding to it is not present in the genome), the direction of
the cell division vector will not be influenced by this mech-
anism.

The second mechanism allows to orient the vector to-
wards or away from morphogen sources. High positive affin-
ity between the sequence of an active receptor and the se-
quence of a morphogen perceived in the cell shifts the di-
rection of the external vector toward the source of this mor-
phogen. Negative affinity shifts the vector in the opposite
direction. The overall effect is a sum of interactions of all
receptors in the given cell with all morphogens produced by
every source:

!Vc =
R∑

r=1

M∑

m=1

S∑

s=1,s"=c

lrwr,mLc,m
!δs,c . (5)

where R denotes the total number of receptors in the
genome, M the total number of external products and exter-
nal factors defined in the genome, S is the number of sources
(cells and four positional external factors), lr is the expres-
sion level of the receptor r in the cell (Eq. 3), wr,m is the
morphogen-receptor affinity (Eq. 2), Lc,m is the perceived
level of the morphogen (Eq. 4), and !δs,c is the normalized
vector from the given cell to the source.

To allow for a control of cell divisions, we provide
an input to the GRNs that is a metaphor of the nutri-
tional/energetical state of the cell. Since in our model each
cell division has some energetical cost, the cell energy can
be exhausted by rapid divisions. The same applies to the
whole developing individual: there is a limit on the total
energy that can be used during the development. As mu-
tations causing uncontrolled cell divisions put a high drain
on computational resources during evolution, early exhaus-
tion of such individual’s energy can help keep the problem
in check. Additional biological realism is introduced by re-
quiring a brief (10 simulation time steps) period of division
arrest right after a division, both in the mother and in the
daughter cell. Arrested cells update the state of their GRN
normally but cannot divide no matter how high the expres-
sion of the corresponding effector. This has an additional
advantage of giving the simulated physics the time to adjust
the position of the new cell.

Fitness evaluation
The most obvious way to assess the fitness in simulations of
morphological development is to count how many cells fit
inside the desired shape, penalising for each cell outside the
shape (e.g. Kumar, 2004). This approach works well when
cells can only take certain locations on the grid, but leads to
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undesired results when cells take arbitrary positions in space
and can temporarily overlap. The possibility to reach high
fitness by producing densely packed and highly overlapping
cells would allow to exploit the simulated physics and other
features of the model in an unintended way. We propose
an alternative: a cuboid in 3D space that contains the tar-
get shape is divided into cubical voxels and each voxel is
marked either as internal or external to the shape. To com-
pute fitness, we iterate over each cell and check whether they
occupy internal voxels, and if so, those voxels are marked as
occupied. This approach has several advantages. First of all,
it is efficient and allows to avoid repeated scoring of voxels
occupied by overlapping cells. Secondly, it allows the cells
to adopt different sizes (and even shapes, although this is not
explored here). Finally, it is possible to give higher weights
for some of the voxels to assist the evolution of morpholo-
gies that otherwise do not evolve easily.

Implementation
The computations are simplified by first transforming the
genome into a GRN graph, in which only if the distance
between the sequences is smaller than the threshold (5), an
edge is drawn (see Eq. 2). During the development, it al-
lows to update the state of the GRN using a list of factors
that affect each promoter or receptor.

The dynamics of cell movement is simulated with sim-
ple Newtonian physics, using Runge-Kutta 4th-order inte-
gration. Springs behave according to Hooke’s law and ad-
ditional repulsive force is introduced between any two cells
that overlap.

For complex GRNs it takes considerably less time to com-
pute the new location of the cells compared to the time taken
to update the state of the GRN. It is thus possible to update
the GRN state, for example, only every 10 steps of simulated
physics.

Genetic algorithm
All the results obtained in this work were obtained using
a generational genetic algorithm with constant-size popu-
lation of 300 individuals. A new generation was formed
by copying 5 genomes without mutation (elitism), 150 with
mutations and crossover, and 145 by mutation only. We al-
lowed for multi-point crossover between genomes of differ-
ent sizes. The candidate genomes for the next generation
were chosen using tournament selection (which is not sus-
ceptible to the scaling of the fitness function). Elite individ-
uals replaced the elite individuals from the previous gener-
ation if their fitness was equal. This allows elite genomes
to wander through the neutral regions in the sequence space
(which may allow for a more efficient evolutionary search,
Shipman et al., 2000).

The elements in the genome are the lowest level of ab-
straction in our model, so the genetic operators were de-
signed to work on the level of the genetic elements (rather

than single bits or real values): each had a predefined proba-
bility of occurrence per element in a genome and per genera-
tion. The first operator results in a modification of the mod-
ifier or of the coordinates in the N -dimensional sequence
space. The coordinates are modified by addition of a small
value drawn from a Gaussian distribution. This operator cor-
responds to simple mutations in nucleic acid sequence (such
as point mutations, short deletions and insertions in the cod-
ing or regulatory sequences). The second mutational opera-
tor, on the other hand, does not have any obvious biological
interpretation, and allows to change the sign of the modifier.
Another mutational operator allows for a change in the ele-
ment type (with unequal probabilities for each type), in par-
ticular, a change of any element to a pseudogene and vice
versa, with an obvious biological parallel. However, we al-
low any type change, which includes a direct change of a
receptor into a morphogen or a promoter to a product (and
vice versa), while conserving the sequence. In further work,
we plan to explore if this feature helps evolution, at any rate,
it does not have an obvious natural counterpart.

The remaining mutational operators act on the level of
whole elements (element deletion, duplication, and insertion
of a randomly created element) and the whole genome: dele-
tion of a segment of the genome with random start and end
point and a duplication of such a segment to a random posi-
tion in the genome.

In the experiments described below, we set the probabil-
ities of deletions to be around twice as high as probabili-
ties of element duplications and insertions. Such deletion
pressure restricts the accumulation of elements whose pres-
ence does not affect fitness (i.e. in which mutations are neu-
tral) and so prevents the unnecessary growth of genome size.
This particular solution to the genome size issue was partly
motivated by biological realism (Charles et al., 1999), and
partly by difficulties in properly balancing the fitness func-
tion faced by an alternative: a fitness cost to larger genomes.
However, some level of neutral elements (which include
pseudogenes) is beneficial. In natural genomes the presence
of regions in which mutations do not affect the phenotype
(neutral regions, junk DNA) allows for the appearance of in-
novations beneficial from the point of view of natural selec-
tion (Shipman et al., 2000). Such regions are shielded from
the selective pressures which allows for bolder movements
in the sequence space.

Results
In all our experiments, the evolution started from the same
simple genome (Fig. 1A) designed by hand and containing
four regulatory units, all regulated by external factors. The
products in two units have effect on the division effector,
two other induce rotation of the internal division vector and
its length. The remaining external factors and effectors are
defined but the nodes are not connected to the others in the
GRN (and are not shown in Fig. 1B). The number of dimen-
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sions of the gene sequence space was set to two.
In a way, the presented model attempts to trade simplicity

for biological realism. In further work we plan to address
the question whether the model can be simplified (or, in-
deed, complicated). Before it is possible, we need to ask
if this initial version allows for efficient search in non-trivial
fitness landscapes, by challenging the genetic algorithm with
target shapes of different difficulty. While highly symmetric
structures (spheres, ellipsoids) or slightly more demanding
half-ellipsoids evolved quite easily (not shown), asymmet-
ric morphologies, shown on Fig. 2 are a difficult task, and
usually over 500 generations were needed to find a solu-
tion. Interestingly, the solutions found by the genetic al-
gorithm did not rely on cell death (a mechanism that we ob-
served to be used often in the development of half-ellipsoids;
not shown) but rather on differential cell division and cell
growth (changing cell radius) in different regions.

A. B.

Figure 1: The seed genome (A) and the corresponding gene
regulatory network (GRN; B). The genome consists of 27
elements (the value of the modifier, the coordinates in 2D
sequence space are listed on the right): 8 external factors
(the first 4 are positional factors, with 3 coordinates in 3D
developmental space), only 2 of which are connected to the
GRN, and 9 effectors, of which only 5 are connected, and 6
genes in 4 regulatory units.

The genome of the best stem-cap individual (Fig. 2A)
codes for only three external products. To investigate their
role, we have used a standard procedure used in molecular
biology: knock-out experiments. Only the deletion of one of
3 morphogens (mpg3 or capless) had a large effect on fitness
(Fig. 3A): no cap formation. Adding the third dimension to
the sequence space allows to incrementally move the posi-
tion of capless away from the plane in which all the other
genes lie. This is a simple way to decrease the weight of
a connection between a given gene and all the other nodes
in the GRN, and corresponds to introducing point mutations
as opposed to gene deletion. It can be seen (Fig. 3B) that

A.

B.

Figure 2: Difficult target shapes (left; the sphere marks the
position of the first cell, dots represent target voxels): stem-
cap (A) and asymmetrical dumb-bell (B), and best evolved
solution phenotypes (right).

the effect of such operation on the development is ”dose-
dependent”: the more the sequence was disturbed, the larger
the effect. We can conclude that expression of capless al-
lows for the development of a defined morphological struc-
ture.

A.

B.

∆mpg1 ∆mpg2 ∆mpg3

z=1 z=1.25 z=1.5

f=0.62 f=0.67 f=0.8

Figure 3: Mutational analysis of the best-solution individual
to the stem-cap target. Only the deletion of one of 3 mor-
phogens (mpg3 or capless) has a large effect on fitness (A).
Shifting the location of this morphogen away from the XY
2D plane in which all the other genes lie (along the Z axis)
has an incremental effect on fitness (B).

Interestingly, both the production and the perceived level
of this morphogen in the developing structure is not asym-
metrical along the main axis of development (Fig. 4A). It
seems that all the cells produce this factor and its perceived
concentration increases dramatically after the developmen-
tal step 60 when the cell number doubles (cell divisions are
synchronised in the development of this individual, taking
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the advantage of the division arrest mechanism). This means
that it is not the asymmetry of capless expression that allows
for the cap formation. Rather, the increase in concentration
of this morphogen at step 60 causes asymmetric cell divi-
sion and cell growth when the cell number doubles again
after step 70. In other words, another mechanism must be
used for cell differentiation along the embryo axis. We con-
firm this conclusion by creating an embryo in which all the
cells express capless at a constant level (Fig. 4B).

A. B.

step: 60 61           62               70                       71  

Figure 4: The perceived level of capless in the develop-
ment of a stem-cap structure. Panel A shows the level of
this morphogen in the best-solution individual at different
developmental steps. Panel B: the phenotype of an individ-
ual in which all the cells produce capless at the same level
throughout the development.

Fig. 5 presents a graph representation of a GRN control-
ling the development of asymmetric dumb-bell shown on
Fig. 2B. It can be observed that majority of high-weight con-
nections are inhibitory. It is also interesting that only some
of the inputs (constant signal, only one spatial external fac-
tors out of four) and possible effectors are used. In other
words, the development takes advantage of the changes in
cell radius, internal division vector length and its rotations
in two directions out of three allowed by the model. The
developmental mechanism in this particular GRN does not
use cell death, freezing or changes in spring length. The
analysis of other GRNs evolved in our experiments also
showed that only a subset of developmental mechanisms
is actually needed to enable the morphogenesis of non-
trivial shapes. However, quantitative analysis of hundreds
of evolved GRNs would be necessary to infer any general
properties of evolved networks.

Figure 5: The GRN controlling the development of a asym-
metrical dumb-bell shape in Fig. 2B. Dashed lines corre-
spond to excitatory connections.

Discussion and Future Work
Our model extends the ideas first presented in several semi-
nal papers by Eggenberger-Hotz who introduced GRNs with
the affinity based on the similarity of real numbers (albeit
in one dimension, 2003b; 2003a; 2004) and physics based
on springs (2003b; 2003a). However, in this previous work
cells grow on a grid and the embryo structure is further re-
shaped by controlling the forces between neighbouring cells.
In contrast, in our model the development relies on cells of
different size dividing freely in 3D space, and pushing each
other away.

At the present stage, many features can be seen as unnec-
essary complications. Future work will show how many can
be removed without compromising the ability of the evo-
lutionary process to solve non-trivial tasks. Some parame-
ters were included to allow future analysis of their effect on
evolvability (this influenced, for example, our choice to use
the insertion/deletion ratio as a way to control the genome
size). At this preliminary stage, only a perfunctory analy-
sis of the values of many parameters was possible (this ap-
plies, for example, to the thresholds in Eq. 2). Moreover,
some parameters are related (for example the optimal value
of the thresholds depends on the average size of mutational
steps). However, the analysis of the effects of the inclusion
of some parameters and their particular values on evolvabil-
ity requires systematic experiments that need considerable
time.

The main drain on computational resources in our experi-
ments is frequent apparition of individuals which develop by
uncontrolled cell divisions, and the energy depletion mech-
anism plus a limit on cell number, while keeping this prob-
lem in check, limits the potential of the artificial embryol-
ogy. One of the possible solutions is to allow for a slow
increase of energy in a manner that will reward slow con-
trolled growth.

On the other hand, some features can be viewed as un-
necessary simplifications. Perhaps tethering the daughter
cells just to the mother cells is one of them, and since we
already introduce the concept of cellular neighbourhood,
attaching the cells to the neighbours (possibly taking ad-
vantage of the receptor compatibility) may provide a fruit-
ful direction of further development (Bongard and Pfeifer,
2003; Eggenberger-Hotz, 2003b,a, 2004). Another direction
is to allow dynamic changes in cell size and spring forces
(in the present version both remain set after division; cf.
Eggenberger-Hotz, 2004 where a similar feature allows for
simple locomotion).

It would be also interesting to increase the realism of dy-
namics of gene expressions by introducing finite rates of
change in product concentrations, represented with differ-
ential equations (e.g. as in Banzhaf, 2003; Kuo et al., 2004).

We might, however, argue that the shape of the parameter
space in our model is not as complex as in the models pre-
sented previously. For example in the Eggenberger’s model
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each product is specified by as much as 7 different param-
eters. Since our model allows to compare the efficiency of
the evolutionary search in gene sequence spaces of different
dimensionalities, we will be able to investigate this issue in
future work.

Primarily, however, we plan to go beyond the genetic al-
gorithm as an approach to investigate the interplay between
evolution and ontogeny using our model. The development
of an actual artificial life setting, with competition for lim-
ited resources in a simulated world with a spatial structure
(that would allow for at least temporal separation of subpop-
ulations) will be the main objective of our further work. A
genetic algorithm is a search method that allows only for a
preliminary assessment of evolvability, but has obvious lim-
itations: features like elitism, tournament selection, constant
population size, fixed values of the parameters of the evolu-
tionary process are not features of natural selection. Only an
artificial life setting will allow to properly investigate such
issues like the effects of the episodes of low population sizes,
and the ability of the self-adapting systems that can tune
their mutation rates to reach new adaptive peaks. We believe
that only in such a setting some evolutionary questions con-
sidering the robustness of the network (and the related ques-
tion epistasis), the role of mutations in regulatory regions for
the evolutionary innovations, and the statistical properties of
the evolved GRNs can be meaningfully explored.
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Abstract

In evolutionary–developmental biology, it is well established
that neural organization is coupled to a given organism’s
body-plan. Many theories attempt to underpin this coupling
and the transitions involved during the organism’s evolution,
for example the transition from radial to bilateral symme-
try. Before theoretically tackling these transitions however,
we felt it essential to first address, in this paper, precisely
why bilateral symmetry might be advantageous for a sim-
ple eel-like agent. We find that neural architectures affording
the best motor-coordinated behavior (architectures that allow
directional swimming of the agent), will readily emerge in
a way that is functionally–bilaterally symmetric, suggesting
therefore, that bilaterally symmetrical emergence for a long
elongated creature can be essential if it needs to travel over
some distance.

Introduction

The symmetrical properties of animals are mixed and varied.
Typically, most higher organisms are bilaterally symmetric,
that is to say, they can be partitioned into both dorsal and
ventral halves. By comparison, more primitive organisms
are radially symmetric and it is conjectured that the bilat-
eral properties of higher organisms evolved from such radi-
ata – and both from a common ancestor – during a process
of symmetry breaking (e.g., Meinhardt (2002)). The gen-
eral consensus is that the nervous systems of said organisms
evolved in a coupled fashion so that they followed suit from
body-plan architectural changes. As two fundamentally dif-
ferent examples, both the jellyfish (a radial organism) and
the flatworm (a bilateral organism) demonstrate this princi-
ple in that their nervous system architectures have clearly
evolved to reflect their body-plan morphologies.

Symmetry breaking is the evolutionary process that un-
derlies the aforementioned change in body-plan symmetry.
As discussed, this change is thought to have begun with a
radial ancestor. Meinhardt (2002) considers gene homology
as indicative of this common ancestry. More radical is the
view that bilateral organization came about when a colony
of individual polyps with Cnidarian (jellyfish) characteris-
tics came together, see e.g., Collins and Valentine (2001);

Holland (2003)). Further is the Polyp with a half nerve net

scenario, attributed to Lacalli (1996). This argues that at
some point during evolutionary history, a polyp started to
crawl on its side, resulting in a build-up of the nervous sys-
tem tissue in its ventral half and a concordant depletion in
its dorsal half.

We will pick up on the issue of symmetry and although we
do not account for the above theories, we will describe a very
simple framework for testing the advantage of bilateral sym-
metry and the associated neural network (as a model nervous
system) that emerges with this advantage (if indeed there is
any advantage). On the one hand, we see this as a step in de-
termining precisely why evolution favors particular bilateral
body-plan nervous system couplings. If the above theories
which all inherently argue that bilateral symmetry is evolu-
tionarily advantageous, then we should hopefully observe its
advantage for a simple agent in a simple environment. On
the other hand, we are interested in how information pro-
cessing might be structured in novel ways. We see our ap-
proach as one that enables us to study the coupling of neural
architecture to body-plan symmetry. Although we do not
strictly evolve the body-plan, we can still change the sym-
metry for a hypothetical system of muscles; and, since we
fix the locations of these muscles around particular parts of
the body, they can be considered as being part of the body-
plan. Accordingly, if all muscles around the model organism
are evolved to play a part in movement, then we will be able
to partition the body-plan into several planes of symmetry
and the muscle configuration can be regarded as being ra-
dially symmetric; whilst if only opposite muscles (those on
the dorsal or ventral, or left or right parts of the animat) are
evolved for movement, then we can hypothetically ‘cut’ the
agent into halves and the muscle configuration can be re-
garded as being bilaterally symmetric. These symmetrical
properties are not pre-defined, but will rather emerge if there
is any evolutionary advantage.

We are not the first to investigate the coupling be-
tween body-plan morphology and neural network con-
trollers. There are generally two bodies of researchers that
have made related investigations. The first body is inter-

Artificial Life XI 2008  305 

mailto:B.H.Jones@cs.bham.ac.uk


ested in modeling two dimensional models of undulatory
organisms with a view to establishing some kind of undu-
latory behavior, and the type of neural controller that can
bring this about; see for instance Zheng et al. (2004), Eke-
berg (1993a,b), Sfakiotakis and Tsakiris (2006), Beauregard
and Kennedy (2006), Ijspeert and Kodjabachian (1999). All
of these studies share the common aim of understanding
locomotion from a neuroscientific perspective. The sec-
ond body of researchers are less interested in neuroscience
but more interested in the behavior that can be evolved.
Within this body, Karl Sims is one of the earliest propo-
nents (Sims (1994a,b)) and many others have followed suit
(Eggenberger (1997); Bongard and Paul (2000); also see
Taylor and Massey (2001) for an extensive review). Most
of these models are three dimensional and are implemented
in part with powerful graphics libraries so as to provide the
required visualizations and physical embodiments.

In terms of investigating body-plan symmetry, Bongard
and Paul (2000) find that more locomotively efficient agents
have a tendency towards evolving bilateral symmetry. In
their model, they embed the neural controller into the agent’s
morphology so that both co-evolve. They further forgo any
developmental process since they argue that one could in-
herently introduce symmetry; instead, they explicitly map
the neuron weights and connectivities directly. However
by doing so, the synaptic strengths and interconnectivities
are de-coupled which in turn constrains the overall impor-
tance of neural network morphology. We argue that encod-
ing a network at a greater level of morphological detail, so
that neuron positional information has an actual bearing on
connection strength, is essential, if we are to later observe
any tendencies for different neurons to aggregate together
and therefore potentially demonstrate central nervous sys-
tem type characteristics. The ‘GasNets’ developed by Hus-
bands et al. (1998) utilise similar neuron spatial informa-
tion during a process of ‘gas’ diffusion, in which diffusing
gasses play a crucial role in neuromodulation. In compar-
ison, our model uses spatial information to determine con-
nection strength rather than neuromodulatory signal effect.

Of further note is the work of Downing (2007) who con-
structed an evolutionary–developmental model of neurogen-
esis to bring about directional movement for a radially sym-
metric five-limbed ‘starfish’. The model did not indicate
how neural architecture may actually be coupled to body-
plan morphology however.

Our own model has been constructed to meet our aim
of investigating nervous system architecture/body-plan mor-
phology couplings. In our simulations, both of these aspects
co-evolve. Our motivation for this undertaking, is to ini-
tially elucidate the ‘how’ of this process (beginning with this
paper), and our long-term goal is to better understand the
‘why’. Thus we are interested in both information process-
ing and the underlying evolutionary process. The model’s
task – that of directional swimming for an eel-like agent –

is one of the simplest we could think of, yet it is also highly
specialised inevitably requiring very task-specific couplings.
This makes the problem non-trivial.

The rest of this paper is laid out as follows. We first
outline and discuss some previous models of undulatory or-
ganisms. We secondly explain our model in more detail.
Thirdly, we discuss our experimental results. We finally con-
clude this paper.

A Model of Undulatory Locomotion

Undulatory locomotion is a type of locomotion often em-
ployed by bilaterally symmetric creatures requiring direc-
tional movement (e.g. an eel). Refer to Gillis (1996) for a
description of the underlying physics. Models of this type
of behavior often adopt a spring mass damper system so that
the mechanics are fluid and life-like. They secondly incor-
porate a friction model so that the modelled organism can
actually move within its simulated world. Thirdly, they usu-
ally have a control mechanism, for example, a continuous
time recurrent neural network (CTRNN). A CTRNN is of-
ten employed, because it is capable of exhibiting the central

pattern generating dynamics that are essential for coordi-
nated movement. A central pattern generator is a type of
neural network that can by the very nature of its inherent
dynamics, generate patterns of activity without any external
input. For an extensive exploration of CTRNN dynamics,
see Psujek et al. (2006); Beer and Gallagher (1992).

One of the earliest models attempting to use central pat-
tern generators (CPGs) to model undulatory locomotion is
that by Ekeberg (1993a,b), who hand-coded them using
neurophysiological data available at the time, to control a
lamprey-type agent. A similar approach is taken by Zheng
et al. (2004) to model leech swimming. Others within the
ALife community have taken the idea further by also in-
corporating evolution to derive the network architectures.
Ijspeert and Kodjabachian (1999) applies a developmental
as well as an evolutionary process in deriving the network
structure, using swimming speed and muscular contortion
for the fitness evaluation and a set of production rules for the
developmental process. More realistic models include those
of Sfakiotakis and Tsakiris (2006) who were able to repli-
cate some of the biological movement data observed for the
Anguilla anguilla eel (although their model omitted evolu-
tionary mechanism). In the model, the ‘eel’ would navigate
by incorporating sensory input from the front part of the an-
imat. Beauregard and Kennedy (2006) further developed a
model of an undulatory lamprey that could essentially track
the movement of and follow, an object. This latter work was
motivated out of a need to develop more realistic swimming
algorithms for the computer animation industry. Our own
model is explained in the following section.
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Physical model

The Animat Fig. 1(a) represents a segment of the animat
constructed out of layers. For clarity, not all springs have
been depicted (in reality, each block in the animat has a
‘crane-like’ structure of springs to prevent it from collaps-
ing in on itself). Since the animat is three dimensional, it
is possible for it to undulate in multiple directions and/or
demonstrate other types of movement depending on the out-
put neurons of the neural network model.

The equations controlling the springs apply Hooke’s Law
with dampening dynamics; see Table 1 for the physical pa-
rameters of our system. Given a spring with mass points p1

and p2 on either end, it is compressed by forcing p1 towards
p2 and vise-versa. Using p1 as an example, the force exerted
upon it by the internal dynamics of the spring, is computed
as follows: −→

Fp1
= −r ·

−→
Vp1 + k · d, (1)

where r is a dampening factor,
−→
Vp1 is the velocity of p1,

k is a spring constant defining spring torque and d is the
displacement of the spring from resting length. A change in

the mass point’s velocity,
−→
Vp1, is governed by a change in its

acceleration,
−−→
Ap1,

−−→
Ap1 (t + ∆t) =

−−→
Ap1 (t) +

−→
Fp1 +

−→
FE

p1
+
−−→
FW

p1

mp1

, (2)

−→
Vp1 (t + ∆t) =

−→
Vp1(t) +

−−→
Ap1 (t + ∆t) · dt, (3)

where mp1
is the mass of p1 and dt is the time-step (0.05)

used during the integration process (20 integration steps).

Note that
−→
FE

p1
is an external force applied to the mass point

whenever the output neuron controlling its associated spring,

becomes activated, and
−−→
FW

p1
represents the current environ-

mental force yielded by the surrounding ‘water’. Finally, the
position of the mass point, and hence the length of the spring
is updated as follows,

−→
Pp1 (t + ∆t) =

−→
Pp1 (t) +

−→
Vp1 (t + ∆t) · dt. (4)

The above equations afford a fluid and life-like representa-
tion.

The Environment The agent’s environmental niche is
modelled on movement through water. To keep things sim-
ple, we rely solely on the animat’s current velocity to derive
the environmental water force. This is the approach taken by
most researchers (e.g. Sfakiotakis and Tsakiris (2006)). For

all block faces, the water force,
−→
FW , is iteratively computed

and applied to each constituent mass point,

−−→
FW = −

1

2
· ν · δ · α ·

−→
V ·

(

$V
)2

(5)

On the RHS of the equation, the velocity parameter, $V , is
squared to give an indication of ‘speed’. This determines

Parameter Value

Mass point masses 20.0
Layer springs k=200,r=10.5

Block springs ‘struts’ base k=25, r=50
Block springs ‘crane’ k=500,r=50

Environmental viscosity, ν 10
Environmental drag, δ 1.0
Animat block count 8

Animat length 6.4
Animat width 0.35

Neurons per block 10

Table 1: Physical Parameters. Note that k=spring constant
and r=spring dampenner. Note that the spring constants of
the block ‘struts’ are controlled by the CTRNN. The base
value of 25 sets an upper bound for one of these constants.
All values are reflective of trial and error.

the magnitude of the velocity, together with the viscosity, υ,
and the drag, δ , in determining the amount of environmental
force that should be applied; α is simply the area of the ani-
mat block face (6.4 ·0.35/8). The environmental parameters
that we use are given in Table 1.

Block

Strut
spring

Layer

(a) (b)

INACTIVE ACTIVE
(c)

Figure 1: (a,c) Diagrams indicating how springs contract in
pairs as activated by motor neurons; (b), a rendered visual-
ization of the agent.
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HEADS ON SIDE ON Heads on
Side on (right)

Side on (top)

Figure 2: A diagram showing heads–on and side–on views of where the motor neurons (circles) are structurally located.

Figure 3: As additional gene values in our genome, different
active motor configurations (those motors that play a part in
movement) can be selected for during a process of evolution.
Filled circle - active motor; dashed line - plane of symme-
try. Taken from a heads–on perspective, looking down the
animat from one of its ends.

Neural network implementation

A continuous time recurrent neural network (CTRNN) is
employed to regulate the spring-pair compressions. The ac-
tivation of a ‘motor’ neuron is used to calculate the spring
constant of an associated spring, with a preset force of ‘200’
but this force is only applied if the activation is between zero
and one. The maximum spring constant is ‘25’. Each block
is self-contained and houses the neural network architecture
encoded for by the ‘neural architecture’ parameters labeled
in Fig. 5. We could have chosen instead to encode a set of
neural architecture parameters for each block, but this would
have drastically increased the size of the search space during
a process of evolution, reducing its tractability.

Weight values and inter-connectivity amongst neurons are
entirely governed by neuron position. Neurons change po-
sition during evolution (because of mutation) except for the
motor neurons which always reside within the centers of the
block faces, see Fig. 2. Note further that the motor neurons
can either bring about movement activity, or they can just
serve as general interneurons. Accordingly, different ‘active
motor configurations’ (Fig. 3) will have different impacts on
the range of possible movements so are evolved along with

the neural network architecture (see section ‘Evolutionary
Algorithm’).

The membrane potential of a CTRNN neuron is computed
according to its incoming pre-synaptic activity. In discrete
time-steps, this activity, µi, of neuron i can be modelled as
follows (based on Blynel and Floreano (2002)),

µi (n + 1) = µi (n) +



−µi (n) +
N

∑

j=1

wijAj (n) + I





τi
,

(6)
where n is a discrete time-step and τi is the time constant
for neuron i. The value Aj is the current output activity of
presynaptic neuron j. The value I represents an external in-
put current. Since the network never receives any ‘sensory
input’, it has to be triggered and so we set this value to 1.0
for the first two neurons for the very first time-step of a sim-
ulation run. A neuron might also be inhibitory in which case
the signs of all outgoing weights are flipped.

A weight value from neuron i to neuron j is derived ac-
cording to the Euclidean distance between them, the impact
of which is controlled by a parameter ξ (=2.0), Eq. 7. We
also constrain the weights to fall within wmax (=20) and
wmin (=0.0001), Eq. 8.

λij =
ξ

dij
, (7)

wij =











wmax λij ≥ wmax,

wmin λij ≤ wmin,

λij otherwise.

(8)

Connectivity Connectivity between a pair of neurons is
established according to a minimum distance requirement.
Hence we employ three threshold parameters. The first de-
cides interneuron–interneuron connectivity; the second de-
cides interneuron–effector connectivity and the third decides
connectivity between neurons from a pair of contiguous sub-
neural architectures. Since there are no sensory neurons cur-
rently employed in the model, there are no additional param-
eters as might be expected for more advanced architectures.
A connection is formally decided as follows:

Cij =

{

1 dij ≤ Γq,

0 otherwise.
(9)
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where Γq is a threshold parameter that we evolve, initialized
to [0.01,2.5]. Note that in terms of connectivity between
subnetwork architectures sp and sq, neuron i from sp is only
allowed to make one inter-subnetwork connection and that
is explicitly chosen to be neuron i from sq, see Fig. 4. Motor
neurons never make inter-subnetwork connections.

Figure 4: A diagram clarifying the repeated neuron archi-
tectures and how they are contiguously connected. Filled
circles – motor neurons; unfilled circles – general interneu-
rons. Non-dashed lines – interneuron connections.

Evolutionary Algorithm

The evolutionary algorithm optimizes the architectural pa-
rameters of the CTRNN network as described above to-
gether with the active motor configurations. These parame-
ters form the individual’s genotype. Both real and binary pa-
rameters are employed throughout so the algorithm employs
a mixed real-valued and binary representation, see Fig. 5.

The implementation method that we employ utilizes self-
adaptation of the mutation parameters. This affords a
broader discovery of solutions during early evolution and
a finer traversal during the later stages (e.g. Liang et al.
(1998)).

Fitness measure. This is simply chosen to be the distance
that the animat can move forwards during 200 time-steps.
During testing of the simulation, we occasionally found that
the physical interactions of the springs would oscillate out of
control due to poor dampening dynamics causing either an
animat ‘implosion’ or ‘explosion’. Whenever this happened,
the fitness of the individual would be set to -10000.

Mutation. All real-valued genes are mutated with values
drawn from a normal distribution having an expectancy of
0 and a variance governed by the mutation parameter. This
occurs for every gene with a preset probability, Φ, set to
0.02; when it occurs, the mutation parameter is also adapted.
For a real-valued y-positional gene,

yi =

{

yi + N (0,σi) rand() < Φ,

yi otherwise.
(10)

whilst for a binary valued inhibitory or motor activity gene,

mi =

{

!mi rand() < Φ,

mi otherwise.
(11)

The adaptation of the mutation parameters relies on the
setting of two strategy parameters, τo = 1.0/

√
2D and

y position gene group Radius position gene group

Neuron inhibitory
booleans

Active motor genes

Neuron threshold parameters

Connectivity thresholds
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N
e

u
ra

l a
rc

h
ite

ct
u

re
B

o
d

y 
m

o
rp

h
o

lo
g

y

Figure 5: A representation of an individual chromosome
where gene groups have been partitioned. The example is
for an individual with 8 neurons per animat block. Note
that in this example, there are only 4 genes per positional
group because the positions of the four motor neurons re-
main fixed.

τ1 = 1.0/
√

2
√

D which have been shown to be optimal in a
process of self-adaptation (see Bäck and Schwefel (1993)).
D is the dimensionality of the gene vector. Therefore, with
respect to the example given in Fig. 5, D=4, for any of the
positional groups; D=8 for the thresholds and time constants
and lastly D=3 for the connectivity thresholds. The σ muta-
tion parameters are then ‘self-adapted’ as shown,

σi ←− σi ∗ exp (N (0, τ0) + Ni (0, τ1)) . (12)

Crossover. All genes within a chromosome are subject
to being exchanged with genes from another chromosome
(single point crossover). This process occurs with a preset
probability, χ, set to 0.2; when it occurs the mutation pa-
rameters are also crossed over between the same two chro-
mosomes. Note that candidates for this operation are pulled
out from the population at random, up to the size of the pop-
ulation. For any gene (both real-valued and binary types) the
crossing over process can be summarized as follows:

〈yi, yj〉 =

{

〈yj,yi〉 rand() < χ,

〈yi, yj〉 otherwise.
(13)

Selection. In our scheme we use binary tournament se-
lection with an elitist strategy. To begin with, we rank the
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population (of size 100) according to fitness and pick an
elite number of individuals (=6) to form the start of the off-
spring. The remaining offspring population is then chosen
randomly using binary tournament selection in which (un-
til the offspring population reaches the population size), two
population members are picked at random and the fittest is
chosen with a preset probability (=0.9). Except for the eli-
tist, all members are then subjected to the above mutation
and crossing over operations. We use binary tournament se-
lection since it facilitates diversity.

Results

Fig. 7 shows the progression of best fitness for a simulation
run. Given the active motor configurations annotated on to
the plot, we can see that fitter individuals favor a bilaterally
symmetric configuration (motors opposite each other). This
optimal configuration of up/down or left/right active motor
configurations was found to emerge in six out of six simu-
lation runs (results omitted). These configurations evolved
with the neural network architecture as shown in Fig. 8. The
neural network dynamics of the active motor neurons are
given in Fig. 9. Interestingly, we can see that whilst all
blocks demonstrate a variety of mostly CPG dynamics, only
the first, second and sixth show both active neurons to have
CPG dynamics. Blocks three, four, five, seven and eight
all only show one of the active motor neurons to have CPG
dynamics (either A or B); the other neuron for one of these
blocks has an activity that is shown to trail off towards a neg-
ative value. Furthermore, this active motor neuron is seen to
alternate in successive blocks for which only one of the neu-
rons is active: block three’s active motor neuron is motor
neuron ‘A’, whilst block four’s is ‘B’ and then block five’s
is ‘A’ again; block seven’s is ‘A’ whilst block eight’s is ‘B’.
These dynamics directly contribute to the movements of the
animat since we know that the spring pairs for a given block
compress whenever the associated motor neuron has an ac-
tivity of between 0 and 1.
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Figure 6: A motion–captured visualization of the animat
travelling in the direction marked by arrows. Note, a more
negative value on the lower axis indicates further forward
travel.

Fig. 6 shows a motion–captured visualization of the ani-
mat travelling in the direction marked by arrows. It is diffi-

cult to observe any undulatory movements. In fact, the an-
imat moves forward by crumpling and then extending its
body segments (although there are also some very small
undulatory-type movements).
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Figure 7: A graph showing the progression of the fittest pop-
ulation member over a simulated evolutionary period. Ac-
tive motor configurations annotate different points of inno-
vation; active motors are represented by filled circles.
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Figure 8: Visualizations of the neural network architecture
from the fittest individual. In the lower visualization, the an-
imat is shown head–on and the motor neurons that are used
for movement are solidly circled (filled circles in Fig. 7);
(motor neurons not used for movement – dashed circles).
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Figure 9: The CTRNN dynamics for the active motor neu-
rons in each animat block, 1-8, each represented by a sub
graph. They are labelled ‘BOTH’, ‘A’ or ‘B’ according to
whether both active motor neurons or only one of them (A
or B) demonstrate CPG dynamics.

Discussion

As noted in the introduction, nature has provided exam-
ples showing that nervous system architecture is coupled to
body-plan morphology. Based on this knowledge and the
hypothesis that different couplings are favored by different
environments, we constructed a simple model to shed some
light on how such a coupling could emerge during a process
of simulated evolution.

The discovery that our simulated agent would in many
ways reflect natural counterparts in terms of preferring a bi-
laterally symmetric motor configuration is interesting, since
other than the physical characteristics of the agent (how the
springs were interconnected) and the physical features of the
environment (drag and viscosity), we placed no further con-
straints upon the movement mechanisms. Of course we in-
tuitively know that bilateral symmetry is advantageous (con-
sider how we walk), but the way that the control system
should arrange itself – to configure itself – in concert with
the body-plan, is less clear. The coupling is complex and
the two components should not be considered separate; the
architecture of the nervous system places indirect pressure
on the type of body-plan morphology (configuration of mo-
tors, within our model), that can evolve and vise-versa. Our

framework has helped us to elucidate this interplay of body,
nervous system and environment. Our long term research
goal is to better our understanding of this, especially with a
fuller regard to a change in body-plan symmetry; with this
paper, we have only begun to broach the subject of this ma-
jor evolutionary transition.

We share the intuitive view that a change in body-plan
symmetry likely occurred as organisms found themselves
immersed in environments requiring directional movement.
It is further our own view that this change would have been
facilitated by an evolutionary drive towards those body-
plan/nervous system couplings that minimize energy loss.
Indeed, evolution could in part be pressured by those move-
ment mechanisms requiring no energy. As an analogy, con-
sider how we would compress a spring. One must of course
apply energy, but upon releasing the compression, the spring
passively returns to its natural resting length. Crucially, this
‘self-stabilizing’ process is inherent in muscle contractions
and relaxations, (e.g. Pfeifer and Bongard (2006)).

In terms of our model, we can consider how simulated
evolution strives to find a balance between the number of ac-
tive spring compressions and the number of passive spring
relaxations so that the above self-stabilizing process can be
‘optimized’. If we attach an energy measure to this process,
we might find that evolution prefers a maximization of pas-
sive relaxations, since this would perhaps conserve the most
energy (but the springs would always have to be compressed
first). However, defining such a measure will be hard, since
in reality, energy can be lost from both the nervous system
and from the ‘muscles’ and determining the levels of loss
from each will directly determine the evolutionary process.
Ideally, both energy losses will be coupled.

Future work

We are currently extending the model to address more fully
the evolutionary transition from radial to bilateral symme-
try. This will allow us to extensibly investigate the complex
interactions between body, nervous system and environment
and will bring us a step closer in answering why certain of
these interactions emerge in a particular way. We plan to
do this by (i) extending the range of morphological features;
(ii) incorporating a more flexible body-plan/nervous system
coupling representation; (iii) extending the flexibility of the
environment so that at various stages of the simulation, spe-
cific couplings are pre-disposed.

Conclusion

In setting out to model an elongated agent that could move
(e.g. swim) through water, we have shown an evolution-
ary preference for a bilaterally symmetric control system (a
CTRNN) whose dynamics ultimately shape this movement
mechanism. We further conclude that since the CTRNN ar-
chitecture is coupled to the body-plan motor system, and that
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movement depends on this coupling, forward movement re-
quires a very specific coupling in order that the correct dy-
namics can be obtained; and moreover, evolution prefers a
coupling that will, because of its inherent features, endow
bilaterally symmetric functionality.
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Abstract

In this paper, we discuss our reasoning and progress in
adding a mapping between information and enzymatic func-
tion to our Molecular Classifier System (MCS). MCS takes a
bottom-up approach to building artificial bio-chemical net-
works. Unlike Holland’s LCS system, which it is loosely
based on, MCS has no overt demarcation between rules and
messages. In our previous work, we explored a version of
this Artifical Chemistry which had an impoverished interac-
tion scheme. While this system did present some interest-
ing results, it had very limited potential for evolving greater
complexity. We present here a mechanism for enriching the
reaction rules used in our Artificial Chemistry. This mecha-
nism is analagous to the folding of RNA to an enzymatically
active form. To date, we have examined in detail the evo-
lutionary trajectories of single reactors populated with this
modified Artifical Chemistry and the results of this work are
presented here.

Introduction
The field of Artificial Life was borne from the desire to un-
derstand “life” as a process, a complex dynamic system.
Life, as we know it, evolved over billions of years to its
current state. It is conjectured that there existed a “Last Uni-
versal Common Ancestor” (LUCA) from which every living
thing descended (Forterre and Philippe, 1999). Granted, this
ancestor lived a very long time ago, but to explain all the
similarities between living things (e.g., DNA as a genetic
molecule, the almost unique genetic code between DNA and
protein etc.), the case for the existence of LUCA is strong.
But, while LUCA would be an ancestor of all currently liv-
ing things, it was surely not the first living thing. A key as-
pect of origin-of-life research therefore focuses on the time
before LUCA—who or what were LUCA’s ancestors?

The initial explorers of Artificial Life, such as Von Neu-
mann (Von Neumann and Burks, 1966), examined the qual-
itative properties of life: what enables us to say that this
thing is alive and this thing is not? In certain senses, the
chemistry of life is now well understood. Genetic theorists
since Mendel have understood the basic hereditary mechan-
ics of life. Biochemists can already build arbitrary strands of
DNA containing whatever nucleotide sequence they wish.

The human genome project has sequenced and catalogued
every gene in the human genome. Why, then, can we not
just put together some carefully chosen pieces of DNA to
create new life forms? Indeed, it would only need to be
done once—the newly synthesized creatures could presum-
ably reproduce, self-repair and evolve to cope with environ-
mental perturbations. The answer, of course, is that there is
much more to life than the sequence of monomers on a poly-
mer, or even of genes on a chromosome. Artificial Life is, in
part, the study of what that “more” is: how it can be charac-
terised, where it comes from, and how it could be exploited
it to advance human technology. We suggest that a return to
the first principles of origin-of-life research may help us un-
derstand these fundamental qualities in a more abstract way.

In this context, a return to first principles means not so
much replaying the tape of life (Gould, 1989), but rather
examining, in detail, key stages in the evolution of living
entities from non-living matter in order to abstract some
rules that describe what life really is. Our approach is to
build an Artificial Chemistry (Dittrich et al., 2001) that ab-
stracts away from some of the “chemical-specific” prob-
lems, and focuses more on “organisation-specific” prob-
lems. That is not to say that the chemical problems are triv-
ial, but that we want to separate the study of the organisation
of simple life-forms from the specific requirments of ter-
restrial carbon-chemistry—“life-as-it-could-be” rather than
“life-as-we-know-it” (Langton, 1989). Bedau has previously
discussed the nature of life and presented the idea that life is
an emergent macro-level property of systems rather than be-
ing dependant on the composition of the micro-level entities
that make up these systems (Bedau, 1996, 1999). This is an
important idea because it suggests a case for the exploration
of digital life—life in silico. In silico experiments allow the
direct study of the emergent properties of life, without the
need to first solve the chemical problems that “life-as-we-
know-it” has already solved.

Of course, before we can approach anything like in silico
life, we need to be somewhat careful about how we define
life in the first instance. We adopt here the definition pro-
posed by Maynard Smith and Szathmáry (Maynard Smith
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and Szathmáry, 1997)—an entity is alive if it has the prop-
erties of multiplication, variation and heredity, or if it is de-
scended from entities which exhibit those properties. Popu-
lations of such entities which are forced to compete with one
another will undergo Darwinian natural selection. This def-
inition could clearly be applied to digital life, as it enforces
no requirements on the material substance of life.

Bedau et al. (Bedau et al., 2001) have presented a list
of open problems in Artificial Life. Our research is fo-
cussed on the exploration of the “Transition to Life, in sil-
ico”, which was one of the open questions identified. Pro-
tocells are hypothesized as a transitional phase in the evolu-
tion of the biosphere (Maynard Smith and Szathmáry, 1997).
In previous work we have constructed an Artificial Chem-
istry as a platform upon which to investigate the evolution of
“computational” functionality in protocells (McMullin et al.,
2007a,b). We started with a minimal “template-replicator
world” in which there was only one level of Darwinian actor
(the replicating “molecule”). This model incorporated the
notion of unlimited heredity achieved through (catalysed)
template replication of indefinite length polymers. In the
simplest case we considered molecules which could act as
“self-replicases”—a form of degenerate, one-element, hy-
percycle (Eigen and Schuster, 1977).

That work examined the inclusion of an elementary form
of mutation. Molecular replication was made imperfect,
with a fixed error rate per monomer (thus the molecular-
level replication error rate increases with the length of the
molecule).

We further introduced a simple rule for enzymatic cou-
pling between different species (so that one species can
function as replicase for another species as well as itself).
This was deliberately made asymmetric. This introduced
the possibility of exploitation between species. Even un-
der the condition of hyperbolic growth1, this allows effec-
tive displacement of a “host” species by a new “facultative
parasitic” species; and, under the conditions of the model,
this can happen repeatedly. In this particular model, this
leads to the somewhat counter-intuitive effect of systematic,
macro-evolutionary, deterioration in “intrinsic fitness” (as
measured by replication fidelity).

To investigate the more interesting phenomenon of multi-
level selection, populations of these molecules were injected
into externally provided protocells, where protocell repro-
duction (by binary fission) is driven by molecular replica-
tion. By fixing the size of the protocell population, we im-
posed a distinct process of Darwinian selection at the higher
hierarchical level of the protocell. The protocell level of se-
lection is governed by the molecular level selection dynamic
which still occurs within each protocell. We showed that

1There is, of course, a large body of prior literature on replica-
tor selection dynamics. We omit any extensive review here, in the
interests of brevity; but (Szathmáry and Maynard Smith, 1997), for
example, includes a comprehensive bibliography.

the protocell level selection did effectively control parasitic
exploitation at the molecular level; however, the molecular
level selection is still effective in preventing positive evolu-
tion in the opposite direction (toward higher molecular-level
replication fidelity). The result was a rather robust evo-
lutionary “stalemate” in which the selectional dynamics at
the two interacting levels were, in effect, precisely counter-
acting each other.

The system presented in these works was, of course, a rad-
ically simplified version of the phenomena that occur in real
chemistry and biology. Its purpose was not to directly model
such real systems. Rather it was presented as a deliberately
minimal system which already illustrated how complex and
counter-intuitive the evolutionary behaviour of such systems
could be; but also, how the evolution could, indeed, be dra-
matically altered by the interaction between multiple levels
of selection.

The broader intention of the current work is to de-
velop a minimal abstract framework for understanding the
evolutionary emergence of “computation” or, at least, co-
ordinated signal processing and control, in protocellular sys-
tems. Presumably, any interesting molecular level computa-
tion must rely on a diversity of chemical species; but all of
these in turn must be “replicated”, directly or indirectly, to
support protocell level reproduction.

The work presented in this paper addresses our progress
towards the incremental widening of the repertoire of molec-
ular interactions. Again, the broader context of this work is
to explore the impact that these new interaction schemes will
have on the multi-level (protocell-based) selection model,
though we do not discuss such hierarchical selection in this
paper.

The Molecular Classifier System
We propose a highly simplified Artificial Chemistry loosely
based on John Holland’s Learning Classifier Systems (Hol-
land, 2006; Holland and Reitman, 1977), which we call the
Molecular Classifier System (MCS).

The operation of our system depends on a population of
“molecules”, which take the form of binary strings. Each
molecule has an informational structure (primary structure,
or monomer sequence) and an enzymatic function (“folded”
or secondary structure, or “shape”), as inspired by the ri-
bozymes of the RNA world hypothesis (Joyce, 1991). The
model also contains a rule-set which determines the enzy-
matic action to take, given a particular molecule. Our artifi-
cial protocells are then crudely modelled as containers for a
dynamic mix of these molecules, which continuously inter-
act and exert enzymatic actions on each other. This “infor-
mational chemistry” might then be evolved to realise some
particular computation—provided that it is simultaneously
capable of sustaining its own dynamic organisation. In par-
ticular, this informational or computational sub-system must
grow (in absolute number of molecules) and divide in co-
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ordination with overall cell reproduction.
For the purposes of the specific model to be discussed

here, the only supported enzymatic function is, by design,
to make an error-prone bit-wise copy of the primary, infor-
mational, structure of the bound, substrate, molecule; that
is, a replicase function. More specifically, if a particular
molecule has the ability to bind to molecules with the same
molecular structure as itself, it will effectively be able to
function as a self-replicase.2

This restriction of enzymatic function to replication only
is, of course, a radical simplification of any real chem-
istry; and, further, is a significant limitation of the poten-
tial dynamics. Additional significant simplifications are
that all reaction rates are equal, and replication error rate
(per monomer) is constant. Nonetheless, we suggest that
it should be useful to fully understand the variety of se-
lectional dynamics that are possible even in this simplified
case first, before introducing the additional complications of
more complex and varied enzymatic function, reaction rates
etc. It is, of course, a longer term goal of the research to
systematically re-introduce these more complex and realis-
tic properties.

Model Setup
Our basic template-replicator world consists of a finite num-
ber of strings (polymers) drawn from a binary alphabet. The
dynamics consists of a simple loop in which one random
string is chosen as a replicase and a second as a template.
If the replicase is determined to “match” the template (via
a molecular transformation to be discussed later), then it
“binds” to it, and replicates it, with a specific bit-wise error-
rate. Another molecule is chosen at random and is replaced
by the new molecule. It should be noted that there is no spe-
cific modelling of dilution flux (φ). If the replicase does not
bind then the interaction is considered to be elastic.3

For the purposes of analysis we consider any specific pair
of molecular species to give rise to a “binary replicase-
reaction network”, i.e., a network comprising the two
distinct replicase-reactions that can occur between these
species depending on which one functions as the enzyme
and which as the substrate (or replication-template, as repli-
cation is, for the moment, the only supported enzymatic
function).

In our previous work (McMullin et al., 2007a), we pre-
sented an approximate analysis of some particular binary
replicase-reaction network using an appropriate set of ordi-
nary differential equations (ODE). This allowed predictions
of the concentration dynamics of a flow-reactor populated
by a single pair of molecular species. We now extend that

2To our knowledge, no real RNA self-replicase has yet been
identified, though the conjectured existence of such molecules
plays a core role in the RNA-world hypothesis.

3The system is therefore generically a “catalytic reaction net-
work” in the sense of (Stadler et al., 1993).

analysis to systematically examine and classify all possi-
ble binary replicase-reaction networks in this general type
of model chemistry.

Binary Replicase-Reaction Networks
In order to construct the ODE representations of the reaction
kinetics, we first derive a set of Binary Replicase-Reaction
Networks classes. These classes are generic in the sense
that any MCS-like system can be represented by them. They
are constructed by considering the reaction kinetics: two
molecules are chosen and a reaction is attempted. If we
represent this scheme as a logical truth-table, we can eas-
ily enumerate and classify all possible such networks. The
truth-table is constructed by considering two distinct molec-
ular species. Each molecule may, or may not be a self-
replicase—i.e., it may or may not be able to bind to copies of
itself. At the same time, each molecule may or may not be
able to act as a replicase for the other molecule—i.e., it may
or may not be able to bind to copies of the other molecule.
Taking all of these possibilities into consideration, there are
16 possible truth-tables which represent every possible com-
bination of two molecules and two reaction rules. Allowing
for certain symmetries and equivalences, these reduce to set
of 10 properly distinct tables.

Any specific binary replicase-reaction network can be
represented as follows:

[
(XX) (XY )
(Y X) (Y Y )

]

where a 1 in the (XX) position means “X is a self-
replicase” and a 0 means that “X is not a self-replicase”.
Similarly, a 1 in the (XY ) position means “X can replicate
Y” and a 0 means that “X can not replicate Y”.

In (McMullin et al., 2007a) we showed that it was possi-
ble to formulate an approximate differential equation model
of this system. We consider two species (X and Y ). Tak-
ing their respective relative concentrations as x and y, these
are also the probabilities of choosing an instance of either
species at random. As an example, assume X is a self-
replicase. The probability of choosing two X molecules
and the offspring displacing a Y molecule is evidently x2y.
Thus, the growth rate4 of x is given by:

ẋ = x2y

Of course, this a deterministic approximation using con-
tinuous concentration values; real implementations will have
discrete numbers of each molecular species and the dy-
namics will be stochastic. Nontheless, this ODE analysis
should provide a qualitative baseline for the expected dy-
namic behaviour, at least as long as significant numbers of
each species are present.

4In this and subsequent equations there is an implicit multi-
plicative constant, effectively setting the time scale. This has been
arbitrarily taken as unity.
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By applying this method and discarding all the reactions
which have zero effect on the concentrations, we can convert
the truth-tables into differential equations. For this initial
analysis we are neglecting mutation, so y, the concentration
of Y , will trivially be (1−x), and ẏ will be (1− ẋ). In each
case we therefore explicitly provide just the expression for
ẋ.

The following terminology will be used when presenting
the binary replicase-reaction networks:

• Sterile molecules can neither replicate themselves nor be
replicated by another molecule.

• Self-Replicase molecules can replicate themselves, but
cannot be replicated by another molecule.

• Obligate Parasite molecules cannot replicate themselves,
but can be replicated by another molecule.

• Facultative Parasite molecules can both replicate them-
selves and be replicated by another molecule.

Once the relevant differential equations have been ex-
tracted for each binary replicase-reaction network we can
make predictions about the flow-reactor dynamics that each
network gives rise to.

Class 0:[
0 0
0 0

]
= 0

The two molecular species are Sterile. The ODE repre-
senting growth rate for both species is therefore, trivially, 0.

Class 1:[
1 1
1 1

]
= 0

The two molecular species are Facultative Parasites. In
this way, there is full cross-catalysis between the molecules,
but since neither molecule has a distinct advantage over the
other, the growth rate ODE for both species is again 0.

Class 2:[
0 0
0 1

]
= −y2x

[
1 0
0 0

]
= x2y

One molecule is a Self-Replicase and the other is a Sterile
molecule. As would be expected, the ODE analysis states
that the Self-Replicase will displace the Sterile molecule.

Class 3:[
0 0
1 0

]
= y2x

[
0 1
0 0

]
= −x2y

One molecule is an Obligate Parasite and the other is a
Sterile molecule. The ODE here shows that the Obligate
Parasite will displace the Sterile molecule. As the concen-
tration of the Sterile molecule decreases, so too does overall
reaction rate (in the limit, when the final Sterile molecule is
eventually eliminated, there will be no further reactions at
all).

Class 4:[
0 0
1 1

]
= 0

[
1 1
0 0

]
= 0

One molecule is a Self-Replicase and the other is an Ob-
ligate Parasite. In this case, a 0 growth rate is indicated by
the ODE. This is explained by the fact that, by our reaction
kinetics, the Self-Replicase will replicate a copy of itself ex-
actly as often as replicating a parasite molecule.

Class 5:[
0 1
0 1

]
= −x2y − y2x

[
1 0
1 0

]
= x2y + y2x

One molecule is a Facultative Parasite and the other is
a Sterile molecule. Again, it is easy to see that the Sterile
molecule will be completely displaced, but the reaction rate
then continues at the maximum level (albeit with no further
change in concentration).

Class 6:[
1 0
1 1

]
= x2y

[
1 1
0 1

]
= −y2x

One molecule is a Self-Replicase and the other is a Fac-
ultative Parasite. The ODE analysis for this situation shows
that the Facultative Parasite will completely displace the
Self-Replicase. This was the generic case considered in de-
tail in (McMullin et al., 2007a).

Class 7:[
0 1
1 1

]
= −x2y

[
1 1
1 0

]
= y2x

One molecule is a Facultative Parasite and the other is an
Obligate Parasite. In this case the Facultative Parasite will
always displace the Obligate Parasite.

Class 8:[
0 1
1 0

]
= −x2y + y2x

Both molecular species are Obligate Parasites. This es-
sentially means Class 8 networks are two-component hy-
percycles. Neither species can replicate itself but each can
catalyse the replication of the other. The concentration of
each species will therefore be maintained at exactly equal
levels.

Class 9:[
1 0
0 1

]
= x2y − y2x

Both molecular species are independent Self-Replicases;
the “survival of the common” applies, so that whichever ini-
tially achieves a significantly higher concentration will then
completely displace the other. Again, this case was detailed
in (McMullin et al., 2007a).

Molecular Binding Rules
Bit-Wise Substring Binding
The binding rules that the system uses are now discussed. In
(McMullin et al., 2007a), we explored perhaps the simplest
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binding-rule—bit-for-bit sub-string matching with no dis-
tinction or mapping between informational (primary) struc-
ture and enzymatic (secondary) structure. If the replicase
exactly matched the template in sequence, it was assumed to
bind to it. This meant that the selection of binary replicase-
reaction networks that could be observed was considerably
smaller than the total number of networks. The first thing to
notice is that every molecule is a self-replicase, and for two
molecules of the same length, the only possible replicase-
reaction network is the one named “Class 9” above, since
it is logically impossible for two non-similar strings of the
same length to be sub-strings of each other. The interesting
results we achieved during that work were due to what we
now call “Class 6” networks. As described above, a “Class
6” network is a network consisting of a Self-Replicase
molecule and a Facultative Parasite. Since the binding rule
used was “bit-wise substring”, the only possible way for a
“Class 6” network to emerge from a mixture is if a lengthen-
ing mutation occurs during the copy of one of the templates
such that the new molecule contains the “parent” molecule’s
structure as a sub-string.

We showed that in all cases (modulo statistical fluctua-
tions), the “parasite” could invade a population of altruis-
tic hosts—a pathology characterised by progressive length-
ening of the average molecular string length over macro-
evolutionary time. Of course, the key difficulty here is
that since we are using a per-bit mutation rate, the “per-
molecule” mutation rate will increase with molecular length.
In a single-reactor the effect manifested as a reduced reac-
tion rate—a lengthening of the time between successful re-
actions. This was due to the difficulty in finding two match-
ing molecules to react: as mutation rate increases, so does
the relative population of mutants. However, our protocell
level experiments yielded an even more distinctive result.
Once we added the new level of selection, at the protocell
level, the parasitic behaviour of the interacting molecules
was effectively halted. This was a direct consequence of
hierarchical selection. The explanation is that lineages of
protocells which have higher reaction rates will do better,
on average, than those with lower reaction rates, since the
faster a protocell can grow, the more often lineages of such
protocells will undergo cellular division.

The actual effect of the “multi-level” selection was that of
“selectional stalemate”—average molecular length neither
increased nor decreased in the protocell model. The inter-
nal molecular dynamics ensured that under no circumstances
could a “shorter” (relatively speaking) molecule come to
dominate any protocell—“shorter” molecules are parasitised
by “longer” ones, “and so on, ad-infinitum”. This tendency
towards longer molecules leads to an increased mutational
load on the individual protocell, and a corresponding de-
crease in reaction rate for that protocell.

The net effect is that, over a wide range, this system can
be initialised with a protocell population with any arbitrary

dominant molecular length; and the population will then re-
main dominated indefinitely by protocells which are indi-
vidually dominated by this initial specific molecular species.
Evolution toward protocells dominated by longer molecules
will be prevented by the protocell level selection; and evolu-
tion toward protocells dominated by shorter molecules will
be prevented by molecular level selection.

More Flexible Binding
The previous results summarised above are determined by
the fact that there were really only two possible binary
replicase-reactions possible with that implementation.

By opening up more reaction network possibilities, it was
predicted that one could increase the variety of the system
behaviour. One biochemically inspired method to go about
this was to implement a mapping mechanism, similar to the
folding of RNA to an enzymatically active form, that re-
opens the possibility to have all possible binary replicase-
reaction networks. We decided that the most incremental
approach was to process the molecules in chunks of two bits,
and to map these pairs into some secondary, functional, al-
phabet. This pair-wise processing allows for a secondary al-
phabet of 4 symbols. This alphabet, and the coding scheme
is defined such that all 10 distinct binary replicase-reaction
networks are realisable. Table 1 and Table 2 offer a compar-
ison between the new and previous coding schemes.

Table 1: Previous Coding Scheme
chunk function description

0 L match literal ’0’
1 H match literal ’1’

Table 2: Enriched Coding Scheme
chunk function description

00 L match literal ’0’
01 L ”
10 H match literal ’1’
11 H ”

It is obvious that a molecule (bitString) which is pro-
cessed by the scheme given in Table 2 will result in a func-
tional string that is shorter than if the same molecule was
processed by the scheme given in Table 1. In this version
of MCS, the molecular binding rule is still bit-for-bit sub-
string matching, but now, the matching happens between the
functional string derived from Table 2 and the molecular bit
string of the substrate molecule. In this system therefore, all
10 distinct binary replicase-reaction networks can be instan-
tiated.
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Conjecture (and Refutation) Let us assume a single-
reactor with this new MCS chemistry inside. If we seed
this reactor with a Self-Replicase molecule, we would once
again expect this Self-Replicase to remain dominant in spite
of mutation, until at some point a Facultative Parasite arises
in the population and displaces it. An examination of the
ODE for each of the binary replicase-reaction networks
when focussing on a parasite attempting to invade the popu-
lation would provide an understanding of the reasoning be-
hind this form of hypothesis. For each reaction network
we considered the growth potential of a molecule which,
in combination with the seed species—the species with
the highest concentration—forms such a binary replicase-
reaction network. However, the ODE model would suggest
that the only network where the new molecule could have a
reliable advantage is that observed in a “Class 6” network.
This is the same network class that allowed the parasitic
take-over in the scheme represented by Table 1.

Predicted Results Our hypothesis was based upon an as-
sumption that the reaction classes could be understood indi-
vidually and that the evolutionary trajectory of a particular
reactor could be predicted based on the reaction dynamics of
the class that dominated the reactor. Furthermore, the ODE
analysis of the reaction networks led us to believe that, once
a reactor was dominated by a self-replicator, only one type of
displacement event could reliably take place, namely “Class
6” Facultative Parasite driven displacement. We noted that
due to the nature of the primary / secondary alphabet map-
ping, it was now possible to get a parasite that was shorter
than its host. Further work is necessary to fully evaluate how
things would be different in a multi-level, hierarchical selec-
tion situation. From our previous work (McMullin et al.,
2007a), we know that hierarchical selection applies fitness
pressure in the direction of better reaction rates, which re-
sults in shorter molecules. One could predict that with a
parasite that is shorter than its host, the molecular level of
selection and the cellular level of selection might become
aligned given the correct initial conditions.

Observed Results We predicted above that a reactor, if
seeded with a large number of a given self-replicase, would
remain dominated by that species, at least for some reason-
ably extended period of time (i.e., until a facultative parasite
results from mutation). In fact, it turned out that even with
a low mutation rate (0.01 mutations per bit copied), a reac-
tor seeded with a dominant replicator with some mutational
copies will always result in the rapid displacement of the
original seed species by a diverse variety of other species,
none of them present in individually large concentrations.
This result is shown in Figure 1, summarising 10 indepen-
dent runs of the model.

If we further analyse one of these individual runs in more
detail, we can observe that the second part of the hypothe-
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sis, that is, that the decay in concentration of the seed species
would be due to the arrival of a Facultative Parasite, is also
flawed. Figure 2 shows the results obtained by graphing
the concentration of molecules for each binary replicase-
reaction network, relative to the initial seed, self-replicase,
molecule. This shows that, rather than a Class 6 network
emerging, Class 1 and Class 4 networks are the most preva-
lent contributing factors to the dilution in concentration of
the seed species.

Analysis As a first step in understanding what was go-
ing on, we reviewed the earlier, ODE based, classification
into 10 distinct binary replicase-reaction network classes.
That analysis had suggested that the only way a molecule
could reliably displace a currently dominant host was if
that molecule was a Facultative Parasite of the host—they
share a “Class 6” relationship. The ODE analysis for all
other equivalence classes suggested that there could be no
“invasion-from-rarity” displacement event. We tested these
predictions in isolation, by seeding reactors with only two
species of molecule and with mutation disabled. In all cases,
the behaviour was as predicted by the ODE model. The only
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set of experiments which led to selective displacement of the
seed species were those involving displacement by “Class
6”, Facultative Parasites. Of course, this does not explain
the dynamics observed in Figure 2.

Further analysis has shown that the fate of these reactors
is far more complicated. We have observed that “Class 1”
mutants lead to the slow dilution of the seed species con-
centration. This dilution is a consequence of the asymmet-
ric way in which mutation is applied. Our ODE analysis
implicitly assumed that the rate of mutant generation from
replication of the seed species would be balanced by an
equal but opposite back-flow of mutant copies, since mu-
tation rates were constant. Some brief analysis was carried
out which highlighted the fact that for a given mutant off-
spring of the seed species, there are many possible muta-
tional copies that could arise, compared with the one single
mutational pathway back to the specific master species that
gave rise to it. This asymmetric mutation pattern meant that
there could be a consistent, nett mutational flow from the
seed species into the collection of nearby mutants5. Fur-
ther analysis showed that “Class 1” mutants arose most fre-
quently in the nearby mutational neighbourhood of the seed
species, and thus would be expected to arise most often.

Our experiments have clearly shown that the interplay be-
tween Facultative Parasites, Obligate Parasites and “Class
1” ‘promiscuous’ mutants can cause the decay of the seed
species concentration. Upon further analysis, “Class 1” mu-
tants arise initially, gain ground against the seed species and
begin the one-way dilution of its concentration. Once the
seed species begins to lose dominance the mutants become
evermore involved in successful reactions so that their com-
bined effect cannot be discounted any longer.

Conclusion & Future Work
In our previous published work, we demonstrated a sys-
tem, MCS, consisting of two interdependent, opposing lev-
els of selection. The macro-evolutionary outcome was that
of selectional stalemate—the selectional pressures at each
level exactly balanced. These previous experiments showed
that for any appropriate set of initial conditions, the sys-
tem would stabilise exactly where it began and evolutionary
growth would essentially cease. In this paper however, we
present some modifications to the chemical reaction rules of
the MCS which allow for a richer set of interactions.

Initially we described our efforts to enrich the rules gov-
erning “chemical” interactions in the MCS. We accom-
plished this by taking inspiration from biochemistry, i.e.,
folding of RNA into an enzymatically active form. We
added the concept of a more flexible binding by adding the
simplest secondary, functional, structure to each molecule.

5Mutants are considered to be “nearby” if they occur within
a reasonably low levenshtein (string-edit) distance from the seed
species

This opened up the possibility of having molecular interac-
tions that did not rely on exact substring matching between
molecular bit-strings.

Our hypothesis was that a reactor could be initialised with
a seed species of dominant concentration, and that that seed
species would remain at dominant concentration until it was
displaced by a “Class 6” Facultative Parasite. However, our
experiments have proved to be only partially successful in
supporting this hypothesis. We found that the concentration
of the seed species would decay, but that this decay was not
necessarily associated with the arrival of a Facultative Par-
asite. We believe that further experimentation with single-
reactor dynamics is required before we attempt any exper-
iments with a system which implements hierarchical selec-
tion.

Our work addresses some of the issues surrounding the
understanding of “life-as-it-could-be” rather than what is
currently examinable in-vitro—“life-as-it-is”. Our work
takes a bottom-up (ie. from level zero) approach to the sim-
ulation of evolutionary systems which appear to display ob-
vious dynamics which may have been taken for granted until
now.
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Abstract

Development is the powerful process involving a genome in
the transformation from one egg cell to a multicellular or-
ganism with many cell types. The dividing cells manage to
organize and assign themselves special, differentiated roles
in a reliable manner, creating a spatio-temporal pattern and
division of labor. This despite the fact that little positional
information may be available to them initially to guide this
patterning. Inspired by a model of developmental biologist
L. Wolpert, we simulate this situation in an evolutionary set-
ting where individuals have to grow into “French flag” pat-
terns. The cells in our model exist in a 2-layer Potts model
physical environment. Controlled by continuous genetic reg-
ulatory networks, identical for all cells of one individual, the
cells can individually differ in parameters including target
volume, shape, orientation, and diffusion. Intercellular com-
munication is possible via secretion and sensing of diffusing
morphogens. Evolved individuals growing from a single cell
can develop the French flag pattern by setting up and main-
taining asymmetric morphogen gradients – a behavior pre-
dicted by several theoretical models.

Introduction

The development of multicellular organisms from a sin-
gle fertilized egg cell has fascinated humans at least since
Aristotle’s speculations more than 2000 years ago (34). In
the more recent past our understanding of how interacting
genes direct developmental processes has greatly increased
(31; 12; 34). Cell differentiation, the inducing effects of in-
tercellular signaling, changes in cell form like contraction,
the self-organizing properties of adhesion and cell sorting in
animal morphogenesis (13) are among the important prin-
ciples better understood now. And although every cell is
controlled by a Genetic Regulatory Network (GRN), the re-
sulting multicellular dynamics are also strongly influenced
by physical constraints.
Development has also caught the attention of computer sci-
entists. Traditionally their evolutionary algorithms (EAs)
would neglect development for a relatively direct mapping
from genotype to phenotype. To overcome problems with
these EAs, many models have been proposed that incorpo-
rate development in some way – reviews of these are given

in Stanley and Miikkulainen (28), Kumar and Bentley (21).
One of the earliest researchers looking for a theoretical ex-
planation of how cells in a developing embryo could estab-
lish their different roles was Turing (30). He proposed a
general symmetry breaking mechanism via the setting up of
chemical gradients with reaction diffusion systems. Some-
what later, Wolpert (32, 33) came up with the very illustra-
tive French flag model as an attempt to explain how mor-
phogen gradients could give cells positional information as
a general biological process. “Stem cells” placed along a
given morphogen gradient would only have to read the mor-
phogen contraction at their position and react to threshold
values to decide whether they are in the blue, white or red
part of the flag. Note that this assumes the existence of a gra-
dient but does not explain how such a gradient could be set
up by the cells. Jaeger and Reinitz (16) proposed a revised
French flag model which to some degree takes the dynamic,
feedback-driven nature of pattern formation into account.
These theoretical models have inspired the present work.
From a single cell, placed in the middle of a 60 × 40 pixel
grid, a multicellular organism has to grow. The organism not
only has to span the grid but its cells also have to express dif-
ferent colors in different areas (blue, white, red – from left
to right).
Several other “French flag” inspired implementations exist
which are related to our work to varying degrees. Miller
(25) evolved cells to match a 12 × 9 French flag pattern,
with a particular focus on self repair in the evolved individ-
uals. There was a concept of cell division, however the pos-
sibility of overwriting of neighboring cells during division
might have been crucial for the outcomes. This work was
extended by Federici (9), who evolved individuals to match
less regular 9 × 6 patterns. An interesting analysis of why
evolved developmental individuals are often also fault toler-
ant is given in follow-up work (10).
More recently, Devert et al. (8) evolved neural network con-
trolled cells to match 32 × 32 pixel patterns, without divi-
sion (cells would be everywhere from the beginning).They
focused on robustness and an adaptable stop criterion –
an individual was considered final when a stable state was
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reached.
Crucially, in all these models cells were homogenous in size,
namely 1 pixel on a grid each. Also, cell-cell communica-
tion was predefined as directed between nearest neighbors
(with fixed neighbors).
Bongard and Pfeifer (3) and Bongard (2) use a spatial, devel-
opmental system (“Artificial Ontogeny”) to create impres-
sive critters, however their model is not very biologically
faithful as the units their creatures are composed of have a
pre-specfied cylindrical shape (different length possible) and
complex internal elements like motoric joints. Symmetry
breaking activation is induced by application of morphogens
to the opposing ends of all new units.
Hogeweg (14) has used a model were cells also have spa-
tial extent and can move relative to each other. Cell types
were under control of a boolean GRN, where the GRN’s ex-
pression pattern was interpreted as one of the predefined cell
types. Differential gene expression was initiated by two pre-
scheduled asymmetric cell divisions (i.e. one gene would be
on in one daughter cell and off in the other). Communica-
tion was direct between nearest neighbor cells; a cell had
the states of two nodes from neighboring cells as input to
two of its own nodes. Unlike in the other mentioned works,
selection was not for particular cell arrangements, but the
number of exhibited cell types was used as fitness criterion
– an evolutionary algorithm would select for individuals that
expressed many different types. The cell type would deter-
mine some cell properties like adhesion (the possible adhe-
sion values were pre-specified), so that certain multicellular
forms could be observed as an evolutionary byproduct.
On the contrary, in our model there are no predefined com-
munication channels; cells can only sense morphogen con-
centrations. Morphogens are excreted by cells and diffuse
on the grid without preference for direction. Cells can ac-
tively aim to adopt heterogenous sizes and shapes – the im-
portance of which for morphogenesis has been shown by
other researchers, e.g. Merks et al. (23), Zajac et al. (35).
A cell’s GRN also individually and independently controls
other cell properties like morphogen secretion and cadherin
expression. So there is no a priori notion of cell types.

Genetic Regulatory Network (GRN) model
In (20), where our proposed GRN model was first described
in its basic form, we used it to evolve single-celled biolog-
ical clocks with the circadian rhythm abstracted to a sinu-
soidal wave or other periodic function. GRNs producing
such cyclic behavior in response to various periodic envi-
ronmental stimuli could easily be evolved. Reproducing the
phase of their input as well as the production of the inverse
or shifted phase was demonstrated1, however in that inves-
tigation every evolutionary run had only one of these objec-
tives. In later experiments we showed that it is possible to

1For results from those experiments see also
http://panmental.de/GRNclocks/.

integrate two functionalities in one GRN instantiated in dif-
ferent contexts within a multicellular entity (18). However,
differentiation was still induced by a given signal instead of
evolving through the interaction of GRNs. Here GRNs of
this type are used for the first time as “control units” of spa-
tially extended cells. 2

Every GRN consists of proteins and a genome made up of
genes. Gene activation is controlled by regulatory sites (cis-
sites or cis-modules), each composed of – possibly – sev-
eral protein binding sites. Depending on the attachment of
proteins to the binding sites the corresponding cis-modules
positively or negatively influence the production of (not nec-
essarily different) proteins. In molecular biology, proteins
acting in such a way are called Transcription Factors (TFs).
In our model all proteins are potentially regulatory and there
are no restrictions on recurrence. A main difference from
the Biosys GRN model by Quick et al. (27) is that there
can be any number of cis-modules per gene and every cis-
module can have any number of protein binding sites. This
is to model a second, non-linear, level of regulation: Molec-
ular biologists have found that TFs not only show additive
behavior in influencing a gene’s transcription. Some TFs
interact with each other or even form protein-protein com-
pounds, resulting in synergistic changes to their influence,
see e.g. (Schilstra and Nehaniv; 7).In logical terms (but note
that values are actually continuous) one can think of this
grouping of inputs as an OR of ANDs. The AND level cer-
tainly constitutes a canalizing function in the sense of Kauff-
man (17) as a single zero value there causes the whole term
to be zero no matter what the other stimuli are. In summary
the model, as compared to previous models, is designed to
facilitate the evolution of complex dynamics, coming a little
closer to nature than previous models in terms of regulatory
logic, where “5-10 regulatory sites are the rule that might
even be occupied by complexes of proteins” (1) and non-
linear synergetic effects are possible (7).
The following subsections describe our GRN model. For a
more formal description and analysis of the model and its
representation please see (20; 19).

Genetic Representation

The genome is represented as a string of base four digits, en-
coding several genes and some global parameters of the net-
work. Digits 0 and 1 are coding digits that may be involved
in regulation or protein coding. To differentiate between a
sequence of coding bits, a cis-module boundary and a gene
boundary the genetic alphabet was increased to four values,
with digit 2 delimiting the end of a cis-module and digit 3
delimiting the end of a gene. In the version of the model
used here there is a predefined number 24 = 16 of different
protein types, so that always four bits encode a protein type.

2Please see the associated web page at
http://panmental.de/ALifeXIflag for more results, videos, and
the full source code.
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Figure 1: Activation Types. Every gene produces pro-
teins according to the cumulative activation level of its cis-
modules and its activation type: either even when no acti-
vation is present (“default on” - left) or only with positive
activation (“default off” - right).

In the experiments described here we used a fixed number
of genes, namely twenty, to facilitate analysis. After parsing
the genome into genes, the last four coding digits of every
gene determine its output behavior, a number of bits for the
protein type produced and the last bit for the gene’s acti-
vation type, which can be “default on” – active unless re-
pressed or “default off” – silent until activated by regulatory
sites,see fig. 1. The genome also encodes several evolvable
variables global to the GRN. These are the protein-specific
decay rates (four bits for every protein, indexing into a fixed
look-up table of values), the global binding proportion (also
four bits indexing into a look-up table, but identical for
all proteins), and finally the global saturation value (three
bits indexing to a look-up table, again identical for all pro-
teins). These latter variables especially facilitate changes in
the strength and timing of gene expression important in the
evolution of multicellular individuals, cf. Buss (4).

Regulatory Logic

The model is run over a series of discrete time steps, its life-
time. In each time step initially a fraction of the free pro-
teins, determined by the global binding proportion param-
eter, are bound to matching sites. The fraction of proteins
available for binding is assigned to the binding site that has
the same binary code as the protein. If there is more than
one binding site competing for the same protein the frac-
tion is equally distributed between all matching sites. In this
process all protein binding sites are treated the same, regard-
less of the cis-module they belong to. Calculation of every
gene’s activation level is done by adding (activatory) or sub-
tracting (inhibitory) the values per cis-module but only the
lowest value of bound protein per cis-module is used to al-
low for non-linear effects. The cumulative activation level
of all cis-modules then serves as input to one of two activa-
tion functions, depending on the gene’s type, “default on”
or “default off” as shown in fig. 1. The output of the gene’s

activation function is added to the unbound concentration of
that gene’s output protein type. After this calculation the
concentrations of all unbound proteins are, if necessary, re-
duced to the global saturation value and all proteins, free
or bound, are decayed by the protein-specific rate. Finally
environmental input occurs by increasing the unbound con-
centration of certain proteins by some value and output by
reading protein concentration values. Simple scaling is used
to map stimulus input levels from the signal range to a pro-
tein concentration, and vice versa for output protein levels.

Spatial model

The Cellular Potts Model (CPM) has been introduced by
Glazier and Graner (13), who developed it to simulate dif-
ferential adhesion driven cell arrangement. Since then CPM
has been used for a variety of cell-level modeling tasks, re-
cently reviewed by Merks and Glazier (24). Although quite
complex models have been realized with CPM, like the de-
velopment of a cellular slime mold by Marée and Hogeweg
(22), the cell level CPM simulation has not been combined
with a GRN controlling cell parameters individually, with-
out predefined cell types, before.
CPM is a two level system: On the lower level there is a
grid of pixels, while the higher level cells consist of any
number of lower level pixels. Cells have properties like tar-
get volume, shape, etc. and deviations from these targets
incur energy penalties. Every pixel on the other hand has
an integer value assigned, designating it as belonging to the
cell with that identifier or zero if it is part of the “medium”
(empty space). The system changes by trying to copy over
one pixel’s value to a randomly chosen neighbor pixel (mor-
phogen concentration values are not copied, instead they dif-
fuse in a separate process described below). In every time
step (“Monte Carlo Step”) one copy attempt is undertaken
for every grid pixel on average. Copying is limited by en-
ergy constraints: Changing a pixel will change the energy
properties of one (if either pixel is part of the medium) or
two cells. The overall energy E is the weighted sum of all
constraining properties. Copying is accepted with probabil-
ity:

P =

{

e−(∆E−δ)/kT ∆E ≥ −δ

1 ∆E < −δ

In the work presented here we set offset δ = 0.0, Boltz-
mann constant k = 1.0 and temperature T = 2.0. A two-
dimensional, non-toroidal 60 × 40 pixel grid was used.
We use a flexible open source CPM implementation called
CompuCell3D, see (6; 5) for implementation and formalism
details. Through a modular plugin structure (where usually
one plugin adds one energy constraint) it is easy to write ex-
tensions for the existing software (standard plugins include
volume, surface, mitosis and connectivity constraints).
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a) b) c) d)

Figure 2: Cell change example. The blue cell in a) has volume 23 and the orientation shown by the arrow. Assuming for this
cell a target ratio of 1 between the length in arrow direction and the length in the direction orthogonal to the arrow. In b) the
yellow pixel is tested for becoming part of the cell. However, as this would change the ratio from 6:5 to 7:5, the transaction is
energetically unfavorable. The yellow pixel in c) brings us closer to the target length ratio so it is more likely to be accepted
(target volume and other constraints permitting). In d) the cell reached the mitosis volume of 24 so it split evenly along an
axis orthogonal to its orientation. The daughter cells inherit an orientation rotated by 90 degrees (which can be continuously
modified by GRN dynamics).

GRN controller

A GRN is able to control the cell’s volume via a protein level
mapping to the ratio of the size required for mitosis. So a
maximal protein level meant the cell would try to grow until
mitosis took place while a zero protein level would initiate
shrinking and usually lead to apoptosis within a few steps.
The actual volume of the cell could however differ from the
target size due to neighboring cells for example. To take this
and the fact that externally enforced size differences can af-
fect the behavior of biological cells (11; 15) into account,
the actual volume ratio served as input to the GRN, i.e. de-
termined another protein’s level.
Two protein levels were used to determine a cell’s color. The
continuous protein levels were interpreted as boolean values
for this (above 0.5 threshold: true, below threshold: false).
The color however does not correspond to cell type as in
other models, where the type would determine cell parame-
ters. All other parameters are controlled by the GRN inde-
pendent of the color chosen. Also the color was not chosen
once and for all but protein levels would be interpreted in
every time step anew.
The GRN could also control the expression of “cadherins”,
factors that influence adhesion to other cells expressing
them, i.e. it could be to some degree energetically favorable
for cells with adhesion to “stick together”. The adhesion
strengths of the three expressible cadherin proteins were pre-
specified (see web page for table).

Diffusion Morphogens diffuse and decay on the underly-
ing grid (substrate) – so it does not immediately matter for
diffusion whether a cell is present or not. A cell can how-
ever increase the concentration of a morphogen on the pixels
it consists of. Unlike earlier models with directed cell-cell
communication mechanisms, where a cell receives as input
some output (often state) of its direct neighbors, this allows
for long distance communication. On the other hand mean-

ingful communication might be harder to evolve this way as
it is less directed and morphogens do not correspond to other
cell variables.
The diffusion plugin “FlexibleDiffusionSolver” we used
comes already with CompuCell3D and is explained (espe-
cially the numerical approximation) in its manual (6) so we
only give a brief description here. The concentration ci of
morphogen i with diffusion constant di and decay constant
ki changes as:

∂ci

∂t
= di∇

2ci + kici + secretionixy

The term secretionixy is the increase of morphogen i in
pixel (not cell) xy. Here we used two morphogens, with the
constants d1 = 0.2, k1 = 0.009 and d2 = 0.2, k2 = 0.003.
A cell receives the average morphogen concentration of the
pixels it consists of as input (determining one protein level
per morphogen). Two other protein levels determined the
secretion of the corresponding morphogen, realized as in-
creasing the average concentration of the cell’s pixels.

Cell Shape Control Apart from the plugin which manages
GRN control over parameters determining cell dynamics we
developed another major new module: CellShapeControl.
Earlier work successfully used a plugin to model cell elonga-
tion along the cell’s longest axis (23; 35). However, in these
earlier works elongation followed the cell’s longest axis, so
orientation was due to initial random effects. In our model
the orientation is partially inherited and partially under the
GRN’s control (see mitosis section below for details). Fur-
thermore, better results were found during evolution when
not the length directly was under GRN control but the ratio
of the length along the orientation axis to the length along
the orthogonal axis, see fig. 2 a)-c).
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Figure 3: Gaussian offset crossover. Genomes of (1) par-
ent 1, (2) parent 2, (3) offspring 1, (4) offspring 2. Only
the compartment chosen for crossover and two neighboring
genes are shown. Both children get digits up to the crossover
point (solid bar) from their respective parent, but then con-
tinue in the other parent’s genome with opposite gaussian-
distributed offsets (−3 and +3, respectively, here).

Mitosis

Mitosis was initiated automatically once the cell reached a
volume of 24 pixels, implemented as equal split along the
axis orthogonal to the cell’s orientation, see panel d) in fig. 2.
The heritable part of the cell’s orientation was shifted by
90 degrees and target volume set to half the parent’s value
in both daughter cells. Also, protein levels were divided
equally.

Initial State In the experiments reported here we ne-
glected “maternal factors”, i.e. the first cell started without
spatial extension at a size of 1 pixel, in the middle of the
grid. All protein levels were set to zero for the GRN and no
morphogen was present.

Evolutionary setup

A standard Genetic Algorithm with elitism, tournament se-
lection and replacement was used. An evolutionary run
lasted 250 generations containing 250–300 individuals3.
The initial population started with one cis-module per gene
and one protein binding site per cis-module, all coding bit
values being randomly assigned; in network terms the nodes
were randomly connected, with at most one incoming arc.

Selection

Later generations are formed by carrying over the best-
performing individual of the last generation automatically
and the other individuals are replaced by offspring. To gen-
erate each pair of offspring, 15 (not necessarily different)
individuals of the prior generation are chosen randomly and
of these the best two selected to be “parents”.

3The variable number of individuals is due to our particular
setup where clustering software Condor operated on student lab
machines, so that sometimes PC usage would interrupt computa-
tions. In order not to wait for the last results to arrive we always
started 500 individuals in batches of 20 but would progress to the
next generation as soon as more than half of them were back. Due
to batch size and step timing it could however happen that more
than 260 jobs arrived before the next check.

Figure 4: French flag. Evolutionary target was a 60 × 40
pixel three striped pattern.

Variability

A single-point crossover between the parent genomes oc-
curred 90 percent of the times and every coding bit was
flipped with a mutation probability of one percent. As there
could be a variable number of cis- and of protein binding
sites per gene their lengths will vary, so a standard bit-string
crossover could change their numbers drastically. To con-
serve all but (at most) one of the genes as basic building
units, the genomes of the parents were divided into com-
partments: one compartment for every gene and one com-
partment for the global variables. Then (with a probability
of 0.9) a single compartment was chosen for crossover and
in this compartment a point allocated for crossover.4 Every
pair of compartments was aligned regardless of the lengths
of other compartments, as indicated in fig. 3. This process is
inspired by the biological mechanism known as synapsis, the
pairing of homologous chromosomes where mostly “simi-
lar” sectors pool together. To achieve variable length genes,
the unequal crossing-over observed in biology is mimicked:
When crossing over from parent 1’s genome to the second
parent’s genome copying does not necessarily continue at
the same position of parent 2’s genome but is shifted by an
offset (see fig. 3).

This offset is randomly drawn from a gaussian distributed
random variable with mean 0 and standard deviation 4. The
relatively large number four was chosen to increase the
chance of duplicating genetic information, the importance of
which was already pointed out by Ohno (26) for the evolu-
tion of biological complexity. Ohno put emphasis on whole-
genome duplications while it is now, with better techniques,
becoming ever clearer that “both small- and large-scale du-
plication events have played major roles” (29, page 320ff).
Note that the offset point is limited to stay within the bound-
aries of the compartment, hence if crossover point + off-
set is smaller/larger than the left/right boundary it is set to
the corresponding boundary value. So the number of 2s
(cis-modules) might increase by crossover – mutation was
only applied to coding digits (0s and 1s) – but not the num-
ber of 3s as these are the compartment boundaries. When

4This is why ‘at most’ one gene is changed: The crossover point
could be zero or equal to the gene’s coding length.
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t = 5 t = 40

t = 10 t = 45

t = 15 t = 50

t = 20 t = 75

t = 25 t = 100

t = 30 t = 150

t = 35 t = 200

Figure 5: Morphogenesis example. The left picture shows the colors of the cells while the right one shows adjusted morphogen
level (red=high to blue=low), respectively. Cell outlines are given in yellow, t is the time step the snapshot was taken at. See
online version for color. In the left column it becomes quite clear that morphogen diffuses on the underlying grid as you can
see low levels of it in areas without cells. Similarity to the target French flag pattern at t = 200 is 87 percent.
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crossover occurs in the part encoding for global parameters
the offset is always set to 0 as offsets would be meaningless
here.
These processes allow both neutral crossover and mutational
changes, as degenerate cis-modules (i.e. too short to bind a
protein) have no regulatory effect. Additionally this means
that genes could become dysfunctional, in a similar manner
to the so called pseudo-genes found in nature, e.g. if there
were not a single cis-module and the gene had an activation
type of “off by default”.

Fitness Evaluation

The lifetime of each individual was 200 time steps. Its fit-
ness was defined simply as the match of the cell formation at
the last time step compared with the 60×40 pixel target pat-
tern comprising the entire spatial field, see fig. 4. Formally,
the difference d between individual i’s result pattern Ri and
the target T , both of size w × h, is:

d(Ri, T ) =
1

wh

w−1
∑

x=0

h−1
∑

y=0

|sgn(Ri
xy − Txy)| ∈ [0, 1]

Note that this measure does not specify the number, size or
position of cells, only the lower level pixels are taken into
consideration. Accordingly, the correctness of the match or
similarity s is simply s(Ri, T ) = 1 − d(Ri, T ).
One refinement we introduced was that the difference be-
tween the patterns would be multiplied by four minus the
number of colors present in the final individual. An indi-
vidual using all three possible colors would get a factor of
one, while individuals using fewer colors would be penal-
ized with a higher factor. The aim of this was to “encourage”
individuals early on in evolution to use all colors – without
this measure runs were prone to get stuck in local maxima
with huge single-color individuals.
To improve robustness, every individual was run 10 times
with different random seeds and the overall fitness calcu-
lated as the average of these repetitions.

Results and Discussion

The proposed model combines for the first time spatially ex-
tended cells with GRN control over individual cell param-
eters like size, shape, adhesion, morphogen secretion and
orientation without predefined cell types. Evolved multicel-
lular organisms were able to autonomously set up an asym-
metric morphogen gradient and organize into a close match
of the French flag pattern, so the model will certainly be of
good use for future research.
A majority of evolutionary runs achieved final pattern
matches of over 75 percent5. In particular, some individuals

5Seven out of the ten runs conducted with the particular config-
uration of plugins and parameters described here ended with simi-
larities above 0.75. Recall, this is the average match over 10 repe-
titions with different random seeds.

used morphogens to set up, and maintain, a gradient across
the grid, as did the example in fig. 5. The cells would usu-
ally quickly divide and spread over the grid early on during
an individual’s lifetime while becoming more stable later –
pattern similarities at time step 210 were very close to the
originally measured fitness at time step 200. A detailed
assessment of intra- and extracellular dynamics is unfortu-
nately beyond the scope of this paper.
The fact that the initial cell in the first time step had an ab-
solute orientation of zero degrees is clearly biologically un-
realistic. The reason was simply that this made assessing
fitness easier. We do not think this is a major drawback as
when we started the initial cell with an orientation of 90 de-
grees and rotated the grid and target pattern by 90 degrees as
well, the similarity achieved was just as good.
Due to the inherent randomness in the spatial process we
can probably not expect a perfect pattern match on such a
low level – nobody expects identical twins to be identical
down to the cell level. However statistical analysis of many
runs is needed to quantify these effects. Also it would be de-
sirable to investigate robustness as well as evolvability of the
system. Self-repair properties after perturbations to develop-
ment would be expected as for example Miller (25) observed
in his work.
In the future we plan to use more natural fitness measures
and to extend the evolution of morphogenesis to more com-
plex, three dimensional forms instead of 2D patterns (as the
name CompuCell3D suggests this is relatively straightfor-
ward with the software used). Also, biological cells are even
more flexible and irregular in the forms they can take; for ex-
ample it is known that contraction, leading to a wedge like
shape, is important for gastrulation (34). It would be in-
teresting to see if evolvability is increased further when the
GRN gets more control over cell shape.
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Abstract

This paper establishes a link between the challenge of solv-
ing highly ambitious problems in machine learning and the
goal of reproducing the dynamics of open-ended evolution in
artificial life. A major problem with the objective function
in machine learning is that through deception it may actu-
ally prevent the objective from being reached. In a similar
way, selection in evolution may sometimes act to discourage
increasing complexity. This paper proposes a single idea that
both overcomes the obstacle of deception and suggests a sim-
ple new approach to open-ended evolution: Instead of either
explicitly seeking an objective or modeling a domain to cap-
ture the open-endedness of natural evolution, the idea is to
simply search for novelty. Even in an objective-based prob-
lem, such novelty search ignores the objective and searches
for behavioral novelty. Yet because many points in the search
space collapse to the same point in behavior space, it turns
out that the search for novelty is computationally feasible.
Furthermore, because there are only so many simple behav-
iors, the search for novelty leads to increasing complexity. In
fact, on the way up the ladder of complexity, the search is
likely to encounter at least one solution. In this way, by de-
coupling the idea of open-ended search from only artificial
life worlds, the raw search for novelty can be applied to real
world problems. Counterintuitively, in the deceptive maze
navigation task in this paper, novelty search significantly out-
performs objective-based search, suggesting a surprising new
approach to machine learning.

Introduction
The problem of overcoming deception and local optima to
find an objective in machine learning is not often linked to
the goal of creating a truly open-ended dynamic in artificial
life. Yet this paper argues that the same key idea addresses
both challenges.

The concept of the objective function, which rewards get-
ting closer to the goal, is ubiquitous in machine learning
[22]. However, objective functions come with the pathol-
ogy of local optima; landscapes from objective (e.g. fitness)
functions are often deceptive [9, 21]. As a rule of thumb, the
more ambitious the goal, the more likely it is that search can
be deceived by local optima. The problem is that the objec-
tive function does not necessarily reward the stepping stones
in the search space that ultimately lead to the objective.

For example, it is difficult to train a simulated biped with-
out first suspending it from a string because it simply falls
down on every attempt, obfuscating to the objective function
any improvements in leg oscillation [30].

For these reasons, ambitious objectives are often carefully
sculpted through a curriculum of graded tasks, each chosen
delicately to build upon the prior [8, 10, 30]. Yet such in-
cremental training is difficult and ad hoc, requiring intimate
domain knowledge and careful oversight.

In contrast to the focus on objective optimization in ma-
chine learning, researchers in artificial life often study sys-
tems without explicit objectives, such as in open-ended evo-
lution. An ambitious goal of this research is to reproduce
the unbounded innovation of natural evolution. A typical
approach is to create a complex artificial world in which
there is no final objective other than survival and replication
[4, 32]. Such models assume that biologically-inspired evo-
lution supports creating an open-ended dynamic that leads
to unbounded increasing complexity [3, 4, 16].

However, a growing yet controversial view in biology is
that the drive towards complexity is a passive force, i.e. not
driven primarily by selection [15, 18, 19]. In fact, in this
view, the path towards complexity in natural evolution can
sometimes be inhibited by selection pressure. Thus although
open-endedness is often framed as an adaptive competition
in artificial life worlds [3, 16], this paper decouples the idea
of open-endedness from the domain by capitalizing on a
simpler perspective: An open-ended evolutionary system is
simply one that continually produces novel forms [25].

This perspective leads to a key idea that addresses the
problems in both artificial life and machine learning: In-
stead of modeling natural evolution with the hope that novel
individuals will be continually discovered, it is possible to
search directly for novelty. Thus this paper introduces the
novelty search algorithm, which searches with no objective
other than continually finding novel behaviors in the search
space. By defining novelty in this domain-independent way,
novelty search can be applied to real world problems as di-
rectly as artificial life worlds. In fact, because there are only
so many ways to behave, some of which must be more com-
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plex than others [6], the passive force in nature that leads
to increasing complexity is accelerated by searching for be-
havioral novelty.

To demonstrate the power of novelty search, in this pa-
per it is compared to objective-based search in a deceptive
two-dimensional robot maze navigation task. Counterintu-
itively, novelty search, which ignores the objective, evolves
successful maze navigators that reach the objective in signif-
icantly fewer evaluations than the objective-based method.
For harder mazes, the objective-based method almost always
fails, while novelty search is successful in nearly every at-
tempt. These results defy the premise in much of machine
learning that the objective is the proper impetus for search.

The conclusion is that by abstracting the process through
which natural evolution discovers novelty, it is possible to
derive an open-ended search algorithm that applies naturally
to both real-world machine learning problems and artificial
life worlds. Novelty search overcomes the problems of de-
ception and local optima inherent in objective optimization
by ignoring the objective, suggesting the surprising conclu-
sion that ignoring the objective in this way may often benefit
the search for the objective.

Background
This section reviews open-endedness in natural evolution
and evolutionary computation, as well as the neuroevolution
method used in the experiments.

Open-endedness in Natural Evolution
Natural evolution fascinates practitioners of search because
of its profuse creativity, lack of volitional guidance, and per-
haps above all its drive towards complexity.

A subject of longstanding debate is the arrow of complex-
ity [3, 19], i.e. the idea that evolutionary lineages sometimes
tend towards increasing complexity. What about evolution-
ary search in nature causes complexity to increase? This
question is important because the most difficult problems
in search, e.g. an intelligent autonomous robot, may require
discovering a prohibitive level of solution complexity.

The topic of complexity in natural evolution is much in
contention across biology, artificial life, and evolutionary
computation [15, 19, 23, 28]. One important question is
whether there is a selective pressure towards complexity in
evolution. A potentially heretical view that is gaining at-
tention is that progress towards higher forms is not mainly
a direct consequence of selection pressure, but rather an in-
evitable passive byproduct of random perturbations [15, 19].
Researchers like Miconi [19] in artificial life, and Lynch
[14, 15] in biology are arguing that natural selection does
not always explain increases in evolutionary complexity. In
fact, they argue that to the extent that fitness (i.e. in nature,
the ability to survive and reproduce) determines the direction
of evolution, it can be deleterious to increasing complexity.
In other words, rather than laying a path towards the next

major innovation, fitness (like the objective function in ma-
chine learning) in effect prunes that very path away.

In particular, Miconi [19] points out that natural selection
restricts the breadth of evolution because only designs with
high fitness can be further explored. Lynch [15], a biologist,
goes even further, arguing that selection pressure in general
does not explain innovation, and that nonadaptive processes
are often undeservedly ignored.

These arguments lead to the main idea in this paper that it
may be most effective to simply search explicitly for novel
behaviors.

Open-Ended Evolutionary Computation
The open-ended evolution community in artificial life aims
to produce simulated worlds that allow a similar degree of
unconstrained exploration as Earth. Tierra [24], PolyWorld
[32] and Geb [4] are typical examples. There is no objec-
tive beyond that of survival and reproduction. The motiva-
tion behind this approach is that as evolution explores an
unbounded range of life forms, complexity will inevitably
increase [4, 19].

Bedau and Packard [1] and Bedau et al. [2] have con-
tributed to formalizing the notion of unbounded open-ended
dynamics by deriving a test (called activity statistics) that
classifies evolutionary systems into categories of open-
endedness. Geb and others have passed this test [4, 16], but
the results nevertheless do not appear to achieve the levels
of diversity or complexity seen in natural evolution. This
apparent deficiency raises the question of what element is
missing from current models [25]. Many suggest that more
detailed, lifelike domains must be constructed to facilitate
the open-ended dynamic of natural evolution [20, 25, 32].

However, this paper presents a more general approach to
open-ended evolution that is motivated well by the follow-
ing insight from Standish [25]: “The issue of open-ended
evolution can be summed up by asking under what condi-
tions will an evolutionary system continue to produce novel
forms.” Thus, instead of modeling natural selection, the idea
in this paper is that it is more efficient to search directly for
novel behaviors. While not intended to replace previous ap-
proaches to open-ended evolution, the advantage of this ap-
proach is that it decouples the concept of open-endedness
from the problem domain because novelty can be sought in
any domain. Therefore, it can apply to real-world tasks as
easily as artificial life worlds.

It is important to acknowledge that this view of open-
endedness contrasts with the more commonly accepted no-
tion of prolonged production of adaptive traits [1, 2]. Never-
theless, the simpler view of open-endedness merits consid-
eration on the chance that a dynamic that appears adaptive
might be possible to capture in spirit with a simpler process.

The experiment in this paper combines this approach to
open-ended evolution with the NEAT method, which is ex-
plained in the next section.
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NeuroEvolution of Augmenting Topologies (NEAT)
The NEAT method was originally developed to evolve arti-
ficial neural networks (ANNs) to solve difficult control and
sequential decision tasks [26, 27, 29]. Evolved ANNs con-
trol agents that select actions based on their sensory inputs.
Like the SAGA method [11] introduced before it, NEAT be-
gins evolution with a population of small, simple networks
and complexifies the network topology into diverse species
over generations, leading to increasingly sophisticated be-
havior. A similar process of gradually adding new genes has
been confirmed in natural evolution [17, 31], and fits well
with the idea of open-ended evolution.

However, a key feature that distinguishes NEAT from
prior work in complexification is its unique approach to
maintaining a healthy diversity of complexifying structures
simultaneously, as this section reviews. Complete descrip-
tions of the NEAT method, including experiments confirm-
ing the contributions of its components, are available in
Stanley et al. [26], Stanley and Miikkulainen [27], and Stan-
ley and Miikkulainen [29]. Let us review the key ideas on
which the basic NEAT method is based.

To keep track of which gene is which while new genes
are added, a historical marking is uniquely assigned to each
new structural component. During crossover, genes with the
same historical markings are aligned, producing meaningful
offspring efficiently. Speciation in NEAT protects new struc-
tural innovations by reducing competition between differing
structures and network complexities, thereby giving newer,
more complex structures room to adjust. Networks are as-
signed to species based on the extent to which they share his-
torical markings. Complexification, which resembles how
genes are added over the course of natural evolution [17],
is thus supported by both historical markings and specia-
tion, allowing NEAT to establish high-level features early in
evolution and then later elaborate on them. In effect, then,
NEAT searches for a compact, appropriate network topology
by incrementally complexifying existing structure.

In the experiment in this paper, NEAT is combined with
novelty search, which is is explained next.

The Search for Novelty
Recall that the problem identified with the objective function
in machine learning is that it does not necessarily reward the
intermediate stepping stones that lead to the objective. The
more ambitious the objective, the harder it is to identify a
priori these stepping stones.

The suggested approach is to identify novelty as a proxy
for stepping stones. That is, instead of searching for a final
objective, the learning method is rewarded for finding any
instance whose functionality is significantly different from
what has been discovered before. Thus, instead of an ob-
jective function, search employs a novelty metric. That way,
no attempt is made to measure overall progress. In effect,
such a process performs explicitly what natural evolution

does passively, i.e. gradually accumulating novel forms that
ascend the complexity ladder.

For example, in a maze navigation domain, initial at-
tempts might run into a wall and stop. In contrast with an
objective function, the novelty metric would reward simply
running into a different wall regardless of whether it is closer
to the goal or not. In this kind of search, a set of instances are
maintained that represent the most novel discoveries. Fur-
ther search then jumps off from these representative behav-
iors. After a few ways to run into walls are discovered, the
only way to be rewarded is to find a behavior that does not
hit a wall right away. In this way, the complexity bucket
fills from the bottom up. Eventually, to do something new,
a navigator will have to successfully navigate the maze even
though it is not an objective!

At first glance, this approach may seem naive. What con-
fidence can we have that a search process can solve a prob-
lem when the objective is not provided whatsoever? Yet its
appeal is that it rejects the misleading intuition that objec-
tives are an essential means to discovery. The idea that the
objective may be the enemy of progress is a bitter pill to
swallow, yet if the proper stepping stones do not lie conve-
niently along its gradient, we must begin to leave behind its
false security.

Still, what hope is there that novelty is any better when
it contains no information about the direction of the solu-
tion? Is not the space of novel behaviors unboundedly vast,
creating the potential for endless meandering? One might
compare novelty search to exhaustive search: Of course a
search that enumerates all possible solutions will eventually
find the solution, but at enormous computational cost.

Yet there are good reasons to believe that novelty search
is not like exhaustive search, and that in fact the number of
novel behaviors is reasonable and limited in many practical
domains. The main reason for optimism is that task domains
on their own provide sufficient constraints on the kinds of
behaviors that can exist or are meaningful, without the need
for further constraint from an objective function.

For example, a robot navigating a maze can only do so
many things; the robots in the experiments in this paper have
only two effectors. Although the search space is effectively
infinite because of NEAT’s ability to add new genes, the be-
havior space into which points in the search space collapse
is limited. For example, after an evaluation in the maze, a
robot finishes at a specific location. Suppose the robot’s be-
havior is characterized only by this ending location. While
there are many ways to encode a policy that arrives at a par-
ticular point, under this measure of novelty, they all collapse
to the same behavior. In fact, the search space collapses into
a manageable number of novelty points, significantly differ-
entiating novelty search from exhaustive enumeration.

Furthermore, novelty search succeeds where objective-
based search fails by rewarding the stepping stones. That
is, anything that is genuinely different is rewarded and pro-
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moted as a jumping-off point for further evolution. While
we cannot know which stepping stones are the right ones,
if we accept that the primary pathology in objective-based
search is that it cannot detect the stepping stones at all, then
that pathology is remedied.

The next section introduces the novelty search algorithm
by replacing the objective function with the novelty metric
and formalizing the concept of novelty itself.

The Novelty Search Algorithm
Evolutionary algorithms like NEAT are well-suited to nov-
elty search because the population that is central to such
algorithms naturally covers a wide range of expanding be-
haviors. In fact, tracking novelty requires little change to
any evolutionary algorithm aside from replacing the fitness
function with a novelty metric.

The novelty metric measures how different an individual
is from other individuals, creating a constant pressure to do
something new. The key idea is that instead of rewarding
performance on an objective, the novelty search rewards di-
verging from prior behaviors. Therefore, novelty needs to
be measured.

There are many potential ways to measure novelty by an-
alyzing and quantifying behaviors to characterize their dif-
ferences. Importantly, like the fitness function, this measure
must be fitted to the domain.

The novelty of a newly generated individual is computed
with respect to the behaviors (i.e. not the genotypes) of an
archive of past individuals whose behaviors were highly
novel when they originated. In addition, if the evolution-
ary algorithm is steady state (i.e. one individual is replaced
at a time) then the current population can also supplement
the archive by representing the most recently visited points.
The aim is to characterize how far away the new individual
is from the rest of the population and its predecessors in nov-
elty space, i.e. the space of unique behaviors. A good metric
should thus compute the sparseness at any point in the nov-
elty space. Areas with denser clusters of visited points are
less novel and therefore rewarded less.

A simple measure of sparseness at a point is the average
distance to the k-nearest neighbors of that point, where k
is a fixed parameter that is determined experimentally. In-
tuitively, if the average distance to a given point’s nearest
neighbors is large then it is in a sparse area; it is in a dense
region if the average distance is small. The sparseness ρ at
point x is given by

ρ(x) =
1
k

k∑

i=0

dist(x, µi), (1)

where µi is the ith-nearest neighbor of x with respect to
the distance metric dist, which is a domain-dependent mea-
sure of behavioral difference between two individuals in the
search space. The nearest neighbors calculation must take
into consideration individuals from the current population

and from the permanent archive of novel individuals. Can-
didates from more sparse regions of this behavioral search
space then receive higher novelty scores. It is important to
note that this novelty space cannot be explored purposefully,
that is, it is not known a priori how to enter areas of low den-
sity just as it is not known a priori how to construct a solu-
tion close to the objective. Thus, moving through the space
of novel behaviors requires exploration. In effect, because
novelty is measured relative to other individuals in evolu-
tion, it is driven by a coevolutionary dynamic.

If novelty is sufficiently high at the location of a new indi-
vidual, i.e. above some minimal threshold ρmin , then the in-
dividual is entered into the permanent archive that character-
izes the distribution of prior solutions in novelty space, sim-
ilarly to archive-based approaches in coevolution [7]. The
current generation plus the archive give a comprehensive
sample of where the search has been and where it currently
is; that way, by attempting to maximize the novelty metric,
the gradient of search is simply towards what is new, with
no other explicit objective.

It is important to note that novelty search resembles prior
diversity maintenance techniques (i.e. speciation) popular in
evolutionary computation. The most well known are vari-
ants of fitness sharing [5]. These also in effect open up the
search by reducing selection pressure. However, in these
methods, as in Hutter’s fitness uniform selection [13], the
heretical step of eschewing the fitness function entirely is
not taken. In contrast, novelty search only rewards behav-
ioral diversity with no concept of fitness or a final objective.

It is also important to note that novelty search is not a ran-
dom walk; rather, it explicitly maximizes novelty. Because
novelty search includes an archive that accumulates a record
of where search has been, backtracking, which can happen
in a random walk, is effectively avoided in behavioral spaces
of any dimensionality.

The novelty search approach in general allows any behav-
ior characterization and any novelty metric. Although gen-
erally applicable, novelty search is best suited to domains
with deceptive fitness landscapes, intuitive behavioral char-
acterization, and domain constraints on possible expressible
behaviors. Changing the way the behavior space is charac-
terized and the way characterizations are compared will lead
to different search dynamics, similarly to how researchers
now change the objective function to improve the search.
The intent is not to imply that setting up novelty search is
easier than objective-based search. Rather, once novelty
search is set up, the hope is that it can find solutions be-
yond what even a sophisticated objective-based search can
currently discover. Thus, the effort is justified in its returns.

Once objective-based fitness is replaced with novelty, the
NEAT algorithm operates as normal, selecting the highest-
scoring individuals to reproduce. Over generations, the pop-
ulation spreads out across the space of possible behaviors,
continually ascending to new levels of complexity (i.e. by
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(a) Neural Network (b) Sensors
Figure 1: Maze Navigating Robot. The artificial neural network
that controls the maze navigating robot is shown in (a). The layout
of the sensors is shown in (b). Each arrow outside of the robot’s
body in (b) is a rangefinder sensor that indicates the distance to
the closest obstacle in that direction. The robot has four pie-slice
sensors that act as a compass towards the goal, activating when a
line from the goal to the center of the robot falls within the pie-
slice. The solid arrow indicates the robot’s heading.

expanding the neural networks in NEAT) to create novel be-
haviors as the simpler variants are exhausted.

Experiment
A good domain for testing novelty search should have a de-
ceptive fitness landscape. In such a domain, the search al-
gorithm following the fitness gradient may perform worse
than an algorithm following novelty gradients because nov-
elty cannot be deceived; it ignores fitness entirely. A com-
pelling, easily-visualized domain with this property is a two-
dimensional maze navigation task. A reasonable fitness
function for such a domain is how close the maze naviga-
tor is to the goal at the end of the evaluation. Thus, dead
ends that lead close to the goal are local optima to which
an objective-based algorithm may converge, which makes a
good model for deceptive problems in general.

This paper’s experiments utilize NEAT, which has been
proven in many control tasks [27, 29], including maze navi-
gation [26], the domain of the experiments in this paper.

The maze domain works as follows. A robot controlled
by an ANN must navigate from a starting point to an end
point in a fixed time. The task is complicated by cul-de-sacs
that prevent a direct route and that create local optima in the
fitness landscape. The robot (figure 1) has six rangefind-
ers that indicate the distance to the nearest obstacle and four
pie-slice radar sensors that fire when the goal is within the
pie-slice. The robot’s two effectors result in forces that re-
spectively turn and propel the robot. This setup is similar to
the successful maze navigating robots in NERO [26].

Two maps are designed to compare the performance of
NEAT with fitness-based search and NEAT with novelty
search. The first (figure 2a) has deceptive dead ends that
lead the robot close to the goal. To achieve a higher fitness
than the local optimum provided by a dead end, the robot
must travel part of the way through a more difficult path that
requires a weaving motion. The second maze (figure 2b)
provides a more deceptive fitness landscape that requires the
search algorithm to explore areas of significantly lower fit-
ness before finding the global optimum (which is a network
that reaches the goal).

(a) Medium Map (b) Hard Map

Figure 2: Maze Navigation Maps. In both maps, the large circle
represents the starting position of the robot and the small circle
represents the goal. Cul-de-sacs in both maps that lead toward the
goal create the potential for deception.

Fitness-based NEAT, which will be compared to novelty
search, requires a fitness function to reward maze-navigating
robots. Because the objective is to reach the goal, the fitness
f is defined as the distance from the robot to the goal at the
end of an evaluation: f = bf − dg , where bf is a constant
bias and dg is the distance from the robot to the goal. Given
a maze with no deceptive obstacles, this fitness function de-
fines a monotonic gradient for search to follow. The constant
bf ensures all individuals will have positive fitness.

NEAT with novelty search, on the other hand, requires
a novelty metric to distinguish between maze-navigating
robots. Defining the novelty metric requires careful con-
sideration because it biases the search in a fundamentally
different way than the fitness function. The novelty met-
ric determines the behavior-space through which search will
proceed. It is important that the type of behaviors that one
hopes to distinguish are recognized by the metric.

Thus, for the maze domain, the behavior of a navigator is
defined as its ending position. The novelty metric is then the
Euclidean distance between the ending positions of two in-
dividuals. For example, two robots stuck in the same corner
appear similar, while one robot that simply sits at the start
position looks very different from one that reaches the goal,
though they are both equally viable to the novelty metric.

This novelty metric rewards the robot for ending in a place
where none have ended before; the method of traversal is ig-
nored. This measure reflects that what is important is reach-
ing a certain location (i.e. the goal) rather than the method
of locomotion. Thus, although the novelty metric has no
knowledge of the final goal, a solution that reaches the goal
will appear novel. Furthermore, the comparison between
fitness-based and novelty-based search is fair because both
scores are computed only based on the distance of the final
position of the robot from other points.

Finally, to confirm that novelty search is indeed not any-
thing like random search, NEAT is also tested with a ran-
dom fitness assigned to every individual regardless of per-
formance, which means that selection is random. If the maze
is solved, the number of evaluations is recorded.

Experimental Parameters
Because NEAT with novelty search differs from orig-
inal NEAT only in substituting a novelty metric for
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(a) Medium Map (b) Hard Map

Figure 3: Comparing Novelty Search to Fitness-based Search. The change in fitness over time (i.e. number of evaluations) is shown
for NEAT with novelty search, fitness-based NEAT, and NEAT with random selection on the medium (a) and hard (b) maps, both averaged
over 40 runs of each approach. The horizontal line indicates at what fitness the maze is solved. The main result is that novelty search is
significantly more effective. Only the first 75,000 evaluations (out of 250,000) are shown because the dynamics remain stable after that point.

a fitness function, it uses the same parameters. All
experiments were run using a modified version of
the real-time NEAT (rtNEAT) package (available from
http://www.cs.utexas.edu/users/nn/keyword?rtneat) with a
population size of 250. The steady-state rtNEAT evolution-
ary algorithm performs equivalently to generational NEAT
[26]. Offspring had a 0.5% chance of adding a node, a 10%
chance of adding a link, and the weight mutation power is
0.8. Parameter settings are based on standard NEAT de-
faults and were found to be robust to moderate variation.
Runs consisted of 250, 000 evaluations, which is equivalent
to 1, 000 generations of 250 individuals in a generational
evolutionary algorithm.

The number of nearest neighbors checked in novelty
search, k, was set to 15, and is robust to moderate variation.
The minimum threshold of novelty before adding to the per-
manent archive of points, ρmin, was initialized to 3.0, but
changed dynamically: If 2,500 evaluations pass, and no new
individuals have been added to the archive, the threshold is
lowered by 5%. If over four are added in the same amount of
evaluations, it is raised by 20%. In addition, any evaluated
point has a 0.1% chance to be added to the archive.

A robot is allotted 400 timesteps to navigate through a
maze. This number was chosen experimentally to make
navigation more difficult; because time is limited, the robot
must make efficient movements to reach the goal. The fit-
ness bias fb was 300.0, which ensures that a positive fitness
is awarded to all individuals.

Results
On both maps, a robot that finishes within five units of
the goal counts as a solution. On the medium map, both
fitness-based NEAT and NEAT with novelty search were
able to evolve solutions in every run (figure 3a). Novelty
search took on average 18, 274 evaluations (sd = 20, 447) to
reach a solution, while fitness-based NEAT was three times

slower, taking 56, 334 evaluations (sd = 48, 705), averaged
over 40 runs. This difference is significant (p < .0001).
NEAT with random selection performed much worse than
the other two methods, finding successful navigators in only
21 out of 40 runs, which confirms the difference between
novelty search and random search.

Interestingly, the genomic complexity of solutions
evolved by fitness-based NEAT for the medium map (66.74
connections, sd = 56.7) was almost three times greater
(p < 0.05) than those evolved by NEAT with novelty search
(24.6 connections, sd = 4.59), even though both share the
same parameters.

On the hard map, fitness-based NEAT was only able to
evolve a successful navigator in three out of 40 runs, while
NEAT with random selection fared marginally better, suc-
ceeding in four out of 40 runs, showing that deception in
this map renders the gradient of fitness no more helpful than
random search. However, novelty search was able to solve
the same map in 39 out of 40 runs, in 35, 109 evaluations
(sd = 30, 236) on average when successful, using 33.46
connections on average (sd = 9.26). Figure 3b shows this
more dramatic divergence. Remarkably, because the sec-
ond maze is so deceptive, the same rtNEAT algorithm can
almost never solve it when solving the maze is made the ex-
plicit objective, yet solves it almost every time when finding
novel behavior is the objective!

Typical Behavior
Figure 4 depicts behaviors (represented as the final point
visited by an individual) discovered during typical runs of
NEAT with novelty search and fitness-based NEAT on each
map. Novelty search exhibits a more even distribution of
points throughout both mazes. Fitness-based NEAT shows
areas of density around local optima in the maze.

The typical behavior of a successful robot on either maze
was to directly traverse the maze for both methods.
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(a) Medium Map Novelty (b) Hard Map Novelty

(c) Medium Map Fitness (d) Hard Map Fitness

Figure 4: Final Points Visited Over Typical Runs. Each maze
depicts a typical run, stopping at either 250,000 evaluations or
when a solution is found. Each point represents the end location
of a robot evaluated during the run. Novelty search is more evenly
distributed because it is not deceived.

Discussion and Future Work
Novelty search casts the performance of evolutionary algo-
rithms in a new perspective. Based on the performance of
fitness-based NEAT on the second maze, one might con-
clude that NEAT is no better than random search for solv-
ing this particular problem. Yet NEAT-based novelty search,
which changes the reward function to ignore the objective
while preserving the rest of the algorithm, shows that the
pathology is not in NEAT but rather in the pursuit of the ob-
jective itself. In fact, the second maze is consistently solved
by NEAT when it is given no specific objective other than
to produce individuals that are different functionally from
those seen before. It is thus when NEAT is charged simply
with continually searching for something new that it effec-
tively solves the problem.

However, novelty search has limitations as well; because
it ignores the objective, there is no bias towards optimiza-
tion once a solution is found. An optimized solution may
be produced by novelty search only if an individual can ap-
pear novel by reaching such performance. However, it is
likely more efficient to take the most promising results from
novelty search and further optimize them based on an ob-
jective function. This idea exploits the strengths of both ap-
proaches: Novelty search effectively finds approximate so-
lutions, while objective optimization is good for tuning ap-
proximate solutions. Alternatively, novelty search could be
applied when a traditional evolutionary algorithm converges,
to replenish diversity in the population. These ideas for com-
bining novelty and fitness-based search will be explored in
future experimentation.

While glaringly counterintuitive, the idea that the search
for novelty can outperform the search for the objective in-
troduces critical insight: Objective fitness by necessity in-
stantiates an imposing landscape of peaks and valleys. For
complex problems it may be impossible to define an objec-
tive function where these peaks and valleys create a direct

route through the search space. Yet in novelty search, the
rugged landscape evaporates into an intricate web of paths
leading from one idea to another; the concepts of higher
and lower ground are replaced by an agnostic landscape that
points only along the gradient of novelty.

This idea further hints at a novel perspective on open-
endedness that is fitness-agnostic. Rather than viewing
open-ended evolution as an adaptive competition, it can be
viewed simply as a passive drift through the lattice of nov-
elty. As Lynch [15] and Miconi [19] suggest, it is often
when the reigns of selection pressure are lifted that evolu-
tion innovates most prolifically. Novelty search is simply
an accelerated version of this passive force in natural evo-
lution; unlike in nature it explicitly rewards drifting away in
the phenotype/behavior space, thereby pushing the innovat-
ing process ahead. While this perspective bypasses a long-
standing notion of adaptive innovation in open-ended evolu-
tion [3, 4, 16], it offers a complementary view that is recom-
mended by its intuitive simplicity: Open-endedness can be
defined simply as the continual production of novelty.

The benefit of this view is that it means that we can now
endow any domain with this kind of open-endedness. No
longer are we restricted to complex artificial life worlds in
our pursuit of open-ended discovery. As long as novelty can
be defined (which will not always be easy), it can be sought
explicitly in every domain from simple XOR to the most
complex artificial world, putting many practical problems in
machine learning within its reach.

For example, it is difficult to evolve a checkers player
from scratch against a fixed world-class opponent because
early generation individuals are always completely defeated.
Yet novelty search abandons the idea that winning is the
goal; rather it can simply try to lose in a different way. As
the approaches to losing are exhausted one by one, eventu-
ally it will cross the path to winning, avoiding all deception
and providing an entirely new kind of practical search that
is nevertheless open-ended.

In addition, in the context of artificial life, it is interesting
to consider how novelty search relates to natural evolution.
Novelty is preserved in nature as long as a novel individ-
ual meets minimal selection criteria. It is also encouraged
through niching. Moreover, there is evidence of active nov-
elty search in natural evolution as well: Intersexual selection
sometimes biases mate choice towards novelty [12]. Thus it
is not unreasonable to view natural evolution as a kind of
novelty search in addition to an adaptive competition.

Finally, novelty search provides a new hope for an artifi-
cial arrow of complexity. For, as Dawkins has said [6], once
all the simple ways to live have been exhausted, the only
way to do anything different is to become more complex. In
a passive way, this idea explains the arrow of complexity in
nature. In novelty search, the principle should also hold true.

In fact, the result that the solutions to the medium maze
discovered by NEAT with novelty search contain almost
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three times fewer connections than those discovered by
fitness-based NEAT suggests that novelty search climbs the
ladder of complexity more efficiently. While this intrigu-
ing result merits further study, a possible explanation is
that compact solutions are often missed by objective-based
search because they are hidden behind deceptive landscapes.
Novelty search is more likely to encounter the most compact
solution on the way up the ladder of complexity because it
is not susceptible to such deception.

The problem with the objective is that it fails to identify
the stepping stones. The more ambitious and complex the
problem, the more difficult it is to formalize an objective that
rewards the stepping stones along the way. Yet it is exactly
those stepping stones that ultimately must be identified and
rewarded if search is to find its way up the ladder of com-
plexity [19]. Novelty search is designed to build gradients
that lead to stepping stones. By abandoning the objective,
all the steps along the way come into greater focus. While
the trade-off is a more expansive search, it is better to search
far and wide and eventually reach a summit than to search
narrowly and single-mindedly yet never come close.

The implications of this approach are far-reaching be-
cause it is relevant to all of machine learning. The idea
that search is more effective without an objective challenges
fundamental assumptions and common intuitions about why
search works. It is also the first machine learning approach
to take seriously the growing (yet controversial) consensus
in biology and artificial life that adaptive selection does not
explain the arrow of complexity in nature [14, 15]. Novelty
search asks what is left if the pressure to achieve the objec-
tive is abandoned. Thus its potential reach is broad. Further-
more, the implication for artificial life is that the adaptive
competition is not necessary to promote an open-ended dy-
namic, suggesting a new approach to modeling evolution in
artificial worlds.

In summary, almost like a riddle, novelty search suggests
a surprising new perspective on achievement: To achieve
your highest goals, you must be willing to abandon them.

Conclusions
This paper introduced novelty search, a domain-independent
method of open-ended search. Motivated both by the prob-
lem of deceptive gradients in objective-based search and the
desire for a simple approach to open-ended evolution, nov-
elty search ignores the objective and instead searches only
for individuals with novel behaviors. Counterintuitively, ex-
periments in a deceptive navigation task showed that novelty
search can significantly outperform objective-based search.
Novelty search thus makes it possible to effectively apply
the power of open-ended search to real-world problems.
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Abstract

Bucket brigade foraging improves upon homogeneous forag-
ing by reducing spatial interference between robots, which
occurs when robots are forced to work in the same space, and
must spend time avoiding one another instead of carrying out
useful work. Bucket brigade foraging algorithms restrict the
motion of each robot to at most some fixed distance from its
starting location. We reproduce the performance of known
bucket brigade foragers, and then present a new controller
in which robots adapt the size of their foraging area in re-
sponse to interference with other robots, improving overall
performance. This approach also has the potential to cope
with nonuniform resource distributions.

Introduction
The foraging problem is a task in which one or more agents
must find and collect target objects and deliver them to a
“home area”. The simplest adaptation of this problem to
multi-robot systems is for many robots to independently
solve the foraging task, a solution known as homogeneous
foraging.
Shell and Matarić (2006) explore foraging strategies in

large-scale multi-robot systems. The key variable in their
experiments is spatial interference, which refers to destruc-
tive interactions between robots forced to perform work in
the same space. Multi-robot systems are advantageous only
when what might be called the marginal performance – the
benefit to performance of adding a single robot to the system
– is positive. However, as those authors demonstrated, there
comes a time when this is no longer so, when the loss of per-
formance due to interference between robots outweighs the
gain in work done by having more workers.
Goldberg and Matarić (2003) and Østergaard et al. (2001)

describe bucket brigading, in which each robot is restricted
to a finite search area, and instead rely on their coworkers to
both deliver pucks into their search area, and remove pucks
out of it. By restricting each robot to a finite area whose size
is determined a priori, interference is ameliorated. Shell and
Matarić (2006) empirically investigate the performance of
large groups of robots as a function of varying search area
sizes; homogeneous foraging corresponds to search areas

of infinite radius. Østergaard et al. (2001) describe the ex-
pected performance of multi-robot, space-constrained sys-
tems as a curve to which the R = 40m curve in Figure 1
roughly corresponds; the curve has a local maximum, after
which the marginal performance is negative.
In this paper, we investigate an approach to bucket brigad-

ing that does away with a priori search radii by allowing
robots to adapt their search radii in response to interference
with other robots, improving overall perfomance.

Related work
Foraging is a common analogy for a wide variety of robot
tasks, including exploration and mapping, search, and actual
objects retrieval.
Beckers et al. (1994) noted the use of stigmergy in insect

swarms. Stigmergy is a process by which insects (in gen-
eral, agents) communicate implicitly and indirectly by mod-
ifying the environment – their coworkers’ future behavior is
affected by these changes. The authors built robots which
utilized stigmergy to collect objects and gather them into a
pile – essentially analogous to the foraging task discussed in
this paper. They found that increasing the number of robots
decreases the mean time required to complete the task, but
only up to a certain point (three robots), after which the
mean time increased, due to intereference between robots.
Holland and Melhuish (1999) examined stigmergy and

self-organization in physical robots: using very simple be-
havioral rules, the robots were able to cluster and sort Fris-
bees, despite possessing no memory or capacity for spatial
orientation. The authors argued that their results hinged on
the robots’ behavior taking advantage of real-world physics.
Wawerla and Vaughan (2007) applied the rate-maxim-

izing foraging model to a single robot performing the task
of foraging over a long period of time. The robot had a fi-
nite energy supply, and was required to travel to a charg-
ing station to recharge its batteries. While recharging, and
while traveling between the work site and the charging site,
the robot is not doing work. The authors presented a scal-
able, online, heuristic algorithm for the robot to recharge
efficiently, maximizing the proportion of its time it spends
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Figure 1: Performance with fixed and adaptive search radii at 0.781 pucks/m2. R is the search radius of each robot in the trial. The curves
labeled dR+ show the results for adaptive range selection.

working.
In Zuluaga and Vaughan (2005), building on Brown et al.

(2005), the problem of spatial interference in multi-robot
systems was addressed through the use of aggressive display
behaviors. Several robots were required to perform a trans-
portation task (akin to our foraging task) in shared space.
Robots selected an “aggression level” based on the amount
of work they had invested up to that point. The discrepancy
in aggression levels between interfering robots was used to
break the symmetry that would otherwise have lead to dead-
lock. The authors showed their approach to be effective,
both in simulation and in a real-world implementation.
Lerman and Galstyan (2002) formally modeled the ef-

fect of interference on the performance of a swarm of for-
aging robots. Their model formulated as a system of cou-
pled first-order nonlinear differential equations. They found
that group performance grows sublinearly with group size,
so that individual performance actually decreases with in-
creasing group size. Simulations verified the predictions of

their model.
Rybski et al. (2004) performed experiments in which real

robots perform a foraging task using a variety of simple
communication methods. Robots communicated by flash-
ing a light bulb under various circumstances. The authors
showed that communication can reduce the variance in the
robots’ performance. In contrast, this research does not use
explicit communication between robots; communication is
implicit, however, in that robots must alter their behavior in
the short term in response to the presence of other robots
(collision avoidance), and in the long term by adapting a pa-
rameter of their behavior (discussed later).

Simulation
In order to reproduce the results of Shell andMatarić (2006),
and compare them to the performance of the adaptive bucket
brigaders, we developed a simulator similar to that in Shell
and Matarić (2006). A description follows:
Robots are located in an arena, a 64 meter-square plane
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scattered with pucks, in the northeast corner of which plane
is a 3 m quarter circle “home area”. Robots are equipped
with grippers which they can use to retrieve these pucks,
and when a puck is dropped off in the home area, it is said
to have been foraged.
Robots can move forward at a rate of 0.1 m/sec, and can

turn to either side at a rate up to once every five seconds. It
takes four seconds to retrieve a puck, but a carried puck can
be dropped instantaneously.
Robots can sense walls and other robots within 0.6 m of

their centers without error (compared with 0.5 m in Shell
and Matarić (2006)), via the use of 12 radially oriented sen-
sors. These sensors report the range in meters to the nearest
obstacle (wall or robot). Specifically, each robot is idealized
as a line segment, and if the center or either endpoint of that
line segment is within sensor range, the sensor most closely
oriented towards that point reports the distance to that point.
Robots cannot sense pucks unless the puck in question is

located directly within the grip of their grippers, and this
sensing is binary and also without error. Robots can deter-
mine the direction towards the home zone at any time; Shell
andMatarić (2006) explain this as the use of a “four-bit com-
pass”. Robots use the data from their proximity sensors to
avoid walls and other robots.
Shell and Matarić (2006) add a variety of noise to each

parameter in their simulation. For simplicity, we have dis-
pensed with this noise, except in the case of odometry noise
(described in greater detail below). While this does detract
from the physical realism of the experiments, the conclu-
sions in this work are drawn by comparing two controllers
in identical worlds; we do not attempt to compare our new
controller with one tested under different conditions.

Parametrized bucket brigading
The purpose of the overall robot system is to retrieve pucks
and deliver them into the home area – to forage the pucks.
In the bucket brigade approach to this problem, individual
robots do not attempt to carry a puck all the way to the home
zone themselves, but rathermerely to shift the distribution of
pucks towards the home area.
Each robot will attempt to stay within a fixed distance

from its initial location. This zone is known as the robot’s
“work area”. Through odometry, the robot can determine
how far it is from the center of this zone, and can tell the di-
rection towards the center of the zone. However, this odom-
etry is noisy; as a result, the center of each robot’s work area
drifts on a random walk at a rate of 0.01 m/sec.
The robot searches via a naı̈ve algorithm within its work

area. If it ever leaves the work area, it will drop off any
puck it may be carrying, return towards its work area, and
continue searching. If it ever discovers a puck, it will re-
trieve it and head towards the home area. The effect is that
a “brigade” of similarly-behaving robots will slowly trans-
port pucks from one robot (work area) to the next, gradually

(a) (b)

Figure 2: Typical density distribution of pucks after (a) 40 minutes
and (b) 80 minutes. One square is 2 m × 2 m; darker squares
indicate a higher concentration of pucks. The home area is in the
northeast corner of the world. In this simulation, pucks were not
added to the world after the start of the experiment.

bringing the puck closer to the home area. Of course, ul-
timate delivery of the puck requires a connected sequence
of overlapping work areas ending in the home area, but this
may be achieved over time (even if never simultaneously)
due to the drift of the work areas.
Shell and Matarić’s robots all share the same work area

radius, or “range”. In the following sections, we will ex-
plore other approaches to assigning these ranges to robots.
In any given experiment, every robot uses the same approach
to range selection.

Radial parametrization
Given that the emergent behavior of the robots is to shift
the distribution of the pucks towards the home area, the first
natural modification to the controller would be to allow the
range parameter of robots to vary with the distance to the
home area. Effectively, we are discarding the assumption
that the distribution of pucks is uniform, but supposing that
they may be more densely distributed near the home area,
and therefore a different range parameter would be optimal.
To demonstrate this, we simulated robots whose range pa-
rameter varied linearly with distance from the home area.
Let us consider the following idealized, one-dimensional

situation: robots and pucks sit uniformly distributed on a
line of lengthL, with the home zone at one end. Every robot
collects a puck at the same time, drives a fixed distance D
towards the “home” end, deposits its puck, and then returns
to its starting location, at which point the process repeats.
Let pn(r), where r is the distance from a given point to the
home end, be the density of pucks at that point after n of
these cycles has taken place. p0(r) is some constant (the
initial puck density). Then

pn+1(r) =

{

(1 − c)pn(r) if r > L − R,

(1 − c)pn(r) + cpn

(

Lr
L−D

)

otherwise.
(1)
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In our simulation, an analogous process occurs in two di-
mensions. Puck densities at two time-steps are displayed
in Figure 2 during a typical run of an experiment in which
pucks are not added to the system as fast as they are removed
from the system by foraging (pucks in the other experiments
in this work are added just as fast as they are foraged, to
maintain constant average puck density).
In all experiments, pucks are initially distributed at ran-

dom. However, it can clearly be seen that as soon as the
robots interact with the pucks, the distribution becomes less
random, biased toward the home area — the system has a
form of entropy that decreases as a result of the work of the
robots. Since the optimal search radius for a robot depends
on the density of pucks, once the density of pucks changes,
the robot’s original choice for search radius may no longer
be optimal. Ideally, robots would know and select the op-
timal choice for search radius on an ongoing basis, but in
these experiments, robots are not given enough information
to achieve this ideal.
In the next section, we propose a method for approximat-

ing this ideal.

Adaptive range selection
The aforementioned ideal puts an extra burden on the robot
— it must be constantly aware of the distance between the
center of its zone and the center of the home area. Alter-
natively, it must be able to measure the local puck density.
In place of these assumptions we may also allow robots to
adaptively select their range parameter using purely local in-
formation. In adaptive range selection, a robot will continu-
ously increase its range parameter at rate dR+, except while
it is avoiding a collision with another robot, to which situa-
tion the robot will react by shrinking its zone at rate dR−,
thus making it less likely to interfere with other robots in the
future.
Consider the extreme example of a robot alone in the

64×64meter-square arena. The robot’s work area has some
initial radius - say, 10m. The robot will remove pucks from
his work area and carry them outside in the direction of the
home area. In parametrized bucket-brigade foraging, once
the robot has removed all pucks from his work area, there
will be no work for him to do, but he will not know this,
since he cannot sense pucks, or their absence, from afar –
so he will continue searching. His restricted search radius
doesn’t improve efficiency since there are no robots to inter-
fere with his navigation. Adding adaptive search radii into
the picture, the robot’s search radius grows at a rate of dR+

and never shrinks (in practice, we limit the growth so that
the radius of any search area is at most the diagonal of the
arena).
Now consider the addition of a second robot into our ex-

ample. As long as the two robots stay outside of each others’
sensor ranges, their search areas will continue to grow as be-
fore; this scenario will be the same as the above-described

scenario. However, each robot is sensitive to other robots
that comewithin a certain range, less than their sensor range.
If such an encounter occurs, each robot will take action to
avoid colliding with the other. At the same time (i.e. as long
as the collision-avoidance behavior persists), each robot’s
search area will decrease at the rate of dR−. Eventually, it
may happen that one robot’s search area shrinks so that the
robot is no longer inside it; at this point, instead of contin-
uing to search for pucks, that robot will try to return to his
search area, thus lessening the chance that he will encounter
and interfere with the other.
As mentioned above, no robot’s search area will grow

without bound – there is a maximum useful radius (the di-
agonal of the arena). In addition, no robot’s search area is
allowed to decrease below the space needed for the robot to
drive in a full circle (at fixed forward/turn speeds).
Results for adaptive range selection are included in Fig-

ures 1 and 3.

Experimental design
Initially, we followed Shell and Matarić (2006) in experi-
mental design. The following parameters were varied: puck
density (0.781/m2 and 3.125/m2), search area radius (5,
10, 20, 30, 40, or 50 m), and number of robots (20, 40, 60,
80, ..., 500). The task was simulated for each combination
of parameters for 2000 simulated seconds, and the number
of pucks foraged after that time was recorded. Twenty such
trials were run, each with a different initial distribution of
pucks; to control for robot position, robots were initially
placed on a square lattice. The reported results, in Figures
1 and 3, are the averages of those twenty trials. Error bars
indicate the standard deviations of the twenty-trial experi-
ments.
Next, we tested our adaptive range selection controller

using the same experimental setup. For these experiments,
search radii were allowed to increase by dR+ = 0.1 m/s and
decrease by dR− = 0.05 m/s, biasing the robots towards the
limit of homogeneous foraging in the absence of significant
interference. Each robot began with a small range of 5 m.
For each parameter set, twenty trials were run, and mean
performances were plotted with standard deviations shown.

Results
Our first step was to reproduce the results in Shell and
Matarić (2006). Inspection of the data in Figures 1 and
3 indicates that this was accomplished, in that increasing
the radius of robots’ search areas in the fixed-radius regime
led to an increase in the marginal benefit of adding robots
(i.e., to the slope of the curves in those graphs), but only
up to a point: eventually, adding more robots decreases the
performance of the system as overcoming interference be-
gins to dominate the robots’ behavior. These critical points
are clearly visible as the significant local maxima in the
R = 30 m, R = 40 m, and R = 50 m curves.
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Figure 3: Performance with fixed and adaptive search radii at 3.125 pucks/m2. R is the search radius of each robot in the trial. The curves
labeled dR+ show the results for adaptive range selection.

There is a noteworthy distinction in that robots in our ex-
periments only foraged approximately half the pucks that
those of Shell and Matarić (2006) did; this indicates more
a quantitative difference in the efficacy of the robots’ con-
troller programs than a qualitative failure of our simulations
to agree at the heart of the matter: that interference affects
a growing population later when the individuals’ foraging
spaces are larger, which is indicated by the relative shapes
of the curves.
Our adaptive range selection algorithm performed at least

as well as the fixed ranged controllers in simulation, and
scaled better. Fixed range algorithms suffered from one of
two problems: robots with small search areas did not gather
many pucks, and robots with large search areas interfered
too much and the critical point at which the marginal ben-
efit of increasing the number of robots was reached when
the number of robots was still small. While the robots using
adaptive range selection did not gather as many pucks when
the number of robots was small as did robots with large,

fixed search radii, increasing the number of robots always
increased the performance of the group.
Also noteworthy is that the adaptive controllers performed

more consistently, as indicated by tighter error bars on those
curves than on the fixed-radius performance curves. Since
adaptation to interference is a form of implicit communica-
tion, this is in agreement with the findings of Rybski et al.
(2004).
Adaptive range selection was sensitive to variations in

dR+ and dR−. If dR+ was too small, adaptive selection
underperformed the fixed range foragers. Figure 1 shows
results when dR+ = 0.01, a fifth of dR−. In that case,
the adaptive controller performs no better than the worst-
performing fixed-range controller we tested. This is not
altogether surprising, since the search radius in the worst
fixed-range controller and the initial search radius in the
dR+ = 0.01 m adaptive controller were both 5 m.
Figure 3 shows qualitatively similar improvements; how-

ever, in this scenario (where puck density is 3.125 pucks per
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square meter, the improvement is only slight, even for large
group sizes).

Future work
In this paper, we have explored only some of the ways —
and naı̈ve ones at that — of improving on the bucket brigad-
ing algorithm. Future work may explore generalization of
the problem to discard hidden assumptions, or, increasing
the adaptability of the system. For instance, a more plau-
sible biological analog might be ants foraging for food. In
such a scenario, the ants would not initially be uniformly
distributed through the field, nor would the food.
The performance of the adaptive-parameter bucket bri-

gade forager needs to be more deeply tested. In none of our
experiments did we note negative marginal performance; the
limits of the algorithm in terms of scalability remain to be
seen. The parameter space for the adaptive controller —
the possible values of dR+ and dR− — needs to be ex-
plored in greater depth. We should also test the controller
in more topologically complex spaces, such as corridors, as
did Østergaard et al. (2001), and investigate why the adap-
tive controller does not outperform as significantly in denser
environments.
Briefly mentioned above is the point that the adaptive ap-

proach causes a net increase in the number of a priori pa-
rameters: new parameters added are the rates at which zones
increase and decrease in size. In this work, those parameters
were set experimentally. Future work may provide motiva-
tion behind values of these parameters, investigate a rela-
tionship between optimal values for dR+ and dR−, or do
away with these parameters entirely.
Future work may also formalize a closed-form relation-

ship among optimal search radius, puck density, and robot
density. Additionally, we have briefly touched on a notion
of entropy in robots’ work space — a quantitative function
of the environment that decreases through useful interactions
between agents and the environment— this notion should be
more formally analyzed.

Conclusions
To summarize the contributions of this paper: we replicated
the results of Shell and Matarić (2006), confirming their
findings with an independent implementation. Further, we
propose a simple modification of their foraging scheme in
which each robot’s foraging area is adapted in response to
interference. The new method was shown to improve per-
formance, particularly in large population sizes.
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Abstract

How do chemical reaction networks that process information
evolve? This is not only a fundamental question in the study
of the origin of life, but also in diverse fields like molecular
computing, synthetic biology, and systems biology. Here, we
study the evolution of chemical flip-flops by means of chem-
ical organisation theory. Additionally, we compare evolved
circuits with manually constructed ones. We found that evo-
lution selects for an organisational structure that is related to
function. That is, the resulting computation can be explained
as a transition between organisations. Furthermore, an evo-
lutionary process can be tracked as a change of the organi-
sational structure, which provides a fundamentally different
view than looking at the structural changes of the reaction
networks. In our experiments, 90% of evolutionary improve-
ment coincide with a change in the organisational structure.
We conclude that our approach provides a novel and useful
perspective to study evolution of chemical information pro-
cessing systems.

Introduction
In every living entity, cellular functions emerge from the as-
tonishing interplay of connected reaction processes. Three
essential types of biochemical networks can be distin-
guished: metabolic, cell signalling, and gene regulatory net-
works (Alberts et al., 2003). While metabolism consists of
coupled enzymatically catalysed reactions supplying energy,
cell signalling, and gene regulation perform information
processing of external and internal signals (Cooper et al.,
2001). Taking this information processing as a metaphor,
biochemical reaction networks (or rather mathematical mod-
els of these) can be designed to perform specific computa-
tional tasks.

While a bottom-up approach has been pursued (Guido
et al., 2006), top-down approaches, specifically evolutionary
algorithms, have gained growing interests recently in order
to design or program reaction systems. Efforts have been
undertaken to evolve simple computational units (Deckard
and Sauro, 2004), small biological networks (Koza et al.,
2001; François and Hakim, 2004; Soyer et al., 2006), ge-
netic regulatory networks (Dwight Kuo et al., 2006) or com-
ponents thereof (Paladugu et al., 2006). Most of this work,

however, has been focused on the final product, that is,
the networks evolved to reproduce a certain specified be-
haviour. Here, we rather concentrate on the process of evo-
lution. For that purpose, new methods are required that can
deal with constructive systems (Fontana and Buss, 1994),
that is, systems where new components (molecular species)
or new interactions between existing components appear so
that the network topology changes dynamically. Matsumaru
et al. (2006) used chemical organisation theory (Dittrich and
Speroni di Fenizio, 2007) in order to study the evolution-
ary dynamics of (artificial) chemical systems. In this paper,
we analyse the trajectory of evolving chemical reaction net-
works that compute. That is, in particular, networks that
function as flip-flops.

In previous work, the authors have developed a software
designed to evolve biological networks (called the SBMLe-
volver) and measured the performance impact of certain de-
sign decisions for this algorithm (Lenser et al., 2007). That
software package is adopted to evolve network models for
this study. In the following section, the theory of chemi-
cal organisation is briefly reviewed. Then, the experimental
setting to evolve a reaction network capable of flip-flop op-
eration is presented. As results, three aspects of the evolu-
tionary process are given in the Results section. In addition
to the traditional aspect of the dynamical behaviour of the
evolution, we analyse the dynamical change in terms of the
chemical organisation within the reaction networks. We also
show a reaction network evolved for the flip-flop function.

Reaction Networks and Chemical Organisations

Here, we utilized the notation of a chemical organisation de-
veloped by Dittrich and Speroni di Fenizio (2007) to anal-
yse reaction networks. Following Fontana and Buss (1994),
an organisation is defined as a set of molecular species that
is closed and self-maintaining. The hierarchy of all or-
ganisations of a reaction network represents its organisa-
tional structure, which can be used to describe the dynami-
cal (qualitative) behaviour of a reaction system as a move-
ment between organisations (Speroni di Fenizio et al., 2001).
Choosing a proper coding scheme, the organisational struc-
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ture can be interpreted as a repertoire of behaviour patterns
of the reaction system. For example, Dittrich and Speroni
di Fenizio (2007) have shown that only species that form an
organisation can makeup a stationary state.

The basic concepts needed here are now described more
formally: A reaction network 〈M,R〉 consists of a set of
(molecular) species M and a set of reaction rules R. A re-
action rule ρ ∈ R can be written according to the chemical
notation:

la1,ρ a1 + la2,ρ a2 + · · ·→ ra1,ρ a1 + ra2,ρ a2 + . . . (1)

The stoichiometric coefficients la,ρ and ra,ρ describe the
amount of molecular species a ∈ M in reaction ρ ∈ R on
the lefthand and righthand side, respectively. Together, the
stoichiometric coefficients define the stoichiometric matrix

S = (sa,ρ) = (ra,ρ − la,ρ). (2)

An entry sa,ρ of the stoichiometric matrix denotes the net
amount of molecules of type a produced in reaction ρ. We
also define mappings LHS(ρ) ≡ {a ∈ M : la,ρ > 0}
and RHS(ρ) ≡ {a ∈ M : ra,ρ > 0}, returning the species
with a positive coefficient on the lefthand and righthand side,
respectively. Reaction ρ can take place in A ⊆ M only
when LHS(ρ) ⊆ A.

Given a reaction network 〈M,R〉 with m = |M| species
and r = |R| reactions, the organisational structure is de-
rived with respect to the following two criteria: closure and
self-maintenance. A set of species A ⊆ M is closed, if
for all reactions ρ with LHS(ρ) ⊆ A, the products are also
contained in A, that is, RHS(ρ) ⊆ A. This closure prop-
erty ensures that there exists no reaction in A producing new
species not yet present in the organisation using only species
of that organisation. The other property is a theoretical ca-
pability of an organisation to maintain all of its members.
Since the maintenance possibly involves complex reaction
pathways, the stoichiometry of the whole reaction network
must be considered in general. A set of molecules C ⊆M is
self-maintaining, if there exists a flux vector v ∈ Rr such
that the following three conditions apply: (1) for all reac-
tions ρ that can take place in C (i.e., LHS(ρ) ⊆ C) the flux
vρ > 0; (2) for all remaining reactions ρ (i.e., LHS(ρ) ! C),
the flux vρ = 0; and (3) for all molecules a ∈ C, the produc-
tion rate (Sv)a ≥ 0. vρ denotes the element of v describing
the flux (i.e. rate) of reaction ρ. (Sv)a is the production rate
of molecule a given flux vector v.

We visualize the set of all organisations with a Hasse dia-
gram, in which organisations are arranged vertically accord-
ing to their size in terms of the number of their members
(cf. Figure 6). Two organisations are connected by a line if
the upper organisation contains all species of the lower or-
ganisation and there is no other organisation between them.
The Hasse diagram represents the hierarchical organisa-
tional structure of the reaction network under study.
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Figure 1: Circuit diagram and operation mode of flip-flop.

Method
We employ an evolutionary algorithm that instantiates a nat-
ural selection process on chemical reaction networks (Fer-
nando and Rowe, 2007). The algorithm can mutate the re-
action rules R of a reaction network with a fixed predefined
set of molecular speciesM = {a0, a1, b0, b1, c0, c1, d0, d1}.
As mutational operators, the algorithm can add or delete a
reaction, or replace a reaction with a different one, keeping
as many of the previous participants as possible. To keep
things simple, we employ a (1+1)-EA. That is, one parent
generates one offspring, while the better of the two survives.

To enable neutral mutations and thus search space explo-
ration, the offspring is kept if both have the same fitness. No
parameter fitting is done, so that a change in parameters can
only be realised through a replacement of a reaction with
the same reaction, which has a different (randomly chosen)
reaction constant. Only mass-action kinetics of first and sec-
ond order are used in the evolution.

When speaking of a flip-flop logic gate in this work, we
specifically mean an RS (Reset and Set) flip-flop, with a be-
haviour according to the truth table in Figure 1. To rep-
resent the four binary variables a, b, c and d making up
this flip-flop in a chemical format, we employ two oppos-
ing species x0 and x1 for each binary variable x, where the
presence of x0 denotes the value x = 0, and x1 denotes
x = 1 (cf. Matsumaru et al., 2007). To help maintain a
valid state inside the system, we fix four destructive reac-
tions x0+x1 → ∅ for all four species pairs xi = ai, bi, ci, di.
These reactions cannot be changed or deleted by the evolu-
tionary algorithm.

The ideal flip-flop that is the target of the artificial evolu-
tion works in the following way: The set operation (S̄, R̄) =
(0, 1) changes the state Q to 1, while the reset (S̄, Q̄) =
(1, 0) changes Q to 0. To hold the previous state, both in-
puts are set to 1. The forbidden input (S̄, Q̄) = (0, 0) is not
considered in the fitness function. In chemical form, the in-
put (S̄, R̄) = (0, 1) is represented by defining an inflow for
a0 and b1, that is, {∅ → a0, ∅ → b1} ⊆R ; and the other
two cases are treated similarly. The initial concentrations of
ci and di are set according to the previous state Qt. Taking
this together, we get six different test cases, coming from
three different operations with two initial conditions each.

For each case, we specify either the presence or the ab-
sence of each species as desired, measured in steady state
after simulating the reaction system for 1000 seconds. Nu-
merical integration is done using the SBML ODE Solver Li-
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brary (Machne et al., 2006). The classification as present or
absent is decided by a concentration threshold of 10−9 (ar-
bitrary units). For example, in the reset case, the following
steady state concentrations are considered as correct: a1 =
1, a0 = 0, b1 = 0, b0 = 1, c1 = 0, c0 = 1, d1 = 1, d0 = 0.
The fitness value is then calculated by counting the number
of wrong presence / absence measurements, with 0 being the
best possible fitness value. Once a fitness of 0 is reached, the
evolution stops.

Results
To analyse the evolution of reaction networks acting as flip-
flops, we performed 30 independent runs in order to evaluate
properties of a “typical” run. Additionally, we also looked
at one run in more detail.

Since the distinction between the three different input set-
tings is realised by enabling or disabling inflow reactions
for a1, a0, b1 and b0, we need to compute three lattices of
organisations for each analysed candidate solution, one for
each input setting.

Statistical analysis of many runs
The average fitness development (Figure 2) shows a stronger
gain in fitness at the beginning, while the convergence to-
wards zero is slower later on. Eventually, all runs reached a
fitness of zero, i.e. the networks behaved as specified in the
fitness function. Since a run stops exactly when the fitness of
the current individual is 0, the number of generations usually
differ between runs. In order to be able to average over these
runs, we had to resample the data on fitness and number
of organisations, such that a common number of measure-
ments for each run is achieved. To this end, we constructed
a timescale of “normalised evolutionary progress”, defined
by its endpoints 0.0 at the beginning of the evolution and 1.0
at the end when the final solution is found. The MATLAB
function resample, which applies an anti-aliasing lowpass
FIR filter during the resampling process, was used to create
new data points at 1001 equally space points between 0.0
and 1.0.

Looking at the number of organisations for the three dif-
ferent input cases, we can see from Figure 3 that start-
ing from around four to five organisations on average, the
numbers diverge between the set/reset operations and the
hold operation. While the number of organisations for the
set/reset organisation converges between two and three, the
hold operation yields around seven organisations on average.

By comparing the organisational structures between suc-
cessive candidate solutions, we calculated that 90% of all
fitness improvements are accompanied by a change in the
organisational structure for at least one input case. In con-
trast, only 18% of organisational changes also come with a
fitness improvement. When looking at the lineage of net-
works that led to the final solution, disregarding unsuccess-
ful candidates, we find that 35% of all mutations changed
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Figure 2: Average fitness value from beginning to end of
evolutionary runs, from 30 independent repetitions. The x-
axis denotes the normalised evolutionary progress from the
random initial solution (x = 0) to finding a solution with
fitness 0 (x = 1). For this, the different runs were resampled
to 1000 samples, as described in the text. Errorbars indicate
standard deviation.

the organisational structure for at least one input.

Detailed analysis of one run
For an in-depth analysis, we pick the first evolutionary run
that we performed for this problem. We will describe how
the fitness improvements correlate with changes in the or-
ganisational structure, and give details on one specific mu-
tational event and its consequences for the organisational
structure of the network.

Comparing the average fitness development shown in Fig-
ure 2 with the single run analysed here (Figure 4 upper part),
we can conclude that the fitness of the individual run pro-
gressed in a fairly standard way. This is especially true given
that the behaviour of the 30 runs is quite diverse, as indi-
cated by the large standard deviations. Also the length of
this run (162 generations) is in the usual region, with an av-
erage run taking 221 generations with a standard deviation
of 119. Also the number of organisations (Figure 4 lower
part) is in agreement with the average number (Figure 3),
even if the number of organisations for the set/reset opera-
tions are at the outer limits of the typical range (five and one,
respectively).

Looking at the fitness increases in the course of the evo-
lution (Figure 4 upper part) and the organisational structures
of all networks that appear during the run (not shown), it
can be observed that all but one of the eight fitness jumps
are accompanied by changes in the organisational structure
for at least one of the three input cases. However, taking the
number of organisations at any point in the evolution into
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Figure 3: Average number of organisations from 30 inde-
pendent runs of the evolution. Colors denote the (a0, b1)
input (blue), the (a1, b0) input (red), and the (a1, b1) input
(green). Errorbars indicate the standard error. Unit of x-axis
as in figure 2.

account, one can also see that not every change in organi-
sational structure leads to a fitness change, in fact, most do
not.

We now relate the fitness change in one successful muta-
tion to the change in organisational structure incurred by that
mutation. As an example, we pick the fitness jump from gen-
eration 112 to 113, which improved the fitness from seven
to four wrong presence/absence values. Looking at the reac-
tion networks before and after the mutation (Figure 5), we
see that the mutation added one reaction, which converts b0

into d1.
This additional reaction does not change the organisa-

tional structure for input cases (a0, b1) and (a1, b1) (set and
hold, not shown), but reduces the lattice of organisations
for input case (a1, b0) (reset) from five organisations to two
(Figure 6). Looking at the behaviour of both networks for all
input cases and initial configurations (i.e. all six test-cases),
one can observe that the change occurs only in input case
(a1, b0) with an initial configuration in which c1 and d0 are
present (data not shown). For this case, the steady-state be-
fore the mutation has a1, b0, and c1 present, and d0 is still
present after 1000 seconds even though its concentration is
still decreasing at that time. This yields four wrong pres-
ence/absence values, since c0 and d1 should be present and
c1 and d0 should be absent, but the total opposite is the case.
After the mutation, d1 is present and c1 and d0 are absent,
but also c0 is absent, so there is one wrong value left.

On the organisational level, the mutation removes three
organisations (Figure 6), among which is also the organisa-
tion (a1, b0, c1) responsible for the wrong behaviour of the
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Figure 4: One exemplary run. Given are fitness (upper
plot) and number of organisations for all three input cases
(lower plot). In the lower plot, the three input cases are
shown in blue ((a0, b1) input), red ((a1, b0) input), and green
((a1, b1)). Each mark (square, cross or circle) denotes a new
network structure in the evolutionary trajectory.

network. After the mutation, the dynamics take the steady-
state into organisation (a1, b0, d1), resulting in a better be-
haviour. However, it is interesting to note that both organi-
sational structures also contain organisation (a1, b0, c0, d1),
which is the “correct” one that is also used in the final solu-
tion. Even though this organisation is present, the dynamics
of both reaction systems are such that the steady-state does
not lie inside it. We had to wait for another 49 generations
for this to happen.

An evolved chemical flip-flop
An outcome of the evolutionary process described above is
analysed. The reaction network considered here has a fitness
value of 0, i.e. solves the given task. The network structure
is shown in Figure 7.
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Figure 5: The reaction network of the candidate solution
analysed in the text, after the mutation adding reaction R11.
The added reaction is shown in red.
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a1, b0, c0a1, b0, c1 a1, b0, d1

a1, b0, c0, d1

∅ → a1

∅ → b0

Figure 6: Organisational structure of the networks from Fig-
ure 5 for input (a1, b0), before (whole structure) and after
addition of reaction R11 (only red part).
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Figure 7: Chemical reaction network implementing flip-flop
circuits, designed through an evolutionary process. Cooper-
ative decay reactions (a1+a0 → ∅, b1+b0 → ∅, c1+c0 → ∅,
d1 + d0 → ∅) are omitted.

There are seven reactions, labeled as rea1 to rea7 in the
figure, in addition to four reactions of cooperative decay (not
shown in the figure), a1+a0 → ∅, b1+b0 → ∅, c1+c0 → ∅,
d1 + d0 → ∅. This base reaction network is extended to in-
clude inflow reactions, representing the inputs to the flip-flop
circuit, depending on the operations. Organisational struc-
tures of the reaction system for each operational mode are
shown in Figure 8.

Analysing the organisational structure of the reaction net-
work, it becomes evident that the reaction system based on
this reaction network is surely usable for the flip-flop com-
putation. Including the two inflows ∅ → a1 and ∅ → b0 in
the reaction network, as shown in Figure 8 A, only one set
of species {a1, b0, c0, d1} satisfies the conditions to be the
organisation. It implies that only this species combination
can be found in the dynamical reaction system in equilib-
rium states. Therefore, the reset operation can be realized in
the evolved reaction system. The network with the inflows
of ∅ → a0 and ∅ → b1 contains five organisations as shown
in Figure 8 B, and one of those {a0, b1, c1, d0} corresponds
to the set operation.

Changing inflow reactions to ∅ → a1 and ∅ → b1

achieves the hold operation. In terms of the organisations,
as shown in Figure 8 C, the two organisations orgHR=
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Figure 8: Organisational structure in the reaction network
shown in Figure 7.

{a1, b1, c0, d1} and orgHS= {a1, b1, c1, d0} in the reaction
network with those inflows reflect the bistability of the flip-
flop circuit. Depending on the state at the previous time step,
the hold operation results in a different state, namely the pre-
vious one. When the reaction system has been in the state
after the set operation, (i.e., orgS), the hold operation brings
the system to the state of orgHS, keeping the output species
unchanged as c1 and d0. Holding the information that the
system has been reset can be achieved by moving the sys-
tem state from orgR to orgHR.

The last operation of setting both inputs to be zero (a =
b = 0) is forbidden for the flip-flop circuit. If adding
two inflows of ∅ → a0 and ∅ → b0 to the base reac-
tion network, one set of species becomes the organisation:
{a1, a0, b0, c1, c0, d1, d0}. Only b1 is not involved to form
the organisational structure.

If no inflow reaction is present, there are 42 organisations
in the base reaction network. The smallest organisation is
the empty set ∅. The sets containing four species forms the
largest organisations, and there are four organisations of that
size. The organisations with the size of four in Figure 8
are also found to be the organisation without inflows, except
the organisation labeled as orgR. In fact, all organisations in
Figure 8 except orgR are also organisations without inflows.

Dynamical Behaviour
To validate the organisational analysis of the reaction net-
work, a dynamical reaction system is constructed and sim-
ulated with Copasi (Hoops et al., 2006), a biochemical re-
action system simulator. Agreeing to the fitness calculation
of the evolutionary design process, mass action kinetics is
assumed for every reaction, if applicable. The ordinary dif-

ferential equations (ODEs) for the input species read:

˙[a1] = k1[a0][c0] + k4[c1][c0] + k6[c1][d1]
−da[a1][a0] + Ia1(1− [a1]) (3)

˙[a0] = −k5[a0][c0] + k6[c1][d1]
−da[a1][a0] + Ia0(1− [a0]) (4)

˙[b1] = −db[b1][b0] + Ib1(1− [b1]) (5)
˙[b0] = −k2[b0]− k7[b0]
−db[b1][b0] + Ib0(1− [b0]) (6)

where a kinetic parameter for a reaction rea id is denoted
as krea id. Kinetic parameters for the cooperative decay re-
actions are represented by d, and the subscript specifies the
pair. For example, the decay rate of the cooperative decay
reaction a0 + a1 → ∅ is denoted as da.

Inflow reactions representing the operation of reset, set,
and hold are controlled by the four parameters: Ia1 , Ia0 ,
Ib1 , and Ib0 . These parameters are binary variables, accept-
ing only 0 or 1. For example, when the chemical flip-flop is
set, Ia0 and Ib1 are set to one and the other pair of parameters
Ia1 = Ib0 = 0 is set to zero. Inflows are assumed to be con-
stant fluxes. Furthermore, the inflows are linked to normal
decay reactions such as a1 → ∅ in order to avoid endless in-
crease of the input species concentration. The resulting term
of the ODE is Ia1(1− [a1]), for example.

The ODEs for the output species read:

˙[c1] = k3[d1][d0]− k6[d1][c1]
−dc[c1][c0]− Ib0 [c1] (7)

˙[c0] = −k1[a0][c0] + k7[b0]
−dc[c1][c0]− Ib0 [c0] (8)

˙[d1] = k2[b0]− k3[d1][d0]− k6[d1][c1] + k7[b0]
−dd[d1][d0]− Ib0 [d1] (9)

˙[d0] = −k3[d1][d0] + k5[a0][c0]
−dd[d1][d0]− Ib0 [d0] (10)

Kinetic parameter values are also provided as the outcome
of the evolutionary design, but we manually adjusted the
values so that the operations can be continuously repeated.
When the fitness of the reaction system was calculated dur-
ing the evolution process, three of the operations were eval-
uated separately and the reaction system was reinitialized
for each case. This re-initialization step between operations
is prevented so that the end state of the previous operation
becomes the initial state of the next operation. For that pur-
pose, the outflows of the input species are added as described
above in order to restrict the increase of the concentration.
For the output species, the outflows are also added as shown
above, activated only when the inflow of b0 is present. This
modification is also to restrict the increase of the concen-
trations of the output species, specially, when the system is
reset.
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Figure 9: Dynamical simulation of chemical flip-flop de-
signed by evolution. Parameters are set as follows: da =
db = 0.1, k4 = 2.33941, k6 = 2.83745, k1 = 4.44231,
k5 = 3.62963, k7 = 4.82838, k3 = 1.0, k2 = 0.1,
dc = 0.001, dd = 1.0. Additionally, for each operation
of reset, set, and hold, inflow reactions are activated. For the
set operation, the parameters are set such that Ia0 = Ib1 = 0
and Ia1 = Ib0 = 1 to activate inflows of a1 and b0 species
and to deactivate the others. The reset operation is initi-
ated by setting Ia0 = Ib1 = 1 and Ia1 = Ib0 = 0. The
hold operation is achieved with the parameter settings of
Ia1 = Ib1 = 1 and Ia0 = Ib0 = 0.

The last modification is the kinetic parameter of the re-
action rea1, k1, from 4.44231 to 0.5. The rational of this
adjustment is: under the input condition “set”, the system is
observed to converge to the organisation of {a0, b1, d1}, in-
stead of orgS. This behaviour results from the fast extinction
of species c0 so that the generation of d0 by rea5 is insuffi-
cient. Slowing down the reaction speed of rea1, species c0

stays in the system longer and produces d0 enough to neu-
tralize d1.

Conclusion
We found that most fitness improvements come together
with change in organisational structure (90%), showing that
organisation analysis indeed yields insight into the evolu-
tionary process. On the other hand, most organisational
changes are fitness-neutral (82%), indicating that a lot of the
information given in the lattice of organisations does not di-

rectly relate to the measured function of the networks. We
have also seen mutations where the replacement of a reac-
tion with the same type of reaction led to a fitness increase
caused purely by the changing of a kinetic parameter, as well
as changes of network structure not reflected in the organi-
sations (but improving fitness). All this implies that while
organisational analysis can give us many indications regard-
ing the function of a reaction network, sometimes it does not
tell the whole story of the network’s dynamics.

We have also seen that the number of organisations for the
set and reset states is substantially smaller than the number
for the hold state, in analogy to the hand-constructed flip-
flop by Matsumaru et al. (2007). In comparison to their so-
lution, the evolved networks show a larger number of organi-
sations for each input case. To realize the flip-flop behaviour
in the reaction system, the minimum number of organisa-
tions in the reaction network is one for the set and reset op-
eration and three for the hold operation. The hand-designed
flip-flop implementation shown by Matsumaru et al. (2007)
has two organisations for set and reset, respectively, and
three for hold. In comparison, the evolved networks have
more organisations, on average between two and three each
for set and reset, and seven for hold. This implies that even
though the function of the flip-flop networks is reflected in
their organisational structure, this structure contains more
information than only the operational modes specified in the
fitness function.

As an interesting extension to this work, one could use or-
ganisational analysis to direct the evolution of reaction net-
works. By first designing the perfect organisational structure
and then evolving networks with this structure, it would be
possible to study whether these networks have the desired
functionality. A key step in this direction is certainly the de-
sign of an appropriate fitness function based on a network’s
lattice of organisations.

In an additional investigation on top of the results shown
here, one should look at the effect of different mutational
operators on network structure, fitness and organisational
structure. This will lead to helpful insights on how the mu-
tations affect the lattice of organisations, and also on how
specific organisational changes are related to changes in the
fitness function.

In our opinion, the most important lesson to be learned
from this work is that the evolutionary process investigated
here produces reaction networks with an organisational
structure that reflects their flip-flop functionality. Even
though our choice of representation format of the binary in-
formation in chemical form may favour this, we believe that
this phenomenon is mainly caused by the structure of the
fitness function, i.e. by the task that is required of the net-
works. It will be very interesting in future to investigate this
with other representation formats.
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Abstract

With the rise of systems biology, the systematic analysis and
construction of behavioral mechanisms in both natural and
artificial biochemical networks has become a vital part of un-
derstanding and predicting the inner workings of intracellu-
lar signaling networks. As a modeling platform, artificial
chemistries are commonly adopted to study and construct
artificial reaction network motifs that exhibit complex com-
putational behaviors. Here, we present a genetic algorithm
to evolve networks that can compute elementary mathemat-
ical functions by transforming initial input molecules into
the steady state concentrations of output molecules. More
specifically, the proposed algorithm implicitly guarantees
mass conservation through an atom based description of the
molecules and reaction networks. We discuss the adopted ap-
proach for the artificial evolution of these chemical networks,
evolve networks to compute the square root function. Finally,
we provide an extensive deterministic and stochastic analysis
of a core square root network motif present in these result-
ing networks, confirming that the motif is indeed capable of
computing the square root function.

Introduction

In biological organisms, networks of chemical reactions

control the processing of information in a cell. A general ap-

proach to study the behavior of these networks is to analyze

modules that are frequently observed in natural systems.

Numerous network motifs that perform computational tasks

have been discovered in biochemical reaction networks. Re-

action networks are able to compute Boolean operations and

implement simple binary computers (Arkin and Ross, 1994;

Sauro and Kholodenko, 2004; Steijaert et al., 2007). Cell

signaling networks are known to exhibit parallelism, the

integration and amplification of signals, bistable behavior

and hysteresis through feedback and memory (Bray, 1990;

Bhalla and Iyengar, 1999; Bray, 1995; Tyson et al., 2003;

Steijaert et al., 2008). Many engineering metaphors have

been put forward as analogies to signaling networks, such as

neural networks and analog electronic circuits (Bray, 1995;

ten Eikelder et al., 2007). As an example, elementary oper-

ations such as addition, multiplication, integration and am-

plification can be found as modules of the MAPK pathway

(Bhalla, 2003).

A more recent approach to study computations in bio-

chemical networks is to construct artificial networks or ab-

stractions of real life systems to study the available space

of computations that can be performed in cellular reaction

networks. In vitro molecular computations have been per-

formed with gene expression networks (Benenson et al.,

2004). Through the adoption of artificial chemistries (Dit-

trich et al., 2001; Dittrich, 2001) to implement chemical

networks, it has been shown that algebraic functions can

be constructed using a bottom-up approach based on motifs

that implement elementary mathematical operations (Buis-

man et al., 2008). Related research employs in silico evolu-

tionary algorithms for the discovery of conceptual networks

that perform basic computations (Deckard and Sauro, 2004;

Paladugu et al., 2006; Lenser et al., 2007).

In the current study, we have developed a comparable ge-

netic algorithm that allows for the evolutionary design of

reaction networks with a desired function. For given input

molecules and their initial amounts, the desired reaction net-

work needs to process these input molecules and generate

an output pool of products whose concentrations correspond

to a desired function of the amounts of inputs. In contrast

with related work, our approach guarantees networks that

respect the law of conservation of mass explicitly. Molec-

ular species in our reaction networks are considered to be

strings consisting of imaginary atoms and by satisfying the

condition that the total set atoms in reactants and products in

a reaction must be equal for all reactions in the network, we

can guarantee the conservation of mass in our reaction net-

work. By enforcing this condition upon the construction of

reaction networks and within the genetic operators in our ge-

netic algorithm, it is guaranteed that the evolved networks do

not violate the law of mass conservation. Other approaches

either test for mass conservation at each fitness evaluation,

e.g., Lenser et al. or ignore the law of mass conservation

completely, e.g., Paladugu et al.

First, we give an overview of the implementation of the

reaction networks within our artificial chemistries frame-

work and how they are evaluated with respect to a desired

input-output function. Together with a set of genetic oper-
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Figure 1: A small reaction network with two reactions.

ators that act on the networks, we can implement a genetic

algorithm to artificially evolve such networks. Next, we re-

view some networks that have been evolved with the soft-

ware implementation, where the target function is the square

root, i.e., for an amountX inputmolecules of a specific type,

the reaction network needs to generate an output molecule

with desired amount
√

X at steady state. We review some

evolved networks and discuss small network motifs that act

as kernels in these square root networks. We analytically

study one elementary network motif that computes a square

root-like function and furthermore examine its behavior with

a stochastic approach to model instantiations of the system

with small molecular counts.

Methods

Molecules and reaction networks

In the artificial chemistries deployed by our genetic algo-

rithm, we let an alphabet Σ denote the available atoms and

strings s with variable length over Σ are possible molecular
species. The number and the order of atoms in the string de-

fines the uniqueness of a species. We define the molecular

mass of a species or string s as a vectorm where ml is the

number of characters l ∈ Σ in s.
In order to abstract from natural biochemical networks,

we say that an individual – which represents a reaction net-

work – comprises of a number of reactions that take specific

reactants from a pool of molecules, execute a specific trans-

formation on these reactants at a predefined rate and return

their products to the molecular pool. Each reaction has at

most two reactants and two products. This limitation is in-

spired by nature, where enzymatic reactions with more than

two substrates are rare. In order to guarantee mass conserva-

tion within the chemical networks, it is required that the total

mass of reactants in a reaction equals the mass of the prod-

ucts. All of the reactions in this study are assumed to follow

the law of mass-action kinetics according to a rate k > 0,
i.e., a reaction occurs with a propensity that is proportional

to k and the concentrations of available reactant molecules.
As an example, in a setup with alphabet or atom set Σ =

{A, B}, the reaction network of an individual as depicted in
Figure 1 contains the valid reactions r1 = AB → A + B
and r2 = AB+B → BA+B, with their respective reaction
rates k1 and k2. Clearly the total mass, i.e., the number of

atoms A and B, is conserved in these reaction.

Network evaluation and fitness

An individual or network is evaluated by providing the net-

work with an input pool of reactants and observing the

amounts of participating molecules over time. We let an

ordinary differential equation (ODE) model of the reaction

network compute the transient behavior of the network and

if the system reaches a steady state, we compare the result-

ing pool of products with a desired output of the network,

as a function of the input. As the output concentration of a

molecule in the pool is closer to the desired output, for a set

of inputs, the fitness of the individual is higher.

In a first step to compute the fitness of an individual, an

ODE representation of its reaction network is constructed.

Since we have assumed mass-action kinetics, this step is

fairly straightforward and results in the following ODE sys-

tem for our example network with reactions r1 and r2 as in

Figure 1:

d[AB]/dt = −k1[AB] − k2[AB][B]
d[A]/dt = d[B]/dt = k1[AB]

d[BA]/dt = k2[AB][B]

where [s] denotes the dimensionless amount or concentra-
tion of molecular species s.
In our genetic algorithm, reaction networks are stored as

System Biology Markup Language (SBML) objects (Hucka

et al., 2003). A network in this format is passed on to the

SBML ODE Solver Library (Machne et al., 2006) which

constructs an ODE model of the network and solves it with

numerical integration. The ODE solver reports the steady

state behavior of the network back to the fitness function,

when a steady state is detected. If the ODE solver cannot

find a steady state within a reasonable amount of time – a

network may show, for example, stable oscillatory behavior,

keeping it from reaching a steady state – the individual is

eliminated from the population.

In order to compute the fitness of an individual in rela-

tion to an input-output function that needs to be approxi-

mated by the evolutionary algorithm, we iteratively run the

ODE model for a set of input and output pairs. At time 0 of

the ODE model, we set the initial amount of molecules for

specifically designated input molecules. All other molecules

in the system are initialized with concentration 0. With these

initial values, the steady state of the ODE system is com-

puted with the numerical ODE solver. For each molecule

in the system, we compute the squared difference between

the desired output and the steady state concentration of that

molecule. The molecule with the smallest mean squared er-

ror for varying inputs is considered to be the output molecule

and the fitness of the individual is inversely proportional to

its mean squared error. Consequently, as the steady state

concentration of a molecule is closer to the desired output,

the fitness of the individual is higher. If an individual is de-

tected not to reach its steady state for at least one input set-

ting, its fitness is set to 0. It should be noted that we select

specific molecules to act as input molecules of our system,

but we do not select a specific molecule to act as the output

molecule of the reaction network. As the evolutionary algo-
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rithm is free to let all molecules act as output molecules, it

is expected that the genetic algorithm is better able to find

approximations of the desired function.

Genetic algorithm

The population of the genetic algorithm is seeded with ran-

domly generated reaction networks, with a fixed number of

reactions in each individual. In a random reaction, a random

set of atoms is distributed over the two reactants and prod-

ucts, such that the total mass of reactants and products is

equal. For all of the experiments in this paper, it sufficed to

initialize the reactions with 2 to 7 random atoms. Mutations

allow for larger molecules in the reaction networks if these

would be required by the evolutionary process, as discussed

later. Finally, a reaction rate is assigned to each reaction,

uniformly chosen between 0 and 10.

To generate a new individual in the next generation’s pop-

ulation, we select two parent individuals from the current

population, proportionally to their fitness as defined above.

We apply a uniform crossover operator and iterate over the

resulting set of reactions with a mutation operator to gener-

ate the offspring individual which is evaluated and appended

to the new population of the next generation.

With uniform crossover, we iterate over the ordered lists

of reactions in both parents, where both reactions have an

equal probability of ending up in the offspring’s reaction net-

work. Consequently, as the population is initialized with re-

action networks with a fixed number of reactions, this num-

ber of reactions is maintained throughout the evolution of

the population. This allows the user to enforce a specific

number of reactions in the evolved reaction network and to

prevent network bloat.

For the mutation operator, we iterate over the reactions in

the offspring reaction network and mutate each reaction with

a mutation parameter µ (usually, µ = 0.1). The mutation
operator for a reaction consists of two steps, one changing

the reactants and products, where the second step mutates

the reaction rate of the reactions. Firstly, in order to change

the constituent products and reactants of a reaction, a ran-

dom atom from alphabet Σ is inserted at a random position

of a random reactant and a random product with probability

µ/2. Similarly, a randomly chosen atom is removed from

both a reactant and a product in the reaction, also with prob-

ability µ/2. Complete reactions are replaced with new, ran-
domly generated reactions with a probability µ. Through
these first mutation operators, the topology of the reaction

network changes. Secondly, we multiply the reaction rate

with a random number from a Gaussian distribution with

mean 1 and standard deviation µ. This latter mutation oper-
ator does not change the topology of the reaction network,

but it is involved in the parameter optimization of the net-

work.

Typical runs of the genetic algorithm have been seeded

with 100 individuals with just a few reactions in each indi-

vidual. Our primary goal here is to find small networks –

with up to 10 reactions – for elementary mathematical oper-

ations. However, with a limited reaction network size, the

evolutionary algorithm may not be able to find exact im-

plementations of the desired function – not all input-output

functions can exactly be represented as a reaction network

with a finite number of reactions – such that an approxima-

tion of the behavior evolves within the available space of

network behaviors.

Parameter optimization

In addition to the above genetic algorithm that evolves both a

network topology and reaction rate parameters, we have also

adopted a limited version of the genetic algorithm for the op-

timization of reaction rates in a fixed network topology. In

this genetic algorithm, the initial set of individuals is popu-

lated with networks of the same topology, but with random

reaction rates (uniformly distributed between 0 and 10). The

mutation operator in this algorithm is only allowed to mutate

the reaction rate parameters of the constituent reactions, ac-

cording to a normal distribution as described above. With

uniform crossover, the reaction rates of the corresponding

reactions are exchanged.

Networks that have been found by the main genetic al-

gorithm are further optimized by this genetic algorithm, to

obtain a network that behaves optimally for a given topol-

ogy. Additionally, we have adopted this parameter optimizer

to optimize user-defined networks and their corresponding

desired behavior. Typical runs of the parameter optimizer

assumed populations of 100 individuals for 100 generations.

Results

We have adopted the genetic algorithm to evolve networks

that compute elementary mathematical operations. Some

of the networks to compute these operations are straightfor-

ward. For example, a network that computes the difference

[A] − [B] of input molecules A and B, with [A] > [B] can
be as simple as the single reaction A + B → AB with rate

k > 0. Each moleculeA binds with a B molecule, such that

[A] can act as the output in the chemical equilibrium of the
system, which is equal to the initial amount of A minus the

initial amount ofB. A network that is not as straightforward
to construct a network that computes the square root of an

amount of input molecule.

Square root networks

We have used our genetic algorithm to construct networks

that compute the square root of the initial amount of input

molecule ABC, with alphabet Σ = {A, B, C}. The ODE
model of a candidate network is evaluated by setting the ini-

tial amount of molecule ABC to X = 1, 4, 9, 16, . . . , 100
in consecutive runs. The molecule whose amount at steady

state is nearest to the desired output
√

X is designated as the
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Figure 2: Three evolved networks that compute the square

root function. The input molecule is denoted by the dashed

outline, where the output is in bold.

output molecule of the network and its mean squared error

is reported back to the fitness function.

Three networks that have been evolved with our genetic

algorithm are shown in Figure 2. The first network, with

mean squared error 0.119 for the 10 desired outputs, whose
input is molecule ABC outputs a molecule B and consists

of the following 4 reactions

ABC
k1−→ B + AC with k1 = 1.159

AC + B
k2−→ CA + B with k2 = 3.716

ABC + CA
k3−→ BAC + CA with k3 = 5.590

AC
k4−→ A + C with k4 = 7.881.

A second network that outputs an amount of moleculesB
that approximates the square root of moleculesABC (mean

squared error equals 0.226) is given by the reaction network

ABC
k5−→ B + CA with k5 = 7.359

ABC + ABC
k6−→ B + ABCAC with k6 = 1.502

ABC + B
k7−→ CBBA with k7 = 1.468.

The third evolved reaction network with input ABC and

output BB is given by

ABC
k8−→ B + CA with k8 = 5.56937

CA + B
k9−→ CBA with k9 = 6.62825

B + B
k10−−→ BB with k10 = 8.34484

where the mean squared error between the counts of output

molecule BB and the desired output is 0.335.

It should be pointed out that the evolved networks have

been cleaned up manually to only show the reactions that

are essential for the networks’ square root behavior. Dupli-

cate reactions have been merged and reactions that further

Figure 3: Four network motifs act as the kernels of evolved

square root networks.

process waste particles have been removed without affect-

ing the output generating behavior of the network. E.g., in

the second evolved network, waste molecule CBBA is fur-

ther processed into smaller waste molecules BB and CA,
but this reaction does not interfere with the production of

output molecule B from input ABC.
The relatively small errors show that all three networks

provide good approximations of the desired square root be-

havior, within the range of inputs. Because the fitness is

only evaluated within this input range, the networks do not

guarantee a generally good approximation for other inputs.

Square root kernels In these and other networks that have

been evolved to compute the square root of an input, a com-

mon behavioral subnetwork can be observed. In this com-

monmotif, a first set of reactions generates outputmolecules

from the input molecules. The output molecule then takes

part in reactions that remove remaining inputs from the pool.

This behavior is at the core of the first and second evolved

square root networks, as in Figure 2.

Figure 3 shows 4 elementary networkmotifs that are com-

mon to most of our evolved square root networks. All of

these elementary kernels can be implemented such that they

abide to the law of mass conservation. We have constructed

these networks and optimized their parameters to study

whether the behavior of these network motifs can be related

to the square root. Table 1 gives the reaction rates for these

networks such that the error for inputs {1, 4, 9, ..., 100} is
approximately minimal. Networks (3) and (4) behave worst,

showing a steady state amount of output molecules that is

linearly related to the input. Network (1) provides a good

approximation of the square root network, where the perfor-

mance of network (2) is mediocre. It should be pointed out

that network (1) can be further optimized and has a mean

squared error of 0.049 when kout/kwaste = 0.579.

Analysis of a square root kernel

Since network motif (1) in Figure 3 provides the best ap-

proximation of the square root, we study the system analyt-

ically, in order to understand how the elementary network

is capable of computing a good approximation of the square

root function. We let x, y and w denote the amounts of in-

put, output and waste molecules, and k1 and k2 the reaction

rates of the output and waste producing reactions, respec-
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kernel kout kwaste MSE

(l) 0.931 1.454 0.136

(2) 4.111 0.659 0.608

(3) 0.663 19.157 2.142

(4) 3.039 3.544 2.142

Table 1: Optimized parameters kout and kwaste of the cor-

responding output and waste producing reactions for the

square root kernels and their respective mean squared errors

tively. The network can be modeled by the following system

of differential equations

dx(t)
dt

= −k1x(t) − k2x(t)y(t),

dy(t)
dt

= k1x(t),

dw(t)
dt

= k2x(t)y(t).

For the computation of the square root of a number X ,
the initial concentrations for this system are x(0) = X ,
y(0) = 0 and w(0) = 0. The value of y(t) for large t
then hopefully approaches

√
X. Note that the differential

equations are nonlinear, which makes it difficult to obtain

analytical results.

Limiting values We first compute the behavior of the sys-

tem for t → ∞. Trivially, the limiting value of the input
concentration x(t) is given by limt→∞ x(t) = 0. Define the
limiting values of output and waste by

ŷ = lim
t→∞

y(t), ŵ = lim
t→∞

w(t) .

We try to compute the value of ŷ. For all t ≥ 0 the sum
of the concentrations x(t)+ y(t)+w(t) is constant. In view
of the initial condition this means that

x(t) + y(t) + w(t) = X . (1)

Since y(t) is supposed to approach the square root of X , it
is obvious to consider y2(t). A simple computation gives

dy2(t)
dt

= 2k1y(t)x(t) =
2k1

k2

dw(t)
dt

.

Using the initial conditions this implies that

y2(t) − 2k1

k2
w(t) = 0 . (2)

Since (1) and (2) hold for all values of t, we conclude that

ŷ + ŵ = X, ŷ2 − 2k1

k2
ŵ = 0 .

Elimination of ŵ from these equations leads to the quadratic
equation

ŷ2 − 2k1

k2
(X − ŷ) = 0 .

The non-negative solution of this equation is given by

ŷ = −k1

k2
+

√
2k1
k2

X + k2
1

k2
2

.

By selecting k2 = 2k1 we obtain

ŷ = −1
2

+
√

X + 1
4 .

Hence for X not too small, the chemical reaction network

computes indeed an approximation of
√

X if k2 = 2k1. Al-

though all results can also be obtained for the general case,

we shall assume in the sequel that k2 = 2k1. Note that the

GA does not find this relation, as it attempts to compensate

for the extra−1/2 in the steady state relation of our network.

Analytical solution In fact, in this case it is even possible

to compute the analytical solution of the system. Using the

relations (1) and (2) we can eliminate x(t) and w(t) from
the system of differential equations. The resulting equation

for y(t) is then

dy(t)
dt

= −k1y
2(t) − k1y(t) + k1X

Since a single first order differential equation can be solved

by integration, even if it is nonlinear, we can integrate this

equation. This results in

y(t) = a tanh(k1at + C) − 1
2

.

where a =
√

X + 1
4 and C = arctanh( 1

2a ). In Figure 4
we give the transient output concentration for the case X =
400 and k1 = 1/2, 1 and 2. All three solutions approach
√

X (more precisely, they approach − 1
2 +

√
X + 1

4 ), but

the speed of convergence increases with increasing k1.

Stochastic model of a square root kernel

Modelling a chemical reaction system using differential

equations that describe the time evolution of concentrations

is limited to situations where smoothly varying concentra-

tions exist. If the number of molecules is limited, this as-

sumption does not hold anymore. In that case a discrete

stochastic model can be used.

Probability distribution We now describe a simple

Markov-like stochastic approach to the square root network.

Suppose initially there are X input molecules, and no out-

put and waste molecules. In each reaction of the system one

input molecule transforms to either an output molecule or a
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Figure 4: exact solution forX = 400 and k1 = 1/2, 1 and 2

waste molecule. Since the total number of molecules is al-

ways equal to X , the state of the system can be described

by a tuple (q, r) where q is the number of input molecules
and r is the number of output molecules. The corresponding
number of molecules of the waste compound is then trivially

given byX− q− r. In general, in a state (q, r) there are two
possible state transitions:

1. One of the input molecules transforms into an output

molecule. This step happens with propensity k1q.

2. The other possibility is that an input molecule transforms

into a waste molecule. This transition requires an output

molecule as catalyst and has a propensity k2qr.

Since the probabilities of these two possible reactions are

nothing but normalised propensities, the actual probabilities

of the first and second possible reaction are k1
k1+k2r = 1

1+2r

and k2r
k1+k2r = 2r

1+2r respectively, with k2 = 2k1. Note that

these transition probabilities do not depend on the number

of input molecules q. Hence the transition probabilities de-
pend only on the number of output molecules r. This means
we can describe the system with the transition graph shown

in Figure 5. A step to the right in this transition graph

corresponds with an output producing reaction. In state r,
i.e., with r output molecules, this reaction has probability
pr = 1

1+2r . A step from state r to state r in the transition
graph corresponds with an input to waste reaction. This re-

action has probability 1 − pr = 2r
1+2r .

Initially the system starts with X input molecules and

no output and waste molecules. In terms of the transition

graph the system starts in r = 0. After X steps all input

molecules are used and the system can be in any of the states

r = 1, . . . , X Note that, since p0 = 1, the system cannot

produce waste particles and is forced to move to state 1.

Let fs be the distribution of the number of output

molecules after s steps. So fs(r) is the probability that the

X-1 X
pX−1

1 − pX−11 − pr

r
pr

10

1 − p11 − p0

. . .. . .p1p0

Figure 5: System described by number of output molecules
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Figure 6: Distribution fs(r) for s = 64, 121, 225 and 400

system is in state r after s steps. Initially f0(0) = 1 and
f0(r) = 0 for r = 1, . . . , X . The successive distributions
fs can easily be computed recursively. It is easily seen from

Figure 5 that

fs+1(r) =
{

(1 − pr) fs(r) if r = 0
(1 − pr) fs(r) + pr−1 fs(r − 1) if r ≥ 1.

(3)

With this formula the distributions fs can easily be com-

puted. In Figure 6 the results are shown for s = 64, 121, 225
and 400. As can be seen from Figure 6 the various distribu-
tions fs have their maximum value in

√
s. This means that

it is most likely that the stochastic system, started with X
input molecules, ends after s = X steps with

√
X output

molecules. However, as Figure 6 shows, other final numbers

of output molecules are very well possible.

Mean of the probability distribution The results of the

previous subsection suggest that the probability distribution

of the number of output molecules after s steps in centered
around

√
s. We now try to give a mathematical basis for this

observation. Let the mean of probability distribution f s be

given by

Ms =
X∑

r=0

rfs(r) .
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Figure 7: pr and fs(r) as function of r for s = 225

We try to computeMs. From (3) we obtain for s < X .

Ms+1 =
X∑

r=0

rfs+1(r)

=
X∑

r=0

r(1 − pr) fs(r) +
X∑

r=1

rpr−1 fs(r − 1)

=
X∑

r=0

r(1 − pr) fs(r) +
X∑

r=0

(r + 1)pr fs(r)

=
X∑

r=0

r fs(r) +
X∑

r=0

pr fs(r)

= Ms +
X∑

r=0

pr fs(r) . (4)

The behavior of pr and fs(r) as function of r are shown in
Figure 7 for the case s = 225. This figure shows that the
largest contribution to the summation in (4) comes from the

r values between 10 and 20. Hence we can approximate
the summation in (4) by replacing pr by a constant value

pr0 that gives a good approximation of pr in the interesting

region. In the situation of Figure 7 we could use r0 = 15,
thus approximating pr by the constant p15.

For the general case it is tempting to use r0 =
√

s, since
we conjecture that the maximum of the distribution f s(r)
occurs at r =

√
s. However, since this the goal of this anal-

ysis is to compute the mean Ms, it would not be correct to

use this conjecture at this point. An alternative is to use the

value of Ms for r0. Since Ms is the mean of the “Gaus-

sian like” distribution fs(r), the biggest contribution to the
summation in (7) originate from r values close toM s. Thus,

approximating pr in (7) by pr0 with r0 the (approximate)
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Figure 8:
√

s,Ms and the approximationM ′
s

mean of fs(r), yields the recurrence relation

M ′
s+1 = M ′

s + pr0

X∑

r=0

fs(r) = M ′
s + pr0 = M ′

s + 1
1+2M ′

s
.

(5)

It is easily verified that this recurrence relation converges

to
√

s − 1
2 . In fact, it can be shown analytically that the

differenceM ′
s−(

√
s− 1

2 ) is of the orderO( log s√
s

). In Figure 8
the exact mean Ms of the distribution, the approximation

M ′
s and the function

√
s are shown. Clearly the exact mean

of the distributionMs is close to the “goal”
√

s. So indeed in
the stochastic model also the square root is computed. The

approximationM ′
s obtained from the recurrence relation (5)

is a good approximation of the exact meanM s.

Finally we mention that it is possible to compute the stan-

dard deviation of the output, leading to

σX = O(X1/4) .

This implies that, although the standard deviation increases

with increasing input, the coefficient of variation, i.e., the

quotient σX/MX , behaves like O(X−1/4) as X → ∞.
Consequently the system becomes more and more determin-

istic as X increases.

Conclusion and Discussion

We have developed a genetic algorithm that allows us

to evolve artificial mass-conserving reaction networks that

compute a function in terms of amounts of input and out-

put molecules. We have evolved networks that compute

an amount of output molecules, approximately equal to the

square root of the initial amount of input molecules. Several

square root kernels have been identified, resulting in one el-

ementary network motif with two reactions that provides a
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good approximation of the square root function. Determin-

istic and stochastic analyses confirm the desired behavior of

this network motif.

The artificial chemistries adopted in the reaction networks

in this approach provide a rather rudimentary abstraction of

biochemical networks. One limitation of the resulting net-

works is that they are single shot networks. Once the system

has reached its equilibrium state, it has to be reset – waste

and output molecules need to removed from the system – be-

fore a new amount of input molecules can be introduced into

the system. By only allowing the input molecule to serve as

a catalyst in the reactions and by providing sufficient (con-

stant) resourcemolecules as additional inputs of the systems,

this problem can be overcome. In future work, the assump-

tion of mass-action kinetics is to be expanded to Michaelis-

Menten kinetics, which provides more realistic reaction dy-

namics for the enzymatic reactions envisioned by our ap-

proach, but prove harder to grasp analytically. The current

implementation can also be adapted to evolve transient be-

haviors, instead of solely involving the limit behavior of the

model as the target of the output function. As such, the ge-

netic algorithm can be adopted to evolve for example oscilla-

tory networks or networks with specific transient responses

to temporal inputs.
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Abstract

We present an informal description of a general approach
for developing decentralized distributed gradient descent op-
timization algorithms for teams of embodied agents that need
to rearrange their configuration over space and/or time, into
some optimal and initially unknown configuration. Our ap-
proach relies on using embodiment and spatial embeddedness
as a surrogate for computational resources, permitting the re-
duction or elimination of communication or shared memory
for conventional parallel computation. Intermediate stages of
the gradient descent process are manifested by the locations
of the robots, instead of being represented symbolically. Each
point in the space-time evolution of the system can be con-
sidered an approximation of the solution, which is refined by
the agents’ motion in response to sensor measurements. For
each agent, motion is approximately in the direction of the
local antigradient of the global cost function. We illustrate
this approach by giving solutions to two non-trivial realistic
optimization tasks from the robotics domain. We suggest that
embodied approximations can be used by living distributed
systems to find affordable solutions to the optimization tasks
they face.

Introduction
We know by now that The World Is Its Own Best Model
(Brooks (1990)). Brooks’ recommendation to avoid inter-
nalizing the world - a costly and error-prone process - but
rather to sense and react to it directly whenever possible,
has become part of the robotics canon. This paper makes
explicit an inversion of this approach, in which where the
world is used to externalize a computational process.

In particular, we present an informal description of a gen-
eral approach of developing decentralized distributed gradi-
ent descent optimization algorithms for teams of embodied
agents that need to rearrange their configuration over space
and time into some optimal and initially unknown configura-
tion. This class of problems includes many classical mobile
agent problems such as formation control, facility location,
rendezvous, navigation and interference reduction. Given
the intractability of finding optimal solutions to these large,
high-dimensional joint state-space planning problems, gra-
dient descent methods are commonly used to find approxi-
mate solutions.

The proposed approach is to use embodiment and spatial
embeddedness as a surrogate for computational resources,
permitting the reduction or elimination of communication or
shared memory for conventional parallel computation. In-
termediate stages of the gradient descent process are mani-
fested by the locations of the robots, instead of being repre-
sented symbolically. Each point in the space-time evolution
of the system can be considered an approximation of the so-
lution, which is refined by the agents’ motion in response
to sensor measurements. For each agent, motion is approxi-
mately in the direction of the local antigradient of the global
cost function.

Gradient-based formation control and navigation have
been widely used in robotics (Zelek, 1999; Tanner and Ku-
mar, 2005). The idea of embodied computation was recently
presented in Hamann and Wörn (2007), however contrary
to the authors’ claim we believe that some globally defined
algorithms can be implemented by embodied computation.
Finally, Loizou and Kumar (2007) have shown biologically
plausible navigation and tracking algorithms which involve
using other agents locations to calculate a local gradient. To
our knowledge, this paper is the first to explicitly present
embodied approximation as a method to implement parallel
gradient optimization algorithms.

We illustrate this approach by giving solutions to two
non-trivial realistic optimization tasks from the robotics do-
main. This work is in the context of our interest in large-
scale distributed systems such as animal colonies and multi-
robot systems, which work together to solve complex tasks.
We are interested in identifying mechanisms that exploit the
characteristics of the embodied multi-agent domain to solve
complex computational problems. We are particularly in-
terested in solving practical resource allocation problems in
multi-robot systems, with energy autonomy as the key moti-
vating problem. This is the motivation for our choice of ex-
ample problems: two different versions of energy-efficient
robot-robot rendezvous, useful for for recharging or refuel-
ing, or as a component of various other tasks. While looking
for ways to find meeting places which minimize the travel-
ing costs for groups of robots, we developed fully decentral-
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ized heuristic methods which require no range information
to converge to a good approximation of the optimal solution.
These heuristics afford a very simple implementation.

The key insight that underlies our approach is that the spa-
tial configurations of the agents themselves could be consid-
ered as an approximate solution to the entire problem. An
individual agent can move itself, thus refining its local com-
ponent of the current solution approximation. No represen-
tation of the problem, or the current solution, needs to be
held by any robot: they manifest the solution by their phys-
ical configuration. This is an example of what Payton has
called “world-embedded computation” (Payton et al., 2001)
and exploits the property of “strong embodiment” identified
by Brooks (1990), extended to a multi-agent system.

Distributed gradient optimization with
embodied approximation

Assume a system of n spatially embedded agents is de-
scribed by a spatial configuration s ∈ H where H =
H1×H2×. . .×Hn and Hi is a vector space of possible con-
figurations of agent i. We will denote the i-th component of
s as si. Every agent has control over the first-order dynam-
ics of its own configuration which allows it to continuously
change its configuration possibly with some restrictions on
the speed of this change. We also assume that every agent
i can sense the spatial configuration of a set of other agents
ψi. This set can change as the system evolves. Given some
cost function J : H → R we want to rearrange the sys-
tem into an optimal configuration s∗ = arg mins J(s). Note
that the cost function may be parametrized by initial agent
configuration s0.

If the function J has certain mathematical properties (e.g.
is continuously differentiable) then a good approximation
to an optimal configuration can be found in a centralized
way by using one of many gradient optimization algorithms.
It will start with some initial approximation and iteratively
change it in constant or decreasing steps in the direction of
(approximated) antigradient. Details of these particular al-
gorithms are irrelevant for present discussion. This central-
ized solution will need a central processor with amount of
memory of the order of the size of the state vector s as well
as means to communicate s∗ to all agents once an accept-
able approximation is found. Once all agents know their
component of s∗ they can proceed directly towards it. If J
is parametrized by initial configuration of agents S0 then the
means of communicating or sensing this configuration by
the central processor are required.

Since the system of n agents in question has n proces-
sors that can work in parallel it is natural to try to use this
resource to get a parallel solution. Distributed implementa-
tion of iterative algorithms are well-studied (Baudet, 1978;
Bertsekas, 1982; Kung, 1976). It is known that if proces-
sors synchronously compute and communicate their partial
results to other processors then the resulting distributed pro-

cedure is equivalent to a single-processor implementation
thus preserving its convergence properties. Further, under
certain realistic conditions (like small iteration steps and
bounded communication delays) the synchrony assumption
can be relaxed and processors can be allowed to compute
at different speeds and communicate sporadically while still
giving the same convergence properties as original serial al-
gorithm (Tsitsiklis et al., 1986). Therefore, we can assign
every agent i the task of iterative optimization of its own
component si of the global state vector s by changing si in
the direction of the corresponding component of the anti-
gradient vector ∇Ji and periodically communicate the cur-
rent value of si to other agents as well as receive updates of
the current approximations of sj , j %= i from other agents.
Note, that the amount of information from other processors
needed to compute ∇Ji depends on the particular problem.
If ∇Ji depends only on si then no additional information
is necessary and si can be computed independently of other
processors. If ∇Ji depends on some other components of
the global state s then the current values of these compo-
nents should be received from the processors which compute
them. We denote the set of agents that compute components
necessary to calculate∇Ji by ξi. If the assumptions of Tsit-
siklis et al. (1986) are met, then eventually every agent will
know the approximation s∗i and will be able to proceed to-
wards it.

However, a physical multi-agent system is much more
than simply n parallel processors. Physical embodiment im-
plies spatial embeddedness, and for some problems these re-
markable dual properties allow us to drastically reduce or
totally eliminate the need to communicate intermediate re-
sults of calculations, or indeed any description of the prob-
lems or solutions, substituting instead direct physical obser-
vations. In addition, instead of waiting for an iterated algo-
rithm to converge agents can perform reconfiguration during
the optimization thus giving the resulting algorithm an at-
tractive anytime property. The high-level description of the
approach is given in Algorithm 1.

Algorithm 1 Gradient optimization with embodied approx-
imation

1: for all agents i do
2: sense current configurations sψ

j for j ∈ ψi ∩ ξi

3: update using communication current configurations
sψ

j for j ∈ ({1, 2, . . . , i− 1, i + 1, . . . , n}\ψi) ∩ ξi

4: Di ← ∇Ji(si, sj|j∈ξi
)

5: if ∇Ji exists and component can be improved then
6: move in direction −Di

7: else
8: stay still
9: end if

10: communicate new configuration to other agents
11: end for
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The key idea is to use agent configurations directly as
approximations to corresponding components of the global
goal configuration. Thus all agents move in the (approxi-
mated) antigradient direction which is calculated at Step 4
using their current configuration as the current approxima-
tion to the solution. The communication at Step 3 is nec-
essary only if not all of the information from the relevant
agents belonging to set ξi can be acquired by direct sens-
ing at Step 2. In the best case no communication is re-
quired as all necessary information is available via sensing,
so ψi ⊇ ξi. If some components nevertheless have to be
acquired by communication, this could be done in an asyn-
chronous sporadic manner as was argued above.

This approach makes agents themselves serve as a shared
“memory” for the parallel computation they perform where
the information about current approximation is embodied in
physical configuration of the agents. Once the values of nec-
essary components are available, gradient direction ∇Ji or
an approximation to it can be calculated and agent can move
in antigradient direction thus improving approximation of
component si and global state s. In a certain sense, agent
relocation becomes a part of a computation process, cre-
ating a parallel computer comprised by agent’s processors
and physical bodies of agents. The algorithm continues un-
til convergence is reached which is detected in a way specific
for the particular problem and algorithm employed.

Applications
We illustrate the idea of optimization with embodied approx-
imation by two problems of energy-efficient multi-robot co-
ordination which we have studied in previous work. The
first problem is to assemble a team of robots at an initially
unknown point which minimizes the total energy spent on
relocation (Zebrowski et al., 2007). The second, more dif-
ficult problem is an instance of the multi-facility location
problem which asks to plan a route for a team of robots to
rendezvous a single dedicated service robot, possibly each
at a different point (Litus et al., 2008, 2007).

Energy-efficient single-point rendezvous
Assume n robots are located at positions ri, i = 1 . . . n.
When a robot moves, it expends energy proportional to the
length of its trajectory. Robots have individual energy costs
ci per unit of traveled distance, thus if robot i moves from a
to b, it spends ci||a− b|| units of energy. Now the task is to
find a point p∗ which minimizes the total energy spent by all
robots for meeting at that point.

Definition 1 (Energy-efficient rendezvous problem). Given
robot locations ri ∈ Rd, i = 1, . . . , n find rendezvous point

p∗ = arg min
p

J(p) =
n∑

i=1

ci||p− ri|| (1)

Historically, this problem has a variety of names including
the Fermat-Steiner problem, Weber problem, single facil-
ity location problem, and the generalized Fermat-Torricelli
problem. Though it is not possible to find a closed-form so-
lution for this problem, the properties of its solutions are
well known (see Gueron and Tessler (2002) for the case
n = 3 and Kupitz and Martini (1997) for the general case).
Effective numerical algorithms exist (Rosen and Xue, 1991).
Interestingly, it is also possible to describe the solution using
a mechanical interpretation as a system of idealized strings,
pulleys and weights (Polya, 1968).

The antigradient of the cost function is

−∇J(x) =
n∑

i=1

u(x, ri), u(a, b) =
b− a

||a− b|| (2)

That is, the antigradient at some point is simply a sum of unit
vectors pointing in the directions of original robot locations.
Note that antigradient is not defined at the locations of the
robots themselves while one of these locations can be a solu-
tion. If points ri are not collinear (not lying upon a straight
line), the goal function in (1) is strictly convex, which en-
sures the uniqueness of p∗ if n ≥ 3. In this case solution is
characterized by the following theorem (Kupitz and Martini,
1997).
Theorem 1. If ri are not collinear and for each point ri

||
n∑

j=1

cj
rj − ri

||rj − ri||
|| > ri, i %= j (3)

then p∗ %= ri for any i and ∇J(p∗) = 0 (the floating case).
If (3) does not hold for some ri then p∗ = ri (the absorbed
case).

A simple embodied approximation method gives a use-
ful solution to this problem. Let all robots compute the so-
lution point approximation simultaneously by checking the
absorbed case condition in Theorem 1 and moving along
antigradient direction if the condition is not met. This pro-
duces the distributed Algorithm 2 which runs until robots
converge to a single point. Note that since robots are em-
bodied they can not occupy the same point, thus we consider
that two robots met whenever the distance between them is
closer than some meeting range ε.

In order to calculate the antigradient at its current loca-
tion, each robot needs to know the direction towards the
original robot locations ri. This could be achieved either by
means of global localization and memorizing ri or by setting
static beacons at points ri (hence the name of the algorithm).
Both localization and static beacons are expensive solutions,
but embodied approximation can be used once again to get
rid of the necessity to calculate directions to ri.

Once some of the robots move from their original loca-
tions ri a new instance of the rendezvous problem is cre-
ated. In this new instance all robots are located at the new
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Algorithm 2 Static algorithm for energy-efficient ren-
dezvous

1: for all robots i do
2: Update current location of self, xi

3: Di ←
∑

i|x#=ri
ciu(x, ri), u(a, b) = a−b

||a−b||
4: if x = ri for some i then
5: c← ci

6: else
7: c← 0
8: end if
9: if ||Di|| < c then

10: stop
11: else
12: move in direction Di

13: end if
14: end for

“original” locations ri thus sensing the instantaneous direc-
tions to the robots is enough to approximate the antigradient
value. Hence memorizing ri or using static beacons is re-
placed by using the robots as dynamic beacons resulting in
the distributed Algorithm 3.

Algorithm 3 Dynamic algorithm for energy-efficient ren-
dezvous

1: for all robots j do
2: Aj ← {i|||ri − rj ||≤ ε}, meaning the set of robots

which are closer to rj than meeting threshold ε. Note
that j ∈ A, thus A has at least one element.

3: Dj ←
∑

i/∈A ci
$d(rj , ri).

4: c←
∑

i∈A ci

5: if ||Dj || < c then
6: stop
7: else
8: move in direction Di

9: end if
10: end for

A set of experiments was conducted to compare the per-
formance of these algorithms with the performance of a cen-
tralized optimization algorithm (see Zebrowski et al. (2007)
for details). Some typical results are shown in Table 1. The
centralized static algorithm calculates the optimal meeting
point p∗ exactly once and commands all robots to proceed
directly to that point. The centralized dynamic algorithm pe-
riodically recomputes the meeting point incorporating new
positions of the robots while they move towards their ren-
dezvous. It could be seen that distributed methods achieve
the quality of solution comparable to centralized methods.
The difference is explained by the fact that the trajectory
along the antigradient is not straight and thus longer then
the direct path to the optimal meeting locations (see Fig. 1).
However, in applications that require scalability distributed

(a) Centralized static (b) Local static

(c) Centralized dynamic (d) Local dynamic

Figure 1: Typical paths taken to single point rendezvous
(Map 2)

Table 1: Mean Total Energy Used For Rendezvous. All
Standard Deviations < 5%

Dynamic Static
Map Centralized Distributed Centralized Distributed

1 149.99 151.56 149.92 152.79
2 105.21 115.21 105.25 119.00
3 77.56 80.49 77.28 81.48
4 477.89 503.18 476.97 530.11

algorithms with low demands on sensing and communica-
tion will be preferable even if they produce slightly worse
results than centralized solutions. As the number of robots
grows so does the running time of a centralized algorithm.
Often this growth is fast enough to render the centralized so-
lution impractical for a fairly small number of robots. At the
same time scalable distributed solutions work with any num-
ber of robots, sometimes at a price of giving worse results.

Ordered Frugal Feeding Problem
Consider a team of worker robots that can recharge by dock-
ing with a dedicated refueling (or equivalently, recharg-
ing) robot called a tanker, as described in (Zebrowski and
Vaughan, 2005). The tanker robot could remain at a fixed lo-
cation, acting as a conventional charging station, or it could
move to rendezvous with worker robots. Simultaneously,
worker robots can wait for the tanker to come to them, or
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they can move to meet the tanker.
By analogy to a mother animal attending her offspring

we call this problem the “Frugal Feeding Problem”. If we
impose a total order in which worker robots must be met and
charged, (perhaps based on urgency or some other priority
scheme) we obtain the “Ordered Frugal Feeding Problem”
considered here. As in a single point rendezvous problem we
model locomotion costs as the weighted Euclidean distance
between the origin and destination.

The Ordered Frugal Feeding Problem can be stated for-
mally as follows:
Definition 2 (Ordered Frugal Feeding Problem). Given
tanker location p0 ∈ Rd, worker locations ri ∈ Rd, i =
1, . . . , k find

min
p1,p2,...,pk

J(p1, p2, . . . , pk) =

k∑

i=1

(
w0||pi − pi−1|| + wi||ri − pi||

)
; (4)

Here w0||pi − pi−1|| gives the cost of tanker relocation be-
tween points pi−1 and pi, wi||ri−pi|| gives the cost of mov-
ing worker i from its original position to meeting point pi.

Definition (2) could be amended to require the tanker to
return to its original location after attending all workers, per-
haps to refuel itself, without affecting the presented results.

We denote solution points as p∗i . The possibility of several
robots being attended in one place is permitted, and captured
by the possible coincidence of some meeting points. We de-
fine a meeting as the event when robots come within distance
s of each other.

Unlike the single-point rendezvous case this problem in-
volves several relocations of the system (tanker needs to go
between all rendezvous points in turn). However, the em-
bodied approximation approach is applicable and we have
found a distributed algorithm which produces good approx-
imations to the optimal solutions.

We start with considering the antigradient of the cost
function J . Using Eq (2) we can express the i-th compo-
nent of the antigradient as

−∇Ji(pi) = w0u(pi, pi−1) + w0u(pi, pi+1) + wiu(pi, ri),
(5)

for i = 1..k − 1. The antigradient component for the
last robot k includes one less term. Let the current posi-
tion of every worker robot i represent its current approx-
imation to the solution point p∗i . Let the position of the
tanker also represent its current approximation of the meet-
ing point for the first robot to be charged. That is, point
p1 is simultaneously represented by tanker and worker 1.
The system will perform parallel gradient descent with all
robots moving along the corresponding approximation to
the antigradient component given by Eq (5) calculated at
their own position. In other words, robots 0 (the tanker)

Algorithm 4 Distributed Algorithm for Ordered Frugal
Feeding Problem

1: i← 1
2: define $d(x, y) = (y − x)/||x− y||
3: let r0 be the current tanker position, ri be the position

of worker i
4: while i ≤ n do
5: if r0 is close to ri then
6: tanker charges worker i; i← i + 1
7: else
8: if i = n (only one robot in queue) then
9: the lighter of tanker and worker goes towards the

other
10: else
11: rn+1 = rn

12: $D0 ← w1
$d(r0, r1) + w0

$d(r0, r2).
13: $Di ← w0

$d(ri, r0) + w0
$d(ri, ri+1)

14: for all i < j ≤ n do
15: $Dj ← w0

$d(rj , rj−1) + w0
$d(rj , rj+1)

16: end for
17: for all j ∈ {0, i, i + 1, . . . , n} do
18: if || $Dj || < wj then
19: robot j stops
20: else
21: robot j proceeds in the direction $Dj

22: end if
23: end for
24: end if
25: end if
26: end while

and 1 (the next robot to be charged) move along the ap-
proximated antigradient of the part of cost function g(p1) =
w0||p0 − p1||+ w0||p1 − p2||+ w1||p1 − r1|| using the cur-
rent position of robot 2 as an approximation to the unknown
solution point p2. The rest of the robots j, j = 2, ..., k move
along the approximated antigradient of the cost functions
fj(pj) = w0||pj − pj−1||+ w0||pj − pj+1||+ wj ||rj − pj ||
using rj−1, rj+1 as approximations for the unknown solu-
tion points pj−1, pj+1. Algorithm 4 describes the procedure
formally. Convergence of this algorithm is guaranteed, as
analyzed in Litus et al. (2008).

Parallel computation of movement directions in steps 11-
14 and simultaneous movement of all robots in steps 17-20
provide the scalability of this algorithm. Importantly, the
per-robot, per-timestep cost is constant, so the method works
for arbitrary population sizes. Unlike the single-point algo-
rithms described in previous section, here every robot needs
to know the direction to at most two other robots to calculate
its movement direction.

More specifically, this algorithm requires every worker to
know its own weight and the tanker weight, whether or not
it is the head of the current charging queue, and the direc-
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Figure 2: Some trajectories produced by distributed algo-
rithm for Ordered Frugal Feeding Problem. Triangle repre-
sents tanker, small disks represent workers, large disks show
the meeting ranges at the final point of each worker trajec-
tory.

tion towards the next worker in the queue and the previous
worker (or tanker if the robot is at the head of the queue).
The tanker needs to know its own weight, the weights of the
first two robots in the queue and the directions towards them.
As a robot is met and charged, it is removed from the queue,
and this update is broadcast to all robots.

As in the single point rendezvous case here instead of op-
erating with the model of the world and searching for the
complete solution, each robot uses the position of itself, its
queue predecessor and successor as the current embodied
approximation to the solution points. Every robot tries to
improve the global solution quality by moving in the direc-
tion which decreases the part of the total cost function that
concerns itself and its neighbors. If the robot finds itself lo-
cated at the minimizing point for the current local configura-
tion of robots, the robot stops. Fig 2 shows some trajectories
produced by the algorithm.

To evaluate the performance of the algorithm we per-
formed 3000 simulations running distributed algorithm for
Ordered Frugal Feeding Problem on randomly generated in-
stances of the problem, with initial robot locations drawn
from the same uniform distribution, and 3 different uni-
form distributions of weights, with 1000 experiments for
each weight distribution. In each experiment, 10 randomly

weighted worker robots and a tanker were placed at random
locations in an square arena with 20m sides. A meeting
range of a 0.1m and a movement step length of 0.01m were
set. The path traveled by each robot was recorded, and it’s
length was multiplied by the robot’s weight, then summed
for the population to give the total energy spent on perform-
ing the rendezvous. For comparison we computed optimal
solutions of each instance using discrete search (Litus et al.,
2007) on a regular grid with 40 ticks per dimension cov-
ering the embedding hypercube of original robot locations.
The regularity of the grid allows us compute a lower bound
of the optimal cost based on the result of discrete search by
subtracting the maximum possible error due to discretization
(no such quality bounds are readily available for numerical
approximation methods to the continuous problem, and no
closed form solution is known).

We calculated the upper bound of approximation factor
for every problem instance by dividing distributed algorithm
for Ordered Frugal Feeding Problem results by the lower
bound of optimal cost. Table 2 reports the statistics of these
approximation factor bounds for each distribution.

Table 2: Statistics of approximation factor bounds
wi = 1 wi ∼ U [1, 3) wi ∼ U [1, 100]

Mean 1.19 1.22 1.31
Median 1.19 1.20 1.25
St. dev. 0.03 0.08 0.23
Skewness 0.67 1.18 4.27
Kurtosis 0.65 1.65 31.82

The results show increasing variation of the approxi-
mation factor bounds with increasing variation in robot
weights. Indeed, this distributed algorithm for Ordered Fru-
gal Feeding Problem can cause the tanker to move subopti-
mally in the direction of two light workers and then return to
the third heavy worker. Hence, this distributed algorithm for
Ordered Frugal Feeding Problem does not have a constant
approximation factor. However, the average quality of solu-
tions for uniformly distributed problem appears very good.
Thus, the method could be used where the guaranteed qual-
ity of results obtained in non-scalable centralized manner
should be sacrificed in favor of simple decentralized scal-
able solution with good average performance.

Conclusion
A general approach for development of decentralized dis-
tributed gradient descent optimization algorithms for teams
of embodied agents is presented. This approach uses em-
bodiment and spatial embedding as valuable computational
resources which allow to reduce or eliminate communica-
tion or shared memory requirements for parallel computa-
tion. Spatial configuration of agents serves as an embodied
representation of the current approximation to the global so-
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lution which is accessed by means of sensing and refined
by agents moving along local antigradient directions. Two
non-trivial optimization tasks of energy-efficient path plan-
ning for mutli-robot teams were used to illustrate the embod-
ied approximation approach. The resulting distributed algo-
rithms show good results in experimental evaluation. These
algorithms use very simple mechanisms that result in en-
ergy efficient group behavior. In both cases, computationally
complex optimization tasks are solved using biologically af-
fordable machinery of bearing-only sensing. Thus, it seems
promising to look for examples of optimization by means
of embodied approximation in groups of animals. Such ani-
mal strategies could and should be used to increase the effi-
ciency, and eventually autonomy, of robot teams.

Admittedly the extent to which embodied approximation
can substitute communication or shared memory is limited
by the properties of sensors and environment. Limited sen-
sor range and occlusions will limit the number of state vec-
tor components that could be accessed by sensing. However,
some optimization problems by their nature need only local
and limited exchange of information. For other problems
embodied approximation may still significantly reduce the
need for inter-agent communication and should be consid-
ered as one of the available resources.

Future work includes application of embodied approxi-
mation approach to other optimization problems emerging
in multi-agent teams. A search for biological examples of
parallel gradient optimization with embodied approximation
is another interesting direction. Finally, accurate mathemat-
ical models of spatially embedded multi-agent systems with
certain sensing capabilities could be developed and the com-
putation power of such systems can be theoretically studied
taking into account embodied approximation as a computa-
tional resource.
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Abstract
Information-driven evolutionary design has been proposed as
an efficient method for designing self-organized multi-agent
systems. Information transfer is known to be an important
component of distributed computation in many complex sys-
tems, and indeed it has been suggested that maximization
of information transfer can give rise to interesting behavior
and induce necessary structure in a system. In this paper,
we report the first known application of a direct measure of
information transfer, transfer entropy, as a fitness function
to evolve a self-organized multi-agent system. The system
evolved here is a simulated snake-like modular robot. In the
most fit snakebot in the final generation, we observe coherent
traveling information transfer structures. These are analogous
to gliders in cellular automata, which have been demonstrated
to represent the coherent transfer of information across space
and time, and play an important role in facilitating distributed
computation. These observations provide evidence that using
information transfer to drive evolutionary design can produce
useful structure in the underlying system.

Introduction
The principle of self-organization is well known to offer the
advantages of flexibility, robustness and scalability over cen-
tralized system designs (Prokopenko et al., 2006a). Most
self-organized solutions are currently designed using a ge-
netic algorithm of some form, with fitness functions mea-
suring achievement of the task required of the system (task-
based evolution). Several authors have recently been investi-
gating the potential for information-driven evolutionary de-
sign to push the advantages of self-organization even further,
e.g. (Prokopenko et al., 2006a; Polani et al., 2007; Klyu-
bin et al., 2005; Sporns and Lungarella, 2006). This con-
cept proposes the use of information-theoretical measures
of the information processing carried out by the system as
generic fitness functions in evolutionary design. From an en-
gineering perspective, template-based evolution for generic
information processing skills could be simpler and afford a
framework based approach to such design of self-organized
systems. It also provides to us the potential to better under-
stand the evolved solutions, and more importantly the op-
portunity to study and understand the emergence rather than
engineering of intelligence (Polani et al., 2007).

We believe information-driven self-organization is best
facilitated using measures of the information dynamics of
distributed computation (Lizier et al., 2007). Any task
we wish to evolve the system to solve involves a dis-
tributed computation, so evolving for the fundamental build-
ing blocks of the computation is a direct way to allow that
computation to emerge. We could evolve directly for a par-
ticular computational property (e.g. information storage as
opposed to transfer), or for a mix of those properties.

Information transfer has been suggested to be a particu-
larly important fitness function here. It has been conjectured
that information transfer can give rise to interesting behav-
ior and induce necessary structure in a multi-agent system
(Prokopenko et al., 2006a). One inspiration of this view-
point is the concept of empowerment (Klyubin et al., 2005),
which refers to an agent’s self-perception of its influence
over its environment. Alluding to (but not directly measur-
ing) information transfer, it is quantified as the channel ca-
pacity between an agent’s actuators and sensors through the
environment. Maximization of empowerment has been sug-
gested to be an intrinsic selection pressure1. With or without
the presence of explicit actuator-sensor channels, we expect
information transfer to be a useful fitness function because
of its important role in distributed computation.

Here, we present the first experiment of the use of a direct
measure of information transfer, transfer entropy (Schreiber,
2000), as the sole fitness function in an evolutionary de-
sign task. An initial aim of the experiment is to check
whether information transfer underpins co-ordinated mo-
tion, as was suggested in previous work (Prokopenko et al.,
2006a). More importantly, we aim to investigate what type
of behavior emerges when a system is evolved to maximize
information transfer. Much previous work on information-
driven evolution has sought to confirm whether it can ap-
proximate direct evolution for a given task. Here, we sim-
ply seek to investigate what type of solution or computation

1The justification or otherwise of the suggestion that natural
evolution is driven by the intrinsic forces of information processing
is irrelevant to whether information-driven evolutionary design can
be used as a successful tool for artificial systems.
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is generated by evolution for information transfer, and hy-
pothesize that it will induce useful computation in the sys-
tem. Our findings will help us to understand the role that
information transfer can play in a unified framework for
information-driven evolutionary design, focusing on the in-
formation dynamics of distributed computation.

We use a snake-like modular robot (the snakebot) for ex-
perimentation: information structure has been observed to
emerge previously with a fitness function for fastest motion
(Prokopenko et al., 2006b), and conversely fast motion has
emerged from evolution with a measure of co-ordination as
the fitness function (Prokopenko et al., 2006a). We measure
information transfer using the transfer entropy (Schreiber,
2000) between neighboring modules of the snakebot, and
evolve the snakebot to maximize this quantity. Information
transfer in this fashion could be utilized by the snake in lead-
ing to co-ordinated motion between the modules, communi-
cating information about obstacles, or driving new behaviors
in a given direction along the snake.

We report that coherent traveling information transfer
structures were observed to emerge (using local transfer en-
tropy (Lizier et al., 2008a)) in the evolved snakebot. We
say “emerged” because while high information transfer was
selected for, local coherent structures were not part of the
specification. This is an important finding, because these
structures are analogous to glider structures in cellular au-
tomata (CAs). Gliders are known to be the information
transfer agents in CAs, providing for long-range correlations
across space and time and playing a fundamental role in the
distributed computation carried out in the CA (Lizier et al.,
2008a). As such, we have provided evidence that using a di-
rect measure of information transfer as a fitness function in
information-driven evolutionary design can indeed produce
useful structure in the system.

Information-driven evolution
Task-based evolution, the incumbent method of designing
self-organized systems, can be impractical. Hand-crafting
fitness functions for every task can be time-consuming and
tedious, and requires specialized human understanding of
the task. It has the potential to under-specify the problem
(thereby solving a different task) or perhaps over-specify it
(leading to an inflexible design). Also, the intelligent de-
signer may not be completely sure of how to measure per-
formance of the required task, or this may be difficult (e.g.
measuring speed may require extra sensors). Furthermore,
if the initial task-based fitness landscape is flat and features
no gradients, task-based evolution has no foothold around
which to begin designing a solution. Finally, evolution often
delivers intricate solutions for which (human) system man-
agers cannot understand the inner workings: this is particu-
larly undesirable for critical systems where maintenance or
prediction of behavior is required.

As an alternative, information-driven evolutionary design

proposes the use of information-theoretic measures to de-
sign the required information processing structure in self-
organized systems. This has been prompted by observations
of complexity to grow or necessary information-theoretic
structure to emerge during task-based evolution. Growth of
complexity during evolution has been observed by Adami
(2002) (measuring “physical complexity” in the Avida sim-
ulation system) and Yaeger and Sporns (2006) (measuring
neural complexity of evolved agents in the PolyWorld sim-
ulation system). Looking at evolution for particular tasks,
Prokopenko et al. (2006b) observed co-ordination (mea-
sured as excess entropy (Crutchfield and Feldman, 2003))
to increase in snakebots evolved for maximum velocity, and
Baldassare et al. (2004) observed a decrease in entropy in a
swarm evolved for co-ordinated motion.

These observations suggest that such information-
theoretic metrics could be used themselves in information-
driven evolutionary design. This idea is fundamentally
based on the theory that information structure is vital to
the emergence of self-organized intelligence (Polani et al.,
2007). The concept could provide a consistent framework
for the evolutionary design of self-organized systems, using
template-based evolution for required computational tasks.
This framework would be able to produce useful structure
where task-based evolution faces initially flat task-based fit-
ness landscapes, perhaps serving as a platform from which
to launch better-equipped task-based evolution. Further-
more, it may provide solutions which are simpler for hu-
mans to understand in terms of the underlying information
dynamics. Perhaps most important is the potential for this
approach to provide insight into the emergence rather than
engineering of intelligence (Polani et al., 2007), and thereby
facilitate unsupervised learning.

Several examples of successful information-driven evolu-
tionary design exist in the literature. Maximization of em-
powerment has been shown to induce a necessary structure
in agent’s behavior by Klyubin et al. (2005). Sporns and
Lungarella (2006) have evolved hand-eye co-ordination to
grab a moving object using maximization of neural com-
plexity, and demonstrated that this solution contained more
intrinsic diversity than solutions from task-driven evolution;
the increased diversity may afford greater flexibility to the
system. Prokopenko et al. (2006a) were able to evolve fast-
moving snakebots using maximization of an information-
theoretic measure of co-ordination. Also, Sperati et al.
(2007) have observed interesting periodic behavior and com-
plex structure in groups of robots which were evolved to
maximize their mutual information.

We suggest that the information dynamics of distributed
computation (Lizier et al., 2007, 2008a) provide the most in-
tuitive basis for information-driven evolution. These infor-
mation dynamics are the primitive functions of Turing uni-
versal computation, i.e. information storage, transfer and
modification. Any task we wish the system to achieve in-
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volves some form of computation. As such, using a frame-
work for distributed computation allows us to target the evo-
lution toward the computational requirements of the task at
hand, i.e. selecting either the most relevant computational
function as the fitness function, or balancing the functions in
a more complex manner. Importantly, using such a frame-
work provides a basis through which to understand the com-
putation carried out by the evolved solution. Also, guiding
a system toward the building blocks of distributed computa-
tion is perhaps the most intuitive way to facilitate the emer-
gence of collective intelligence.

Information transfer is an important candidate fitness
function here. It has been observed to be a critical part
of the dynamics of many complex systems, for example
being manifested in dipole-dipole interactions in micro-
tubules which give rise to self-organization there (Brown
and Tuszynski, 1999). Another important example are par-
ticles or gliders in CAs (e.g. see Fig. 1), which are coher-
ent traveling information transfer structures in those systems
(Lizier et al., 2008c). Much importance has been placed on
the role of gliders in CA dynamics; in fact, they have been
demonstrated to transport information for the distributed
computation carried out in CAs (Lizier et al., 2008c). For
example in a density-classification task, gliders appear to
transport information about the density in the region of the
CA where they originated, with glider collisions processing
this information to make a decision about the overall den-
sity (Mitchell et al., 1994). Information transfer is also re-
lated to the concept of empowerment (Klyubin et al., 2005),
with much importance placed on the maximization of the
capacity of the information channel between an agent’s ac-
tuators and sensors here. Importantly also, it has long been
conjectured that information transfer is maximized in the
vicinity of an order-chaos phase transition (Langton, 1990),
where critical dynamics are said to facilitate the emergence
of complex computation. Several authors have since inferred
this conclusion from related measures (Solé and Valverde,
2001), however evidence from a directed, dynamic mea-
sure of information transfer has only recently been provided
(Lizier et al., 2008b). In the following section, we describe
this measure of information transfer.

Information transfer
Our measure of information transfer is of course found in
the domain of information theory (MacKay, 2003), which is
proving to be a useful framework for the analysis and de-
sign of complex systems, e.g. (Prokopenko et al., 2006a).
The fundamental quantity in this domain is the (Shannon)
entropy, which represents the uncertainty in a sample x of a
random variable X: HX = −

∑
x p(x) log2 p(x) (all with

units in bits). The joint entropy of two random variables X
and Y is a generalization to quantify the uncertainty of their
joint distribution: HX,Y = −

∑
x,y p(x, y) log2 p(x, y).

The conditional entropy of X given Y is the average un-

(a) (b)

Figure 1: Elementary CA rule 110. (a) Raw states. (b) Local
transfer entropy with k = 16 (for transfer one step to the left
per time step) highlights glider structures.

certainty that remains about x when y is known: HX|Y =
−

∑
x,y p(x, y) log2 p(x|y). The mutual information be-

tween X and Y measures the average reduction in uncer-
tainty about x that results from learning the value of y, or
vice versa: IX;Y = HX − HX|Y . The conditional mu-
tual information between X and Y given Z is the mutual in-
formation between X and Y when Z is known: IX;Y |Z =
HX|Z −HX|Y,Z .

The mutual information has previously been used as a
de facto measure for information transfer (e.g. by Solé
and Valverde (2001)), however this approach is criticized
by Schreiber (2000) as a symmetric measure of statically
shared information. To address these concerns, Schreiber
introduced the transfer entropy to quantify the information
transfer between a source and a destination agent as the av-
erage information provided by the source about the desti-
nation’s next state that was not contained in the past of the
destination. This formulation provides a properly directional
and dynamic measure of information transfer. The transfer
entropy is the average mutual information between the pre-
vious state of the source2 yn and the next state of the desti-
nation xn+1, conditioned on the past of the destination x(k)

n :

TY→X(k) =
∑

un

p(un) log2
p(xn+1|x(k)

n , yn)

p(xn+1|x(k)
n )

. (1)

This average is over all state transition tuples un =
(xn+1, x

(k)
n , yn). From another perspective, it is also an av-

erage over a local transfer entropy (Lizier et al., 2008c) at
all observed time points:

tY→X(n + 1, k) = log2
p(xn+1|x(k)

n , yn)

p(xn+1|x(k)
n )

, (2)

TY→X(k) = 〈tY→X(n, k)〉 (3)
2The transfer entropy can be formulated using the l previous

states of the source. However, where only the previous state is
a causal information contributor, we set l = 1 to measure direct
transfer only at step n.
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In general, these measures are only completely accurate in
the limit k →∞ (Lizier et al., 2008c), since this removes all
information that was already in the history of the destination
from being mistaken as transfered. This is computationally
infeasible however, so we use as large a history k as is facil-
itated by our observation set.

The transfer entropy can also be formulated to condition
on the states of all other causal information contributors to
the destination, so as to completely account for the contri-
bution of the source Y . This form is known as the complete
transfer entropy (see Lizier et al. (2008c)). The formulation
in Eq. (2) is then labeled the apparent transfer entropy (note:
in this paper, we refer to this form unless otherwise stated).

The transfer entropy has been studied in a number of in-
teresting applications, for example in characterizing infor-
mation flow in sensorimotor networks by Lungarella and
Sporns (2006). Bertschinger et al. (2006) used the transfer
entropy to investigate the distinction of a system from its en-
vironment, and the autonomy of the system. Studies of the
local transfer entropy in CAs provided the first quantitative
evidence for the long-held conjecture that gliders are the in-
formation transfer agents therein (Lizier et al., 2008c) (see
Fig. 1). Application to random boolean networks (RBNs)
suggests that the apparent transfer entropy is maximized in
the vicinity of a phase transition from ordered to chaotic
behavior, while the complete transfer entropy continues in-
creasing into the chaotic regime (Lizier et al., 2008b). Large
apparent transfer entropy appears to indicate that the dy-
namics support coherent information transfer (in the form
of gliders in CAs) as an important component of complex
distributed computation (Lizier et al., 2008a).

To compute the transfer entropy for continuous variables,
a simple approach is to discretize the continuous variables
and apply Eq. (1), however with a slight increase in ef-
fort, one can remain in the continuous regime. In doing
so, Schreiber (2000) recommends using the method of ker-
nel estimation to estimate the required probabilities, rather
than an approach based on correlation integrals. (The same
technique is used under different guises in computing the
“pattern entropy” by Dettmann and Cohen (2000) and the
“approximate entropy” by Pincus and Singer (1996)). This
method has been used, for example, to compute transfer en-
tropy in signal transduction by calcium ions by Pahle et al.
(2008). With the kernel estimation method, the joint proba-
bility of the state transition tuple un = (xn+1, x

(k)
n , yn) for

example is estimated by counting similar tuples:

p̂r(un) =
1
N

∑

n′

Θ





∣∣∣∣∣∣




xn+1 − xn′+1

x(k)
n − x(k)

n′

yn − yn′





∣∣∣∣∣∣
− r



, (4)

where by default Θ is the step kernel (Θ(x > 0) = 1,
Θ(x ≤ 0) = 0) using the precision r, and the norm | · |
is the maximum distance, though other choices are possible.
The average transfer entropy TY→X(k) is then computed

Figure 2: Snakebot

as the average of local transfer entropies (see Eq. (3) and
Eq. (2)), where each local transfer entropy uses these kernel
estimations to compute the relevant probability distribution
functions. That is, computation of the average transfer en-
tropy for continuous variables is necessarily a computation
over each local point in time rather than over all possible
state transition tuples. Here, we will present the first use of
the local transfer entropy values for continuous variables.

Evolving the snakebot for maximum
information transfer

The snakebot is a snake-like modular robot, introduced in
(Tanev et al., 2005), which is simulated in the Open Dynam-
ics Engine (ODE). As shown in Fig. 2, it consists of a set of
identical spherical morphological segments which are linked
by universal joints. The joints each have two actuators for
joint rotation, which are oriented vertically and horizontally
in the initial standstill position of the snakebot, and all have
identical angle limits. No anisotropic friction between the
morphological segments and the surface is considered. The
genome for the snakebot is an algebraic expression for the
desired turning angles of its horizontal and vertical actua-
tors as a function of time and actuator index. The periodic
functions sin and cos are included in the function set, pro-
viding support for periodic gaits. The turning angles how-
ever are constrained by interactions between the segments
and with the terrain; as such the actual actuator angles rep-
resent the emergent dynamics. Here, αi,n and βi,n represent
the actual horizontal and vertical turning angles respectively
at time step n, where i is the actuator index (so 1 ≤ i ≤ S
where S = 14 is the number of joints), and 1 ≤ n ≤ N for
N = 1800 time steps in the simulation run.

Initial experiments to evolve fastest motion in any direc-
tion indicated that side-winding motion (i.e. locomotion pre-
dominantly perpendicular to the long axis of the snakebot)
provided superior speed characteristics (Tanev et al., 2005).
As previously mentioned, subsequent experiments observed
the increase in co-ordination (as excess entropy) with this
evolution (Prokopenko et al., 2006b), and then evolved sim-
ilar fast moving side-winding locomotion using this mea-
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sure of co-ordination as a fitness function (Prokopenko et al.,
2006a). In capturing correlation across space and time, the
(two-dimensional) excess entropy is something of an over-
all measure of distributed computation which balances the
underlying components of information storage and transfer.
Here, we evolve the snakebot using transfer entropy, in or-
der to maximize the information transfer component of dis-
tributed computation. It was suggested in (Prokopenko et al.,
2006a) that information transfer underpinned co-ordinated
motion. An information transfer is certainly required in a
transient sense to achieve co-ordinated motion, but the level
of information transfer in this initial phase may not be very
significant compared to the information transfer averaged
over longer experimental periods for other behaviors. The
evolution of the snakebot here will take place in a flat envi-
ronment. We will observe what types of behavior emerge as
a result of selecting for information transfer.

In evaluating the fitness of each snakebot after it is sim-
ulated for N time steps, we compute the average transfer
entropy Ti+1→i(k) between each pair of consecutive mod-
ules i + 1 and i, in the direction from the tail toward the
head (i.e. decreasing module number i). The transfer en-
tropy is computed using the time series of actual horizontal
turning angles αi,n. Kernel estimation is used with these
continuous values, with r set to one quarter of the standard
deviation of the turning angles. Also, we use the default step
kernel and maximum distance norm, ignoring matched pairs
within 20 time steps and neighboring modules to avoid spu-
rious dynamic correlations (as recommended by Schreiber
(2000)). The direction of tail toward head is selected be-
cause each module only applies desired turning angles to
the actuators in front of it (i.e. in the direction of the head),
thereby giving preferential treatment to information travel-
ing in this direction. Although it is possible for information
to be transferred across more than one joint per time step, we
consider only consecutive pairs since this is likely to be the
dominant transfer mode. Also, as per footnote 2, we only
consider transfer from a single previous state of the source
variable, so as to consider information transferred directly at
the given time step. We use a past history length k = 30
(as for the correlation entropy calculations in Prokopenko
et al. (2006a)). This is large enough to eliminate information
storage from the calculation (see Results), while allowing
adequate sampling of the underlying distributions (because
the presence of sin and cos functions mean that the emer-
gent turning angle sequences are generally quasi-periodic
and therefore much of the state space of α(k)

i,n remains un-
explored). Our fitness function is then the average of these
transfer entropies over all S − 1 consecutive module pairs
for the given snakebot:

Ttail→head(k) =
1

S − 1

S−1∑

i=1

Ti+1→i(k). (5)

Figure 3: Snakebot fitness (average transfer entropy
Ttail→head(k = 30)) per generation, plotted for the best per-
former in each generation.

The Genetic Programming (GP) techniques used for
snakebot evolution are described by Tanev et al. (2005).
The snakebots evolve within a population of 200 individuals,
with the best performers selecting using the fitness function
described above. No minimum limit is placed on how far
the snakebot moves, since we are not evolving for fast loco-
motion. The selection is based on a binary tournament with
selection ratio of 0.1 and reproduction ratio of 0.9. Random
subtree mutation is used with a ratio of 0.01.

Results and discussion
First, we note that snakebots exhibiting a high degree of
co-ordinated motion (as exemplified by most fit individual
from (Prokopenko et al., 2006a)) were found to have sig-
nificantly lower transfer entropy than individuals specifi-
cally evolved to maximize transfer entropy (e.g. 0.007 bits
versus 0.175 bits for the most fit snakebot here). Highly
co-ordinated snakebots exhibited very short transients be-
fore becoming co-ordinated, and minimal transfer entropy
in their ongoing behavior. Co-ordinated motion is certainly
more strongly associated with memory (in fact is a dis-
tributed memory (Lizier et al., 2008a)) than information
transfer. When neighboring modules achieve perfect co-
ordination, they have effectively reached a periodic attrac-
tor: their next states are completely predictable from their
individual pasts, and so no additional information from the
neighbor is measured as transfer entropy. It is possible that
transfer entropy might be measured to be higher for snake-
bots attempting co-ordinated motion in a challenging envi-
ronment, where information transfer in the longer and more
significant transient toward co-ordination may play an im-
portant role in the dynamics.

In our evolution of snakebots for transfer entropy, the
growth in the average transfer entropy Ttail→head(k = 30)
of the most fit snakebot in each generation is shown in Fig. 3.

We will focus on the most fit individual in the final (57th)
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generation as the result of this evolution, which had an aver-
age transfer entropy of 0.175 bits between neighboring mod-
ules toward the head per time step. This snakebot did not
display a fast, well co-ordinated side-winding locomotion.
Instead, it displayed a complex form of wriggling behavior,
where thrashing of the tail appeared to drive new behavior
along the body of the snake, achieving a slow movement to
the side3. The dynamics of this behavior are clearer when
examining the time-series of the actual horizontal turning
angles αi,n, as displayed in Fig. 4(a). Here, we see that
coherent waves of behavior are consistently traveling along
the snakebot, from the tail toward the head. Each wave in-
volves the modules turning in alternating directions along
the snake (visible in color image online), reaching a maxi-
mum angle then coming back to a rest position. The modules
then swap their turning angles in the next wave. Importantly,
these waves are not completely periodic, allowing scope for
information transfer effects.

Already, we note a fairly clear correspondence to emer-
gent traveling structures in microtubules and gliders in CAs,
however to confirm the information transfer properties, we
examine the local transfer entropy profile in Fig. 4(b). The
local transfer entropy profile here tells us much more about
the snakebot dynamics than the average transfer entropy
does (as was observed for CAs in (Lizier et al., 2008c)). As
expected, we confirm that we have coherent traveling waves
of information transfer moving along the snakebot from the
tail toward the head, which coincide in direction and ap-
proximately in time with the time-series waves previously
observed. As an example, note the images of the snake-
bot in Fig. 5 with modules colored to indicate local transfer
entropy (also, videos with the modules of the snake high-
lighted according to their local transfer entropy are available
online, see footnote 3). We can be confident that the infor-
mation transfer measured is not misattributed information
storage, because our use of k = 30 considers a longer past
history than the length of the time-series waves here. Note
that these coherent transfer structures were not observed in
fully-coordinated or random snakebots.

There is a wide variation in the types of such informa-
tion transfer structures observed here: some move faster
than others (indicated by a flatter structure), some are more
highly localized in time (thinner structures), some contain
higher local transfer entropies (darker coloring), and some
do not coherently travel the whole way along the body of
the snakebot. Importantly, none of these differences are de-
tectable by superficial examination of the time-series of the
actual actuator angles. Indeed, apart from their coincidence
in direction and approximately in time, there is little corre-
spondence between the time-series waves and the informa-

3Videos of the snakebot, showing raw motion and local trans-
fer entropy are available at http://www.it.usyd.edu.au/∼jlizier/
publications/08ALifeSnakebotTe or http://www.prokopenko.net/
modular robotics.html

(a) (b)

Figure 4: Local apparent transfer entropy highlights “glid-
ers” in the evolved snakebot. (a) Raw actuator turning angles
for each of the 13 destination modules (head at left, tail at
right) of the snakebot for 76 consecutive time steps (time in-
creases down the page): grayscale represents a positive turn-
ing angle, yellow-red (color online) represents a negative
turning angle; range is -50 to 50 degrees. (b) Local transfer
entropy ti+1→i(n, k = 30) into each of the 13 information
destination modules of the snakebot, between consecutive
modules in the tail → head direction: grayscale, range 0.0
bits (white) to 2.8 bits (black).
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(a) (b) (c)

Figure 5: Snakebot modules colored to indicate incoming local transfer entropy (black is 0.0 bits, red is 2.8 bits; color online)
from neighboring module toward the tail, for three consecutive time steps. The information transfer from the tail appears to
communicate a straightening behavior here.

tion structure that is obvious to the observer. Certainly, there
is no simple method of using the time-series waves to infer
the location in time of the local information transfer struc-
tures: these are observed to begin and end at various time
points within the time-series waves. Local transfer entropy
reveals the precise space-time dynamics of the manner in
which the tail drives new behavior in the snakebot in a way
not possible by examining the time-series alone.

As coherent traveling local information transfer, these
structures are clearly analogous to gliders in CAs (see
Fig. 1). This finding is significant because of the important
role that gliders play in CA dynamics, where they coherently
transfer information relevant to the collective computation
of the CA. We previously noted that the coincidence of glid-
ers and coherent information transfer with a maximization of
(apparent) transfer entropy (Lizier et al., 2008a). Here, we
have demonstrated the emergence of glider-like structures
when (apparent) transfer entropy is optimized, without ex-
plicitly selecting for such local coherence. This suggests that
coherent glider-like structures are the most efficient mode of
(apparent) information transfer. This has significant impli-
cations for glider-like structures observed in natural systems,
e.g. dipole-dipole interactions in microtubules (Brown and
Tuszynski, 1999), which could have evolved to exploit this
efficient mode of information transfer where coherent com-
munication or effect over some distance is beneficial.

The coherence of glider structures is of particular impor-
tance to the computation in CAs; without coherence of in-
formation transfer, complex computation does not appear to
take place (Lizier et al., 2008a,b). A second requirement for
such truly distributed computation though is bidirectional
information transfer. Here, with strong information transfer
encouraged in one direction only, although we have demon-
strated the emergence of an important building block for
non-trivial computation, we have evolved only a trivial type
of computation. (This is effectively the reason that there are
very few points of negative local transfer entropy measured
in the snakebot here). In future work, we will build on our
results here to evolve bidirectional information transfer for
true distributed computation.

Conclusion
We have presented the first experiment of the use of transfer
entropy as a generic fitness function for information-driven
evolutionary design. We have demonstrated that maximiz-
ing information transfer in this manner can lead to the emer-
gence of coherent transfer structures which, as manifested
by gliders, are known to underpin distributed computation
in CAs. Here, this useful generic skill was not fully capital-
ized on by the snakebot, but the important finding is that the
use of information transfer as a fitness function led to the
emergence of this computational capability. Also, our ex-
periment implies that glider-like structures are the most effi-
cient mode of coherent information transfer, which is itself
significant insight into the nature of information transfer.

All agent-based systems compute; indeed it is their com-
putation that makes them useful to us. Here, the snake com-
putes where to move. While information transfer does not
appear to be important for co-ordinated motion in flat envi-
ronments, it could underpin computation for tasks such as
successful navigation in challenging environments, where
different parts of the body could sample many sections of
the environment in parallel, and communicate information
about the environment along the structure. Information
transfer could be used to develop the required computational
capability for tasks such as these in future work.

We intend to explore the use of information transfer
in information-driven evolutionary design in other settings
where bidirectional information transfer may be required
for distributed computation. We also intend to investigate
the use of the other information dynamics of computation
(information storage and modification) (Lizier et al., 2007)
in such design, and explore the circumstances under which
each should be used and indeed how they can be used to-
gether.
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Abstract

Random Boolean Networks (RBNs) are discrete dynamical
systems which have been used to model Gene Regulatory
Networks. We investigate the well-known phase transition
between ordered and chaotic behavior in RBNs from the per-
spective of the distributed computation conducted by their
nodes. We use a recently published framework to character-
ize the distributed computation in terms of its underlying in-
formation dynamics: information storage, information trans-
fer and information modification. We find maximizations in
information storage and coherent information transfer on ei-
ther side of the critical point, allowing us to explain the phase
transition in RBNs in terms of the intrinsic distributed com-
putations they are undertaking.

Introduction
The information dynamics of distributed computation has
recently emerged as an important tool for studying com-
plex systems, e.g. information transfer in cellular automata
(Lizier et al., 2008b, 2007). We believe that information dy-
namics are particularly relevant to networked systems: while
network’s structure has attracted much attention (Aldana,
2003), their time-series dynamics are “much less well under-
stood” (Mitchell, 2006). Although the time-series dynamics
of state-space trajectories and damage spreading are estab-
lished, Mitchell (2006) suggests that “the main challenge is
understanding the dynamics of the propagation of informa-
tion ... in networks, and how these networks process such
information.”

Several studies have investigated the propagation and the
processing of information in networks, in particular report-
ing phase transitions of these properties between ordered
and chaotic regimes. Solé and Valverde (2001) investigated
the effect of varying the message generation rate in a model
of computer networks, finding phase transitions maximiz-
ing the number of packets actually delivered and the mu-
tual information in the status of random node pairs. They
infer that information transfer is maximized at the critical
state. Kinouchi and Copelli (2006) investigated varying the
“branching ratio” (effectively an activity level) in a network
of excitable elements, finding phase transitions maximizing

the dynamic range of the element’s output, and inferring a
maximization of information processing at criticality.

We are particularly interested in investigating the infor-
mation dynamics of Random Boolean Networks (RBNs)
(Kauffman, 1993), in part because of the power in their gen-
erality as discrete dynamical network models with a large
sample space available. Also, they have a well-known phase
transition from ordered to chaotic dynamics, in terms of
length of transients in phase space with respect to average
connectivity or activity level. We are also motivated by their
popularity as models of Gene Regulatory Networks (GRNs).
Perhaps most importantly, there have been several recent at-
tempts to study the computational properties of RBNs (in
particular information transfer). Here, Ribeiro et al. (2008)
measure mutual information in the states of random node
pairs as a function of connectivity in the network, and Rämö
et al. (2007) measure the uncertainty (entropy) in the size of
perturbation avalanches as a function of an order parameter.
Both find maximization near the critical point, claiming that
their results imply maximization of information propagation
in this regime.

While these results are interesting, they do not directly
measure the information dynamics claimed, e.g. none of
the purported measures of information transfer properly
measure directed, dynamic flows of information. Mea-
sures of model or task specific properties (by Solé and
Valverde (2001), Kinouchi and Copelli (2006) and Rämö
et al. (2007)) are qualitatively appealing but give no insights
into the underlying quantitative nature of the information
dynamics, while mutual information between random pairs
of nodes (by Ribeiro et al. (2008) and Solé and Valverde
(2001)) measures dynamic correlation across the collective
which may result from an information transfer but is not a
measure of it. (A more generic measure of “information
transfer” in networks is presented in (Solé and Valverde,
2004), however it is a static measure of structure rather than
a directed, dynamic flow of information.)

In this paper, we examine the information dynamics of
RBNs from the perspective of the distributed computation
undertaken by the nodes of the network in computing their
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attractor. We apply a recently published framework to char-
acterize the information dynamics of the distributed com-
putation in terms of the elements of Turing universal com-
putation: information storage, information transfer and in-
formation modification (Lizier et al., 2007). Our perspec-
tive of computation in RBNs is an important one, underlined
by the comments of Mitchell (2006) on information dynam-
ics in networks, and by the general importance attributed to
information processing in biological systems (Polani et al.,
2007; Gershenson, 2004a). Importantly, the perspective of
distributed computation is unique in quantitatively aligning
with our understanding of information storage, transfer and
modification (Lizier et al., 2007).

We begin with overviews of RBNs and our framework for
the information dynamics of distributed computation, and
subsequently discuss how the framework will be applied
to RBNs. We then present the results of this application,
demonstrating that information storage and transfer are both
maximized in the vicinity of the phase transition between
ordered and chaotic dynamics. Importantly, we demonstrate
a shift from the dynamics being dominated by information
storage in the ordered regime, to a balance of information
storage and transfer around the critical point, and a further
shift to the dominance of information transfer (in particular
higher order interactions) in the chaotic regime. Near the
critical point we observe maximum capability for coherent
computation, with relatively few but high-impact non-trivial
information modification events. It is likely that these in-
sights on the nature of computation in the vicinity of order-
chaos phase transitions will be applicable to other complex
systems.

Random Boolean Networks
Random Boolean Networks are a class of generic discrete
dynamical network models. They are particularly important
in artificial life, since they were proposed as models of gene
regulatory networks by Kauffman (1993). See also Gershen-
son (2004a) for another thorough introduction to RBNs.

An RBN consists of N nodes in a directed network struc-
ture. The nodes take boolean state values, and update their
state values in time as a function of the state values of the
nodes from which it has incoming links. The network topol-
ogy (i.e. the adjacency matrix) is determined at random,
subject to whether the in-degree for each node is constant
or stochastically determined given an average in-degree K
(giving a Poissonian distribution). It is also possible to bias
the network structure, e.g. toward scale-free degree distri-
bution (Aldana, 2003). Given the topology, the determin-
istic boolean function or lookup table by which each node
computes its next state from its neighbors is also decided at
random for each node, subject to a probability p of produc-
ing “1” outputs (p close to 1 or 0 gives low activity, close to
0.5 gives high activity). The nodes here are heterogeneous
agents: there is no spatial pattern to the network structure

(indeed there is no inherent concept of locality), nor do the
nodes have the same update functions. (Though, of course
either of these can arise at random). Importantly, the net-
work structure and update functions for each node are held
static in time (“quenched”). In classical RBNs (CRBNs), the
nodes all update their states synchronously.1

The synchronous nature of CRBNs, their boolean states
and deterministic update functions give rise to a global state
space for the network as a whole with deterministic transient
trajectories ultimately leading to either fixed or periodic at-
tractors in finite-sized networks (Wuensche, 1997). Effec-
tively, the transient is the period in which the network is
computing its steady state attractor.

RBNs are known to exhibit three distinct phases of dy-
namics, depending on their parameters: ordered, chaotic and
critical. At relatively low connectivity (i.e. low degree K) or
activity (i.e. p close to 0 or 1), the network is in an ordered
phase, characterized by high stability of states and strong
convergence of similar macro states in state space. Alter-
natively, at relatively high connectivity and activity, the net-
work is in a chaotic phase, characterized by low stability of
states and divergence of similar macro states. In the criti-
cal phase (the edge of chaos (Langton, 1990)), there is per-
colation in nodes remaining static or updating their values,
and uncertainty in the convergence or divergence of similar
macro states. This phase transition is typically quantified
using a measure of sensitivity to initial conditions, or dam-
age spreading. Following Gershenson (2004c), we take a
random initial state A of the network, invert the value of a
single node to produce state B, then run both A and B for
many time steps (enough to reach an attractor is most appro-
priate). We then use the Hamming distance:

D(A,B) =
1
N

N∑

i=1

|ai − bi|, (1)

between A and B at their initial and final states to obtain a
convergence/divergence parameter δ:

δ = D(A,B)t→∞ −D(A,B)t=0. (2)

(Note D(A,B)t=0 = 1/N ). Finding δ < 0, implies the con-
vergence of similar initial states, while δ > 0 implies their
divergence. For fixed p, the critical value of K between the
ordered and chaotic phases is (Derrida and Pomeau, 1986):

Kc =
1

2p(1− p)
. (3)

1There has been some debate about the best updating scheme
to model GRNs (Darabos et al., 2007), and variations on the syn-
chronous CRBN model are known to produce different behaviors.
However, the relevant phase transitions are known to exist in all up-
dating schemes, and their properties depend more on the network
size than on the updating scheme (Gershenson, 2004b). As such,
the use of CRBNs is justified for ensemble studies such as ours
(Gershenson, 2004c).
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For p = 0.5, we have Kc = 2.0. The standard deviation of δ
peaks slightly inside the chaotic regime for finite-sized net-
works, indicating the widest diversity of networks for those
parameters (Gershenson, 2004b).

Much has been speculated on the possibility that gene reg-
ulatory and other biological networks function in (or evolve
to) the critical regime (see Gershenson (2004a)). It has been
suggested that computation occurs more naturally with the
balance of order and chaos there (Langton, 1990), possibly
with information storage, propagation and processing capa-
bilities maximized (Kauffman, 1993). Here we seek to im-
prove on previous attempts to measure these computational
properties, with a thorough quantitative study of the infor-
mation dynamics in RBNs.

Information dynamics
Information theory (MacKay, 2003) is the natural domain to
look for a framework to describe the information dynamics
in complex systems, and indeed information theory is prov-
ing to be a useful framework for the analysis and design of
complex systems, e.g. (Klyubin et al., 2004). The funda-
mental quantity is the (Shannon) entropy, which represents
the uncertainty in a sample x of a random variable X: HX =
−

∑
x p(x) log2 p(x) (all with units in bits). The joint en-

tropy of two random variables X and Y is a generalization to
quantify the uncertainty of their joint distribution: HX,Y =
−

∑
x,y p(x, y) log2 p(x, y). The conditional entropy of X

given Y is the average uncertainty that remains about x when
y is known: HX|Y = −

∑
x,y p(x, y) log2 p(x|y). The

mutual information between X and Y measures the aver-
age reduction in uncertainty about x that results from learn-
ing the value of y, or vice versa: IX;Y = HX − HX|Y .
The conditional mutual information between X and Y given
Z is the mutual information between X and Y when Z is
known: IX;Y |Z = HX|Z − HX|Y,Z . Finally, the entropy
rate is the limiting value of the entropy of the next state x
of X conditioned on the previous k − 1 states x(k−1) of X:
HµX = limk→∞H

[
x|x(k−1)

]
= limk→∞HµX(k).

We have previously proposed a framework for the local
information dynamics of distributed computation in (Lizier
et al., 2007). The framework describes computation in terms
of information storage, transfer and modification at each
spatiotemporal point in a complex system.

The information storage of an agent in the system is the
amount of information in its past that is relevant to predict-
ing its future. The excess entropy is the total information
stored by the agent (Feldman and Crutchfield, 2003), while
the active information storage is the stored information that
is currently in use in computing the next state of the agent
(Lizier et al., 2007). We focus on the active information
since it yields an immediate contrast in the relative contribu-
tions of storage and transfer to each computation. As shown
in Fig. 1, the local active information storage for agent X
is defined as the local (or unaveraged) mutual information

Figure 1: Information dynamics in a distributed network.
For node X , this figure displays the local active information
aX(n + 1, k) and the local transfer entropies tY1→X(n +
1) and tY2→X(n + 1) from each of the causal information
sources VX ∈ {Y1, Y2} at time n + 1.

between its semi-infinite past x(k)
n (as k → ∞) and its next

state xn+1 at time step n + 1:

aX(n + 1) = lim
k→∞

log2
p(x(k)

n , xn+1)

p(x(k)
n )p(xn+1)

, (4)

with aX(n, k) representing an approximation with finite
history length k. The active information is the average
over time (or equivalently weighted by the distribution of
(x(k)

n , xn+1)): AX(k) = 〈aX(n, k)〉. From our computa-
tional perspective, an agent can store information regardless
of whether it is causally connected with itself; i.e. for RBNs,
this means whether or not the node has a self-link. This
is because information storage can be facilitated in a dis-
tributed fashion via one’s neighbors, which amounts to the
use of stigmergy (e.g. see Klyubin et al. (2004)) to commu-
nicate with oneself (Lizier et al., 2008a). Finally, the local
entropy for any agent is the sum of the local active informa-
tion and the local entropy rate hµX(n, k) (for any k):

hX(n) = aX(n, k) + hµX(n, k), (5)

with their averages also related in this way. In a determin-
istic system, the entropy rate represents the joint contribu-
tion from the causal information sources to the destination
(Lizier et al., 2008a), though it does not specify the infor-
mation transfered from any particular one of those sources.

The information transfer between a source and a des-
tination agent is defined as the information provided by
the source about the destination’s next state that was not
contained in the past of the destination. The information
transfer is formulated in the transfer entropy, introduced by
Schreiber (2000) to address concerns that the mutual infor-
mation (as a de facto measure of information transfer) was
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a symmetric measure of statically shared information. The
local transfer entropy (Lizier et al., 2008b) from a source
agent Y to a destination agent X is the local mutual infor-
mation between the previous state of the source2 yn and the
next state of the destination xn+1, conditioned on the semi-
infinite past of the destination x(k)

n (as k →∞):

tY→X(n + 1) = lim
k→∞

log2
p(xn+1|x(k)

n , yn)

p(xn+1|x(k)
n )

. (6)

Again, tY→X(n, k) represents finite-k approximation, and
the transfer entropy is the (time or distribution) average:
TY→X(k) = 〈tY→X(n, k)〉. The local transfer entropy is
shown in Fig. 1. The transfer entropy can also be formu-
lated to condition on the states vx,y,n of all causal informa-
tion contributors to the destination (the set VX ) except the
source Y , so as to completely account for the contribution
of Y . This formulation is known as the complete transfer
entropy (Lizier et al., 2008b), with average and local values
defined as:

T c
Y→X(n + 1) = 〈tcY→X(n + 1)〉 , (7)

tcY→X(n + 1) = lim
k→∞

log2
p(xn+1|x(k)

n , yn, vx,y,n)

p(xn+1|x(k)
n , vx,y,n)

, (8)

vx,y,n = {zn|∀Z ∈ V,Z (= Y } . (9)

The formulation in Eq. (6) is then labeled the apparent trans-
fer entropy. Importantly, the transfer entropy properly mea-
sures a directed, dynamic flow of information, unlike mutual
information measures used by Ribeiro et al. (2008) and Solé
and Valverde (2001) which measure correlations only.

Information modification has been described as interac-
tions between transmitted and/or stored information which
result in a modification of one or the other (Langton, 1990).
In (Lizier et al., 2007), we observed that negative values
of aX(n) and tY→X(n) indicated misinformation or sur-
prise regarding a given local outcome. We hypothesized that
the sum of the local active information storage and appar-
ent transfer entropy from each causal information contrib-
utor would be negative in a local information modification
event, where no information source contained enough pre-
dictive power to overcome the misinformation generated by
the other sources in the information “collision”. This sum is
known as the local separable information:

sX(n) = aX(n) +
∑

Y ∈V,Y %=X

tY→X(n). (10)

Again, sX(n, k) represents finite-k approximation, and the
separable information is the average SX(k) = 〈sX(n, k)〉.

2The transfer entropy can be formulated using the l previous
states of the source. However, where only the previous state is a
causal information contributor (as for RBNs), it is sensible to set
l = 1 to measure direct transfer only at step n.

In Fig. 1, we have sX(n, k) = aX(n, k) + tY1→X(n, k) +
tY2→X(n, k). Positive local values of sX(n, k) indicate triv-
ial information modification events, while negative local val-
ues of sX(n, k) indicate non-trivial information modifica-
tions events where the information sources interact in a non-
trivial manner.

This framework was applied to cellular automata (CAs),
which are effectively an ordered lattice-style sub-class of
RBNs (Wuensche, 1997), in (Lizier et al., 2007). The frame-
work quantified blinkers and regular domains as the domi-
nant information storage elements, particles (gliders and do-
main walls) as the dominant information transfer agents, and
particle collisions as the dominant (non-trivial) information
modification events. These results align with existing con-
jecture on the nature of distributed computation in CAs, pro-
viding significant impetus for the use of this framework to
analyze computation in other complex systems.

Information dynamics of RBNs
In this study, we seek to measure the average informa-
tion dynamics of RBNs as a function of average in-degree
or connectivity K. For the RBNs simulated here, we use
N = 250, Poissonian distributed in-degree for each node
based on average in-degree K, p = 0.5 (no bias in rules),
and CRBNs with synchronous updating. Also, we do not
bias the network structure, allowing comparison with the
majority of existing RBN publications. The RBNs are mod-
eled using enhancements to Gershenson’s RBNLab software
(http://rbn.sourceforge.net).

We measure the average entropy, entropy rate, and active
information for each node in a given RBN (e.g. AX(k)),
then average these over each node in the RBN (to get e.g.
〈AX(k)〉), then average these network averages over many
networks generated for each K (at least 250) to determine
the average values as a function of K (denoting this, e.g.,
as AX(k,K)). Similarly, the average apparent and com-
plete transfer entropies are measured for (at least 50) sample
pairs of causally linked nodes (unlike the mutual informa-
tion measurements by Ribeiro et al. (2008) and Solé and
Valverde (2001) for random node pairs), averaged once to
obtain network averages, and again over many networks to
obtain averages as a function of K.

While the local information dynamics are known to pro-
vide significantly greater insights into the distributed com-
putation than their averaged counterparts (Lizier et al., 2007,
2008b), the averages will provide sufficient summaries re-
garding the ensemble properties with respect to K. A hybrid
approach is taken for the separable information; the average
S(k,K) is computed in a similar manner to the other met-
rics, however we also record the balance between its positive
and negative local values (trivial and non-trivial information
modifications respectively) S+

X(k,K) and S−X(k,K) in con-
tributing to the average. For a given node, we have for ex-
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ample S+
X(k) =

〈
s+

X(n, k)
〉
, where:

s+
X(n, k) =

{
sX(n, k) if sX(n, k) ≥ 0

0 if sX(n, k) < 0 . (11)

We seek to approximate an infinitely-sized network, and
so avoid running the RBN for too many time steps because
the computation is completed once the network reaches a
periodic or fixed attractor (inevitable for finite-sized RBNs).
For each simulation from an initial randomized state, we ig-
nore a short initial transient of 30 steps to allow the network
to settle into the main phase of the computation, then allow
evolution over 400 time steps. Importantly, since the nodes
in each RBN are heterogeneous agents, the probability dis-
tribution functions for each measure must be computed for
each node individually rather than combining observations
across all nodes (as could be done for the homogeneous
agents in CAs (Lizier et al., 2007)). In order to properly
sample the dynamics of each node in each RBN and gen-
erate enough data for the information theoretic calculations,
many repeat runs from random initial states are required for
each network (at least 4480 are used). For these calculations,
one should use as large a history length k as facilitated by the
number of observations (Lizier et al., 2008b); here we find
k ≈ 13 provides reasonable convergence for a reasonable
number of repeat runs.

It has been hypothesized that RBNs close to the critical
state possess a maximal information transfer capability (e.g.
(Rämö et al., 2007)), which is generalized in the “edge of
chaos” hypothesis (Langton, 1990): that systems exhibiting
critical dynamics in the vicinity of a phase transition max-
imize their computational properties (see Kauffman (1993)
regarding RBNs in particular). More specifically, Langton
(1990) suggests that an intermediate level of information
transfer and storage gives rise to complex computation in
critical dynamics, with too much of either decaying the com-
putational capability. This is at odds with suggestions of
the maximization of information transfer in this regime, e.g.
(Rämö et al., 2007; Solé and Valverde, 2001).

Our experiments aim to provide insight here. It is sim-
ple to foresee the average active information and apparent
transfer entropy being zero in the extreme ordered regime
(with fast freezing at point attractors) and in the extreme
chaotic regime (where the high level of interactions over-
whelm information storage and obscure the apparent contri-
bution of each information source). It seems reasonable that
both would be maximized, on average, in the interim near
the critical region, where the dynamics support long corre-
lations across space and time. On the other hand, we pre-
dict that the complete transfer entropy (which has been sug-
gested to reveal higher information contributions as the level
of interactions increases (Lizier et al., 2008a)) will continue
to increase with the connectivity into the chaotic regime. In-
deed, we observed that relatively high values of the appar-
ent transfer entropy indicated the capacity for coherent local

information transfer structures (i.e. gliders in CAs). We hy-
pothesized there that an increasing of the complete transfer
entropy in the chaotic regime indicated a higher level of in-
teractions in conjunction with the loss of this coherence.

Important caveats are provided by criticisms of the edge
of chaos hypothesis, e.g. see Mitchell et al. (1993). In ex-
amining average computational properties as a function of
RBN parameters, we emphasize that there is in general a
very large range of network realizations and consequently
of behaviors possible for each parameter set. The local in-
formation dynamics of computation will provide much more
detailed insights for a given RBN (as for CAs in (Lizier
et al., 2008b)) than averages over nodes, networks and net-
work sets discussed here. That being said, these averages
can provide important insights into the computational prop-
erties as a function of RBN parameters, so long as we re-
member that the average results are akin to likelihoods rather
than certainties, albeit likelihoods that are much stronger in
the limit of infinite system size.

Results and discussion
Fig. 2 shows that the the average single node entropy
HX(K) simply increases as a function of K, as expected
since the level of activity in the network is increasing with
this parameter. More importantly, Fig. 2 also plots the av-
erage active information AX(k = 14,K) and entropy rate
HµX(k = 14, K), showing that the active information rises
then reaches a maximum near to the critical phase (K = 2)
before falling away, while the entropy rate only begins to rise
near the critical phase then continues to rise and approach
the entropy in the chaotic phase. Since the entropy is the
sum of the active information and entropy rate (Eq. (5)), we
can now begin to describe the phase transition in terms of
computation: the ordered phase is dominated by informa-
tion storage (information contained in the past of the node
about its next state), the chaotic phase is dominated by in-
formation transfer (information from incoming links about
the next state which was not contained in the node’s past),
while there appears to be something of a balance between
the two near the critical phase.

We then examine the constituency of the information con-
tributed from incoming links, the total of which is the en-
tropy rate. Fig. 2 also plots the average apparent transfer
entropy TY→X(k = 14,K) for each link, demonstrating
that this quantity too rises to a maximum value close to the
critical phase, then falls away. In contrast, Fig. 2 addition-
ally plots the average complete transfer entropy T c

Y→X(k =
13,K) for each link, which also begins to rise close to
the critical phase but continues to increase into the chaotic
phase. We see therefore that in the first stage of the shift
toward the dominance of information transfer, the sources
can be observed to have a significant influence on the des-
tination (in the context of the destination’s history) with-
out considering the effect of the other causal sources (i.e.
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Figure 2: Average information dynamics versus average
connectivity K for networks of size N = 250. Plotted here
are the average entropy HX(K), entropy rate HµX(k =
14,K), active information AX(k = 14, K), apparent trans-
fer entropy TY→X(k = 14, K) and complete transfer en-
tropy T c

Y→X(k = 13, K). The information required to pre-
dict the next state of each node is dominated by information
storage at low K and by information transfer at higher K
(first by coherent then interaction effects). Error bars (omit-
ted) are on the scale of the data points for all plots.

TY→X(k = 14, K) is relatively high). In this regime, there
is greater potential for coherent information transfer struc-
tures to propagate. However, as the activity level in the
RBNs continues to rise with the average connectivity K, the
apparent effect of each source is swamped by the activity of
the other causal sources, leading TY→X(k = 14,K) to fall
away. Considering also the increase in T c

Y→X(k = 13,K)
(which does account for the other sources), we see that the
level of interaction is increasing with the connectivity of the
network. In the chaotic regime, the influence of any one in-
formation source can only be properly identified by taking
all of the other sources into account also. These compli-
mentary measures of information transfer provide different
but useful insights, and give impetus to our hypothesis in
(Lizier et al., 2008a) regarding the relative values of the ap-
parent and complete components of information transfer in
order-chaos phase transitions.

Next, we compare these maximizations to the phase tran-
sition as measured using the standard deviation of the con-
vergence/divergence parameter δ (from Eq. (2)).3 In Fig. 3

3δ was confirmed to change sign close to K = 2 here (as per
(Gershenson, 2004b)), with a subsequent slow increase after K =
2 (known to be a finite-N effect). The standard deviation of δ is
maximized during this increase in the chaotic regime (Gershenson,
2004b). Certain other measures suggested to indicate the critical
phase are known to be shifted into the chaotic regime for finite-
N , e.g. (Ribeiro et al., 2008). Given impetus as an indicator of
the critical phase by the related measure of Rämö et al. (2007), we

Figure 3: Maximizations in active information AX(k =
14,K) and apparent transfer entropy TY→X(k = 14, K)
as a function of average connectivity K for N = 250,
shown with respect to the standard deviation of the conver-
gence/divergence parameter δ. This indicates that informa-
tion storage peaks just on the ordered side of the phase tran-
sition, while (coherent) information transfer peaks just on
the chaotic side of the phase transition.

we see that the information storage peaks slightly within the
ordered phase from the critical region, while the informa-
tion transfer peaks slightly within the chaotic phase. Im-
portantly, it is the apparent transfer entropy that peaks here
(indicating the capability for coherent information transfer),
as distinct from the complete transfer entropy which contin-
ues to increase into the chaotic phase. As per footnote 3,
we expect the relative positions of these maximizations to
be maintained around the critical phase as N → ∞, with
both likely to become closer to the critical point in this limit
(as for the measure of correlation by Ribeiro et al. (2008)).
The relative positions of the maximizations are quite inter-
esting, because they align with existing conjecture on the
nature of computation around phase transitions which typi-
cally associates information storage with the ordered phase
and information transfer with the chaotic phase (e.g. (Lang-
ton, 1990)). Both the information storage and transfer ap-
pear to be driving the dynamics toward the critical phase,
but from different sides of the phase transition.

We can also add quantitative evidence to the conflicting
conjecture around whether information transfer is found at
an intermediate (Langton, 1990) or maximum level (Solé
and Valverde, 2001) at criticality. For RBNs, it is maxi-
mized close to criticality where one measures the apparent
influence of a source in isolation, but equally it is at an in-
termediate level where the measurement considers the other

use the standard deviation of δ as guide to the relative regions of
dynamics in finite-N networks.
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causal information sources also. If these findings apply to
such phase transitions in general, then both sources of con-
jecture appear to be well-founded, being resolved in these
two different methods of measuring information transfer.

Indeed, we previously conjectured the capacity for the co-
herence of information transfer (provided by relatively large
apparent transfer entropy) to be an important feature of com-
plex dynamics in (Lizier et al., 2008a). Further insight into
the coherent nature of the computation in the RBN is pro-
vided by the separable information SX(k,K). Fig. 4 shows
that SX(k,K) is maximized for approximately the same
values of K as the apparent transfer entropy (though it is
slightly more spread out). This can be explained with refer-
ence to its positive and negative components, S+

X(k,K) and
S−X(k,K). We see from Fig. 4 that the early rise in the sep-
arable information is driven by S+

X(k,K) (trivial informa-
tion modifications), with a peak occurring before S−X(k,K)
(non-trivial information modification events) rises and con-
sequently reduce the total. As the connectivity K is further
increased, S+

X(k,K) begins to fall whereas S−X(k,K) con-
tinues to rise. Near the critical phase, at the peak of the sep-
arable information, note that there is in fact a relatively low
incidence of non-trivial information modification events (i.e.
S−X(k,K) is low). This is interesting because of the impor-
tance placed on these events in computation, e.g. they are
manifested as particle collisions in CAs. It appears that if
the amount of non-trivial information modification events or
information collisions is too large, the capacity of the sys-
tem for complex computation is reduced. It is likely that
this is due to a large amount of collisions eroding the coher-
ent nature of the information storage and transfer within the
system, disturbing the computation and reducing their own
impact. A maximization of separable information, should
perhaps be interpreted as maximizing the bandwidth for co-
herent information storage and modification, while allow-
ing a smaller number of high-impact non-trivial information
modification events in the coherent computation.

Finally, we note that all of the information dynamics de-
scribed here experience maximum standard deviation in the
vicinity of the critical region (not shown). This indicates
maximal diversity in the information dynamics throughout
the RBNs in this regime, as observed for other measures
(e.g. (Gershenson, 2004b)).

Conclusion
We have described results which quantify the fundamental
nature of computation around the critical phase in RBNs.
The dynamics of RBNs are dominated by information stor-
age in the ordered phase, with the level of information stor-
age increasing with connectivity in the network. The in-
creasing connectivity facilitates increasing activity, giving
rise to an increasing level of information transfered from
linked nodes. These two operations of universal computa-
tion appear to be in balance around the critical point. After

Figure 4: Separable information SX(k = 13, K) and its
positive and negative components, S+

X(k = 13,K) and
S−X(k = 13,K) respectively, versus average connectivity
K for N = 250. Trivial information modification (high
S+

X(k)) dominates the dynamics at low K, while the amount
of non-trivial information modification rises with K.

this, information transfer continues to increase with connec-
tivity, reducing the capacity for information storage. Near
the critical point, there is a large amount of trivial informa-
tion modifications, providing the capability for coherent in-
formation transfer and storage to flourish and indeed max-
imize, and allowing the small number of non-trivial infor-
mation modifications to have a large impact on the coher-
ent computation. As connectivity continues to increase, the
information transferred from any single node observed in
isolation initially appears strong, peaking slightly into the
chaotic regime. With further increases however, the interac-
tion between the nodes begins to dominate and erodes the
capacity for coherent computation.

This new understanding of the information dynamics in
RBNs near the critical phase is important, because there is
evidence that the gene regulatory networks they model op-
erate in this critical regime (Rämö et al., 2006). The impli-
cation here is that GRNs have evolved to a form facilitat-
ing maximum coherent computational capability. Further-
more, this study of RBNs represents the first exploration of
an order-chaos phase transition using this framework for in-
formation dynamics: the results here are likely to be perti-
nent to order-chaos phase transitions in other systems.

We intend to continue our investigation of the informa-
tion dynamics in RBNs, e.g. the effect of varying network
size. Given the fundamental nature of the computational
properties here, we expect to be able to describe the manner
in which these information dynamics underpin other mea-
sures of the phase transition in RBNs, e.g. high interactivity
(measured by complete transfer entropy and negative com-
ponent of separable information) leads to large perturbation
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avalanche sizes. We expect that the choice of RBN updat-
ing scheme will have little effect on the fundamentals of the
phase transitions reported here, though this should be inves-
tigated. Furthermore, we intend to explore the effect of dif-
ferent topologies, in particular scale-free topologies (since
most biological networks are scale-free with an exponent
putting them near the critical point (Aldana, 2003)). Finally,
we intend to investigate whether the information dynamics
here can be used to drive evolution or self-tuning adaptation
of RBNs to produce critical networks. Such an experiment
could provide evidence that an underlying capacity for com-
putation may have been a driver in GRN evolution.
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Solé, R. V. and Valverde, S. (2004). Information theory of com-
plex networks: Onevolution and architectural constraints. In
Ben-Naim, E., Frauenfelder, H., and Toroczkai, Z., editors,
Complex Networks, volume 650 of Lecture Notes in Physics,
pages 189–207. Springer, Berlin / Heidelberg.

Wuensche, A. (1997). Attractor Basins of Discrete Networks. PhD
thesis, The University of Sussex.

Artificial Life XI 2008  381 



 ‘Psychoanalysis’ of a Minimal Agent 

Santosh Manicka and Inman Harvey 

Center for Computational Neurosciences and Robotics, 

School of Cognitive and Computing Sciences 

University of Sussex, Brighton BN1 9QH, United Kingdom  

{S.Manicka, inmanh}@sussex.ac.uk 
 
 

Abstract 

 

The Secretary problem is studied with minimal cognitive agents, 

being a problem that needs memory and judgment. A sequence of 

values, drawn from an unknown range, is presented; the agent has 

only one chance to pick a single value as they are presented, and 

should try to maximize the value chosen. In extension of previous 

work (Tuci et al. 2002), Continuous Time Recurrent Neural 

Networks (CTRNN) are evolved to solve the problem, and then their 

strategies are analyzed by relating mechanisms to behavior.  

Strategies similar to the known optimal strategy are observed, and it 

is noted that significantly different strategies can be generated by 

very different mechanisms that perform equally well. 

Introduction 

This study is in the tradition of using Evolutionary Robotics 
techniques (Cliff et al. 1993; Harvey et al. 2005) to evolve 
artificial minimal agents with a genetically specified ‘nervous 
system’ so as to perform tasks of interest (Beer, 1996; Beer, 
2003; Goldenberg et al. 2004). The interest of the Secretary 
Problem (described in the next section) is that it requires 
memory and judgment, and the provably optimal strategy 
requires a strategy of some sophistication. 
  
Tuci et al (2002) evolved CTRNNs with 4 nodes to perform 
well at this task, and performed a preliminary analysis of the 
strategies seen. Here we largely replicate their methodology, 
and go on to look at their activation level patterns from their 
performance in various scenarios and then interpret them in 
terms of their behavior with the objective of uncovering any 
underlying strategy. Whereas Tuci et al had done an overall 
performance analysis, our strategy was to observe the 
behavior of the evolved mechanisms in the smallest units of 
the problem and do it over a strategically chosen range of 
problems so that we would be able to sensibly describe the 
observed behavior as a strategy. To put it simply, we analyze 
the strategies by relating the neural mechanisms to the 
behavior, in what could be metaphorically called a form of 
‘psychoanalysis’. The significant results are: 

1. A network is found to have evolved a strategy 
similar to the actual optimal strategy. 

2. Two networks with nearly equal fitness values are 
found to have evolved significantly different 
strategies. 

The Secretary problem can be considered as one in a larger 
class of problems in probabilistic decision making using a 
single criterion (maximize rank). While it has been shown, 
through this work, that evolution ‘thinks’ like a 
mathematician in a simple problem of a larger class of 
decision making problems, it could be interesting to 
investigate its influence in more complicated problems. One 
such interesting problem could be the game of poker. 
CTRNNs could be evolved and their strategies be compared 
with the game theoretic strategies of poker in search of 
interesting implications from a cognitive point of view. An 
even more complicated application could be problems 
involving multiple criteria like the ‘Experts case’ problem 
(Czogala and Roubens, 1989). If successful CTRNNs could 
be evolved in such problems, a behavioral analysis of their 
strategies as adopted in this work might help reveal interesting 
cognitive insights as this approach is fundamentally different 
from the usual analytical approaches. 

Background 

The Secretary problem is a problem of choice from among a 
temporal sequence of random possibilities so that the 
expected payoff from the choice is maximized or the expected 
cost of the choice is minimized. A very simple form of the 
secretary problem version has been described by Ferguson 
(1989) as follows: 

1. There is one secretarial position to be filled 
2. The total number of applicants is known 
3. The applicants are interviewed sequentially in 

random order. An order has the same chance of 
occurrence as any other order. 

4. An applicant should either be accepted or rejected at 
the end of the interview of the applicant and the 
decision should be made solely on the relative rank 
of the applicant 

5. An applicant once rejected cannot later be accepted 
6. The interviewer will not be satisfied unless the 

chosen applicant is the best in the group (i.e., the 
payoff is either 1 or 0) 

7. If no applicant is accepted before the last applicant, 
the last applicant should be accepted. 
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The solution to the problem is quite simple: for a specific 
integer r1, reject the first r-1 applicants and choose the next 
applicant who is the best among all the applicants seen until 
then. Mathematically stated, the probability of choosing the 
best applicant is 1/n if r=1; if r>1 then (Ferguson, 1989) 

 
(jth applicant is best and you 
select it) 

 
 
 
 
For a very large value of n, the value of r is calculated as 1/e. 
This translates as “Reject the first ~37% of the interviewees 
and then pick the first best”. Implementation of this analytic 
solution is quite straight forward; it hardly takes a few lines of 
code in a computer program. Given the proof arrived at by 
mathematicians, an interesting question, from an evolutionary 
point of view, would be to ask "How would evolution shape 
the cognition of an agent powered by a dynamical system to 
solve this problem?" This would be interesting in the sense 
that the agent here is not expected to 'know' mathematics. An 
experiment performed with such an agent could lead to 
insights into the mechanisms of cognitive behavior. Such 
experiments have been conducted in the past by evolving 
continuous time recurrent neural networks (CTRNNs) (Beer, 
1996). Tuci et al (2002) have successfully evolved a CTRNN 
that could solve the Secretary problem (that maximizes the 
expected payoff rather than look for the single best item). In 
this paper we go further to analyze in depth successful 
CTRNNs. 

Methods 

 
As the emphasis of this work is analysis, we used a proven 
method of evolution of a CTRNN to solve the Secretary 
problem; we used a very similar approach as used by Tuci et 
al (2002). In the experimental set up by Tuci et al, the logical 
sequence of values (worthiness of the interviewee) is 
presented in the form of a temporal sequence of inputs to the 
CTRNN; for each one the binary input is switched to value 1 
for a length of time proportional to the current value (referred 
to as ‘exposure time’), and then cleared to zero. A sequence 
(also referred to as a ‘trial’) contains 20 unique items 
(integers), from which the network is expected to choose one. 
The single thresholded output is then tested for a binary 
accept/reject decision, before moving on to the next value 
(item) in the sequence. Overall, the network is expected to 
maximize its payoff by choosing an item with a relative rank 
in the sequence as large as possible. The presentation of a trial 
is terminated as soon as the network accepts an item or after 
all the 20 items are presented (in which case the last item is 
considered accepted). Between consecutive presentations of 
items, the network is cleared by setting the input to zero for 2 
(simulated) seconds. Before the start of each trial, the network 
is reset by setting the output values of the nodes to zero. The 
input is always fed to node 1 and is time-based (Tuci et al. 
2002) i.e., the external input will remain at the value ‘1’ for a 
particular number of iterations (value of an item in the 

trial/time-step size). In our experiment, the time-step size 
value was 0.2. So, if an item’s value is 27, the external input 
will be ‘1’ for 135 iterations of network-update. 
 
The network is run through a set of 60 trials, each of length 20 
during its evolution. Each trial is defined as follows (Tuci et 
al. 2002) 
 
c = 1,…..,60    
 
 
Where, lc is the lowest possible value of an item of trial c and 
hc is the highest such possible value.  
Each neuron of the 4-neuron CTRNN we evolved uses the 
following state equation (Tuci et al. 2002): 

 
 
 

with  
 
 
 
 
 

 yi       = cell potential 
i    = decay constant 

    wji        = strength of connection from neuron j to i 
 zj    = firing rate of neuron j 
 Ij   = external input to neuron i 
 g   = sensory gain factor 
     j   = bias 
 
When the activation of the output neuron exceeds 0.5 at the 
end of presentation of an item, the item is considered chosen. 
The initial strength of the population, the fitness function and 
the evolutionary parameters that we used were the same as 
what were used in (Tuci et al. 2002) except for a few changes 
(as we could not replicate the experiment with the original 
parameters): the decay constants were mapped to [100, 101.8] 
instead of [100, 102.8]. We used mutation probability 0.2 
instead of 0.3 with explicit elitism. The cut-off values for the 
elitism varied between top 5% and 8%. The number of 
generations was varied between 5000 and 25000 in the runs. 
We evolved 2 fairly-well performing CTRNNs using the 
above mentioned parameters from 7 evolutionary runs. We 
consider a network to perform fairly-well when its fitness 
value is comparable to that of the best network evolved by 
Tuci et al i.e., a fitness value of 0.85. Henceforth, we will 
refer to these networks as N1 and N2. Below, we describe 
their morphologies and their various performance measures. 
 
 
 

Results of evolution 

Morphology and performance of network N1 

 
We have presented the morphologies of the evolved networks 
here so that any experiment with these networks can be 
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replicated with ease without having to resort to re-evolution. 
Otherwise, we have not explored any direct influence of the 
network parameters on the results of our analyses.  
The mean maximized rank choice (on a scale of 0 to 1) of N1 
is: 0.79 
 
Morphology: 
 
          Weight matrix (connection from node j to node i) 

  i=1 i=2 i=3 i=4 

j=1 -2.853552 -2.087797 0.612068 2.975119 

j=2 -0.585138 3.029250 -1.806782 0.330331 

j=3 -3.342187 1.828053 1.184740 -4.909308 

j=4 0.125955 0.641515 -1.510127 -1.685360 

Table 1a. Evolved Weight matrix for N1 
        
 Other parameters of the ith neuron 

i 1 2 3 4 

i  3.563501 46.563980 0.327475 39.911218 

i 0.898813 -0.569968 -0.122038 -0.734500 

Table 1b. Other evolved parameters for N1 
 
Gain = 3.352800 
 
The percentage of actively expressed preference (choice of 
any item other than the last item) and the average acceptance 
position per trial are plotted below in figures 1a and 2a after 
performing 100 simulations of 60 trials each.  

Fig 1a. Percentage of expressed preference per trial 
 
The value ‘percentage of expressed preference’ at trial i 
denotes the percentage of the number of active choices made 
by the network until that trial. Acceptance position is the 
position in the sequence of a trial where an item is accepted 
(actively or passively) by the network. 
 

 

Morphology and performance of network N2 

 
The mean maximized rank choice (on a scale of 0 to 1) of N2 
is: 0.75 
 
Morphology: 
 
          Weight matrix (connection from node j to node i) 

  i=1 i=2 i=3 i=4 

j=1 -0.744026 2.395746 -0.296505 2.120096 

j=2 0.818743 -4.829388 -3.410042 -3.145099 

j=3 -0.344417 1.448848 4.833700 4.198339 

j=4 -4.913282 1.830852 -0.096895 1.296698 

Table 2a. Evolved Weight matrix for N2 
 
                     Other parameters of the ith neuron 

i 1 2 3 4 

i  3.939339 358.841803 17.613176 22.553297 

i -1.336118 0.079064 -1.928700 -1.408360 

Table 2b. Other evolved parameters for N2 
 
Gain = 4.167492 

Fig 2a. Average acceptance position per trial 
 
Figures 3a and 3b depict the performance in terms of average 
relative rank of the item chosen by the networks N1 and N2 in 
each of the 60 trials averaged over 100 simulations. 
The horizontal dotted lines indicate the overall mean 
performance of the network. 
 

Analysis 

It can be seen from figures 3a and 3b that both N1 and N2 
perform relatively worse towards the ends of the trial 
spectrum. We will now look at the activation level patterns of  
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Fig 3a. Average rank choice per trial in N1 

Fig 3b. Average rank choice per trial in N2 
 
each network in specific problem scenarios in an attempt to 
look at the networks’ behavior in detail. A test trial is 
presented from each of the following categories: 

1. A randomly generated trial from the lower trials (c is 
between 1 and 5) where the network performs the 
worst 

2. A randomly generated trial from the intermediate trials 
where the network performs the best 

3. A randomly generated trial from the higher trials (c is 
between 55 and 60) where the network performs the 
worst 

 Figures 4a through 4d depict the activation level values of the 
output neuron during the exposure time (see ‘Methods’ 
section for definition) for each test trial. 
 
 
 
 
 
 

Behavior of N1 
 
Test trial 1 
27, 8, 29, 5, 18, 20, 15, 24, 17, 16, 9, 3, 2, 19, 22, 4, 26, 23, 
21, 12 
Result: No active choice. Figure 4a shows the behavior of the 
network towards each item in the trial. 

Fig 4a. Activation levels of the output node of N1 for trial 1 
 

Test trial 2 
22, 24, 31, 35, 27, 32, 33, 23, 39, 45, 36, 43, 25, 46, 40, 49, 
29, 21, 26, 48 
Result: Item = 46; Position = 14; Relative rank = 18. Figure 
4b shows the behavior of the network towards each item in 
the trial. 

Fig 4b. Activation levels of the output node of N1 for trial 2 
 
Test trial 3 
86, 70, 73, 84, 65, 68, 60, 66, 82, 74, 83, 78, 71, 81, 61, 63, 
79, 72, 76, 77 
Result: Item = 82; Position = 9; Relative rank = 17. Figure 4c 
shows the behavior of the network towards each item in the 
trial. 
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Observations 
 
From figures 4a, 4b and 4c, it can be seen that: 
1. The network starts responding with a ‘great dip’ in all the 

trials for the first item, regardless of the absolute value of 
that item. The dip can continue for about 150 iterations 
(fig 4c) and then start rising. Its maximum destination 
value of activation could be about 0.05 (see fig 4c, first 
item = 86; max value could be 89). 

Fig 4c. Activation levels of the output node of N1 for trial 3 
 
2. The number of items that spend their ‘lives’ below zero-

AL (‘AL’ is short for Activation Level) decreases from 
test trial 1 to test trial 3. 

3. In all trials, the vertical separation between response 
curves grows smaller with more items seen. They are the 
closest between activation levels 0.4 and 0.5. 

4. In all the trials, for items following the first, there is a 
slight initial dip and it stays slightly longer for items at 
higher positions in the trial. Besides, this initial dip is 
longer for items in trial 3 than in the other two trials. 

5. In all the trials, for each item, the network responds with 
a shoot-up after the initial dip. The slope of the shoot-up 
is almost the same for all the items in test trial 1 and also 
test trial 2 (except towards the last few items of the trial). 
However, this parallelism is less pronounced in test trial 
3 where the network tends to flatten-out its response to 
the items it sees in the higher positions of the trial. 

 
Interpretations and reasoning 
 
The great dip is indicative of ‘Never choose the first item, 
whatever it may be’ as even if it is 89, it wouldn’t be chosen 
(test trial 3). The extent of the dip will determine how fast the 
responses of the items can race to the 0.5-AL finishing line. 
This is the reason behind observation (2). As the network sees 
more items, it strives to settle for an item with as big a relative 
rank as possible by being more “cautious”. This behavior can 
be seen in observation (4). The longer initial dip and therefore 
a more delayed start of the shoot-up, combined with a slightly 
smaller rate of shoot-up makes sure that only those items with 
relatively more persistence (longer response due to larger 
items) can move closer to the finishing line. Observation (4) is 
in turn the reason behind observation (3) since (4) results in a 

smaller difference between the initial and the final activation 
values for an item seen higher in the trial and therefore the 
following item’s starting activation level is closer to that of 
the previous item. The reason behind observation (5) is that 
when it sees more values in a higher trial and still strives for 
rank maximization, it can’t continue the trend of shoot-up 
(with a constant rate) as it does in a lower trial because if it 
does, items with relatively smaller values (like 65 or 70 in trial 
3) can easily cross the 0.5-AL. Therefore, it seems that it has 
evolved to “stretch” its single strategy of rank maximization 
to the higher trials by lengthening its initial dip and slowing 
down its shoot-up. This also could be the reason why the last 
range of values (60, 89) is a bad performer (fig 3a) as the 
percentage of expressed preference slightly drops towards the 
end (fig 1a). That’s because the response could flatten out so 
much that the network eventually refuses to actively accept 
any item as shown in the response levels in fig 4d below for 
the following trial: 
63, 60, 76, 65, 71, 68, 77, 85, 75, 84, 62, 74, 86, 82, 64, 78, 
88, 72, 73, 61 
Result: No active choice 

Fig 4d. Activation levels of the output node of N1 for a 
random trial 
 
Strategy 
 
Has the network evolved a strategy? We have not found a 
complete answer to this question, but we will present here a 
few directions along which the answer could be pursued. 
The network appears to be following two stages of aspiration-
setting: first, when it sees the first item and second, when it 
sees the rest as the response to the first item is significantly 
different from the rest.  The term "aspiration" can be 
described as a value such that an item with a value greater 
than the aspiration could be considered as a candidate for 
selection. Here we describe a possible approach to uncover 
the aspiration-setting strategy of the network. See figure 5a. A 
sample response curve is plotted for a random item at a 
random position in a trial. Two types of typical responses are 
depicted past a random point B – a response crossing the 0.5-
AL and a response flattening out just below the 0.5-AL line. 
When the response reaches point C (on the same level as the 
starting point A), the current item is roughly considered 
worthy of acceptance. The corresponding value 'p' on the x-
axis when multiplied by 0.2 (step size) can be considered as 
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the lower bound of the current aspiration (LBA) set by the 
network. The actual aspiration can be calculated when the 
response crosses the 0.5-AL as at point D. Then the actual 
aspiration is l*0.2. Yet there is a possibility that for an item, 
the response totally flattens out before it could cross the 
finishing line (fig 4d). In that case, an approximate value of 
the more accurate LBA can be calculated. At point E, in fig 
5a, the response starts to flatten out. 

Fig 5a. Aspiration-setting in network N1 
 

The LBA is then calculated as (p2*0.2). If the item is not big 
enough (not a long enough response) to help reckon the 
aspiration, it can be incremented by 1 until it either reaches 
point D or E. This way, the aspiration at a particular position 
in a particular trial can be calculated. Such calculations when 
performed extensively over a wide range of trials and 
positions might help get a deeper insight into the underlying 
patterns of aspiration-setting. Further analysis of the great 
dip’s impact also helped reveal a more interesting strategy. 
We ran about 1000 simulations of the network each 
containing the regular 60 trials. Fig 6a below depicts the 
percentage of choice made at a particular position of the trial 
in these simulations. 

Fig 6a. Percentage of choice per position of N1 
 
It can be seen that no choice is made at any of the first 6 
positions. At the 7th position, the percentage of choice is 
extremely low (0.02%). Only starting from the 8th position, 
the network actively makes a good proportion of choices. The 
actual optimal strategy to the Secretary problem is to ignore 
(make no choice) the first 37% of the trial (Ferguson, 1989) 

and then to choose the best item that’s better than any item 
seen so far. The length of a trial in our experiment is 20 and 
37% of 20 is 7.4. Therefore, our network seems to have 
evolved a similar strategy as the actual optimal strategy at 
least as far as ignoring the first few items is concerned. 
 
 
Comparison with optimal strategy 
 
In this section, we compare the behavior of N1 with the 
analytic-optimal strategy described in the ‘Background’ 
section.  As a note, the mean maximized rank choice of the 
optimal strategy is 0.80 as compared to 0.79 of N1. Fig 6b 
below depicts the trial-wise average acceptance position of N1 
against that of the optimal strategy. It can be seen that the 
average acceptance of the optimal strategy is almost always 
about 14. It is because the first best item better than the best in 
the first 37% of the sequence (i.e., in the first 7) can appear 
anywhere between positions 8 and 20 with equal probability. 
Therefore, over a sufficiently large number of simulations (in 
this case, 1000) the average position will be the average of 8 
and 20 which is 14. Consequently, it can be seen that the 
strategy of N1 is not wholly similar to the optimal strategy 
after ignoring the first 37% of the sequence. Still there is an 
overlap between the 2 plots between trials 23 and 27 and also 
at about 56. Could it mean that N1 behaves in the same way 
as the optimal strategy in these ranges of values? Further 
analysis provides the answer ‘No’.  Figure 6c depicts a trial-
wise average rank choice by N1 (fig 3a repeated) against the 
choice by the optimal strategy. It can be seen that between 
trials 23 and 27, N1 fairs better than the optimal strategy. At 
the trials around 56, the optimal strategy performs better than 
N1. So their performances are different even though their 
average acceptance positions in these trials are the same. 

Fig 6b. Average acceptance positions – a comparison 
 

It can also be seen from this figure (6c) and from figure 6b 
that even if N1’s performance is the same as the optimal 
strategy in trials like 10 and 50, their average acceptance 
positions are different. The reason for the above 2 
observations is that even though the average acceptance 
position is the same, the standard deviation between the 
acceptance positions of N1 and the optimal strategy is quite 
considerable as shown in figure 6d. 
 
 

 

Artificial Life XI 2008  387 



Fig 6c. Average trial wise rank choice – a comparison 
 

Fig 6d. Standard trial-wise deviation between average 
acceptance position of N1 and that of optimal strategy. 

 
It can be seen that the minimum standard deviation is about 5. 
Also, in trial 42 where N1 seems to perform relatively the best 
(fig 6c, 3a), the standard deviation is approximately 5.5. At 
trial 17, where the standard deviation is the least i.e., 5 the 
performance is also among the highest. These observations 
suggest that the second part of N1’s strategy is not as 
definitive and general as the optimal strategy (standard 
deviation is neither zero nor constant in the trials; see fig 6d) 
and yet not fully trial-dependent (there is no pattern displayed 
in the evolved strategy in fig 6b). 
 
 
Behavior of N2 
 
In this section, we describe the behavior of the network N2 
when it is presented with the same 3 trials as N1 was 
presented with and compare their responses. The focus here is 
to point some significant differences between the networks’ 
cognition even if there is no big difference between their 
overall performances. 

 
Test Trial 1 
27, 8, 29, 5, 18, 20, 15, 24, 17, 16, 9, 3, 2, 19, 22, 4, 26, 23, 
21, 12 
Result: No active choice. See figure 7a. 
 
 

Test Trial 2 
22, 24, 31, 35, 27, 32, 33, 23, 39, 45, 36, 43, 25, 46, 40, 49, 
29, 21, 26, 48 
Result: Item = 39; Position = 9; Relative rank = 13. See 
figure 7b. 

Fig 7a. Activation levels of the output node of N2 for trial 1 

Fig 7b. Activation levels of the output node of N2 for trial 2 

Fig 7c. Activation levels of the output node of N2 for trial 3 
 
Test Trial 3 
86, 70, 73, 84, 65, 68, 60, 66, 82, 74, 83, 78, 71, 81, 61, 63, 
79, 72, 76, 77 
Result: Item = 70; Position = 2; Relative rank = 7. See figure 
7c. 
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Observations and interpretations 
 
The network seems to have learnt the smallest and the largest 
values of the entire range. It can readily accept 89 wherever it 
sees it (see response for the item 86 in fig 7c) and never 
accepts 1 (always a dip). Consequently, in the last few trials, it 
ends up making a very early choice because they are the 
biggest numbers it has ever seen and in the first few trials, it 
ends up making no choice as they are some of the smallest. 
So, in these ranges the average rank is 10 as that is 
approximately the average rank at any position of the trial out 
of a maximum rank of 20. Some of the most significant 
differences between N1 and N2 are discussed below. 
 
Strategy 
 
From the observations above, it appears that N2 has learned to 
differentiate between the worth of the items it has seen during 
its evolution rather than differentiate them within a trial. Its 
aspiration seems to be set by the first item rather than by the 
first few items as in N1. It can be vaguely stated as “I need an 
item larger than the previous items but if it is large enough 
(say greater than 60), I might accept it”. Unlike N1, initial 
activation level of an item is much lower than that of the 
previous item. It looks like the pre-caution that is taken by N1 
in the first few items is taken after each item in the case of 
N2. Also, though the dip looks deeper in each item than N1, 
the LBA seems to be almost the same as what is set by N1 
(see corresponding sub-figures of figures 4 and 7). Still, the 
shoot-up is more conspicuously non-linear than N1 and could 
differ quite drastically with each item. That is one of the 
reasons why it could become hasty (see trial 3). 
 

Discussion 

 
We note that artificial evolution has resulted in a CTRNN 
with a strategy strikingly similar to the optimal strategy 
developed using rigorous mathematical analysis. It makes us 
wonder how such a strategy could have evolved. Could the 
transitions in the evolution of the strategy have followed the 
same analytical steps that a mathematician uses in his 
method? What is more, there seems to be at least one more 
strategy to solve the problem as reflected from the behavior of 
N2 whose performance is quite comparable to that of N1. 
Though we have not been able to verbalize its strategy as we 
could do for N1, from a cognitive viewpoint, we have been 
able to describe how the network has learnt to assess an item 
in a sequence based on its position. It has particularly 
interesting implications on the cognition of judgment when 
we interpret the dips and shoot-ups in the behavior patterns as 
being weary and being optimistic respectively. It further 
implies that a definitive strategy like the analytic solution is 
not necessarily the only way to solve the Secretary problem; 
‘patterns of cognition’ could work too. Of course the lack of 
the ability to generalize to the variants of the problem (Tuci et 
al. 2002) could draw criticisms against making such an 
inference. Still, it can not be conclusively said that the 
network has learnt (or rather ‘memorized’) the boundaries of 

each trial, thereby performing better than the optimal strategy 
in some trials; the smallest and largest item in a trial is not 
always the same. Therefore, the network should have learnt, 
to some extent, to what to expect based on what a ‘judgment’ 
from what it has seen. This ‘judgment’ is what we refer to as 
‘patterns of cognition’. What makes it interesting is that it 
does not seem to be a definitive strategy as the optimal 
strategy and yet yields a comparable performance.  

Conclusion  
Different CTRNNs were evolved to solve the Secretary 
problem and their behavior was analyzed. One of them 
evolved a strategy similar to the analytically optimal strategy. 
It was also observed that two different networks with almost 
equal average performances can evolve totally different 
behaviors. Above all, an investigative study of the neuronal 
activation levels has proved to be extremely useful in 
unveiling the CTRNN’s behavior. This approach could 
particularly be useful when a level of analysis higher than the 
usual dynamical systems theoretical approach is necessitated. 
This kind of behavioral analytical approach could be a lot 
simpler to adopt in case of more complicated probabilistic 
decision making problems. 
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Abstract

The notion of conceptual structure in cellular automata (CA)
rules that perform the density classification task (DCT) was
introduced by Marques-Pita et al. (2006). Here we investi-
gate the role of process-symmetry in CAs that solve the DCT,
in particular the idea of conceptual similarity, which defines
a novel search space for CA rules. We report on two new
highest-performing process symmetric rules for the DCT. We
further discuss how our results are relevant to understand,
control, and design the collective computation performed by
other networks of automata, such as those used to model, for
example, living systems.

Introduction

The intersection of biology and computer science has been
a fertile ground for some time. Indeed, Von Neumann was
a member of the mid-twentieth century Cybernetics group
(Heims, 1991), whose main focus was the understanding of
natural and artificial systems in terms of communication and
control processes. It is interesting to notice that most early
computer science developments were inspired by the mod-
els of cognition that orbited this group (e.g. seminal work by
McCulloch and Pitts, 1943). Since then, the need to under-
stand how biological systems are able to control and trans-
mit information throughout the huge number of components
that comprise them has only increased. Certainly, the study
of complex network dynamics has been the subject of a sub-
stantial body of literature in the last two decades. From pi-
oneering work on networks of automata (Kauffmann, 1969;
Derrida and Stauffer, 1986; Kauffmann, 1993) to more re-
cent systems biology models of gene regulation dynamics
(Mendoza and Alvarez-Buylla, 1998; Albert and Othmer,
2003; Espinosa-Soto et al., 2004; Kauffmann, 2003), it is
clear that to understand and control the biological organiza-
tion, it is useful to study the dynamics and robustness of
models based on complex networks of automata (Chaves
et al., 2005; Willadsen and Wiles, 2007).

There has been much progress in understanding the struc-
ture of natural networks—be it at the level of their scale-free
topology (see e.g. Barabási, 2002; Newman et al., 2006) or

of their more fine-grained motifs (Alon, 2007)—as well as
some progress on modeling specific biological systems as
networks of automata. But we are still to fully grasp how
the dynamics of complex networks can lead to collective
computation and how to harness them to perform specific
tasks (see e.g. Mitchell, 2006). Indeed, the need for a better
understanding of collective computation in complex natural
networks has been identified in many areas. For instance,
we know that the way plants adjust their stomatal apertures
for efficient gas exchanges on leaf surfaces is statistically
indistinguishable from the dynamics of automata that com-
pute (Peak et al., 2004). We also know that the high de-
gree of inter-connectivity in biochemical intracellular sig-
nal transduction networks, endows them with the capability
of emergent nontrivial classification—via collective compu-
tation (Helikar et al., 2008). Plenty more examples exist,
which are too numerous to list here.

Clearly, a novel method for describing and understand-
ing how networks collectively compute, would be wel-
comed. The work presented here is extremely promising
in that regard. The conceptual properties uncovered by
our “cognitively-inspired” algorithm provide a more com-
pact and intuitive way to understand how complex networks
perform the collective computation that they do. One way
to think about the conceptual redescriptions produced by
our algorithm is as “dynamical motifs”. Rather than find-
ing common structural network motifs (e.g. Alon, 2007),
our redescriptions uncover patterns in the dynamics of au-
tomata networks, here specifically the case of cellular au-
tomata. Moreover, our redescriptions allow us to understand
the global dynamic behavior of novel, high-level conceptual
observables built from these redescriptions.

In this paper, we focus on a known problem of emergent
computation in CA: the density classification task (DCT)
(Mitchell et al., 1996). Specifically, we investigate the role
of process symmetry, the main conceptual property shared
by the majority of CAs that perform the DCT, in (1) defining
conceptual spaces where rules with high performance can be
found; (2) obtaining more intuitive explanations of the be-
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havior of rules that perform the DCT; and (3) exploring the
process-symmetric vicinity of high performance asymmetric
rules. In forthcoming work, we will expand this approach to
study other discrete complex networks such as Boolean net-
works of automata

Cellular Automata

A cellular automaton (CA) consists of a regular lattice of N
cells. Each cell is in one of k allowed states at a given time
t. Let ω ∈ {0, 1, ..., k − 1} denote a possible state of a cell.
Let state ω = 0 be referred to as the quiescent state, and
any other state as an active state. Each cell is connected to
a number of neighbors. Let a local neighborhood configu-
ration (LNC) be denoted by µ, and its size by n. For each
LNC in a (n, k) CA an output state is assigned to each cell.
This defines a CA rule string, φ, the size of which is kn. In
binary CAs, where only two states are allowed(k = 2), it is
possible to classify individual cell state-updates in three cat-
egories: (1) preservations, where a cell does not change its
state in the next time instance t + 1; (2) generations, state-
updates in which the cell goes from the quiescent to the ac-
tive state; and (3) annihilations, state-updates where the cell
goes from the active to the quiescent state. The Initial Con-
figuration (IC) of states of a CA lattice is typically random.
The execution of a CA for a number M of discrete time
steps, from a given IC, is represented as the set Θ containing
M + 1 lattice state configurations.

The Density Classification Task (DCT)

The Density Classification Task (DCT) is one of the most
studied examples of collective computation in cellular au-
tomata. The goal is to find a binary CA rule that can best
classify the majority state in the randomized IC. If the ma-
jority of cells in the IC are in the quiescent (active) state,
after a number of time steps M , the lattice should converge
to a homogeneous state where every cell is in the quiescent
(active) state. Since the outcome could be undecidable in
lattices with even number of cells (N), this task is only ap-
plicable to lattices with an odd number of cells. Devising
CA rules that perform this task is not trivial, because cells in
a CA lattice update their states based only on local neighbor-
hood information. However, in this particular task, it is re-
quired that information be transferred across time and space
in order to achieve a correct global classification. The defi-
nition of the DCT used in our studies is the same as the one
by Mitchell et al. (1993).

The nine highest-performing 1-dimensional CA rules that
perform the DCT were analyzed by Marques-Pita et al.
(2006). The goal of that analysis was to determine whether
there is conceptual structure in these rules, and in that
case, to investigate the possible conceptual similarity among

them. These explorations were supported by a cognitively-
inspired method, Aitana (Marques-Pita, 2006). In essence,
Aitana takes as input a CA rule in its look-up table form,
and outputs the same rule but redescribed in a more com-
pact abstraction. Specifically, the output is a set of schemata
that can be used (for example) to reason about the con-
ceptual structure concealed in the look-up table of the in-
put rule. Three of these nine rules have been produced
by human engineering: φGKL (Gacs et al., 1978; Gon-
zaga de Sá and Maes, 1992), φDavis95 and φDas95 (An-
dre et al., 1996); three were learned with genetic algorithms
φDMC (Das et al., 1994) or coevolution methods φCOE1 and
φCOE2 (Juillé and Pollack, 1998). Finally, three of the rules
were learned with genetic programming or gene expression
programming: φGP1995 (Andre et al., 1996), φGEP1 and
φGEP2 (Ferreira, 2001).

Marques-Pita et al. (2006) have shown that there is indeed
conceptual structure in these CA rules. All of the studied
CAs were redescribed in more compact schemata that made
explicit certain conceptual properties most of these CAs
have in common. Here we studied one of these properties
(process-symmetry) in more detail. The next section sum-
marizes the basics of Aitana’s representational redescription
architecture, and the conceptual properties found in the stud-
ied CAs that perform the DCT.

Aitana: Conceptual Representations of CA

Aitana is largely based on a framework for cognitive de-
velopment in humans: the Representational Redescription
Model developed by Karmiloff-Smith (1992), and the Con-
ceptual Spaces framework proposed by Gärdenfors (2000).
There are a number of (recurrent) phases in Aitana’s algo-
rithm: (1) Behavioral Mastery, during which CAs that per-
form some specific collective computation are learned us-
ing, for example, genetic algorithms or coevolution. The
learned rules are assumed to be in a representational format
we call implicit (conceptual structure is not explicit). (2)
Representational Redescription Phase I takes as input the
implicit representations (CA look-up tables) and attempts to
compress them into explicit-1 (E1) schemata by exploiting
structural regularities within the input rules. (3) Phase II
(and beyond) look for ways to further compress E1 repre-
sentations, for example by looking at how groups of cells
change together, and how more complex schemata are capa-
ble of generating regular patterns in the dynamics of the CA.
The focus in this paper is on Phase I redescription.

E1 representations are produced by modules in Aitana.
Here we focus on the Wildcard module. The CA rules stud-
ied were redescribed with the this module, introduced in the
next section.
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The Wildcard Module

This module uses regularities in the set of entries—one for
each possible LNC—of a CA’s look-up table, in order to
produce E1 representations captured by wildcard schemata.
These schemata are defined in the same way as the look-up
table entries for each LNC of a CA rule, but allowing an ex-
tra symbol to replace the state of one or more cells within
them. This new symbol is denoted by “#”. When it ap-
pears in a E1 schema it means that in the place where it
appears, any of the possible k states is accepted. The idea of
using wildcards in representational structures was first pro-
posed by Holland et al. (1986), when introducing Classifier
Systems. The wildcard redescriptions used here are Process-
specific, i.e. they do not allow a wildcard symbol in the place
of an updating cell in a schema. This makes it possible for
them to describe processes in the CA rule unambiguously.
For example, a generation, schema {#, #, #, 0, 1,#, 1}
prescribes that a cell in state ω = 0, with immediate-right
and end-right neighbors in state ω = 1 updates its state to
ω = 1 regardless of the state of the other neighbors.

The implementation of the wildcard module in Aitana
consists of a simple McCulloch and Pitts neural network. In
this assimilation network, input units represent each look-
up table entry (one for each LNC), and ouput units represent
all the possible schemata available to redescribe segments of
the input rule (see Marques-Pita, 2006, for details).

Assimilation and Accommodation

Phase I redescription in Aitana depends on two interrelated
mechanisms, assimilation and accommodation1. During
Phase I, the units in the input layer of an assimilation net-
work are activated to reflect the output states in the input
CA rule to be processed. The firing of these units spreads,
thus activating other units across the network. When some
unit in the network (representing a E1 schema) has incom-
ing excitatory fibers above a threshold it fires. This firing
signals that the schema represented by the unit becomes an
E1 redescription of the lower level units that caused its acti-
vation. When this happens, inhibitory signals are sent back
to those lower level units so that they stop firing (since they
have been redescribed). At the end of assimilation, the units
that remain firing represent the set of wildcard schemata re-
describing the input CA rule. Once the process of assim-
ilation has been completed, Aitana will try to “force” the
assimilation of any (wildcard-free) look-up table entry that
was not redescribed i.e. any input unit that is still firing. This
corresponds to the accommodation process implemented in
Aitana (see Marques-Pita, 2006, for further details).

1These two processes are inspired in those defined by Piaget in
his theory of Constructivism (see e.g. Piaget, 1952, 1955)

Conceptual properties of CAs for the DCT

One of the main novel findings reported in Marques-Pita
et al. (2006) is the fact that most rules that perform the
density classification task are process-symmetric. Process
symmetry for binary CA rules is defined as a bijective map-
ping between the members of the only two possible sets of
schemata prescribing state changes: generation processes,
which refer to a cell state change from ω = 0 to ω = 1,
and annihilation processes which refer to the reverse state
change.

Using the concept of process symmetry, one can easily
define a function that converts a generation into an annihi-
lation process, and vice versa. Such a function of E1 re-
descriptions, transforms a schema s into its corresponding
process-symmetric schema s′ by (1) reversing the elements
in s using a mirror function M(s), and (2) exchanging ones
for zeros, and zeros for ones (leaving wildcards untouched),
using a negation function N(s). Thus, in every process
symmetric CA rule, given the set S = {s1, s2, ..., sz} of
all schemata si prescribing a state-change process, the ele-
ments of the set of schemata prescribing the converse pro-
cess S′ = {s′1, s′2, ..., s′z} can be found by applying the bi-
jective mapping between processes defined by the compo-
sition s′i = (M ◦ N)(si). This property is illustrated in
Figure 1, where the E1 schemata of the process symmetric
rule φGP1995 (Andre et al., 1996) are shown.

!GP1995

{#, #, #, 0, 1, #, 1}

{#, #, 1, 0, #, #, 1}

{1, #, #, 0, #, #, 1}

{0, #, 0, 1, #, #, #}

{0, #, #, 1, 0, #, #}

{0, #, #, 1, #, #, 0}

RULE Generation Annihilation

Figure 1: E1 schemata prescribing state changes for
φGP1995. Any annihilation (right column) can be obtained
by reversing the corresponding generation schema (to the
left), and exchanging zeros for ones, and ones for zeros.

Six out of the nine rules analyzed by Marques-Pita et al.
were found to be process-symmetric. The remaining three,
φCOE1 and φCOE2 and φDMC are not.

It is interesting to note that the three non process-
symmetric rules were discovered via evolutionary algo-
rithms (GAs and coevolutionary search) which apply vari-
ation to genetic encodings of the look-up tables of CAs.
Therefore, genotype variation in these evolutionary algo-
rithms operates at the low level of the bits of the look-up
table—what we referred to as the implicit representation of a
CA. In contrast, the other forms of search of design that lead
to the other six (process-symmetric) rules, while not look-
ing explicitly for process symmetry, were based on mecha-
nisms and reasoning trading in the higher-level behavior and
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structure of the CA—what we refer to as the explicit repre-
sentation of a CA. Marques-Pita et al. have also determined
that it is possible to define conceptual similarity between the
process symmetric CA rules for the DCT. For example, the
rule φGP1995 can be derived from φGKL. Moreover, the best
process-symmetric rule known for this task (at the time) was
found via conceptual transformations: φMM401

2 with per-
formance P105

149 ≈ 0.833. However, the performance of this
rule is still below the performance of the best CA rule for
the DCT, namely φCOE2, with P105

149 ≈ 0.86.

The 4-Wildcard Process-Symmetric Space

Starting with the conceptual similarities previously observed
between φGKL and φGP1995, we now report a search of the
“conceptual space” where these two CA rules can be found:
the space of process-symmetric binary CA rules with neigh-
borhood size n = 7, where all state-change schemata have
four wildcards. A form of evolutionary search was used
to evaluate rules in this space as follows: the search starts
with a population of sixty-four different process-symmetric
rules containing only 4-wildcard schemata; the generation
and annihilation schema sets for an individual were allowed
to have any number of schemata in the range between two
and eight; crossover operators were not defined; a muta-
tion operator was set, allowing the removal or addition of
up to two randomly chosen 4-wildcard schemata (repetitions
not allowed), as long as a minimum of two schemata are kept
in each schema set; in every generation the fitness of each
member of the population is evaluated against 104 ICs, keep-
ing the top 25% rules (elite) for the next generation without
modification; offspring are generated by choosing a random
member of the elite, and applying the mutation operator un-
til completing the population size with different CA rules; a
run consisted of 500 generations, and the search was exe-
cuted for 8 runs. There are 60 possible 4-wildcard process-
symmetric schemata-pairs. Thus, our search space contains
approximately 3 × 109 rules defined by generation and an-
nihilation schema sets of size between 2 and 8.

Our search found one rule with better performance than
φMM401. This rule, φMM0711

4 has P105

149 ≈ 0.8428. The
state-change schema sets for this rule are shown in Figure
2. Even though this search resulted in an improvement, the
performance gap between the best process-symmetric rule,
φMM0711 and φCOE2 is still close to 2%. Is it possible then,
that a process-symmetric rule exists “hidden” in the concep-
tually “messy” φCOE2?

2In inverse lexicographical hexadecimal format, φMM401 is
ffaaffa8ffaaffa8f0aa00a800aa00a8

3The measure P105

149 refers to the proportion of correct classifi-
cations in 105 ICs of length 149

4In inverse lexicographical hexadecimal format, φMM0711 is
faffba88faffbaf8fa00ba880a000a88

!MM0711

{#, #, 0, 0, #, 1, 1}

{1, #, #, 0, #, 1, 1}

{1, 0, #, 0, 1, #, #}

{1, #, 1, 0, #, #, #}

{0, 0, #, 1, 1, #, #}

{0, 0, #, 1, #, #, 0}

{#, #, 0, 1, #, 1, 0}

{#, #, #, 1, 0, #, 0}

RULE Generation Annihilation

Figure 2: E1 schemata prescribing state changes for the CA
rule φMM0711. This CA is process-symmetric.

Process-Symmetry in φCOE2

Figure 3 shows the state-change schema sets for φCOE2.
The performance of this rule is P 105

149 ≈ 0.86. We tested this
rule on two sets of 105 ICs, one with majority ω = 0, the
other with majority ω = 1. Samples were taken from bino-
mial dist. centered around 0.5 (most difficult cases to clas-
sify). The performances were, respectively, P 105

149 ≈ 0.83
and P 105

149 ≈ 0.89. Thus, even though on average this is
the best CA rule for the DCT, it performs much better when
there is a majority of “1’s” in the ICs.

!COE2

g1 {1, 0, 1, 0, #, #, #}

g2 {1, 0, #, 0, #, 1, 1}

g3 {1, 1, #, 0, 1, #, #}

g4 {1, #, 1, 0, 1, #, #}

g5 {1, #, 1, 0, #, 0, #}

g6 {1, #, #, 0, 1, 1, #}

g7 {1, #, #, 0, 1, #, 1}

g8 {#, 0, 0, 0, 1, 0, 1}

g9 {#, 0, 1, 0, 0, 1, #}

g10 {#, 0, #, 0, 0, 1, 1}

g11 {#, 1, 1, 0, 1, #, 0}

g12 {#, 1, 1, 0, #, 0, #}

a1 {0, 0, 1, 1, 1, 1, #}

a2 {0, 0, #, 1, #, 1, 0}

a3 {0, 1, 0, 1, 1, #, #}

a4 {0, #, 0, 1, #, #, 0}

a5 {1, 0, 0, 1, #, 0, #}

a6 {#, 0, 0, 1, #, #, 0}

a7 {#, #, 0, 1, 1, 0, #}

a8 {#, #, 0, 1, #, 0, 0}

a9 {#, #, #, 1, 0, #, 0}

RULE Generation Annihilation

Figure 3: E1 schemata prescribing state changes for φCOE2.
This is the highest-performing rule for the DCT. φCOE2 is
not process-symmetric.

We claim that this divergence in behavior is due to the fact
that φCOE2 is not process-symmetric. Evaluation of split
performance on the ten best rules for the DCT supports this
hypothesis (see Table 1). The difference between the two bi-
ased performance measures for the non-process-symmetric
rules is one or two orders of magnitude larger than for the
process-symmetric rules. This indicates that process sym-
metry seems to lead to more balanced rules—those that re-
spond equally well to both types of of problem.

It is then reasonable to ask: Is there a process-symmetric
rule in the conceptual vicinity of φCOE2, whose perfor-
mance is as good (or higher) than the performance φCOE2?
To answer this question we pursued a number of tests. First,
we looked at the CA rule resulting from keeping all anni-
hilations in φCOE2, and using only their process-symmetric
generations. The performance of that rule was P 105

149 ≈ 0.73.
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!
GKL

0.8135

!
Davis95

0.8170

!
Das95

0.8214

!
GP1995

0.8223

!
DMC

0.8439

!
COE1

0.8283

!
COE2

0.8337

!
GEP1

0.8162

!
GEP2

0.8201

!
MM0711

0.8428

0.8143

0.8183

0.8210

0.8245

0.7024

0.8742

0.888

0.8173

0.8242

0.8429

P10
5

149
M"0P10

5

149
M"1

0.0008

0.0013

0.0004

0.0022

0.1415

0.0459

0.0543

0.0011

0.0041

0.0001

P. DIFF.

Table 1: Split performances of the ten best DCT rules.
Darker rows correspond to process-symmetric rules; white
rows refer to non-process-symmetric rules. For the latter,
there is a significant difference in performance: φDMC is
better at classifying cases where state 0 is in the majority;
φCOE1 and φCOE2 are considerably better at solving the
problem when state 1 is in the majority. The difference be-
tween the split performance measures is one to two orders
of magnitude larger for the non-process-symmetric rules.

A second test was the reverse of the first one: keeping
all generations of φCOE2, and using only their process-
symmetric annihilations. The resulting rule has a perfor-
mance P 105

149 ≈ 0.47.

For the next test, we looked at the degree of process sym-
metry already existing in φCOE2. To find this we used
the matrix-form representation of φCOE shown in Figure
4. Each column contains each of the 128 LNCs for a one-
dimensional binary CA rule and neighborhood radius three.
These LNCs are not arranged in lexicographical order, in-
stead they are arranged as process-symmetric pairs: the first
and last LNCs are process-symmetric, the second, and next
to last are also process-symmetric and so on, until the two
LNCs in the center are also process-symmetric. Each row
corresponds to the E1 (wildcard) state-changing schemata
for φCOE2. The first nine rows correspond to the annihila-
tion schemata, and the subsequent ones the twelve genera-
tion schemata for φCOE2.

In any of the first nine rows, a shaded-cell represents two
things: (1) that the LNC in that column is an annihilation;
and (2) that the LNC is part of the E1 schema labeled in
the row where it appears. The twelve rows for generation
schemata are reversed. This makes it simple to inspect visu-
ally what process-symmetric LNCs are present in the rule,
which is the case when for a given column, there is, at least,
one cell shaded in one of the first nine rows (an active anni-
hilation), and at least one cell shaded in one of the bottom
nine rows (an active generation). Let the schemata×LNC

binary matrix representation in Figure 4 be denoted by A,
where all shaded elements in the figure represent 1s and the
rest are 0s. In the figure the lighter colored matrix elements
are used to distinguish annihilation processes from genera-
tion processes, which are shown in a darker color.

Given the ordering of elements in the columns of Fig-
ure 4, if a generation row is isolated, and then reversed,
the result can be matched against any of the annihilation
rows to calculate the total degree of process symmetry be-
tween the two schemata represented in the two rows. A total
match means that the original generation schema is process-
symmetric with the matched annihilation schema. A partial
match indicates a degree of process symmetry. This par-
tial match can be used by Aitana’s accommodation mecha-
nism to force the highly process-symmetric pair into a fully
process-symmetric one, keeping the modified representation
only if there is no loss of performance.

More concretely, the degree of process symmetry exist-
ing between two schemata Sg and Sa prescribing opposite
processes (a generation schema, and an annihilation respec-
tively) is calculated as follows:

1. Pick rows Sg and Sa from matrix A such that Sg corre-
sponds to a generation and Sa to an annihilation.

2. Reverse one of the rows (e.g. Sa). This makes it possi-
ble to compare each LNC (the columns) with its process-
symmetric pair, by looking at the ith element of each of
the two row vectors.

3. Calculate the degree of process symmetry as:

2× Sg · Sa

|Sg| + |Sa|

where, the dot product of binary vectors, Sg · Sa is the
number of component-matches; and |S| is the number of
ones in a binary vector.5

All the generation rows were matched against all the an-
nihilation rows in matrix A, recording the proportion of
matches found. Table 2 shows the results of this matching
procedure (only highest matches shown). The darker rows
correspond to schema pairs that are fully process-symmetric.
The first three light gray rows (with matching score 66%)
show an interesting, almost complete process symmetry sub-
set, involving generation schemata g1, g4 and g5, and anni-
hilation schema a9.

Using the accommodation mechanism in Aitana, we
“generalized” the schemata g1, g4 and g5 into the more
general process symmetric pair of a9 (that encompasses

5While |x| is the notation typically used for cardinality of sets,
here, we use it to represent the 1-norm, more commonly denoted
by ||x||1.
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a3

a5

a7

a9

g9
g10
g11
g12

Figure 4: E1 processes for φCOE2, without the preservations. Here, the generation rows have been reversed, so that it becomes
much easier to determine what LNCs do not have their process-symmetric LNC active. The dotted vertical lines show these
LNCs. Each of these state-change prescriptions were removed in φCOE2clean .

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

Generation
schemata

a9

a2

a8

a9

a9

a6

a4

a3

a2

a1

Annihilation
schemata

66%

100%

100%

66%

66%

100%

100%

66%

25%

66%

Matching 
score

g11 a5 50%

g12 a9 33%

Table 2: Degree of process symmetry amongst all the gener-
ation and annihilation schemata in φCOE2. Gray rows indi-
cate full process symmetry, pink rows indicate a high degree
of process symmetry

the three of them), and tested the resulting CA rule. We
also “specialized” by breaking a9 into the three process-
symmetric schemata of g1, g4 and g5, with performance ,
P 105

149 < 0.6 in both cases.

Still working with the degree of process-symmetry in
φCOE2, it is possible to extract a matrix representation A′,
containing only those LNC process-symmetric pairs in A. In
other words, each column in A′ will be exactly as in A, as
long as the column contains 1s for at least one annihilation
and one generation row, otherwise the column is all 0s (the
latter is the case for all columns marked with dotted lines in
Figure 4). We will refer to the rule represented by the ma-
trix A′ as φCOE2−clean—the CA rule that preserves all the
process symmetry in φCOE2. The “orphan” LNCs removed
from A are shown in Figure 5 (white background). Their
process-symmetric pairs are in the same Figure (gray back-
ground). We will refer to this set of LNC pairs as R.

The last test to be reported consisted in evaluating the CA
rules derived from (1) taking φCOE2−clean as base (each
time); (2) adding to it a number of process symmetric pairs
from R to it; and (3) evaluating the resulting CA rule. This
set contains all CA rules that are the same as φCOE2−clean,
but adding one of the twelve pairs in R; it also contains all
the rules that are as φCOE2−clean, including combinations
of two pairs from R (66 rules), and so on. The total number
of CA rules derived in this way is 40966.

The performance of the 4096 rules is shown in Figure 6.
Each column shows the performance of the subsets of rules
adding one pair of LNCs from R, subsets adding combina-
tions of two pairs, and so on. Note that the median perfor-
mance in each subset decreases for rules containing more
pairs of LNCs from R. However, the performance of the
best CA rules in each subset increases for all subsets includ-
ing up to six LNC pairs, and then decrease.

One of the tested CAs, containing six LNC pairs added
to φCOE2−clean, is the best process-symmetric CA for the
DCT with P 105

149 ≈ 0.85. The schemata for this CA,
φMM0802, are shown in Figure 7. φMM0802, has a per-
formance that is very close to that of the second highest-
performing rule known for the DCT, φCOE1 (see Marques-
Pita et al., 2006). However, φMM0802 is the highest-
performing CA for split performance for the DCT—which
means that it classifies correctly the two types of IC it can
encounter (majority 1s or majority 0s).

6Note that each of the rules tested comes from adding a particu-
lar combination of pairs each time to the original φCOE2−clean, as
opposed to adding pairs of LNCs cumulatively to φCOE2−clean.
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{0, 1, 1, 0, 1, 0, 1}

{0, 1, 1, 0, 1, 0, 0}

{0, 1, 1, 0, 0, 0, 1}

{0, 1, 1, 0, 0, 0, 0}

{0, 0, 1, 0, 0, 1, 1}

{0, 0, 1, 0, 0, 1, 0}

{0, 1, 0, 1, 0, 0, 1}
{1, 1, 0, 1, 0, 0, 1}
{0, 1, 1, 1, 0, 0, 1}
{1, 1, 1, 1, 0, 0, 1}
{0, 0, 1, 1, 0, 1, 1}
{1, 0, 1, 1, 0, 1, 1}

Generation Annihilation

{0, 1, 0, 0, 1, 1, 1}
{1, 1, 1, 0, 0, 1, 1}
{1, 1, 1, 0, 0, 1, 0}
{0, 1, 0, 0, 1, 1, 0}
{0, 1, 0, 0, 1, 0, 1}
{0, 1, 0, 0, 1, 0, 0}

{0, 0, 0, 1, 1, 0, 1}

{0, 0, 1, 1, 0, 0, 0}

{1, 0, 1, 1, 0, 0, 0}

{1, 0, 0, 1, 1, 0, 1}

{0, 1, 0, 1, 1, 0, 1}

{1, 1, 0, 1, 1, 0, 1}

Figure 5: The set R of twelve LNCs in φCOE2 (white back-
ground) for which their corresponding process-symmetric
LNCs are preservations in the original CA rule (italics).
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Process-symmetric tested sets

Figure 6: Performances of the 4096 process-symmetric CAs
in the immediate conceptual vicinity of φCOE2. The best
specimen CA is φCOE2clean plus one of the combinations
of 6 process-symmetric pairs from R.

Conclusions and Discussion

Besides the two new best process-symmetric CA rules for
the DCT, perhaps the most important conclusion from this
work is concerned with the fact that representational re-
description gives us a new method to relate the local inter-
actions of automata in networks, to the dynamic patterns of
collective computation of the network as a whole. Indeed,
this constitutes an unexpected advance. When working with
implicit CA rules and genetic algorithms, Mitchell et al.
(1993) noted that there is no geometry in the space of CA
rules represented as look-up state transition tables. Specif-
ically, there was no way of knowing the effect of changing
one output in the rule table on its ability to perform a specific
collective computation. However, using the conceptually re-
described search spaces we explored here, this is clearly not
the case. Conceptual manipulations of CAs in this space re-
sult in CAs with similar dynamics—although not necessar-
ily always high performance (Marques-Pita et al., 2006). We

!MM0802

 {1, 0, 1, 0, #, #, #}

 {1, 0, #, 0, #, 1, 1}

 {1, 1, #, 0, 1, #, #}

 {1, #, 1, 0, 1, #, #}

 {1, #, 1, 0, #, 0, #}

 {1, #, #, 0, 1, 1, #}

 {1, #, #, 0, 1, #, 1}

 {#, 0, 0, 0, 0, 1, 1}

 {#, 1, 0, 0, 1, #, #}

 {#, 1, #, 0, 1, 0, #}

 {#, 1, #, 0, 1, #, 0}

 {#, #, 0, 0, 1, 0, 1}

 {0, 0, 1, 1, 1, 1, #}

 {0, 0, #, 1, #, 1, 0}

 {0, 1, 0, 1, 1, #, #}

 {0, #, 0, 1, #, #, 0}

 {1, #, 0, 1, #, 0, #}

 {#, 0, 0, 1, #, #, 0}

 {#, 1, 0, 1, #, 0, #}

 {#, 1, #, 1, 0, #, 0}

 {#, #, 0, 1, 0, #, 0}

 {#, #, 0, 1, 1, 0, #}

 {#, #, 0, 1, #, 0, 0}

 {#, #, #, 1, 0, 1, 0}

RULE Generation Annihilation

Figure 7: Schemata prescribing state changes for φMM0802,
the best process-symmetric rule for the DCT.

are not claiming process-symmetry is the important discov-
ery per se. Instead, the result we consider to be an important
advance is the discovery of conceptual structure in a form
of complex network—since, by representing concepts (e.g.
process-symmetry), it becomes possible to reason about col-
lective computation in new, less perplexing ways.

Here we showed that the ability to redescribe the dynam-
ics of automata networks into a form that is both easier to
understand and to search for new robust behaviors, was very
useful for the DCT and CA rules at large. Our results in-
dicate that there seems to exist conceptual structure in the
dynamics of networks of automata that perform collective
computation. But it should be emphasized that our method-
ology is not applicable only to CAs and the DCT; it is appli-
cable the study of other complex networks of automata. We
are currently exploring the conceptual structure in biochem-
ical networks modeled using Boolean networks. If we can
understand the dynamics of, say, a gene regulation network
as a form of computation and we uncover the dynamical mo-
tifs responsible for that computation, not only do we gain
a greater insight about the function of the network, but we
can also discover similar network configurations that can be
more robust, or those that lead to alternate behaviors more
easily. This could prove useful in understanding phyloge-
netic differences, or differences from wild-type phenotypes.
Thus, while here we only present results for the DCT in CA,
the approach is quite relevant for both Artificial Life and
Computational Biology.
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Abstract

When a distinct cultural region forms, its rate of absorption
into the surrounding culture may be an important variable
to take into account when attempting to minimise conflict.
This paper describes a re-implementation of Axelrod’s agent-
based model of cultural dissemination, and uses it to inves-
tigate how random drift influences the longevity of distinct
regions. Cultural regions are found to be surprisingly resis-
tant to such memetic drift.

Introduction
Cultural artefacts such as beliefs, behaviours, attitudes, lan-
guages, art and music tend to spread through populations.
Dawkins (1976) proposes a framework for viewing this
spread as a Darwinian process. He calls the cultural repli-
cators themselves “memes” and suggests that many aspects
of human society may be explained using this paradigm.

Given that beliefs, attitudes and behaviour tend to be
passed between people when they interact, how is cultural
diversity maintained? Axelrod (1997) describes an abstract
agent-based simulation of cultural dissemination to show
that global diversity can be maintained despite local con-
vergence.

When a distinct cultural region forms or arrives within
a larger culture it may take some time before it becomes
assimilated into its surroundings. An understanding of this
phenomenon may be important in our desire for a peaceful
society, free of tensions between cultural groups.

This paper describes a re-implementation of Axelrod’s
model and extends it to investigate how cultural drift (ran-
dom mutation of cultural traits) affects the longevity of cul-
tural distinctions.

Background
Memetics
In The Selfish Gene (1976), Dawkins introduces the concept
of the meme to highlight the fact that there is nothing special
about the gene as the fundamental unit of natural selection.
This honour should be given to the more abstract replicator,
“any unit of which copies are made, with occasional errors,

and with some influence or power over their own probability
of replication” (Dawkins, 2003, pp.149). Memes are another
example of a replicator, and have arisen relatively recently
on Earth. They are units of human culture which are passed
on by imitation. Examples include ideas, melodies, beliefs,
fashions, and technologies.

Like genes, memes fulfil the three criteria necessary for
the Darwinian algorithm to operate. They are passed from
individual to individual through imitation (heredity). Some
are more successful at spreading than others (selection). Im-
itation may be imperfect, and new cultural artefacts may
arise as novel combinations of others (variation).

Dawkins went on to suggest how this paradigm could be
useful in explaining some features of human culture (such
as religions: large complexes of many mutually supportive
co-adapted memes). Others have taken the idea further and
expanded it to other fields, including the problem of human
consciousness itself, the “ultimate” meme complex (Black-
more, 1999).

Maintenance of Differences: Axelrod’s Model
If this process of memetic transmission between individu-
als when they interact is common, how is cultural diver-
sity maintained? Several mechanisms have been proposed
to explain why cultural convergence stops before it reaches
completion. Most are based on the semantics of the cul-
tural artefacts themselves, such as “preference for extreme
views” (Abelson and Bernstein, 1963) or on the specifics of
the environment the population inhabits (for example, geo-
graphical isolation).

Axelrod (1997) proposes an abstract model based on the
fundamental principle that “the transfer of ideas occurs most
frequently between individuals . . . who are similar in cer-
tain attributes such as beliefs, education, social status, and
the like.”

Modelling Cultural Dissemination
The Abstract Meme
Although he never uses the terminology of memetics, Ax-
elrod’s cultural attributes are clearly analogous. His model
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abstracts away the content, or semantics, of the memes and
leaves behind a list of cultural features. Each feature may
take one of a range of values. The values can be thought of
as metaphors for the alternative forms of the cultural arte-
fact (if the feature is a hat, the alternative values may be a
red hat, a blue hat, a green hat etc). A culture is represented
as a string of digits such as “5, 2, 4, 5, 1”. In this case the
first feature has the fifth of its possible values, and so on.

In abstracting away the semantics of the memes, Axel-
rod has removed two of the three prerequisites of the Dar-
winian process. No trait on the cultural string is any more
likely to be passed on than any other, and so there is no con-
cept of “fitness” upon which selection may operate. Also,
when a trait is passed from one culture to another it is al-
ways copied with perfect fidelity: there is no mutation and
therefore no variation. His model is only one of heredity, and
he asks whether cultural diversity can be maintained even in
this most basic situation.

Key Assumptions
Axelrod makes two simple assumptions in his model:

• People are more likely to interact with others who are
more similar to them, i.e. share more of their cultural
traits.

• Interactions between people are likely to facilitate cultural
transmission, increasing the number of traits shared be-
tween the two interacting parties.

The Model
Axelrod’s model can be described as a randomly updated
asynchronous cellular automata. The basic configuration is a
square grid of cells. Each cell in the grid represents an agent,
and each has its own culture string. Agents may be thought
of as individual people, but due to their non-mobility, Ax-
elrod treats them as homogeneous “villages” with a single
culture string.

At each step, a site is chosen at random to be active. One
of its neighbours (north, south, east or west) is also chosen
at random.

With probability equal to their cultural similarity, these
two sites interact. An interaction consists of select-
ing at random a feature on which the active site and
its neighbour differ (if there is one) and changing the
active site’s trait on this feature to the neighbour’s trait
on this feature (Axelrod, 1997).

These steps are then repeated for as many events as de-
sired.

For example, consider an initial set of sites with randomly
assigned cultures. A site is selected at random to be “active”,
and has the culture string “5, 2, 4, 5, 1”. One of its neigh-
bours is then selected, which has the culture string “3, 9, 4,

5, 7”. By chance, these sites share two of their five cultural
features (the third and fourth) and so have a 40% similarity
and thus a 40% chance of interacting. If they do interact,
one of the traits they do not share is copied from the active
site to its neighbour. They are now 60% similar, and thus
more likely to interact in the future if they are again selected
at random.

Distinct Cultural Regions
Can this process of local convergence produce globally dis-
tinct cultural regions? To illustrate this, a sample run of the
model is described here. The same parameters as Axelrod’s
initial example were used: five cultural features, each with
ten possible values, on a 10×10 grid.

The similarity between two adjacent agents on the grid is
shown by the opacity of the line separating them. A black
line (100% opaque) indicates no shared features, while a
white line (0% opaque and invisible against the white back-
ground) indicates that all features are shared. The darker the
line, the lower the similarity.

Figure 1: Initial configuration

Initially the value of each cultural feature is chosen at ran-
dom for each agent (Figure 1). They are unlikely to share
many features in common, and so most of the dividing lines
are black.

Figure 2: After 25,000 events

After 25,000 events, many cultural regions (groups of ad-
jacent sites with identical cultures) have begun to form (Fig-
ure 2).
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Figure 3: After 50,000 events

After 50,000 events, the cultural regions have become
larger, encompassing more sites. Many of the remaining
boundaries are light grey, indicating that the sites they di-
vide differ by only one or two features. (Figure 3).

Figure 4: After 100,000 events

By 100,000 events, five clear cultural regions have
emerged. The sub-regions within the largest region differ
by only one feature. (Figure 4).

Figure 5: After 125,000 events

By 125,000 events, all sub-regions have disappeared and
five main regions are clear. These are surrounded by opaque
black lines, indicating that the adjacent sites at their bound-
aries have no features in common. The simulation is now
stable as the probability of any further interactions between
members of different regions is zero. (Figure 5).

The above run is a representative example of the be-
haviour of the model over time with different (randomly se-
lected) initial cultural traits. It is clear that global cultural
distinctions can emerge from local convergence.

The Number of Regions
To check the validity of the re-implementation, the simula-
tion was run twenty times with different initial random cul-
ture strings. A mean of 3.35 stable regions was found, which
is close to Axelrod’s average of 3.2 regions for a model with
the same parameters.

Axelrod’s Experiments
Axelrod goes on to perform several experiments using the
simulation by varying parameters (dimensions of grid, num-
ber of features in the culture string, number of possible traits
of each feature, number of neighbours the active cell can in-
teract with). He draws some interesting conclusions from
these experiments, including the non-intuitive result that the
average number of stable regions formed decreases as the
size of the territory increases.

The difficulty with making such inferences from an ab-
stract model is that it is not clear whether they are funda-
mental properties of the system (and thus could be applied
to the more realistic, non-abstract situations upon which the
model is based) or whether they are artefacts of the simplifi-
cations and assumptions built into the simulation itself.

In order to reduce this problem, it is useful to reintroduce
one or more of the features that was removed for the sake of
simplicity.

Cultural Drift
Axelrod suggests several possible extensions to the model,
one of which he calls cultural drift, modelled as a sponta-
neous change of the value of one of the cultural features in
a culture. This is analogous to a “mutation” of a meme, a
random change in some aspect of culture. If the feature in
question is a red hat, a mutation might involve dropping it
into a bucket of green paint. 1 Intuitively, such drift may be
common in real populations of interacting individuals.

Modelling Drift
It is simple to add random drift to the above model. At each
step of the simulation, each feature of the current active site
has probability p of undergoing a mutation. If a feature is
selected for mutation, its trait is simply changed to some
random value in the range of acceptable traits.

1The mutation may also not be random from a semantic point
of view - perhaps an individual comes up with a novel new idea
which can then be passed on to others. For the purposes of the
model, though, such creative acts remain irrelevant. All changes
are treated as random.
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Analysing the Effect of Drift
As Axelrod points out, it is not obvious how to analyse the
effect of drift on the basic model. Without drift, the model
eventually stabilises and no further change takes place. The
number of distinct regions can then be used as a measure of
the heterogeneity of the grid.

When random drift is added, the model never completely
stabilises, because a mutation may increase the similarity
of two distinct regions (allowing future interactions) or de-
crease the similarity of two sites within a region (creating
a slight boundary between them which may then increase
due to future interactions). This raises two practical ques-
tions: how to measure heterogeneity of the grid, and when
to end the simulation. Axelrod proposes several possible an-
swers to each question, and suggests that preliminary work
has shown the interaction between drift and the other param-
eters of the model to be quite complex.

However, this approach suffers from the same problems
discussed above. While it may be possible to perform exten-
sive experiments on the model to analyse the effect of drift,
it is not clear how any results found would transfer to the
real world.

For example, it may be possible to find a balance be-
tween mutation rate and the other parameters which allows
the emergence of distinct regions to be preserved despite
drift. However, many other factors may be present in the
real world which influence this equilibrium but are ignored
by the model. Gatherer (2004) uses a genetic algorithm on
a similar model to Axelrod’s to locate such an equilibrium,
and finds that maximal memetic isolation depends on an un-
likely combination of parameters. However, his model does
not take into account many real-world variables which may
be significant.

A more fruitful question to ask might be: given that a pro-
cess of local convergence may form distinct cultural regions
in the absense of drift, how does drift affect the stability of
those regions? This approach has two main advantages:

• By analysing the effect of drift on the stability of pre-
existing regions, we make no assumptions about the orig-
inal source of the cultural regions themselves. Axelrod’s
model proposes one mechanism by which such distinc-
tions may form, but he presents many alternative possi-
bilities which have been suggested by others, and which
may co-exist with his model. All of these can be taken
into account.

• By simplifying the initial conditions of the model signif-
icantly, it is much easier to assess the stability of regions
by observation, reducing the practical problems discussed
above.

The Stability of Distinct Cultural Regions
To analyse how drift affects the stability of cultural regions,
the initial conditions of the model were first altered to make

the simulation more simple.
Instead of an initially random set of culture strings, the

entire grid was made homogeneous by setting the value of
every feature to zero. Then, a single mutant site was created
by choosing a site at random and mutating all of its features
to some random value other than zero. A sample initial con-
figuration of the simulation is shown in Figure 6.

Figure 6: Initial configuration

The single mutant site is entirely distinct from the sur-
rounding region (it shares no traits with its neighbours). In
the absence of any drift, this configuration would be com-
pletely stable.

Cultural drift was then added to the model in the man-
ner described above (see section entitled “Modelling Drift”).
All other features of the model, such as the random pro-
cess of convergence between neighbouring sites, remain un-
changed. Also, the parameters used above (five cultural fea-
tures, each with ten possible values, on a 10×10 grid) were
maintained for simplicity.

The model was then run for a large number of events, and
observed until the distinct mutant site disappeared (was ab-
sorbed into the surrounding region or became otherwise in-
distinguishable from the background activity). 2

This process of absorption begins when a neighbouring
site happens to acquire the same value in one of its features
as the mutant site (either by direct mutation of that site’s fea-
ture, or by the spread of that trait from elsewhere on the grid
by the normal process of interaction). Now the mutant site
shares a feature with one of its neighbours, it has a chance
of an interaction with that neighbour which would increase
the similarity yet further. In general, once a single interac-
tion between the mutant site and its neighbour took place,
the mutant site tended to disappear fairly rapidly (< 5000
events).

A sample run of this process, using a probability p =
0.0001 of mutation per feature at the active site per event,
is shown below.

2To allow for unattended monitoring, this process was observed
by repeatedly taking “screenshots” of the grid at 5000 event inter-
vals. So the results are accurate to the nearest 5000 events follow-
ing the disappearance of the mutant region.
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Figure 7: After 30,000 events

Single sites which are mutated become slightly differenti-
ated from the surrounding region. Often, these are immedi-
ately reabsorbed, but occasionally they can form small clus-
ters of differentiated sites (Figure 7).

Figure 8: After 40,000 events

Usually, these small regions are short-lived, but occasion-
ally they can “seed” larger disturbances, and chaotic patterns
of differentiated regions can grow to cover much of the grid.
(Figure 8).

Figure 9: After 70,000 events

Often, even these large disturbances eventually resettle
into stability without affecting the mutant site. (Figure 9).

Figure 10: After 120,000 events

After 120,000 events, a new set of distinct regions has
emerged and made contact with the single mutant site (Fig-
ure 10).

Figure 11: After 125,000 events

Just 5000 events later, the mutant site has been absorbed
by the surrounding region and is no longer visible (Figure
11).

From the above run, it can be seen that with low muta-
tion probabilities (low levels of drift), distinct cultural re-
gions can survive significant numbers of interaction events
before disappearing. Over ten such runs (with p = 0.0001)
the mean number of events before the mutant region was ab-
sorbed was 108,000.

Rate of Cultural Drift

To further investigate these findings, the experiment was re-
peated with various mutation probabilities (rates of cultural
drift). For each probability value, the model was run ten
times, and the mean number of events to the disappearance
of the mutant region was found. A graph of the results is
shown in Figure 12.
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Figure 12: The effect of cultural drift on the longevity of
distinct regions

What is surprising about these findings is that even as the
mutation probability is increased by several orders of mag-
nitude, the longevity of the mutant cultural region only de-
creases relatively slowly. One might expect that in a culture
with a very high rate of drift, new cultural regions may be
absorbed very rapidly as common features may appear reg-
ularly by chance, facilitating interaction across boundaries.
The results of this experiment suggest that despite such high
levels of drift, distinct regions may persist for significant pe-
riods of time.

Discussion
It is difficult (and probably unhelpful) to equate these find-
ings with any concrete figures which may be found in the
real world, as it is not clear what the rate of interaction (num-
ber of “events” per year, say) would be, and such values may
vary widely in different regions.

In general though, it is possible to conclude that in rela-
tively homogeneous cultures with low rates of cultural drift
(as may be expected to be found in isolated, monocultural re-
gions), any distinct cultures which do form are likely to per-
sist for significant periods of time before being assimilated
into the surrounding culture. These distinct cultures may ap-
pear through a number of possible mechanisms (including
perhaps Axelrod’s suggested local-interaction model), but
an obvious example might be an invading or migrating group
of people from a distant region with a very different culture.
Finding aspects of culture in common with the invaders may
be difficult, reducing the chances of further interaction and
absorption.

The second result suggests that even in a culture with a
high rate of drift (such as a modern, fast-changing multicul-
tural society) it may take a considerable amount of time for a
new cultural group to integrate into its surroundings. This is

often intuitively true when new groups or individuals move
into an established culture from afar.

Note that this finding does not depend on the content of
the memes in either the host culture or the new, distinct cul-
ture. It is purely a stochastic interaction process between two
different cultures, indifferent to the semantics of the cultural
features.

It is important to bear in mind that although the reintro-
duction of cultural drift brought the model more closely in
line with the real world, many important aspects are still
missing. The main one is the third feature (in addition to
heredity and variation) necessary for Darwinian evolution to
take place: selection. The heart of the memetic paradigm
is that individual memes or groups of memes may have a
greater “reproduction” rate than others, and so may come
to dominate in the population. There are several ways this
could be added to the model, and this would be an interesting
direction for future work. Even without this, it may prove to
be useful to translate Axelrod’s experiments and conclusions
into the language of memes, as it may allow them to be in-
tegrated into existing memetic theory.

Summary
This paper has described a re-implementation of Axelrod’s
agent-based model of cultural dissemination, and discussed
its parallels with memetic theory. The model was then used
to investigate the longevity of distinct cultural regions in the
presence of varying levels of cultural drift. It was found
that cultural distinctions can be surprisingly robust, even if
mutation rates are high.
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Abstract

We introduce fitness transmission as a simple statistical sig-
nature of adaptive evolution within a system. Fitness trans-
mission is the correlation between the fitness of parents and
children, where fitness is evaluated after the number of grand-
children, suitably normalised. This measure is a direct cal-
culation based on a genealogical record, rather than on ge-
netic or phenotypic observation. We point out that the Bedau-
Packard statistics of evolutionary activity cannot be used as a
reliable system-wide signature of adaptive evolution, because
they can produce positive signals when applied to certain
“random”, non-evolutionary systems. We apply fitness trans-
mission to simple evolutionary algorithms (as well as neutral
equivalents) and demonstrate its capacity to accurately detect
the presence or absence of Darwinian evolution.

Introduction: Are we evolving yet?
Consider the following problem: imagine that you are ob-
serving a simulation, in which a population of agents move,
interact and reproduce. The simulation is complex, or its
output is obscure (or both), and it is not easy to grasp what, if
anything, is going on. Knowing that these agents reproduce,
we may ask ourself the question: are they also evolving? Are
they undergoing genuine natural selection and adaptive evo-
lution? Or are they just perpetuating random genetic traits,
following a chaotic trajectory through genotype space with-
out ever undergoing any meaningful evolution?

This question arises from the fact that when a population
of reproducing agents is observed, it is not always imme-
diately clear whether the dynamics of the population result
from Darwinian evolution, or merely from random varia-
tions and stochastic effects such as genetic drift. The par-
ticular system at hand may also introduce its own effects,
which may bias or alter the dynamics of the population in
unpredictable ways. When this system is sufficiently com-
plex, determining whether a population is evolving in a Dar-
winian sense may not be a trivial task.

Besides its conceptual implications, the question is of
practical interest. It is often desirable to determine whether
natural selection and evolutionary adaptation are occurring
within a given system, especially in the fields of evolution-

ary computation and artificial life. Indeed in some situa-
tions, the onset of significant adaptive evolutionary activity
is by itself a major objective of the system: for example, ar-
tificial environments such as Echo (Hraber et al., 1997) and
Geb (Channon, 2006) were explicitly designed with the aim
of exhibiting meaningful evolutionary activity. Being able to
detect the presence of genuinely adaptive evolution is a fun-
damental pre-requisite for the validation of such systems.

Related Work
Traditional methods for detecting natural selection
The problem of detecting natural selection has a long history
in biology. Endler’s authoritative treatment (Endler, 1986)
describes the traditional (that is, non-molecular) methods for
detecting natural selection. However, all these methods are
based on phenotypic observation of chosen traits: they re-
quire collecting statistics on the frequencies of certain, pre-
defined traits, and then performing some calculations to de-
termine whether or not natural selection has acted on these
traits. This is precisely what we seek to avoid here: we do
not ask whether natural selection has acted on this or that
trait, but simply whether it is active in the population. Also
we want to dispense with detailed phenotypic observation.

The molecular revolution in biology has made it possi-
ble to collect vast amounts of genetic data. This creates
new possibilities for the detection of natural selection, based
on direct assessment of nucleotide variation (Sabeti et al.
(2006) provide a recent review). But these approaches re-
quire access to a full genetic record. Furthermore, biologi-
cal genomes are simple sequences of symbols from a four-
letters alphabet; but artificial life models need not be so sim-
ple in their structure, and this may affect the applicability of
these methods.

The Bedau-Packard measure of evolutionary
activity
Bedau and Packard (Bedau and Packard, 1992; Bedau et al.,
1998) have developed a groundbreaking set of concepts and
methods to “discern whether or not evolution is taking place
in an observed system.” Bedau and Packard are specifically
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interested in the innovations produced by evolution, and in
the capacity of various systems to keep on producing adap-
tive innovations over time - or not. This requires a method to
determine whether an apparent innovation is indeed adaptive
or merely the result of random fluctuations, which clearly re-
lates to our own concerns. To this end, Bedau and Packard
introduce a set of methods to compute the “evolutionary ac-
tivity” of components and, by extension, of systems.

The Bedau-Packard measures of evolutionary activity are
based on persistence of adaptive innovations: they identify
components that persist over time at a level that exceeds
what would be expected under purely random conditions. In
the words of Bullock and Bedau (Bullock and Bedau, 2006),
“if a particular element persists in the system for a long time,
this is likely to be because it is being maintained by selec-
tion.”

If we are to use persistence “for a long time” as a criterion
for detecting evolution, we need a method to determine what
“a long time” is. When do we decide that a given element
has persisted long enough to be regarded as ‘adapted’? To
tackle this problem, Bedau and Packard introduced the idea
of using a neutral “shadow” of the system under study: a
replication of the original system, in which birth, reproduc-
tion and death of individuals occur in synchronisation with
the real system, but are applied to randomly chosen indi-
viduals. More precisely, every time a new individual is be-
ing created in the real system under study, a new individual
is also created in the shadow; but with the difference that,
in the shadow, the parents of the new individual are chosen
randomly. Thus the neutral shadow is expected to show the
behaviour that would be seen in the system, in the absence
of any selective pressure. By comparing the persistence data
obtained in this “shadow” to that obtained in the real sys-
tem, Bedau and Packard argue, it should be possible to de-
tect whether selection and adaptive evolution are present.

Building upon the concept of enduring persistence as a
measure of evolutionary activity, Packard and Bedau have
developed a series of evolutionary statistics based on per-
sistence information. These statistics include diversity D
(the number of different components present at a given time
in the population), activity ai(t) (the age of component i
at time t, indicating how long it has persisted so far), cumu-
lated activity Acum(t) (the sum of the ages of all components
present at time t), and new activity Anew(t) (the sum of the
ages of all components present in the system at time t that
are new, but sufficiently aged to indicate adaptive value, di-
vided by diversity at time t).

Bedau-Packard statistics and non-evolutionary
systems
Bedau and Packard’s measures are arguably the most widely
known of their kind. They have been applied to several sys-
tems, including artificial ecologies such as Echo, and natu-
ral components such as the genera within the fossil record

(Bedau et al., 1998). Other researchers have successfully
applied them to various systems (Standish, 2002; Channon,
2006; Taylor, 1999). However, it is not suitable as a test to
detect the presence of adaptive evolution within a system.
The basic reason why the Bedau-Packard statistics cannot
be used as a detector of evolution by natural selection is that
they may attribute a positive score to “random” processes,
which are clearly not evolutionary. Importantly, this is the
case even if a shadow is used to normalise activity scores.
The crux of the matter is that these statistics essentially track
“excess” variance in the persistence of components, which
is used as a proxy for selection and therefore (it is argued)
for adaptive value. The shadow is used to define the level
of persistence which can be termed “excess.” But excess
variance in persistence may be caused by other factors than
natural selection. What if, due to some quirk in the rules
of the system, some high variance in persistence occurs that
is not related to heritable characteristics? If we apply the
Bedau-Packard statistics to such a system, we may find that
the Bedau-Packard measure classifies such a system as adap-
tive, even though it is not - even if we use a shadow.

It is easy to devise examples of systems which illustrates
this distinction. For instance, consider a population in which
reproduction, selection and evolution occurs normally, ex-
cept for the fact that fitness is randomly attributed to each
individual at birth, independently of its genome. That is,
while genetic material is transmitted as expected from par-
ent to offspring, this genetic material has no influence over
fitness, which is chosen randomly for each new individual.
Note that no heritable variance in fitness occurs, nor does
any adaptation take place. However, those individuals that
happen to be highly “fit” (out of sheer luck) will tend to
persist for a long time, and may flood the population with
their (short-lived, but nevertheless genetically similar) off-
spring. No such thing will be observed in the shadow, where
reproduction and survival will be random, leading to ran-
dom diffusion of the genetic material throughout genotype
space. Therefore, a difference will occur between the activ-
ity counts (and diversity counts) of the shadow and of the
real system, creating a positive signal on the Bedau-Packard
measure and associated tests.

In figure 1 we describe the results of Bedau-Packard
statistics applied precisely to such a system.1 The system
is a simple steady-state genetic algorithm in which, at every
“generation”, 10 out of the 100 individuals are eliminated
and replaced by new individuals, created by copying and
mutating a surviving parent. Survivors are selected by fit-

1In these experiments we have applied the Bedau-Packard
statistics to entire genotypes, in order to follow the authors’ method
(Bedau et al., 1998). However we are not at all certain that whole
genotype persistence is a reliable indicator of evolution. We note
that in nature, as soon as recombination and mutation are involved,
it is very unlikely that any genotype ever persists for more than one
generation.
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Figure 1: Graphs showing the results of Bedau statistics for a non-Darwinian system, as well as for a corresponding shadow system. The
leftmost graph indicates the cumulative frequency counts for each genome over time (that is, the running sum of the frequency of each genome
within the population at each generation.) The middle graph indicates the cumulative distribution of persistence counts for all genomes over
the history of a run (that is, for each value, the number of individuals that survived longer than this value.) The rightmost graph shows the
average cumulative activity Ācum(t) = Acum(t)

D(t) - the sum of all persistence counts of genomes present at a time, divided by the number of
genomes present at that time. These graphs are consistent with what is expected from real evolutionary systems. (Bedau and Packard, 1992;
Bedau et al., 1998)

ness ranking, and selection of parents occur through tourna-
ment selection, very much as in a normal genetic algorithm.
However, the fitness of individuals is randomly chosen at
birth, independently of their genome. The actual method to
“calculate” fitness is to increase a certain counter repeatedly
until a random number picked between 0 and 9 is equal to
0 (thus the distribution of fitnesses is exponential.) In the
shadow systems for both experiments, selection of survivors
and parents are random (thus the shadow systems for both
experiments are essentially identical, which predictably re-
sults in similar graphs).

Note, in particular, the onset of high average activ-
ity, the flattening of the cumulative distribution of persis-
tence counts (with an order of magnitude difference be-
tween the longest-living genotypes of real and shadow sys-
tems), and perhaps most significantly the appearance of
large “telic waves” (Bedau and Packard, 1992) (tall, lengthy
lines) in genome frequency plots, despite the decidedly non-
teleological nature of these environments. All these are
regarded as positive signals of evolutionary activity in the
Bedau-Packard framework. (Bedau and Packard, 1992; Be-
dau et al., 1998)

Surely many other examples could be found. More gen-
erally, these simple systems illustrate the fact that high vari-
ance in persistence can be caused by many other processes
than natural selection. “Random” systems, in which no
meaningful evolution or adaptation occurs, can still obtain
high marks on the Bedau-Packard measure if they produce
high variance in genetic persistence.

Of course, in our toy system, it is easy to see (just by look-
ing at the rules) that variance in persistence is due to random
fluctuations, and that no true natural selection exists. But
this is precisely the heart of the matter. First, when we study
a real system, we may not have access to its internal rules, so
clearly in this case we cannot use the Bedau-Packard statis-

tics as a test of Darwinian evolution. But even if we do have
full access to the rules of the system, the complexity of even
mildly elaborate systems may prevent us from asserting with
absolute certainty whether or not a “random force” gener-
ates strong variance in persistence. For example, consider-
ing a system similar to Echo (Hraber et al., 1997), can we
really exclude, a priori, that such a factor could come into
play? Can we offer absolute guarantee, simply by looking
at the rules of the system, that no weird effect will arbitrar-
ily and significantly favour certain individuals rather than
others (without being based on these individuals’ heritable
features)? The answer, of course, is that we cannot. It fol-
lows that, if we apply the Bedau-Packard statistics on such
a system and obtain a positive result, we cannot (in the ab-
sence of further information) use this fact alone to conclude
that adaptive evolution is active in the system.

It is important to be clear about the meaning of this re-
sult: this should not be interpreted as a minimisation of the
importance of Bedau-Packard statistics. Rather, this is a re-
minder that these statistics should not be used to detect adap-
tive, Darwinian evolution within a system, even by normal-
ising against a shadow. If we know, a priori and through
other means, that the system is indeed affected by genuine
adaptive evolution, and if we can rest assured that “weird”
effects will be nil or negligible, then we can fruitfully ap-
ply the Bedau-Packard measure to assess the dynamics of
long-term evolutionary innovation within this system. The
valuable contribution of these statistics in this regard has of-
ten been pointed out. However we cannot use these statistics
to determine the presence of evolution by natural selection
within a system, as opposed to any system-induced dynam-
ics which create high variance in persistence: the Bedau-
Packard statistics are not designed to distinguish the former
from the latter, even by using a shadow system.
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Fitness Transmission: A test statistic for
natural selection

Darwinian evolution: randomness, selection and
heredity
In general, evolution is simply defined as a change in the
frequencies of heritable innate characteristics within a re-
producing population, from one generation to the next. Nat-
ural selection, one of the mechanisms that guide evolu-
tion, is broadly defined as variance in reproductive success
caused by heritable innate characteristics. Darwin realised
that adaptive evolution automatically results from the exis-
tence of fitness-impacting, heritable variations. Variations
that improve fitness will be propagated quickly, initiating
thriving lineages; while those that reduce fitness will hin-
der their own propagation, creating feeble (or even quickly
extinct) lineages. Thus lineages constantly branch out into
variants, and the uneven distribution of these branches, be-
ing dramatically skewed towards those which result from
fitness-enhancing variations, will result in the overall effect
that the newer descendants of the original lineage will tend
to be those better adapted to their current, local environment:
heritable fitness-affecting variation will have “steered” the
original lineage towards adaptive directions among all those
encountered by mutational variations.2

Note that although this process will usually result in a
modification of the species over sufficiently long periods
of time, it will also often result in temporary stasis. If a
species happens to be located at a convenient local optimum
in the fitness landscape, then variations which depart from
the optimum will mostly reduce the fitness of the individ-
ual. In this case the differential transmission of character-
istics enforced by natural selection will actively maintain
the population around the optimum: the population will be
constantly steered back towards its current position. This
phenomenon, known as ‘stabilising selection’, is actually re-
garded as more common than directional selection (see (Ri-
dley, 1993), Chap. 4.4).

Fitness Transmission: A genealogic signature of
Darwinian evolution
From this discussion we can deduce a method to detect the
active presence of natural selection. If fitness-impacting,
heritable traits are actually being transmitted and propa-
gated, then this should have an impact on the genealogical
record: individuals sharing a common lineage, being more
likely to inherit common fitness-impacting characteristics,
should therefore tend to exhibit slightly similar fitnesses in
comparison to the rest of the population. In other words, if
some fitness-affecting traits are being transmitted, then there
should be some degree of correlation between the fitnesses

2Or, in short: as creatures replicate, genes mutate, adaptations
proliferate, and species originate.

(that is, the reproductive success) of individuals from a com-
mon lineage: the transmission of heritable, fitness-affecting
traits should result in some degree of differential transmis-
sion of fitness.

Fitness transmission is our proposed signature for natural
selection. It is, quite simply, the statistical correlation be-
tween the fitness of children and parents. The basic idea of
fitness transmission is that, when natural selection is active
in a population, parents and children should exhibit a tenu-
ous, but persistent correlation in fitness.

Calculation of Fitness Transmission
Number of grandchildren as a measure of fitness
The term “fitness” is notoriously ambiguous and can be a
significant source of confusion (Dawkins, 1982, Chap. 10).
A common practical measure of an individual’s fitness is its
number of grandchildren, rather than number of children. To
have many grandchildren, an individual must not only have
many children, but these children themselves must also be
successful in reproducing; this corresponds to the intuitive
notion of fitness as ability to pass on one’s genes. We will
use the number of grandchildren as a measure of individual
fitness. Therefore, to measure fitness transmission, we mea-
sure the statistical correlation between the number of grand-
children (NOGC) of an individual, and that of its children.

Fitness correlation is a local measure in time. That is, we
divide the record in time periods, or “slices,” and calculate
fitness transmission independently for each period. This is
done by only considering individuals born within this time
period for the “child” data set of each period (the parents of
these individuals are then collected in the “parents” data set,
independently of their time of birth). However, the repro-
ductive success for a given individual may be collected over
its entire history, even if it goes beyond the time-slice being
considered.

Comparing what is comparable
As usual when calculating statistical correlations, care
should be taken in only comparing what is comparable: con-
flating data from widely different distributions may result in
artificial, spurious correlations. In some artificial systems,
selective conditions may change widely over the course of
an evolutionary run, even with a fixed fitness function. This
may wreak havoc on undiscerning evaluations of statistical
correlation. For example, in a simple genetic algorithm,
if strict ranking is used, surviving and reproducing entails
dislodging a previous survivor; but as evolution proceeds
towards an optimum, and new champions are increasingly
well-adapted, it becomes increasingly difficult (and thus
rare) for new individuals to dislodge previous champions.
This means that the children’s fitness will tend to go down
(because more of them disappear without a descent) and the
parent’s fitness will tend to go up (because they remain in
the population longer) over time. This alone is sufficient to
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create a strong, negative correlation between the fitnesses of
parents and children over the whole process: earlier parents
would have a moderate number of grandchildren, each with
a good chance to reproduce; while later parents would accu-
mulate enormous numbers of grandchildren, which would
have comparatively low reproductive success.

To avoid this, we must ensure that we only consider quan-
tities (that is, fitnesses) obtained under similar conditions.
To this end, the periods over which reproductive successes
are measured should start at the same point in time, so that
we can ensure that they are obtained over equivalent con-
ditions. In practice, this means that when we compare the
NOGC of an individual X and its parent, we should only
consider the grandchildren of the parent that were born at the
same time as X or later. This ensures a “fair game” between
the parent and the child: both scores will be obtained under
similar circumstances, and results obtained by the parents in
earlier (possibly harsher or milder) circumstances will not
spoil the data.

Necessary normalisations
Unfortunately, the choice of using NOGC as a measure of
fitness introduces an obvious problem: the NOGC of an in-
dividual and that of its children are clearly not independent
quantities. Saying that A has many grandchildren is saying
that A’s children have many children, and therefore, out of
this fact alone, are likely to have many grandchildren them-
selves, even with random reproduction. This problem can
be easily addressed by normalisation to make the consid-
ered values independent. To do this, we do not use the raw
NOGC for the parents; rather, for every parent-child pair, we
consider the parent’s NOGC minus the number of children of
this particular child. This modified NOGC is an estimation
of the parent’s fitness that is not biased by this particular
child’s own success, and thus any correlation represents a
true correlation in fitness.

Another, less significant problem is that, in general, the
population of interest will be finite. The consequence is that
the reproductive successes of individuals living during the
same period of time are not independent: any child for a
given individual is one less opportunity for another individ-
ual to have a child. Even with random mating and reproduc-
tion, if one individual happens to have more children than
average, then any other randomly picked individual is me-
chanically more likely to have fewer children than average.
In other words, limited population introduces a slight nega-
tive correlation between the modified NOGC of parents and
children. This effect is much less important than the previ-
ous one, but may be noticeable, especially with small pop-
ulations. A simple solution to this problem is to normalise
the modified NOGC of the parent: for every parent-child
pair (Pi, Ci) from the slice, we divide the modified NOGC
of Pi by the total sum of all grandchildren of all other par-
ents within the slice - minus Ci’s children. The resulting

proportion is independent of this child’s own success.
Those normalisations are made necessary by the fact that

the quantities under scrutiny are not independent. They
would become unnecessary if, instead of evaluating fitness
transmission from parents to children, we attempted to cal-
culate it between grandparents and grandchildren. The prob-
lem, of course, is that any signal would be much weaker
due to the increased indirection - often to the point of being
drowned in noise.

Calculation method for fitness transmission
Where does this leave us? From all these considerations,
we can deduce the following calculation method for fitness
transmission:

• Divide the entire genealogic record into discrete periods
of time. If the system is generational, generations may be
used as time periods.

• For every time period within the genealogic record, per-
form the following operations:

1. For every individual Ci born during this time period,
find its parent Pi (which may be born at any time be-
fore Ci, not necessarily during this time period) and
store the resulting parent-child pair (Pi, Ci). Note that
any given individual may occur in several pairs.

2. For every stored parent-child pair (Pi, Ci), retrieve
their respective total number of grandchildren (NOGC)
N(Pi) and N(Ci), born during or after (not before) this
time period.

3. Elimination of dependency: for every pair (Pi, Ci),
subtract the number of children of Ci from the N(Pi),
resulting in the new value N ′(Pi).

4. Normalisation: for every parent Pi in the set of parent-
children pairs for this time period, divide N ′(Pi) by
the sum of all grandchildren of all other parents Pj "=i

- carefully excluding Ci and its descendants from the
count. This results in a final value N ′′(Pi)

5. Calculate the statistical correlation between the
N ′′(Pi) and the N(Ci) variables over all parent-child
pairs for this time period, using the standard Pearson
formula:

Corr(X, Y ) =
∑N

i=1(xi − X̄)(yi − Ȳ )
(N − 1)σXσY

The resulting value Corr(N ′′(Pi), N(Ci)), for every time
period, is our estimator for the intensity of fitness transmis-
sion during that time period.

Experiments
Experimental settings
Our purpose in this section is to set up a couple of exper-
iments in order to determine whether fitness transmission
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is indeed a reliable indicator of Darwinian evolution. To
do this, we will use simple evolutionary systems with pre-
dictable dynamics, in which the presence or absence of evo-
lution can be easily controlled. We will apply our calcu-
lation method to these systems and determine whether the
presence or absence of Darwinian evolution was success-
fully detected.

To perform our experiments, we used genetic algorithms
involving a population of 1000 individuals, over 100 genera-
tions. We considered two optimisation problems: the Rosen-
brock function 100(x2− y2)2 +(1−x)2 (using genomes of
2×12 bits) and a very simple OneMax problem over 20 bits.
The Rosenbrock function is a commonly used test function
in the field of optimisation. The purpose of the simple One-
Max problem is to examine the behaviour of different algo-
rithms on very easy problems, when the the global optimum
is discovered quickly. In our algorithms, at each generation,
a new population is created either by applying bitwise mu-
tation to a parent selected from the previous generation, or
(with 66 % probability) by applying one-point crossover be-
tween two parents, and then applying bitwise mutation to
the resulting offspring. The probability of mutating (flip-
ping) each bit is the inverse of the total number of bits in
the genome, rounded to the closest higher percent; thus, on
average, each genome should undergo about one mutation.
As explained below, we tested different methods of selection
and replacement.

As a point of comparison, we need a “neutral” version of
the genetic algorithm, which preserves as many features of
the algorithm as possible, while effectively removing Dar-
winian evolution. We chose to use a system in which ev-
ery new individual was attributed a random genotype (and
therefore a random fitness) at birth, regardless of the genetic
make-up of its parents. This is different from purely random
selection in that selection still occurs, and is still based on
fitness; however the randomness of the reproductive process
prevents any meaningful evolution: fitness-affecting traits
are still present, but not heritable. A satisfactory measure of
evolutionary activity should be able to detect the absence of
real evolution and return a zero value for this situation.

A simple genetic algorithm
We first describe the calculation of fitness transmission in a
standard simple genetic algorithm, using tournament selec-
tion. In this algorithm, each new individual is created by se-
lecting parents from the previous generation (using tourna-
ment selection), and generating offspring as previously de-
scribed. The process is iterated until the new population is
filled.

Figure 2 shows the results of these calculations, applied
to the “fossil record” generated by our simple genetic al-
gorithm. This figures shows the results for the Rosenbrock
function optimisation problem with 20 bits, both with nor-
mal reproduction and with reproduction based on random

Figure 2: Rosenbrock function, non-overlapping generations, 5
different runs (top) and average of 50 different runs (bottom).

Figure 3: OneMax function, non-overlapping generations, 5 runs
(top) and average of 50 runs (bottom).

phenotypes. The top graph shows the results of 5 differ-
ent run for each of these reproduction methods, while the
bottom graph shows average curves over 50 runs. Figure 3
shows the same data for the OneMax problem. In the nor-
mal selection case, the correlation between the number of
children of parents and children is distinctly positive (espe-
cially at the very beginning at the run) and stabilises to a
positive plateau. The enduring positive value indicates that
the population is constantly and actively maintained in the
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vicinity of the global optimum (which is reached quite early
in the OneMax problem) through active evolutionary forces.
Even though the optimum has been reached, mutation con-
stantly disperses the population, and Darwinian evolution
constantly drives it back. Stabilising selection results in a
positive value for differential fitness transmission. In the
case of random genotypes, as expected, no meaningful fit-
ness transmission occurs.

That the enduring presence of fitness transmission in this
case is caused by mutation can be seen quite readily. If
we set the mutation rate to zero, then the population con-
verges totally: all individuals end up sharing the exact same
genome, and diversity disappears. From this point on, all in-
dividuals having exactly the same genotype, evolution sim-
ply stops. The result is that evolutionary activity, as in-
dicated by fitness transmission, quickly goes to zero (with
noise oscillations) after an initial phase of high activity (see
Figure 4). This illustrates the capacity of fitness transmis-
sion to distinguish between active stabilising selection on
the one hand, and passive stillness caused by absence of ge-
netic variation on the other (though this ability breaks down
in extreme situations, as discussed in section .)

Figure 4: OneMax function, non-overlapping generations, with-
out mutation, 5 runs (top) and averages of 50 runs (bottom).

Removing selective gradient among parents
Here we try to make the problem more challenging problem
by reducing the scope of selection. To do this, we modify
our algorithm as follows: at every generation, a small set of
survivors is selected from the population through strict rank-
ing selection, and the parents for the next generation are then
randomly selected from among this set of survivors. Off-
spring are created as previously mentioned (66% crossover,

mutation, etc.) The effect of this modification is to effec-
tively remove any selective gradient among parents. This
is because the only effect of selection in this system is to
decide which individuals become parents in the first place.
Once individuals have been selected as parents, their num-
ber of children is random, and as a result is not affected by
natural selection. In particular, note that if we had tried to
evaluate fitness by the number of children alone, then no fit-
ness transmission could be detected: no correlation can exist
between the number of children of parents and children, sim-
ply because all parents have a random number of children.
However, as shown in figures 6 and 5, our measure for fit-
ness transmission is able to detect the signal created by this
more indirect form of natural selection.

Figure 5: Rosenbrock function, non-overlapping generations with
ranking-based survival and random parent selection, 5 runs (top)
and averages over 50 runs (bottom). The initially high signal goes
to a very low, but still noticeably non-zero value.

Limitations of fitness transmission
Although fitness transmission is valuable as a signature of
adaptive evolution, several limitations must be mentioned.

Extreme stabilising selection: While fitness transmission
is able to detect moderate stabilising selection, it breaks
down in the extreme situation of absolute stabilising selec-
tion - that is, when only one genotype is viable, and any
individual that differs from the optimum systematically fails
to reproduce. In this case, no heritable variation in fitness
exists. In this situation, stabilising selection has the effect of
effectively freezing the reproducing population, and there-
fore becomes invisible to fitness transmission.

Only one extant lineage: More generally, there are patho-
logical situations in which genealogic methods can not be
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Figure 6: OneMax function, non-overlapping generations with
ranking-based survival and random parent selection, 5 runs (top)
and averages over 50 runs (bottom).

used at all. One such situation occurs when all individuals
present at any given time share the exact same genealogic
tree - in other words, when there is never more than one lin-
eage in the population. In this case, while Darwinian evolu-
tion can certainly occur, the presence of only one lineage
at any time within the population prevents the possibility
of inter-lineage comparison, upon which genealogic analy-
sis relies. For example, consider a non-overlapping genera-
tional system, such that at every generation, two individuals
are selected to serve as parents for the next generation, and
all the individuals from the new generation are children of
both of those selected parents. Since all individuals will al-
ways share the exact same set of parents, grandparents, and
so on, fitness transmission cannot be applied. We believe
that this situation is sufficiently exotic to preserve the use-
fulness of genealogical analysis. In addition, such situations
can be easily detected in any system for which a genealogi-
cal record exists.

Non-biological selection: A more subtle aspect of fitness
transmission is that it detects natural selection in the most
general sense, applying to any heritable character, includ-
ing those that we might not think of as “biological”. Any
kind of heritable trait that affect reproductive success (ge-
netic, epigenetic, cultural, etc.) will be detected by fitness
transmission. If the objective is to detect biological natural
selection alone, then fitness transmission should not be used
on its own.

Conclusion
We have shown that differential fitness transmission is a use-
ful signature of Darwinian evolution, which can be detected
in genealogical record by using simple statistics. We believe
that this signature may be more suitable for this purpose than
previously suggested methods for detecting evolution. We
have applied this statistic to the genealogical records gener-
ated by real evolutionary algorithms, demonstrating its ca-
pacity to detect the presence or absence of adaptive evolu-
tion.
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Abstract

Operational definitions and applications of the sensorimotor
experience of an artificial embodied organism are presented
along with a mathematical metric for distance between expe-
riences based on Shannon information. We describe a simple
robotic experiment that illustrates how an artificial embodied
agent can use its own history of experience combined with the
experience metric to predict future experience. Present senso-
rimotor experience is used to find the most similar past expe-
rience using the geometry of its growing and changing expe-
rience metric space. This is then used to ground the ontogeny
of autonomous prospective capability in interacting with the
environment, e.g. to anticipate forthcoming changes in envi-
ronment based on temporally extended past experiences.

Introduction
Increasingly, the importance of embodiment and situated-
ness within complex and rich environments are becoming
recognized as a crucially important factors in engendering
intelligence in an artifact (cf. for example Clancey (1997);
Pfeifer and Bongard (2007), and the philosophical posi-
tion regarding ‘structural coupling’ of Maturana and Varela
(1987)). Living organisms in particular experience and re-
experience particular recurring patterns of trajectories of in-
teractions with the environment through their sensing and
acting; and these habitual trajectories can form the basis
of prospection, further development, and adaptation (Varela
et al., 1991). 1
Moreover, it is in how an artificial agent develops its capa-

bilities over its life-time of interactions (ontogeny) that is im-
portant in building a grounded intelligence, able to adapt to
unknown and changing environments (including long- and
short-term variations in its embodiment and in its sensory
or motor repertoire). Especially given the complexity of in-
teractions in natural environments, and the richness of sen-
sors available to modern robots, whose properties change

1This work was conducted within the EU Integrated Project
RobotCub (“Robotic Open-architecture Technology for Cognition,
Understanding, and Behaviours”), funded by the EC through the
E5 Unit (Cognition) of FP6-IST under Contract FP6-004370.

over time in different environments or with changing em-
bodiment, it is largely infeasible and impractical to attempt
to foresee and model the situations a robot (or other artifi-
cial agent) may encounter and how to adapt to them in ad-
vance (e.g. Brooks (1999)). Instead, autonomous methods
for bootstrapping development without prior knowledge of
the structural coupling relationship based on enactive con-
struction and development of intelligence behaviour warrant
investigation, both from the perspectives of engineering ap-
plications as well as from the viewpoint of a generalized bi-
ology. Building on basic ‘phylogenetic’ capabilities, such an
approach is hypothesized to allow for a basic of autonomous,
enactive development in embodiedmodels of developmental
cognitive systems with expanded temporal horizon of their
perception and action (Nehaniv et al. (2002),Vernon et al.
(2007), Mirza et al. (2007)).

Our goal is to research methods that can be used by an ar-
tificial embodied agent to develop its capabilities through its
ongoing interactions with its environment, while scaffold-
ing its adaptation on the basis of previous experience and
previously achieved adaptation. In earlier work we intro-
duced formal mathematical metrics on sensorimotor experi-
ence and its geometry, as well as heir use as part of a de-
velopmental architecture for robots that bases future action
on previous experience (Nehaniv, 2005; Mirza et al., 2005a,
2007). In this paper we present results from a robotic ex-
periment that illustrates how a history of embodied experi-
ence, combined with a metric measure for comparing expe-
riences, can be used to predict temporally extended future
experience. This is an important result for our developmen-
tal architecture as it demonstrates the efficacy of the metric
measure, and in turn its suitability for directing future action
and behaviour based on the individual’s past experience.

Other Related Work. Olsson et al. (2006) use informa-
tion distance to develop basic sensorimotor maps in interac-
tion with the environment, beginning from raw uninterpreted
sensors. Independently of our work, Oates et al. (2000) have
also described experiences as a time-series of multi-variate
sensorimotor data (which is essentially identical to our op-
erational definition of experience), but computing distance
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between time-series and clustering experiences to produce
prototypes. Experiences are associated with the actions that
initiated them, so robot can generalize about potential out-
comes of its actions. Distances between experiences are cal-
culated by using Dynamic Time Warping followed by mea-
suring the area between the curves, and clusters formed by
taking averages of time-warped experience curves. In con-
trast, our framework uses an information-theoreticmetric on
such experiences.
Kaplan and Hafner (2005) use information distances be-

tween sensors in an Aibo robot to compare simple be-
haviours of the robot. In that method, rather than reducing
the dimension by summationwithin groups as we have done,
they consider distances between different behaviours as dis-
tances between the full matrix of distances between all sen-
sors. Long continuous examples of each behaviour (1000
timesteps) are used, and the whole sequence used rather
than a moving window. The resulting distances between be-
haviours are shown as a projection onto a two-dimensional
map, and they find that similar behaviours group together.
This research supports the view that robot behaviour can
be clustered using information relationships between sensor
time-series. However, the incremental formulation of our
approach allows us to propose a system that can be used for
ontogeny, and the use of the experience metric allows for
better comparison of past behaviour and experience.
Continuous Case-Based Reasoning (CCBR) (Ram and

Santamaria, 1997) has many similarities to the approach de-
scribed here. However, in our approach the information
metric allows for a more robust comparison of sensorimo-
tor details concentrating on the statistics of the particular
time-series, and so better able to recognize regularities in
time-series than a simple Euclidean metric. Also, the met-
ric nature of the space is also able to recommend a number
of increasingly distant matches (neighbours) and is able to
weight their similarity along with a qualitative value from
the environmental feedback to provide, potentially, more ap-
propriate actions.

Sensorimotor Experience and Metric
A robot or other embodied agent’s entire view of the world
is experienced through its sensors, including those that mea-
sure internal factors such as temperature, actuator positions,
and other more general internal variables. Any sensor can be
modelled as a random variable X changing with time, tak-
ing values X(t) ∈ AX = {x1, . . . , xm} from a probability
distribution PX . Time is taken to be discrete (i.e. t will de-
note a natural number). A robot’s experience, then, can be
considered as the stream of all readings (X1(t), . . . , Xn(t))
from all these variables X i over a given time period (i.e.
t ∈ [t′, t′ + h] for some temporal horizon h > 0). This is
a purely operational sensorimotor view of experience and,
by itself, says nothing about the quality or meaning of that
experience.

Formally, an agent’s experience from time t over a tem-
poral horizon h can be defined as

E(t, h) = (X 1
t,h, . . . ,XN

t,h) (1)

where X 1
t,h, . . . ,XN

t,h is the set of random variables avail-
able to the agent constructed or estimated according to time-
series of sensorimotor readings from N sensorimotor vari-
ables (X1, . . . , XN ) ending at time t with a horizon h
timesteps (from time t − (h − 1) to t).

Experience Metric
Given a definition of Sensorimotor Experience and the in-
formation metric, a formal measure of distance between ex-
periences can be defined. This is useful as it allows a direct,
scaled comparison between different sets of sensorimotor
readings of a robot or agent. A metric for comparison of
sensorimotor experiences is important as it is then possible
to talk of proximity and distance between different experi-
ences in a quantitative and geometrically meaningful way.

Figure 1: Experience Metric. A visual illustration of the ex-
perience metric. Each experience is shown as a collection of
sensor readings of length h starting at time t and t′. The in-
formation distance between each respective sensor over time
is summed to give the Experience Metric.

We define the Experience Metric, a metric on experiences
of temporal horizon h, as

D(E, E′) =
N

∑

k=1

d(X k
t,h,X k

t′,h) (2)

whereE = E(t, h) and E′ = E(t′, h) are experiences of an
agent at time t and t′ over horizonh, and d is the Crutchfield-
Rényi information metric (Crutchfield, 1990), or more sim-
ply, the information distance between jointly distributed ran-
dom variables. That is, d(X ,Y) = H(X ,Y) − I(X ,Y),
whereH denotes entropy and I denotes mutual information
(see (Cover and Thomas, 1991) for an introduction to these
concepts of information theory)2. D is measured in bits; see
also Figure 1. That D is a metric follows from the fact that
the metric axioms (equivalence, symmetry, and the triangle

2d(X ,Y) = 2H(X ,Y) − H(X ) − H(Y) and is estimated
directly from the frequency distributions of binned sensor values.
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inequality) hold for each of the components in the summa-
tion, since d is a metric (Nehaniv, 2005). For a visual proof
that d (and henceD) is a metric, see (Nehaniv et al., 2007).

Earlier Experiments
In Mirza et al. (2005b) we describe an experiment showing
ball-path prediction using the experience distance measure.
In that experiment an Aibo robot (see Figure 2 and below)
remained stationary while a ball was moved in view of its
head mounted camera. The predicted ball path was plotted
in real-time overlaid on the images from the camera. This
experiment illustrated that sensor experience can be used to
match experience successfully. This experiment builds on
that result, but uses the full embodied experience to match
previous experience. The camera images do not, by them-
selves, give information about the position of the ball so self-
experience is important.

Experiment
Interactive Path Prediction
A simple robotic experiment was devised that would illus-
trate how an artificial embodied agent can use its own his-
tory of experience combined with the experience metric de-
scribed above to predict future experience. The robot fol-
lows the motion of a ball moved in front of it by using a sim-
ple reactive behaviour to adjust its head motors to attempt to
centre the ball in its field of vision. The robot continually
builds a metric space of experiences from its ongoing senso-
rimotor experience, including its own proprioceptive sense
of movement arising through interaction with the environ-
ment. A closest historical experience, in terms of experi-
ence distance, to the current one is then found. Experiences
temporally following the historically closest experience then
provide a model for anticipation of future experience. How
good this model is depends on both the predictability and
consistency of the environmental interaction as well as how
“good” the historical matching is. Thus, the analysis of the
experiment focuses on measuring how well matched the his-
torical experience is to the current one. Note that predicting
the trajectory of the tracked object corresponds to prospec-
tion regarding part of a future temporally extended interval
of sensorimotor experience.
It is important to note that, the robot is not matching cur-

rent ball position with previous ball position, rather all sen-
sory and motor variables are used as information sources to
detect similarity between experiences.

Implementation and Experimental Setup
The robot used was a Sony Aibo ERS-7. The control and
sensory collection software was implemented in Java with
URBI (Baillie, 2005) providing the robot control layer and
ball detection. Sensor readings are sent over wireless to a
personal computer approximately every 80-120ms. Recep-
tion of each frame of data defines a timestep. Video images

were received from the robot head camera approximately ev-
ery 400ms, however visual sensors were computed at the
rate of the sensor data using the most recent image from
the camera. Experiences were formed from data streams
from 33 internal sensors (including proprioceptivemotor po-
sitions and infrared distance measurements, and 9 sensors
formed from average pixel values in a 3 × 3 grid over the
image.

Figure 2: Sony Aibo ERS-7, and Pink Ball

The robot was stationary in a “sitting” position, with the
head pointed forward (Figure 2). A pink ball was moved in
the air in view of the robot’s head camera at a distance of
approximately 30cm. No particular effort was made to “san-
itize” the environment to aid ball-detection against the back-
ground. Thus, it is likely that other items in the environment
provided potentially useful information about any interac-
tion. The robot executes a continuous reactive behaviour to
follow the motion of a ball with its head. The algorithm is
simple, making appropriate incremental adjustments to the
neck, headTilt and headPan motors, such that the position of
the ball is brought closer to the centre.
The metric space creation and prediction was imple-

mented in Java and ran on-line in real-time. The horizon
length of the experiences was h = 20 timesteps or approx-
imately 1700ms. The data was quantized into Q = 10 bins
in the probability distribution estimation algorithm.
The ball was moved such that the time for the ball to de-

scribe a circle (or to move horizontally or vertically for a
complete cycle) was 6-7 seconds. Thus the horizon length
was shorter than, but of the same order of magnitude as, a
single cycle of the repeated behaviour and the experiences
would comprise approximately a half of a cycle.
The full interaction sequence lasted 965 timesteps (∼ 84

seconds) constituting 945 experiences of horizon length h =
20. The movements of the ball consisted of a number of hor-
izontal and vertical movements, and a number of clockwise
circles; see Table 1.
Visualizing Ball Path: A projection of the current ball po-
sition relative to the robot is plotted in two dimensions by
estimating the direction in which the head is pointed from
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Table 1: Path Prediction Experiment - Sequences of Move-
ments (TS denotes time step number)

Start TS End TS Movement Type Iterations

91 185 Horizontal, Left to Right 2 full

201 272 Vertical movements, Top to
Bottom

2 full

283 361 Horizontal, Right to Left 1 full

376 453 Vertical, Top to Bottom 2 full
463 534 Horizontal, Right to Left 1 full

548 593 Vertical, Top to Bottom 1 full
607 852 Circular, Clockwise 4 full

866 929 Vertical, Bottom to Top 2 full

Figure 3: Ball Path Traces. The diagram shows the parts
of the ball path diagrams used to visually analyse the traces
of the ball in a neck-centred coordinate system derived from
motor positions. See Figures 6 and 7.

the positions of three motors contributing to head motion.
The coordinates for the ball position in the plot are given by:

(x, y) = (W × headPan, H × (headT ilt + neck)/2)

where W and H are the image width and height, and
headPan, headT ilt and neck are the motor values at any
instant normalized into the range (0, 1). See the explana-
tory diagram of Figure 3. Note that the plots are created
for analysis of the experiments, and this abstraction of the
sensoriomotor flow is not available to the robot. Instead it
allows us as external observers to gain insight into what the
robot ‘expects’ will happen in an interval of the near future
based on its own previous experiences, and how accurate
these expectations are (again to an external observer).
ErrorMeasurements: Two differentmeasurements of path
error were used. The first measured the sum of the Euclidean

distance between each corresponding point of the paths. The
second calculated a vector direction for each path and re-
turned the angular difference in radians between the vectors
as the error.

Table 2: Improvement of Experience Matching Over Time

Type Iteration Number Total Percentage
< π/4 Number < π/4

HORIZ 1 0 41 0.0%
HORIZ 2 27 73 37.0%

HORIZ 3 25 75 33.3%
HORIZ 4 27 72 37.5%

VERT 1 0 34 0.0%

VERT 2 8 51 15.7%
VERT 3 15 30 50.0%

VERT 4 42 61 68.9%
VERT 5 32 52 61.5%

VERT 6 27 49 55.1%

CIRCLE 1 9 65 13.8%
CIRCLE 2 13 54 24.1%

CIRCLE 3 27 66 40.9%
CIRCLE 4 31 63 49.2%

Results and Analysis
Figures 4 and 5 show, using different methods of error es-
timation, the error between the current path and the path
corresponding to the nearest previous experience in terms
of information distance. Figures 6 and 7 show traces of the
paths from experiences in regions where horizontal and ver-
tical movements were taking place. As can be seen from the
traces, which are selected from regular intervals, it is often
the case that the paths are similar and so the experiences are
well matched. However, the objective measure of error in-
dicates that the actual path is not exactly the same. This is
to be expected as there do not exist any precisely identical
experiences in a real situation.
The opposite direction path (but of the same type) is regu-

larly matched. As the sensors are not biased left or right, and
the experience distance measure is the sum of information
distances between variables, then a symmetric error such as
this is likely. Indeed, such experiences are informationally
very close to their ‘opposites’. Out-of-phase periodic vari-
ables can have a small or zero3 information distance.
In terms of angle, the error is less than π/4 (i.e. closer to

parallel than orthogonal) 55.13% of the time and is greater
3Variables that have a zero information distance are recoding

equivalent and are not necessarily identical (see Crutchfield, 1990).
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Figure 4: Euclidean distance (error) between the paths of the ball during the current and nearest previous experience. The error
is often exaggerated as experiences of paths of the same type but opposite direction are often matched. The top part of the
graph shows the behaviour (See Table 1). The Path Error (pixels) in this case is the sum of the Euclidean distance between
corresponding points. Temporal horizon h = 20, number of binsQ = 5.

than 3π/2 (i.e. closer to opposite than orthogonal) 29.21%
of the time. This indicates that the path and therefore the
experience is generally well matched, however due to the
nature of the measure, experiences from the opposite phase
in a cycle are often selected. This error is compensated
for in Figure 5 by reflection about π/2. It is interesting to
note the opposite phase corresponds to time-reversed mo-
tion, and that the present metric relies on probability distri-
butions constructed from sensorimotor flow and that these
distributions do not encode the directionality of time.

Examining the progression of the error over time in these
data, one would expect to see an improvement as the same
kinds of behavioural interaction are re-experienced. How
the matching of experiences improves over time is exam-
ined, referring to Table 2 and Figure 5. During the hori-
zontal motions after one full cycle, 37% of experiences can
be matched to similar ones in the history. Vertical motions
show that the success rate peaks at 68.9% with the 4th pre-
sentation. The success rate drops slightly thereafter as there
are more experiences to select from. The Circle movements
also show marked improvement as experience grows. The
initial 13.8% success rate of the very first circular motion
reflects the fact that parts of the circular motion are being
matched with previous horizontal and vertical experiences,

with some limited success, even before any such motions
had been observed.

Conclusions
The work describing the construction and use of information
metrics for the comparison of robot behaviour demonstrates
achievement of a degree of temporally extended prospec-
tion by an embodied agent, based on its raw sensorimo-
tor experience. The experience metric was first described
in (Mirza et al., 2005a) and with mathematical proofs of
the mathematical metric properties along with some alter-
native metrics on experience in (Nehaniv, 2005). As men-
tioned, an operational formulation of experience (but not of
the metric) was previously described in (Oates et al., 2000).
A non-metric measure of distance between experiences was
described there that used the area between time-warped ex-
perience curves. The fact that independent research groups
both developed essentially the same notion operationalizing
an agent-centred definition of experience suggests that this
definition is a natural one.
Experiments were described that use fairly large numbers

of robotic sensors to describe robotic experience such that
a simple sort of prediction can be achieved by the matching
of present experience with experiences in the history and
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extrapolating forward from the matched past experience. It
was found that proximity in terms of experience metric cor-
responds well with an external observer’s notion of similar-
ity of experience. Future research may consider using the
anticipated experience for active perception and in human-
robot interaction.
The sensorimotor variables were treated by the au-

tonomous robot in an uninterpreted “agnostic” manner, that
is, no sensor is regarded as being different from any another
or special in any way, in terms of finding close experiences.
This performance was achieved despite many of the sensors
not providing any seemingly useful information about the
current experience. Proprioceptive motor experience was
important in this experiment in determining the experience
and matching it to the appropriate past experience.
The capability of the experience metric to find suitable

matching experiences was found to increase as more ex-
amples of a particular type of behaviour were presented.
This appears to level-off, and potentially become worse as
more examples are presented. However, the experiments de-
scribed had too short a run time for a definitive conclusion
to be drawn on the latter observation. Another important as-
pect of the experience metric is that it appears to confuse a
behaviour with its ‘opposite’ (phase-shifted or time-reversed

counterparts), as these are informationally nearly identical.
This can be seen clearly in both the simple and interac-
tive ball-path prediction experiments as opposite direction
of path.
Needless to say, the ontogeny of prospective ability of

children and other mammals is an extended process lasting
years and we cannot yet hope to mirror its complexity and
success in artificial systems, although the work presented
here suggests that we have made a small start in this direc-
tion.
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Cañamero, L. (2002). Meaningful information, sensor evo-
lution, and the temporal horizon of embodied organisms. In
Artificial Life VIII, pages 345–349. MIT Press.

Oates, T., Schmill, M. D., and Cohen, P. R. (2000). A method for
clustering the experiences of a mobile robot that accords with
human judgements. In Proceedings of the Seventeenth In-
ternational Conference on Artificial Intelligence, pages 846–
851, Menlo Park, California. AAAI Press.

Olsson, L., Nehaniv, C. L., and Polani, D. (2006). From unknown

sensors and actuators to actions grounded in sensorimotor
perceptions. Connection Science, 18(2):121–144.

Pfeifer, R. and Bongard, J. (2007). How the Body Shapes the Way
We Think: A New View of Intelligence. MIT Press.

Ram, A. and Santamaria, J. C. (1997). Continuous case-based rea-
soning. Artificial Intelligence, 90(1-2):25–77.

Varela, F. J., Thompson, E., and Rosch, E. (1991). The embodied
mind: Cognitive science and human experience. MIT Press,
Cambridge, MA, USA.

Vernon, D., Metta, G., and Sandini, G. (2007). The icub cognitive
architecture: Interactive development in a humanoid robot. In
IEEE International Conference on Development and Learn-
ing, Imperial College, London.

Artificial Life XI 2008  419 



Common Concepts in Agent Groups, Symmetries, and Conformity
in a Simple Environment

Marco Möller1,2 and Daniel Polani2

1Theory of Complex Systems Group, Institute of Solid State Physics, Technical University of Darmstadt, Germany
2Adaptive Systems Group, School of Computer Science, University of Hertfordshire, UK

marco.moeller@juforum.de!, d.polani@herts.ac.uk

Abstract

We analyze representations of the world attained through an
infomax principle by agents acting in a simple environment.
The representations obtained by different agents in general
differ to some extent from each other in different instances.
This gives rise to ambiguities in how the environment is
represented by the different agents. We now develop an
information-theoretic formalism able to extract a "common
conceptualization" of the world for a group of agents. It turns
out that the common conceptualization intuitively seems to
capture much higher regularities or symmetries of the envi-
ronment than the individual representations.
We formalize the notion of identifying symmetries in the en-
vironment - with respect to "extrinsic" operations on the en-
vironment as well as with respect to "intrinsic" operations,
i.e. the reconfiguration of the agent’s embodiment. In par-
ticular, using the latter formalism, we can re-wire an agent
to conform to the highly symmetric common conceptualiza-
tion to a much higher degree than an unrefined agent; and
that without having to re-optimize the agent from scratch. In
other words, we can "re-educate" an agent to conform to the
de-individualized "concept" of the agent group with compar-
atively little effort.

Motivation
In the search of how agents aim to model their environment,
there is a huge collection of candidates. However, it has
been suspected earlier that, whatever the detailed mecha-
nism would entail, they might follow principles of informa-
tion parsimony or optimal information processing (Barlow
(1959); Laughlin (2001)). A concrete model for maximum
Shannon information processing has been proposed in the
infomax model by Linsker (1988).
We are interested in how agents can model their environ-

ment based on informational considerations. Using infomax
principles to do that, one obtains a classification or represen-
tation of a given environment (in the following also called
concept) for a given agent. We use the perception-action
(PAL) loop from Klyubin et al. (2007) to model the agent
and its interaction with the environment, i.e. the model and
according tasks for the agent are not part of this work.
In general, the representations of the environment devel-

oped in an infomax process differ w.r.t. the agent. Even in

very simple and highly symmetric scenarios, they can con-
siderably vary from agent to agent as a result of the infomax
optimization i.e. different global and (good) local optima
can be returned. This is similar to a biological evolution op-
timization process: the individuals also vary to some extend
from each other. This raises the issue of how similar the
obtained concepts are. We will discuss what the different
concepts of those agents have in common. Is it possible to
develop a concept which is mutually compatible to each of
these input concepts (see e.g. Philipona and O’Regan 2006;
Steels 1997; i Cancho and Solé 2003)? If so, what properties
of the environment or the agents do such common concepts
capture? How do they relate to the individual agents’ con-
cepts?
We will not model how agents agree on a common con-

cept or how they communicate but we will discuss some
information-theoretical criteria for such a common concept.
In general, we are not interested in processes but in their
outcome. We do not analyze mechanisms but the underlying
principles.
Analyzing the quality of concepts with respect to certain

goals, we observed that “good” concepts have more regu-
larities. That led us to analyze the concepts’ symmetries. In
general, they are not symmetric in a strict mathematical way.
So we needed a method to measure also not perfectly ful-
filled symmetries. We developed an information-theoretical
approach to analyze these “weak” symmetries. One hypoth-
esis is that common concepts will reveal symmetries of the
whole agent/environment system that are broken by the in-
dividual concepts. We can now ask under which conditions
the individual agents can relate to this expected higher reg-
ularity of the common concept. In a second approach of
analyzing these symmetries, we study the influence of the
agents embodiment on the agent and try to find a way of
“asking the agent what he considers to be a symmetry of the
environment”.
The technical challenges arising from these issues are

manifold. We aim to find a description that is consistent
with a fundamentally information-theoretical picture of the
agents and their environment. For this, one needs to suitably
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formulate the development of a common concept of a set of
agents. Also, one needs to model the concept of regularity
or symmetry in a suitable way.
The contributions of this paper are information-theoretic

techniques to construct common concepts for a group of
agents and to evaluate weak symmetries, and their applica-
tion to some simple, but informative scenarios.

Background
To be able to introduce our model for the agents and
their interaction with the world, we have to introduce
some notations and quantities first. Consider random vari-
ables X, Y, Z, . . . denoted by capital letters which take
in values x, y, z, . . . in corresponding sets X ,Y,Z, . . ..
For the probability that a given random variable X as-
sumes a value x ∈ X we write Pr (X = x) or, if it
is clear from context just p (x). For the probability
for the joint variable (X1, . . . , Xn) we will write simply
Pr (X1 = x1, . . . , Xn = xn) ≡ p (x1, . . . , xn). The (Shan-
non) entropy of a random variableX is given by

H (X) := −
∑

x∈X

p (x) log p (x) (1)

whereby the logarithm in this paper is always to the basis of
2, so the unit for entropy is the bit. The conditional entropy
of X given Y is given by H (X |Y ) := H (X, Y ) − H (Y )
and the mutual information betweenX and Y by

I (X ; Y ) := H (X) + H (Y ) − H (X, Y ) . (2)

A generalization of mutual information is the multiinforma-
tion between a collection of random variablesX1, . . . , Xn

I (X1; . . . ; Xn) :=

[

n
∑

i=1

H (Xi)

]

− H (X1, . . . , Xn) (3)

its conditional form, if the random variable Y is observed is

I(X1;...;Xn|Y ):=[
Pn

i=1
H(Xi|Y )]−H(X1,...,Xn|Y ). (4)

To measure the “difference” between two random variables
X, Y we can use the unnormalized version of the informa-
tion distance (Crutchfield (1990))

D (X, Y ) := H (X |Y ) + H (Y |X) (5)

which fulfills the conditions for a metric including the tri-
angle inequality. Note that D vanishes for a deterministic
bijective dependency betweenX, Y .
To model agents in an environment we will use the for-

malism fromKlyubin et al. (2007) based on causal Bayesian
network (CBN). A CBN is given by a directed acyclic graph
G = (N , E) whose nodes n ∈ N are representing random
variables Xn and the edges e ∈ E ⊆ N ×N causal con-
ditional probability dependencies between them. The distri-
bution of Xn is given by p

(

xn|xPa(n)

)

whereby Pa (n) :=

R0

M0

S0 A0

R1

M1

A1S1

. . .

. . .

. . .

Mt′

Figure 1: Perception-action loop unrolled in time as a CBN

{n′ ∈ N| (n′, n) ∈ E} is the set of parent nodes n′ from
node n. If a node n has no parent nodes Pa (n) = ∅, we
identify p

(

xn|xPa(n)

)

≡ p (xn) with an unconditional prob-
ability distribution. The joint distribution of the whole net-
work is given by

p
(

x1, . . . , x|N |

)

=
∏

n∈N

p
(

xn|xPa(n)

)

. (6)

Model
A generic model for an agent interacting with a world is
the perception-action loop (PAL). It is here only briefly pre-
sented, for a full presentation and motivation see Klyubin
et al. (2007). Such an agent can sense the world R through
its sensor S and manipulate it through its actuator A which
together form the embodiment of the agent. This process
can be formalized by the CBN shown in Fig. 1. All ran-
dom variables depend on the time t: Mt, At, Rt, St. More
precisely the controller of the agent has the possibility to
store information in the memory M . It can be described by
a probabilistic mapping

controller : Mt × St → Mt+1 × At (7)

which is time t independent.
In our experiments, we chose a deterministic controller

(Wennekers and Ay (2005); Klyubin et al. (2007)) and used
a two dimensional infinite grid-world R = Z2. The mem-
ory M is a number contained in a finite subset ofM ⊂ N.
The initial memory M0 is deterministically set to a default
state 0. The initial position in the worldR0 is uniformly dis-
tributed over possible starting positionsR0 = {−d, . . . , d}2

where the radius d depends on the experiment. The actua-
tor A can take on values A = {↓,←, ↑,→} where these
4 actions can move the agent (changing its position in the
world, encoded in R) to one of its 4 adjacent positions in
the grid-world. The first discussed sensor (setup s+) has 4
possible sensor values S = {↓,←, ↑,→}. If we imagine
a “pheromone” gradient emitted by a source at the origin
(Fig. 2 - center), this sensor points to the adjacent position
with the highest concentration of pheromone. If this is not
unique (e.g. at the origin), one direction is randomly cho-
sen. Setup s+ is visualized in the left of Fig. 2, whereby for
each position (x, y) ∈ R all possible sensor “directions” are
shown with their arrow-length corresponding to their prob-
ability. A variation of this setup used in this work is a sen-
sor (setup sq) where 4 of such sources exists at {−5, 5}2
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Figure 2: Setups

(Fig. 2 - right) and the sensor is pointing always to the near-
est source.
Our fundamental task for the agent is to capture as much

information about its initial position as possible by its “fi-
nal” memory state at time1 t = 15 as suggested by Klyubin
et al. (2007). This can be denoted information-theoretically
as maximizing

I (R0; M15) . (8)

The search space for this problem contains all possible con-
troller mappings from Eq. 7. To solve this and all following
optimization problems, we used Simulated Annealing with
some heuristic improvements described elsewhere but such
tasks can be performed by any generic optimization tool. We
do not aim to model the details of the process of agent evo-
lution / adaptation and its ability to capture the information
about the initial position but only the outcome of such a pro-
cess. This output corresponds to the solutions returned by
Simulated Annealing.

Common Concepts
Concepts
Consider an agent with setup s+ and memory size |M| =
8 who is able to capture the initial position R0 (what is
uniformly distributed with R0 = {−5, . . . , 5}2) by max-
imizing I (R0; M15) . Therefore an appropriate controller
has to be found. To interpret this agent, consider Fig. 3
where each of the 8 squares shows in gray scale the con-
ditional probability p (r0|m15) for a final memory state. To
make this precise, it shows the probability that this agent
has been initially at position r0 in the world for a mem-
ory content m15 = 0, 1, 2, . . . , 7 at time t = 15 of the
end of the run. For each state m15 we use a separate nor-
malization so maxr0

p (r0|m15) is represented by black and
p (r0|m15) = 0 by white. The agent shown has an util-
ity value of I (R0; M15) = 2.906 bit which is very near to
the limit of min [log |R0| , log |M|] = 3 bit. These 8 pos-
sible memory values m15 can be understood as a concept
of the world R0. Each value for m15 has a certain “mean-
ing” for stating positions, like “north-triangle”, “north-east-
diagonal”, “east-triangle”, “south-east-diagonal”, etc. We
call a pair of random variables (R, Y ) (e.g. (R0, M15))

1t = 15 is an arbitrary choice for our experiments, other
choices lead to similar results.

Figure 3: Solution of initial position capturing

jointly distributed a concept if Y is “representing”R in some
way, i.e. I (R; Y ) > 0. We call the values y ∈ Y symbols of
the concept.
As mentioned earlier there also exist other solutions for

the problem to find a good initial position capturer with an
equal or similar utility value I (R0; M15), for example just
an agent with a “rotation” of the concepts by 90°. This
“rotation-symmetry”will be discussed later. Here we are in-
terested in how representative the shown example concepts
and how similar other solutions are. We will do this by dis-
cussing the possibilities to find a common concept (R, Y∗)
from a set of input concepts

{(

R, Y (1)
)

, . . . ,
(

R, Y (n)
)}

.
This concept can be interpreted as common concept of a
group of agents in a world R. In the spirit from above
philosophy, we emphatically only model the information-
theoretical principle. The process of agreeing of the individ-
uals about the common concept is wittingly not modeled to
be independent of the algorithm. We will present in the fol-
lowing two possibilities to define such a common concept.

For the Objective Common Concept consider the CBN
from Fig. 4. A deterministic mapping R → Y obj

∗ which
maximizes

∑

i

[

I
(

Y obj
∗ ; Y (i)

)

− α · I
(

R; Y obj
∗

)

]

(9)

defines the objective common concept
(

R, Y obj
∗

)

. The first

term I
(

Y obj
∗ ; Y (i)

)

maximizes the mutual information be-
tween the common concept and every input concept, so as to
make it as similar as possible the input concepts. The term
α · I

(

R; Y obj
∗

)

is a bottleneck type (Tishby et al. (1999))
parameter α ∈ [0, 1] countering the trivial behavior of just
building Y obj

∗ = Y (1) × . . . × Y (n) as cross product of
all input concepts if the number of states in Y obj

∗ is suffi-
ciently large

∣

∣

∣
Yobj
∗

∣

∣

∣
≥

∏

i

∣

∣Y(i)
∣

∣. For our experiments we
set α = 0.2. This method is called objective because it has
explicit knowledge about the world R.

For the Subjective Common Concept consider the CBN
from Fig. 5. A deterministic mapping Y (1) × . . .× Y (n) →
Y subj
∗ which minimizes

I
(

Y (1); . . . ; Y (n)|Y subj
∗

)

(10)
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Y (1) Y (2) . . . Y (n)

R Y obj
∗

Figure 4: CBN for objective common concept

R

Y (1) Y (2) . . . Y (n)

Y subj
∗

Figure 5: CBN for subjective common concept

defines the subjective common concept
(

R, Y subj
∗

)

by ap-
plying the rules for the joint distribution of a CBN. The min-
imization makes sure that Y subj

∗ “absorbs” all information
common by Y (1), . . . , Y (n). This method is called subjec-
tive because it has only implicit knowledge aboutR through
the input concepts.

Results Common Concept

A Comparison of Objective and Subjective Common Con-
cept is calculated for the 4 input concepts shown in Fig. 6.
We see in each of the 4 columns one concept

(

R0, M
(i)
15

)

generated by initial position capturing agents with setup s+
and |M| = 6. Figure 7 shows an objective and subjec-
tive common concept (R0, M∗) of size |M∗| = 8 each.
The superstition of the subjective common concept is with
H (M∗|R0) = 0.03 bit vanishingly small2. The information
distance between objective and subjective common concept
is with D

(

Mobj
∗ , M subj

∗

)

= 0.38 bit also quite small. The
only significant difference is that the symbol for “south-east”
is split in the subjective method, therefore it has no symbol
for “north-west”. Because of their similarity we will not
continue to calculate both common concepts. Especially if
we consider the computational complexity we will, in fur-
ther investigations, only use the objective common concept.
For the subjective common concept the computational com-
plexity, and the size of the search space are growing ex-
ponentially with the size of the input concept

∣

∣

∣
M(i)

15

∣

∣

∣
and

their number n. Some further objective common concepts
are shown in Fig. 11.
For lack of space the preferred common concept size will

not discussed here.

2The superstition of the objective common concept is 0 by def-
inition becauseM∗ deterministically depends on R0.

Figure 6: 4 input concepts of size |M| = 6 for Fig. 7

Figure 7: Objective (upper half) and subjective (lower half)
common concept

Symmetry

As mentioned earlier, all (common) concepts exhibit a large
degree of symmetry. We will present two methods to mea-
sure and analyze these symmetries. Common to both meth-
ods is the idea of transforming concepts and comparing them
by measuring the mutual information between the trans-
formed concept and e.g. the original. The extrinsic sym-
metry transforms the concept by applying a combination of
a rotation, mirroring and translation on the world. So it tests
if some explicitly known symmetries of the world also hold
for the concept. The intrinsic symmetry opposed searches
for invariants of the world from the agents perspective. So it
is able to extract what seems to be a symmetry for the agent.
With these methods we developed a framework for an-

alyzing the role of regularities in agent↔world interaction
and especially what kind of regularities are used by agents
in their interaction with the world.

Extrinsic Symmetry

An extrinsic symmetry operating on a concept (R, Y ) trans-
forms the grid-worldR = Z2 by applying an extrinsic sym-
metry operation ξθ,ϕ,x0,y0 , a combination of a rotation ϕ (in
90° steps), mirroring θ, and translation (x0, y0)

ξθ,ϕ,x0,y0 : Z
2 → Z

2 (11)
ξθ,ϕ,x0,y0 := ξx0,y0

trans ◦ ξϕ
rot ◦ ξθ

mir. (12)

The mirroring (at the y-axis) is described by θ ∈ {+1,−1}

ξ+1
mir (x, y) := (x, y) ξ−1

mir (x, y) := (−x, y) ,
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R ξR

Y Y ξ

Figure 8: CBN for calculating extrinsic symmetry utility

the rotation (in 90° steps counterclockwise) by ϕ ∈
{0◦, 90◦, 180◦, 270◦}

ξ0
◦

rot (x, y) := (x, y) ξ90
◦

rot (x, y) := (−y, x)
ξ180

◦

rot (x, y) := (−x,−y) ξ270
◦

rot (x, y) := (y,−x)

and finally the translation by (x0, y0) ∈ Z2

ξx0,y0

trans (x, y) := (x + x0, y + y0) .

The application of the operation ξϕ,θ,x0,y0 transforms the
world R and gives us two new probabilistic mappingsR →
ξR and ξR → Y ξ (Fig. 8). The first mapping applies the
operation ξϕ,θ,x0,y0 on R by

Pr (ξR = r′|R = r) := δr′,ξ(r) (13)

=

{

1 r′ = ξ (r)

0 else
. (14)

The second mapping ξR → Y ξ is chosen as a “copy” of
R → Y :

Pr
(

Y ξ = y|ξR = r
)

:= Pr (Y = y|R = r) . (15)

We define the utility for extrinsic symmetry operation
ξϕ,θ,x0,y0 for the concept (R, Y ) as

I
(

Y ; Y ξ
)

, (16)

where a higher value means “higher symmetry”.
Informally, this utility measures “how much a ro-

tated/mirrored/translated concept has in common with the
original one”. Note that because of the use of informa-
tion theory, possible symbol permutations are ignored. With
this method we are also able to interpret a sensor mapping
Rt → St as a concept and calculate its symmetries.

Intrinsic Symmetry
We define a permuted embodiment for an agent as shown
in Fig. 9. In comparison to Fig. 1, the original sensor S
is replaced by Sπ → Sorig and the original actuator A by
Aorig → Aπ. Each pair of permutation of sensor an actuator
(πS , πA) with

πS : Sπ → Sorig (17)
πA : Aorig → Aπ. (18)

. . .

. . .

. . . Rt

Mt

Sπ
t

S
orig
t A

orig
t

Rt+1

Mt+1
. . .

. . .

. . .

Aπ
t

πAπS

Figure 9: Permuted embodiment for the perception-action
loop as CBN

defines an intrinsic symmetry operation. To evaluate an in-
trinsic symmetry operation (πS , πA) on an initial position
capturing agent we first generate a whole set of concepts
{(

R0, M
(1)

15

)

, . . . ,
(

R0, M
(n)

15

)}

from other good initial
position capturing agents with an equivalent setup (both,
evaluated agent and the other agents are still without the
modifications from Fig. 9 at this point). For this set of con-
cepts is an objective common concept

(

R0, M
obj
∗

)

is com-
puted. To evaluate a specific intrinsic symmetry operation
(πS , πA), we apply it on the PAL3 and then calculate the
resulting concept (R0, Mπ

15). We define the quality of this
operation as

I
(

Mobj
∗ ; Mπ

15

)

, (19)

where a higher value means “higher symmetry”. Informally
spoken, “we are shuffling perceptions and actions of the
agent and investigating if he is still able to ’conform’ the
common concept”.

Results Symmetry
Figure 11 shows because of lack of space in extremely com-
pact format some of our symmetry results for comparison.
The upper half of the figure is for setup s+, the lower half
for setup sq.

The Extrinsic Symmetry of the Setup is shown in !1
and !2 . !1 shows the used setup as map of possible sensor
outcomes (understood as concept) p (r|s). The marked box
inside of each symbol denotes the places belonging to R0.
This region visualizes the area of the concept what will be
compared with the transformed concept by the mutual infor-
mation. For setup s+ isR0 = (−5, . . . , 5)2 and for setup sq
R0 = (−10, . . . , 10)2. Of the translation operations, only
those are tested which maps R0 on a subset of the shown
positions in the concept, consequently only translations are
tested with max (|x0| , |y0|) ≤ 5 for setup s+ resp ≤ 10 for
setup sq. The corresponding extrinsic symmetry spectrum
in !2 shows the number of symmetries (y-axis) for a given
value of x =

I(R;Y transformed)
max I(R;Y transformed)

. Additional to these

3Without changing on the controller, i.e. not optimizing the
utility from Eq. 8 again.
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Figure 11: Symmetry - see text for details
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Figure 10: Number of good intrinsic and extrinsic symme-
tries depending on memory size

peaks, we added a smoothing curve into the spectrum. The
rightmost peak with the 8 best symmetries includes all op-
erations with translation x0 = y0 = 0. The next best peak
(second rightmost) covers translation of length 1. The peaks
are mostly ordered by their translation length

√

x2
0 + y2

0 .

The Extrinsic Symmetry of the Concept is shown in !4
and !5 . !4 shows a concept derived from an initial position
capturing agent (R0, M15) with |M| = 4 and its extrinsic
symmetry spectrum similar to the setup in !1 and !2 . Also
here the peaks are mainly ordered by translation distance.
For setup s+ the peak with the best 4 operations contains the
mirroring about the x resp. y axis. If we mirror around the
x-axis we have additionally to translate the concept by 1 in
y direction to get it perfectly matching with the original one.
For setup sq we see that there is only one best symmetry,
the identity. The next best symmetry, a mirroring around the
x-axis, is much weaker.

An Objective Common Concept (R0, M∗)which is used
for the intrinsic symmetry is derived from 8 other solutions
for the initial position capturing (shown in !3 : each column
of 4 symbols forms one input concept). The common con-
cept has a size of |M∗| = 16 symbols and is shown in !6 .

The Intrinsic Symmetry of the Concept is shown once
as spectrum in !8 . !7 also shows these intrinsic symmetries
but in a different way. The x-axis resp. y-axis enumerates
the different possibilities for the permutations for πS resp.
πA whereby 0 stands for the identity. The gray values are ac-
cording to I(R;Mπ

15
)

maxπI(R;Mπ
15)

with an enlarged contrast for val-
ues near to 1 resp. black. The diagonal in this map stands for
“synchronized” embodiment permutations with πS = πA.
The introduction of those synchronized permutation makes
only sense if, like in our case, sensor and actuator values can

be associated and ordered in the same way.
!9 shows on of the best (for setup sq) resp. of the worst

(setup s+) concepts (R0; Mπ
15) after applying an intrinsic

symmetry operation (πS , πA). This operation resp. its two
permutations are shown to the right of the concept. The 4
possible values for S resp. A are shown as solid arrows and
their permutation mappings with dashed arrows. In case of
setup s+ the 16 best symmetries are similar to the 8 rotation
and mirroring of the most right two input concepts shown in
!3 . In case of setup sq the 4 best symmetries are similar to
the shown example but mirrored around the x- and/or y-axis.

Symmetry Dependence on Memory size |M| is shown
in Fig. 10. It shows the number (y-axis) of good extrinsic
resp. intrinsic symmetries (at least 85% of maximal symme-
try utility) for an initial position capturing agent with setup
s+ according to memory size |M| (x-axis). The error-bars
show the number of symmetries with at least 82.5% resp.
87.5% of maximal symmetry utility.

Discussion
We have shown how to extract common perspectives out of
a group of agents with individual perspectives. There is evi-
dence that both objective and subjective methods are almost
similar if, as in our case, the input concepts are mostly de-
terministic. So one can save computation resources by cal-
culating only the objective one. Both methods are based on
the fact that for some locations in the world, the agents have
a disagreement about how to group them to symbols (in our
example e.g. the 4 diagonals in setup s+). Additionally to
assigning the “original” symbols for indisputable areas, the
common concept methods are able to identify the disputed
areas and assign new symbols to them. If we would enlarge
the memory size for the individual agents, they would find
some of these new symbols as well. In our example, an agent
with a bigger memory size would also find the diagonals but
with much lower accuracy. Especially the symbol for the
“center of the world” (Fig. 11 setup s+ !6 ) was never found
by an individual agent in our experiments. So a new level for
structuring the world emerged by considering a whole group
of agents instead of individuals.
We also have evidence that “good” agents’ concepts and

especially common concepts have a higher degree of “sym-
metry”. We developed two methods to study the strength
of symmetry. With the extrinsic symmetry method, rota-
tion and mirroring symmetries were found but the transla-
tions were not. Some “long distance” similarities in the sq
setup we expected to appear were too weak and vanished
in the “noise” of other translations. But, as expected, small
translations were not completely asymmetrical. In general,
the degree of symmetry is vaguely ordered by its translation
length.
As opposed to the extrinsic, the intrinsic symmetry just

observes which changes in the agent’s interaction with the

Artificial Life XI 2008  426 



environment (actuator/sensor permutations) have no (bad)
effect on its concept. This method is additionally improved
in that we do not compare a permuted concept with the in-
dividual (original) concept but with a common one. This
common concept is “free” of special decisions of individual
agents and gives a more universal representation for a task
than any individual solution. The intrinsic operation forces
the agents to “conform” to the common concept without op-
timizing them again by “transplanting their brain into an-
other body”. Searching for the best intrinsic operations is
in fact partly a re-optimization of the controller. But in to-
tal, we only test in the shown example a vanishingly small
(3.1 · 10−17-th) part of the search space. The meaning of
the intrinsic symmetry method is not yet fully understood.
Partly the intrinsic symmetries are identical to the extrin-
sic symmetries (rotation, mirroring) but they include many
more operations.
Increasing the agent’s memory size, the number of best

extrinsic symmetries drops to 1 which means that identity
is the only remaining symmetry operation. The number of
best intrinsic symmetries behaves differently which means
that intrinsic symmetries are not too sensitive to variations
of the concept due to symmetry operations. This raises an-
other interesting idea: The intrinsic symmetry may give us
a hint for an optimal memory size of an agent. With grow-
ing memory size, the agents begin to “realize” that not every
symmetry they “see” is really in the world. But this process
stops at a certain |M| which might be a good choice for an
agents memory size in the considered environment.

Conclusion and Outlook
We discussed two techniques to generate a common per-
spective by conflating the individual perspectives of a group
of agents. Through this common perspective, we were able
to analyze the similarity of individual agent representations
and find common classifications of the environment. Ad-
ditionally, some features of the world are only (or at least
much more easily) detectable in the common perspective.
We did not model the process of agreeing between these
agents and only used very general information-theoretical
principles which make them applicable to other scenarios as
well.
We found evidence that good classifications of the envi-

ronment capture many of its symmetries. While individ-
ual concepts may suffer some symmetry breaking, common
concepts will reveal these symmetries. To analyze these
symmetries, we developed two information-theoretical ap-
proaches. In the extrinsic approach, we measure for ev-
ery symmetry transformation of the environment the degree
to which the concept is respected. This approach abstracts
away from how we achieved the classification. In contrast,
the intrinsic approach is only suitable for agents interact-
ing with an environment through a PAL. Here we analyze
which modifications of the embodiment lead to agents who

are “similar” to the original one. Since we measure this sim-
ilarity indirectly by comparing the transformed concept to a
common concept, the individual concept’s symmetry breaks
do not influence this method. The intrinsic method provides
insight into the agent and its perspective on the environment.
It identifies symmetries beyond the geometrical symmetries
of the world found in the extrinsic case. The intrinsic sym-
metries accord to changes of the agent’s embodiment which
can not be detected by the agent.
Especially the role of the intrinsic symmetry and its mean-

ing is not fully understood. In the future, it could help to ex-
tract structural regularities in the environment by the agent.
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Abstract

In this paper we introduce a new ant-based method that takes
advantage of the cooperative self-organization of Ant Colony
Systems to create a naturally inspired clustering and pattern
recognition method. The approach considers each data item
as an ant, which moves inside a grid changing the cells it goes
through, in a fashion similar to Kohonen’s Self-Organizing
Maps. The resulting algorithm is conceptually more simple,
takes less free parameters than other ant-based clustering al-
gorithms, and, after some parameter tuning, yields very good
results on some benchmark problems.

Introduction and State of the Art
Clustering is performed naturally by some types of ants at
least in two different ways. First, ant colonies recognize by
odour other member of their colony (as mentioned in the
paper by Labroche et al. (2003)) leading to a natural clus-
tering of ants belonging to the same nest, which is a con-
sequence of nurturing and also has some genetic support;
second, ants do physically cluster their larvae and dead bod-
ies, putting them in piles whose position and size is com-
pletely self-organizing, as described by Deneubourg et al.
(1991). Ant algorithms inspired by these models such as
those proposed by Bonabeau et al. (1998); Abraham and
Ramos (2003); Labroche et al. (2003); Ramos and Merelo
(2002) have been applied to clustering and classification.
In general, these methods follow the second clustering be-
havior: data for training the clusters is represented as dead
bodies, which ants have to pick up (with a certain proba-
bility, and following some rule) and drop (also following
some rule), while at the same time dropping and follow-
ing pheromones. This results in the introduction of a few
artifacts in the method: while the number of dead bodies
(data items) to sort is natural, grid size, number of ants,
pheromone following behavior and the rest is not. This re-
sults in a certain amount of parameter tuning for obtaining
good results, but in any case is farther away from natural
inspiration.
In this paper we present KohonAnts, an Ant algorithm

that merges the biologically inspired concepts in Kohonen’s
Self-Organizing Map (proposed and described in Kohonen

(1988, 2001)) and Chialvo and Millonas (1995) ant algo-
rithm (both will be introduced in next section). It is based
in several new ideas. First, as in the above-mentioned
Labroche et al. model, every ant represents a data item.
Ants move in a grid dropping vectorial pheromones. The
grid is filled with initially random vector pheromones (of
the same dimension as the data), and every time an ant falls
in a cell, it changes the pheromone following a method sim-
ilar to that used in Kohonen Self-Organizing Map, making
the cell pheromone closer to the data item stored in the ant
itself.
Since ants move around in the grid, ant position and

pheromone content co-adapt, so that eventually ants with
similar data items are close together in the grid (a nesting be-
havior), and the grid itself contains vectors similar to those
stored in the ants on top of them. The grid can then be used
to classify in the same way as Kohonen’s Self-Organizing
Map (but with better results), while ants can be used to vi-
sually identify the position of the clusters.
The interesting part of this method is that self-

organization comes through stigmergy: ants change their
environment (pheromones stored on the grid), and that in-
fluences the behavior of the rest of the ants (that follow a
path changed by their cluster-siblings). There are less non-
natural parameters (grid size is one of them), and, finally,
results obtained are quite competitive with other methods
tested.
In this paper, after presenting all concepts used in

our method in section Preliminary Concepts, after it, we
will describe the KohonAnts model itself in section Self-
Organizing Ants Model, followed by the experiments in sec-
tion Experiments and Results. Finally, we will conclude our
description in section Conclusions and Future Works with a
discussion of the obtained results and future lines of work.

Preliminary Concepts
Before describing KohonAnts, we would like to introduce
the algorithms in which it is based on for the unfamiliar
reader. First, Ant Colony Optimization (ACO) algorithms
are presented in subsection ACO, followed by Kohonen’s
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Self-Organizing Map in subsection SOM. Finally, Chialvo
and Millonas’ model is presented in subsection Ant System
Model.

ACO
The ACO is a meta-heuristic inspired by the behavior of
some species of ants that are able to find the shortest path
from nest to food sources in a short time. The method is
based in the concept of stigmergy, that is, communication
between agents using the environment. Every ant, while
walking, deposits a substance called pheromonewhich other
ants can sense. The ants tends to follow pheromone (it evap-
orates after some time) so, in intersections between several
trails, an ant moves with high probability following the high-
est pheromone level. This metaheuristic was introduced by
Dorigo et al. in 1991 (see Dorigo and Caro (1999) and
Dorigo and Stützle (2002) for more details).
ACO algorithms take this behavior as inspiration to solve

combinatorial optimization problems, using a colony of ar-
tificial ants as computational agents that communicate each
other using pheromones. The problem to be solved using
ACOmust be transformed into a graph with weighted edges.
In every iteration, each ant builds a complete path (solution),
by travelling through the graph. At the end of this construc-
tion (and in some versions, during it), each ant leaves a trail
in the visited edges depending on the fitness of the solution
it has found. This is a measure of desirability for that edge
and it will be considered by the following ants. In order to
guide its movement, each ant uses two kinds of information
that will be combined: pheromone trails, which correspond
to ’learnt information’ changed during the algorithm run, de-
noted by τ ; and heuristic knowledge, which is a measure of
the desirability of moving to the next node, based in previ-
ous knowledge about the problem (does not change during
the algorithm run), denoted by η. The ants usually choose
edges with better values in both properties, but sometimes
they may ’explore’ new zones in the graph because the algo-
rithm has a stochastic component, that broadens the search
space to regions not previously explored. Due to all these
properties, all ants cooperate in order to find the best solu-
tion for the problem (the best path in the graph), resulting in
an global emergent behavior. There are lots of variants and
new methods, but we introduce Ant Colony System (ACS)
because our model takes some features of it.
The building of solutions is strongly based in the state

transition rule (called pseudo-random proportional state
transition rule in ACS), since every ant uses it to decide
which node j is the next in the construction of a solution
(path), when the ant is at the node i. This formula calculates
the probability associated to every node in the neighbour-
hood of i, and is as follows:
If (q ≤ q0)

j = arg max
j∈Ni

u∈Ni

τ (i, u)α
· η(i, u)β (1)

Else

P (i, j) =

τ (i, j)α
· η(i, j)β

u∈Ni

τ (i, u)α
· η(i, u)β

if j ∈ Ni

0 otherwise

(2)

Where q is a random number in [0,1] and q0 is a parame-
ter which set the balance between exploration and exploita-
tion. If q ≤ q0, the best node is chosen as next (exploita-
tion), on the other hand one of the feasible neighbours is se-
lected, considering different probabilities for each one (ex-
ploration). α and β are weighting parameters to set the rela-
tive importance of pheromone and heuristic information re-
spectively, and Ni is the current feasible neighbourhood for
the node i.
There is a global pheromone updating, which is only per-

formed for the edges of the global best solution, so for every
edge (i, j) in SGlobalBest is:

τ t(i, j) = (1 − ρ) · τ t−1(i, j) + ρ · ∆τ (i, j)GlobalBest (3)

t marks the new pheromone value and t-1 the old one. ρ in
[0,1] is the common evaporation factor and∆τ is the amount
of pheromone deposited depending on the quality of the best
solution.
There is also a local pheromone updating, which is per-

formed by each ant, every time that a node j is added to the
path which it is building. This formula is:

τ t(i, j) = (1 − ϕ) · τ t−1(i, j) + ϕ · τ0 (4)

Where ϕ in [0,1] is the local evaporation factor and τ0 is
the initial amount of pheromone (it corresponds to a lower
trail limit). This formula results in an additional exploration
technique, because it makes the edges traversed by an ant
less attractive to the following ants and helps to avoid that
many ants follow the same path.

SOM
The Self-Organizing Map (SOM) was introduced by Teuvo
Kohonen in 1982 (see Kohonen (2001) for details). It is a
non-supervised neural network that tries to imitate the self-
organization done in the sensory cortex of the human brain,
where neighbouring neurons are activated by similar stim-
ulus. It is usually used either as a clustering/classification
tool or as a method to find unknown relationships between
a set of variables that describe a problem. The main prop-
erty of the SOM is that it makes a nonlinear projection from
a high-dimensional data space (one dimension per variable)
on a regular, low-dimensional (usually 2D) grid of neurons
(see Figure 1).
Since this type of network is distributed in a plane (2-

dimensional structure) it can be concluded that the projec-
tions preserve the topologic relations while simultaneously
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Figure 1: SOM Grid structure. There is an input layer (with
the input samples) and a process layer (where the neurons of
the network are) which takes a grid shape.

creating a dimensional reduction of the representation space
(the transformation is made in a topologically ordered way).
The SOM processes a set of input vectors (samples or pat-

terns), which are composed by variables (features) typify-
ing each sample, and creates an output topological network
where each neuron is associated also to a vector of variables
(model vector) which is representative of a group of the in-
put vectors. Note in Figure 1 that each neuron of the net-
work is completely connected to all the nodes (each node
is a sample) of the input layer. So, the network represents
a feed-forward structure with only one computational layer
formed by neurons or model vectors.
There are four main steps in the processing of the SOM.

Excepting the first one, the others are repeated until a stop
criteria is reached:

• Initialization of model vectors. Usually it is made by as-
signing small random values to their variables, but there
are some other possibilities as an initialization using ran-
dom input samples.

• Competitive process. For each input pattern X , all the
neurons (model vectors) V competes using a similarity
function in order to identify the most similar or close to
the sample vector. The most usual function is a distance
measure (as Euclidean distance). The winner neuron is
called the best matching unit (BMU).

• Cooperative process. The BMU determines the centre of
a topological neighbourhood where those neurons inside
it will be updated (the model vectors) to be even more
similar to the input pattern. There is a neighbourhood
function used to determine the neurons to consider. If the
lattice where the neurons are is rectangular or hexagonal,
it is possible to consider as neighbourhood rectangles or
hexagons with the BMU as centre. Although it is more
usual to use a Gaussian function to assure that the farther
the neighbour neuron is, the smaller the updating to its
associated vector is. In this process, the neurons inside a
vicinity cooperate all of them to learn.

• Learning process. In this step the variables of the model
vectors inside the neighbourhood are updated to be closer

to those of the input vector. It means doing the neuron
more similar to the sample. The learning rule used to
update the vector (V ) for every neuron i in the neighbour-
hood of the BMU is:

V t
i = V t−1

i + αt
· N t

BMU (i) · (X − V t−1

i ) (5)

Where t is the current iteration of the whole process, X
is the input vector,NBMU is the neighbourhood function
for the BMU, which returns a high value (in [0,1]) if the
neuron i is in the neighbourhood and close to the BMU (1
if i = BMU ), and a small value in the other case (0 if i is
not located inside the neighbourhood). α is the learning
rate (also in (0,1]). Both (neighbourhood and learning
rate) depends on t, since it is usual to decrease the radius
of the first one and the value of the second in order to
make higher updating at the beginning of the process and
almost none in the latter.

The consecutive application of Equation 5 and the update
of the neighbourhood function, has the effect of ’moving’
the model vectors, Vj from the winning neuron towards the
input vector Xi. It is, the model vectors tend to follow the
distribution of the input vectors. Consequently, the algo-
rithm leads to a topological arrangement of the characteris-
tic map of the input space, in the sense that adjacent neurons
in the network tend to have similar weights vectors.
As a consequence, looking at the display of a SOM, it is

possible to recognize some clusters as well as the metric-
topological relations of the data items (vectors of variables
of the problem) and the outstanding variables.

Ant System Model
In Chialvo andMillonas (1995), the authors presented a sim-
ple ant model where trails and networks of ant traffic emerge
without impositions by any special boundary conditions, lat-
tice topology, or additional behavioral rules. In this model,
the state of an ant can be expressed by its position r and ori-
entation θ. Since the response at a given time is assumed
to be independent of the previous history of the individual,
it is sufficient to specify a transition probability from one
place and orientation (r, θ) to the next (r∗, θ∗) an instant
later. Initial papers byMillonas (1992, 1994) transition rules
were derived and generalized from noisy response functions,
which in turn were found to reproduce a number of exper-
imental results with real ants. The response function can
effectively be translated into a two-parameter transition rule
between the cells by using the pheromone weighting func-
tion showed in Equation 6:

W (σ) = 1 +
δ

1 + σ · δ

β

(6)

This equation measures the relative probabilities of moving
to a cell r with pheromone density σ(r). The parameter β
is associated with the osmotropotaxic sensitivity proposed
in Wilson (1971). In practical terms, this parameter con-
trols the degree of randomness with which each ant follows
the gradient of pheromone: for low values of β, pheromone
concentration does not greatly affect its choice, while high
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values cause it to follow pheromone gradient with more cer-
tainty, as proved in Chialvo and Millonas (1995). The sen-
sory capacity 1/δ describes the fact that each ant’s ability
to sense pheromone decreases somewhat at high concentra-
tions. In addition to the former equation, there is a weight-
ing factor w(∆θ), where ∆θ is the change in direction at
each time step, i.e. measures the magnitude of the differ-
ence in orientation. This weighting factor ensures that very
sharp turns are much less likely than turns through smaller
angles; thus each ant in the colony have a probabilistic bias
in the forward direction. A discretization of the model is
necessary in order to perform simulations and test some as-
sumptions: Chialvo and Millonas created a square lattice
where ants can move around, taking one step at every it-
eration. The decision (where to go) is made according to the
pheromone concentration in all eight neighboring cells (Von
Neumann neighborhood) and the weighting factor w(∆θ),
using Equation 6, and computing the transition probabilities
via Equation 7:

Pik =
W (σi) · w(∆i)

j/k

W (σj) · w(∆j)
(7)

This equation represents the transition probabilities on the
lattice to go from cell k to cell i and notation j/k indicates
the sum over all the cells j which are in the local (Von Neu-
mann) neighborhood of k. ∆i measures the magnitude of
the difference in orientation for the previous direction at time
t − 1. As an additional condition, each individual leaves a
constant amount η of pheromone at the cell where it is lo-
cated at every time step t. This pheromone decays at each
time step at a rate k. Toroidal boundary conditions are im-
posed on the lattice to avoid boundary effects. Please note
that there is no direct communication between the organisms
but a type of indirect communication through the pheromone
field. In fact, ants are not allowed to have any memory and
the individual’s spatial knowledge is restricted to local infor-
mation about the whole colony pheromone density.
This model has been applied in many different works, for

instance in Ramos and Almeida (1994), the authors adapted
it by placing the ants ’over’ a gray-scale image. So, they
evolve reinforcing pheromone levels around pixels with dif-
ferent gray levels yielding pheromone maps that may be a
suitable support for edge detection and image segmentation.
This last model was improved in Fernandes et al. (2005a) by
introducing a mechanism to eliminate and create ants along
the evolution process, which means a self-regulated popu-
lation size and it results faster and also more effective in
creating pheromone trails around the edges of the images.

Self-Organizing Ants Model
The algorithm presented in this paper is an ant algorithm
with some common features with the Ant System of Chialvo
et al., nevertheless it also includes some other features in-
spired by the Kohonen’s SOM. It is called, for this reason,
KohonAnts (or KANTS).
KANTS has been designed as a clustering and classifica-

tion algorithm, so it is capable to group a set of input samples

(training dataset) into clusters with similar features. In addi-
tion it behaves as a good classification algorithm. It works in
a non-supervised (self-organizing)way, without considering
the class of the input patterns during the process.
The main idea is to assign each input sample (which is

a vector) to an ant, and put them into an habitat which is
a toroidal X · Y grid. Then, they move around in the lat-
tice changing the environment, which is a stigmergic mecha-
nism. Every cell of the grid that constitutes the environment
also contains a vector of the same dimension and range as
the training set. The factor of change of the environment)
depends on the values of the ant’s vector, and, since every
ant tends to move towards those zones in the grid which are
more similar to themselves (to their associated vectors), ant
position and pheromone content co-adapt. This means that
eventually, ants with similar data items will be close together
in the grid, and the grid itself will contain similar vectors to
those stored in the ants on top of them.
Then, the grid can be used as a classification tool (in the

same way as the resulting map after training using Koho-
nen’s SOM), while ants will be grouped in clusters of similar
individuals.
In the following paragraphswe present the most important

features of the algorithm.

Decide Where to Go Rule
This is the most important function in the algorithm. It is
used by every ant placed at cell i to decide which is the next
cell j to move.
This function is based in Chialvo’s Ants System

pheromone weighting function and pseudo-random propor-
tional rule of ACS, so it is:
If (q ≤ q0)

j = arg max
j∈Ni

W (σij) (8)

Else

Pij =

W (σij)

u∈Nt
i

W (σiu)
if j ∈ N t

i

0 otherwise

(9)

In that rule, q0 ∈ [0,1] is the standard ACS parameter and
q is a random value in [0,1]. Ni is the neighbourhood of the
cell i, which is a function similar to the one used in SOM.
It also has associated a neighbourhood radius, nr which di-
minish along the running, so the neighbourhood is different
at every iteration t. This function returns ’1’ if the cell is
included in the neighbourhood and ’0’ otherwise.
σ is defined by the following equation:

σij = Vi(v)2 − CTRj(v)2 ∀v = 1..nvars (10)

Where Vi is the vector associated to the cell i and CTRj

is the centroid of a zone centered in the cell j. It is a vec-
tor where each value takes the arithmetic mean of the cor-
respondent values of the vectors associated to the cells in-
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cluded within a centroid radius, cr. The formula is equiv-
alent to calculate the Euclidean distance between the vector
associated to the cell i and the centroid vector for the cell j,
both vectors have a number of variables nvars.
Finally, in the decide where to go rule, W (σ) is the Ant

System pheromone weighting function (Equation 6).
The rule works as follows: when an ant is building a so-

lution path and is placed at one node i, a random number
q in [0,1] is generated, if q ≤ q0 the best neighbour j is
selected as the next node in the path (Equation 8). Other-
wise, the algorithm decides which node is the next by using
a roulette wheel consideringPij as probability for every fea-
sible neighbour j (Equation 9).
Notice that the second part of the rule (Equation 9) is sim-

ilar to the transition probability defined by Chialvo et al.
(Equation 7), but considering a weighting factor w(∆θ) =
1, so, all the neighbour cells have the same probability in
advance (before considering the σ value). We tested the al-
gorithm with some other weighting values, but the results
are not clearly improved. Further research will be focused
on this issue.
In addition, there is an important factor to mark, which is

that the ants are capable to move to cells far more than one
hop from the cell where they are currently located. It means
that they can ’jump’ or ’fly’ as some real-world ant species
are able. This property is vanishing along the algorithm run-
ning because the neighbourhood radius is decreased until it
takes a value of ’1’ (ants only move from one cell to a one
hop distance neighbour).

The Updating Function
This process is usually performed in classical ant algorithms
as a pheromone trail deposition. At every step, each ant k
updates the cell iwhere is placed, using an updating formula
similar to the learning function of SOMs (see Equation 5).
Bearing in mind that every sample/ant and cell in the grid is
a vector of nvars variables, the formula is as follows:

V t
i (v) = V t−1

i (v) + R · [ak(v) − V t−1

i (v)] ∀v = 1..nvars
(11)

Where Vi is the vector associated to the cell i, t is the current
iteration, and ak is the vector associated to the ant k. R is
the reinforce of the update, which is described as:

R = α · (1 − D(ak, CTRi)) (12)

α is the learning rate factor typical in SOM (which is con-
stant in this algorithm),CTRi is again the centroid of a zone
centered in the cell i. Finally, D is the mean Euclidean dis-
tance between the ant’s vector and the centroid vector. It
is:

D =

nvars

v=1

ak(v)2 − Ci(v)2

nvars
(13)

The Evaporation Function
As in all the ant algorithms, it is a very important process
in which the environment reverts to its previous (or initial)

state. This process is performed,for every cell i, once all the
ants have moved and updated the environment in the current
iteration.

Vi(v) = Vi(v) − ρ · Vi0(v) ∀v = 1..nvars (14)

Where ρ is the usual evaporation factor and Vi0 is the initial
vector associated to the cell i. It means that the function
changes the values of the vector in order to be similar to
the initial, which can be interpreted as an evaporation of the
trails in the environment.

Pseudocode
The pseudocode of our model is presented in Algorithms 1
and 2. Here we consider each cell as a pair of coordinates,
because the algorithm works using a grid.

Algorithm 1 KANTS Algorithm
initialize randomly grid vectors
place randomly ants in grid
for N iterations do
for each ant a at cell (x, y) do

j = decide where to go(a,(x, y))
end for
update grid // Using Equation 11
evaporate grid // Using Equation 14
update neighbourhood radio

end for

Algorithm 2 Decide Where To Go (a,(i, j))
for all cells (x, y) in neighbourhood of (i, j) do
// Probability = Euclidean Distance to centroid
σij,xy = ED((i, j),centroid((x, y)))
computeW (σij,xy) and Pij,xy // Using Equations 6 and 9

end for
// Ant Colony System/Ant System. Equations 8 and 9
q = random(0,1)
if q ≤ q0 then
// selected cell = the one with maximum probability
(k, l) = MAX(Pij,xy)

else
// selected cell = roulette wheel
(k, l) = roulette wheel(Pij,xy)

end if

Experiments and Results
This section presents the data sets used to train and test
KANTS algorithm (Subsection The Datasets), followed by
the results obtained in clustering (Subsection Clustering)
and classification (Subsection Classification).

The Datasets
The datasets used to test and validate the model are some
well-known real world databases:
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• IRIS contains data of 3 species of iris plant (Iris Setosa,
Versicolor and Virginica), 50 samples of each one and
4 numerical attributes (the sepal and petal lengths and
widths in cms.). The first class is linearly separable from
the others while the other two are not.

• GLASS contains data from different types of glasses stud-
ied in criminology. There are 6 classes, 214 samples (un-
evenly distributed in classes) and 9 numerical features
related to the chemical composition of the glass. This
database is difficult to classify (and depending on the al-
gorithm, also difficult to cluster), since some classes are
represented by just a few samples (3-10), and some other
classes not being linearly separable.

• PIMA. This is the Pima Indians Diabetes database which
contains data related to some patients (indians of that
tribe) and a class label representing their diabetes diag-
nostic according to the world-wide health organization’s
criterion. There are 768 samples with 8 numerical fea-
tures (medical data). Again, this is a hard to process
database, because many samples of the two classes takes
close values for the same variables.

In each of the three databases, we have consider 3 sets
built by transforming the original into 3 disjoint sets of equal
size. The original class distribution (before partitioning) is
maintained within each set. Then we consider 3 pair of
datasets ’training-test’ by splitting the 3 previous into half
size ones, they are named including the text 50tra-50tst. In
addition, 3 other pairs are created, but considering a distribu-
tion of 90% of samples for training and 10% for test. These
sets are named including 90tra-10tst.

Clustering
In Chialvo and Millonas (1995), the authors performed a
study on the distribution of ants with different configura-
tions in the β-δ parameter space. Three types of behavior
were observed when looking at the snapshots of the system
after 1000 iterations: disorder, patches and trails.
The results obtained with their method follow theoreti-

cal prediction: a second order phase transition is observed,
when a region of the parameter space which gives rise to dis-
order regimes “turns into” a region where trails are formed.
Moving away from the order-disorder line, the system loses
its ability to evolve lines/trails of ants and patches gradually
appear. In addition, another experiment was conducted: the
system was tuned to a region in the parameter space were
trails emerge. After the traffic network was formed, β was
decreased in order to tune the system bellow the transition
line; then, the ants started executing random walks and left
their previously formed trails. Once β was set again to the
initial value, the ants self-organized again on a similar traffic
network.

A similar test was performed with KANTS, but since Iris
dataset was used (and due to it is not very complex), we have
run the algorithm only a few iterations.

Figure 2: Snapshots of the ants in the system after 100 itera-
tions for different β and δ values. The straight lines roughly
delimit the region where clusters emerge.

Parameters β and δ were varied, and the resulting ants’
distribution after 100 iterations is depicted in Figure 2. Pa-
rameters α, neighbourhood radius (nr) and centroid radius
(cr), were set to 1, 1 and 3, respectively. From the figures
it is not possible to distinguish three different types of be-
havior, as in Chialvo and Millonas’ experiments with the
original model, but it is clear that there is a transition line
from a disordered state, where ants/data do not cluster, and
a ordered state where cluster start to emerge. Further away
from the transition line, the model’s ability to form clusters
gradually starts to decay (again). In the same way as in the
original model, there is only a small region of the param-
eter space that gives rise to a self-organized behavior, but
while Ant System forms trails, KANTS emerge clusters of
ants that are actually data samples.
Considering this results, KANTS appear to be a promis-

ing tool for data clustering. With a simple mechanism and
proper tuning of β and δ, data represented by (and behaving
as) ants form clusters that are easily distinguishable in the
grid. Even if some kind of local search is eventually neces-
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sary in order to tackle real-world problems, KANTS by now
come forward as a core model where hybridization may be
performed and the resulting algorithms applied to hard prob-
lems.
In Figure 3 an example of the ants evolution (movement

during the run) in the grid is showed.

Figure 3: Evolution of position of ants in the grid for the
IRIS problem. It shows the situation at the beginning (top-
left), at step 50 (top-right) and 100 (bottom-left) and at step
150 (bottom-right).

Looking at the snapshots of the grid at different iterations,
it is possible to notice that every ant tends to move to a group
of ants of the same class (they have similar values for the
features). So, starting from a random initial configuration,
in a few steps, the ants forms visible clusters.

Classification
In order to classify with KANTS, we introduce a parameter:
the number of neighbours to compare with the test sample.
So, the algorithm searches for the K nearest vectors in the
grid (using the Euclidean distance) to the vector correspon-
dent to the sample which it wants to classify. It assigns the
class of the majority.
It is similar to the one used in K-Nearest Neighbours

method (see Fix and J. L. Hodges (1989) for details), but
we use it once the grid has been trained (using the training
dataset) and many times the algorithm works very well even
consideringK = 1.
Since KANTS is a stochastic approach, 10 runs were

made considering each pair of datasets (training and test).
Results are presented in Table 1, where mean, standard de-
viation, and best of the resulting percentages in classification
are given. We compare the results with those yielded using
the traditional deterministic method K-Nearest Neighbours
(KNN).

IRIS KANTS KNN
Dataset Best Mean Best Mean

50tra-50tst-Set1 98.67 98.00±0.67 97.30 -
50tra-50tst-Set2 98.67 97.60±0.53 96.00 -
50tra-50tst-Set3 100.00 98.80±0.40 94.60 -
90tra-10tst-Set1 100.00 100.00±0.00 100.00 -
90tra-10tst-Set2 100.00 99.33±2.00 93.33 -
90tra-10tst-Set3 100.00 100.00±0.00 93.33 -

GLASS KANTS KNN
Dataset Best Mean Best Mean

50tra-50tst-Set1 68.22 65.42±1.62 62.60 -
50tra-50tst-Set2 67.29 64.86±1.52 64.40 -
50tra-50tst-Set3 74.77 71.03±2.17 64.40 -
90tra-10tst-Set1 69.57 65.65±1.30 47.80 -
90tra-10tst-Set2 73.91 73.48±1.30 60.80 -
90tra-10tst-Set3 91.30 83.48±3.25 82.60 -

PIMA KANTS KNN
Dataset Best Mean Best Mean

50tra-50tst-Set1 75.52 74.32±0.61 70.03 -
50tra-50tst-Set2 77.34 76.61±0.58 71.80 -
50tra-50tst-Set3 77.60 75.13±0.85 72.90 -
90tra-10tst-Set1 83.12 80.52±1.42 64.90 -
90tra-10tst-Set2 79.22 75.32±1.42 73.60 -
90tra-10tst-Set3 84.42 80.65±2.05 70.10 -

Table 1: Classification results with Iris, Glass and Pima
databases (6 different datasets each time).

The results are very good when comparing them with
a traditional clustering and classification method such as
KNN, even yielding 100% in many cases. We would like to
enphasize the fact that the Glass and Pima datasets usually
obtain a low classification rate (both are difficult databases,
as we previously commented), while KANTS achieves in
some cases a rate 10% higher than KNN. The results are
even more encouraging considering that KANTS is a non-
supervised algorithm.
In addition, it is important to comment that the algo-

rithm’s running time is just a few seconds, depending on
the dataset size, so for these results it takes 8 seconds in Iris,
10 seconds in Glass and 20 seconds in Pima. All the experi-
ments have been performed in a Pentium 1.6 GHz.

Conclusions and Future Work
This paper presents KohonAnts, a new method for cluster-
ing and data classification, based on an hybridization of Ant
Algorithms and Kohonen Self-Organizing Maps. The new
model turns n-variable data samples into artificial ants that
evolve in a 2D toroidal grid paved with n-dimensional vec-
tors. Data/Ants act on the habitat vectors by pushing the val-
ues towards their own. In addition, ants are attracted by re-
gions were the vector values are closer to their own data. In
this way, similar ants tend to aggregate in common regions
of the grid. There is indirect communication between ants
through the grid (stigmergy) leading, with a proper setting of
the model’s parameters, to the emergence of data clusters. In
addition, ants’ actions (pheromone deposition) over the grid
and pheromone evaporation creates a kind of cognitive field
which has turned out be very effective for classification pur-
poses.
It has been demonstrated that KANTS model is useful for
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clustering and classification tasks, yielding very good results
in both kind of problems. The concept it is based on is quite
simple and naturally inspired, but even so results obtained
are quite good compared with traditional clustering meth-
ods (such as KNN). It is also a fast method, not needing a
lot of computation time for obtaining the results mentioned
above. As should be the spirit of publicly-funded research,
we maintain all sources for the project as well as data used in
experiments in the public repository https://forja.rediris.

es/websvn/wsvn/geneura/KohonAnts/, under a GPL license1.
As future short-term lines of work, we will perform fur-

ther tests on the algorithm, comparing it with more specific
clustering and classification methods. We will also try to
streamline ant movement rules, and compare among differ-
ent options.
In addition, a lot of enhancements are still possible in the

original KANTS model presented in this paper. A neigh-
bourhood function may be considered, similar to the one
used in Self-Organizing Maps for updating the environment
in a radius. As in Fernandes et al. (2005a) and in Fernandes
et al. (2005b), reproduction may improve speed and accu-
rateness of the algorithm. Chialvo and Millonas probability
equation was not fully explored since weights w(∆θ) dif-
ferent of ‘1’ yield worse solutions, so an in-depth study in
this issue will be performed. Finally, a stopping criteria is
needed in order to avoid unnecessary iterations in the pro-
cess.
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Herrera, F., Hidalgo, J. I., Merelo-Guervós, J.-J., and
Sánchez, J. M., editors, Actas primer congreso español al-
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Abstract

The emergence of cooperation in social dilemmas has been
addressed in a number of fields. In this paper, we illustrate
how robust cooperation can emerge among a population of
agents participating in a N-player dilemma when the agents
are spatially arranged on a graph exhibiting small world prop-
erties. We present a graph structure with a high level of com-
munity structure, small diameter and a variance in the node
degree distribution. We show that with simple learning rules,
robust cooperation emerges. We also show that a population
of agents whose interactions are constrained by such a graph
can adapt to dramatic environmental changes.

Introduction
Questions regarding cooperation and its emergence, partic-
ularly in environments inhabited by self interested individu-
als, have been addressed in a many domains. The include,
among many others, computer science (Chiba and Hiraishi,
1998), biology (Boyd and Richerson, 1988), robotics (Birk,
1999) and social science (Hardin, 1968).
Social dilemma games have been commonly adopted to

capture and represent the salient features of interactions in
these environments; in particular the conflict between the in-
dividually rational actions and the collectively rational group
actions and outcomes. The prisoner’s dilemma (and vari-
ations) is the most oft studied game. Most previous work
has focussed on the case involving two participants. The
extended N-player version is less studied but it has been ar-
gued by Davis et al. (1976) to have “greater generality and
applicability to real life situations”.
In N-player dilemma games defection is the rational

choice for all individuals which in turn leads to a sub-
optimal outcome for the group. Many researchers have in-
vestigated the effect of spatial constraints on agent interac-
tions in both the 2-player and N-player game (Hauert, 2006),
(Wu et al., 2005), (Santos and Pacheo, 2005). In these spa-
tially organised games, agents are more likely to interact
with a smaller subset of agents than would be expected in
simulations where are agents are not spatially organised, e.g.
randomly organised or round robin type simulations. This

factor has been shown to have a dramatic impact of the like-
lihood of cooperation emerging.
One form of spatial arrangement or topology that has gen-

erated much attention recently is that of a small world graph
(Watts, 1999). Small world graphs are typified by the fact
that most nodes are reachable from all other nodes in a short
number of steps. These graphs also tend to have a high clus-
tering coefficient with a high presence of cliques or near-
cliques. Another property often associated with small world
graphs is that the node degree distribution follows a power
law distribution.
One key property that we have explored in previous work

is that of community structure (O’Riordan and Sorensen,
2008b). This property has also been explored in recent work
(Lozano et al., 2006). A graph is said to have a commu-
nity structure if collections of nodes are joined together in
tightly knit groups between which there are only looser con-
nections. This property has been shown to exist in many
real-world social networks (Newman and Girvan, 2004).
In our previous work, we have shown that by enforc-

ing a high level of community structure robust cooperation
can emerge among agents participating in N-player social
dilemma games. The topologies explored in our previous
work, however, are quite unrealistic and do not possess the
other properties found in many naturally occurring graphs,
i.e. small world properties including a variance in node de-
gree.
This paper investigates whether it is possible to build

graphs that exhibit the properties of small world graphs
which induce the emergence of cooperation. We present
two different extensions to our previous representations and
illustrate that by constructing the small world graph while
maintaining a high level of community structure that coop-
eration can indeed still emerge.
The following sections discuss some background mate-

rial, particularly in N-player social dilemmas, graphs with
community structure and some of our previous findings. We
then discuss the particular graphmodel and agent interaction
models used in this work. The experimental set up is then
explained with our two algorithms for creating small world
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graphs explained. We present results obtained from simula-
tions with these two different topologies. Finally we present
some conclusions and briefly outline some intended future
work.

Background
N-player social dilemmas
N-player dilemmas are characterised by having many par-
ticipants, each of whom may choose to cooperate or defect.
These choices are made autonomously without any commu-
nication between participants. Any benefit or payoff is re-
ceived by all participants; any cost is borne by the coopera-
tors only. A well-known example is the Tragedy of the Com-
mons (Hardin, 1968). In this dilemma, land (the commons)
is freely available for farmers to use for grazing cattle. For
any individual farmer, it is advantageous to use this resource
rather than their own land. However, if all farmers adopt the
same reasoning, the commons will be over-used and soon
will be of no use to any of the participants, resulting in an
outcome that is sub-optimal for all farmers.
In the N-player dilemma game there are N participants.

Each player is confronted with a choice: to either cooper-
ate or defect. We represent the payoff obtained by a strategy
which defects given i cooperators asD(i) and the payoff ob-
tained by a cooperative strategy given i cooperators as C(i).
Defection represents a dominant strategy, i.e. for any in-

dividual, moving from cooperation to defection is beneficial
for that player (they still receive a benefit without the cost):

D(i) > D(i − 1) 0 < i ≤ N − 1 (1)

C(i) > C(i − 1) 0 < i ≤ N − 1 (2)

D(i) > C(i) 0 < i ≤ N − 1 (3)

However, if all participants adopt this dominant strategy,
the resulting scenario is sub-optimal and, from a group point
of view, an irrational outcome ensues:

C(N) > D(0) (4)

If any player changes from defection to cooperation, the
performance of the society improves, i.e. a society with i +
1 cooperators attains a greater payoff than a society with i
cooperators:

(i+1)C(i+1)+(N−i−1)D(i+1) > (i)C(i)+(N−i)D(i)
(5)

Small world Graphs
As mentioned in the introduction, small world graphs are a
class of graphs or topologies such that nearly all nodes are
reachable from all other nodes in a few steps. Watts and
Strogatz (Watts, 1999) demonstrated that a regular lattice
can be transformed into a small world network by making

a small fraction of the connections random. The algorithm
involves taking a regular lattice (ring, grid) and repeatedly
removing some edge (a, b) and replacing it with an edge
(a, c). If the node c is selected with probability based on its
degree, then the notion of preferential attachment is present
which results in a graph with node degree distribution fol-
lowing a power law.
The property of community structure has been reported in

several real world networks (Newman andGirvan, 2004) and
many algorithms have been proposed to measure the level
of community structure present in the graph (Donetti and
Munoz, 2004) (Zhang et al., 2007).
Such graphs have been used to constrain agent interac-

tions in social dilemma games in interesting work (Wu et al.,
2005), (Santos and Pacheo, 2005) which show that cooper-
ation can be induced in 2-player games. Our work differs
by addressing the N-player version which has been shown
to be more challenging to induce cooperation in evolution-
ary settings (Yao and Darwen, 1994). We also show that the
maintenance of one key property, that of community struc-
ture is of importance.

N-player dilemmas and Community Structure
In previous work, we have created a range of lattices which
can be tuned to exhibit different levels of community struc-
ture (O’Riordan and Sorensen, 2008b). These graphs do not
exhibit node degree distribution according to power laws
(in fact, the degree is constant throughout the graph) and
they also do not exhibit other small world properties. In the
model previously adopted we created graphs with strongly
connected clusters of agents who were loosely connected to
neighbouring clusters. We varied the degree of community
structure by simply varying the ratio of the weights on intra-
community edges to intra-community edges. Agents were
chosen to interact based on the strength of the edge weights.
We allowed agents learn from their immediate neighbours;
agents effectively imitated their more successful neighbours.
If all immediate neighbours perform similarly, agents were
allowed to learn from neighbouring clusters. We showed
that cooperation emerged. Our initial model is discussed
more in the following section.

Model
Initial Graph Topology
In the simulations described in this paper, agents are located
on nodes of a graph. The graph is an undirected weighted
graph. The weight associated with any edge between nodes
represents the strength of the connection between the two
agents located at the nodes. This determines the likelihood
of these agents participating together in games.
The graph is static throughout the simulation: no nodes

are added or removed and the edge weights remain constant.
We use a regular graph: all nodes have the same degree. In

the initial topology, nodes have four neighbours. We use two
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different edge weight values in each graph: one (a higher
value) associated with the edges within a community and
another (a lower value) associated with the edges joining
agents in adjacent communities. All weights used in the this
work are in range [0,1].
The graph is depicted in Fig. 1, where the thicker

lines represent intra-community links (larger value as edge
weight) and the thinner lines indicate inter-community links
between neighbouring communities. The rectangles of
thicker lines represent a community; the vertices represent
agents.

Agents: Inter-community links: Intra-community link

Figure 1: Graph with community structure

Agent Interactions
Interaction Model Agents in this model can have a strat-
egy of either cooperation (C) or defection (D). Agents inter-
act with their neighbours in a N-player prisoner’s dilemma.
The payoffs received by the agents are calculated according
to the formula proposed by Boyd and Richerson (Boyd and
Richerson, 1988), i.e. cooperators receive Bi/N − c and
defectors receive Bi/N , where B is a constant (in this pa-
per, B is set to 5), i is the number of cooperators involved in
the game, N is the number of participants and c is another
constant (in this paper, c is set to 3).
Each agent may participate in several games. The algo-

rithm proceeds as follows: for each agent a in the popula-
tion, agents are selected from the immediate neighbourhood
of agent a to participate in the game. Neighbouring agents
are chosen to participate with a probability equal to the edge
of the weight between the nodes. This means that, for a
population with a high community structure, most games in-
volve an agent’s local community members. This allows a
high degree of insulation from agents in neighbouring com-
munities. An agent’s fitness is calculated as the average pay-

off received in the interactions during a generation.

Learning
Agents may change their behaviours by comparing their
payoff and that of neighbouring agents. We adopt a sim-
ple update rule whereby an agent updates their strategy to
those used by more successful strategies. Following each
round of games, agents are allowed to learn from their neigh-
bours. Again these neighbours are chosen stochastically; the
neighbours are chosen according to the weight of the edge
between agent and neighbour.
We incorporate a second update mechanism. The motiva-

tion for its inclusion is as follows. Following several itera-
tions of learning from local neighbours, each community is
likely to be in a state of equilibrium—either total coopera-
tion or total defection. Agents in these groups are receiving
the same reward as their immediate neighbours. However,
neighbouring communities may be receiving different pay-
offs. An agent that is equally fit as its immediate neighbours
may look further afield to identify more successful strate-
gies.
In the first update rule, agents consider other agents who

are immediate neighbours. Let s adj(x) denote the immedi-
ate neighbours of agents x chosen stochastically according
to edge weight. The probability of an agent x updating their
strategy to be that of a neighbouring agent y is given by:

w(x, y).f(y)

Σz∈s adj(x)w(x, z).f(z)
(6)

where f(y) is the fitness of an agent y and w(x, y) is the
weight of the edge between x and y.
The second update rule allows agents to look further afield

from their own location and consider the strategies and pay-
offs received by agents in this larger set, i.e. agents update
to a strategy y according to:

w(x, y).f(y)

Σz∈adj(adj(x))w(x, z).f(z)
(7)

where again f(y) is the fitness of agent y and noww(x, z)
refers to the weight of the path between x and z. We use the
product of the edge weights as the path weight. Note that in
the second rule, we don’t choose the agents in proportion to
their edge weight values; we instead consider the complete
set of potential in the extended neighbourhood. In this way
all agents in a community can be influenced by a neighbour-
ing cooperative community.

Small World version of Graph
In order to create a graph topology more reflective of nat-
urally occurring graphs, the basic graph topology must be
changed. This is achieved by adopting the approach pro-
posed by Watts (1999).
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Our first approach involves taking our existing graph
structure and re-attaching edges i.e. the following proce-
dure is repeated: edge (a, b) is randomly selected from the
set of edges present and replaced with the edge (a, c) where
node c is selected in proportion to its degree. The new edge
will have a weight equal to the deleted one. This approach,
while introducing the small world property and the desired
node degree distribution seriously damages the community
structure. We hypothesise that this should negatively impact
on the emergence of cooperation.
Our second approach begins with another regular graph

structure; we place the communities of agents on a ring (de-
picted in Fig. 2). We again re-attach edges in the graph, but
with the following constraint; only inter-community edges
are deleted and re-attached. Thus, we choose an edge (a, b)
randomly such that both a and b are on the circumference of
the ring; this edge is deleted and re-attached as (a, c) such
that c is selected randomly from those nodes positioned on
the circumference. Again, the new edge will have a weight
equal to the deleted one. This approach maintains the com-
munity structure in the graph while introducing the desired
small world graph properties.

Figure 2: Ring structure with communities

The following tables present some data to illustrate some
of the properties of the resulting graphs for the two different
algorithms.

Experiment Setup
A population of 800 agents is used. Strategies are assigned
to agents randomly. We allow simulations to run for 200
generations.
Following each generation, the first learning rule is ap-

plied. Following every four generations (sufficient for com-
munity to reach an equilibrium), the second learning rule

Re-attachment Rate Dev. in Node Degree Av. Diameter
0% 0 15.59
1% 0.261 12.14
5% 0.620 8.52
10% 0.835 7.49

Table 1: Properties of resulting small world graph using first
algorithm (initial lattice structure, all edges considered for
re-attachment) for different levels of re-attachment

Re-attachment Rate Dev. in Node Degree Av. Diameter
0% 0.5 132.9
1% 0.512 41.17
5% 0.532 5.655
10% 0.589 2.136

Table 2: Properties of resulting small world graph using
second algorithm (initial ring structure, inter-community
edges considered for re-attachment) for different levels of
re-attachment

is applied. This is not necessary in most cases; we merely
choose to let the local interactions stabilise prior to applying
the second rule. This eases analysis in some cases where
fluctuations can occur if community structure levels are not
sufficiently high. We include another plot in a later section
in this paper where we use the ring graph with re-attachment
and modify the rates of application of learning rules such
that they both occur every generation. The outcome is simi-
lar.
In all the simulations we initially enforce a high level

of community structure; the intra-community links are held
constant with a value of one. The value of the inter-
community are set to 0.1. The lower the value, the more
insulated clusters are and hence should promote coopera-
tion.
We vary the level of re-attachment and measure the result-

ing levels of cooperation.

Results
Emergence of Cooperation
For the first graph structure (regular lattice) with different
levels of edge re-attachment, we see that the levels of coop-
eration is dependent on the degree of re-attachment present
(see Fig. 3). For a regular graph with high community
structure and no other small world properties, we see that
the population quickly converges to cooperation. Introduc-
ing 1% re-attachment reduces the diameter of the graph and
increases the node degree deviation but also damages the
level of community structure. We see that the levels of
cooperation reached fall to roughly 700 cooperators in the
population. As the level of re-attachment increases, the ef-
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fect becomes even more pronounced with a big decrease in
the number of cooperators for re-attachment level of 5%
and a large collapse in the number of cooperators for re-
attachment levels of 10%.
It is worth commenting on the nature of the fluctuations

in the separate runs. Consider, as an example, the line in-
dicating re-attachment levels of 5% where the levels of co-
operation fluctuate considerably. This is due to the effect
of the two learning rules and the frequency with which they
are applied. Following a few generations, each community
converges to total cooperation or total defection. Follow-
ing every fourth generation, the second rule is applied with
leads to an immediate increase in the number of cooperators
as members of non-cooperating clusters imitate more suc-
cessful clusters. These new cooperators are in most cases
interacting with non-cooperators and hence are exploited by
their immediate neighbours. These immediate neighbours
are then imitated leading to emergence of defection in these
clusters.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200

Nu
mb

er o
f C

oop
era

tors

Generations

Varying probabilty of edge reassignment

Regular
Small world (1%)
Small world (5%)

Small world (10%)

Figure 3: Levels of Cooperation present in population
placed on small world graph created from orginal lattice

Fig. 4 shows the levels of cooperation attained given a
graph with small world properties that also has initially a
high level of community structure created by re-attaching
inter-community edges only.
We see that for levels of re-attachment up to 10%, cooper-

ation still emerges. These results illustrate that we can have
small world properties (e.g. small diameter) and still main-
tain community structure and hence maintain high levels of
cooperation.
An interesting point to note is that cooperation reaches

the maximum possible level most quickly for re-attachment
levels of 5%. This is due to the reduction in the diameter
which causes cooperation to spread more quickly as non-

cooperative clusters are more likely to be close to coopera-
tive clusters. However, increasing the level of re-attachment
further slows down the spread of cooperation. This is be-
cause, despite the potential gain caused by the decrease in
diameter, the increased probability of having a number of
nodeswith a high degreewhich can be influencedmore read-
ily by non-cooperating strategies.
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Figure 4: Levels of Cooperation present in population
placed on small world graph created from ring; only inter-
community links re-attached.

Robustness
In many scenarios that we may wish to model, it is possi-
ble for uncertainty or noise to exist—agents may perform
their acts incorrectly or imperfectly, their acts may be mis-
interpreted, agents may learn or imitate others and change
their behaviour accordingly, and agents may exit or join the
group thereby changing the environment or others. Alterna-
tively, the environment may change dramatically thereby re-
quiring agents to explore and learn new suitable behaviours.
In previous work O’Riordan and Sorensen (2008a), we

showed that these graph structures allowed populations to be
robust to noise and to dramatically changing environments
for a population of generalised tit-for-tat strategies. In this
experiment we explore again if the population of agents can
survive and track dramatic environmental change. We intro-
duced 1% noise to ensure some exploration of the strategy
space. At every generation, each agent has a 1% probability
of changing strategy. We also introduce dramatic environ-
mental change during the simulation. This involves revers-
ing the payoffs of the game which causes ‘cooperation’ now
to be viewed as individually rational and collectively subop-
timal and renders ‘defection’ the new socially beneficial and
cooperative act.
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In our simulation, we count and plot the number of agents
choosing the socially beneficial action. We see that follow-
ing the change in environment at generation 350, the popu-
lation recovers to high levels of cooperation (Fig. 5).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  100  200  300  400  500  600  700

Nu
mb

er o
f C

oop
era

tors

Generations

Environmental change at generation 350; Noise 1%

Change at midway; constant 1% noise

Figure 5: Levels of cooperation present on ring with re-
attachment probability 5%. Noise is set to 1%. Dramatic
environment reversal occurs at generation 350

Conclusions
In this paper, we wished to explore if cooperation can
emerge among self-interested agents participating in N-
player social dilemmas where the agents are placed on a
small world network exhibiting community structure. Our
previous work illustrated the emergence of cooperation
given a community structure on regular lattices. In this pa-
per, we showed that by converting the graph to a small world
network by re-attaching edges in such a manner that dam-
aged the community structure, cooperation collapses and de-
fection emerges as the norm. We also showed that by con-
verting a regular graph to a small work graph while taking
care to preserve the community structure, cooperation can
emerge as the norm. The speed of the emergence can also
be improved by having small world properties (e.g. reduced
diameter).
We have shown that the notion of community structure is a

key feature in the emergence of cooperation. In order for co-
operative clusters to survive, the agents must be able to pro-
tect themselves from non-cooperative agents by insulating
themselves and playing mainly among themselves. How-
ever, communities or clusters cannot be totally isolated; they
must have some link to other communities so as to provide
an opportunity to learn more beneficial strategies if possible.
A balance must be struck between the risk of exploitation
and the potential to learn a better strategy if one exists.

Discussion
In the experiments in this paper, we utilise two learning
rules—one involving an agent’s immediate neighbours, the
other involving an extended neighbourhood. We allow the
agents to learn from the immediate neighbours first and then
upon reaching an equilibrium we allow them to learn from
the neighbouring communities. We achieve this by allow-
ing the first learning rule every generation and the second
learning rule every four generations.
The motivations were primarily to allow local commu-

nities reach an equilibrium prior to learning from others as
otherwise, in some cases, this causes fluctuations in levels of
cooperation and convergence is never reached. This occurs
when there are insufficient levels of community structure. In
these cases, a local community may be heading towards to
defection and then learn from neighbours and heads towards
cooperation again etc. We wished to ease the complexity of
the interactions for these specific cases.
However, it should be noted for the results presented for

the main graph of interest (the ring transformed into a small
world graph while maintaining the level of community struc-
ture), the rates of application of the learning rules does not
dramatically interfere with the results. The same trends are
noticed (Fig. 6) where we apply both learning rules every
generation. The agents reached the state of total coopera-
tion much more quickly due to the application of the second
learning rule every generation.

Future Work
There are several directions for future work. One future di-
rection would be to explore the generalizability of these re-
sults. We wish to explore different updating schemes and
other social dilemma games to explore if the same effects
are detected. We also wish to explore these graph structures
in uncertain environments. Another track which we will pur-
sue is to investigate under which conditions these graphs can
emerge based on agent interactions. In this paper, agent in-
teractions are constrained by the graph properties. It would
be interesting to show that such graphs can emerge based on
interactions between agents.
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Abstract 
Analytical models show that high-dimensional fitness 
landscapes form “holey” rather than “rugged” topographies, 
but the implications of this finding for biological and 
artificial life systems remain largely unexplored. One of the 
reasons for this gap can be attributed to serious difficulties 
in the implementation of individual-based holey fitness 
landscape (HFL) models. Here, we introduce a method for 
simulating HFLs in spatially explicit individual-based 
models that overcomes these difficulties. We examine how 
the HFL changes predictions for the maintenance of genetic 
diversity in the face of migration. Previous models suggest 
that ecologically-based reproductive isolation will rapidly 
collapse under migration. Our results indicate that an 
underlying HFL can often maintain diversity in this 
situation. Hybrid species emerge frequently when HFL 
genetics are simulated, but are usually doomed to extinction 
because of small population sizes. However, hybridisation 
can also lead to novel adaptations and potentially the 
exploitation of new ecological niches. More generally, the 
results imply that HFL genetics should not be neglected in 
studies of adaptation and diversity. 

Introduction 
The processes underlying the emergence and persistence of 
diversity form a key topic in evolutionary theory. Analytical 
models have provided considerable insight into these issues, 
but integrating the findings from different theoretical 
approaches remains a formidable challenge. In particular, the 
relationship between genetic diversity and reproductive 
isolation – widely considered the defining feature of 
biological species [3, 4] – remains controversial [5-9]. Here, 
we explore the dynamics of reproductive isolation (RI) in a 
genetically realistic fitness landscape within an individual-
based, spatially explicit model. 
Reproductive isolation (RI) is often seen as a requirement for 
biological diversification because it permits the coexistence of 
different lineages with co-adapted genomes. However, the 
origin and persistence of RI requires special circumstances. A 
mutant individual that is reproductively isolated from the 
surrounding population will rarely be successful. For this 
reason, speciation is usually thought to occur between 
spatially separated populations that acquire incompatible 

alleles through drift or selection [10-12].  However, even in 
this scenario, the maintenance of RI presents a theoretical 
challenge: even moderate migration between the two 
populations leads to selection against incompatible alleles, 
and the extinction or merging of incipient species is likely. 
Likewise, when RI is based on ecological divergence or 
mating barriers, it is often transient, collapsing when selection 
pressures change. 

Recent theoretical advances suggest that assumptions 
about the relative fitness of different combinations of traits 
have profound implications for our understanding of these 
problems [11]. In particular, Gavrilets and Gravner [13] 
showed that when fitness landscapes have high dimensionality 
(as is likely for real organisms), the topology of the landscape 
changes from “rugged” to “holey”. Several implications of 
this insight for speciation theory are explored by [11]. 
However, integrating the HFL into simulation models that 
incorporate spatially and ecologically plausible assumptions 
remains a challenge. In the sections that follow, we examine 
the notion of the fitness landscape and its implications for 
genetic diversity. We then present a method for integrating 
HFL genetics into a spatially explicit, individual-based model. 
Using this model, we explore conditions for maintenance of 
RI, genetic variation, and for the emergence of hybrid species. 

Fitness Landscapes and Speciation 
The term “fitness landscape” (FL) was coined by Wright [14] 
to represent the fitness of all conceivable individuals relative 
to their traits. He envisaged a rugged landscape, where peaks 
represented combinations of traits with high fitness separated 
by valleys of low-fitness trait combinations. On this 
landscape, selection drives populations uphill. Since Wright’s 
work, several critiques of the FL concept have been made. 
Fitness landscapes are usually treated as static networks, but 
in reality, fitness is the ability to survive and reproduce in a 
dynamic environment that is constantly changing through co-
evolutionary dynamics and external disturbances [2]. Some 
models account for this by using a FL that changes with time 
to reflect changes in the environment (e.g. [15]). However, the 
effects of genes underlying species differences and RI are, in 
general, not strongly affected by the environment and FLs are, 
therefore, widely accepted as a useful abstraction in 
theoretical biology [11]. 
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In terms of FLs, the problem of speciation is that part of a 
population located at a fitness peak must cross the fitness 
valley surrounding the peak in order for the diverged genes 
not to be selected out. Stochastic factors such as genetic drift 
may act against natural selection and help overcoming fitness 
valleys, particularly for small populations, however, such 
factors can only account for selected types of speciation. It has 
been shown  that speciation due to stochastic crossing of 
fitness valleys is, in general, extremely unlikely [10, 11]. 

Peaks in low-dimensional spaces become saddle points in 
higher-dimensional spaces. This led to the suggestion that 
highly multi-dimensional biological FLs may actually possess 
a single global maximum that can be reached by hill climbing 
from (almost) any point [16]. Although this model is useful in 
some cases, it does not apply in general: the local-maxima-to-
saddle-point transformations are outnumbered by the 
appearance of new peaks in higher dimensions [11]. 

On a biochemical level, most genetic changes are fitness-
neutral. This led to the suggestion that the fitness landscapes 
may be largely flat [17] and that the main force behind 
speciation is stochastic genetic divergence, i.e. genetic drift. 
However, an overwhelming proportion of biochemically 
conceivable genotypes are, in fact, inviable because they 
contain deleterious genes or groups of incompatible genes. 
Neutral fitness landscapes fail to account for this fact. 

Holey Fitness Landscapes 
A genetic model that accounts for the above limitations is the 
holey fitness landscape (HFL) introduced by Gavrilets [10, 
11, 13]. Generally, a HFL is “an adaptive landscape where 
relatively infrequent high-fitness genotypes form a contiguous 
set that expands throughout the genotype space” [10]. 

To build some intuition for this model, we first recall a 
few results from the percolation theory which plays an 
important role in the analytical treatment of HFLs. Consider a 
2-dimensional lattice of cells which can assume one of two 
states: “black” or “white” (figure 1). Let every cell be black 
with some probability p independently of all other cells, or 
white with probability 1 – p. If p is small, the lattice will 
contain a few black cells, which may be grouped in a number 
of small, isolated clusters. As p increases, these clusters grow 
and merge. Once p crosses a certain threshold pc, most of the 
black cells merge together into a single giant cluster that 
percolates the whole lattice (see figure 1). For a 2-dimensional 
square lattice this percolation threshold is known to be 
pc ! 0.5927 [18]. However, for lattices of higher dimensions 
the percolation threshold lies around the reciprocal of the 
lattice dimension [19], meaning that for a high dimension 
lattice a small proportion of black cells is sufficient for the 
emergence of a giant percolating cluster of connected black 
cells. 

For the HFL model, we assume that a genotype is viable 
with probability p independent of all other genotypes, and 
inviable with probability 1 – p. For the purpose of this 
discussion, the exact fitness of a genotype is irrelevant and we 
generalise to set the fitness of all viable and inviable 
genotypes to 1 and 0 respectively. Assume that all possible 
genotypes are ordered in an abstract genotype space in which 

the distance between the genotypes describes the probability 
or ease of transformation from one genotype to another. 
Distance 1 means that two genotypes can be transferred into 
each other through a single one-point mutation. Consider the 
space of all possible haploid genotypes with L loci and A 
alleles at each locus (note that for the purposes of this model, 
a diploid genotype with L loci can be represented as a haploid 
genotype with 2L loci [20]; for simplicity, we will therefore 
only consider haploid genotypes). The dimensionality of this 
genotype space is D = L " (A – 1), and the corresponding 
percolation threshold is p  = 1/Dc . Note that even for short 
(on biological scales) genotypes a relatively small value of p 
will result in an extensive network of high-fitness ridges 
extending through the genotype space (e.g. for L = 105 and  
A = 5, pc ! 20 " 10-7). The traditional picture of rugged 
highly-dimensional FLs is therefore misleading, as these 
landscapes are characterised by the existence of percolating 
nearly neutral networks. It can be shown [11, chap. 4] that if 
the fitness of the genotypes is not restricted to 1 or 0, a large 
number of such networks emerges, each containing genotypes 
from a narrow fitness band. Among these networks, those 
with high fitness are particularly important as adaptive walks 
along such networks can proceed very far without any 
substantial loss to fitness. 

 

 

 

Figure 1. Percolation on a square lattice. The cells are black with 
probability p = 0.1 (left), p = 0.3 (middle) and p = 0.6 (right). 

Holey Fitness Landscape in Simulations 
There are a number of analytic models of adaptive radiation 
based on HFLs (e.g. see [11, part 1]), however they do not 
incorporate ecological selection and are not explicitly spatial. 
Other models treat disruptive (diversifying) selection while 
ignoring the viability and genomic compatibility issues 
introduced by the HFL (e.g. [21]) or make strong simplifying 
assumptions about such incompatibilities (e.g. [12]). It is 
known that diversification occurs easily in large spatial 
environments with disruptive ecological selection, and there 
will often be restricted gene flow between the resultant 
ecotypes, but how enduring RI occurs remains unclear. Gene 
flow barriers induced by mating barriers – even with strong 
ecological selection – appear to be transient. Models of 
adaptive radiation and ecological speciation in general deal 
with this simply by setting a threshold level of gene flow that 
they regard as acceptable, but this is unsatisfactory in that 
such species can merge back together as soon as selective 
pressures change. HFLs are thought to underlie the evolution 
of lasting, effective barriers to gene flow that appear during 
adaptive radiation, however this has not been further explored 
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in silico. The reason for this gap is that difficulties arise when 
realising a HFL in a computer model.  

Recall that according to the HFL model, the majority of 
viable genotypes G # ! belong to a single largest connected 
cluster !’ $ !, where ! % " is the set of all viable genotypes 
and " is the set of all genotypes. The size of !’ is of the order 
of 2L " p, and !’ percolates ". The details of the proof can be 
found in [13]. The proof uses the idea of a surviving 
branching process to estimate the size of !’. Assume that 
p = pc = 1/(L – 1). The probability that the branching process 
dies at any specific branching point is given by 
(1 – p)L–1 = (1 – 1/(L – 1))L–1 ! (1 – 1/L)L. This means that the 
above statement holds with a probability 1 when L & '. For 
finite but large L this probability is close to 1, however, for 
smaller L, the probability of the emergence of the giant 
connected cluster is smaller. 

In natural populations, L is very large, but in an 
individual-based simulation, the genotype of each individual 
must be modelled explicitly, held in computer memory and 
processed by various operations. In practice, this limits the 
number of loci L to relatively low values. If L is small, !’ can 
be expected to be small, i.e. ! can be expected to consist of a 
large number of small clusters that are not connected to each 
other. Thus, an adaptive walk starting at some G # ! cannot 
proceed far in this case and evolution cannot occur. 

Note, however, that for small L, the probability that !’ 
contains most of ! is not large, but positive. For any given 
small L and p ( pc, consider all possibilities for selecting ! 
from ". For most of such possibilities, !’ is small, but there 
are some choices for which !’ is large. 

Any selection of ! from ", for which the giant connected 
cluster !’ emerges, is an approximation of a HFL for large L. 
For any such selection, all crucial properties of !’, ! and " 
hold and no assumptions are violated. The results about HFL 
obtained in [11, 13] hold in these cases. If a way to select ! 
from " such that the giant connected cluster !’ emerges can 
be found, the resulting set of genotypes can be used as a basis 
for individual-based simulations exploring HFL genetics. 

One of the challenges in creating an appropriate set 
!’ % " that is connected and uniformly distributed in " is 
related to the fact that the size of !’ grows exponentially with 
L. We have developed a number of algorithms that allow 
creating !’ for relatively large values of L (up to 30) within a 
few minutes on a common desktop computer. In [20] we give 
an overview of our approach and provide a numerical analysis 
of the evolutionary properties of the resulting FL. 

In short, we create a set !’ of haploid genotypes with a 
number of diallelic loci represented as bit-strings. This set 
adheres to the properties described above. The bit-strings are 
stored in a manner that allows an efficient implementation of 
a function viable(G) that takes an arbitrary bit-string and 
returns true iff G # !’. 

In the remainder of the paper we introduce an individual-
based simulation model designed to investigate to what extent 
can HFL-genetics sustain RI between spatially separated sub-
population in face of migration. 

Simulation model 
Our objective is to investigate the extent to which HFL can 
sustain existing RI between spatially isolated populations 
under different levels of migration. For this we created an 
individual-based simulation model in which the individuals 
are located on a homogeneous landscape consisting of cells. 
Individuals, whose fitness (viability) is defined by the HFL, 
mate with other individuals within the same cell and then 
migrate to a neighbouring cell with a certain probability. As 
common in biological models (e.g. [21]), we use a number of 
neutral loci to measure the level of gene flow between the 
populations in different cells for different migration rates. 

Methods 
In this model the individuals are represented by their 
genotype, which consists of two sections: a coding section and 
a neutral section. The coding section consists of a number of 
diallelic loci that are assumed to code for vital traits. The 
coding section of a genotype is used as a parameter to the 
viable function of the HFL in order to determine whether an 
individual is viable. We experimented with 20 to 28 coding 
loci (not shown here) and found that the particular number 
does not affect the results significantly. In the experiments 
reported here we use L=26, which represents a trade-off 
between richer genotypes and computational resources 
required to complete a large number of simulation runs.  The 
neutral genotype section consists of 5 loci with 128 different 
alleles possible at each locus. The neutral loci do not affect 
the fitness (viability) of an individual and are used to measure 
the genetic divergence between individuals (see figure 2). 
 

 

0|1|0|0|1|0|0|...|1|1|1|0|0|038|000|112|127|009 

Coding section consisting 
of 26 diallelic loci 

Neutral section consisting 
of five 128-allelic loci 

Figure 2. An example of a model genotype. 

 
The lifecycle of a model individual is reproduction – 

selection – migration. Generations are non-overlapping. 
Reproduction. Individuals mate only with other 

individuals within the same cell of the spatial landscape. Each 
individual in a cell is selected once as a mother. For each 
mother, a partner is uniformly randomly selected from the 
same cell (selfing is permitted). The number of offspring for 
each pair is drawn from a Poisson distribution with a 
parameter )=4 (values in range )=2..10 did not affect the 
results significantly). The genotype of each offspring is 
determined through free recombination of the parents’ 
genotypes (i.e. the allele at each locus is inherited from each 
parent with equal probability independent of other loci). Each 
locus of the offspring is mutated with a probability 10–4 
(values in the range 10–3 to 10–5 are commonly used in 
biological models of this kind, e.g. [2, 21]). If a coding locus 
is mutated, its binary value is flipped. The neutral loci are 
subject to a circular stepwise mutation model [22]. If the 

Artificial Life XI 2008  452 



coding section of an offspring’s genotype is determined to be 
viable by the HFL model, the offspring is added to the new 
generation, otherwise it is discarded immediately. After all 
offspring for all pairs of parents have been determined, the old 
generation is discarded and replaced with the new population. 

Selection. All individuals within a single cell of the spatial 
landscape compete to survive to the age of reproduction. Note 
that this approach is different from the approach commonly 
used in genetic algorithms, where all individuals survive and 
then compete to be selected for reproduction. Here all 
surviving individuals reproduce and their progeny compete to 
reach a mature age, which normally requires acquiring 
environmental resources. Each landscape cell is assumed to 
have a certain maximum carrying capacity Cmc, i.e. to provide 
enough resources for the survival of Cmc mature individuals. 
If a cell is inhabited by no more than Cmc individuals, all 
survive. Otherwise Cmc individuals are selected with equal 
probability and the rest are discarded (as in this HFL model a 
particular individual is either fit or inviable). 

Dispersal. Individuals that reach maturity have a certain 
probability of migrating to one of the neighbouring spatial 
landscape cells. To avoid edge artefacts the landscape is 
represented as a torus. The effect of different migration rates 
is discussed in the results section. 

In order to investigate how spatial distance affects the 
results we consider different grid layouts. We start with the 
simplest case (a 1"2 grid) and then gradually increase the grid 
size (2"2 cells and 3"3 cells). The results (discussed below) 
imply how the dynamics of RI will behave on larger 
landscapes. Each cell is initialised with a random viable 
individual with alleles at neutral loci all set to 0. Initially we 
disable any migration between the cells and iterate the model 
for 100 thousand generations in order to allow the allele 
distribution to reach equilibrium. We then turn on migration at 
a specific rate (see results section) and iterate the model for 
300 thousand further generations. Measurements are taken 
every 1000 generations. 

A quantity of prime interest in this model is the number of 
reproductively isolated groups (RI groups) present in the 
model at any one time as well as various attributes of such 
groups. We are interested in groups of genotypes that could 
mate successfully, not in groups of individuals who actually 
do so. Finding such groups is difficult as the groups may be 
partially overlapping (a genotype can successfully mate with 
two genotypes that cannot mate with each other) and the 
genetic distance between groups is initially unknown and may 
vary. In order to cluster the genotypes of a population into RI 
groups we employ the Markov Clustering algorithm (MCL) 
[23], as it does not require a distance threshold parameter and 
because it has been successfully applied to a similar task – 
clustering protein sequences into families [24] (we essentially 
cluster gene sequences into families). For that we first 
calculate a reproductive success probability matrix for all 
genotypes in the population. The probability of reproductive 
success of two genotypes is estimated by simulating a large 
number of crossovers between the genotypes and considering 
the proportion of crossovers that result in viable offspring. 
The matrix is then used as input to the clustering algorithm. 
To further verify the applicability of MCL to our model we 

apply this algorithm to a previous model of adaptive radiation 
that uses the same genetic setup [2]. There we investigated 
adaptive radiation under disruptive selection caused by 
ecological niches and RI groups could be determined simply 
by asserting to which niche genotypes were best adapted. 
Tests show that the RI groups determined by the clustering 
correspond to the groups determined by assigning the 
genotypes to niches (see figure 3). 
 

 
 

 
Figure 3. Using Markov Clustering (MCL) for determining RI 
groups. Depicted is a snapshot of a spatial landscape (100"100 grid) 
from [2]. Each cell is coloured according to the cluster to which the 
majority of the genotypes of the individuals inhibiting the cell belong. 
Left: the genotypes were assigned to RI groups using the MCL 
algorithm. Right: the genotypes were assigned to RI groups according to 
the ecological niche to which they are best adapted. Although 
represented by different colours, both groupings are largely the same. 

On the basis of the RI groups we measure the average 
genetic divergence in neutral loci between the groups using 
the fixation index Fst. A number of slightly different 
approaches to calculating Fst have been proposed. Here we 
follow the approach taken in [25]: for every pair of genotypes 
within a group C, we measure the stepwise genetic distance – 
the minimum number of stepwise mutations necessary to 
obtain one genotype from the other – and calculate the 
average genetic distance dW(C) within the group C. We then 
measure the pair-wise distances between all genotypes that 
belong to C and all genotypes that do not belong to C in order 
to obtain the average genetic distance dB(C) between C and 
all other groups. Then, Fst(C) = 1 – dW(C) / dB(C) and the 
overall fixation index Fst is the average of Fst(Ci) for all 
groups Ci. Note that groups of different sizes are treated 
equally in this approach. 

For each of the scenarios discussed below we have 
performed 10 independent model runs and averaged the 
results. 

Simulation Results 
Consider first the 2"2 layout. As a basis for comparison we 
performed a set of runs with a migration rate of 0%. As 
expected, the number of RI groups corresponds to the number 
of cells (4), the divergence at neutral loci grows (Fst 
approaches 1) and the number of distinct coding genotype 
sections in the population fluctuates around a value slightly 
higher than the number of RI groups – due to viable mutants 
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and drift (see figure 4). In one of the runs, two of the cells 
appeared not to be reproductively isolated as the random 
founder individuals were genetically similar by chance. 
 In the next scenario we increased the migration rate to 1% 
after the first 100,000 generations. This lead to a slight 
increase in the number of distinct coding sections in the 
population which is due to viable hybrids resulting from 
breeding with immigrants. Some of these hybrids 
spontaneously form RI groups, however such groups cannot 
persist due to low population numbers in comparison to native 
populations. These viable hybrids facilitate a limited gene 
flow between the populations: after 300,000 generations Fst 
has decreased to ca. 0.8 (figure 4.D). 

The turnover of viable coding genotype sections in the 
population over time (the number of distinct viable coding 
sections that have been present in the model population from 
the start until a given time) can be used to describe the rate at 
which novel adaptive phenotypes are evolved. In the first 
100,000 generations, when migration rate is 0%, the turnover 
increases at a small rate due to genetic drift. Once migration is 
enabled, the turnover grows at a higher rate which suggests 
that more new viable genotypes are discovered through 
hybridisation than through generic drift. While this result is 
sensitive to the mutation rate, it is even more pronounced for 
higher migration rates (figure 4.C). 

In the next scenario the migration rate was set to 5% after 
the first 100,000 generations. Qualitatively, the results are 
similar to the 1% scenario. Quantitatively, the gene flow 
between the populations is higher (Fst falls to ca. 0.7, not 
shown). The higher migration rate leads to an increased 
probability for formation of RI hybrid groups (figure 4.A). 
Genetic drift within a larger number of RI groups as well as 
hybridisation between more diverse individuals leads to a 
larger number of coding genotype sections in the population 
(figure 4.B) and to a higher rate of discovering new viable 
adaptations (figure 4.C). Further rises in the migration rate to 
10% (not shown), 15% and 20% (figure 4) increase the 
strength of the above effects.  

When the migration rate is set to 25% or more the RI can 
be no longer sustained. A large number of reproduction events 
that lead to inviable offspring have a destabilising effect on 
the population size. Under such conditions, there is a high 
chance of extinction for any native cell population. Once an 
immigrant population has become established in a cell, a 
positive feedback loop is created: For individuals of the native 
population the chance of having viable offspring is decreased 
by the presence of the invaders, as they may be selected as 
mating partners. At the same time, the chance of new invaders 
to successfully reproduce is increased. As seen in figure 4.A 
the number of RI groups collapses to 1 under 25% migration. 
Sporadically small RI groups arise due to drift, but do not 
persist long enough to achieve a significant divergence in 
neutral loci (figure 4.D). The main population evolves as a 
single RI group. As a consequence, the number of distinct 
coding sections in the population is very small (figures 4.B & 
4.C).  

 

 

Figure 4. Evolution on a 2"2 grid for the migration rates 0% (red), 
1% (orange), 5% (green), 15% (blue), 20% (red) and 25% (blue). 
Data averaged over 10 runs. Some values omitted for clarity. 
A (top): The number of RI groups increases when the migration rate is 
higher. For very high migration rates the whole model population 
collapses into a single reproductive group. 
B (2nd from top): The number of distinct coding genotype sections in 
the population increases when the migration rate is high. As the 
population collapses to a single reproductive group at very high 
migration rates, the number of coding sequences falls. 
C (3rd from top): The rate of evolving new viable coding genotype 
sections increases when migration rate is higher due to drift in a larger 
number of IR groups and due to hybridisation between more RI groups. 
As the population collapses into a single reproductive group at very high 
migration rates, the number of coding sequences falls. 
D (bottom): Genetic divergence between RI groups measured using the 
fixation index. Higher migration rates lead to increased gene flow and 
this lower genetic divergence. 
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In order to investigate how spatial distance affects the 
above results we have repeated the experiments on a 1"2 grid. 
In large the model behaviour is similar, however the migration 
rate has a larger impact on the smaller landscape. 

Readily a migration rate of 1% causes Fst to decrease to 
ca. 0.5 after 300,000 generations of migration (figure 5.C). A 
migration rate of 10% causes the generic divergence of the 
two RI groups to decrease to insignificant levels within 
50,000 generations of migration. However, RI can be 
sustained at 10% and 15% migration – the number of RI 
groups stays around 2 which shows that the significant gene 
flow is not sufficient to break RI and must occur through 
viable hybrids, who, however, cannot establish a separate RI 
population. This can also be seen in that the number of 
distinct coding sections in the population remains small (not 
shown) suggesting that hybrids occur between the same 
genotypes. This conclusion is further supported by the 
turnover rate of the coding sections (figure 5.B): After an 
initial increase similar to the 2"2 scenarios, the turnover rate 
slows down to a level close to the rate before migration was 
turned on, showing that the two populations have reached an 
equilibrium and that further genetic innovation is due to drift. 
At 20% migration RI collapses rapidly and the entire model 
population evolves as a single reproductive group (figure 5). 

Next, we repeated the experiments on a 3"3 grid. As 
expected, larger grid makes it possible to sustain RI at higher 
migration rates. At 30% migration RI is sustained and the 
number of RI groups lies above 40. At 35% migration, RI 
collapses in a way similar to the previous scenarios (not 
shown). 

In order to give our HFL simulations a basis for 
comparison, we simulated all of the above scenarios without 
the HFL. In these control runs all individuals are viable and 
selection is thus random. In this context, RI cannot be defined 
and the number of RI groups and Fst cannot be measured. 
However, a related measure is the average genetic divergence 
DB at neutral loci between all individuals of the entire model 
population. In the presence of groups without gene flow 
between them, DB is expected to grow as the neutral loci in 
such groups will diverge. We measured DB for all grid sizes 
discussed earlier. As expected, for a migration rate of 0%, DB 
steadily grows. However, for all grid sizes, a migration rate of 
1% is sufficient to cause DB to drop sharply and to remain low 
for the rest of the simulation (figure 6). This indicates that 
without HFL-genetics (or other reproductive barriers 
occurring in nature) RI cannot be sustained even for small 
migration rates. 

Conclusions 
The role of spatial separation in facilitating RI is well known 
[14]. The difference between the three spatial scenarios 
demonstrates this effect. In order for an allele to pass from 
one cell to another non-adjacent cell it must first become 
established in the intermediate locations. Strong RI induced 
by the HFL enhances this effect. Thus, hybrid zones and 
divergent satellite populations may provide a stronger barrier 
to gene flow than often assumed. 

 

 
 

 
Figure 5. Evolution on a 1"2 grid for the migration rates 0% (red), 
1% (orange), 5% (green), 10% (green) and 20% (red). 
Data averaged over 10 runs. Some values omitted for clarity. 
A (top): Number of RI groups. 
B (middle): Turnover of viable coding genotype sections. 
C (bottom): Genetic divergence measured using the Fst. 
(The graphs in this paper were created and processed using the 
LiveGraph exploratory data analysis and visualisation framework [1].) 

 

 

Figure 6. Average genetic divergence DB at neutral loci between the 
individuals of the entire population in neutral evolution (without 
HFL). The average genetic distance grows when migration rate is 0%. 
The average distance quickly collapses to a small value above 0 (due to 
drift) for all other migration rates (1%, 5%, 25% are shown). This 
behaviour is largely the same for all grid sizes considered. 
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The effect of higher mutation rates on the number of 
distinct viable coding sections in the population is stronger 
than on the number of RI groups. This suggests that despite 
HFL, a small proportion of hybrids is viable and does not 
exhibit RI from the main population. It is these viable hybrids 
that facilitate the gene flow between RI populations. 
However, the small effect of an increasing migration rate on 
the number of RI groups implies that some hybrid populations 
exhibit real RI and are not simply fuelled by repeated 
hybridisation with immigrants. 

The common assumption is that hybrid zones are 
maintained by an interaction between continuous 
hybridisation and selection against hybrids. RI between the 
hybrids and the main population is often attributed to 
ecological preferences to a specific environment within the 
hybrid zone and not to genetic incompatibility. If such a 
specific ecological environment is altered, the hybrids become 
disadvantaged. As a result they become extinct either through 
selection against them or by adapting to the main environment 
thus removing RI between the hybrids and the main 
population. However, hybrid populations that have strong 
genetic incompatibilities with the main population caused by 
HFL-genetics are more likely to persist. In our simulations 
such populations are short-lived because their small initial 
population size and the absence of prezygotic isolation (RI 
caused by not mating with members of other groups rather 
than by offspring inviability) make it unlikely that they 
successfully reproduce for a large number of consecutive 
generations. However, in the presence of a free ecological 
environment niche within the hybrid zone, hybrid groups can 
multiply in numbers and persist. These populations, once 
numerous, are less likely to be affected by a disturbance of 
their specific ecological niche due to the strong genetic RI 
between the hybrids and the main population. This can allow 
the hybrid population to further diverge eventually forming 
prezygotic RI and thus to speciate. Although further data are 
required, this observation provides potential support for the 
analogy of novel species to point mutations implicit in some 
recent ecological [26] and macro-evolutionary [27] theory. 

As discussed earlier, for relatively high migration rates, an 
immigrant (not hybrid) population that became established in 
a new environment is likely to induce a positive feedback loop 
leading to the extinction of the native population: A large 
number of immigrants who act as potential mating partners in 
the absence of prezygotic RI decreases the chance of native 
inhabitants to have viable offspring and increases the chance 
of further invaders to successfully reproduce. This may lead to 
reinforcement – the evolution of sexual selection and thus 
prezygotic mating barriers in response to selection against 
hybrids. Reinforcement is a controversial topic in speciation 
theory [28, 29]. However, as argued in the previous paragraph 
and supported by our results, RI generated by the HFL is often 
resistant to mutations reducing hybrid disadvantage. Thus, 
reinforcement may be more likely in the context of HFL-
genetics than previous models indicate [28, 29]. 

The notion of holey fitness landscapes, while largely 
unchallenged, has arguably received insufficient attention 
from theorists. The current model shows that simulating 
plausible fitness landscapes can considerably change 

predictions about the maintenance of diversity and the 
emergence of new adaptations and species. The approach 
described here may be useful in further exploring these issues 
and related problems of adaptive radiation, evolvability and 
evolutionary search. From the perspective of artificial life 
research, representing fitness landscapes in a biologically 
plausible way may facilitate ongoing adaptive exploration and 
the continuous generation of novelty in evolving populations. 
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Abstract

We study the effects of conformist transmission on the evo-
lutionary dynamics of the Prisoner’s Dilemma, the Snowdrift
and the Stag Hunt games in both well-mixed and spatially
structured populations. The addition of conformism intro-
duces a transformation of the payoff matrix that favours the
stability of pure equilibria and reduces the basin of attraction
of risk dominant equilibria. When both conformism and local
interactions are present, the system can exhibit higher levels
of cooperation than those obtained in the absence of either of
the two mechanisms.

Introduction and Related Work
Evolutionary game theory (Hofbauer and Sigmund, 1998;
Gintis, 2000) is the theory of evolutionary dynamics when
selection is frequency-dependent, i.e. when the success of
an individual is conditioned not only by the strategy he or
she follows but also by the strategies followed by other indi-
viduals in the population. Although originally developed as
an application of game theory to the study of genetic evolu-
tion (Maynard Smith, 1982), evolutionary game theory has
also been used to investigate cultural evolutionary processes,
that is the way ideas or beliefs spread through a population
of individuals capable of imitation.
In cultural evolutionary game-theoretic models, ideas are

transmitted via biased imitation. Most of these models posit
that the only important psychological bias underlying imi-
tation is prestige or payoff-based bias, dened as the pre-
disposition to imitate successful individuals. Assuming a
very large and well-mixed population, payoff-based biased
transmission can be shown to generate a famous differential
equation, named the replicator dynamics (Taylor and Jonker,
1978; Gintis, 2000). In the context of evolutionary game the-
ory, the equilibrium points and other characteristics of the
dynamics of different games are studied in order to better
understand the evolutionary processes involved.
The Prisoner’s Dilemma (PD), Snowdrift1 (SD) and the

Stag Hunt (SH) are among the most studied two-person,

1Also known as Hawks-Doves or Chicken.

symmetric games in the literature. They are used for in-
vestigating under which circumstances altruistic traits can
become xed in a population of “selsh” individuals. In
social dilemmas of cooperation, individuals’ behaviours are
of two types: cooperative and non-cooperative. Coopera-
tors are willing to engage in cooperative tasks, while non-
cooperators (usually called defectors) prefer not to. The suc-
cess resulting from the interaction of cooperators and defec-
tors is given by the payoff matrix:

C D
C R S
D T P

where C denotes cooperators andD denotes defectors. R is
the reward for mutual cooperation, P is the punishment for
mutual defection, T is the temptation to defect and S is the
sucker’s payoff.
In all three social dilemmas, mutual cooperation is

favoured over both mutual defection (R > P ) and an equal
probability of unilateral cooperation and defection (2R >
T + S). The three dilemmas however differ in their or-
dering of payoffs. In the PD, T > R > P > S; in SD,
T > R > S > P , and in the SH, R > T > P > S.
The evolution of cooperation can be studied by looking

at the stable equilibria of the replicator dynamics for each
of these games. In the PD, the only stable equilibrium oc-
curs when the population is entirely comprised of defectors.
In the SD game cooperators and defectors coexist in equi-
librium. In the SH there are two equilibria: when all indi-
viduals cooperate and when all individuals defect. This last
equilibrium is however risk dominant, i.e. it has the largest
basin of attraction.
The replicator dynamics is a rough approximation of ac-

tual cultural evolutionary dynamics as it assumes that popu-
lations are very large and well-mixed, and that payoff-based
bias is the sole psychological mechanism guiding cultural
transmission processes. More realistic models of cultural
evolutionary processes correct at least one of these assump-
tions and arrive at different results from those predicted by
the standard replicator dynamics.
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Evolutionary graph-theoretical models (Lieberman et al.,
2005; Szabo and Fath, 2007), for instance, go beyond the
assumption of large, well-mixed populations by restricting
interaction and imitation to near neighbours in a graph rep-
resenting spatial locality or a social network. In many cases,
this graph structure has been shown to promote cooperation
beyond the limits of the replicator dynamics in a well-mixed
population (Nowak and May, 1992; Nowak et al., 1994;
Skyrms, 2003; Santos and Pacheco, 2005).
Other researchers have augmented cultural evolution

models by including different psychological biases that,
together with payoff-based bias, could inuence the way
people imitate. In particular, conformism or conformist
bias (Boyd and Richerson, 1985), which is the propensity
for preferentially imitating common behaviours, has been
suggested to be an important component of our social learn-
ing psychology (Asch, 1951; Coultas, 2004).2 When con-
formist transmission is introduced in cultural evolutionmod-
els, the result (in the case of large, well-mixed populations)
is a modied replicator dynamics that can lead to different
equilibrium points and different dynamics from those pre-
dicted by the standard replicator dynamics (Henrich, 2001;
Skyrms, 2005). By making use of such equation, Hen-
rich and Boyd (2001) have shown how even limited levels
of conformism are able to stabilise cooperative behaviour in
a public goods game if punishment is also included in the
model. In related work, Skyrms (2005) has explored the
effect of conformist bias in a number of symmetric two-by-
two games. Analyses in that work were however restricted
to some specic numerical cases and no general conclusions
were formally drawn.
The aim of this paper is to study the effects of conformist

transmission on the evolution of cooperation when consider-
ing two-person symmetric games such as the PD, SD and the
SH. We propose an evolutionary graph-theoretical model in
which cultural transmission is guided by both payoff-based
and conformist biases, and study it both analytically and by
means of simulation.
The paper is organised as follows. The next section gives

the agent-based level specications of the model. It is then
shown how to recover the modied replicator dynamics in
the limiting case of a large and well-mixed population, and
the equation is studied by means of equilibrium analysis.
This is followed by a simulation study of the particular case
of a population organised into a regular 2D lattice. Finally,
conclusions are drawn.

2From an evolutionary psychology perspective, conformist bias
could have evolved because it is adaptive in the face of costly infor-
mation. Boyd and Richerson (1985) and Henrich and Boyd (1998)
have theoretically shown that conformist transmission is adaptive
in spatially and/or temporally varying habitats since it provides a
simple heuristic rule that increases the probability of acquiring lo-
cally adaptive beliefs and behaviours.

The Model
Our model considers a population of n individuals, where
the i-th individual is represented by the vertex vi of an undi-
rected graphG(V, E) with vi ∈ V ∀i. The open neighbour-
hood of i, N(i), is the set of all individuals j such that there
is an edge eij ∈ E. The number of neighbours of individual
i is thus the degree ki of vertex vi. The closed neighbour-
hoodN [i] is the set of i’s neighbours plus i itself.
Each individual is characterised by its cultural trait or

strategy si ∈ {A, B}. Social interaction is modelled by
means of a two-person, symmetric game with a payoff ma-
trixM given by3:

A B
A a b
B c d

Each time step t, individuals simultaneously engage in so-
cial interactions. As a result of these interactions, individual
i collects an average payoff given by:

ui(t) =
1
ki

∑

j∈N(i)

M (si(t), sj(t)) .

After interactions are completed, individual i randomly
chooses one of its neighbours j ∈ N(i) as its model for cul-
tural transmission. Imitation is assumed to be conformist-
biased with probability α and payoff-biased with probabil-
ity 1 − α. Parameter α thus weighs the importance of con-
formism relative to payoff-biased transmission.
The adoption of individual j’s strategy by the focal indi-

vidual i depends on j’s cultural tness wij . Cultural tness
(the direct analogue to biological tness in genetic evolu-
tion) is a measure of the attractiveness or the transmissibil-
ity of a model’s strategy. If transmission is payoff-biased, j’s
cultural tness is given by the difference of average payoffs
between j and i:

wij(t) = uj(t) − ui(t).

If transmission is conformist, j’s cultural tness is given
by

wij(t) = qij(t) −
1
2
,

where qij is the proportion of agents inN [i] having the same
strategy as j. Notice that wij is positive whenever uj > ui

(payoff-biased transmission) or j follows the strategy fol-
lowed by the majority of i’s neighbours (conformist trans-
mission).
Agent i copies j’s strategy with a probability proportional

to wij . Formally:

Pr (si(t + 1) = sj(t)) = f (wij) ,

3Without loss of generality, payoffs are assumed to be non-
negative values.
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where f is assumed to be a monotonically increasing func-
tion, in order for models with high cultural tness to prop-
agate their strategies more often than models with low cul-
tural tness. Three alternative denitions of f are consid-
ered in this paper, each one specifying a different imitation
rule: (i) imitate-if-better (IIB); (ii) replicator dynamics 1
(RD1); and (iii) replicator dynamics 2 (RD2).4
The IIB rule is given by:

fIIB(wij) =
{

0 if wij ≤ 0
1 if wij > 0 ,

whereas RD1 and RD2 are respectively dened by:

fRD1(wij) =
{

0 if wij ≤ 0
βwij if wij > 0 ,

and
fRD2(wij) =

1
2

(1 + βwij) .

Parameter β normalises wij such that 0 ≤
Pr (si(t + 1) = sj(t)) ≤ 1. Thus, β = 2 in the case
of conformist transmission and

β =
1

max {a, b, c, d}− min {a, b, c, d} (1)

in the case of payoff-biased transmission. Fig. 1 depicts f
for each imitation rule.
The three imitation rules described above have been tradi-

tionally used in the literature, either directly in evolutionary
graph-theoretical models (e.g. RD1 by Hauert and Doebeli
(2004) and Santos and Pacheco (2005)) or in order to de-
rive population-level analytical models (e.g. RD2 by Hen-
rich (2001) and Boyd and Richerson (2002)).
From the previous denitions it is possible to derive

Pr (si(t + 1) = A), which is the probability of individual
i following strategy A at time step t + 1 after having cho-
sen a neighbour j as a model. Individual i’s strategy will
become or remain A whenever: a) A is the current strategy
of both i and j ; b) i’s current strategy is A, j’s current strat-
egy is B, but i does not imitate j; or c) i’s current strategy
is B, j’s current strategy is A, and i imitates j. The formal
equation is shown in Fig. 2.

Exact analysis for the case of large, well-mixed
populations

General games
Here we analyse the limiting case of a complete graph with
large n, which is equivalent to having the large, well-mixed
population that is traditionally assumed in standard evolu-
tionary game theory.

4We give RD1 and RD2 these names because both imitation
rules can be shown to recover the replicator dynamics in the well-
mixed, 100% payoff-biased transmission case (Gintis, 2000; McEl-
reath and Boyd, 2007).
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Figure 1: Imitation rules. IIB is shown in black, RD1 (β =
0.2) in blue and RD2 (β = 0.2) in red.

Let pt denote the frequency of individuals with strategy
A at time step t. For a complete graph with n → ∞, ki =
n − 1 ≈ n ∀i, and

ui(t) =
{

uA(t) if si(t) = A
uB(t) if si(t) = B

∀i, where uA(t) and uB(t) are the average payoffs collected
by individuals with strategiesA andB at time step t, respec-
tively given by

uA(t) = apt + b(1 − pt), (2)

and
uB(t) = cpt + d(1 − pt). (3)

Additionally, since N [i] = V ∀i:

qi,j(t) =
{

pt if sj(t) = A
1 − pt if sj(t) = B

∀i, j.

Using these relations and RD2 as imitation rule, the equa-
tion of Fig. 2 can be shown to reduce to:

∆p = pt(1 − pt){(1 − α)β [uA(t) − uB(t)]
+α(2pt − 1)}, (4)

where ∆p = pt+1 − pt is the change in the proportion
of individuals with behaviour A between time steps t and
t + 1. The recursion of Eq. 4 is a modied replicator dy-
namics that had been already derived in related work on
cultural transmission processes including both payoff-biased
and conformist imitation (Henrich and Boyd, 2001; Henrich,
2001; Carpenter, 2004; Skyrms, 2005).
Let us rst analyse the particular case when cultural trans-

mission is payoff-biased only. Making α = 0, Eq. 4 reduces
to:

∆p = pt(1 − pt)β {uA(t) − uB(t)} ,
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Pr (si(t + 1) = A) = Pr (si(t) = A, sj(t) = A) (1)
+Pr (si(t) = A, sj(t) = B)

{

(1 − α) [1 − f (uj(t) − ui(t))] + α
[

1 − f
(

qij(t) − 1
2

)]}

+Pr (si(t) = B, sj(t) = A)
{

(1 − α) [f (uj(t) − ui(t))] + α
[

f
(

qij(t) − 1
2

)]}

Figure 2: Probability of individual i having strategy A at time step t + 1 after cultural transmission from model j

which is the discrete-time equivalent of the standard replica-
tor dynamics (Taylor and Jonker, 1978; Hofbauer and Sig-
mund, 1998; Gintis, 2000). Substituting Eq. 2 and 3 in the
last expression and doing little algebra:

∆p = pt(1 − pt)β {(a − b − c + d)pt + b − d} . (5)

Equilibria of this equation can be found by looking at the
values of pt that make ∆p = 0. The two pure equilibria
are given by pt = 0 and pt = 1. In the following, these
equilibria will be respectively called all-B and all-A. A third
internal equilibrium, in which players with strategies A and
B are present in the population, may exist. When this is
the case, the proportion of individuals with strategy A in
equilibrium is given by

p∗ =
d − b

(a − c) + (d − b)
.

In general, the equilibrium p is stable5 whenever
∣

∣

∣

∣

∣

dpt+1

dpt

∣

∣

∣

∣

pt=p

∣

∣

∣

∣

∣

< 1.

From this, it can be easily shown that

• all-B is stable when b < d,

• all-A is stable when a > c, and

• p∗ is stable when both a < c and b > d.

Depending on the ranking of the entries of the payoff matrix,
four different possibilities6 for the imitation dynamics can
thus be distinguished (Nowak, 2006):

1. a > c ∧ b > d: only all-A is stable (A dominatesB).

2. a < c ∧ b < d: only all-B is stable (B dominatesA).

3. a > c ∧ b < d: both all-A and all-B are stable (A and
B are bistable). In this case, the internal unstable equilib-
rium p∗ determines the sizes of the basins of attraction of
the two pure equilibria. The equilibrium with the largest
basin of attraction is called risk dominant. In particular
5The condition is necessary and sufcient for hyperbolic equi-

libria only. All-B (resp. all-A) is non-hyperbolic when b = d
(resp. a = c).

6Actually, there is a fth possibiity: A and B are neutral when
a = c and b = d. In this case there is no evolution since ∆p = 0
∀pt.

a) all-A is risk dominant if d − b < a − c, and
b) all-B is risk dominant if d − b > a − c.

4. a < c ∧ b > d: pure equilibria are unstable and the
internal equilibrium is stable (A and B coexist).

How this picture changes when cultural transmission has
also a conformist component (α > 0)? In order to answer
to this question, an equilibrium analysis similar to the one
done in the case α = 0 can be performed here for α )= 0. A
second possibility is to rewrite Eq. 4 as

∆p = pt(1 − pt){[(1 − α)β(a − b − c + d) + 2α] pt

+(1 − α)β(b − d) − α},

and perform the following variable substitutions

a′ = (1 − α)βa + α,

b′ = (1 − α)βb,

c′ = (1 − α)βc,

d′ = (1 − α)βd + α,

to obtain:

∆p = pt(1 − pt) {(a′ − b′ − c′ + d′)pt + b′ − d′} . (6)

Notice (see Eq. 5) that this recursion is equivalent to the
discrete replicator dynamics of a population game with the
following payoff matrixM ′:

A B
A a′ b′

B c′ d′

Hence, in the framework of the replicator dynamics, the
addition of conformism to the cultural evolutionary process
is equivalent to a transformation of the payoff matrix of the
underlying game. Observe that α = 0 recovers the original
game and α = 1 completely transforms the original game
into a pure coordination game with the following payoff ma-
trix:

A B
A 1 0
B 0 1

The addition of conformism to imitation dynamics can
have considerable effects in the nature of equilibria of the
modelled cultural evolutionary process (Boyd and Richer-
son, 1985; Henrich and Boyd, 2001; Henrich, 2001; Skyrms,
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2005). In particular, since the entries ofM are non-negative
and 0 ≤ α ≤ 1,

a < c ⇒/ a′ < c′

b > d ⇒/ b′ > d′,

whichmeans that a) originally unstable pure equilibria could
become stable and b) an originally stable internal equilib-
rium could become unstable. Furthermore, if A and B co-
exist, the proportion of individuals with strategy A in equi-
librium is now given by

p′∗ =
(1 − α)β(d − b) + α

(1 − α)β {(a − c) + (d − b)} + 2α
.

Not everything changes in the dynamics of the gamewhen
conformism is introduced. In particular,

a > c ⇒ a′ > c′,

b < d ⇒ b′ < d′,

which means that originally stable pure equilibria will con-
tinue to be stable in the transformed game. Moreover,

d − b < a − c ⇒ d′ − b′ < a′ − c′,

d − b > a − c ⇒ d′ − b′ > a′ − c′,

which means that, ifA andB are bistable, the risk dominant
equilibrium of the transformed game will be the same as the
one of the original game.
The new conditions for stability are

1. All-B is stable if

α >
β(b − d)

1 + β(b − d)
(7)

2. All-A is stable if

α >
β(c − a)

1 + β(c − a)
(8)

3. The internal equilibrium, when it exists, is stable if nei-
ther Eq. 7 nor Eq. 8 holds.

Social dilemmas
Let us now focus on the effect of conformist biases in games
reecting social dilemmas, such as the PD, SD and the SH.
In order to simplify the analysis for these games, it is cus-
tomary to rescale their payoff matrices so that they depend
on a single parameter. For the PD, we follow Nowak and
May (1992) and make T = b,R = 1, P = ε ≈ 0 and S = 0,
where 1 < b < 2 characterises the advantage of defectors
against cooperators. For the SD game, we follow Hauert
and Doebeli (2004) and make T = γ > 1, R = γ − 1/2,
S = γ − 1 and P = 0, such that the cost-to-benet ratio
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Figure 3: Effect of conformist bias in the PD (left) and the
SD game (right).

of mutual cooperation is given by r = 1/(2γ − 1), with
0 ≤ r ≤ 1. For the SH we make T = P = 1, R = g and
S = 0, with 1 < g < 2. With these settings, β = 1/b for
the PD, β = 1/γ for SD and β = 1/g for the SH in the case
of payoff-based biased imitation (see Eq. 1).
As it has been previously analysed, the effect of con-

formist transmission may be interpreted as a transformation
in the payoff matrix that can alter the original ordering of its
entries. This in turn can drastically change the nature of the
game played. In the PD with conformism, the all-C equi-
librium (unstable in the original game) can become stable if
R′ > T ′. This holds when

α >
b − 1
2b − 1

.

The resulting ordering of the payoffs (R′ > T ′ > P ′ >
S′), and the fact that all-D is always the risk-dominant equi-
librium, effectively converts the game into a SH (see Fig. 3).
In the case of the SD game, the ordering of the entries of

the transformed payoff matrixM ′ can be different from that
of the original matrixM if R′ > T ′ (all-C becomes stable),
P ′ > S′ (all-D becomes stable) or both conditions hold. For
the rescaled version of this game, R′ > T ′ whenever

α >
r

1 + 2r
,

and P ′ > S′ when
α >

1 − r

2
.

There are thus 4 different possibilities for the SD game
with conformist transmission (see Fig. 3):

1. T ′ > R′ > S′ > P ′ (the game is still a SD),

2. R′ > T ′ > S′ > P ′ (C dominatesD),

3. T ′ > R′ > P ′ > S′ (the game becomes a PD), and

4. R′ > T ′ > P ′ > S′ (the game becomes a SH). In
this last case the game is a proper SH (C and D are
bistable and all-D is the risk-dominant equilibrium) when
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r > 0.5. When r < 0.5, all-C is both payoff and risk
dominant.

Finally, in the case of the SH the ordering of the payoffs is
not importantly affected, but the unstable equilibriummoves
towards p = 1/2, thus reducing the basin of attraction of all-
D, i.e. the riskiness of all-C.
Broadly speaking, conformist transmission can promote

cooperation in the PD by turning it into a SH, and in the
SH by diminishing the basin of attraction of all-D. In the
SD game, results are dependent on the cost-to-benet ratio
of mutual cooperation. For r < 0.5, cooperation is gener-
ally favoured: all-C can become the only stable equilibrium
(when R′ > T ′ > S′ > P ′), or the risk dominant equilib-
rium (when R′ > T ′ > P ′ > S′). For r > 0.5 the opposite
happens, with all-D possibly becoming the only stable equi-
librium (when T ′ > R′ > P ′ > S′) or the risk-dominant
equilibrium (when R′ > T ′ > P ′ > S′).
Although conformist transmission opens the possibility of

a cooperative equilibrium in the PD and diminishes the risk-
iness of engaging in cooperative actions in the SH, popula-
tions with an initial majority of defectors are always doomed
to a non-cooperative equilibrium in these two games. In the
SD case, defection prevails for r > 0.5, and this for any
amount of conformism. In this sense, conformist transmis-
sion alone is unable to sustain cooperation in both PD and
SH, and it promotes cooperation for the SD game only when
r < 0.5. For cooperation to be sustained, other mecha-
nisms are necessary to be present along with conformism.
Punishment has been suggested as one such possible mech-
anism (Henrich and Boyd, 2001). In the next section, we
explore another mechanism: graph reciprocity.

Simulation results for the case of
medium-sized, spatially structured

populations
Here, the evolutionary dynamics of the three social dilem-
mas discussed above are studied by means of computer sim-
ulations for the case of medium-sized populations (1024 in-
dividuals) organised into a 32 × 32 square lattice with peri-
odic boundary conditions. For the three games, the rescaled
versions presented in the last section were used7.
Square lattices were implemented using both Moore and

von Neumann neighbourhoods with ranges equal to 1. Sim-
ulations were conducted using each of the three imitation
rules previously dened (IIB, RD1, RD2), varying val-
ues of the game parameters (b in the PD, r in SD and
g in the SH) and different amounts of conformism (α ∈
{0.0, 0.125, 0.25, 0.375, 0.5}). Agents were updated syn-
chronously.
For each simulated condition, 50 runs were executed.

Each simulation was initialised with 50% cooperators and

7We effectively set P = ε = 0 in the PD.

terminated whenever the population converged to any of the
two absorbing states (all-C, all-D) or after 3000 simulation
steps. In this last case, the equilibrium proportions of coop-
erators were calculated by averaging over the last 1000 time
steps of each run, well after transients have passed.
Fig. 4 shows the average level of cooperation in equilib-

rium for the Moore neighbourhood case. Results for the von
Neumann neighbourhood case are qualitatively similar and
are not reproduced here for reasons of space. In the gures
corresponding to the SD game, the dashed lines represent
the equilibrium fraction of cooperators predicted by Eq. 6
(the well-mixed case).
Fig. 4 shows how cultural transmission including a con-

formist component consistently promotes higher levels of
cooperation than payoff-based biased transmission alone for
both the PD and the SH. Moreover, the larger the amount of
conformism, the larger the proportion of cooperators at equi-
librium, as it can be seen from the nice ordering of the curves
for different values of α. For the SD game, the addition of
conformist bias results in higher frequencies of cooperators
for small r but also in lower frequencies of cooperators for
large r. Thus, the general observations made for the effects
of conformist transmission on the well-mixed case continue
to hold for the case of spatially structured populations, i.e.
that conformism promotes cooperation in the PD and the SH
for the whole range of their game parameters, and that it pro-
motes cooperation in the SD game for r < 0.5while inhibit-
ing cooperation for r > 0.5.
Regarding the effects of embedding the population in a

lattice, our results conrm those already classic in evolu-
tionary game theory: spatial structure promotes cooperation
in the PD (Nowak and May, 1992; Nowak et al., 1994) and
the SH (Skyrms, 2003), but can inhibit cooperation in the
SD game (Hauert and Doebeli, 2004). In general, for the SD
game, cooperators in a lattice do better than their counter-
parts in a well-mixed population for a) α < 0.25 and small
r, and b) α > 0.25 and large r.
Notice that these qualitative results do not depend on the

specic imitation rule being used. However, quantitative re-
sults do depend on the specicities of these rules. For in-
stance, the higher stochasticity of the RD2 with respect to
the other two imitation rules seems to hinder the evolution
of cooperation in the PD and SH games, where only moder-
ate levels of cooperation can be sustained, and only for very
small b or very large g.

Conclusions
We have augmented traditional evolutionary graph-theoretic
models with conformist transmission (the tendency to imi-
tate common behaviours) and studied the effects of this ex-
tension on the evolutionary dynamics of social dilemmas.
From a replicator dynamics perspective, the addition of con-
formism is equivalent to a simple transformation of the pay-
off matrix favouring the stability of pure equilibria. In par-
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Figure 4: Average values of the equilibrium proportion of cooperators as a function of the game parameter for the PD (rst
row), the SD game (second row) and the SH (third row). Results are given for IIB (rst column), RD1 (second column) and RD2
(third column) imitation rules and different amounts of conformism: α = 0.0 (black), α = 0.125 (blue), α = 0.25 (green),
α = 0.375 (magenta) and α = 0.5 (red). For the SD game, the corresponding proportions of cooperators in well-mixed
populations for each value α are also reported (dashed lines).
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ticular, a Prisoner’s Dilemma can become a Stag Hunt, and
a Snowdrift can become a Stag Hunt, a Prisoner’s Dilemma
or a game in which cooperation dominates defection. In the
Stag Hunt case, where both pure equilibria are already sta-
ble, conformist transmission moves the unstable equilibrium
towards p = 1/2, thus reducing the basin of attraction of
the non-cooperative equilibrium. Although unable to sustain
cooperation by its own when cooperators are not the major-
ity at the beginning of the evolutionary process, conformist
transmission enhances cooperation when other mechanisms,
such as spatial locality, are also present in the model, at least
for the PD and the SH cases. For the spatial SD, conformism
can also be shown to promote higher levels of cooperative
behaviour, but only for small cost-to-benet ratios.
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Abstract

Using a dynamical network model of society, we show that
cooperation is the norm in the Hawks-Doves game when in-
dividuals are allowed to break ties with undesirable neighbors
and to make new acquaintances in their extended neighbor-
hood. This is an interesting result, as standard theory for mix-
ing populations prescribes that a certain fraction of defectors
must always exist at equilibrium. We discuss the empirical
network structure reasons that allow cooperators to thrive in
the population.

Introduction and Previous Work
Hawks-Doves, also known as Chicken, is a two-person,
symmetric game with the following payoff bi-matrix:

C D
C (R,R) (S,T)
D (T,S) (P,P)

In this matrix, D stands for strategy “hawk”, and C stands for
strategy “dove”. Metaphorically, a hawkish behavior means
a strategy of fighting, while a dove, when facing a confronta-
tion, will always yield. R is the reward the two players re-
ceive if they both cooperate (C), P is the punishment for bi-
lateral defection (D), and T is the temptation, i.e. the payoff
that a player receives if it defects, while the other cooper-
ates. In this case, the cooperator gets the sucker’s payoff
S. The game has a structure similar to that of the Prisoner’s
Dilemma (Axelrod, 1984). However, the ordering of payoffs
for the Prisoner’s Dilemma is T > R > P > S rendering
defection the best rational individual choice, while in the
Hawks-Doves game the ordering is T > R > S > P thus
making mutual defection, i.e. result (D,D), the worst possi-
ble outcome. Note that in game theory, as long as the above
orderings are respected, the actual numerical payoff values
do not matter (Vega-Redondo, 2003).

In contrast to the Prisoner’s Dilemma which has a unique
Nash equilibrium that corresponds to both players defecting,
the strategy pairs (C,D) and (D,C) are both Nash equilibria
of the Hawks-Doves game in pure strategies, so the game is

antagonistic, and there is a third equilibrium in mixed strate-
gies in which strategy D is played with probability p, and
strategy C with probability 1− p, where 0 ≤ p ≤ 1 depends
on the actual payoff values. We recall that a Nash equilib-
rium is a combination of strategies (pure or mixed) of the
different players such that any unilateral deviation by any
agent from this combination can only decrease her expected
payoff (Vega-Redondo, 2003).

As is the case for the Prisoner’s Dilemma (Axelrod, 1984;
Lindgren and Nordahl, 1994), Hawks-Doves, for all its sim-
plicity, appears to capture some important features of social
interactions. In this sense, it applies in many situations in
which “parading”, “retreating”, and “escalating” are com-
mon. One striking example of a situation that has been
thought to lead to a Hawks-Doves dilemma is the Cuban
missile crisis in 1962 (Poundstone, 1992). Other well
known applications are found in the animal kingdom (May-
nard Smith, 1982).

Considering now not just two players but rather a large,
mixing population of identical players where randomly cho-
sen pairs play a sequence of two-person games, evolutionary
game theory (Hofbauer and Sigmund, 1998) prescribes that
the only Evolutionary Stable Strategy (ESS) of the popula-
tion is the mixed strategy, giving rise, at equilibrium, to a
frequency of hawks in the population equal to p, the proba-
bility with which strategy hawk, i.e. D, would be played in a
mixed strategy.

In the case of the Prisoner’s Dilemma, one finds a unique
ESS with all the individuals defecting. However, Nowak
and May (1992) showed that cooperation in the population
is sustainable in the Prisoner’s Dilemma under certain con-
ditions, provided that the network of the interactions be-
tween players has a lattice spatial structure. Killingback
and Doebeli (1996) extended the spatial approach to the
Hawks-Doves game and found that a planar lattice structure
with only nearest-neighbor interactions may favor cooper-
ation, i.e. the fraction of doves in the population is often
higher than what is predicted by evolutionary game theory.
In a more recent work however, Hauert and Doebeli (2004)
were led to a different conclusion, namely that spatial struc-
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ture does not seem to favor cooperation in the Hawks-Doves
game. Further studies (Tomassini et al., 2006) extended the
structured population approach to other graph structures rep-
resenting small worlds. Small-world networks are produced
by randomly rewiring a few links in an otherwise regular
lattice such as a ring or a grid (Watts and Strogatz, 1998).
These “shortcuts”, as they are called, give rise to graphs
that have short path lengths between any two nodes in the
average as in random graphs, but in contrast to the latter,
also have a great deal of local structure as conventionally
measured by the clustering coefficient1. These structures are
much more typical of the networks that have been analyzed
in technology, society, and biology than regular lattices or
random graphs (Newman, 2003). In Tomassini et al. (2006)
it was found that cooperation may be either enhanced or in-
hibited in small-world networks depending on the gain-to-
cost ratio r = R/(R− P ), and on the strategy update rule.
But Watts–Strogatz small worlds and scale-free networks,
although more realistic than lattices or random graphs, are
not faithful representation of typical social networks. San-
tos and Pacheco (2005) and Santos et al. (2006b) extended
the study of the Hawk-Doves game to scale-free networks,
i.e. to networks having a power-law distribution of the con-
nectivity degree (Newman, 2003). They found that cooper-
ation is remarkably enhanced in them with respect to previ-
ously described population structures through the existence
of highly connected cooperator hubs. However, pure static
scale-free networks are not found among the typical socio-
economic networks that have been studied (Amaral et al.,
2000; Newman, 2001, 2003). Using real and model static
social networks, Luthi et al. (2008) also found that cooper-
ation is enhanced, although to a lesser degree, thanks to the
existence of tight clusters of cooperators that reinforce each
other. Static networks having a resemblance with actual so-
cial networks are a good starting point; however, the static
approach ignores fluctuations and non-equilibrium phenom-
ena. Instead, real social networks are dynamical, i.e. nodes
may join the network forming new links, and old nodes may
leave it as social actors come and go. Furthermore, new
links between agents already in the network may also form
or be dismissed. Thus, the motivation of the present work is
to study the co-evolution of strategy and network structure
and to investigate under which conditions cooperative be-
havior may emerge and be stable in the Hawks-Doves game.
A related goal is to study the topological structures of the
emergent networks and their relationships with the strategic
choices of the agents. Some previous work has been done

1The clustering coefficient Ci of a node i is defined as Ci =
2Ei/ki(ki − 1), where Ei is the number of edges in the neigh-
borhood of i. Thus Ci measures the amount of “cliquishness” of
the neighborhood of node i and it characterizes the extent to which
nodes adjacent to node i are connected to each other. The cluster-
ing coefficient of the graph is simply the average over all nodes:
C = 1

N

PN
i=1 Ci (Newman, 2003).

on evolutionary games on dynamic networks (Zimmermann
and Eguı́luz, 2005; Luthi et al., 2006; Santos et al., 2006a).
The only one citing the Hawks-Doves game is (Santos et al.,
2006a) but our model differs in several important respects
and we obtain new results on the structure of the cooperat-
ing clusters.

The paper is organized as follows. In the next section
we present our dynamical models. This is followed by an
exhaustive numerical study of the game’s parameter space.
After that we describe and discuss the statistical structure of
the emerging networks and finally we give our conclusions.

Model and Dynamics
Our model is strictly local. No player uses information
other than the strength of the links with its neighbors and
the knowledge of her own payoff and, indirectly, the payoffs
of her immediate neighbors. Moreover, as the model is an
evolutionary one, no rationality, in the sense of game theory,
is needed (Vega-Redondo, 2003). Players just adapt their
behavior such that they imitate more successful strategies
in their environment with higher probability. Furthermore,
they are able to locally assess the worth of an interaction and
possibly dismiss a relationship that does not pay off enough.
The model and its dynamics are described in detail in the
following sections.

Network and Interaction Structure. The network of
agents is represented by an undirected graph G(V,E),
where the set of vertices V represents the agents, while the
set of edges (or links) E represents their symmetric inter-
actions. The population size N is the cardinality of V . A
neighbor of an agent i is any other agent j such that there is
an edge {ij} ∈ E. The set of neighbors of i is called Vi and
its cardinality is the degree ki of vertex i ∈ V . The average
degree of the network will be called k̄. Although there is for-
mally a single undirected link between a player i and another
player j ∈ Vi, we shall maintain two links: one going from
i to j and another one in the reverse direction. Each link
has a weight or “force” fij (respectively fji). This weight,
say fij , represents in an indirect way the “trust” player i at-
tributes to player j. This weight may take any value in [0, 1]
and its variation is dictated by the payoff earned by i in each
encounter with j, as explained below.

The idea behind the introduction of the forces fij is
loosely inspired by the potentiation/depotentiation of con-
nections between neurons in neural networks, an effect
known as the Hebb rule (Hebb, 1949). In our context, it can
be seen as a kind of “memory” of previous encounters. How-
ever, it must be distinguished from the memory used in iter-
ated games, in which players “remember” a certain number
of previous moves and can thus conform their future strat-
egy on the analysis of those past encounters (Vega-Redondo,
2003). Our interactions are strictly one-shot, i.e. players
“forget” the results of previous rounds and cannot recognize
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previous partners and their possible playing patterns. How-
ever, a certain amount of past history is implicitly contained
in the numbers fij and this information may be used by an
agent when it will come to decide whether or not an interac-
tion should be dismissed (see below).

We also define a quantity si called satisfaction of an agent
i which is the sum of all the weights of the links between i
and its neighbors Vi divided by the total number of links of
that node ki:

si =
∑

j∈Vi
fij

ki
.

We clearly have 0 ≤ si ≤ 1.

Initialization. The constant size of the networks during
the simulations is N = 1000. The initial graph is gener-
ated randomly with a mean degree k̄ = 10 which is of the
order of those actually found in many social networks; see,
for instance, (Newman, 2003). Players are distributed uni-
formly at random over the graph vertices with 50% cooper-
ators. Forces between any pair of neighboring players are
initialized at 0.5.

We use a parameter q which is a real number in [0, 1] and
it represents the frequency with which an agent wishes to
dismiss a link with one of its neighbors. The higher q, the
faster the link reorganization in the network. This parameter
has a role analogous to the “time scale” parameter of (San-
tos et al., 2006a) and it controls the speed at which topolog-
ical changes occur in the network. All the agents have the
same value of q. It is an important consideration, as social
networks may structurally evolve at widely different speeds,
depending on the kind of interaction between agents. For
example, e-mail networks change their structure at a faster
pace than, say, scientific collaboration networks.

Update Timing. Usually, agents systems such as the
present one, are updated synchronously (Nowak and May,
1992; Santos and Pacheco, 2005; Zimmermann and Eguı́luz,
2005). However, strictly speaking, simultaneous update is
physically unfeasible as it would require a global clock,
while real extended systems in biology and society in gen-
eral have to take into account finite signal propagation speed.
Simultaneity may cause some artificial effects in the dynam-
ics which are not observed in real systems (Huberman and
Glance, 1993; Luthi et al., 2006). On the other hand, updat-
ing a randomly chosen agent at a time also seems a rather
arbitrary extreme case that is not likely to represent reality
very accurately. We have thus chosen to update our pop-
ulation in a partially synchronous manner. In practice, we
define a fraction f = n/N (with N = an, a ∈ N) and, at
each simulated discrete time step, we update only n ≤ N
agents randomly chosen with replacement. This is called a
microstep. After N/n microsteps a whole population up-
date, i.e. a macrostep will have taken place. With n = N

we recover the fully synchronous update, while n = 1 gives
the extreme case of the fully asynchronous update. In this
work we use f = 0.01.

Strategy and Link Dynamics
Here we describe in detail how individual strategies, links,
and link weights are updated. Once a given node i is chosen
to be activated, i.e. it belongs to the fraction f of nodes that
are to be updated in a given microstep, i goes through the
following steps:

• if the degree of agent i, ki = 0 then player i is an isolated
node. In this case a link with strength 0.5 is created from i
to a player j chosen uniformly at random among the other
N − 1 players in the network.

• otherwise,

– either agent i updates its strategy according to a local
replicator dynamics rule with probability 1− q or, with
probability q, agent i may delete a link with a given
neighbor j and creates a new 0.5 force link with another
node k ;

– the forces between i and its neighbors Vi are updated

Let us now describe each step in more detail.

Strategy Evolution. We use a local version of replicator
dynamics (RD) as described in (Luthi et al., 2008). The local
dynamics of a player i only depends on its own strategy and
on the strategies of the ki players in its neighborhood Vi. Let
us call πij the payoff player i receives when interacting with
neighbor j. This payoff is defined as

πij = σi(t) M σT
j (t),

where M is the payoff matrix of the game and σi(t) and
σj(t) are the strategies played by i and j at time t. The
quantity

Π̂i(t) =
∑

j∈Vi

πij(t)

is the rescaled accumulated payoff (Luthi et al., 2008) col-
lected by player i at time step t. The rule according to
which agents update their strategies is the conventional RD
in which strategies that do better than the average increase
their share in the population, while those that fare worse than
average decrease. To update the strategy of player i, another
player j is drawn at random from the neighborhood Vi. It is
assumed that the probability of switching strategy is a func-
tion φ of the payoff difference; φ is required to be monotonic
increasing; here it has been taken linear (Hofbauer and Sig-
mund, 1998). Strategy σi is replaced by σj with probability

pi = φ(Π̂j − Π̂i). (1)
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The major differences with standard RD is that two-
person encounters between players are only possible among
neighbors, instead of being drawn from the whole popula-
tion, and the latter is finite in our case. Other commonly used
strategy update rules include imitating the best in the neigh-
borhood (Nowak and May, 1992; Zimmermann and Eguı́luz,
2005), or replicating in proportion to the payoff (Hauert and
Doebeli, 2004; Tomassini et al., 2006).

Link Evolution. The active agent i, which has ki $= 0
neighbors will, with probability q, attempt to dismiss an in-
teraction with one of its neighbors in the following way.
Player i will look at its satisfaction si. The higher si, the
more satisfied the player, since a high satisfaction is a con-
sequence of successful strategic interactions with the neigh-
bors. Thus, the natural tendency is to try to dismiss a link
when si is low. This is simulated by drawing a uniform
pseudo-random number r ∈ [0, 1] and breaking a link when
r ≥ si. Assuming that the decision is taken to cut a link,
which one, among the possible ki, should be chosen? Our
solution only relies on the strength of the relevant links.
First a neighbor j is chosen with probability proportional to
1−fij , i.e. the stronger the link, the less likely it is that it will
be selected. This intuitively corresponds to i’s observation
that it is preferable to dismiss an interaction with a neighbor
j that has contributed little to i’s payoff over several rounds
of play. However, in our system dismissing a link is not free:
j may “object” to the decision. The intuitive idea is that, in
real social situations, it is seldom possible to take unilateral
decisions: often there is a cost associated, and we represent
this hidden cost by a probability 1−(fij +fji)/2 with which
j may refuse to be cut away. In other words, the link is less
likely to be deleted if j appreciates i, i.e. when fji is high.
If the link is not cut there is no further attempt during the
current microstep update.

Assuming that the {ij} link is finally cut, how is a new
link to be formed? The solution adopted here is inspired
by the observation that, in social settings, links are usually
created more easily between people who have a mutual ac-
quaintance than those who do not. First, a neighbor k is
chosen in Vi \ {j} with probability proportional to fik, thus
favoring neighbors i trusts. Next, k in turn chooses player
l in his neighborhood Vk using the same principle, i.e. with
probability proportional to fkl. If i and l are not connected,
a link {il} is created, otherwise the process is repeated in
Vl. Again, if the selected node, say m, is not connected to
i, a new link {im} is established. If this also fails, a new
link between i and a randomly chosen node is created. In all
cases the new link is initialized with a strength of 0.5 in both
directions. This rewiring process is schematically depicted
in Fig. 1 for the case in which a link can be successfully
established between players i and l thanks to their mutual
acquaintance k.

At this point, we would like to stress several important dif-

i

j

k

l

fik
fkl

fil

Figure 1: Illustration of the rewiring of link {ij} to {il}.
Agent k is chosen to introduce player l to i (see text).

ferences with previous work in which links can be dismissed
in evolutionary games on networks. In (Zimmermann and
Eguı́luz, 2005), only links between defectors are allowed to
be cut unilaterally and the study is restricted to the Prisoner’s
Dilemma. Instead, in our case, any link has a finite proba-
bility to be abandoned, even a profitable link between co-
operators if it is recent, although links that are more stable,
i.e. have high strengths, are less likely to be rewired. This
smoother situation is made possible thanks to our bilateral
view of a link which is completely different from the undi-
rected choice made in (Zimmermann and Eguı́luz, 2005).
It also allows for a moderate amount of “noise” in the sys-
tem, which could reflect to a certain extent the uncertainties
present in the system.

In (Santos et al., 2006a), links can be cut by an unsatisfied
player, where the concept of satisfaction is different from
ours, and simply means that a cooperator or a defector will
wish to break a link with a defector but there is no analogous
of our “negotiation” process as the concept of link strength
is absent. In (Luthi et al., 2006) links are cut according to a
threshold decision rule and are rewired randomly anywhere
in the network.

Updating the Link Strengths. Once the chosen agents
have gone through their strategy or link update steps, the
strengths of the links are updated accordingly in the follow-
ing way:

fij(t + 1) = fij(t) +
πij − π̄ij

ki(πmax − πmin)
,

where πij is the payoff of i when interacting with j, π̄ij is
the payoff earned by i playing with j, if j were to play his
other strategy, and πmax (πmin) is the maximal (minimal)
possible payoff obtainable in a single interaction. This up-
date is performed in both directions, i.e. both fij and fji are
updated ∀j ∈ Vi.

Numerical Simulations
Simulation Parameters. We simulated the Hawks-Doves
game with the dynamics described above exploring the en-
tire game space by limiting our study to the variation of only
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two game parameters. We set R = 1 and P = 0 and the
two parameters are 1 ≤ T ≤ 2 and 0 ≤ S ≤ 1. Set-
ting R = 1 and P = 0 determines the range of S (since
T > R > S > P ) and gives an upper bound of 2 for T , due
to the 2R > T + S constraint, which ensures that mutual
cooperation is preferred over an equal probability of unilat-
eral cooperation and defection. Note however, that the only
valid value pairs of (T, S) are those that satisfy the latter
constraint.

We simulated networks of size N = 1000, randomly gen-
erated with an average degree k̄ = 10 and randomly initial-
ized with 50% cooperators and 50% defectors. In all cases,
the parameters are varied between their two bounds in steps
of 0.1. For each set of values, we carry out 50 runs of at most
10000 macrosteps each, using a fresh graph realization in
each run. After an initial transient period, the system is con-
sidered to have reached a pseudo-equilibrium strategy state
when the strategy of the agents (C or D) does not change
over 150 further macrosteps, which means 15×104 individ-
ual updates. We speak of pseudo-equilibria or steady states
and not of true evolutionary equilibria because there is no
analog of equilibrium conditions in the dynamical systems
sense.

Cooperation and Stability. Cooperation results in con-
tour plot form are shown in Fig. 2. We remark that, as
observed in other structured populations, cooperation is
achieved in almost the whole configuration space. Thus, the
added degree of freedom represented by the possibility of
refusing a partner and choosing a new one does indeed help
to find player’s arrangements that help cooperation. When
considering the dependence on the fluidity parameter q, one
sees in Fig. 2 that the higher q, the higher the cooperation
level, although the differences are small, since full cooper-
ation prevails already at q = 0.2. This was a somewhat
expected result, since being able to break ties more often
clearly gives cooperators more possibilities for finding and
keeping fellow cooperators to interact with. The same ef-
fect has been previously observed in (Santos et al., 2006a)
with the use of a different model both for strategy evolution
and tie breaking. Thus the finding is robust and relatively
independent of the other details of the models.

Compared with the level of cooperation observed in sim-
ulations in static networks, we can say that results are con-
sistently better for co-evolving networks. For all values
of q (Fig. 2) there is significantly more cooperation than
what was found in model and real social networks (Luthi
et al., 2008) where the same local replicator dynamics was
used but with the constraints imposed by the invariant net-
work structure. A comparable high cooperation level has
only been found in static scale-free networks (Santos et al.,
2006b), which is theoretically interesting, but those topolo-
gies are unlikely models for social networks, which often
show fat-tailed degree distribution functions but not pure

power-laws (see, for instance, (Amaral et al., 2000; New-
man, 2001)). As a further indication of the latter, we shall
see later that, indeed, emerging networks do not have a
power-law degree distribution.

The above considerations are all the more interesting
when one observes that the standard RD result is that the
only asymptotically stable state for the game is a polymor-
phic population in which there is a fraction α of doves and a
fraction 1−α of hawks, with α depending on the actual nu-
merical payoff matrix values. To see the positive influence
of making and breaking ties we can compare our results with
what is prescribed by the standard RD solution. Referring to
the payoff table of the Introduction section, let’s assume that
the column player plays C with probability α and D with
probability 1 − α. In this case, the expected payoffs of the
row player are:

Er[C] = αR + (1− α)S

and
Er[D] = αT + (1− α)P

The row player is indifferent to the choice of α when
Er[C] = Er[D]. Solving for α gives:

α =
P − S

R− S − T + P
. (2)

Since the game is symmetric, the result for the column
player is the same and (αC, (1 − α)D) is a NE in mixed
strategies. We have numerically solved the equation for all
the sampled points in the game’s parameter space. Let us
now use the following payoff values in order to bring them
within the explored game space (remember that NEs are in-
variant w.r.t. such an affine transformation):

C D
C (1, 1) (2/3, 4/3)
D (4/3, 2/3) (0, 0)

Substituting in 2 gives α = 2/3, i.e. the dynamically sta-
ble polymorphic population should be composed by about
2/3 cooperators and 1/3 defectors. Now, if one looks at
Fig. 2 at the points where S = 2/3 and T = 4/3, one can
see that the point, and the region around it, is one of full
cooperation instead. Even within the limits of the approx-
imations caused by the finite population size and the local
dynamics, the non-homogeneous graph structure and an in-
creased level of tie rewiring has allowed the cooperation to
be greatly enhanced with respect to the theoretical predic-
tions of standard RD.

Structure of the Emerging Networks
In this section we present a statistical analysis of the global
and local properties of the networks that emerge when
the pseudo-equilibrium states of the dynamics are attained.
First, the mean degree k̄ increases only slightly and tends
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Figure 2: Average cooperation values for the Hawks-Doves game when the steady-state has been reached. Results are the
average of 50 runs.
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Figure 3: Average values of the clustering coefficient over 50 runs.

to stabilize around k̄ = 11. Next, let us consider first the
clustering coefficient C, which was previously defined. Ran-
dom graphs are locally homogeneous in the average and
for them C is simply equal to the probability of having an
edge between any pair of nodes independently. In contrast,
real networks have local structures and thus higher values
of C. Fig. 3 gives the average clustering coefficient C̄ =
1
50

∑50
i=1 C for each sampled point in the Hawks-Doves con-

figuration space, where 50 is the number of network realiza-
tions used for each simulation. The networks self-organize
through dismissal of partners and choice of new ones and
they acquire local structure, since the clustering coefficients
are higher than that of the random graph with the same num-
ber of edges and nodes, which is k̄/N = 10/1000 = 0.01.
This effect was expected, since the model favors relinking
with closer neighbors rather than arbitrary individuals. The
clustering tends to increase with q (i.e. from left to right in
Fig. 3).

The degree distribution function (DDF) p(k) of a graph
represents the probability that a randomly chosen node has
degree k. Random graphs are characterized by DDF of Pois-
sonian form p(k) = k̄ke−k̄/k!, while social and technologi-
cal real networks often show long tails to the right, i.e. there
are nodes that have an unusually large number of neigh-
bors (Newman, 2003). In some extreme cases the DDF has
a power-law form p(k) ∝ k−γ ; the tail is particularly ex-

0 20 40 60 80
k

0.00001

0.0001

0.001

0.01

0.1

1

P
(k

)

T = 1.2
T = 1.5
T = 1.7
random
exp

Figure 4: Empirical cumulative degree distribution functions
for three different values of the temptation T . A Poissonian
and an exponential distribution are also plotted for compari-
son. Distributions are discrete, the continuous lines are only
a guide for the eye. Lin-log scales.

tended and there is no characteristic degree. The cumulative
degree distribution function (CDDF) is just the probability
that the degree is greater than or equal to k and has the ad-
vantage of being less noisy for high degrees. Fig. 4 shows
the CDDFs for the Hawks-Doves for three values of T , and
q = 0.5. A Poisson and an exponential distribution are also
shown for comparison. The Poisson curve actually repre-
sents the initial degree distribution of the (random) popula-
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Figure 5: Empirical cumulative degree distribution functions
for three different values of the parameter T . Log-log scales.

tion graph. The distributions are far from the Poissonian that
would apply if the networks would remain essentially ran-
dom. However, they are also far from the power-law type,
which would appear as a straight line in the log-log plot of
Fig 5. Although a reasonable fit with a single law appears
to be difficult, these empirical distributions are closer to ex-
ponentials, in particular the curve for T = 1.7. It can be
observed that the distribution is broader the higher T is. In
fact, although cooperation is attained nearly everywhere in
the game’s configuration space, higher values of the tempta-
tion T mean that agents have to rewire their links more ex-
tensively, which results in a higher number of neighbors for
some players, and thus it leads to a longer tail in the CDDF.
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Figure 6: Empirical cumulative degree distribution functions
for three different values of the temptation q. Lin-log scales.

The influence of the q parameter on the shape of the de-
gree distribution functions is shown in Fig. 6 where aver-
age curves for three values of q, T = 1.7, and S = 0.2,
are reported. For high q, the cooperating steady-state is
reached faster, which gives the network less time to rear-
range its links. For lower values of q the distributions be-
come broader, despite the fact that rewiring occurs less of-
ten, because cooperation in this region is harder to attain and
more simulation time is needed.

Cooperator Clusters
From the results of the previous section, it appears that a
larger amount of cooperation than what is predicted by the
standard theory for mixing populations can be reached when
ties can be broken and rewired. We have seen that this dy-
namics causes the graph to acquire local structure, and thus
to loose its initial randomness in terms of links. In other
words, the network self-organizes in order to allow play-
ers to cooperate as much as possible. At the microscopic,
i.e. agent level, this happens through the formation of clus-
ters of players using the same strategy. Fig. 7 shows one
typical cooperator cluster .

Figure 7: A typical cooperator cluster. Links to the rest of
the network have been suppressed for clarity. The size of a
node is proportional to its connectivity in the whole graph.
The most connected central cooperator is shown as a square.

In the figure one can clearly see that the central cooperator
is a highly connected node and there are many links also
between the other neighbors. Such a tightly packed structure
has emerged to protect cooperators from defectors that, at
earlier times, were trying to link to cooperators to exploit
them. These observations help understand why the degree
distributions are long-tailed (see previous section), and also
the higher values of the clustering coefficient in this case.

Conclusions
In this paper we have introduced a new dynamical popu-
lation structure for agents playing a series of two-person
Hawks and Doves game. The most novel feature of the
model is the introduction of a variable strength of the bi-
directional social ties between pairs of players. These
strengths change dynamically and independently as a func-
tion of the relative satisfaction of the two end points when
playing with their immediate neighbors in the network. A
player may wish to break a tie to a neighbor and the proba-
bility of cutting the link is higher the weaker the directed link
strength is. The ensemble of weighted links implicitly rep-
resent a kind of memory of past encounters although, tech-
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nically speaking, the game in not iterated. The model takes
into account recent knowledge coming from the analysis of
the structure and of the evolution of social networks and, as
such, should be a better approximation of real social con-
flicting situations than static graphs such as regular grids.
In particular, new links are not created at random but rather
taking into account the “trust” a player may have on her rela-
tionally close social environment as reflected by the current
strengths of its links. This, of course, is at the origin of the
de-randomization and self-organization of the network, with
the formation of stable clusters of cooperators. The main re-
sult concerning the nature of the pseudo-equilibrium states
of the dynamics is that cooperation is greatly enhanced in
such a dynamical artificial society. This is encouraging, as
the Hawks-Doves game is a paradigm for a number of social
and political situations in which aggressivity play an impor-
tant role. The standard result is that bold behavior does not
disappear at evolutionary equilibrium. However, we have
seen here that a certain amount of plasticity of the networked
society allows for cooperation to be attained. Although the
model is an extremely abstract one, it shows that there is
place for peaceful resolution of conflict. Ongoing and fu-
ture work for which there is no space here will deal with the
stability of the system against massive and targeted defector
invasions in a society of cooperators. Other strategy evolu-
tion models based on more refined forms of learning than
simple imitation should also be investigated.
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Abstract

Virtual ecosystems, where natural selection is used to evolve
complex agent behavior, are often preferred to traditional
genetic algorithms because the absence of an explicitly de-
fined fitness allows for a less constrained evolutionary pro-
cess. However, these model ecosystems typically pre-specify
a discrete set of possible action primitives the agents can per-
form. We think that this also constrains the evolutionary pro-
cess with the modellers preconceptions of what possible so-
lutions could be. Therefore, we propose an ecosystem model
to evolve complete agents where all higher-level behavior
results strictly from the interplay between extremely simple
components and where no ‘behavior primitives’ are defined.
On the basis of four distinct survival strategies we show that
such primitives are not necessary to evolve behavioral diver-
sity even in a simple and homogeneous environment.

Introduction
The evolution of ‘novel’ behavior by autonomous agents in
any simulated system is determined by the predefined com-
ponents and dynamics of that system. Consequently, the
evolutionary possibilities of such a system are necessarily
restricted and biased by the preconceptions of the designer.
Artificial ecosystems like Echo (Holland, 1990), PolyWorld
(Yaeger, 1994; Yaeger and Sporns, 2006), LEE (Menczer
and Belew, 1996b,a), or Geb (Channon and Damper, 1998)
use natural selection to overcome one of these biases im-
posed by the need for an explicit fitness function (artificial
selection) in traditional genetic algorithms. All these mod-
els vary in the employed level of abstraction and in the de-
tails regarding constituents of the agents under evolution-
ary control (e.g. sensory system, controller, actuation, and
morphological properties). However, all of these models re-
semble each other in that the agents adapt to choose from a
predetermined and discrete set of behavior primitives which
are assumed to be relevant for survival (e.g. eating, mating,
fighting, moving, turning). This forces the designer of the
system to explicitly decide what actions are available and
possibly restricts the nature in which they are implemented
by the agents.
In our model (Pichler and Cañamero, 2007) actuation is

solely based on movement and reproductive investment.
More complex behaviors (e.g. obstacle avoidance, fighting,
foraging) are phenomena arising from the interplay between
agents and environment. We are interested in what strate-
gies arise and how they are implemented by low-level in-
teractions of the agent components and its environment in
the absence of pre-specified behavior primitives. We think
that such an approach further reduces the designer bias and
might be more conducive to evolving diverse and adaptive
survival strategies.
The results of our simulation show that in such a setting
behavioral diversity emerges even in a simple and homo-
geneous environment. We discuss four different and viable
survival strategies and their properties on the level of the in-
dividual agent as well as of the whole population.

Virtual Ecosystem
The simulated environment is a space-continuous, time-
discrete wrap-around world containing different kinds of
objects. All objects in the environment are circular and
share certain properties; they have an energy signature e(t),
a solidness ρ and a radius r. The energy signature indicates
the amount of potentially consumable energy at time t. The
solidness determines whether an agent can pass through an
object (ρ = 0) or whether it collides with it (ρ > 0). For
agents, radius and solidness are heritable parameters which
affect their energy budget in critical ways. Their energy
signature is the amount of energy remaining in the world
after an agent’s ‘death’ (see next section). Beside agents
the environment contains two other types of object: energy
sources and obstacles.
An energy source has a given maximum energy capacity
c > 0 which defines its initial energy content. If an agent
is in contact with an energy source, a certain amount of
energy is transferred from the source to the agent and
thereby consumed. The energy content of a source cannot
fall below zero and ‘grows’ back to its capacity at a constant
rate. Energy sources have an energy signature equal to their
current energy content, a solidness of zero and a radius
equal to their energy signature. Throughout the simulation
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they are relocated to random positions with a certain
probability. This mechanism was introduced to ‘encourage’
active foraging.
An obstacle is an object with zero energy capacity
(e(t) = 0) but non-zero solidness. The radius of an obstacle
equals its solidness. If an agent collides with an obstacle
it is stopped and loses an amount energy depending on its
speed and the properties of both objects.

Agent Components
The morphology of an agent is defined by its radius, its
solidness and the number and configuration of actuators and
sensors along the circumference of its body. Radius and
solidness define the mass m = ρ · r2π and the maximum
energy capacity c =

√
m of an agent. The capacity

determines the amount and the rate at which the agent can
absorb energy from an energy source. It also determines the
cost for reproduction (e.g. 0.6 · c) and influences energy
loss (damage) in a collision.

Sensing and Acting
We distinguish two types of sensors; internal sensors pro-
vide information about the internal variables of the agent
and external sensors respond to properties of objects in the
environment. All sensors function as input nodes to the neu-
ral controller network. We define two fixed internal sensors
(life energy l(t), reproductive depot d(t)) which cannot be
removed by evolution. However, they are not necessarily
connected to the rest of the network, so it is not predeter-
mined whether or not they are used (see Fig. 2).
External sensors are defined by their position on the body
and the type of stimulus they respond to. Each external
sensor corresponds to an object property (e(t),ρ , r). The
information provided by the environment might roughly be
thought of as a chemical gradient. The activation a of a sen-
sor s is given by

as =
∑

o∈O

vo

d2
o + 1

(1)

where O is the set of all objects o within a maximum
range, v is the value of the respective object property (e.g.
solidness) and d is the distance between the sensor and the
object.
Every agent has an actuator which regulates reproductive
investment. At every time step an energy amount propor-
tional to the activation of that actuator is transferred from
the agent’s life energy to its reproductive depot. If this
depot reaches a certain threshold, the agent reproduces
and an imperfect copy is placed close to it. If an agent
‘dies’ it is replaced by a corpse object with an initial energy
content f(0) = d(t) + 0.1 · c. Corpses are like
energy sources, only their energy decreases (decay) over

Figure 1: Exemplary body of a first generation agent with
two sensors (round) and one locomotive actuator (arrow in-
dicates impulse direction).

time. In addition to the reproductive node, an agent can
have any number of locomotive actuators. Individually,
these work like little jets or flagella, giving an impulse
in a specific direction, but combined they can be used to
generate more complex movement. A locomotive actuator
is defined by its position on the agent’s body and the angle
it makes with it (see Fig. 1). This allows us to calculate a
rotational and a translational component proportional to the
activation of the actuator. The integration over all actua-
tors yields the overall movement of the agent. An actuator
is a node in the output layer of the neural controller network.

Neural Controller
Initial agents have few fixed components and no specific
functionality. As described above, every agent’s controller
network has two internal sensors in the input layer and the
reproductive actuator as a node in the output layer. Addi-
tionally, initial networks have a small random number of ex-
ternal sensors and locomotive actuators. The two layers are
connected by a small random number of links (see Fig. 2).
We use nodes with piecewise linear transfer functions and
real valued (unbounded) connection weights. The output
No(t) of a node is given by:

No(t) =







0 ... Na(t) < θ
1 ... Na(t) ≥ θ + I

Na(t)−θ
I

... otherwise
(2)

where Na(t) is the accumulated activation of the node, θ
is the threshold and I defines a responsive range (slope of
the function). The two parameters that define the operating
range of a node (θ and I) and the connection weights are
randomly initialized and evolved individually for each node
and connection respectively. All nodes are arranged in lay-
ers and signals travel one layer per time step.
During evolution, both the structure and the parameters of
the neural controller networks are freely evolved. Note that
in many neuroevolution scenarios (e.g. (Kodjabachian and
Meyer, 1998; Stanley and Miikkulainen, 2004)) neural net-
work topologies are evolved to fit specific input and output
structure (sensors and actuators). In this model the func-
tion and structure of the sensory and actuation systems are
completely under evolutionary control. Variability operators
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during reproduction may modify all parameters of existing
structure and can also add or remove components (sensors,
actuators, hidden layers, nodes, and connections) to form ar-
bitrary recurrent networks.

Figure 2: Controller networks have two fixed internal sensor
nodes (life energy level l(t), depot level d(t)) and the depot
node ∆d(t) in the output layer (left). Additionally, every
first generation agent has a (small) random number of sen-
sors, actuators, and connections (right); All parameters are
randomly initialized.

Metabolism
The energy budget of an agent is influenced by the proper-
ties of its body and its behavior. The base metabolic cost for
an agent increases linearly in its mass and in the number of
network components. Additional costs are variable and con-
sist of locomotion costs (actuator activation in proportion to
mass) and information processing costs (accumulated node
activation). These relationships between the agent and the
environment defined by the metabolic model shape the dy-
namics of the system. They create the selection pressures
in this artificial ecosystem. All survival-relevant capabili-
ties (sensing, acting, information processing, energy stor-
age) come at an energetic cost. The balance of these as-
pects should create various trade-offs where agents can fol-
low different strategies to successfully acquire and manage
resources and generate a sustained population.
The energy balance of the agents and the resource renewal

Figure 3: Total energy balance of agents and environment.

(energy sources) and decay (corpses) determine the total en-
ergy budget of the ecosystem (illustrated in Fig. 3) which
is updated every time-step. The ecosystem is not a closed
system with respect to energy as energy is added to it and

dissipates via the metabolic consumption of the agents de-
scribed by the following equations:

lt+1 = lt + ∆et − ∆dt − Cs − Cot − Cat (3)

with:

Cs = c · µcc + µcc (4)
Cot =

∑

n∈N

ant · µco (5)

Cet =
∑

e∈E

ant · µce (6)

where l is the life energy level of the agent at time t, ∆e is
the energy consumed, ∆d the energy lost to collision dam-
age, Cs are constant costs (with c the capacity of the agent),
Co are the costs for node activation a over all nodes n in N
and Ce are costs for actuator activation a over all actuators e
in E (including the investment in reproduction). The µ’s are
proportionality constants which were set by trial and error
with the goal of balancing the influence of each aspect in a
way that each would have a significant and similar impact
while still allowing evolution to occur.
The energy content E of an energy source s at time t is:

Es(t + 1) = Es(t) −
∑

a∈A′

∆es
a(t) + µg (7)

where a is an agent in the set A′ of all agents which have
consumed energy from source s at time t. The energy con-
tent of a source cannot be negative. This equation also holds
for corpses if the constant growth rate µg > 0 is replaced by
a decay rate µd < 0.

Reproduction
There are many possible ways to define a reproduction
criterion in a foraging scenario like the one presented here.
Two straightforward ideas are either a life time dependent
criterion or using the life energy of an agent (see e.g.
(Bedau et al., 1992)). Here, agents would periodically
reproduce after a certain number of time steps or whenever
their energy level reaches a specified threshold. However,
solely ‘optimizing’ individual longevity disables survival
strategies with short individual life times and thereby
excludes potentially interesting dynamics like persistence
vs. progeny trade-offs (Polani et al., 2006). The same is
true when using the energy threshold as the single criterion;
this strips the agent of much of its autonomy on how to
manage the acquired resources. Using the reproductive
actuator we have a reproduction criterion which gives the
agents full control over when and to what extent they invest
in reproduction. Whenever this node is activated an amount
of energy proportional to the activation is transferred from
the agent’s life energy to its reproductive depot. Once this
depot reaches a certain threshold, an imperfect copy is
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placed close to the agent. Reproduction in our model is
strictly asexual. Mutation operators exist to modify all body
properties and the topology as well as all parameters of the
controller network. While there is no final consensus about
what is the best way to encode neural networks for artificial
evolution it has been shown repeatedly (see e.g. (Stanley
and Miikkulainen, 2002) or (Seys and Beer, 2006)) that the
encoding has a crucial impact on the evolvability of the
system. Keeping this in mind we presently use no ‘genetic’
encoding and all mutation operators are performed directly
on the agent’s object structure (this is equivalent to a direct
encoding scheme).
Adaptation and development in this experiment occurs
solely on an evolutionary scale through reproduction.
Agents do not change or adapt during their lifetime.
However, change on an evolutionary scale can only happen
if a turnover of generations exists. In a classical genetic
algorithm this turnover is an inherent property which is
explicitly enforced by the design of the algorithm itself. In
our model (and other models based on natural selection)
this turnover of generations is to some extent an emer-
gent property of the dynamics of the system. Because
reproduction is ‘optional’ it is in some sense an adaptation
itself. Agents have to actively invest their life energy
into creating offspring and doing so jeopardizes their own
survival because the invested energy is no longer available
to them and reproducing creates a direct competitor in the
vicinity. A first intuition might suggest that this would
eventually lead to zero investment in reproduction. In this
case evolution would cease to happen or, in fact, never
happen at all. On second thought, however, it is clear that in
a dynamic based on natural selection the notion of selecting
for zero reproduction is contradictory as reproduction is the
very vehicle of selection. Additionally, in an environment
where individual survival is to some degree dependent on
chance and thus effective immortality is unachievable, an
infertile population is unsustainable and inevitably doomed.
Randomly created agents are more often than not unable
to survive for any length of time, let alone spare enough
energy to reproduce if they even do so at all. To guarantee
a certain number of agents in the environment we use
a mechanism similar to (Yaeger, 1994). The minimum
enforced agents mechanism (MEAM) creates new random
agents whenever the total population size falls below a given
threshold. Therefore, it guarantees that there are always
agents present in the environment but becomes inactive
once agents reproduce and successfully establish a sustained
population of a certain size. Population size is therefore
not fixed or constant, but depends on the environment and
the properties of the evolved agents (see next section). To
track the existence of a generational turnover we assign a
phylogenetic generation (PG) to each agent. Agents created
by the MEAM have a PG of zero, their offspring a PG
of one, and so on. Evolution only occurs if this number

increases.

Experiment and Results
To obtain the results discussed in this paper the simulation
was run in relatively small 100x100 unit arenas (minimum
agent size is 0.1 units) with 35 energy sources and 35
obstacles. Energy sources had an energy capacity of 1.0
and obstacles a solidness of 1.0. Objects were randomly
placed in the environment following a uniform distribution.
We repeated the simulation 85 times using different random
seeds for the random number generator which determines
object placement, initial agent configuration and all muta-
tion operators. The minimum enforced number of agents
was 15 in all 85 runs. Since in this setup there is no obvious
‘convergence point’, simulations were run until the average
PG of a population was above 500 or a set maximum time
was reached (80 hours). From each of the 76 ‘successful’
runs (where a sustained population was established) a
sample of the first 100 agents of PG ≥ 500 was taken.

Behavior and Morphology
In 76 out of 85 runs the MEAM eventually established a sus-
tained population and evolution could occur. Actual compu-
tation time to reach this point depended greatly on a number
of factors: the moment a sustained population was estab-
lished, the average population size, the complexity of the av-
erage controller network, and the average lifetime of the in-
dividual agents. While in some runs a sustained population
was established almost immediately, in 9 runs it did not hap-
pen at all before the maximum time was reached. These runs
were discarded. A general observation was that all popula-
tions were quite homogeneous within a single run. On rea-
son for that is that all agents within the population of one run
were ultimately descendants of one respective founder agent
which spawned the initial population. Other possible rea-
sons are that the environments were rather small (an agent
could travel ‘around the world’ frequently during its life-
time) and both obstacles and energy sources were uniformly
distributed. In the following sections we will describe some
of the evolved agents, their behavior and their morpholo-
gies (for illustrative examples that convey the nature of the
evolved strategies much better than words we kindly refer
the reader to the videos on the first author’s website1). All
agents in this experiment exhibited base movement (move-
ment in the absence of stimulus). For the first part of the
analysis of the results we distinguish three basic evolved be-
havior patterns solely by observable behavior:

• Energy response: agents show some response (e.g. slow-
ing down) in the presence of or on contact with an energy
source.
1http://homepages.feis.herts.ac.uk/˜pp6bs/
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ER EA OA
Drifter yes no no
Forager yes yes no
Avoider yes no yes
Allrounder yes yes yes

Table 1: Classification of agents by the three observable
behavior patterns: ER (energy response), EA (energy ap-
proach), and OA (obstacle avoid).

• Energy approach: agents change direction and actively
try to approach an energy source.

• Obstacle avoidance: agents change their behavior in the
presence of an object of non-zero solidness.

The definition of these behavioral patterns is intentionally
careful. If an agent changes its behavior in response to
an obstacle, it might do it in a way that will generally in-
crease the probability of avoiding a collision. However,
those mechanisms are not perfect and in some situations the
behavioral change of the agent might actually cause it to hit
the obstacle even harder than without any change. Because
behavior is the result of the interaction between the agent
and the environment (Beer, 1995), no observer would speak
of the resulting behavior as obstacle avoidance if the agent
actually makes the impact worse.
We have classified the agent strategies in four basic kinds,
based on the three behavioral patterns identified above (see
Tab. 1). Overall, agents of the same class share essential
behavioral tendencies, even though they vary in the details
of their implementation. Figure 4 shows the morphological
properties of the four agent classes, categorized by behav-
ior patterns, and Fig. 5 shows differences between agent
categories on the population level. It is interesting (though
not surprising) to note that even though the categorization
was done solely on the basis of behavioral observations it
is nearly perfectly reflected in the body properties of the
agents. As could be expected it turns out that if both body
and controllers are evolved as a functional unit one cannot
discuss one without the other. The evolutionary dynamics
shape the complete agent and adapt it to a certain survival
strategy.

Drifters exhibit relatively fast base movement using their
(usually) single functional locomotive actuator. With a sin-
gle actuator an agent cannot change its direction, it can only
modulate its speed. Consequently, drifters can neither avoid
obstacles nor can they actively approach an energy source.
Instead, they modify their speed in the presence of an energy
source. This is achieved either by ‘monitoring’ their life en-
ergy supply and stop moving if it exceeds a certain threshold,
or by using energy sensors to measure the energy concentra-
tion of the environment. Whenever the energy concentration

is high they slow down or come to a complete stop. Drifters
are typically very small and light-weight (see Fig. 4). Their
life span is comparatively short but their population size is
larger than that of all other types (see Fig. 5). Drifters usu-
ally only have one sensor, one (functional) actuator and min-
imal networks to control their extremely simple behavior.
In many simulation runs, the first sustained population con-
sists of drifter-like agents. Sometimes they evolve into other
types, but often a relatively stable drifter population estab-
lishes itself where only the morphological properties are fur-
ther refined to suit this strategy. It is worth noting that even
this simple strategy requires a fair amount of adaptation to
first acquire and then ‘calibrate’ the required sensory and
actuation system. No viable strategy emerged where output
was constant (e.g. comparable to ‘always go forward and
kill’ reported in (Channon and Damper, 1998)).

Foragers have base movement, change their behavior in
the presence of an energy source, but do not avoid obstacles.
In their simplest form, a single energy sensor and one ac-
tuator placed roughly opposite the one responsible for base
movement are sufficient to perform successful approach be-
havior. The translational component of the base actuator
is counteracted by a usually slightly tilted second actuator.
This results in an inward spiraling movement dependent on
the strength of the sensory stimulus. However, the exper-
iments show that usually two energy sensors and a larger
number of actuators are used to implement this behavior.
Also the actual behavior resulting from the agents’ actions
and its robustness vary from population to population and
over evolutionary time. Some agents will always manage to
approach an energy source within their sensor range while
others may only succeed if they are approaching from a par-
ticular side. Another difference is how well an agent is able
to keep contact once it has approached the energy source.
While some agents spend most of the time ineffectively cir-
cling around an energy source, others can perfectly center
themselves over them and remain there until the source is
either fully consumed or disappears.
While drifters usually minimize their body size to the lower
bound of 0.1, foragers almost consistently have a size of
about 0.3 (see Fig. 4). Some foragers also increase their
solidness instead of their size. Both adaptations lead to
higher capacity but also higher movement costs. Foragers
have to find energy more often than drifters but also con-
sume energy sources more efficiently.

Avoiders follow a somewhat surprising strategy. They
are the only agents that completely abandon energy percep-
tion through external sensors. Avoiders exhibit base move-
ment and obstacle avoidance. The different populations re-
sponded to contact with energy sources in different ways. In
all cases the resulting behavior can be explained by the in-
ternal sensor for the agent’s life energy level. In the first case
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Figure 4: Morphological properties (all normalized to 1) of evolved agents (PG 500) categorized by behavior patterns.

the base actuator of the agent is inhibited once its life energy
level exceeds a certain threshold and the agent stops on top
of the energy source. In the second case the same trigger ac-
tivates the actuator used for obstacle avoidance causing the
agent to start moving on a perfectly circular trajectory. In
both cases the agent (at least partly) consumes the energy
source without directly sensing its presence. The respec-
tive behavior patterns persist even if the energy source dis-
appears until the life energy level drops below the triggering
threshold. Avoiders have slower base movement than other
agents. This seems to be an adaptation to their increased
weight and their consumption strategy as there is a consid-
erable delay between first contact with the energy source and
the life energy reaching the needed threshold to trigger the
agent’s response. The observed avoiders are bigger than for-
agers and have a higher solidness. The increased solidness
gives them a much larger capacity at a medium risk because
of their obstacle avoidance capabilities.

Allrounders are agents which exhibit all three behavior
patterns. Basically they are the same as foragers with the
added ability to avoid obstacles. Their foraging behavior
is the same and they can sometimes evolve from forager
agents. However, they tend to have a higher capacity than
basic foragers. Most of the evolved allrounders achieve this
by increasing the solidness value. As with avoiders the risk
of increasing the solidness is lowered by the ability to avoid
obstacles. Allrounders (as can be expected) have the most
complex networks and the most sensors and actuators. They

also have the smallest population sizes.

General Properties To show that behavioral diversity
emerges even in simple and uniform environments we have
only presented four survival strategies. However, it is worth
noting that changing only the concentration of obstacles and
energy sources can lead to completely different behavioral
strategies. We will mention one observed type of agent be-
cause of their radically different approach. This strategy
appeared in environments with high concentration of both
obstacles and food sources. A high concentration of obsta-
cles ‘penalizes’ movement early in evolution when agents
are not yet well adapted (by either being light-weight or
by avoiding the obstacles). There, agents can be nearly or
completely sessile. These agents exhibit no base movement
at all. They remain stationary until an energy source ap-
pears within their sensor range. Once in range, they quickly
approach the energy source, center themselves over it and
remain there. These agents have much larger bodies and
simpler controller networks than mobile agents. Larger size
consumes a lot of energy when moving but it also increases
the maximum energy capacity of the agent. A larger agent
which does not move can survive longer without consuming
energy.
More generally, however, selection seems to favour small
and light-weight agents that exhibit some base movement
early in the evolution. This is further optimized if agents fol-
low the drifter strategy. Agents with an active foraging strat-
egy (foragers and allrounders) are slightly larger and agents
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Figure 5: Average population size (left) and average population age (right) of evolved agent populations categorized by behav-
ioral strategies. Error bars show the 95% confidence interval. The large bars for avoider populations are due to the small sample
size (3).

with slow base movement are even larger still to increase
their energy capacity. All agents without collision avoidance
minimize solidness. Agents with collision avoidance often
increase solidness and size to increase their energy capacity.
Sensors are effectively restricted to the required minimum
while actuators seem to accumulate even if they are not used
efficiently or not at all (see Fig. 4).
Reproductive strategies are very hard to analyze in detail as
they can only be understood by analyzing the dynamics of
each agent’s network. Supporting the rationale behind our
reproductive criterion which gives the agents control over
when they invest in offspring, constant reproductive activity
(irrespective of internal and external circumstances) did not
emerge as a viable strategy in a single sustained population.
However, most agents follow simple reproductive strategies
or combinations thereof; these can roughly be summarised
as follows: Invest in reproduction if energy is present, oth-
erwise don’t. There are different ways to achieve this. The
most commonly used is a positive correlation between the
energy sensors and the actuator for the reproductive depot.
Alternatively, the activation of the reproductive depot is pos-
itively correlated to either the internal energy level or the ac-
tivation of a locomotive actuator used for foraging. Many
agents use a combination of these strategies. Additionally,
often a negative correlation between a solidness sensor (or
an actuator used for collision avoidance) and the reproduc-
tive activity exists.

Discussion & Conclusion
We have shown data of four distinct behavioral strategies
evolved in a virtual ecosystem. The different types of agents

evolved ‘high level’ behaviors (foraging, obstacle avoid-
ance) without a discrete set of predefined behavior primi-
tives and without other pre-defined functionality or struc-
ture. All behavior is the result of the agents interacting with
the environment via a very simple but versatile locomotion
model. The evolution was done in an artificial ecosystem by
natural selection and both neurocontrollers as well as mor-
phology (size, solidness, sensory and actuation structure) of
the agents were freely evolved. Based on the results of these
more general experiments we are satisfied that this approach
is very capable of evolving diverse behavior while further
reducing the need preconceive necessary action possibilities
the agents might need to survive under different environ-
mental conditions. To keep evolved strategies comparable
we have only used a small and homogeneous environment
in this experiment. A possible extension of the presented
experiment is to investigate the impact of more variable en-
vironments on the evolution of survival strategies.
While we think that replacing discrete behavior primitives
by our simpler actuation model in combination with the pro-
posed reproduction criterion is more conducive to the evolu-
tion of diverse behavior, it is also clear that such a reduction
of the set of predefined biases is not possible or even desir-
able ad infinitum. Apart from obvious computational com-
plexity considerations the actual goal of the simulation has
to be considered. We tried to create an evolutionary setting
which is flexible enough to allow the evolution of distinctly
diverse and non-trivial agent strategies. In other situations a
different set of biases might be appropriate. One main mes-
sage of this paper is that, also when using natural selection
in an ecosystem scenario, one has to be aware what biases
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are built into the system and how they affect the simulation.
One avenue of future research will consist of a comparative
study about how different reproductive criteria influence the
evolved diversity of agent strategies.
Another future aim of this project is to investigate the po-
tential emergence of phenomena comparable to basic affect
in natural organisms. Basic affect in this context includes
individualistic affect like approach-avoidance, arousal and
agonistic affect, as well as prosocial affect like cooperation.
These phenomena are thought to be the physiological bases
for higher level affect (as e.g. described in (Buck, 1999)).
We are currently extending our ecosystem model to include
the possibility to evolve simple neuromodulatory mecha-
nisms which are used in animals to support affect. Simi-
lar to neuromodulation these mechanisms would allow the
neurocontrollers to regulate whole groups of neurons as op-
posed to the direct synaptic transmission in standard neural
networks. Therefore, in the next set of experiments we will
investigate if providing this possibility will lead to the evo-
lution of agents that exhibit properties normally ascribed to
such basic affect. Targeted results of these experiments in-
clude changes in foraging behaviour depending on the life
energy level (arousal) or flexible weighting in approach-
avoidance conflicts (e.g. approaching energy source close
to an obstacle only in certain situations). If such mecha-
nisms are successfully evolved we expect agents to develop
more flexible behavior strategies which are also more robust
to changes in the environment. We also hope to be able to
draw some conclusions about the necessary conditions and
origins of functionally similar processes in real organisms.
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Abstract

As part of research towards the CoSMoS unified infrastruc-
ture for modelling and simulating complex systems, we re-
view uses of definitional and descriptive models in natural
science and computing, and existing integrated platforms.
From these, we identify requirements for engineering models
of complex systems, and consider how some of the require-
ments could be met, using state-of-the-art model management
and a mobile, process-oriented computing paradigm.

Introduction
In computing contexts, and particularly the context of artifi-
cial life, complex systems are studied through computer sim-
ulation. Reynolds’ boids (Reynolds, 1987) is a classic ex-
ample, where the complex flocking or swarming behaviours
are shown by visualisation of a large number of simple boid
processes obeying simple rules.

Simulations are used to model complex systems – bio-
logical phenomena, economies, human societies, and much
more. Typically, a simulation is built to explore a specific
problem in a specific context; there is little attempt to de-
velop generic solutions, or to record any design or engi-
neering. Often a valid simulation is judged to be a model
that produces the expected results by a process that looks
a bit like reality; there is little concern for the quality of
the underlying simulation (Epstein, 1999). General support
for complex systems and agent modelling tends to be at the
implementation level (see, for instance, the ACE resources,
www.econ.iastate.edu/tesfatsi/ace.htm). An immediate re-
sult of this focus is a long-running intellectual debate about
whether it is possible to do science through simulation (see
Miller (1995); Paolo et al. (2000); Wheeler et al. (2002);
Bryden and Noble (2006)). Similar issues with the validity
of simulation evidence arise in safety engineering and other
dependability, assurance (Alexander, 2007). For ALife, it
has already been noted (e.g. by S. Bullock, in Wheeler et al.
(2002)) that to assess the role and value of complex systems
simulation, we need to address deep questions of compara-
bility: we need a record of experience, of how good solu-
tions are designed, of how to chose parameters and calibrate

agents, and, above all, how to validate a complex system
simulation.

The sorts of systems in which we are interested are com-
plex in the sense of having elaborate behaviour at a high
level that is the consequence of many simple behaviours at
a lower level. The high-level behaviour cannot be deduced
as a simple combination of low-level behaviours – in the
same way that the velocity of a flock of birds is not deriv-
able by any simple analysis of the behaviours of the indi-
vidual birds. Space, time and the environmental context are
critical features of these systems. Engineering of such com-
plex systems requires support for the software engineering
of computer simulations, for use in the investigation of com-
plex systems in nature, in vitro and in silico.

Ultimately, our goal is to engineer simulations of sys-
tems exhibiting several layers of emergence – the lowest
level gives rise to emergent behaviours at an intermediate
level, and the ensemble of these behaviours gives rise to
further behaviours at still higher levels (see Turner et al.
(2007); Stepney et al. (2006); Polack et al. (2005)). We see
this as an essential feature of initiatives such as molecular
nanotechnology that aim to engineer interventions in natural
and complicated systems through management of emergent
properties; our work is also relevant to macro-scale complex
systems – often referred to as systems of systems – such as
human organisational systems, traffic management.

This paper reports an initial investigation into the state of
the art in complex system modelling and software engineer-
ing, that leads to a consideration of how existing approaches
and techniques can be adapted and used for engineering sim-
ulations of complex systems. We consider some interdis-
ciplinary approaches to modelling and simulating complex
systems that adopt software engineering models and tools to
describe complex natural systems. We identify advantages
of these models, but also their failure to adequately express
and manage emergent properties.

The state of the art in software engineering of simulations
for systems biology comprises a number of interdisciplinary
projects that integrate modelling tools and visualisation fa-
cilities, to construct specific, flexible platforms for experi-
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mentation. The review shows that these projects have many
of the expressive features needed for a platform, but that they
do not necessarily generalise in the ways that we wish. As a
first step towards a general simulation platform, we consider
how advances in software engineering might help.

Models of Complex Emergent Simulation
A model is an abstraction that is made to aid understand-
ing or description of something. We can distinguish two
orthogonal modelling goals: description and definition. For
a complex emergent system, a descriptive model might cap-
ture aspects of the observed high-level behaviour; in mod-
elling natural systems, scientists use models to capture what
they observe. A definitional model is more typical of con-
ventional engineering – it expresses required characteristics
of a system at an appropriate level of abstraction. A def-
initional model can be refined, translated and analysed, to
improve understanding of system characteristics, and, in en-
gineering, to support construction of an artificial system.

Here, we consider some existing approaches, divided into
mathematical models and diagrams. Both include models
that are descriptive and models that are definitional. We then
consider existing tool support for these approaches. Finally,
we look at two state-of-the-art approaches that combine ex-
isting modelling and tool support. Our aim is to postulate
requirements for engineering simulations of complex sys-
tems, through identification of good practice in explanatory
and exploratory simulation of complex systems.

Mathematical Models
In science, mathematical models are essentially descriptive,
attempting to replicate observed aspects of natural struc-
ture or behaviour. Physics and biology often use differential
equations to approximate the observed behaviour of a high-
level system, based on continuous variables at a lower level.
For example, the Lotka-Volterra differential equations are
important for modelling predator-prey systems. Stochastic
models (for instance, Monte Carlo simulations) also aim to
capture the high-level behaviour of complex systems.

The scientific use of mathematical models is instructive;
the models allow scientists to explore variables that might
contribute to observed behaviour. Once candidate variables
are selected, the hypothetical result of changing the values
or relative importance of variables can be studied. The best
mathematical models provide convincing evidence that the
modelled variables do indeed influence the real behaviour.
These models also provide benchmark results: a simulation
that produces realistic observable behaviour should also pro-
duce data. Mathematical models could form a basis for eval-
uating simulation-derived data against real-world data.

However, in the context of complex systems engineering,
there are several limitations to the scientific use of mathe-
matical models. The models rely on already having identi-
fied the key system components; furthermore, there must be

an objective, typically discretised, representation of those
components. In the real world, emergent behaviour does
not arise through solving differential equations; these mod-
els are analogues, but do not provide significant insight into
the continuous internal process of a complex system. Fur-
thermore, the scientific models are not definitional – they do
not directly admit engineering refinement or analysis.

In software engineering, definitional mathematical mod-
els use discrete mathematical concepts, from set theory,
predicate logic, etc. Models are formalisations of program-
ming concepts such as the Hoare logics (Hoare, 1969) and
Dijkstra’s predicate transformers (Dijkstra, 1975). Referred
to as formal specifications, the models capture the structure,
behaviour and/or communication protocols of systems, and
provide the basis for various analyses of correctness.

Diagrams
Historically, biological illustration uses bespoke, informal
sketches to express observed relationships or interactions,
without any systematic notational definition. More recently,
modelling techniques have been adopted from other disci-
plines – systems biologists, and their interdisciplinary col-
laborators, are turning to existing diagrammatic notations
with defined syntax (and sometimes defined semantics). The
use of diagrams is still largely descriptive, even though the
notations originate in the definitional context of software en-
gineering. Three classes of diagram can be distinguished.
Connectivity diagrams express the known connectivity of
natural systems, using analogies to electrical circuits or soft-
ware components. Examples include circuit diagrams, inter-
action diagrams, and various message sequence charts. Con-
nectivity diagrams map well to mathematical languages –
process algebras have been used to model many aspects of
cells (and other biological systems) and to formally express
and analyse communication protocols.
Structural, or class, diagrams describe static components
and their relationships. The current fashion is to use class
diagrams, where a class is an intensional definition of some
local data (variables, constants) and the behaviours needed
to maintain that data. The extension of a class is an object,
that holds specific instances of data. The associations of a
class determine how objects of various classes can interact;
associations can be thought of as providing the potential for
connectivity, whilst class behaviours include those needed
to establish and maintain connectivity among objects.

An important, and biologically attractive, aspect of class
diagrams is that the classes and associations represent fam-
ilies of conformant instances (objects and links, respec-
tively). Thus, a class cell represents arbitrarily many similar
instances of the cell. Scientists sometimes prefer to capture
the structure of specific scenarios, using object diagrams –
an object is an instance of a class. In this context, snapshot
diagrams can also be used, to express the structural effects
of the execution of methods or operations on objects.
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A problem with structural diagrams for complex system
modelling is that there is no sense of the system as an entity –
the system view is a collection of type descriptions. We can
constrain the number of objects that are linked to each ob-
ject of another class, but we cannot easily define how many
objects exist (relatively or absolutely; the number of objects
may be highly dynamic). Furthermore, we can define meth-
ods to create and destroy instances, but these can only be
constrained by static predicates, not by system-wide obser-
vation or dynamic preconditions (how many are needed, or
how many can be supported by the current environment).
State machines are essentially variants on (finite) state au-
tomata. They express the possible evolutions, either of an
object or of a system as a whole. Object-level diagrams
have the advantage of simplicity – interaction is indicated
by shared events or generation of events to other state di-
agrams. There are many notations and variants, including
Petri nets, Harel state charts, UML state diagrams.

A state machine defines, firstly, the different states of exis-
tence of an object (or system). In current realisations of state
machines, a state is distinguished by the applicable range of
values of its variables (if a state machine relates to objects
of an object-oriented class, states are defined over attribute
values). Next, the state machine defines the ways in which
an object can change state, via transitions. A transition is
a response to an event, and an event is, typically, an input
received by the object (or system). Transitions are protected
by guards – a set of conditions, concerning the wider system
state (and perhaps the environmental context of the system)
that must be true if the state is to change. Semantically, a
state machine may require the state to change whenever an
event is received and the guards are true, or, less-commonly,
it may simply permit the state change.

An advantage of state machines for biological systems is
that they can express known stimuli and responses. Most
state machine notations admit concurrent states, which, with
the ability to capture incoming and outgoing events, make it
possible to construct sophisticated models of, for instance,
cell interaction. The diagrams express potentially-dynamic
structures, and can provide drivers for simulation of collec-
tions of objects. However, the same limitation arises as on
class diagrams: the number of objects that are operational at
any time cannot be defined in the models.

Tools for Models
In computer systems engineering, and in scientific descrip-
tion, modelling is increasingly tool-driven: use of models
generally means use of modelling tools. In computer sci-
ence, tools support formal specification (definitional math-
ematical modelling), providing type-checking and proof as-
sistance. Proof can be applied to conjectures about a model
and about the relationships between models (refinements, re-
trenchments, reifications). In natural sciences, descriptive
mathematical models are equations that simulate behaviour;

tools include statistical techniques to assist in identification
of variables (used in deriving equations) and in analysis of
results. Tools to solve equations (heuristic or absolute) are
also common. In both contexts, tools usually support a sin-
gle language, and generally require some expertise.

Tools for diagrammatic modelling tend to be
commercially-driven. Usability, in high-productivity
commercial contexts, takes precedence over strict confor-
mance to standards and accuracy. Like mathematical tools,
diagramming tools usually support one notation, which is
often a proprietary variant of a public, de facto or industry
standard, with at best limited documentation of less-
standard features. (Note that the widely-used UML is one
standardised notation that supports many views of a system
(http://www.omg.org/spec/UML/2.1.2/).) Traditional tools
for diagrammatic modelling support concrete syntax, and
may impose some well-formedness conditions. The ability
to check well-formedness has improved significantly in
recent tools aligned to management of models; the ability to
refine and analyse diagrammatic models is also improving.
We return to this aspect of tool support later.

A Brief Review of the State of the Art
Rather than attempting a review of complex systems mod-
elling in general, we consider two state-of-the-art ap-
proaches, noting their strengths and limitations.

Perhaps the most advanced computer contribution to the
simulation of real biological systems is currently found in
Reactive Animation (RA) (Efroni et al., 2007; Sadot et al.,
2007), an approach that combines off-the-shelf tools into a
sophisticated and flexible simulation environment. The key
modelling components are Rhapsody statecharts (state ma-
chines) and Live Sequence Charts (connectivity diagrams).
The authors describe their work as reverse-engineering bio-
logical systems into protocols and object-evolution models.
Experimentally-derived (real) biological data is used to pop-
ulate the initial state of a simulation. Among the facilities
for interacting with and manipulating the simulation are ad-
justable biological-scale time, and zoom-in and tracking fa-
cilities. It is also possible to adjust the underlying models
and see the effects directly on the simulation.

A key aspect of RA is its modularity: the modelling tools
are separate, integrated through the InterPlay application,
and manipulated through a PlayEngine. Similarly, the sys-
tems that are modelled can be composed in a modular way.
Clever integration means that modification to simulations
can either be initiated through the interface and reflected in
models, or initiated in models and reflected in the interface.

RA comes from an interdisciplinary team, with leading
researchers from several communities bringing their com-
plementary skills and problems. Although the integration is
modular and thus flexible, the current work is closely tied
to proprietary modelling tools. RA is an existence proof
that integrated, flexible simulation and modelling is possi-
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ble, rather than a general solution to modelling and simula-
tion of complex systems. Also, the motivation for the work
is to model a complete organism; our more general moti-
vation is to support the engineering of complex systems.
Knowing how to replicate the behaviour of a complex sys-
tem, and being able to extend our knowledge, are critically
important, but are only part of this wider motivation.

The second example of state-of-the-art modelling of com-
plex systems comes from the process algebra community.
PEPA (Calder et al., 2006, 2008) uses stochastic process al-
gebra to construct complementary models of a biological
network – a reagent view (perhaps akin to the state ma-
chine models) and a network view (akin to the connectivity
models). The reagent view can express concentrations and
triggers to biochemical product formation, whilst the net-
work view captures time-ordered sequences of events across
the system. Whilst diagrammatic views are supported, the
PEPA modelling is strictly mathematical; the views use the
same mathematical language, and have been proved isomor-
phic. The formalism supports proof of properties – proof of
deadlock-freedom, for instance, improves the confidence of
the modellers in their networks, since nature does not nor-
mally exhibit the forms of deadlock that we observe in com-
municating (computational) systems.

Like RA, PEPA was developed in a well-integrated
interdisciplinary context, to help researchers understand
the biological networks that they could observe and
measure in the laboratory. The PEPA workbench
(http://www.dcs.ed.ac.uk/pepa/tools/), which supports prop-
erty expression and proof, also supports an algorithmic
approach to generating conventional ordinary differential
equations from the PEPA models, which allows a clear com-
parison of observed behaviour of the system represented by
the models with results of laboratory analysis.

PEPA (and other process algebra approaches such as
bioAmbients (Regev et al., 2004)) demonstrates the benefit
of deep integration. The models are different representations
in the same notation, with a common semantics. The ap-
proaches work well in closely-coupled interdisciplinary con-
texts, where experts in process algebra work alongside labo-
ratory scientists. However, experts in process algebra are not
particularly common, even in Computer Science. Like the
proprietary-tool buy-in of RA, PEPA is an existence proof
for simulation environments, rather than a general solution
to modelling complex systems that would be amenable to
use by research groups and system engineers without spe-
cific expertise.

Requirements for Complex Emergent Systems
Design

Whilst the component models of RA and PEPA are defi-
nitional, the goal of these simulation initiatives, like much
complex systems modelling, is descriptive, motivated by a
need to express observations of real systems, in order to ex-

plain or explore natural processes. In seeking models for
engineering complex systems simulations, we need defini-
tional models that are amenable to use by interdisciplinary
researchers. We need to be able to relate definitional models
(functional requirements and their realisations) to descrip-
tive models that identify what the high-level system should
achieve (the emergent behaviours that we want). We start
by considering what desirable aspects of complex systems
are expressible in the reviewed forms of model. We then
consider other requirements and how they might be met.

Existing modelling approaches can express (and define)
features such as:

• known structures within and among components – using
mathematical relations, or structure diagrams;

• protocols for communication among components – using
process algebras or diagrammatic models of interaction;

• potential state changes – using state machines and other
variants of state automata.

Each form of model presents a limited view, or a single
aspect, of the system. Most of the models are static – they
either capture the state of a system or they prescribe possi-
ble histories of a system. None is really explanatory, in the
sense of providing understanding of the layered processes
that determine a particular complex system. For engineer-
ing complex systems, we need models that,

• express the characteristics of multiple instances of low-
level systems, as well as the required emergent character-
istics of high level systems;

• represent the context (in terms of space, time and relevant
environmental features) of systems;

• capture the cumulative make-up of systems (quantities of
objects etc.).

Where models of natural systems are used as a basis for
simulation, it is sometimes the case that, rather than model
knowledge about a natural system directly, the diagrams ex-
press a software engineering design or aspects of the imple-
mentation – natural concepts are modelled with computing-
related attributes (name: string) and operations (e.g.
print()). Both natural and design models are necessary,
but there is a need to be explicit about the purpose of a
model, and there is a need to understand and express cor-
respondence between the two sorts of model.

In addition to general engineering needs, we can divide
other requirements into: features of complex systems that
are not met by existing approaches to modelling; and desir-
able features of models.
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System Features Not Covered
The key omissions, for accurately capturing the range of
views of a complex system, can be summarised as dimen-
sionality and scale.
Dimensionality must be considered, since a complex emer-
gent system is, by definition, concerned with time – the
emergent properties emerge when the system runs for a pe-
riod of time. In most cases, a complex emergent system is
also concerned with space, since the separation of compo-
nents fundamentally affects their ability to interact.
Scale can mean two things. Firstly, the relative or abso-
lute quantities of components in a system can affect whether
emergence occurs (what the system actually achieves). As
noted above, diagrams of the system state do not have an
obvious way to define the quantities of objects created, or to
define dynamic constraints on behaviour (other than through
transition guards).

The second meaning of scale concerns the scale of obser-
vation. This is what determines the subject of models: the
emergent system or the system components. Conventional
engineering models operate at one observation scale, so the
diagrams (even in combination) cannot be used to explore
inter-level effects such as emergence or self-organisation.
Scale of interaction is critical. Complex behaviour arises
when many (hundreds, thousands, or even billions) instances
interact. The models typically used in systems biology, and
in their conventional electronics and computer science ori-
gins, express constraints on interaction, but cannot express
the cumulative interaction that is the root of emergence.

Furthermore, the emergent characteristics of a complex
system are typically the result of interaction across scales
of observation – low-level components induce local effects
on their environment; higher-level components monitor their
environment and thus react to changes, once the cumulative
local effects are detectable at the higher level.

Desirable Features of Models
We can identify a number of desirable features for engineer-
ing models of complex systems; these features are often ap-
parent in the modelling forms that already exist.
Modifiability is essential if models are going to be effective
tools in engineering or scientific research. It is highly desir-
able that modifications in one view or instance of a model
are reflected (automatically) in other views. In all areas,
modification is used to adjust models to meet some exter-
nal criteria (e.g. realism, customer requirements, etc.) In
engineering, modification also means translation from an
abstract model to an implementation level, or between no-
tations that are in some sense equivalent. The problems of
consistency under modification have challenged designers
for many years, and are exacerbated by inconsistent or unin-
tegrated modelling tools and ill-defined notations.
Understandability has many aspects, but in complex sys-
tems it tends to rely heavily on visualisation – photographs,

sketches, diagrams, mathematical formulae, simulations.
However, the understandability of visualisations depends on
the ability of the reader to interpret the visual forms in the
ways intended by the author of the model. We need ways to
express and encourage shared interpretations.

There have been many (very many) works defining the
meaning of model elements, and semantics is widely stud-
ied. For static models, it is useful to distinguish the spe-
cific language of the model (the visualisation – the shapes of
components, location of labels etc), from the abstract con-
cepts (the underlying model) – hence concrete and abstract
syntax. Furthermore, it is useful to provide a definition of
the meaning of the concept (semantics), for instance by ref-
erence to a well-understood or better-defined concept (so,
mathematical sets can represent the semantics of the data
aspect of a class of objects). However, an area that is less
well studied is behavioural semantics. We do not have well-
defined ways to develop models, or well-defined ways to
interpret what static models tell us about the temporal and
spatial behaviour of the systems that are modelled.

Towards Meeting the Requirements
Reviews of existing modelling approaches and their possi-
ble contributions to the engineering of complex system sim-
ulations demonstrate some ways in which the requirements
can start to be addressed. Indeed, state-of-the-art modelling
of natural systems has already provided bespoke solutions
in restricted contexts. We first consider ways in which the
required system features might be addressed in engineering
methods. Then, to address requirements for features of mod-
els, we outline ways in which model integration and model
management might be used to support the integrated tool
platforms needed to engineer complex system simulations.

Requirements for Coverage of System Features:
Exploring Simulation Environments
As demonstrated in the RA approach, above, time and space
are inherent to simulated models. The RA simulations are
derived by a specific form of execution of the static object
and state machine models on multiple (diverse) instances si-
multaneously. The visual simulation shows the emergent ef-
fects across time and space. In modelling terms, the static
models represent potential point-in-time observations of sin-
gle objects in a collection. The simulation is then a simul-
taneous running of many possible paths through the static
models.

A simulation environment for engineering complex sys-
tems needs to be able to relate simulations and static models
in ways that are not commonly attempted. Simulation envi-
ronments need to be able to constrain the simulation to fol-
low the static models, but to free the simulation from biases
– accidental constraints imposed by over-eager modelling or
by the simulation environment itself. A common form of
over-constraint is the use of absolute spatial co-ordinates –
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in natural complex systems, components have only local ref-
erence, to their nearest neighbours; there is no component-
level view of the whole system. If a simulation locates com-
ponents by absolute co-ordinates, locality becomes a derived
attribute, not an inherent concept. In general, such simula-
tions are inadequate because emergence due to local inter-
action is masked by unnatural global effects. Furthermore,
simulations using absolute spatial co-ordinates pose engi-
neering problems: they are hard to distribute and hard to
extend dynamically, because the spatial algorithms are hard-
coded.

When simulating complex systems, it is difficult to avoid
bias in the execution. This can be illustrated at various lev-
els. Simulated systems of differential equations often dis-
play some realistic-looking behaviour. However, the be-
haviour is significantly biased by the way that the equation
is constructed (the formula selected) and the variables and
constants chosen. Next, spatial emergence can be shown in
simulation, but the form of spatial emergence is typically
biased by the form of underlying representation. Consider
systems such as “game of life” cellular automata, where
the representation is usually shading of cells in a regular,
two-dimensional grid: changing the grid or the shading can
make a significant difference in the perceived emergent be-
haviours. Finally, there are biases related to metrics – the
number of instances, the time step, the spatial granularity,
even the number of time-steps over which a characteristic is
measured.

A key question in the use of simulation for engineering
complex systems (or for understanding naturally-occurring
complex systems) is – how far down must we go to avoid
bias? In most cases, we do not have to go as far as a simula-
tion of quantum mechanics for a meaningful biological sim-
ulation, but it is a sobering thought that even macro-scale
complex systems (such as a galaxy, or at a more tangible
scale, traffic flows or distributed command and control sys-
tems) are subject to the fundamental laws of physics.

From this discussion, two things arise. The more obvious
is the need to integrate static modelling with simulation. Per-
haps less obvious is the need for high-performance, flexible
simulation environments, which support local reference (to
avoid building in biases such as unrealistic long-range com-
munication structures), and can handle appropriate numbers
of interacting instances.

It is arguable that an interaction model, to statically ex-
press the ways in which instances interact, is missing from
the existing approaches. Formal approaches (based on com-
municating process calculi) and associated informal visual-
isations (based on models of the connectivity diagram type)
can be extended to express this aspect. We need to under-
stand how to integrate on this scale.

Requirements for Features of Models: Managing
Models
Recent advances in the theory of and tool support for model
management are predicated on the use of modelling tools.
The issues that arise in management of mathematical and
diagrammatic models relate both to the conceptual basis of
the models, and to the ways in which models are used.

In computing contexts, model integration and model com-
parison are becoming important – often driven by com-
mercial imperatives when organisations (tool developers or
client users) merge, but also motivated by academic interest
in patterns and commonalities, and by the simple availabil-
ity of the computational resources to manage collections of
models. The solutions being explored are not one-off in-
tegrations (in the sense exemplified by RA and PEPA), but
generic bases for integration and model management.

Where groups of models are used to express features of a
system, the interaction of models is often overlooked, even
by professional designers of modelling languages. The dif-
ferent views of a system overlap, and the overlap needs to
be consistent. A classical case is where a class diagram and
state machine are used together – the states in the state ma-
chine should be expressed in terms of attributes shown in
the class diagram, and the transitions should be effected by
invoking operations of the objects of a class, in accordance
with the association structures defined in the class diagram.
Similarly, where connectivity diagrams are used, it is impor-
tant that the internal methods and links are consistent with
those in the class diagram, and the sequences of communi-
cation are consistent with those permitted in the correspond-
ing state machines. Another classical angle from Computer
Science is that, where formal models exist alongside dia-
grammatic models, there is an obligation to demonstrate the
continuing equivalence of concepts – there is a need to de-
fine correspondences, or traceability links, between different
model concepts.

Unless we understand, and can characterise, the seman-
tics of the engineering models that we adopt, we cannot ad-
equately address adaptation of models to the needs of com-
plex systems engineering – in simple terms, we need to un-
derstand the classical concepts of state, transition and class,
in order to find sensible ways of accommodating space, time
and environment.

Recently, software engineering has considerably ad-
vanced the management of models; two movements are
establishing fundamentally-comparable definitions of mod-
elling languages. The unified theory of programming
movement (see Hoare and He (1998); Woodcock (2003);
Cavalcanti and Woodcock (2006)) is seeking common
mathematical underpinnings for modelling and program-
ming languages. Separately, commercially-driven re-
search into model-driven development (Swithinbank et al.,
2005) led by organisations such as the Object Man-
agement Group (http://www.omg.org/), and large inter-
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national projects such as the EU Modelplex initiative
(https://www.modelplex.org/), focus on defining common
abstract concepts for modelling languages, and domain-
specific capabilities, through the use of metamodels. The
associated model management concepts have the ability to
support formal as well as diagrammatic languages.

Both initiatives open new ways to compare, validate, ex-
tend, and transform models. Here, we focus on model-
driven development (MDD), because it is more accessible
to developers.

Model-driven development seeks to manage the conse-
quences of distributed development: developers in large
projects typically produce different variants of many types
of models that must be shown to express equivalent con-
cepts; furthermore, having produced integrated design mod-
els, implementation can be made faster and less error-prone
if repetitive programming is automated from design models.

The fundamental concept of MDD is the model stack: a
particular realisation (M 0 level) is an instance of a model
(M 1 level), whilst that model is an instance, or realisa-
tion, of a metamodel (M 2 level). The current top of
the stack defines languages for metamodelling (M 3 level).
The four layers are not always clear-cut, but they provide
a reasonable separation of concerns and a sufficient basis
for model management. MDD tool suites such as Epsilon
(http://www.eclipse.org/gmt/epsilon/, Kolovos et al. (2006))
support expression of models and metamodels, checking of
models against metamodels (for syntactically-correct use of
notations), and checking of consistency across models (that
all models in a family use concepts in the same way, at both
the notational and application levels). These tools support
model transformation, with mappings between concepts in
different metamodels being applied to transform models, ei-
ther between notations, or from design models to implemen-
tations.

Predominantly, MDD has been used for diagrammatic
models, annotated with quasi-formal constraints. However,
recent work adds consideration of text models (programs,
formal texts, meta-language texts). This raises the intriguing
possibility of creating general integrations, to exploit what-
ever models or tools are suitable for a particular system, or
to a particular research group’s expertise.

Discussion
In common with Cohen and Harel (2007), we take the view
that complex emergent systems cannot be constructed (or
simulated) solely as hierarchies of sequential transforma-
tions. We must capture the concurrent, reactive nature of
these systems. More explicitly, however, we must recognise
the importance of scale dependencies and interactions across
scales – the many concurrent inputs that Cohen and Harel
(2007) observe are themselves the results of many concur-
rent outputs at other scales. In the reviewed approaches (RA,
PEPA), the teams have, by chance or with great skill, se-

lected areas of study where one or two adjacent levels, or
scales, can be modelled to give realistic results that match
the level of observation of the research scientists concerned.

In researching a broad platform for complex systems sim-
ulation, we would exploit work in mobility and process al-
gebras. The inclusion of mobility allows the modelling of
processes that dynamically change their relative location
by changing their channels of communication with other
processes, affording an effective way to model the struc-
tural plasticity within systems. One example is the Graphi-
cal Stochastic π-calculus (GSπ), developed by Phillips and
Cardelli (2007) and proven equivalent to Milner (1999)’s π-
calculus. This provides an accessible front-end environment
whilst retaining the power of the underlying π-calculus. On
a larger scale, the CoSMoS project (http://www.cosmos-
research.org/) is building capacity in generic modelling tools
and simulation techniques for complex systems; it is pred-
icated on a well-founded process-oriented modelling plat-
form, using the occam-π language. occam-π (http://occam-
pi.org/) is a small language that implements the communica-
tion strengths of CSP (Hoare, 1985) and the mobile aspects
of π-calculus; the well-grounded semantics of these speci-
fication calculi provide a formal basis for the programming
environment, and support an engineering approach to the un-
derlying mathematics (Barnes and Welch, 2004; Welch and
Barnes, 2005). As in PEPA, process algebra can be used
to prove properties (such as deadlock-freedom), but, here,
the proven properties are then built in to the language (in
the GSπ calculus; in the occam-π Kroc compiler) and used
implicitly in models produced in the more-accessible front
ends (the GSπ environment; occam-π code). Expertise in
process algebra is not needed to use these languages, and
occam-π can efficiently support millions of concurrent pro-
cesses, distributed over multiple processors.

A general environment for simulation and modelling of
complex systems is about more than concurrent mobile pro-
gramming. The CoSMoS platform should eventually sup-
port many levels and scales – extending upwards (to ob-
serve more global effects) and downwards (in search of key
causalities and origins). Seth Lloyd (2005) eloquently pre-
sented the ultimate simulation: the quantum computer that
efficiently simulates the Universe (it is big!). A strict ap-
proach to modelling complex systems might expect to start
at the very bottom – after all, classical physics emerges from
quantum mechanics, and chemistry from classical physics.
However, a rational view is that, at each level of interest, the
effects of lower levels are of varying importance, and can
sometimes be aggregated or omitted without a significant
effect on the emergent behaviour. We hope that we will not
need to engineer a Universe computer, but to successfully
research and engineer complex systems we need tools that
helps us to determine the relative importance of lower levels
and of views of lower levels.

Finally, we are completely in agreement with Cohen and
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Harel (2007) when they state, ... a computer methodology
[sic] that would allow us to zoom back and forth between
lower-scale data and higher-scale behaviour while experi-
menting in silico is an ideal way — possibly the only way
— to study emergence computationally. (Cohen and Harel,
2007).
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Abstract

We consider an information-theoretic model studying the
conditions when a separation between the dynamics of a
’proto-cell’ and its proto-symbolic representation becomes
beneficial in terms of preserving the proto-cell’s information
in a noisy environment. In particular, we are interested in
understanding the behaviour at the “error threshold” level
which, in our case, turns out to be a whole “error inter-
val”. We separate the phenomena into a “waste” and a “loss”
component; the “waste” measures “packaging” information
which envelops the proto-cell’s information, but itself does
not contain any information of interest, the “loss” measures
how much of the proto-symbolically encoded information is
actually lost. We observe that transitions in the waste/loss
functions correspond to the boundaries of the “error inter-
val”. Secondly, we study whether and how different proto-
cells can share such information via a joint code, even if they
have slightly different individual dynamics. Implications for
the emergence of biological genetic code are discussed.

Introduction
It can be argued that “the capacity to represent nucleic acid
sequences symbolically in terms of a (colinear) amino acid
sequence” (Woese, 2004) did not exist at the very early evo-
lutionary stages, and developed only in response to certain
environmental conditions. The phase of nucleic acid life that
did not use genetic coding is separated from the later evolu-
tionary stages where such coding became beneficial, by the
“coding threshold”. In this paper, we consider a model for
evolutionary dynamics in the vicinity of the “coding thresh-
old”. The model is an extension of the model introduced
by Piraveenan et al. (2007) who identified conditions under
which a separation between a proto-cell and its symbolic en-
coding becomes beneficial in terms of preserving the infor-
mation within a noisy environment.
It is important to realize two features of the early phase

in cellular evolution that existed before the “coding thresh-
old”. First of all, the “players are cell-like entities still in
early stages of their evolution”, and that “the evolutionary
dynamics. . . involves communal descent” (Vetsigian et al.,
2006). That is, the cells are not yet well-formed entities that
replicate completely, with an error-correcting mechanism .

Rather, the proto-cells can be thought of as conglomerates
of substrates, that exchange components with their neigh-
bours freely — horizontally. The notion of vertical descent
from one generation to the next is not yet well-defined. This
means that the descent with variation from one generation to
the next is not genealogically traceable but is a descent of a
cellular community as a whole.
Secondly, genetic code that appears at the coding thresh-

old is “not only a protocol for encoding amino acid se-
quences in the genome but also an innovation-sharing pro-
tocol” (Vetsigian et al., 2006), as it used not only as a part
of the mechanism for cell replication, but also as a way to
encode relevant information about the environment. Differ-
ent proto-cells may come up with different innovations that
make them more fit to the environment, and the “horizon-
tal” exchange of such information may be assisted by an
innovation-sharing protocol - a proto-code. With time, the
proto-code develops into a universal genetic code.
Such innovation-sharing is perceived to have a price:

it implies ambiguous translation where the assignment of
codons to amino acids is not unique but spread over related
codons and amino acids. (Vetsigian et al., 2006). In other
words, accepting innovations from neighbours requires that
the receiving proto-cell is sufficiently flexible in translating
the incoming fragments of the proto-code. Such a flexible
translation mechanism, of course, would produce imprecise
copies. However, a descent of the whole innovation-sharing
community may be traceable: i.e., in a statistical sense, the
next “generation” should be correlated with the previous
one. As noted by Woese (2004), “a sufficiently imprecise
translation mechanism could produce “statistical proteins”,
proteins whose sequences are only approximate translations
of their respective genes (Woese, 1965). While any individ-
ual protein of this kind is only a highly imprecise translation
of the underlying gene, a consensus sequence for the var-
ious imprecise translations of that gene would closely ap-
proximate an exact translation of it”. That is, the consensus
sequence would capture the main information content of the
innovation-sharing community.
Moreover, it can be argued that the universality of the
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code is a generic consequence of early communal evolu-
tion mediated by horizontal gene transfer (HGT), and that
thus HGT enhances optimality of the code (Vetsigian et al.,
2006):

HGT of protein coding regions and HGT of transla-
tional components ensures the emergence of clusters of
similar codes and compatible translational machineries.
Different clusters compete for niches, and because of
the benefits of the communal evolution, the only stable
solution of the cluster dynamics is universality.

In this paper, we adopt an information-theoretic view that
allows us to concentrate on generic processes common to a
collection of primitive cells rather than on specific biochem-
ical interactions within an environmental locality. Moreover,
it allows us to handle particular HGT scenarios where cer-
tain fragments necessary for cellular evolution begin to play
the role of the proto-code. One scenario may assume that
the proto-code is initially located within its proto-cell, and is
functionally “separated” from the rest of the cell when such
a split becomes beneficial. Another scenario suggests that
the proto-code is present in an environmental locality, and
subsequently entrapped by the proto-cells that benefit from
such interactions. We believe that the first scenario (“inter-
nal split”) is less likely to produce either universal code or
universal translational machinery than the second scenario
(“entrapment”). In general, it is quite possible that internal
split and entrapment played complementary roles. Impor-
tantly, however, there was an indirect exchange of informa-
tion among the cells via their local environment, which is in-
dicative of stigmergy. Henceforth, we would like to refer to
such gene transfer as stigmergic gene transfer (SGT): proto-
cells find matching fragments, use them for coding, modify
and evolve their translation machinery, and exchange certain
fragments with each other via the local environment. SGT
can be thought of as a sub-class of HGT, differing from the
latter in that the fragments exchanged between two proto-
cells may be modified during the transfer process by other
cells in the locality.
It is conjectured that maximization of information trans-

fer through selected channels is one of the main evolutionary
pressures (Prokopenko et al., 2006; Klyubin et al., 2007; Pi-
raveenan et al., 2007; Laughlin et al., 2000; Bialek et al.,
2007): although the evolutionary process involves a larger
number of drives and constraints, information preservation
is a consistent motif throughout biology. Adami, for in-
stance, argues that the evolutionary process extracts valuable
information and stores it in the genes (Adami, 1998). Since
this process is relatively slow (Bennett, 1990; Lloyd, 1990),
it is a selective advantage to preserve this information, once
captured.
In this paper, we follow the model of Piraveenan et al.

(2007), and focus on the information preservation property
of evolution within a coupled dynamical system. Piraveenan

et al. (2007) verified that the ability to symbolically encode
nucleic acid sequences does not develop when environmen-
tal noise ϕ is too large or too small. In other words, it is
precisely a limited reduction in the information channel’s
capacity, brought about by the environmental noise, that cre-
ates the appropriate selection pressure for the separation be-
tween a proto-cell and its encoding.
Here we extend the model of Piraveenan et al. (2007) by

identifying both encoding and translation that maximize the
ability to recover as much original information as possible in
the face of environmental noise and in presence of an imper-
fect internal processing. In doing so, we enhance the anal-
ysis by considering both the loss and the waste of the infor-
mation. Finally, we study effects of co-evolution of multiple
encodings entrapped by multiple ensembles using SGT.

Modelling evolutionary dynamics
Our generic model for evolutionary dynamics involves a
dynamical coupled system, where a proto-cell is coupled
with its potential encoding, evolving in a fitness landscape
shaped by a selection pressure. The selection pressure re-
wards preservation of information in presence of both envi-
ronmental noise and inaccuracy of internal coupling. When
the proto-cell is represented as a dynamical system, the in-
formation about it may be captured generically via the struc-
ture of the phase-space (e.g., states and attractors) of the dy-
namical system.
For example, the states of the system may loosely cor-

respond to dominant substrates (e.g., prototypical amino
acids), used by the cell. The chosen representation does
not have to deal with the precise dynamics of biochemical
interactions within the cell, but rather focuses on structural
questions of the cell’s behavior: does it have more than one
attractor, are the attractors stable (periodic) or chaotic, how
many states do the attractors cycle through, etc. Represent-
ing the dynamics in this way avoids the need to simulate
the unknown cellular machinery, but allows us to analyze
under which environmental conditions the SGT may have
become beneficial. In particular, if the potential encoding
develops to have a compact structure that matches the struc-
ture of the cell’s phase-space, then the encoding would be
useful in recovering such structure, should it be affected by
environmental noise. Information is understood in Shannon
sense (reduction of uncertainty), and a loss of such informa-
tion corresponds to a loss of structure in the phase-space. At
the same time, informational recovery would correspond to
recovery of some isomorphic structure in the phase-space.
The generic dynamical coupled system is described by the

equations

Xt,m =







fm (Xt−1,m) + ϕt t != t∗

α [fm (Xt−1,m) + ϕt ] +
(1 − α)hm (Yt−1,m + ψt,m) t = t∗

(1)
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Yt,m =

{

gm (Xt,m + ψt,m) t = t0
Yt−1,m t > t0

(2)

where Xt,m are the variables that describe multiple proto-
cells, 1 ≤ m ≤ M , and and Yt,m their potential encodings
at time t, respectively. Function fm defines the dynamical
system representing the dynamic for proto-cell m. Parame-
ter α ∈ [0, 1] sets the relative importance of the translation
h from symbols (e.g., proto-codons) into the proto-cell state
(e.g., proto amino acids).
In the simplest case, m = 1 (one cell), and α = 1/2, the

system reduces to

Xt =

{

f (Xt−1) + ϕt t != t∗
1

2
[f (Xt−1) + ϕt ] + 1

2
h (Yt−1 + ψt) t = t∗

(3)

Yt =

{

g (Xt + ψt) t = t0
Yt−1 t > t0

(4)

The function ϕt describes the external (environment) noise
that affects the proto-cells: it is the same for all cells, i.e, ϕt

is independent ofm. It is implemented as a random variable
ϕt ∈ [−l, u], where u > 0 and l > 0, which is uniformly
distributed, with probability 1/2, between 0 and l, and with
probability 1/2 between 0 and u (sampled at each time step).
The function ψt,m represents both the matching noise asso-
ciated with accessing information from Xt0,m by Yt0,m at
time t0, and the noise of ambiguous back-translation (ap-
plied only at t∗). In other words, it represents the inaccuracy
within the internal encoding/translation channel. This noise
is modelled as uniform random noise ψt,m ∈ [−bm, bm],
where 0 < bm % 1.0, and is used only at t0 and t∗.
The entrapment mechanism that matches information

from the proto-cell with its encoding (i.e. which encodes its
information) at time t0 is given by gm. At time t = t0, noise
is introduced into the environment affecting dynamics of the
proto-cell. At the time t = t0, information from the proto-
cell Xt0,m is accessed by the system Yt0,m (encoding) via
the matching function gm. This process is affected by the
noise ψ. The feedback from Y to X (henceforth we drop
subscripts when the meaning is clear) occurs at time t∗, i.e.
the function hm translates the input Yt∗−1,m from the en-
coding back into the proto-cell. This internal translation is
subjected to internal noise as well.
Piraveenan et al. (2007) considered the casem = 1, equa-

tions (3)–(4), and function h being the identity (a single sys-
tem). Here we consider a system with multiple proto-cells:
m ≥ 1, and contrast universality of the translation machin-
ery: all functions hm are identical, while gi != gj for i != j,
with universality of the proto-code: all proto-codes gm are
identical, while hi != hj for i != j. We would like to point
out that the system (1)–(2) is coupled not only due to the
common environment noise ϕ, but also due to the shared

translation machinery h or shared proto-code g. This cou-
pling supports a simple information-theoretic model of HGT
and specifically, SGT. As we are dealing only with the infor-
mation content, the consideration of identical hm’s and/or
identical gm’s allows us to study gene transfers without de-
tails of molecular (state-to-state) interactions.

Coupled logistic maps
The dynamical system employed is a logistic map Xt+1 =
rXt (1 − Xt), where r is a parameter, i.e. the function
fm is given by f (x) = rmx (1 − x). The logistic map f
is initialized with a value between 0.0 and 1.0, and stays
within this range if the value of r is within the range [0, 4.0].
We used r = 3.5 (for the single system), resulting in four
states of the attractor of the logistic map (approximately
0.38, 0.50, 0.83, 0.87). For multiple proto-cells, we used
proto-cells with r = 3.5 as well as with r = 3.46 and
r = 3.48. Each of these possesses four states of the respec-
tive attractor. The time t = t0 is set after the logistic map
settles into its attractors, having passed through a transient.
The functions g and h are mappings from [0, 1] to [0, 1].
Coupled logistic maps have been extensively used in mod-

elling of biological processes. One prominent study is the
investigation of spatial heterogeneity in population dynam-
ics (Lloyd, 1995) who examined the dynamic behaviour of
the model using numerical methods and observed a wide
range of behaviours. For instance, the coupling was shown
to stabilize individually chaotic populations as well as cause
individually stable periodic populations to undergo more
complex behaviour. Importantly, a single logistic map can
only have one attracting periodic orbit, but multiple attrac-
tors were shown by Lloyd (1995) for coupled logistic maps.
Logistic maps were chosen to model the system (1)–(2)

mostly due to their simplicity, well-understood behaviour in
the vicinity of chaotic regimes (e.g., bifurcations and sym-
metry breaking), the possibility of multiple attractors in cou-
pled maps, as well as their ability to capture both reproduc-
tion and starvation effects (that are important for studying
the structure in the phase-space).

Information preservation
In evolving the potential encoding system Y coupled withX
via a suitable function g, we minimize Crutchfield’s infor-
mation distance (Crutchfield, 1990) between the initial Xt0

and recovered Xt∗ states of the system:

d(Xt0 , Xt∗) = H(Xt0 |Xt∗) + H(Xt∗ |Xt0) (5)

The entropies are defined as

H(A) = −
∑

a∈A

P (a) log P (a) , (6)

H(A,B) = −
∑

a∈A

∑

b∈B

P (a, b) log P (a, b) , (7)
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H(A|B) = H(A,B) − H(B) (8)

where P (a) is the probability that A is in the state a, and
P (a, b) is the joint probability.
The distance d(Xt0 , Xt∗) measures the dissimilarity of

two information sources Xt0 and Xt∗ ; it is a true metric in
the sense that it fulfils the axioms of metrics, including the
triangle inequality. In addition, as opposed to the mutual in-
formation used in Piraveenan et al. (2007), the information
metric d is sensitive also to the case when one information
source is contained within another. While the results do not
radically depend on the choice of distance d over the mu-
tual information, the former leads to a more crisp recovery
of structure in the phase-space.
The use of d also indicates the presence of two compo-

nents of dissimilarity. The first is the loss of information,
H(Xt0 |Xt∗), which measures how much uncertainty the fi-
nal state has about the original state of the system. The sec-
ond is the waste, H(Xt∗ |Xt0); as the system will aim to
preserve as much information as possible about the stateXt0

(and only this information), any additional variability inXt∗

will be considered as “waste”.
Minimization of the information distance (more precisely,

maximization of −d(Xt0 , Xt∗)) is achieved by employing a
simple genetic algorithm (GA) (described in the Appendix).
In order to estimate the probability distribution of a ran-

dom variable (X or Y ) at a given time, we generate an ini-
tial random sample (X0) = (X1

0 , X2
0 , . . . , XK

0 ) of size K.
Each Xi

0, where 1 ≤ i ≤ K, is chosen from a uniform
random distribution within [0.0, 1.0]. The mapping Xi

t+1 =
f(Xi

t) produces an ensemble of K corresponding time se-
ries, 1 ≤ i ≤ K, denoted as [X] = [X1

t , X2
t , . . . , XK

t ],
where 0 ≤ t ≤ T , and T is a time horizon. Within the
ensemble, each time series Xi

t may have a different initial
value Xi

0. At any given time t′, we can obtain a sample
(Xt′) = (X1

t′ , X
2
t′ , . . . , X

K
t′ ).

Given the sample (Xt0) at the time t = t0, and the
mapping Yt0 = g(Xt0 + ψ), we can generate the sample
(Yt0) = (Y 1

t0
, Y 2

t0
, . . . , Y K

t0
) for the variable Y . In the corre-

sponding ensemble [Y ] = [Y 1
t , Y 2

t , . . . , Y K
t ] each sample is

identical to the the sample (Yt0).

Recapitulation of the Results for a Single
System

We begin by revisiting the simple casem = 1 that was con-
sidered by Piraveenan et al. (2007): the function h is iden-
tity h(y) = y. The structure evolving in Y can be associated
with “proto-symbols” (“codes”) that help to retrieve at time
t∗ some (or most of the) information stored at t0.
Figure 1 shows the ensemble [X] at the time t∗ − 1, i.e.

right before the moment when the feedback from Y toX oc-
curs. The environment noise ϕ (u = 0.025 and l = 0.025)
disrupts the logistic map dynamics, and some information
about the attractor of X and its four states is lost in the
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Figure 1: Two remaining “clusters” in the sample (Xt∗−1).
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Figure 2: Evolved g (noise ϕ = ±0.025; ψ = ±0.015)
containing four clusters in the encoding (Yt∗−1). Function
h is identity.

course of time: the observed sample (Xt∗−1) does not con-
tain four clear clusters.

Figure 2 shows the evolved encoding ensemble [Y ] at the
time t∗ − 1, while Figure 3 shows the recovered ensemble
[X] of the evolved coupled system at the time t∗. The sam-
ple (Yt∗−1) settles into four clusters that can be easily rep-
resented by four “codes” corresponding to the four states of
the attractor of X . The evolved encoding allows to recover
the information within X , as evidenced by four clear clus-
ters within the sample (Xt∗).

The clustering corresponds to the emergence of discrete
“proto-symbols” in the encoding Y . The information recon-
structed at time t∗ is not precise, and rather than having four
crisp states, X can be described as an individual with an
imprecise translation of the underlying gene within a “con-
sensus sequence” (Woese, 2004), analogous to a “statistical
protein”. So far the recapitulation of the past results.
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Figure 3: Four recovered clusters in sample (Xt∗).
d(Xt0 , Xt∗) ≈ 1.5 bits. Contrast with Figure 1.
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Figure 4: Evolved g (noise ϕ = ±0.025; ψ = ±0.015), with
variable function h (see Figure 5).

Optimizing the Recovery Function h

Now we consider the extended case where the translation
function h is subject to optimization as well. This time, the
evolved encoding ensemble [Y ] at the time t∗ − 1 (Figure
4), does not have four clear clusters. However, this lack of
adequate encoding is complemented by a more refined trans-
lation that evolved in parallel, as evidenced by Figure 5. The
end result (not shown) is analogous to the one presented by
Figure 3.
Figure 6 traces fitness, −d(Xt0 , Xt∗) (for the best indi-

vidual), over the external noise ϕ, for different internal noise
levels ψ. We can observe a steady decrease in fitness punc-
tuated by two sharper transitions, that form three plateaus.
As conjectured by Piraveenan et al. (2007), the encoding is
not beneficial when the environmental noise ϕ is outside a
certain range. The middle plateau is precisely the region
specifying this range, i.e. the “error interval”. It is also ev-
ident that within this plateau, sensitivity to internal noise ψ
is the highest.
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Figure 5: Evolved h (noise ϕ = ±0.025; ψ = ±0.015),
complementing the encoding g (see Figure 4).
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Figure 6: Fitness, i.e. −d(Xt0 , Xt∗), over noise ϕ, for dif-
ferent noise levels ψ.

Be reminded that the information distance d(Xt0 , Xt∗)
consists of two components: the loss H(Xt0 |Xt∗), and
the waste H(Xt∗ |Xt0). The waste measures packaging in-
formation which envelops the proto-cell’s information, but
itself does not contain any information of interest, while
the loss measures how much of the proto-symbolically en-
coded information is actually lost. Figure 7 plots fitness
over noise ϕ, for specific ψ, and shows loss and waste for
the best individual. At the first plateau (very small noise),
d(Xt0 , Xt∗) = 0, and both loss and waste are zero. At the
medium plateau, the recovered system cannot get any closer
toX , because the waste cannot be avoided, while the loss is
still zero or minimal. At the last plateau (ϕ > 0.025), the
loss begins to increase for the first time. So not only is there
a waste, but the recovered system loses some information.
The loss reaches 0.5, waste reaches 2.5, and d(Xt0 , Xt∗)
reaches 3.0 (twice as large as the distance at the medium
plateau). So the cascade of plateaus is explained by: (i) ev-
erything is recoverable (the first plateau); (ii) waste appears
(the medium plateau); (iii) loss appears (the last plateau).
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Figure 7: Fitness −d(Xt0 , Xt∗), loss H(Xt0 |Xt∗), and
wasteH(Xt∗ |Xt0), over noise ϕ, for specific ψ = 0.015.
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Figure 8: LossH(Xt0 |Xt∗) over noise ϕ, for different noise
levels ψ.

Figures 8 and 9 “zoom” into the dynamics of loss and
waste for different levels of internal noise ψ, and show that
the loss also appears if the internal noise ψ > 0.015. It is
also evident that the loss is more sensitive to internal noise
than waste. The waste, on the other hand, simply follows the
cascade of plateaus. The difference between loss and waste
is highlighted in Figure 10 that traces the ratio H(Xt0

|Xt∗ )

H(Xt∗ |Xt0
)
.

This ratio is most turbulent at the medium plateau, support-
ing the hypothesis of its special role. We note that the tran-
sitions in the waste/loss functions correspond to the bound-
aries of the medium plateau, marking the “error interval”.

Results for multiple systems

In this section, we now focus on a system with multiple
proto-cells which share the coding channel. Concretely, we
consider m = 3 (r = 3.5, r = 3.46, and r = 3.48), and
contrast the universality of the translation machinery with
the universality of the proto-code.

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

W
as

te

Phi

noise 0.0015
noise 0.03
noise 0.05
noise 0.07
noise 0.09

Figure 9: Waste H(Xt∗ |Xt0) over noise ϕ, for different
noise levels ψ.
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Figure 10: Loss/waste ratio over noise ϕ, for different noise
levels ψ.

Single g and multiple h

Let us assume that all available proto-codes gm are identical
(universal code), but hi != hj for i != j. In this case, the sys-
tem achieves recovery comparable with the single system for
each of the logistic maps, d(Xt0 , Xt∗) ≈ 1.5, but the struc-
ture of the code is slightly different. As shown in Figure
11, for the logistic map r = 3.5 fewer clusters evolve than
for the singular system (shown in Figure 4). However, the
translation machinery depicted in Figure 12 is as structured
as that of the singular system (shown in Figure 5). This sup-
ports a conjecture that multiple systems exert some pressure
for proto-code’s universality.

Multiple g and single h

Here we consider the opposite case: abundance of available
proto-codes: gi != gj for i != j, but translation machinery
is universal: all functions hm are identical. Again, the sys-
tem achieves the recovery of the singular system for each
of the logistic maps, d(Xt0 , Xt∗) ≈ 1.5, but the structure of
both the code and translation machinery is more compact, as
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Figure 11: Single g. Evolved g (noise ϕ = ±0.025; ψ =
±0.015), for three ensembles with variable function h (see
Figure 12). Shown for ensemble with r = 3.5.
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Figure 12: Single g. Evolved h (noise ϕ = ±0.025; ψ =
±0.015), for ensemble with r = 3.5, co-evolved with three
ensembles; complementing the encoding g (see Figure 11).

shown in Figures 13 and 14. This supports a conjecture that
co-evolution of multiple systems may yield not only univer-
sality of proto-code, but also uniform translation machinery.

Conclusion and Future Work
We considered an information-theoretical model based on
dynamical systems for the emergence of protected infor-
mational channels able to preserve information in a system
over time when the main channel is suffering from perturba-
tions. Doing so, we extended previous work, by not only in-
troducing the optimization of a backtranslation mechanism,
but also the consideration of the information metric and the
more refined analysis able to resolve loss as well as waste in
the resulting encoding. Furthermore we studied the effects
on a small population of systems sharing an encoding.
It is striking that the pressure to develop a distinctive

“symbolic” encoding does only develop if the noise in the
original system is in a particular range, not too small and
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Figure 13: Single h. Evolved g (noise ϕ = ±0.025; ψ =
±0.015), for ensemble with r = 3.5, co-evolved with three
ensembles; complementing the translation h (see Figure 14).
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Figure 14: Single h. Evolved h (noise ϕ = ±0.025; ψ =
±0.015), for three ensembles with variable function g (see
Figure 13).

not too large.
Scanning through different noise levels, we observe sev-

eral plateaus of the fitness corresponding to qualitative
jumps in the way not only the initial state is encoded but how
the system dynamics is affected by the noise. The middle
plateau which is most relevant for the emergence of distinct
symbols turns out to be the most sensitive for the precise
level of noise.
The waste/loss analysis shows that with increasing noise,

first the waste grows away from 0, at first without any loss.
Only at higher noise levels the loss begins its growth. These
transitions correspond closely to the plateau transitions.
The multiple system scenario shows that joint translation

“machineries” can be successfully used by several systems
which differ slightly. However, at this point, we did not yet
model the competition between different translation and in-
formation exchange models. This will be addressed in future
work.
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Appendix
We generate an ensemble ofXt time series, each series gov-
erned by equation (1). The ensemble [X] provides a fixed
constraint on the optimization. For each function g, an en-
semble [Y ] is then generated, using equation (2) — i.e., the
values of the series Yt depend on the choice of function
g (and function h). The ensemble [X] is kept unchanged
while we evolve the population of functions g (and h), be-
ing an optimization constraint, but the ensemble [Y ] differs
for each individual within the population. The fitness of
each function g (and h) is determined by the negative dis-
tance between Xt0 and Xt∗ , denoted d(Xt0 ;Xt∗), defined
by equation (5), and estimated via the respective conditional
entropies between samples (Xt0) and (Xt∗).
Since the information from Yt∗−1 (different for each indi-

vidual) is fed back into Xt∗ , equation (1), the sample (Xt∗)
is specific for each individual within the population. There-
fore, it may be contrasted with the sample (Xt0) which is
identical across the population, producing distinct fitness
values Ig(Xt0 ;Xt∗) for each individual g. The experiments
were repeated for different ensemblesXt.
We generate a population of g (and h) functions (the size

of the population is fixed at 400). In order to implement the
mapping g, the domain of g is divided into n consecutive
bins xi such that xi = [(i − 1)/n, i/n) for 1 ≤ i < n,
where [a,b) denotes an interval open on the right, and xn =
[(n− 1)/n, 1]. The range of g is divided intom consecutive
bins yj such that yj = [(j − 1)/m, j/m) for 1 ≤ j < m,
and ym = [(m − 1)/m, 1]. Then each bin xi in the domain
is mapped to a bin yj in the range: G : xi → yj , where G
represents the discretized mapping. Formally, any x ∈ xi

is mapped to g(x) ≡ G(xi), where G(xi) is the median
value of the bin G(xi). For example, if n = 100, m = 10,
and y7 = G(x30), that is, the bin x30 = [0.29, 0.30) is
mapped to the bin y7 = [0.6, 0.7), then for any x ∈ x30

(e.g., x = 0.292), the function g(x) would return 0.65 = y7.
Therefore, in the GA, each function g can be encoded as

an array of n integers, ranging from 1 to m, so that the i-th
element of the array (the i-th digit) represents the mapping
yj = G(xi), where 1 ≤ j ≤ m. Function h is coded analo-
gously.
We have chosen a generation gap replacement strategy. In

our experiments, we set the generation gap parameter 0.3. In
other words, the entire old population is sorted according to
fitness, and we choose the best 30% for direct replication in
the next generation, employing an elitist selection mecha-
nism. The rest of selection functionality is moved into the
(uniform) crossover. Mutation is implemented as additive
creeping or random mutation, depending on the number of
“digits” in the genome. If the number of digits is greater
than 10, then additive creeping is used: a digit can be mu-
tated within [−5%,+5%] of its current value. If the number
of digits is less than 10, the random mutation is used with
the mutation rate of 0.01.
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Abstract

Selection on the level of loosely associated groups has been
suggested as a route towards the evolution of cooperation be-
tween individuals and the subsequent formation of higher-
level biological entities. Such group selection explanations
remain problematic, however, due to the narrow range of pa-
rameters under which they can overturn within-group selec-
tion that favours selfish behaviour. In principle, individual
selection could act on such parameters so as to strengthen the
force of between-group selection and hence increase coopera-
tion and individual fitness, as illustrated in our previous work.
However, such a process cannot operate in parameter regions
where group selection effects are totally absent, since there
would be no selective gradient to follow. One key parameter,
which when increased often rapidly causes group selection
effects to tend to zero, is initial group size, for when groups
are formed randomly then even moderately sized groups lack
significant variance in their composition. However, the con-
sequent restriction of any group selection effect to small sized
groups is derived from models that assume selfish types will
competitively exclude their more cooperative counterparts at
within-group equilibrium. In such cases, diversity in the mi-
grant pool can tend to zero and accordingly variance in group
composition cannot be generated. In contrast, we show that if
within-group dynamics lead to a stable coexistence of selfish
and cooperative types, then the range of group sizes showing
some effect of group selection is much larger.

Introduction
The evolution of cooperation between biological individu-
als, both generally and as a vital part of the formation of
new higher-level composite individuals, is an important and
much discussed open question in both evolutionary biology
(Maynard Smith and Szathmary, 1995; Keller, 1999; Mi-
chod, 1999; Hammerstein, 2003; Okasha, 2006) and arti-
ficial life (Bedau et al., 2000). The fundamental problem
is that any group of cooperative types, whose members do-
nate some component of individual fitness in order to ben-
efit their group, is vulnerable to invasion by selfish cheats
that reap the group benefits of cooperation without paying
the individual cost. Various mechanisms by which cooper-
ation can nevertheless evolve have been suggested, includ-
ing so-called ‘group selection’ models in which population

structure exists such that individuals spend part of their time
in groups (rather than freely mixed in the whole population)
before mixing in a migrant pool from which new groups are
formed (Wilson, 1980). Although selection within any given
group will always favour selfish individuals, groups with a
higher proportion of cooperators are more productive and
hence contribute more individuals to the migrant pool and
the next generation of groups.

Such models have been found to allow cooperation to
evolve or be preserved in a population, but only within
certain narrow parameter ranges (discussed below). This
clearly presents a problem when appealing to such mech-
anisms as a route towards the evolution of higher-level indi-
viduals. As we have argued in previous work (Powers et al.,
2007), the conditions that allow group selection to be effec-
tive and control its strength need not be externally imposed.
Instead, they may be products of individual characters and
hence subject to individual selection. Specifically, if key pa-
rameters such as group size are subject to individual adapta-
tion (for example, via production of extracellular matrix in
a bacterial biofilm), then a process akin to niche construc-
tion (Odling-Smee et al., 2003) supporting the evolution of
cooperation may occur whereby cooperative traits and those
affecting the strength of group selection evolve concurrently.

However, this process would require the existence of an
adaptive gradient, such that a small parameter change could
increase the strength of group selection and consequently
cooperation and individual fitness. In this paper we con-
sider one important parameter, group size. Where groups
are formed randomly, existing models have shown that in-
creasing group size rapidly causes the measurable effect of
group selection to reach zero (Wade, 1978). This then means
that for a large region of parameter space, a small decrease in
group size, e.g. by individual mutation, would have no effect
on fitness, i.e. there would be no selective gradient towards
smaller groups and increased individual fitness. However,
the model developed and presented in this paper suggests
that the rapid tendency of group selection effects to zero
is a consequence of an assumption of directional within-
group selection. Specifically, classical group selection mod-
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els attempt to explain the global promotion of a coopera-
tive allele that is driven extinct at within-group equilibrium
through directional selection for a rival selfish allele. While
this assumption of directional selection and hence compet-
itive exclusion of types is commonplace in population ge-
netics models, a competitive coexistence of two types is in-
stead often permitted in ecological models. For example,
the classical Lotka-Volterra competition equations allow for
coexistence as well as exclusion (May, 1976). Such dynam-
ics are of relevance to potential multi-species group selec-
tion scenarios; for example, during egalitarian major evolu-
tionary transitions in which different unrelated individuals
eventually form a new level of selection, and within extant
multi-species consortia such as bacterial biofilms (Burmolle
et al., 2006) in which group selection effects may be per-
tinent. 1 Results presented in this paper show that where
a within-group stable coexistence of types exists, measur-
able group selection effects are sustained over a much larger
range of group sizes, potentially providing an individual
adaptive gradient towards smaller groups that enhance group
selection over a much larger range of parameter space.

The Limits of Group Selection
Group selection theory is typically understood as the idea
that the differential productivity of groups can lead to
changes in allele frequency in a gene pool, in a manner anal-
ogous to individual selection acting through the differen-
tial productivity of individuals (Wade, 1978; Wilson, 1980).
In this paper we are concerned with type 1 group selec-
tion, which defines group fitness as the average fitness of
the group members 2 (Okasha, 2006, chap. 2). Models of
this process therefore seek to investigate the effect of group
structure on the evolution of individual social traits such as
cooperation. In particular, a trait that is individually dis-
advantageous may nevertheless evolve if it has a positive
effect on the group as a whole, an idea that dates back to
Darwin (1871). Using the language of multilevel selection
theory, such cooperative traits are selected against within-
group, since they confer a fitness disadvantage relative to
other groupmembers, but are favoured under between-group
selection, since they increase group productivity, i.e. aver-
age absolute group member fitness. Whether or not the trait
spreads in the global gene pool then depends on the balance
of these two selective forces.
Three factors are pertinent in determining the outcome

of such a scenario. The first is the individual cost to
group benefit ratio of the cooperative act; a large individ-
ual cost strengthens within-group selection against coopera-
tion, while a large group benefit strengthens between-group

1Coexistence dynamics may also apply to single-species sce-
narios under certain regimes such as balancing selection (see be-
low) and are hence relevant to group selection discussions more
generally.

2Type 2 defines group fitness as number of offspring groups.

selection. Secondly, a group mixing mechanism must ex-
ist so that the increased productivity of more cooperative
groupsmay affect the global allele frequencies. We consider
here a multi-generational variant of D.S. Wilson’s (1980)
trait-group model, where a global mixing stage occurs every
t generations in which the progeny of all groups disperse,
join a global migrant pool, and then reform new groups of
random composition. Since cooperative groups will con-
tain more individuals prior to dispersal, they will constitute
a larger fraction of the global migrant pool, thereby bias-
ing the global allele frequencies. How often global mix-
ing occurs is therefore a crucial parameter, since groups
must be mixed before the within-group equilibrium has been
reached, otherwise there will be no difference in group pro-
ductivity for selection to act on (assuming selection within
all groups leads to the same group equilibrium (Wilson,
1992)).
The third factor, and the one which is most often com-

mented on in the group selection literature, is the require-
ment for there to be variation in the groups’ allelic compo-
sition. The larger this variance, the greater the difference
in group productivity (since within-group dynamics are as-
sumed to be deterministic) and likewise the effect of group
selection. Many theoretical models have shown that if group
composition is random then very small initial group sizes are
needed in order to produce the between-group variance nec-
essary for a measurable effect (see (Wade, 1978) for a clas-
sical review). It is therefore usually concluded that some
kind of non-random group formation is required in order
for group selection to have any significant effect. The most
common way that such assortative grouping is believed to
occur in nature is through kin grouping, where the group
members are related by descent from a common ancestor
and are hence more similar to each other than to members
of other groups. Consequently, kin selection (Hamilton,
1964a,b) is commonly seen as the only pertinent force in
social evolution. However, even with only simple random
sampling, the range of group sizes which produce a group
selection effect may be strongly affected if the assumption
of within-group competitive exclusion is relaxed. This is
because possible between-group variance from sampling er-
ror is controlled by the frequency of the least frequent type
in the migrant pool. In the competitive exclusion case the
possible variance rapidly tends to zero as the selfish type ap-
proaches fixation. If, however, coexistence of the two types
is possible at equilibrium then we would expect the possible
variance to be maintained above zero even at within-group
equilibrium frequencies.

Group Competition: Aggregation and Dispersal
Through a Migrant Pool
In this paper, we consider a model of a population structure
where individuals reproduce in groups for a number of gen-
erations. After this period of reproduction within groups,
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all groups disperse and their progeny mix freely together in
a migrant pool. Thereafter, new groups are created from
the individuals in the migrant pool, and the process repeats.
This process is a multi-generational variant of the trait-group
model of Wilson (1980, 1987), and corresponds closely to
the “Haystack” model of Maynard Smith (1964). Examples
of natural populations that fit this model particularly well
include soil-dwelling populations of micro-organisms that
are occasionally mixed together during rainstorms (Wilson,
1980, p. 22), and a type of desert leaf cutting ant which lives
in colonies that periodically disband and which are founded
by unrelated females from a mating swarm (Rissing et al.,
1989). However, the issues explored by the general form of
the model are broadly applicable to a wide range of popula-
tion structures where individuals have the majority of their
interactions with a subset of the population. An algorithmic
description of such an aggregation and dispersal process is
as follows:

1. Initialisation: Initialise the migrant pool with N individ-
uals;

2. Group formation (aggregation): Assign individuals in
the migrant pool randomly to groups of size S;

3. Reproduction: Perform reproduction within groups for t
time-steps, as described in the next section;

4. Migrant pool formation (dispersal): Return the progeny
of each group to the migrant pool;

5. Iteration: Repeat from step 2 onwards for a number of
generations, T .

Group competition occurs in a population structured in
this fashion during the dispersal stage, since groups that
have grown to a larger size will contribute more individu-
als to the migrant pool. Crucially, this means that coop-
erative traits that are individually disadvantageous but that
benefit the group can potentially increase in frequency (see
Figure 1), depending on the balance of within- and between-
group selection.
A key factor in determining the balance between the levels

of selection in any model of group selection is the variance
in group composition (Wilson, 1980), for if there is no vari-
ance then there is nothing for selection to act on (Darwin,
1859). In particular, there must be variance in initial group
composition which causes a variance in group size prior to
dispersal. In the above model, this variance is generated
through random sampling of individuals from the migrant
pool, where the sample size corresponds to the initial group
size. Since an increased sample size causes a decrease in
between-sample variance, increasing the initial group size
decreases between-group variance and hence the efficacy of
group selection (Wade, 1978). It is therefore often assumed
that the upper limits of group size which produce a non-zero
group selection effect are very small.

Figure 1: Cooperation can increase in frequency in the
migrant pool due to differential group contributions, even
though it decreases in frequency within each group.

However, in this paper we present results which suggest
that this follows from an assumption of within-group dy-
namics that lead to the competitive exclusion of a coopera-
tive type by its selfish counterpart at within-group equilib-
rium. Specifically, we are able to show that where within-
group dynamics instead lead to a stable coexistence of types,
then the range of initial group sizes over which an effect of
group selection can be seen is much larger. This is due to the
fact that since the cooperative type cannot be driven extinct,
variance in group composition when sampling from the mi-
grant pool is always possible. In the next section, we de-
scribe how both competitive exclusion and coexistence dy-
namics can be modelled within groups.

Within-group Dynamics: Competitive Exclusion
Versus Coexistence
Classical models of group selection consider a scenario
where a selfish type ultimately drives its cooperative coun-
terpart extinct at within-group equilibrium. In particular,
fitness functions of the following form, first proposed by
Wright (1945) but subsequently used in a plethora of other
models (Williams and Williams, 1957; Maynard Smith,
1964; Charnov and Krebs, 1975; Wilson, 1980, 1987), are
typically used to model within-group selection:

fs = 1 + pcg (1)
fc = (1 + pcg)(1 − a) (2)

In the above equations, fs and fc denote the per capita fit-
ness of selfish and cooperative individuals within a group,
respectively. Cooperators, whose proportion within the
group is denoted by pc, confer a fitness benefit g on every
group member. Crucially, both types receive this benefit,
while only cooperators pay a cost, represented by the selec-
tion coefficient against cooperation, a. It is then clear that if
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these equations are iterated until equilibrium is reached then
the selfish type will be driven to fixation within the group.
Both competitive exclusion and stable coexistence within-

group dynamics can instead be modelled using the standard
two-species symmetric Lotka-Volterra competition equa-
tions (e.g. (May, 1976)). For implementation purposes, we
use the following difference equation as a discrete approxi-
mation:

Ni(t+1) = Ni(t)+

[

MiNi

(

Ki − αiiNi − αijNj

Ki

)]

. (3)

In the above equation, Ni(t) is the biomass of species i
at time t, and Mi the intrinsic per capita growth rate. Each
species has an intrinsic carrying capacity Ki, which is then
modified through interspecific interactions. Specifically, the
per capita effect of species j on species i is given by αij , the
coefficient of interaction. All such interactions are compet-
itive in the above equation, as ensured by the negative sign
and the stipulation that all α > 0. Similarly, αii denotes
the negative density-dependant effect of species i on itself
that prevents unbounded exponential growth. This coeffi-
cient can be seen as representing crowding and can vary for
different species.
We define selfish (s) and cooperative (c) strategies in the

above equation through settings of the within- and between-
type interaction coefficients. Specifically, a selfish type is
defined as having a large negative per capita effect on both
itself (αss) and the other type (αcs). A cooperative type is
then defined as having correspondingly smaller per capita
negative effects (αcc and αsc). A pure group of coopera-
tors will therefore grow to a larger size than a pure group
of selfish individuals, creating a group productivity differen-
tial on which selection can potentially act. However, within
mixed-groups the selfish type will reach the larger frequency
(provided that αss is not too large), since αcs > αsc. In
other words, cooperators are favoured by between-group se-
lection, while selfish individuals are favoured under within-
group selection, exactly as in a classic group selection sce-
nario. It should be noted that our definition of cooperative
behaviour corresponds to weak, rather than strong, altruism
(Wilson, 1980). This follows because although cooperation
confers a relative fitness disadvantage compared to a selfish
individual within the same group, it nevertheless increases
the absolute fitness of all group members, including the co-
operator.
It is well known that a stable coexistence of both types

occurs in such a model when competition for resources
(space, food, etc.) between individuals of the same type
is stronger than competition between individuals of differ-
ent types. Such a case corresponds at the ecological level to
species occupying different niches, i.e. only partially over-
lapping in their resource requirements (May, 1976). Con-
versely, if between-type competition is stronger than within-

type competition then competitive exclusion of one type will
occur. Between- and within-type competition are both mod-
elled in the Lotka-Volterra equations through the settings of
the interaction coefficients. Throughout this paper, we as-
sume the following:

1. αcc < αss and αsc < αcs, i.e. that cooperators have
lower negative density-dependant effects on themselves
and others;

2. αcsαsc ≤ 1;

3. M andK , the intrinsic per capita growth rates and carry-
ing capacities respectively, are the same for both types.

Given these assumptions, competitive exclusion of the co-
operative type occurs when αss < αcs, producing qualita-
tively similar dynamics to those of the traditional within-
group selection equations (1) and (2). However, when
αss > αcs then the cooperative type is maintained at within-
group equilibrium at an above-zero frequency, i.e. a stable
coexistence of types occurs. When the interaction coeffi-
cients of the cooperative strategy are fixed, the equilibrium
frequency at which it is maintained then depends upon the
settings of αss and αcs, i.e. the magnitude of the nega-
tive density-dependant effects of selfish individuals on them-
selves and cooperators, respectively. In addition, the within-
group equilibrium is reached more quickly the greater the
effects of the selfish type. Although a Lotka-Volterra model
such as this is typically interpreted at the ecological level as
representing species interactions, it could also be interpreted
as a model of allelic competition dynamics within a single
species group. In particular, coexistence Lotka-Volterra dy-
namics are analogous to balancing selection for a stable al-
lelic polymorphismwithin a group. Conversely, competitive
exclusion of one species by another is analogous to direc-
tional selection driving one allele to fixation. The motiva-
tion for using the language of allelic competition is to fa-
cilitate comparison with classical group selection models,
which consider competition between selfish and cooperative
alleles.
Our use of the Lotka-Volterra equations in this paper

should be contrasted from their use in community or ecosys-
tem selection models (Wilson, 1992; Penn, 2003). Such
models do not consider explicit cooperative and selfish types
in the fashion of traditional group selection models. Instead,
they examine the complex within-group dynamics that arise
when a larger number of types are present. These complex
dynamics can give rise to multiple within-group attractors,
which can then provide a source of variation in their own
right upon which selection can act (Penn, 2003). By con-
trast, in this paper we consider simple two-typewithin-group
dynamics, where only a single group attractor exists (either
coexistence or competitive exclusion, as discussed above).
As far as we are aware, our use of the Lotka-Volterra equa-
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tions to define explicit selfish and cooperative strategies is
novel.

Results
The parameter settings used for the Lotka-Volterra equations
throughout this paper are shown in Table 1. Changing be-
tween competitive exclusion and coexistence within-group
dynamics is achieved by simply switching over the values of
αss and αcs, since that determines whether αss < αcs and
hence whether competitive exclusion occurs. The values of
the interaction coefficients in Table 1 produce representative
within- and between-groupdynamics; other settings produce
the same qualitative trends. In this section, we first present
results using classical competitive exclusion dynamics, and
then contrast these to results from the coexistence case.

Group Selection Dynamics in the Competitive
Exclusion Case
The within-group dynamics for a group initialised with unit
biomass of each type are shown in Figures 2(a) and 2(b), for
the competitive exclusion case. Initially, both types are in
their growth phase; their biomass is below the intrinsic type
carrying capacity of 100. However, the selfish type grows at
a faster rate, despite the fact that their intrinsic growth rates,
M , are the same. This is because of the greater negative
density-dependant effect of the selfish type on cooperators,
i.e. αcs > αsc. Finally, since αcs > αss, the coopera-
tive type is driven to extinction. Furthermore, as Figure 2(b)
shows, the proportion of selfish individuals increases mono-
tonically. Such behaviour is qualitatively identical to that of
directional within-group selection for a selfish allele in clas-
sical group selection models (e.g. (Wright, 1945; Wilson,
1980)).
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Figure 2: Competitive exclusion within-group dynamics.

Now let us consider global dynamics under group selec-
tion in this competitive exclusion case. In order for group se-
lection to operate through an aggregation and dispersal pro-
cess, a difference in group size at the dispersal stage must
exist. Figure 3 illustrates how final group size varies as a
function of the time spent in the group prior to dispersal, for
various starting frequencies of cooperators in groups of ini-
tial size 10. It can be seen from this graph that, using the
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Figure 3: Final group size as a function of time spent repro-
ducing within groups; initial group size 10 with various% of
cooperators (competitive exclusion case shown; coexistence
quantitatively similar). Dotted line shows time at which dif-
ference in group productivity is greatest.

parameters described in Table 1, groups with a greater pro-
portion of cooperators do indeed grow to a larger size. In
addition, the results for the coexistence case, where αss and
αcs are swapped, are quantitatively similar. These results
therefore confirm that group selection can in principal oper-
ate, since there is a variation in group productivity on which
selection can act.
To determine the magnitude of the effect of group se-

lection, the aggregation and dispersal process was executed
for 5000 iterations, which preliminary experimentation had
shown to be a sufficient length of time for a global equilib-
rium to be reached, using the within-group parameter set-
tings described in Table 1. Equation 3 was iterated 30 times
in the reproduction stage, while the global population size
was maintained at 5000. Initial group size was then var-
ied from 1 to 100 inclusive, while the migrant pool was ini-
tialised with 50% of each type. The result of this process
after 5000 aggregation and dispersal cycles is shown in Fig-
ure 4, where ‘effect of group selection’ on the y-axis is de-
fined as the difference between the frequency of the selfish
type at within-group equilibrium and the global frequency
of the selfish type after 5000 aggregation and dispersal cy-
cles. Since the within-group equilibrium in the competitive
exclusion case is the selfish type at 100%, the y-axis equiv-
ilantely shows the global frequency of cooperators in this
case. Furthermore, it should also be stressed that the within-
group equilibrium is the equilibrium that would be reached
in an unstructured population where there were no groups.
The y-axis therefore shows the effect that group structure is
having on the outcome of evolution compared to that in an
unstructured population.
There are two points to note from Figure 4. Firstly, in-

creasing the initial group size decreases the effect of group
selection, and consequently the global proportion of coop-
erators. In particular, for small group sizes, the cooperative
type reaches global fixation (and remains there because we
do not reintroduce types by mutation). However, for group
sizes above 10, it is driven extinct. This follows from the
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Parameter Value (competitive exclusion) Value (coexistance)
αss 1.9 2
αcs 2 1.9
αcc 1 1
αsc 0.5 0.5
K 100 100
M 0.1 0.1

Table 1: Parameter settings of the Lotka-Volterra equation. Note that the only difference between the competitive exclusion
and coexistence settings is a swapping of the values of αss and αcs.
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Figure 4: ‘Effect of group selection’ (see text) as a function
of initial group size in the competitive exclusion case.

fact that the between-group variance necessary for group se-
lection to act is generated by random sampling from the mi-
grant pool, and therefore rests on the existence of a small
initial group size, as previously discussed.
The second, and a key point for this paper, is that the ef-

fect of group selection rapidly tends to zero as initial group
size increases. Specifically, above a group size of 10, there
is no measurable effect at all. Such a result may therefore
make the idea of group selection acting on randomly formed
groups seem rather implausible as a significant evolutionary
pathway. However, the above results only consider the com-
petitive exclusion case; in the coexistence case, the results
are somewhat different, as shown in the following section.

The Efficacy of Group Selection under Coexistence
Dynamics
Let us now consider the coexistence dynamics that arise
from redefining the selfish strategy as αss = 2 and αcs =
1.9, i.e. by swapping the interaction coefficients over from
the competitive exclusion case. Figures 5(a) and 5(b) show
how the cooperative type is no longer driven extinct at the
within-group equilibrium. In particular, the change in the
frequency of the selfish type from an initialisation of 50%
shows clear balancing selective dynamics resulting in the
maintance of cooperation at an above-zero frequency. In
other words, the result is a stable coexistence of cooperative
and selfish types within a group.
Group selection dynamics under the aggregation and dis-

persal process are now as shown in the black curve in Fig-
ure 6. Crucially, in contrast to the competitive exclusion case
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Figure 5: Coexistence within-group dynamics.
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Figure 6: Comparing the range of group sizes over which
an ‘effect of group selection’ (see text) can be seen between
coexistence and competitive exclusion dynamics.

(shown again in the dotted line), an effect of group selection
can be seen over the entire range of group sizes examined.
For example, in groups of initial size 50, group selection can
be seen to still increase the global frequency of cooperation
above the within-group equilibrium. The significance of this
observation is that since the within-group equilibrium is the
same equilibrium that would be reached in an unstructured
population, these results show that group structure is hav-
ing an effect on population dynamics across a wide range of
group sizes.
Finally, to verify that this result is not an artefact of the

particular values of αss and αcs used, the same curves were
plotted for a variety of other parameters. Figure 7 provides
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Figure 7: Demonstrating that the same qualitative trends
arise where within-group selection towards selfish behaviour
is stronger in the coexistence case than in Figure 6. Here,
αcs = 1.99 and αss = 2 in the coexistence case, vice versa
for competitive exclusion; all other parameters as in Table 1.

an example of this, where αss = 1.99 and αcs = 2 in the
competitive exclusion case, vice versa for the coexistence
case. These parameters were chosen since they represent
stronger within-group selection towards selfish behaviour in
the coexistence case than in the previous example. Specifi-
cally, the within-group equilibrium frequency of the selfish
type in the coexistence case is 98.04%, compared to 83.3%
previously. The results in Figure 7 show that while an ef-
fect of group selection is still seen over a larger range of
group sizes in the coexistence case, the magnitude of the ef-
fect is reduced compared to Figure 6. The reason for this
is that variance in group composition is proportional to the
frequency of cooperators in the migrant pool in this case,
and hence to the corresponding within-group equilibrium
frequency, as discussed in detail in the following section.

Discussion
The results in the previous section demonstrate that where a
stable coexistence of types occurs at within-group equilib-
rium, an effect of group selection on global frequencies can
be seen over a much larger range of initial group sizes than
in the competitive exclusion case. In particular, as group size
increases in the competitive exclusion case, any measurable
effect of group selection on the global frequency of cooper-
ation rapidly tends to zero. By contrast, in the coexistence
case, some effect on global frequencies is seen over the en-
tire range of group sizes examined. It must be stressed that
we do not make a particular claim about the magnitude of
the effect for large group sizes. Rather, our model implies
that there is some measurable effect on frequencies over a
large range of group sizes; how large this effect may be will
depend on the properties of the natural system under consid-
eration. However, the fact that any effect of group selection
still exists over a large range of parameters is significant,
since it suggests that where within-group dynamics in nature

are of the coexistence type, some effect of a group popula-
tion structure may always be acting.
Coexistence dynamics allow group selection effects to be

sustained over a larger range of group sizes because of the
effect of migrant pool frequencies on between-group vari-
ance. In particular, because group formation constitutes ran-
dom sampling from the migrant pool, initial between-group
variance can be approximated by the binomial distribution,
and is then given by pcps/S, where pc is the proportion of
the cooperative type in the migrant pool, ps the proportion of
the selfish type, and S the initial group size (Wilson, 1980,
p. 27). Since pc + ps = 1, it follows that between-group
variance is proportional to the frequency of the least fre-
quent type, i.e. variance is maximal when both types are
of equal frequency, and zero when one type is at fixation.
Therefore, where one type reaches global fixation then there
can be no variance and hence no group selection. However,
in the coexistence case, where one type cannot reach fixa-
tion, it follows that there must always be some variance and
hence some possible effect of group selection. The fact that
the variance is proportional to the frequency of the least fre-
quent type is illustrated by the difference between Figures 6
and 7, where the lower within-group equilibrium frequency
of cooperators in Figure 7 results in a reduced effect of group
selection for large group sizes.
A further observation from Figure 6 is that a gradient to-

wards an increased effect of group selection also exists over
a larger range of group sizes in the coexistence case. Specif-
ically, decreasing group size by a small amount yields an in-
crease in the effect of group selection for groups of size 20
in the coexistence case. However, there is no gradient at this
size in the competitive exclusion case. The significance of
this is that increasing the effect of group selection increases
average absolute individual fitness in the population, due to
an increased global level of cooperation. If group size can be
partly determined by individual traits (Powers et al., 2007)
then this may provide an adaptive gradient towards smaller
groups, increased levels of cooperation, and greater fitness.
In the competitive exclusion case, however, such a gradient
only exists over a much smaller range of group sizes. While
numerical experimentation investigating whether either gra-
dient can be followed by a series of small mutations will
be the subject of a future study, the results presented here do
suggest that the concurrent evolution of group size and coop-
eration is more plausible in cases where a stable coexistence
of types within groups exists.

Conclusions
Any group selection process requires there to be a variation
in group composition. In aggregation and dispersal style
models, this variation arises through the random assignment
of individuals from the migrant pool into groups. Conse-
quently, it is often suggested that an effect of group selection
on the global frequency of types will only be seen for very
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small initial group sizes. However, the models on which this
claim is based typically only consider within-group dynam-
ics that lead to the competitive exclusion of a cooperative
type by its selfish counterpart.
In this paper, we suggest that within-group competitive

exclusion dynamics may be an unnecessary assumption in
a number of situations, including the modelling of multi-
species consortia in bacterial biofilms and during egalitarian
major transitions. A model has been presented which shows
that where such coexistence dynamics are present within
groups, the range of initial group sizes over which an effect
of group selection can be seen is much larger. Consequently,
the potential for an adaptive gradient towards smaller groups
and increased cooperation exists over a much larger range of
group sizes under coexistence dynamics. This is in sharp
contrast to the competitive exclusion case, where the ef-
fects of group selection rapidly reach zero as initial group
size increases, excluding the possibility of such a gradient
for a large range of parameters. Our results suggest that,
where group size can be influenced by individual traits, the
evolution of smaller groups and increased cooperation is
more plausible under coexistence dynamics. Such increased
group cooperation is a vital component of many major tran-
sitions in evolution (Maynard Smith and Szathmary, 1995;
Michod, 1999).
We have shown in this paper that the conventional con-

clusion that group selection effects can only be seen for very
small groups rests on the assumption that within-group dy-
namics lead to competitive exclusion. If a within-group co-
existence of competing types is instead permitted, then the
range of group sizes over which an effect can be seen is
much larger. This result follows from the fact that the vari-
ance in group composition upon which group selection acts
is dependant not only on group size but also on the frequen-
cies of types in the migrant pool. In particular, since neither
type can be driven extinct under coexistence dynamics, there
will always be some variance in group composition when
sampling from the migrant pool, which can then be acted on
by group selection. Thus, since it is not necessary to assume
that within-group dynamics lead to competitive exclusion,
this result shows that group selection can operate in a wider
range of conditions than previously realised.
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Abstract

With recent advances in materials, interest is being applied to
the idea of robots with few if any rigid parts, able to substan-
tially deform themselves in order to flow around, and even
through objects. In order to accomplish these goals in an ef-
ficient and affordable manner, space and power will be at a
premium, and so soft robots will most likely be both under-
actuated and under-controlled. One approach to actuation and
control lies in embodying portions of both tasks within the
structural dynamics of the robot itself. Such ”morphologi-
cal computation” is known to exist throughout the biological
world, from the behavior of cellular cytoskeletons up to the
tendinous network of the human hand. Here we present two
examples of morphological computation - one from biology,
the manduca sexta caterpillar, and one from engineering, a
modular tensegrity tower - and explore how ideas from these
realms can be applied toward locomotion and control of a
highly articulate, under-controlled, soft robot.

Introduction
Imagine a robot that can squeeze through holes, climb up walls, and
flow around obstacles. Once the domain of science fiction, thanks
to modern advances in materials such as polymers (Huang et al.,
2007), and nanocomposites (Capadona et al., 2008) such a “soft
robot” is becoming an increasing possibility. This ability to signifi-
cantly deform and alter shape, at a much higher level of detail than
discrete “modular” robots (such as Yim’s Polybot (2000) and Rus’s
Molecubes (1998)) makes accessable new and increasingly impor-
tant environments such as mine fields and collapsed buildings.
However, this incredible flexibility and deformability brings

with it considerable constraints in terms of actuation, power, and
payload. Striving not to have any rigid or fully solid elements
means that servo motors and batteries - the bread and butter, so
to speak, of conventional robotics - are far from ideal. As a conse-
quence, soft robots will in all likelihood be under-actuated, under-
powered, and under-controlled. Therefore, the onus lies upon soft
robotics researchers to discover ways of controlling these highly
articulate systems.
Fortunately, nature itself has provided us with several quite vi-

able prototypes, among them many of the large invertebrates such
as the octopus, squid, and the manduca sexta caterpillar, the latter
of which we will draw particular inspiration from in this work. As
we discuss in detail below, the manduca is able to achieve incred-
ible flexibility and control, despite having relatively few muscles
and astonishingly few motoneurons in each of its segments. It is
conjectured therefore that, in manduca, the interaction of hydro-
statics, body wall tension, and muscles, all contribute to a degree of

neuromechanics, or morphological computation (Trimmer, 2007).
That is to say, a large amount of the work normally attributed to
the neural system is instead “outsourced” and embodied directly
into the mechanics of the structure. Similar types of morphological
computation have been observed in other biological systems, such
as the tendonous network of the human hand (Valero-Cuevas et al.,
2007), wallabies Biewener et al. (2004), and cockroaches Ahn and
R.J.Full (2002).
In this paper we review some details ofmanduca’s anatomy and

locomotion as it pertains to morphological computation. We then
present related work in which a highly complex mechanical sys-
tem – a tensegrity structure – is able to achieve locomotion by ex-
ploiting the dynamical coupling between modules as an emergent
data bus. Finally, we bring these aspects together when describing
the design and control of a completely soft robot modeled loosely
on the manduca. More broadly, we hope to present morpholog-
ical computation – the use of mechanism as mind – as the best
approach to solving the issues of actuation and control inherent in
soft robotics.

TheManduca Sexta Caterpillar:
a Model Species for Soft Robotics?

Caterpillars such as manduca sexta (Figure 1) are some of the
most successful climbing herbivores in the world. They are in-
credibly flexible, with a large multi-dimensional workspace, are
able to cantilever themselves over gaps up to 90% of their length,
and perform a u-turn inside spaccesless than twice their body di-
ameter(Trimmer, 2007). They are able to accomplish all of this
because of, and at the same time despite of, the fact that they are
completely soft-bodied and lack any rigid elements such as a skelo-
ton. Unlike the beam-and-lever mechanics of vertebrates,manduca
move through a complex dynamical interplay of hydraulics, body
wall tension, and muscles.
Most remarkably, they are able to accomplish all of these com-

plex behaviors despite a relatively simple anatomy. Most locomo-
tion is performed by the co-ordination of their abdominal segments,
each of which contains on the order of 70 muscles. Furthermore,
each such segment contains relatively few motoneurons (one, or
maximally two per muscle), and no inhibitory motor units (Trim-
mer, 2007). Figure 2 contains an illustration of the major muscles
within a single such segment. These muscles however, are in of
themselves rather complex, exhibiting nonlinear and pseudo-elastic
responses to load cycling (Figure 3) which are quite different than
vertebrate muscles (Dorfmann et al., 2007).
All of these properties come into play when observing the crawl-

ing kinematics of the animal (Figure 4). Under normal locomo-
tion, waves of motion pass from the rear segment of the animal
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Figure 1: The external anatomy of the manduca sexta cater-
pillar. (adapted from Mezoff et al. (2004))

Figure 2: The major muscles from one side of an abdominal
segment of manduca (from Levine and Truman (1985))

(TS) toward the head. As the wave propagates, each segment com-
presses then re-extends, with the dorsal and ventral parts remain-
ing in phase. Somewhat puzzlingly, the length and radius of each
segment co-vary - they narrow and shorten simultaneously . This
suggests that fluid volume is not conserved during crawling - rather
tissue and fluid are moved and compressed throughout the animal
during locomotion (Trimmer and Issberner, 2007).
Combined, these complex mechanical properties, and the lim-

ited neural control, lead to the conclusion that the dynamics of the
system is itself responsible for control tasks that would otherwise
be attributed to neural circuitry. We explore and describe how a
complex mechanical structure can exploit this kind of coupled dy-
namics in order to achieve co-ordinated motion in the following
section.

Morphological Communication
in Tensegrity Robots

Traditional engineering approaches strive to avoid, or actively sup-
press, the kind of nonlinear dynamic coupling among components
exhibited in the anatomy of the manduca. Especially near resonant
frequencies, these couplings tend to produce undesirable vibrations
and oscillations that are difficult to predict and may sometimes be
catastrophic. A variety of passive and active damping techniques
have been developed to diminish these effect across many fields
ranging from robotics to structural engineering.
Biological systems, by contrast, are often rife with complex dy-

namics. Beyond the examples from manduca, consider the princi-
ple of tensegrity, which can be found at many scales of life, ranging
from the cellular cytoskeleton and the structure of proteins (Ingber,

Figure 3: The pseudo-elastic response of a manduca mus-
cle (from Dorfmann et al. (2007)). The muscle exhibits a
large degree of non-linear pseudo-elasticity when subjected
to load cycling.
.

Figure 4: Movement of the manduca terminal and midbody
segments during crawling (from Trimmer and Issberner
(2007)).
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1998) to the tendinous network of the human hand (Valero-Cuevas
et al., 2007). At every scale, these systems contain the type of cou-
pled mechanical and dynamical linkages which are so assiduously
avoided in engineering design. Could there be in fact, an advantage
to such high degrees of dynamical coupling?
The word tensegrity, a concatenation of tensile integrity was

coined by Buckminster Fuller to describe structures first popu-
larized by the sculptor Kenneth Snelson in 1948 (Fuller, 1975).
Broadly speaking, a tensegrity structure is a set of disjoint rigid el-
ements (rods) whose endpoints are connected by tensile elements
(strings), and which maintains its shape due to the synergy between
the compressive forces on its rods and the complementary forces in
its cables. Such structures are pre-stress stable, in the sense that in
equilibrium each rigid element is under pure compression and each
tensile element is under pure tension. The structure therefore has
a tendency to return to its stable configuration after subjected to
any moderate temporary perturbation (Connelly and Back, 1998;
Motro, 2003).
Unfortunately, these qualities which make tensegrities so attrac-

tive, largely pre-stress stability, carry with them complex nonlinear
dynamics, even for relatively small tensegrity structures (Skelton
et al., 2001), and as a result, active control is needed to dampen
the vibrational modes of relatively modest structures. In almost
all cases, deformation and control are achieved by changing the
rest lengths of the tensile elements, for instance by attaching at-
taching strings to a reeled servo motor. In this manner, Skelton
et al. have been able to demonstrate both active vibration damp-
ing (2004) and open-loop control of simple structures. Efforts such
as these, however, seek to minimize and control the complex dy-
namics of tensegrity structures, and no effective model exists for
the control of the complex dynamics of relatively large tensegrity
structures. Rather than attempting to scale these control schemes
to arbitrarily large and complex structures, our interest, by contrast,
lies in harnessing and exploiting these dynamics in the same way
that biological systems seem to.

Modular Tensegrity Robotics
Constructing robots from tensegrities is a double-edged sword. On
one hand the homogeneity of the rigid elements allows for a high
degree of modularity: each rod can contain identical sets of sen-
sors and actuators – the parts of a 10-bar tensegrity are identical
to those of a 3-bar one. On the other hand, any solution which re-
lies upon centralized control of the robot faces a crucial problem:
that of communication between modules. As the number of mod-
ules increases, the lines of communication (quite literally) increase,
bringing both the challenge of coordination and the risk of tangles.
Consider, for instance, the tensegrity shown in Figure 6. Even with
a single sensor and actuator at each end of each bar, a centralized
controller would need to synthesize, and co-ordinate the actions of
thirty sensors and thirty controllers.
We implement a simpler alternative to the problem of control

and locomotion by doing away with the notion of explicit inter-
modular communication completely. In our model we consider
each rod of the tensegrity to be a simple module with a small con-
troller capable only of sensing, and affecting the tension on a single
string at each end. Each strut module consists of a rigid tube with
a single servo motor mounted at each end. While, in principle,
multiple strings could be actuated by multiple servos at each end,
we have chosen to keep the design simple by limiting actuation on
each end to a single string. Figure 5 contains a photograph of a
representative tensegrity robot which contains four strut modules
In order to add time sensitivity we use a variant of ANNs called

spiking neural networks. Spiking neural networks (SNNs) were
developed to model more continuous processes: input and outputs

Figure 5: A tensegrity robot consisting of four strut modules
and 16 strings

are both represented as single-value spikes (as opposed the sigmoid
outputs of a conventional ANN) (Maass and Bishop, 1999). Instead
of a sigmoid function, every SNN node contains a simple persistent
counter, with adjustable offset and limit. At every time step, an
SNN node sums its weighted inputs with the current counter value,
and if the sum surpasses the limit the node fires a single “spike” to
its output; otherwise the contents of the counter are decremented
by a fixed decay rate, and persist until the next time step.
Each strut module in our tensegrity robot contains a single spik-

ing neural network with two inputs, corresponding to the tension
sensed at the single actuated string on each end, two hidden nodes,
and two outputs. At every simulation time step, each module mea-
sures its inputs and feed them through the SNN. Output spikes are
converted into string actuations by measuring the duty cycle of net-
work spikes. Any spike rate above 30% over a 100 step period
is considered “active”, and the corresponding string is pulled by
halving its rest length. Our choice of relatively simple binary ac-
tuation in this regard is an effort to simplify overall control, and to
reduce the difficulty in translating simulated results into physical
servo values.

Evolving Dynamic Gaits
In order to evolve gaits for tensegrity robots, the 15-bar tenseg-
rity shown in Figure 6 was reproduced within the Open Dynam-
ics Engine (ODE) Simulation environment , the widely used open-
source physics engine which provides high-performance simula-
tions of 3D rigid body dynamics. Rigid elements were represented
as solid capped cylinders of fixed length with a length-to-radius ra-
tio of 24:1. Tensile elements were represented as spring-like forces
acting upon the cylinder ends.
With only 30 actuators available (one at the end of each strut

module), and a choice of 78 strings to actuate, we chose to evolve
both the unique weights of the SNN within each strut module, and
also which particular string at each end to actuate. Genotypes of
individuals within the population therefore consisted of two sub-
genes. The first contained 180 floating point numbers correspond-
ing to the collective weights of all 15 strut module controllers
within the structure. The second consisted of a pairing of actu-
ated strings with strut endpoints. A single point mutation could
therefore either change a weight within the SNN or change which
string was actuated at a particular endpoint.
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Figure 6: A complex and highly dynamically coupled fifteen-bar tensegrity structure

Using this framework, we were able to evolve the weights within
the separate SNNs such that the structure as a whole was able to lo-
comote. Each experiment consisted of a population of 150 individ-
uals initialized with random SNN weights evolved over the course
of 1000 generations. Individuals were evaluated within our sim-
ulated environment by measuring the travel of the center of mass
over the course of 20,000 simulator time steps. Members of the
population were then ranked by their fitness, and the bottom scor-
ing half of the population culled. 75 new individuals were then
created as offspring of the remaining population via fitness pro-
portional selection, in which 30% of offspring were produced with
two-parent crossover, and the remainder with single-point single-
parent mutation.
Figure 9 shows the string activations of one successful evolved

gait during a single gait cycle, and Figure 7 contains snapshots
of the movement of the ensuing locomotion. The path of the red
sphere above the structure tracks the center of mass of the structure
(vertically displaced for visualization). It is worth noting that this
locomotion is accomplished despite the fact that the activity of the
strings shown in Figure 9 is so low. The movement of the entire
structure is, in fact, caused largely by the oscillation of just two of
its 78 strings. This provides some indication of the extent to which
the gait is exploiting the dynamics of the tensegrity itself, and its
vibrational modes.
We can further qualitatively measure the coupling between

evolved gait and system dynamics by observing the behavior of the
structure when the speed of the evolved gait is adjusted while keep-
ing the dynamics of the system unchanged. As shown in Figure 8
both the distance traveled and the path traversed vary significantly
under varying speeds.

Toward A Soft Robot
Our aim is to create a completely soft, articulate and deformable
robot modeled and inspired by themanduca. Like manduca (which
grows 10000-fold without any changes in musculature or nervous
system), we hope to arrive at a highly scalable solution - chang-
ing materials and actuators as necessary, while maintaining highly
similar control schemes. The constraints any such system which
strives to be fully soft means that space and power for actuation
will be at a premium. It is clear that, much like the biological sys-
tem, our soft robot must leverage every aspect of its morphology in
order to offload what are normally considered computational tasks.
The material proporties of the body wall and associated actuators
will need to be, in effect, part body and part brain.
Figure 10 contains a photograph of a prototype of such a system.

The main body of the robot is cast from a soft silocone elastomer
and actuated using SMA wires. Our aim in this case is to attempt

Figure 10: A prototype of the soft robot inspired by mand-
uca.

to mimic, albeit at coarser grain, the placement of muscles within
manduca. Both the elastic properties of the silocone and the ten-
sion of the SMA springs can be tightly controlled, which will be
vital for exploiting dynamics between them. It is no coincidence
that the pseudo-elasticity demonstrated in the manduca muscles is
very similar to that exhibited in rubber doped with carbon-black
particles (Dorfmann et al., 2007).

Our results with tensegrities demonstrate that it is possible to
model and evolve dynamically complex systems which are capa-
ble of exploiting effects such as mechanical coupling in order to
achieve locomotion. These results do not directly translate to a
soft robot however: the use of supple, deformable materials with
such complex dynamics means that rigid body simulations, such
as those provided by the commonly used Open Dynamics Engine
(ODE) physics engine are insufficient. Instead, we will use the
PhysX engine developed by Ageia Technologies, which is capable
of providing realistic simulations of deformable soft bodies such as
cloth and rubber. Within this system, we hope to be able to have
tightly control over specific material properties at particular points
of the body, such as stiffness, elasticity, without needing to resort
to full Finite Element Analysis, which might be more accurate, but
at the cost of significantly longer evaluation times.
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Figure 7: Snapshots of the motion of an evolved gait over 20,000 time steps
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Figure 8: As the speed of the evolved gait is decreased both the distance traveled and the path traversed vary significantly.
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Figure 9: String activations of the evolved gait. Notice how very few of the strings are higly active. This indicates a high degree
of efficiency in the gait, as the dynamic coupling between modules discributes the actuation throughout the structure.

Concluding Remarks
Advances in material science are bringing the promise of soft, flex-
ible robots closer to reality. With the benifits of these new abilities
and behaviors come new challenges in design and control. How
can you actuate, much less control, a floppy amorphous structure
that lacks any rigid elements? Fortunately a solution exists in the
forms of biological invertebrates such as the octopus and the man-
duca sexta caterpillar. It is becoming clear that much of the ability
of these animals lies in the particulars of their morphology – smart
structures, in essence, which reduce the amount of neural computa-
tion required to perform complex tasks. Since we know it occurs in
nature, we hope to reproduce simmilar effects in a soft robot. Here
we have shown how one such form of morphological computation
can arise in a complex mechanical system as well - in our case a
large irregular tensegrity structure. With what we know, and what
we hope to soon learn about manduca, and with the methodologies
employed in making our modular tensegrity robots walk, we hope
to shed light on how to build smart, resilient, and sophisticated soft
robots. Regardless of the final appearance, it is clear that any suc-
cessful soft robot’s body will be at once both mechanism and mind.
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Abstract 
In this paper, we present “Embryo”, a fully decentralized 
service management framework inspired by morphogenesis and 
capable of installing components and modifying the topology 
of a peer-to-peer (P2P) interaction overlay network so as to 
meet the needs of the majority of all participating peers. Co-
operation is an emergent property of the self-organisation 
process, which is underpinned by purely “selfish” decision-
making based on incomplete information gathered through 
gossiping (local messaging). We provide a detailed description 
of the local reasoning loop governing the behavior of individual 
peers, as well as Monte Carlo simulation results that 
demonstrate the system’s ability to converge to a stable state in 
which most peers have direct access to all the components they 
require via one of their first neighbors.  

Introduction 
The last few years have seen a huge number of papers on 

so-called “complex networks” in both natural (e.g. social, 
ecological, genetic) and artificial (e.g. power grid, 
communication) systems [1]. The main reason for the 
“vitality” of the field is arguably that many scientists have 
come to realise that the combination of graph theory and 
complexity science could provide them with powerful tools, 
provided that the specific problem they are trying to solve is 
translated into a set of vertices/nodes connected by 
edges/links. To a large extent, whether the nodes are genes, 
species or routers and the links chemical reactions, predator-
prey interactions or fibre optic cables can be considered as 
irrelevant when the system is described as a complex network, 
which makes the associated investigation techniques very 
widely useful indeed. 

It has been argued however that the dynamical properties of 
complex networks have been somewhat neglected and that 
maybe too much emphasis was being put on descriptive 
analysis (e.g. the search for power laws [2]). It is a fact that 
the mechanisms leading to the emergence of the various 
network structures have not always been studied in 
appropriate detail, and that some fundamental aspects of 
network growth, evolution and decay have yet to be explored. 
To some extent, the influence of dynamic node properties on 
network genesis is the focus of this paper.  

Understanding the “history” of networked systems (i.e. of 
how they came to exhibit a particular structure) is of particular 
significance in the case of overlays, i.e. virtual or logical 
networks superimposed on (and usually not paralleling) the 
underlying physical infrastructure. Indeed, being “immaterial” 

entities, overlays can reorganise themselves very quickly and 
easily, potentially resulting in macroscopic topological 
changes occurring over a short period of time. Since in many 
cases, rewiring in overlays is based exclusively on locally 
available information and only involves P2P interactions, 
understanding how a given structure can emerge requires 
careful examination of the local rules governing decision 
making and/or information sharing. If the objective is to build 
an overlay network to serve a particular purpose, then the 
problem becomes to engineer those rules so as to generate and 
maintain a desirable configuration.  

Some remarkable work has recently been done in this area 
by Jelasity and Babaoglu [3]. These authors propose a fully 
decentralised, gossip-based rewiring method (christened “T-
Man”) to organise a vast set of nodes so that each one of them 
rapidly “migrates” to the correct place in the whole (initially 
random) web of relationships. In T-Man, the “correct place” is 
entirely determined from the start by some static, node-
specific information (which can be assimilated to a unique ID 
in an addressing system). There are many situations however 
in which the local property that the self-organising process is 
concerned with will simply not be a constant, due to 
individual elements changing all or part of their characteristics 
at the same time that the web of interactions is being 
reconfigured. 

This problem is very similar to that found in morphogenesis 
(biological development), where individual stem-cells 
simultaneously differentiate (i.e. specialise) and move in space 
(equivalent to rewiring in a network) until cells of the right 
type occupy the right location in the developing organism. 
Indications are that the type of each cell is not assigned from 
the onset, but that differentiation is the result of signalling: in 
effect, neighbours influence each other’s “choice” through a 
dynamic web of positive and negative feedbacks, the structure 
of which varies due to physical relocation of individual cells 
[4]. 

We used this aspect of the developmental process as a 
source of inspiration because we find it to share many 
characteristics with co-operative peer-to-peer (P2P) service 
provision, a type of application that is very different from 
content-sharing, as it is typically characterised by lower 
diversity (there are fewer different service components than 
there are unique files in a typical file-sharing community) and 
more subtle interaction patterns (peer activity isn’t limited to 
propagating queries and uploading/downloading content). 
Note that biologically inspired approaches have been applied 
to content distribution by other authors (see e.g. [5]), but that 
this problem is outside the scope of our paper. 
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In P2P service provision, components are distributed across 
a collection of processing nodes, each of them hosting only a 
sub-set of all services locally and relying on different nodes to 
satisfy other needs, via remote access. In terms of the 
developmental biology metaphor, deciding which service to 
host is equivalent to differentiation (with the same complex, 
non-deterministic nature, due to the quality of a choice being 
primarily a function of other units’ decisions), while 
identifying and selecting suitable providers through rewiring 
of the overlay network is somewhat similar to physical 
migration. 

Motivation and related work 
The service management framework presented in this paper 

is motivated by the need for autonomic (self-managing) 
solutions that support future service component-based 
systems. Two areas where such autonomic solutions are 
required include Web Services and Pervasive Computing. 

Web Services [6, 7] encapsulate both a technology and an 
industry trend towards distributed, component-based business 
solutions, where an application is realised by linking many 
individual services together into complicated workflows and 
higher-level composite services. 

Related to the Web Services domain is the Open Grid 
Services Architecture (OGSA) architecture that is being 
developed by the Global Grid Forum (GGF). The aspiration of 
this work is to support the distributed interaction and 
interoperability of large numbers of component services in 
order to meet the needs of users, especially in the eCommerce 
and eScience domains [8]. Some of the technical challenges 
arising in realising such solutions are highlighted in Ian 
Foster’s seminal paper “The Physiology of the Grid” [9]. 

Pervasive Computing is similarly a combination of an 
overarching vision [9], industry trends and supporting 
underpinning technologies, and is of sufficient importance to 
merit its own journal [11]. The vision here is that of huge 
numbers of communicating devices embedded into the 
physical fabric of everyday life, all of which need to be 
marshaled to provide services effectively and efficiently. An 
interesting example of an adaptive approach to realising a 
service provision framework in a pervasive computing context 
is given in [12, 13]. 

Taken together, these technology trends provide huge 
opportunities, but they also exacerbate problems which 
already plague ICT systems, namely the complexity of such 
systems arising from huge numbers of interacting component 
parts and the cost of deploying and managing the behaviour of 
such systems. IBM have probably captured the challenges 
most clearly and succinctly by launching the Autonomic 
Computing initiative and associated challenges [14]. 

Given that future applications and services will almost 
certainly be realised by coordinating the actions of relatively 
fine-grained component services, the question arises as to how 
this might be achieved. Clearly the component services need 
to be encouraged to cooperate together to provide higher-level 
services, and given the envisaged scale and complexity, much 
of this cooperation needs to be inherent, or “engineered into”, 
the underlying system as self-organising principles. This paper 
presents a solution that is a step along that path. 

The need for self-managing approaches for Web Services 
has been acknowledged by the Open Grid Services 
Architecture (OGSA) in their stated objectives for “self-
management services” and “service level managers” but it is 
recognised that this work is at an early stage and is currently 
more aspirational than actual [8]. The approach currently 
being taken is clearly motivated by that advocated by IBM as 
the “autonomic management” control loop [15] - in essence 
this relies on a “generic control loop pattern” comprising 
monitoring, analysis, projection and action phases [8]. While 
this pattern will clearly form an important element in many 
autonomic systems, in this paper we advocate autonomic 
approaches that are more “inherent” in the design and 
behaviour of the system as a whole. This has the additional 
benefit of producing a more lightweight architecture. 

In fact our approach is much more closely allied with the 
techniques and algorithms arising from a rather different 
community whose research is sometimes labelled as “self*” 
and often draws upon highly interdisciplinary concepts and 
models, such as biologically inspired autonomic solutions [16, 
17]. Of particular interest to us is the work of Babaoglu who 
has drawn heavily on biological inspiration to realise a 
number of highly effective self-organised solutions to P2P 
data storage and routing, such as T-Man [3]. This and related 
work provides decentralised solutions and algorithms that are 
capable of maintaining reliable “overlay networks” over 
which service can be delivered, even when many component 
nodes may be individually unreliable [18]. 

This paper builds on solutions such as those advocated by 
T-Man, using similar self-organising principles to maintain an 
overlay network, but also allows individual nodes (service 
providers/consumers) to dynamically change their “type” in 
response to perceived demand in a fashion that provides useful 
autonomic features that support desirable system-level 
behaviour. While much of the existing research has focussed 
on data sharing over P2P overlay networks [19, 20], our focus 
is rather on the provision of a richer set of services via an 
overlay network that helps coordinate the cooperative 
behaviour of many individual service components. In this 
sense it is more closely related to the Chameleon system for 
self-organised and decentralised P2P web services [21]. 

Finally, we should stress that ultimate aspirations of both 
the Self* and Web Service research communities are in fact 
quite closely aligned. In practice we expect the real benefit 
will be most effectively realised when solutions such as those 
presented in this paper begin to be combined with those 
arising from initiatives such as the Open Grid Services 
Architecture in a truly interdisciplinary fashion. 

Basic Principles 
Like T-Man, Embryo uses exclusively gossiping to 

propagate information throughout the network and individual 
nodes can choose to swap neighbours based on whatever they 
learn about their counterparts through this process. Unlike in 
T-Man, they do not select neighbours based on a static 
identifier, but by trying to establish a set of symbiotic 
relationships with partners whose “specialty” complements 
their own at the time when the link is created. Because 
individual nodes can subsequently choose to stop hosting a 
given service and start hosting another (i.e. change type), their 
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relationships can become unsuitable which will eventually 
initiate a rewiring process. These dynamics, resulting from 
multiple nodes changing type and neighbourhood links 
concurrently, are very analogous to those found in 
morphogenetic systems.  

For simplicity, even though these limitations would 
probably not apply as strictly in any real co-operative P2P 
system, Embryo cells are assumed to host only one service at 
a time (i.e. they cannot simultaneously perform several 
functions) and to have a fixed maximum degree (i.e. they 
cannot create additional links, meaning that establishing a new 
connection requires terminating another one). We also make 
the implicit assumption that link cost and/or capacity is 
homogeneous throughout the system, and so that rewiring of 
the overlay doesn’t in any way affect performance (i.e. two 
nodes hosting the same service are equally capable of 
providing that service to any other peer).. 

The local reasoning loop is similar to the one we used in 
previous work [22]. Whenever a node requires a service that it 
is not hosting itself, it first determines if it already knows a 
provider. If it does, it just sends a request to this particular 
neighbour. If it doesn’t (or if the known provider fails to 
provide the service due to having changed type since the link 
was established) the originator of the request tries to identify 
an alternative provider. Unlike in our previous work however, 
this is not done by broadcasting a request, but by searching a 
locally kept stack of “adverts”. 

Adverts form the basis for the gossiping system of Embryo. 
Basically, every time that a node fails to identify a suitable 
provider, it prepares an advert specifying its own 
identification, which service is needed and which one it can 
provide in return (i.e. its present type). Adverts are 
periodically exchanged between neighbours, and propagated 
for a fixed amount of time (as in many P2P systems, this 
“time-to-live” mechanism is used to stop traffic from 
increasing indefinitely, by ensuring that outdated requests are 
discarded). Before forwarding adverts, every node keeps a 
local copy, building itself a partial but expanding and 
regularly updated picture of the offer and demand throughout 
the system (the adverts stack). 

When searching for a provider, a node sequentially 
examines the adverts (most recently received first), looking 
for one that contains a requests for its own current type and 
offers the service that it needs in return. If such an advert is 
found, the node contacts its poster and a handshake procedure 
is initiated, which will only succeed if: 

• Both nodes still have symmetrical needs (i.e. the poster 
hasn’t changed type or found another provider since the advert 
was created). 

• Both nodes have a spare (i.e. currently unallocated) or 
useless (i.e. connected to a peer that doesn’t provide a 
necessary service) link. 

If it does, the new co-operative link is created. 
If a node consistently fails to identify a provider for a 

particular service, it may choose to take the radical action of 
discontinuing the service that it is currently hosting and 
replace it with the one for which it has not been able to find a 
“collaborator”. This obviously creates a crisis for the node and 
for its neighbours, as it instantly makes all existing symbiotic 
links obsolete (since the node that has just changed type will 
no longer be capable of providing the service for which they 

were established, making the relationship useless for its 
partners). The underlying assumption is that this crisis can and 
will be resolved by a cascade of other modifications (of the 
overlay’s topology and/or of individual nodes’ specialty), and 
that the change of type will contribute to increase availability 
of the incriminated service. 

The key difference between Embryo and T-Man is 
therefore that in the former, the self-organisation process 
involves both rewiring and modification of local properties. In 
other words: a node can migrate towards a location in the 
network where its current type is needed, change type in an 
attempt to turn itself into a kind of unit more appropriate to its 
current location, or even combine both procedures.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Illustration of how “rewiring” and “differentiation” 
processes can lead to the same target configuration (A) and 
potentially problematic initial conditions (B and C). 

 
Figure 1a illustrates, in a particularly trivial case, how the 

two processes can produce the same result. If the system was 
managed exclusively via T-Man “rewiring”, it could only 
follow the left-hand path, whilst if it was relying on 
differentiation only, as in our own previous work [23, 24], it 
could only follow the right-hand path. The advantage of being 
able to combine both methods as in Embryo is made clear by 
the fact that, had the initial configuration been the one shown 
in fig. 1b, it would have been impossible to reach the target by 
rewiring only. Similarly, if it had been 1c, type change alone 
would have been insufficient. 

Only with Embryo is it guaranteed that the exact target 
configuration can be reached from any of the initial 
configurations shown on fig. 1, and it is clear that the further 
the initial conditions are from the desired system state 
(topologically and/or in terms of node type distribution), the 
more potentially useful it is to be able to combine rewiring 
and differentiation. 

Detailed algorithm 
Our simulated implementation is based on a P2P 

architecture in which every node is expected to provide and 
request services to/from its counterparts. As a result, all units 
are currently governed by the same decision rules, even 
though it is relatively straightforward to introduce variants in 
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which parameter values (or the rules themselves) would be 
specific to an individual and reflect its unique constraints 
and/or requirements. 

Decision making 
In the present state of Embryo, every node is assumed to 

perform only one function at a time, i.e. it cannot 
simultaneously host/provide more than one set of services 
(assimilated to belonging to a specific “node type”). As a 
result, acquiring the ability to perform a new function requires 
changing type (which implies losing the ability to perform the 
previous one). However, this simplification was introduced 
for clarity only and is not a fundamental limitation of the 
proposed algorithm (qualitatively similar collective decision 
dynamics could be obtained even if every node was capable of 
performing several functions, i.e. belonging simultaneously to 
multiple types). 

The functions to which a node needs access are assumed to 
be completely identified locally (i.e. every participant 
“knows” its own needs). Whenever it requires a function 
performed, the node behaves as follows: 
• If it already knows (i.e. is connected through the overlay 

to) a provider, i.e. another node belonging to the right 
“type”, it sends a service request. 

• If it knows no provider (or if the provider fails to answer 
the request for whatever reason), it looks through its 
locally kept list of adverts to identify a suitable candidate 
and initiate contact (see “messaging”). 

• If it doesn’t find a compatible advert or if the handshake 
fails (for whatever reason, see “messaging” for details) it 
has 2 options: 

o prepare a new “advert” to offer a partnership (see 
“messaging”) 

o turn itself into the requested type and become its 
own provider. 

The last action is the basis of the specialization process. 
The decision by the node to turn itself into the requested type 
is probabilistic and is based on its perception of the 
corresponding function’s availability. The probability P of 
changing type obeys: 

P = 1-1/(1+(x/xc)α)  (1) 

where x is the number of failed requests for that particular 
service, decremented (incremented) by one at each successful 
(unsuccessful) attempt, and re-initialised to zero if the node 
turns itself into the corresponding type, and xc and ! are 
parameters. The choice of function is arbitrary and another 
could have been used instead (preliminary results only suggest 
that it should be a sigmoid, which confirms intuition for those 
familiar with similarly self-organising systems found in 
nature). For the purpose of the proof-of-concept simulations, 
we used ! = 2 and xc = 4N (where N is the number of types). 

We have also experimented with variants in which the 
probability that a node changes type also decreases with the 
number of such “metamorphoses” that it has undergone 
already. For that purpose, we used the following 
transformation from P into P*: 

P* = P e−βyN    (2) 

where y is the number of previous type changes, N is the total 
number of types and " is a (positive) parameter. However, to 
facilitate interpretation of the results, this modification was 
de-activated in the version used for the simulations. 

Messaging 
Embryo relies on gossiping along co-operative links in the 

overlay network to propagate information about system state. 
Every node keeps a local list of the so called “adverts” that 
have reached it, indexed first by the function that they offer, 
second by their “age” (newest on top). An advert contains 4 
distinct pieces of information: 
• The type of the sender at the time when the advert was 

generated (i.e. the service/function on offer) 
• The type/function requested in exchange (i.e. the service 

needed by the sender at the time when the advert was 
generated) 

• The unique ID of the sender (e.g. an IP address or 
computer name) 

• A timestamp 
At irregular intervals (probabilistic decision), a node opens 

its “inbox”, where new incoming messages are stored between 
inspections. It is a rule that, when opening an advert message, 
the recipient immediately checks whether the local list already 
contains an entry from the same provenance. If it does and the 
new advert’s timestamp designates it as more recent (which 
isn’t necessarily the case, as a newer advert could have arrived 
first if following a different gossiping route), it replaces the 
older one. As a result, there can never be more than one entry 
per node (sender) in the local list of adverts. 

Whenever a node receives an advert that modifies its own 
local list (i.e. new provenance or new offer/request from an 
already identified source), it also creates a copy in its 
“outbox”. The content of the outbox is forwarded to the 
node’s neighbours (in the co-operative overlay network), also 
at irregular intervals (probabilistic decision). Constraints can 
be imposed on the number of messages that can be sent to 
every neighbour in order to accommodate link capacity. Also, 
a time limit can be added so that possibly “outdated” adverts 
do not unnecessarily clog the network. 

When in need of a service for which it either knows no 
provider or has failed to contact it, a node will look through its 
locally maintained list of adverts. If it finds one with the right 
characteristics, i.e. if: 
• The service on offer is the one that has just been identified 

as being currently unavailable (i.e. the one that triggered 
consultation of the adverts list) 

• The service requested in exchange matches its own type 
(i.e. it can honour its part of the deal) 

then the node makes an attempt at contacting the sender of 
that particular advert. 

Assuming that this attempt is successful, a handshake 
procedure follows whereby both nodes examine the 
opportunity of forging a new cooperative relationship. This 
will succeed only if: 
• The sender of the advert hasn’t changed type since it was 

sent (and so is still capable of providing the service 
advertised). 

• It still hasn’t identified another provider for the service 
hosted by the initiator of the handshake. 
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Other factors would probably need to be taken into 
consideration in a real implementation (e.g. QoS level, service 
charge…) but these are not modelled in the proof-of-concept 
simulation. Note that, according to this procedure, a node will 
never maintain more than N-1 links at a time (i.e. the number 
of services that it cannot provide to itself), but see the 
discussion about “volunteering” in conclusions and future 
work. 

If the handshake fails (i.e. communication with the sender 
was successfully established but one or both of the nodes 
rejected creating a co-operative link), then the adverts is 
identified as obsolete and cleared from the local list 
maintained by the initiator of the negotiation. In this case, the 
requesting node resumes its search through the list of adverts 
offering the desired service until either it reaches the last 
advert in the list (newest first) or finds a suitable provider (i.e. 
handshake succeeds). The failure to establish a workable 
partnership has two possible causes: 
• A service imbalance (i.e. there isn’t any node hosting the 

required service that needs access to the function 
corresponding to the type of the node trying to initiate a 
new co-operative link), in which case the best corrective 
action to take is to change type. 

• The local information about availability is inaccurate (out-
of-date or somehow corrupted) or incomplete, in which 
case the best corrective action is to (re-)advertise the 
desired co-operative relationship, so that potential 
candidates that are either unknown or wrongly identified 

as unsuitable (i.e. assumed to host a different service or 
not to be “interested” in the initiator’s type/offer) become 
aware of the opportunity. 

The decision to follow either course of action is made based 
on exp. (1), whereby the probability of choosing the 
“metamorphosis” option increases with the number of failed 
attempts (which can be interpreted as an indication that 
service imbalance, not lack of information, is indeed the cause 
of the repeated inability to forge a partnership). 

Results 
We used Monte Carlo simulation to gather evidence about 

the overall efficiency (speed, scalability, robustness…) of 
Embryo. We do not have space here to present all of our data, 
so we will focus on showing how system behaviour is affected 
by the value of the two main parameters, i.e. population size 
and number of services (N). 

All results are for 100 independent realisations. The 
simulation stops when all peers are either “fully satisfied” (i.e. 
they have one first neighbour of every type different from 
their own) or belong to a disconnected sub-graph that cannot 
reach steady state (size <N). Cases in which this condition 
was not met before reaching an arbitrary time limit were only 
encountered in networks of less than 64 peers in the N = 17 
scenario and were discarded. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Evolution of four key variables as a function of population size for N = 9 types or services. (A) Time to steady state. (B) 
Peak traffic. (C) Number of successful handshakes per node. (D) Number of metamorphoses per node. Error bars indicate standard 
deviation
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Note that since our objective is to demonstrate the 
fundamental properties of the algorithm and present generic 
trends revealed by the simulation, units are arbitrary (e.g. 
“time” is simply the number of simulation steps, “traffic” is 
the number of adverts being propagated per time-step). For 
the same reason, we focus on average values, though we also 
provide the standard deviation as an indication of variability. 
A more detailed statistical analysis would only be justified if 
the data consisted in experimental measurements, or if we 
had simulated system operation at a considerably lower level 
(e.g. by emulating realistic communication protocols 
featuring the equivalent of latency, packet loss etc.). 

Figure 2 shows the evolution of some key variables, 
namely the time to reach steady state (A), the peak traffic 
(B), the number of successful handshakes (C) and the 
number of metamorphoses (D) for N = 9 services and a 
variable number of peers. Clearly, the time to reach steady 
state is a logarithmic function of the population size, while 
the peak traffic (maximum number of adverts being 
propagated per time unit) grows linearly with the value of 
that same parameter. The number of successful handshakes 
per peer (corresponding to rewiring of the overlay) only 
increases very slowly with population size, while the number 
of metamorphoses (corresponding to type change) appears to 
obey an inverse power law. 

These trends all emphasize Embryo’s scalability with 
respect to population size. In particular, the drop in the 

average number of metamorphoses per peer (likely to be the 
most “costly” operation) seems to indicate that our algorithm 
would actually perform better in large systems than in small 
ones. 

As for the influence of the number of services, we ran a 
number of tests with N = 17. The results are shown in figure 
3. We discarded the results for 32 peers as this proved to be a 
pathological case, with less than 50% of simulation runs 
converging before reaching the time limit. We attribute this 
fact to the comparatively low population size / number of 
services ratio (which implies that the only steady state 
involves one fully connected graph of 17 peers). Otherwise, 
the information shown on fig. 3 is identical to the one shown 
on fig. 2. 

Overall, scalability with respect to the number of services 
is confirmed, though the noise level is comparatively high for 
the time to reach stable state (fig. 3a). For intermediate to 
large population sizes, the time to converge doesn’t appear to 
increase much compared with the N = 9 scenario, which is in 
accordance with the logarithmic trend. As for peak traffic it 
appears almost unaffected by the number of services. 
Interestingly, though higher in absolute terms, the number of 
successful handshakes per peer (fig. 3c) now decreases with 
population size, which again tends to indicate that 
performance actually increases as the system becomes larger. 

.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Evolution of four key variables as a function of population size for N = 17 types or services. (A) Time to steady state. (B) 
Peak traffic. (C) Number of successful handshakes per node. (D) Number of metamorphoses per node. Error bars indicate standard 
deviation. 
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Conclusions and future work 
All our results seem to designate Embryo as a suitable 

design philosophy to build an efficient and reliable P2P 
service provision infrastructure, especially in large and 
unpredictable resource-sharing communities. We argue that 
this makes our algorithm a strong candidate for autonomic 
deployment and maintenance of ICT systems at the interface 
between Service-Oriented Architecture (SOA) and Grid 
computing. This however would require taking into account 
some additional characteristics that, for the sake of clarity 
and completeness, were not included in the present study.  

For example, the procedure for establishing a relationship 
described in this paper implies reciprocity/symmetry, in the 
sense that a co-operative link is only established if each 
partner decides that it is in its own best interest to choose the 
other as a provider for a required service. On the contrary, a 
node can change type (which renders all of its co-operative 
relationships immediately obsolete) or terminate a link 
without consulting (or even notifying) its counterpart(s). This 
simultaneously offers a guarantee against cheating (since any 
node can unilaterally decide to withdraw from a relationship 
that it judges unsatisfactory) and makes it obvious that 
“selfishness” is not an obstacle to the self-organisation 
process. 

We have however experimented with a modified version 
of the decision and messaging infrastructure in which the 
initiator of the handshake procedure may accept to perform a 
function for another node even if it has no personal interest 
in doing so (we call this procedure “volunteering”). In this 
version, we assume that a node is able to provide a service to 
more peers than it has needs (i.e. it has more links than the 
minimum necessary to meet all of its own requirements). 
Preliminary findings suggest that such “volunteering” can be 
highly beneficial to the community as it appears to speed up 
the self-organisation process and leave fewer or no nodes 
“excluded” from the final (stable) overlay. 

Finally, in biological development, the “preferred 
neighbourhood” varies from one cell type to the other, 
leading to the formation of functional organ and tissues, 
which are basically specialised structures made of a an 
aggregation of cells belonging to a small sub-set of all 
possible types. Interestingly, this is also the case in P2P 
service provision, as not all peers need access to all services, 
and so the “homogeneous full coverage” scenario described 
in this paper is obviously a simplification. The more complex 
collective dynamics likely to emerge in an extended version 
of Embryo taking into account these various other aspects 
will be the subject of future work. 
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Abstract

Many forms of communication have evolved in the animal
kingdom for different purposes. In this paper we investigate
the limits of communication for simple reactive organisms
and show that communication has only limited benefits in bi-
ologically inspired foraging tasks and can even have detri-
mental effects in certain environments. Based on these re-
sults, we argue that simple agents with simple architectures
need very special environmental conditions for communica-
tion to benefit them and thus to evolve.

Introduction
Various forms of communication have evolved in the ani-
mal kingdom, ranging from broadcasting simple signals, to
the complex linguistic exchanges of humans. Much work
in ALife has attempted to demonstrate that, when and how
communication can evolve, but paid little attention to cases
where communication did not or will not evolve. Yet, we
believe that a full appreciation of the utility of communica-
tion for natural and artificial agents is not possible without
understanding both its potential and limitations.

In this paper we attempt to delineate the kinds of circum-
stances that would limit the evolution of communication for
biologically inspired tasks. We start with a few methodolog-
ical points about the notion of “communication” and lay out
the argument structure we will use here for investigating the
limitations of communication. Then we define a biologi-
cally inspired task called t-MATES (for “timed Multi-Agent
Territory Exploration Task with Satiation”) and introduce
various agent models for that task. Simulation results will
paint a surprising picture, showing that communication is of
very little utility for t-MATES tasks. We discuss implica-
tions of the results for the evolution of communication and
relate them to previous findings in the literature, concluding
with a brief summary and suggestions for future work.

Communication and Mechanism
Biological agents have evolved different forms of communi-
cation for different purposes, ranging from signaling danger
(e.g., danger caws of lookout crows), to indicating readiness

for mating (e.g., mating calls of frogs), to reporting loca-
tions of food (e.g., food dances of honey bees), to initiating
joint action (e.g., dogs’ bows to initiate social play), and to
sharing mental states (e.g., human reports of their beliefs).

These different forms of communication require different
functional capabilities of the agents’ architectures. Process-
ing simple signals emitted from another agent that only in-
dicate the agent’s presence in some location does not re-
quire much more than a perceptual system that can pick
up those signals as such and determine the direction from
which they originated (e.g., female frogs can determine the
signal strength and direction of male callers in a swamp;
similarly, ants can sense the gradient of pheromones left in
the environment by other ants). In fact, simple signals indi-
cating a particular state of affairs as perceived by an agent
can be construed as indexicals (in the Peircian sense), i.e.,
a food call effectively communicates indexical information
of the form “I see food here now”, see also Perconti (2002).
Note that this message containing three indexicals is differ-
ent from the message “Agent A sees food at location X at
time t” even if the content of the message is the same (i.e.,
the variables A, X , and t are replaced by the respective names
so that agent, location and time agree with the utterance of
the indexical message). For messages of the latter sort can
realistically not be encoded in simple indexical signals (un-
less one has a large number of distinct signals for all occa-
sions of interest at hand, which is practically almost never
feasible). Hence, representational devices are needed to rep-
resent agents, places, and times in the second case. Those
representational devices, in turn, require a systematic en-
coding (i.e., representations with formal rules defining well-
formed expressions) and mechanisms that can encode and
decode information (i.e., parsers). Moreover, to determine
times, locations, and agents (as in the above case), agreed-
upon scales (e.g., clocks, maps, and naming conventions) are
required together with “measuring devices” (i.e., algorithms
and possibly tools) to determine that determine where in-
stances fall on the scale (i.e., what time it is, where in the
map an item is located, and who the speaker is). All of this,
in turn, requires much more sophisticated functional capa-
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bilities in agent architectures that allow agents to determine
what to communicate and how to use the communicated in-
formation. Processing expressions that can encode and thus
communicate mental states like beliefs, for example, might
require representational capabilities such as those used in
modal or (fragments of) first order logic (e.g., to represent
the belief that at least one member of a group has already
had dinner).

More complex architectures that can handle the added so-
phistication of more complex messages (such as their syn-
tax and semantics) comes at a price, however: the cost of
building/growing and maintaining it.1 In contrast, simple
signals like “I see food here now” might not require much
additional processing at all: the receiving agent could just
move towards the perceived signal if it needs food, or ignore
it otherwise.

Aside from the computational/architectural costs, the
costs of communicating can also be substantive. An agent
that continuously sends broadcast signals (like alarm, food,
or mate calls) might use up a significant portion of its en-
ergy, possibly without any benefit if no other agent can hear
the signal (the calls of male treefrogs, for example, are much
more expensive than navigation, limiting them to participate
in the calling chorus during mating season for only a few
days out of several weeks, e.g., see Fellers (1979)).

From all of the above it is clear then that claims about
the evolvability of communication or about the likelihood of
communication evolving need to be very specific with re-
spect to the form of communication they target, as all the
above differences (with respect to communication schemes,
functional, representational and computational capabilities
of agent architectures, and the various costs) are typically
subsumed under the general term “communication”.

For example, only social insects seem to have evolved dif-
ferent ways to communicate information about food sources
in partly non-indexical ways among their respective groups
(from annotating the environment by leaving marks like ants
do with pheromone trails, to using intricate dances like those
of honey bees that encode direction and distance to food
sources as well as food quality), despite the large number of
different species of insects. For most other forms of insects,
indexical mate signaling is the most that has been described
(but see Cocroft (2005) for an example of food signaling in
treehoppers).

We will in the following investigate two forms of commu-
nication about food: the simplest form of indexicals signal-
ing “I see food here now”, and a more complex form of “I
see food in location X now”, which removes one of the three
indexicals and replaces it with an explicit value (namely the
location of the food item). Since we are interested in deter-
mining the limits of communication, we will have to follow

1In humans, for example, the brain consumes up to 25% of the
body’s energy, in infants even up to 75%, e.g., see Cunnane (2006).

a different strategy from most work on the evolution of com-
munication, which we will describe next.

Method
Most research on the evolution of communication (see the
Related Work section below) attempts to demonstrate that
communication is beneficial and thus can evolve in some
agent in some given task. The logical form of these “evolv-
ability claims” is typically an existence claim: for a given
agent type and task there exists an initial distribution and
an evolutionary trajectory from this distribution that leads to
communication in those agents. The existential quantifiers
here are often the result of a common strategy to establish
claims about the evolvability of communication by exam-
ining the outcomes of runs of genetic algorithms or simi-
lar evolutionary computational tools. It is, however, impor-
tant to note that the existential quantifiers critically limit the
scope of the claim: it only says that for some initial condi-
tions there are trajectories that lead to communication be-
ing beneficial. This leaves open whether communication
could have or would have evolved for all trajectories, or the
vast majority of trajectories, and thus whether it was likely
for communication to evolve. For the likelihood of a prop-
erty evolving in a task, we need to determine the conditional
probability of communication evolving given as set of initial
conditions. The conditional probability formulation can then
be used both to confirm and disconfirm that a property P
such as communication is likely to evolve in a set of agents
by comparing the performance of agents with P and without
P for each initial condition. If there is no absolute perfor-
mance difference, then there will likely be no evolutionary
trajectory resulting in agents with P , for having and using
P would at best incur an additional cost without yielding
any gain in task performance. If there is no relative perfor-
mance difference between agents with and without P in the
given task (i.e., when the cost of having and using P is taken
into account in the performance measure), then the answer
to the question whether there is an evolutionary trajectory
leading to P will depend on additional information about in-
termediary stages of the trajectories, e.g., what evolutionary
operations are used and how frequently they are employed,
whether these operations can produce viable architectures at
any point along the trajectory, etc. Typically, it is difficult (if
not infeasible) to obtain this kind of information.

Hence, we will aim at establishing that there is no abso-
lute performance difference between agents with and with-
out communication. While it is impossible to do this ex-
haustively for the sheer size of the set of initial conditions
(even in our limited experimental setup), it is possible for
a small, but representative subset of initial conditions ran-
domly drawn from the set of all initial conditions. Statistical
significance tests can then be used to reject the null hypothe-
sis that there is an absolute performance difference between
communicating and non-communicating agents. And the p-
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value of the significance test can be taken as an upper bound
on the conditional probability that communication evolves in
environments of the given type (a more detailed exposition
of the employed experimental methodology can be found in
Scheutz and Schermerhorn (2005)).

Task and Agent Models
To be true to the question about when and why communi-
cation evolved in nature, we define a generic biologically
plausible territory exploration task that is intended to mea-
sure the efficiency with which agents can negotiate their en-
vironment (e.g., how they determine where to go in their
environment based on their survival goals such as finding
food).

Definition t-MATES: A timed multi-agent territory ex-
ploration task with satiation (t-MATES) T (t,C,A,R,D,S)
requires a group of identical agents A each with sensory
range R to visit as many checkpoints in C as possible in
a 2D environment within the allotted time t, where agents
and checkpoints are placed according to a probability distri-
bution D and each agent can visit up to S checkpoints (the
“satiation level”).

D is typically unknown to the agents, hence it cannot be a
priori exploited by them. Agents neither know their own
locations in the environment nor those of the checkpoints.
Rather they can only detect relative locations of checkpoints
based on their perceptions (e.g., the location of a check-
point relative to the agent’s heading). All checkpoints are
marked so agents can perceive them when they are within
sensory range. Whenever a checkpoint is visited by an agent,
the agent removes the mark, thus effectively removing the
checkpoint from the environment.

One way to conceptualize t-MATES tasks is to think
of them as “foraging episodes” (of duration t) taken from
an ongoing evolution of populations of biological agents:
checkpoints can be viewed as food sources, and visiting
can be taken to be consuming them, with the satiation level
determining the maximum food intake an agent can have
within the foraging period t. Performance of different agent
types during t reflects the agent types’ foraging efficiency
(i.e., the efficiency with which agents can find food), which
in turn is a fitness measure of their performance in the larger
evolutionary context of survival and procreation. That is,
if an agent kind K1 has a higher foraging efficiency than an-
other agent kind K2 as measured in the t-MATES task, where
foraging efficiency is given in terms of “average number of
visited items per time unit”, then one would expect K1, on
average, to perform better than K2 in t-MATES tasks in an
evolutionary setting.2

2The qualifier “on average” is critical here as there can always
be special circumstances that punish normally fitter agents and can
even lead to their extinction.

Next, we define a simple reactive, yet biologically plausi-
ble non-communicating base agent model (e.g., at the level
of insect behavior) that meets the minimum requirements for
the t-MATES task of being able to move about the environ-
ment, detect a checkpoint within the given sensory range R
and move towards it. For simplicity’s sake, we do not em-
ploy a particular sensory model (e.g., sonar or visual sen-
sors), which would introduce complicating perceptual ef-
fects such as interference or visual occlusions, but rather
assume that agents can detect any number of checkpoints
within the circular Area of radius R around them. Given
that checkpoints have an extension in space (1 square unit),
the maximum number of detectable non-overlapping check-
points is limited by Area = R2 ·π.

The behavior of a non-communicating agent is then de-
termined solely by its sensory information (which is limited
to checkpoints, other agents are not perceived) based on the
following three rules:

Rule 1: if no checkpoint is sensed, perform a random walk
RW (rwd,β) (i.e., move in the direction of the current
heading θ for rwd cycles, then change heading randomly
to some value in [θ−β,θ+β])

Rule 2: if some checkpoints are sensed and are not within
visiting range (i.e., they are not within the extension of
the agent’s body of 8 units), go directly towards the clos-
est checkpoint (the direction is given by α such that
min

d
{〈d,α〉|〈d,α〉 is within sensory range)

Rule 3: if some checkpoints are sensed, at least one check-
point C is within visiting range, and the agent’s count of
checkpoints visited c is less than its satiation level S, re-
move the mark(s) of up to S− c of the checkpoints (if it
is/they are still there)

When an agent achieves satiation, it continues to execute the
rules above (i.e., it will search for another checkpoint and
move to it, but upon arrival will simply remain there until
the checkpoint is removed by another agent).

Note that the basic model is parameterized by RW (rwd,β)
and R, hence its performance will critically depend on those
parameters. In a sense, RW (rwd,β) is an agent-internal pa-
rameter that should be chosen so as to maximize an agent’s
performance with a given sensory range in a given envi-
ronment if we want to investigate the utility of communi-
cation. However, to be able to choose the best values for
RW (rwd,β), we need to understand how the random walk
interacts with other parameters such as the agent’s sensory
range, the number of participating agents in the task, and
the structure of the checkpoints in the environment (e.g.,
a random distribution). Hence, we conducted a large set
of calibration experiments to determine the best random
walk distance (rwd) for base agents for each sensory range
R∈ {25 ·n|1≤ n < 10}∪{300+50 ·n|0≤ n≤ 6} and group
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size |A| ∈{ 2,3,4,5}, in both random and clustered environ-
ments.3

We extend the base agent model in two different ways
to allow for two kinds of communication: purely indexical
communication – call it signaling agent – and partly “repre-
sentational” communication – call it messaging agent. We
also allow for two reactions to signals: a typical approach
behavior (e.g., like those exhibited by Toque Macaques
when they hear a food signal Dittus (1984)) and, for con-
trast, an avoidance behavior that will cause agents to walk
away from the direction of the food signal. The effect of
the avoid behavior should contrast to potential clustering ef-
fects engendered by the approach behavior, potentially lead-
ing to better agent distribution, particularly in random envi-
ronments. Thus, we will define four different types of com-
municating agents.

For the signaling agent we add the following two rules:

Sending: whenever a checkpoint is sensed, the agent turns
on its “checkpoint” signal

Receiving: whenever no checkpoint is sensed but one or
more checkpoint signals are sensed, the agent either ap-
proaches or moves away from the direction of the closest
signal.

Similarly, we add two rules for the messaging agents:

Sending: whenever a checkpoint is sensed, the location of
the checkpoint is communicated as the 〈d,α〉 of distances
d ∈ [0,R] and angles α ∈ [0,2π] relative to the sending
agent’s position

Receiving: whenever no checkpoint is sensed but one or
more checkpoint messages are received, the agent either
approaches or moves away from the closest checkpoint4

Note that messaging agents will at any given time know
the locations of all checkpoints that are perceived by any
agent within communication range, while signaling agents
will only know the locations of checkpoints they themselves
perceive, even though they will know where other agents are
that perceive checkpoints. Satiated agents will continue to

3For space reasons we omit a detailed description of the results.
4The details of exactly how agents extract the exact location

of a checkpoint relative to an agent’s own heading from another
agent’s message are not straightforward; they usually involve addi-
tional communicated parameters such as heading of agents relative
to each other or relative to a fixed coordinate system (e.g., as mea-
sured by a compass, etc.). Here we simply assume that the agent
can compute the angle and distance to the communicated check-
points based on where the message came from, and that they some-
how have access to the source location. For it will turn out that mes-
saging agents do in general not have better absolute performance
than signaling agents, hence the details of the control architecture
and the buried complexities and costs do not have to be considered
explicitly (as would typically be the case for conditions where mes-
saging agents performed absolutely better than signaling agents).

send and receive according to the communication rules for
their agent type.

Because we are interested in determining the limitations
of communication, we will consider two different commu-
nication ranges: an (unrealistic) unlimited communication
range (as a control condition) and a biologically plausible
limited communication range that is the same as the agent’s
sensory range.

We thus arrive at nine different agents, which we will la-
bel from 0 to 8 for ease of presentation. Agents of type
0 do not use communication, while odd-numbered agents
use messaging and even-numbered agents use signaling.
Agents types 1 through 4 use unlimited communication,
while agents types 5 through 8 use limited communication.
Finally, agents types 1, 2, 5, and 6 use approach behavior,
while agents types 3, 4, 7, and 8 use avoidance behavior.

Experiments and Results
All simulation experiments were conducted in the artificial
life simulator SWAGES, which is a distributed agent-based
artificial life simulation environment that consists of the par-
allelizable SIMWORLD simulator and an experiment grid-
server used to schedule experiments on heterogeneous clus-
ters of computers, automatically parallelize and distribute
simulations over multiple hosts, collect statistics, and per-
form preliminary data analysis (Scheutz and Schermerhorn,
2006; Scheutz et al., 2006).

One simulation experiment consists of 100 experimental
runs, each using different randomly generated initial condi-
tions from a given distribution D (of initial conditions) in
a continuous 2D world, which is limited to an 800 by 800
square region (in comparison, each agent occupies a circular
region of diameter 8).5 Two different distributions of check-
points are used: random and cluster. In the random distri-
bution, checkpoints are placed at random locations within
the whole environment, while in the cluster distribution all
checkpoints are placed according to a Gaussian distribution
(with a radius of 150 units and a standard deviation of 75
units) centered in one 200 by 200 quadrant (with all check-
points contained within the quadrant). We consider two dif-
ferent numbers of checkpoints, |C| = 10 and |C| = 40, and
four group sizes of agents, |A| = 2 to |A| = 5 to investigate
the possible effects of food density and group size on the
utility of communication. Moreover, we fix the agents’ sati-
ation thresholds at S = 10, but vary their sensory ranges from
25 to 600. The same set of 100 initial conditions of check-
point and agent placements is used for all variations of group
size and sensory/communication range for a given number
of checkpoints and checkpoint distribution to allow for a

5Whenever an agent reaches the boundary of the environment,
it will “bounce” off (similar to a billiard ball bouncing off the cush-
ion) with some very small random error (this is to make sure that
agents will not be able to leave the area within which checkpoints
are located).
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C = 10 C = 40
Random Cluster Random Cluster

0 6.93 (2.62) 8.07 (3.13) 20.80 (7.55) 20.69 (10.74)
1 6.65 (2.71) 8.41 (2.99) 20.32 (7.95) 25.22 (10.48)
2 6.62 (2.70) 8.37 (2.99) 20.29 (7.93) 24.89 (10.44)
3 6.60 (2.70) 7.82 (3.13) 19.98 (7.99) 18.57 (10.90)
4 6.60 (2.71) 7.81 (3.20) 19.99 (8.03) 18.58 (10.90)
5 6.90 (2.63) 8.08 (3.14) 20.74 (7.58) 21.11 (10.87)
6 6.89 (2.62) 8.07 (3.13) 20.72 (7.58) 21.08 (10.86)
7 6.95 (2.62) 8.05 (3.13) 20.85 (7.55) 20.36 (10.61)
8 6.95 (2.62) 8.05 (3.13) 20.86 (7.55) 20.36 (10.61)

Table 1: Average performance of all nine agent types across
all sensory ranges (from 25 to 600) in both types of envi-
ronments (random and cluster) with both numbers of check-
points (10 and 40) for all four group sizes (from 2 to 5).

10 Checkpoints
Random Cluster

Df F p F p
Type 8 59.00 < .001 55.07 < .001
Range 16 5167.12 < .001 3390.00 < .001
Type:Range 128 3.93 < .001 3.24 < .001
Error 61047

40 Checkpoints
Random Cluster

Df F p F p
Type 8 25.17 < .001 499.00 < .001
Range 16 2610.12 < .001 1756.89 < .001
Type:Range 128 3.82 < .001 15.13 < .001
Error 61047

Table 2: Two-way 9×16 Analysis of variance in perfor-
mance with the independent variables agent type and sen-
sory range and the dependent variable checkpoints visited.

direct performance comparison among the different agent
kinds and parameters. We use the number of checkpoints
visited within t as performance measure and fix t = 500,
which turned out to be long enough to highlight foraging
differences among agent types.

The overall performance results for the nine agent types
in the four environmental conditions averaged over all sen-
sory ranges and group sizes are shown in Table 1, the results
of ANOVAs for each environmental condition are shown in
Table 2, and the statistically significant performance differ-
ences are shown in Table 3. The results in Table 2 show that
the differences in average performance between agent types
are significant (as is the effect of sensory range on perfor-
mance, unsurprisingly). The interaction between agent type
and sensory range is due to performance differences between
types found in medium sensory ranges; when sensory range
is very low, agents have a very hard time locating check-
points about which to communicate, whereas when sensory
range is high, shared information is seldom novel.

The results in Table 3 demonstrate that in random en-
vironments, regardless of the food density, communication
does not pay off, not even in the simplest form of signaling

10 Checkpoints
Unlimited Communication Range Limited Communication Range

Approach Avoid Approach Avoid
0 1 2 3 4 5 6 7 8

0 +++ +++ +++ +++
1 - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - -
5 +++ +++ +++ +++
6 +++ +++ +++ +++
7 +++ +++ +++ +++
8 +++ +++ +++ +++
0 - - - - - - +++ +++
1 +++ +++ +++ +++ +++ +++ +++
2 +++ +++ +++ +++ +++ +++ +++
3 - - - - - - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - - - - - - -
5 - - - - - - +++ +++
6 - - - - - - +++ +++
7 - - - - - - +++ +++
8 - - - - - - +++ +++

40 Checkpoints
Unlimited Communication Range Limited Communication Range

Approach Avoid Approach Avoid
0 1 2 3 4 5 6 7 8

0 +++ +++ +++ +++
1 - - - + + - - - - - - - - - -
2 - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - -
5 ++ +++ +++ +++
6 ++ +++ +++ +++
7 +++ +++ +++ +++
8 +++ +++ +++ +++
0 - - - - - - +++ +++
1 +++ +++ +++ +++ +++ +++ +++
2 +++ +++ +++ +++ +++ +++ +++
3 - - - - - - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - - - - - - -
5 - - - - - - +++ +++
6 - - - - - - +++ +++
7 - - - - - - +++ +++
8 - - - - - - +++ +++

Table 3: Comparison of the nine agent kinds in 10 check-
point (top two tables) and 40 checkpoint (bottom two ta-
bles). Within each checkpoint condition, the upper table is
in random and the lower table is in cluster environments.
“+” and “-” denote significant performance differences (be-
tween mean performance of the agent type in the row minus
mean performance of the agent type in the column), where
the number of symbols indicates the significance level based
on Tukey’s honestly significant difference (HSD) multicom-
parison post-hoc test: one symbol for p < .05, two symbols
for p < .01, and three for p < .001.

(as demonstrated by the lack of minus symbols in the row
with agent type 0). Quite to the contrary, unlimited commu-
nication can significantly hurt agent performance (see the
plus symbols in the 0 agent row). In cluster environments,
there is some benefit to communication: agents with unlim-
ited communication range using approach behavior perform
better than non-communicating agents (see the minus sym-
bols in the first two columns of the 0 agent row), but not
if they use avoid behavior, as expected (see the plus sym-
bols in the third and fourth columns of the 0 agent row).
Note that there was no performance difference between the
two forms of communication. Messaging agents with unlim-
ited communication range using approach behavior in ran-
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dom high density environments do, however, have a slight
advantage over those using avoid behavior (see the single
plus symbol in columns 3 and 4 of the 1 agent row). Over-
all, there is no statistically significant performance differ-
ence in any of the four environmental conditions between
non-communicating and communicating agents with limited
communication range (as evidenced by the lack of any sym-
bols in columns 5 through 8 in the 0 agent row).

Discussion
The above results make a strong case for the limited utility
of communication for simple insect-like agents in t-MATES
tasks, especially since there was no statistically significant
performance difference between non-communicating and
communicating agents with limited communication range.
With unlimited communication range, the question about
the utility of communication becomes surprisingly depen-
dent on the type of environment: in random environments,
performance actually decreases due to agents wasting cy-
cles pursuing checkpoints that will likely have been vis-
ited by other agents before them, while in cluster environ-
ments performance increases due to agents being attracted
to the cluster quickly as soon as one agent has discovered
it. The performance difference between communicating and
non-communicating agents is particularly pronounced in the
high density condition (of 40 checkpoints), where the sati-
ation level limits agents to 10 visits (thus 4 agents are re-
quired to visit all checkpoints in the cluster; in the non-
communication conditions this means that the cluster needs
to be discovered independently at least four times, which can
take a while). The performance improvement is less pro-
nounced in the 10 checkpoint cluster (given that one agent
could visit them all). In the random condition, the trend is in
the opposite direction: the performance decrease is higher in
the low density condition than in the high density condition,
again for the reason that agents will chase checkpoints that
other agents are likely to get first.

Note that the above results are based on absolute perfor-
mance differences, as communicating agents are not charged
any penalties for their communication mechanism (includ-
ing processing and representational resources and computa-
tion time, additional sensors and effectors, etc.). The costs
involved in communication, especially the cost for sensitive
sensors with large sensory ranges (as is required for com-
munication to be beneficial) can be quite expensive (e.g.,
see (Schermerhorn and Scheutz, 2006, 2007b) for compari-
son of the various tradeoffs). Hence, whether communica-
tion based on large communication ranges will evolve for
high density cluster environments is an open question, but
we can already say that if it evolves then it will use signal-
ing and not messaging, given that there was no performance
difference between signaling and messaging, but messaging
requires and incurs much greater costs.

It is curious, then, that a small number of insect species –

the social insects – did evolve messaging communication to
communicate the locations of resources to their peers. This
could be because these agents depart from and return to a
common location which makes a difference in their foraging
patterns that could favor communication. Moreover, honey
bees (Capaldi and Dyer, 1999; Menzel et al., 1998) could not
use the signaling mechanism for food employed in this study
when they are at the hive. Interestingly, Dornhaus and Chit-
tka (2004) provide evidence that bees can survive just fine
without communication (i.e., when their ability to commu-
nicate is suppressed) depending on the food distribution and
food quality in their environment. Hence, we would expect
to observe this contingency of communication being benefi-
cial depending on the distribution of food in the environment
in modified t-MATES tasks if the additional constraint of al-
ways having to return to a common “base checkpoint” after
visiting a “field checkpoint” is taken into account; and in
fact Schermerhorn and Scheutz (2005) provides preliminary
evidence from a related task that suggests that this might in-
deed be the case.

Related Work
Several authors have investigated the utility of communi-
cation or signaling in various tasks. There are, for exam-
ple, purely game-theoretic studies that explore the role of
communication in coordination games and show that non-
binding, pre-play communication can can increase the prob-
ability of playing the Pareto-dominant strategy (e.g., Cooper
et al. (1992)). Arkin et al. find that communication can
aid coordination in robotic retrieval tasks (Arkin and Hobbs,
1992; Wagner and Arkin, 2004). Conversely, Werger et al.
(Werger and Mataric, 2001) and Quinn et al. (2003) found
communication to be unnecessary to achieve task formation
in a system which uses behavior-based mechanisms to gen-
erate cooperative behaviors. However, the employed tasks
are sometimes very different from t-MATES tasks making it
difficult to compare the outcomes.

MacLennan found that communication will evolve in a
task requiring coordinated behavior when agents are re-
warded for agreeing on the meaning of a signal (MacLen-
nan, 2002). However, this rewards agents directly for com-
munication rather than demonstrating that communication
can be beneficial to performance of a separate task. Simi-
larly, Levin (1995), using a genetic algorithm approach with
a fitness function that explicitly favors the evolution of com-
munication, found it possible to progressively improve the
ability of agents to correctly interpret other agents’ commu-
nications. Noble and Cliff (1996) extend MacLennan’s work
to show that a structured language will evolve based on the
benefits of communication.

Quinn (2001) describes experiments in which artificial
agents evolve a signaling mechanism in the absence of pre-
determined communication channels. Pairs of simulated
robotic agents starting within sensor range of one another are
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given the task of moving in their environment while staying
within sensor range. Here, a signaling system evolved which
was not part of the fitness function, but rather measured ab-
solute task performance and behavior coordination.

Marocco et al. (2003) and Cangelosi et al. (2004) describe
experiments with simulated robots which are required to rec-
ognize a sphere and a cube in order to maximize contact with
the sphere and minimize contact with the cube. Once agents
identify an object, they can communicate that information to
other agents, allowing them, for example, to avoid contact
with the cube without using first-hand proprioceptive infor-
mation. Communication between parents and offspring was
found to evolve.

Ackley and Littman (1991) note that models in which
the speaker as well as the listener benefits from communi-
cation produces an unrealistic environment in which many
observed phenomena related to communication do not make
sense. In their model, agents can share information about
nearby food and predators. They found that, in some condi-
tions, communication can improve performance on the sur-
vival task (i.e., locating food and avoiding predators).

Noble (1999) examines various communication games to
determine under what circumstances communication will
evolve. Agents have the opportunity to communicate during
encounters between a signaler and a receiver, and they are
rewarded when the receiver responds appropriately to the
signal. In this study, communication was found to evolve
when the signaler receives a net reward. However, when
signalers are not rewarded for receivers’ successes, commu-
nication did not evolve.

Grim et al. (2002) examine the benefit of communication
in a survival task requiring agents to consume food when
present and hide from predators. Agents can share informa-
tion about food and predators with neighboring agents. They
find that communication will evolve in the absence of a cost
for signalling, but that adding such a cost, even just to the
level of 2% of the benefit of eating or the cost of predation,
affects the viability of communication.

Reggia et al. (2001) found similar results to those pre-
sented above with regard to the effect of checkpoint (food)
distribution. Their study examines only indexical signalling,
and they do not examine the effect of sensory range or
communication range. However, different from our study,
their model includes predators, an important risk factor that
should further decrease the utility of communication.

Conclusion
We investigated the limitation of communication for im-
proving the performance of simple agents in timed multi-
agent territory exploration tasks with satiation. Different
from most work on the evolution of communication, our
results paint a nuanced picture of the utility of communi-
cation. In environments with no structure communicating
agents with limited communication range do not perform

better than non-communicating agents, and unlimited com-
munication range can result in a significant performance
drop. In cluster environments, only communication with
unlimited communication range (that covers the whole en-
vironment) leads to better performance (which may or may
not be biologically plausible depending on the type of envi-
ronment and type of sensory modality). More importantly,
there was no significant performance difference between
signalling and messaging agents suggesting that if commu-
nication were to evolve, then it would be of the simplest pos-
sible form using only indexical broadcast signals rather than
non-indexical messages.

While the above results might seem largely negative from
the perspective of someone arguing for the utility of com-
munication and the likelihood of it evolving for biologically
plausible foraging tasks, the results about the utility and high
level of performance of simple agents with at best simple
means of signalling in t-MATES tasks is highly relevant for
and might find direct applications in a variety of engineering
tasks where low-cost solutions or solutions with a high (if
not the best) relative performance are of major interest (for
example, in energy-efficient mobile rovers that explore the
surfaces of planets, expandable autonomous mine-sweeping
robots that search an area for mines and explode with the
mine by driving over it, or unmanned surveillance vehicles
that need to check various locations in an environment as
they are dynamically reported as quickly as possible).

In addition to the already mentioned constraint of impos-
ing a hive-like home base for foragers, we see at least two
promising directions for further investigating the benefits
and limits of communication in t-MATES tasks. The first
concerns the idea of “structure in the environment” and the
degree to which communication can benefit from it. Specif-
ically, it would be interesting to define a measure of “struc-
ture” (ideally information-theoretic) for environments that
gets at the kinds of distributions of checkpoints that would
favor communication.

Another direction concerns the coordination of agent be-
havior, in which communication could play an facilitatory
role. The idea here is to impose additional task constraints
on the t-MATES task such as requiring multiple agents to
visit the same checkpoint at the same time (as would be re-
quired for mating) to isolate scenarios where coordination
can be significantly improved via communication (Scher-
merhorn and Scheutz (2007a) already started an exploration
of these tradeoffs in a related task).
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Abstract

We describe a multi-agent model of a honeybee colony and
show several applications of the model that simulate exper-
iments that have been performed with real honeybees. Our
special emphasis was on the decentralized, self-organized
regulation of brood nursing, which we successfully simu-
lated: We found that brood manipulations, food-deprivation
experiments and colony-size manipulations can be explained
by the mechanisms we implemented into our model described
here. Our agents can perform various tasks (foraging, storing,
nursing). The model is spatially resolved, and contains a des-
ignated broodnest area as well as a designated honey/nectar
storage area. All bees (and larvae) consume nectar/honey
at a task-specific rate, allowing us to track the flow of nec-
tar through the colony. Several kinds of stimuli, which are
important for division of labour, were modelled in detail:
dances, contact stimuli and chemical signals.

Introduction
The ability of social insects to divide the colony’s work via
specialisation, polyethism and task partitioning has fasci-
nated scientists since decades. For example, early work of
(Lindauer, 1952; R̈osch, 1952; Sakagami, 1953) described
the impressive ability of honeybees to specialize on different
tasks based on an age-based scheme (temporal polyethism).
In recent years, several conceptual models have been pro-
posed to explain the basic proximate mechanisms that lead
to division of labour in social insects in general, see Beshers
and Fewell (2001) for a review, and for honeybees in de-
tail: Age-based polyethism (Seeley, 1982; Johnson, 2005),
regulation by queuing delays (Seeley, 1992), foraging for
work theory (Franks and Tofts, 1994), threshold reinforce-
ment (Theraulaz et al., 1998), and social inhibition (Beshers
et al., 2001). Many of these concepts were also investigated
by mathematical models and computer simulation (Ander-
son, 1998; Gautrais et al., 2002). One the one hand, these
models focused very well on the specific key process that
they were built to examine, on the other hand, they lack
many specific details that are significantly affecting the be-
haviour of social insects. To fill this gap and to allow specific
simulation of honeybees’ division of labour, we constructed
a multi-agent model of a honeybee colony that builds on the

Figure 1: Typical screenshot of our multi-agent simulation
at run-time. Bee agents move across the hive space and, de-
pending on their history, emit several sorts of stimuli: wag-
gle/tremble dances and offering signals. Hungry larvae also
emit chemical hunger stimuli, which diffuse in the central
broodnest area. Unemployed bees can react to all of these
stimuli and switch to one of the modelled task cohorts.

ideas of the before mentioned models and incorporates sev-
eral important honeybee specific details:

1. A typical spatial distribution of brood and food in the hive.
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2. Complex behavioural programs of specialized workers.

3. Characteristics of the spreading of different kinds of stim-
uli (chemicals, sounds/vibration, light).

4. Agents physiology (energetic expenditures).

5. Flow of nutrients among the agents and the combs.

Our multi-agent model (named TaskSelSim) is imple-
mented in NetLogo (Wilensky, 1999). The implementation
of the model (equations, parameter values) have been de-
scribed in detail in (Schmickl and Crailsheim, 2008b). In
this article, we describe the models implementation in a
lower degree of details and concentrate on those details that
are important for the focal questions described here: How
does the brood status affect the division of labour in the sim-
ulated honeybee colony and how does the colony status af-
fect the brood nursing. Other aspects of division of labour
(effects of selective removals/additions of task cohorts) were
already investigated in (Schmickl and Crailsheim, 2008a),
thus we did not perform such experiments in the study pre-
sented here.
Brood nursing (feeding brood with honey, pollen and

pollen derived gland products) is a distributed process in a
honeybee colony: Each specialised nurse bee feeds many
larvae sequentially and each larva is fed by many nurses.
The brood is allocated in a central area in the hive, one
larva is occupying one comb cell. We studied the nurs-
ing of brood in honeybees with several ethological studies,
see Schmickl and Crailsheim (2002). These experiments
showed that brood nursing is regulated in a homoeostatic,
adaptive way. It was shown by (Huang and Otis, 1991b)
that nurse bees preferentially inspect comb cells that are oc-
cupied by larvae and that artificially starved larvae receive
preferential nursing (Huang and Otis, 1991a). The hunger
state of a larva is communicated to nurse bees by emission of
chemical substances (pheromones). All of these facts were
incorporated in our model (together with an implementation
of the foraging process and the nectar storing process), to
generate a model that is able to integrate many (separately
derived) hypothesises of honeybees’ regulation of division
of labour into one single consistent process.

The Model
Our model depicts one honeybee colony consisting of agents
(adult bees, larvae), stimuli (dances, contact stimuli, chem-
ical signals, light) and resource stores (nectar and honey is
used synonymously). The hive space is modelled in discrete
patches (31 x 52) but the adult bee agents can move across
these patches in continuous motion. The intensity of local
stimuli is modelled discrete, following the grid of patches
that represent the comb cells. Figure 1 depicts the typical
spatial distribution of agents, stimuli and resource stores.
Within each time step, the following functions are exe-

cuted iteratively:

1. All patches update their status (decay of chemicals).

2. All agents emit stimuli, chemicals are diffused.

3. All agents consume nectar.

4. All adult agents decide to engage or to give up a task.

5. All adult agents perform behaviour according to their
task.

Modelled Tasks
Depending on the task the bees are engaged in, they perform
the following behavioural programs:

Unemployed bees: These bees move randomly in the hive.
In our model, bees had to switch to this unemployed state
at least for one time step before they could engage in a
different task.

Forager bees: These bees leave the hive with a low (but
sufficient) crop load. They fly to the nectar source, fill
up their crop and fly back to the entrance. There they
emit the unloading stimulus to attract nearby storage bees
which take over the nectar load. After some time of ran-
dom movement in the hive, they can perform a waggle or
a tremble dance (see below for more details). Afterwards,
they leave the hive again towards the nectar source.

Storer bees: These bees wait near the entrance for return-
ing foragers. They take the crop load of returning for-
agers and head towards the storage area (see Figure 1).
They drop their nectar load there and head back towards
the entrance.

Nurse bees: These bees navigate (uphill) in the chemical
stimulus emitted by hungry larvae. If they are located
on a patch containing a hungry larva, they start to feed
this larva until it is saturated or the nurse is almost empty.
These feedings last for several time steps.

Larvae: The brood resides in cells (patches) in the central
broodnest area (see figure 1). Larvae cannot move. If they
have low nectar reserves, they emit a chemical hunger sig-
nal. See below for more details.

Modelling the Stimuli
In our model it is important that stimuli differ significantly
in their dynamics and in their range: Contact stimuli are
emitted by returning forager bees to attract storer bees to
take over the nectar load. These signals have a short range
(r = 1) only and stop immediately after the forager is en-
tirely unloaded. Depending on the waiting period a forager
searched for a storer bee, it then performs either a ’wag-
gle dance’ (Tsearch <= 20) to recruit more forager bees or
a ’tremble dance’ (Tsearch >= 50) to recruit more storer
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Figure 2: The flow of nectar, bees’ metabolism and task se-
lection of our agents. Top: Individual task selection depicted
as a state automaton. Middle: Most important regulation
feedbacks. Bottom: Task cohorts as compartments in the
flow of nectar in the colony. Rounded boxes represent in-
dividual tasks. Solid arrows indicate task switches. Dashed
arrows indicate dependencies (’A is affecting B’). Rectangu-
lar boxes represent worker cohorts, larvae or combs. Solid
arrows indicate nectar flows. The flower represents a nectar
source, the cross-like symbols represent sinks.

bees. Both stimuli spread wider (r = 3) and decay non-
linearly ( 1

d
) with increasing distance from the emitting bee.

As soon as the dancing bee stops, the emitted dance sig-
nal disappears also from all other patches immediately. In
contrast to that, the chemical stimuli emitted by larvae stay
much longer and spread wider: They diffuse to all nearby
patches and decay slowly:

∂C(x)

∂t
= D∇2C(x) − µC(x) + αi(t)Lhungry(x), (1)

where C(x) is the local concentration of hunger
pheromone at position x, µ is the rate of pheromone decay,
α is the addition rate of pheromone produced by a hungry
larva. Lhungry(x) is set to 1 in case that there is a hungry
larva at position x, else it is set to 0.
In case that the larva at position x has a nectar reserve

below the hunger threshold crlow = 0.25, alpha scales linear
from 1 down to 0, as described in equation 2.

αi(t) = 1 −
vi(t)

crlow · capacitylarva
(2)

If the larva has more nectar in its reserves, then the value
of αi(t) is set to 0. A hungry larva at position x is re-
ferred as larva i. The nectar reserve of this larva is de-
scribed as vi(t), the maximum storing capacity of a larva
was set to capacitylarva = 0.33. The ’diffusion term’ was
implemented numerically (and discrete): we used the build-
in function ”diffuse” available in the NetLogo programming
environment. The light stimulus decreases linearly with in-
creasing distance from the hive’s entrance and is used for
navigation of foragers for leaving the hive and for naviga-
tion of storer bees for approaching the entrance area and for
approaching the honey area. Nurse bees navigate uphill in
the chemical pheromone field to find hungry larvae to feed
and move towards darker areas to find honey cells for refills.

Simulated physiology
An adult bee can hold a maximum of 1 unit of crop
load. A larva can hold 0.33 units at maximum. Adult
bees consume their nectar loads at a low rate of crlow =
0.0004 units/step, flying foragers consume at a higher rate
crhigh = 0.001 units/step. Larvae consume nectar at the
rate crlarva = 0.0004 units/step. If an agent (bee or larva)
runs out of nectar, it dies and is removed from the system.
The bottom of figure 2 shows these consumption flows.

Modelling Division of Labour
The most important aspect in our model is the implementa-
tion of the task selection mechanism. We followed the ap-
proaches of Gautrais et al. (2002) and implemented a thresh-
old based system. Each type of local stimulus can motivate
an unemployed adult bee agent (task= ’no-task’) to join one
of the tasks m ∈ { ’foraging’, ’storing’, ’nursing’ }. See
figure 2 (upper part) for the possible task transitions. When-
ever one of these stimuli exceeds an individual threshold of
an agent i located on that patch x, the agent engages in the
associated taskm. Each of these thresholds is modelled in a
non-linear manner, as is shown by equation 3. pi,m models
the likelihood to engage in task m in one time step. sx,m

is the local intensity of the task-associated stimulus. Θi,m

is used to shift the threshold individually up and down, n
is used to express the degree of non-linearity in these be-
havioural decisions.

pi,m =
sn

x,m

sn
x,m + Θn

i,m

(3)

Employed bees switch back to the unemployed state with
probabilities of λ′nursing′ = λ′storing′ = 0.005/step and
λ′foraging′ = 0.001/step. To allow specialisation within
this system, the levels of the thresholds are adapted individ-
ually during run time. In the case that an unemployed agent
engages in task m′, the Θi,m is reduced by ξm, making it
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more likely that the agent will engage in this task in future.
Whenever an unemployed agent does not engage in a task,
the corresponding threshold is increased by ϕm, making it
more unlikely that these behaviours will be triggered later
on. In our simulations, all values of ξ were set to ξ = 0.1
and all values of ϕ were set to ϕ = 0.001. It was shown
in (Schmickl and Crailsheim, 2008b) that these parameter
values lead to plausible division of labour. In our simula-
tions we used n = 2 for all agents and all agents initially
started withΘ values of 0.001 for all tasks. During run time,
values of Θ were confined between 0 and 1.

Initial Conditions
Our simulations were conducted with 700 adult bee agents
and 100 larvae. The larvae were distributed randomly (nor-
mal distribution) around the center of the hive. All adult
agents started in randomized positions and with randomized
headings. Their initial task was set to ’no-task’. All agents
had (uniformly) randomized crop loads.

Results
This article focuses on the aspects associated with the reg-
ulation of brood nursing, thus we manipulated the ratio of
adult bees to larvae in our simulation experiments described
here. We first simulated 10000 time steps of an undisturbed
colony, to allow the colony to reach equilibrium in brood
supply and in division of labour. At time step 10000, the
whole simulation state was saved on hard disk. Starting
with this saved configurations several perturbations were
performed (addition of brood, removal of adult workers) and
the resulting changes in task cohorts were measured. In
these experiments, all adult bees started with Θ values of
0.

Perturbations of the adult-to-brood ratio

Figure 3: Removal of brood affects the size of the nursing
cohort strongly. The additional workforce that gets avail-
able from abandoning brood care affects also the size of the
other working cohorts. The arrows indicate the timing of the
perturbation. Graphs show mean values (N=6).

The more brood was removed at time step 10000, the less
bees performed the nursing task. This high abandonment
from nursing made more bees available for the tasks of stor-
ing and for the foraging task, as can be seen in figure 3.

Figure 4: Addition of brood affects the size of the nursing
cohort strongly. This binds additional workforce to the task
of nursing, what in turn affects also the size of the foraging
cohort and of the storing cohort. The arrows indicate the
timing of the perturbation. Graphs show mean values (N=6).

Analogously we observed a significant increase of the size
of the nursing cohort as we spontaneously added brood to
the colony at time step 10000. This reduced the number of
unemployed bees, in turn affecting also the task equilibrium
of foraging bees and of storing bees, as shown in figure 4.

Figure 5: Removal of worker bees affected all task cohorts.
The cohort of nurses bees was strongly affected only with
the more extreme removal of worker bees. The arrows in-
dicate the timing of the perturbation. Graphs show mean
values (N=6).

As figure 5 shows, the removal of adult bees strongly af-
fected all three task cohorts. The removal was a random
pick across all task cohorts. While the cohorts of foragers
and storers were affected significantly by all worker losses,
the cohort of nurse bees was affected significantly only by
the bigger losses of worker bees.

Nectar economics
During the experiments shown in the figures 3, 4, and 5,
the colony structure was significantly altered at time step
t = 10000. Since we also modelled the flow of nectar (nec-
tar income and consumption), we could also investigate how
these alteration affected the colony’s nectar economics. Fig-
ure 6 shows these results: The removal of brood strongly
enhanced the colony’s net nectar gain, as a significant sink
for nectar was decreased. In contrast to that, the addition
of brood increased this important nectar sink, what had a
detrimental effect on the colony’s nectar economics. This
effect was also observed by leaving the sink unchanged but
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by decreasing the foraging workforce, as it happened by the
removal of adult bees.

Figure 6: Removal of brood leads to strong increases of the
colony’s net nectar gain over time. Addition of brood or re-
moval of workers lead to strong decreases of the colony’s net
nectar gain. The arrows show the timw of the perturbation.
All graphs show mean values (N=6).

Scaling properties of division of labour
As shown above, colony manipulations affected the task co-
horts and the colony’s net nectar gain. As figure 7 shows,
forager and storer cohorts are severely affected (high steep-
ness of the regression curve) by removal of worker bees.
Nurses and net nectar gain is affected by both, brood ma-
nipulation and by adult removal. Almost all correlations be-
tween perturbation strength and resulting cohort sizes were
found to be linear. It has to be mentioned that the steep-
ness of regressions varied significantly, what points towards
different sensitivities of cohorts to perturbation types.

Nursing on the individual level
Empirical studies showed that nursing of brood is regulated
in a supply-demand driven process. Huang and Otis (1991a)
performed an interesting study, where they prevented a set

Figure 7: The effects of all perturbations scaled in most
cases linearly with the strengths of the perturbations. The
figures indicate the relative difference of the end result of
the simulations (t = 20000) compared to the undisturbed
control simulations. Graphs show mean values (N=6).

of 4-day old larvae from being fed by nurse bees with a cage
that was placed around the larvae. They found that these
starved larvae were fed preferentially by nurse bees after the
cage was removed. We were interested whether or not such
effects could be observed also in our model. Thus we (vir-
tually) put a cage around a central spot in the center of the
broodnest, what prevented the bees from entering this area.
After 400 time steps with the cage preventing feedings, a
fraction of the larvae died (see figure 8). The remaining lar-
vae were fed preferentially during the first 1000 time steps
after the cage was removed (figure 9). Later on, the for-
merly starved larvae were fed on average on the same level,
but the mode of nursing was still altered due to experimental
manipulation: Feedings were performed in a more oscillat-
ing manner, suggesting that disturbances of brood nursing
could cause long-term alterations in the colonies nursing be-
haviour. Table 1 sums up the mean number of feedings per
time-slot (which was 100 time steps wide) per larva for both
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zones (central cage area, peripheral ’no-cage’ area):

Phase (time steps) Central area Peripheral area
(cage) (no-cage)

Pre (0 - 1500) 0.24 ± 0.16 0.24 ± 0.13
Experiment (1501 - 1900) 0 ± 0 0.24 ± 0.14

Post (1901 - 2900) 0.37 ± 0.64 0.22 ± 0.11
End (2901 - 5000) 0.24 ± 0.34 0.23 ± 0.08

Table 1: Statistical comparison of all 4 phases in both exper-
imental zones. Means values were gained from all larvae in
the corresponding zone per 100 time steps. ± indicates the
corresponding standard deviations in these datasets.

Figure 8: (A) Initially the brood starts hungry and emits a
lot of hunger signals. (B) After 300 time steps, the nurses
satisfied the brood and kept it on a rather fed status. (C) At
time step t = 1500, the (virtual) cage was installed around
the central brood nest area. At t = 1600, many hungry
larvae can be found in the center, emitting strong hunger
stimuli. (D) After removal of the cage at t = 1900, the
central brood is either dead (removed) or very hungry. At
t = 2000, nurses aggregate in this area and feed frequently.

Specialization in the nursing task
In additional simulation runs, the development of thresholds
in big and small colonies with low and high brood state was
observed. In these experiments, all Θ values were initially

Figure 9: (A) In the area outside the cage-zone, larvae are
fed in all experimental periods on the same average rate. (B)
In the pre-experimental period, central and peripheral larvae
are fed on the same level. During the cage-period, no feed-
ings can occur. During the first 1000 time steps after the
cage’s removal, the remaining starved larvae are fed prefer-
entially. Also the oscillations increased significantly. In the
final period, the level of feedings returns to the initial value,
but the rhythmicity stays on an increased level.

randomized uniformly between 0 and 1. After 10000 time
steps, the values of Θnursing were measured. To speed up
the specialization process, all ξm values were increased to
0.2 in these experiments.
The first simulation we performed was with the colony

status we used also in the simulations described in the previ-
ous sections (700 adults, 100 larvae). As can be seen in fig-
ure 10, approx. 10% of the bees developed into highly spe-
cialized nurses. The majority of bees developed into highly
specialized storage bees or into ’partly-specialized’ storage
bees. Although we observed between 65 and 120 forager
bees throughout the run-time of the simulation, the observed
degree of specialization for this task was not comparable to
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the degree of specialization of the other tasks. In (Gautrais
et al., 2002) it is predicted by another model, that the de-
gree of specialization increases with colony size. To investi-
gate this question also with our model, we scaled down the
colony size (adults and brood) by the factor 1

4
. Please note

that the nursing workload per bee was kept constant. As can
be seen in figure 11, the degree of specialization decreased,
especially with the nursing task and with the storing task.

Figure 10: Degree of specialization to our modelled tasks
in a simulated colony consisting of 700 adult bees and 100
larvae. Low theta values (Θ <= 0.2) are interpreted as ’high
degree’ of specialization. Values of 0.2 < Θ < 0.8 are
interpreted as partially specialized bees. Higher values of Θ
are interpreted as bees not specialized to the specific task.

Figure 11: Degree of specialization to our modelled tasks
in a simulated colony consisting of 175 adult bees and 25
larvae. Low theta values (Θ <= 0.2) are interpreted as ’high
degree’ of specialization. Values of 0.2 < Θ < 0.8 are
interpreted as partially specialized bees. Higher values of Θ
are interpreted as bees not specialized to the specific task.

In a final simulation experiment, we doubled the work
load per adult bee compared to the settings shown in figure
10. As can be seen in figure 12, this increased preferentially
the degree of specialization of nurse bees, as the number of
highly-specialized nurses more than doubled.

Discussion
We showed that a threshold-based model can suffice to sim-
ulate honeybee-specific division of labour. By performing
and analyzing our simulations, we learned that having a re-
active system of task cohorts, which is able to react plausi-
bly to perturbations of colony structure, is not a guarantee

Figure 12: Degree of specialization to our modelled tasks
in a simulated colony consisting of 700 adult bees and 200
larvae. Low theta values (Θ <= 0.2) are interpreted as ’high
degree’ of specialization. Values of 0.2 < Θ < 0.8 are
interpreted as partially specialized bees. Higher values of Θ
are interpreted as bees not specialized to the specific task.

for having task specialisation and de-specialization of work-
ers: As our figures 3, 4, 5 and 6 show, our modelled colony
reacts very plausibly to the induced perturbations. When we
investigated whether or not the nursing received by individ-
ual larvae after a deprivation experiment is predicted plausi-
bly by our multi-agent simulation, we found that the nursing
regulation reflects empiric results very well.
Although we found division of labour and specialization

of hive-bees (nurses, storers), figure 10 tells us, that the for-
aging cohort did not show the expected high degree of spe-
cialisation in our simulations. The threshold-response sys-
tem was able to model specialisation of nurses by chemical
brood stimuli at a very high degree. We found also many
bees highly specialized to the task of storing. But also a
high number of ’semi-specialized’ storers (0.2 < Θ < 0.8)
was found. Most foragers showed only a low degree of spe-
cialization, indicating that foragers are not often re-recruited
to the foraging task after they abandoned from foraging.
We had between 65 and 120 foraging bees present at all
times, but almost all foraging bees performed just one or
two consecutive engagements, having several round-trips.
The fact that we still observed task cohorts that reacted
adaptively to perturbations can be reasoned by the equi-
libria that emerge: Foraging has a high turn-over number,
that means foragers that quit the task once in our model are
not often re-recruited. But simultaneously many other bees,
that performed other tasks before, are recruited to the task
of foraging. Obviously, this suffices to allow an adaptive
equilibrium-based division of labour.
We conclude that threshold reinforcement (Theraulaz

et al., 1998; Gautrais et al., 2002) is well suited to pro-
duce plausible specialization in tasks that are associated with
very durable, time-persistent and spreading stimuli, like the
pheromones that stimulate nursing behavior. Also the stor-
ing task has a high density of stimuli (tremble dances, every
returning forager emits the ’storing’ stimulus), but forag-
ing is induced only by the (relatively rare) waggle dances.
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As these dances do not occur at a comparably high fre-
quency (only some foragers perform a waggle dance), re-
recruitment is hard to explain by just this stimuli alone. In
nature, foragers are a well specialized group in the honeybee
society, thus we can assume that we will have to incorporate
other additional factors to achieve the observed high spe-
cialisation of forager bees: shaking signals, stop signals and
a (probably age-related) higher predisposition for the for-
aging task, as it can be easily implemented into our model
by a slight downward-bias of Θforaging in a specific group
of bees which represent ’older’ bees. In addition, motiva-
tion for foraging can be also influenced by physiological
properties of the bees, which reflect often characteristic hive
conditions, as was demonstrated in (Camazine, 1993). We
conclude that, incorporating additional regulatory systems
and motivational aspects of bees, as for example temporal
polyethism (Seeley, 1982; Johnson, 2005) can significantly
improve the models predictions concerning foraging special-
ization.
For interpreting the observed differences in task special-

ization, we had to consider also the regions of the hive in
which the recruited workers tend to stay. These regions in-
clude a specific mixture of stimuli, thus determining also
the likelihoods to switch to other tasks. Such effects are dis-
cussed in the ’foraging-for-work’-theory, as it is described
in (Franks and Tofts, 1994). By working with and on our
model we learned that honeybee-specific division of labour
cannot be modelled with the threshold-reinforcement model
alone. We developed the idea that several of the discussed
concepts of honeybees’ division of labour have to be im-
plemented into one single model, which then represents an
integrative approach to understand honeybee’s’ division of
labour. By extending our model in these directions, we will
pursue this scientific goal.
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Abstract

Understanding the emergence or suppression of altruism is
an important step towards understanding real-life many-agent
systems. We explore the relative survival traits of spatial an-
imats in our predator-prey model and find some quantifiable
emergent advantages of altruistic behaviour on the part of in-
dividual animats.

Keywords: altruism, animats, predator-prey.

Introduction
“Although a high standard of morality gives but a slight or no
advantage to each individual man and his children over the
other men of the same tribe... an advancement in the stan-
dard of morality will certainly give an immense advantage
to one tribe over another.”

Charles Darwin, The Descent of Man, 1871

The evolution of altruism has been debated for several
decades and is still a source of some argument. On the one
hand we have those who aspire to the “selfish gene” theory
of Dawkins (1976) and regard altruism as (at best) negli-
gible. On the other hand we have the approach of Sober
and Sloan Wilson (1998) who state that it is possible for
“pure altruism” (helping unrelated individuals and receiving
no payback) to evolve. In between lie a range of possibil-
ities including kin selection and group selection (Maynard
Smith, 1964). Of particular interest is the recent work on
the evolution of strong altruism in randomly formed groups
(Fletcher and Zwick, 2004) and this paper also provides an
excellent review of the current altruism debate. Many of the
theories mentioned above use models to strengthen their po-
sition. However, most of these models are analytical and
none use the “animat” (Wilson, 1991) approach as we have
done here.

It appears that Darwin, quoted above in (Wilson and Wil-
son, 2007), believed in unadulterated group selection. This
is the idea that individuals within a group will behave al-
truistically towards others so that the group as a whole will
prosper. More on Darwin’s position can be found in (Sober

and Sloan Wilson, 1998). The research we present in this pa-
per uses an animat model to explore whether this approach
is viable within an Artificial Life simulation. We believe that
our findings add strength to Darwin’s original suggestion –
namely that an altruistic group will have an advantage over a
selfish group even though selfish individuals have an advan-
tage over altruistic individuals within the group. However,
this will only occur under certain conditions.

Complex systems using spatial agents or animats have ex-
isted for some time – see for example (Tyrrell and Mayhew,
1991; Adami, 1994; Holland, 1994) – and have yielded rich
insights into emergent group behaviour in physical, biologi-
cal and sociological simulation settings. Experimentation in
this area is ongoing as illustrated in (Ronkko, 2007).

We have refined our predator prey animat model over a
number of years and it has been introduced and discussed
in several previous publications including (Hawick et al.,
2005b; Scogings et al., 2006). Unlike other models which
focus on the evolution of animats and the emergence of new
species, we concentrate on making explicit, well-defined
changes to the microscopic control variables of the model
and then analysing any new (emergent) animat collective be-
haviours.

In particular we have documented fascinating emergent
macro-behaviours such as the defensive spirals and other
features discussed in (Hawick et al., 2004). An example of
these features is provided in Figure 1. This shows some typ-
ical (and highly robust) wave front and proto-spiral pattern
generation behaviours in our model. We have been able to
study these in a quantifiable manner by applying automatic
feature detection techniques to the spatial animat patterns
(Hawick et al., 2005a).

This paper consists of the following sections: A brief
overview of our predator-prey simulation; a discussion of
how we introduced altruistic behaviour into the model; ex-
perimental runs of the model simulating “good times” (i.e.
a grass value conducive to high prey population growth);
experimental runs of the model during “bad times” (with a
much lower grass value); and finally, a brief summary and
conclusion.
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Figure 1: A typical run at step 3000. Predators are black
and prey are white and all animats are selfish (the original
model). The animats inhabit a square “grassy area” with a
grass value of 60 which ensures healthy animat populations.
Note the typical emergent clusterings, including spirals.

The Model
Our model consists of two species of interacting animats
– the predators and the prey. Animats have a very simple
state: a health variable; an age; and a spatial position in
the 2-dimensional square mesh world. The food chain is
therefore very simple as shown in Figure 2. Our system is
an open one as far as energy is concerned. Prey consume
“grass” which is assumed to be continually replenished al-
though we can adjust this rate and can also adjust the spatial
pattern of grass and hence the underpinning geometry of the
flat world. Predators consume only prey and other things
being equal we can reproduce the well known boom-bust
limit cycles predicted by predator-prey models such as the
Lotka-Volterra coupled differential equations (Lotka, 1925;
Volterra, 1926) and their spatial variants (Gallego, 2003).

The simulation runs as a sequence of discrete and syn-
chronous time-steps and in each time-step the following op-
erations are performed for every animat:

• (Phase 1) health check

• (Phase 1) age check

• (Phase 1) locate neighbours

• (Phase 1) execute one rule

• (Phase 2) update all variables

Figure 2: Model participants. Predators and Prey are spa-
tial animat agents, whereas grass is a passive (continuously
replenished) resource.

Although the model is synchronous animats are updated
in a random order, which we found adequate to remove any
spatial artefacts from sweep order. The process is a two-
phase system in which the variables for all animats are up-
dated after all checks have been made and all rules have been
executed. The two-phase system was developed in order to
ensure fairness across all the animats in the model and a
full discussion of alternative updating systems is available
in (James et al., 2004).

Every animat carries a small set of microscopic rules that
govern its behaviour and this rule set is passed on unchanged
to any offspring. It is possible to allow mutations to rules
and to introduce genetic algorithms into the model but an
important feature of our work is to make small, well-defined
changes to the microscopic model and measure the effects
of those changes. We have experimented with changing the
order (priorities) of the rules and have investigated which
rule sets generate the most successful animat groups (Haw-
ick et al., 2005b). This approach is a good way of quantita-
tively investigating the microscopic rule space without get-
ting lost in the combinatoric explosion that hinders a more
simple minded evolutionary “suck it and see” investigation.

In this series of experiments, the rule set for predators is:

1. if well fed – breed with an adjacent predator

2. if hungry – eat an adjacent prey animat

3. if well fed – move towards another predator

4. if hungry – move towards prey

5. move randomly

Artificial Life XI 2008  538 



and the rule set for prey is:

1. if well fed – breed with an adjacent prey animat

2. if hungry and not crowded – eat grass (if available)

3. if well fed – move towards another prey animat

4. if hungry and crowded – move away from other prey

5. move away from an adjacent predator

6. move randomly

Breeding only has a certain chance of success. This is a
simple alternative to factoring in a host of complicated pa-
rameters including birth defects, nutrition, adequate shelter
and so on. For these experiments the chance of a successful
birth was set to 15% for predators and 40% for prey. The
prey conditions involving crowding were introduced to pre-
vent prey forming enormous clusters in any area of the grid
that happened to be temporarily free of predators. If a prey
animat has k or more adjacent neighbours, it is deemed to be
“crowded” and can not eat grass (an abstract simulation of
“over grazing”). For these experiments k was set to 10.

Rules are considered in a strict priority order. Each time-
step, every animat attempts to execute the first rule in its rule
set. However, most rules have conditions so can often not be
executed. For example, prey will only move away from a
predator if a predator is actually adjacent. If the conditions
for the first rule can not be satisfied, the animat attempts to
execute the next rule in the set and so on. This Markov chain
mechanism of rules is described in detail in (Hawick et al.,
2007).

All animats in the model have a “current health” value.
This value (in some ways analogous to “internal energy”)
is reduced each time-step and if it reaches zero the animat
“starves to death”. If an animat eats something (predators
eat prey and prey eat “grass”) then the current health value
will be increased by a certain amount, although it may never
be increased past the maximum health value which is prede-
termined for each animat species. A “well fed” animat (see
the conditions in the rules above) has a current health value
of two-thirds or more of the maximum. A “hungry” animat
has a current health value of less than one-third of the maxi-
mum. The concepts of health values and animats eating are
discussed in (Scogings et al., 2007).

Early versions of the model did not require prey animats
to eat anything and the concept of “grass” has been recently
introduced. Grass can be placed in specific locations on the
map and each grassy area carries a specific “grass value”.
When a prey animat eats the grass, its current health is in-
creased by the grass value. This means that animats will do
well on grass with a higher value and will struggle to sur-
vive on grass with a lower grass value. Grass therefore has
a useful side effect in limiting the animat populations to the

grassy area and preventing them becoming unmanageably
large. This is important as our model boundaries are effec-
tively open ones with no periodicity or hard reflecting walls.
The wilderness is in fact a good way to limit the population
without introducing spurious spatial artifacts due to bound-
aries. Animats can (and do) diffuse out into the wilderness
and quietly starve which is less perturbative to the model’s
remaining and ongoing population than if they were cor-
ralled or transported spatially across a periodic boundary.

Figure 3 illustrates the effects of a low grass value on
animat populations and should be compared with Figure 1
which has a high grass value. Note that we try to keep all mi-
croscopic parameters very simple and usually express them
where possible as percentages. It is interesting to note that
despite the low populations, clustering behaviour and spiral
formation continue to emerge. Note that Figure 1 provides
a snapshot at step 3000 whereas Figure 3 only shows step
1000 – in fact, with the low grass value, all animats were ex-
tinct by step 3000. The most interesting aspect of the model
has been the emergence of macro-behaviours in the form of
regular patterns of clusters comprising both species of ani-
mat. These clusters are persistent and recognisable across a
range of conditions and control variables and are discussed
in (Hawick et al., 2006).

Figure 3: A run at step 1000 with a (uniform) grass value of
30. Predators are black and prey are white. This “low” grass
value means low populations of both prey and predators, al-
though emergent clustering behaviour (especially spiral for-
mation) is still apparent. This situation should be compared
with Figure 1 in which the grass value is doubled to 60.
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Introducing Altruism into the Model
How to define altruistic behaviour is a central part of the
general debate on altruism and a good review of this can
be found in (Fletcher and Zwick, 2004). Most models use
a variant of Hamilton’s equation (Hamilton, 1964) but our
model is not analytical so requires a form of altruism repre-
sented by a behavioural rule rather than an analytical equa-
tion. We decided that this should take the form of sharing
food resources as these are most vital to animats’ ongoing
existence. (In fact, the sharing of food resources is proba-
bly a reasonable way to measure altruism among humans in
the world today.) We also decided to only study altruistic
predators as the “higher life form” in the model. As prey
always have equal access to “grass” we felt that there was
not much to be gained in studying the behaviour of altruis-
tic prey. Therefore, in order to introduce altruism into the
model we decided to regard predators’ current health value
as “transferable currency”. Some predators are marked as
altruistic whereas others are marked as selfish – i.e. they
remain unchanged from the original model.

Just before the conclusion of phase 1 of each time-step an
altruistic predator checks to see if it has an adjacent preda-
tor that has a lower current health value than its own. If this
is the case, the current health values of the two predators
are added together and each animat receives one half of this
total value. In other words, an altruistic animat shares its
current health with a neighbour (regardless of whether the
neighbour is altruistic or selfish) such that the two animats
receive equal shares and the current health of the altruistic
animat will be reduced while the current health of the neigh-
bouring animat will increase. Note that the altruistic animat
will only share with an adjacent neighbour that is worse off
than itself. No attempt is made to search for other neigh-
bours to share with, and if several animats are both adjacent
and worse off, one is chosen at random to share with.

When animats breed and produce offspring the new an-
imats are precise clones of their “mothers”. Two adjacent
animats are required to breed but only one actually executes
the rule to breed – this animat is known as the mother. This
aspect of inheritance has existed in the model for some time
and has been discussed in (Hawick et al., 2005b). Altruistic
animats carry a “gene” that marks them as altruistic. Thus
when altruistic animats breed they produce new altruistic an-
imats (clones of themselves). This means that it is possible
to track the success of the altruistic population versus the
selfish population over time. We can then consider the ques-
tion: is an altruistic society more successful than a selfish
society?

Experiments 1, 2 and 3 : Good Times
In this section we describe the population variations that re-
sult from introducing altruistic predators into the system.
Results are shown as animat populations plotted over time.

The populations show the well known “boom-bust” phase
variation that is typically found in any predator prey sys-
tem. A boom in prey is followed (with a suitable phase lag)
by a boom in predators. The cycle continues when preda-
tors “boom” and cause a subsequent “bust” in the numbers
of prey. Spatial variations complicate this situation consid-
erably from the simple limit cycles encountered in dimen-
sionless Lotka-Volterra-like systems, and our model gener-
ally displays a equilibrating epoch (usually less than 1000
time steps) during which the overall population can grow
or shrink drastically. We typically find however, for a re-
markably wide range of microscopic animat parameter val-
ues, that a long term stable epoch subsequently arises during
which the variations are due to emergence and interaction or
spatial patterns such as clumps, wave fronts and spirals. It
seems valid therefore to draw robust conclusions about al-
truism in the long term.

The first three experiments simulated a square grassed
area with a grass value of 60 (which is regarded as above
average). Thus the prey had no problem finding food and
consequently predators always had easy access to prey. In
experiment 1 there were no altruistic animats. Thus this sim-
ulation matched previous normal conditions and could be
used as the control. The situation at step 3000 is depicted in
Figure 1 and shows typical densities of predators and prey
and the usual emergent clustering behaviour. The animat
populations for this experiment are shown in the graph in
Figure 4 as the second line (prey) and the fourth line (preda-
tors).

Figure 4: Plot showing total populations during experiments
1 and 2 when the grass value is 60. The populations from ex-
periment 1 (all selfish) appear as the second line (prey) and
the fourth line (predators). The populations from experiment
2 (altruistic predators) appear as the first line (prey) and the
third line (predators). It is clear that the altruistic predators
have succeeded in increasing their own population but more
importantly are also “conserving” their prey food-source.
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In experiment 2 all predators were designated as altruistic.
This caused a slight increase in the total population of preda-
tors but an even greater increase in the population of prey, as
shown by the first line (prey) and the third line (predators) in
the graph in Figure 4. The situation at step 3000 is depicted
in Figure 5 and shows much denser formations of prey an-
imats because the altruistic predators are conserving their
food source. It is interesting to note that the general pattern
of emerging clusters, including spirals, has not been affected
by the altruistic nature of the predators.

Figure 5: The situation at step 3000 during a typical run of
experiment 2 with a grass value of 60. All predators (black)
are altruistic and are conserving the prey population (white)
which leads to formations of prey animats that are noticeably
more dense than those in Figure 1 which depicts the situation
for selfish predators at the same step and with the same grass
value.

Remember that only predators are altruistic and there are
no altruistic prey animats. Thus altruistic predators achieve
two things: firstly they rescue some of their own number
who may otherwise have starved to death; and secondly they
also “conserve prey”. This happens because predators only
eat when hungry. Thus if a predator receives some health
points from an altruistic neighbour, it has no need to eat prey
itself. So it appears that an “altruistic society” not only en-
sures that its own population will be greater than the selfish
equivalent, but it also conserves food reserves for future gen-
erations.

Alas, while an altruistic society may be more success-
ful than a selfish one, this is not obvious to the individu-
als within that society. Experiment 3 commenced with 50%

of the predators randomly designated as altruistic while the
remaining 50% were designated as selfish. Thus two com-
peting groups of predators were created. With the passage of
time, it became clear that the altruistic predators could not
compete with the selfish predators and the altruistic popula-
tion died out completely. This is shown in Figure 6. Thus,
although an altruistic society may be more successful as a
group, altruistic individuals can not compete successfully
with selfish individuals. However, perhaps this is only the
case when times are good and food is plentiful.

All three experiments were run ten times with different
random number seeds and the population graphs represent
the averages from the ten simulations.

Figure 6: Graph showing predator population when the grass
value is 60. The run starts with approximately equal num-
bers of altruistic and selfish predators but the selfish group
soon comes to dominate the model.

Experiments 4, 5 and 6 : Bad Times
The second set of experiments used exactly the same pro-
cedure as the first but this time was conducted with a grass
value of 30 which is below average and means that both prey
and predators struggle to survive. This was made apparent in
experiment 4 (the control) in which populations of both prey
and predators are markedly decreased as shown in Figure 3
and in fact most animats had starved to death by step 3000.
No animats were altruistic in this run. The populations of
experiment 4 appear as the third line (prey) and the fourth
line (predators) in Figure 7.

In experiment 5 all predators were once again designated
as altruistic. The results of this run were significant and are
shown in Figure 7 where the first line represents the prey
population and the second line is the altruistic predator pop-
ulation. The altruistic animats once again were able to “con-
serve” the prey resource and thus were able to maintain a
stable population of both predators and prey, whereas the
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Figure 7: Graph showing total animat populations during
experiments 4 and 5 with a grass value of 30. The lower two
lines represent the prey and selfish predator populations in
experiment 4. These lines are unreliable after step 2500 as
the populations died out soon after that point in most of the
runs. The top two lines represent prey and altruistic predator
populations in experiment 5. This graph dramatically illus-
trates the success of altruistic predators at sustaining both
their own population and that of their prey.

behaviour of the selfish predators in experiment 4 caused
both prey and predator populations to crash. Thus in times
of adversity when food resources are scarce, the tendency of
the altruistic society to conserve the prey population allows
it to survive indefinitely and gives it an enormous advantage
over the selfish society. The success of the altruistic society
can be seen by comparing Figure 3 with Figure 8 (both at
step 1000 with a grass value of 30) which clearly shows the
advantages of conserving the food-source.

However we are still faced with the problem that individ-
uals within a society appear to tend towards selfishness. We
therefore performed experiment 6 with 50% of the predators
randomly designated as altruistic while the remaining 50%
were designated selfish. This time, because of the low grass
value and the scarcity of prey, the altruistic group prospered
and came to dominate the model. The population graph for
experiment 6 is shown in Figure 9.

Once again, all experiments were run ten times with dif-
ferent random number seeds and the population graphs rep-
resent the averages from the ten simulations.

Summary and Conclusions
We have described our spatial predator-prey model in terms
of its microscopic parameters and some of the emergent
spatial patterns it generates. We have presented some ex-
perimental results based on averaged population trends over
time, linked to some typical configuration snapshots. These

Figure 8: Experiment 5 at step 1000 with a grass value of
30. Predators are black and prey are white. The predators
in this run are all altruistic and are doing remarkably better
than the selfish predators (i.e. the original model) depicted
in Figure 3 also at step 1000 with the same grass value.

suggest convergent and consistent results even over widely
differing microscopic start conditions. Our model allows us
to study the macroscopic properties of interacting “spatial
herds” of individual animats. We are therefore able to study
collective behaviour amongst the differing types of group or
herd. We have tried in particular to explore the effects of
altruism introduced at the microscopic level but manifesting
itself as macroscopic success/failure levels.

We argue that this series of experiments supports quan-
titatively Darwin’s assertion that an altruistic society will
always do better than a selfish one even though selfish in-
dividuals within the society will tend to dominate. The ex-
periments indicate that the main reason for this might be that
altruistic societies conserve their (food) resources. This be-
haviour is indicative of true group selection and not kin se-
lection as altruistic predators have no way of recognising kin
and secondly, they share resources with any other predator
including selfish ones.

The experiments also suggest that altruistic societies are
particularly successful in times of hardship when they can
continue to survive while selfish communities may vanish
completely. In addition, during these times of adversity the
selfish individuals within the altruistic society will not suc-
ceed and dominance will be retained by altruistic individu-
als. There are a number of shared resources issues related
to “The Tragedy of the Commons” (Hardin, 1968). Our an-
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imats do not yet have a direct sense of altruism that governs
their commons, but we hope to incorporate this into a future
version of the predator animats.

The use of an Artificial Life model in a study of an ab-
stract notion such as altruism highlights the benefits that re-
search in this area can deliver. The model was not originally
developed to analyse concepts such as altruism but we have
demonstrated that it can easily be adapted to this, and (we
expect) to other similar uses.

The concept of the altruistic society is itself an emergent
macro-behaviour as individual altruistic animats do not at-
tempt to assist their entire society but merely one adjacent
neighbour and even then, only when that neighbour has a
lower health value than themselves. Thus is the concept of
a complex altruistic society based on very simple rules exe-
cuted by the individuals within that society.

We are presently considering how prey animats could also
exhibit a form of altruism - for example by individuals sac-
rificing themselves to prey to save their fellows. We suspect
this effect may give rise to an interesting interplay and fur-
ther rich spatial behaviours.

Figure 9: Graph for experiment 6 showing predator popula-
tion when the grass value is 30. The run starts with approx-
imately equal numbers of altruistic and selfish predators but
eventually the altruistic group becomes dominant. The stan-
dard deviations (shown as error bars at regular intervals) are
larger than usual for altruistic predators because the slope of
the line after recovery (at about step 700) varied with each
run. This does not change the general trends when com-
paring the two populations. This graph should be compared
with that in Figure 6 where the selfish predators dominated
because the grass value of 60 was significantly higher.
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Abstract

The concept of emergence is central to artificial life and com-
plexity science, yet quantitative, intuitive, and easy-to-apply
measures of emergence are surprisingly lacking. Here, I in-
troduce a just such a measure, G-emergence, which opera-
tionalizes the notion that an emergent process is both depen-
dent upon and autonomous from its underlying causal fac-
tors. G-emergence is based on a nonlinear time series anal-
ysis adapted from ‘Granger causality’ and it provides a mea-
sure not only of emergence but also of apparent ‘downward
causation’. I illustrate the measure by application to a canon-
ical example of emergence, an agent-based simulation of bird
flocking, and I discuss its potential impact on perhaps the
most challenging of all scientific problems involving emer-
gence: consciousness.

The maturation of artificial life and complexity science
over recent years has given rise to renewed interest in emer-
gence. Although the concept of emergence has a long philo-
sophical history (Broad, 1925; Kim, 1999), its essence is
simple enough: An emergent property is somehow ‘more
than the sum’ of its component parts. Emergent properties
appear rife within complex systems of all kinds: biological,
cognitive, social, and technological. Broadly speaking, arti-
ficial life and complexity science focus on explaining phe-
nomena that seem to involve emergence, and models con-
structed under these auspices are often described as emer-
gent (Bedau, 2003). It is therefore surprising and significant
that quantitative and easy-to-apply measures of emergence
are mostly lacking. This is unfortunate because the ability
to measure a phenomenon is an essential step towards its
effective scientific description (Chang, 2004).

In this paper I will first differentiate several notions of
emergence and by doing so briefly illustrate some relevant
conceptual challenges. I will then introduce ‘G-emergence’,
a new measure which operationalizes the intuition that an
emergent process is simultaneously autonomous from and
dependent upon its underlying causal factors. G-emergence
is easy to apply, and I illustrate it by application to a canon-
ical example of emergence: bird flocking. I end by dis-
cussing related measures, how it can defuse the metaphysi-
cally awkward notion of ‘downward causation’, and how it

Figure 1: A flock of starlings about to roost.

may shed new light one of the most recalcitrant problems
in science: the relation between neural mechanism and phe-
nomenal experience.

Varieties of emergence
Intuitively, emergence refers either to a macro-level property
that is ‘more than the sum of’ the micro-level parts (‘prop-
erty’ or ‘synchronic’ emergence) or to the appearance of a
qualitatively distinctive new phenomenon over time (‘tem-
poral’ or ‘diachronic’ emergence). A striking example of
property emergence is a flock of starlings wheeling in the
sky before they roost: the flock seems to have a shape and
trajectory of its own, which appears to exceed those of the
individual birds (Figure 1). Temporal emergence is well il-
lustrated by the appearance of new morphological features
during embryogenesis and development. This paper focuses
on measuring property emergence, though new opportuni-
ties for measuring temporal emergence are also identified.

Following Bedau (1997, 2003), both property emergence
and temporal emergence can be differentiated into three cat-
egories: strong, weak, and nominal [similar decompositions
can be found in (van Gulick, 2001; Bar-Yam, 2004)]. The
least controversial of these is nominal emergence, which is
simply the notion of a kind of property that can be possessed
by macro-level objects or processes but not by their micro-
level constituents. For example, a circle is nominally emer-
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gent from the set of points from which it is constructed. Be-
cause nominally emergent properties can be derived trivially
I will not discuss them any further.

Most challenging and controversial is the notion of strong
emergence, which involves two closely related claims. First,
a macro-level property is in principle not identifiable from
micro-level observations. Second, macro-level properties
have irreducible causal powers. The first claim rejects mech-
anistic explanations altogether, apparently calling a halt to
scientific advance in the absence of new fundamental princi-
ples of nature (Chalmers, 2006). The second raises the diffi-
cult notion of ‘downward causation’. Downward causation
is problematic firstly because it contravenes the plausible
doctrine that ‘the macro is the way it is in virtue of the how
things are at the micro’, an idea that has been expressed vari-
ously as ‘causal fundamentalism’ (Jackson and Pettit, 1992)
or ‘supervenience’ (Kim, 1999). A second challenge raised
by downward causation is that of resolving conflicts between
micro-level and macro-level causes (Bedau, 2003). Even so,
the main problem with strong emergence may lie in its scien-
tific irrelevance (Bedau, 2003). The only recurrent example
of strong emergence in the scientific literature is that of the
emergence of conscious states (e.g., qualia) from neurobi-
ological processes (Sperry, 1969; Chalmers, 2006), which
may speak more to our lack of understanding of conscious-
ness than to our grasp of deep principles of emergence. I
will return to this possibility later on.

In between strong emergence and nominal emergence lies
the useful notion of weak emergence (Bedau, 1997, 2003),
according to which a macro-level property is derived from
the interaction of micro-level components but in compli-
cated ways such that the macro-level property has no sim-
ple micro-level explanation. In contrast to strong emer-
gence, weakly emergent properties are in principle identi-
fiable from micro-level components, and in contrast to nom-
inal emergence, the micro-to-macro inferential pathways
must be non-trivial. According to Bedau, weakly emergent
macro-level properties are ontologically dependent on and
reducible to micro-level causal factors, but at the same time
they are epistemologically irreducible due to the complexity
of the micro-to-macro inferential pathways.

What exactly does it mean for a macro-level property to
be epistemologically irreducible? Bedau’s answer is that a
weakly emergent (epistemologically irreducible) property is
underivable from its micro-level parts except by simulation.
This is an all-or-none classification. Either a macro-level
property can be derived by some explanatory short-cut, in
which case weak emergence does not apply, or it cannot, in
which case the micro-level causal factors need to be simu-
lated explicitly in order to derive the macro-level property.

In this paper I consider a continuous version of weak
emergence, in which a macro property is weakly emergent to
the extent that it is not identifiable from micro-level observa-
tions. This variation is valuable firstly because for many sys-

tems it may not be possible to prove ‘underivability except
by simulation’, and secondly because from the perspective
of measurement, a continuous value is much more useful
than a binary classification.

Measuring weak emergence
To derive a continuous measure of weak emergence, I take
as a starting point the idea that a weakly emergent macro-
level property is simultaneously (i) autonomous from and
(ii) dependent upon its underlying causal factors (Bedau,
1997). To operationalize this notion statistically, I propose
that a macro-variable M can be measured as weakly emer-
gent from a set of micro-variables m (m = m1 . . . mN )
to the extent that: (i) past observations of M help predict
future observations of M with greater accuracy than predic-
tions based on past observations of m alone, and (ii) past ob-
servations of m help predict future observations of M with
greater accuracy than predictions based on past observations
of M alone.

The first condition provides an objective measure of the
non-triviality of micro-to-macro inferential pathways, and
the second checks for micro-to-macro causal dependence.
This definition is relative to a choice of macro and micro de-
scription levels and is also relative to a choice of prediction
method. As described below, an appropriate framework for
prediction is provided by a statistical definition of causality
first introduced by Granger (1969), in recognition of which
the present measure is called G-emergence.

G-causality
In 1969 Granger introduced the idea of ‘Granger causality’
(G-causality) as a formalization, in terms of linear regres-
sion modelling, of Wiener’s intuition that Y ‘causes’ X if
knowing Y helps predict the future of X (Granger, 1969;
Seth, 2007a). According to G-causality, Y causes X if the
inclusion of past observations of Y reduces the prediction
error of X in a linear regression model of X and Y , as com-
pared to a model which includes only previous observations
of X . Since its introduction, G-causality has found wide ap-
plication in economics and many other fields including neu-
roscience and climatology (Ding et al., 2006; Seth, 2008a).
To illustrate G-causality, suppose that the temporal dynam-
ics of two time series, X1(t) and X2(t) (both of length T ),
can be described by a bivariate autoregressive model:

X1(t) =
p∑

j=1

A11,jX1(t− j) +
p∑

j=1

A12,jX2(t− j) + ξ1(t)

X2(t) =
p∑

j=1

A21,jX1(t− j) +
p∑

j=1

A22,jX2(t− j) + ξ2(t)

where p is the maximum number of lagged observations in-
cluded in the model (the model order, p < T ), A contains
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the coefficients of the model, and ξ1, ξ2 are the residuals
(prediction errors) for each time series. If the variance of ξ1

(or ξ2) is reduced by the inclusion of the X2 (or X1) terms in
the first (or second) equation, then it is said that X2 (or X1)
G-causes X1 (or X2). Assuming that X1 and X2 are co-
variance stationarity (i.e., unchanging mean and variance),
the magnitude of this interaction can be measured by the log
ratio of the prediction error variances for the restricted (R)
and unrestricted (U) models:

gc2→1 = log
var(ξ1R(12))

var(ξ1U )
,

where ξ1R(12) is derived from the model omitting the A12,j

(for all j) coefficients in the first equation and ξ1U is derived
from the full model. Importantly, G-causality is easy to gen-
eralize to the multivariate case in which the G-causality of
X1 is tested in the context of multiple variables X2 . . . XN

(Xi "= Xj for all Xi,j). In this case, X2 G-causes X1 if
knowing X2 reduces the variance in X1’s prediction error
when the activities of all other variables X3 . . . Xn are also
included in the regression model (see below). For a tutorial
introduction to Granger causality, see Seth (2007a).

G-autonomy
A simple extension of G-causality allows quantification of
the ‘statistical autonomy’ of a variable with respect to a set
of other variables (Seth, 2007b). In this case, instead of
asking whether the prediction error of X1 is reduced by in-
cluding past observations of X2, we ask whether the predic-
tion of error of X1 is reduced by inclusion of its own past,
given a set of external variables. That is, a variable X1 is
G-autonomous to the extent that its own past states help pre-
dict its future states over and above predictions based on past
states of a set of external variables X2 . . . XN . By analogy
with G-causality, the G-autonomy of X1 with respect to X2

is given by:

gaX1|X2 = log
var(ξ1R(11))

var(ξ1U )
,

where ξ1R(11) is derived from the model omitting the A11,j

(for all j) coefficients in the Granger equations.
G-autonomy amplifies the notion of autonomy as ‘self-

determination’ in contrast to other more abstract notions
such as ‘organizational closure’ (Varela, 1979). It is con-
sistent with the notion that a (behaviorally) autonomous
system should not be fully determined by its environment,
and that a random system should not have high autonomy
(Bertschinger et al., 2008). Put simply, a variable is G-
autonomous to the extent that it is dependent on its own his-
tory and that these dependencies are not accounted for by
external factors. Previously I have shown that G-autonomy
behaves as expected for simple model systems and can in-
crease as a result of evolutionary adaptation (Seth, 2007b).

G-emergence
Having defined G-causality and G-autonomy the extension
to G-emergence is straightforward. A macro-variable M is
G-emergent from a set of micro-variables m if and only if
(i) M is G-autonomous with respect to m and (ii) M is G-
caused by m. A simple measure for the G-emergence of M
from m is therefore given by

geM |m = gaM |m

(
1
N

N∑

i=1

gcmi→M

)

This measure captures three basic intuitions about weak
emergence (Bedau, 1997): that it is a subset of nominal
emergence, that it involves dependence on underlying pro-
cesses, and that it involves autonomy from underlying pro-
cesses. Importantly, geM |m will be zero either if M is inde-
pendent of m or if M is fully predicted by m.

Under what circumstances could G-emergence be high?
A macro variable could be G-emergent from a set of mi-
cro variables if there are ‘hidden’ or ‘latent’ influences, i.e.,
relevant micro causal factors not represented in the regres-
sion. However, even if all micro causal factors are present
G-emergence can still arise because of dependence on the
prediction algorithm used. It is plausible, and indeed neces-
sary for G-emergence to be useful in practice, that in some
cases the macro variable is more epistemically transparent to
the prediction algorithm than is the collection of micro vari-
ables. This, too, is consistent with Bedau’s weak emergence,
where ‘underivability except by simulation’ is replaced by
‘(un)predictability by Granger causality’.

An obvious criticism of G-emergence as measured using
linear modeling is that a macro-variable may appear to be
G-emergent in virtue of being a nonlinear function of its
micro-level components. Clearly, a satisfying measure of
emergence should not rely on the failure of linear methods to
detect nonlinear dependencies. Fortunately, it is easy to ex-
tend G-causality (and hence G-autonomy and G-emergence)
to nonlinear situations, for instance by a Taylor expansion:

X1(t) =
q∑

k=1

p∑

j=1

A11,j,kX1
k(t− j) +

q∑

k=1

p∑

j=1

A12,j,kX2
k(t− j) +

q∑

k=1

p∑

j=1

A13,j,kX3
k(t− j) + ξ1(t) (1)

X2(t) =
q∑

k=1

p∑

j=1

A21,j,kX1
k(t− j) +

q∑

k=1

p∑

j=1

A22,j,kX2
k(t− j) +
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q∑

k=1

p∑

j=1

A23,j,kX3
k(t− j) + ξ2(t) (2)

X3(t) =
q∑

k=1

p∑

j=1

A31,j,kX1
k(t− j) +

q∑

k=1

p∑

j=1

A32,j,kX2
k(t− j) +

q∑

k=1

p∑

j=1

A33,j,kX3
k(t− j) + ξ3(t) (3)

where q is the number of polynomial terms to be included
in the Taylor expansion; note the set of variables has been
expanded to three in order to illustrate extension to the mul-
tivariate (n > 2) case. In this example:

geX1|X2,X3 = log
var(ξ1R(11))

var(ξ1U )
×

1
2

(
log

var(ξ1R(12))
var(ξ1U )

+ log
var(ξ1R(13))

var(ξ1U )

)
(4)

where, following the previous convention, ξ1R(ab) is derived
from the model omitting the Aab coefficients in (3). A value
of linear or nonlinear G-emergence can be considered sta-
tistically significant if the corresponding G-autonomy and
G-causality measures are themselves statistically significant.
This can be assessed by F-tests on the null hypothesis that
the coefficients in A11 (G-autonomy) and A12 . . . AN (G-
causality) are zero (Granger, 1969; Geweke, 1982).

It is worth noting that the concept of G-emergence does
not depend on using a particular method for nonlinear re-
gression. There exist other more sophisticated methods than
Taylor expansions which can be less sensitive to noisy ob-
servations and which involve fewer parameters. For exam-
ple, Ancona et al. (2004) have shown that radial basis func-
tions can serve as effective regression kernels for measur-
ing nonlinear Granger causality. However, for present pur-
poses the Taylor method is preferable because (i) it is sim-
ple to describe and to implement, (ii) statistical significance
can easily be assessed, and (iii) it supplies an explicit for-
mula for G-emergence (4). Finally, note that the value of
G-emergence will depend on the set of micro-variables in-
cluded in m. Therefore, in heterogenous systems it will be
possible to identify a G-emergence set as that set of micro-
variables which maximizes geM |m.

Example: Flocking
I now show that G-emergence behaves appropriately in a
simple computational model of property emergence. As
noted above, a canonical example of property emergence is
flocking behavior among birds. In a seminal work in artifi-
cial life, Reynolds (1987) showed that visually compelling

bird flocking can be simulated by combining three simple
rules for simulated birds (boids):

• aggregation, each boid tends to fly towards the perceived
centre-of-mass (CM) of the flock,

• avoidance, each boid tends to avoid colliding with other
nearby boids,

• matching, each boid tends to align its velocity with that of
other nearby boids.

Here, a simple boids simulation is used to test whether visu-
ally compelling flocking correlates with high G-emergence
of the CM of the flock (the macro-variable) with respect to
the trajectories of the individual boids (the micro-variables).

N = 10 boids were simulated in a toroidal square en-
vironment of length 200 (all dimensions and distances are
in arbitrary units; speeds are given in units per time-step).
Boids were initialized with positions and velocities ran-
domly chosen from the range [0,200] (x, y position), [0, 2π]
(heading), and [3,9] (speed). At each time-step the heading
αi and speed si of each boid i were updated synchronously
according to:

αi = αi + a1θ1 + a2(π + θ2) + a3θ3 + r1,

si = si + a4ds + r2,

where θ1 is the bearing to the perceived CM (i.e., the CM not
including boid i), θ2 is the bearing to the nearest boid, θ3 is
the bearing to the mean heading of all other boids within
a 20 unit range, ds is the difference between the speed of
boid i and the mean speed of all other boids within 20 units,
and r1 and r2 are random numbers in the range [-0.01,0.01].
The parameter vector a (all a ∈ [0, 1]) determines the rel-
ative contribution of each factor. Toroidal distances were
calculated in the standard way, according to the minimum
distance either across, or not across, the boundary. CM po-
sitions were calculated iteratively in order to minimize the
toroidal distance to each boid (i.e., not as the average boid
position, which leads to boundary artifacts).

Three different conditions were tested. Condition R
(random) produced near-random boid behavior (aR =
[0.01, 0.01, 0.01, 0.01]). Condition L (low) evoked poor
flocking behavior by imposing a strong dependence on ve-
locity matching; boids in this condition tended to move in
semi-rigid formations (aL = [0.1, 0.1, 0.6, 0.6]). Condition
H (high) evoked compelling flocking behavior; the param-
eter set (aH = [0.1, 0.3, 0.3, 0.3]) was selected by hand.
Examples of boid and CM trajectories from each condition
are shown in Figure 2. Although static images do not fully
capture the dynamic nature of flocking it is clear that boid
trajectories in condition H are more flock-like than those in
conditions L and R.

Artificial Life XI 2008  548 



H L R

0

5

10

15

x10-3
G

-e
m

e
rg

e
n

ce

nonlinear

linear

H

L R

*

*

*

*

Figure 2: G-emergence of the centre-of-mass (CM) of a boid
flock. Top left: Mean and standard deviation linear and nonlinear
G-emergence by condition (asterisks show statistical significance).
Other panels: Example trajectories (500 time-step segment) of the
boids (grey) and CM (red) in condition H (high G-emergence), L
(low G-emergence), and R (random).

For each condition the boid simulation was run 25 times
with each run lasting 5000 time-steps; for each run the x, y
coordinates of each boid and the global CM were recorded.
Several preprocessing steps were carried out prior to calcu-
lation of G-emergence. In order to reduce the dimensional-
ity of the dataset and to provide further robustness against
boundary effects, each x, y coordinate pair was transformed
into a single variable reflecting distance from the centre of
the environment. The first 500 data points were removed
to eliminate initial transients and each resulting time series
was transformed into its zero-mean equivalent. Finally, each
time series was first-order differenced in order to ensure co-
variance stationarity (Seth, 2005). Following preprocessing,
for each run in each condition both linear and nonlinear G-
emergence of the CM were computed using ordinary least
squares regression. I chose a model order p = 5 and (for the
nonlinear analysis) a polynomial order q = 3. The model
order was selected based on the average Akaike information
criterion (Seth, 2007a) across all 75 runs.

Figure 2 shows the mean linear and nonlinear G-
emergence of the CM in each condition. Confirming the
prediction that high G-emergence tracks compelling flock-
ing, both linear and nonlinear measures show significantly
higher values of G-emergence in condition H than in condi-
tions L and R. All values of G-emergence in conditions in
H and L were significant (P < 10−5 for G-autonomy and
G-causality, two-tailed t-test); those in condition R were not.

To test the behavior of G-emergence across different pa-
rameter combinations in the boids model, I computed linear
and nonlinear G-emergence for each parameter vector in the

0

0.01

0.02

a(3,4)

a
(2

)

a(1) = 0.1

0 1

0

1

a(3,4)

a
(2

)

a(1)=0.1

0 1

0

1

0

0.01

0.02

a(3,4)

a
(1

)

a(2)=0.3

0 1

0

1

a(3,4)

a
(1

)

a(2)=0.3

0 1

0

1

0

0.01

0.02

a(2)

a
(1

)

a(3,4)=0.3

0 1

0

1

a(2)

a
(1

)

a(3,4)=0.3

0 1

0

1

Linear G-emergence Nonlinear G-emergence

Figure 3: Parameter space of the boids model. The parameter vec-
tor aH is indicated by the intersection of the green lines. Grey scale
shows average linear and nonlinear G-emergence of the global CM.
Each value is the average of three evaluations of 5000 time-steps
each. Red dots indicate parameter combinations which lead to re-
liably non-stationary time-series.

space a(1,2,3) ∈ [0.0, 0.1, . . . , 1.0]. Parameters a3 and a4

were yoked together because they both influence the same
rule (velocity matching) and three evaluations were carried
out for each vector, requiring a total of 11× 11× 11× 3 =
3993 evaluations. Figure 3 shows G-emergence for three
orthogonal cross-sections through the three-dimensional pa-
rameter space; in each cross-section the vector correspond-
ing to aH (condition H) is marked by the intersection of the
green lines.

Several aspects of the above cross-sections are notable.
First, linear and nonlinear G-emergence are strongly corre-
lated suggesting that even linear measures can provide in-
sight into emergent properties in some complex systems.
Second, in most regions of parameter space G-emergence
changes smoothly, suggesting it is a robust measure. How-
ever, some regions show sharp transitions, for example be-
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Figure 4: Downward causation is significantly higher in condi-
tion H than in conditions L or R. Boxplots show linear and non-
linear Granger causality from the global CM to individual boids,
calculated separately for each boid for all 25 runs in each con-
dition (i.e., 250 values per boxplot). Non-significant causalities
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to 10−5). Resulting distributions are non-normal and differences
between conditions were tested using the Wilcoxon rank sum test.
For both linear and nonlinear analyses all pairwise comparisons
among medians were significantly different (P < 10−3). Each
boxplot shows lower quartile, median, and upper quartile values;
whiskers show range of remaining data and ‘+’ denote outliers.

tween some vectors with a1 = 0 and neighboring vectors.
The sensitivity of G-emergence to these transitions indicates
that it can usefully identify parameter regions of complex
models in which non-trivial weak emergence is present.

Downward causation
A common intuition regarding emergence is that it involves
‘downward’ causation from macro-levels to micro-levels.
For proponents of strong emergence, downward causation
is in fact an essential aspect of what it means to be emergent
(Kim, 1999). However, physical interpretations of down-
ward causality pose tricky metaphysical problems, for ex-
ample, how to resolve competing micro- and macro- causes
(Bedau, 2003). G-emergence, being statistically defined,
presents a metaphysically innocent alternative according to
which downward causality is reflected by G-causality from
the macro-variable(s) to the micro-variable(s).

Figure 4 shows downward (Granger) causation from the
global CM to the individual boid trajectories, for both lin-
ear and nonlinear G-causality measures. Averages are taken
across all boids and across all 25 runs in each condi-
tion. Consistent with an association between emergence and
downward causation, both measures of downward causation
are significantly higher in condition H than in conditions
R or L. Despite this result, it seems possible in principle
for weak emergence to occur without downward causation
(of course strong emergence requires downward causality
by definition). Having separately applicable measures of
weak emergence and downward causation makes it possi-
ble to explore conditions (if any) in which emergence and
downward causation do not occur together, potentially refin-
ing and deepening the concept of emergence.

Discussion
In this paper I have introduced a method for detecting the
degree of weak emergence in a system by performing phys-
ical measurements on it. Because this measure it based on
a statistical interpretation of causality it sidesteps concep-
tual pitfalls such as competition among micro- and macro-
causes, and it provides an objective and graded assessment
of the non-triviality of micro-to-macro inferential pathways.
MATLAB (Mathworks, Natick, MA) code for calculating
G-emergence from arbitrary time-series data is provided on
the author’s website, www.anilseth.com.

Diachronic emergence
Diachronic (temporal) emergence refers to the appearance
of new properties over time, as exemplified by evolution
and development. A diachronically emergent process is
by definition statistically non-stationary and therefore not
amenable to direct measurement by G-emergence. Nonethe-
less, it is plausible that a diachronically emergent process
is bracketed by statistically stationary periods with different
G-emergence properties. In this way, G-emergence could be
used to indirectly to infer diachronic emergence.

Relation to other measures
The intuition that differences in predictive ability may be
important in defining macro-level properties is shared by
(Shalizi and Moore, 2006). However these authors focus
on clarifying the concept of a macro-state and they do not
explicitly combine measures of autonomy and causal de-
pendence. Rather, one process is called emergent from an-
other if it has a higher ‘predictive efficiency’ than the pro-
cess it derives from. Their measure of predictive efficiency
is based on information-theoretic model reconstruction [the
epsilon-machine concept, see (Crutchfield, 1994)], which is
powerful but less easy to apply in practice than the time se-
ries metrics described here. A related approach is taken by
Polani (2006) in which an ‘emergent description’ involves a
further step of decomposing systems into independent infor-
mational sub-components.

According to the ‘contextual emergence’ of At-
manspacher (2007), derivation of macro-level properties
requires knowledge of micro-level properties and of con-
tingent contextual conditions, the latter defined in terms of
stability criteria according to a dynamical systems analysis.
This concept diverges from the doctrine of causal funda-
mentalism (or supervenience) by proposing that micro-level
properties offer necessary but not sufficient conditions for
deriving macro-level properties, which is suggestive of
strong emergence. An explicit measure of strong emergence
is offered by Bar-Yam (2004) which is based on measuring
the entropy of a system at multiple scales. Oscillations
in ‘multiscale variety’ are suggested to reveal constraints
on the values of multiple variables which are not present
among subsets of these variables, and the existence of
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such constraints is taken to indicate strong emergence.
However, since on the present account strong emergence
rejects mechanistic explanations altogether, a full analysis
of Bar-Yam’s measure is beyond the present scope.

Phase transitions
Physicists have recently become interested in the onset of
collective behaviors among boid-like self-propelling parti-
cles (Vicsek et al., 1995; Gregoire et al., 2003). In such
systems, phase transitions can be observed among ‘gaseous’
phases (each particle moves independently), ‘liquid’ phases
(particles move collectively but still diffuse with respect to
each other) and ‘solid’ phases (particles move collectively
and remain fixed with respect to each other). Plausibly, these
phases correspond respectively to conditions R, H, and L of
the present model and the sharp boundaries noted in figure 3
may correspond to phase transitions. However, phase tran-
sition analyses tend to focus on the dynamics of transition
and assume emergent behavior is phenomenologically ob-
vious in some phases and is absent in others. In contrast,
the present focus is on detecting the degree of emergence by
making physical measurements on a system.

Strong emergence and consciousness
As already noted, strong emergence differs fundamentally
from weak emergence in that (strongly) emergent proper-
ties are suggested to be causally irreducible to their micro-
level components and to exert downwardly causal influences
on these components (Kim, 2006). Strong emergence thus
poses a radical challenge to science because it implies that
there exist real properties in the world that do not ‘bottom
out’ in known sorts of physical interactions.

David Chalmers has made explicit a recurring idea, which
is that there is exactly one clear case of a strongly emergent
phenomenon, and that is the phenomenon of consciousness
(Chalmers, 2006). It seems that two commonly held intu-
itions about consciousness drive this suspicion. First, the
idea that even complete knowledge of the physical interac-
tions sustained by brains will not provide an understanding
what is like to have a conscious experience: this is the in-
famous ‘hard problem’ of consciousness. Second, the intu-
ition that conscious states have causal efficacy in the world,
as exemplified by the notion of free will but which runs
through all aspects of consciousness; after all, why have ex-
periences at all if they don’t do anything? These intuitions
map cleanly onto the defining features of strong emergence,
namely that macro-level properties in principle cannot be
identified from micro-level observations, and that macro-
level properties have irreducible causal powers.

These intuitions can however be challenged. First, to ex-
pect a scientific resolution to the ‘hard problem’ as it is
presently conceived may be to misunderstand the role of
science in explaining nature. A scientific theory cannot pre-
sume to replicate the experience it describes or explains; a

theory of a hurricane is not a hurricane (Seth and Edelman,
2008). If the phenomenal aspect of experience is irreducible,
so is the fact that physics has not explained why there is
something rather than nothing, and this has not prevented
physicists from laying bare many mysteries. Second, con-
sciousness can be functionally efficacious without recourse
to downward causation. It is entirely plausible that certain
neural mechanisms support useful functions in virtue of the
fact that they entail conscious experiences (Seth, 2008b).
For example, the neural mechanisms underlying conscious-
ness may serve to integrate large amounts of information
over short time periods, leading to functionally effective
high-dimensional discriminations among a large repertoire
of sensorimotor scenes (Tononi and Edelman, 1998). Such
information integration may entail conscious qualia in just
the same way that the molecular structure of hemoglobin
entails a particular spectroscopic response: it simply could
not be otherwise (Edelman, 2003). Moreover, experiences
of ‘free will’ and ‘volition’ are just experiences like any
other, and there is a wealth of experimental evidence show-
ing, unsurprisingly, that awareness of a voluntary action is
preceded by recognizable signatures in neural activity (Li-
bet, 1985). Together, these points suggest that the associa-
tion of consciousness with strong emergence does not rest
on solid ground.

In contrast, it is very likely that the connection between
neural mechanism and conscious experience involves weak
emergence in many ways. A striking feature of conscious
experience is that it seems more than the sum of its parts
(each conscious experience is a unity) and that it has a
vivid temporality (William James’ ‘stream of conscious-
ness’). Models of consciousness that can be analyzed in
terms of weak emergence therefore have the potential to
explain features of phenomenology in terms of dynamical
processes at the level of neural mechanism. The develop-
ment and experimental testing of such ‘explanatory corre-
lates’ (Seth and Edelman, 2008) is a highly promising av-
enue towards a scientific description of consciousness. It is
exciting to consider that measures of weak emergence may
eventually find utility in accounting for apparent free will
and in crossing the explanatory gap between neural mecha-
nism and phenomenal experience.

Conclusions
Scientific progress in understanding a phenomenon relies on
the ability to measure that phenomenon. ‘Emergence’ has
thus far resisted the development of useful measures, per-
haps because of a suspicion that it necessarily involves vi-
olation of mechanistic/reductionistic explanations. But this
suspicion is only valid for ‘strong’ emergence and proposed
measures of strong emergence are correspondingly difficult
to apply and interpret (Bar-Yam, 2004). In this paper I
have developed and illustrated a quantitative, intuitive, and
practically straightforward measure of weak emergence. G-
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emergence is based on the intuition that emergent properties
are both dependent on and autonomous from their compo-
nents (Bedau, 1997) and is operationalized using linear and
nonlinear time series analysis.

In a simulation of bird flocking, visually compelling
flocking behavior is accompanied by high G-emergence as
compared to random movement or flight in rigid forma-
tions. High G-emergence is also accompanied by downward
(Granger) causation from the flock to each boid, though this
may not be the case for all systems. Finally, G-emergence
provides a platform for measuring other sorts of emergence;
for instance ‘temporal emergence’ and/or ‘self-organization’
could be measured as the change in G-emergence between
two different time periods.
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Abstract 

This paper presents a number of models whose aim is to 
establish a computational basis for the hypothesis that 
conscious information processing in the brain is mediated by a 
mechanism of global broadcast. A possible role for this putative 
“global neuronal workspace” in achieving cognitive integration 
is mooted in the context of modular theories of mind, and an 
argument is advanced for its likely emergence within the sort of 
small-world brain network seemingly favoured by evolution. 
The paper concludes with some speculation on the relationship 
between life and consciousness as it could be. 

Introduction 

This article interweaves three strands of thinking in 
contemporary cognitive science. First, according to Baars 
(1988; 1997; 2002), the architecture of the mammalian brain 
comprises a number of parallel specialist processes (or 
modules) that compete and/or co-operate for access to a 
global workspace, in effect a mechanism for broadcasting 
information back to the whole cohort of specialists (Dehaene, 
et al., 2006; Shanahan, 2008a). The central claim of Baars’s 
theory is that information processing which is local to the 
specialists is non-conscious and only broadcast information is 
consciously processed. 
 Second, advocates of modular theories of mind, despite the 
diversity of their views, are largely in agreement that some 
mechanism for transcending modular boundaries is a 
prerequisite for the highest levels of cognitive attainment 
(Fodor, 1983; 2002; Tooby & Cosmides, 1992; Mithen, 1996; 
Carruthers, 2002; 2006). This facilitates what Mithen (1996) 
calls cognitive fluidity, a capacity to integrate across distinct 
domains of expertise that promotes innovation and creativity 
(Wynn & Coolidge, 2004). 
 Third, it has been shown that cortical wiring in mammals 
exhibits the properties of a small-world network (Sporns & 
Zwi, 2004; Bassett & Bullmore, 2006). According to Striedter 
(2005), this is the consequence of evolutionary pressure to 
maintain communication between anatomically segregated 
regions in the face of an increasing neuron count, since this 
cannot go hand-in-hand with a proportional increase in 
connectivity 
 Drawing together these three themes, this article proposes 
that the long-range white matter connections that serve to 
keep down the average path length in large-scale cortical 

networks have been structured by evolution so as to develop 
into a global neuronal workspace (Dehaene & Naccache, 
2001; Dehaene, et al., 2006; Shanahan, 2008a), which not 
only provides the integrative facility required to promote 
cognitive fluidity but is also a candidate for the neural 
substrate underlying consciousness (Shanahan & Baars, 
2005). The argument draws on a variety of computer and 
robot models, and is capped with a short discussion of the 
relationship between consciousness as it is found in nature and 
consciousness as it could be. 

Global workspace theory 

Global workspace theory (Baars, 1988; 1997) is one of the 
most influential ideas in the burgeoning field of consciousness 
studies. Its basic tenets have been endorsed by respected 
philosophers (Dennett, 2001; Metzinger, 2003) and 
neuroscientists (Dehaene, et al. 1998; Dehaene & Naccache, 
2001), and in cognitive psychology it has entered the 
undergraduate curriculum (Eysenck & Keane, 2005). Of 
course, the field is young and global workspace theory is open 
to future amendment or refutation. But it currently enjoys 
widespread support and a growing body of favourable 
evidence (Baars, 2002). 
 Central to the high-level, functional presentation of the 
theory is a computational architecture whose origins are in the 
blackboard systems of 1980s AI research. The architecture 
comprises a number of parallel, specialist processes and a 
global workspace (Fig. 1). The parallel specialists compete 
(and sometimes co-operate) to influence the global 
workspace, whose contents are broadcast back to the whole 
cohort of specialists, influencing them in turn. In operation, 
the architecture alternates between periods of competition and 
broadcast. 
 According to global workspace theory, the human brain 
instantiates the global workspace architecture, permitting a 
distinction to be drawn between conscious and non-conscious 
neural information processing. Information processing that 
takes place in the parallel specialists is non-conscious, while 
only information that is broadcast via the global workspace is 
consciously processed. Using the experimental paradigm of 
contrastive analysis, wherein closely matched conscious and 
non-conscious conditions are compared, this hypothesis can 
be tested empirically. Evidence to date using this method has 
been broadly supportive (Baars, 2002). Crucially, for 
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contrastive analysis to be possible, both conscious and non-
conscious processing must be capable of influencing 
behaviour. In the human case, introspective verbal report is 
typically taken as an index of conscious processing, while 
priming effects that occur in visual masking experiments are a 
good example of the influence of non-conscious processing 
(Breitmeyer & Ö!men, 2006). 
 Further support for global workspace theory can be 
garnered from its potential to bolster so-called modular 
theories of mind (Fodor, 1983; 2002; Tooby & Cosmides, 
1992; Mithen, 1996; Carruthers, 2002; 2006). Modular 
theories of mind are challenged by the need for a mechanism 
that transcends modular boundaries, in order to implement 
what Fodor (2000) calls informationally unencapsulated 
cognitive processes, such as analogical reasoning, and to 
realise what Mithen (1996) calls cognitive fluidity. According 
to (Shanahan & Baars, 2005), the global workspace 
architecture incorporates just such a mechanism. Each parallel 
specialist process corresponds to a distinct module, and 
modular boundaries are transcended within the global 
workspace because the serial procession of states that unfolds 
there integrates the contributions of many of these parallel, 
specialists. Moreover, because the responsibility for 
determining the relevance of a potential contribution is not 
centralised but distributed among the specialists themselves, 
the resulting system is not vulnerable to the computational 
infeasibility arguments made by Fodor (1983; 2000). 
 One of the most pressing questions left open when global 
workspace theory is presented in functional terms is how the 
architecture maps onto the biological brain, and in particular 
what, in the brain, corresponds to the global workspace itself. 
A naive reading of the theory might attempt to associate the 
global workspace with a specific brain region, something 
reminiscent of the discredited notion of a Cartesian Theatre – 
“a place in the brain where it all comes together and 
consciousness happens” (Dennett, 1991). A more 
sophisticated understanding views the global workspace as an 
access-controlled, bandwidth-limited communications 
infrastructure that allows information to be distributed pan-
cortically by means of global brain states. According to 
Dehaene and his colleagues, a global neuronal workspace of 
this sort is realised by the long-range cortico-cortical 

pathways of the cerebral white matter (Dehaene, et al., 1998; 
Dehaene & Naccache, 2001). 

Modeling the global neuronal workspace 

In order to realise a pan-cortical communications 
infrastructure and facilitate cognitive integration in 
accordance with the hypothesis of (Shanahan & Baars, 2005), 
the hypothesised global neuronal workspace should conform 
to the following four desiderata (Dehaene & Naccache, 2001; 
Shanahan, 2008a). 1) It should sustain reverberating patterns 
of activation over several tens of milliseconds. 2) It should 
disseminate (broadcast) patterns of activation throughout 
cortex, preserving the information inherent in their 
spatiotemporal structure. 3) It should be sensitive to new 
patterns of activation, and when overtaken by one only a trace 
should remain of any previous pattern. 4) Cortical populations 
should win the right to influence the pattern of activation in 
the workspace through competitive interaction. 
 One way to test the neurological plausibility of a global 
neuronal workspace conforming to these desiderata is to use 
the methods of computational neuroscience to build models of 
possible instantiations of the idea. In (Dehaene, et al., 2003) 
and (Dehaene & Changeux, 2005), a computer model is 
presented that simulates competitive access to a global 
neuronal workspace, emulating two well-known experimental 
phenomena, namely the attentional blink and inattentional 
blindness. But Dehaene’s model does not simulate neuronal 
activity within the global workspace itself. In (Shanahan, 
2008a), a complementary computer model is presented that 
simulates the (putative) global neuronal workspace itself in 
addition to a small number of cortical populations that 
compete to influence it (Fig. 2, left). 
 A schematic of the latter model is shown in Fig. 2 (right). 
Each box in the diagram represents a heterogenous population 
of over 1000 spiking neurons with conduction delays, 
implemented (in Matlab) using Izhikevich’s (2003) equations. 
The global workspace comprises the five workspace nodes 
labeled W1 to W5, which serve to connect widely distributed 
regions of cortex. To keep the simulation manageable, only 
two such regions are included. Area W1 gives cortical 

Fig. 1: The global workspace architecture. A set of parallel processes (shown as circles) compete for access to 
the global workspace (left). The winner (shown with hatched lines) influences the state of the global 
workspace, which is then broadcast back out to the whole cohort of processes (right). The resulting series of 
workspace states is the product of the repeated alternation between episodes of competition and broadcast. 
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population C1 access to the workspace, while area W2 gives 
populations C2 and C3 access to the workspace. C2 and C3 
are in a competitive relationship, mediated by local inhibitory 
connections as shown. All of the excitatory connections 
shown are focal and topographically organised, ensuring that 
the spatial structure of an activation pattern is preserved as it 
spreads out from a cortical population and into the workspace. 
The inhibitory connections between C2 and C3, on the other 
hand, are diffuse. 
 Not shown, but present in the model, are further diffuse 
inhibitory connections among the workspace nodes. Given the 
extensive recurrent connections between workspace nodes and 
the potential for feedback these provide, a suitable balance of 
excitation and inhibition is required to promote reverberation 

without preventing new paterns of activation from invading 
the workspace (Wang, 2001). Transitions from one workspace 
state to another are achieved thanks to the cortical populations 
C1 to C3. Each of these is trained, using a form of spike-
timing dependent plasticity (STDP), to respond to the 
appearance of a certain pattern Q in the workspace by taking 
on an associated pattern R, which may then invade the 
workspace in turn. Suppose pattern Q is presently in the 
workspace. If C2 associates Q with R and C3 associates Q 
with S then a competition will ensue. If C2 wins the 
competition, the next workspace state will be R. This in turn 
may stimulate another cortical area to respond (C1 perhaps). 
Overall, the system alternates periods of broadcast with bursts 
of competition, and the workspace exhibits a procession of 

  
Fig. 3: Raster plots of neuron firings in two representative trials of the model of (Shanahan, 2008a). Both trials 
use the same network with identical synaptic weights. The difference is due to the competition between 
cortical popoulations C2 (influencing neurons 129–192) and C3 (influencing neurons 193–256), both of 
which respond equally strongly to activation in neurons 65 to 128, but with different associations. In the left-
hand plot, C2 is the winner of the competition, shutting out its opponent by means of lateral inhibition, while 
in the right-hand plot the winner is C3. 

Fig. 2: The global neuronal workspace (left) and its model (right). The brains of cognitively sophisticated 
animals can be thought of as instantiating the architecture of Fig. 1, with the long-range fibres of the cerebral 
white matter constituting a global neuronal workspace (left, adapted from Dehaene, et al. (2006)). The 
schematic on the right depicts the computer simulation described in (Shanahan, 2008a). 
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broadcast states. Each of the components of the schematic in 
Fig. 2 (right) requires further internal structure to realise this 
behaviour. For full details the reader is referred to (Shanahan, 
2008a) and (Shanahan, 2008b). 
 Fig. 3 shows raster plots of two representative trials of the 
simulation. For presentational purposes, the initial stimulus 
and the responses offered by C1 to C3 each activate a distinct 
set of contiguously numbered neurons. Firings in the 
excitatory neurons in workspace area W1 are shown. The 
other four workspace areas exhibit similar patterns, as we 
should expect if the workspace is operating effectively as a 
broadcast mechanism. In each trial, an initial stimulus is 
injected into the workspace at 20ms, which institutes a pattern 
of reverberating firing. C1 has an association with this 
particular pattern, and the pattern of firing it responds with 
begins to invade the workspace at around 80ms. This causes a 
surge of inhibition in the workspace thanks to which the 
original stimulus fades. By around 175ms almost no trace is 
left of it in either run. 
 At this point the two trials diverge. Areas C2 and C3 both 
have associations with the pattern of activation in the 
workspace, and a competition between them ensues. In the 
left-hand run C2 wins the competition, causing its response to 
take over the workspace, while in the right-hand run C3 is the 
victor. Note that in each case there is an outright winner, 
which prevents its rival from exercising any influence at all on 
the workspace. These trials were generated using the same 
network, with identical synaptic weights resulting from the 
same training run. The only source of difference between 
them is a small noise term added to the base current of each 
neuron. So taken together the two trials show that small 
differences at the level of individual neuron firings can result 
in qualitatively different sequences of workspace states at the 
macroscopic level (cf. Izhikevich & Edelman (2008)). A more 
complete description of the range of behaviours that can arise 
over multiple trials with differently trained networks can be 
found in Shanahan’s papers (2008a; 2008b). 

A workspace with stochastic wiring 

The model of (Shanahan, 2008a) conforms to the desiderata 
set out earlier. But its neurological plausibility is 
compromised by the overly regular character of the workspace 
wiring. To address this shortcoming, work is ongoing to build 
and study global workspace models in which the long-range 
recurrent connections that promote reverberation and 
broadcast are established with a stochastic method that better 
reflects the statistical character of the evolutionary and 
developmental processes by which the brain’s white matter 
pathways are formed. 
 In the new model, the 1280 excitatory workspace neurons, 
rather than being partitioned into five distinct sets as in the 
previous simulation, are arranged in a ring, which 
immediately induces a distance measure between any two 
neurons (Fig. 4, left). The workspace is then wired up by 
repeatedly forming circuits of connections. Each neuron in a 
circuit is selected randomly, subject to the constraint that no 
two neurons in the same circuit are allowed to be too close to 
each other, and the circuits are of variable length. Because 
each neuron is self-exciting via a circular route of 
connections, reverberating activation is promoted. But 
because recurrent connections cannot stimulate nearby 
neurons, the spatial organisation of a pattern of activation is 
preserved rather than smeared as it spreads throughout the 
workspace. 
 As with the previous model, excitatory influences in the 
workspace must be balanced with inhibitory connections, to 
ensure that reverberation is not so strong that it prevents new 
patterns from forming. In the stochastically-wired workspace, 
this is achieved using a second ring of 320 inhibitory neurons, 
concentric to the first. Each of these inhibitory neurons is 
excited locally, enabling it to detect patches of high firing, but 
has a widespread inhibitory effect on the workspace. The idea 
is to allow strong patterns of activation to damp rival 
workspace activity. 

Fig. 4: A workspace with stochastic wiring. The workspace itself is a ring of neurons. Patterns of activation 
are broadcast (reverberate) around the ring via circuits of excitatory connections like the example shown on 
the left. Each circuit is wired up stochastically, but no two neurons in the same circuit are permitted to be close 
to eachother in the ring. Inhibitory neurons are locally excited but have diffuse influence (centre). The 
representative raster plot on the right shows that the workspace conforms to the desiderata. 
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 Fig. 4 (right) shows a raster plot of a representative run in 
which a succession of four stimuli is delivered directly to the 
workspace. (The present model consists of the workspace 
only, and so far lacks the cortical populations of the previous 
model.) Each point in the plot represents that at least one 
neuron in the relevant circuit has fired. As the figure shows, 
the workspace maintains reverberation over several tens of 
milliseconds, and is susceptible to new patterns of activation 
which tend to push out their predecessors. In other words, the 
workspace conforms to three of the four desiderata proposed 
earlier, the fourth being inapplicable in the absence of cortical 
competition. Ongoing work aims systematically to map the 
range of model parameters and the space of possible network 
topologies that yield qualitatively equivalent behavioural 
characteristics. 

Embodiment and cognitive architecture 

The distinction between conscious and non-conscious 
processing that is the target of global workspace theory is only 
amenable to empirical investigation insofar as it impacts on 
outward behaviour. But the two computer models presented 
above are disembodied, closed systems. They must be 
embedded in a complete cognitive architecture if they are to 
stand as useful investigative tools. In (Shanahan, 2006), a 
cognitive architecture is presented that shows how a global 
workspace can be used in combination with an internally 
closed sensorimotor loop to realise a form of cognitively 
mediated action selection for a robot. 
 The central idea is that the internally closed sensorimotor 
loop permits the robot to rehearse trajectories through its 
sensorimotor space prior to enacting them (Hesslow, 2002). 
Rehearsed trajectories are evaluated, and the relative salience 
of the set of currently executable actions is modulated as a 

result – those initiating a trajectory whose outcome is 
associated with reward become more salient while those 
whose outcome is associated with aversion become less 
salient. Using a winner-takes-all strategy, the most promising 
action is selected and executed. 
 In the architecture of (Shanahan, 2006), the circuitry that 
makes up the inner sensorimotor loop takes in the global 
workspace itself (Fig. 5, left), and the series of rehearsed 
sensorimotor states unfolds within it. Hence these states are 
made available to the whole cohort of specialist networks that 
are attached to the workspace, enabling the trajectory of 
rehearsal to be determined by competition among those 
networks. Fig. 5 (right) presents the high-level schematic for a 
rationalised and extended version of the architecture. Internal 
sensorimotor activity, corresponding to that generated by the 
internally closed loop in Fig. 5 (left), results from mutual 
stimulation among motor and sensory areas, mediated by the 
global workspace. External sensory input causes activity in 
the sensory areas, which gives rise to activation in the 
workspace, from where it propagates to motor circuits. This 
stimulates a competition among motor areas to respond. 
During rehearsal, the resulting motor activity does not issue in 
overt behaviour, but instead gives rise to further, internally 
mediated stimulation of the sensory regions, completing the 
inner sensorimotor loop. 
 To date, the emphasis of our modeling work has been 
competition. Competitive access to the global workspace 
facilitates search through the sensorimotor space of a robot or 
animal because, as Fig. 3 shows, in cases where a 
sensorimotor state has multiple associations its successor in 
the workspace is non-deterministic. So revisiting a state can 
precipitate the rehearsal of an unexplored trajectory. But the 
hypothesis of the present paper is that the potential for co-
operation among different networks might be equally 

Fig. 5: Combining a global workspace with an inner sensorimotor loop (left), and a proposed rationalisation and 
extension of the architecture (right, cf. Fig. 1 of (Friston, 2003)). In both diagrams, information fans out from the 
global workspace into many distributed, parallel networks (broadcast) and funnelling back into it from those 
networks (competition). In the new architecture (right), five broad categories of functionally distinct networks are 
shown, each having a hierarchical structure. Co-operation, co-ordination, and competition among these networks is 
mediated by the global workspace, which best thought of as an access-controlled, bandwidth-limited 
communications infrastructure, rather than a functional component in its own right. 
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important. This is because co-operation may permit the 
adaptation and combination of elements from different parts 
of a learned repertoire of sensorimotor patterns, possibly 
enabling rehearsal even in a novel situation, such as that faced 
by an animal in the classic trap-tube test of causal 
understanding (Povinelli, 2000). To pass this test, an animal 
has to select the end from which to push a food item out of a 
transparent tube. The wrong choice results in the reward 
falling into a hole in its path which is visible to the animal. 
Some non-human animals, including chimpanzees and crows, 
are able to pass variants of this test, although there is no 
consensus among animal cognition researchers about how 
they do it (Seed, et al., 2006; Penn & Povinelli, 2007). A 
normal human adult, of course, is not unduly taxed this 
problem. Indeed, such capacity to innovate in the presence of 
novelty is often taken as a hallmark of human-level 
intelligence (Wynn & Coolidge, 2004). 
 According to the present hypothesis, the integrative facility 
of the global workspace supports the level of cognitive 
sophistication required to solve problems such as the trap-tube 
test. Networks encoding incompatible learned sensorimotor 
patterns are obliged to compete to influence the trajectory of 
rehearsal as it unfolds in the workspace. But where different 
networks encode compatible spatiotemporal patterns, they 
may be able to co-operate, allowing their respective 
influences to be blended together. Each specialist process may 
be thought of as encapsulating expertise in a particular micro-
domain, such as dropping-things-in-holes or pushing-things-
with-sticks. In effect, the global workspace promotes 
cognitive fluidity, permitting expertise in one micro-domain 
to be combined with expertise in another micro-domain 
(Shanahan & Baars, 2005). Our future work aims to explore 
this hypothesis with the aid of a large-scale spiking neuron 
implementation of the architecture of Fig. 5 (right), deployed 
to control a dextrous humanoid robot. 

The emergence of a (small) world 

Recent studies of neural connectivity lend further support to 
the hypothesis that cognitively proficient brains conform to 
the global workspace architecture. In particular, there is 
compelling evidence that human cortex constitutes a small-
world network (Watts & Strogatz, 1998), which is a sparsely 
connected graph with a small mean path length and a large 
clustering coefficient. Consider a graph G comprising a set of 
nodes and edges. The path length between any pair of nodes 
in G is the number of edges in the shortest path between those 
nodes, and G’s mean path length is the path length averaged 
over every pair of nodes in G. The clustering coefficient of a 
node P in G is the fraction of the set of all possible edges 
between immediate neighbours of P that are actual edges, and 
the clustering coefficient of the whole graph G is the 
clustering coefficient averaged over the set of all nodes in G. 
Many naturally occurring networks have been shown to have 
small-world properties, but our concern is only with those that 
are found in the brain. 
 A typical small-world network comprises numerous 
densely interconnected local clusters that are connected to 
each other via a small number of so-called hub nodes but are 
otherwise isolated. If the hub nodes have many edges 
compared to the cluster nodes then such a network may also 

be scale-free, meaning that the probability of a random node 
having k edges conforms to a power law – it is proportional to 
k-! for some !. However, as we shall use the term, a node 
does not require a large number of edges to be designated a 
hub. A hub node may, for example, be the only node in cluster 
A that is connected to a node in cluster B, thus helping to 
confer the small-world property on the overall graph. (In 
graph-theoretic terms, such nodes have low degree but high 
betweenness centrality.) 

Even without formal analysis, it is easy to see that the 
topology of the model in (Shanahan, 2008) (Fig. 2, right) 
leads to small-world connectivity. First, thanks to the 
connections to, from, and between workspace neurons (the 
hub nodes), the maximum shortest path length between any 
two cortical neurons is just 6, even with the addition of further 
cortical areas (2 hops to get to a workspace area, 2 more to 
traverse the workspace, plus 2 to get out of the workspace). 
Second, the dense connectivity within cortical areas entails a 
high clustering coefficient. Finally, although the network is 
not especially sparse with only C1 to C3 attached to the 
workspace, its sparseness increases rapidly with the addition 
of further cortical areas. Similar considerations apply with the 
stochastically wired workspace. 
 Using neuroanatomically established connectivity matrices, 
it has been shown that the cortices of cats and macaques enjoy 
small-world network properties (Hilgetag, et al., 2000; Sporns 
& Zwi, 2004). Moreover, several recent in vivo studies 
purport to establish similar results for human cortex. Using 
fMRI, Eguíluz, et al. (2005) revealed a network of functional 
brain connections that conform to the power law characteristic 
of a scale-free, small-world network. Also using fMRI, 
Achard, et al. (2006) confirmed this result and built a 
connectivity map of the cortical hub nodes underlying it. At 
the structural level, He, et al. (2007) supply a similar map by 
correlating measures of cortical thickness in different brain 
regions obtained by MRI. 
 The question of why evolution should favour neural 
networks with small-world properties naturally arises. A 
number of answers have been suggested (Bassett & Bullmore, 
2006). Wiring cost is likely to be one major factor (Striedter, 
2005; Wen & Chklovskii, 2006). If connectivity is maintained 
as brains increase in neuron count, then the quantity of wiring 
must increase too. Wiring is costly “due to metabolic energy 
required for maintenance and conduction, guidance 
mechanisms in development, conduction time delays and 
attenuation, and wiring volume” (Wen & Chklovskii, 2006, 
p.0617). But pressure to minimise wiring can lead to a 
network that is segregated into clusters (or modules). A small-
world network compensates for this by allowing effective 
communication to be maintained between distant regions 
(Striedter, 2005). At the same time, pressure to minimise 
conduction delays may also lead to small-world properties, as 
well as the division of the brain into grey and white matter 
(Wen & Chklovskii, 2006). 
 In addition to their favourable wiring cost, small-world 
networks have been shown to possess information processing 
characteristics that make them especially well-suited to 
realising a global neuronal workspace. Specifically, Sporns, et 
al (2000) argue that small-world networks support high 
dynamical “complexity”, according to a formal measure that 
assesses the co-existence in a network of functional 
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specialisation and integration (Tononi, et al., 1998; Seth, et 
al., 2006). According to this measure, the complexity of a 
system X comprising n variables xi is approximated by the 
function C(X), given by 

  
    

! 

C(X ) = H(X )" H(x
i# | X " x

i
)  

where H(Y) is the entropy of a system Y and     

! 

H( y |Y ) is the 
conditional entropy of y given Y. In essence, if a system has a 
low level of integration then values for     

! 

H(x
i

| X )  will be 
high, while if the system has a low degree of specialisation the 
value of H(X) will be low. Using an evolutionary algorithm, 
Sporns, et al. searched a space of possible network topologies, 
selecting for networks with high C(X). A typical network 
obtained after 2000 generations with this method had a mean 
path length comparable to that of an equivalent random graph, 
but a significantly higher clustering coefficient. 
 Intuitively, this result makes perfect sense. At a local level, 
the densely interconnected clusters of a small-world network 
are functionally segregated, while at a global level the 
connections between hub nodes ensure that the network’s 
overall activity has widespread local influence. Moreover, it 
should be clear that a capacity to support high dynamical 
complexity in the sense quantified by C(X) is a prerequisite 
for any neural network instantiation of the global workspace 
architecture, and that a network with small-world properties 
supplies the means to fulfil this prerequisite. The local 
specialists of the global workspace architecture can be 
realised by the highly interconnected, functionally segregated 
clusters of a small-world network, ensuring a high value for 
H(X), while the global workspace itself is realisable by a web 
of hub-node-to-hub-node connections, promoting low values 
for     

! 

H(x
i

| X ) . 
 Additional organisation over and above small-world 
topology is required for a network to conform to the 
desiderata set out earlier and realise the function of a global 
neuronal workspace. But only a relatively conservative set of 
modifications to the hub node connections of a sufficiently 
large small-world network may be needed for their integrative 
potential to be recruited to this role. Of course, once these 
modifications have been selected for, their cognitive 
advantages will ensure their perpetuation. But it is an 
intriguing thought that consciousness might initially have 
arisen only as a side-effect of the evolutionary pressure to 
keep wiring cost down, a constraint that applies across the 
phylogenetic scale from C.elegans upwards, but which 
ensures that the necessary infrastructure to support the 
distinction between conscious and non-conscious processing 
is already in place as neuron count goes up. 

Consciousness as it could be 

Artificial life, according to one of the field’s founders, “can 
contribute to theoretical biology by locating life-as-we-know-
it within the larger picture of life-as-it-could-be” (Langton, 
1989, p.1). In a similar vein, the use of computer and robot 
models might aspire to contribute to cognitive science by 
situating consciousness as we know it within the larger picture 
of consciousness as it could be. No less interesting is the 
challenge of situating consciousness as it could be in relation 
to life as it could be. Indeed several authors argue for the deep 
continuity of life and mind: “life and mind share a set of basic 

organizational properties, and the organizational properties 
distinctive of mind are an enriched version of those 
fundamental to life” (Thompson, 2007, p. 128). 
 The argument for this position is roughly as follows. An 
organism perpetually constitutes its own identity through 
metabolic exchange of matter and energy with the 
environment so as to maintain the boundary between self and 
non-self. At the same time this “autopoietic” process brings 
forth a domain of concern, wherein features of the 
environment acquire significance according to their relevance 
to that organism’s wellbeing and perpetuation. Moreover, an 
organism’s need constantly to change in order simply to 
maintain its identity opens up what phenomenologists call a 
temporal and spatial “horizon” for that organism. For 
phenomenologists, such a “horizon of transcendence” is also a 
necessary feature of lived experience, motivating the 
conclusion that “certain existential structures of human life 
are an enriched version of those constitutive of all life” 
(Thompson, 2007, p.157). 
 Let’s review the principles of organisation claimed in this 
paper to be fundamental to consciousness, and consider the 
extent to which they resonate with the thesis of deep 
continuity of life and mind. The global workspace architecture 
harnesses the power of massively parallel computation. The 
global workspace itself exhibits a serial procession of states, 
yet each state-to-state transition is the result of filtering and 
integrating the contributions of huge numbers of parallel 
computations. In essence, the architecture thereby distils unity 
out of multiplicity. This unity is achieved within the global 
workspace itself, which is both the source and sink of 
information in the fan and funnel model (Fig. 5, left). But it is 
also a locus of control, and the informatic singularity of the 
global workspace is inherently bound to the spatially localised 
body whose control is in question, the point of convergence of 
perception and action (Legrand, 2006). The remit of all the 
processes that are brought into unity by the global workspace 
is duly inherited from the body to which it is bound  
(Shanahan, 2005). Everything they do pertains to, or is 
indexical to, that body and its point of view. 
 In the natural world this remit in large part subserves 
metabolism, and is plausibly cast in terms of autopoiesis. But 
in the realm of the possible, of consciousness as it could be, 
metabolism is not a prerequisite for being a centre of concern, 
for possessing self-related purpose within a spatial and 
temporal “horizon of transcendence”. In a properly embodied 
instantiation of the global workspace architecture, the identity 
of the conscious subject is underwritten by the common remit 
of a set of processes that pertain to the past, present, and 
future of the spatially localised body to which they are all 
indexically oriented (Fig. 5, right). In conclusion, however 
formidable the practical obstacles might be to creating a 
conscious artefact, the absence of metabolism presents no 
obvious theoretical obstacle. Perhaps the appeal of the deep 
continuity thesis is attenuated by this caveat. 
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Abstract

Flocks of brown-headed cowbirds, Molothrus ater, self-
organize social environments, which have strong impacts on
social learning and behavior. To understand the rules underly-
ing self-organization of the social environment, I develop an
agent-based model of cowbird social association and evolve
it to match observed patterns of association measured from
real birds. The behavioral rules evolved in the model provide
insight into the type of rules real birds use to organize their
social environment. The evolved models successfully pre-
dicted both association patterns and additional related move-
ment variables measured from a new flock of birds.

Introduction
Animal behavior often occurs embedded within the complex
system of a group of interacting animals; however, tradi-
tional methods for elucidating behavioral rules include re-
ductionist techniques that can destroy the very social en-
vironment necessary for the behavior of interest (Schank,
2001). Within the last decade, studying animal behavior
within its natural, complex context has been enabled through
use of agent-based models (Schank and Alberts, 1997; Pow-
ell et al., 1999; Schank and Alberts, 2000; Jackson et al.,
2004; Bryson et al., 2007; Sellers et al., 2007). These mod-
els typically implement hypotheses about how individual an-
imals move, make decisions, etc., and are then evaluated
for ability to match emergent properties of situations they
model, such as breeding productivity (Powell et al., 1999)
or group decision making (Sellers et al., 2007). But this
human-designed model building leaves open the possibil-
ity that other, non-considered scenarios could also match the
observed behavior (Bryson et al., 2007). Schank and Alberts
(2000) pioneered a method to address this issue: allowing
heuristic search to optimize parameters of an agent-based
model, thus reducing bias from pre-conceived notions. Here,
I take this approach, developing an agent-based model, and
evolving it with a genetic algorithm (GA), to elucidate gen-
eral principles underlying behavioral rules used in social as-
sortment of brown-headed cowbirds, Molothrus ater.

The brown-headed cowbird is an obligate brood parasite:
females lay their eggs in the nests of other species, leav-

ing the host species to raise their young. Because of this
behavior, cowbirds were long thought to be exemplars of
instinctual control of all aspects of social behavior, and in
particular, mating behavior (Mayr, 1974). However, modern
research revealed that cowbirds rely heavily on social learn-
ing for social interactions, including mating preferences and
appropriate courtship behavior (King and West, 1989; Free-
berg et al., 1995). This learning occurs when adult and juve-
nile cowbirds gather in large over-winter flocks (Friedmann,
1929; King and West, 1988).

These over-winter flocks have recently been shown to
have strong self-organized patterns of social association
based on age and sex (Smith et al., 2002). Furthermore, the
make-up of the social environment surrounding a juvenile
male within this self-organized pattern correlates with his
singing behavior and courtship success (Smith, 2001; Smith
et al., 2002), and experimentally induced differences in so-
cial environment in a flock can radically adjust many as-
pects of birds’ future social and mating behavior (King et al.,
2002; West et al., 2002; White et al., 2002a,b,c). Thus, the
self-organized social environment provides the scaffold sur-
rounding social learning in this brood-parasitic species.

However, the mechanism behind this self-organization is
unclear: it must be assumed some preferential approach or
avoidance occurs, but features such as specificity of prefer-
ence and if all birds, or only some ages/sexes, drive the pat-
terns, is unknown. To investigate mechanisms underlying
such self-organization, I develop an agent-based model of
cowbird social association, using a modified classifier sys-
tem where movement is controlled by a set of interpretable
rules. I evolve this model to match the self-organized as-
sociation patterns seen in one group of birds, then use the
evolved models to predict association patterns as well as
other movement variables from a new group of birds.1

Agent-Based Model
Because the aim of this work is to gain insight into rules
birds use to self-organize their social environment, I chose
to model individual cowbirds as modified classifier systems

1Model and GA created in C++ and available upon request.
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(Holland et al., 1986; Booker et al., 1989). The if-then state-
ments in the classifier are easily interpretable as choices
made by a bird about its future behavior based on its current
environment. The traditional classifier system was modified
in two major ways for this agent-based model: (1) choice of
classifiers was performed probabilistically based on strength
to simulate the stochastic nature of animal behavior and (2)
learning did not occur through reinforcement nor evolution
of an individual agent’s classifiers; instead, all parameters
of the model controlling bird behavior, including classifiers,
were evolved with a GA based on association patterns re-
sulting from the interaction of multiple agents.

A model was characterized by the number of bird-agents
of each of four possible age and sex classes (AM: adult male,
JM: juvenile male, AF: adult female, JF: juvenile female)
and model parameters controlling the behavior of each class.

Model Parameters

Two activity-state probabilities controlled probability of a
bird becoming (1) active if inactive and (2) inactive if ac-
tive. Only active birds moved in relation to their environ-
ment. This distinction allows modeling of situations where
birds may be unresponsive to social environment, for exam-
ple sheltering from weather or predators (Smith, 2001).

A list of classifiers governed each birds’ behavior: when
the environment matched conditions described by all five
bits of an if-statement, the five bits of its then-statement di-
rected a potential behavior (Table 1). The if-statement re-
lates to the social environment: a bird was aware of neigh-
boring birds if they were within 15 units; neighbors were
near if within 5 units and far otherwise; neighbors’ age and
sex was noted; and if this neighbor had the same relationship
in the last time step (old) or not (new). Eighteen distinct en-
vironmental conditions are thus represented; wild-cards in
the if-statement enable a classifier to apply to multiple con-
ditions. The near and aware distances mimic distances rele-
vant to cowbirds: cowbird song degrades rapidly beyond 0.3
m (King et al., 1981), making it a socially relevant “near”
distance (Smith et al., 2002); birds engage in social interac-
tions from as far as 0.9 m, and social companions within this
distance influence social learning (Smith, 2001).

The then-statement relates to birds’ movement choices:
whether to move or be still; if moving, to move in a directed
manner related to a neighboring bird or randomly; and if
moving directed, to move towards or away from the other
bird. Additionally, two bits adjusted the overall activity state
of a bird, making it active or inactive.

Finally, each classifier had an integer strength S which
influenced the probability of its being chosen to perform.

These model parameters are what is evolved by the GA
based on assortment patterns arising from individual agent-
birds executing repeated classifier system cycles.

Bit Interpretation of Value
If 1 (on) 0 (off)

neighbor aware of bird no birds
distance near far

age adult juvenile
sex female male
time new old
Then 1 (on) 0 (off)
move move do not move

directed move in relation to bird move randomly
to move toward move away

inactive become inactive no change
active become active no change

Table 1: Interpretation of possible values in classifier state-
ments. The if-statement could also include wildcards, which
would match conditions corresponding to either value.

Classifier System Cycle
The agent-based model runs by each individual bird go-
ing through a classifier system cycle, consisting of: detect,
match, select, and effect. Birds are modeled in an 90x90 unit
artificial world; each bird is identified with its age (adult
or juvenile) and sex (male or female), and a unique num-
ber. Before each cycle, each bird determines its activity-state
based on its activity-state probabilities. All birds go through
the cycle whether or not they are active.

Detect. Each bird populates a message board with mes-
sages in the same format as the if-statement of classifiers. A
message is produced for every bird within its awareness dis-
tance, noting distance, age, and sex. The message is flagged
with the neighbor’s identifying number and compared to a
list of messages from the previous time step: if identical con-
ditions for this neighbor exist, the message is set as old; oth-
erwise, new. If no other birds are in the individual’s aware-
ness distance, a single “no bird” message is produced, with
wildcards in the distance, age, and sex bits, and the time bit
reflecting whether lack of neighbors is new or old.

Match. Every message is compared to the if-statement of
the bird’s classifiers, and added to a matched set if all non-
wildcard bits are identical. Classifiers in the matched set are
flagged with the identity of neighboring birds; a classifier
may be added to the matched set multiple times for different
neighboring birds. If no classifiers match the message(s) on
the message board, the matched set is empty.

Select. One classifier from the matched set is selected to
perform; a classifier’s probability of being chosen is equal
to its strength’s proportion of the total strength extant in the
matched set. The classifiers in the matched set are ordered
arbitrarily and contiguously assigned spans of integers equal
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in size to their strengths; i.e., classifier c with strength Sc>0
is assigned integers {Ac1, . . . , AcSc}, where:

Ac1 = 1 +
c−1∑

n=1

Sn

AcSc = Sc +
c−1∑

n=1

Sn

If Sc=0, the classifier is assigned no integers. One classifier
is selected when a random integer, chosen between 1 and
the sum of all strengths in the matched set, falls within its
assigned span. If the matched set is empty, a null classifier
is passed to the next stage.

Effect. From the then-statement of the chosen classifier, a
bird first determines any changes to its activity-state due to
the active- and inactive-bits. The inactive-bit is processed
first, such that the active-bit can “mask” the inactive-bit.

Birds that are inactive, have a null classifier, or an
off movement-bit remain still. Active birds with an on
movement-bit analyze the remainder of the classifier: if the
directed-bit is off, they move 4 units in a random direction;
if it is on, they move 4 units toward (on to-bit) or away (off
to-bit) from the neighboring bird flagged on that classifier. If
a “no bird” classifier has a flagged directed-bit, movement is
in a random direction. If movement would take a bird out of
the 90x90 world, they are stopped on the outside boundary.

Running the Agent-Based Model
A run of the agent-based model begins by creating the ap-
propriate number of bird-agents of each of the four age and
sex classes; each bird receives parameters specific to its age
and sex. Birds are placed randomly in the 90x90 world, and
50 classifier system cycles are run to allow the birds to de-
velop assortment. A further 300 classifier system cycles are
run while the GA collects the data for its fitness function.

Genetic Algorithm
The GA evolves populations of agent-based models, stor-
ing parameters necessary to define a model in five chromo-
somes: one contains activity-state probabilities for all four
age and sex classes; the remaining four contain the list of
classifiers specific to each age and sex. Each classifier is
stored as: 5 if-bits, 5 wild-bits which when on, make the
corresponding if-bit wild, 5 then-bits, then a strength.

Fitness Evaluation
Model fitness is estimated as an average calculated from 200
runs (repetitions determined by power analysis). Fitness is
based on match of association patterns to an ideal pattern,
defined by proportions of near neighbor points (PNN) for
each age and sex class with all others. PNNIJ of class
I with class J is calculated as in behavioral experiments

(Smith et al., 2002; White et al., 2002b) using points per
bird (NNiJ ) as counts of near neighbor observations of bird
i with bird j (NNij) normalized to size of class J (subtract-
ing self when normalizing with own class):

NNiJ =
∑

j∈J NNij

|J\{i}|

PNNIJ =
∑

i∈I (NNiJ/
∑

K NNiK)
|I| , K∈{AM, JM, AF, JF}

The NNij values are collected from the last 300 classifier
system cycles of each model run: NNij is increased by 1
after every cycle for which bird j is near (within 5 units of)
bird i. Fitness F of a model run is then calculated as:

F = 16−
∑

I

∑

J






(
PNNideal

IJ −PNNmeasured
IJ

PNNideal
IJ

)2
, PNNideal

IJ > 0

(
PNNmeasured

IJ

)2
, PNNideal

IJ = 0

Evolution Process
A generation starts with 10 seed models, representing the 10
models with the highest fitness last generation, and 5 new
random models (to maintain variation in the population). In
the initial generation, the 10 seed models are also randomly
generated. For random generation, values are chosen be-
tween: 0-1 for the 8 activity-state probabilities; 1-6 classi-
fiers for each age and sex class; on/off for the 15 bits in each
classifier; and integers 0-50 for each strength.

Each generation the 10 seed models mate to produce
35 offspring (see modification later). A mating produces
one offspring from two models, each randomly assigned
to be mother or father. Crossover occurs for each chro-
mosome with a probability of 0.5 (otherwise, offspring re-
ceive mothers’ chromosomes). In probability chromosomes,
a crossover probability is chosen: the offspring receives the
father’s chromosome up to and including that probability
and the mother’s thereafter. In classifier chromosomes, a
crossover classifier from both the mother and father and a
crossover point within the classifier is chosen: the offspring
receives the father’s list of classifiers up to and including
the crossover point in the chosen father’s classifier and the
mother’s list after that point in her chosen classifier and
thereafter. The offspring’s list is truncated to 6 classifiers,
to prevent overgrowth of classifier lists which was other-
wise rampant. After crossover, point mutations occurr at
each chromosome element with probability 0.01: probabil-
ities add or subtract a value 0-0.2; classifier bits flip state;
classifier strengths add or subtract an integer 0-3.

The 10 highest fitness models are chosen to seed the next
generation. The GA is run for 40-50 generations.

Evolving the Agent-Based Model
Initial verification
Before evolving models to match movement patterns of real
birds, models were evolved to a test situation of total own-
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Figure 1: Fitness of best model for 12 runs of GA at each
generation (lines) and change in fitness averaged every four
generations (dots).

class association, i.e., PNNIJ = 1 for I = J and 0 other-
wise, in order to investigate behavior of the GA and model.
Models were set up with 10 members of each age and sex
class, and the GA was run 12 times to produce 12 models.

Genetic algorithm performance. The GA succeeded
in increasing fitness of the models from their ini-
tial random starting points (Fig.1), reaching fitness
mean=15.7±SE=0.06 of maximum 16. The average change
in fitness each generation was significantly positive ev-
ery four generations through generation 45 (t9-11≥3.4,
P≤0.007), and not thereafter (t5=1.9, P=0.12).

Evolved model performance. Evolved models showed
desired assortment patterns, with birds gathering in small
clumps of same age and sex class (Fig.2a,b). Perfect total
assortment was not achieved, but evolved models reached
about 0.8 PNN for own class and near 0 for others (Fig.2c).

Analysis of evolved parameters. To examine how evolu-
tion affected the models, evolved parameters were evaluated
for their deviation from randomness.

There was no evidence of either directional selec-
tion on activity probabilities P (|t47|≤0.2, P≥0.8, one
sample t-test H0=E(P )=0.5) or stabilizing selection for
values of 0.5 (|t47|≤0.8, P≥0.5, one sample t-test
H0=E(|P−0.5|)=0.25). However, the active-bit in the clas-
sifier was significantly more often on (χ2

1=23.2, P<0.0001).
When not masked by an on active-bit, the inactive-bit was
more often off (χ2

1=31.8, P<0.0001); when masked, there
was no difference (χ2

1=1.5, P=0.2).
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Figure 2: Evolution for total assortment. (a) Initial random
placement of birds in world; (b) assortment at end of run fol-
lowing evolved rules. (c) PNN averaged over all 12 evolved
models. Error bars represent standard error of the mean.

All bits in the remainder of the then-statement showed
evidence of selection: the move-bit and directed-bit more
often on (χ2

1≥33.6, P<0.0001), and movements more often
toward the other bird (χ2

1=7.5, P=0.006).
In the if-statement, all bits were more often wild than not

(χ2
1≥9.7, P≤0.002). When not masked by a wild, the time-

bit was more often set to old (χ2
1=10.4, P=0.001); the age-bit

to juveniles (χ2
1=4.1, P=0.04); and there was no difference

in the rest (χ2
1≤3.4, P≥0.07).

In order to determine if different strategies had evolved for
remaining near one’s class, classifier lists were divided into
two groups: those which contain classifiers directing a move
toward a neighbor of the same class in (1) more than half or
(2) less than half of possible environmental conditions con-
taining such a bird. Classifier lists in the second group more
often simply had no classifiers at all that could respond to the
same class (Mann-Whitney UN=19,29=76, P<0.0001), sug-
gesting that the different behaviors were due to evolutionary
constraints rather than different strategies.

Evolution to match real bird behavior
The agent-based models were evolved to match association
patterns measured from real birds in Smith et al. (2002) dur-
ing a subset of the Spring sample (22 Mar - 14 Apr); this
consists of PNN for birds within 0.3 m and shows the typical
stair-step pattern of increasing association with birds similar
first in sex then age (Fig.3). The models were set up with 19
AM, 14 JM, 21 AF, and 16 JF to match age and sex distri-
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Figure 3: Association pattern from real birds used to evolve
models (bars); association patterns from each of five evolved
models, averaged over 100 runs (circles).

bution of the study. The basic GA was modified in response
to initial tests’ indication that constraints may be limiting
evolution. The 5 new random models each generation may
be too poor to contribute useful variation; thus the random
models were mated to the 10 seed models to produce 10
of the 35 offspring, providing a mixture of proven and new
elements. Five models were evolved to 49-52 generations.
They successfully matched the desired PNN pattern (Fig.3)
and averaged fitness 15.6±0.02, comparable to initial tests.

Interpretation of evolved models. As with the initial
tests, the models showed neither directional nor stabilizing
selection of activity parameters (|t19|≤0.2, P≥0.8), but did
show selection for on active-bits (χ2

1=6.5, P=0.01). There
was less evidence of selection in the remainder of the classi-
fiers, with only neighbor, sex, and time-bits more often wild
in the if-statement (χ2

1≥4.3, P≤0.04), and move-bits more
often on in the then-statement (χ2

1=30, P<0.0001). This
makes sense, as the behavior evolved for is not so directional
nor easily defined as in the initial test. Rather than looking
at individual bits across all classifiers, it is more instructive
to examine the overall behavior produced.

In general, the evolved rules designated behaviors that in-
creased chances of NN with birds of both ages of the same
sex: such behaviors were moving towards or remaining still
in response to the other bird (27% of all classifiers; 94% of
those applicable to such situations, χ2

1=24, P<0.0001). Be-
haviors which decreased chances of NN with opposite sex
birds (moving away or randomly) showed a non-significant
trend to be more common than behaviors increasing chances
(20% all; 67% applicable, χ2

1=3.6, P=0.06). Behaviors in-
creasing or decreasing chances of NN with both same age
and opposite age birds were present in approximately equal
numbers (χ2

1≤0.2, P>0.6). Classifiers which responded to
any bird, regardless of age and sex, were rare; most classi-
fiers were specific to at least age or sex (87% of all classi-
fiers, χ2

1=59, P<0.0001), but rarely to both (27%, χ2
1=23,

P<0.0001). No model ever evolved a class with specific

rules in response each age and sex: all classifier sets in-
cluded generalities. With one exception (JM in Run 1), all
models evolved age and sex-based behaviors for all classes.
All models evolved some classifiers which went against the
overall pattern, for example, in one model juvenile males re-
mained still in response to adults and moved randomly in re-
sponse to juveniles. Thus, the rules evolved by the classifiers
were characterized by a combination of partially specific re-
sponses; these tended to increase proximity to the same sex,
decrease proximity to the opposite sex, and had mixed re-
sponses to different ages.

Evaluation of Evolved Models on New Data
The five evolved models were evaluated for their ability
to predict association patterns plus additional behaviors not
used for fitness evaluation – approach, response, and flight –
in a new group of birds. These birds are the same as the JA
condition in White et al. (2002b); I refer the reader to this
publication for details of bird capture, housing, etc.

Behavioral data collection
Association patterns. I used near neighbor data collected
by Dr Andrew King and Dr David White as part of White
et al. (2002b); I calculated PNN for birds within 0.3 m for
data collected between 13 Mar - 10 Apr, matching as close
as possible the period for which the models were evolved.

Behavior samples. During the same time period, I col-
lected behavioral focal samples: morning (0815-1145 hr)
and afternoon (1215-1600 hr) 10 min focal samples on each
bird every week for the four weeks, totaling 33.3 hrs obser-
vation. Observations were carried out in groups 3-5 times a
week, and order of observation balanced across weeks.

During a focal sample, the following behaviors were
recorded: approach (moving from a further distance to 0.3
m of another bird), response to approach (leave: moving
further than 0.3 m from approaching bird; stay: remaining
within 0.3 m), flight (take to the air by flapping wings), and
landing environment (near: within 0.3 m of another bird;
aware: within 0.9 m of another bird; alone: more than 0.9
m from any bird). Identity of other birds involved in these
behaviors was noted. Note that these are not mutually ex-
clusive behaviors: e.g., flights can also be approaches.

Comparison to models.
Data from models. Each evolved model was set up with 5
AM, 8 JM, 7 AF, and 5 JF, to match the make-up of the new
group of birds. The same data as above was collected from
100 runs of each model, with the following conversions for
the simulated world: near and aware distances were 5 and
15 units respectively; when a movement resulted in being
within 5 units of another bird which had also moved that
time step, it was only scored as approach if the movement
was orientated <90◦ either side of the other bird’s original
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location (i.e., an approach cannot be scored if moving away);
and all movements were regarded as flights.

Comparison values. From each data set (real and mod-
els), 60 comparison values were calculated: 16 PNN among
all age and sex classes; 16 proportion approach (PAP) val-
ues, calculated for all age and sex classes in the same manner
as PNN, except using counts of approach (APij) of bird i
to j rather than near neighbor (NNij) observations; 16 pro-
portion leave (PLE) values, calculated from counts of bird i
responding with a leave (LEij) to bird j’s approach (APji):

LEiJ =
∑

j∈J LEij∑
j∈J APji

PLEIJ =
∑

i∈I LEiJ

|I|
and 12 proportion flight landing (PFL) values calculated
from counts of bird i’s flights (Fi) and landing environments
E (LiE):

PFLIE =
∑

i∈I(LiE/Fi)
|I|

Evaluation of model fit. Comparison values VR from the
real birds were compared to the distribution of 100 values
VM from each evolved model, to determine the fit of the
model: if a two-tailed probability of the real value being
drawn from that distribution (calculated directly as twice the
proportion of VM as extreme or more so than VR) was less
than α=0.05, the model was considered to not be a good
approximation for that value.

The models showed themselves to be good fits to PNN,
PAP, and PLE values, but not PFL values (Fig.4). For
the first three value types, the model distributions were gen-
erally centered around corresponding VR values, while for
PFL the VR values were in the tail of the distributions
(Fig.4a,b). Correspondingly, over half of real PFL values
were significantly different from the model, while very few
of the other value types were (Fig.4c).

Discussion
An agent-based model of bird behavior was created and suc-
cessfully evolved using a genetic algorithm to produce de-
sired emergent properties of the system: association patterns
of a group of birds. An initial test verified performance of
the GA, which was subsequently used to evolve models to
match association patterns measured from real birds. The
evolved models matched not only association patterns from
the situation for which they were evolved, but association
patterns collected from a new set of birds. Additionally, they
matched patterns of approach and response of the new birds,
behaviors for which they were not directly evolved.

The initial test evolved for total assortment showed that
the classifier system-based model was an appropriate choice
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Figure 4: Fit of models to real data. (a) Example match
of one evolved model’s VM distributions to real values for
well matching (PAP) and poor matching (PFL) values. (b)
Location of real values relative to model distribution shown
by median number of standard deviations between VR and
mean VM . (c) Proportion of VR significantly different from
model distribution. For b,c: mean across 5 evolved models
shown; error bars represent standard error of the mean.

for modeling behavioral rules. The evolved rules were
straight-forward and easy to interpret. The activity proba-
bility chromosomes appeared to have little impact, with the
classifiers themselves controlling activity state; overall, it
was more beneficial to be active, and thus able to respond to
the environment. The classifiers evolved for directed move-
ment towards other birds. It is possible that moving toward
was favored over moving away as the movement distance
was somewhat less than the near distance: moving away
may not avoid an NN point next time step, whereas moving
towards always maintained one. Classifiers made strong use
of wildcards in the if-statement, allowing behavioral rules to
apply to multiple conditions. When not wild, old conditions
were more often coded for: this is sensible, as a condition
still there from the previous time step may be more likely to
remain, and thus be more useful to respond to. Any reason
for the bias towards responding to juveniles is unclear; as
this comparison was considerably less strong than all oth-
ers, it is likely that it represents random variation. It is easy
to see how rules coding for moving in response to the en-
vironment, particularly reoccurring conditions, and in a di-
rected manner could create a strong pattern of association
with similar birds. Also, when evolving for total association
with only one class, use of wildcards enables birds to more
efficiently respond to multiple conditions similarly.

There was no evidence of evolution of multiple strategies
for achieving total assortment; instead, it appears evolution-
ary constraints were responsible for different responses to
a bird’s own class, in particular, never evolving applicable
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classifiers. Thus, when evolving to match patterns of real
birds, more variation was introduced by mating randomly
generated models with the fittest ones.

The models evolved to real bird behavior success-
fully matched the association patterns for which they
were evolved; this indicates these patterns do not require
individual-based responses and can be produced using only
age and sex-based rules. The models also matched associa-
tion patterns of an entirely different group of birds, having a
different age and sex distribution; this indicates the evolved
association pattern is not tied to age and sex distribution, but
is due entirely to the behavioral rules. Thus, these rules are
generalizable beyond a particular model to other groups of
birds, and so can provide insight into general principles un-
derlying production of self-organized association.

By examining the five evolved models, we can postulate
the following about behavioral rules of real birds. First,
being able to become active in relation to the environment
is key to production of self-organized behavior. Second,
instead of requiring specific responses to all age and sex
classes, general rules applicable across broad classes of
birds (e.g., avoid males, be attracted to juveniles) can lead to
assortment. Third, it is likely that all age and sex classes are
actively involved in assortment: this is not only supported by
repeated emergence in evolved models, but also by match of
the models with other movements of real birds. Finally, ex-
istence of rules counter to the general pattern indicates that
such rules can co-exist with assortment. This is particularly
encouraging, as it is known that interaction of juvenile males
with adult females–complete opposite classes–is highly im-
portant to social development of the juveniles (Smith et al.,
2000; Smith, 2001; Smith et al., 2002). The models show
that self-organized patterns of association can be maintained
even with attraction between different classes of birds.

The above inferences could be tested by future behavioral
or computer experiments. For example, behavioral choice
tests could characterize attraction/avoidance to age and sex
classes; observation could track birds’ activity-states; sim-
ulations could be designed to match measured activity pro-
portions but disallow response to environment, or only allow
1-2 classes to behave preferentially, and these simulations’
effectiveness compared to the current model.

The evolved models were not only successful at predict-
ing association patterns of a new group of birds; they also
predicted other behaviors not included in the fitness func-
tion. In particular, the models were good fits for observed
patterns of approaching other birds and the response to such
approaches. These behaviors are key contributors to the self-
organized association pattern; attraction and repulsion be-
tween birds is what drives with whom they associate. Thus,
in evolving models to match a particular association pattern,
I succeeded in creating models which match the mechanism
producing these patterns. This success indicates the appro-
priateness of the formulation of the behavioral model and

thus provides confidence for the generalizations to real birds.
Another type of behavior not included in the fitness func-

tion, proportion of flights to different proximities of other
birds, was not well matched by the models. However, these
flight behaviors are not contributors to association patterns:
birds can land near other birds often or rarely, and maintain
the same association pattern, as long as they approach par-
ticular classes in the same proportion. Thus, this behavior
was independent of the criteria used for evolving the models.
Additionally, the formulation of the model did not well re-
flect the range of potential flight behaviors: the model birds
always moved a fixed distance, while real birds make flights
of varying distances. This difference did not strongly im-
pact association patterns: a flight of long distance when ap-
proaching or leaving could be approximated by several suc-
cessive flights. However, this difference made certain types
of flights, particularly to alone, less likely in the model.

That the models were successful at predicting association
patterns for which they were evolved, as well as contribut-
ing behaviors, but not behaviors which could vary indepen-
dently of association pattern, highlights both the limitations
and strengths of this modeling approach. The models were
designed with the intent of understanding rules underlying
self-organized assortment. As such, they included parame-
ters relating intuitively to such rules: behavior in response
to neighboring birds. They were not designed to model pat-
terns of flight behavior, and included no parameters for ad-
justing flight distance. When evolved to match association
patterns, there was no reason for the independently vary-
ing flight behavior to have an impact, and the models did
not accurately reflect these behaviors. However, the models
were highly successful at the task for which they were de-
signed: matching association patterns, predicting the behav-
iors which create these patterns, and thus providing insight
into the mechanism behind self-organized social association.

The model is clearly a simplification of bird behavior,
even in behaviors related to association patterns. Real birds
exhibit behaviors related not only to age and sex of other
birds, but to individuals; for example, birds exhibit con-
sistent individual differences in their association behavior
(Smith, 2001; Smith et al., 2002), and even “friendships”
(spending large amounts of time with a specific individual).
This model does not capture such individualized behaviors.
Modeling individual differences, and allowing individual-
specific behaviors, is an area of future investigation. It
would be interesting to see if consistent patterns of individ-
ual difference emerged across evolved models, and thus per-
haps be relevant to self-organization of association patterns.

Another potential area of future investigation corresponds
well with the modeling framework used, classifier systems.
Implementing learning of classifiers on an individual-agent
basis could allow investigation of learning trajectories. For
example, female feedback on singing behavior of males
could be modeled, either on top of or distinct from the cur-
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rent assortment model. Such a model could address whether
the known JM-AF interactions are driven by males’ learning
or also require female attraction.

This work has shown that it is possible to use agent-based
models as a tool to help understand animal behavior. With
a question, what rules do birds use to produce their self-
organized association pattern, and a model designed to pro-
vide intuitive answers, I was able to make inferences about
the behavior of real birds. The use of a heuristic search
method, the GA, moved the modeling exercise from one of
validating a single hypothesized set of rules to one where
I probed general principles of behavior. The five evolved
models all had a different rules, and all successfully matched
bird behavior, showing that there are many possibilities for
the rule set. However, while it is not possible to say precisely
what behavioral rules the birds use, the five evolved mod-
els provide independently generated hypotheses about such
rules; thus, similarities across them point towards general
principles that are likely to be true of any set of behaviors
able to produce the desired association patterns, including
those used by real birds. In sum, combining evolutionary al-
gorithms with agent-based modeling can become a valuable
tool, enabling study of animal behavior within the complex
environments in which it naturally occurs.
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Abstract

Neuromodulation is considered a key factor for learning and
memory in biological neural networks. Similarly, artificial
neural networks could benefit from modulatory dynamics
when facing certain types of learning problem. Here we
test this hypothesis by introducing modulatory neurons to
enhance or dampen neural plasticity at target neural nodes.
Simulated evolution is employed to design neural control
networks for T-maze learning problems, using both stan-
dard and modulatory neurons. The results show that exper-
iments where modulatory neurons are enabled achieve better
learning in comparison to those where modulatory neurons
are disabled. We conclude that modulatory neurons evolve
autonomously in the proposed learning tasks, allowing for
increased learning and memory capabilities.

Introduction

The importance of modulatory dynamics in neural sub-
strates has been increasingly recognised in recent years.
The notion that neural information processing was funda-
mentally driven by the electrical synapse has been replaced
by the more accurate view that modulatory chemicals play
a relevant computational role in neural functions (Abbott
and Regehr, 2004). Experimental studies on both inverte-
brates and vertebrates (Burrell and Sahley, 2001; Birming-
ham and Tauck, 2003) suggest that neuromodulators such as
Acetylcholine (ACh), Norepinephrine (NE), Serotonin (5-
HT) and Dopamine (DA) closely affect synaptic plasticity,
neural wiring and the mechanisms of Long Term Potentia-
tion (LTP) and Long Term Depression (LTD). These phe-
nomena are deemed to affect both short and long term con-
figuration of brain structures, and therefore have been linked
to the formation of memory, brain functionalities and con-
sidered fundamental in learning and adaptation (Jay, 2003).

The realisation that the Hebb’s synapse (Cooper, 2005)
does not account entirely for experimental evidence on
synaptic modification has brought growing focus on mod-
ulatory dynamics. Associative learning as classical and op-
erant conditioning, and various forms of long-term wiring
and synaptic changes seem to be based on additional mech-
anisms besides the Hebbian synapse. Studies on mollusks

(a)

(b)

Figure 1: (a) Hebbian plasticity: the connection strength is
updated as function of pre- and postsynaptic activity only.
(b) Heterosynaptic mechanism, or neuromodulation: the
connection growth is mediated by neuromodulation, i.e. the
amount of modulatory signal determines the response to
Hebbian plasticity. The dots surrounding the synapse rep-
resent the concentration of modulatory chemicals released
by the modulatory neuron.

like the Aplysia californica (Roberts and Glanzman, 2003)
have shown neuromodulation to regulate classical condition-
ing (Carew et al., 1981; Sun and Schacher, 1998), operant
conditioning (Brembs et al., 2002) and wiring in develop-
mental processes (Marcus and Carew, 1998).

Classical Hebbian plasticity refers to synapse modifica-
tion based on pre- and postsynaptic activities. A presynap-
tic and a postsynaptic neuron are involved in the process.
Neuromodulation, on the other hand, involves a third mod-
ulatory neuron that diffuses chemicals at target synapses as
illustrated in Figure 1. A unique working mechanism for
neuromodulation has not been identified due the large vari-
ety of modulatory dynamics involving different chemicals,
stimuli, brain areas and functions. However, Bailey et al.
(2000a) suggest that heterosynaptic modulation is essential
for stabilising Hebbian plasticity and memory. That review
paper outlines the nonlinear effect of modulatory signals;
when neuromodulation is coupled with presynaptic stimuli,
it results in the activation of transcription factors and pro-

Artificial Life XI 2008  569 



tein synthesis during synaptic growth. This in turn leads to
durable and more stable synaptic configuration (Bailey et al.,
2000b). The underlying idea is that the synaptic growth that
occurs in the presence of modulatory chemicals is long last-
ing, i.e. has a substantially longer decay time than the same
growth in absence of modulation.

At a system level, the release of modulatory chemicals has
been linked to learning. In (Schultz et al., 1993), dopamine
activation patterns recorded in monkeys’ brains followed a
measure of prediction-error during learning tasks in classi-
cal conditioning. Following studies have linked modulatory
activity with learning, reward and motivation (Schultz et al.,
1997). How cellular mechanisms of synaptic growth and
global patterns of neural activation relate has not been un-
veiled yet, however, growing evidence indicates a direct link
between cellular and system level.

Advances in biology have resulted in the formulation of
computational models (Fellous and Linster, 1998; Doya,
2002), which try to capture the computational role and sig-
nificance of neuromodulation. Artificial Neural Networks
(ANNs) have also been extended to include forms of neuro-
modulation. Short term memory by means of neuromodula-
tion was investigated in (Ziemke and Thieme, 2002) where
a robot navigated in a T-maze and remembered turning di-
rections according to visual clues in the maze. Improved
evolvability in neural controller was shown with the use of
GasNet (Smith et al., 2002), although these networks have
modulated output functions rather than synaptic plasticity.
Learning and adaptivity were shown in navigation tasks in
(Sporns and Alexander, 2002) where a neural architecture
was manually designed to update weights according to re-
inforcement signals. Improved performance and adaptation
by means of neuromodulation were shown on a real robot in
(Kondo, 2007).

Because synaptic plasticity is often considered a way to
achieve adaptation and learning, many benchmark problems
for neuromodulation are based on uncertain environments.
A single modulatory neuron was used to evolve learning be-
haviour for a simulated foraging task in uncertain environ-
ments (Niv et al., 2002). In that study, a simulated flying
bee was capable of choosing the higher rewarding flower in
a flower-field with changing reward conditions. This exper-
imental setting was chosen also by Soltoggio et al. (2007)
to show that modulatory architectures could freely develop
throughout evolution to achieve higher performance than in
(Niv et al., 2002). These previous two studies (Niv et al.,
2002; Soltoggio et al., 2007) support the idea that neuro-
modulation plays a central role in regulating plasticity when
variable environmental conditions require a change in poli-
cies of control. However, despite the recent computational
models, studies on the precise computational advantages of
neuromodulation are very limited. In addition, there are few
working models of learning in networks.

This work addresses the issue by analysing the sponta-

neous evolution of neuromodulation in T-maze navigation
tasks, and assesses the advantage of modulatory over tradi-
tional networks when dealing with learning problems. In
these environments, an agent navigates a T-maze to discover
the location of a reward. The location of the reward is not
kept fixed, but changes during the agent’s lifetime, foster-
ing the development of adaptive and learning behaviour. A
comparison of modulatory and non-modulatory networks is
presented, where the results suggest an evolutionary advan-
tage in the use of neuromodulation.

The next section describes the computational model of
modulatory neurons. Following, the T-maze learning prob-
lems are presented before illustrating the evolutionary algo-
rithms by means of which networks are evolved. The Re-
sults section presents experimental results and discussion.
The paper ends with final remarks in the Conclusion.

Modulatory Neurons

In Artificial Neural Networks (ANNs) with only one type of
neuron, each node exerts the same type of action on all the
other nodes to which it is connected. Typically this consists
in the propagation of activation values throughout the net-
work. However, given the variety of neurons and chemicals
in the brain, it is conceivable to extend ANNs by devising
different types of neurons. Here, we introduce a special kind
of neuron that we define modulatory neurons: accordingly,
nodes in the network can be either modulatory or standard

neurons (Soltoggio et al., 2007). In doing so, the rules of
interactions among neurons of different kinds need to be de-
vised. Assuming that each neuron can receive inputs from
neurons of both types, each node in the network will store
the intensity of inputs deriving from each sub-system, i.e.
from the sets of neurons belonging to different kinds. This
principle is comparable to the presence of many kinds of re-
ceptors in biological neurons.

Because two types of neurons are considered here, stan-

dard and modulatory, each neuron i regardless of its type has
an internal value for a standard activation ai and a value for
a modulatory activation mi. The two activations are com-
puted by summing the inputs from the two subsets of neu-
rons in the network

ai =
∑

j∈Std

wji · oj , (1)

mi =
∑

j∈Mod

wji · oj , (2)

where wji is the connection strength from neuron j to i, oj

is the output of a presynatic neuron computed as function of
the standard activation oj(aj) = tanh(aj/2).

The novel aspect in the model is the modulatory activa-
tion that determines the level of plasticity for the incoming
connections from standard neurons. Given a neuron i, the
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Figure 2: Ovals represent standard and modulatory neurons
labeled with Std and Mod. A modulatory neuron transmits a
modulatory signal – represented as a coloured shade – that
diffuses around the incoming synapses of the target neuron.
Modulation affects the learning rate for synaptic plasticity
on the weights w1,4, w2,4 and w3,4 that connect to the neuron
being modulated.

incoming connections wji, with j ∈ Std, undergo synaptic
plasticity according to the equation

∆wji = tanh(mi/2) · δji (3)

where δji is a plasticity term. A graphical interpretation is
shown in Figure 2. The idea in Equation 3 is to model neu-
romodulation with a multiplication factor on the plasticity
δ of individual neurons being targeted by modulatory neu-
rons. A modulation of zero will result in no weight update,
maintaining the weights at the current value; higher levels
of modulation will result in a weight change proportional to
the modulatory activity times the plasticity term.

In this work, the synaptic plasticity is described by the
rule

δji = η · [Aojoi + Boj + Coi + D] (4)

where oj and oi are the pre- and postsynaptic neuron out-
puts, η is the learning rate, and A, B, C, and D are tunable
parameters. Equation 4 has been used in previous studies of
neuromodulation (Niv et al., 2002; Soltoggio et al., 2007).
Its generality is given by the presence of a correlation term
A, a presynaptic term B, a postsynaptic term C and a con-
stant D. D allows for strict heterosynaptic update, meaning
synaptic update in absence of pre- or postsynaptic activity.
The use and tuning of one or more of these terms allow for
the implementation of a large variety of learning rules. The
modulatory operation of Equation 3 can be applied to any
kind of plasticity rule δ and neural model, e.g. Hebbian cor-
relation rules with discrete time dynamics, spiking neural
networks, or other. From this view, the idea of modulat-
ing, or gating, plasticity is independent of the specific neural
model chosen for implementation: its role consists in the ac-
tivation of local plasticity upon transmission of modulatory
signals to specific neurons.

When applied to a suitable neural architecture, this form
of gated plasticity can selectively activate learning in spe-
cific parts of the network and at the onset of specific events.








Figure 3: T-maze with homing. The agent navigates the
maze returning home (H) after collecting the reward. The
amount of reward is proportional to the size of the token.











 



 





Figure 4: Double T-maze with homing.

This may prevent catastrophic forgetting that often results
from continuously updating networks and lead to more effi-
cient learning.

Learning in the T-maze

T-mazes are often used to observe operant conditioning (Bri-
tannica, 2007) in animals that are required to learn and re-
member – for instance – whether a reward in the form of
food is located either on the right or on the left of a T-maze.
This makes an ideal scenario for testing the effect of neuro-
modulation.

We simulated two T-mazes represented in Figures 3 and
4. In the first case (Figure 3), an agent is located at the bot-
tom of a T-maze. At the end of two arms (left and right)
there is either a high or a low reward. The task of the agent
is to navigate the corridors, turn when it is required, collect
the reward and return home. This is repeated many times
during a lifetime: we call each trip to a maze-end a trial. A
measure of quality in the agent’s strategy is based on the to-
tal amount of reward collected. To maximise this measure,
the agent needs to learn where the high reward is located.
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Figure 5: Inputs and output the neural network. The Turn in-
put is 1 when a turning point is encountered. M-E is Maze-
End: it goes to 1 at the end of the maze. Home becomes 1 at
the home location. The Reward input returns the amount of
reward collected at the maze-end, it remains 0 during navi-
gation. One output determines the actions of turning left (if
less than -1/3), right (if greater than 1/3) or straight naviga-
tion otherwise. Inputs and internal neural transmission are
affected by 1% noise.

The difficulty of the problem lies in the fact that the position
of the reward changes across trials. When this happens, the
agent has to forget the position of the reward that was learnt
previously and explore the maze again. In our experiments,
the position of the high reward is changed at least once dur-
ing lifetime, resulting in an uncertain foraging environment
where the pairing of actions and reward is not fixed: turning
left might result in a high reward at a certain time but in a
lower reward later on. The intent is to foster the emergence
of learning behaviour.

The complexity of the problem can be increased, as shown
in Figure 4, by enlarging the maze to include two sequential
turning points and four possible endings. In this problem
an optimal strategy is achieved when the agent explores se-
quentially the four possible maze-ends until the high reward
is found. At this point, the sequence of turning actions that
leads there should be learnt and memorised together with the
return sequence to the home location.

An agent is exposed to 100 trials in the experiments with
the single T-maze and to 200 trials in the double T-maze.
Each trial consists of a number of steps during which the
neural network is updated and the agent moved accordingly
(Figure 5). The large reward is randomly positioned and
relocated after 50 trials on average, with a random variabil-
ity of ±15. The high reward value is 1.0 whereas the low
reward is 0.2. The agent that fails to return to the home
position (within a trial) will be relocated automatically to
the home position and will suffer a penalty of 0.3, which is
subtracted from the total amount of reward collected. The
agent is required to maintain a forward direction in corri-
dors and perform a right or left turn at the turning points:
failure to do so results in the agent crashing, a penalty of 0.4
and being relocated to the home position. Each corridor and

turning point stretches for three steps of the agent. Higher or
variable numbers of steps have been tested providing similar
results.

The control systems of the agents are evolved using the
agents’ performance as a measure of fitness.

Evolutionary Search

An Evolution Strategy (ES) (Bäck et al., 1997) was used to
search for network topologies. The genome was encoded as
a matrix of real-valued weights that represent the strengths
of the initial connections wij . The 5 parameters for the
plasticity rule A, B, C, D and η of Equation 4 were sepa-
rately encoded and evolved in the range [-1,1] for A-D, and
[-100,100] for η. A set of special genetic operators was de-
vised to perform the topology search: insertion, duplication
and deletion of neurons were introduced respectively to in-
sert a new neuron in the network (a new line and row are
added to the weight matrix) with probability 0.04, to dupli-
cate an existing neuron (a line and a row are duplicated in
the weight matrix) with probability 0.02, and delete a neu-
ron (a line and a row are deleted in the weight matrix) with
probability 0.06. Inserted neurons have the same probability
(0.5) of being standard or modulatory.

All real values in the genome (GeVi) are in the range
[-1,1], and the phenotypical values PhVi (with the excep-
tion of η), are mapped as PhVi = Ri · (GeVi)3, where R
is the range (10 for weights, 1 for A..D). The mapping with
a cubic function was introduced to favor small weights and
parameter initially, and allow for the evolutionary growth of
larger values by selection pressure when those are needed.
Weights below 0.1 were set to 0.

Mutation is applied to all individuals (except the best) at
each generation by adding to each gene a positive or negative
perturbation d = W ·exp(−P ·u), where u is a random num-
ber drawn from a uniform distribution [0,1] and P is a preci-
sion parameter here set to 180. This probability distribution
favours local search with occasional large jumps, see (Rowe
and Hidovic, 2004) for details. The function, although dif-
ferently shaped than the traditional Gaussian, does not intro-
duce a conceptual difference in the evolutionary algorithm.
One point crossover on the weight matrix was applied with
probability 0.1. A selection mechanism to enhance diver-
sity in the population was devised. All individuals were po-
sitioned sequentially on an array. At each generation, the
array was divided into consecutive segments of size 5 (with
random segmentation offset at each generation), and the best
individual of each segment was copied over the neighboring
four. In this way, a successful individual spreads its genes
only linearly with the generations. A population size of 300
for the single T-maze and 1000 for the double T-maze were
used with termination criterion of 600 and 1000 generations.
Generation zero was initialised with networks with one neu-
ron per type and random connections.
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Figure 6: Box plots with performances of 50 runs on the
single T-maze. The boxes are delimited by the first and third
quartile, the line inside the boxes is the median value while
the whiskers are the most extreme data samples from the box
not exceeding 1.5 times the interquartile interval. Values
outside this range are outliers and are marked with a cross.
Boxes with non overlapping notches have significantly dif-
ferent median (95% confidence) (Matlab, 2007)

Experimental Results

We conducted three types of evolutionary experiments, each
characterised by different constraints on the properties of the
neural networks: 1) fixed-weight, 2) plastic, and 3) plastic
with neuromodulation. The fixed-weight networks were im-
plemented imposing a value of zero on the modulatory ac-
tivity, which resulted in a null update of weights (Equation
3). Plastic networks had a fixed modulatory activity of 1 so
that all synapses are continuously updated (Equation 3 be-
comes ∆w = 0.462 · δ). Finally, neuromodulatory plastic
networks could take advantage of the full model described
in Equations 1-4.

Fifty independent runs were executed for each of the three
conditions. For each run, the individual that performed best
at the last generation was tested 100 lifetimes with differ-
ent initial conditions. The average reward collected over the
100 tests is the numerical value of the performance. The
procedure was repeated for all the 50 independent runs. The
distribution of performance is summarized by box plots in
Figure 6 for the single T-maze, and in Figure 7 for the dou-
ble T-maze.

For the single T-maze, the theoretical and measured max-
imum amount of reward that can be collected on average
is 98.8, and not 100 due to the minimum amount of explo-
ration that the agent needs to perform at the beginning of its
lifetime and when the reward changes position. For the dou-
ble T-maze, the theoretical and measured maximum amount
of reward that can be collected is 195.2 when averaged on
many experiments.

Fix−weight Plastic Modulatory

20

40

60

80

100

120

140

160

180

200

P
e
rf

o
rm

a
n
ce

Figure 7: Box plots with performances of runs on the double
T-maze.

The experimental results indicate that plastic networks
achieve far better performance than the fixed-weight net-
works. Fixed-weight networks could potentially display lev-
els of learning-like behaviour by exploiting recurrent con-
nections and storing state-values in the activation of neurons
(Blynel and Floreano, 2002). However, our experiments
show that such solutions are more difficult to evolve.

Among plastic networks, those that could exploit modula-
tion displayed only a small advantage in the single T-maze.
However, when memory and learning requirements increase
for the double T-maze, modulated plasticity displayed a con-
siderable advantage. Figure 7 shows that modulatory net-
works achieved nearly optimal performance in the double
T-maze experiment. Simplified versions of the single and
double T-maze can be obtained by removing the require-
ment for homing. Experiments not reported here on T-mazes
without homing confirmed the results showing an advantage
for modulatory networks.

It is important to note that the exact performance reported
in Figures 6 and 7 depend on the specific design and set-
tings of the evolutionary search. Higher or lower population
numbers, available generations, different selection mecha-
nisms and mutation rates affect the final fitness achieved
in all cases of fix-weight, plastic and modulatory networks.
However, a set of preliminary runs performed by varying the
above settings confirmed that the differential in performance
between modulatory networks and plastic or fix-weight net-
works is consistent, although not always the same in magni-
tude.

Analysis and Discussion

The agents achieving optimal fitness in the tests display an
optimal control policy of actions. This consists in adopt-
ing an exploratory behaviour initially – until the location of
the high reward is identified – followed by an exploitative
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Figure 8: Behaviour of an agent exploring the double T-maze of Figure 4. A test of 80 trials is performed. The four horizontal
lines track the events at each of the four maze-ends. The position of the reward is changed every 20 trials. The coloured area
indicates where the high reward is located. The black dots show the maze-end explored by the agent at each trial. The agent
adopts an explorative behaviour when it does not find the high reward, and settles on an exploitative behaviour after the high
reward is found.

behaviour of returning continuously to the location of the
high reward. Figure 8 shows an evolved behaviour, which is
analogous to operant conditioning in animal learning. This
policy involves the exploration of the 4 maze-ends. When
the high reward is discovered, the sequence of turning ac-
tions that lead there, and the correspondent homing turning
actions, are memorised. That sequence is repeated as long
as the reward remains in the same location, but abandoned
when its position changes. At this point the exploratory be-
haviour is resumed. This alternation of exploration and ex-
ploitation driven by search and discovery of the reward con-
tinues indefinitely across trials.

Although this strategy is a mandatory choice to maximise
the total reward, from the performance indices presented in
the previous section (Figures 6 and 7) we deduce that this
behaviour can be more easily evolved when modulatory neu-
rons are allowed into networks.

Functional Role of Neuromodulation

The experimental data on performance showed a clear ad-
vantage for networks with modulatory neurons. Yet, the
link between performance and characteristics of networks
is not easy to find due to the large variety of topologies and
learning rules that evolved from independent runs. Figure
9 shows an example of a network that solves the double T-
maze. The neural topology, number of neurons and learn-
ing rule may vary considerably across evolved networks that
perform equally well.

Nonetheless, it is possible to check if the better perfor-
mance in the double T-maze agents evolved with neuromod-
ulated plasticity is correlated with a differential expression
of modulatory and standard neurons. The architecture and
composition of the network are modified by genetic opera-
tors that insert, duplicate and delete neurons. We measured
the average number of the two types of neurons in evolving
networks for the condition where plasticity is not affected
by modulation (Figure 10, top left graph) and for the condi-
tion where plasticity is affected by modulatory inputs (Fig-
ure 10, bottom left graph). In both conditions, the number
of modulatory neurons is higher than the number of stan-
dard neurons. However, the presence of modulatory neu-

























 










Figure 9: Example of an evolved network that solves the
double T-maze. This network has two modulatory neurons
and one standard neuron beside the output neuron. Arcs
represent synaptic connections. The inputs (Bias, Turn,
Home, M-E, Reward) and standard neurons (ST 1 and OUT)
send standard excitatory/inhibitory signals to other neurons.
Modulatory neurons (MOD 1 and MOD 2) send modulatory
signals which affects only plasticity of postsynaptic neurons,
but not their activation level. The evolved plasticity rule is
A = 0, B = 0, C = −0.38, D = 0, η = −94.6.

rons when those are not active (top left graph) depends only
on insertion, duplication and deletion rates, whereas in the
case when they are enabled (bottom left graph) their pres-
ence might be linked to a functional role. This fact is sug-
gested by the higher value of the mean fitness.

In a second phase, we continued the evolutionary experi-
ments for additional thousand generations, but we set to zero
the probability of inserting and duplicating neurons, while
the probability of deleting neurons was left unchanged. In
both conditions all types of neurons slightly decreased in
number. However, modulatory neurons completely disap-
peared in the condition where the modulatory input had no
effect on plasticity (Figure 10, top right graph) while on av-
erage two modulatory neurons were observed in the condi-
tion where modulation could affect plasticity. This repre-
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Figure 10: Fitness (continuous line) and number of neurons (dashed lines for standard and dotted lines for modulatory) in
networks during evolution (average values of 50 independent runs).

sents a further indication that neuromodulation of synaptic
plasticity is responsible for the higher performance of the
agents in the double T-maze problem and that they play a
functional role in guiding reward-based learning.

A further test was conducted on the evolved modulatory
networks when the evolutionary process was completed.
Networks with high fitness that evolved modulatory neurons
were tested with modulation disabled. The test revealed that
modulatory networks, once deprived of modulatory neurons,
were still capable of navigation by turning at the required
points and maintaining straight navigation along corridors.
The low level navigation was preserved and the number of
crashes did not increase. However, most of networks seemed
capable of turning only in one direction (i.e. always right, or
always left), therefore failing to perform homing behaviour.
None of the networks appeared to be capable of learning the
location of the high reward. Generally, networks that were
evolved with modulation and that were downgraded to plas-
tic networks (by disabling modulatory neurons) performed
worse than evolved plastic networks. Hence, we can assume
that modulatory neurons are not employed to implement a
higher level of functionality, otherwise not achievable with
simple plasticity. Rather, modulatory neurons are employed

to design a completely different neural dynamics that, ac-
cording to our experiments, are easier to evolve, and on av-
erage resulted in better performance at the end of the simu-
lated evolution.

Conclusion

The model of neuromodulation described here applies a
multiplicative effect on synaptic plasticity at target neurons,
effectively enabling, disabling or modulating plasticity at
specific locations and times in the network. The evolution
of network architectures and the comparison with networks
unable to exploit modulatory effects allowed us to show
the advantages brought in by neuromodulation in environ-
ments characterised by distant reward and uncertainties. We
did not observe an obvious correspondence between perfor-
mance and architectural motifs: we assume that the uncon-
strained topology search combined with different evolved
plasticity rules allow for a large variety of well perform-
ing structures. In this respect, the search space was explic-
itly unconstrained in order to assess modulatory advantages
independently of particular or hand-designed neural struc-
tures. In this condition, the philogenetic analysis of evolving
networks supports the hypothesis that modulated plasticity
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is employed to increase performance in environments where
sparse learning events demand memorisation of selected and
timed signals.

Future work includes the analysis of working architec-
tures to understand the relation between the requirements
of the problems and the type and size of networks that solve
them. This study does not address in detail the neural dy-
namics that allowed for the improved learning and mem-
ory capabilities. Further analysis could possibly clarify the
properties of the internal neural pattern of activations and
weight changes. The relation between reward signals and
modulatory activations could unveil important properties
of the neural dynamics and explain how information from
global reinforcement signals is transferred to the synaptic
level, and consequently modify behavioural responses.
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Abstract

One of the central themes in autonomous robot research con-
cerns the question how visual images of body movements
by others can be interpreted and related to one’s own body
movements and to language describing these body move-
ments. The discovery of mirror neurons has shown that there
are brain circuits which become active both in the percep-
tion and the re-enactment of bodily gestures, although it is
so far unclear how these circuits can form, i.e. how neurons
become mirror neurons. We report here further progress with
our robot experiments in which a group of autonomous robots
play language games in order to coordinate their visual, mo-
tor and cognitive body image. We have shown that the right
kind of semiotic dynamics can lead to the self-organisation
of a successful communication system with which robots can
ask each other to perform certain actions. The main contri-
bution of this paper is to show that if the robot has the capac-
ity to ‘imagine’ the behavior of his own body through self-
simulation, he is better able to guess what action corresponds
to a visual image produced by another robot and thus guess
the meaning of an unknown word. This leads to a significant
speed-up in the way individual agents are able to coordinate
visual categories, motor behaviors and language.

Introduction
Starting with work published in an artificial life context
more than a decade ago (Steels, 1995, 2003), we now have
quite solid mechanisms that show how a vocabulary may
self-organise in a population of embodied agents that lex-
icalises perceptually grounded categories, such as colors
(Steels and Belpaeme, 2005) or spatial relations (Steels and
Loetzsch, 2008). In these experiments, the formation of a
language is not just an after-thought, something that takes
place after solid concepts are formed. Rather, the forma-
tion of categories takes place in intimate co-evolution with
the formation of language and both mutually influence each
other. The question we address here is whether this approach
is relevant to understand the formation of a body-image as
well. Body image refers to a collection of representations
that embodied agents must maintain in order to move about
in the world, plan and execute action, perceive and interpret
the behaviors of others, build and use an episodic memory,

and understand or produce language about action, for exam-
ple commands. The body image is not static but dynamically
changing over time in concordance with own body move-
ments or body movements of others. The subject of body
image has received wide attention, particularly in the neu-
rological literature because of puzzling phenomena such as
phantom limbs, mirror box experiments, unusual pain, out of
body experiences, etc. (Ramachandran and Hirstein, 1998;
Rosenfield, 1988; Blanke and Castillo, 2007) and in the neu-
robiological literature because of the discovery of mirror
neurons (Rizzolatti et al., 1996; Rizzolatti and Arbib, 1998).
These disorders, experiments and neurobiological observa-
tions make it quite clear that body image is not a simple,
fixed innately given internal representation but a dense net-
work of representations that forms in development and con-
tinues to change and be adapted throughout life. The relation
between visual representations and recognition of bodily ac-
tion on the one hand and the bodily action itself has also
been intensely studied in robotics research, particularly in
research on imitation (Billard, 2002; Demiris and Johnson,
2003; Mataric, 2002). It is moreover a key topic in ’embod-
ied artificial intelligence’ (Pfeifer et al., 2007; Nabeshima
et al., 2006) which emphasises the grounding of cognition
in bodily activities.

In a recent paper (Steels and Spranger, 2008) we have
already reported experiments with QRIO humanoid robots
(Gutmann et al., 2005) set up to understand the relation be-
tween the visual and motor body image through a particular
language game which we call the Action Game. Two agents
are randomly chosen from a population and take on the roles
of speaker and hearer. They are downloaded in a robot body
in order to play a situated embodied language game. The
speaker asks the hearer to do a physical action and the game
is a success if the hearer indeed performs the requested ac-
tion as judged by the speaker. If the game fails, the speaker
repairs the communication by performing the action himself.
Obviously this game can only be played successfully when
the agents are able to categorise bodily gestures performed
by others based on visual input and relate them to their own
motor behaviors that would produce these same gestures. In
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Figure 1: A humanoid robot stands before a mirror and per-
forms various motor behaviors thus observing what visual
body-images these behaviors generate.

these experiments, agents start without any prior set of im-
age schemata nor words for bodily actions, and they do not
know the mapping from the visual domain to the motor do-
main. If we observe an increase in communicative success,
starting from scratch, then this means that agents have not
only self-organised a lexicon for naming possible actions
and the image schemata they generate, but that they have
learned a bidirectional mapping between the visual and mo-
tor domain as well. We will see that this is indeed possible.

In the first experiment reported earlier, called the mir-
ror experiment (Steels and Spranger, 2008), robots learn the
bi-directional mapping between visual body-image and mo-
tor behavior by standing before a mirror, executing actions,
and observing the visual body-images that they generate.
Once all agents in the group have each learned this map-
ping, they play language games settling on names for these
actions. In the second experiment (called the body language
experiment), robots do not learn the bi-directional mapping
between image schemata and motor body-image through a
mirror but through the language game itself. Both exper-
iments are briefly summarised in the next sections of the
paper. Then we focus on the role of imagination through
self-simulation. As advocated by several researchers, self-
simulation can be used to enhance understanding of the
movements of others (Rizzolatti and Arbib, 1998; Jean-
nerod, 2001), and thus play a role in language understand-
ing and learning (Feldman, 2006; Feldman and Narayanan,
2004). In the experiment to be discussed, robots maintain a
motor body image of themselves which they update through
proprioception. Additionally we equipped the robots with a
kinematic model used for simulating the execution of their

Figure 2: Network linking sensory experiences, image
schemata of postures, nodes for postures acting as mir-
ror neurons, and nodes triggering the motor behavior that
achieves the posture. Nodes for words (shown as squares)
are associated with the posture nodes.

own actions. By adding a component that is able to inspect
this simulated body image, it becomes possible for the robot
to imagine to some extent what a particular action looks like
and this helps to guess the meaning of unknown words and
thus speed up the coordination between visual body image,
motor behaviors and language.

The Mirror Experiment
In the mirror experiment, each robot stands before a mir-
ror in order to acquire the relation between his own motor
body-image and (a mirror image) of his own visual body-
image (see figure 1). Our experiments have so far focused
on static gestures (postures) which require motor behaviors
that each involve typically about 20 motor commands with
associated proprioceptive feedback. Because all robots have
exactly the same body, a robot can use a visual body image
of himself in order to categorise the body image of another
robot, after perspective reversal (Steels and Loetzsch, 2008).
And so once each robot has learned the relation between vi-
sual body-image and motor body-image for himself, they are
quickly able to settle on a shared vocabulary by playing an
Action Game (see figure 7).

We approach the problem of body image here as a coordi-
nation problem. Agents maintain a ’semiotic’ network link-
ing nodes for image schemata for postures with the motor
behaviors that they generate, mediated by a ’posture’ node
which is functioning as a mirror neuron (see figure 2). Sim-
ilar to research by Triesch et al. (2007) we assume that there
is nothing special about mirror neurons but that neurons be-
come mirror neurons because they take on a particular role
in networks. The vision system of the robot performs fore-
ground/background segmentation and feature extraction in
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Figure 3: Aspects of visual processing. From left to right
we see the source image, the foreground/background dis-
tinction, the result of object segmentation (focusing on the
upper torso), and the feature signature for successive frames
of this posture based on centralised moments.

terms of centralised moments (Mukundan and Ramakrish-
nan, 1998, see figure 3). Values for each of these features
are combined into a feature vector that constitutes the sen-
sory experience of a perceived body image at a particular
moment in time. The specific visual feature vectors are then
classified using image schemata. An image schema is a fea-
ture vector with the same dimensions as the sensory experi-
ence and with a typical point as well as maximum accepted
deviations from this point. The best matching prototype is
found by distance computation and then the prototype is ad-
justed to better assimilate the new experience. When no pro-
totype is matching or a new action is selected and executed,
a new one is created, with the sensory experience being the
first seed. Each image schema is linked to a ’posture node’
which is also linked to a motor behavior which can achieve
that particular posture when executed. When one robot is
watching another robot, he performs a perspective reversal
operation on the visual image, in the sense that the robot
computes the position of the other robot and then perform
a geometric transformation, so that the position of left and
right arm now matches with his own. For example, if one
robot stands in front of another one, this means a 180 degree
transformation.

The inventory of image schemata and their relation to sen-
sory features is acquired using a prototype based approach
and the links between posture nodes and motor behaviors
through kinesthetic teaching. When a robot stands before
the mirror, he selects a posture and activates the correspond-
ing motor behavior. This motor behavior generates a sensory
image which is categorised with a particular image schema.
And so through standard Hebbian learning, which enforces
the connection between nodes that are simultaneously ac-
tive (Hebb, 1949; Bishop, 1995), the link between the image
schema and the posture gets established and progressively
enforced. Once this network is established, the development
of a shared lexicon in a population of agent is straightfor-
ward, based on the well known lateral inhibition dynamics
of the Naming Game (Steels, 1995).

Results of this experiment for a population of 10 agents
are shown in figure 4. The graphs show the global behav-
ior of the population, after each individual has coordinated
motor behavior and visual body-image through the mirror.

Figure 4: Results of the Action Game played by a population
of 10 agents for 10 postures. Robots have first coordinated
their visual body-images and motor behaviors by standing
before a mirror and observing their visual appearance in re-
lation to certain motor behaviors. The x-axis plots the num-
ber of language games. The running average of communica-
tive success and average lexicon size are shown as well as
invention and adoption frequency.

100 % success is reached easily after about 2000 games.
Already after 900 games there is more than 90 % success.
The graph shows the typical overshoot of the lexicon in the
early stage as new words are invented in a distributed fash-
ion followed by a phase of alignment as the agents converge
on an optimal lexicon. Figures 5 and 6 show snapshots of
the semiotic dynamics for the first 500 games. Figures 5
shows the communicative success, lexicon-size, and inven-
tion and adoption frequency. Figure 6 we show the average
score in the population for different words competing for the
same meaning. We see clearly that a winner-take-all situa-
tion arises after about 300 games, with one word dominating
for naming this particular posture.

Coordination without mirrors
We have seen that once coherent links exist between the im-
age schema for a posture and the motor behavior that gen-
erates this posture (here mediated by the posture nodes act-
ing as mirror neurons), it is straightforward for a group of
agents to self-organise a lexicon of names which can be used
both for describing a particular posture or as commands for
asking another robot to achieve it, and thus for playing the
Action Game. We now report a second earlier experiment
where robots coordinate visual body-image and motor be-
haviors through language without using a mirror first and
without using posture nodes (see Steels and Spranger, 2008
for more details). The game is similar to the mirror experi-
ment except that now the two different robots stand immedi-
ately in front of each other (see figure 7), without any prior
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Figure 5: The same graphs as shown in the previous fig-
ure, but now zooming in on the first 500 language games.
The agents quickly communicate successfully every second
game. The population starts to communicate 100% success-
fully as soon as the number of word drops to the optimal
number, by eliminating unsuccessful hypothesis.

exposure to mirrors. The speaker asks the hearer to perform
an action and there is communicative success if the speaker
agrees that the right action has been performed. Moreover
the speaker also performs the motor-behavior that is linked
to the word.

More precisely, the interaction pattern is as follows:

1. The speaker randomly chooses an image-schema from the
known schemas as the topic of the conversation.

2. He looks up a word associated with the schema. If there
is none he invents one.

3. He looks up the motor-behavior associated with the word.
If there is no associated motor-behavior he picks one ran-
domly.

4. The speaker utters the word and performs the motor-
behavior picked.

5. The hearer parses the uttered word and looks up the
image-schema and motor-behavior associated with the
word.

6. If there are no image-schemas associated with the word,
he classifies the image-schema resulting from the motor-
behavior performed by the speaker and associates it with
the word.

7. The hearer performs the motor-behavior associated with
the word. If there is none he picks one of the known
motor-behaviors randomly.

8. Both agents determine the success of the interaction. The
speaker determines if the hearer performed the intended

Figure 6: The graph shows the average score for all the
words competing for the same meaning (the raise both arms
action in this case). For every agent of the population the
score of all words (scoring higher than 0) is averaged. The
data stems from an experiment equal to the experiments de-
picted in figures 4 and 5. The winner-take-all dynamics that
coordinates the lexicon among the agents is clearly visible.
The agents create words for the action, these words become
coordinated, with some of dying out and one surviving the
competition.

behavior. The hearer determines whether the image-
schema associated with the uttered word corresponds to
the motor-behavior performed by the speaker. That is he
compares the visual features created by the action of the
speaker with his expected image-schema.

Upon determination of success the lexicon of the agents
taking part in the interaction is updated. Successful links
between network nodes are enforced, unsuccessful links or
links to nodes which were not activated are punished (lateral
inhibition).

Results of this second experiment for a population of 5
agents and 5 postures are shown in figure 8. The graphs
show the global behavior of the population focusing on the
first 5000 language games. 100 % success is reached af-
ter about 5000 games and stays stable (unless new postures
get introduced and then the networks of all agents expand to
cope with this). Already after 3000 games there is more than
90 % communicative success. The graph shows the typical
overshoot of the lexicon in the early stage as new words are
invented and a phase of alignment as the agents converge
on an optimal lexicon size, which is 5 words to name each
of the postures. The frequency of invention and adoption
is also shown and dies down as the lexicon stabilises. So
clearly agents are able to self-organise a lexicon of com-
mands even if no prior lexicon exists and even if they are
not pre-programmed nor learned mappings from motor be-
haviors to visual image schemata before the lexical process
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Figure 7: Two humanoid robots face each other to play an
Action Game. They ask each other to achieve a certain
posture, like raise the left arm, or stretch out both arms.
The middle image shows the internal motor-body-image ob-
tained by combining proprioceptive streams with the body
model. The right image shows two example postures as seen
through the camera of another robot.

starts.
Communicative success does not necessarily mean that

agents relate all visual prototypes ’correctly’ to the corre-
sponding motor behaviors. However figure 9 shows that the
‘right’ correspondences progressively emerge. The figure
plots the aggregated strength (brightness, black: strongly
linked, white no link) of the relation between visual pro-
totypes (y-axis) and motor behaviors (x-axis) in this pop-
ulation over time. Which links are established by agents
and which links are consistently established by all agents is
shown with two diagrams. The first one (bottom row) shows
the evolution of agreement among the agents (computed by
taking the product of the strength over all different agents
and all experiments) and the second one (bottom row) shows
whether agents make any link at all (computed by taking the
average strength of all relations between visual prototypes
and motor behaviors for all agents for a series of experi-
ments) If there is a single column between a particular vi-
sual prototype pi and its corresponding motor behavior mi

with strength 1.0, then this means that all agents have this
particular mapping (bottom row) and agree on it (top row).

Using Imagining through Self-Simulation
We now address the question whether it is possible to im-
prove the efficiency of the overall system. The first step
is to realise that agents are dealing with a search problem.
When the speaker does not know which motor behavior cor-
responds to a posture he would like to see achieved, he has to
make a guess (step 2) and when the hearer encounters an un-
known word, he has to choose a motor behavior that could be
associated with the visual image he is perceiving (step 7). In
the interaction pattern used in the previous experiment, these
choices are made randomly, which implies that the choice is
correct in only 1

A of the cases, with A equal to the number
of possible actions, explaining why we see a worsening of
performance as the number of actions increases. We now
show how this choice can be improved dramatically by us-

Figure 8: Results of the Action Game played by a population
of 5 agents for 5 postures (the results of 100 experiments
are averaged). Robots have NOT coordinated their visual
body-images and motor behaviors by using a mirror but only
through language. The x-axis plots the number of language
games. The running average of communicative success and
average lexicon size as well as invention and adoption fre-
quency are shown on the y-axis.
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Figure 9: Relation between visual prototypes and motor be-
haviors for a population of five agents negotiating names for
5 postures. The diagram shows the aggregated strength of
the relations over time. Top row: aggregation by product
thus showing where they completely agree. Bottom row: ag-
gregation by sum showing which relations have been made.
Left column: after 500 interactions. Middle column: after
1500 interactions. Right column: after 2500 interactions.
The diagram shows that agents progressively achieve the
correct mappings and agree on them.
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Figure 11: Left: The image shows a motor control data stream for creating a waving motion. The information can be used to
create an ‘expected motor body image’ by combining the information the robot has about its body, limb lengths and dimen-
sions, as well as the position of the motors. Given even more information stemming from proprioceptive sensors, a similar
representation called the ‘experienced motor body image’ can be constructed. Given the knowledge about the position of the
sensors as well as the aforementioned configuration of the body, representations like those to the right can be computed. The
two images on the right show two stages in the simulation of the ‘raise both arms’ action creating an ‘expected motor body
image’, as well as an ‘experienced motor body image’.
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Figure 10: Visuo-motor correspondence results from 100
experiments (5 agents, 5 actions), after 10000 interactions.
Left: aggregation by sum showing which associations have
been made overall. Right: aggregation by product showing
which associations agents agree upon. In all these experi-
ments agents find always the right mappings and establish
the correct visuo-motor connections.

ing a simulation-based approach (Feldman, 2006; Feldman
and Narayanan, 2004).

The basic idea is straightforward. Each robot maintains
an experienced motor body image (see figure 7, middle im-
age) which is based on his own body model (containing in-
formation about body parts, their size and shape, how they
are attached to each other) and recorded proprioceptive mo-
tor streams. In addition to the experienced motor body im-
age, robots can also construct an expected motor body im-
age for a particular action using his own body model, the
initial conditions before the action starts, a model of the
body kinematics (see figure 11 right) and recorded motor
control streams, such as the one shown in figure 11 left,
with quantities like RightShoulderPitch, RightShoulderRoll,
RightShoulderYaw, RightElbowPitch, etc. This predictive
model is already employed in the adaptive control systems

of the robot and is now put to a new usage.

First of all, the expected motor body image can be decou-
pled entirely from ongoing behavior so that the robot can
simulate a complete action. Of course the simulation will
deviate from reality depending on the complexity of the ac-
tion and the amount of interaction with the environment that
is needed. Second, a simulated visual body image can be
generated from the simulated motor body image. For ex-
ample, the motor body image contains information about
the angles of the different joints which can be used to inter-
nally visualise the position of the joints with respect to the
body. Note that this visual ‘imagining’ is from the robot’s
own frame of reference. In order to create an expectation of
what the same behavior performed by another robot would
look like, a third step is needed: The robot has to perform a
perspective reversal by performing a geometric transform on
this visual image, based on knowing the position of the other
robot (Steels and Loetzsch, 2008). Finally, similar visual
processing and categorisation can be carried out on this sim-
ulated visual body image as on the ‘real’ experienced visual
body image of the other robot, specifically centralised mo-
ments can be computed again to extract the features needed
for gesture categorisation.

Given this competence in visual imagination, robots can
now improve drastically the quality of their guesses in steps
2 and 7 of the interaction pattern. Speakers can use the sim-
ulated visual body image of the other robot to make a better
guess of the correct motor-behavior given a visual prototype
of the posture they want to see adopted by the other robot.
This is done by a hill-climbing process that starts from a ran-
dom choice of action from the action repertoire, simulates
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Figure 12: Influence of simulation on the performance of the
agents in the Action Game (5 agents, 10 actions). The figure
shows the communicative success averaged over 100 differ-
ent experimental runs, each for a single parameter. 0.0 is the
case were the speaker guesses the correct motor-behavior
with the base line probability 1

10 . 1.0 means that speaker
and hearer “guess” correctly every time they have to choose
a motor-command to match with a desired visual prototype
(as speaker) or interpret an unknown word (as hearer).

that choice to construct a visual body image of the other
robot, and compares this to the desired posture. In case of
a failure, a new action is chosen until a reasonable match
is found. The hearer goes through a similar procedure if he
has to guess the meaning of an unknown word. As men-
tioned earlier, simulated behavior will always deviate from
actual behavior and so this process does not give an abso-
lutely certain guess.

Figure 12 shows the important impact on performance of
this simulation-based approach. The base-line case (marked
0.0) is the one used in earlier experiments, i.e. where the
agent has a 1

A chance to choose the correct action. It shows
the slowest rise towards communicative success. The best
case (marked 1.0) is one where the agents manage to always
guess correctly both as speaker and as hearer what motor
behavior achieves a visual prototype of a posture based on
self-simulation, imagination, perspective reversal, and vi-
sual categorisation. This case approaches the performance
in the mirror experiment where agents first learned the map-
ping between visual body image and motor body image by
standing in front of a mirror. In the intermediary cases we
see that that the higher the probably of correct guessing the
faster the population reaches full communicative success.

Figure 13 shows the semiotic dynamics for the vocabulary
of the agents for the same series of experiments. There is al-
ways a phase of invention and spreading with a typical over-
shoot in the size of the vocabulary, which then settles down
on an optimal vocabulary as agents align their word mean-
ings. We see that the overshoot of words is much smaller
when the quality of guessing improves, which means that

Figure 13: Study of the influence of simulation on the per-
formance of the agents in the game (5 agents, 10 actions).
The graph depicts the number of words (average lexicon
size across all agents) averaged over 100 experiments for
a given parameter. 0.0 is the case where the speaker guesses
the correct motor-behavior with the base line probability 1

10 .
1.0 means that the speaker “guesses” correct every time he
guesses a motor-command.

time to convergence is also much shorter.

Conclusions
This paper examined the role of body language in the for-
mation of body image, specifically whether Action Games
in which agents ask each other to perform actions, can lead
to a coordination of image schemata and the motor behaviors
that generate them. We have seen that this is indeed the case,
even if there is no prior coordination of image schemata and
motor behaviors (through a mirror for example) or even if
no prior lexicon is given to the agents but they have to self-
organise one from scratch. This paper focused on whether
overall performance could be improved by allowing agents
to ’imagine’ what their own bodily movements by simulat-
ing. Even if self-simulation is not perfect and only partial
information can be gleaned from the motor body image, we
have seen that agents have now a better way to guess the
meaning of unknown words and hence they can faster zoom
in on a system that coordinates different body images of the
self and those of others.
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Abstract

We consider a biological cell as a highly interconnected net-
work of chemical reactions, which is constituted of a large
number of semi-autonomous functional modules. Depend-
ing on the global state of the network, the separate functional
modules may display qualitatively different behavior. As an
example, we study a conceptual network of phosphorylation
cycles, for which the steady-state concentration of an output
compound depends on the concentrations of two input en-
zymes. We show that the input-output relation depends on
the expression of the proteins in the network. Hence changes
in protein expression, due to changes in the global regula-
tory network of the cell, can change the functionality of the
module. In this specific example, changed expression of two
proteins is sufficient to switch between the functionalities of
various logical gates.

Introduction
The human body consists of over 200 distinct cell types,
which display a large variety in both morphology and phys-
iology. Often differences between cell types manifest them-
selves in the response to extracellular stimuli. The same type
of molecule may even have a totally different function in
different cell types. An example for this is the response of
cells to the neurotransmitter acetylcholine (see Alberts et al.
(2002)). The extracellular presence of this compound yields
contraction in skeletal muscle cells but a decrease of con-
traction in heart muscle cells and even a multitude of differ-
ent effects in many other cells.

On the other hand, as all cells in an organism descend
from the same zygote, they share the same potential reaction
network, i.e., they are capable of producing the same set of
macromolecules, the interactions among which are based on
the same rules (e.g., rate and diffusion constants). There-
fore, the key to differences in behavior must lie in different
configurations of the network. In a systems theory sense,
these cells can be looked upon as similar systems that due
to a different state show very diverse responses to identical
stimuli. The state variables of these systems are the con-
centrations of chemical species, including species with an
important regulatory function such as transcription factors.

During differentiation, a chain of extracellular stimuli and
cell-cell interactions pushes the network for each cell in a
certain region of its state space. Each of those regions is
characterized by its pattern of present transcription factors
(and other regulatory molecules) and consequently a corre-
sponding pattern of protein expression. Not only through
development, but also in adult individuals, subtle changes
in configuration occur. Examples are synaptic plasticity in
neurons and adaptations to a changed environment, but also
many diseases coincide with a changed configuration of the
reaction network of individual cells: in tumor cells the cell
cycle control is disrupted (Hanahan and Weinberg (2000))
and in metabolic syndrome the cellular respiratory system is
affected (Kitano et al. (2004)).

In order to deal with the vast number of interactions in an
intracellular reaction network, it is common practice to ob-
serve semi-autonomous parts of the system as separate mod-
ules (Hartwell et al. (1999)). Such a separation is not neces-
sarily artificial, as many biological systems have a tendency
towards modularity. Interestingly, modularity has been re-
ported by Variano et al. (2004) to emerge when evolving
artificial networks described by linear differential equations
with a fitness function that rewards network stability . De-
pending on the exact scale of observation and field of inter-
est, many definitions for modules and modularity exist (see
for instance Polani et al. (2005), Bongard (2002)). In this
paper, we use the word module to refer to a group of pro-
teins (and metabolites) that interact with each other on the
level of protein-protein (and protein-metabolite) reactions,
but not with proteins or metabolites outside the module. We
do, however, allow the transcriptional and translational reg-
ulatory systems of the cell to alter the concentrations of pro-
teins inside the module. Hence, as the tuning of transcription
and translation differs between cell types, this may affect
protein concentrations and, because of that, the dynamics of
the module of interest. This applies to all intracellular reac-
tion networks that depend on protein concentrations, among
which metabolic pathways and signaling networks.

Here, we focus on the influence of protein expression on
the functionality of a module. There are a number of ways
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in which proteins expression can influence this functional-
ity. Obviously, when none of the involved proteins are ex-
pressed, the module of interest would be switched off. As
a result, many processes are present in only a few types of
cells. For instance, only a small number of cells synthe-
size certain neurotransmitters, although all cells have the
blueprints for the necessary enzymes in their DNA. Apart
from that, the changes in protein expression can have many
more effects on the input-output relations of functional mod-
ules. We can roughly distinguish two classes of effects.
Firstly, the expression of enzymes involved in a module can
have quantitative effects on the input-output relations of the
module. For instance, muscle cells are set to take up larger
amounts of glucose than less energy consuming cell types
such as skin cells. Secondly, there is the possibility that the
observed functionality itself is changed in a qualitative fash-
ion. An example is the MAP kinase signaling network of
Bhalla et al. (2002), in which the expression of MAP ki-
nase phosphatase determines whether the network displays
a gradual or a bistable response to extracellular stimuli.

In this paper we exemplify with a conceptual model,
that the steady-state input-output relations of a signal trans-
duction network consisting of phosphorylation cycles may
change dramatically by changing only a few concentrations.
Moreover, this model shows that even if we know the topol-
ogy of a network and the sign (i.e., positive or negative influ-
ence) and strength of its interactions, the behavior depends
heavily on the actual concentrations of proteins. We show
that with the same topology and rate constants, this network,
which consists of only 5 phosphorylation cycles, can have
at least 8 different input-output relations, depending on the
chosen protein concentrations. Note that, from a mathemati-
cal point of view, there is only one function that is calculated
by the network. However, we consider some of the concen-
trations as parameters that are determined outside the model.
The input-output relation for each parameter set is thus con-
sidered as a separate function.

The implementation of Boolean logic in biochemical re-
actions is not new. For instance, Strack et al. (2008) have
recently build wet lab implementations of AND, OR, XOR
and ‘B AND NOT A’ functions using enzymatic reactions.
Boolean logic is also a subject of research in the field of
genetic regulatory networks (see for instance Schilstra and
Nehaniv (2008)). Here, we describe one single network that
with suitable parameters can compute 8 different Boolean
functions.

Model description
Phosphorylation cycles
Phosphorylation cycles are common building blocks of in-
tracellular signaling networks (Cohen (2000)). The generic
phosphorylation cycle involves a single type of protein
which can be in two states: a phosphorylated and a de-
phosphorylated state. In a phosphorylation reaction, a phos-
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Figure 1: (a) Phosphorylation cycle with one kinase A and
one phosphatase B, for which the dynamics can be described
by two Michaelis-Menten reactions with constants kcat1 and
Km1, and kcat2 and Km2, respectively. (b) The steady-
state concentration of Rp as a function of the ratio of the
concentrations of A and B, for the case kcat1 = kcat2 = 1
and Km1 = Km2 = 0.01.

phate group is transferred from a donor molecule (com-
monly ATP) to a specific site on the dephosphorylated pro-
tein. The enzymes that catalyze this ‘forward’ reaction are
called kinases. The ‘backward’ reaction, i.e., the dephos-
phorylation reaction, is catalyzed by a phosphatase enzyme.
A schematic representation of such a cycle is shown in Fig-
ure 1 a.

In this paper we restrict our description of the phospho-
rylation cycle to a highly idealized cycle consisting of two
Michaelis-Menten type reactions (Fersht (1999)). Further-
more, we assume a fixed concentration of phosphate donors.
In this way, we can describe the rates vphos and vdephos of
the reactions

A + R → A + Rp
B + Rp → B + R,

with Michaelis constants Km1 and Km2 and catalytic con-
stants kcat1 and kcat2 by

vphos =
kcat1[A][R]
Km1 + [R]

,

vdephos
kcat2[B][Rp]
Km2 + [Rp]

.

Note that square brackets indicate the concentration of the
corresponding compound. The steady-state of such a cycle
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is given by Goldbeter and Koshland (1981) and can be writ-
ten as (Tyson et al. (2003)):

[Rp] =
2 v1J2Rtot

v2 − v1 + v2J1 + v1J2 + D
,

where

D =
√

(v2 − v1 + v2J1 + v1J2)2 − 4(v2 − v1)v1J2

and Rtot = [R] + [Rp], v1 = [A] kcat1, v2 = [B] kcat2,
J1 = Km1/Rtot, J2 = Km2/Rtot.

Typically, the steady-state response of such a cycle is sig-
moidal as function of [A]/[B](see Figure 1 b). As both the
phosphorylated and dephosphorylated proteins can act as en-
zymes themselves, phosphorylation cycles can be coupled in
a cascade, in which the substrate of one cycle is a kinase or
phosphatase in another reaction. In the next section we in-
troduce a network of such cycles, in which we assume that
only the phosphorylated form is active as an enzyme and
can have either kinase or phosphatase activity but not both.
We do not take into account formation of protein-protein
complexes other than the kinase-substrate and phosphatase-
substrate complexes taken care of in the model of Goldbeter
and Koshland.
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Figure 2: Reaction scheme of the network. System parame-
ters [E1]...[E5], Stot, Ttot, Utot, Vtot determine the response
of [Yp] to input concentrations [A] and [B].

Network topology
Consider the network of phosphorylation cycles as shown
in Figure 2. Depending on the external concentrations [A]
and [B] (which are further referred to as ‘input concentra-
tions’), the state of the network will change. We focus on

the steady-state concentration of Yp for given concentra-
tions [A] and [B]. Clearly, this concentration depends on
the concentrations of uncoupled enzymes ([E1]...[E5]) and
the total amount of mass in each phosphorylation cycle (i.e.,
Stot = [S] + [Sp], Ttot = [T] + [Tp], Utot = [U] + [Up],
Vtot = [V]+[Vp] and Ytot = [Y]+[Yp]). The regulation of
the amount of protein expression (i.e., transcription, transla-
tion and protein degradation) is part of the chemical network
of the entire cell, but not of the module of interest. There-
fore, the total concentrations of involved proteins are ways
for the global system of the cell to tune the functionality of
the described module. From here on, we refer to these con-
centrations as system parameters. Clearly, the rate constants
of all the reactions are parameters of the module as well.
However, it seems unlikely that the global network, apart
from the expression of inhibitors or activators, can change
the values of these parameters. Therefore, we keep the rate
constants of all reactions at 1.

As there is no feedback, each phosphorylation cycle in our
model has one single stable solution irrespective of its initial
state. As there are only feed-forward connections, there is
only one steady-state solution for the entire network as well
for given system parameters and inputs ([A] and [B]). When
two or more enzymes catalyze the same reaction, we con-
sider the sum of their concentrations as the concentration of
the catalyst.

Parameter values
In the previous section we have defined system parame-
ters as variables of the global cell network that determine
the behavior of functional modules. The presented con-
ceptual model of such a module has 10 system parameters
([E1]...[E5], Stot, Ttot, Utot, Vtot and Ytot), which can be
used to configure the network. In order to obtain more in-
sight in the possible behaviors of the network, we focus on
its possibilities as a logic gate. For the input we define values
below 0.5 as False and above 0.5 as True. We show that only
two system parameters (Stot and Ttot) have to be adjusted
to obtain 8 different logical functions with 2 inputs. For all
reactions we choose the Michaelis constant Km = 0.01 and
the catalytic constant kcat = 1.

The first layer of the network functions as a thresholding
device. That is, as we do not demand inputs [A] and [B] to
be exactly 0 or 1, we want [Sp] be near 0 if [A] < [E1] and
near Stot if [A] > [E1]. The same holds for the T-Tp cycle.
We choose thresholds [E1] = [E2] = 0.5. As both phospho-
rylation cycles in the second layer receive input from both
Sp and Tp, we consider the sum of their concentrations (i.e.
[Sp]+[Tp]) as the output of the first layer. The input-output
relation of layer 1 is given by Table 1. The output of the first
layer [Sp] + [Tp] is approximately one of the four numbers
0, Ttot, Stot or Stot + Ttot. Note that, as Stot and Ttot are
the only adjustable system parameters, these four numbers
are not yet fixed.
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Layers 2 and 3 take [Sp] + [Tp] as input, and have [Yp]
as output. If we also take Utot > 0, [E5] ≈ 0.5Utot,
Vtot $ Utot, and Ytot = 1 and choose any combination
of [E3] and [E4] for which [E3] < [E4], we obtain the input-
output relation for layers 2 and 3 that is shown in Figure 3.
Now, the only parameters that are not yet fixed are Stot and
Ttot.

[A] 0 0 1 1
[B] 0 1 0 1

[Sp] +
[Tp]

0 Ttot Stot Stot +
Ttot

Table 1: Input-output relation of layer 1

[E3]

Ytot

0

[Sp] + [Tp]

[E ]4

Figure 3: Response of layer 3, when layer 2 receives a total
input [Sp] + [Tp].

Network behavior
Different combinations of Stot and Ttot can yield different
computable functions, as shown in Figure 4. Because the
response of the network is built up of sigmoidal functions,
the borders between the shown regions do not indicate dis-
crete changes in functionality but rather narrow continuous
transitions.

For instance, to compute the XOR function, we choose
Stot and Ttot such that [E3] < Stot < [E4], [E3] < Ttot <
[E4] and [E4] < Stot + Ttot. Similarly, to compute the OR
function we require [E3] < Stot < [E4], [E3] < Ttot < [E4]
and [E3] < Stot + Ttot < [E4]. It is easily verified from
Table 2 and Figure 3 that indeed the XOR respectively OR
function are computed. Note that the conditions on Stot and
Ttot for the OR function require that [E3] < [E4]/2. As can
be seen from Figure 4, all 8 Boolean functions that yield 0
for input [A] = [B] = 0 can be computed if [E3] < [E4]/2.

If we consider both concentrations [Y] and [Yp] as out-
puts, our network is able to calculate all 16 possible log-
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Figure 4: Network output for combinations of Stot and Ttot.
Only relative concentrations are shown, see Figure 5 for ex-
amples of actual parameter values.

XOR
[A] 0 1 0 1
[B] 0 0 1 1

[Sp]+[Tp] 0 > [E3], > [E3], > [E4]
< [E4] < [E4]

[Yp] 0 1 1 0

OR
[A] 0 1 0 1
[B] 0 0 1 1

[Sp]+[Tp] 0 > [E3], > [E3], > [E3],
< [E4] < [E4] < [E4]

[Yp] 0 1 1 1

Table 2: Computing the XOR or the OR function. The val-
ues of Stot and Ttot (see Figure 4) determine the range of
values of [Sp] + [Tp] and by that the value of [Yp] for the
possible combinations of input values [A] and [B].

ical functions for two inputs. The reason is that, because
[Y] = 1 − [Yp], we can consider [Y] as the negation of
[Yp].

The possible outputs of the network are shown in Fig-
ure 5. Also, without considering [Y], other logical functions
may be calculated, as well as functions with a more gradual
response to different inputs. To this end, alternative choices
for system parameters, other than Stot and Ttot should be
used. Even more possibilities may appear by adding extra
enzymes (kinases or phosphatases) to some of the phospho-
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rylation cycles. However, this is beyond the scope of this
paper.
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Figure 5: Depending on the network configuration, the
steady-state concentrations of Yp and Y correspond to one
of the 16 logical functions for 2 inputs [A] and [B]. (Gray
levels indicate concentration: Black ≈ 0 , White ≈ 1).
All sub-figures were plotted using [E3] = 6, [E4] = 16,
[E5] = 0.5, Utot = 1, Vtot = 10 and the values for Stot and
Ttot that are given in brackets for each sub-figure.

We have shown how the values of only two parameters
determine the response of the network. The importance of
parameter values is even more strikingly exemplified if we
use the same network as a unary logic operator. In order
to do that, we consider [B] as a system parameter instead
of an input, choose Stot and Ttot within the ‘XOR region’
and leave the other parameter values unchanged. In that case
changing the value of [B] is sufficient to switch the output
[Yp] of the network from identity to negation of input [A].

Biological Plausibility
Although the topology and parameters of the model are op-
timized to display specific idealized behavior rather than to

describe any known intracellular pathway, the model con-
sists of building blocks that are common in intracellular sig-
naling. It may therefore be possible to find a similar topol-
ogy within existing biological networks. Indeed, in the Hu-
man Protein Reference Database (see Peri et al. (2003) and
Mishra et al. (2006)), we have found a number of protein
kinases and phosphatases that show similar patterns of inter-
actions. More specifically, we have searched this database
(Release 7, downloaded from http://www.hprd.org) for com-
binations of five proteins S,T,U,V and Y for which the pro-
teins S and T are each known to phosphorylate at least one
site on the proteins U and V. In addition, protein U has to
phosphorylate protein Y and protein V has to dephosphory-
late Y. Furthermore, we require that both S and T are targets
for phosphorylation by other protein kinases. We did not
discriminate between multiple phosphorylation sites on the
same protein.

With these requirements, we have identified the combi-
nations of S,T,U,V and Y, that are listed in Table 3. Note
that proteins S and T are interchangeable. For each of the
possible proteins for S and T, known kinases (i.e. potential
network inputs A and B) are listed in Table 4. On protein
PRKACA there are at least 5 different sites that are known
targets for phosphorylation, but for which no upstream ki-
nases are known. Finding these networks with similar topol-
ogy makes it more plausible that this type of multifunctional
modules can occur in nature. However, due to the current
limited knowledge about parameters of signalling networks,
it remains unclear whether such functionality is indeed used
in biology.

S T U V Y
FYN LCK SHC1 ACP1 ZAP70
LCK LYN PRKCD PTPN6 EGFR

MAPK1 PRKACA RAF1 PTPN7 MAPK1
PRKCA PRKACA SRC PTPN12 ABL1
PRKCA PRKACA SRC PTPN12 PTK2

Table 3: Real networks with same topology. S and T are
interchangeable.

Substrate (S or T) Kinase (A or B)
FYN FYN, CSK, PDGFRB
LCK CSK, LCK, PRKCA, MAPK1,

SYK, PRKACA, MAPK3
LYN LYN, MATK, CSK
MAPK1 MAPK1, RET, MAP2K1, RAF1
PRKACA Kinase unknown
PRKCA PRKCZ, SYK

Table 4: Kinases working on possible substrates S and T.

Artificial Life XI 2008  589 

http://www.hprd.org


Discussion
In order to get some grip on the overwhelming complexity of
biochemical interactions within a cell, it is common practice
in biology to analyze separate pathways or modules instead
of the whole system. We have defined a module in such a
way that it can be analyzed separately from the larger net-
work to which it belongs. Changes outside the module are
therefore considered as changes in parameters or boundary
conditions, rather than changes of the state of the module
itself. Because of this, the same module may have different
parameters in two different cell types, and may therefore dis-
play different functionalities. Since a small module, such as
the conceptual network presented in this paper, can already
behave totally different depending on the values of two pa-
rameters, it is likely that also in real networks changes in
protein expression result in changes in observed function-
ality. Note that, from a mathematical point of view, there
is no such thing as a change in functionality, as the network
of interactions is still the same. However, when dealing with
small parts of the system, different behavior can be observed
as different functionalities. The model presented in this pa-
per gives an example how small changes in parameters of a
phosphorylation network can already yield a different func-
tionality. For example, the presence or absence of the com-
pound B is sufficient to switch the input-output relation be-
tween [A] and [Yp] from identity to negation.

Although this model is not based on any known intracel-
lular pathway, we have shown that similar topologies can be
found in the Human Protein Interaction Database. Despite
the idealized sigmoidal response of the phosphorylation cy-
cles, this small network can already behave in at least 8 dif-
ferent ways, depending on how it is configured. This makes
it plausible that modules of real biological networks display
such multifunctional properties as well, which gives a clue
how the same protein in different cells can be involved in
different processes and can even show contradictory behav-
ior among cell types. Moreover, this multifunctionality may
also be exploited by evolution to use the same modules for
different purposes in different cell types. Spatial isolation of
proteins may even allow the exploitation of different func-
tionalities in separate regions in the same cell. On the other
hand, the same functionality may be needed in many differ-
ent cell types. In that case it appears to be advantageous if
the involved genes are co-regulated, as this would preserve
the ratios between the protein concentrations and by that the
functionality of the module.

As for many signaling networks quantitative data is lack-
ing or unreliable, an often used technique is to use Boolean
networks to model positive and negative interactions be-
tween nodes (Kauffman (1969), see de Jong (2002) for a re-
view). Although this technique is useful to understand some
interactions within a complicated network, a lot of qualita-
tive effects are missing with this approach. We can illustrate
this with our conceptual model. Cycles U-Up and V-Vp are

both positively influenced by cycles S-Sp and T-Tp and in-
directly by external concentrations [A] and [B]. As in a clas-
sical Boolean network interactions only have a sign but not
a weight, the U-Up and V-Vp cycles are identical. The Y-
Yp cycle receives positive influence from Up and negative
influence from Vp. As the topology and interactions remain
the same, a purely qualitative approach would be insufficient
to describe the different ‘modes’ of the network. This also
shows that for understanding the dynamics of these com-
plex networks, it is necessary to perform multiple quantita-
tive measurements at the same time.
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Abstract

Economies can be modelled using Artificial Chemistry ap-
proaches. In this contribution we discuss the development of
such a model starting from the well-known von Neumann’s
technology matrices. Skills and technologies that allow the
transformation of raw materials into products are introduced
in a form akin to chemical reactions. The dynamic flow of
materials in such a system is simulated and connected through
an agent-based market mechanism that assigns value to raw
materials, labour, and products. Starting from a fixed set of
raw materials, energy and labor, we observe the appearance
of new products, the use of consumables and the general in-
crease in complexity of such a system. Real evolutionary dy-
namics including waves of innovation can be demonstrated.

Introduction
Economies are notoriously difficult to understand. Multiple
approaches have been tried, yet progress has been very slow
and today we are still not able to understand or predict the
dynamics of an economy. much less its structural evolution.
Part of the reason is that economists are notoriously con-

servative in their approaches to elucidate these problems.
While many disciplines have whole-heartedly embraced the
new non-linear paradigms of Science, self-organization, the
emergence of new function, chaos and complexity, non-
equilibrium systems dynamics and evolution, economists
have been skeptical and mostly seem to be concerned with
equilibria, exact mathematical solutions to differential equa-
tions and systems without surprises.
Another reason is simply that economies are complex, dy-

namic, non-linear, and innovative. New products and com-
panies arise constantly, grow in dominance in the market-
place, get competition, weaken - perhaps gradually - and are
finally replaced by others. This unabating renewal process
is one of the most fascinating, yet poorly understood aspects
of economies. Schumpeter called it the ”gales of creative
destruction” (Schumpeter, 1939).
While there is a field of ”Evolutionary Economics” (Met-

calfe, 1998; Witt, 2006), it can be argued that evolution re-
ally does not play a key role in that area, since the key aspect

of innovation is not appropriately modeled in Evolutionary
Economics to date.
What we are going to do here is to take the evolution-

ary aspect of an economy seriously. For that to happen, we
need the ability of our system to generate new products, new
technologies and new companies. Artificial Chemistry has
for a long time been proposed as a means to study construc-
tive (innovative) aspects of systems. An artificial chemistry
in its broadest definition (Dittrich et al., 2001) consists of a
collection of objects, transformation rules and an algorithm
that drives the dynamics of their transformation. Here we
will make use of an artificial chemistry to model the produc-
tion system of the economy to be simulated. Objects can be
goods such as raw materials (or labour and consumables),
products of production processes created through rules of
transformation, and technologies (which can be considered
catalysts in a chemical sense).
The next section will introduce the von Neumann technol-

ogy matrices and how we can use this method as a starting
point for a production system. We will then introduce a sim-
ple system that will allow us to simulate an economy. It will
be based on natural numbers being symbols of raw mate-
rials (prime numbers), products (products of natural num-
bers) and skills/technologies (in the form of indices). The
fourth section will introduce the production agents, i.e. the
”companies”, and the marketplace, key elements of a viable
economywhich bring a valuation to the various goods of the
production system introduced previously. The fifth section
will demonstrate a run of the system, and explain how new
products or technologies can be created (and observed). The
6th section will discuss typical runs watching for waves of
innovation, competition for market dominance, and in gen-
eral, the evolutionary dynamics.

Von Neumann Technology Matrices
Von Neumann proved the existence of a general economic
equilibrium in an economic system undergoing balanced
growth (von Neumann, 1946). He used matrices to model
the transformation of input to output in an economic sys-
tem. Before we can make use of this notation, we need to
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explain it in some detail.
Suppose we have m activities and n commodities in an

economy. The activities can be regarded as production pro-
cesses, skills or technologies and are denoted by a vec-
tor t1, ..., tm, whereas the commodities can be regarded as
labour, capital, raw materials, or products, and are denoted
by a vector c1, ..., cn.
We can then formulate an input matrix I to our production

process, and an output matrix O. Here is an example with
m = 4 and n = 5.

Table 1: Input and output matrices representing technology
and the products involved

commodities input matrix output matrix

c1

c2

c3

c4

c5

t1 t2 t3 t4

1 1 2 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

t1 t2 t3 t4

0 0 0 6
1 0 0 0
0 4 0 0
0 0 2 0
0 0 7

3
0

The columns of Table 1 can be read the following way:
c1
−→t1 c2, c1 + c2

−→t24 × c3, 2 × c1 + c3 + c4
−→t32 × c4 + 7

3
×

c5, and c5
−→t46 × c1, that is, each of the pairs of columns in

Table 1 indicates a process that transforms a combination of
commodities into a set of output commodities.
The original purpose of the von Neumann Technology

matrices was to be able to formally show that an equilib-
rium can be achieved with certain production factors appro-
priately chosen. It later turned out that a ”balanced growth”
scenario could be supported by this formalism as well in
which all production processes expand at the same rate. For
example, the matrices in Table 1 allow a constant growth
rate of 2 when the activity vector z that denotes the number
of times each of the m processes is executed per time step
equals {6, 3, 6, 7}. Indeed (O − 2I).z = 0.
However, the notation is not restricted to equilibrium sit-

uations at all. We can make use of the same model, and
include innovation by the addition of new columns (an in-
novation in technology) or new rows (new products appear-
ing). Most of the time, a mixture of both would be necessary.
A good outline of technology matrices is provided by Blatt
(1983).

A Simple Economy based on Natural Numbers
The particular production system we are going to use here
is inspired by the N economy using natural numbers to rep-
resent commodities (Herriot and Sawhill, 2008). The idea
is to have multisets of objects, in this case natural numbers,
which can be transformed into others using the operation of

multiplication.
This system is indeed an Artificial Chemistry, with the re-

actions being the multiplication, and the numbers the equiv-
alent to chemical species. As such, the system has some
similarity with the prime number reaction system introduced
in Banâtre et al. (1988); Banzhaf et al. (1996).
Just to briefly recall, an Artificial Chemistry can be rep-

resented by a triple (S, R, A), where S is the set of all pos-
sible molecules, R is a set of collision or reaction rules, and
A is an algorithm describing the domain and how the rules
are applied to the molecules (Dittrich et al., 2001). This
general notation for an artificial chemistry can be applied to
develop a framework for an artificial economy. In a free-
market economy, the incentives for production are provided
by the market. The algorithm should therefore represent a
market in order to provide the rules for what is produced,
when, and where. In addition, S – the set of all products
– and R – the set of all production processes – need to be
defined.
In the N economy the set S of molecules is the set P of

products (which consists of commodities such as raw mate-
rials, products, capital and labour), with each product being
represented by a natural number. Suppose the product set P
consists of the following goods:

P = {2, 3, 5, 7, 11, 13, 130, 260, 104}

Here we have chosen to represent commodities by inte-
gers: prime numbers for raw materials, and products of in-
tegers for composites. This allows us to use the structure
offered by the natural numbers, and products literally can be
decomposed into their prime factorisation to see what raw
materials are involved in making them. In this model, labour
is treated explicitly as a commodity (the number2). Further-
more, there is a special product, which serves as money, and
this is the number 3.
Suppose we have a small product set, as above, and five

production processes per time interval, as displayed in Ta-
ble 2.

Table 2: Overview of the production processes during one
time interval

2× 2 → 2× 5
2× 2 + 2× 5 + 2× 13 → 3× 130
3× 2 + 3× 130 → 6× 260
6× 2 + 6× 260 → 6× 104
6× 104 → 13× 2

Note that there is no production of commodity 13, yet it
is required in one of the production processes. This product
is assumed to be a free good, such as sunlight. It can easily
be verified that the production in Table 2 is in balance; total
labour (product 2) used equals total labour generated, and
the products required for the generation of this labour are
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also covered, so that the required input per time interval is
exactly the same as the output at the end of the time interval.
Based on these production activities per unit of time, it is
possible to determine a price set that will allow the system
to function. In order for this to be the case, a producer needs
to be able to finance the inputs for the next time interval with
the sale of the current production. In other words, the price
of the output should be greater than or equal to the price of
the input. Assuming that activity levels for the next time
step will remain the same, and since there is no surplus in
the system, this gives the following set of equalities. When
pi stands for the price of product i, then

2p5 = 2p2

3p130 = 2p2 + 2p5 + 2p13

6p260 = 3p2 + 3p130

6p104 = 6p2 + 6p260

13p2 = 6p104

When the price of one product (the numeraire good) is
taken as a price unit, for example the price of labour p2 = 1
and the free good p13 = 0, then this system of equalities has
a unique solution, namely p2 = 1, p5 = 1, p13 = 0, p130 =
4/3, p260 = 7/6, p104 = 13/6.
The von Neumann Technology matrix for the example

above is shown in Table 3.

Table 3: Input and output matrices representing technology
and the products involved

products input matrix output matrix

2
3
5
13
130
260
104

1 2

3

1

2
1 0

0 0 0 0 0
0 2

3
0 0 0

0 2
3

0 0 0
0 0 1

2
0 0

0 0 0 1 0
0 0 0 0 6

13

0 0 0 0 1
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

Now that we have described the production system in
some detail, let us turn our attention to what happens with
all these products.

Economic Agents and their Marketplace
A production system alone is not sufficient to simulate
an economy. In addition to production processes and
products/raw materials, active entities like companies, here
called agents, are necessary to actually produce quanti-
ties of these objects. Further, a validation process for ob-
jects/products will be required that allows to close the cir-
cle by exchanging objects between agents. This is the price

setting mechanism which in our economy is realized by an
auctioneer who keeps an eye on stock levels and who reports
prices to agents.

Space
At the cost of labour, raw materials are extracted from the
land, which has been divided into cells of equal size. As far
as raw materials are concerned, the space is homogeneous.
If desired, it is possible to experiment with more interesting
distributions of resources.
Each cell provides a free resource, 13, which can be

thought of as energy from sunlight. The distribution of free
energy can be varied, but currently it is such that there is
always an abundance.
On top of the land is a connection network, which rep-

resents the presence of trade links between cells. Links go
both ways, so if a cell a is connected to a cell b, then b is
connected to a, and all agents on a can trade with all agents
on b, and vice versa. Initially the network is empty, but as
agents obtain skills/technologies and require inputs for these
skills, they can establish connections with providers. A wide
range of rules of how to expand or contract an agent’s trade
network is possible. For example, an agent can randomly
select one of its current providers and subsequently do a lo-
cal search around the selected trade partner in an attempt
to find an additional provider. Or an agent may be allowed
to connect to the nearest provider. In addition, it is possi-
ble that an agent looses one of the more distant connections
and subsequently attempts to find a supplier nearer by. Such
rules obviously attempt to keep the social network consisting
of trading partners compact. The rules according to which
agents behave are described in the next section.

Agents
The grid space is home to a number of economic agents.
They all have a fixed location and an identity number, so that
we can distinguish different agents on one location (cell).
Furthermore, agents possess assets: resources, other prod-
ucts present in the economy and skills. All assets are stored
in a list. Therefore, an agent can be represented by

{{x, y, z}, {c1, . . . , cn}, {t1, . . . , tm}}

where x, y is the location, z is the identity number for that
agent, c1, . . . , cn lists the possession of n commodities, and
t1, . . . , tm is a boolean list to specify which of the m tech-
nologies the agent possesses for some m, n ∈ N. Different
agents have different skills.
Having a technology should be regarded as having the

skill or knowledge to perform a certain transformation when
you have the resources to do so. For actions that require
capital, in addition to having the skill, the agent must also
possess the appropriate capital goods in order to execute that
particular action. Capital goods are a subset of the product
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list P . In particular, they are products, analogous to cata-
lysts, that are necessary for the production of other products,
but which are not used up in the process – that is, they are
recovered (less a fraction representing depreciation) at the
end of the production process.
As mentioned before, some products are consumables,

while others are capital or intermediate products. The con-
sumables can be converted into labour, 2, according to cer-
tain columns in the technology matrices. The actions of
these particular columns represent consumption, and con-
sumption is restricted to a certain type of agent, namely
the group of consumers. We thus distinguish two types of
agents: consumers and producers. The latter can have any
of the other technologies. Producers depend on consumers
for the required labour, while consumers depend on produc-
ers for the consumables. Neither group can have skills that
belong to the other group: an agent is either consumer, or
producer, but never both. This is not crucial to the function-
ing of the model and could easily be relaxed later.

Agents in action
The production of goods, mentioned in the previous section,
does not simply happen by itself. It occurs because some-
body (something) somewhere actually does the job. There-
fore, we need actual agents in space to serve as economic
individuals to drive the economy. The whole environment of
space, networks, agents, product set and technology is called
the economy. All changes that take place in the economy
occur because agents perform some or all of the following
actions:

Win free resources: Free resources are distributed over the
cells; some agents will use them.

Expand network: An agent asks around among its trading
partners (all agents it is linked with) to inquire what they
have in store. It compares this list with what is possibly
required for executing its own skills. If there are any prod-
ucts it does not have access to, it will randomly choose a
trading partner, then scan the surroundings of the trading
partner for interesting new partners. A connection to the
cell that contains the agent that offers most of what was
not yet available will be added to the connection network.

Make plan: What an agent can do, firstly depends on its
skills. Secondly, resources need to be available for the
transformation of commodities into products. Resources
can be bought, but the agent is limited by what its part-
ners have to offer. A surplus of products can be sold to
generate money to buy the required resources. However,
the quantity of products being sold is dependent on the
monetary resources of trading partners. In the end, the
agent’s initial possession, plus what is acquired, minus
what is sold, minus what is used in the production pro-
cess, plus what is produced must be positive. Given these

constraints, and given the prices of all commodities (de-
termined by an auctioneer explained below), every agent
uses linear optimization to determine what and how much
to sell, what and how much to buy, and what and how
much to produce in order to achieve maximum posses-
sion.

Buy: Once an agent has optimized its plan, it will look for
a partner that has what it is looking for, and they will ex-
change q units of product l for q × pl units of money,
where pl is the current value of product l.

Sell: Once an agent has optimized its plan, it will look for a
partner that has the money to buy what the agent wants to
sell, and they will exchange q units of product k for q×pk

units of money, where pk is the current value of product
k.

Produce: After the exchange of products and money, the
agent has all the resources required for the production
plan and it can transform the input commodities into its
output.

Update: An agent executes all of these steps, and the state
of the agent and the agents engaged in trade are updated.

Unlike cells in cellular automata, the agents cannot be up-
dated synchronously, because one agent’s action will change
the state of its partners with whom it engages in trade.
Therefore, the agents perform sequentially. All the agents
are randomly ordered, and in turn they go through the above
list of actions. When everybody has had a turn, a new ran-
domly ordered list is created for the next iteration. A com-
plete sequence of actions of all agents’ defines one iteration.
The random list of agents generated anew for each iteration
prevents any bias due to specific ordering of the agents.
Suppose the input matrix and output matrix are I and O.

Dimensions of these matrices are n×m, meaning that there
are m production processes and that the economy consists
of n products, withm, n ∈ N. As in previous examples, the
first product is labour and the second product represents one
unit of money. Now expand these matrices by adding the
matricesM and I:

A =
(

I
∣

∣ M
∣

∣ I
)

B =
(

O
∣

∣ I
∣

∣ M
)

where I is the identity matrix of size n, andM is the square
matrix of size n with all elements equal to 0 except for the
second row which is equal to p = {p1, p2, . . . pn} indicat-
ing the quantities of commodity 3 that need to be paid for
each of the products. The addition of these two matrices to
I and O represent all possible actions involving production,
buying and selling. Just as columns in I and O represent
the input and output for production processes, the columns
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in M and I represent input and output for buying prod-
ucts. When we write z = {z1, z2, . . . zm+2n} as the vec-
tor of all actions of an agent, that is, z consists of elements
z1, . . . zm to indicate the activities regarding them produc-
tion processes, zm+1, . . . , zm+n+1 to indicate the quantities
of products that need to be bought, and zm+n+2, . . . , zm+2n

the quantities of products that need to be sold, thenA ·z lists
the quantities of products required for the execution of vec-
tor z and B · z lists the quantities of products generated by
vector z. The quantities A · z and B · z are named the input
and output, respectively, of the vector of action z. Likewise,
when the vector p = {p1, p2, . . . pn} lists the prices for each
of the products, then p · (B − A) is a vector that gives the
profit of each of the actions and p · (B − A) · z equals the
profit generated by activity z.
Every agent’s behaviour is described by

max
z∈Qm+2n

profit(z) = max
z∈Qm+2n

p · (B − A) · z

under the conditions that:

• a positive balance is maintained both in production and in
trade,

• the total activity per turn per agent is capped and

• consumers meet their basal metabolic rate; i.e. the mini-
mum level of consumption necessary for them to remain
alive and productive.

The prices p = {p1, p2, . . . pn} mentioned above are de-
termined by an auctioneer who attempts to find a set of
prices such that, for those products for which there is a short-
age, the production process becomes profitable (cost of input
lower than price of output). For the production processes of
products for which there is a surplus, prices are set such that
these can be manufactured, but without profit (cost of input
equals price of output). To a certain extent such prices are
similar to Sraffa’s market clearing prices based on the cost of
input. When dealing with a shortage, the value of the output
is such that it enables the sector to buy the required input and
produce with a profit. Through this, agents are encouraged
to reduce shortages and surpluses. The presence of surplus
and shortage is determined as follows: the auctioneer keeps
track of what input is required during the last w iterations
(often w = 50). Subsequently, the auctioneer attempts to
keep in store the required input for those w iterations. There
are more advanced models of agent-based market dynam-
ics, see for example Tesfatsion (2007), but these focus on
all aspects of procurement. As such, much effort goes into
the bottom-up determination of the market price through a
cyclical process of matching offers and bids, which is much
more than we need in this paper.

A Sample Run
The above described model of an artificial chemistry-based
economy is illustrated here by a presentation of a typical
simulation run. The agent population consists of 15 produc-
ers with random skills (the know-how to execute particular
transformations given by the technology matrices), and 15
consumers. All agents are connected to all other agents such
that the spatial configuration is irrelevant for the time being.
The technologymatrices are comparable to those in Table 3,
that is they deal with the same products but have slightly dif-
ferent output coefficients to allow a surplus production such
that the basal metabolic rate of consumers can be satisfied.
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2

Figure 1: Product concentrations C per iteration i of the
commodities 2, 5, 130, 260 and 104.

Figure 1 graphs the resulting product concentrations,
where a concentration of a product is the proportion of the
total product population. At the start of the simulations each
of the agents was supplied with equal amount of each of the
products. Initially only the stock levels of the labour (prod-
uct 2) is reduced due to the basal metabolic rate of the con-
sumers, and thus its concentration goes downwhile the other
concentrations go up. This phase includes merely consump-
tion, and thus the concentrations change linearly. However,
the reduced stock of labour leads to a profitable production
of this “product”, which in turn leads to reduced levels of
the consumable (commodity 104) and subsequently of other
commodities involved. Agents do not necessarily have ac-
cess to the required inputs, depending on the random order
in which they are allowed to act for example, and thus the
production of commodities appears a little erratic. However,
this simple economy converges to a more or less stable state
which corresponds to the Leontief stable state.
The next figure graphs the price dynamics for one of

the commodities (product 104), and its close relation to the
stock levels (see Figure 2). The blue line indicates the price,
the red line indicates a surplus or a shortage in stock lev-
els. Appropriate stock levels depend on the past activity of
the agents. Note that a higher price does not guarantee an
immediate reaction in stock levels, but that every time stock
levels do become positive this is preceded by an increased
price.
The temporarily higher prices trigger agents to engage in
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Figure 2: Price development P and balance B of product 104
graphed per agent’s action a.

production activity if they possess the appropriate skills and
if they have access to the required inputs. Initially the agents
are using the surplus of stocks present at the start of the sim-
ulation and no manufacturing takes place. Once stocks are
depleted, one by one the different sectors and thus the agents
that compose the sectors have to come into action (see Fig-
ure 3). The figure shows the number of agents per iteration
that are involved (either heavily or just a little) in a particular
production process.
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Figure 3: Number of agents A per iteration i participating
in the production of the different commodities of Figure 1.
The numbers indicating the different production processes
correspond to the columns of the input and output matrices,
such as in Table 3.

The peak in the generation of labour (sector 5) around iter-
ation 100 can be explained by the absence of an appropriate
record of past activity at start up. First the surplus is con-
sumed and none of these goods have to be generated. When
the system begins to run out of intermediates these have to
be produced, but not even the stocks to do so are there since
appropriate stock levels depend on the past activity levels.
With a short period of higher activity the system is able to
catch up.

New Products, Waves of Innovation,
Evolutionary Dynamics

The actual innovation process of the evolving economy is
composed of two steps: first the technology matrices have
to be expanded to include the production of the new com-
modity or the new use of existing products. Subsequently

agents have to start using the new technology.
At random times, new technology is generated. With a

certain probability this new technology involves the creation
of new consumables. If not a consumable, the new tech-
nology aims at producing products involved in the existing
production process, be it capital or intermediates. In or-
der to make something from which the system can benefit,
we introduce new technology (i.e. a tool and the skill to
use it) to produce something of which there is currently a
shortage, where shortage is defined as in the price mecha-
nism. Once one of the products in short supply is identified,
the input for the new tool t can be composed. More pre-
cisely, when the product in excess demand p is factorized
p = f q1

1 · f q2

2 · . . . · f qn
n for some n and q. ∈ N, it is clear

which factors are required in the input. A random list of
products i1, . . . , im that contain those factors is generated
such that the product of these inputs i = i1 · i2 · . . . · im will
be divisible by the sought after product p, thus i

p = g ∈ N.
There are then two possibilities: the tool t sets the produc-
tion of the required product p based on the new input i, or
the tool requires the different parts i1 · i2 · . . . · im and uses
these without product i first being assembled. g is consid-
ered garbage and ignored.
The entry of new technology is based on Bruckner et al.

(1989), who describe a general model to study evolutionary
processes. The model consists of a countable set of fields
F = {F1, F2, . . .} with, for each field Fi, a number Ni in-
dicating the number of elements in the field. The state of
the whole system is given by the set of occupancy numbers
{N1, N2, . . .}. Changes in occupancy numbers are discrete
and occur in the smallest steps possible; fields gain or lose
one element. The probabilities of these changes depend on
the current state of the system. Bruckner et al. show that
the Markov process of interactions between fields is capable
of generating a wide variety of evolutionary dynamics. In
particular, they write that this type of model is capable of
simulating the dynamics of evolutionary systems, including
the dynamics of technological evolution. A later paper ex-
periments with the parameters for the stochastic economic
substitution model and show that realistic substitution dy-
namics can be obtained (Bruckner et al., 1996).

Innovation by new agent: When new technology becomes
available, its establishment is affected by some of the ex-
isting technologies. Parameter Aij describes the inclina-
tion of technology j to establish technology i by means of
a new agent: W (Ni + 1, Nj|Ni = 0, Nj) = AijNj

Innovation by existing agent: When an agent expands its
skills, be it with a new technology or an existing tech-
nology, the agent innovates its production process. The
choice of additional technology is affected by the exist-
ing technologies. ParameterMij describes the inclination
of technology j to establish technology i by means of an
existing agent: W (Ni + 1, Nj|Nj) = MijNj
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Growth of existing technology by spontaneous new agent:
An increase in the number of agents using technology i
independent of the state of the system: W (Ni + 1) = φi

Growth of existing technology by new agent: Increase in
the number of agents using technology i due to self-
reproduction or sponsoring by technology j: W (Ni +

1, Nj|Ni, Nj) = A(0)

i Ni + A(1)

i NiNi + BijNiNj

Replacement of technology by existing agent: Agents
imitate the successful technologies of other agents, and
subsequently use these to replace less successful skills.
The parameters Aij represent a measure of success and
failure. Furthermore, the probability is influenced by
the current size of the the technology fields. The larger
the field, the more occurrences of the technology in
question, and the greater the probability of replacement:
W (Ni + 1, Nj − 1|Ni, Nj) = A(0)

ij Nj + A(1)

ij NiNj

Technologies that are not used for a specified length of
time are forgotten by the agent, and when all agents lack a
specific technology, this technology can be removed from
the model. The same applies to products that have become
obsolete. Unlike the random replacement of functionality
in Jain and Krishna (1999), here skills and products slowly
disappear.
The following figures illustrate the results of this process

in a typical run. At random times new commodities and/or
new production techniques are added to the technology ma-
trices, and subsequently probabilistic rules distribute new
and existing skills over the agents. The simulation begins
with a small economy such as was illustrated in the previous
section, and as time progresses the model constructs novel
functionality and elements, analogous to a constructive arti-
ficial chemistry. After a 1000 or so iterations the economy
consisted of 35 products and 71 production processes.
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Figure 4: Product concentrations of a selected number of
products averaged over a gliding window of length 10 to
smooth the curves. Only the first four digits of the product
appear in the legend.

Figure 4 illustrates the product concentrations of a se-
lected number of products. Some products are present at the
start of the simulations (110 and 104), other products appear

later. Product 6760 is a consumable that becomes a serious
competitor to the initial consumable, commodity 104. Later
it diminishes its importance as other consumables become
available. Product 57257200 is only temporarily successful
and disappears from the stage. Other new products seem, at
least for now, to be adopted more permanently.
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Figure 5: Bedau’s measures applied to the economic activ-
ity of the present model. The top graph displays the number
of active technologies (diversity D), the graph in the mid-
dle shows the activity of new technology “NA” expressed
in value of output at first application, and the bottom graph
displays the mean activity “MA” per active technology .

The innovations introduced to the system by the agents
are not without effect. This can be illustrated by a measure
developed in Bedau et al. (1997). That paper describes a
system to classify evolutionary dynamics based on the in-
crease of diversity and the effect the increased diversity has
on the average productivity of the system. This measure is
capable of distinguishing between a system with truly ben-
eficial adaptive behaviour and a system with merely an in-
crease in diversity. The first is characterized by an increase
in average productivity as diversity is non-decreasing, while
the latter system displays bounded diversity combined with
bounded average productivity. For the application of this
measure here, average productivity is defined as the total
value of output divided by the number of technologies re-
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quired to generate the output, and the first results suggest
that the artificial economy displays an increased diversity in
terms of technology used, while at the same time the aver-
age productivity increases. Therefore the system classifies
as one with unbounded evolutionary activity (see Figure 5).
We conclude with an illustration of the competition be-

tween technologies that produce a single commodity (Fig-
ure 6). It concerns a newly introduced commodity, and it is
quite successful as a whole row of innovations is triggered
by its introduction. 5 alternative production processes jump
the band wagon. As in the real economy market shares are
far from stable and the most efficient production technique
does not necessarily become dominant.
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Figure 6: The market share of different technologies to pro-
duce one single product (product 7741173440000 in this
case) coexist and compete for the market. The graph shows
the proportion of the total production of the commodity pro-
duced by each of the 6 production techniques. The numbers
on the right correspond to the column numbers in the tech-
nology matrices.

Conclusions and Perspectives
Though there are still a number of issues that need improv-
ing or further exploration, the framework developed in this
paper is one with many merits. The main virtue is that this
framework demonstrates that it is possible to treat the eco-
nomic system as a constructive dynamic system, in other
words, as a system undergoing continual structural evolu-
tion. The framework developed here is capable of dealing
with endogenous change, something that is very important
in our economy, but that until now has been essentially ig-
nored in research. The application of a constructive dynamic
system to the field of economics opens up new opportunities
in economics.
In addition, the application of the Bedaumeasure suggests

that the evolutionary economic dynamics generated by the
model is appropriately named evolutionary.
The framework is also very useful to complement existing

research in evolutionary economics. For example, descrip-
tive approaches on the entry and exit of new enterprises can
be assisted by an experiment that can indicate what param-
eters are responsible for the observed patterns. The model

can shed light on why market shares and market size can
fluctuate so wildly, and why in the production of one single
good there are a variety of technologies being applied.
The result is a broad, abstract framework applicable to the

study of evolving economic systems. It has the potential to
elucidate many aspects of our economy, from dispersal of
technology, to location strategies, to pricing, to the develop-
ment of higher level organisation.
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Abstract

In this paper we study the emergence of homeodynamics and
adaptation in a two-layer system of the Game of Life in which
the Game of Life in the first layer couples with another cellu-
lar automata system in the second layer. Homeodynamics is
defined here as a space-time dynamic that regulates the num-
ber of cells in state-1 in the Game of Life layer. A genetic
algorithm is used here to evolve the rules of the second layer
to control the pattern of the Game of Life. We discovered that
there are two antagonistic attractors that control the numbers
of cells in state-1 in the first layer. The homeodynamics sus-
tained by these attractors are compared with the homeostatic
dynamics observed in Daisy world.

Introduction
Living systems require a stable and sustainable structure on
top of unstable and highly chaotic open environments. The
maintenance of such a structure is called ”homeostasis”, as
named by Cannon (1932), and became one of the central
themes in Cybernetic studies(Wiener, 1948). Several mech-
anisms underlying homeostasis have been proposed and they
have become a guiding principle of our everyday technol-
ogy. For example, positive/negative feedback loops and af-
ferent/efferent copies are well studied and developed.
The study of homeostasis has revealed those mechanisms,

but they are often introduced as a controlling device and the
evolution of homeostasis itself has not been discussed se-
riously. People continue to study ecological homeostasis,
in particular after Lovelock (1972) proposed his Gaia hy-
pothesis. The Gaia hypothesis posits that the complex and
global network of living/nonliving systems we observe self-
organizes into homeostatic states. The Gaia hypothesis has
been theoretically examined byWatson and Lovelock (1983)
by developing the Daisy world model, a simple implementa-
tion of the Gaia theory. In Daisy world, temperature should
be sustained at a certain range independent of the environ-
mental temperature. Harvey (2004) calls the mechanism
underlying the Daisy world a ”rein control,” a controlling
mechanism which serves to pull the temperature toward the
viability zone.

What has been missing thus far in the study of Daisy
world is the self-organizing and dynamic nature of home-
ostasis. Ikegami and Suzuki (2008) studied a dynamic ver-
sion of Daisy world controlled by spatio-temporal chaos.
Because the homeostasis here is dynamically sustained, we
refer to this as homeodynamics. Moreover, Homeodynamics
doesn’t simply hold the average temperature constant, as in
a conventional Daisy world simulation, but instead aims to
keep the temperature variation around the average. Holding
variation brings adaptability into the Homeodynamic sys-
tem, as it can respond to novel environmental conditions.
This is the most significant characteristic of homeodynam-
ics, which we will also focus on in this study.

With respect to this adaptability of homeo-systems,
Ashby (1960) proposed an interesting design principle for
the brain and for life forms as a whole which was mainly
driven by homeostasis. He posited that the adaptive behavior
of life is only an outcome of homeostatic properties and pro-
posed a different type of homeostatic system called an ultra-
stable system. This new system has two feedback loops. The
primary feedback loop is driven by a mutual interaction be-
tween an organism’s complex sensory and motor channels
and the environment. Another feedback loop develops from
the interaction between viability constraints and the relevant
reacting parts via the essential variables that control the re-
acting parts. Usually, the second feedback loop is intended
to change the meta-parameters of the system. When param-
eter values are outside of the viability constraints, the second
feedback loop adjusts the essential parameters to let the sys-
tem move towards a more stable state. These characteristics
of the ultra-stable system share common features with our
homeodynamic systems. That is, two dynamics co-exist in
the same system with different time scales and they coopera-
tively control the homeostasis by keeping sufficient fluctua-
tions in the system. In other words, we need both stable and
unstable dynamics to develop homeostasis and adaptation at
the same time.

In this paper, we study the notion of homeodynamics and
adaptation by using Conway’s Game of Life. A major draw-
back of most homeostatic models, including ours, is that
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many systems can be too stable in the sense that they can sur-
vive without paying significant costs ( or in the other word
a system never dies). Therefore our challenge is to see how
homeostasis can emerge even in a very unstable world, as
in the Game of Life. A second objective of the paper is to
see how robust homeostatic behavior is balanced with pur-
poseful behavior such as memorizing the initial states. Ro-
bust homeostasis (keeping the system’s state density con-
stant) can be achieved by making a system insensitive to the
initial Life density. But memorizing the initial state density
means that a system should become sensitive to the initial
Life patterns. These two opposite properties must be bal-
anced within the same system.
In the next section we describe how to use the Game of

Life to study homeostasis. In §3, we describe and analyze
the results, and in §4, we discuss the observed characteris-
tics of homeodynamics and adaptation in the Game of Life
and also attempt to apply these results to the more general
notions of homeodynamics.

The Model
The basic idea of the model is inspired from work by Taylor
(2004). In his model, the system under examination con-
sists of two layers of cellular automata: one is the Game of
Life, and the other layer serves to control the Game of Life
pattern. The dominating cell layer does not have to be gov-
erned by the rules of Life, but instead can be driven by a
different rule set. Taylor evolved the rules of this layer by
using an evolutionary algorithm to control a virtual sensori-
motor flow arranged on the first layer. For example, when an
input bit on the first layer is state 1, the output (target) area
should have many state-1 cells. This contingency between
input and output bits is mediated by the intermediate area,
in which some of the bits are governed by the rules in the
second layer.
The purpose of Tayler’s study is to examine an unsepa-

rated body-environment boundary and to see the emergence
of the boundary itself. We will also investigate this point,
but here we will use his approach to study homeostasis. Our
setup is described below.
The model consists of a 2D cellular automata running the

Game of Life. Extra rules encoded in the genome can over-
ride Life states in a certain part of the CA space. A target
area is also designated, which is significant for the central
tasks of the simulation.
In Taylor’s work there are two kinds of rules for genes:

conditional and temporal genes. The conditional gene is ac-
tivated when a certain requirement of neighboring cells is
satisfied. The temporal gene is activated when a certain time
step passes. In both cases, the genes have a coordinate spec-
ifying the target cell.
Here we used only the conditional rule. We modified the

rule to become a so-called “totalistic rule” in which the gene
only takes into account the number of neighboring state-1

4bits
yfor state 1 for state 0

9bits 9bits 4bits

totalistic rule cordinate
x

26bits
gene

.
 
.
 
.

genome
30 genes

Figure 1: A gene component consists of a 26-bit binary
string, 18 bits of which encode the totalistic CA rules. The
remaining bits encode the coordinate of the site where the
rule activates. A group of these genes is called the genome.
The simulation is run using Game of Life dynamics and one
genome.

cells, and not any specific neighboring patterns. Figure 1
illustrates the gene components we used. Note that in our
model, all the genes are activated every time step, due to
the construction of the genome and the use of this totalistic
rule. The gene consists of a 26-bit binary string, 18 bits of
which represent a totalistic rule. As is usually the case, the
2D CA rule is specified by the pair of numbers Bx/Sy, which
specifies when to change the cell’s state to 1, whether its own
state is 1 or 0, respectively. For example, the Game of Life
is represented by B3/S23. We use 9 bits to represent those
two parameters.
The remaining 8 bits encode the spatial position of the

site controlled by the second layer (4 bits for each x and y
coordinate). The length of each gene is fixed and each gene
specifies a particular single site in the 16×16 cell space.
The total cell space is given as a square of the size 40×40

and the intermediate area controlled by those genes is given
as a square of the size 16×16. The target area is defined as
a square space and all three squares share a common center.
The size of the target area is 32×32 bits and includes the
intermediate area (See Fig. 2). The boundary of the space is
always set to state-0.

The target behavior of the model
While evolving the rule set of the intermediate cell space we
will study homeostatic behaviors observed in the Game of
Life. Instead of a temperature value as in Daisy world, we
use the density of cells in the state-1 as the target variable to
keep constant.
In Daisy world, the system consists of two types of flow-

ers, black and white daisies, with their local temperature
values. The black daisies increase the temperature and
the white daisies decrease the temperature. By setting the
growth rate of these flowers according to the local tempera-
ture, both flowers show positive feedback effects in their re-
lationship to changing local temperatures. While the black
daisies increase both the temperature and their population,
the white daisies decrease the temperature and increase their
population. Loosely linked by the the two local tempera-
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Figure 2: The space used for the simulation. Filled squares
represent the area governed by Game of Life rules. Lined
squares represent the area which the genome specifies. The
inner square shows the area in which genes override the Life
states, and the outer square depicts the target area. The dy-
namics is only evaluated in this target area.

ture, the global temperature is sustained constantly while
both population of daisies change according to environmen-
tal temperature changes.
This result shows that the homeostatic behavior does not

result from insensitivity to the environmental stimulus, but
is actively achieved by an adaptive coupling of components
which are sensitive to the environment.
In order to observe the underlying dynamics of homeosta-

sis in the Game of Life, we constructed three different tasks.

task A Sustain the same density of the target area regardless
of the initial Life pattern density.

task B Control the density of the target area, making it pro-
portional to the given initial Life pattern density.

task C Control the density of the target area, making it in-
versely proportional to the given initial Life pattern den-
sity.

The first task is designed to directly aid the development
of a homeostatic behavior in the Game of Life patterns. We
will see how this behavior is achieved in the Game of Life
space. The second and third tasks are intended to facilitate
the development of sensitivity to the given conditions. These
target behaviors in task B and C are not directly connected
to homeostatic behavior, but might be connected to the prop-
erty of adaptability in homeostasis.

GA
In order to observe those behaviors, the CA rules encoded in
the genes are evolved by a simple genetic algorithm (GA).
We prepared 30 genomes in a population, each of which con-
sists of 30 genes, which specify each spatial location and

Parameter Values
population 30
the mutation rate 0.05
the crossover rate 0.01
the mutation rate for genome length 0.01
the number of elite 5
initial density(higher) 0.5
initial density(lower) 0.0
evaluated duration(time steps) 500

Table 1: The parameters used in our simulation

the rule content of the 30 CA rules in the intermediate area.
Mutation occurs at every site of the gene at a certain rate per
bit, which modifies the spatial locations and the rule content.
The number of genes also changes during this process, so the
number of CA sites in the intermediate area also varies. For
the selection algorithm, we used a roulette selection proce-
dure and chose an elite strategy.
The GA goes through both an evolving phase and a testing

phase. In the evolving phase, 30 genomes are evolved as a
unit against two different initial states with lower and higher
density patterns. Here the lower density is set to 0 and the
higher density is set to 0.5.
Fitness of the genome is calculated by finding how the

average density of state-1 within the target area compares
to the specified target densities. The target densities in the
three tasks are set as follows.

0.5 (for task A)

dI (for task B)

1 − dI (for task C)

Here, dI is the intial density of state-1 cells, set as either 0
or 0.5.
Note that we only use a fixed random initial pattern for

all evolutionary processes. Once the system evolves, it de-
velops a sufficient generalization capability; the system can
do well with new initial patterns. However, a full general-
ization capability is difficult to obtain. We will revisit this
point later. Table 1 shows the parameter values used in this
experiment.

Result
Evolved Dynamics
In each of three tasks, the genomes in our population were
evolved for higher fitness. Figure 3 show the temporal
changes of the state-1 density of the fittest genome in each
task.
Two lines on the graphs are shown, one for the low initial

density case ( null pattern ) and another for the high den-
sity case (0.5). These density values were used in the GA
dynamics.
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Figure 3: Temporal changes of the state-1 density of the
fittest genome in each task. The initial Life patterns used
here are the same as those used during the GA procedure.
When begun with both low and high density initial states,
the state-1 densities are maintained at around 0.2(task A).
With the higher-density initial state, the state-1 density is
kept around 0.2, but with the lower-density initial state, the
state-1 density decreases to 0(task B). The result observed
here is the inverse of task B. The higher-density initial state
shows a state-1 density which drops almost to 0, but the
lower-density initial state causes a growth in state-1 density
until the density reaches approximately 0.15(task C).
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Figure 4: Histograms of the number of state-1 outputs out of
the overall outputs for the fittest genomes in each of the three
tasks. Task A and B genomes have a biased distribution to-
wards larger values, while task C is biased in the opposite
direction.

In task A, the density almost always reaches the same
value of approximately 0.2 regardless of the initial density.
We can see here that this attracting state is maintained by
the generators of the Game of Life pattern, which will be
discussed later. Cloud-like patterns in the Life space are
generated by the evolved CAs.
In task B, the initial low-density state almost always cre-

ates a sparse pattern in the target area. Using the higher ini-
tial density state, the average resultant density state tends to
fluctuate around a value of 0.2. The genomes generally in-
crease the density if the target area is surrounded by a high-
density pattern; the density tends to decrease in the sparse
case. A generator of this type creates cloud-like patterns
in the higher-density environment, but suppresses cloud-like
patterns in the lower-density environment.
In task C, the densities are altered to be inversely propor-

tional to the initial states. When the initial state has a low
density, the evolved CA creates a high density state. In con-
trast, when presented with the high-density initial state, the
density is decreased until all Life patterns are diminished.
In the higher-density initial state, we expect an increase in
the resultant density. The evolved CAs have to inhibit the
spontaneous generator to decrease the state-1 density. Thus,
the genome in task C behaves like an activator in the initial
low-density state, but behaves like an inhibitor in the initial
high-density state.

CA rules of the second layer
Each of the 30 sites in the second layer has a different CA
ruleset. One way to characterize them is to compute the
number of state-1 outputs as a fraction of overall outputs
(e.g. the Game of Life has 3/16). Figure 4 shows a his-
togram comparison of these state-1 outputs for the evolved
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Figure 5: The average densities observed during 500 time
steps when starting from different initial densities. The
evolved genomes in task A, B, C and runs in which only
Game of Life rules exist are compared. Each value is aver-
aged over 100 different initial Life patterns.

genome sets.
Before evolving genome sets, the output is normally dis-

tributed around 8. The rulesets of tasks A and B are biased
toward higher state-1 outputs, but those of task A are more
biased towards larger values than those of task B. In task C,
the rule sets are biased in the opposite direction.
In task A, the genome generates a cloud-like pattern re-

gardless of the initial pattern. The generator is a strong ac-
tivator of the state-1 LIFE pattern. Task B (proportion) also
generates a cloud-like pattern, but only in the higher-density
initial condition. The decrease of the density in the lower
initial pattern may require a weaker activator in this task than
that in task A. In task C (inverse proportion), the genome has
to inhibit the cloud-like patterns in the higher-density initial
state and activate the cloud patterns in the lower-density ini-
tial states.
The genomes in task B and C can be compared with the

black and white daisies of Daisy world. The genome in task
B has a tendency to output state-1, which can be regarded
as similar to the black daisy which increases the local tem-
perature. Likewise, the genome in task C has a tendency
to suppress state-1, which can be regarded as similar to the
white daisy which decreases the local temperature. How-
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Figure 6: Histogram of the average densities observed from
the task A genome in 100 samples with different initial Life
patterns. Here, initial densities of 0.01, 0.05, and 0.10 are
used.
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Figure 7: Histogram of the average densities observed from
the task B genome in 100 samples with different initial Life
patterns. Here, initial densities of 0.01, 0.05, and 0.10 are
used.

ever, it should be noted that the behavior of the evolved CA
rule is also affected by their spatial configuration. Thus, the
state-1 output levels do not fully reflect howmany cloud-like
patterns these evolved CA rules can make by themselves.

Generalization
While the genomes under discussion here have been trained
with only two fixed initial Life patterns, the final genome
acquired a generalization capability to some extent. After
training the genome set with these two different initial den-
sities of 0.1 and 0.5, we have tested the evolved genome
against other initial densities. Figure 5 shows the average
density after 500 GA time steps for the given initial den-
sity. Each density is averaged over 100 different initial Life
patterns of a given state-1 density. For a comparison, we
also show the average density obtained with only the origi-
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Figure 8: Histogram of the average densities observed from
the task C genome in 100 samples with different initial Life
patterns. Here, initial densities of 0.01, 0.05, and 0.10 are
used.

nal Life dynamics, without any second layer.
The genome evolved by task A achieves almost identical

values of high average density against a wide range of initial
densities from 0.0 to 1.0. Compared with the original Game
of Life, this evolved genome sustains a higher density, par-
ticularly around the lowest and highest initial state. This is
achieved by a state-1 generator which increases the state-1
density regardless of the initial states. However, similar be-
havior can be seen when one adds noise to the Game of Life.
So the genome does not regulate state-1 density, but rather
works as a “random generator”.
We are not certain how many attractors this two-layered

system has when starting from identical initial density states.
Fig. 6 shows that there are two peaks in the histogram which
correspond to different attractors in the system. Regardless
of the final attractor, the genome evolved via task A has sim-
ilar final density states, i.e. 0.15 -0.19.
Figure 9 shows snapshots of the fittest genome found in

task A with the two different initial densities. In both cases,
the Game of Life patterns become similar cloud-like shapes
after time passes.
Tasks B and C also inherit the tendency to increase and

decrease the state-1 density from the condition in which evo-
lution occurs.
When the initial density is small(< 0.1), the genome

evolved via task B shows a linear dependence on that ini-
tial density, while the genome evolved via task C shows
the inverse dependency. The genome from task B develops
a state-1 generator proportional to the increase in the ini-
tial Life-pattern density, but it saturates in higher densities.
Also, the evolved genome from task C has the capability to
suppress the density of the initial Life pattern if it is high.
However, such suppression is competing with the original
Game of Life and thus is only effective for lower initial den-
sity cases.

Figure 9: Snapshots of the Life dynamics of the fittest
genome in task A. The top columns show the results when
the initial density is zero, whereas in the bottom column the
initial density is 0.1. In both cases, clouded Life patterns
spread out from the genome area.

Concerning the histograms in Fig. 7, we notice that there
are two attractors induced by the second layer: one associ-
ated with very low-density states and the other associated
with states around a density of 0.15. In fig. 8, there are also
two attractors created by the genome activity: one near to
a density value of 0 and the other near to a density value
around 0.1.
How are these attractors chosen from the initial densities?

Figure 10 and 11 are snapshots of genomes evolved from
tasks B and C in the two initial density conditions. They re-
veal the appearance of the two attractors due to a subtle dif-
ference found in the starting configuration. For example, in
Fig. 10, the two snapshots at t=1 have only a few bits which
differ from each other, yet the higher-density initial pattern
only makes state-1 clouds, thus creating a high-density re-
sultant pattern.
This occurs because in the task B genome, the state-1 gen-

erator is only activated by few state-1 cells initially located
in the space. Without these cells, the genome does not ac-
tivate this generator and almost all the cells remain at state-
0. Higher initial densities increase the probability that these
cells become state-1. So the resultant densities are propor-
tional to the initial density.
Similarly, the task C genome has a state-1 generator

which is only activated when initial density is low. How-
ever, when only a few specific cells are state-1, the gener-
ator stops creating cloud-like patterns. Higher initial den-
sities increase the probability of this event. Consequently,
the resultant densities are inversely proportional to the ini-
tial density. When the initial density is higher than 0.1, the
genome makes another spontaneous generator derived from
the Game of Life, resulting in higher densities in a similar
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Figure 10: Snapshots of the Life dynamics of the fittest
genome in task B. The top columns show the results when
the initial density is zero, whereas in the bottom column the
initial density is 0.04. In the zero-density condition, the Life
pattern stays almost at zero activity. However, in the higher-
density condition, a clouded pattern of state-1 cells emerges
after t=10.

manner to task B.

Discussion
In this paper, we studied homeostasis and adaptability with
respect to cell states in the Game of Life as opposed to tem-
perature as in Daisy world. There are some lessons to be
learned here, both about homeostasis and the effect of noise.
The CA rule evolved in task A has the capability to gen-

erate a state-1 density regardless of the initial Life density.
The behavior of this rule can be compared to a “random gen-
erator” which randomly updates the cell states at a certain
probability. In task A, the evolved CA ruleset mimics a ran-
dom generator using a deterministic rule. In tasks B and C
there also have evolved generators of state-1 cells, but they
are more sensitive to the initial state density.
Since we do not have any external noise in this simulation,

it can be compared to deterministic chaos in continuous-
state dynamical systems. Comparing the upper and lower
figures in Fig. 10, we notice that almost identical initial
Life patterns lead to different attractors. Such sensitivity to
minute differences is also reminiscent of chaotic dynamics.
Now we will discuss the nature of those two attractors in
greater detail.
The initial Life states are evolved into either lower-density

or higher-density states. Those two types of attractors are
controlled by the evolved CA rules. We assume that the
evolved CA ruleset may have both activators and inhibitors.
Some CA rules tend to generate more state-1 Life patterns
than the others and increase the state-1 density as the re-
sult, which we call ”activator” rulesets. In contrast, some

Figure 11: Snapshots of the Life dynamics of the fittest
genome in task C. The top columns show the results when
the initial density is zero, whereas in the bottom column
the initial density is 0.1. In the zero-density condition, a
clouded Life pattern emerges, but in the 0.1 condition, the
initial state-1 cells eventually disappear.

Daisy World Our model
temperature state-1 density
black daisy activator CA
white daisy inhibitor CA
growth rate as a function generators as a function
of the temperature of LIFE pattern

Table 2: A comparative chart between Daisy world model
and the present LIFE game model

CA rules show the opposite behavior and lower the state-1
density, which we call ”inhibitor” rulesets.
These two opposite behaviors remind us of the black and

white daisies in Daisy World. Both these rulesets and those
daisies can cooperatively make homeostatic states. Because
black and white daisies have opposite responses to the sun-
light, they can self-regulate the temperature by tuning their
population size. If there are more black daisies, the temper-
ature goes up as the average albedo gets lower, whereas if
there are more white daisies, the temperature goes down due
to the higher albedo value.
This simple scenario is also realized in the present Life

game system. We simply take the activator rulesets as black
daisies and the inhibitor rulesets as white daisies. The cor-
respondence between Daisy world and this Game of Life
system is shown in Table 2.
In Daisy world, the growth rates of daisies are determined

by the local temperatures. The concept of temperature is
not implemented in our system explicitly. Instead, local Life
patterns determine the behavior of the CA rule sets. Note
that the equivalent of Daisy world’s local temperature in
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our system is not just a one-dimensional variable which ex-
plicitly specifies the growth rate of state-1, but is instead
a spatio-temporal pattern which drives responses from the
evolved CA rulesets. This dynamical property of the Daisy
World has also been discussed in our previous model of the
mobile daisy agent(Ikegami and Suzuki, 2008).
Ideally, task A should be achieved by coupling the

evolved CA rules in task B and C, however, we have not
completed that task in this paper. Detailed analysis of that
work will be reported in a follow-up to this research.
Instead of using chaos-like attractor in this study, it may

be interesting to use unique Game of Life creatures such
as oscillators, breeders and guns to generate homeostasis in
more complex ways. We might then expect to see alternative
homeodynamic mechanisms which are very different from
those seen in Daisy world.
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Abstract

The Baldwin effect is known as a possible scenario of the ge-
netic acquisition process of a learned trait without the Lamar-
ckian mechanism. However, it is still controversial how learn-
ing can facilitate evolution in dynamically changing environ-
ments caused by internal factors. Our purpose is to clarify
whether and how leaning can facilitate evolution in dynamic
environments which arise from communicative interactions
among individuals. We constructed a simple computational
model for the evolution of communication ability and its phe-
notypic plasticity. In the model, the levels of adaptive com-
munication, which correspond to the expected fitness value
when the communication results in success, of signalling and
receiving processes are determined by different sets of traits
under the assumption of the correlation between their fitness
and the effects of epistatic interactions among traits. A com-
munication is successful only when the levels of the signaller
and the receiver are the same, and the individuals try to im-
prove their communication levels through the learning pro-
cess in which the values of plastic traits can be modified from
their genetically determined values. The evolutionary exper-
iments clearly showed that the Baldwin effect repeatedly oc-
curred and facilitated the adaptive evolution of communica-
tion in this type of dynamic environments.

Introduction
The Baldwin effect (Baldwin, 1896, 1902) and the role of
phenotypic plasticity in evolution have been drawing much
attention in evolutionary studies (West-Eberhard, 2003;
Crispo, 2007). The Baldwin effect is typically interpreted as
a two-step evolution of the genetic acquisition of a learned
trait without the Lamarckian mechanism: individuals that
have successfully adapted their own trait to the environment
through their lifetime learning processes occupy the popula-
tion (1st step), and then the evolutionary path finds the innate
trait that can replace the learned trait (2nd step) because of
the cost of learning (Turney et al., 1996; Maynard-Smith,
1987). The second step is also known as genetic assimila-
tion (Waddington, 1953), or a kind of genetic accommoda-
tion (West-Eberhard, 2003; Crispo, 2007).
Since the study by Hinton and Nowlan (Hinton and

Nowlan, 1987), the computational approaches on this effect

have contributed to understanding of how learning can af-
fect evolution. An important finding of these studies is that
the balances between the benefit and cost of learning can
smooth the fitness landscape, and as a result, can either facil-
itate or slow down the adaptive evolution. Especially, it has
been reported that there can be situations in which learn-
ing is not always beneficial for genetic evolution (Mayley,
1997; Paenke et al., 2006). For example, if there is no cost
for learning an adaptive trait, there is no difference in the
fitness between the learned one and the genetically acquired
one. In this case, the learning behavior can retard the genetic
evolution of such a trait because the selection pressure can-
not distinguish between these traits. Thus, it is an important
issue how learning can become necessary or unnecessary for
adaptive genetic evolution depending on various states of a
population and its environment.

Recently, we discussed whether and how learning can fa-
cilitate the adaptive evolution of population on rugged fit-
ness landscapes (Suzuki and Arita, 2007b). We constructed
a simple fitness function that represents a multi-modal fit-
ness landscape as typically illustrated in Fig. 1, in which
there is a correlation between the adaptivity of individual
and the effects of epistatic interactions among its traits. The
evolutionary experiments of the individual traits and their
phenotypic plasticity on this landscape clearly showed that
the Baldwin effect repeatedly occurred through the evolu-
tionary process of the population, and facilitated its adaptive
evolution as a whole.

Also, the effects of learning on evolution have been dis-
cussed in the context of dynamically changing fitness land-
scapes. In such situations, we can expect that more complex
scenarios of interactions between evolution and learning
emerge because the balances between the benefit and cost
of learning also change dynamically. While several studies
focused on the effects of changes in the environmental con-
ditions caused by the external factors (Sasaki and Tokoro,
1997; Ancel, 1999), we can also assume more complex sit-
uations in which the fitness landscapes can be changed by
internal factors (Suzuki and Arita, 2004). The evolution and
emergence of communication is one of the typical cases of

Artificial Life XI 2008  608 



fitness

average phenotypic value

Figure 1: A rough image of the fitness landscape. The
horizontal axis corresponds to the average phenotypic value
among all phenotypes. Each peak (in gray) corresponds to
the fitness which can be acquired when each trait group be-
comes adaptive. The black line is the actual fitness. As the
fitness of the population increases, it tends to need to cross
deeper valleys to reach the next optimum.

this situation because the fitness of the individuals are de-
termined by the benefit of the successful communications
among them. This topic has been discussed in ALife stud-
ies (Noble et al., 2001) from various viewpoints such as
the emergence of lexicons through language games among
agents (Steels, 1996), the adaptivity and diversity of the mat-
ing signals (Werner and Todd, 1997), the emergence of com-
munication in embodied agents (Nolfi, 2005), the complex-
ity of the birdsongs grammar (Sasahara and Ikegami, 2007)
and so on. Also, several studies discussed the effects of
learning on evolution in the context of language evolution
(Arita and Koyama, 1998; Kirby, 2002; Munroe and Can-
gelosi, 2002; Yamauchi, 2007; Watanabe et al., 2008). For
example, Watanabe et al. recently constructed a computa-
tional model into which both cultural learning of language
and genetic evolution of language ability are incorporated
(Watanabe et al., 2008). They found that the factors specific
to language evolution (such as adaptive shift in language or
overlearning to a variety of parents) are important for the
occurrence of the second step in the Baldwin effect.
Among various roles and aspects of communication these

previous studies have focused on, the frequency dependence
of the individual fitness is one of the common key mecha-
nisms in the evolution of communication. Here, we assume
a communication as a process in which one individual gen-
erates and sends a kind of signals, then another individual
receives and interprets that signal, which can potentially in-
crease the fitness of both individuals. For example, if the
individuals can correctly interpret the signals generated by
conspecific ones, there is a positive frequency dependent se-
lection on them in that the fitness of such individuals in-
creases as they become more common. This selection pres-
sure facilitates the increase in the number of them in the pop-
ulation, and thus increases the communicative coherence in

the population. Nowak discussed the evolution of language
(grammar) by using a simple mathematical model in which
the language of each individual can genetically or cultur-
ally evolve depending on the success in communication with
other individuals (Nowak et al., 2001). The results showed
that if the accuracy of the language acquisition through ge-
netic or cultural evolution exceeds a certain threshold, the
dominant language emerges as a result of positive frequency
dependent selection on that language. However, it is ex-
pected that once the population is occupied by such indi-
viduals, new or different individuals are difficult to express
their adaptivity and invade into the population even when
their communication is more adaptive than the existing one
because of the strong positive selection pressure on the ex-
isting individuals.
Furthermore, we focus on the difference in the process-

ing mechanisms between signalling and receiving behaviors,
which has often been overlooked in previous studies. The
generation and interpretation of a signal are different ecolog-
ical and cognitive behaviors and the individuals use the dif-
ferent set of traits for generating and sending a signal from
that for receiving and interpreting it in general. In addition to
the fact that animals have different phonatory and auditory
organs, it is also known that the generation and interpreta-
tion ability of human language depend on different parts of
the human brain such as Broca’s and Wernicke’s areas in the
cortex although there are strong interactions between them
(Deacon, 1997). It means that these mechanisms can evolve
separately at least in part, and thus the individuals are not
always able to correctly interpret the signal generated by the
individual itself or conspecific ones. The frequency depen-
dent selection works negatively on such communicatively
incoherent individuals. However, how learning can affect
evolution under the assumption of these dynamic factors has
not been clearly discussed so far.
Our purpose is to clarify how learning can facilitate evolu-

tion in dynamically changing environments caused by inter-
nal factors. For this purpose, we constructed a simple com-
putational model for the evolution of communication ability
and its phenotypic plasticity by using the fitness function
adopted in (Suzuki and Arita, 2007b). In the model, the lev-
els of adaptive communication, which is the expected fitness
value when the communication results in success, of signal-
ing and receiving processes are determined by different sets
of traits under the assumption of the correlation between
their fitness and the effects of epistatic interactions among
traits. The communication is successful only when the com-
munication levels of the signaller and the receiver are the
same, and the individuals try to improve their communica-
tion levels through the learning process in which the plastic
traits can be modified from their genetically determined val-
ues. The evolutionary experiments clearly showed that the
Baldwin effect repeatedly occurred and facilitated the adap-
tive evolution in this kind of dynamic environments.
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Figure 2: Example of genetic information and communica-
tion (M=5). The underlined values in t are plastic traits.

Model
The level of adaptive communication
There are N individuals in a population and each individ-
ual has 2M traits ti (i=0, · · ·, 2M -1) as shown in Fig. 2.
Each gene gi (i=0, · · ·, 2M -1) in a 2M -length chromosome
GI represents the initial value of the corresponding trait ti
which consists of an integer value within the range [1,M ].
Also, each individual has another 2M -length chromosome
GP which decides whether the corresponding trait is plastic
(“1”) or not (“0”). Each trait ti whose corresponding bit pi

in GP equals to “1” can be changed through the communi-
cation process.
Among 2M traits, the former part ofM traits determines

the cognitive ability for generating and sending signals to
others, and the latter part of M traits determines the cogni-
tive ability for receiving and interpreting signals from oth-
ers. Thus, this model can be regarded as a coevolutionary
model of traits for sending and receiving signals. Here, we
define the individual’s level of adaptive communication of
signalling (receiving) a signal Ls (Lr) as follows:

Ls(Lr) = arg max(f(n)), (1)

f(n) =
{

n if num(n) ≥ n,
0 otherwise, (2)

where num(n) is the number of traits of which pheno-
typic value is n among the former (latter) half of M traits.
arg max(f(n)) is the value of n which maximizes the func-
tion f(n). This function is basically similar to the one
adopted in (Suzuki and Arita, 2007b), and typically de-
scribes the following situation: The corresponding M traits
of the individual are divided into several groups each in
which the phenotypic values are identical. The trait group
of n expresses its ability for sending (receiving) the signal
of the level n if its group size (num(n)) is greater than or
equals to n. The actual level of adaptive communication
is defined as the highest value among adaptive trait groups.
Fig. 2 shows an example of the levels of adaptive commu-
nication. Eq. (1) and (2) show that the higher the level of
a trait group is, the larger its minimum size that is needed

Table 1: Example of the set of pairs (N=8). Each number
represents the serial number of the individual.

Signaller 2 1 7 4 6 3 5 8
Receiver 8 7 3 1 2 5 6 4

for its ability to express becomes. The increase in the min-
imum size means that such a group becomes difficult to be
acquired because it needs interactions with larger number of
phenotypes. Thus, there is a positive correlation between the
level of adaptive communication and the effects of epistatic
interactions.

Communication and lifetime learning
In each generation, the N pairs of a signaller and a receiver
are randomly arranged under the condition that each indi-
vidual becomes a signaller once and also becomes a receiver
once as shown in Table 1. The communication is successful
only when the communication level of the signaller (Ls) and
the receiver (Lr) are the same. Both individuals obtain the
following fitness value:

fitness =
{

L if Lr = Ls(= L),
0 otherwise, (3)

where L is the shared level between the signaller and the
receiver. Fig. 2 shows an example image of success in com-
munication. The individuals obtain the fitness value 2 be-
cause both communication levels of signaller and receiver
are 2.
For each pair, the C + 1 steps of a learning and a com-

munication are conducted. In the initial step, the fitness is
evaluated by using the initial communication levels of the
signaller and the receiver, which are determined by the ini-
tial phenotypic values gi. Then, during the C steps, both
individuals try to communicate by using their correspond-
ing traits ti all of which phenotypic values are determined
by the following equation:

ti =
{

gi + rand() if pi = 1,
gi otherwise, (4)

where rand() is the function that returns a randomly se-
lected value from {-1, 0, 1}. Note that, if a generated phe-
notypic value exceeds its domain, another randomly selected
value is added to the initial value. This equation shows that
the values of plastic traits can slightly deviate from their ge-
netically specified values at each step.
The actual fitness of the individual at each step c (c =

1, · · · , C + 1) is defined as the highest value among all c fit-
ness values which are previously measured during the com-
munications in each pair. It means that, in each step, the
pairs first try to communicate by using the sets of generated
traits, and then adopt the most adaptive trait sets so far.
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Figure 3: Evolutionary dynamics without learning (C=0). (a) Average lifetime (innate) fitness. (b) Lifetime (innate) fitness of
the best individual. (c) Potential fitness of the best individual.

Evolution
This learning and communication process of C + 1 steps is
conducted in all pairs. The lifetime fitness of each individ-
ual, which is used for reproductive process, is defined as the
average among the fitness values in its all participating steps.
Also, so as to measure the innate adaptivity of each individ-
ual, we pick up the (genetically determined) fitness values at
the initial step in its all participating processes, and defined
the average among them as the innate fitness.
The offsprings in the next generation are selected by the

“roulette wheel selection” (in which the probability that an
individual will be chosen as an offspring is proportional to
its lifetime fitness) from the current population. Then, every
gene of all offsprings is mutated with a probability pmi for
GI and pmp for GP respectively. A mutation in GI adds a
randomly selected value from {-1, 1} to the current value.
If a generated value exceeds its domain, another mutation is
operated on the original value again. A mutation inGP flips
the current binary value.

Results
We conducted evolutionary experiments using the follow-
ing parameters: N=200,M=10, pmi=0.002 and pmp=0.005.
The initial population was generated on condition that ini-
tial values in GI were 1 and the genetic values in GP were

randomly decided. We adopted this initial condition so as
to observe the adaptive evolution from the state in which the
individuals have established a successful communication but
their level is the lowest.

Experiments without learning
First, we conducted experiments without learning process
(C=0). Fig. 3 (a) shows a typical example of the evolution
of the lifetime fitness over 4000 generations. The horizontal
axis represents the generation, and the line shows the av-
erage lifetime fitness at each generation. In this case, the
lifetime fitness is the same as the innate fitness. We see that
the average lifetime fitness did not increase from the initial
value 1.0, thus the population was never able to improve its
shared communication level.
We also depicted the lifetime fitness of the best individual

(who has the best lifetime fitness among individuals in each
generation) in Fig. 3 (b), and its potential fitness in Fig. 3
(c). The potential fitness is the expected value of the fitness
when the individual tries to communicate with the focal in-
dividual itself. In Fig. 3 (b), we see that the lifetime fitness
was basically 1.0 but often increased to 1.5. It means that
there appeared several adaptive individuals who succeeded
in establishing higher communication level of 2 once during
their lifetime, but they could not invade into the population.
There are supposed to be two factors for this phenomenon.

Artificial Life XI 2008  611 



 0

 1

 2

 3

 4

 5

 0  500  1000  1500  2000  2500  3000  3500  4000

generation

(a)

 0

 1

 2

 3

 4

 5

 0  500  1000  1500  2000  2500  3000  3500  4000

generation

(b)

 0

 1

 2

 3

 4

 5

 0  500  1000  1500  2000  2500  3000  3500  4000

generation

(c)

Figure 4: Evolutionary dynamics with learning (C=20). (a) Average lifetime (upper) and innate (lower) fitness. (b) Lifetime
(upper) and innate (lower) fitness of the best individual. (c) Potential fitness of the best individual.

The first is the strong positive frequency dependent selection
on majority individuals. The appeared individuals mostly
fail in communication and disappear at the next generation
because they rarely have another chance to meet a similar
partner again because they are minority. The second is the
negative selection pressure on them caused by the incoher-
ence of their communication levels between signalling and
receiving processes. As we see in Fig. 3 (c), their potential
fitness was 0. It means that the increase in their proportion
rather decreases their own fitness. In addition, we also ob-
serve that both best lifetime and potential fitness sometimes
reached 2; but such individuals also failed to invade. This is
supposed to be due to the fact that the effect of the first factor
was quite strong even when the second factor was resolved
by chance.
We can say that the population is never be able to im-

prove its shared communication level due to these strong
frequency dependent selection pressures if the individuals
do not learn.

Experiments with learning
Next, we conducted experiments with learning. Figure 4
shows the typical transitions of the lifetime, innate and po-
tential fitness in case of C=20.
Fig. 4 (a) clearly shows that the average lifetime fitness

gradually increased to 4.0. How could the population suc-

cessfully increase its shared level of adaptive communica-
tion despite the fact that the population was never able to
increase in the case without learning? This adaptive evo-
lution was due to the repeated occurrences of the Baldwin
effect. In Fig. 4 (a), we see the several transitions of the
average fitness through which the lifetime fitness increased
while the innate fitness decreased, and then the innate fitness
subsequently caught up with the lifetime fitness. Each tran-
sition can be regarded as a single occurrence of the Baldwin
effect.
Here, take the evolution of the population from around

1800th to 2700th generation for example. Around the
1800th generation, both the average lifetime and innate fit-
ness is almost 3.0; all individuals innately established the
adaptive communication level of 3. From around 1900th to
2500th generation, the lifetime fitness slowly increased to
about 3.5, and the innate fitness gradually decreased. This
phenomenon can roughly be regarded as the first step of the
Baldwin effect in that the adaptive property of the whole
population became dependent on learning process.
The transitions of the lifetime, innate and potential fit-

ness of the best individual in Fig. 4 (b) and (c) give us
more detailed information about the evolutionary dynamics
of the population during this period. From the 1900th gener-
ation, the best lifetime fitness increased to almost 4.0 while
the best innate fitness basically remained 3.0 but sometimes
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fluctuated. It shows that these best individuals could im-
prove their communication level through learning without
discarding successful communications with the majority in-
dividuals. It is because that they start to communicate with
the level 3 at the initial step, which is coherent with the com-
munication level of the majority individuals, and then try
to establish higher level of adaptive communication through
learning depending on the level of the partner. Thus, their
fitness are basically larger than those of majority individu-
als 3.0. This benefit of learning enabled these individuals to
gradually invade into the population. This can be regarded
as the typical first step of the Baldwin effect in that the in-
dividuals which could obtain higher level of communication
through learning process occupied the population.
Furthermore, if we look at the fluctuation of the best in-

nate fitness in detail, we see that it gradually tended to in-
crease to 3.5 especially after the 2150th generation. This
means that as the individual of which the innate levels of
signalling and receiving were 3.0 and 4.0 (or 4.0 and 3.0)
became more adaptive and invaded into the population. In
this model, the more quickly an adaptive communication
level is established, the larger the lifetime fitness becomes
because it is defined as the average values over all steps.
Thus, when the most of individuals can express the com-
munication levels of 4 through learning process, it becomes
beneficial for the individuals to genetically acquire the com-
munication level of 4 because they can establish adaptive
communications more quickly. In this sense, there is the im-
plicit cost of learning in this model.
We also see the gradual decrease in the average innate fit-

ness and it became about 1.5 at around the 2500th generation
as shown in Fig. 4 (a). This is due to the decrease in the po-
tential fitness of the best individuals as shown in Fig. 4 (c).
The increase in their number brought about the decrease in
the expected innate fitness because they cannot establish the
communication with each other without the help of learning.
In this sense, the population became more strongly depen-
dent on learning process during the latter generations of this
step despite that the genetic assimilation of either level of
communication occurred as explained above.
Finally, when such individuals occupied the population,

the individuals of which both communication levels of sig-
nalling or receiving were 4.0 appeared at around the 2500th
generation and then rapidly occupied the population until
about the 2700th generation. Both the innate and potential
fitness caught up with the lifetime fitness. This is also due
to the cost of learning explained above. We can say that
the typical second step of the Baldwin effect occurred dur-
ing this period in that the established communication level
of 4 through learning in the first step became genetically ac-
quired in this step completely.
We observed the similar scenarios of the Baldwin effect

around the 1-200th and the 250-650th generations, and each
process brought about the increase in the communication

level of the whole population. In other words, the result of
the Baldwin effect became the scaffold for the next Baldwin
effect to occur. We also observed that each scenario took
longer generations as the lifetime fitness increased because
of the increase in the epistasis of adaptive trait group. It also
should be noted that when we conducted the experiments
with the condition in which all traits were always plastic, it
tended to took longer generations for the Baldwin effect to
occur (not shown). This means that the evolution of the phe-
notypic plasticity has an important role for the occurrence of
these scenarios although we did not observe significant in-
crease and subsequent decrease in the proportion of plastic
traits in our model.
As a whole, we can say that the Baldwin effect repeatedly

occur and facilitate the adaptive evolution in this kind of a
dynamic environment.

Conclusion
Hinton and Nowlan’s pioneering work (Hinton and Nowlan,
1987) clarified that learning can facilitate the evolution on
a “needle in a haystack” fitness landscape, and our previ-
ous work (Suzuki and Arita, 2007b) also showed that the
Baldwin effect also facilitate evolution on a static but rugged
fitness landscape as in Fig. 1. In this paper, we further
discussed whether and how leaning can facilitate evolu-
tion on dynamically changing fitness landscapes which arise
from communicative interactions among individuals. We
have constructed a simple evolutionary model of the adap-
tive communication levels and their phenotypic plasticity in
which the levels of signalling and receiving processes are
determined by different sets of traits under the assumption
of the correlation between their adaptivity and the effects of
epistatic interactions among traits.
The evolutionary experiments showed that the population

with learning successfully increased its shared level of adap-
tive communication while the population was never able to
increase in the case without learning. Here we summarize
the observed scenario of evolution by using an image of tran-
sition of the population on the dynamic fitness landscape in
Fig. 5. The innate communication levels of each individual
is represented as a connected set of a circle (signalling) and
a square (receiving) filled in dark gray, and the x-axis corre-
sponds to the value of their levels (L or L + 1). The learned
level of the individual is also represented as an open circle or
square, which is connected with the innate one. Each arrow
represents the communication between two individuals. The
vertical axis roughly represents the fitness of the individuals
which has corresponding level of adaptive communication.
Let us start from the state in which all individuals have

innately established the adaptive communication level of L
as shown in Fig. 5 (i). In this state, the population have con-
verged to a single peak of the level L. The individuals which
can improve their level from L to L+1 through learning pro-
cess invade into the population as in Fig. 5 (ii). It is because
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Figure 5: An image of transition of the population on the dynamic fitness landscape.

that such individuals can improve their communication level
without discarding successful communications with the ma-
jority individuals. This corresponds to the phenomenon that
the individuals reach out one of their communication levels
to another peak of the level L+1 by using their phenotypic
plasticity.
When the most of individuals come to establish the com-

munication levels of L+1 through learning process, the in-
dividuals which innately acquired either level of L+1 grad-
ually invade into the population due to the implicit cost of
learning as in Fig. 5 (iii). During this process, the peak of
the level L + 1 gradually becomes higher and that of the
level L becomes lower because the individuals have begun
to innately use the communication level of L+1. At the same
time, the innate fitness decreases because they are commu-
nicatively incoherent.
Finally, as in Fig. 5 (iv), the individuals of which both

innate levels are L+1 occupy the population. The genetic
assimilation of learned traits completely occurs and the peak
of the level L disappears at last. This scenario can repeat-
edly occur and an occurrence of the Baldwin effect can be-
come the scaffold for the next Baldwin effect to occur. This
implies that the repeated occurrences of the Baldwin effect
might be a general phenomenon which can emerge in both
static and dynamic environments.
As explained before, the Baldwin effect has sometimes

been discussed in the context of language evolution (Pinker
and Bloom, 1990; Nowak et al., 2002; Kirby, 2002). Lan-
guages are composed of several levels of syntactic represen-
tations as Chomsky clarified (Chomsky, 1957). The level of
communication in this model corresponds to a kind of finely
classified ones of such syntactic representations. Pinker
and Bloom pointed out that comprehension abilities do not
have to be in perfect synchrony with production abilities be-
cause comprehension can use cognitive heuristics to decode
word sequences even in the absence of grammatical knowl-
edge, and a selection pressure on such an adaptive decoding
process bring about a kind of innate grammatical module
through the Baldwin effect (Pinker and Bloom, 1990). The
process in which the learned level for receiving becomes in-
nate one can be regarded as an example of such scenario.

Dennett points out that the Baldwin effect is essential to ex-
plain the genetic acquisition process of a complex trait such
as the innate ability for language acquisition, which is im-
possible to acquire by evolution alone (Dennett, 2003). He
regards Hinton and Nowlan’s experimental result (Hinton
and Nowlan, 1987) as a typical case of such a scenario. Our
results further supports in part his claim in that the Bald-
win effect can occur in the context of the evolution of com-
munication among individuals. On the other hand, Deacon
also points out that the genetic evolution that can support
symbolic communication and the cultural evolution of lan-
guage can mutually facilitate their evolution, although learn-
ing becomes more and more important in his scenario (Dea-
con, 2003). Although the cultural evolution of the learned
traits is not introduced into our model, the repeated occur-
rences of the Baldwin effect supports his claim in that the
acquired adaptive communication through learning process
brings about the genetic evolution of the innate communi-
cation ability, which results in a further acquisition of more
adaptive communication through learning process.
We believe the observed scenarios reflect the general dy-

namics of interactions between evolution and learning in dy-
namically changing environments caused by internal factors.
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Abstract

This research work illustrates the details of a methodologi-
cal approach to the design of homogeneous neuro-controllers
for self-assembly in physical autonomous robots in which no
assumptions are made concerning how agents allocate roles.
Artificial evolution is used to set the parameters of a dynam-
ical neural network that when ported on two physical robots
allows them to coordinate their actions in order to decide who
will grip whom. The neural network directly controls the
state of all the actuators. To the best of our knowledge, this
work is the first example in which physical robots manage to
self-assemble without relying on a priori injected morpholog-
ical or behavioural heterogeneities. The results shed a light on
the minimal requirements necessary to achieve self-assembly
in autonomous robots.

Introduction
According to Whitesides and Grzybowski (2002), self-
assembly is defined as “the autonomous organisation of
components into patterns or structures without human inter-
vention”. Nature provides many examples of animals form-
ing collective structures by connecting themselves to one an-
other. Individuals of various ant, bee and wasp species self-
assemble and manage to build complex structures such as
bivouacs, ladders, etc. Self-assembly in social insects typ-
ically happens in order to accomplish some function (e.g.,
defence, object transport, passage formation, etc.; see An-
derson et al., 2002). Ants of the speciesŒcophylla longin-
oda can form chains composed of their own bodies which
are used to pull leaves together to form a nest, or to bridge a
passage between branches in a tree (Hölldobler and Wilson,
1978). Self-assembly is also widely observed at the molecu-
lar level (e.g., DNA molecules). Although ubiquitous in na-
ture, self-assembly remains in general a phenomenonwhose
operational principles are not easy to grasp, both in non-
living and living organisms, at any scale. This is because “it
is impractical to change many of the parameters that deter-
mine the behaviour of the system components” (see White-
sides and Grzybowski, 2002). However, self-assembly is
particularly appealing to various scientific disciplines. For
example, understanding the mechanisms of self-assembly in

the cell may provide further insights into the emergence of
life starting from chemical reactions. From an engineering
point of view, understanding self-assembly may inspire the
design of artificial self-assembling components. The appli-
cation of such systems can potentially go beyond research in
laboratories, space applications being the most obvious chal-
lenge (e.g., multi-robot planetary exploration and on-orbit
self-assembly, see Izzo and Pettazzi, 2007).
Building artificial models that capture the main proper-

ties of natural phenomena can provide the means to formu-
late and test hypotheses concerning the underlying mecha-
nisms of the observed phenomena (see Webb, 2000). Sev-
eral examples of robotic platforms in the literature consist
of connecting modules1. Among the various autonomous
self-assembling systems that have been proposed in the lit-
erature, the work done by Groß et al. (2006) using the
robots called s-bot is particularly relevant to the subject of
our study. Groß et al. (2006) presented experiments improv-
ing the state of the art in self-assembling robots concern-
ing mainly the number of robots involved in self-assembly,
the generality and reliability of the controllers and the as-
sembly speed. A significant contribution of Groß et al.
work is in the design of distributed control mechanisms
for self-assembly relying only on local perception. In par-
ticular, self-assembly is accomplished with a modular ap-
proach in which some modules are evolved and others hand-
crafted. The approach is based upon a signalling system
which makes use of colours. For example, the decision
concerning which robot makes the action of gripping (i.e.,
the s-bot-gripper) and which one is gripped (i.e., the s-bot-
grippee) is made through the emission of colour signals, ac-
cording to which the robots emitting blue light are playing
the role of s-bot-grippers and those emitting red light the
role of s-bot-grippees. Thus, it is the heterogeneity among
the robots with respect to the colour displayed, a priori in-
troduced by the experimenter, that triggers the self-assembly
process. That is, a single robot “born” red among several

1The reader can find comprehensive reviews of the work on au-
tonomous self-assembling systems in (Yim et al., 2002; Groß and
Dorigo, 2008b; Tuci et al., 2006).
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robots “born” blue is meant to play the role of s-bot-grippee
while the remaining s-bot-grippers are progressively assem-
bling. Once successfully assembled to another robot, each
blue light emitting robot is programmed to turn off the blue
LEDs and to turn on the red ones. The switch from blue
to red light indicates to the yet non-assembled robots the
“metamorphosis” of a robot from s-bot-gripper to s-bot-
grippee. This system is therefore based on the presence of a
behavioural or morphological heterogeneity. In other words,
it requires either the presence of an object lit up in red or
the presence of a robot not sharing the controller of the oth-
ers, which is forced to be immobile and to signal with a red
colour. O’Grady et al. (2005) bypassed this requirement by
handcrafting a decision-makingmechanism based on a prob-
abilistic transition between states. More specifically, the al-
location of roles (which robot lights up red and triggers the
process) depends solely on a stochastic process.
The research works presented in (Groß et al., 2006) and

in (O’Grady et al., 2005) showed how assembled structures
can overcome limitations of the single robots, for instance
in transporting a heavy object or in navigating on rough ter-
rain. However, the modularised control architecture used
in these works to allow the robots to self-assemble is based
on a set of a priori assumptions concerning the specifica-
tion of the environmental/behavioural conditions that trig-
ger the self-assembling process. For example, (a) the ob-
jects that can be grasped must be red, and those that should
not be grasped must be blue; (b) the action of grasping is
carried out only if all the “grasping requirements” are ful-
filled (among others, a combination of conditions concern-
ing the distance and relative orientation between the robots,
see Groß et al., 2006, for details). If the experimenter could
always know in advance in what type of world the agents
will be located, assumptions such as those concerning the
nature of the object to be grasped would not represent a lim-
itation with respect to the domain of action of the robotic
system. However, since it is desirable to have agents that
can potentially adapt to variable circumstances or conditions
that are partially or totally unknown to the experimenter, it
follows that the efficiency of autonomous robots should be
estimated also with respect to their capacity to cope with
“unpredictable” events (e.g., environmental variability, par-
tial hardware failure, etc.). For example, failure to emit or
perceive red light for robots guided by the controllers pre-
sented above would significantly hinder the accomplishment
of the assembly task.
In this work we aim at designing control structures by

which the self-assembly mechanisms do not rely on a pri-
ori designer-specified morphological or behavioural differ-
ences between the robots, and the individual behaviours are
not triggered by a priori designer-specified agents’ percep-
tual cues. To accomplish our objective we exploit the prop-
erties of a particular type of design method referred to as
Evolutionary Robotics (ER). ER is a methodological tool to

automate the design of robots’ controllers based on the use
of artificial evolution to find sets of parameters for artifi-
cial neural networks that guide the robots to the accomplish-
ment of their task (Nolfi and Floreano, 2000). With respect
to other design methods, ER provides the methodological
tools to generate control structures for artificial agents such
as autonomous robots, in a relatively prejudice-free fash-
ion. For example, ER does not require the designer to make
strong assumptions concerning what behavioural and com-
munication mechanisms are needed by the robots. The ex-
perimenter defines the characteristics of a social context in
which robots are required to cooperate. The agents’ mecha-
nisms for solitary and social behaviour are determined by an
evolutionary process that favours (through selection) those
solutions which improve the fitness (i.e., a measure of an
agent’s or group’s ability to accomplish its task).
In this work, we study self-assembly in a setup where the

robots interact and eventually differentiate by allocating dis-
tinct roles (i.e., s-bot-gripper versus s-bot-grippee). In par-
ticular, two identical robots, placed in a boundless arena at
25/30 cm from each other with random orientations, are re-
quired to approach each other and to self-assemble; that is, a
robot should physically connect to the other one via a grip-
per. Instead of a priori defining the mechanisms leading to
role allocation and self-assembly, we let behavioural hetero-
geneity emerge from the interaction among the system’s ho-
mogeneous components. We show that an integrated (i.e.,
non-modularised) dynamical neural network in direct con-
trol of all the actuators of the robots can successfully tackle
real-world tasks requiring fine-grained sensory-motor coor-
dination, such as self-assembly. We show with physical
robots that coordination and cooperation in self-assembly
do not require explicit signalling of internal states, as as-
sumed, for example, by (Groß et al., 2006). Coordination
and role allocation in our system is achieved solely through
minimal sensory information and without explicit commu-
nication. Groß and Dorigo (2008a) have reached a similar
conclusion in a cooperative transport task with simulated
robots. Also, due to the nature of the sensory system used,
the robots cannot sense the orientation of their group-mates.
In this sense, our approach is similar to (and largely inspired
from) the one of (Quinn, 2001; Quinn et al., 2003), where
role allocation (leader-follower) is achieved solely through
infrared sensors. In addition, we also show that the evolved
mechanisms are as effective as the modular and hand-coded
ones described in (Groß et al., 2006; O’Grady et al., 2005)
when controlling two physical robots.

Simulated and Real S-bot
An s-bot is a mobile autonomous robot equipped with many
sensors useful for the perception of the surrounding environ-
ment or for proprioception, a differential drive system, and
a gripper by which it can grasp various objects or another
s-bot (see Figure 1a, and Mondada et al., 2004, for further
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details on the robot). The main body is a cylindrical turret
with a diameter of 11.6 cm, which can be actively rotated
with respect to the chassis.
In this work, to allow robots to perceive each other,

we make use of the omni-directional camera. The image
recorded by the camera is filtered in order to return the dis-
tance of the closest red, green, or blue blob in each of the
eight 45◦ sectors. Each sector is referred to as Ci with
i ∈ [1, 8]. Thus, an s-bot to be perceived by the camera
must light itself up in one of the three colours using the
LEDs mounted on its turret. Notice that the camera can
clearly perceive coloured blobs up to a distance of approxi-
mately 50 cm, but the precision above 30 cm is rather low.
Moreover, the precision with which the distance of coloured
blobs is detected varies with respect to the colour of the
perceived object. We also make use of the optical barrier
which is a hardware component composed of two LEDs and
a light sensor mounted on the gripper (see Figure 1b). By
post-processing the readings of the optical barrier we extract
valuable information concerning the status of the gripper and
about the presence of an object between the gripper claws.
More specifically, the post-processing of the optical barrier
readings defines the status of two virtual sensors: a) the GS
sensor, set to 1 if the optical barrier indicates that there is an
object in between the gripper claws, 0 otherwise; b) the GG
sensor, set to 1 anytime a robot has gripped an object, 0 oth-
erwise. We also make use of the GA sensor, which monitors
the gripper aperture. The readings of the GA sensor range
from 0 when the gripper is completely closed to 1 when the
gripper is completely open.
The controllers are evolved in a simulation environment

which models some of the hardware characteristics of the
real s-bots. The simulator used is based on a specialized 2D
dynamics engine (see Christensen, 2005). In order to evolve
controllers that transfer to real hardware, we overcome the
limitations of the simulator by following the approach pro-
posed in (Jakobi, 1997); motion is simulated with sufficient
accuracy, collisions are not. Self-assembly relies on rather
delicate physical interactions between robots that are inte-

Colour LEDs
Camera

Gripper

(a) (b)

Figure 1: (a) The s-bot. (b) The gripper and sensors of the
optical barrier.
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Figure 2: Neural network architecture: only the efferent con-
nections of the first node of each layer are drawn. See text
for the meaning of the labels.

gral to the task (e.g., the closing of the gripper around an
object can be seen as a collision). Instead of trying to ac-
curately simulate the collisions, we force the controllers to
minimise them and not to rely on their outcome. In other
words, in case of a collision, the two colliding bodies are
repositioned to their previous positions, and the behaviour
is penalised by the fitness function if the collision can not
be considered the consequence of an accepted grasping ma-
noeuvre. Having taken care of the collisions involved with
gripping, the choice of a simple and fast simulator instead
of one using a 3D physics engine significantly speeds up the
evolutionary process.

Controller and Evolutionary Algorithm
The agent controller is composed of a continuous time recur-
rent neural network (CTRNN) of ten hidden neurons and an
arrangement of eleven input neurons and three output neu-
rons (see Figure 2 and also Beer and Gallagher, 1992). At
each simulation cycle, the activation values yi of input neu-
rons correspond to: the reading of the GA sensor for i = 1;
the reading of the GG sensor for i = 2; the normalised
reading of the eight camera sectors Cj with j ∈ [1, 8] for
i ∈ [3, 10]; the reading of the GS sensor for i = 11. Hid-
den neurons are fully connected. Additionally, each hid-
den neuron receives one incoming synapse from each input
neuron. Each output neuron receives one incoming synapse
from each hidden neuron. There are no direct connections
between input and output neurons. The state of each hidden
and output neuron is updated as follows:

τiẏi =















11
∑

j=1

ωjiyj +
21
∑

k=12

ωkiσ(yk + βk) − yi; i ∈ [12, 21]

21
∑

j=12

ωjiσ(yj + βj) − yi; i ∈ [22, 24];

with σ(x) =
1

1 + e−x

(1)
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In these equations, τi is the decay constant, ωij the strength
of the synaptic connection from neuron j to neuron i, βi

the bias term. τi with i ∈ [12, 24], βi with i ∈ [12, 24],
and all the network connection weights ωij are genetically
specified networks’ parameters. σ(y22) and σ(y23) linearly
scaled into [-3.2s−1, 3.2s−1] are used to set the speed of the
left and right motors (Ml, and Mr). σ(y24) is used to set
the gripper aperture in the following way: if σ(y24) > 0.75
the gripper closes; if σ(y24) < 0.25 the gripper opens. Cell
potentials are set to 0 when the network is initialised or reset,
and circuits are integrated using the forward Euler method
with an integration step-size∆T = 0.2.

Each genotype is a vector comprising 263 real values (i.e.,
240 genes for the weights, 13 genes for the time constants,
10 genes for the biases). Initially, a random population of
vectors is generated by initialising each component of each
genotype to values randomly chosen from a uniform distri-
bution in the range [0,1]. The population contains 100 geno-
types. Generations following the first one are produced by a
combination of selection, mutation, and elitism. For each
new generation, the five highest scoring individuals from
the previous generation are chosen for breeding. The new
generations are produced by making twenty copies of each
highest scoring individual with mutations applied only to
nineteen of them. Mutation entails that a random Gaussian
offset is applied to each real-valued vector component en-
coded in the genotype, with a probability of 0.25. Genotype
parameters are linearly mapped to produce CTRNN param-
eters with the following ranges: biases βi ∈ [−10, 10] and
weights ωji ∈ [−10, 10]. Decay constants are firstly linearly
mapped onto the range [−1.0, 1.5] and then exponentially
mapped into τi ∈ [10−1.0 101.5].

α

β

S−bot L S−bot R

Figure 3: This picture shows how the s-bots’ starting orien-
tations are defined given the orientation duplet (α,β ). S-bot
L and s-bot R refer to the robots whose initial orientations
in any given trial correspond to the value of α and β, respec-
tively.

The Task and the Fitness Function
During evolution, each genotype is translated into a robot
controller, and cloned onto each agent. At the beginning of
each trial, two s-bots are positioned in a boundless arena at a
distance randomly generated in the interval [25 cm, 30 cm],
and with predefined initial orientations α and β (see Fig-
ure 3). Our initialisation is inspired from the initialisation
used in (Quinn, 2001). In particular, we define a set of orien-
tation duplets (α,β ) as all the combinations with repetitions
from the set:

Θn =

{

2π

n
· i | i = 0, . . . , n − 1

}

, (2)

where n is the cardinality of the set. In other words, we
systematically choose the initial orientation of both s-bots
drawing from the setΘn. The cardinality of the set of all the
different duplets—where (α,β ) ≡ (β,α )—corresponds to
the total number of combinations with repetitions, and can
be obtained by the following formula:

(n + k − 1)!

k!(n − 1)!
, (3)

where k = 2 indicates that combinations are duplets, and
n = 4 lets us define the set of possible initial orientations
Θ4 = {0◦, 90◦, 180◦, 270◦}. From this, we generate 10 dif-
ferent (α,β ) duplets. Each group is evaluated 4 times at
each of the 10 starting orientation duplets for a total of 40
trials. Each trial (e) differs from the others in the initialisa-
tion of the random number generator, which influences the
robots initial distance and their orientation by determining
the amount of noise added to the orientation duplets (α,β ).
During a trial, noise affects motors and sensors as well. In
particular, uniform noise is added in the range±1.25 cm for
the distance, and in the range ±1.5◦ for the angle of the
object perceived by the camera. Note that, in simulation,
colours are not considered. The camera returns distances
and angles of the closest object in each sector. 10% uni-
form noise is added to the motor outputs σ(y22), σ(y23).
Uniform noise randomly chosen in the range ±5◦ is also
added to the initial orientation of each s-bot. Within a trial,
the robots life-span is 50 simulated seconds (250 simulation
cycles). A trial can be terminated earlier if the robots suc-
cessfully self-assemble in less than 50 simulated seconds, or
if they incur in 20 collisions. In each trial e, each group is
rewarded by an evaluation function Fe = Ae ·Ce ·Se which
seeks to assess the ability of the two robots to get closer to
each other and to physically assemble through the gripper.

Ae is the aggregation component, computed as follows:

Ae =

{

1.0

1.0+atan(
drr−16

16
)
if drr > 16 cm;

1.0 otherwise;
(4)

where drr is the distance between the two s-bots at the end
of the trial e.
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Ce is the collision component, computed as follows:

Ce =











1.0 if nc = 0;

0.0 if nc > 20;
1.0

0.5+
√

nc
otherwise;

(5)

where nc is the number of robot-robot collisions recorded
during trial e.

Se is the self-assembly component, computed at the end
of a trial (t = T with T ∈ (0, 250]), as follows:

Se =











100.0 if GG(T ) = 1, for any robot;

1.0 +
29.0

T
P

t=0

K(t)

T otherwise;
(6)

where K(t) is set to 1 for each simulation cycle t in which
the sensor GS of any s-bot is active, otherwise K(t) = 0.
Notice that, given the way in which Fe is computed, no as-
sumptions are made concerningwhich s-bot plays the role of
s-bot-gripper and which one the role of s-bot-grippee. The
way in which collisions are modelled in simulation and han-
dled by the fitness function is an element that favours the
evolution of assembly strategies in which the s-bot-gripper
moves straight while approaching the s-bot-grippee. This
has been done to ease transferability to real hardware. The
fitness assigned to each genotype after the evaluation of the
robots is given by FF = 1

E

∑E
e=1

Fe, with E = 40.

Results
As stated in the Introduction, in this work we aim at design-
ing through evolutionary computation techniques dynamical
neural networks to allow a group of two homogeneous s-bots
to physically connect to each other. To pursue our objective,
we run for 10,000 generations twenty randomly seeded evo-
lutionary simulations. Although several evolutionary runs
produced genotypes that obtained the highest fitness score
(i.e., FF = 100), the ranking based on the evolutionary per-
formances has not been used to select a suitable controller
for the experiments with real robots. The reason for this is
that during evolution, the best groups may have taken advan-
tage of favourable conditions, determined by the existence
of between-generation variation in the starting positions and
relative orientation of the robots and other simulation pa-
rameters. Thus, the best evolved genotype from generation
5,000 to generation 10,000 of each evolutionary run has been
evaluated again on a series of 136,000 trials, obtained by
systematically varying the s-bots’ starting orientations.
In particular, we evaluated the evolved genotypes using

a wider set of 16 initial orientations Θ16, defined by equa-
tion 2. From this set, equation 3 tells us that we can derive
136 different duplets (α,β ). Each starting condition (i.e.,
orientation duplet) was tested in 1,000 trials, each time ran-
domly choosing the robots’ distance from a uniform distri-
bution of values in the range [25 cm, 30 cm]. Noise is added
to initial orientations, sensors readings and motor outputs.

The best performing genotype resulting from the set of
post-evaluations described above was decoded into an artifi-
cial neural network which was then cloned and ported onto
two real s-bots. In what follows, we provide the results of
post-evaluation tests aimed at evaluating the success rate of
the real s-bots at the self-assembly task as well as the robust-
ness of the self-assembly strategies in different setups.

Post-evaluation Tests on Real S-bots
The s-bots’ controllers are evaluated four times on each of
36 different orientation duplets (α,β ), obtained drawing α
and β fromΘ8. The cardinality of this set of duplets is given
by equation 3, with n = 8, k = 2. In each post-evaluation
experiment, successful trials are considered those by which
the robots manage to self-assemble, that is, when one robot
manages to grasp the other one. Note that, for real s-bots, the
trial’s termination criteria was changed with respect to those
employed with the simulated s-bots. We set no limit on the
maximum duration of a trial, and no limit on the number of
collisions allowed. In each trial, we let the s-bots interact
until physically connected.
In a single case we terminated the trial before the robots

self-assembled because the s-bots ended up outside the per-
ceptual range of their respective camera. This trial has been
terminated after one minute of robot-robot distance higher
than 50 cm and the trial has been considered unsuccess-
ful. As illustrated later in this Section, these new criteria al-
lowed us to observe interesting and unexpected behavioural
sequences. In fact, the s-bots sporadically committed inac-
curacies during their self-assembly manoeuvres. Unexpect-
edly, the robots show to possess the required capabilities to
autonomously recover from these inaccuracies. In what fol-
lows, we provide the reader a detailed description of the per-
formance of the real s-bots in these post-evaluation trials.2
The first two tests with physical robots are referred to as test
G25 and test G30. These are tests in which the s-bots light
themselves up in green and are initialised at a distance from
each other of 25 cm and 30 cm, respectively. The s-bots
proved to be 100% successful in both tests. That is, they
managed to self-assemble in all trials. Table 1 gives more
details about the s-bots’ performances in these trials. In par-
ticular, we notice that the number of successful trials at the
first gripping attempt is 28 and 29 trials out of 36 respec-
tively for G25 and G30 (see Table 1, 2nd column). In a few
trials, the s-botsmanaged to assemble after two/three grasp-
ing attempts (see Table 1, 3rd and 7th column). The failed
attempts were mostly caused by inaccurate manoeuvres—
referred to as inaccuracies of type I1—, in which a series
of maladroit actions by both robots makes impossible for
the s-bot-gripper to successfully grasp the s-bot-grippee’s
cylindrical turret. In a few other cases, the group committed

2Movies of the post-evaluation tests on real s-bots
can be found at http://iridia.ulb.ac.be/supp/
IridiaSupp2008-002/
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a different inaccuracy—referred to as I2—, in which both
robots assume the role of s-bot-gripper. In such circum-
stances, the s-bots head towards each other until a collision
between their respective grippers occurs. Note that, in both
G25 and G30, the s-bots always managed to recover from
the inaccuracies and end up successful.
The s-bots have to turn on their coloured LEDs in order

to perceive each other through the camera. However, a sig-
nificant advantage of our control design approach is that the
specific colour displayed has no functional role within the
neural machinery that brings forth the s-bots’ actions. In
order to empirically demonstrate that the mechanisms un-
derpinning the s-bots self-assembling strategies do not de-
pend on the specific colour displayed by the LEDs, we re-
peated a third and a fourth time the 36 post-evaluation trials,
both times by deliberately changing the colour of the s-bots’
LEDs. The s-bots are placed at an initial distance of 30 cm
from each other, and they are evaluated with the LEDs dis-
playing blue light—this test is referred to as B30—and with
the LEDs displaying red light—this test is referred to as R30.
The s-bots proved to be very successful both in B30 and

R30 (see Table 1). In the large majority of the trials the s-
bots managed to self-assemble at the first grasping attempt.
In a few trials, two or three grasping manoeuvres were re-
quired (see Table 1, 3rd and 7th column). A new type of
inaccuracy emerged in test R30. That is, in three trials, after
grasping, the connected structure got slightly elevated at the

Table 1: Results of post-evaluation tests on real s-bots. G25
and G30 refer to the tests in which the s-bots light them-
selves up in green and are initialised at a distance from each
other of 25 cm and 30 cm, respectively. B30 and R30 refer
to the tests in which the s-bots light themselves up in blue
and red respectively, and are initialised at a distance of 30 cm
from each other. Trials in which the assembly between the s-
bots requires more than one gripping attempt, due to inaccu-
rate manoeuvres Ii, are still considered successful. I1 refers
to a series of maladroit actions by both robots which hin-
der the s-bot-gripper from successfully grasping the s-bot-
grippee’s turret. I2 refers to those circumstances in which
both robots assume the role of s-bot-gripper and collide at
the level of their grippers. I3 refers to those circumstances
in which, after grasping, the connected structure gets slightly
elevated at the connection point.

Test Number of successful trials per gripping
attempt and types of inaccuracy

1st 2nd 3rd

N.◦ N.◦ I1 I2 I3 N.◦ I1 I2 I3

G25 28 7 6 1 0 1 2 0 0
G30 29 6 3 3 0 1 1 1 0
B30 26 5 3 2 0 4 8 0 0
R30 21 12 10 0 2 4 7 0 1

(a) (b) (c)

(d) (e)

Figure 4: Snapshots from a successful trial. (a) Initial con-
figuration; (b) Starting phase; (c) Role allocation phase; (d)
Gripping phase; (e) Success (grip).

connection point. We refer to this type of inaccuracy as I3.
In a single trial in test B30, the s-bots failed to self-assemble.
In this case, the s-bots ended up outside the perceptual range
of their respective cameras. This trial in which the s-bots
spent more than 1 minute without perceiving each other has
been terminated, and it was considered unsuccessful.
For each single test (i.e., G25, G30, B30, and R30), the

sequences of s-bots’ actions are rather different from one
trial to the other. However, these different histories of in-
teraction can be succinctly described by a combination of
few distinctive phases and transitions between phases which
exhaustively “portray” the observed phenomena. Figure 4
shows some snapshots from a successful trial which repre-
sent these phases. The robots leave their respective start-
ing positions (see Figure 4a) and during the starting phase
(see Figure 4b) they tend to get closer to each other. In the
great majority of the trials, the robots move from the starting
phase to what we call the role allocation phase (RA-phase,
see Figure 4c). In this phase, each s-bot tends to remain
on the right side of the other. They slowly move by fol-
lowing a circular trajectory corresponding to an imaginary
circle centred in between the two s-bots. Moreover, each
robot rhythmically changes its heading by turning left and
right. The RA-phase ends once one of the two s-bots—that
is, the one assuming the role of the s-bot-gripper—stops os-
cillating and heads towards the other s-bot—that is, the one
assuming the role of the s-bot-grippee—which instead ori-
ents itself in order to facilitate the gripping (gripping phase,
see Figure 4d). The s-bot-gripper approaches the s-bot-
grippee’s turret and, as soon as its GS sensor is active, it
closes its gripper. A successful trial terminates as soon as
the two s-bots are connected (see Figure 4e). As mentioned
above, in a few trials the s-bots failed to connect at the first
gripping attempt by committing what we called inaccura-
cies I1 and I3. These inaccuracies seem to denote problems
in the sensory-motor coordination during grasping. Recov-
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ering from I1 can only be accomplished by returning to a
new RA-phase, in which the s-bots re-establish again their
respective roles, and eventually self-assemble. Recovering
from I3 is accomplished by a slight backward movement of
both s-bots which restores a stable gripping configuration.
Given that I3 has been observed only in R30, it seems plau-
sible to attribute the origin of this inaccuracy to the effects
of the red light on the perceptual apparatus of the s-bots. In
particular, it could be that, due to the red light, the s-bot-
gripper perceives through its camera the s-bot-grippee at a
farther distance than the actual one. Alternatively, it could
be that the red light perturbs the regular functioning of the
optical barrier and consequently the readings of the GS and
GG sensors. Both phenomena may induce the s-bot-gripper
to keep onmoving towards the s-bot-grippee up to the occur-
rence of I3, even though the distance between the robots and
the status of the gripper of the s-bot-gripper would require
a different response. I2 seems to be caused by the effects of
the s-bots’ starting positions on their behaviour. In those tri-
als in which I2 occurs, after a short starting phase, the s-bots
head towards each other until they collide with their grippers
without going through the RA-phase. The way in which the
robots perceive each other at starting positions seems to be
the reason why they skip the RA-phase. Without a proper
RA-phase, the robots fail to autonomously allocate between
themselves the roles required by the self-assembly task (i.e.,
s-bot-gripper and s-bot-grippee), and consequently they in-
cur in I2. In order to recover from I2, the s-bots move away
from each other and start a new RA-phase in which roles are
eventually allocated. In the future we will further investigate
the exact cause of the inaccuracies.
As shown in Table 1, except for a single trial in test B30

in which the s-bots failed to self-assemble, the robots proved
capable of recovering from all types of inaccuracies. This
is an interesting result because it is evidence of the robust-
ness of our controllers with respect to contingencies never
encountered during evolution. Indeed, in order to speed up
the evolutionary process, the simulation in which controllers
have been designed does not handle collisions with sufficient
accuracy. In those cases in which, after a collision, the simu-
lated robots had another chance to assemble, the agents were
simply re-positioned at a given distance from each other. In
spite of this, s-bots guided by the best evolved controllers
proved capable of engaging in successful recovering ma-
noeuvres which allowed them to eventually assemble.2

Conclusion
In this article, we have presented the results of an evolu-
tionary methodology for the design of control strategies for
self-assembling robots. To the best of our knowledge, the
control method we have proposed for the physical connec-
tion of two robots is the only existing in the literature where
the role allocation between gripper and grippee is the result
of an autonomous decision-making process between two ho-

mogeneous robots; there is no a priori injected behavioural
or morphological heterogeneity in the system. Instead, the
behavioural heterogeneity emerges through the interaction
of the robots. Moreover, the communication requirements
of our approach are reduced to the minimum; simple co-
ordination by means of the dynamical interaction between
the robots—as opposed to explicit communication of inter-
nal states—is enough to bring forth differentiationwithin the
group. We believe that reducing the assumptions on neces-
sary conditions for assembly is an important step to obtain
more adaptive and more general controllers for autonomous
self-assembly. The results of this work are a proof-of-
concept: they proved that dynamical neural networks shaped
by evolutionary computation techniques directly controlling
the robots’ actuators can provide physical robots all the re-
quired mechanisms to autonomously perform self-assembly.
Contrary to the modular or hand-coded controllers described
in Groß et al. (2006) and in O’Grady et al. (2005), the evo-
lutionary robotics approach did not require the experimenter
to make any a priori assumptions concerning the roles of
the robots during self-assembly (i.e., either s-bot-gripper or
s-bot-grippee) or about their status (e.g., either capable of
moving or required not to move). The evolved mechanisms
proved to be robust with respect to changes in the colour
of the light displayed by the LEDs. Furthermore, we have
designed a self-assembling system that exhibits recovery ca-
pabilities that have not been selected during the evolutionary
design phase and that were not coded or foreseen by the ex-
perimenter. Such a feature in our case comes for free, while
in the case of Groß et al. (2006) a recovery mechanism had
to be designed as a specific behavioural module to be acti-
vated every time the robots failed to achieve assembly.
Our system is not as “transparent” as a hand-coded or

modular rule-based one, as we can not break its behaviour
down to a set of rules or states. Such an endeavour seems
to be very challenging and particularly difficult, especially
when the network sizes are large and/or the movement of
the robots takes place in a continuous and noisy world, such
as the real world. However, preliminary results not shown
in the paper suggest that there is an effect of the starting
configuration on the final outcome of a trial (how roles are
allocated). In short, our analysis revealed that, in those tri-
als in which the two robots have different initial perceptions
(α $= β), the role that each s-bot assumes can be predicted
knowing the combination of α and β. However, it is im-
portant to notice that perceiving the other robot at a spe-
cific distance and through a given camera sector does not
inform a robot about the role it will assume during the trial.
In other words, it is this combination of α and β which de-
termines the roles. In those cases in which the robots start
with an identical perception (α = β), this symmetry does
not seem to hinder the robots from autonomously allocating
different roles to successfully accomplish their goal. At the
moment, it is unclear how the initial symmetry is broken.
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Perhaps, the driving forces have to be searched in the way
in which the robots mutually affect each other’s behaviour.
Perhaps, the random noise injected into the system is the
causal factor that drives the system through sequences of ac-
tions that turn out to be successful. Stochastic phenomena
may take over any causal relationship between environmen-
tal structures (i.e., how the robots perceive each other at the
beginning of a trial) and the role allocation process. Fu-
ture analyses are certainly required to see whether any in-
variants can be found among the history of interactions be-
tween the robots and what significance can be attributed to
them. We would also like to test the scalability of our sys-
tem. Can the controllers still manage to achieve assembly if
there are more than two robots involved? Some initial ex-
perimentation2 looks very promising. However, we plan to
introduce coordinated motion capabilities to the robots be-
havioural repertoire before we systematically address this is-
sue. In other words, the assembled structure of two or more
robots must be able to move coordinately, in order to ac-
tively participate in the assembly process. For example, it
could interact with other assembled structures or individual
robots by either receiving connections from them or grasp-
ing them. We will also study more complex scenarios in
which self-assembly is functional to the achievement of par-
ticular objectives that are beyond the capabilities of a single
robot.
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Abstract

Biological organisms have an inherent ability to respond to
environmental changes. The response can emerge as organ-
isms that can develop into structural and behavioural differ-
ent phenotypes. To achieve such properties in an artificial
developmental setting external environmental information is
included in the gene regulation of the developmental model.
This implies interplay between evolution, development and
the environment. An experimental approach is taken to in-
vestigate this interplay. The test case chosen is evolution of
robustness to environmental fluctuations. Development mod-
els with and without environmental information included in
the gene regulation are compared. Further, the developing
organisms of the two models are exposed to environmental
fluctuations for a more extensive investigation. The results
indicate that including external information in the gene regu-
lation can be favourable and exploitable, particularly for or-
ganisms developing in a dynamic environment.

Introduction
A developmental mapping is an example of an indirect map-
ping. In biological development, an initial unit—a cell,
holds the complete building plan (DNA) for an organism. It
is important to note that this plan is generative—it describes
how to build the system, not what the system will look like.
Similarly in a developmental mapping, the artificial organ-
ism starts out as a single cell where the genome provides
the cell’s DNA. The processing of the genomemay be based
on gene regulation (Lantin and Fracchia, 1995). Each devel-
opment step, or stage in the mapping, produces a candidate
phenotype, i.e. an emerging phenotype. Gene regulation im-
plies that different parts of the genome are expressed in dif-
ferent cells at different times in the emerging phenotype.
An important feature of natural development is that

the developing organism develops within an environment.
In Tufte and Haddow (2007a) environment was discussed at
different levels. Intra-cell environment that the DNA re-
sides in, also referred to as the cell’s metabolism (Federici,
2004; Gordon and Bentley, 2005). The next level of en-
vironment, found in most development models, is the
neighbour environment referring to the inter-cell envi-
ronment, enabling communication between neighbouring

cells (Bongard and Pfeifer, 2003; Tufte and Haddow, 2003;
Miller, 2004; Federici, 2004). Further, the environment may
also affect the phenotype emerging from the development
process.
Phenotypic plasticity (Larsen, 2004) is a property of or-

ganisms which enables adaptation or response to the envi-
ronment. The adaptation or response is expressed as changes
in the phenotypic structure and/or behaviour. It is impor-
tant to note that this adaptation occurs during the develop-
ment phase. That is, the genome develops in an environment
where the emerging phenotype is influenced by the environ-
ment in which it develops. This implies that developing or-
ganisms may adapt their structure and/or functionality ac-
cording to information provided by the external stimulus of
the environment— see Tufte and Haddow (2007b).
In an artificial setting, environmental adaptation may be

regarded as an emerging tolerance to external fluctuations.
In the work of Miller (2003) and Federici and Downing
(2006) such robustness appeared to be a shadow ef-
fect (Hogeweg, 2000) of evolution and development as it
was not specified as a target behaviour or included environ-
mental information in the processes of evolution and devel-
opment. However, environmental influence may be targeted
by evolution to find robust genomes (Tufte and Haddow,
2007a). Additionaly, environmental information can be ex-
ploited by development for further adaptation of the emerg-
ing organism (Tufte and Haddow, 2007b).
To further investigate the relation between evolution of ro-

bustness and possible emergent robustness beyond the scope
of the environmental fluctuations induced during evolution,
the results of Tufte and Haddow (2007a) are compared to re-
sults obtained introducing the possibility of exploiting phe-
notypic plasticity in the development model. Further, the
evolved genomes are exposed to large environmental fluc-
tuations during development to reveal possible emergent ro-
bustness to such dynamic environmental fluctuations. As
such, the evolved genomes are exposed to different environ-
mental fluctuations during development then what fluctua-
tions the population was exposed to during evolution.
The focus of this paper is to investigate if a developmen-
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tal model capable of exploiting environmental information,
i.e. phenotypic plasticity, indicates increased tolerance to ex-
tended environmental fluctuations compared to a develop-
mental model with no such mechanisms. The possible pres-
ence of such extended emergent robustness may indicate ex-
ploitation of environmental information in interplay with the
development of structure and behaviour. However, the larger
goal of the work is toward an understanding of the interplay
between evolution, development and environment toward ar-
tificial organisms capable of computation. Herein a cellular
computational machine Sipper (1997). As such, if the en-
vironmental information is treated as data input and output
from the functional developing organism a clear separation
between the emergent structural organism and the data trans-
formation of the functional parts of the organismmay not be
feasible or desirable.
The article is laid out as follows: Section II introduces

the roles of environment in artificial development models.
The cellular developmental model is presented in Section
III. Experimental results are presented in Section IV. Finally,
Section V concludes the work.

Environmental Information
The ”environment” of a naturally developing organism usu-
ally refers to the external environment affecting the devel-
oping organism. In Tufte and Haddow (2007a) this environ-
ment was expressed as a combination of both an initial envi-
ronment and an external environment. When a cell is grown
it is effected by the environment (at that place in the envi-
ronment) — initial environment. The status of the initial
environment thus affects the path of development for any
given cell and thus affects the organism as a whole. How-
ever, when the organism is developed it has to survive in
an environment and thus it is important that the environ-
ment beyond the growing organism can affect the develop-
ing organism. Such an environment is defined as the exter-
nal environment. As such, both the growing organism and
its ”external environment” can be measured during evalua-
tion (Tufte and Haddow, 2007a).
A further implication of emerging organisms is that

the phenotype may be evaluated at a given step of de-
velopment, defined as the finalised phenotype, as in
Gordon and Bentley (2005) or at each or any stage dur-
ing development (Tufte and Haddow, 2003). The lat-
ter takes the actual process of developing the emergent
structure (Viswanathan and Pollack, 2005) or functional-
ity (Tufte and Haddow, 2003) into the evaluation process i.e.
life-time evaluation.
One notable feature of the work presented

in Tufte and Haddow (2007a) is that although an ex-
ternal environment is introduced, such an environment only
affects the developing phenotype indirectly i.e. through
evolution. There is no direct influence on the developing
phenotype unlike the initial environment which directly

Genom Mapping EA 

Emerging 
Organism 

External 
Environment 

Fitness 

(a) Indirect environmental influence
through evolution.

Genom Mapping EA 

Emerging 
Organism 

External 
Environment 

Fitness 

(b) Direct environmental influence
exploitable by the mapping process.

Figure 1: Evolution of developmental genomeswith indirect
and direct exploitation of environmental information.

affects the development path of all cells. However, in
biology the external environment has a direct affect on the
developing phenotype.
Figure 1(a) illustrates the inclusion of external environ-

ment as implemented in Tufte and Haddow (2007a). The
organism emerges as a product of the interplay between the
genome and the emerging organism. This interplay is rep-
resented as the ”mapping” box where at any point in time
the information about the genome and the organism (at that
point in time) are available to the mapping process. Fit-
ness measures the emerging organism together with its en-
vironment, as shown, at each stage of the development pro-
cess. The accumulated fitness, after the mapping process is
stopped, is fed back to the evolutionary algorithm (EA). As
such, the external environment does not influence the out-
come of the development process (mapping) but rather the
fitness evaluation thus providing an indirect dependence on
the external environmental, i.e. a system with no mutual per-
turbatory channels (Quick et al., 1999).
In Figure 1(b) a similar mapping process is described ex-

cept that the external environment information is available
to the development process. As shown, the mapping pro-
cess can exploit external environment information, in addi-
tion to the information coded in the genome and provided
by the developing organism. As such, the emerging organ-
ism is a product of the interplay between the genome, the
organism (at that point in time) and the present environment
i.e. mutual perturbatory channels exist. In such systems, a
genome can develop into different organisms depending on
the environment present, i.e. phenotypic plasticity is achiev-
able (Tufte and Haddow, 2007b).
In the work presented the two different principles for ex-

ploiting environmental information shown in Figure 1 are
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compared to measure the ability to evolve robust pheno-
types. The results of the two approaches are taken further by
introducing environmental fluctuations during development,
i.e. robustness in a dynamic environment.

Development Model
The development model is based on cellular development.
This implies that the genome is present and processed au-
tonomously in every cell. In the model, the cell also contains
the functional building blocks. For the experiments herein
the application sought is that of a digital circuit (phenotype).
Figure 2(a) illustrates the developmental system — the cell.
The cell is divided into three parts: the genome (the building
plan); the development process (mechanisms for cell growth
and differentiation) and the functional component of the cell.
The information in the functional components represents the
type of the cell and the cell’s state is described by the outputs
of the functional components.
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(a) Components of the cell.
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(b) Gene regulation shown for a single rule

Figure 2: The basic cell and a rule showing the gene regula-
tion in the cellular development model.

The genome consists of a set of rules. Rules are restricted
to expressions consisting of the type and state of the target
cell and the types and state of the cells in its von Neumann
neighbourhood. There are two types of rules i.e. change and
growth rules. Cell growth is a mechanism to expand the
organism. A growth rule result provides the direction of
growth: grow from north Gn; east Ge; south Gs or west
Gw. It is important to note that these rules are expressed in
terms of where the source of the cell growing into the tar-

get cell is. Describing where a cell is growing from enables
a fully parallel implementation of the system to be created
whilst retaining the possibility that cells in effect may grow
in all four directions simultaneously. Growth rules have two
restrictions. First, the target cell must be empty – this is to
prevent growing over an existing cell and thus specialising
the cell with a new cell type. Secondly, the cell to be copied
into the target can not be empty.
Differentiation changes a cell’s type i.e. its functionality.

The result part of a change rule states the type of cell the
target is going to be changed into. Cells have the following
types: valid cell types, don’t care (DC) or empty. However,
the empty cell is not a valid target cell type.
Each rule consists of a result and a condition. The con-

ditional part provides information about the cell itself and
each of the neighbouring cells. In the development model
presented in (Tufte and Haddow, 2005), the type of the cell
was applied to describe these cells. However, to introduce
external environment, state information is also needed. State
information provides a way to include information relating
to the functionality of the organism at a given point in time
as well as information about the external environment— the
empty cells in the environment also have state information.
As such, a cell is represented in the condition of a rule by
two genes representing its type and its state. However, a tar-
get cell is only represented by one gene: it’s type for change
rules or growth direction for growth rules. The state of cell
may be 0, 1 or DC. DC is introduced to provide the possibil-
ity to turn on or off this environmental influence. The devel-
opment model is applied with and without the information
from the external environment and functional organism.
Firing of a rule can cause the target cell to change type, die

(implemented as a change of type) or cause another cell to
grow into it. Figure 2(b) illustrates the process of evaluating
a rule. For each cell condition, the cell type and state are
compared and if the conditions are true then that part of the
rule is active. If all conditions are active then the result will
become active and the rule will fire. Activation of the result
gene is expressed in the emerging phenotype according to
the action specified.
In a development genomemultiple rules are present. Mul-

tiple rules imply that more than one rule of a given cell may
be activated at the same time if their conditions hold. To en-
sure unambiguous rule firing, rule regulation is part of the
development process. If the first rule is activated, the sec-
ond rule can not be activated. Activation of the second rule
prevents activation of the third rule, etc.
The functional components of the cell is an

Sblock (Haddow and Tufte, 2000). The content of the
look-up table (LUT) defines functionality and is, herein,
also used to define the cell type. The LUT is the combina-
torial component and the flip-flop is the memory element
— capable of storing the cell state. The output value of
an Sblock is synchronously updated and sent to all its four
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neighbours and as a feedback to itself.
One update of the cell’s type under the execution of the

development process is termed a development step (DS). A
development step is thus a synchronous update of all cells in
the cellular array. The update of the cell’s functional com-
ponents i.e. one clock pulse on the flip-flop, is termed a state
step (SS). A development step is thus made up of a number
of state steps.
The initial condition is applied before development starts.

This means that all empty cells are set or reset depending
on the given initial condition. To avoid empty cells updating
their output values from their von Neumann neighbourhood,
all cells of type Empty are set to update their outputs based
on only their own output value at the previous clock pulse.
A empty cell will retain its initial state — environmental
information, until the emerging organism grows into it.

Experiments
The experiments are separated into three different experi-
ments. In the two first experiments each genome was ex-
posed to a set of ten different randomly generated environ-
ments. As such, the development of a given genome is re-
peated ten times, one for each environment. The fitness
score was calculated as the mean fitness of the genome in
the ten different environments. A genome is thus explicitly
being evaluated and, therefore, evolved to tolerate different
environments. Ten runs were conducted resulting in a col-
lection of the ten best developmental genomes and their re-
spective developed organisms. The use of environmental in-
formation in the developmentmodel for the two experiments
is illustrated in Figure 1(a) and 1(b).
Extending the developmental model to include environ-

mental information in the gene regulation has several impli-
cations. The environmental information requires an exten-
sion of the information processing in the gene regulation.
As such, the genomes for experiment one and two may not
be directly comparable. The larger genome required to in-
clude environmental information changes the search space.
The genome with no environmental regulation may be de-
fined with parts, e.g. genes, set to don’t care to maintain an
even genome size, i.e. a redundant representation. Another
possibility is to remove the genetic parts that are included in
the environmental regulation. In the work of Shipman et al.
(2000) and Rothlauf and Goldberg (2003) such redundant
representation was shown to be non-favourable or to de-
crease the performance of the EA. As such, the later solution
was chosen.
Further, the resulting genomes from the two experiments

were re-developed and re-evaluated in ten other randomly
generated environments. Each genome’s performance on
each of the ten new environments was then compared to the
fitness value obtained from the base experiments.
In the third experiment genomes of the two first experi-

ments were re-developed and re-evaluated in an environment

were changes was introduced during the life time of the or-
ganism. The change in external information was inserted at
three fixed steps during development of the organism.

Experimental Setup
The number of available cell types was set to thirteen in-
cluding the empty cell type. Available cell types was based
on Sippers universal non-uniform CA (Sipper, 1997) and
threshold elements (Beiu et al., 2003). Table 1 provides the
set of available cell types, together with their functional LUT
definition and graphical symbol. For signal directions and
LUT addresses refer to Figure 2. The first single cell which
the multicellular organism develops from was defined to be
of type 5 (NAND).

Table 1: Definition of cell types and their functionality
Cell LUT Function Graphical
type hex name representation
0 0xF F F F0000 no change Emty
1 0x66666666 XORd W ⊕ S
2 0x3D3D3D3D XORc E ⊕ S
3 0x0F F00F F0 XORb N ⊕ E
4 0x55AA55AA XORa W ⊕ N

5 0x55F F55F F NAND W • N
6 0xF F00F F00 ↓ SouthPropagation
7 0xCCCCCCCC ↑ NorthPropagation
8 0xF0F0F0F0 ← EastPropagation
9 0xAAAAAAAA → WestPropagation
10 0xE8808000 T ≥ 4
11 0xF EE8E880 T ≥ 3
12 0xF F F EF EE8 T ≥ 2

The evolutionary algorithm chosen was a Genetic Algo-
rithm (GA), a modified version of a GA found in Spears
(1991). The GA’s crossover operator was modified such that
a gene was undisturbed and a variable number of crossover
points was implemented. The genome size was set to con-
sist of 32 rules and the population size was set to 16. The
initial population consisted of random generated valid rules.
However, invalid rules may arise through the application of
genetic operators. Crossover rate was set to 0.5 and the mu-
tation rate for each gene was set to 0.0017. The GA was set
to terminate after 100 000 generations.
The fitness considers how well an organism function in a

set of environments. The application is a sequential counter
where counting is based on the state information of the en-
tire cellular space and the sequential operation of the func-
tional components of the cells. The application thus places a
requirement on the tuning of the development genome (by
evolution) and the emerging phenotype (by development)
for such sequential digital circuit behaviour. A counting
sequence is defined in the cellular array as the number of
logical ”1”s in the cellular array increasing by one for each
state step. The goal being to achieve counting behaviour in
all environments applied, i.e. the same functionality. In this
case, a life-time fitness evaluation was used. This is simi-
lar to those performed in Tufte and Haddow (2007a) where
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Figure 3: Evolved in a set of initial random environment. Exposed to random environments. No phenotypic plasticity
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Figure 4: Evolved in a set of initial random environment. Exposed to random environments. Phenotypic plasticity introduced

different environments were used but here environment may
also affects the developing phenotype directly.
In all experiments the final fitness score was based on

the organisms counting behaviour throughout its life time.
The development process was apportioned 100 development
steps. Each development step was set to include 100 state
steps. The maximum size of the organism was set to 1024
cells in an array of 32 by 32 cells.
The experiments were executed on a cPCI machine in-

cluding a PC running the GA. The development process and
functional behaviour of the cellular array was executed on
an FPGA (Tufte and Haddow, 2005).

Experiment one: no Phenotypic Plasticity
The first experimental results are taken from
Tufte and Haddow (2007a). In this work no environmental

information was included in the gene regulation. The work
compared the robustness of evolved organisms developed
in environments with different degree of environmental
fluctuations. The span of environments ranged from a single
environment for all organisms to set of environments as
used herein. The goal of the experiment was to evolve
genomes that could develop into organisms that survived
in different environments. This was archived by exposing
the evolving organisms to different environments. The
presented results are for comparison with results obtained
by a development model that can include environmental
information in the gene regulation.

In Figure 3 the results of the experiment
in Tufte and Haddow (2007a) are shown. The plots
show the results for each of the ten runs. The fitness score
of the respective evolved genome is plotted in black in
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(a) Phenotype at DS
100.
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(b) Gene activity.
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(c) Behaviour with no environ-
mental fluctuations.
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(d) Behaviour with environmen-
tal fluctuations.

Figure 5: Comparing behaviour of a developing organismwith and with out applying environmental changes. No environmental
information in the gene regulation.

each run plot. The grey bars show the performance of the
genome if re-developed in ten new randomly generated
environments.
These genomes have not specialized to a given environ-

ment and their behaviour are quite similar for most of the
environments the genomes was re-developed in. Some runs,
i.e. run1 and run8, show a short counting sequence. How-
ever, the deviations from the evolved results are low.

Experiment two: Including Phenotypic Plasticity
In this experiment environmental information was included
in the gene regulation. The extension to include environ-
mental information may be illustrated by changing the in-
formation available for the development process from the
set-up in Figure 1(a) to 1(b).
The results of experiment two are shown in Figure 4. The

plots for each run are obtained and presented in the same
way as for the previous experiment.
The fluctuation in performance for some runs, e.g. run5

and run8, is product of evolved dependency on specific envi-
ronmental data. Such dependency can cause poor perform-
ing phenotype structures or competing counters cancelling
out each other.
In Figure 7 the best evolved genomes, i.e. longest counter

performance, of the two experiments are compared to the
mean performance of the same genome developed in ten
random environments. In addition the mean performance
for all experiments developing in a random environment is
shown. Comparison of the results for phenotypic plasticity
vs. no plasticity shows an improvement for the best genomes
including environmental information in the gene regulation
when re-developed in a set of new environments. However,
the mean of all runs shows an almost identical performance.

Experiment three: Exposure to Environmental
Fluctuations during Development
The third experiments may be an extreme case for environ-
mental fluctuations. The genomes evolved in experiment
one and two are re-developed in an environment where fluc-
tuations are enforced during development. External infor-
mation is applied as an enforced random state to 1/4 of the

cells (empty or within the organism) available. The external
changes in cell state are applied at an early stage of develop-
ment (DS 25), in the middle of the organisms life time (DS
50) and at a late stage of development (DS 75). The cells in-
fluenced are defined as an array of 16 x 16 cells in the centre
of the cellular array.
In nature most organisms of a given species develops in a

rather uniform environment. The species has evolved within
an environmentwhere the species is a result of evolution and
possible environmental changes over time. As such, large
unpredicted fluctuations on the single individual level is not
the main concern. However, if artificial cellular organism
for computation are considered with the external informa-
tion used as data. The external information enforced into
the system is on the individual level, i.e. an organism as a
computational machine.
Figure 5 presents the result of introducing changes en-

forced externally to a genome from experiment one (no phe-
notypic plasticity). The resulting phenotype is shown in Fig-
ure 5(a). Since the development model used in this experi-
ment does not take the environmental information into the
gene regulation the phenotype structure is equal for all envi-
ronments. Figure 5(b) illustrates the gene activation for the
presented phenotype. The plot presents the gene activation
pattern during development together with the number of ac-
tive rules at each development step. Rule numbers from 0 to
31 are placed on the left Y-axis. The mark (+) in the plot in-
dicates that the rule was activated at the given development
step. The right Y-axis shows the number of cells in the or-
ganismwith an active rule on a given development step. The
number of active rule cells is illustrated by the plotted line.
The gene activity is constant for all environments.
The plot in Figure 5(c) show the counting sequence length

achieved at each development step with no enforced envi-
ronmental changes. As shown the organism develops a fluc-
tuation counting between DS 26 and 58 there after the count-
ing sequence is stabile throughout the life time of the organ-
ism. If the genome develops in a changing environment the
result is quit different as illustrated in Figure 5(d). The en-
vironmental changes are enhanced by the arrow lines. In
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(a) Phenotype at DS
100 with environmen-
tal fluctuations.
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(b) Gene activity with environ-
mental fluctuations.
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(c) Behaviour with environmen-
tal fluctuations.

(d) Phenotype at DS
100 no environmental
fluctuations.
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(e) Gene activity no environ-
mental fluctuations.
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(f) Behaviour no environmental
fluctuations.

Figure 6: Comparing gene regulation and behaviour of a developing organism with and with out applying environmental
changes. Environmental information included in the gene regulation.

the example the organism tolerate the first shift in the en-
vironmental information. However at DS 50 when the sec-
ond change is enforced the organism’s functionality is hardly
present as the counting sequence drops. The last environ-
mental change at DS 75 does not cause any major change in
behaviour.
The result of applying external information during devel-

opment for the development model capable of phenotypic
plasticity is shown in Figure 6. In contrast to the results pre-
sented for no phenotypic plasticity the environment influ-
ence on gene regulation results in a possibility for environ-
mental influence on the cellular composition of the pheno-
type. As such, the resulting phenotype depends on the envi-
ronment present. Figure 6(a) show the phenotype developed
in an environment with fluctuations. In Figure 6(b) the gene
activation plot for the phenotype is presented. The enforced
environmental fluctuations are illustrated by the arrow lines.
The emergent counter sequence is presented in Figure 6(c).
To highlight the presence of environmental information

in the gene regulation a candidate phenotype for the same
genome developed in an initial random environment, i.e.
developed with no enforced fluctuation, are shown in Fig-
ure 6(d). The corresponding gene activation plot for the
shown phenotype is given in Figure 6(e). Figure 6(f) show
the emergence of counting behaviour for the presented phe-
notype developed in the given random environment.
In contrast to the results presented for the development

model with no environmental influence phenotypic plastic-
ity can here be observed by the two different phenotypes

arisen from the same genome. The source for the variation
in phenotypic structure is the difference in gene activation
caused by the extra environmental information. If the gene
activity in Figure 6(b) and 6(e) are compared the affect of
the fluctuations during development alter the timing of acti-
vation of different rules and the number of cells with active
rules at different stages of the development of the organism.
The functionality of the organism given in Figure 6(c) and

6(f) show that the counting sequences are not identical but
here the fluctuations introduced are not causing permanent
damage to the functionality. The enforced changes may
cause fluctuations in the counting sequence length but the
developing organism achieves a stable behaviour.
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Figure 7: Experiments with possible phenotypic plasticity
compared with the developmentmodel with no such feature.

In Figure 7 the result of introducing enforced environmen-
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tal changes to the sets of best genomes are shown. In exper-
iment three there are no evolved best result. As such, the
mean of the best series and the mean of all runs with and
without the possibility to exploit phenotypic plasticity are
presented.

Conclusion
Including environmental information into the gene regula-
tion mechanisms itself may be a way to achieve organisms
that can respond to environmental changes during devel-
opment. Organisms that can dynamically tune the cellular
structure by development in an interplay with the environ-
ment. The environmental information is not only influenc-
ing the phenotypic structure but also included in the making
of the behaviour, i.e. computation, of the artificial organism.
The results show a successful integration of evolution,

development and environment toward adaptive organisms.
Further, the introduction of additional external environ-
mental information, during development, shows how a de-
velopmental system can dynamically respond and adapt.
This adaptation is a result of the possibility to create dy-
namic phenotypes. Such phenotypes change their pheno-
typic structure as a response to external stimulus, here robust
computational behaviour.
In experiment one and two the expansion of the develop-

ment model to include environmental information found in-
dividual genomes that have an increased performance. How-
ever the general result of all runs in the experiments are al-
most identical. As stated, comparing these two results are
difficult due to the change in search space and the extended
regulation caused by the environmental information. As
such, the fact that the inclusion of environmental informa-
tion results in better individual solutions and that the EAwas
capable of keeping up the performance with the increased
genome size indicate that the environmental information is
exploitable.
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Abstract

Social learning is a potentially powerful learning mechanism
to use in artificial multi-agent systems. However, findings
about how animals use social learning show that it is also pos-
sibly detrimental. By using social learning agents act based
on second-hand information that might not be trustworthy.
This can lead to the spread of maladaptive behavior through-
out populations. Animals employ a number of strategies to
selectively use social learning only when appropriate. This
suggests that artificial agents could learn more successfully if
they are able to strike the appropriate balance between social
and individual learning. In this paper, we propose a simple
mechanism that regulates the extent to which agents rely on
social learning. Our agents can vary the amount of trust they
have in others. The trust is not determined by the performance
of others but depends exclusively on the agents’ own rating
of the demonstrations. The effectiveness of this mechanism is
examined through a series of simulations. We first show that
there are various circumstances under which the performance
of multi-agents systems is indeed seriously hampered when
agents rely on indiscriminate social learning. We then inves-
tigate how agents that incorporate the proposed trust mecha-
nism fare under the same circumstances. Our simulations in-
dicate that the mechanism is quite effective in regulating the
extent to which agents rely on social learning. It causes con-
siderable improvements in the learning rate, and can, under
some circumstances, even improve the eventual performance
of the agents. Finally, some possible extensions of the pro-
posed mechanism are being discussed.

The Ecology Of Social Learning
Throughout the animal kingdom individuals exploit infor-
mation that has been gathered by others. Animals from
invertebrates (reviewed in Leadbeater and Chittka, 2007;
Leadbeater et al., 2006; Fiorito, 2001) to great apes and
humans (e.g. Tomasello, 1999; Whiten et al., 2007; Bon-
nie et al., 2006) exhibit forms of social learning1. The
widespread use of social learning among taxa is caused by
its enormous ecological advantages in many circumstances
(see for example Kendal et al., 2005; Coolen et al., 2005;
Bonnie and Earley, 2007, and references therein). Evolution

1Here, on theoretical grounds, taken to include the use of public
information. See Bonnie and Earley (2007) for a discussion.

favored social learning because it might allow individuals to
be flexible and adaptive learners while avoiding the dangers
associated with individual exploration (Boyd and Richard-
son, 1988; Zentall, 2006). Ecologists typically stress the fact
that individuals benefit from copying behavior from others
because it saves them the costs of asocial learning (Laland,
2004). Indeed, Zentall (2006) remarked that the behavior
of others has often already been shaped by its consequences
and might therefore be assumed to be safe to copy.

Unsurprisingly, social learning comes in many flavors.
Various forms of social learning have been identified (Zen-
tall, 2006) and the underlying mechanisms range from fairly
simple to utterly complex (Noble and Todd, 2002). How-
ever, when studying the dynamics and ecological properties
of social learning one can ignore the differences in imple-
mentations and consider underlying exchange of informa-
tion only (Coussi-Korbell and Fragaszy, 1995). This made
it possible to evaluate the advantages of social learning in
theoretical studies focusing on the game-theoretic aspects.

This line of theoretical research, supported by empirical
findings in animal behavior, has shown that the advantage
of social learning is by no means universal. Social learning
is advantageous only if one takes certain precautions (La-
land, 2004; Galef and Laland, 2005). The fundamental prob-
lem is that social learning can support the spread, acquisi-
tion and the persistence of maladaptive behavior (Giraldeau
et al., 2002). This is because social learners re-use informa-
tion gathered by others but do not collect new information
themselves. Therefore, they are implicitly assuming that the
information they gather from others is reliable. There are
several circumstances under which this assumption does not
hold (see Giraldeau et al., 2002; Laland, 2004; Leadbeater
and Chittka, 2007, for reviews and references). Second hand
information can be, amomg others, incomplete, outdated, bi-
ased or utterly wrong.

Instead of animals relying on social learning whenever
they can, evidence clearly shows that they are somewhat re-
luctant to use social information unless there is a good rea-
son to do so (Galef and Laland 2005, see Laland et al. 2005
for a short discussion of a striking example in sticklebacks).
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Animals (including humans, see Koenig and Harris 2005)
employ certain selection strategies to control the copying of
behavior. This allows them to use social learning in an in-
telligent fashion, avoiding its potential pitfalls. Because of
this, examples in which social learning leads to maladaptive
behavior are rather scarce in the literature on animal behav-
ior. The most clear examples of social learning supporting
maladaptive behavior are obtained under experimental cir-
cumstances where the, usual adequate, strategies fail (e.g.
Laland and Williams, 1998; Pongrcza et al., 2003). Such
experiments can uncover the strategies adopted by animals.

Laland (2004) found that guppies were induced to take a
longer, less efficient, route to a feeding site if others were
doing this also. In contrast, single guppies learned quickly
to take a shorter route. In the context of the experiment the
socially transferred behavior was clearly maladaptive. How-
ever, in natural circumstances, choosing the same route as
others is a good strategy since it protects against predation
by forming shoals. The guppies’ strategy to conform leads
them to adopt longer routes but this is clearly an advan-
tageous strategy if considered in the ecological context in
which it evolved.

Opposed to the conformity bias observed in guppies,
some experimental results show a selective use of social
learning. Capuchin monkeys do not resort to social learn-
ing if the problems they are challenged with (e.g. opening
a box) are easy to solve. In contrast, when faced with a
difficult task they will copy the behavior of others more fre-
quently (see Laland, 2004, for references and a discussion).
Presumably, monkeys are more willing to use the potentially
flawed social information if asocial learning is costly. This
shows that these animals do not assume a priori that social
information is correct and reliable (and thus worthwhile to
copy). Instead they adopt a trade-off between learning so-
cially and individually taking into account possible costs and
gains. See Laland (2004) for more examples of selective so-
cial learning in animals.

While the literature on animals shows relatively few in-
stances of maladaptive social learning under natural cir-
cumstances, humans, who rely far more on social learn-
ing (Tomasello, 1999) than any other animal, provide many
more examples (Boyd and Richerson, 2006). Obvious can-
didates are the social transfer of tobacco and drug use, re-
ducing fertility and endangering fetus development. But also
other, less dramatic, socially transferred behavior could re-
duce fitness in humans.

Social Learning in Artificial Agents
Recently, different authors have begun to explore the use
of social learning as a way of instruction in artificial multi-
agent systems (e.g. Acerbi et al., 2007; Pini et al., 2007; Bel-
paeme et al., 2007; Noble and Franks, 2002; Alissandrakis
et al., 2004).

In a multi-agent setting, artificial agents could search con-

currently for a solution for a given problem (e.g. how to
pick up food). Once a single agent has found a solution, this
innovation could be copied by others and could propagate
through the population. In this way, social learning could
drastically reduce the total number of learning trials needed
for a population of artificial agents to solve a problem (Pini
et al., 2007). Innovations in groups of animals are known to
spread in the same way (e.g. Bonnie et al., 2006; Bonnie and
Earley, 2007; Leadbeater and Chittka, 2007).

Though this argument rightfully assumes that social learn-
ing has attractive properties, it was also argued above that
this is certainly not true in all circumstances. In fact, as said,
animal behavior data suggest that social learning should
be only engaged in sparsely and with great caution (La-
land, 2004; Galef and Laland, 2005; Leadbeater and Chittka,
2007).

Reasoning by analogy, we can hypothesize that a success-
ful learning strategy for artificial agents should strike a care-
ful balance between different types of learning. This sug-
gests that the learning performance of artificial agents can
be improved by mechanisms that restrict social learning to
circumstances under which it is appropriate.

Experimental Setup
We have investigated the question how agents can balance
social and individual learning by simulating a very simple
world with a number of agents. The agents in this world
have been equipped with a mechanism that regulates the ex-
tent to which they rely on social learning. The fundamental
risk in social learning is to act on untrustworthy information.
Therefore, we equip agents with the possibility to change the
level of trust they have in the demonstrations of others. This
in turn determines their reliance on social learning.

We investigate the learning behavior of the agents by com-
paring their performance in simulations for various condi-
tions. In all conditions we consider two populations of
agents that have the same cognitive architecture. The first
population is born before the second one, and has there-
fore already acquired some level of experience in the sim-
ulated world when the second population is initiated. The
experimental conditions modeled differ in two important re-
spects: (1) the protective trust mechanism employed and (2)
whether both populations must learn the same task, or dif-
ferent tasks.

The Trust Mechanism
All agents have the same cognitive architecture (schemati-
cally represented in figure 1) and operate in a world in which
a limited number of percepts (situations) can arise. Agents
can respond to each percept using one of limited set of ac-
tions. Once this action is performed, the world returns a
reward to the agent. The agents learn both individually and
socially which action to perform in response to each percept.
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Figure 1: The cognitive architecture of the agents in the simulations and their relationship with the environment.

The behavior of our agents can be captured by a few sim-
ple rules. When learning individually this is what happens
(the numbers correspond to the ones in figure 1):

• An Agent is confronted (1) with a randomly chosen per-
cept p.

• The Agent chooses (2) an action a with which to respond
to the percept p based on its policy P. The policy P defines
the probability of an action a given a percept p.

• The world responds (3) to this action with the appropriate
reward as given by the world pay-off function V .

• Based on this returned (3) reward, the estimated pay-off
Qpa for choosing the action given the percept is adapted.

• The Agent updates (4) its policy P, effecting incremental
changes to the probabilities for the various actions given
the percept p, based on the changed estimates of the pay-
offs.

When learning socially, this sequence of events take
place:

• An Agent observes (5) what an other agent perceives
(percept) and how it reacts (action).

• Based on its own estimated pay-offs Q for the given per-
cept, the Agent updates (6) its trust in the observed other.

• The Agent updates (7) its policy P for the given percept
dependent on the trust it has in the other.

So, while learning individually, the agent builds an esti-
mate Qpa of the rewards obtained by executing each of the
actions a when confronted with a percept p. This estimate
determines its action policy.

During social learning, the agent copies the behavior of
other agents whose actions it observes. However, the extent

to which the behavior of others influences the agents’ own
policy, depends on the level of trust. The more an agent
trusts the other, the more given observations will change its
action policy P. Therefore, the trust level, which changes
over time, regulates the extent to which agents rely on social
learning.

Our agents increase the trust they have in others if the
perceived behavior is in line with their own estimates of the
rewards. If an agent perceives another responding to a per-
cept with an action which itself thinks to be rewarding, the
level of trust will rise. So, the more an agent sees others per-
form according to what it itself thinks is a rewarding policy,
the more it will trust and copy them.

Simulations
Methods: Agents & World
In this section we describe the algorithm and settings of the
simulations in detail.

The simulated world contains a fixed number of possible
percepts. Agents can select one of small number of actions
to respond to a given percept.

When an agent is confronted with a certain percept p it
performs an action a. Subsequently, it receives a reward
from the world. This reward is given a value Vpa stored in a
matrix V. The values Vpa characterize the properties of the
interaction between the agents and the world. In the present
simulations, for any given percept p only one of the values
Vp. is set to 1 (see table 1 for examples). The others are set
to -1. The action a for which Vpa = 1 determines which
action an agent should perform when observing the percept
p.

Each artificial agent has the same cognitive architecture
(schematically represented in figure 1). These are the three
central structures:

• a matrix P containing the current action policy,
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• a matrix Q containing the pay-offs as estimated by the
agent,

• a value T reflecting the trust level of the agent in others.

The matrix P gives, for each percept p and action a, the
chance of an agent choosing this action a when confronted
with this percept p (see equation 1). Agents are supposed
to learn the optimal policy P that goes with the rewards as
specified by matrix V. Matrix P is initialized with random
values between 0 and 1 with the constraint that each row
must sum to 1.

The matrix Q contains an estimate of the matrix V that is
progressively constructed by the agent over the course of a
simulation. This matrix is initialized containing only zeros.

The level of trust T of an agent is given by a value be-
tween 0 and 1. At the start of the simulation T is 1 which
signifies that initial trust is total2.

P =




P (a1|p1) . . . P (an|p1)
. . . . . . . . . . . . . . . . . . . . . . . . . .
P (a1|pm) . . . P (an|pm)



 (1)

Q =




Qp1a1 . . . Qp1an

. . . . . . . . . . . . . . . . . . . .
Qpma1 . . . Qpman



 (2)

In these simulations time is represented by an integer. At
each time tick all agents are updated one by one (in a random
order). In each cycle of the model each agent performs a sin-
gle individual learning trial and may perform several social
learning trials. This reflects the assumption that social learn-
ing is cheaper than individual learning. In the presented sim-
ulations, social learning does not restrict an agent’s opportu-
nity to learn individually. This will capture most biological
(see Laland, 2004, for a discussion) and artificial situations
to a certain extent. So, in our simulations, social learning is
modeled as an additional learning method besides individual
learning.

At each tick of the model all agents learn individually.
Each agent is presented with a random percept. The agent
selects one of the possible actions to respond to the percept.
The chance P (a|p) is given by the agent’s matrix P.

After selecting an action p the world returns a reward Vpa.
Based on this reward, the estimated pay-off Qpa is updated.
The update is governed by equation (3). In this equation αQ

is a step size parameter for updating the estimated pay-off
matrix Q.

∆Qpa = αQ(Vpa −Qpa) (3)

After updating the estimated pay-off matrix Q, the pol-
icy P is updated according to equation (4). The parameter

2This is by no means essential for the behavior of the model.
Results similar to the ones reported in the next section, were ob-
tained by setting T , where appropriate, initially to 0.

αI is the individual learning speed. Equation (4) augments
the chance of picking action a given a percept p for which
the estimated pay-off is currently the largest. Of course, it
also decreases the chance of picking any of the other actions.
This form of updating action policies is known in the liter-
ature on reinforcement learning as pursuit learning (Sutton
and Barto, 1998).

{
for a = arg maxa Qpa : ∆P (a|p) = αI(1− P (a|p)),

∀a′ #= a : ∆P (a′|p) = αI(0− P (a′|p)).
(4)

After updating its policy P, an agent stores p and a for
later consultation by other agents during social learning.

After all agents have learned individually, all agents may
perform several social learning trials. Whether they do so
or not depends on the specific settings of the simulation (see
later).

To learn socially, an agent randomly selects an agent to
learn from and consults its latest action and percept. Social
learning is modeled as a two-stage process. First, the ob-
serving agent updates its trust level. It consults the action a′

and the percept p′ stored by the observed other. The trust is
updated based on the agents Q and P matrices according to
equation (5). In this equation αT is the step size for updating
T . The trust values are constrained to lie between 0 and 1.

∆T =

{
−αT if

∑
a[P (a|p)×Qpa] ≤ Qp′a′ ,

αT if
∑

a[P (a|p)×Qpa] > Qp′a′ .
(5)

Second, after updating the trust level, the observing agent
updates its value Ppa according to equation (6) with T de-
noting the trust level the agent has in the observed other. The
parameter αS is the step size governing social learning.

{
for a :∆P (a|p) = αS × T × (1− P (a|p)),
∀a′ #= a :∆P (a′|p) = αS × T × (0− P (a′|p)).

(6)

Selecting an agent to learn from socially is done in the
following way. Each agent randomly selects a single agent
to learn from and social learning is done as specified above.
This is repeated 20 times. An agent can by chance choose
an agent to learn from that it has choosen in a previous
repetition. However, note that the behavior of this agent
might have somewhat changed in the meantime because it
has learned socially as well.

As experimenters we evaluate an agents policy by cal-
culating the expected performance E according to equation
(7).

Ei =
∑

p

∑

a

P (a|p)× Vpa (7)

Note that in the current simulations no influence of the
spatial distribution of the agents was incorporated.

Artificial Life XI 2008  635 



Actions
Values 1 (V1) Values 2 (V2)

Actions Actions
Percepts 1 2 3 4 1 2 3 4

1 1 -1 -1 -1 -1 -1 -1 1
2 -1 1 -1 -1 -1 -1 1 -1
3 -1 -1 1 -1 -1 1 1 -1
4 -1 -1 -1 1 1 -1 -1 -1

Table 1: The two Vpa matrices in the form of tables used in
the reported simulations.

Experimental Simulations
We ran various simulations to explore the properties of the
model and to investigate whether and under what circum-
stances the trust mechanism protects learners against acquir-
ing faulty information.

In these simulations, the agents are required to learn the
profitable policies in a world where there are 4 possible per-
cepts with 4 possible actions each. For each percept only
one action has a good outcome (Vpa = 1).

Because we also want to experiment with situations where
different populations need to perform different tasks, we
need to define two different types of interaction with the
world. This is done through two different reward matrices
Vpa as given in Table 1.

All simulations are run for 200 time ticks. The simula-
tions consist of two stages. First, an initial population (Pop-
ulation 1) of 21 agents is trained. After 50 ticks, another 21
agents (Population 2) are added to the population.

In each simulation Population 1 and 2 can either learn so-
cially (αS = 0.1), individually (αI = 0.1, αQ = 0.1) or
both (αS = 0.1, αI = 0.1, αQ = 0.1). If a learning strategy
is not being used, the corresponding learning rate α is set to
0. If agents use social learning, they select 20 agents to learn
from. This means that these agents have 20 social learning
opportunities for each individual learning opportunity.

Simulations also differ with respect to the update of the
trust value. Trust values could either be updated (αT = 0.1)
or not (αT = 0).

An overview of the settings of the simulations can be
found in table 2.

Simulation Results
The results of some of our simulations are plotted in figure
2. Figure 2(a) shows how performance changes over time,
while figure 2(b) gives an insight into the development of
trust values (where appropriate).

First, we want to demonstrate that our setting is indeed
one where social learning can be advantageous. To this end
we have simulated a situation where two populations need
to perform the same task. Population 1 only learns individ-
ually, and population 2 also learns socially. The result are

shown in simulation 1 of figure 2(a). As we can see from
these results, when Population 2 is introduced into a popu-
lation of reasonably instructed agents, social learning allows
it to quickly catch up with them. Population 2 learns more
rapidly than Population 1 by using both individual and social
learning and catches up with them in about 20 time ticks.

In Simulation 2 we consider a situation where both pop-
ulations learn individually and socially. This simulation
shows that social learning is not advantageous under all cir-
cumstances. At the beginning of the simulation, the perfor-
mance of Population 1 is actually hampered by the use of
social learning. Population 1 learns slower in simulation 2
(with social learning) than in simulation 1 (without social
learning). The reason for this is off course that, in simula-
tion 2, the social learning process is also copying erroneous
information.

In simulation 3 we considered a situation where popula-
tion 1 and population 2 have to learn different policies. As is
to be expected, here the learning performance is even worse
than in simulation 2. After the introduction of Population
2, the performance of Population 2 is actually decreased be-
cause it copies the flawed demonstrations of Population 1.
Also, in contrast to what happens in simulation 2, Popula-
tion 1 is now unable to regain its original level of perfor-
mance because the more population 2 learns, the higher its
faulty influence. In the end, the behavior of the two pop-
ulations converges to a trade-off between the two optimal
policies which is optimal for neither of them. The cause for
the suboptimal performance in simulations 2 and 3 is that
agents copy others even when these are not performing very
well or even when they demonstrate a faulty policy. This is
exactly what the trust mechanism is supposed to prevent.

The remaining simulations do incorporate different ver-
sions of the proposed trust mechanism. In simulation 4, we
have copied the situation of simulation 2, but now both pop-
ulations have a trust mechanism. As can be seen the mecha-
nism is clearly advantageous to both populations.

To better understand what happens here, we plotted the
dynamic behavior of the trust values in figure 2(b). Ini-
tially, Population 1 is trusting others (of the same popula-
tion). However, agents quickly discover that demonstrations
are not trustworthy. They respond by decreasing their trust
level a bit (from 1.0 to 0.6). This allows agents to attain
a performance level, through individual learning, at which
their demonstrations are accurate enough to be trusted again.
After about 20 ticks, the trust levels of the agents start to rise
again re-enabling social learning to its full extent. A similar
sequence of events is repeated at the introduction of Popula-
tion 2. The trust levels are reduced to about 0.8 after which
they rise again to 1.0. The trust mechanism makes sure that
agents perform well enough before they start relying on so-
cial learning (again). This causes social learning to be used
only if adequate. This significantly increases the learning
speed (compare Population 1 in Simulation 1 and 4).

Artificial Life XI 2008  636 



Population 1 Population 2
Simulation Ind. Soc. Trust Update V Ind. Soc. Trust Update V

Simulation 1 Yes No No V1 Yes Yes No V1

Simulation 2 Yes Yes No V1 Yes Yes No V1

Simulation 3 Yes Yes No V1 Yes Yes No V2

Simulation 4 Yes Yes Yes V1 Yes Yes Yes V1

Simulation 5 Yes Yes Yes V1 Yes Yes Yes V2

Simulation 6 Yes Yes Yes V1 Yes Yes Yes V1

Simulation 7 Yes Yes Yes* V1 Yes Yes Yes* V2

Table 2: The parameter settings in the seven simulations. When social or individual learning is used by a population in a given
simulation the corresponding learning rate α is set to 0.1. V1 & V2 are given in table 1. *: agents store a separate trust value T
for each population.
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Figure 2: The results of the simulations across 50 runs. Subfigure (a): The mean performance level in simulations 1-7. The
vertical line denotes the time tick at which Population 2 is introduced in the model. The lower horizontal line gives the expected
performance of an agent with a randomized P matrix (being -2). The upper horizontal line gives the maximum performance
an agent can attain (being 4). Subfigure (b): The mean trust level in simulations 4-7. The vertical line denotes the time tick at
which Population 2 is introduced in the model.
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In simulation 5, we recreate the situation of simulation
3, but now with a trust mechanism. As one can see, the
trust mechanism is not capable of completely solving the
problems arising in simulation 3: the final performance of
the agents in simulation 5 is slightly better than in 3, but still
sub-optimal.

In the plot of the trust levels in figure 2(b), it can be seen
that the trust levels converge to 0.5. This is caused by having
half of the agents demonstrating a faulty policy and half a
correct one. The agents cannot improve their performance
because they cannot discriminate between trustworthy and
untrustworthy agents.

Simulations 6 and 7 are identical to 4 and 5 but for the
introduction of a separate trust value for each population.
Every agent is equipped with two T values. This means that
each agent can have a different level of trust in the members
of Population 1 versus the members of Population 2.

Maintaining seperate trust values for the two populations
has only a negligible effect in a situation in which both
agents have to learn the same task (simulation 4). In sim-
ulation 6 the dip in the performance associated with the in-
troduction of Population 2 is somewhat shallower than in
simulation 4. Otherwise the results of simulation 4 and 6 are
fairly similar. However, being able to discriminate between
different types of agents allows the agents in simulation 7 to
perform much better than in simulation 5. Now, both popu-
lations are able to achieve a perfect score.

Discussion
The results indicate that the proposed trust mechanism is ca-
pable of regulating the extent to which agents rely on social
learning. Equipping our agents with the mechanism boosts
their performance in situations where social learning is po-
tentially disadvantageous (i.e situations in which demonstra-
tions are untrustworthy).

Interestingly, the trust mechanism, as it is proposed in
this paper, is a biologically plausible strategy. Humans, but
also animals (e.g. Cheney and Seyfarth, 1988), learn more
if they trust the source of information (See Carpenter and
Call, 2007, for additional references). Koenig and Harris
(2005) report experiments in which children from the age of
4 learned the names of novel objects from people who have
shown to be trustworthy earlier in the experiment. They do
not endorse names supplied by people who earlier misnamed
known objects (e.g. naming a ball as a shoe). So, while
adapting trust is a strategy that is, as yet, not widely studied
in animal behavior, some empirical findings support that it
is indeed being used. Further research might discover more
instances in which trust is a important factor in human and
animal social learning.

It is important to note explicitly that the presented trust
mechanism differs from social learning strategies that seek
to copy high performant demonstrators. For example,
Schlag (1998) proposed that social learning agents (animals)

should copy others if they are performing better than they are
themselves (copy-if-better). However, this requires agents to
be able to assess the performance of others, which might not
be easy to do (Laland, 2004), especially for artificial agents.
The form of trust introduced in the current paper does not re-
quire agents to evaluate the performance of others. Instead,
agents trust others if they act in the same way as they would
given the same percept. Simulation 7 serves as a demon-
stration of the difference between acting based on trust or
the performance of others. In the second phase of the sim-
ulation (after tick 50), Population 1 is clearly performing
better than Population 2. Nevertheless, Population 2 quickly
looses its initial trust in Population 1 and stops copying its
behavior. In contrast, Population 2 has more trust in itself. If
performance would dictate social learning, all agents should
be copying Population 1.

Finally, we think that much of the strength of the proposed
mechanism lies in the fact that it can be extended in various
interesting ways. We list two of the extensions we consider
the most interesting.

First, a fundamental feature of the proposed trust mecha-
nism is that it generalizes over all percept-action pairs. This
is to say, an agent that learns to trust another by observ-
ing its response to a given percept p, also trusts the others
response to all other percepts p′. This behavior is in con-
cordance with the findings in children reported by Koenig
and Harris (2005). Indeed, it is hard to see what would be
the function of a trust mechanism that does not generalizes
across stimuli. In the current simulations, this property of
the model is not fully exploited. Generalizing across stimuli
might enable agents, just like their biological counterparts,
to learn socially about significant but rare stimuli. Some
stimuli might not occur frequently enough for agents to learn
individually from these instances. However, by observing
how other agents, that are judged trustworthy, react to the
stimuli, agents could assemble enough learning trials to as-
sociate a proper response with these stimuli. One possible
extension of the presented work could explore the behavior
and the value of the model under such circumstances

Another interesting extension, already hinted at in simu-
lation 7, would be to increase the number of trust values that
agents maintain. In the extreme case, an agent could have
a trust value associated with each other agent in the popu-
lation. Trust levels associated with individual agents would
enable agents to form trust networks directing the flow of in-
formation that is spread through social learning (See Coussi-
Korbell and Fragaszy, 1995, for a seminal paper on directed
social learning). Also, agents could learn which individuals’
behavior is worthwhile to copy (see Dautenhahn and Ne-
haniv, 2007).

In conclusion, we presented an extendable mechanism
that allows agents to regulate their reliance on social learn-
ing. The mechanism to boost the performance of agents in
multi-agent settings that incorporate social learning. Impor-
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tantly, the mechanism does not require agents to be able to
judge whether the actions of observed demonstrators have a
favorable outcome.
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Abstract

GasNet artificial neural networks can be used as complex
neurocontrollers involving virtual chemical neuromodulation
as well as synaptic interaction. The aim of this paper is to fur-
ther explore the role of space in GasNet models on a delayed-
response robot task. Comparative results demonstrate that the
use of spatial constraints is not a prerequisite for a good per-
formance of the original model in terms of speed of evolution.

Introduction
Evolutionary robotics allows us to explore complex dynam-
ical neural processes and architectures that connect to in-
teresting issues in neuroscience (Nolfi and Floreano, 2004).
The GasNet models can be considered as examples of such
complex neurocontrollers involving chemical neuromodula-
tion as well as synaptic interaction (Husbands, 1998). A re-
cently devised non-spatial GasNet model named NSGasNet
(Vargas et al., 2007) follows the same principles and had al-
ready been successfully applied as a robot controller where
the task did not require the controller to have a non-reactive
response (Moioli et al., 2008). This work attempts to further
explore this novel model in a delayed-response robot task,
in addition to compare it with the original GasNet model in
terms of evolvability. In essence, our aim is to investigate
whether the space embedding present in the original GasNet
is the main explanation for its success when applied to more
elaborate robot tasks.
We will present a comparison which follows the investiga-

tion started by Vargas and collaborators (Vargas et al., 2007).
In that work, the NSGasNet model has proven to have higher
evolvability with respect to the original model on a central
pattern generator task (CPG).
However, it is unclear whether the conclusions obtained

for the CPG task will carry over to more complex situations,
especially to cases involving an embodied agent. For this
reason, we decided to perform a comparative study on a
well-researched delayed-response task involving a T-Maze
(Husbands, 1998; Jakobi, 1993, 1997; Ulbricht, 1996).
Our results corroborate the fact that the use of spatial em-

bedding is not a prerequisite for better performance either

in terms of speed of evolution or in robustness. This might
also indicate that the success demonstrated by GasNet mod-
els so far (Husbands et al., 1998; McHale and Husbands,
2004; Philippides et al., 2005) are not related to the spatial
embedding of nodes but maybe to the temporal dynamics
promoted by the gaseous diffusion amongst them.
We will start by briefly describing the original GasNet

plus the novel model, together with a summary of the previ-
ous results on a CPG task. Thereafter, we will describe our
experiment in detail including the respective network archi-
tecture and genetic encoding, together with the evolutionary
regime. After the results section we will provide a discus-
sion and propose future work.

Non-Spatial GasNet: NSGasNet
Since the introduction in 1943 of the first artificial neuron
model proposed by McCulloch and Pitts (McCulloch and
Pitts, 1943) most of the subsequent classical artificial neu-
ral networks (ANNs) architectures have employed numer-
ical synaptic interaction between their neurons. However,
recent findings in neuroscience have suggested the existence
of chemical signaling by gases that would play the role of
neurotransmitters (Gally et al., 1990). By drawing inspira-
tion from these latest discoveries, the GasNet model was in-
troduced by Husbands (1998) in an attempt to create a novel
recurrent artificial neural network, which seeks to combine
the electrical and chemical signaling onto a single network.
In the original GasNet model, the classical sigmoided out-

put function y = tanh(x) of each neuron at each time
step is modulated by a transfer function parameter k which
will define which curve from the family of eleven sigmoids
(x = [−4, 4]) will be employed during the network’s oper-
ation. The value of k is controlled by the concentration of
diffusing transmitter gas at a node following the network dy-
namics dictated by the network’s equations as described in
Husbands (1998).
Almost all GasNet parameters and variables are under

evolutionary control. The use of evolutionary computation
techniques to evolve ANNs is of fairly recent origin (Signals
et al., 1990; Whitley et al., 1990; Yao and Liu, 1997; Yao,
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Figure 1: Mean and standard deviations (error bars) of fit-
ness evaluations required to evolve successful networks for
each CPG pattern, Eleven-Seven, Eleven-Five, Ten-Four and
Seven-Five. Black bar shows original mean data and white
bar shows NSGasNet mean data. The numbers above each
error bar represent the total number of successfully evolved
networks within 50 runs (adapted from (Vargas et al., 2007))

1999). Following this initiative, GasNet models were partic-
ularly designed to ”evolve” for every task addressed. Hence,
the network size, topology and almost all its parameters are
under unconstrained evolutionary control.
Normally, depending on the task, the network is com-

posed of a variable number of nodes. Thus, a network is en-
coded on a variable-sized genotype, where each gene repre-
sents a network node. A gene consists of an array of integer
variables lying in the range [0, 99] (each variable occupies
a gene locus). The decoding from genotype to phenotype
obeys simple laws for continuous values and for nominal
values (Husbands et al., 1998).
Vargas et al. (2007) introduced a novel spatially uncon-

strained GasNet named NSGasNet, in which the nodes do
not have a location in a Euclidean space. Reminiscent of
how the gas neurotransmitter NO normally diffuses once
released (Gally et al., 1990; Wood and Garthwaite, 1996,
1994), in the NSGasNet model all emitted gases can spread
freely among neurons.
NSGasNet is a discrete time recurrent neural network,

which could be fully or partially connected with fixed or
variable number of nodes. This full or partial connectivity
refers to the synaptic connections. The gaseous connections
are defined in terms of sensitivity limits, which impose to
each network node a filter that regulates the strength of gas
modulation (Vargas et al., 2007). Thus, each node has its set
of sensitivity limits lying in the range [0, 1] of which val-
ues correspond to each node within the network. Although
the NSGasNet has a bias that modulates the concentration
of the gas at each node, the rules for how and when the gas

Figure 2: Schematic drawing of the robot and the T-Maze
environment with two corridors. The robot is represented by
the small circle and it is positioned in the bottom of the first
corridor facing north. On the right-hand side there is a beam
of light.

is emitted are the same as the original GasNet (Husbands,
1998).
In a previous work by (Vargas et al., 2007), this non-

spatial model has been successfully applied to a CPG task
where the network should evolve to generate a sequence of
cyclic output values from the set 0,1. Four patterns were
tested and in all of them the NSGasNet was demonstrated to
outperform the original spatially constrained GasNet Model
in terms of speed of evolution (Figure 1). Some preliminary
statistical analysis around mutants was performed to inves-
tigate the possible reasons for the best performance hypoth-
esising about the role of the fitness landscape smoothness.
A more profound analysis has been carried out in another
work using further statistical correlation analysis between
both models and the results will be submitted to publication
soon. This work on the other hand intends to apply both net-
work models to a more elaborate robot task to further assess
the role of space in the performance of GasNet models.

Methods: T-Maze and Evolutionary Regime
T-Maze with light task
The experiment is a delayed response task in which a robot
must learn to negotiate a T-Maze turning at the junction in
the correct direction after passing a beam of light located in
the first corridor either to the left or the right (Figure 2).
Therefore, the robot must ‘remember’ the position of the
light in order to successfully accomplish the task. This task,
and similar ones, have been used by various researchers to
endow artificial agents with minimal memory mechanisms
(Husbands, 1998; Jakobi, 1993, 1997; Lanzi, 1998; Ulbricht,
1996; Webb et al., 2003); in this context it is interesting
to note that it is still not well understood how biological
memory works (Wilson, 1994; De Zeeuw, 2005; Levenson,
2006).
For this task we make use of a dedicated 2D robot simu-

lator (Figure 3) of a Khepera II robot for the evolution of the
GasNet models. The Khepera II robot has two wheels and
two separate motors, 8 infra-red distance sensors (6 on the
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Figure 3: GUI of the robot simulator especially designed for
the T-Maze delayed response experiment. On the left, from
top to bottom, the interface shows a list to choose the Gas-
Net model of interest (e.g. original or NSGasNet) and the
specific run and generation; the best fitness per generation,
the network architecture in terms of synaptic and gaseous
connections and the robot within its arena. The right side of
the interface shows in time from top to bottom: the values of
the gas at site for two chosen nodes together with their func-
tion slopes, the values of the motor outputs, the values of the
light sensor reading, and the values of the distance sensors
reading

front and 2 on the rear) and 8 infra-red light sensors (6 on
the front and 2 on the rear) .
The robot implemented in our simulator is a simplified

model of a Khepera II robot and it was employed to avoid
the overloading of graphical encoding in order to speed-up
the simulations. It has 5 front distance sensors and 2 almost
diametrically opposite light sensors (Figure 4(a)). While im-
plementing the simulator, the two original front-most dis-
tance sensors were coupled (Figure 4(b)); hence, both sen-
sor readings have the same value during the simulation. This
was due to observations made during the design phase of the
simulator where both sensors readings presented the same
values most of the time.

Network Architecture, Genetic Encoding and
Evolutionary Regime
Both GasNet models, original and NSGasNet, were imple-
mented with a fixed number of nodes (total of 10 nodes).
The networks are partially connected in addition to hav-
ing genetically determined recurrent connections (Figure 5).
Nodes 1, 2, 3, 6, 7 and 8 have input from the robot distance
sensors S1, S2, S3, S5, S4 and S3, respectively. Nodes 4
and 9 have input from the left (L1) and right (L2) light sen-
sors, respectively (Figure 8). Nodes 5 and 10 are responsible

(a)

distance
sensors

distance and
light sensors

(b)

Figure 4: (a) Zoom of the T-Maze arena and the simulated
robot (black round shape) localized at the bottom of the first
corridor, facing north, and its five distance sensors stressing
their range. Distance sensors were numbered from left to
right: S1, S2, S3, S4 and S5 and light sensors: L1 - on the
left side and L2 - on the right side. The arena is composed of
two corridors forming a T-Maze and there is a beam of light
(shaded star shape) shining from the left side of the robot.
(b) Presents a schematic of the same robot illustrating the
disposition of the distance and light sensors.
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Figure 5: Pictorial example of a symmetrical partially con-
nected ANN for the T-Maze task with ten nodes. The net-
work receives external input from the sensors and supplies
output to the motors.

for the output to the robot motors (left (LM) and right (RM)
wheels, respectively).
Both networks have a symmetrical architecture meaning

that for the genetic encoding we will only have to evolve
half of the network. Hence, the original GasNet gene will
have 65 parameters for the entire network, i.e. 13 pa-
rameters times 5 nodes. Each node is coded as folows:
< gene >=< node >=< x >,< y >,< x1 >,<
y1 >,< x2 >,< y2 >,< rec >,< Es >,< Gt >
,< s >,< Gr >,< k0 > and < bias >, where
< x > and < y > are the node coordinates on the plane;
< x1 >,< y1 >,< x2 >,< y2 > specify the center of two
circles on the network plane defining the node spatial elec-
trical connectivity; < rec > is the recurrent status; < Es >
is the emitting status; < Gt > is the gas type; < s > is the
build up/decay rate; < Gr > is the gas maximum radius of
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Parameter T-Maze task
Mutation rate 8%
Fitness function FitnessT−Maze = d1 + d2 + bonus
Number of runs 40

Maximum number of generations 150
Population size 100
Genotype size 65 (Original)

100 (NSGasNet)
Trials 10

Number of evaluations per trial [70, 100]

Table 1: Evolutionary regime parameters employed on the T-Maze task.

emission,< k0 > is the transfer function default value and
< bias > is the bias value (Husbands, 1998).
The NSGasNet genotype does not have parameters related

to node coordinates, spatial electrical connectivity and maxi-
mum radius of emission, thus each NSGasNet gene will have
6 parameters for each node plus 10 values for the NSGasNet
sensitivity limits (10 nodes), which makes the totality of 80
parameters for the entire network, plus 2 times the maximum
number of allowed synaptic connections per node (to include
the node number and the synaptic connection weight). For
instance, if the maximum allowed number of synaptic con-
nections per node is 2, than the NSGasNet genotype will
have 80 + 5(2(2)) = 100 variables.
The choice of partially interconnected networks for this

task follows from previous works (Psujek et al., 2006;
Williams and Noble, 2006) and also from the preliminary
experiments on the T-Maze task where it was observed that
full connectivity produced a negative impact on the evolv-
ability of the networks for this particular task. The fully con-
nected networks were too sensitive to genetic operations and
initial conditions (e.g., the starting angle of direction) during
the evolutionary process; therefore, a successful controller
from one evaluation could hardly repeat its performance on
the next fitness evaluation.
We employed a distributed steady-state genetic algorithm

as described in (Husbands et al., 1998), who developed
the idea from an early work using distributed populations
(Hillis, 1990). The current population is updated steadily
during the evolutionary process, i.e. each offspring is placed
immediately into the current population (Whitley et al.,
1990), instead of an entirely new population being generated
and replacing the current population at a single time. Off-
spring were created through mutation operators (no recom-
bination was used) with a probability of (8%) for each gene
locus following a Gaussian distribution around its value for
non-nominal values and a random value for nominal values.
Non-nominal values refer to variables that have continuous
values and nominal for discrete values.
In order to gather statistics 40 runs were performed for

each model. One evolutionary run is composed of a maxi-

mum of 150 generations, or until successful genotypes are
produced. Each generation comprises of 100 reproduction
events or fitness evaluations.
The robot is tested for ten trials. Each trial is divided into

two phases, following Jakobi’s experiments set-up (Jakobi,
1997). The fitness value for phase 1 accounts for the dis-
tance d1 traveled by the robot in the first corridor (d1max =
200) and the fitness for the phase 2 is composed of the dis-
tance d2 traveled in the second corridor (d2max = 180)
plus a bonus if the robot turns to the correct direction. The
total fitness is the sum of the fitness at each trial divided by
the total number of trials. The only difference from Jakobi’s
fitness calculation is the bonus value, which is computed as
follows during the trials:

• 200 if the robot has turned to the correct side once;

• 500 if the robot has turned an equal number of times to
both sides, plus:

• +200 if the robot has turned four times to one side
and four times to the other side

• +500 if the robot has turned five times to one side
and five times to the other side

Therefore the maximum fitness has a value around 1, 380
according to 1. This new bonus scheme was devise for it
was observed that the evolution was very sensitive to the
bonus criteria which imposes a selection pressure. Possibly
this change was due to not implementing Jakobi’s minimal
simulations schema. Basically, this schema encompasses the
addition of a controlled degree of noise and uncertainty dur-
ing the evolution which will lead the robot to an improved
robust behaviour when transferred to the reality. However,
in these first robot experiments we are not concerned with
the reality gap but with the measure of the evolvability of
each GasNet model under noiseless circumstances. There-
fore, we do not add noise to our simulations, just the start
directional angle of the robot varies from trial to trial.

FitnessT−Maze = d1 + d2 + bonus (1)
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Figure 6: Mean and standard deviations (error bars) of gen-
erations required to evolve successful controllers for T-Maze
with light task. Black bar shows original mean data and
white bar shows NSGasNet mean data. The numbers above
each error bar represent the total number of successfully
evolved controllers within 40 runs.

Table 1 summarizes the parameter settings implemented
within the evolutionary regime.
The successful evolution of a controller is considered if

the robot obtains a fitness value that is greater than a thresh-
old of 1,260 over seven subsequent trials. A robot with such
fitness value has received the maximum bonus = 1, 000 for
having turned correctly in all 10 trials, plus the minimum
distances traveled in both corridors, which when added may
vary between [260, 380]. Runs that exceed 150 generations
were aborted.

Results
The statistical results over 40 runs for each model are graph-
ically illustrated in Figure 6. Black bar shows original mean
data and white bar shows NSGasNet mean data. The num-
bers above each error bar represent the total number of suc-
cessfully evolved controllers within 40 runs.
The NSGasNet outperforms the original GasNet model

in terms of number of succesful runs. The frequency his-
tograms portrayed at Figure 7 show that both distributions
are skewed to the right, thus not symmetric, the difference
between the mean and the median tend to spot a similar per-
formance in terms of speed of evolution for the robot task
between both models. However, the percentage of success-
fully evolved networks for the NSGasNet (37/40 = 92%)
is greater than the original (24/40 = 60%).
Concerning the network architecture, in contrast to the

NSGasNet model, the original model evolved less synaptic
connections and more gaseous connections (Figure 8).
Many NSGasNet networks and some original ones did not

make use of gases in the final evolved solution. When gases
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Figure 7: Frequency histograms comparison between the
original (a) and the NSGasNet (b) models over the number
of generations for the T-Maze task.

were at play, normally the nodes connected to the robot sen-
sor lights had a coupled gaseous connection. Therefore, both
nodes were making explicit use of gases to control the dy-
namics of each other and/or of other network nodes in re-
sponse to environment changes, e.g. source of light (Figure
9).
An analysis of the behaviour of the robot shows that some

of the successfully evolved controllers developed a reactive
response to the task. For instance, the robot starts to follow
the wall after passing the beam of light and thus, the robot
is using the wall as an external memory, instead of creating
an internal memory based on its internal state (Braitenberg,
1986; Nolfi, 2002). Naturally, this observation does not in-
validate our evolvability results of the GasNet models. It
only sheds some light on the potential requisite for an im-
proved way to assess the robot behaviour during evolution,
possibly in terms of a more elaborated fitness function.
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Figure 8: Picture of the simulation of an original GasNet
successfully evolved controller, highlighting its synaptic and
gaseous connections. There are few synaptic connections
and intricate gaseous connections.

Figure 9: Screenshot of the simulation of a NSGasNet suc-
cessfully evolved controller, highlighting its synaptic con-
nections on the left and NSGasNet bias values for nodes 1,
2, 3, 4, and 5 on the right (the bars refer to nodes 4 and 9,
respectively). Only nodes 4 and 9 are gas emitters. Remem-
ber that these are the nodes directly connected to the light
sensors.

Discussion
This paper is a further step on the investigation of a novel
non-spatial GasNet model (NSGasNet) in an attempt to un-
cover the role of space within this neural network paradigm.
The performance of the original and the NSGasNet model
was explored on a memory robot task. Unlike the previous
results on a CPG task, the comparison between both mod-
els showed little difference in terms of speed of evolution.
Although the evolvability values are quite similar they dif-
fer in the percentage of evolved controllers meaning that the
NSGasNet has a higher success rate. Nonetheless, further
analysis should be carried out in order to further assess this
better performance.
Additional remarks could be made from the experiments.

For instance, the use of partial connection between nodes
was adopted in both models for the fully connected networks
were too sensitive to genetic operations and initial condi-
tions (e.g. the starting angle of direction) during the evolu-
tionary process. Therefore, a successful controller from one
evaluation could hardly repeat its performance on the next
fitness evaluation, thus compromising its speed of evolution.
One may argue that the problem might be the elevated muta-

tion rate adopted. However, many mutation rates were tested
and no improvement was observed. Thus, in order to make
a compromise between evolvability and good performance,
apart from the partial connection, we adopted 8% for the
mutation rate.

It was observed that after evolution, some nodes either
had their synaptic weights set to zero or there were no
gaseous connections whatsoever. This fact shows the abil-
ity of the evolutionary process to find simple solutions to the
problem and it also indicates that the introduction of meta-
dynamics could improve the results. Metadynamics in this
context means exploring a variety of network’s dimensions
during the evolutionary process. Therefore, in a future work
we envisage using not only partially connected networks, but
also exploring the network metadynamics. In our opinion,
which is shared by others (Psujek et al., 2006), this coupling
might lead to superior results.

According to (Strogatz, 2001) realistic networks have
both nontrivial node dynamics and specific but irregular con-
nection topologies. Moreover, highly distributed and non-
hierarchical neural circuits had been identified in neuro-
science investigations of simple organisms as pointed out
by (Altman and Kien, 1990) and stressed by (Beer, 1995).
Likewise, an analysis of the resulting network architectures
for the T-Maze task has demonstrated a huge variety of
topologies of connections (synaptic and gaseous) among the
evolved controllers. This enormous variety was also verified
by Vargas et al. (2007) for the CPG task. In both cases, it
was impossible to identify a predominant pattern of connec-
tions and/or of spatial location of the nodes (in the case of
the original GasNet model).

Internal state is not a pre-requisite for the agent to perform
sophisticated interactions with the environment, as pointed
out by (Izquierdo and Di Paolo, 2005; Nolfi, 2002; Stanley
and Miikkulainen, 2002; Ziemke and Thieme, 2002). Ac-
cordingly, the fact that some of the robots presented a reac-
tive response to the T-Maze task seems to indicate that the
chosen task does not require a non-reactive response in order
to be successfully accomplished.

In conclusion, the results obtained on this work together
with the first investigations presented by (Vargas et al., 2007)
seem to indicate that the explicit use of spatial constraints
and a spatially embedded diffusion process is not necessary
to explain the success of GasNet models. Rather, the inter-
play between two distinct processes (electrical signals and
gas modulation) acting on different timescales, and the mul-
tiplicative modulation effect of the gases appear to be the
important factors (Philippides et al., 2005).

In order to fully clarify the role of space within GasNet
models, future work should include an analysis of the per-
formance of both models in other tasks that require networks
with higher dimension.
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Abstract

We propose a network characterization of combinatorial £t-
ness landscapes by adapting the notion of inherent networks
proposed for energy surfaces (Doye, 2002). We use the well-
known family of landscapes as an example. In our case
the inherent network is the graph where the vertices repre-
sent the local maxima in the landscape, and the edges account
for the transition probabilities between their corresponding
basins of attraction. We exhaustively extracted such networks
on representative small landscape instances, and per-
formed a statistical characterization of their properties. We
found that most of these network properties can be related to
the search dif£culty on the underlying landscapes with
varying values of .

Introduction
Local optima are the very feature of a landscape that makes
it rugged. Therefore, an understanding of the distribution of
local optima is of utmost importance for the understanding
of a landscape. Combinatorial landscapes refer to the £nite
search spaces generated by important discrete problems such
as the traveling salesman problem and many others. A prop-
erty of some combinatorial landscapes, which has been often
observed, is that on average, local optima are much closer to
the optimum than are randomly chosen points, and closer to
each other than random points would be. In other words, the
local optima are not randomly distributed, rather they tend to
be clustered in a “central massif” (or “big valley” if we are
minimising). This globally convex landscape structure has
been observed in the family of landscapes (Kauffman,
1993), and in other combinatorial optimization problems,
such as the traveling salesman problem (Boese et al., 1994),
graph bipartitioning (Merz and Freisleben, 1998), and ¤ow-
shop scheduling (Reeves, 1999).
In this study we seek to provide fundamental new in-

sights into the structural organization of the local optima in
landscapes, particularly into the connectivity of their

basins of attraction. Combinatorial landscapes can be seen
as a graph whose vertices are the possible con£gurations. If
two con£gurations can be transformed into each other by a
suitable operator move, then we can trace an edge between

them. The resulting graph, with an indication of the £tness
at each vertex, is a representation of the given problem £t-
ness landscape. A useful simpli£cation of the graphs for
the energy landscapes of atomic clusters was introduced in
(Doye, 2002; Doye and Massen, 2005). The idea consists in
taking as vertices of the graph not all the possible con£gura-
tions, but only those that correspond to energy minima. For
atomic clusters these are well-known, at least for relatively
small assemblages. Two minima are considered connected,
and thus an edge is traced between them, if the energy bar-
rier separating them is suf£ciently low. In this case there is a
transition state, meaning that the system can jump from one
minimum to the other by thermal ¤uctuations going through
a saddle point in the energy hyper-surface. The values of
these activation energies are mostly known experimentally
or can be determined by simulation. In this way, a network
can be built which is called the “inherent structure” or “in-
herent network” in (Doye, 2002).
We propose a network characterization of combinatorial £t-
ness landscapes by adapting the notion of inherent networks
described above. We use the well-known family of
landscapes as an example because they are a useful tun-
able benchmark that can provide interesting information for
more realistic combinatorial landscapes. In our case the in-
herent network is the graph where the vertices are all the
local maxima and the edges account for transition probabil-
ities between their corresponding basins of attraction. We
exhaustively extract such networks on representative small

landscape instances, and perform a statistical charac-
terization of their properties. Our analysis was inspired, in
particular, by the work of Doye (2002); Doye and Massen
(2005) on energy landscapes, and in general, by the £eld of
complex networks (Newman, 2003). The study of networks
has exploded across the academic world since the late 90’s.
Researchers from the mathematical, biological, and social
sciences have made substantial progress on some previously
intractable problems, bringing new techniques, reformulat-
ing old ideas, and uncovering unexpected connections be-
tween seemingly different problems. We aim here at bring-
ing the tools of network analysis for the study of problem
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hardness in combinatorial optimization.
The next section describes how combinatorial landscapes
are mapped onto networks, and includes the relevant def-
initions and algorithms used in our study. The empirical
network analysis of our selected landscape instances
is presented next, followed by our conclusions and ideas for
future work.

Landscapes as Networks
To model a physical energy landscape as a network, Doye
and Massen (2005) needed to decide £rst on a de£nition
both of a state of the system and how two states were con-
nected. The states and their connections will then provide
the nodes and edges of the network. For systems with con-
tinuous degrees of freedom, the author achieved this through
the ‘inherent structure’ mapping. In this mapping each point
in con£guration space is associated with the minimum (or
‘inherent structure’) reached by following a steepest-descent
path from that point. This mapping divides the con£guration
space into basins of attraction surrounding each minimum
on the energy landscape.
Our goal is to adapt this idea to the context of combina-

torial optimization. In our case, the nodes of the graph can
be straightforwardly de£ned as the local maxima of the land-
scape. These maxima are obtained exhaustively by running a
best-improvement local search algorithm (HillClimbing, see
Algorithm 1) from every con£guration of the search space.
The de£nition of the edges, however, is a much more del-
icate matter. In our initial attempt Ochoa et al. (2008) we
considered that two maxima and were connected (with
an undirected and unweighted edge), if there exists at least
one pair of solutions at Hamming distance one and , one
in each basin of attraction ( and ). We found empirically
on small instances of landscapes, that such de£nition
produced densely connected graphs, with very low ( ) av-
erage path length between nodes for all . Therefore, apart
from the already known increase in the number of optima
with increasing , no other network property accounted
for the increase in search dif£culty. Furthermore, a single
pair of neighbors between adjacent basins, may not realis-
tically account for actual basin transitions occurring when
using common heuristic search algorithms. These consider-
ations, motivated us to search for an alternative de£nition of
the edges connecting local optima. In particular, we decided
to associate weights to the edges that account for the tran-
sition probabilities between the basins of attraction of the
local optima. More details on the relevant algorithms and
formal de£nitions are given below.

De£nitions and Algorithms
De£nition: Fitness landscape.
A landscape is a triplet where is a set of potential
solutions i.e. a search space, , a neighborhood
structure, is a function that assigns to every a set of

neighbors , and is a £tness function that
can be pictured as the height of the corresponding solutions.
In our study, the search space is composed by binary

strings of length , therefore its size is . The neighbor-
hood is de£ned by the minimum possible move on a binary
search space, that is, the 1-move or bit-¤ip operation. In
consequence, for any given string of length , the neigh-
borhood size is .
The algorithm to determine the local op-

tima and therefore de£ne the basins of attraction, is given
below:

Algorithm 1 HillClimbing
Choose initial solution
repeat
choose such that
if then

end if
until is a Local optimum

De£nition: Local optimum.
A local optimum is a solution such that ,

.
The algorithm de£nes a mapping from the
search space to the set of locally optimal solutions .
De£nition: Basin of attraction.

The basin of attraction of a local optimum is the set
. The size of the basin

of attraction of a local optima is the cardinality of .
De£nition: Edge weight.

Notice that for a non-neutral £tness landscapes, as are
landscapes, the basins of attraction as de£ned above, pro-
duce a partition of the con£guration space . Therefore,

and ,
For each solutions and , let us de£ne as the
probability to pass from to with the bit-¤ip operator. In
the case of binary strings of size , and the neighborhood
de£ned by the bit-¤ip operation, there are neighbors for
each solution, therefore:
if , and
if , .
We can now de£ne the probability to pass from a solution

to a solution belonging to the basin , as:

Notice that .
Thus, the total probability of going from basin to basin
is the average over all of the transition probabilities
to solutions :
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is the size of the basin . We are now prepared to de£ne
our ‘inherent’ network or network of local optima.
De£nition: Local optima network.

The local optima network is the graph where
the nodes are the local optima 1, and there is an edge
with the weight between two nodes and
if .
According to our de£nition of weights,
may be different than . Two weights are
needed in general, and we have an oriented transition graph.

Empirical Basin and Network Analysis
The family of landscapes Kauffman (1993) is a
problem-independent model for constructing multimodal
landscapes that can gradually be tuned from smooth to
rugged. In the model, refers to the number of (binary)
genes in the genotype (i.e. the string length) and to
the number of genes that in¤uence a particular gene (the
epistatic interactions). By increasing the value of from
0 to , landscapes can be tuned from smooth to
rugged. The variables that form the context of the £tness
contribution of gene can be chosen according to different
models. The two most widely studied models are the ran-
dom neighborhood model, where the variables are cho-
sen randomly according to a uniform distribution among the

variables other than , and the adjacent neighborhood
model, in which the variables that are closest to in a to-
tal ordering (using periodic boundaries). No
signi£cant differences between the two models were found
in (Kauffman, 1993) in terms of global properties of the re-
spective families of landscapes, such as mean number of lo-
cal optima or autocorrelation length. Similarly, our prelimi-
nary studies on the characteristics of the landscape op-
tima networks did not show noticeable differences between
the two neighborhood models. Therefore, we conducted our
full study on the more general random model.
In order to avoid sampling problems that could bias the

results, we used the largest values of that can still be
analysed exhaustively with reasonable computational re-
sources. We thus extracted the local optima networks
of landscape instances with , and

. For each pair of and values,
30 randomly generated instances were explored. Therefore,
the networks statistics reported below represent the average
behaviour of 30 independent instances.

Basins of Attraction
Besides the maxima network, it is useful to describe the
associated basins of attraction as these play a key role in

1Since each maximum has its associated basin, also describes
the interconnection of basins.

search algorithms. Furthermore, some characteristics of the
basins can be related to the optima network features. The no-
tion of the basin of attraction of a local maximum has been
presented before. We have exhaustively computed the size
and number of all the basins of attraction for and

and for all even values plus . In
this section, we analyze the basins of attraction from several
points of view as it is described below.

Global optimum basin size versus . In Fig. 1 we plot
the average size of the basin corresponding to the global
maximum for and , and all values of
studied. The trend is clear: the basin shrinks very quickly
with increasing . This con£rms that the higher the
value, the more dif£cult for an stochastic search algorithm
to locate the basin of attraction of the global optimum
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Figure 1: Average of the relative size of the basin corre-
sponding to the global maximum for each K over 30 land-
scapes.
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Figure 2: Cumulative distribution of the number of basins of
a given size with regression line. A representative landscape
with , is visualized. A lin-log scale is used.

Number of basins of a given size. Fig. 2 shows the cu-
mulative distribution of the number of basins of a given
size (with regression line) for a representative instances with
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Table 1: Correlation coef£cient ( ), and linear regression
coef£cients (intercept ( and slope ( )) of the relationship
between the basin size of optima and the cumulative num-
ber of nodes of a given (basin) size ( in logarithmic scale:

). The average and standard devia-
tion values over 30 instances, are shown.
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17

, . Table 1 shows the average (of 30 inde-
pendent landscapes) correlation coef£cients and linear re-
gression coef£cients (intercept ( and slope ( )) between
the number of nodes and the basin sizes for instances with

. Notice that distribution decays exponentially
or faster for the lower and it is closer to exponential for
the higher . This could be relevant to theoretical studies
that estimate the size of attraction basins (see for example
Garnier and Kallel (2001)). These studies often assume that
the basin sizes are uniformly distributed, which is not the
case for the landscapes studied here. From the slopes
of the regression lines (table 1) one can see that high val-

ues of give rise to steeper distributions (higher values).
This indicates that there are fewer basins of large size for
large values of . Basins are thus broader for low values
of , which is consistent with the fact that those landscapes
are smoother.

Fitness of local optima versus their basin sizes. The
scatter-plots in Fig. 3 illustrate the correlation between the
basin sizes of local maxima (in logarithmic scale) and their
£tness values. Two representative instances for = 18 and
= 4, 8 are shown. Notice that there is a clear positive

correlation between the £tness values of maxima and their
basins’ sizes. In other words, the higher the peak the wider
tend to be its basin of attraction. Therefore, on average,
with a stochastic local search algorithm, the global optimum
would be easier to £nd than any other local optimum. This
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Figure 3: Correlation between the £tness of local optima
and their corresponding basin sizes, for two representative
instances with , (top) and (bottom).

may seem surprising. But, we have to keep in mind that as
the number of local optima increases (with increasing ),
the global optimum basin is more dif£cult to reach by a
stochastic local search algorithm (see Fig. 1). This obser-
vation offers a mental picture of landscapes: we can
consider the landscape as composed of a large number of
mountains (each corresponding to a basin of attraction), and
those mountains are wider the taller the hilltops. Moreover,
the size of a mountain basin grows exponentially with its
hight.

General Network Statistics
We now brie¤y describe the statistical measures used for our
analysis of maxima networks.
The standard clustering coef£cient (Newman, 2003) does

not consider weighted edges. We thus use the weighted clus-
teringmeasure proposed by Barthélemy et al. (2005), which
combines the topological information with the weight distri-
bution of the network:

where , if , if
and .

For each triple formed in the neighborhood of the vertex ,
counts the weight of the two participating edges of the
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vertex . is de£ned as the weighted clustering coef£cient
averaged over all vertices of the network.
The standard topological characterization of networks

is obtained by the analysis of the probability distribution
that a randomly chosen vertex has degree . For our

weighted networks, a characterization of weights is obtained
by the connectivity and weight distribution that any
given edge has weight .
In our study, for each node , the sum of weights from

the node is equal to . So, an important measure is the
weight of self-connecting edges (remaining in the same
node). We have the relation: . The vertex
strength, , is de£ned as , where the
sum is over the set of neighbors of (Barthélemy
et al., 2005). The strength of a node is a generalization of
the node’s connectivity giving information about the number
and importance of the edges.
Another network measure we report here is disparity

(Barthélemy et al., 2005) , which measures how het-
erogeneous is the contributions of the edges of node to the
total weight (strength):

The disparity could be averaged over the node with the
same degree . If all weights are nearby of , the dispar-
ity for nodes of degree is nearby .
Finally, in order to compute the average distance (shortest

path) between two nodes on the optima network of a given
landscape, we considered the expected number of bit-¤ip
mutations to pass from one basin to the other. This expected
number can be computed by considering the inverse of the
transition probabilities between basins. In other words, if
we attach to the edges the inverse of the transition probabil-
ities, this value would represent the average number of ran-
dom mutations to pass from one basin to the other. More
formally, the distance (expected number of bit-¤ip muta-
tions) between two nodes is de£ned by where

. Now, we can de£ne the length of a path
between two nodes as being the sum of these distances along
the edges that connect the respective basins.

Detailed Study of Network Features

In this section we study in more depth some network fea-
tures which can be related to stochastic local search dif£-
culty on the underlying £tness landscapes. Table 2 reports
the average (over 30 independent instances for each and
) of the network properties described. and are, re-

spectively, the mean number of vertices and the mean num-
ber of edges of the graph for a given rounded to the next
integer. is the mean weighted clustering coef£cient.
is the mean disparity, and is the mean path length.

Clustering Coef£cients. The fourth column of table 2
lists the average values of the weighted clustering coef£-
cients for all and . It is apparent that the clustering
coef£cients decrease regularly with increasing for all .
For the standard unweighed clustering, this would mean that
the larger is, the less likely that two maxima which are
connected to a third one are themselves connected. Taking
weights, i.e. transition probabilities into account this means
that either there are fewer transitions between neighboring
basins for high , and/or the transitions are less likely to
occur. This con£rms from a network point of view the com-
mon knowledge that search dif£culty increases with .
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Figure 4: Average distance (shortest path) between nodes
(top), and average path length to the optimum from all the
other basins (bottom).

Shortest Path to the Global Optimum. The average
shortest path lengths are listed in the sixth column of ta-
ble 2. Fig. 4 (top) is a graphical illustration of the average
shortest path length between optima for all the studied
landscapes. Notice that the shortest path increases with ,
this is to be expected since the number of optima increases
exponentially with . More interestingly, for a given the
shortest path increases with , up to , and then it
stagnates and even decreases slightly for the . This
is consistent with the well known fact that the search dif£-
culty in landscapes increases with . However, some
paths are more relevant from the point of view of a stochastic
local search algorithm following a trajectory over the max-
ima network. In order to better illustrate the relationship of
this network property with the search dif£culty by heuristic
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Table 2: landscapes network properties. Values are averages over 30 random instances, standard deviations are shown
as subscripts. and represent the number of vertexes and edges (rounded to the next integer), , the mean weighted
clustering coef£cient. represent the mean disparity coef£cient, the mean path length (see text for de£nitions).
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local search algorithms, Fig. 4 (bottom) shows the shortest
path length to the global optimum from all the other optima
in the landscape. The trend is clear, the path lengths to the
optimum increase steadily with increasing .

Weight Distribution Here we report on the weight distri-
butions of the maxima network edges. Fig. 5 shows
the empirical probability distribution function for the cases

and (logarithmic binning has been used on
the x-axis). The case is similar but is not reported
here because it is much more noisy for and due to
the small size of the graphs in these cases (see table 2).
One can see that the weights, i.e. the transition probabili-

ties between neighboring basins are small. The distributions
are far from uniform and, for both and ,
the low have longer tails. For high the decay is faster.
This seems to indicate that, on average, the transition prob-
abilities are higher for low .

Disparity Fig. 6 depicts the disparity coef£cient as de-
£ned in the previous section for . An interest-
ing observation is that the disparity (i.e. dishomogeneity) in
the weights of a node’s outcoming links tends to decrease
steadily with increasing . This re¤ects that for high

the transitions to other basins tend to become equally likely,
which is another indication that the landscape, and thus its
representative maxima network, becomes more random and
dif£cult to search.
When increases, the number of edges increases and the

number of edges with a weight over a certain threshold in-
creases too (see £g. 5). Therefore, for small , each node is
connected with a small number of nodes each with a relative
high weight. On the other hand, for large , the weights be-
come more homogeneous in the neighbourhood, that is, for
each node, all the neighboring basins are at similar distance.
If we suppose that edges with higher weights are likely to

be connected to nodes with larger basins (an intuition that we
need to con£rm in future work). Then, as the larger basins
tend to have higher £tness (see Fig. 3), the path to higher
£tness values would be easier to £nd for lower than for
larger .

Boundary of basins. Fig. 7 shows the averages, over all
the nodes in the network, of the weights (i.e the probabil-
ities of remaining in the same basin after a bit-¤ip mutation).
Notice that the weights are much higher when compared
to those with (see Fig. 5). In particular, for ,

of the random bit-¤ip mutations will produce a solution
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Figure 5: Probability distribution of the network weights
with in logscale on x-axis. Averages of 30 instances
for each and are reported.

within the same basin of attraction. These average probabil-
ities of remaining within the same basin, are above for
the higher values of . Notice that the averages are nearly
the same regardless the value of , but decrease with the
epistatic parameter .
The exploration of new basins with the random bit-¤ip

mutation seems to be, therefore, easier for large than for
low . But, as the number of basins increases, and the
£tness correlation between neighboring solutions decreases
with increasing , it becomes harder to £nd the global max-
ima for large . This result suggests that the dynamic of
stochastic local search algorithms on landscapes with
large is different than that with lower values of , with
the former engaging in more random exploration of basins.
The boundary of a basin of attraction can be de£ned as

the set of con£gurations within a basin that have at least one
neighbor’s solution in another basin. Conversely, the inte-
rior of a basin is composed by the con£gurations that have
all their neighbors in the same basin. Table 3 gives the av-
erage number of con£gurations in the interior of basins (this
statistic is computed on independent landscapes). No-
tice that the size of the basins’ interior is below (except
for , ). Surprisingly, the size of the basins’
boundaries is nearly the same as the size of the basins them-
selves. Therefore, the probability of having a neighboring
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random case.
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Figure 7: Average weight according to the parameters
and .

solution in the same basin is high, but nearly all the solu-
tions have a neighbor solution in another basin. Thus, the
interior basins seem to be “hollow”, a picture which is far
from the smooth standard representation of landscapes in 2D
with real variables where the basins of attraction are visual-
ized as real mountains.

Conclusions
We have proposed a new characterization of combinatorial
£tness landscapes using the family of landscapes as an
example. We have used an extension of the concept of in-
herent networks proposed for energy surfaces Doye (2002)

Artificial Life XI 2008  654 



Table 3: Average (on independent landscapes for each
and ) of the mean sizes of the basins interiors.

K
2
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6
8
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15
16
17

in order to abstract and simplify the landscape description.
In our case the inherent network is the graph where the nodes
are all the local maxima and the edges accounts for transi-
tion probabilities (using the bit-¤ip operator) between the
local maxima basins of attraction. We have exhaustively ob-
tained these graphs for , and for all even
values of , plus , and conducted a network
analysis on them. Our guiding motivation has been to relate
the statistical properties of these networks, to the search dif-
£culty of the underlying combinatorial landscapes when us-
ing stochastic local search algorithms (based on the bit-¤ip
operator) to optimize them. We have found clear indications
of such relationships, in particular:
The clustering coef£cients suggest that, for high values of
, the transition between a given pair of neighboring basins

is less likely to occur.
The shortest paths increase with and, for a given , they
clearly increase with higher .
The weight distributions indicate that, on average, the tran-
sition probabilities are higher for low .
The disparity coef£cients re¤ect that for high the transi-
tions to other basins tend to become equally likely, which is
an indication of the randomness of the landscape.
The construction of the maxima networks requires the de-
termination of the basins of attraction of the corresponding
landscapes. We have thus also described the nature of the
basins, and found that the size of the basin corresponding
to the global maximum becomes smaller with increasing .
The distribution of the basin sizes is approximately expo-
nential for all and , but the basin sizes are larger for low
, another indirect indication of the increasing randomness

and dif£culty of the landscapes when becomes large. Fur-
thermore, there is a strong positive correlation between the
basin size of maxima and their degrees. Finally, we found
that the size of the basins boundaries is roughly the same
as the size of basins themselves. Therefore, nearly all the
con£gurations in a given basin have a neighbor solution in

another basin. This observation suggests a different land-
scape picture than the smooth standard representation of 2D
landscapes where the basins of attraction are visualized as
hilltops.
This study is our £rst attempt towards a topological

and statistical characterization of combinatorial landscapes,
from the point of view of complex networks analysis. Much
remains to be done. The results should be con£rmed for
larger instances of landscapes. This will require good
sampling techniques, or theoretical studies since exhaustive
sampling becomes quickly impractical. Other landscape
types should also be examined, such as those containing
neutrality, which are very common in real-world applica-
tions. Finally, the landscape statistical characterization is
only a step towards implementing good methods for search-
ing it. We thus hope that our results will help in designing
or estimating ef£cient search techniques and operators.
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Abstract

We introduce the notion of an “adaptive growth process” in
order to explain an experimental result from the 1950s in
which a complex mechanism capable of distinguishing be-
tween two sounds emerges from a homogeneous chemical so-
lution. We present a very simple computational model which
exhibits an adaptive growth process. Adaptive growth pro-
cesses could have practical applications in adaptive control
systems and may also play a role in biological development.

keywords: self-organisation, complex systems, reinforce-
ment learning, Gordon Pask

Introduction
In the late 1950s Pask (1958; 1960; 1961) was able to
construct a device whereby a complex functional structure
would emerge within a physical medium (a solution of fer-
rous sulphate), simply by increasing its supply of electrical
current according to its performance at a given task. The
task Pask set the device was to react to sound. The structure
it produced resembled an ear, with an array of resonating
metal threads which was able to distinguish between two
different sounds. He was also able to get the same device to
respond to changes in a magnetic field.

Unfortunately Pask did not record all the details of his
setup and the experiment has never been repeated. Nothing
quite like it has been achieved before or since. However,
if the result can be repeated and generalised its potential
would be enormous. It would mean that complex structures
with functional components could be grown in situ without
the need for an evolutionary population. For instance, one
could imagine Pask’s ear being used as a sensor in an adap-
tive robot. If the robot found itself in a situation where mag-
netic fields were relevant it could find itself adapting its ear
to respond to them. If Pask’s result is sufficiently general
one could go further and imagine a neural controller that is
able to grow adaptively, creating new neural structures in re-
sponse to novel challenges. It is clear from Pask (1960) that
Pask thought along similar lines.

In this paper we elaborate on the possibilities that this
simple experiment opens up. We present our ideas on the

general principles behind the result, defining a general no-
tion of an adaptive growth process. We back this up with a
simplified computational model of an adaptive growth pro-
cess which, although it does not perform as impressive a task
as Pask’s ear, works in what we believe is a similar way.

Our system resembles a model of ants leaving pheromone
trails to reach a target, except that we do not selectively re-
inforce the trail of a successful ant. Instead the reward for
reaching the target is applied to the system as a whole, in
the form of an increase in the rate at which ants enter the
system. This stems from a difference in focus between our
model and typical ant or swarm based models. Our model is
intended to illustrate a plausible mechanism behind the suc-
cess of Pask’s experiment, in which individual threads were
not reinforced and in which the solution consisted of a net-
work of many interacting threads.

We also explore the possible biological implications of
this kind of emergent adaptive structure.

Pask’s experiments
The electrochemical experiment in which the ear was pro-
duced is mentioned in Pask (1958; 1960; 1961) but is al-
ways presented as an example to back up a philosophical
point rather than as an experimental result in itself and it is
difficult to decipher the exact experimental conditions which
were used. There is also the eyewitness account of Stafford
Beer described in Bird and Di Paolo (2008), although it
was given many years after the event and does not give a
complete description. Further descriptions of Pask’s exper-
iment and the history behind it can also be found in Bird
and Di Paolo (2008) and Carriani (2007). There is a photo-
graph of the resulting “ear” structure in Pask (1958), which
is reproduced in Cariani (2007).

Although the details are obscure the basic idea is clear.
Pask was experimenting with passing an electric current
through a solution of ferrous sulphate. This causes a thin
metal wire to be deposited along the path of maximum cur-
rent. Since these threads have a very low resistance they af-
fect the electric field surrounding them and thus the growth
of further threads. Such systems were a popular way to
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model neural growth at the time.
By varying the current flow through an array of elec-

trodes Pask was able to affect the growth of the threads.
For instance, when activating one negative and two posi-
tive electrodes a wire forms that starts at the negative elec-
trode and branches toward the positive ones. If one of the
positive electrodes is switched off the wire moves so that
both branches point towards the remaining positive elec-
trode, with the branching point remaining stable. If part of
the wire is then removed the gap gradually moves toward
the positive electrode, with the wire ahead of the gap be-
ing dissolved by the acidity of the solution but the wire be-
hind growing back in its place. The branching pattern is
reproduced by the new wire. Details of this can be found in
Pask (1960).

Pask then took his electrochemical system and subjected
it to sound. At this point the details become less clear but the
system was rewarded in some way by an increase in avail-
able current whenever it responded to the sound, presum-
ably by forming connections between a particular set of the
electrodes. After about half a day a structure was formed
which was able to perform this task, and Pask then went on
to train it to distinguish between two tones, one about an
octave above the other.

The interesting thing is that this structure is fairly com-
plex, with functionally differentiated parts that are not spec-
ified by the experimenter. In Pask’s words, “the ear, by the
way, looks rather like an ear. It is a gap in the thread struc-
ture in which you have fibrils which resonate with the excita-
tion frequency” (Pask (1960)). This solution is truly system-
level. It is not determined simply by the fittest individual
thread but by a combination of many threads playing several
different roles. Some act as vibrating fibrils while others are
part of the supporting structure. Presumably the fibrils can
become further specialised to vibrate when exposed to sound
in a particular frequency range. This spontaneous division of
labour is not a feature of most learning algorithms.

Pask’s Ear as a Dissipative Structure
The system of metallic threads that forms in Pask’s ear is
a dissipative structure. That is to say, it is a kind of struc-
ture that exists as the result of an externally imposed flow of
energy through a system. The threads can only form and per-
sist when an electrical current is passed through the medium,
and if the current stops the acidity of the ferrous sulphate so-
lution will gradually dissolve them. The structure maintains
its form through a balance of creative and destructive pro-
cesses.

This seems to us to lie at the heart of its operation. The
system is subject to continual fluctuations, in which fila-
ments are lengthened or shortened, or new ones grown and
old ones destroyed. But the threads are in competition with
each other: a given amount of electrical current can only
support a certain amount of filament, so any new structure

which increases the amount of metal thread can only become
stable and be maintained if it causes a sufficient increase in
the current flow.

Adaptive Growth Processes
We use the term adaptive growth process to refer to a system
which operates in this way, where structures compete for
some resource and those that contribute towards maintaining
an increased supply of that resource tend to be more stable
over time.

This definition may be refined at a later date but some
general preconditions for an adaptive growth process are that
there is a substrate and a resource whose availability depends
in some way on the state of the system. The substrate is
such that without any inflow of the resource it will decay
to a homogeneous state, but that an inflow of resource en-
ables structures to persist in the system. The dynamics of
the system must be such that these structures compete for
the resource and are continually subject to fluctuations, re-
sulting in structures that contribute to an increased resource
flow becoming more likely to persist over time than those
that do not.

Of course, this does not happen in all circumstances in
all possible substrates. This research is a first step towards
identifying the specific requirements for an adaptive growth
process to take place. Some insights gained from our model
can be found in the discussion section.

One interesting feature of adaptive growth processes is
that they can in some circumstances become more complex:
Pask’s ear presumably starts with a fairly simple network
of threads and ends up with a relatively complex arrange-
ment of resonating fibres. This increase in complexity oc-
curs when an increase in resource flow can be achieved by
a more complex structure. Since an increase in complexity
will usually require an increase in resource use (to maintain
a larger amount of metal thread, for instance) the structure
will not generally become more complex than it needs to be.

Relationship to Reinforcement Learning and the
Credit Assignment Problem
Reinforcement learning is a general term for a learning al-
gorithm which can learn a task (usually a classification task)
by being given a “reward signal” whenever it behaves in the
desired way. Pask’s ear can be seen as an example of this,
with the supply of electric current acting as the reward sig-
nal. In general the supply of resource to an adaptive growth
process acts as a reward signal.

From a reinforcement learning point of view, an interest-
ing feature of Pask’s ear and adaptive growth processes in
general is that they avoid the so-called Credit Assignment
problem. This is simply the problem of deciding which part
of the system to reward for a successful behaviour. Since be-
haviour results from the dynamics of the system as a whole
it can be hard or impossible to know which parts contribute
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to a given behaviour and which detract from it. Pask’s ear
solves this problem in a very simple way: the reward is ap-
plied to the whole system in the form of an increase in re-
source availability. Since the system’s parts are in competi-
tion with each other it is only the ones which contribute to
this increased resource availability that will remain stable in
the long run.

Relationship to Evolution by Natural Selection
Our proposed mechanism for adaptive growth bares some
resemblance to the process of natural selection. In both
cases a system is subject to small random variations which
are more likely to persist if they increase a certain target
property of the system (its fitness to its environment in the
case of natural selection, or the rate of resource input from
the environment in the case of an an adaptive growth pro-
cess). In both cases it is the behaviour of the system as
a whole, rather than its individual components, that deter-
mines which variations are selected.

The primary difference is that in natural selection the se-
lection takes place between a number of similar systems,
whereas in an adaptive growth process there is only one sys-
tem and the selection occurs over time. Or, if one prefers
to think of a system like Pask’s ear as being a popula-
tion of threads then the selection takes place according to
a population-level property rather than to individual fitness;
but again there is only one population.

Both processes could be simultaneously relevant in living
systems. Adaptive growth processes within individual or-
ganisms could be honed by natural selection operating on a
longer time scale, for instance.

Implications for Biological Development
All the structures that occur within living organisms are also
maintained by a flow of energy (ultimately provided by the
organism’s food) and will decay if that energy flow ceases.
Perhaps some of the complexity of biological structures is
formed and maintained by what we have termed adaptive
growth processes. If this is the case then research into these
principles could vastly increase our understanding of bio-
logical growth and development processes. Pask saw this
potential, writing in Pask (1960) that “the natural history of
this network [of metallic threads] presents an over-all ap-
pearance akin to that of a developing embryo or that of cer-
tain ecological systems.”

It seems quite possible to us that nature would take ad-
vantage of this “design for free” whenever possible. For in-
stance, an organism’s genes would not need to specify ev-
ery component of an ear, but simply to arrange for circum-
stances in which an ear will emerge in response to stimuli
from the environment and a modulated supply of energy. Of
course there will also be a strong element of genetic design
in nature, but an element of adaptive growth could perhaps
explain why organs can atrophy or fail to develop properly

when not used. Conceivably it could also be a factor in the
enormous plasticity of the brain.

One could also imagine adaptive growth processes occur-
ring at a larger scale in the development of an ecosystem.
The idea that ecosystems act so as to increase or maximise
the flow of resources through them (or some related quan-
tity) is an old one in ecology, dating back to Lotka (1922)
but has fallen out of favour in recent decades due to the lack
of a convincing explanation. Perhaps the study of adaptive
growth processes could help to illuminate this issue.

An Adaptive Growth Process in a Model
Rather than try to simulate the complex physics of electro-
chemical deposition we have developed a very simple com-
putational model in which we have tried to capture the con-
ditions required for adaptive growth to take place: there is
a balance between creative and destructive processes and
structures compete for a resource whose supply is globally
changed in response to the system’s performance at a task.

In Pask’s ear metallic threads are deposited by a flow of
electrons between electrodes. We have abstracted this to
something which resembles a system of pheromone trails
laid down by ant-like entities which move across a grid. We
shall use the metaphor of ants and pheromones rather than
electrons and filaments to describe our model in order to em-
phasise that it is not meant to be a physical simulation of
Pask’s electrochemical experiment. However, we consider
the pheromone trails and the rate of arrival of ants to be anal-
ogous to the metallic threads in Pask’s ear and to the electric
current respectively.

It is important to note that, unlike most ant-based opti-
misation algorithms we do not selectively reinforce the trail
left by a successful ant. Instead the ‘reward’ is applied to
the system as a whole in the form of an increase in the rate
at which ants arrive.

Specification of the Model
The system is divided into a grid 50 cells wide by 500 high.
Each cell contains a floating point number representing the
amount of pheromone present. These are initialised to zero.

The following two processes are then repeated a large
number of times: first an ant enters at the top of the grid and
moves towards the bottom, tending to follow any pheromone
trails that are present according to the rules given below, and
laying down a pheromone trail of its own. This is followed
by a period of time during which all pheromone trails decay.
This period of time, and hence the amount of pheromone
decay that takes place, is adjusted according to a simple re-
ward function. Note that the two time scales are separated:
the ants are assumed to travel instantaneously as far as the
pheromone decay time scale is concerned.

Each ant enters the system at a uniformly random position
on the top row, and moves toward the bottom one row at a
time according to the following algorithm:
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1. Look at the amount of pheromone in the cell directly be-
low and the cells to either side of it, three cells in total (the
edges wrap around).

2. Add the value δ = 0.1 to each of these three numbers (this
is to prevent very weak trails from having a strong effect)
and normalise them to get a probability distribution.

3. Move to one of the three cells below according to the com-
puted probability distribution

4. Add the value 1.0 to the amount of pheromone in the pre-
viously occupied cell

After an ant has reached the bottom there is a period of
simulated time in which the pheromone in each cell decays
exponentially. This amounts to multiplying each cell in the
grid by the same number between zero and one. The length
of this time, and thus the amount of decay, depends on the
reward function, which is described below. In this way the
rate of build up of trails can be controlled by modulating the
time that elapses between each ant entering the system.

In addition to this, before each ant enters the system the
value d = 0.01 is subtracted from the amount of pheromone
in each cell (we set the value to zero if it becomes negative).
This has a proportionally greater effect on weaker trails, and
means that they effectively decay more rapidly when the rate
at which ants enter the system is high.

The Reward Function
The task that we set our system is substantially simpler than
Pask’s. We want the ants to arrive at the bottom within a spe-
cific range of columns, 19 to 31 inclusive (twelve columns
out of the 50 in the system). When an ant hits the target we
increase the rate at which ants enter the system. Since each
ant lays down the same amount of pheromone (500 units
in total) the rate at which ants arrive is proportional to the
amount of pheromone added to the system, and therefore
limits the total strength of trails that can be maintained in
the system.

The details of the scheme used for the presented results
are as follows:

1. Let the score for iteration i be Si = 1 if the ant arrives
at the bottom of the grid within the target interval, 0 if it
misses.

2. This value is smoothed out in time slightly using a leaky
integrator: Let the reward value Ri = Ri−1 + (Si −
Ri−1)/λ. We give the parameter λ the value 2.0 and let
R0 = 0.

3. Ants are assumed to arrive at a rate 99R + 1. This
is represented by multiplying each pheromone value by
1− 1/(495Ri + 5) (an approximation to e−5(99Ri−1)) to
represent a constant decay of pheromone during the vari-
able time period between ants arriving.
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Figure 1: Increase in accuracy over time for ten independent
runs of the model. The black line corresponds to the run
shown in more detail in figure 2. Each data point represents
the proportion of ants which hit the target over a period in
which 100 ants are released. The expected probability for an
ant to hit the target in the absence of any pheromone trails is
0.24, so the first data point is set to this value for each run.

Experimental Results
Figure 1 shows the proportion of ants hitting the target over
time for ten independent runs of the experiment. Four of
these systems do not converge on a good solution before the
end of the run at iteration 15000 but six of them perform
well, converging to a stable state in which very few ants miss
the target.

Figure 2 shows the positions of the trails over time for
one such run. One can see that the system converges fairly
rapidly to a state in which there is a fairly strong trail leading
to the target, which has a catchment area that catches almost
all the ants entering the system. However, all trails are re-
warded for this, not just the ones that lead to the target. This
allows several “parasite” trails to persist, which benefit from
the ants reaching the target but do not contribute towards it.
These are less stable than the one which reaches the target
and are eventually out-competed by it.

The four systems which do not converge to a good solu-
tion have stronger, more established parasite trails. Since
more established trails fluctuate more slowly it can take a
very long time for these to decay. Note that although these
replicates have not converged on a perfect solution, all but
one of them consistently do better than the 25% that would
be expected in the absence of any reinforcement effect: they
have attained solutions which work but are not perfect. The
possibility of getting stuck on ‘local’ optima is perhaps an-
other thing that adaptive processes have in common with
evolution by natural selection.

Discussion
It is important to be clear about the relationship of our model
to the subjects under discussion, namely Pask’s experiment
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Figure 2: Snapshots of the pheromone trails after 100, 1000, 2500, 5000, 9600 and 15000 ants have passed through the system.
The target is the marked interval between columns 19 and 31 at the bottom of the grid. After 100 iterations there is only a weak
trail which does not lead to the target. By iteration 1000 a stable trail to the target has been formed which fans out at the top into
a large catchment area, but it also supports a number of ‘parasite’ trails which do not hit the target. These gradually disappear,
with the last fading out at around iteration 9600. After this almost all the ants hit the target (see figure 1). The system then
changes very little until the end of the run at iteration 15000.

and adaptive growth processes. Our claim is that our model
and Pask’s device operate according to a common principle,
the adaptive growth mechanism that we have described. Our
model is intended as a simple instantiation of an adaptive
growth process rather than as a direct model of Pask’s ear,
although loosely speaking the pheromone trails can be seen
as a metaphor for the metallic threads in Pask’s ear, with the
rate of input of ants taking the place of electric current.

Comparison to Ant-Colony Methods
Our model is not intended to compete with ant colony opti-
misation methods as it does not have the same purpose, but
since it bares some similarity to them it is worth discussing
the how our system differs and the reasons for taking our
approach.

It might appear that our system has several disadvantages
compared to a more traditional ant-based system in which
a successful trail is rewarded. We can see from figure 1
that convergence to a solution is slow and not guaranteed
to occur. However, the purpose of our model is explana-
tory. The threads in Pask’s experiments were not selectively
reinforced. Instead he rewarded the whole system with an
increase in current flow, and our claim is that our model
captures the way in which this directed the system’s growth
towards a solution. Moreover, the solution found by Pask’s

electrochemical device does not consist of a single thread;
it is a complex solution which requires the co-operation of
multiple threads performing a variety of tasks. Rewarding
“successful” threads in this context would not make sense,
since it is not in general possible to determine which threads
are contributing to the solution and which detract from it
(see the discussion of the credit assignment problem above).

In our system the task is not to create a single path leading
from the top of the grid to the target area, but to create a
network of threads which funnels ants from all positions on
the top of the grid towards the target area. There is some
similarity between this and the system-level nature of the
solution found by Pask’s device. Our hope is that with a
better understanding of adaptive growth processes it will be
possible to design systems, either in silico like our model or
in physical substrates, which can solve more complex tasks,
forming solutions which equal or surpass the sophistication
that Pask was able to achieve.

Implications for Adaptive Growth Processes
It seems reasonable to call the growth process in our model
adaptive because it shares with Pask’s ear the property that
structures which contribute towards performing the task (and
thus increasing resource availability) are more stable and
out-compete structures which do not help perform the task.
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Our computational experiment thus demonstrates that adap-
tive growth is a general phenomenon, rather than something
which only occurs in the specific electrochemical environ-
ment of Pask’s experiment.

However, adaptive growth does not occur in all possible
substrates and the parameters and reward function of our
model had to be chosen from the right ranges in order for
the phenomenon to occur. For instance, the subtraction of d
from the pheromone level in each cell for each ant that enters
the system seems to be important for adaptive growth to oc-
cur. Without it stable structures that achieve the funnelling
task do form, but they spontaneously collapse much more
readily, reforming again soon after. Perhaps this is because
parasitic structures can grow too easily, diminishing the re-
source supply and destabilising the whole system. It appears
in this case as if the system performs a random walk between
more and less stable structures, spending a high proportion
of its time in a state containing a stable structure simply be-
cause those states change more slowly. But the subtraction
of d on each iteration seems to provide a ratchet effect, mak-
ing transitions from more to less stable structures very un-
likely.

Another factor which seems important is that the growth
process is fast but that the decay process is slower for more
established structures. If the two processes took place on
the same time scale then it would be harder for structures
to persist on long time scales. The difference in time scales
between new and old structures means that it’s very unlikely
for the whole structure to unravel by chance. If the resource
availability drops it is more likely that a new structure will
be dissolved than an old one, giving a trial-and-error quality
to the growth process.

It also seems important that the reward function is modu-
lated on a similar time scale to the fluctuations in the struc-
ture. This is the reasoning behind applying a leaky integra-
tor to our reward function. A good substrate for an adaptive
growth process might therefore be one which exhibits fluc-
tuations over a wide range of time scales.

There is clearly a long way to go before we have a full un-
derstanding of why Pask’s ear works, and of adaptive growth
processes in general. Our example is simple and illustrative
but we anticipate that more elegant and successful exam-
ples will be found which are capable of adapting to more
involved tasks, leading to the possibility of practical appli-
cation.

Conclusion
We have introduced the notion of an adaptive growth pro-
cess in order to explain the results of Pask’s electrochemical
experiment. This allows us to see the enormous potential of
his result: in terms of practical applications, adaptive growth
processes could be used to produce control systems that can
adapt to new tasks and even adjust their level of complexity
when necessary. The idea may also be important for our un-

derstanding of biology since adaptive growth processes may
play a role in development.

We have presented an illustrative computational model
in which an adaptive growth process occurs, demonstrating
that adaptive growth is a general phenomenon and paving
the way for a better understanding of the circumstances un-
der which adaptive growth can occur.
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Abstract

Many mathematical models, which try to capture emergent
phenomena, are based on state transitions that depend on
neighborhood relationships. Cellular Automata (CA) and
Random Boolean Networks (RBN) are examples of such
models, where connectivity patterns determine the flow of
signals among interconnected units. Whereas neighborhoods
in CA and RBNs remain static, the focus of our investi-
gations are artificial swarms that act in three-dimensional
space, where neighborhood relationships among the swarm-
ing agents change over time. In fact, it is through the dy-
namically changing neighbors that determine a swarm sys-
tem’s overall behavior. In this paper we explore neighbor-
hood dynamics of swarms and ask the question how each
agents’ time-dependent perception of its neighbors relates to
specific flocking formations. We give examples of ‘neighbor-
hood functions’ for choreographed swarming behaviors, such
as line and figure-eight formations. We also evolve control
parameters for swarm agents such that they approximate spe-
cific neighborhood functions that trigger switching and oscil-
lations.

Introduction
Complex systems in nature usually comprise large numbers
of interacting units, as for instance immune system cells that
swarm in our bodies to fight off pathogens and remove dam-
aged cells (Litman et al. (2005)). However, it already takes
great effort to create and analyze stochastic models of only
a few interacting units (Oilek and Klein (1979)).

Numerical experiments have been playing an increasingly
important role in the investigation of complex systems (Nee-
lamkavil (1994)). In order to build numerical models of
complex systems, it is necessary to identify those features
of natural systems that are crucial for the emergence of
the phenomena of interest (Dasgupta (2006)). In particu-
lar, complex patterns that appear in natural systems, form in
space and unfold over time, have been reproduced in mod-
els built from large sets of computational units that change
their states in accordance with their local neighborhoods.
Cellular Automata (Wolfram (1984)) and Random Boolean
Networks (Kauffman (1995)) are examples of such models,
both of which will be outlined in the subsequent section on
related work.

Like in natural swarms — such as bird flocks or fish
schools —, the neighborhoods of artificial swarm individ-
uals change constantly and depend on preceding interac-
tions. Therefore, artificial swarms represent a model of com-
plex phenomena that embraces dynamical neighborhood re-
lationships. We explain this idea in detail in the third section.

In order to capture the formation of neighborhood rela-
tions in swarms, we measure the numbers of neighbors for
every individual at each simulated time step, within a par-
ticular neighborhood radius. We show examples of neigh-
borhood evolutions and discuss these through swarms that
exhibit specific flocking formations.

Subsequently, we demonstrate that switching and oscil-
lating neighborhood formations can be achieved in homoge-
neous swarm systems whose flight is solely regulated by a
linearly scaled acceleration of the individuals. We conclude
this paper with a summary and an outlook on future work.

Related Work
In Cellular Automata (CA) the processing units (cells) are
organized in a lattice structure and are set to an initial state
that is changed in accordance with a set of rules that consider
the states of all neighboring cells. CAs were primarily de-
veloped to model phenomena of self-reproduction based on
the interplay among a large number of finite state machines
(von Neumann and Burks (1966)). Not only was this goal
finally achieved (Gardner (1970)), but CA also became a
general model for complex systems based on neighborhood-
dependent state changes (Wolfram (2002)). According to
Wolfram (1984), patterns emerging from binary cellular au-
tomata can be classified into four different categories:

1. spatially homogeneous state;
2. sequence of simple stable or periodic structures;
3. chaotic aperiodic behaviour;
4. complicated localized structures, some propagating.

The transition from one such class or phase to another is of
considerable interest for various models of natural phenom-
ena such as the spreading of infectious diseases (del Rey
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et al. (2006)). We will explore similar transitions for swarm-
ing agents in 3D space, for which their neighbors change
dynamically over time.

Whereas in CA cells have a fixed spatial arrangement,
Random Boolean Networks or ‘RBNs‘ (Kauffman (1995))
abstract from the notion of space. Here, each cell can be
connected to any other one, forming an information prop-
agating network. As in CAs, the configuration of all cells
defines the global system state.

Albert et al. conducted experiments to create and ana-
lyze random RBN with the same distributions of degrees
of connectivity as those shown in gene regulatory networks
(Albert (2004)), and other scale-free networks (Hidalgo and
Barabasi (2006)). It has been demonstrated that RBN mod-
els show state transition patterns very similar to those of nat-
ural networks (Serra et al. (2003)).

Swarms as a Model of Complexity
Once determined, the neighborhood relations between the
units of a CA or RBN remain fixed. One may assume, how-
ever, that in many natural phenomena different forces draw
and push the involved units so that they change their posi-
tions, as is observed in bird flocks, fish schools, ant colonies,
cell development. Thereby, of course, the neighborhoods of
the units do not remain static.

Exactly this idea is captured in the ‘swarm metaphor’.
Large sets of swarm individuals, or agents, attract and re-
pel each other. The neighborly influence felt by one indi-
vidual determines its action for the next time step. A swarm
agent changes its velocity and position, thereby gaining a
new neighborhood perspective and, at the same time, alter-
ing its neighbors’ perspectives. Consequently, a feedback
loop of actions and reactions emerges. Unlike in CA and
RBN, state changes directly impact neighborhood bonds.
We argue that this feedback loop between agents and their
changing neighbor arrangements is the key feature to model
spatially organized systems, since locality plays a crucial
role for any effective interaction.

Reynolds (1987) presented a computational model to sim-
ulate flocking formations as seen in birds or herds of ani-
mals. Here, a set of agents, called boids, perceive and react
to each other in three-dimensional space. A formal descrip-
tion of Reynolds’ flocking model was provided by Kwong
and Jacob (2003) who interactively evolved different flight
formations of boids. In particular, a boid perceives its neigh-
bors within a viewing cone of length l and angle α (Figure
1). A boid reacts to its n neighbors by an alignment urge "va,
by attraction towards and repulsion from the geometric cen-
ter of the neighbors "vc, and, if they get too close, by a sep-
aration urge "vs. Fluctuations are introduced into the flight
pattern by adding a weighted random unit-vector "vr to the
acceleration. A boid’s velocity and acceleration are limited
by two values: vmax and amax, respectively. Additionally,
a world center "w is provided that determines the swarm’s

Figure 1: The three basic flocking urges alignment (a), co-
hesion (b) and separation (c) are depicted as they would in-
fluence (grey arrows with b/w head) the central agents (pix-
elized). White agents are out of scope, grey ones are within
the neighborhood vicinity and dark grey ones are close
enough to trigger separation. The diagrams are adapted from
Craig Reynolds’ website http://www.red3d.com/cwr/boids/.

flight destination. In order to compute boid i’s acceleration
"ai and resulting velocity "vi and position "pi one has to deter-
mine its set of neighbors, Ni. All those agents in Si ⊆ Ni

whose distance to i is smaller than dmin assume a special
role by contributing to i’s separation urge. Once its set of
neighbors is determined, the acceleration vector of a boid
results from the following weighted sum of urges.

"ai = ca"va + cc"vc + cs"vs + cw"vw + cr"vr (1)

"va =
1

|Ni|
∑

j∈Ni

"vj (2)

"vc =
1

|Ni|
∑

j∈Ni

"pj (3)

"vs =
1

|Si|
∑

j∈Si

"pj (4)

"vw = "w − "pi (5)

Neighborhood relations depend on the sight, the orienta-
tion and the position of the seeing individual, on the position
of the potentially perceived individual, as well as on time.1

We want to point out that the emerging causal chain of
boid interactions can be expressed as follows (Figure 2): The
actions of a swarm agent i change its state which influences
all those agents that are seeing i. At the same time i’s new
state results in the perception of a certain set of neighbors.
These neighbors influence i’s actions and the feedback loop
starts all over again.

It is worthwhile noting that the system state and the neigh-
borhood configuration are inseparable in the outlined swarm
model. As a consequence, the observation of alterations of
neighborhoods can be utilized to describe the system dy-
namics. Therefore, we measure the numbers of perceived
neighbors n(t) = |Ni(t)| of each swarm agent i at any given

1All vectors !ai, !va, !vc, !vs, !vw and sets Si and Ni are time-
dependent, but we will not denote the time variable explicitly.
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Figure 2: The slim arrows in the upper box show the direc-
tion of influence between perception, action and state of a
swarm agent i. The S-P tuples stand for the state and per-
ception modules of other agents that interact with i.

point in time t. We characterize a single state of the whole
swarm by the average neighbor value of all M swarm indi-
viduals. That is, we define the time-dependent neighborhood
function for a swarm with M agents as

n̄(t) =
1
M

N∑

i=0

ni(t). (6)

Finally, we suggest the evolution of n̄(t) over the course
of time to analyze and describe the dynamics of the (swarm)
system. Based on this approach we investigate various flock-
ing formations of boid swarms in the next section.

Analysis of Flock Formations
Kwong and Jacob (2003) have shown that diverse flocking
behaviors of boids can be evolved with different parame-
ter sets for Equations 1 to 5. We utilize four sets of flock-
ing parameters from this work (Table 1) to analyze ‘choreo-
graphic‘ line formations and figure-eight formations based
on n̄(t). Two different swarm configurations are provided
for each formation type. The following analysis links several
phases of swarm interactions and the occurrences of desired
formations to the development of the neighborhood function
n̄(t). The presented results are all produced by 50 swarm
agents with a perception radius l = 3.5 and viewing angle
α = 2.0. As above, we normalize all n̄(t) values by the
number of active swarm agents.

Line Formations
Figure 3 shows the development of n̄(t) with the line for-
mation parameters in row (i) of Table 1. The graph shows
the average number of neighbors perceived by each agent
over time. The plot can be partitioned into five distinct
phases. In phase I, the average neighborhood perception n̄
is rising rapidly. Mainly the urge towards the world center
"w = (0, 0, 0)T accelerates the initially stationary agents to-
wards each other (Figure 4 (a) to (c)), ending up much closer

than before (Figure 4 (d)). In fact, this phase was already de-
scribed by Reynolds (1987).

Line formations
ca cc cs cw cr amax vmax dmin

(i) 7 8 5 5 5 38 13 0.14
(ii) 7 8 4 10 4 40 9 0.01
Figure-eight formations

ca cc cs cw cr amax vmax dmin

(i) 3 10 1 5 2 38 6 0.01
(ii) 5 10 2 12 1 35 6 0.34

Table 1: Evolved parameter sets for ‘choreographically‘
flocking swarms (Kwong and Jacob (2003)).
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I II III IV V

Figure 3: Developments of the average neighborhood per-
ception n̄(t) matches several phases of agent interactions
and flock formations.

Figure 4: In phase I initially stationary agents are drawn
together by the urge towards the world center.
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During cluster formation the agents gain momentum by-
passing many other agents. This leads to the decreasing
average neighborhood perception in Phase II. As a result,
several smaller flocks emerge after these two initial phases
(Figure 5). The cohesion urge is now strong enough to keep
subgroups of agents together that gather in the same vicini-
ties (Figure 5 (a)). The alignment urge transforms these
subgroups into flocks that exhibit increasingly homogeneous
flight patterns (Figure 5 (b)).

Figure 5: In phase II subgroups align as separate flock for-
mations.

In phase III of Figure 3, a line formation emerges (Fig-
ure 6 (a)), yielding relatively small values of n̄. Steadily,
the agents are drawn closer to each other and n̄(t) increases
accordingly. In phase IV a dense agglomeration of agents
emerges at the head of the line formation (Figure 6 (b)).
Eventually, the line formation is destroyed and substituted
by a tight cluster formation (Figure 6(c)). After reaching
phase V, the flock remains in a quasi steady state that is sub-
ject to only minor fluctuations (Figure 6(d)).

Figure 6: (a) Phase III: agents of single flocks follow each
other in a line formation. (b) Phase IV: agents gather into
dense clusters at the heads of the line formations. (c) and
(d) Phase V: a tight cluster has formed that is robust enough
against sporadic attempts of separation.

Changing the simulation to the line formation (ii) pa-

rameters in Table 1 results in increased randomness of the
agents’ acceleration. The swarm looses its tight, cohesive
constraints and thereby allows for the sporadic escape of
agents. Figure 7 shows the corresponding neighborhood
function. The neighbors of a fleeing agent may try to catch
up and break out of the cluster as well. Consequently, the
swarm’s flight is dominated by tight cluster formations but
is frequently interrupted by line formations (Figure 8). An-
other consequence is that single agents or even whole flocks
can leave the parent flock, so that eventually all agents are
dispersed and unable to interact.

Figure 7: In the simulation of line formation (ii) of Table
1 agents break out of tightly formed clusters and take the
lead of long line formations. During such events n̄ drops
temporarily (e.g. at t = 25 and t = 32). Frequently the line
formations break up (as in Figure 6) and the parting flocks
do not interact anymore (t = 50). As a consequence, n̄(t)
reaches a value of zero at about t = 400.

Figure 8: An agent cluster is breaking up into two line for-
mations, one urging upwards, one towards the floor.

Artificial Life XI 2008  665 



Figure-Eight Formations
In analogy to the discussed line formation examples, we in-
vestigate two boid configurations that exhibit figure-eight
flight patterns with respect to n̄(t). As we can see in Fig-
ure 9, parameter configuration (i) from Table 1 reaches a
steady state, whereas with setting (ii) agents repeatedly wan-
der through different phases to eventually spread all agents
far enough from each other to prevent further interaction —
exactly as in line formation (ii) and in Figure 7.

Configuration (i) rapidly swings into a figure-eight forma-
tion traced by small clusters of six to ten agents (Figure 10
(b)). Here, the swarm constantly traverses through a limit
cycle of global states as indicated by the fast oscillating val-
ues of n̄ (Figure 9 (i)). In comparison to the line formation
experiments, the oscillation of n̄ is characteristic for figure-
eight formations. Furthermore, for configuration (i) the os-
cillation reached at about t = 20 marks a quasi steady state.

In figure-eight configuration (ii) the neighborhood per-
ception converges towards zero, and the subgroups of swarm
agents may break away during intermediary line formations.
This is similar to the second line formation experiment.

Line formations, such as illustrated in Figure 11(a) are re-
flected by the steep drops of n̄(t) in Figure 9(ii). In general,
line formations fold back quickly into figure-eight forma-
tions, as is shown in Figure 11(b).

In contrast to the line experiments, the difference between
a configuration that quickly results in a stable equilibrium
and a swarm that exhibits long periods of drastic changes
cannot be directly inferred from the according flocking pa-
rameters in Table 1. We assume that in complex figure-eight
flight patterns it becomes more difficult to identify a param-
eter, such as the random weight cr in Eq. 1, as crucial for
spontaneous behaviors.
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Figure 9: The development of n̄ of figure-eight formations
(i) and (ii) based on the parameter sets in Table 1.

Reverse Engineering of n̄(t)

The examples in the previous section demonstrate how mea-
suring the neighborhood dynamics over time can help to de-
scribe and analyze swarming behaviors. Now, we utilize
this association to approximate neighborhood dynamics as

Figure 10: (a) Agents in figure-eight formation. (b) Tight
agent flocks (of six to ten agents) in figure-eight formation.

Figure 11: A line formation is about to collapse into a figure-
eight pattern.

they might contribute to the coordination of naturally occur-
ring phenomena, such as biological switches and clocks or
timers.

The neighborhood value ni(t) of a single agent may
change rapidly, remain fixed or oscillate. It is also easy to
discover a whole flock of agents entering an equilibrium of a
specific average neighbor value n̄(t). The results in the pre-
vious section also show that even a whole swarm can change
dynamically, or, put differently, can follow specific evolu-
tions of n̄(t).

If it was not for its contextual evolution, the average
neighborhood n̄(t) would mainly characterize the concur-
rent spread, or density, of boid flocks, thereby correspond-
ing much to the common view on molecular concentrations.
In fact, neighborhood fluctuations indicate changes in the
structure of swarms. Immediately, the question arises which
patterns of movement could one expect when looking at evo-
lutions of n̄(t) that correspond to the development of molec-
ular concentrations in biological measurements.2

Even though the expression of genes happens stochas-
2Such measured molecular concentrations may come from mi-

croarray experiments that approximately capture the number of (re-
porter) proteins over time.
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tically, the levels of expression can differ greatly which
promotes the idea of a genetic switch (Jacob and Burleigh
(2004)). By the approximation of a step function for n̄(t),
we intend to show that even a homogeneous swarm could
exhibit bi-stable switching behavior. Oscillations occur in
natural systems as timers, such as circadian clocks. A a
second option, we therefore explore which swarm behav-
iors can be evolved that follow a sinusoidal neighborhood
function. For both endeavors we utilize a genetic algorithm
that operates on populations of swarms as described in the
following paragraphs.

Evolutionary Experiments
A homogeneous boid swarm, consisting of agents that
share the same control parameters, are represented by a
genotype vector "b = (ca, cc, cs, cw, cr, vmax, amax, l, r)T .
We also want to modify the starting positions, initial
accelerations and initial velocities of the swarm agents:
init0, init1, ..., initN . The extended swarm genotype is
therefore ḡ = ("b, init0, init1, ..., initN ).

In the following experiments we provide a desired target
function x(t) for n̄ and reward its approximation with a fit-
ness value f = 1/

(∑40
t=1 |n̄(t)− x(t)|

)
. We rely on the

genetic operators of fitness proportionate selection, incre-
mental mutation and multi-point crossover on all numeric
values. A population counts 30 swarms, with each swarm
consisting of 30 agents. The genetic algorithm was run up
to 300 generations.

Step Function
As the computation of the genotype was limited to 40 simu-
lated seconds, we decided to trigger the switch at about half
of the overall time-frame. A difference of 0.5 units in a sys-
tem with values n̄ ∈ [0; 1) denotes an obvious leap, whereas
n̄ = 0.25 is large enough to allow for further swarm inter-
actions (as opposed to n̄ = 0.0 that rules out the possibility
for local interactions).

x(t) =

{
0.25 t < 22
0.75 t ≥ 22

Figure 12 displays the step function approximation of a
boid configuration that appears after 200 generations of the
outlined genetic algorithm. In Table 2 we list the parame-
ters of the best evolved swarm genotype, which reveals two
surprising values: cs = 1.0 and vmax = 0.0. In fact, the
velocity of the swarm individuals is greater than zero — the
integration step of the simulation increases the velocity in
accordance with the provided acceleration"a that is limited to
amax = 12.15. The limitation of vmax = 0.0 means that the
agent is stopped after each iteration, resulting in a very small
velocity value, yet ensuring the orientation and alignment
according to its flocking urges. As a consequence, starting
from their initial positions, the agents are slowly converging

towards each other — nicely timed with the target function.
The large weight for the separation urge cs = 1.0 prevents
the agents from getting too close and exceeding the target
value of x = 0.75. The swarm is trained to approximate
the step function for 40 simulated seconds. For that reason,
the flight parameters are delicately balanced within this time
frame. In the given example the swarm reaches an equilib-
rium shortly afterwards.
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Figure 12: A neighborhood function n̄(t) of a boid config-
uration, bred by an evolutionary algorithm, approximates
a step function as x̄(t). Afterwards, outside the evalu-
ation window the swarm drops into an equilibrium with
n̄ ∈ [0.35; 0.45].

Boid configuration for n̄ step function approximation
ca cc cs cw cr amax vmax dmin

0.37 0.86 1.0 0.44 0.48 12.15 0.0 4.89

Table 2: Evolved swarm parameters that result in the neigh-
borhood function of Figure 12, implementing a switch in
n̄(t) (α = 2.09, l = 9.32).

Sine Function
Two periods of a sine function are provided as target func-
tion x(t) for time frame of 40 simulated seconds. As in the
step function approximation, n̄ is not forced to drop below
0.25 to guarantee a minimal space for interactions.

x(t) = sin(4π ∗ t/40.0) ∗ 0.25 + 0.5

Figure 13 shows the neighborhood function n̄(t) for the
evolved swarm configuration as listed in Table 3. Eventu-
ally, at t = 1244 in Figure 14, the oscillation ends; this
is when the agents form a tight cluster orbiting around the
world center "w.

Since complex interactions render it difficult to identify
certain flocking patterns, we activated motion blurring to
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better capture the pattern formations of the swarm. We de-
termined that the oscillation happens as the biggest flock
repeatedly expands (Figure 15) and contracts (Figure 16).
Leaps from a plateau to a local maximum, as seen at t = 100
in Figure 13, occur when formerly separated flocks rejoin
(Figure 17). In Figure 18 several screenshots with activated
motion blur illustrate intermediary flight formations.
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Figure 13: A boid configuration bred by an evolutionary
algorithm approximates two periods of a sinusoidal neigh-
borhood function. As shown, the oscillations sustain even
afterwards.
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Figure 14: After about 1200 simulated seconds the oscillat-
ing swarm transitions into a steady state.

Boid configuration for n̄ sine approximation
ca cc cs cw cr amax vmax dmin

0.76 0.95 0.53 0.36 0.76 12.15 7.16 4.12

Table 3: Evolved swarm parameters that result in the neigh-
borhood function n̄(t) of Figure 13. The corresponding
swarms display oscillating behaviors (α = 2.64, l = 7.86).

Summary and Future Work
Agent states and neighborhood relations are inseparable in
swarm systems. Therefore, the dynamics of a swarm can be
measured as the fluctuations in perceived neighbors. Based
on this approach we are able to characterize the dynam-
ics of boid swarms that exhibit various flocking formations.
Hereby, we also identify phases and phase transitions of the
boid system, including limit cycles and stead states.

Vice-versa, we evolve boid configurations to approximate
characteristic neighborhood functions. Here we show that

Figure 15: The flock extends in two directions.

Figure 16: The previously extended flock from Figure 15
contracts again.

non-linear and oscillating neighborhood developments can
emerge in spatially organized homogeneous swarms that
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Figure 17: A second flock approaches and joins the other
one (continued from Figure 16).

Figure 18: Motion blurring renders some of the more com-
plex flight patterns identifiable: (a) Spherical formation, (b)
a U-bent figure-eight, (c) and (d) extended figure-eights.

solely rely on linearly scaled flight acceleration based on re-
pulsion and attraction.

As in studies of complex pattern formations in two di-
mensional CA (Wolfram (1984)), experimental data sug-
gests that (1) Varying initial conditions and noise influence
the evolution of boid flocking patterns locally. The general
characteristics of the emerging patterns, however, are mainly
based on the flocking parameters of the swarm. (2) Different
swarm configurations can lead to very different pattern for-
mations. (3) Chaotic behavior — unexpected, chance-based
phase transitions — can occur in systems that initially show
orderly, periodic patterns.

For further investigation, we suggest the creation of an
abstract swarm model. It has to maintain the link between

state and neighborhood, but should be reducible to any high-
dimensional space. It would be desirable to find operators
that comply with the amalgamation of time and space, or re-
spectively structure and state, without realization of physics.
With a generalized set of operators that change states and
neighborhood relations concurrently, a systematic classifica-
tion of swarm dynamics might be possible. Thereby, swarms
could become an important model for the dynamics of com-
plex systems in general.
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Abstract

Energy is defined as the potential to perform work: every sys-
tem that does some work must possess the required energy
in advance. An interesting class of systems, including ani-
mals and recharging robots, has to actively choose when to
obtain energy and when to dissipate energy in work. If work-
ing and collecting energy are mutually exclusive, as is com-
mon in many animal and robot scenarios, the system faces an
essential two-phase action selection problem: (i) how much
energy should be accumulated before starting work; (ii) at
what remaining energy level should the agent switch back to
feeding/recharging? This paper presents an abstract general
model of a energy-managing agent that does time-discounted
work. Analyzing the model, we find solutions to both ques-
tions that optimise’s the value of the work done. This result
is validated empirically by simulated robot experiments that
agree closely with the model.

Introduction
Since the early years of robotics, e.g. Walter (1963), roboti-
cists have been challenged by the need to supply robots with
energy. For mobile robots that carry their own limited en-
ergy store, the key question is “when should the robot re-
fuel/recharge?”. A standard approach in the literature and
in commercial robots is to set a fixed threshold and refuel
whenever the robot’s energy supply drops below this thresh-
old (Silverman et al. (2002), Silverman et al. (2003)). The
simplicity of this approach is appealing, but it may not be the
optimal strategy. For exampleWawerla and Vaughan (2007)
showed that, in a realistic surveying task, an adaptive thresh-
old produces a higher overall work rate than a static thresh-
old, and a rate maximizing approach outperforms both by
a large margin. The biologically-inspired rate maximizing
method performs well, but it has some important limitations
discussed below. This paper provides a more sophisticated
model for rational recharging robots.
Robots, by their name1 and nature, are supposed to per-

form some form of labour, e.g. space exploration, enter-
tainment, rescue missions, clean-up, assembly, etc. Most
tasks require execution in a timely manner, though some

1Webster: Czech, from robota: compulsory labour

more then others. For example, we may be willing to wait
for a day or two for the latest geological observations from
Mars, while waiting the same time for the rescue of trapped
miners or ordnance disposal might not be acceptable. The
standard method to model the decreasing value of work over
time, and thereby encourage timely execution, is to discount
by some factor β in discrete timesteps the reward given in
exchange for investment (Varian (1992)), where investment
here is energy dissipated in labour. The inverse of discount
(1/β) is the familiar interest rate, of savings accounts and
credit cards.
The laws of physics dictate that energy cannot be trans-

ferred instantaneously, or in other words, refuelling takes
time and this time cannot be spent working. If a robot spends
an hour refuelling, it starts to work one hour later and since
the reward is discounted over time, it receives a smaller pay-
ment then if it would have started working immediately. But
the initial charging period is strictly required, as no work
can be done without previously obtaining energy. This con-
flict between the mutually exclusive tasks of refuelling and
working raises two interesting questions:

Q1 How much energy should be accumulated before starting
work?

Q2 At what remaining energy level should the agent switch
back to obtaining energy?

Most real-world robot systems avoid these questions by
maintaining a permanent connection to an energy source,
e.g. industrial robotic manipulators wired into the mains
power grid, or solar powered robots which are capable of
gathering energy while performing some task at the same
time. This paper addresses the more interesting class of ma-
chine, including animals and mobile robots, that must obtain
and store energy prior to working. The Q1,Q2 action selec-
tion problem must be solved by every animal and long-lived
robot in some way or another. Further we are only consider-
ing rational agents. Any introductory textbook on decision
making (e.g. Stuart and Peter (2003)) defines an agent to be
rational if it always selects that action, i.e. an answer to Q1
and Q2, that returns the highest expected utility. Here we
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assume that utility is proportional to the reward obtained by
working, which is discounted over time.
After considering related work, we analyze the prob-

lem in terms of a simplified abstract model which, when
parametrized to approximate a particular robot system, pre-
dicts the optimal answers to Q1 and Q2. We validate the
model by comparing its predictions with data empirically
obtained from a simulated robot.
To the best of our knowledge, this is the first proposed

solution to this general robotics problem.

Related Work
The literature on robotic energy management has many as-
pects ranging from docking mechanisms, energy-efficient
path-planning, to fuel types. The most relevant aspect to
this work is on action-selection. Perhaps the most stan-
dard and simple way to determine when it is time for the
robot to recharge is to set a fixed threshold. This can ei-
ther be a threshold directly on the energy supply as in Sil-
verman et al. (2002) or on time elapsed since last charg-
ing as in Austin et al. (2001). The latter is usually easier
to implement but less accurate, because one has to have
some model of the energy supply. However, Wawerla and
Vaughan (2007) showed a fixed threshold policy can be im-
proved upon. While it is true that maximizing the energy
intake rate maximizes potential work rate, it does not opti-
mize with respect to when the work is done. It also assumes
that recharging is always valuable. This is often true, but not
always, as we show below. Also notable is that all of the
above papers refuel the robot to maximum capacity at each
opportunity, and do not consider that this may not be the best
policy.
Litus et al. (2007) consider the problem of energy efficient

rendezvous as an action selection problem, and so investi-
gate the where, but not the when and how long, to refuel.
Birk (1996) had robots living in a closed ecosystem learn to
‘survive’. Here robots learned to choose between recharging
and fighting off competitors. Birk’s agents’ value function
of ‘survivability’ is different to that considered here. The ra-
tional robot and its owner are interested in gainingmaximum
reward by working at the robot’s task, and are indifferent to
the lifespan of the robot. This is a key difference between
the purpose of robots and animals.
Although intended as a wake-up call for psychology

research, Toda’s Fungus Eater thought experiment (Toda
(1982)) has been influential in the robotics literature. The
survival quest of a mining robot on a distant planet con-
tributed significantly to ideas of embodiment and whole
agents (Pfeifer (1996)), but the action selection problem pre-
sented has yet to be solved in more then the trivial way of a
fixed threshold policy.
Spier and McFarland (1997) and McFarland and Spier

(1997) investigate work - refuel cycles, or as they call it ’ba-
sic cycles’, and show a simple rule, based on cue and deficit,

Figure 1: Refuel and time discounted labour model, see text
for details

can solve a two resource problem. The cue-deficit policy
is inherently reactive and thus fails to cope with the cost of
switching between behaviours. Lacking any form of look
ahead or planning, so it is difficult to see how it would han-
dle discounted labour situations.
From McFarland’s work, it is a small step into the vast

literature on behavioural ecology, from which Houston and
McNamara (1999), Stephens and Krebs (1986) and Stephens
et al. (2007) are strongly recommended starting points. Due
to the biological background of these publications, the anal-
ogy to labour and reward in a robotic case is not obvious.
The majority of this work uses dynamic programming (DP)
as a means of evaluating models of animal behaviour. An
exception that does not rely on DP is Hedenström (2003),
who investigates the bio-mechanics of land based animals to
derive models of optimal fuel load during migration. The
model optimizes for migration time, does not map directly
into discounted labour or the cyclic work-charge lifestyle of
the long-lived robot.
It is known that animals prefer a small, immediate reward

to a large delayed reward. So animals seem to do some form
of time discounting. According to Kacelnik and Bateson
(1996) the reason seems to be that animals in general are
risk averse. From a robotics point of view, one major is-
sue with the descriptive models of behavioural ecology is
that they lack the ‘how does the animal actually do it’ pre-
scriptive description and hence do not translate readily into
robot controllers. Work that tries to bridge the gap between
ecology and robotics is Seth (2007). Here Seth uses ALife
methods to evolve controllers that obey Herrnstein’s match-
ing law (roughly: relative rate of response matches relative
rate of reward), which again is in the domain of rate maxi-
mization.

The Model
In this section we describe the behavioural model used in
this work. In order to keep the analysis tractable we choose
an abstract, slightly simplified model. The world is mod-
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elled as two distinct spatially separated sites: a work site and
a refuelling site. Moving between sites has a non-zero cost
(Figure 1). The robot has a energy storage of E(t), where
0 ≤ E(t) ≤ Emax. If the energy supply drops to zero any-
where but at the refuelling site, the robot looses is ability to
move or work and can gain no more reward. The robot can
be in one of four states:

• refuelling with a refuelling rate of ėr, to do so the robot
has to be at the refuelling site.

• transitioning from the refuelling site to the work site,
the duration of this transition is τd and the robot has to
spend energy at a rate of ėd, so the transitions cost in term
of energy is τdėd

• working, which gets the robot a reward of R =
∫ t0+τw

t0
βtdt, where t0 is it time when the robot starts to

work and τw is the duration the robot works for. There-
fore the reward the robot earns by working is discounted
with a discount factor 0 < β< 1. While working the
robot spends energy with a rate of ˙ew. In other words,
the robot turns energy into work and therefore reward. In
case where the robot performs several work sessions, the
reward is accumulated and only the overall reward is at in-
terest to the owner of the robot. As with refuelling, work
can only be performed at the work site.

• transitioning from the work site to the refuelling site,
the duration of this transition is τd and the robot has to
spend energy at a rate of ėd

The robot’s goal is to achieve as much reward as possible.
To do so, it has to make two decisions, (1) when to stop
refuelling and resume work and (2) when to stop working
and refuel. We mostly refer to the action of accumulating
energy as refuelling and not as recharging because we want
to emphasis the general nature of our model.
It is worth pointing out that in a real world scenario all im-

portant variables, namely the energy rates, could be known
in advance or are easily measured by the robot. Here we
assume these variables to be constant, though in an actual
implementation we would use averages as approximations.
It would also be feasible to do some form of piece-wise lin-
ear approximation of the energy rates. The discount factor
can also be assumed to be known, since this factor is task
dependent and, hence, is set by the owner or designer of
the robot or by some external market. As we show below,
even if all else is fixed, the robot owner can use the discount
factor as a control variable that can be tweaked to fine tune
the robot’s behaviour. Everything else is predefined by the
tasks, the robot’s construction or the environment.
In order to improve readability, we need to introduce some

additional notation. k1 = ėr

˙ew
is the ratio of the energy

rate while refuelling to the rate while working. Similarly,

k2 = ėd

˙ew
is the energy rate while transitioning to the en-

ergy rate while working. k3 = ėd

ėr
= k2

k1
is the ratio of

the energy rate while in transition and the energy rate refu-
elling. τr is the time spent refuelling during one refuel-work
cycle. The amount of work the robot can perform is lim-
ited by the energy supply the robot has, so we express the
potential work duration as a function of refuelling and tran-
sitioning time where τw = τrk1 − 2τdk2, which is basically
the amount of time the robot can work for, given the amount
of energy the robot got from refuelling minus the energy
the robot has to spend to travel to the work site and back to
the charging station. We also introduce the period of time
T = τr +2τd + τw = τr(1+k1)+2τd(1−k2) as the length
of one refuel-work cycle.

When to stop working
Let e(t) be the energy in the robot’s storage at time t. At
what energy level e(t) < εw→r should the robot stop work-
ing and transition to the refuelling site? Since the value of
work is time discounted, work that the robot performs now
is always more valuable then the same amount of work per-
formed later. This creates an inherent opportunity cost in
transitioning from the work site to the refuelling site be-
cause it takes time and costs energy τd ˙ew that cannot be
spent working. This implies that the robot needs to work
as long as possible now and not later. Hence the only two
economically rational transitioning thresholds are:

• εw→r = τdėd

The robot stops working when it has just enough en-
ergy left to make it to the refuelling station. The robot
will spend the maximum amount of energy, and therefore
time, working, ensuring the highest reward before refu-
elling. Comparatively, should a higher transitional thresh-
old be used, the robot would stop working earlier and re-
fuel earlier, but discounting results in a smaller reward.
Should the transitioning threshold be smaller, the robot
would have insufficient energy to reach the refuelling sta-
tion. In this case, the robot cannot gain any further reward
because it runs out of fuel between the work and refuel
sites.

• εw→r = 0
The robot spends all of its energy working and terminates
its functionality while doing so. At first glance this option
seems counter intuitive, but one can imagine highly dis-
counted labour situations, such as rescue missions, where
the energy that would otherwise be spent on approach-
ing a refuelling site is better spent on the task at hand.
This might also be a rational option if the transition cost
is very high, e.g. NASA’s Viking Mars lander took a lot
of energy to Mars in the form of a small nuclear reactor,
rather than returning to Earth periodically for fresh batter-
ies (the recent Mars rovers employ solar cells to recharge
their batteries originally charged on Earth).
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Figure 2: General discounting in refuel - work cycles. The
shaded areas are periods in which the robot works and thus
earns a reward. The white areas correspond with time in
which the robot does not obtain any rewards because it either
travels or refuels

Suicide or live forever?
Using our simple model, we can determine whether a robot
in a given scenario should terminate while working or con-
tinue indefinitely with the work-refuel cycle. Let

R0 =

∫ τr+τd+τw

τr+τd

βtdt = βτr+τd
bτw − 1

ln(β)
(1)

be the reward obtained from spendingEmax − εw→r energy
or τw time during the first working period (see figure 2).
In this figure the shaded areas correspond to time in which
the robot performs work and thus obtains a reward propor-
tional to the size of the shaded area. Later work periods
are discounted more strongly and hence provide a smaller
reward. White areas correspond to times in which no re-
ward is earned because the robot either travels between the
work and refuelling site or it refuels. The size of this area
is proportional to the opportunity cost, that is, reward that,
in principal, could have been obtained if the time had been
spent working.
Let T be the duration of one full work-refuel cycle, that is

working - transition - refuel - transition, or T = τw + τd +
τr + τd. Therefore, the reward gained in the next cycle is
the initial reward R0 discounted by T and becomes βτR0.
Subsequent rewards are again discounted by T and so the
reward for the third cycle is β2T R0. The sum of all rewards
if working infinitely, that is choosing εw→r = τdk2, is

R∞ = R0

∞
∑

i=0

βiT = R0

1

1 − βT
(2)

In practice no system will last forever, so this analysis is
slightly biased towards infinite life histories.
If the robot chooses εw→r = 0 it gains the initial reward

R0 plus a one time bonus of

R+ =

∫ τr+τd+τw+τdk2

τr+τd+τw

βtdt = βτr+τd+τw
βτdk2 − 1

ln(β)
(3)

by spending the energy required for transitioning on work-
ing. The reward gained over the live time of the robot (which
is fairly short) is Rrip = R0 + R+.
So the answer to Q2 is that the rational robot selects that

threshold εw→r that achieves the higher overall reward, so it
picks

εw→r =

{

0 : Rrip ≥ R∞

τdėd : Rrip < R∞
(4)

Since the discount function
∫

βtdt belongs to the class of
memory-less functions, we only have to calculate eq. 4 once,
in other words if it is the best option to refuel after the first
work cycle it is always the best option to do so and vice
versa.

How much energy to store
We have shown how to determine a threshold for transition-
ing from work to refuelling. In this section we will analyze
when to stop refuelling and resume work, or phrased dif-
ferently, how much energy to accumulate before starting to
work. Energy and time are interchangeable elements, pro-
vided that we know the rate at which energy is spent and
gained. Since discounting is done in the time domain, our
analysis equates energy with time for simplicity. Based on
this, we can ask the time equivalent of Q1: ‘how long should
the robot refuel for?’ We call this refuelling duration τr.
To be rational, the robot must refuel long enough to gain
enough energy to make the trip to the work site and back,
that is 2ėdτd, otherwise it would have to turn around before
reaching the work site and thus will not gain any reward.
Refuelling after the storage tank is full is time wasted that
would better be spent obtaining a reward. Therefore the re-
fuelling time is limited to 2τdk3 ≤ τr ≤ Emaxėr

−1. In the
following we assume, without loss of generality, the robot
starts at the refuelling site with an empty fuel tank. Assum-
ing differently will just result in shift of the analysis by a
constant factor, but will not change the overall conclusions.

Acyclic tasks
First we examine situations in which the robot has to refuel
for a task that has to be done only once, that is the robot
refuels, performs the task, and returns to the refuelling site.
Depending on the time spent refuelling the robot obtains the
following reward during the upcoming work period.

R(τr) =

∫ τr+τd+τw

τr+τd

βtdt = βτr+τd

∫ τrk1−2τdk2

0

βtdt

(5)
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Figure 3: Reward depending on refuelling time with an ex-
ample configuration k1 = 0.5, k2 = 0.5, β = 0.97, τd =
85s

Next we need to find the τ̂r that maximizesR(τr), which is

τ̂r = argmax(R(τr)) =
logβ

(

1

k1+1

)

+ 2τdk2

k1

(6)

Figure 3 shows an example reward function (eq. 5) depend-
ing on the refuelling duration τr. Using eq. 6 we calculate
that for this particular configuration the reward is maximized
when the robot refuels for τ̂r = 86.6234.... If the fuel tank
is filled before that time, the best the robot can do is re-
turn to work. This will give it the highest reward achievable,
but the designer should keep in mind that there might ex-
ist a class of robots with a larger fuel tank that will achieve
a higher reward. Note that if the robot stops refuelling at
τ̂r even if its energy store is not full to capacity, and transi-
tions to working, it earns the highest reward possible. To our
knowledge this has not been stated explicitly in the robotics
literature before. It is generally assumed that robots should
completely recharge at each opportunity, but this is not al-
ways the optimal strategy.

Cyclic tasks
In cyclic tasks a robot is required to always return to work af-
ter resupplying with energy. Here the analysis is slightly dif-
ferent then in the acyclic case because the refuelling time of
the current cycle not only influences the duration and length
of the work period of this cycle but of all cycles to come.
Hence, we should select a refuelling threshold that maxi-
mizes the overall reward. The overall reward is calculated
by (see fig. 2)

R∞(τr) = R0

∞
∑

i=0

βiT =
(βτw − 1)βτr+τd

(1 − βT ) ln(β)
(7)

Unfortunately, it seems impossible to find a closed form so-
lution to τ̂r = argmax(R∞(τr)). However, eq. 7 can easily

Figure 4: Office like environment with a charging station
’C’ and a work site ’W’. The red line is the stylized path the
robot travels on.

be evaluated for a given τr and so calculating the reward for
each of a finite set of values for τr and selecting the one that
maximizes the reward is quite practical. In any real appli-
cation the number of τr to be tested is limited and possibly
rather small, in the order of a few thousand. This is because
any real robot will have a finite energy storage and any prac-
tical scenario will require only limited sampling due to the
resolution of the fuel gauge, the uncertainty in the environ-
ment, etc. In the case of our Chatterbox Robot (see below),
the battery capacity is 2.8 Ah and the fuel gauge has a res-
olution of 1mA, resulting in less than 3000 calculations for
an exhaustive search.

Experiments
In this section we present experiments to validate the the-
oretical results described in detail above. All experiments
were performed using the robot simulator Stage2. The sim-
ulated robot uses simulated electrical energy, where we as-
sume charging and discharging to be linear, with constant
current for charging Ic, working Iw and driving Id. We fur-
ther ignore any effects caused by the docking mechanism,
change in battery chemistry or ambient temperature.
In all experiments we roughly model a Chatterbox robot,

a robot designed and built at SFU based on an iRobot Create
platform. This robot has a battery capacity of approximately
2.8Ah and draws about 2A while driving. We defined an
abstract work task which consumes 4A of current. Once at
a charging station, the robot docks reliably and recharges
with 2A. The world the robot operates in is office-like with
one charging station and one work site shown in fig. 4. The
obstacle avoidance and navigation controller drives the robot
from the charging station to the work site and vice versa in

2http://playerstage.sourceforge.net
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Figure 5: Comparing analytical and simulation results for
accumulated reward from a cyclic task depending on refu-
elling time with an example configuration Ic = 2.0, Id =
2.0, Iw = 4.0, β = 0.9997, τd ≈ 85

approximately τd = 85s. Due to naturally occuring noise
in the experimental setup the travel time may vary by up to
6 seconds. While working, the robot receives one unit of
reward per second, discounted by β. Discounting occurs on
a one second basis.

Cyclic Task
The goal of this experiment is to evaluate how closely our
analysis from section matches a robot in a simulated envi-
ronment. In this experiment the robot’s task is to recharge
for some time τr, proceed to the work site, work until the
battery energy drops to εw→r = τdId, return to the charg-
ing station, and repeat the process. The reward for work is
discounted by β = 0.9997. To find out which τr maximizes
the reward we varied the threshold for leaving the charging
station εr→w = τrIc in each try. A trial lasted for 50000
seconds (≈ 13.8 hours). Figure 5 compares the accumu-
lated reward gained over τr from the simulation and from
the best solution obtained from the model by iterating over
eq. 7. The recharging time that maximizes the reward is pre-
dicted by the model to be τ̂r = 1219 and in the simulation
τ̂r = 1170. The difference comes from the variation in time,
and therefore energy, the robot requires to travel between the
charging station and the work site. Not only does this change
the starting time of work which influences the reward, it also
makes it necessary to give the robot a small amount of spare
energy to ensure it would not run out of battery. This, in turn,
delays charging and thereby influences the reward gained.
However, the empirical results agree qualitatively with the
values predicted by the model, and the optimal recharging
time predicted by the model was within 4% of that observed
in the simulation.

Figure 6: Comparing analytical and simulation results for
accumulated reward from an acyclic task depending on re-
fuelling time with an example configuration Ic = 2.0, Id =
2.0, Iw = 4.0, β = 0.9997, τd ≈ 85

Acyclic Task
As before, we perform this experiment in order to compare
the theoretical results with a simulation. The setup is the
same as in the cyclic task experiment with the difference that
the robot only has to perform one charge-work cycle. Figure
6 compares the simulation results to the analytical results.
Where the general shape of the curve is similar to that in the
cyclic task, it is worth to point out that the maximum reward
is gained with a larger charging threshold. This is intuitively
correct as the robot has only once chance to obtain a reward.
It can be (depending on the discount factor) beneficial to
begin work later, but to work for a longer period. For our
configuration, the most profitable theoretical charging time
is τ̂r = 2872.7 and the best simulation results were obtained
with τ̂r = 2880. Again the difference between the theoret-
ical and experimental results, barely visible in the plot, are
due to imprecision in the robot simulation.

Once or forever
In a further experiment we investigate the circumstances un-
der which it is more profitable, and hence rational, for the
robot to fully deplete its energy supply while working and
when it is better to choose a perpetual refuelling policy. As
in the previous experiments we use a simulated Chatterbox
robot with the previously described parameters in the office-
like environment. For this scenario, we vary the discount
rate between 0.9850 and 0.9999 in 0.0005 increments and
run two sets of simulations. In the first, the robot depletes
it’s energy supply while working, that is, we choose the
leave work threshold εw→r = 0. For the second set, we
choose εr→w = τdėd, a leave work threshold that causes the
robot to keep performing work-refuel cycles forever. Since
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Figure 7: Reward obtained for different discount factors
with two leave work thresholds. Configuration Ic =
2.0, Id = 2.0, Iw = 4.0, τd ≈ 85

we change the discount rate we have to adapt the leave refu-
elling site threshold in order for the robot to earn the highest
possible reward. For this determine the optimal threshold
in the same way as for the previous experiments. Figure 7
depicts the rewards obtained for different discount factors
with each policy. As the graph further shows, for higher dis-
counting (smaller discount rate), it is beneficial for the robot
to choose a one time work policy. Conversely, for smaller
discounting (higher β), it pays to keep working. The theo-
retical discount rate for switching the policy from one work
period to an infinite work refuel cycle is β = 0.9979, which,
as the graph shows, closely resembles the experimental re-
sult.

Discussion and Conclusion
We outlined a theoretical analysis of when to refuel and for
how long to refuel a robot in situations where the reward
for the robot’s objective is discounted over time. This dis-
counting is, more often then not, ignored in robotics liter-
ature, although it is at the very base of rational behaviour
(Stuart and Peter (2003)). We took theoretical results and
demonstrated that they apply to a simulated robot. In these
simulations we assumed the location of and the distance be-
tween work and refuelling station to be known. This is rea-
sonable in the state of the art in mapping and localization,
in a wide range of scenarios. We further assumed the aver-
age energy spending rates to be constant and known, some-
thing achievable in most cases. One assumption made that
simplifies a real-world robot scenario is the refuelling rate.
Gasoline-powered vehicles which refuel from a standard gas
station have a constant refuelling rate, or close to it. How-
ever, the charging rate of a battery may depend on many fac-
tors including the charging method used, temperature, bat-

tery chemistry, and the current capacity of the battery. One
useful extension of our model would be to include a realistic
chemical battery recharge transfer function.
This paper has presented and analyzed a core action se-

lection problem for autonomous agents such as animals and
mobile robots: how much to fuel before working, and when
to abandon working and return to fuelling, such that the
value of discounted work is maximized. A simple model
readily provides answers to these questions and closely pre-
dicts the observed behaviour of a robot simulation. While
the model is simple, it is very general, and these results sug-
gest that it could be of practical as well as theoretical inter-
est. We propose it as a baseline to build upon.
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Abstract

We present notions of entity and entity-based model that are
applicable to artificial life. We illustrate these notions by giv-
ing an abstraction of Langton’s loops: loop-like structures
that reproduce in a cellular automaton (CA). Our abstrac-
tion takes as entities persistent configurations of the cellular
automaton, and shows how these entities may be combined
to form more complex entities. The resulting entity-based
model of Langton’s loops describes the functionality and in-
terrelationships of these components, abstracting from their
actual realisation in a cellular automaton. As well as provid-
ing a basis for the study of ecologies of interacting entities
in artificial life, our approach provides a useful intermediate
level of abstraction that can relate top-down and bottom-up
approaches to the study of life-like systems.

Introduction

One of the earliest results in the field of artificial life was
given by von Neumann (1966), in which an automaton on
a cellular automaton (CA) grid was shown to reproduce it-
self. Subsequent improvements by Codd (1968), Langton
(1986), and others (Sipper, 1998) showed an intriguing ap-
proach to the modelling of life that differed from much of
mainstream biology. In biology, abstract processes such as
reproduction, metabolism and evolution are specified based
on observation of existing life forms. We can characterise
this as a top-down approach, in which we attempt to under-
stand life and its systems through abstract models and clas-
sifications. The opposite approach is widely-adopted in arti-
ficial life, in which bottom-up models of life are generated.
This difference hs been well-documented (Langton, 1986;
Sipper, 1995; Bonabeau and Theraulaz, 1996), and is a key
characteristic of much work within the field of artificial life.
The question of which approach to use was also explored by
Bedau (1998) with the question, ‘Does the essence of life
involve matter or form?’

The work by Rosen (1991) on the modelling of life
has received attention recently in the artificial life commu-
nity (Chu and Ho, 2006; Louie, 2007; Wolkenhauer, 2007;
Chu and Ho, 2007). Rosen argued that reductionistic mod-
els of life were not adequate for giving a formal descrip-

tion of the organisation observed, i.e., life cannot be re-
duced to physical laws of the Universe. Instead, Rosen sug-
gested a high-level description of life based on systems con-
sisting of interacting components. This kind of approach
has been adopted elsewhere in the artificial life commu-
nity, including work by Adams and Lipson (2003) and our-
selves (Webster and Malcolm, 2007b,a).

The apparent disparity between top-down and bottom-up
approaches to modelling life presents a problem for the field
of artificial life. Both approaches have been proven to be
valuable, and many interesting results have been obtained in
both directions. However, the question of how these differ-
ing approaches are related is still an open question. In this
paper we present a way of relating these two levels. exem-
plified through a ‘reverse engineering’ of Langton’s loops, a
seminal example of implementing artificial life in a cellular
automaton. We take a paradigmatic artificial life reproducer,
Langton’s loop, and show how its interacting components
can be abstracted from the low-level state of the cellular au-
tomaton. We show that these components can be tied to-
gether using formal constraints that are based on observa-
tion of the cellular automaton itself. The result is a high-
level formal description of Langton’s loop, which abstracts
the functionality from the particular implementation details
of the loop, and captures the interaction of various compo-
nents within the reproducing whole. We describe how the
high-level abstract model can be fitted to a variety of low-
level models through a refinement process.

This relationship between high- and low-level models is
inspired by work in the field of software engineering, in
which high-level specifications of a software system are re-
fined to produce a low-level implementation. A typical ex-
ample of this would be the transition from a software de-
sign specification in an abstract modelling language (e.g.,
UML), which is refined to a software specification in a
high-level language (e.g., C++), which is then refined fur-
ther to a low-level language implementation (e.g., using In-
tel 64 assembly language) during the compilation process.
There may be several different low-level language imple-
mentations that match the higher-level specifications. Simi-
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larly, the high-level component-based specification of Lang-
ton’s loop can be refined to a number of different low-level
specifications, in which the implementation details (such as
the transition rule, or number of states of the cells in the
cellular automaton) vary, but which all satisify the high-
level ‘reverse-engineered’ component-based description of
a reproducing loop. These refinements need not be triv-
ial alternatives, such as re-labelled states, as the high-level
component-based specification would essentially describe
any reproducing loop satisfying certain constraints. There-
fore, this specification could be refined to different cellu-
lar automata (with different states, topologies and transition
rules), or even non-discrete examples of cellular computa-
tion, in which the data-paths of Langton’s loop are contin-
uous or noisy communication channels in the vein of those
described by information theory (Shannon, 1948).

In the following section, we review the construction of
Langton’s loops, and present abstract entities that capture
the functionality of the various components that build up
these loops. We also illustrate how our approach allows for
a dynamic system in which entities are created and change
relationship between one another.

Langton’s Loops

Langton’s loops provide a simple example of self-repro-
duction in cellular automata (Langton, 1984). The ques-
tion of whether an automaton could reproduce, thereby
exhibiting at least one life-like trait, was first studied by
von Neumann (1966). He was able to provide a positive an-
swer by exhibiting a universal constructor: an automaton
which, given as input a description of any automaton, could
construct that automaton and copy the input description as
that automaton’s input. Therefore, given a description of it-
self, the universal constructor reproduces by building a copy
of itself with its own self-description. Von Neumann’s uni-
versal constructor required cellular automata with 29 states,
and was later simplified by Codd (1968). While universal-
ity is an interesting feature from the point of view of com-
putability, it is not, as Langton (1984) noted, a necessary fea-
ture of reproduction, and indeed it seems unlikely to figure
in biological reproduction. Langton’s loops were the result
of his search for a simpler example of a reproducer, though
not so simple as to become trivial. In particular, Langton re-
quired that the process of reproduction be ‘actively directed’
by the reproducer, and that the reproducer store informa-
tion directing its reproduction that is both interpreted (as in-
structions) and uninterpreted (as data that is copied or tran-
scribed).

Langton states1 that ‘the idea for this simple self-repro-
ducing configuration came out of a study of the components
of Codd’s universal constructor’, and it is our goal to eluci-
date in what sense both Langton’s and Codd’s configurations

1op. cit., p.137

can be said to have ‘components’.

A cellular automaton is an example of a deterministic

transition system: at a given moment each cell in the grid
is in a particular state; its state at the next moment of time is
determined by its own state and the states of its neighbours
(the 5-cell neighbourhood for Langton’s loops) according
to a transition function, which it is usually convenient to
present as a table listing transitions for all possible config-
urations of a neighbourhood’s states. Langton’s loops are
realised on a cellular automaton where each cell is in one
of eight states. Throughout the remainder of this paper we
will refer to this state set as S = {0, 1, 2, 3, 4, 5, 6, 7}. Each
of these states has a particular function: for example, state
0 represents ‘blank space’, though it also provides direction
for instructions such as state 7, which causes a ‘data-path’
to be extended; these data-paths are the basic structure of
Langton’s loops, as they were also in Codd’s universal con-
structor. They are formed from two rows of sheath cells with
a row of ‘core cells’ between, as pictured in Figure 1.

Figure 1: A data-path. The data signal ‘7 0’ travels along
the data-path. The state of cell x in the updated state is de-
pendent on the state of cell y. If y = 1, then in the updated
state x = 1.

The function of a data-path is the transmission of a data
signal along its length. For example, in Figure 1 the ‘7 0’
signal has been shifted one cell to the right. This process
continues as long as the data-path does. data-paths can be
‘capped’ using a cell in state 2, as seen in Figure 2.

Figure 2: A capped data-path.

The cap allows the data signal to effect the extension of
the data-path. This extension process is what allows Lang-
ton’s loop to extend an ‘arm’, which loops around to com-
plete the act of reproduction.

Another kind of data-path functionality in Langton’s loop
is the T-connection, as seen in Figure 3. The data-path sends
a signal to a point where two other data-paths are connected.
The intersection of the three paths is at a particular cell.
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Figure 3: A T-connection. The image at the top shows a T-
connection as realised in a cellular automaton; the diagram
below describes the same connectivity in the schematic form
described in the following subsection.

When the data signal arrives at the cell, it is duplicated and
sent out through each of the other two connected data-paths.

Components

We want now to abstract, as far as we can, the functional-
ity described above from its realisation in a particular cellu-
lar automaton. Our goal is to be able to identify individual
components, such as data-paths, capped data-paths and T-
connections, and capture the way they interact.

The most important functional unit is the data-path, con-
sisting of a series of core cells sandwiched between two rows
of sheath cells. The function of such a component is to trans-
mit signals: it acts as a queue for the data in the core cells,
which move, cell by cell, along the data-path. To capture
this, we define a data-path to be a transition system (which
we shall call DP) whose states are pairs (n; d), where n > 0
and d is an n-tuple of states, d = d1, . . . , dn with di ∈ S;
and with the following schematic transition rule:

(n; d1, . . . , dn) "−→ (n; x, d1, . . . , dn−1) . (1)

I.e., all the data values in the path move up one space (left
to right), and a new value x enters at the start-cell. Note that
this is non-deterministic: there are no constraints on what
this new value is, beyond x ∈ S. Thus, we might have both

(5; 1, 1, 0, 7, 1) "−→ (5; 1, 1, 1, 0, 7) ,

as in Figure 1, and

(5; 1, 1, 0, 7, 1) "−→ (5; 7, 1, 1, 0, 7) .

Insofar as a data-path represents an actual sequence of core
cells in the cellular automaton, the value that ‘enters’ the

data-path will be determined by the values of the cells in the
neighbourhood of the start-cell d1, but that is exactly what
we are abstracting from: functionally, a data-path allows ar-
bitrary signals to be transmitted.

We can ground a data-path in a cellular automaton by
means of a mapping h : CA → DP of the state-space of
the cellular automaton to the state-space of the data-path.
That is, if the state-space of CA consists of configurations
!s ∈ Spq, with pq the number of cells in the grid (which
we could allow to be infinite), then such a mapping would
project a pq-tuple !s to an n-tuple (n; si1 , . . . , sin). This
would allow projecting a configuration to a tuple of states
of an arbitrary collection of cells (i.e., they need not be con-
tiguous), which wouldn’t capture the intention of picking
out a particular data-path in the configuration. However,
we impose the condition that the mapping preserve transi-

tions, i.e., if !s "−→ !s′ is a transition of the cellular automaton
(viewed as a transition system), then h(s) "−→ h(s′) in DP.
This means that the mapping must pick out a tuple of cells
that acts as a data-path: we must be able to observe signals
moving cell-by-cell along those tuples.

The basic building block of all components, including
data-paths, is the individual cell. As a constituent part of
the cellular automaton grid, its functionality is dependent on
the states of the cells in its neighbourhood, so at an abstract
level, its functionality is simply to be in a particular state.
We define a cell to be a transition system (call it Cell) with
state set S and universal transition relation; i.e., s "−→ s′ for
all s, s′ ∈ S. A grounded cell is a transition-preserving map
h : CA → Cell. Note that the requirement that h preserve
transitions is trivial, because any state can make a transition
to any state in Cell.

This gives us a means of glueing data-paths together. De-
fine ∂<, ∂> : DP → Cell by

∂<(n; d1, . . . , dn) = d1

∂>(n; d1, . . . , dn) = dn

so that ∂< picks out the ‘start cell’ of a data-path, and ∂>

picks out the ‘end cell’. Again, these maps are trivially
transition-preserving.

Now, to join together two data-paths, let a data-path con-

nection, DP ⇒ DP, be the transition system whose state-set
consists of pairs (p1, p2), with each pi a DP-state such that
∂>(p1) = ∂<(p2), i.e., p1 and p2 communicate by sharing a
cell which is both the end-cell of p1 and the start-cell of p2.
Let the transitions of DP ⇒ DP be given by

((m; d1, . . . , dm), (n; dm = e1, . . . , en)) "−→

((m; x, . . . , dm−1), (n; dm−1, dm = e1, . . . , en−1))

This effectively constrains the non-determinism in (1): the
new value that enters the second data-path p2 is determined
by the values at the end of the first data-path p1. For exam-
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ple, we have

((3; 1, 0, 7), (4; 7, 1, 1, 0)) "−→

((3; 7, 1, 0), (4; 0, 7, 1, 1)) .

Effectively, we can think of this as one long data-path, in
which the above transition could be rewritten as

(6; 1, 0, 7, 1, 1, 0) "−→ (6; 7, 1, 0, 7, 1, 1) .

As with the previous components, a data-path connec-
tion can be grounded in a cellular automaton by providing
transition-preserving morphisms from the cellular automa-
ton to the individual subcomponents: the two data-paths
and their shared cell. Note that there is no requirement that
grounded connected data-paths be orthogonal.

Transcription of the data within Langton’s loops is
achieved by branches in the data-paths: as signals move
through a T-connection, they are copied along the two
branches, as in Figure 3. Abstractly, we have three data-
paths p1, p2, and p3, all sharing a single cell at their in-
tersection, which is the end-cell of p1 and the start-cell of
both p2 and p3 — a diagrammatic representation is given
in the lower half of Figure 3. Thus, a T-connection is set
up by two data-paths ∂<-connected to the end-cell of a
single data-path, and we define DP ⇒ DP|DP to be the
transition system whose states are triples (p1, p2, p3) with
∂>(p1) = ∂<(p2) = ∂<(p3). The transitions are given by
the fact that both (p1, p2) and (p1, p3) are data-path con-
nections: in brief, (p1, p2, p3) "−→ (p′1, p

′
2, p

′
3) iff both

(p1, p2) "−→ (p′1, p
′
2) and (p1, p3) "−→ (p′1, p

′
3) as data-

path connections. It should be clear that the effect of these
definitions is to capture the data-flow and copying of the T-
connections pictured in Figure 3. Again, a T-connection is
grounded in a cellular automaton by grounding its subcom-
ponents.

Clearly, we can specify a great variety of structures built
from data-paths and shared cells in a diagrammatic way
along the lines of the T-connection shown in Figure 3. For
example, a loop is a loop of connected data-paths, as shown
in Figure 4. In more detail, we have data-paths p1, p2, p3

and p4 with structural constraints

∂>(p1) = ∂<(p2)

∂>(p2) = ∂<(p3)

∂>(p3) = ∂<(p4)

∂>(p4) = ∂<(p1) .

As with T-connections, the transitions are determined by the
fact that each pair pi, pi+1 (mod 4) is a data-path connec-
tion. It should be clear that the data in these paths continu-
ally circles around the loop. As with the other components
described above, a loop is grounded by grounding the sub-
components, as illustrated in Figure 4.

In fact, we have not quite modelled Langton’s loops: the
essential missing ingredient is the arm that ‘interprets’ the

Figure 4: Connections between data-paths and cells for
Langton’s loop. The outer square denotes the structure of
the component data-paths, while the dotted lines indicate a
grounding of the subcomponents of the loop in a cellular
automaton.

data in the loop, extending into the grid, turning, and even-
tually looping back on itself. Let us call such an interpreting
arm a capped data-path, and provide it with the structure of
a transition system, which we shall call CDP. The states of
CDP are the states of DP, but we shall use the suggestive
notation (n; d ], n > 0 and d = d1, . . . , dn a data-path of
length n. The transitions of CDP should capture the effects
of interpreting the signals in the data-path. For example, the
signal ‘7’ extends the path:

(n; d1, . . . , dn−1, 7 ] "−→ (n+1; x, d1, . . . , dn−1, 1 ] (2)

Note also that this transition allows data to move along the
capped data-path, just as for data-paths themselves; in par-
ticular, a new value x non-deterministically ‘enters’ the data-
path. As with data-paths, capped data-paths can be ∂<-
connected to data-paths, giving a transition system DP ⇒
CDP, and so may also form T-connections. We shall give
further transitions in the following subsection; we end this
subsection by giving the abstract, functional form of Lang-
ton’s loops: an L-loop is a tuple (p1, p2, p3, p4, c), where the
pi form a loop of data-paths, and c is a capped data-path
∂<-connected to p4:

∂>(p1) = ∂<(p2)

∂>(p2) = ∂<(p3)

∂>(p3) = ∂<(p4)

∂>(p4) = ∂<(p1) = ∂<(c) .

With the definitions given above, we could fill an L-loop
with ‘7’ signals, and the transitions allow the capped data-
path to extend indefinitely.

Introduction of New Components

We have seen how we can model components of Langton’s
loops, building larger components from subcomponents in
a diagrammatic, hierarchical way. The configurations we
have seen are all static, in the sense that components are
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related in a fixed way that never alters. Obviously, since the
purpose of Langton’s loops is to demonstrate reproduction
by the creation of one loop by another, we need to allow for
components that are created or destroyed, or even change
their structural relationships.

In the case of Langton’s loops, all the structural changes
are brought about by the actions of the interpreting arm: the
capped data-path attached to the loop. We saw in (2) above
how we could capture the effect of a ’7’ signal at the cap of
the data-path, namely by extending the length of the path.
The other relevant signal for Langton’s loop is a ‘4’ signal,
which is interpreted as an instruction to create a left-hand
turn in the data-path. In fact, we shall simplify things here,
as a left-hand turn in Langton’s cellular automaton is created
by two ‘4’ signals. However, this simplification is quite in
keeping with our goal of abstracting the functionality of the
relevant components. In accordance with this simplification,
when a ‘4’ signal reaches the cap of the interpreting arm, the
left-hand turn is achieved by turning the capped data-path
into a data-path, with a capped data-path ∂<-connected to
its end-cell. In our abstract, functional view, two things hap-
pen. The first is that the diagram representing the component
changes from

Cell
∂<←− CDP

∂>−→ Cell

to

Cell
∂<←− DP

∂>−→ Cell
∂<←− CDP .

The second thing that happens is that the states of the transi-
tion system denoted by this diagram makes the correspond-
ing change:

(n; d1 . . . dn−1, 4 ] "−→ ((n; x, d1, . . . , dn−1), (1; dn−1 ])

This transition turns a capped data-path into a data-path and
a new capped data-path; i.e., extending the notation above,
the transition system CDP becomes DP ⇒ CDP.

A CA grid imposes constraints on what may happen in
components that are grounded in it, but there are purely
topological constraints that may be imposed on components,
whether or not they are grounded in a cellular automaton.
For example, and here we consider functionality rather than
topology, we may wish to state that, after turning three
times, an interpreting arm is heading back towards itself, and
will sever the umbilical cord that ties the parent to the child
loop. When it meets its original arm, the loop is closed and
the original data-path is split: the first part becomes a capped
data-path, while the remainder becomes a part of the child
loop. Diagrammatically, the state

Cell
Cell

Cell

CDP

DP Cell

CellDP

DP

becomes
Cell DP Cell

CellDPCellCellCell

CDP DP DP

In accordance with this, the states of the relevant compo-
nents change as follows:

((m;!a), (n;!b), (m′;!c), (n; !d ]) "−→

(m − m′; m−m′ |!a], ((m′;!a|m−m′), (n;!b), (m′;!c), (n; !d))

provided that m′ < m, and where p|!a denotes the first p
elements of !a, and !a|p denotes the ‘remainder’ of !a from
the pth position on. Here again we simplify matters: in
Langton’s automaton, the capped data-path belonging to the
parent loop bears a ‘5’ signal that will close off the capped
data-path; also, the data-path in the child loop contains a ‘6’
signal that will cause a new capped data-path to be created,
causing the process of reproduction to begin anew. This ex-
tra functionality can be captured straightforwardly, using the
above techniques, so we omit the details. The main point is
that, even without these details, we have captured reproduc-
tion of loops in an abstractly functional, entity-based model.

Entities and Some Technical Details

In the preceding subsections, we have tried to avoid going
into too many technical details, preferring to keep the ex-
position at an intuitive level. From our use of diagrams
and transition-preserving mappings, it may be clear that cat-
egory theory provides a natural setting for our construc-
tions. Indeed, the constructions of transition systems such
as DP ⇒ DP are limit constructions in a category of transi-
tion systems and transition-preserving morphisms, as shown
in (Malcolm, 2006). This is very much in keeping with the
slogan ‘Behaviour is Limit’ from the Categorical Systems
Theory of Goguen (1992). In this view, mappings between
transition systems can be seen as constraints: for example,
the two mappings in the configuration DP ⇒ DP state that
the end-cell of one data-path is the start-cell of the other, and
as noted above, this constrains the non-determinism in (1).
The limit of a configuration then consists of all possible be-
haviours that meet the given constraints; in the example of
DP ⇒ DP, the limit gives all possible behaviours where the
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‘output’ of the first data-path is the ‘input’ of the second’.
Thus our approach is quite general in that the limit construc-
tion captures all the ways in which components may interact.

In our functional model of Langton’s loops, we take an
entity to be a component, such as a data-path, which is a
transition system in a diagram, such as the diagram of Fig-
ure 3. We might say that an entity is necessarily ‘situated’:
it stands not alone (except in the case of a trivial diagram)
but in relationships with other entities, particularly any sub-
components it may have, and may share with other entities.
Since complex objects are created by limit constructions
from subcomponents, technically, our entities are sheaves:
see Malcolm (2008) for details. Again, this is in keeping
with the slogan ‘Objects are Sheaves’ of Goguen (1992).

Conclusion

As we described in the introduction, the aim of our work is
to create a formal bridge between top-down and bottom-up
models of life forms. We have shown how an abstract model
of cellular automaton-based artificial life forms can be con-
structed, based on a formal description of various interact-
ing components of the life form. We presented an entity-
based model of Langton’s loops that abstracts the function-
ality of the various components from their actual realisation
in a cellular automaton. Interactions between data-paths and
cells are formalised in terms of constraints on their transi-
tion systems. Our approach allows for entities to be con-
structed hierarchically from subcomponents, and to interact
with each other through shared subcomponents: for exam-
ple, two data-paths communicate values through a shared
cell in the DP ⇒ DP configuration. We can also model
dynamic configurations where entities may be created and
adopt varying relationships with other entities. This is use-
ful in modelling reproduction, as it is often the case that the
reproduction process involves creating various components
of the offspring. We gave an example of the introduction of
new components for Langton’s loops, in the case where a
data-path approaches a cell, and then branches off in a new
direction. This is a repeating process that results eventually
in the creation of a second loop, showing that our abstract
component-based model is able to model reproduction.

Therefore, we can see the different entities in the model
as different behaviours, which may combine to form more
complex behaviours. For example, a data-path is an entity
that propagates information; this can be combined with other
data-paths, cells and a capped data path in order to form a
conglomerate entity capable of reproduction.

We showed how these abstract models can be related
(‘grounded’) to a particular implementation of a loop,
through a mapping from the transition system of the for-
mer, to the transition system of the latter. This notion of
grounding allows an actual realisation of the model in a cel-
lular automaton to be viewed as a refinement of the model.
Conceptually, grounding can also be seen as the imposing

of constraints on the model by the cellular automaton and
its topology: in much the same way, a model grounded in a
real-life system would be constrained by the laws of physics.

Related Work

In this paper we have described an approach to the devel-
opment of entity-based models of artificial life systems. A
recent report by Wheeler et al. (2002) highlighted many of
the challenges in the area of artificial life modelling.

Entity-based models of reproduction, such as those de-
scribed earlier, have been used before in artificial life. For
example, Adams and Lipson (2003) give a formal universal
framework for reproduction based on ‘subsystems’ within
an environment. The subsystems are analogous to the en-
tities or components discussed in this paper. One possible
property of a subsystem is reproduction. Since Adams and
Lipson do not preclude the possibility of subsystems consist-
ing of other subsystems, we could re-frame the discussion of
Langton’s loop with each component as a subsystem. The
system consisting of these subsystems, i.e., the loop, has the
property of reproduction. Another example is the work by
Hordijk et al. (1998) on embedded-particle models, which
model emergent functionality in evolved cellular automata.
The approach is similar to our own in that an abstract de-
scription of organised behaviour is formed, although the em-
phasis is more on abstracting higher-level behaviour from an
existing CA configuration than on providing a general means
of describing the behaviour of hierarchical systems.

Abstract, high-level models of life-like phenomena have
also been explored in biology. Lazebnik (2002) describes
the fundamental differences between the language of biol-
ogy and engineering, and posits that the formalisms of en-
gineering permit a greater understanding of complex sys-
tems such as life. Discrete, top-down models of biological
processes have also been described, e.g., the approach of
Laubenbacher and Mendes (2006) to modelling biochemical
networks.

The work in this paper may be seen as an ‘intellectual
progeny’ of our earlier work on formal affordance-based
modelling of reproduction, in which we described a re-
production system in terms of a labelled transition system,
with entities present in various states, and affordances relat-
ing the entities which cooperate in various parts of the re-
productive process (Webster and Malcolm, 2007b,a). These
affordance-based models are therefore entity-based, and are
in this way related to the entity-based models presented here.

Our work is also influenced by the work of Rosen (1991,
1999) on modelling life-like processes. Rosen argues that a
reductionistic ‘machine metaphor’, in which life is seen sim-
ply as the result of the underlying physical laws of the Uni-
verse, is insufficient to capture the full complexity of life:
self-organisation, reproduction and so on. Rosen suggests
that a more holistic model of life is needed, and that a suf-
ficient model for life might be obtained at a natural level of
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abstraction. For example, if a large conglomeration of cells
(e.g., an animal) appears to reproduce, then the natural way
to view that process is not in terms of the cells, but in terms
of the sub-components of the animal that enable reproduc-
tion, e.g., sex organs, nervous system, etc. Therefore, our
attempt to model artificial life forms like Langton’s loop is
in the same vein. Of course, Langton’s loop can be described
completely by its formal definition; however, it may also be
interesting to describe formally the same system at a differ-
ent level of abstraction, as the aim of abstraction is to pro-
vide greater insight than can be obtained through individual
case studies.

Future Work

We have presented Langton’s loops as a case study in our ap-
proach to modelling hierarchical artificial life systems. An
obvious question that arises is: what other systems can use-
fully be captured in this way? There are several candidate
systems in artificial life and in biology that seem to have
a natural hierarchical structure, and one thrust of future re-
search would be to construct entity-based models of these.

An example from artificial life is the mechanical repro-
ducing robots described by Zykov et al. (2005), in which a
number of modular robots interact in order to reproduce a
conglomerate multi-robot entity. The robots are constrained
to connect at certain points, mirroring the cells at which one
or more data-paths may be connected.

Another interesting application of our work would be to
model the component behaviour of more complex forms of
reproduction, including evolution (Sayama, 1999) and sex-
ual reproduction (Oros and Nehaniv, 2007). These seem
particularly feasible examples in that they are based on
the same conceptual mechanisms as Langton’s loops. In
the case of sexual reproduction, there is a link to our ear-
lier work (Webster and Malcolm, 2007b,a) on reproduction
modelling based on Gibson’s theory of affordances (Gibson,
1979). Sexual reproduction can be seen as a collaborative ar-
rangement, in which each partner affords the other the act of
reproduction, and therefore there is a possibility of extend-
ing the component-based models presented in this paper to
include a notion of affordances.

In the field of biological systems, we would expect to be
able to model simple ecologies such as those of bacterio-
phage viruses and host cells. There are obvious entities or
components which we may identify, such as viral RNA, gen-
eration of offspring based on proteins, cell walls, and so on.
We have given a simplified model of the T4 bacteriophage
lifecycle in (Webster and Malcolm, 2008), and we expect
the extension of this to a more realistic hierarchical model
to be reasonably straightforward. Other interesting biolog-
ical examples with significant hierarchical structure would
include meiosis, and possibly tissues: for example, hepatic
tissue has a rich structure that provides a rich functionality
(Teutsch, 2004).

A useful feature of our entity-based models is that they are
formal. In principle, it should therefore be possible to prove
formally that a certain group of entities in a given model is
capable of the act of reproduction. One way of doing so
would be to construct a ‘minimal’ model of reproduction,
and show that the given model is a refinement of it. A mini-
mal model would be purely schematic, consisting of just two
states, the first of which contains just one entity, and which
has a transition to the second state, which contains just two
entities: notionally, these would be the original entity and
its offspring. A refinement of this by another model would
relate these two entities to entities in the other model, for ex-
ample a loop and its offspring loop in the case of Langton’s
loops. In addition, the transition from the first schematic
state to the second would be related to a path in the other
model that leads from a state containing the progenitor to a
state containing the offspring. In general, a model may re-
fine this minimal model in more than one way, picking out
different entities that reproduce: as a ready example from bi-
ology, it may be possible to view an organism as reproducing
itself, while another view of the same process may see the
organism’s genetic material as the entity that is reproduced.
While the intuitions are clear, the technical details of refine-
ment for our hierarchical, entity-based models still need to
be spelt out.
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Abstract
We extend coarse graining of cellular automata to investi-
gate aspects of emergence. From the total coarse grain-
ing approach introduced by Israeli and Goldenfeld, Coarse-
graining of cellular automata, emergence, and the pre-
dictability of complex systems, Phys. Rev. E, 2006, we devise
partial coarse graining, and show qualitative differences in
the results of total and partial coarse graining. Mutual infor-
mation is used to show objectively how coarse grainings are
related to the identification of emergent structure. We show
that some valid coarse grainings have high mutual informa-
tion, and are thus good at identifying and predicting emer-
gent structures. We also show that the mapping from lower to
emergent levels crucially affects the quality emergence.

Introduction
We are interested in observing and modelling complex emer-
gent systems, with the goal of understanding how we could
begin to specify and implement engineered emergent sys-
tems. Emergence is variously characterised; we start from
Ronald et al’s definition of emergence: “The language of
design L1 and the language of observation L2 are distinct,
and the causal link between the elementary interactions pro-
grammed in L1 and the behaviors observed in L2 is non-
obvious to the observer...” (Ronald et al., 1999). Here, we
refer to the local level, of the implementation substrate, as L.
The language of observation represents a global, or coarse-
grain, level where emergent behaviour is observable that we
refer to as the specification, S. After Shalizi (2001), we de-
fine emergence in information-theoretic terms, as the greater
predictive efficiency of descriptions in S over those in L.

In natural complex systems, it is hard to define languages
L and S, and to determine accurate mappings between them.
Here, the complex emergent systems are elementary cellular
automata (ECAs); their language is simple and well-defined,
and thus mappings can be identified and analysed.

One perception of an emergent system is that its high level
behaviour is independent of the low level behaviour. How-
ever, the emergent properties are actually a carefully chosen
extract of the low-level behaviour. The observational dis-
continuity allows us to identify emergent behaviour. Else-
where (Weeks et al., 2007), we show that coarse graining is

R

M

Figure 1: Rules and mappings. Shaded cells represent value
1. R shows how the “name” of an ECA rule is derived:
each of the 8 possible ECA initial state is shown in bigen-
dian order; below it, the next state of the central cell is
shown; the rule is “named” by reading off the values of the
next state. Here, R is the transition table for ECA rule 150
(100101102). M represents the coarse grain mapping 0110,
with grain g = 2.

a simple form of emergence. If we can state coarse-grained
rules, then we can use the coarse level to predict behaviour.
Because information is lost in the higher level we cannot
predict behaviour correctly in all cases, but the rules should
be able to predict some common futures. Here, we explore
emergence through coarse graining ECAs and measurement
of mutual information between levels.

Coarse Graining ECAs
An ECA is a one-dimensional cellular automaton, with two
states and a neighbourhood of three. There are 256 ECA
rules, of which 88 are distinct (not just spatial reflections or
0-1 inversions). Rule sets are named by taking the decimal
representation of the binary string that represents the outputs
of the transition rules from all neighbourhood states taken in
bigendian order (figure 1).

The coarse graining of ECAs was investigated by Israeli
and Goldenfeld (2006). In a coarse graining at grain g, the
values of a contiguous block of g cells at the fine level are
projected, or mapped, to the value of a single cell at a coarse
level (figure 1).

Israeli and Goldenfeld (2006) require their coarse grain-
ings to be total, that is, to satisfy the commutativity con-
dition that running the fine ECA for n × g time-steps then
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Figure 2: Space-time plot of 75 time-steps of rule 146, and
its total coarse graining to rule 128, with grain 3, from Israeli
and Goldenfeld (2006).

performing the mapping, gives the same result as performing
the mapping, then running the coarse ECA for n time-steps.
We relax this condition, to discover partial coarse grainings
that, while not ‘correct’ in this commutative sense, neverthe-
less have good predictive properties (high mutual informa-
tion). We do not consider ‘trivial’, and thus uninteresting,
mappings, that map either to all zeros or to all ones.

Essentially, the coarse graining represents a system speci-
fication (language S) for the ECA at the fine level (language
L). In one sense, the languages S and L differ only in the
grain of the representation – both languages are the language
of rules of ECAs. However, we could also take the language
to be the specific ECA rule. In either case, ECA coarse
graining reduces the language mapping to a tractable prob-
lem, and provides a starting point for exploring emergent
behaviour.

Israeli and Goldenfeld (2006) show that almost all ECA
rules can be coarse grained: their behaviour is mimicked
exactly at a coarser grain by other ECA rules (figure 2). Note
that the mapping is applied only in the initial state, to set
up a correspondence between the fine and coarse grained
initial state. Subsequently each ECA runs independently:
the validity of the coarse graining ensures that the mapping
always holds from then on.

Because of the exact mapping between the fine and coarse
grained ECAs, the coarse grained ECA consistently predicts
aspects of the state of the fine-grained ECA for any point in
the future (since information is lost in the coarse graining,
the prediction is not absolute, but it is consistent). For g = 2,
running the coarse grained ECA requires only 25% of the
calculations of the associated fine-grained ECA (assuming
we calculate the next states naı̈vely).

As with any emergent system, one aim of coarse graining
is to end up with a compact representation of the high-level
behaviour of the underlying system (or some aspect of it).
In the case of coarse graining, that compact representation
takes the form of another ECA rule (but one that operates at
a coarser grain). Clearly the high level model will predict
only certain aspects of the system.

F0

Fg

C0

C1

Rf g Rc

M

M

Figure 3: Steps in discovering a coarse graining, g = 2, il-
lustrated for a 6-cell initial string. As in Israeli and Golden-
feld (2006), each non-overlapping block of g cells in a fine
F state is mapped to one cell in the coarse C state. ECA
rule Rf evolves through the three steps on the left, F0 to Fg .
State F0 is mapped to state C0 using the mapping 0110. The
same mapping is used to produce Cg from Fg . When these
steps are followed for a complete initial state (384 cells, see
step 1), the candidate coarse grain rule, Rc can be read off,
as in step 5, below.

Finding a Total Coarse Graining
Finding coarse grainings is a systematic process. Candidate
mappings are successively proposed and applied; the result
of each mapping is checked to determine whether the map-
ping generates a consistent coarse rule. We describe an al-
gorithm that can be used to find all the total coarse grain-
ings of an ECA rule Rf at grain g with non-trivial mapping
M . Like Israeli and Goldenfeld (2006), we use the same
grain g for the cells (spatial) and the time-steps (temporal).
This maintains the speed of information propagation – for
instance, if the spatial grain is less than the temporal grain,
then information propagates too fast for ECA rule capture.

The application of steps 1 to 5 of the total coarse graining
algorithm is illustrated in figure 3.

1. Construct the initial state for the fine-grained ECA, F0.
For a total coarse graining, we must guarantee that the
coarse grained version of the initial state contains all eight
(000, 001 . . . 111) neighbourhood states. This will allow
the coarse ECA rule to be read off in step 5. It is sufficient
to include all possible states of 3× g cells (where 3 is the
neighbourhood size of an ECA) in the fine-grained initial
state, giving a string of length 26 × 6 = 384 for g = 2.

2. Run the fine-grained ECA for the equivalent of one coarse
time step: g time-steps at the fine grain, resulting in fine-
grained state Fg . We now have the underlying fine states
for two successive time steps of the coarse CA.

3. Apply the mapping M to the initial state of the fine-
grained ECA, F0, to produce the initial state of a candi-
date coarse-grained ECA, C0. Apply M to the final state,
Fg , to produce the next state of a candidate coarse-grained
ECA, C1.

4. C0 and C1 are not necessarily related by an ECA rule.
For each of the eight possible neighbourhood states σi,
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check that every instance of σi in C0 maps to the same
value in C1. (It is sufficient to consider only distinct
triplets of cells in C0: if these give consistent states in
C1, then all the overlapping neighbourhoods do so too,
by construction of the initial state in step 1.)

5. If the coarse states C0 and C1 are consistent with succes-
sive states under some ECA rule, then ‘read off’ that rule
Rc, by locating the eight neighbourhood states (111, 110
. . . 000) in C0, and recording the values they map to in
C1 (as shown for R in figure 1). (Because of the consis-
tency check, these values are unambiguous. Because of
the construction of F0 and the non-triviality of M , it is
always possible to locate at least one instance of each of
the eight neighbourhood states in C0, so the rule is totally
defined.)

The number of non-trivial mappings M is 22g − 2, which
is low for small g (14 for g = 2), so an exhaustive search
over mappings is efficient. (Even so, it is not guaranteed
that a coarse graining of a rule at a particular granularity
exists with any mapping.) At higher g, other factors render
the discovery of coarse graining intractable, before the effect
of the number of mappings becomes intractable.

It would also be possible to perform a coarse graining by
stating the fine and coarse ECA rules and calculating a map-
ping, but this is a less efficient approach, with more consis-
tency checks to perform.

For the 256 ECA rules, there are 182 non-trivial total
coarse graining relationships at g = 2. For the 88 unique and
non-trivial ECA rules, there are 35 non-trivial total coarse
grainings.

Extending Coarse Graining to Partial
Mappings

Information must be lost when coarse graining. Sometimes
the fine detail of the original rule disappears: Israeli and
Goldenfeld (2006) refer to this as a loss of irrelevant de-
grees of freedom (DOF). In other cases relevant DOF (Is-
raeli and Goldenfeld, 2006) are lost, meaning that the infor-
mation that is propagated by the fine CA cannot be modelled
in all cases by its coarse counterpart. A total coarse grain-
ing precisely captures the relevant aspects of the underlying
dynamics, losing only detail that is irrelevant at the coarse
level. (Also, where detail that is relevant to propagation at
the fine level is lost, it is unimportant, because propagation
to the coarse state is unaffected.) In this sense, total coarse
grainings are simply compressions of the fine ECA rule.

Israeli and Goldenfeld (2006)’s approach requires coarse
grainings to be total; that is, enough information must be
available in state C0 for the coarse rule Rc to be read off un-
ambiguously, with the consequence that the fine and coarse
ECAs evolve consistently. If we relax the totality require-
ment, we can provide an initial fine-grained state that does

F0*

Fg*

C0*

C1*

Rf g Rc

M ~

M

Figure 4: The extra steps involved in discovering a partial
coarse graining (see text for details).

not cover all possible input conditions, and deduce a set of
partial coarse grainings. A partial coarse graining results in
a coarse rule Rc that does not necessarily reflect the under-
lying rule Rf in all cases. Even so, this relaxation can allow
the coarse grained rule to approximate more of the underly-
ing behaviour than would otherwise be possible. An ideal
partial coarse graining is one for which the initial conditions
admit a broad range of the fine rule’s behaviours, reflecting
the features of most interest. An analogy can be drawn with
physical emergent systems, where the emergent properties
occur over a restricted set of all possible low-level states,
such as a certain temperature range.

It may be thought that total coarse grainings are ideal, and
we should aim to get partial coarse grainings as close to that
as possible. While broadly true, being total is neither neces-
sary nor sufficient for a good coarse graining – for the dis-
covery of a coarse ECA rule that models the desired high
level behaviour (we elaborate measures of goodness below).
It is easy to see that some total coarse grainings capture un-
interesting aspects of the underlying fine-grained rule; for
example, even with non-trivial mappings, many rules coarse
grain to rule 0 or rule 255; these are valid coarse grainings
that convey no information about the underlying behaviour.
In applying partial coarse grainings, we seek to find coarse
rules that capture the maximum of useful (predictive) be-
haviours from the underlying rules, at the expense of allow-
ing the coarse graining to make occasional mistakes.

Finding a Partial Coarse Graining
The approach for partial coarse graining follows almost the
same steps is as the total coarse graining. However, when
F0 is constructed in step 1, it does not include all possible
states of 3× g cells, and thus the initial state can be smaller
than for total coarse graining. Consequently, to extract as
much information as possible, steps 4 and 5 consider every
(overlapping) combination of three cells in C0.

Because the constraint on F0 has been relaxed, C0 may
not include every possible rule case, meaning that the coarse
rule cannot be read off unambiguously in step 5. To com-
plete the rule set, we can add any rule case that gives a con-
sistent result in the coarse graining. This can be derived as
follows (see also figure 4):

5a. Create a coarse state C∗
0 , comprising the neighbourhood
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states missing from the coarse state C0,

5b. Use the mapping in reverse, M∼, on C∗
0 to create a cor-

responding F ∗
0 . This reverse mapping is a relation; any of

its restrictions to a function can be used to create F ∗
0 .

5c. From F ∗
0 , run the fine ECA rule for g time-steps to create

F ∗
g .

5d. Apply M to F ∗
g to produce C∗

1 .

5e. Apply step 5 to C∗
0 and C∗

1 , thus reading off rule cases to
total the coarse ECA rule set.

We have investigated various approaches to selecting an
inverse mapping (step 5b). The most conservative results
come from constructing all the inverse mappings, but ac-
cepting only those that are totally consistent. Since partial
coarse graining is based on a proper subset of possible map-
ping relations, completions of the coarse rule set result in
more valid coarse grainings of each rule than total coarse
grainings. For the conservative approach to completion, and
a grain g = 2, it is not unusual to get 50% more partial
coarse grainings than total coarse grainings.

Exploring Partial Coarse Grainings
To assess the parameters of partial coarse graining more
fully, we conduct a variety of experiments on ECA coarse
grainings. For g = 2, we select different initial states, and
find partial coarse grainings, using the conservative comple-
tion above. As the length of the initial state is increased,
and the number of cases that it covers increases, there is a
fall in the number of coarse grainings to valid ECA rules.
In our experiments, a 6-bit input string (1.5% the length of
the complete initial state used for total coarse graining) pro-
duced 57% more (322 : 182) coarse grainings than the total
coarse graining under the same mappings. This is to be ex-
pected, since a short initial state is created by concatenation
of only a small proportion of all possible states, so there
are potentially many missing cases in the candidate coarse
rule, with the potential for several different coarse rules to
be derived from different completions of the rule set. How-
ever, the partial coarse grainings of a rule include all the
rules to which there are total coarse grainings in each map-
ping, thus we can say that very short initial strings (and thus
reduced calculation load) produce results that are consistent
with those from the much longer initial state of a total coarse
grainings.

There is a limit to the shortness of an initial state string.
Here, this is set by features of the algorithm used for coarse
graining. An initial state of fewer than 6 bits is not efficient,
as it results in interference due to the wrapping of the state
(periodic boundary conditions).

Our experiments also show that the form of a short initial
state string appears to have a marked effect on the quality
of partial coarse grainings obtained. The initial state string

Figure 5: Space-time plot of 50 time-steps of rule 186, and
its partial coarse graining to rule 170, with g = 2

101010, for instance, produces fewer partial coarse grain-
ings to valid rules at g = 2 than the string 101101, but the
partial coarse grainings from the string 101010 are judged
to be of better quality as predictors of structure than those
from string 101101. We cannot yet generalise from these
results, not least because, at g = 3, these two initial strings
produce very similar results. Furthermore, the initial state
string 101010101101, made up of both these elements, pro-
duces good quality results at both g = 2 and g = 3. We
are still investigating ways to determine what makes a good
short initial state, and to determine how the quality of coarse
grainings (or proportion of good coarse grainings) might re-
late to initial state.

We conclude that, although partial coarse grainings do not
provide total accuracy in their predictions of fine grained be-
haviour, they can still provide ‘good’ descriptions. Figure 5
gives such an example: a partial coarse graining of rule 186
to rule 170. The coarse graining captures the significant, and
persistent, “diagonal” structure of the fine rule. Note that un-
der total coarse graining at g = 2, rule 186 coarse grains to
rule 128, capturing only the transient “triangular” structure
of the fine rule.

Intuitively, we can see that the capture of persistent struc-
ture by the partial coarse graining is more significant than
the capture of the initial transient behaviour by the total
coarse graining, but we would like an objective measure of
this ‘goodness’. In the next section, we show how to quan-
tify what we mean by ‘good’ in information theoretic terms.

Quantifying Emergence
A challenge of emergent systems engineering is to be able
to determine which low-level system gives a good emer-
gent behaviour. In studying coarse graining, we want to be
able to distinguish, as objectively as possible, good coarse
grainings (that capture interesting properties of fine-grained
ECAs) from other legitimate coarse grainings. Here, we use
an information theoretic measure of mutual information.

Information theoretic measures of emergence have been
proposed by Crutchfield (1994), and more recently by Shal-
izi (2001), Prokopenko et al. (2007), and others. It has been
shown that the mutual information I between the implemen-
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tation level L and the observational level S of a system is a
measure of emergence. The intuition is that I measures the
amount of information in a low level model (in a language
L) that can be predicted by a higher level model (in lan-
guage S). Modelling, or incremental system development,
can be viewed as increasing the shared information between
the specification and implementation. In the case of coarse
graining, a good mapping can be thought of as a mapping
that results in a high I between the fine-grained ECA (L)
and the coarse ECA (S).

Mutual information can be calculated using a suitable en-
tropy measure H of the systems, and can be expressed ei-
ther in terms of the joint entropy H(S, L) or, equivalently,
in terms of the conditional entropy H(S | L), or H(L | S)
of the systems.

I(S;L) = H(S) + H(L)−H(S, L) (1)
= H(S)−H(S | L) ≡ H(L)−H(L | S)

Intuitively, I(S;L) is the correlation between the speci-
fied system (the coarse-grained ECA) and its implementa-
tion (the fine-grained ECA). In terms of conditional entropy,
H(S | L) is the information in the system specification that
is not captured by its implementation, whilst H(L | S) rep-
resents properties of L that do not explain, in information
theoretic terms, the observed properties of S.

Calculating Mutual Information for ECAs
Mutual information requires a suitable entropy measure. We
need an efficient entropy measure for ECAs, and, for calcu-
lating the I , we need to take account of the different spatial
and temporal scales at the fine and coarse levels. Other re-
search (for instance, (Zhao and Billings, 2006; Mori et al.,
1998)) has used I in relation to ECAs, but with different pur-
poses; their measures, though similar, do not directly adapt
to our requirements in relation to spatial and temporal scales.

The key to a meaningful entropy measure is to measure
over an appropriate scale, so that it identifies the structures
that are important at that scale, without too much influence
from order at other scales. This can be seen if we consider
the entropy of a system such as a flocking simulation. We
could measure the entropy at the level of each individual,
in which case the entropy rises as individuals form flocks,
because it is harder to characterise the behaviour of an in-
dividual in a flock (velocity, position, flock influences) than
it is to characterise the behaviour of an isolated individual
(velocity, position). Alternatively, we can attempt to mea-
sure the entropy of groups of individuals, in which case the
entropy of a group that forms a flock is lower than that of a
group that is incoherent, because it is easier to describe the
flock’s behaviour than that of an incoherent group of indi-
viduals.

Turning to ECAs, the rate of information transfer is lim-
ited by the neighbourhood, and a neighbourhood value rep-

resents one input in the initial state of an ECA; thus it seems
reasonable to consider entropy in relation to the neighbour-
hood. Entropy is calculated from the probabilities of oc-
currence of each possible neighbourhood chunk value (000,
001, 010 ...), measured over many runs of each ECA. As we
need to calculate I between two ECAs, we use the coarse
grain for chunking, so entropy is measured over fixed chunks
of three coarse cells. Therefore, the fine grain entropy, at
g = 2, is calculated over chunks of six fine cells. Note that
this means that fine-grained ECAs have a higher maximum
entropy than coarse ECAs.

Accounting for the temporal difference between the
coarse and fine grains requires identification of the gener-
ations of each ECA to be measured. After analysis of the
practicalities of calculation and a number of experimental
investigations, we determined that every coarse grained gen-
eration (row) should be measured, but only the correspond-
ing fine-grained generation – for g = 2, that means every
alternate fine-grained row. This means that the entropy of
the fine grained rule overlooks some of the behaviour of the
fine ECA, notably that over short time-scales. This would
be a problem if we were interested only in entropy as a mea-
sure of complexity; the effects of the contraction are still
being considered in our analyses.

The algorithm that we use to calculate entropy starts with
the selection of a set of initial state strings on which to base
the calculations. We calculate I for each coarse graining
pair of ECA rules, and for each mapping that defines this
coarse graining. Firstly, for one rule pair and one mapping,
each test string is used as the initial state for the fine-grained
ECA; the mapping is used to derive the equivalent coarse
grained initial state, and the two ECAs are then run. We
then select the rows representing the generations of interest,
all coarse grained rows and the equivalent (gth) fine grained
row, and apply the chunking equivalently to each pair of
rows. We can then identify the number of times that each
chunk occurs in each row.

These measurements are done for all the chosen initial
state strings, and are then used to calculate the probabil-
ities of the different chunks; the probabilities are used in
the usual Shannon entropy calculations, yielding entropies
H(L) (from the fine grain), H(S) (from the coarse grain)
and H(S, L). From these, I is calculated (equation 1).

We have completed these calculations for all g = 2 par-
tial and total coarse grainings, and for a selection of coarse
grainings at other granularities. We have also looked at
I calculations based on different chunkings and time divi-
sions, and, to date, this approach gives the most useful and
cost-effective I measures.

Mutual Information and Coarse Grained ECAs
Mutual information can be a useful guide to the goodness of
an emergent solution, and, here, an indicator of the quality
of a coarse graining. A good mapping results in a high I
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Figure 6: Representation of three different coarse grain-
ings. The ovals indicate the amount of entropy: the large
ovals represent the entropy in some fine grained ECA, F;
the smaller ovals the entropy in the corresponding coarse
grained ECA, C; the overlap represents the mutual informa-
tion. The left figure shows a total coarse graining with high
I; the middle a total coarse graining with low I; the right a
partial coarse graining with high I .

between the ECAs. Here, we consider factors that influence
I of mappings between ECA rules in coarse grainings.

I is high if the ECAs’ behaviour is non-trivial (complex
or chaotic rules) and tightly coupled (they mirror each other
closely). The ECAs in a total coarse graining must always
mirror each other’s behaviour, so I is always maximal: the
mutual information is exactly the entropy of the coarse ECA
rule. However, if the behaviour of the ECA rules is trivial,
and thus entropy is low, the maximal I for that coarse grain-
ing is lower than it is for “interesting” ECA rules. Further-
more, a non-trivial fine ECA rule (with high entropy) could
be coarse grained to a simple rule (with low entropy), and
the maximal I for the total coarse graining must then be low
for that mapping. This is illustrated in figure 6. Total coarse
grainings are accurate, but they are not necessarily good.

We have measured the I of total and partially coarse
grained ECAs. As expected, many coarse grainings (both
total and partial) have low mutual information – the coarse
graining is not highlighting any significant structure from
the fine grained ECA. This can occur even when the fine
grained ECA rule produces non-trivial structure, with the
extreme case being coarse grainings from a complex fine
grained rule to a vacuous coarse grained rule such as rule 0
or rule 255. Furthermore, the additional coarse grainings
that are valid under partial coarse graining include many
vacuous cases with low I .

However, one result in particular is exciting in terms of the
potential for using coarse graining to predict emergent struc-
ture – that high-I partial coarse grainings seem to predict
high-I total coarse grainings at the current and higher grains.
If we study all the total coarse grainings at a particular value
of g, we find that some rules are coarse grained by many
rules, and that the coarse grainings have notably high I –
intuitively, this would suggest that there are structures in the
fine-grained rule that are (a) non-trivial and (b) common to
many rules at the coarse grain. When we consider the same
results for partial coarse graining, firstly we observe that all
the total coarse grainings are found by the partial approach,
and that partial coarse grainings from rules that are associ-

ated with high-I total coarse grainings usually have higher
I than the total coarse grainings – partial coarse grainings
tend to predict more of the fine-grained structure than total
coarse grainings. Next, we observe that the additional par-
tial coarse grainings that have high I tend to be those that
link rules with many total coarse grainings. It is also the
case that these partial coarse grainings have higher I than
partial coarse grainings that do not form links among rules
with good total coarse grainings. Intuitively, where there is
structure to exploit, the partial coarse grainings exploit more
of the structure of the fine rule than the total coarse grain-
ings, and do so preferentially where there are already good
total coarse grainings.

Furthermore, where we observe high-I partial coarse
grainings, these are good predictors of total coarse grainings
at higher granularities, and in particular of non-trivial total
coarse grainings (good partial coarse grainings at g = 2 pre-
dict total coarse grainings at higher g).

We note that we have measured I both very accurately
and approximately. Tests with sufficient data to give good
statistics (computationally rather expensive) were taken by
averaging over 50 runs with different random initial states of
1000 characters and equal probabilities of the two cell val-
ues. An example of an approximate measurement is a single
running of a 384-character initial state, with equal probabil-
ities (for g = 2 this is the smallest complete state). For all
mappings and all rules, the approximate I results are close
to the results of the same extensive tests. Thus, we get good
estimates of I , and hence of the ‘goodness’ of the coarse
graining, more cheaply.

The Importance of the Mapping and Timing
We have noted elsewhere (Polack et al., 2005) that the map-
ping between the implementation and the observed system is
essential to the construction of an emergent system. Without
a good mapping it would be impossible to use a high level
model (even an otherwise valuable one) to predict system
behaviour. The work on ECA coarse grainings shows that,
even where languages are essentially the same at two levels,
a good mapping is hard to systematically derive, and is not
always natural or obvious.

In fact, it is often the case that a fine rule Rf can be coarse
grained to the same coarse rule Rc by different mappings M
and M ′. Figure 7 shows coarse grainings of fine rule 160
(the top row – the two columns represent two different ini-
tial states) to coarse rule 128 with two different mappings
(second and third rows). Furthermore, some rules coarse
grain to themselves with different mappings: for g = 2, rule
150 partially-coarse-grains to itself with 14 different map-
pings, of which six mappings (those with equal numbers of
0s and 1s) are also total coarse grainings. In general, mutual
total coarse grainings with different mappings have similar
Is, whilst for partial coarse grainings, some of the mappings
have significantly lower Is than others; again rule 150 is

Artificial Life XI 2008  691 



Figure 7: Space-time plots of coarse grainings of rule 160
to rule 128. The top diagrams are rule 160 with two dif-
ferent starting states. The next two diagrams are the results
of coarse graining to rule 128 with the mapping 0001. The
last two diagrams are the results of coarse graining to rule
128 with the mapping 0101. All figures represent 50 fine
time-steps with g = 2

an extreme case, with total mappings to itself having rea-
sonable predictive power (I values of about 3), whilst the
partial coarse grainings have low predictive power (Is are
around 0.6).

One important factor in prediction, that has a marked
effect on measures of mutual information, is detection of
transient or longer-term features of the ECA. In figure 7,
we see that these ECAs become quiescent after about 20
fine time-steps; in the first coarse graining, quiescence is
reached much sooner. Mutual information would be differ-
ent if measured whilst transient behaviour dominates, com-
pared to post-transient. The same is true for rules that have
steady-state behaviours after transients die out, such as rules
186 and 170 (figure 5). Table 1 gives an example of mu-
tual information and entropy measures for two partial coarse
grainings of rule 162, measured at 4 and 10 coarse time-
steps. Coarse graining to rule 128 (mapping 0001) has a
similar short-term transient behaviour to that shown in figure
7, whereas the coarse graining to rule 170 (mapping 0111)

C t H(162) H(C) I(C; 162)
170 4 4.354 2.386 1.879

10 4.293 2.405 1.825
128 4 4.354 0.276 0.276

10 4.293 0.093 0.093

Table 1: The effect of time-step on mutual information of
coarse grainings of ECA rule 162, at g = 2. The start state
has 1000 cells, and entropy is calculated over 50 runs.

picks up persistent diagonal features.

Coarse rule 170 shows only a slight (non-significant)
change in mutual information between time-steps, which
shows that rule 170 captures some persistent behaviour in
rule 162. For coarse rule 128, however, there is a signifi-
cant change in mutual information between time-steps 4 and
10. In most of the 50 runs, rule 128 reaches quiescence by
coarse step 10 (no information, so no mutual information).
Note that the mutual information data show that the partial
coarse graining to rule 128 is also a total coarse graining
– the mutual information is the same as the entropy of the
coarse rule.

In most work on emergence, the focus is on the be-
haviours and languages at the high and low levels. The se-
lection of mappings, and of total or partial coarse graining,
is the subject of ongoing research; however, our work shows
that the mapping between high and low levels is an impor-
tant component of the emergence. This can be interpreted as
the way the low level system is viewed through the mapping
to form the high level (emergent) description.

Discussion
Total coarse graining of an ECA at g = 2 is efficient and
fast. However, because of the number of calculations and
checks to be performed, g = 3 is exponentially slower,
and we found that g = 5 is beyond the limit of capability
of a desktop computer. Partial coarse graining provides a
tractable alternative, because high-I mappings can be deter-
mined from a small initial state. Furthermore, because the
low-g partial coarse grainings are good predictors of higher-
grain total coarse grainings, higher granularity searches can
be focused rather than exhaustive.

One feature common in partial-only coarse grainings is
the ability to predict beyond the transient behaviour of the
rules. A total coarse graining often predicts early behaviour
accurately but then dies out to quiescence – the total map-
ping over-constrains the ability to predict the long-term be-
haviour (as in figure 2). However, a partial coarse graining
is less constrained, and is free to mismatch some early be-
haviour; thus it may be able to predict long-term behaviour
(as in figure 5).

Despite the implication of the name “emergence”, in in-
formation terms, emergence does not add anything; it re-
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moves (or hides) aspects of the underlying system, to em-
phasise an apparently coherent core behaviour which we
identify as a higher level phenomenon of interest. In effect,
our high level view (constrained by language, time, etc.)
blurs the underlying system so that only certain aspects of
its behaviour are apparent. This is precisely equivalent to
the DOF lost when coarse-graining an ECA.

Our work uses an information theoretic measure to com-
pare the emergent quality of coarse grainings, but it does
not explain how the measure can be maximised by selec-
tion of a good mapping rule, nor does it tell us how to relate
information-theoretic measures to subjective qualities of de-
sired (or deprecated) emergence.

Information theoretic approaches, such as comparison of
I used here, have the potential to help determine a good so-
lution, so long as we can map the desirable properties to
information theoretic features. We have also found that a
limited (and quick) I test approximates closely the results
of an equivalent extensive (statistically valid) I test. This
is important – if we consider that any valid coarse graining
is identifying something emergent, then we have shown that
finding emergence is easy; however it is the analysis of I
that distinguishes useful (structure-finding) emergence from
vacuous or trivial emergence.

We have found that a surprisingly small initial state string
predicts results almost as well as using a complete initial
state string, and moreover that the extra rules mapped by
such a partial coarse graining are themselves useful indica-
tors of interesting properties at coarse grains. If we think
of the granularity as the scale of the emergent property, this
is hinting at relationships across several scales, and hence
across several levels of emergence.

We have demonstrated the importance of the mapping be-
tween the levels. Correctness is not necessarily an indication
of goodness: having a mapping and a rule that works is not
always enough. Indeed, it is often not enough (the result can
have low I). Finding a valid coarse graining is much easier
than finding a good one. It is, however, the extra ‘goodness’
properties that can be exploited to get robust implementa-
tions of S.

Our immediate future work is to investigate the relation-
ship between partial fine state string and goodness of results
(why do such short strings work so well here, and do they al-
ways?), and establish the relationship between ‘good’ coarse
grainings at grain g and total coarse grainings at higher g. It
is clear that different mappings and grainings focus attention
on both different qualities of behaviour and different dura-
tions (transient, persistent) in the fine rule. It may ultimately
be possible to tailor the selection according to what is of in-
terest at the time.

Whilst coarse graining has a number of interesting prop-
erties, our main aim in this work is to gain understandings of
these simple emergent systems that will allow us to progress
two larger research goals: to understand and engineer emer-

gence, and to find efficient solutions to difficult problems.
Coarse graining is an efficient way to detect concealed struc-
tures, and thus might be applicable to guided search tech-
niques. More importantly, our work shows that finding and
exploiting mappings is likely to yield further progress, in
guiding search for solutions.
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Abstract

Long used as a framework for abstract modelling of genetic
regulatory networks, the Random Boolean Network model
possesses interesting robustness-related behaviour. We intro-
duce coherency, a new measure of robustness based on a sys-
tem’s state space, and defined as the probability of switching
between attraction basins due to perturbation. We show that
this measure has both upper and random-case bounds, and
that these bounds are based on the size of individual attractor
basins within the system. A mechanism for calculating these
bounds is introduced, and the bounds are then used to define
structural coherency, a measure of robustness attributable to
system structure. Using these measures, we show that the
decrease in coherency that occurs in the Random Boolean
Network as its connectivity increases is related to a loss of
structure in the system’s state space.

Introduction
Since the introduction of the Random Boolean Network
(RBN) model as a framework for modelling genetic reg-
ulatory networks (Kauffman, 1969), the robustness of the
model has been an area of considerable research (Kauffman
et al., 2003; Luque and Solé, 1998). This interest is due
in part to the importance of understanding how robustness
emerges in regulatory systems, and in part to the general
applicability of the RBN model as a basis for understand-
ing the dynamics of complex systems with epistatic interac-
tions. Studies of the spontaneous emergence of robustness
in the model have led to a greater understanding of the way
in which robustness can be maintained in complex systems,
as well as a better comprehension of what it means for a
system to be stable.

Informally, robustness can be thought of as a system’s
ability to function normally under external perturbations.
The investigation of robustness in RBNs generally focuses
on the dependence between robustness and network connec-
tivity. This focus sources from the discovery that the ro-
bustness of a RBN undergoes a phase transition around an
average network connectivity of two (K = 2) (Kauffman,
1969). Later supported by theoretically based approaches
(Derrida and Pomeau, 1986), this property demonstrates that

robustness in large networks of interacting elements—such
as genetic regulatory networks—can result from simple pa-
rameterisation, rather than being a property which must be
designed or evolved. In addition, the connectivities at which
RBNs display interesting and robust behaviour closely par-
allel the connectivities found in real-world genetic regula-
tory systems (Kauffman, 1969; Aldana, 2003).

A mix of theoretical (Derrida and Pomeau, 1986; Der-
rida and Flyvbjerg, 1987) and simulation-based (Kauffman,
1969; Aldana, 2003; Bastolla and Parisi, 1997) approaches
have previously been used to understand the behaviour of
robustness in RBNs. The most common technique used
in theoretical analysis of discrete dynamic systems such as
RBNs is the annealed approximation model (Derrida and
Pomeau, 1986) which provides an analytically tractable ap-
proximation of RBN behaviour. This framework provides a
useful theoretical prediction of the behaviour of infinite en-
sembles of networks under certain restrictive assumptions.
However, this approach cannot be used to investigate single
instantiations of the RBN model, or functional models of
real-world systems. In contrast to the theoretical approach,
simulation-based approaches are based upon the collection
of metrics from multiple individual systems (Bastolla and
Parisi, 1997; Aldana, 2003; Wuensche, 1998). As such,
these approaches can be used to investigate robustness of in-
dividual networks in order to provide information about the
range of behaviours observed under different circumstances,
rather than just behavioural averages. So far, however, both
theoretical and simulation-based approaches have generally
focused on characterising the properties associated with ro-
bustness in the system (such as the areas of parameter space
in which robustness is generally found), without focusing on
understanding what system-level properties bring about the
occurrence of robustness or lack thereof.

In this study, we define a new robustness metric we call
coherency, which is based on the full enumeration of a sys-
tem’s state space. We use a combination of simulation-based
and theoretical approaches to identify the relationship be-
tween the size of a system’s basins of attraction and system
coherency, as part of understanding the way in which robust-
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ness arises in the RBN model. In addition, the formulation
of coherency as a measurable property of individual systems
means that coherency may be useful in characterising ro-
bustness in existing models of real-world systems.

Random Boolean Networks and state spaces
A RBN consists of N nodes or elements, each of which
has exactly K incoming connections from other network
nodes, and an average of K outgoing connections to other
nodes in the network. Each node n in the network has a
Boolean value σn which changes over time depending on
a random Boolean function fn of the inputs to the node
(i.e., σn(t + 1) = fn(σn1(t), . . . ,σ nK (t)), where σni in-
dicates the ith input to node n). The Boolean function as-
sociated with an individual node is independently randomly
generated for each node, and stays constant over the lifetime
of a system.

RBNs are discrete dynamic systems: discrete because
each node in a system has a discrete value; and dynamic
because the value of individual nodes changes over time.
Boolean-valued nodes imply that the system has a finite
number of states (2N ). In addition, the unchanging (or
quenched) nature of the random Boolean functions f1 . . . fN

means that the model is also deterministic.
One way of conceptualising the dynamics of a system is

through the system’s state space. State space consists of
the set of all possible states of the system, and the set of
state transitions (system dynamics) defined by the collective
action of the random Boolean functions f1 . . . fN . Graphi-
cally, states in the system can be represented as nodes in a
graph, with edges between nodes representing state transi-
tions (see Figure 1). In a RBN, this state space will have
points or limit-cycles (here referred to collectively as attrac-
tors) consisting of one or more nodes which define the dy-
namic behaviour of the system in the time limit; any system
running indefinitely must end up in an attractor. The length
of an attractor is the number of nodes in the attractor’s cy-
cle. In addition, associated with each attractor is a set of
states which lead to that attractor, termed the basin of at-
traction. The size of a basin of attraction is the number of
states in the basin; alternatively, size can be expressed as
basin weight, being the proportion of state space occupied
by the basin’s states. For example, Figure 1 shows a RBN
state space (N = 8, K = 6) with three attractors of length
3, 7 and 19 and three corresponding basins of attraction with
size 20 (weight 20

256 ), 94 (weight 94
256 ) and 142 (weight 142

256 ).
Attractors and basins of attraction are important concepts

in defining the robustness of individual RBNs, as they rep-
resent the deterministic dynamics of a system leading to its
steady state.

Defining coherency
There are two commonly used approaches to measuring ro-
bustness in RBNs: annealed-approximation methods; and

Figure 1: An example RBN state space graph with N = 8
and K = 6 containing three attractor basins. Nodes in the
graph represent states of the network, with directed edges
representing the state transitions determined by the Boolean
functions of the network.

simulation-based perturbation methods. The annealed ap-
proximation framework, which is applied in the context of a
statistical ensemble of systems, uses a theoretical method
to determine the probability of state perturbations propa-
gating through a system (Derrida and Pomeau, 1986). In
this framework, robustness is defined as the probability that
a perturbation to the activation of a node will, over time,
spread to affect other nodes in the network. A stable net-
work is one in which a perturbation to the state of the net-
work at time t will likely result in the same network state at
time t+∆t (i.e., the perturbation dies out). If the states of the
perturbed and unperturbed network differ at time t+∆t, then
the network is considered unstable (i.e., the perturbation has
spread). The second method for measuring robustness is a
simulation-based random-sampling approach that is best de-
scribed as ‘perturb and iterate’. In this approach, robustness
is defined as the probability of a single-element perturbation
to a system state s resulting in a system state s′ that is in the
same basin of attraction as the original state (Aldana, 2003;
Geard et al., 2005; Reil, 1999). These two measurements of
robustness are closely related, both defining robustness as a
lack of change of network expression in the time limit. How-
ever, both of these measurements have different shortcom-
ings. The annealed approximation approach cannot be used
to describe individual RBNs, meaning that it is not useful
for analysing models of specific real-world systems. In con-
trast, the ‘perturb and iterate’ approach is based on random
sampling, which only provides an incomplete—and possibly
inaccurate—picture of a system’s robustness.

In this study, we define a measure closely related to the
above approaches, which we term coherency, based on the
full-enumeration of a system (i.e., generating every possible
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system state and identifying each state’s successor). The co-
herency of a system is defined to be the probability that a
single-element perturbation to any state of the system does
not change the basin of attraction of the state. As a codi-
fication of robustness, coherency characterises a system as
robust if a small perturbation to the system state is unlikely
to affect the long-term behaviour of the system.

Coherency can be most simply defined in terms of an in-
dividual state. For a state s with neighbouring states nh
(where neighbouring states are states that differ by only a
single element; i.e., states having a Hamming distance to s
of one), the coherency of that state ψs is the percentage of
states nh that are in the same basin of attraction as s. This
definition can be readily extended to arbitrary collections of
states, the most interesting of which are whole systems, and
attractor basins.

For a system S we define the system coherency ψS ,

ψS =
1
|S|

∑

s∈S

ψs , (1)

where s ∈ S are individual states of the system, and ψs are
coherencies of individual states. As the coherency of any
group of states is the average of the coherency of each indi-
vidual state, we can also formulate the coherency of a system
as the average of the coherencies of its basins of attraction,
weighted by the size of each basin,

ψS =
∑

b∈B

ψb
|b|
2N

, (2)

where B is the set of attractor basins of the system, and
|b|/2N is the weight of an individual basin.

The computational complexity of measuring coherency is
prohibitive, being O(N2N ) in both time and space, but is
nevertheless feasible for small systems (N ≤ 25); even at
such a restricted system size, this measure is applicable to
both abstract systems such as RBNs and interesting mod-
els of real-world systems (e.g., Albert and Othmer, 2003;
Li et al., 2004; Mendoza and Alvarez-Buylla, 1998). In ex-
change for this computational complexity, coherency avoids
the drawbacks associated with existing robustness measures
for RBN systems: unlike the annealed approximation ap-
proach, coherency measures specific individual systems; and
unlike the ‘perturb and iterate’ approach, it tests all possi-
ble single-element perturbations for all system states. In ad-
dition, the definition of coherency is general in that it can
be applied to any collection of states simply by considering
only a subset of system states. In other words, coherency,
as defined here, is a comprehensive measurement of the ro-
bustness of an individual system or parts of the system.

Basin coherency, basin size and network
connectivity

In order to understand this new measure of robustness, and
to see what information it may provide, the standard RBN
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Figure 2: Coherency vs. connectivity for whole state spaces
and individual basins of attraction in RBN systems (N =16;
error bars show standard error). System coherency (ψS) and
basin coherency (ψ̄B) both fall as connectivity increases,
with basin coherency falling more rapidly.

model was simulated (N = 16, K = 1, 2, 3, 4, 8, 16; 1000
trials). For each trial, the system coherency ψS and the av-
erage of individual basin coherencies ψ̄B = 1

|B|
∑

b∈B ψb

were recorded and averaged over each parameter combina-
tion.

The coherency of whole systems is seen to decrease as
connectivity increases (see Figure 2), which agrees with ac-
cepted knowledge about the robustness of RBNs (Aldana,
2003). However, this result does not provide any insights
as to the mechanisms causing coherency in systems with
low connectivity, or those underlying the loss of coherency
in higher-connectivity systems. For these insights we must
consider the coherency of sub-structures of the system’s
state space: attractor basins. The average coherency of
basins of attraction in a system is also seen to decrease as
K increases (see Figure 2), but this decrease is far more
rapid than the corresponding decrease in the overall system
coherency. These results can be explained in terms of the
relationship expressed by (2), by observing that it is the in-
teraction between coherency and weight of individual basins
of attraction that is crucial in determining system coherency.
Given this relationship, the difference between the decrease
in basin coherency and system coherency suggests that not
every basin of attraction contributes equally to overall sys-
tem coherency.

In order to understand the transition between stable and
chaotic regimes in the RBN model, as characterised by a
changing system coherency, we need to understand the re-
lationship between coherency and size of attractor basins
within a state space. This relationship may be characterised
by comparing the size of each basin of attraction with the
basin’s coherency, and observing how these values change
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with respect to the connectivity of the system, K. The re-
lationship between coherency and basin size does exhibit
a change as the value of K increases, from an apparently
logarithmic relationship to a linear one (see Figure 3). Just
as one notable characteristic of the data is the variance of
this relationship with K, another pertinent characteristic is
the apparent restrictions on the upper and lower values of
basin coherency with respect to basin weight. Making use
of known properties of the RBN model, we can investigate
the observed upper and lower bounds on the relationship be-
tween coherency and basin size.

Random-case bounds on coherency
In the RBN model, it is expected that the lower bound on
the observed coherency will occur when the system is most
highly disordered1, a condition that occurs at maximum net-
work connectivity. This lower bound on the observed rela-
tionship between coherency and basin size, referred to here
as the random-case bound, is a probabilistic bound that de-
scribes system behaviour over a statistical ensemble of sys-
tems. The random-case bound occurs as K → N , and is
a linear relationship between the weight and the coherency
of the attractor basin. It has been shown that for N → ∞,
K → N , RBNs correspond to the random map model (Der-
rida and Flyvbjerg, 1987). In this model, the system dy-
namics implement a random mapping between states in the
system. That is, given a state s, the system’s dynamics de-
fine a transition that will deterministically move the system
to a new state, s′; in the random map model, the target state,
s′, is randomly assigned for all such transitions. It follows
that since there is no correlation between a state and its suc-
cessor, there is also no correlation between the states in an
attractor basin, since the basin is defined by these transi-
tions. If there is no correlation between states in a basin
of attraction, then the expected coherency—the probability
of the result of a single-point perturbation belonging to the
same basin of attraction—is proportional to the weight of
the basin of attraction. After accounting for the fact that a
perturbation cannot result in the original state, we have,

ψrand(b) =
|b|− 1
2N − 1

. (3)

As the coherency of each individual state in a basin can be
seen as a Bernoulli trial, basin coherencies from complete-
enumeration simulations will be binomially distributed with,

p =
|b|− 1
2N − 1

,

n = N |b| .

1While there is an actual lower bound on coherency defined by
a parity function, this bound does not correspond to any known
parameterisation of the RBN model.
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Figure 3: Basin weight vs. basin coherency for N =12 and
K = 2, 4, 12. The three connectivity levels demonstrate a
clear separation. At low K, the data describes a curve that
is significantly above the identity line, with the relationship
tending toward linear as K increases.

As the K → N limit is the least stable point in the param-
eter space of a RBN (Bastolla and Parisi, 1997), (3) can be
taken as a random-case probabilistic bound of the coherency
of any RBN system, and a description of the lowest size-
coherency pairs that are likely to be observed.

Upper bound on coherency
Determining the upper bound on the coherency of a basin of
attraction is not readily amenable to an analytic solution. A
simulation-based approach was therefore undertaken to in-
vestigate the way in which formation of highly stable basins
of attraction occurred in RBN systems. Since K = 1 is the
most stable point in the RBN model (Flyvbjerg and Kjær,
1988), an investigation of the structure of attractor basins in
these systems was undertaken.

The structure of the state spaces investigated was analysed
using schemata to represent the states present in a basin of
attraction. The state of a Boolean network model can be rep-
resented by a vector of Boolean elements (e.g., [ 1 0 0 1 0 ]
would be a state in an N = 5 system); using a ternary
representation—a schema—with elements ‘0’, ‘1’ and a
wild-card, ‘!’, makes it possible to represent many states
in a compact fashion (Bagley and Glass, 1996). It was dis-
covered that representing basins of attraction in this man-
ner provided insights into the formation of highly coherent
basins of attraction in low K systems.

Highly coherent basins of attraction in these systems
could generally be described by a very simple schema. For
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example, a basin that covered exactly half of the state space
of a five-element system could be described by a schema
such as [!! 0!! ]. That is, the basin would be formed by
making membership of the basin contingent on the value of a
single element in the system. Similarly, a basin covering one
quarter of the state space would be contingent on the value of
two elements, and so on. In cases where a basin was of a size
that could not be described by a single schema, basins were
generally found to be composed of simple, non-overlapping
schemata whose sizes formed a minimum binary partition of
the basin size. For example, a basin of size 715 would likely
be composed of six non-overlapping basins with sizes 512,
128, 64, 8, 2 and 1.

Given these observations, we conjecture that the upper
bound on the robustness of a basin of attraction exists when
the basin is composed of a set of non-overlapping schemata,
I , with sizes corresponding to a minimum binary partition of
the basin size. In other words, the set I satisfies the equation,

|b| =
∑

i∈I

|i| , (4)

and is the smallest set to do so. The constraints placed upon
this set (i.e., that each number in the set is unique, that each
number is a power of two, and that the schemata are non-
overlapping) mean that it is possible to calculate an optimal
coherency from I alone (see appendix). The maximum co-
herency of a basin ψmax is given by,

ψmax(I, N) =
∑

i∈I

|i|
N |b|



log2|i| +
∑

j∈(I\i)

1
&|i| ÷ |j|'



 ,

(5)
where I is the set of schema sizes described above, and N
is the size of the network. The sum over I \ i represents
the coherency between the schema with size i and the other
schemata in I . Since I is determined solely from the basin
size, and is unique for any given value thereof, our conjec-
tured upper bound (referred to below simply as the upper
bound) can be calculated from the size of the network, N ,
and the size of the basin, |b|.

The conjectured upper and random-case bounds outline
the area in which relationships between coherency and basin
size are expected to fall within the gamut of RBN sys-
tems (see Figure 4). Like the random-case bound described
above, this upper bound is not a theoretical limit describing
the maximum possible coherency of a basin of attraction of
the given size, but rather a bound on the expected coherency,
based upon an analysis of observed system behaviour. Nev-
ertheless, numerical simulations indicate that this bound is a
useful approximation (see following section).

An interesting property of the upper bound is its change
with respect to N . The coherency of a basin of attraction b
of size |b| can be approximated by,

log2|b|
N

. (6)
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Figure 4: The conjectured upper (solid) and random-case
(dashed) bounds on the expected coherency of a basin of
attraction for an N =12 system.

As N increases, the maximum possible coherency for a
given basin weight (%age size) increases. In other words,
a basin that occupies 20% of an N = 50 state space has a
higher maximum coherency than a basin occupying 20% of
an N = 10 state space (see Figure 5). This increase is most
notable for relatively small basin sizes.

Testing bounds
The upper and random-case bounds developed above (see
Figure 4) appear to provide useful and accurate bounds on
the observable coherencies of basins of attraction (see Fig-
ure 6). As a simple measure of the accuracy of the pre-
dictions, we can investigate the frequency with which the
bounds are violated (see Table 1). In all simulations, the up-
per bound described a hard upper limit on the relationship
between coherency and basin size. While attractor basins
with coherency-size pairs below the random-case bound
were found, this is to be expected as described above.

Attributing robustness to structure
The upper and random-case bounds on expected coherency
relate basin robustness to basin structure; unstructured
basins have notably lower robustness than structured basins,
given equality of size. However, since we can determine the
maximum and random-case robustness for any given basin
size, we can also quantify the degree to which an attrac-
tor basin’s robustness depends on its structure rather than
its size. By comparing the actual coherency of a basin to the
maximum and random-case coherency, we can express basin
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Figure 5: The change in the maximum possible coherency of
a basin of attraction of a given normalised size with respect
to N . As N increases, the coherency of an absolute basin
size remains the same, but the coherency of the relative basin
size increases. As N becomes large, even basins that are
very small relative to the state space may be highly coherent.

robustness as a proportion of the difference between size-
dependent and maximum robustness. This measure, which
we term structural coherency, can be expressed as ψstruct,

ψstruct(b) =
ψ(b)− ψrand(b)

ψmax(b)− ψrand(b)
. (7)

Structural coherency has no meaningful interpretation for
basin sizes with the same maximum and random-case co-
herencies: 1, 2N − 1, and 2N .

Measuring the structural coherency of RBNs with vary-
ing connectivity, we obtain a clear striated pattern showing
structural coherency progressing from 100% to 0% as K in-
creases from 1 to N (see Figure 7). In contrast to normal

K Lower Within Higher

1 0.0% 100.0% 0.0%
2 0.0% 100.0% 0.0%
4 0.6% 99.4% 0.0%
8 10.5% 89.5% 0.0%

12 43.6% 56.4% 0.0%

Table 1: Percentage of attractors that were below, within or
above the bounds (N =12; K =1, 2, 4, 8, 12; 50 trials). The
frequency of overstepping the random-case bound is consis-
tent with the probabilistic nature of that bound.
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Figure 6: Observed coherencies for RBN systems (N =12;
K = 1, 2, 4, 8, 12; 50 trials). The various observations
fall largely within the shaded area, which represents the
expected boundaries; due to the probabilistic nature of the
random-case bound, some data points are found below the
expected boundary.

coherency, structural coherency seems to be approximately
constant over basin size, while still varying as expected over
K. This measurement shows that even in small basins of at-
traction, the basin structure within low K systems results in
attractor basins with high relative degrees of coherency.

Conclusions
Robustness or lack thereof in individual RBNs can be anal-
ysed in order to better understand when and how robustness
arises. We have demonstrated a combination of simulation-
based and simple theoretical techniques to provide informa-
tion about the relationship between the robustness of a sys-
tem and the size of individual attractor basins within that
system.

It was suggested that basins of attraction in a system have
both upper and random-case bounds on their coherency that
depend only on the size of the basin of attraction and the
size of the system as a whole. In isolating the maximum and
random-case coherency values for a particular system, the
concept of structural coherency was established to describe
the proportion of basin robustness attributable to the struc-
tured organisation of a state space. These measures may sub-
sequently be used in order to try and identify causal relation-
ships between robustness and other system properties, such
as network architecture or environmental influences (Willad-
sen and Wiles, 2007).
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Figure 7: Observed structural coherencies vs. basin size
(N = 16; K = 1, 2, 4, 8, 16; best-fit lines indicated). Struc-
tural coherency appears to be approximately constant over
basin size, but varying over K.

The network connectivity of the RBN model, K, was
shown to affect the coherency of a system by changing
both the size and coherency of basins of attraction. The
relationship between basin coherency and basin size for
basins of attraction in K = 1 and K = N systems demon-
strated strong agreement with the upper and random-case
bounds respectively. The structural coherency of attractor
basins was shown to be indirectly proportional to the net-
work connectivity, demonstrating that chaotic (high con-
nectivity) networks have low robustness because their state
space becomes disorganised. A notable difference in the re-
sults provided by coherency and other robustness measures
(e.g., Kauffman, 1969; Derrida and Pomeau, 1986) is that
the coherency results show no special phase-transition be-
haviour at K =2.

From these results, we believe that it is possible to under-
stand how, why and under what conditions robustness occurs
in discrete dynamic systems such as Random Boolean Net-
works, and in discrete dynamic models of real world sys-
tems. While the methods presented here do not scale well
(i.e., O(N2N )), several pre-existing interesting, small-scale
models of real-world biological systems (e.g., Albert and
Othmer, 2003; Li et al., 2004; Mendoza and Alvarez-Buylla,
1998) are amenable to such analysis (Willadsen and Wiles,
2007). Understanding such model systems may eventually
help in the analysis of robustness in real-world systems, such
as developmental robustness and homeostasis in genetic reg-
ulatory networks.
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Appendix: Calculating conjectured upper
bound coherency

We have conjectured that the upper bound on basin robustness is
characterised by a basin being composed of a set of schemata I ,
such that the schemata i ∈ I are non-overlapping, and have sizes
that correspond to a minimum binary partition of the basin size.
Here we calculate the relationship between basin size and basin
coherency under these conditions.

Each schema comprising a basin of attraction makes a coherency
contribution proportional to the size of the schema, in the same way
that basins of attraction make coherency contributions to a system.
The coherency of a single schema is equal to the probability of
a perturbation resulting in a state that is in the schema, coh(i, i),
added to the probability of a perturbation resulting in a state that is
outside the schema, but is in another schema in the same basin of
attraction coh(i, I \ i). Therefore,

ψmax(I) =
X

i∈I

|i|
|b|

“
coh(i, i) + coh(i, I \ i)

”
. (8)

The coherency of the schema i with itself is simply the size of
the schema, normalised with respect to the system size. Denoting
the self-coherency as coh(i, i),

coh(i, i) =
log2|i|

N
, (9)

where |i| is the schema size, being 2x where x is the number of
wild-card elements in i.

The coherency of the schema i with all other schemata in the
basin is the sum of the coherency of schema i with each individual
schema j ∈ I \ i. Denoting this coherency as coh(i, I \ i), we
have,

coh(i, I \ i) =
X

j∈(I\i)

coh(i, j) . (10)

Determining coherency between two individual schemata can be
accomplished by some simple logic. Given that the conditions for
maximum coherency state that the collection of schemata is min-
imal, and that schemata are non-overlapping, we can divide the
coherency calculation into two disjoint conditions: |i| > |j| and
|i| < |j|. When |i| > |j|, the probability that a perturbation of i
will lead to j is dependent on the relative sizes of i and j. The total
number of possible perturbations from schema i is N |i|, and the
number of target states is |j|, implying coh(i, j) = |j|

N|i| . When
|i| < |j|, we rely upon the hierarchical nature of the schemata;
membership of each schema is determined solely by the value of a
single element. Therefore, changing from a smaller schema, i, into
a larger schema, j, implies perturbing the single appropriate ele-
ment in a system of N elements, thus coh(i, j) = 1

N . Combined,
we can write,

coh(i, j) =

 1
N if |i| < |j|
|j|

N|i| if |i| > |j| , (11)

or alternatively,

coh(i, j) =
1

N"|i| ÷ |j|# . (12)

Combining (8) and (12) yields an equation for the maximum ex-
pected coherency of a system with N network nodes, and attractor
basin sizes I ,

ψmax(I, N) =
X

i∈I

|i|
N |b|

0

@log2|i| +
X

j∈(I\i)

1
"|i| ÷ |j|#

1

A .

(13)
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Abstract

This paper presents results from three experiments which in-
vestigate the evolution of referential communication in em-
bodied dynamical agents. Agents, interacting with only sim-
ple sensors and motors, are evolved in a task which requires
one agent to communicate the locations of spatially distant
targets to another agent. The results from these experiments
demonstrate a variety of successful communication strate-
gies, providing a first step towards understanding the emer-
gence of referential communication in terms of coordinated
behavioral interactions.

Introduction

Communication is traditionally viewed as the use of signals
to transmit information (Hauser, 1997; Seyfarth and Cheney,
2003; Smith and Harper, 1995). We refer to this view of
communication as the IT view, for information transmis-

sion. Numerous models of emergent communication adopt
this view as their starting point (Cangelosi and Parisi, 1998;
MacLennan and Burghardt, 1993; Steels, 2003). Agents
are provided with signalling mechanisms and informational
content (or “meanings”), and through some adaptive pro-
cess they establish shared associations between signals and
meanings. However, the IT view of communication is not
uncontroversial (Di Paolo, 1997, 1998), providing motiva-
tion to study emergent communication without preconceived
notions of signals and information transmission. Moreover,
even if the IT view is accepted, models that begin with es-
tablished signalling mechanisms cannot be used to address
important questions of how signals may arise from initially
non-communicative behaviors.

An alternative view of communication comes from au-
topoetic theory (Maturana, 1978; Maturana and Varela,
1980), with similar ideas expressed by researchers in cy-
bernetics, psychology, and a wide range of other disciplines
(see Di Paolo (1997) for an extended discussion). On this
view, communication occurs whenever the behavior of one
agent shapes the future behavior of another agent. Thus,
communication is taken to refer to all kinds of socially coor-
dinated behaviors. We refer to this view of communication
as the CB view, for coordinated behavior. Importantly, the

CB view does not assume the existence of signals or infor-
mation transmission as fundamental aspects of communica-
tion. Rather, if anything, these ideas are left to the analysis
of communication by scientific observers. The essential ele-
ments of communication are the structured interactions that
take place between agents in a shared domain.

Several models have explored the emergence of commu-
nicaton from a CB perspective (Baldassarre et al., 2003;
Di Paolo, 2000; Iizuka and Ikegami, 2003; Nolfi, 2005). In
these models, agents are typically equipped with dedicated
channels to use for communication. Through some adaptive
process, the agents develop the ability to use these channels
to signal each other, resulting in the improved coordination
of their behaviors. Thus, since these models begin with-
out pre-specified signals, they provide compelling demon-
strations of how initially non-communicative behaviors can
adapt to serve communicative functions. This is particu-
larly true when agents are equipped with only sensors and
actuators, and without dedicated communication channels
(Quinn, 2001; Quinn et al., 2003). In this case, simulations
can provide additional insights into the interplay between
communicative and non-communicative behaviors, and ex-
plore how signals may emerge from behaviors that initially
evolved for other purposes.

Models that study communication from the CB perspec-
tive have typically focused on certain kinds of tasks. For
instance, common tasks are those which require agents to
develop signals for the dynamic assignment of roles (e.g.
“leader” and “follower”) in some situation. In contrast,
models of communication from an IT perspective have of-
ten studied tasks that are referential in nature, where agents
must develop signals that refer or “point to” states of affairs
that are removed in space and/or time. Referential tasks are
certainly of principal importance for understanding the evo-
lution of communication, but to our knowledge no such tasks
have been addressed within a CB framework. Accordingly,
referential communication provide an important challenge
for models of communication based on a CB perspective.

In this paper, we present results from a series of experi-
ments which explore the evolution of referential communi-
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cation. In these experiments, agents interact with only sim-
ple sensors and motors, and hence without any pre-specified
signalling mechanisms. These experiments thus provide an
initial exploration of the evolution of referential communi-
cation through the lens of a CB perspective. The results
demonstrate the successful evolution of referential commu-
nication using this approach; moreover, they provide in-
sights into the kinds of subtle communication systems that
are possible through the coupled interactions of embodied
dynamical agents.

The rest of this paper is organized as follows. In the next
section, we expand upon the notion of referential commu-
nication and consider how it might fit with the CB view.
Then we present results from a series of three experiments
which explore the evolution of referential communication
under various conditions. Finally, we conclude with a gen-
eral discussion of the experimental results, and outline some
directions for future work.

Referential Communication

One of the most widely studied examples of referential com-
munication in a nonhuman species is the waggle dance of
honeybees (Crist, 2004; Dyer, 2002). When a forager bee
discovers a lucrative food source, she will often return to her
hive and congregate with other hive mates. The returned for-
ager then performs a “dance”, consisting of repeated runs in
a small figure-eight pattern, amidst tightly packed adjacent
bees. As was first identified by Karl von Frisch (von Frisch,
1950, 1967), and later elaborated by many others (Dornhaus
and Chittka, 2004; Michelsen, 2003; Riley et al., 2005), var-
ious aspects of this dance correlate with the distance and
direction to the previously identified food source. Having
observed the dance, other bees are then able to successfully
navigate to the new food source. Thus, the waggle dance
provides an excellent example of referential communication,
with signals used to communicate about states of affairs that
are distant in both space and time.

In what follows, we present results from a series of three
experiments which were inspired by the waggle dance of
honeybees. Before proceeding, it is first necessary to es-
tablish an operational notion of referential communication
in terms of behavioral coordination. The difficulty is that a
standard conception of referential communication fits most
naturally with an IT perspective. Intuitively, signals are
“about” something, and that which they are about is the in-
formation that they convey. Identifying referential commu-
nication from a CB perspective, however, is less obvious.

Communication from a CB perspective is understood in
terms of the effect that interactions between agents have on
the future behavioral trajectories of those agents. Here we
will consider only asymmetric interactions between pairs of
agents, a sender and a receiver, in which case the primary
concern is the effect of interactions on the behavior of the
receiver. Intuitively then, we consider an interaction to be

communicative when the future behavior of the receiver is
sufficiently constrained as a result of its interaction with the
sender. To demonstrate this idea, consider the waggle dance
example. In absence of the dance interaction, the behav-
ioral trajectories of would-be recruits are effectively uncon-
strained and, in principle, the recruits may travel to any lo-
cation outside of the hive. Thus, the specific effect of the
dance, and what makes it communicative, is that it serves to
constrain the behavior of recruits to the subset of behavioral
trajectories which result in their arrival at the food source.

The additional component necessary for an account of
referential communication is the dependence of these con-
strained behavioral trajectories on an object of reference.
That is, the receiver’s behavior resulting from a communica-
tive interaction should change as properties of the referent
change. In the waggle dance, for example, the future behav-
ioral trajectories of the receiver vary directly and reliably
with properties of the referent, namely, the distance and di-
rection of the food source.

Another important aspect of referential communication
from a CB perspective is the nature of the interaction be-
tween the agents. Specifically, in order for an interaction to
be considered referential there should be a degree of sepa-
ration, spatial and/or temporal, between the communicative
interaction and the object of reference. To demonstrate this
idea, consider again the waggle dance. Rather than perform
a dance, the forager could instead gather recruits and fly with
them to the food source. This would result in the same be-
havioral outcome for the receiver, but in this case the inter-
action between the bees would persist until the recruits had
reached the food source. Thus, we would not consider such
an interaction to be referential. In contrast, the waggle dance
is referential because the communicative interaction is spa-
tially removed from the food source.

To summarize, we propose an operational notion of ref-
erential communication from a CB perspective based on the
following considerations. Firstly, the future behavior of a re-
ceiver should be constrained by its interaction with a sender.
Secondly, the nature of the receiver’s constrained behavior
should vary based on properties of the referent. Finally, the
communicative interaction should have a degree of separa-
tion from the referent.

Methods

In all of the following simulations, two agents coexist in a
one-dimensional circular environment (Figure 1). Agents
are able to move around the circle with a maximum angular
velocity of π

8
in either direction, with agents free to move

past each other unimpeded. Each agent is equipped with
two angular sensors, one each in the clockwise and counter-
clockwise directions, with each sensor having a maximum
range of π

8
. An angular sensor responds with a value in-

versely proportional to the distance at which it intersects the
other agent, with sensor values ∈ [0, 1]. In this way, the
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Figure 1: The agents and environment. Two agents, a sender
(S) and a receiver (R), interact in a one-dimensional circular
environment. On each trial, a target angle (gray diamond) is
selected, and the sender must communicate the location of
the target to the receiver.

angular sensors provide each agent with local information
regarding the relative position of the other agent.

In addition to a pair of angular sensors, each agent is also
equipped with two “bearing” sensors. The bearing sensors
provide each agent with information about a certain angle ψ,

with the two bearing sensors taking on the values sin(ψ)+1

2

and
cos(ψ)+1

2
, respectively. For one of the agents, henceforth

the receiver, the angle ψR indicated by the bearing sensors is
the receiver’s current angular position. For the other agent,
henceforth the sender, the angle ψS indicated by the bearing
sensors is the separation between the sender’s current angu-
lar position and a certain target angle in the environment.
As will be elaborated later, the task for the agents is to get
the receiver to the target angle, whose location is only avail-
able to the sender through its bearing sensors. As a result,
the sender and the receiver must structure their interactions,
which take place exclusively through the angular sensors,
so that the target angle is successfully conveyed from the
sender to the receiver.

The behavior of each agent is controlled by a continuous-
time recurrent neural network (Beer, 1995) with the follow-
ing state equation:

τiṡi = −si +
N

∑

j=1

wjiσ(sj + θj) + Ii i = 1, . . . , N

where s is the state of each neuron, τ is the time constant,
wji is the strength of the connection from the jth to the ith

neuron, θ is a bias term, σ(x) = 1

1+e−x is the standard lo-
gistic activation function, and I represents an external input.
The output of a neuron is oi = σ(si + θi). In each agent,
the two angular sensors and two bearing sensors are fully
connected to a layer of five interneurons. The interneurons
are fully interconnected and project fully to two motor neu-
rons. The angular velocity of an agent is proportional to the
difference between the outputs of the two motor neurons.

Neural parameters are evolved using a real-valued ge-
netic algorithm with rank based selection. Each genome en-
codes two separate neural controllers for a sender and a re-
ceiver. Thus, rather than using a co-evolutionary procedure

to evolve senders and receivers separately, we evolve a pop-
ulation of sender/receiver pairs. The following neural pa-
rameters, with corresponding ranges, are evolved: time con-
stants ∈ [0, 30], biases ∈ [−16, 16], and connection weights
(from sensors to neurons and between neurons)∈ [−16, 16].
Successive generations are formed by first applying random
Gaussian mutations to each parent genome with a mutation
variance of 7 (see (Beer, 1996) for details). In addition,
one-point modular crossover is applied with 5% probabil-
ity, using two modules corresponding to the sender and the
receiver neural controllers. A child replaces its parent if its
performance is greater than or equal to that of the parent;
otherwise the parent is retained.

Sender/receiver pairs are evolved for the ability of the re-
ceiver to successfully reach a number of specified target lo-
cations. On any given trial, a certain angle is designated
as the target and the corresponding bearing angle inputs are
given to the sender. The agents then interact for a fixed pe-
riod of time, after which the receiver’s final separation from
the target angle is recorded. Since the information about the
target angle is only available to the sender, success in this
task requires that the sender and the receiver evolve a sys-
tem for accurately communicating the target locations.

The performance of a sender/receiver pair is determined
based on a number of evaluation trials. Each trial pro-
ceeds as follows. First, the neural states of both sender
and receiver are initialized to 0. The sender is given
an initial angular location of 0 and the receiver is po-
sitioned with an initial offset relative to the sender ∈
{− π

32
,− 2π

32
,− 3π

32
, π

32
, 2π

32
, 3π

32
}, such that the sender and the

receiver are initially within sensory range of each other.
Next, one of a set of target angles is chosen as the current
target, with different sets of targets used for each experi-
mental condition. The sender’s bearing angle inputs are set
to reflect the current target location and the agents are al-
lowed to interact for an initial period of 80 time units, which
is enough time for an agent moving at its maximum veloc-
ity to traverse the circular environment five times over. The
duration of this initial period was chosen to minimize time
pressure on the evolved communication systems. After the
initial period has elapsed, the angular separation d1 between
the receiver and the target angle is recorded and normalized
to run between 0 and π. The simulation is then continued for
an additional 10 time units and the receiver’s distance from
the target is again recorded as d2. This second value is in-
corporated into the fitness evaluation in order to ensure that
the receiver remains at the target location. The score that a
sender/receiver pair receives on a given trial is:

1 −
d1 + d2

2π

and overall fitness is determined by averaging trial scores
for every possible combination of target angles and initial
receiver positions.
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Figure 2: Communication in the unconstrained condition. In each plot, the trajectories of the sender (gray line) and receiver
(black line) are shown for an individual trial. The black dotted line indicates the target location. The shepherding strategy is
shown in (a): the sender guides the receiver to the target location through a series of “push” or “pull” interactions. The “sit and
wait” strategy is shown in (b): the sender sits a fixed distance away from the target location and waits for the receiver. Note that
all plots of this kind in the rest of the paper follow the same format.

Unconstrained interactions

In the first set of simulations, agents were evaluated with
a set of ten target locations uniformly distributed around
the circle. Twenty evolutionary runs were performed, with
a population of 400 sender/receiver pairs evolved for 2000
generations in each. The best sender/receiver pair in each
run attained a fitness of at least 99%. Moreover, it was found
that all of the best sender/receiver pairs had developed com-
municative strategies that could readily generalize to pre-
viously unseen target locations. When tested with 10,000
random trials, using target locations drawn uniformly from
[0, 2π] and initial receiver positions ∈ [− 3π

32
, 3π

32
], the best

pair from each run attained a score of at least 97%.

This first condition places no restrictions on the kinds of
interactions that are available to agents. Any interaction
which results in the receiver reaching the target location is
acceptable, and the only aspect that matters for fitness is the
receiver’s final separation from the target location. Thus, in
one sense, these simulations can be seen as an initial proof
of concept, verifying that agents in this environment are ca-
pable of accomplishing the task. However, the results from
these simulations also prove to be interesting in their own
right, providing some initial insights into the kinds of inter-
actions that agents may use for communication in this task.
A preliminary inspection revealed two qualitatively distinct
strategies, each of which we describe next.

The first strategy, used by 12 of the 20 best agent pairs,
we refer to as “shepherding”. An example of this strategy
is displayed in Figure 2(a). Agents employing this strat-
egy typically remain within or nearly within sensory con-
tact for the entire duration of a trial. Thus, the trajectories
of agents using this strategy are closely coupled. Over the
course of a trial, the sender typically moves in a sustained di-
rection towards the target location. In addition, the sender’s
movement towards the target is accompanied by a series of
“push” or “pull” interactions with the receiver. That is, as
the sender moves towards the target location, it brings the re-

ceiver along with it by closely governing its motion through
repeated interactions. The sender then stops near the target
location, causing the receiver to stop at or near the target.
Thus, the sender’s actions serve to effectively guide the re-
ceiver to the target.

The second strategy, used by 8 of the 20 best pairs, can
be described as a “sit and wait” strategy. Figure 2(b) shows
a characteristic interaction from a pair of agents using this
strategy. At the beginning of a trial, the sender and receiver
start off traveling together clockwise around the circle. The
receiver continues traveling in this direction, making a full
pass around the circle, while the sender stops and takes up
a fixed location. Crucially, in all trials the position at which
the sender stops is always the same fixed distance away from
the target. The receiver continues traveling around the cir-
cle until it again reaches the position of the sender. At this
point, the receiver begins moving in the opposite direction
and oscillates back and forth before settling at the target lo-
cation. In different versions of this strategy, the sender halts
its motion at different distances away from the target and
the specific details of the interaction vary, but the same gen-
eral characteristics hold. To summarize, this strategy can be
glossed as follows: (1) the sender moves to a fixed distance
away from the target location and stops; (2) the receiver trav-
els until it finds the sender; (3) the receiver positions itself
the same fixed distance away from the sender, thus coincid-
ing with the target location.

A common feature of the behavioral strategies evolved in
this condition is that the communicative interactions con-
tinue until the receiver reaches the target location. In the
“shepherding” strategy, the sender accompanies the receiver
to the target location, while in the “sit and wait” strategy
the sender indicates the location of the target directly us-
ing its own position. Consequently, these strategies are not
considered referential, since there is no separation between
the communicative interaction and the object of reference.
The next two experiments address this issue by specifically

Artificial Life XI 2008  705 



0

20

40

60

80

Time

(a)

0

20

40

60

80

Time

(b)

0

20

40

60

80

Time

(c)

0

20

40

60

80

Time

(d)

Figure 3: Communication strategy with discrete targets. Behavioral trajectories from the best sender/receiver pair are shown
for each of the four target locations. The gray dotted lines indicate the boundaries of the sender constrained region. In this
condition, the sender uses qualitatively distinct behavioral patterns to communicate each of the four target locations.

evolving for referential interactions.

Constrained interactions with discrete targets

There are several approaches that we could use to select for
referential interactions in our simulation, which have inter-
esting parallels with potential accounts for the evolution of
referential communication in nature. One possibility would
be to associate an energy cost with the behavior of the sender
and to select for behaviors that minimize this cost. That is,
we could select for interactions in which the sender does
less while producing the same behavioral outcome for the
receiver. In natural evolution, energy minimization presum-
ably provides a strong selective advantage for referential
communication. An alternative, though related, possibility
is to impose spatial restrictions on the interactions between
communicating agents. In considering the waggle dance, for
example, it may be the case that an important selective pres-
sure was the restriction to interactions that take place within
the hive.

In the second experimental condition, we adopt the latter
strategy of imposing a strict spatial constraint on the interac-
tions between the sender and the receiver. Specifically, the
sender is constrained to move within the region between π

4

and −π
4

(Figure 4). Agents in this condition are evaluated
with a set of four target locations, uniformly distributed be-
tween π

2
and 3π

2
. Thus, given the constraint on the sender

and the target locations, it is impossible for the agents to re-
main within sensory contact as the receiver goes to a target.

Twenty evolutionary runs were performed with a popu-

lation size of 400 in each. Successful strategies proved to
be more difficult to evolve in this condition, so populations
were evolved for 10,000 generations as opposed to the 2,000
used in the first experiment. In all of the runs, the best pair
attained a fitness measure of at least 92%, with the top 5
pairs achieving over 99%. Again we found a variety of be-
havioral strategies employed by different pairs of agents. We
next outline one such strategy, which comes from the best
sender/receiver pair.

Figure 4: The constrained environment with discrete targets.
The sender’s motion is constrained between−π

4
and π

4
(gray

region). Diamonds indicate the locations of the four targets.

Sample trajectories from the best pair of agents are dis-
played in Figure 3. Note the qualitatively different behavior
exhibited by the sender for each of the four target locations.
When the target is at π

2
(Figure 3(a)), the sender moves im-

mediately to the lower boundary of the constrained region.
As a result, the two agents interact for only the initial por-
tion of the trial, after which time their trajectories quickly
diverge. For the next target, proceeding counterclockwise
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(Figure 3(b)), the sender motions back and forth at the be-
ginning of the trial, before again moving to the lower bound-
ary of the constrained region. In this case, the sender and
receiver cross paths multiple times over the course of the
trial. For the third target, the sender makes broad oscillatory
motions between the two boundaries of the constrained re-
gion, resulting again in several intersections with the path of
the receiver. Finally, for the last target location, the sender
sweeps across the constrained region once before settling on
the upper boundary of the constrained region, which results
in the agents crossing paths relatively late in the trial.
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Figure 5: Generalization of the constrained agent with dis-
crete targets. The receiver’s final position across the range of
target locations is shown. Black dots indicate the four target
locations on which the agents were evolved.

The qualitatively distinct behaviors of the sender turn
out to be a general feature of the behavioral strategies that
evolved in this condition. For each of the four targets, the
sender exhibits a different pattern of behavior which serves
to distinguish the locations and appropriately guide the re-
ceiver. When tested on intermediate target locations, the
sender makes abrupt shifts between its different behavioral
regimes. A reasonable prediction then is that the behavior of
the receiver will be similarly distinguished. Figure 5 shows
the final position of the receiver across the range of target
locations, and verifies this prediction. The receiver typically
moves to one of the four standard target locations and ex-
hibits sharp transitions between these locations for interme-
diate values. Thus, these results suggest that the evolved
communication systems are, in a certain sense, symbolic:
discrete and categorical “signals” are associated in an arbi-
trary fashion with a small set of possible locations.

Constrained interactions with
a continuum of targets

The communicative strategies evolved in the previous exper-
iment can be viewed as analogous to a simple form of words.
Senders use a small set of essentially arbitrary signals to dis-

Figure 6: The constrained environment with a continuum
of targets. The sender was again constrained (gray region),
and the agents were evaluated with 10 target locations (dia-
monds).

tinguish between a discrete number of targets. An alterna-
tive communicative strategy would involve the use of a con-
tinuum of signals to indicate a similarly continous range of
possible targets. Such is presumably the case with the wag-
gle dance, where a continuous range of dance maneuvers can
be used to communicate a range of distances and directions.
Other examples of this kind of communication system are
the deictic indicators used by humans, such as finger point-
ing and eye gaze. The third experimental condition explores
the evolution of this kind of referential communication.

In this experiment, agents were evolved with a set of ten
target locations, uniformly distributed between π

2
and 3π

2

(Figure 6). The larger number of targets was used to pres-
sure agents into developing communicative strategies that
can generalize to a continuum of locations, as opposed to
using distinct signals for a small number of discrete targets.
The sender was again constrained to move within the region
bounded by π

4
and −π

4
.

We again performed twenty evolutionary runs with this
condition, with a population of 400 agents evolved for
10,000 generations in each. The best sender/receiver pair
in each run achieved a fitness of at least 94%, with the top
seven pairs attaining fitness scores over 99%. In order to
verify that the evolved strategies could generalize to a con-
tinuum of targets, we evaluated each of the best pairs on
10,000 trials with target locations drawn uniformly from
[ π
2
, 3π

2
] and initial receiver offsets ∈ [− 3π

32
, 3π

32
]. The best

pair from each run achieved a score of at least 90%, with the
top seven pairs all scoring in excess of 98%. Figure 8 shows
the generalization performance of the best sender/receiver
pair. We next describe the behavioral strategy used by this
pair of agents.

Sample trajectories from the best sender/receiver pair are
displayed in Figure 7. In each case, the interaction between
the agents consists primarily of two path crossings. At the
beginning of the trial, the sender moves counterclockwise
while the receiver makes a full pass around the circle in the
clockwise direction. The paths of the agents then cross for
the first time, after which the receiver turns back in the coun-
terclockwise direction. The agents then cross each other for
the second time, followed by the receiver continuing around

Artificial Life XI 2008  707 



0

20

40

60

80

Time

(a)

0

20

40

60

80

Time

(b)

0

20

40

60

80

Time

(c)

Figure 7: Communication strategy with a continuum of targets. The gray dotted lines indicate the boundaries of the sender
constrained region. For targets further from the sender in the clockwise direction, the sender’s trajectory becomes increasingly
straightened against the upper boundary of the constrained region.

the circle in the clockwise direction before stopping at the
target location. Note that, for targets further from the sender
in the counterclockwise direction, the sender’s trajectory be-
comes increasingly straightened, effectively flattening out
against the upper boundary of the constrained region. Im-
portantly, this change in the sender’s trajectory affects the
timing and location of the path crossings between the two
agents. As the sender’s path becomes straighter, the first in-
tersection between the paths occurs earlier and the second
intersection occurs later. Figure 9 demonstrates this more
clearly, where trajectories are shown for a range of target lo-
cations. The interactions between the agents vary smoothly
with the location of the target. As a result, the agents are
able to systematically communicate the location of targets
anywhere along the continuum.
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Figure 8: Generalization of the constrained agent with a con-
tinuum of targets.

Discussion

Previous models of emergent referential communication are
based on the view of communication as information trans-
mission. In this paper, we presented results from a set
of experiments which explored the evolution of referential
communication from the perspective of coordinated behav-

iors. Embodied dynamical agents, interacting with only
basic sensory and motor capabilities, evolved strategies to
communicate the locations of spatially distant targets.

In the first experimental condition, agents were evolved
with no restrictions placed on their potential interactions.
In this case, we found that agents developed two distinct
strategies that were successful in guiding the receiver to the
targets. These results provided an initial proof of concept,
as well as giving some insights into the kind and variety of
communicative strategies that are possible.

The second experiment selected specifically for referen-
tial interactions by placing spatial restrictions on the mo-
tion of the sender. With a small set of discrete targets we
found that senders evolved a number of distinct behavioral
patterns to communicate the different target locations. Thus,
in a loose sense, the communication systems evolved in this
condition can be viewed as similar to words.

Finally, in the third condition, we explored the possibility
of evolving referential communication which could general-
ize to a continuum of target locations. The “signals” evolved
in this condition were found to vary smoothly with the range
of targets, resulting in successful generalization. This ability
to indicate a continuum of locations is analogous to the var-
ious deictic indicators used in human communication, such
as finger pointing and eye gaze.

Future directions

The next step for future work is to perform detailed analyses
of the evolved communication systems. Using the mathe-
matical tools of dynamical systems theory, we will explore
how the underlying dynamical structure of individual agents
forms the basis for their joint interactions. Additionally, we
plan to apply analytical techniques from information theory
to examine the possibility of developing a mathematically
rigorous notion of information transmission between inter-
acting agents.

In other work, we plan to extend the approach used here
to a two-dimensional environment. With the added dimen-
sionality, we could explore tasks in which agents have to
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Figure 9: Signalling systematicity of the constrained agent
with a continuum of targets. Trajectories of the sender (solid
lines) and receiver (dotted lines) are shown for a set of
equally spaced target locations, with color used to indicate
trajectories from the same trial. The behavioral interactions
of the agents vary smoothly with the location of the target.

communicate multiple kinds of information simultaneously.
For example, we could bring the task closer to its waggle
dance inspiration by evolving agents to communicate both
the distance and direction to target locations.

Finally, we intend to investigate the evolutionary trajec-
tories of the evolved communication strategies. To do so,
we can track the individual lineages of sender/receiver pairs
and study their behavioral interactions at different times dur-
ing the course of evolution. Such an investigation should
provide unique insights into the process by which various
non-communicative behaviors adapt to serve communica-
tive functions.
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Abstract

In their paper, “Punctuated Equilibria: An Alternative to
Phyletic Gradualism”, Eldredge and Gould (1972) argue that
most evolution occurs during geologically rapid speciation
events, with species exhibiting stasis the vast majority of the
time. Gould (2002, 2007) demonstrates that an implication of
Punctuated Equilibrium is that selectionist theory is expanded
to the level of species - defining species as basic units of
macroevolution. In our paper, we demonstrate the evolution
of aging rates in a species selection scenario. We have devel-
oped an ALife simulation environment with mating governed
by evolving compatibility signatures, resulting in the forma-
tion of reproductively isolated subpopulations (i.e., species).
Given a co-evolving parasite population, heterogeneity in a
host subpopulation is beneficial for the health of that sub-
population. This can result in group selection pressure at the
species level for the evolution of altruistic traits, such as a
faster aging rate.

Introduction
The mechanism of aging has perplexed those who have at-
tempted to understand it in a Darwinian framework. The
wide and enduring variations in longevity across species
suggests that aging rate is the result of natural selection. The
theory of evolution by natural selection holds that many of
the traits we observe in organisms are the result of adapta-
tions to the environments of their ancestors. However, any
possible adaptive benefit of faster aging cannot accrue to its
bearer, who will likely have fewer offspring. Therefore, the
evolution of aging requires a selection mechanism beyond
the individual. Such selection mechanisms have been pro-
posed by Wynne-Edwards (1962), in the form of group se-
lection theory, and Hamilton (1964), in the form of inclu-
sive fitness theory. In previous papers we showed that these
mechanisms are interdependent in a prominent simulation
model of the evolution of aging (Woodberry et al., 2005,
2007).
Bell (1982) posited that the diversity created by sexual

recombination provides a group benefit in the co-evolution
arms race between hosts and parasites. In a similar manner
we argue that aging benefits the group by increasing popula-
tion turnover and, thus, genetic diversity. Here we reinforce

our hypothesis by demonstrating its practicality in a species
selection scenario. There have been investigations into the
implications of Punctuated Equilibrium on selectionist the-
ory — identifying species as basic units of macroevolution,
due to their stability (and hence individuality) between punc-
tuation events (see Gould, 2002, 2007). On the individuality
of species, Gould (2002) says: “So long as most new species
arise by branching (speciation) rather than by transformation
(anagenesis), species can be individuated by their uniquely
personal duration, bounded by birth in branching and death
by extinction. ”
In this paper, we describe the design and use of an ALife

simulation containing co-evolving host and parasite popula-
tions. Host agents have mating signatures, which are used to
determine mate compatibility, and vulnerability signatures,
which govern the infection process. Mutation of the signa-
tures may cause the host population to diversify into repro-
ductively isolated subpopulations, i.e., to speciate. The par-
asite population, which has infection and virility signatures,
flourishes when the host population’s vulnerability signa-
tures are genetically uniform, creating a positive selective
pressure for the evolution of aging for the sake of species
diversity. Here we further our argument for the evolution of
aging by demonstrating it in a species selection scenario —
which arguably is more realistic than classical group selec-
tion.

Background
The Evolution of Aging
Aging is defined as the general deterioration of an organism,
and its eventual death, by internal causes (Williams, 1957).
The rates at which different species age is a perplexing phe-
nomenon. The divergence is extraordinary, ranging from a
few hours for some phytoplankton cells (Agustı́ et al., 1998)
to a few days for some insects to thousands of years for the
bristlecone pine tree. Furthermore, these different rates have
themselves not varied greatly during recorded history, so far
as we can tell. The genetic control of aging is beginning
to come into view, with multiple genes already identified as
participating in aging rates (e.g., Belenky et al., 2007). All
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of this seems to suggest that aging rates have evolved be-
cause of their adaptive value. However, the obvious fitness
costs of fast aging on individuals would cause strong direct
selection pressure against it, suggesting that aging may be
a side effect of some more essential characteristic, i.e., that
it is non-adaptive. Historically, both adaptive, e.g., Weis-
mann (1889), and non-adaptive, e.g., Williams (1957) and
Medawar (1952), explanations of aging have been proposed.
Recently there has accumulated compelling experimental
evidence that aging is an adaptation (Mitteldorf, 2004; Bre-
desen, 2004; Skulachev, 1997). This has lead to a resurgence
of research into possible adaptive benefits of aging, includ-
ing our own.
In Woodberry et al. (2007) we posited an adaptive ex-

planation of aging. We argued that aging has a group fit-
ness benefit which can outweigh the individual fitness cost.
Groups with shorter individual life spans turn over faster and
consequently have greater genetic diversity. In co-evolution
scenarios, e.g., predator-prey and host-parasite interactions,
groups with greater diversity will be less easily exploited,
creating a stronger and healthier population.

Group and Kin Selection
An adaptive explanation of aging requires a selection mech-
anism accounting for the potential selection of altruistic
traits. The papers of Wynne-Edwards (1962) on group se-
lection and Hamilton (1964) on inclusive fitness theory at-
tempted to give a mathematical analysis supporting selection
mechanisms beyond individual selection. Maynard Smith
(1976) went on to create a model demonstrating the logical
possibility of group selection. He showed that the turnover
of groups, via extinction and pioneering, can favor altruistic
groups which, because of their altruism, have greater group
lifespans and so greater opportunity to found new groups.
This enables scenarios where cheaters, even while having a
fitness advantage within groups, do not take over the popula-
tion. Inclusive fitness (or kin selection) theory, by contrast,
shifts the focus downwards from the individual to the gene,
whether held by the individual or, as a replica, by a relative.
The inclusive fitness of a gene is just the organism’s indi-
vidual fitness augmented by the harms and benefits caused
to the fitness of others, weighted by their relatedness, i.e.,
the probability of their carrying the same allele (Hamilton,
1964). Inclusive fitness theory, or kin selection, has become
widely accepted, especially as an explanation for the evo-
lution of altruistic behavior. The group selection concept,
however, has remained contentious. It has been doubted, for
example, whether the selection pressure for selfish behav-
ior within groups can be overcome in nature by selection
pressure for altruism between groups. In Woodberry et al.
(2005) we argued that group selection may be dependent
upon kin selection, rather than in opposition to it, as most
would have it. That is, kin selection may well provide selec-
tion pressure within groups for an altruistic trait that is also

being selected for at the group level, when the latter selec-
tion pressure would be insufficient for evolutionary stability
of the trait on its own.1

Species
The concept of species, as a taxonomic classification, re-
mains central to biology and a host of related fields. The def-
inition of species remains controversial, as there is an inher-
ent vagueness in its application, e.g., asexual species, ring
species and hybrids. The most generally accepted defini-
tion of species, which we follow, is a reproductively isolated
sub-population (Mayr, 1963) — that is, a group of actually
or potentially interbreeding populations that are reproduc-
tively isolated from other such groups. Studies of speciation
are based on geographic circumstances: allopatric and peri-
patric speciation rely on geographic isolation, whereas sym-
patric and parapatric speciation are based on the emergence
of new species with little, or no, geographic isolation. In our
simulation, as there are no barriers to migration, speciation
must be described in the latter terms.

Punctuated Equilibrium
Eldredge and Gould (1972) drew attention to what they saw
as a mistaken view that evolution can only occur gradually
and, indeed, can only occur at a constant, continuous rate —
a concept they labelled Phyletic Gradualism. They argued
instead that most evolution occurs during geologically short-
term speciation events, with species exhibiting approximate
stasis the vast majority of the time. They claimed that this
punctuated equilibrium view of evolution is more consistent
with the observations made in the fossil record.
Under the Punctuated Equilibrium concept, once a species

becomes static and defined, it takes on a kind of individual-
ity. It has a lifespan; it has the opportunity to reproduce
through speciation; and, in the end, it will disappear. This
supports a metaphorical similarity with individual repro-
duction and, therefore also, with individual fitness (Gould,
2002). But the similarity is more than metaphorical with
group selection, for this just is a kind of group selection.
Species become units of selection, competing with other
species within the biosphere for the opportunity to create
new species and to avoid early extinction; this creates a
species selection mechanism which falls under the group
selection model described above, and which caters for the
evolution of altruistic traits.

Simulation Design
To test hypotheses about aging, we designed a multi-agent
ALife simulation environment. Co-evolving populations of
host and parasite agents interact within overlapping neigh-
bourhoods on a board, sharing food sources and potentially

1Multilevel selection theory asserts the compatibility of multi-
ple levels of selection, rather than their interdependency (Wilson
and Sober, 1994).
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reproducing sexually. Table 1 provides an overview of the
simulation parameters, which are discussed in depth be-
low. When designing simulations, it is necessary to consider
the trade-off between the complexity of the model and its
completeness. Although more complex models are harder
to analyse, simpler models could neglect important mech-
anisms that allow validation against real systems (Grimm
et al., 2005). In our design process, we tried to find a satis-
factory trade-off for our simulation.

Table 1: Simulation Parameters
Parameter Comment
Epoch Length 100 cycles
Run Length 100 epochs
Board Size 120 × 120 cells
Neighbourhood Size 3 × 3 cells
New Food N(1, 1

10
) units

Initial Health 20 units
Parental Health Investment 10 units/parent
Health Energy Overhead 1 unit/cycle
Max Health 80 units
Mature Health 60 units
Accident Rate 0.1
Parasite Generate Rate 0.0001
Signature Length 100 bits
Signature Mutator 0.005
Initial Expiry Gene 20
Expiry Mutator N(Expiry, Expiry

50
)

Initial Airborne Gene 0.05
Airborne Mutator N(Airborne, 0.001)
Airborne Co-ordinate Jump N(0,10)

World
Time: Simulation runs are divided into a number of
epochs for statistics collection. During each epoch, the sim-
ulation world and agents are updated over a number of cy-
cles, with statistical information collected and saved to file
at the end of the epoch. The methods of agent and world
updating are discussed in depth below.

Board: The simulation board consists of a square grid
of cells, wrapped so that the edges meet, forming a torus
shaped world. Each cell contains an occupant population,
unlimited in size, and a food store. Each cycle the food
store is replenished with new food, as determined by a nor-
mal distribution, and energy is recycled from the previous
cycle, i.e., uneaten food and recycled agent energy (dis-
cussed later). The cell contents interact with the nine cells
in the Moore neighbourhood— recycled food is distributed,

evenly, to neighboring cells; and agents feed, mate and mi-
grate freely within their neighbourhood.

Agents
Host Agent: The host agents are the focus of the simula-
tion. Each host agent occupies the cell into which they were
born. Each cycle all host agents have an opportunity, in a
randomly selected order, to eat and reproduce, after which
they are tested for death conditions. Figure 1 shows the al-
gorithm used for updating hosts, discussed in detail below.
The simulation maintains for each host agent its age, health,
and chromosome. Age is initialised at zero and incremented
each cycle. The health is incremented whenever the host
agent successfully eats and is decremented each cycle by an
energy overhead and also by a parental investment whenever
the host agent reproduces. The chromosome is inherited at
birth and, along with the states of the other variables and
environment, determines agent behaviour.
Each cycle the host agent eats, unless its health is below

zero or greater than a maximum value. A cell is selected,
randomly, from the cells neighboring the agent’s occupancy
cell, and all the contents of that cell’s food store are trans-
ferred to the host’s health.
Host agents are genderless, but reproduce predominantly

sexually. After the agent has eaten, it is tested against a
health threshold; if the agent has sufficient health, it at-
tempts to reproduce. In addition to avoiding suicidal mating,
this forces agents to mature before reproducing, since new
agents will lack sufficient health. When reproducing, the
agent first checks its neighbourhood for any mate requests
by compatible agents (compatibility is discussed later). If
one is found, the agents reproduce sexually and two off-
spring are created. If the agent fails to find a mate, but its
health exceeds its maximum health threshold, it will repro-
duce asexually. The initial health of the offspring is the sum
of parent health donations.
There are three causes of death. The host agent dies if:

1. its health falls below zero;

2. its age exceeds a genetically determined expiry age (dis-
cussed later); or

3. it dies of external, accidental causes, as determined by an
accident probability each cycle.

These first two causes of death are necessary to have an
ecologically plausible test environment for examining theo-
ries of the evolution of aging. The implementation of acci-
dental death is not a strict requirement of the simulation —
however, it makes the simulation more realistic, by weaken-
ing selection pressures in favour of faster aging in a way we
know operates in real populations. Having a closed ecosys-
tem requires us to remove dead agents from the board and
recycle any remaining energy held as health through the
growth of new plant food.
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decrement health
increment age
if parasite to be generated then
generate and save parasite

if health< 0 OR age > expiry age OR accident then
remove agent
recycle health energy

else
if health< max health then
attempt eat action

if health> mature health then
if mate available then
reproduce sexually

else if health > max health then
reproduce asexually

save agent

Figure 1: Host Update Algorithm

Host Chromosome: The host agent chromosome con-
tains:

• an expiry age gene;

• a mate compatibility bit string signature; and

• a vulnerability bit string signature.

The expiry age gene is used at conception to determine
an expiry age for the agent, by sampling a normal distribu-
tion with variance proportional to its magnitude. It is in-
herited from a randomly selected parent with a chance of
mutation, according to a normal distribution. As this gene
has no side-effects, it is expected that fast aging would al-
ways be selected against unless the scenario provides aging
its own selective value.
The mate compatibility signature is used to determine

whether two agents are capable of mating. Compatibil-
ity is determined by testing whether the Hamming distance
between the strings is greater than a fixed mating vari-
ance threshold (see Figure 2). The signature is inherited
(via crossover) with a chance of mutation flipping each bit
copied. This mechanism allows for the diversification of the
mate signatures and thus the emergence of sexually isolated
subpopulations, i.e., new species.
The vulnerability signature is used as an interface for par-

asite interaction. It is inherited and mutated in the same
fashion as the mate compatibility signature. Its function is
discussed in detail in the parasite section below.

Parasite Agents: The parasite agents live off the host
agent population. There may be an unlimited number of
parasites living off a single host; however, if the host has
non-positive health, it cannot carry any more parasites, and
will die when next updated. Figure 3 shows the algorithm

Figure 2: Example interaction between two host mate sig-
natures. In this case, if the mate threshold parameter is set
at a value lower than, or equal to, 0.9, the agents may mate,
and thus are of the same species. (Note: all signatures in the
simulation are 100 bits in length, not 20 as in this illustra-
tion.)

used for updating parasites, which we now discuss. Each cy-
cle all parasite agents are transmitted to a new host in their
neighbourhood, if there is one, which is randomly selected
if there is more than one. Occasionally a parasite will be-
come airborne (with a probability determined by a gene in
its chromosome) and is transmitted to a random cell on the
board and a random host within that cell, if there is one.
The co-ordinates of the destination cell are determined by
sampling a normal distribution. If the new location is un-
occupied, the parasite fails to attach with a host and dies.
Becoming airborne provides the parasite population the op-
portunity to infect new populations.
When a transmission is successful, airborne or otherwise,

the parasite agent attempts, twice, to steal health from its
host and use it to clone offspring (one for each successful
health steal), which will act during the next cycle. Infection
and reproduction (i.e., virility) are based on an interaction
between the parasite and host chromosomes, discussed be-
low. After the parasite has attempted reproduction, it dies.
To ensure that the parasite population is never completely
eradicated, there is a small probability a new parasite will be
generated for every host agent updated.

transmit parasite to new host
if successful infection then
for all reproduction attempts do
if host health > 0 AND successful virility test then
decrement health of host
clone and save offspring

Figure 3: Parasite Update Algorithm

Parasite Chromosome: The parasite chromosome has
three components:

• an infection bit string signature;

• a virility bit string signature; and

• an airborne probability gene.
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The success of infection and parasite reproduction is de-
termined via the interaction of the parasite’s infection and
virility signatures and the host agent’s vulnerability signa-
ture. The probability of a successful infection is determined
by the following function of the Hamming distance between
the parasite’s infection signature and the host’s vulnerability
signature:

P (infect) =

√

Hamming Dist(infect, vulner)

Signature Length
(1)

Likewise, the probability of successful reproduction is de-
termined by inserting the Hamming distance between the
parasite virility signature and the host vulnerability signa-
ture in the same function (see Figure 4). Both signatures
are inherited from the parent parasite with a probability of
mutation flipping each bit value.

Figure 4: Example interaction between the host vulnerabil-
ity signature and the parasite infection and virility signa-
tures. (Note: all signatures in the simulation are 100 bits
in length, not 20 as in this example.)

Experiments
Evolution of Aging
In Woodberry et al. (2007) we demonstrated that our hy-
pothesis of aging for the sake of diversity can be correct in
a classical group structured simulation; here we extend that
work, demonstrating its possibility also in a species selection
scenario. In order to explore the effects of species groups on
the evolved aging rate, simulations were run with a variety
of mate variance thresholds (see Figures 5(a) & 5(b)) — a
low threshold will allow host agents with greatly differing
signatures to mate, reducing the number of species, whereas
greater thresholds are more restrictive and thus produce a
greater frequency of speciation. The resultant evolved ge-
netic expiry ages and number of species for a range of mate
variance thresholds are summarised in Figures 6(a) & 6(b).
From Figure 6(a) we can see that, as expected, the number

of species present in the simulation increases as the limiting
mate variance threshold increases. From Figure 6(b) we can
see that as the mate variance threshold increases, and thus
the number of species and the strength of inter-species com-
petition increase, the expiry age gene evolves for shorter life
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Figure 5: Figures tracking the evolution of (a) genetic ex-
piry age and (b) number of species, for select cases of mate
variance. Each of these plots represents a single simulation
run. Resulting genetic expiry age and number of species are
summarised in Figures 6(a) & 6(b).

spans. It is noteworthy that even when there is only one
species, and thus no inter-species competition, the expiry
age gene evolves to an equilibrium; this must be based sim-
ply on a background kin selection pressure, since there is no
group or species structure. The species selection pressure
acting on top of kin selection drives the aging rates higher
— i.e., it drives lifespans downwards.
We conducted additional experiments to analyse the ef-

fect of varying the parasite virility (see Figure 7). We would
expect virility to evolve via kin and group selection mecha-
nisms in real parasite populations, however for simplicitywe
chose a parametric implementation of virility, enabling these
experiments. These results show that when the parasites are
over-virulent, the host population is quickly driven to extinc-
tion and consequently the number of species drops to zero.
When the parasites are under-virulent, they fail to maintain
a foothold in the host population. In consequence of this,
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Figure 6: Resulting (a) number of species and (b) evolved
expiry age, after simulation runs completed, with varied
mate variance.

there are fewer dead-zones (where the parasites have killed
off the host population), and the host population, which con-
sumes the same amount of food regardless, spreads across
the board, becoming less dense, which results in a greater
rate of speciation.

Conclusion
The evolution of aging remains a puzzling phenomenon. At-
tempts to explain varying aging rates via individual selection
have led many biologists to propose that it is non-adaptative
— a side effect of some other beneficial trait — however,
experimental evidence points to it being an adaptation. We
argue that a primary benefit of aging is the generation of ge-
netic diversity, which is of particular value in co-evolution
scenarios. The evolution of altruistic traits such as adaptive
aging requires an explanation of a selection mechanism that
goes beyond the individual, such as kin and group selection.
Punctuated equilibrium theory strongly suggests that species
can support group selection. We have demonstrated with our
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Figure 7: Experiments conducted varying the virulence of
the parasites, i.e., changing the exponential in Equation 1, to
0.4 (under-virulent) and 0.6 (over-virulent).

simulation that species-level selection of an altruistic trait, in
particular faster aging rates, can indeed occur.
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Abstract

The alternative phenotype hypothesis contends that multiple
phenotypes exist in a single genotype and are expressed by
environmental or genetic cues. It further states that these mul-
tiple phenotypes will be maintained and improved in a pop-
ulation where the environment is unstable, in spite of the in-
creased cost of this plasticity. In this work we propose a sim-
ple computational model to investigate the conditions under
which alternative phenotypes become beneficial, and persist
over evolutionary timescales. We find that the environment
must vary to realise this hypothesis, and that these adaptations
not only provide a fitness benefit in highly unstable environ-
ments but also continue to arise despite increasing stability
and a corresponding gradual decline in fitness.

Introduction
The Alternative Phenotypes Hypothesis (APH), put forward
by West-Eberhard (1986, 1989, 2003) puts across the view
that phenotypic plasticity in the form of condition-sensitive
phenotype expression (i.e. alternative phenotypes) is key in a
sequence of evolutionary processes that lead to organic nov-
elty, and in turn speciation and higher macroevolutionary
events. Although the name may suggest that the evolution
of stable alternative phenotypes is most of the operation, the
hypothesis in fact covers several events of evolutionary sig-
nificance.
Key to this hypothesis are alternative phenotypes, which

are defined by West-Eberhard as: ‘different traits expressed
in the same life stage and population, more frequently ex-
pressed than traits considered anomalies or mutations, and
not simultaneously expressed in the same individual’ (2003,
p377). In essence alternative phenotypes are when individ-
uals from a single population can develop into different dis-
crete phenotypes, and when this is environmentally cued it
is also termed polyphenism. A familiar example is the di-
morphism in sexually reproducing species (Lande, 1980).
In brief, the APH suggests that these alternative pheno-

types arise when novel traits become established within a
population. So long as each alternative phenotype is ex-
pressed in an advantageous environment it will be ‘buffered’
from negative selection; this can be thought of as akin to

diversity maintenance techniques employed in evolutionary
computing. Potentially, over time each alternative pheno-
type becomes increasingly distinct, and if modified or lo-
calised conditions only favour one particular phenotype this
could lead to the emergence of new lineages.
West-Eberhard’s hypothesis has many stages and the sup-

porting evidence provided is stronger for some portions than
others. One aspect that is not as well substantiated is the
specific conditions that afford polyphenic populations a se-
lective advantage.
The APH is based on (extensive) surveys of experimental

evidence connected together by verbal arguments. A com-
plex multi-stage theory is sometimes hard to rigorously as-
sess experimentally. Evolutionary simulation models of the
processes involved in this hypothesis can assist in construct-
ing more elaborate thought experiments, validating the con-
sistency between stages of the argument, and help identify
underlying mechanisms (Barandiaran and Moreno, 2006;
Dennett, 1994). In this study we make some early steps to-
wards these goals by modelling one stage of APH; specifi-
cally, the fixation of novel traits as viable alternative pheno-
types.
The study of organism development is a large and ac-

tive area of research in evolutionary biology (Wolpert, 2007;
Hall, 1998), and is frequently the subject of studies in Arti-
ficial Life, e.g. Lindenmayer systems (Hornby and Pollack,
2001), ontogeny (Geard and Wiles, 2005), learning (Nolfi
and Parisi, 1998) and phenotypic plasticity (Mills and Wat-
son, 2006). However, much of this work focuses on aspects
of evolvability arising from developmental representations.
Rather than looking at the robustness of specific develop-
mental trajectories themselves, this study focuses on a dif-
ferent aspect of development: the adaptive consequences of
environmental influences on the development of several pos-
sible alternative phenotypes.
Accordingly, in this paper we propose a computational

model to investigate when the evolution of stable, alternative
phenotypes provides an adaptive advantage as compared to
an evolving population that had no mechanism to support
multiple phenotypes.The model does not address the evolu-
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tion of these mechanisms themselves, but instead assumes
that they are available (at a cost).
As we have already briefly mentioned, we should only

expect to see a benefit to polyphenism if each alternative
phenotype can find advantageous conditions within the pop-
ulation’s environment or niche. To simulate this we vary the
environmental conditions over time (although the incorpo-
ration of a spatial component with a corresponding temper-
ature or chemical gradient would be one alternative). Thus,
we expect to find that in a rapidly varying environment pop-
ulations maintaining multiple alternative phenotypes would
be at an advantage. Conversely, in a static environment we
expect that this type of genotype will be selected against,
due to the constraints and costs of unnecessarily supporting
multiple phenotypes. We investigate both of these scenarios
and find evidence to match our expectations supporting the
alternative phenotypes hypothesis. Furthermore, the inverse
relationship between polyphenism benefit and environmen-
tal stability indicates the potential for a more rigorous treat-
ment of the APH.
In the next section, we provide further background on the

APH. In Section III, we describe the evolutionarymodel that
is used to support our claims. In Section IV, we describe the
experiments performed, and provide results. A discussion
is presented in Section V and finally future avenues for re-
search are outlined.

The Alternative Phenotypes Hypothesis
West-Eberhard proposes a conceptual framework to aid the
understanding of the role of phenotypic plasticity in provid-
ing organic innovation that can ultimately result in specia-
tion. Here we outline the stages that comprise this frame-
work of the alternative phenotypes hypothesis:

1. Prior to alternative phenotypes: the entire popula-
tion/species exhibits a single phenotype

2. A switch mechanism arises in the population providing
the capability for the context-sensitive expression of phe-
notypes

3. Novel alternative phenotypes evolve and stably persist in
the population

4. Each alternative is subject to improvement by natural se-
lection and becomes more specialist to some set of en-
vironmental conditions (the context-sensitive expression
can prevent the alternative phenotypes from competing
with one another)

5. Conditions in some locale may change to favour one al-
ternative over the others; this phenotype will now become
exclusively expressed

6. Character release: the genotype no longer has to support
all of the alternative phenotypes

7. Accelerated speciation from parent population

A switch mechanism is required to determine which
phenotype develops, and this could be allelic (genetic),
condition-sensitive (environmental), or a combination of
these factors. For the purposes of the APH it is not important
which type of switch gives rise to the multiple phenotypes.
After a switch is established each phenotype can be

evolved in semi-independence, but this need not lead to re-
productive isolation. Since each of the phenotypes will only
be selected on when they are expressed, each is buffered
from negative selection provided that their expression is
cued by the environment in which they are advantageous.
West-Eberhard’s ideas on the significance of environmen-

tal influence on evolution are generally well accepted (see,
e.g. Moran, 1992; van Buskirk, 2002; Bourke and Franks,
1991), although light criticism is given with respect to
the sparsity of underlying mechanisms (Schlichting, 2003).
Comprehensive evidence supports several of the stages con-
tained within the alternative phenotypes hypothesis, includ-
ing the existence of alternative phenotypes, phenotype fix-
ation, character release and resulting speciation. However
some aspects of the APH are not so clear, such as the iden-
tity of mechanisms that can provide alternative phenotypes,
and the conditions that afford a selective advantage to popu-
lations that exhibit these mechanisms. The stages that have
the largest evolutionary impact, speciation and macroevolu-
tion, can only proceed if conditions exist that are favourable
for alternative phenotypes to stably exist. Thus, we limit the
scope of this paper to address the investigation of stage 3:
the conditions that favour polyphenic populations.

Examples of Alternative Phenotypes in Nature
There are many examples of species that exhibit alterna-
tive phenotypes, including the different castes of social in-
sects (Wilson, 1971) with widely varying lifespans across
these different castes (Jemielity et al., 2005), reproductive
strategies of males (e.g. Spinney et al., 2006), and seasonal
polyphenisms in aphids (Tauber et al., 1986). We focus on
one single example as it provides an excellent illustration
of several stages of the alternative phenotypes hypothesis:
the buttercup Rannunculus flammula as studied by Cook and
Johnson (1968). These plants can develop either lanceo-
late or linear leaves, when terrestrial or immersed in water,
respectively. If plant populations are found in either per-
manently aquatic or permanently terrestrial conditions, they
will only develop one type of leaf, but it is possible for a
single plant to develop leaves of both types in response to
changing conditions (e.g. in a lake with ‘seasonally fluctuat-
ing water levels’). Cook and Johnson also described exper-
iments where plants from monomorphic populations were
put in environments unlike their own. When compared with
heteromorphic populations, the monomorphic survival abil-
ity is reduced. This indicates that where phenotype fixation
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has occurred (stage 5), specialisation to that environment is
in progress towards character release (stage 6) and specia-
tion (stage 7).

A Model of Alternative Phenotypes in a
Varying Environment

In this section we describe the model system used to simu-
late the evolution by natural selection of a population with
the capacity to support environmentally cued alternative
phenotypes.
Maintainingmultiple phenotypes is only beneficial if each

one can become specialised within a different environment.
Accordingly, we provide two environments that switch over
time, according to a fixed rate, as we believe that these en-
vironments are sufficient to motivate the formation of alter-
native phenotypes. Additionally, the environmental niches
should have a significant amount of overlap, since the two
resulting phenotypes are still part of the same species and
will share many ecological requirements. This overlap indi-
cates that an individual that has specialised to one niche will
not be completely unfit in another niche (although it will ob-
viously be outcompeted by a specialist in this second niche).
As such, we find it suitable to extend and modify the

framework used by Kashtan and Alon (2005; 2007). These
authors are interested in understanding the mechanisms that
might explain the modularity observed in biological sys-
tems. Following Lipson et al. (2002) they investigate how
a varying environment could bring about the evolution of
modularity by simulating the evolution of electronic logic
circuits towards a target logical function F . They find that
if the environment varies between modular functions, mod-
ular networks emerge despite an inherent cost: non-modular
solutions that use fewer gates do exist. However, these were
found to be much more vulnerable to the switching between
environments. This is due to the target logic functions that
form each environment: the functions share logical substruc-
tures and so good solutions to one target require only a small
number of changes to satisfy the second target. The smaller,
specialist, non-modular solutions would require significant
re-working to satisfy the second target. As such, the more
expensive modular solutions were favoured in modularly
varying environments. We believe that the phenotypic dis-
tance between these two modular solutions can be reduced,
by the APH, such that it can be reliably traversed within a
single generation.
Adapting this work we define a target function F that

switches between two states F1 and F2, defined as follows:

F1 = AND (XOR (I1, I2) , XOR (I3, I4)) (1)

F2 = OR (XOR (I1, I2) , XOR (I3, I4)) (2)

with I1 to I4 representing Boolean inputs. Note that for 50%
of the input patterns these two functions return the same
value.

This could be thought of as, for example, a model of
seasonal variation in which both photoperiod and temper-
ature influence the development of the Pieridae family of
butterflies (Shapiro, 1978). Alternatively, it could corre-
spond to the environmental factors of diet, temperature and
pheromones which determine the caste of social ants and
other insects (Wheeler, 1986). Clearly, the specified target
functions represent a substantial simplification of these ex-
amples. As the switch between these two functions is peri-
odic we are abstracting away from the complex instability
found in biological systems. However, since our representa-
tion for individuals has no capacity to learn this periodicity
we feel that it is suitable for our purposes.
Given this environmental set-up, a population of individ-

uals of size p, evolves using a generational genetic algo-
rithm (Mitchell, 1996), towards a solution for each function
in turn. Each individual G is represented by two sets of in-
tegers A andW . Formally these are constrained as follows:

A = {x ∈ {0, 1, 2}} (3)

W = {(y, z)|y, z ∈ Z;−j ≤ y, z ≤ l} (4)

Each gene, gi drawn from an individual consists of two
linked parts xi and (y, z)i. Each value x represents the re-
sponse of an individual gene to the environment. If x = 0 it
will be expressed in either environment, if x = 1 it will be
expressed in response to F1, and correspondingly if x = 2
it will be expressed in response to F2. When expressed each
gene forms a NAND logic gate with index i, with two inputs
connected to the gates denoted by y and z. The range of y
and z is limited by the number of genes in the genome, l, and
the number of inputs j. Accordingly, if y or z < 0 it will
denote a connection to a corresponding input. Experiments
in this paper use j = 4. Finally, if y or z = 0 it will denote
a connection to the output of the output gate.
The inclusion of a set of environmental switches, A, and

a variable length genome, l, represents a significant but nec-
essary departure from Kashtan and Alon (2005). In limiting
our changes to the introduction of alternative phenotypes we
hope to couple the clear benefits of Kashtan and Alon’s work
to our own investigation of the APH.
To assess the quality of a given individual we determine

its accuracy at solving a particular target logic function, F1

or F2. This is performed by applying all 24 input patterns,
from I1 to I4, to the logic circuit defined by the expressed
phenotype of an individual. The resulting output is then
recorded and the proportion that matches the target function
forms the initial fitness of the individual. To limit genetic
growth and impose a penalty on the maintenance of alterna-
tive phenotypes this initial fitness value, finit, is modified
accordingly:

ffinal = finit × 0.99(l−12) (5)
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Having assigned a final fitness value to all members of
the population, the next generation is constructed. It is com-
posed of three parts: the fittest s individuals, S+, are copied
directly without modification; the set of the least fit s in-
dividuals, S−, is replaced by a copy of S+; the remaining
(p− 2s) individuals inherit their genes from a randomly se-
lected member of S+, subject to mutation at a rate ofm. No
crossover mechanism is used. Three events are possible if a
mutation occurs:

1. Gate change — 50% of all mutations. A random gene,
gi is selected, and one of its inputs, yi or zi, is randomly
changed with uniform probability within the range −j ≤
y, z ≤ lG.

2. Length change — 30% of all mutations. With equal
probability, a new random gate is added to the individuals
genotype (lG + 1) or a random gate is removed (lG − 1).

3. Environment sensitivity change — 20% of all muta-
tions. A random gene, gi is selected, and its environmen-
tal switch, xi, is changed with equal probability according
to x ∈ {0, 1, 2}.

When initialised a population of size p is created, each in-
dividual within this population has a genome of length linit

and for all environmental switches x = 0. The simulation
is then run for a fixed number of time steps t with the en-
vironment switching between the two logical functions F1

and F2 at a fixed rate r. In the following simulations each
configuration is run 30 times, from which a number of aver-
ages are taken. Specifically, we record and plot the mean and
maximum final fitness values, ffinal, at each time step and
the mean number of environment specific switches, x = 1
or x = 2, within each genome. If there is no selection pres-
sure we can calculate the frequency with which environment
specific switches will arise:

P (p − 2s) × m × P (x ∈ 1, 2) × 0.2 (6)

With 0.2 representing the fixed probability of and environ-
ment sensitivity change. Using the specified experimental
parameters we would expect these switches to arise with a
5.2% frequency. We will now detail the specific parameter
settings for our experimental work.

Simulated Experiments
Here we provide information regarding the experiments per-
formed using the model described above, and detail their
results.
The parameter settings that are common to all exper-

iments described in this section are as follows: m=0.5,
p=100, linit=13, s=10, and t=50,000. All experiments were
replicated 30 times.
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Figure 1: A reproduction of Kashtan and Alon’s work with
the addition of alternative phenotypes and a variable length
genome. These modifications inflict a fitness penalty

Experiment 1: Introduction of Capacity for
Alternative Phenotypes
Initially we test how the introduction of alternative pheno-
types modifies Kashtan and Alon’s model, by reproducing
their experiments with the environment switching at r=20.
Figure 1 shows the mean and maximum fitness of the

polyphenic population, averaged across all 30 repeats. We
note the mean fitness of the population moves between val-
ues of 0.55 and 0.75 throughout the experiment. This is
somewhat contrasting to Kashtan and Alon’s system, where
this population can evolve to an ideal solution for each envi-
ronment between each switch. This provides us with some
indication of how disruptive the inclusion of this plasticity
mechanism is.

Experiment 2: Fixed Environment
An expectation stated in section I is that no selective ad-
vantage is conferred on a polyphenic population unless the
environment varies. Thus we consider the case where envi-
ronmental conditions are kept fixed throughout the experi-
ment: r is set to t and the target function is set to F1. Fig-
ure 2 (a) shows the number of environment-sensitive loci in
these static conditions. For comparison, frame (b) shows the
same measure when r=1. We observe that in the static en-
vironment the population does not evolve a significant num-
ber of environment-sensitive genes. The maximum in the
population is between 1 and 4, and the mean occasionally
moves above zero due to drift. Alternative phenotypes are
evidently not a strong feature of the population under static
conditions. This behaviour contrasts with the results from
the rapidly varying environment, where the mean number of
environment-sensitive loci is around 2, and frequently the
entire population has at least one such locus. This experi-
ment was also duplicated with the target function held at F2,
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Figure 2: The effect of a rapidly switching environment compared to a static environment. In a static environment, frame (a),
the population is almost entirely made up of specialists without any environmentally sensitive genes. By comparison, in a
rapidly switching environment (frame (b)) alternative phenotypes are the norm

with qualitatively equivalent results.

Experiment 3: Rapidly Varying Environment
To investigate the potential benefits of maintaining alterna-
tive phenotypes in rapidly varying environments, we com-
pare a population that has this capability with a population
that does not. The environment is set to switch in each gen-
eration (i.e. r=1). In the monophenic population, all genes
in an individual will be expressed regardless of the envi-
ronment state, and mutations are restricted to modifying the
phenotype length or gate assignments.
Only the population with polyphenic capability finds high

fitness genotypes when in this rapidly varying environment.
Figure 3 (a) shows the results from all 30 repeats of this
experiment. We see that the population contains individ-
uals of fitness of approximately 0.9, and the population
mean is approximately 0.8 by the end of the experiments.
This behaviour contrasts with the results shown in Figure
3 (b), which depicts the evolution of a population without
polyphenism. The results indicate a population fluctuates
around a fitness of 0.75 at best, and a significantly larger gap
between the mean and maximum fitness values (the mean
fitness fluctuates between 0.375 and 0.55). Consideration of
F1 and F2 shows that for 50% of the input patterns these
two functions return the same value, partially accounting for
this mean fitness fluctuation.
To verify that environmentally cued loci are responsible,

we consider Figure 2 (b). This illustrates the number of
loci that will only appear in selected environments, for the
polyphenic population in the rapidly varying environment.
The mean number is around 2 and some individuals have
many more (up to 5 in the long term). For the experiments
in a static environment, we saw the results in Figure 2 (a).

Here the population is largely made up of individuals with
no environmentally cued loci.
The results plotted in Figure 3 are for the most disruptive

configuration that we tested, where the switching occurred at
every generation. Experiments with r=2, r=5, and r=10 be-
have qualitatively similarly, although the highest fitness dis-
covered degrades with increasing switching period. When
we slow the environment switching to r=20, the behaviour
moves towards that of the monophenic population. How-
ever, the polyphenic population mean fitness is much closer
to the maximum fitness found than for the monophenic pop-
ulation.

Discussion
The results from experiments performed provide a percep-
tion on some of the conditions that affect the adaptive merit
of maintaining alternative phenotypes. Experiment 1 reveals
the cost of the plasticity that has been incorporated into the
model. Experiment 3 demonstrates a clear advantage to pop-
ulations maintaining alternative phenotypes when in an un-
stable environment, in spite of these additional costs. The
polyphenic population has significantly higher fitness than
the monophenic population in the most rapidly varying en-
vironments. Additionally, the mean and maximum fitness of
the polyphenic population are a lot closer indicating a more
stable region of adaptive space had been reached and the
population had converged. When the environmental switch-
ing rate is reduced, the fitness improvement become less pro-
nounced. However, when the fitness improvement is negli-
gible at r=20, we still see the persistence of environment-
sensitive genes (see Figure 4). There comes a point where
maintaining alternative phenotypes is no longer viable as is
shown in the limit case in experiment 2. This test confirmed
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(b) only a single phenotype per genotype

Figure 3: A population with the capacity to support alternative phenotypes compared against a population that cannot. The
population in frame (a) is far more successful in handling the rapidly varying environment than the population in frame (b)

that polyphenism does not evolve in a fixed environment.
Although we note that some drift is possible in the number
of environment-sensitive genes: when stably in environment
1, an environment switch set to 1 will have the same effect
on the phenotypic expression as that locus being set to 0 (and
equivalently for environment 2). It is also worth considering
the selection pressures on genes set to be expressed in en-
vironment 2 when it is fixed in environment 1. Although
any such genes will not be expressed and thus cannot have
a negative impact on the phenotype, there is nevertheless a
cost to maintaining this gene. There is no pressure to main-
tain such a gene, and so we should expect these genes to be
purged. Figure 2 does not show the values independently,
but we can report that in experiment 2 all environmentally-
cued genes match their respective environments (barring for
a single generation in one anomalous result).
When considering the conditions in experiment 3, the

population initially contains genotypes with low fitness to
either environment. However, selection favours genotypes
that express phenotypic traits that can contribute to high
fitness in both environments, such that the population will
move to a portion of the fitness landscape that overlaps. This
can only be the case when the environments share a signif-
icant portion of their structure — and the target functions
chosen by Kashtan and Alon have exactly this property.
There are sets of genes that co-occur due to the environ-

mental cuing, and these sets are buffered from one another,
forming an interesting parallel to evolutionary computing.
A problem often faced in evolutionary algorithms, known
as premature convergence, is when population diversity is
lost rapidly. This can lead to the population converging on
low fitness optima, and attempts to alleviate this are known
as diversity maintenance (see Singh and Deb, 2006). These
typically restrict the competition between individuals such

that portions of the population can focus on different parts
of the fitness landscape. The condition-sensitive portions
of a genome could potentially inspire a new diversity main-
tenance technique. Because one set of genes will only be
expressed when in an environment that is advantageous for
that particular phenotype, direct competition between alter-
natives is avoided.
A study into evolvability by Earl and Deem (2004) uses a

‘DNA swap’ mechanism that makes large, but non-random
genetic changes in addition to small-scale changes by mu-
tation. The DNA swap involves the substitution of genetic
material for a particular genetic subdomain from a pool of
low-energy alternatives for that subdomain. This can be con-
sidered as a form of diversity maintenance: the pools con-
tain many different options to be swapped in and the alter-
native selected for the current environment, restricting com-
petition being restricted to the subdomain (contrast this with
the buffering provided by environmentally sensitive gene ex-
pression to a subset of genetic material in a single individ-
ual). They also investigate the suitability of each mechanism
across a range of rates of environmental change, and find
that large-scale variation is favoured increasingly in rapidly
varying environments, further supporting the position that
mutation alone is inadequate to cope with unstable condi-
tions.
The exploration of a buffering-driven diversity mainte-

nance mechanism for evolutionary computing is outside the
scope of the current body of work, but considering condi-
tion sensitive switching in this light may help us to better
understand the types of environment that it may prove ad-
vantageous within.
In our model all genes have the potential to be conditional

on environmental cues, and this in principle allows several
different configurations:
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Figure 4: A population with a switching rate of 20 gains
no fitness benefit from alternative phenotypes, see Figure 1.
However, switching alone is sufficient for the persistence of
alternative phenotypes within the population

• specialists: ideally adapted to a single environment; no
condition-sensitive genes present

• modular generalists: suited to relatively slowly switching
environment, where there is a region in the genetic space
that has solutions for each environment nearby

• generalists with alternative phenotypes: suited to a faster-
switching environment, where fit configurations for each
niche overlap somewhat; consequently many genes are
expressed in all environments and a small proportion of
genes are environmentally sensitive

• polyphenic specialists: best suited to an environment that
varies rapidly, but there is significant distance between fit
phenotypes for each set of conditions; consequently an
almost independent phenotype is supported for each envi-
ronment

However we only encounter the first and third of these pos-
sibilities with the experimental conditions performed so far.
One can imagine a line of inquiry that explores the condi-
tions sufficient to give rise to the currently unseen geno-
type structures, and the potential trajectories between each
of these types.
There is a heavy penalty associated with the number of

genes required to code for two fit specialists, so it is unsur-
prising that they don’t appear in the experiments performed
to date. However a pair of target functions that varied in
a non-modular way (i.e. with very little overlap) may give
rise to such genotypes. This would still require two sets of
genes to be co-adapted, and the isolation provided by the
environment-sensitivity could maintain the correct diversity
to lead to such adaptation.

Since selection in our model preserves the fittest individ-
uals from each generation, one might expect the highest fit-
ness to increase, or at least stay constant. We do observe fit-
ness decreases in Figure 1, in contradiction with this expec-
tation. This is because the high fitness solutions that are pre-
served from one environment to the next are not necessarily
of high fitness in this new environment. They consequently
may not be preserved long enough to return to high fitness
in the second environment. However as shown in Figure 3,
the inclusion of environmentally-switched gene expression
goes a long way towards mitigating this problem.
We will now outline a number of aspects for future re-

search. Initially, we would like to understand the disrup-
tion inflicted upon polyphenic populations, and the factors
to which it can be attributed. We also wish to perform sim-
ilar experiments to those reported here, but with different
sets of target functions. As discussed above, this includes
considering environments that do not have modular overlap
with the aim of evolving more independence in the alterna-
tive phenotypes of one individual.
There are also avenues that involve extensions to the cur-

rent framework. This includes connecting together addi-
tional stages of the APH. For example, investigating how
long character release might take would be possible by
changing the schedule of environmental conditions experi-
enced by a population with established alternative pheno-
types. Additionally, it would be valuable to test the hypoth-
esis that an environmentally cued alternative phenotype can
lie dormant for many generations without being expressed.
The identification of candidate switch mechanisms would
require significant extension to the model. We could in-
vestigate what conditions might enable useful cuing mecha-
nisms to arise, using the framework that we have established
to test the plausibility of a particular switch mechanism.
Finally, we could employ a slightly different experimental
set up to study direct competition between polyphenic and
monophenic populations instead of comparing the popula-
tions in isolation.
As far as we know, we have presented the first individual-

based simulation model of a portion of the alternative phe-
notypes hypothesis, illustrating some capabilities and limita-
tions of polyphenism under different abstract environmental
conditions. The results that we have obtained so far, whilst
modest, provide support for the later stages of the APH that
require the stable existence of alternative phenotypes to pro-
ceed. We feel that there are many aspects that could be better
understood when using simulation models to enrich thought
experiments (Di Paolo et al., 2000). In developing this initial
model, we have identified abstract environmental conditions
that could account for the previously observed phenomena
within the APH. We believe that the conceptualisation pro-
vided by this approach could ultimately unify the current
experimental evidence into an increasingly rigorous under-
lying framework.
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Abstract

The nature and source of evolutionary trends in complexity
is difficult to assess from the fossil record, and the driven vs.
passive nature of such trends has been debated for decades.
There are also questions about how effectively artificial life
software can evolve increasing levels of complexity. We ex-
tend our previous work demonstrating an evolutionary in-
crease in an information theoretic measure of neural com-
plexity in an artificial life system (Polyworld), and introduce
a new technique for distinguishing driven from passive trends
in complexity. Our experiments show that evolution can and
does select for complexity increases in a driven fashion, in
some circumstances, but under other conditions it can also
select for complexity stability. It is suggested that the evo-
lution of complexity is entirely driven—just not in a single
direction—at the scale of species. This leaves open the ques-
tion of evolutionary trends at larger scales.

Introduction
The existence of an evolutionary trend towards greater com-
plexity is undeniable, whether one measures complexity
by organism size (Cope, 1871), distinct cell types (Bon-
ner, 1988; Valentine et al., 1994), morphology (Thomas and
Reif, 1993; McShea, 1993), or ecological webs of interac-
tion (Knoll and Bambach, 2000). Historically, it has often
been suggested that such growth is the result of an evolution-
ary bias towards forms and functions of greater complexity,
and a great variety of rationales has been offered for why
this should be the case; e.g., (Rensch, 1960a,b;Waddington,
1969; Saunders and Ho, 1976; Kimura, 1983; Katz, 1987;
Bonner, 1988; Arthur, 1994; Huynen, 1996; Newman and
Engelhardt, 1998); see McShea (1991) and Carroll (2001)
for reviews. However, Maynard Smith (1970), Raup et al.
(1973), Gould (1994), and others have questioned whether
that growth has been the outcome of natural selection or sim-
ply, in Maynard Smith’s words, the “obvious and uninterest-
ing explanation” of a sort of random walk away from an im-
mutable barrier of simplicity at the lower extreme—a growth
in variance relative to the necessarily low complexity at the
origin of life.
Bedau et al. (1997) and Rechsteiner and Bedau (1999)

provide some evidence of an increasing and accelerating

“evolutionary activity” in biological systems not yet demon-
strated in artificial life models. However, other attempts
to characterize complexity trends in the fossil record have
produced mixed results at best (McShea, 1996; Heylighen,
2000; Carroll, 2001), leaving us with no clear picture of the
influence of natural selection on complexity. McShea (1994,
1996, 2001, 2005) has, over the years, attempted to clar-
ify (and, where possible, empirically address) the debate, by
identifying distinct classes of complexity and, importantly,
by distinguishing between “driven” trends, in which evolu-
tion actively selects for complexity, and “passive” trends, in
which increases in complexity are due simply to asymmetric
random drift.
Simple computational models of branching species and

clade lineages in simple numerical parameter spaces (arbi-
trary values standing in for complexity, size, or the like)
have been used to investigate this distinction between driven
and passive evolutionary trends (Raup et al., 1973; Raup and
Gould, 1974), however it is not always possible to distin-
guish a passive system from a weakly driven system (Mc-
Shea, 1994). Furthermore, the anagenetic component of
some of these models, while intended, by definition, to ad-
dress within-lineage change, is equivalent to branching lin-
eages that effectively compete with one another for parame-
ter space, by requiring branched, descendant lines to replace
ancestral lines. The typical assumption of equal extinction
rates across all scales may also unintentionally color the re-
sults from these models. It is commonwisdom, for example,
that a driven system necessarily implies an increase in the
minimum value of whatever parameter is being used to dis-
tinguish taxonomic branches (Wagner, 1996;McShea, 2001;
Carroll, 2001), yet an evolutionary system in which fitness at
smaller scales is independent of fitness at larger scales could
possess a drive towards larger scales without eliminating or
even disadvantaging organisms at the lower end of the spec-
trum. Indeed, McShea (1994) acknowledges a dramatically
lower rate of growth in this minimum in a purely cladoge-
netic model compared to a mixed anagenetic and cladoge-
netic model. One of us [LY] is currently investigating the
effects of the uniform extinction rate assumption.
Given the difficulty and ambiguity one encounters when
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attempting to answer questions about the evolution of com-
plexity from paleontological data or simple branching mod-
els, it makes sense to turn to computer models of evolution
to address these questions. Turney (1999, 2000) has used a
simple evolutionary model to suggest that increasing evolv-
ability is central to progress in evolution and predicts an ac-
celerating increase in biological systems that might corre-
late with complexity growth. Adami et al. (2000); Adami
(2002) has defined complexity as the information that an or-
ganism’s genome encodes about its environment and used
Avida to show that asexual agents in a fixed, single niche
always evolve towards greater complexity of this narrowly
defined type.
Modern compute power and artificial life methods allow

us to rewind the “tape of life”, as Gould (1989) put it, and let
history unfold again and again under slightly or dramatically
different influences. Here we use a method for “replaying
the tape” that is substantially beyond the perturbed playback
Gould envisaged, demonstrating a method for carrying out
parallel simulations in which natural selection either does or
does not play a part, yet with all other population and ge-
netical statistics being held constant. This is similar in spirit
to the extreme “behavioral noise” null model used by Be-
dau (1995) and subsequent “neutral shadowmodels” (Bedau
et al., 1998). Being able to effectively turn natural selection
on and off in this fashion allows us to tease apart and dis-
tinguish evolutionarily driven trends from passive trends in
a formal, quantitative fashion.
The trend we investigate is a particular information-

theoretic measure of complexity (Tononi et al., 1994; Lun-
garella et al., 2005), C, for the neural dynamics of artifi-
cial agents in an evolving computational ecology, Polyworld
(Yaeger, 1994). In previous work (Yaeger and Sporns, 2006)
we demonstrated an increasing trend in C in the agents of
Polyworld over evolutionary time scales, and were able to
relate these increases to increasing structural elaboration of
the agents’ neural network architectures and an increase in
the learning rates employed at the Hebbian synapses in these
networks. We did not, however, address the evolutionary
source of these increases, or whether that source should be
construed as driven or passive, in the McShea (1996) sense.
Here we use a novel technique that allows us to make such
a distinction, and discover that, at least at the scale of sin-
gle species and ecological niches, evolution of complexity
is always driven, but, interestingly, not always driven in the
same direction.

Tools and Techniques
Polyworld
Polyworld (Yaeger, 1994) is an evolutionary model of an
ecology populated with haploid agents, each with a suite of
primitive behaviors (move, turn, eat, mate, attack, light, fo-
cus) under continuous control of an Artificial Neural Net-
work (ANN) consisting of summing and squashing neurons

and synapses that adapt via Hebbian learning. The archi-
tecture of the ANN is encoded in the organism’s genome,
expressed as a number of neural groups of excitatory and in-
hibitory neurons, with genetically determined synaptic con-
nection densities, topologies, and learning rates. Input to
the ANN consists of pixels from a rendering of the scene
from each agent’s point of view, like light falling on a retina.
Though agent morphologies are simple and static, agents in-
teract with the world and each other in fairly complex ways,
as they replenish energy by seeking out and consuming food
and by attacking, killing, and eating other agents. They re-
produce by simultaneous expression of a mating behavior by
two collocated agents.

Agent population is normally bounded above and below,
but unlike the simulations discussed in (Yaeger and Sporns,
2006), there is no “smite” function invoked at maximum
population, which the authors felt risked introducing a bias
associated with the simulator’s ad hoc heuristic fitness func-
tion. Nor does a minimum population any longer invoke a
steady-state GA, which also would necessarily depend upon
that fitness function. Instead, as the population grows to-
wards the upper bound, the amount of energy depleted by
all agent behaviors, including neural activity, is increased in
a continuous fashion. Conversely, as the population drops
towards the minimum, energy depletion is decreased, and
agent lifespans may be artificially extended. This does not
guarantee a viable population (one that sustains its numbers
through reproduction), since unsuccessful, unfit agents may
be all that remain by the time a failing population bottoms
out, but it does provide very effective population control
without denying births to agents capable and “desirous” of
doing so, while simultaneously eliminating any possible ef-
fects of the now purely informative heuristic fitness function.

Complexity

For our purposes, complexity, C, is computed using a new
C++ implementation based on the methods of (Lungarella
et al., 2005) for approximating the information-theoretic
measure of complexity originally developed by (Tononi
et al., 1994). Though non-trivial to derive and imple-
ment, the intuition behindC is straightforward: Cooperation
amongst various elements of a network, called integration
and measured by a multivariate extension to mutual infor-
mation, increases network complexity, to a point. But spe-
cialization of network subunits, called segregation and mea-
sured by the difference between maximum and actual inte-
gration at different scales, also increases network complex-
ity. Maximal complexity is achieved in networks that op-
timally trade off the opposing tensions between integration
and segregation—between cooperation and specialization—
and maximize both to the extent possible. The original mea-
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sure of complexity is given by:

CN (X) =
n

∑

k=1

[ 〈H(Xk
j )〉 −

k

n
H(X) ] (1)

where H(X) is the Shannon entropy of the entire system
of n variables, k is the size of a subset of variables, and j
indicates that the ensemble average 〈H(Xk

j )〉 is to be taken
over all n!/(k!(n − k)!) combinations of k variables. The
simplified approximation we use was introduced in (Tononi
et al., 1998) and explored computationally in (Sporns et al.,
2000):

C(X) = H(X) −
∑

xi∈X

H(xi|X − xi) (2)

where H(X) is the entropy of the entire system and the
H(xi|X − xi) terms are the conditional entropy of each of
the variables xi given the entropy of the rest of the system.

Natural Selection vs. Random Drift
While probably impossible to eliminate natural selection
from an evolving biological ecology, artificial ecologies are
more flexible. In order to distinguish between evolutionar-
ily driven and passive trends, we designed a mode for run-
ning our simulator in which natural selection had effectively
been eliminated, yet which could be compared directly with
runs in which natural selection operated normally. This was
accomplished by implementing a new “lockstep” mode of
operation in Polyworld. First a simulation is run in the sys-
tem’s normal, natural-selection mode of operation. During
this natural-selection run, the birth and death of every agent
is recorded (along with the usual statistics, brain states, etc.).
Then the simulator is run in the lockstep mode, starting from
the same initial conditions as the natural-selection run and
using the birth and death data recorded during the natural-
selection run. No “natural” births or deaths are allowed dur-
ing a lockstep run. Instead, every time a birth occurred in
the original natural-selection run, a birth is forced to occur
in the lockstep run, only instead of being produced by the
original parents, the birth is produced by two agents chosen
at random from the population. Similarly, whenever a death
occurred in the natural-selection run, a death is forced to oc-
cur in the lockstep run, only instead of the original agent
dying, a random agent is killed and removed from the popu-
lation.
By so doing, population statistics are forced to be identi-

cal between the paired natural-selection and lockstep runs.
As a result, the genetical statistics—number of crossover
and mutation operations—are forced to be comparable in the
paired runs. Note that since crossover and mutation are ap-
plied to different genomes and since the number of crossover
points and the mutation rate are themselves embedded in
these genomes (Yaeger, 1994), these genetic operations are

only statistically comparable between paired runs, not iden-
tical. Similarly, the “life experiences” of a given agent—
its trajectory through the world and the inputs to its visual
system—are only comparable statistically between paired
runs. Since the agents’ life experiences do impact the values
of neural complexity we compute, this could produce extra-
neous differences between paired runs, but we do not ex-
pect this to have any consistent, measurable influence. The
controlling statistics, such as the entropy and mutual infor-
mation in the visual inputs, are comparable between paired
runs, so we expect computed complexity values to be simi-
larly comparable. While it would be possible to record num-
ber of crossover points, mutation rates, agent trajectories,
and even sensory inputs during the natural-selection runs
and play them back during the lockstep runs, we do not be-
lieve this would alter the relevant statistics or the measured
outcomes in a substantive manner, and therefore have not
made any such attempts. One could also argue that since
complexity is affected by agent behaviors and their resulting
sensory inputs, agents in lockstep runs must be able to con-
trol their actions in order to obtain valid measures of their
neural complexity.
The end result of these machinations is that gene states

are subject to natural selection, based on the evolution-
ary viability—the fitness—of the agents’ behaviors, in the
natural-selection runs. While gene states are subject only
to the same degree of variation, with no evolutionary fitness
consequences or effects, in the lockstep runs. Additionally,
population statistics are identical and sensory input statistics
are comparable between paired runs.

Simulations and Data Acquisition
A set of 10 paired simulations, differing only in initial ran-
dom number seed, were run in natural-selection and lockstep
modes; i.e., 20 simulations in all. Each was run for 30,000
time steps. As Polyworld is continuous rather than genera-
tional, determining the number of generations is non-trivial.
In the past estimates have been known only to fall within
a large range. A low estimate based on average lifespan
(about 300 time steps) would be 100 generations. A high
estimate based on the minimum age of fecundity (25 time
steps) would be 1,200 generations. A newly implemented
lineage tracer produces a more accurate estimate of about
400 generations.
The world is seeded with a uniform population of agents

that have the minimum number of neural groups and nearly
minimal neuron and synapse counts. While predisposed to
some potentially useful behaviors, such as running towards
green (food) and away from red (aggressive agent behaviors;
see (Yaeger, 1994) for details on color use in Polyworld),
these seed organisms are not a viable species. That is, un-
less they evolve they cannot sustain their numbers through
reproduction and will gradually die out.
During simulations, the activation of every neuron in the
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brain of every agent is recorded at every time step. These
brain function recordings are grouped into arbitrary (here,
1,000) time step bins, for all agents that died during the spec-
ified interval. Utility programs are then used to calculate the
complexity,C, of the neural dynamics of every agent’s com-
plete lifespan (hence the requirement for the agent’s death).
We then compute mean complexities for these binned popu-
lations of agents as a function of time. Finally, we compute
means and standard deviations of the population means for
the multiple natural-selection and lockstep simulations as a
function of time to study general evolutionary trends in com-
plexity.
Complexity can be calculated across all neurons, just the

input neurons, or just the “processing” neurons (all neurons
except inputs). All complexities presented here are based on
processing neurons. (In general, there is little difference in
complexity trends between all neurons and processing neu-
rons.) Complexity varies as evolution produces changes in
the parts of the genome that specify the neural architecture.

Results and Discussion
Figure 1 shows complexity versus time for the previously
described series of 10 paired driven (natural-selection) and
passive (lockstep) simulations. The lighter lines depict pop-
ulation means from individual runs. The heavier lines de-
pict means of all runs of a particular type (driven or pas-
sive). Data is presented in this individual-plus-mean fash-
ion, rather than mean-plus-standard-error fashion, to give a
better feel for the nature of the variance between runs, and
to identify some interesting events in a small number of the
runs (discussed later). Plotted beneath the complexity lines
is a single dotted line that measures a paired or dependent
Student’s T-test computed on the same time interval as the
complexity data are computed and plotted. (A dependent
test is used because these are paired runs with common ini-
tial conditions and enforced common population and genetic
statistics.) Where this line is above the horizontal T-critical
(T*) line, this standard measure of statistical significance re-
jects the null hypothesis with p < 0.05; at or below the T-
critical line the null hypothesis cannot be rejected (at least
not as reliably). Given 10 pairs of runs, the number of de-
grees of freedom is 9, and T-critical is 1.833.
The first thing to note is a statistically significant faster

growth rate in complexity in the driven runs than in the pas-
sive runs during approximately the first 4,000 time steps.
Evolution is clearly selecting for an increase in complex-
ity during this early time period. This makes sense intu-
itively since the seed population is known to be non-viable
and must evolve or die out. Increases in complexity during
this period are of a distinct evolutionary advantage, produc-
ing descendant populations that are more capable of thriv-
ing in this particular environment than their ancestors. Dur-
ing this time period, the evolution of complexity is clearly
driven, with a bias towards increasing complexity.

The next thing to note is the early plateauing of com-
plexity in the driven runs, allowing the randomly drifting
complexity of the passive runs to catch and surpass them
by around t=7,000. This is the result of evolution having
found a solution that is “good enough”, and the concomitant
spread of the genes producing this solution throughout the
population. Seven out of the 10 natural selection simulations
remain relatively stable around this modestly complex solu-
tion once it is found. The intuition here is that any change
away from this “good enough” solution is likely to be detri-
mental, hence evolution selects for stability. Note that this
actively suppresses genetic drift and, indeed, a statistically
significant difference between driven and passive runs, with
passive complexity now being the larger of the two, is main-
tained from about t=8,000 to the end of the runs at t=30,000.
There is also a consistent, but less interesting, plateauing

of complexity in the passive runs. This is due solely to the
individual bits of the underlying genome approaching a state
of approximately 50% on, 50% off. Effectively, the ran-
dom walk has maximized variance as much as it can given
the model parameters. Though generally higher than the
driven mean, complexities in the passive/random model are
nowhere near the maximum obtainable with the full range
of gene values (as observed in the complexity-as-fitness-
function experiments discussed below); they just correspond
to the range of complexities representable by the genome
with an even mix of on and off bits. Such larger values of
complexity are potentially meaningful, but do not confer any
evolutionary advantage on agents in these lockstep runs.
Finally, if one looks carefully at driven complexity for the

individual runs, three (of the 10) runsmake secondary transi-
tions upward in complexity between t=20,000 and the end of
the run, coincidentally reaching about the same level of com-
plexity as the passive runs. In this subset of runs, apparently
a new or improved behavior emerges late in the simulation,
and the genes producing this behavior spread throughout the
population fairly rapidly. Despite the simplicity of the world
design used for these experiments, multiple viable, compet-
ing solutions have emerged and it is always possible that
more solutions would emerge given time. Importantly, for
the future, it appears that this complexity measure provides
a useful tool for ascertaining the onset of new, improved
strategies, including speciation events, as well as a quan-
titative tool for assessing the neural changes that produced
the new strategies.
Two of us [LY,OS] independently realized some years ago

that if we were in a position to measure neural complex-
ity in an artificial system, it might make sense to acceler-
ate the evolution of complexity by using it as an explicit
fitness function. Although not elaborated upon here, prelim-
inary experiments to this end have been carried out. With
the same values for the parameters controlling neural archi-
tecture, using complexity as a fitness function pushes mean
complexity up to around 0.9, roughly three times the levels
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Figure 1: Driven and passive complexity vs. time. Light solid lines show population mean complexity for each driven, natural-
selection run. Light dashed lines show population mean complexity for each passive, lockstep run. Heavy lines show means
of all ten runs for corresponding line style. Light dotted line at bottom shows dependent Student’s T-test relative to horizontal
T-critical line (labeled T*) for p > 0.05.

obtained by this series of driven (0.275) and passive (0.33)
runs. However, selecting purely for complexity consistently
produces stereotypic spinning behaviors by the agents, that
would not be of much value under natural selection, and we
suspect are the result of a maximization of entropy and mu-
tual information in the sensory inputs. This differs from the
direct coupling between complexity and behavior found in
(Sporns and Lungarella, 2006), probably due to differences
in the range of possible behaviors and the nature of the sen-
sory inputs in the simulation environments used for these
two studies.
Adami et al. (2000); Adami (2002) has defined a measure

of genomic complexity in terms of how much information
a species’ genome encodes about its environment, based on
the cross-population entropy at each genomic site (here, in-
dividual bits). The measure has acknowledged constraints—
it only applies to a single species in a single, static niche,
thus failing to capture issues related to biodiversity, environ-
mental variability, or broader ecologies. More generally, we
suspect it may be a better measure of genomic consistency
or specialization of a species than of complexity, but there
is no question that the aggregate stability of gene sites in a
species’ population is an importantmeasure of the success of
that species at encoding information about its environment

in its genome. Since our current series of simulations are
deliberately simple and may probably best be thought of as
the evolution of a single (or at least highly related) species in
a single, static niche, we decided to investigate the evolution
of this genomic consistency.
Figure 2 shows the evolution of Genomic Consistency

(GC) over time. Since the world is seeded with a uni-
form population, GC is initially extremely large, as the mea-
sure effectively assumes the current genetic structure is an
evolved response to the environment and perfect uniformity
is maximally consistent. (However, we do not feel this
should be seen as maximally complex, hence our renaming
of Adami’s genomic complexity.) Accordingly, the vertical
extent of the graph has been truncated in order to focus on
the more interesting results. The main observation is the
dramatic difference between driven and passive runs. The
passive runs produce extensive random gene edits, thus min-
imizing GC. The driven runs demonstrate a larger, stabilized
GC across the population over time due to natural selection
for specific traits that increase the evolutionary fitness of the
agents. There is a hint of a modest upward trend in GC after
it bottoms out around t=12,000, suggesting a possible con-
tinued incorporation of information about the environment
in the genome of these agents, but so far no attempt has been
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Figure 2: Genomic consistency vs. time. Light solid lines are for each driven, natural-selection run. Light dashed lines are for
each passive, lockstep run. Heavy lines show means of all ten runs for corresponding line style.

made to establish statistical significance.
Another way to draw some understanding from this se-

ries of driven vs. passive runs is to look at the distribution
of complexity in the populations over time. Figure 3 shows
time-series histograms of complexity throughout the popula-
tion for four sample simulations—two passive, two driven.
The two passive runs show a generalized increase in vari-
ance, due to the diffusive random walk away from the low
complexity of the seed agents. The two driven runs show a
more peaked distribution around the complexity values at-
tained by the viable populations emerging as a result of nat-
ural selection. Figure 3(c) is representative of the majority
of the driven runs, showing a shift towards a modest level of
complexity. Figure 3(d) is representative of the small num-
ber of driven runs in which a secondary transition to a dif-
ferent behavior and higher level of complexity emerged late
in the simulation.

Conclusions
We have demonstrated a technique for directly compar-
ing and assessing neural complexity growth in equivalent
driven and passive systems. Using this technique we have
shown evolutionary selection for increased complexity, in
a “driven” fashion, as well as selection for complexity sta-
bility. Though we have not demonstrated it here, there is
little doubt that a system in which the cost of neural com-

plexity exceeded its value would result in a driven reduction
in complexity, the way dark dwelling organisms in a cave
have been known to give up their eyes. This paints a com-
plex picture of evolutionary selection for increasing, stable,
and decreasing complexity, none of which corresponds to a
purely “passive” mechanism of complexity change. At this
scale, evolution is entirely driven, with changes in complex-
ity always being selected for or against. Scale, however, is
very important to this discussion.
Gould (1996) and Dawkins (1997) have argued strongly

for passive and driven evolutionary trends, respectively.
However, much of the disconnect between them seems to
be precisely an issue of scale. Dawkins is unquestionably
correct about evolution being driven on a short time scale,
for a small set of related species. Yet Gould may be correct,
as well, about evolution being fundamentally passive on a
longer time scale, over the entire tree of biological life. In
one of the earliest works to model evolution computationally
in order to characterize active versus passive trends, Raup
et al. (1973) called attention to the fact that fully determin-
istic, driven trends acting at small scales are in fact likely
to be at the base of larger scale trends, even if those large
scale trends turn out to be passive. A mix of many, poten-
tially opposing trends might very well appear random and
undirected when integrated together. What our current sim-
ulations show is that, indeed, while evolution undoubtedly
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Figure 3: Histograms of complexity over time for individual
runs. (a) and (b) are passive runs. (c) and (d) are driven runs.

drives complexity changes, according to perfectly standard
expectations about the evolutionary fitness of those changes,
it does not drive in just one direction. When complexity in-
crease is of an evolutionary advantage it will be selected for,
just as will complexity decrease. And when a species’ com-
plexity is “good enough”, so that any increase or decrease
is likely to involve a step away from a local fitness maxi-
mum, evolution will mildly select for and stabilize the ex-

isting level of complexity. This goes a long way towards
explaining the observation by Dennett (1996), “The cheap-
est, least intensively designed system will be ‘discovered’
first by Mother Nature, and myopically selected.”
Looking forward, though we have yet to address the issue

experimentally, we expect any increase in agent interactions
with the world, any increase in complexity of the environ-
ment, and any increase in the available range of niches—
Knoll and Bambach (2000)’s expanding ecospace—to pro-
duce an increase in evolved neural complexity of agents in
the world. All niches are not created equal, and we sus-
pect that evolutionary occupation of more and richer parts
of ecospace will, as Knoll suggests, result in a fundamen-
tally driven growth in complexity both at the largest scales
of biology and in our artificial worlds. And in Polyworld we
expectC, our measure of neural complexity, to quantify and
document that trend.
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Abstract

Embodiment theory suggests that recurrent processes of sen-
sorimotor activity give rise to cognitive structures. In the
case of robots, internal sensorimotor activity generated with
physics simulators can be exploited to expand the histori-
cal domain of action, however pre-engineered simulations are
limited by the reality gap problem. Alternatively simulation
might be inferred and self-constructed out of data collected
during robot functioning. Fundamental to this line of research
is defining a distance function to asses the potential of candi-
date robot simulations to reproduce real world activity. In
this paper we study the characteristics of a distance function
based on behavioral fitness measurements. We show how this
function can be applied for the generation of behaviors us-
ing an algorithm that co-evolves a robot and its simulation.
The experiments show how the monotonicity of the function
increases with the number of behaviors being tested in real-
ity and with the genotypic diversity of corresponding robot
controllers. Moreover it allows for the accurate identification
of behavior-relevant parameters contained in the simulation.
The metric shows an advantage, when compared to other met-
rics, for assessing the quality of simulators over long time
scales of robot behavioral evaluation.

Introduction
The long-term motivation of this investigation is exploring
how real robots can generate more interesting (and practical)
behaviors during their ontogeny. The experience (Hornby
et al., 1999) shows that a large amount of time is required
for obtaining such behaviors as the result of interaction with
a real environment. The use of simulation has been explored
in order to expand the historical domain of action that a robot
undergoes (Ziemke, 2003; Jakobi, 1998). However, accor-
ding to the reality gap problem, controllers generated in si-
mulation fail to perform similarly once transferred to a real
environment. Alternatively we consider that robot simula-
tion must be grounded and self-constructed rather than as a
result of a pure engineering design process.
Following this line of thought, we have developed a
dynamic reconfigurable robot simulator (Zagal and Ruiz-
del-Solar, 2004), together with an algorithm (Zagal et al.,
2004; Zagal and Ruiz-del-Solar, 2007) that allows a robot

to continuously construct and validate its simulation by co-
evolving it with its controller. The method have shown the
highest learning performance1 when compared to other ma-
chine learning methods (Genetic Algorithms, Policy Gra-
dient Reinforcement Learning, Evolutionary Hill Climbing
With Line Search, Powell Direction Set) that have been ap-
plied to the task of gait generation with AIBO robots. It
was also successfully applied to the automatic generation of
unconstrained ball kick behaviors with AIBO robots (Zagal
et al., 2004; Zagal and Ruiz-del-Solar, 2007).
Similarly in (Philipona et al., 2004) the question of
whether there is an algorithm linked to an unknown body
that can infer by itself information about the body and the
world it is in was raised. According to experiments with a
simulated head they concluded that sensorimotor laws pos-
sess intrinsic properties related to the structure of the phy-
sical world in which an organism’s body is embedded. In
(Bongard and Lipson, 2004) the Estimation Exploration al-
gorithm is proposed as a way to co-evolve a robot and its
simulator. They later applied this algorithm to real robots
(Bongard et al., 2006). Converging approaches are presented
in (Vaughan and Zuluaga, 2006) where self-simulation is
proposed for robot planning, and (Ziemke et al., 2005)
where internal simulation of robot perception is explored.
Central to this work is defining a distance function to
asses the quality of candidate robot simulations. Different
functions have been applied; the rolling mean metric (Bon-
gard and Lipson, 2004) aims at comparing sensor time se-
ries resulting from a target robot and candidate robot simula-
tions. However, according to their proponents quantitatively
comparing sensor data from two highly coupled, highly non
linear machines,... is very difficult: slight differences be-
tween the two machines rapidly leads to uncorrelated sig-
nals. In (Lungarella et al., 2005) it is proposed that sen-
sorimotor activity can be characterized by looking at their
statistical regularities. From this idea in (Mirza et al., 2007)

1Learning performance defined as LP = IF×d
e , where IF =

fend−f0

fmax
is the normalized fitness (f ) improvement, d is the con-

troller dimensionality and e is the number of evaluations performed
in a real robot.
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the experience metric over a temporal window of sensori-
motor observation (statistical distance) was proposed, giv-
ing some insights on the relation of the horizon of experi-
ence and cycle time of interactions. Such statistically based
metrics have the potential of overcoming the limitations of a
time dependent comparison.
In this paper we explore a distance function based on
the average fitness discrepancies of a set of robot behavi-
ors tested in reality and in candidate robot simulations. The
function has already been shown to be useful at reducing
fitness discrepancies of real versus simulated robots during
co-evolutionary experiments (Zagal et al., 2004). The inten-
tion of this paper is to address some questions that remain to
be clarified:

1. We wonder if a minimization of this function does neces-
sarily imply a better identification of aspects from reality
such as structural robot variables contained in the simula-
tion, or alternatively if it generates bizarre representations
that are good just for reproducing behavior.

2. If the first is true we wonder if the function just allows for
good approximations or whether it might allow a perfect
match of measurable quantities to be achieved.

3. To aid genetic search over a space of candidate simula-
tions the function should be monotonic with respect to
the identification error, thus we wonder about how is this
monotonicity being affected by the number of behaviors.

4. Another question is about how this monotonicity is affec-
ted by the genotypic diversity of these behaviors.

Answering these questions is fundamental towards gene-
rating robots with self-modeling capabilities. Since the task
requires a reality that can be measurable at the hands of the
experimenter we use a simulated reality defined by parame-
ters that are to be uncovered by the methodology under in-
spection.
The remainder of this article is organized as follows: Defi-
nitions are presented in section II. The principle of operation
of the function under analysis is presented in section III. Ex-
perimental results are presented in section IV. Comparisons
with alternative metrics are presented in section V. Conclu-
sions and projection of this work are given in section VI.

Definitions
Simulation: A robot simulation is defined by a vector
s = {s1, . . . , sNs

} in the space S of possible simulations.
The dimensions of this space might be defined by morpho-
logical aspects such as the length, width, shape or weight
of robot components as well as their topological relation. It
might also include aspects such as the friction among dif-
ferent elements, gravitational forces, motor parameters such
as PID servo constants, etc. The experimenter defines the
S boundaries of each parameter si ∈ [mini,maxi] with

i = {1, . . . , Ns}. In the particular case in which reality is
defined as a point sr ∈ S we will refer to a simulation as
any point s "= sr in S.

Reality: Reality is the target operational environment of
the robot. We present experiments in which reality corre-
sponds to a particular realization of the simulation sr ∈ S.
As it will be described, sr is unknown for the robot and it
should be determined by the algorithm by relying on behav-
ioral comparisons.

Controller: A robot controller is defined by the vector
c = {c1, . . . , cNc

} in a spaceC of possible robot controllers.
The space C might include morphological descriptors of the
robot besides controller-related parameters. However, we
have not performed experiments for the evolution of robot
morphologies. The experimenter defines the C boundaries
of each parameter ci ∈ [mini,maxi] with i = {1, . . . , Nc}.

Behavior: It is the set of actions that a robot executes in
response to the environment E. The characterization and
qualification of a robot behavior necessarily depends on the
observer. From a single viewpoint we can model beha-
vior in discrete time tj = j · ∆t as a time series B =
{X0, . . . ,XNb−1} ofNb vector statesXj = {x1, . . . , xNd

},
each describing Nd dynamical parameters, such as position,
rotation and velocity, of bodies composing the robot or in-
teracting with it. If we assume a set of fixed initial condi-
tions, a fixed reference system and fixed evaluation period
Te = Nb · ∆t, we can establish that the robot behavior B is
a function of the robot controller c and the evaluation envi-
ronment E. Thus we have B = B(E, c). In this context E
might be either a simulation defined by a point s in S or the
reality itself. Clearly in the later case ′′E = reality′′ is just
an abstraction2 for the sake of consistency.

Fitness: It is the behavioral evaluation provided by the ex-
perimenter. From a set of M robot controllers we note the
fitness of robot controller ck, with k = {1, . . . ,M} that
elicit behavior B(E, ck) as fEk with E = r for reality and
E = s for simulation. For example, at the end of Te it might
be the distance traveled by the robot, the distance traveled by
a ball that the robot kicks, the amount of consumed energy,
etc.

Exploiting Behavioral Consistency
In this section we discuss the problem of how to construct
a robot sensorimotor simulation from data collected during
robot functioning. If the behavior elicited by robot c in si-
mulation s is similar to the behavior observed in reality we
write

2We intend to approximate relevant aspects of reality, but not to
represent it.
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B(s, c) ≈ B(r, c) (1)

more precisely this means that at any time step j we also
have

Xsj ≈ Xrj ∀j = {0, . . . , Nb − 1} (2)

where Xsj stands for the state vector of B(s, c) at time
step j, and Xrj is the state vector of B(r, c) at time step j.
In other words there should be a match along time of the
robot state in both simulation and reality.
If we somehow measure the degree in which this match is
obtained for each simulation s, we can derive a useful dis-
tance for adapting simulation to match behavior. Unfortu-
nately the stateXrj is generally unobservable3. On the other
hand, by definition of an Evolutionary Robotics problem the
behavioral fitness obtained in simulation fsk and reality frk

are always available. We can thus define in terms of these
measurements the behavioral fitness discrepancy elicited by
robot ck as

δk = |fsk − frk| (3)

If behavioral discrepancies, as expressed in (3), are re-
duced for various behaviors, then it is natural to expect that
simulation approximates reality better in those characteris-
tics that are relevant for the execution of these behaviors. We
note the average behavioral differences∆fitness as:

∆fitness =
1

m

m
∑

k=1

δk =
1

m

m
∑

k=1

|fsk − frk| (4)

Back-to-Reality algorithm
Using this distance we follow the Back-to-Reality (BTR) al-
gorithm steps in order to construct simulations during robot
ontogeny. Detailed descriptions of the algorithm are re-
ported in (Zagal et al., 2004) and (Zagal and Ruiz-del-Solar,
2007). At each iteration i the algorithm co-evolves robot
controllers with robot simulators by executing the following
steps:
Step 1, robot controller search under simulation: Us-
ing the best known simulation si−1 as environment, genetic
search is conducted over the controller solution space C. A
starting population of M controller individuals is obtained
by performing bit changes with probability pm over the so-
lution ci−1 which is given as a seed. For the first iteration
the population can be generated as random or biased by a
known starting solution c0.
The search is steered towards maximizing the fitness

f(B(si−1, ci)). The amount of generations during which
3In control theory a system is observable if, for any possible

sequence of state and control vectors, the current state can be de-
termined in finite time using only the outputs.

genetic search is conducted in this step should be small if
the problem present a high tendency for drift4.
Step 2, selection, transfer and test: A set of (m < M )
controllers are selected in order of descending fitness and
tested in reality. Corresponding fitness values frk, with
k = {1 . . . m} are stored. If it is not possible to findm trans-
ferable individuals from the last generation, they will have to
be taken, in descending order, from the previous generations
obtained in Step 1.
Step 3, simulation search: The best existing simulator so-
lution si−1 is used in order to bias a population of L simula-
tor individuals. In the case of the first iteration this popula-
tion is generated as random or as biased by a known starting
simulator solution s0. A simulation si is obtained by steer-
ing the evolution towards minimizing∆fitness.
The algorithm continues by taking the simulation ob-
tained in step 3 as a new environment for step 1 in the next
iteration. There is a genotypic similarity among the m con-
trollers that triggers a phenotypic similarity among corre-
sponding behaviors. A probability pm per bit controls the
rate of mutation for a population constructed from a given
controller ci.

Results
Experimental settings
A dynamic simulation of an ant-like robot (hexapod) was
implemented using the UCHILSIM simulator (Zagal and
Ruiz-del-Solar, 2004). Figure 1 (a) shows the configura-
tion of the 15 rigid robot bodies. The alitrunk, petiole
and gaster are represented by bodies b0, b1 and b2. Bod-
ies {b3, . . . , b8} correspond to the femur and {b9, . . . , b14}
are the tibia and tarsus of each leg. The joint j0 connect
body b0 and b1, similarly the joint j1 connect body b1 with
b2. The joints {j2, . . . , j7} connect each femur with a corre-
sponding alitrunk having vertical and frontal axis of motion
as depicted on the figure. The joints {j8, . . . , j13} connect
each femur and tibia with a frontal axis of motion. Each
independent axis of motion i (a total of 18) is motorized
and torque is applied according to the output of PID dy-
namic compensators that follow a motion reference signal
ri = θi + aisin(wt + φi), where θi is a pre-defined central
angle of oscillation for each motor i. Equal uniform mass
density is given to all bodies.
The default robot posture (when ri = θi ∀i) is presented

in Figure 1 (b). The behavior evaluation time Te is set to 1.7
seconds. A physics integration step takes ∆t = 5 × 10−4

seconds, therefore the state vector X{s/r}j is computed
Nb = 3400 times along a behavior evaluation. The fre-
quency is selected to be w = 60Hz. The amplitude ai and
motion phase φi are defined by the robot controller vector

4A pathology of co-evolving systems in which the selection
pressure of one population has no influence in the co-evolving pop-
ulation.

Artificial Life XI 2008  735 



(a)

(b)

(c) (d)

(e) (f)

Figure 1: In (a) configuration of the 15 rigid bodies of the robot;
motorized joints are connecting bodies {3, . . . , 8} with body 1
in two orthogonal axis of motion. Bodies {9, . . . , 14} are con-
nected to the previous set constrained to one axis of motion. In
(b) the robot under its default posture. In (c,d) reality defined
such that body 14 length is blmax = 1.6. In (e,f) example of
other realization of the simulator for which body 14 length is
blmin = 0.4. Remaining body lengths are {bl3, . . . , bl8} = 0.64
and {bl9, . . . , bl13} = 1.36 in both cases.

under search, c = {a1,φ1, . . . , a18,φ18} of 36 elements.
These parameters are in the range ai ∈ {amin, amax} and
φi ∈ {φmin,φmax} for each joint. The robot simulator is
defined as a vector s representing the actual lengths of the
ant limbs s = {bl3, . . . , bl14} of 12 elements in the range
bli ∈ {blmin, blmax}.
We have selected the following parameter range: amin =

0.12989, amax = 0.314, φmin = 0, φmax = 3.1416,
blmin = 0.4, blmax = 1.6. It is important to notice that the
selected parametrization might bring about radically differ-
ent behaviors since no symmetry simplifications have been
made for the leg motion pattern and the parameter range is
sufficiently large to produce a variety of different behaviors
(falling upside-down, walking in circles, backwards, side-
ways, forward, jumping, etc).

Fitness discrepancy and morphology
As result of applying BTR step 1 using a starting simulator
s0 and and robot controller c0 we obtained a population of
m = 15 robot controllers. Corresponding fitness was mea-
sured in reality according to BTR step 2, stored and ranked.
Figure 2 (a) shows corresponding evolution of controller fit-
ness. The best transferable controller c1 achieved 11m/s in
simulation.
Using this population of controllers we scanned∆fitness

as function of morphological variations (of simulated versus
real robot). In this case simulation is defined by a vector s
that differs only in one parameter with respect to reality sr,
and then we evaluate ∆fitness while varying this parameter
along its whole range. As a first test, let us define reality sr

in S such that the length of body 14 takes the value bl14 =
blmax = 1.6 while the remaining body lengths are set to
{bl3, . . . , bl8} = 0.64 and {bl9, . . . , bl13} = 1.36 as shown
in Figure 1 (c,d). In order to illustrate the range of search a
point s0 different from reality is shown in Figure 1 (e,f) such
that bl14 = blmin = 0.4.
Figure 2 (b) shows results of scanning ∆fitness along
the complete parameter range of bl14. The partial com-
ponents δk = |frk − fsk| used for computing ∆fitness

are presented for all behaviors k = {1, . . . , 15} as func-
tions of bl14. Figure 2 (c) presents results from a sec-
ond test in which the length of body 5, bl5, is chosen as
the varying parameter. In this case reality is such that the
length of this body is bl5 = 0.88, while the remaining body
lengths are {bl3, . . . , bl4} = 0.64, {bl6, . . . , bl8} = 0.64
and {bl9, . . . , bl14} = 1.36. Similarly as beforem = 15 in-
dividuals are selected from a population of robot controllers.
In order to understand the influence of m on the mono-
tonicity of ∆fitness we generated M = 45 controllers by
modifying c1 genotype bits with a probability pm = 0.02
per bit. Figure 3 (a) shows scans of δk computed separately
around body bl5 = 0.88, and in (b) scans of ∆fitness com-
puted as a function of different amountsm of behaviors. The
same figure shows in two subplots corresponding fitness val-
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(b)

(c)

Figure 2: In (a) evolution of controller fitness. In (b,c): ∆fitness

together with itsm = 15 behavioral components δk = |frk − fsk|
resulting from scanning body 14 (b) and body 5 (c) lengths along
the full parameter stroke bl14,5 = [0.4, . . . , 1.6]. It is particu-
larly interesting to observe the decreasing monotonic behavior of
∆fitness when approximating the real value of 1.6 (a) and 0.88 (b).
Further observations are described in the main text.

ues resulting from each one of the 45 behaviors when mea-
sured in reality (left) and for the starting simulation (right).
Figure 3 (c) shows 16 ∆fitness curves computed for a fixed
number of behaviors (15) but increasing the diversity para-
meter pm with the darkness of curves.
Finally, following BTR step 3,∆fitness is used to identify
a hidden simulation point defined by bl5 = 0.54, bl6 = 0.74,
bl3 = 0.54, bl8 = 0.74. Figure 4 (a) shows the minimization
of∆fitness along 100 generations. In (b) the resulting para-
metric convergence is shown. We have made the following
observations from these experiments:

1. A first observation is that when simulation equals reality,
this is when the varying parameters match corresponding
real values (bl14 = blmax = 1.6 in the first test and bl5 =
0.88 in the second test) with the remaining parameters left
equal, we verify for the k = {1, . . . ,m} partial behavioral
discrepancies that δk = 0 ∀k. This is an experimental
support for the following theorem:

Theorem 1 s = sr ⇒ δk = 0, ∀k /k = {1, . . . ,m}.

This theorem is trivial since we have assumed a set of
conditions in order to guarantee that if s = sr we can re-
produce behaviors and thus obtain the same fitness values.

2. Similarly we verify that when simulation equals reality
∆fitness = 0. This result is an experimental support of
the following theorem:

Theorem 2 s = sr ⇒ ∆fitness = 0.

This theorem is also trivial (but useful as well), from pre-
vious theorem and equation (4) we have

∆fitness =
1

m

m
∑

k=1

δk =
1

m

m
∑

k=1

0 = 0 (5)

3. We also observe that ∆fitness ≥ 0 ∀s / s "= sr and that
∆fitness = 0 ⇔ s = sr for the observed range of s.
This suggests the following two hypotheses:

Hypothesis 1 ∆fitness = 0 ⇒ a subset of parameters in
S that are relevant for the execution of m behaviors has
been correctly identified by s from sr.

Hypothesis 2 ∆fitness = 0 ⇒ s = sr if and only if S
contains only parameters which are relevant for the exe-
cution ofm behaviors, withm → ∞.

4. Even though we observe that ∆fitness = 0 ⇔ s = sr,
the partial behavioral discrepancies δk might become zero
at points such that s "= sr. In fact there is a likelihood that
the fitness of a particular behavior is the same in reality
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(b)

(c)
Figure 3: In (a) 45 δk curves computed for variations of bl5 around
s = sr . In (b) 45 ∆fitness curves computed for different number
of behaviors. Darkness increases with the number of behaviors, the
subplots shows fitness values for each one of the 45 controllers in
reality (left) and the starting simulation (right). In (c) 16 ∆fitness

curves computed for a fixed number of behaviors (15) but increas-
ing the parameter pm which is depicted in the sub-plot. Curve
darkness increases with Pm.

and simulation even for s "= sr, but the key point is that
it is extremely unlikely that the coincidence happens at
the same point s with another behavior. This is a great
illustration of the reason several behavioral comparisons
are averaged in order to achieve useful measurement.

5. It is possible to recognize a plateau on∆fitness for values
bl14 ≤ 1.1 in Figure 2 (b). This can be clearly understood
when looking at Figure 1 (c,d), what happens is that for
such values the corresponding leg does not actually touch
the ground and therefore, as can be observed, it does not
have an impact in behavior until it reaches values above
1.1. A similar observation can be made in Figure 2 (c),
when bl5 ≥ 1.3 the whole extremity is lifted away from
the ground and therefore the parameter changes beyond
that value are not affecting behavior.

6. We can observe as well that ∆fitness monotonically in-
creases with the identification error, i.e. when s moves
away from the real value sr. The Figure 2 (a,b) shows
a strong increasing monotonic behavior of ∆fitness with
the superposition of small fluctuations. On the other hand,
the characteristic of a single behavioral discrepancy δk is
not monotonic with the identification error. From Figure 3
(b) we observe how the smoothness of∆fitness increases
with m. From these observations we make the following
hypothesis

Hypothesis 3 The smoothness of ∆fitness as the func-
tion of a parameter of S increases withm over the range
of behavioral influence of the parameter.

7. We observe from Figure 3 (c) an increase of the smooth-
ness and linearity of ∆fitness when increasing the diver-
sity factor pm. Thus we make another hypothesis

Hypothesis 4 The smoothness of ∆fitness as the func-
tion of a parameter of S increases with pm over the range
of behavioral influence of the parameter.

Comparisons With Other Metrics
Results from applying sensor based metrics such as the
rolling mean metric (Bongard and Lipson, 2004) and the Eu-
clidean difference of sensor time series of real versus can-
didate simulations over the described range of bl5 are pre-
sented in figure 5. A central parameter of the rolling mean
metric is the header length h which indicates how much of
the starting sensor time series are going to be compared.
Corresponding metric is computed for different values of
this parameter, ranging from 1.25% up to 100% of the to-
tal evaluation time. As can be seen, comparing a very short
starting period (1.25%) leads to an almost perfectly linear
behavior of the metric, however when increasing the length
of sensor data under comparison the monotonicity of the

Artificial Life XI 2008  738 



(a)

(b)

Figure 4: In (a) minimization of ∆fitness carried along 100 gen-
erations. In (b) corresponding convergence to parameters defining
reality is shown. Black lines represent parameters encoded by the
individuals having minimum ∆fitness. Similarly the remaining
individuals are represented by gray lines, where the darkness of
curves is proportional to∆fitness.

curve decreases reaching a non monotonic behavior. The
metric behaves similarly as the Euclidean difference of cor-
responding time series when h is equal to the whole evalua-
tion period; this is depicted with dashed line. Such behavior
can be clearly understood since the decorrelation of sensor
time series increases with time for slight differences of si-
mulation and reality.

Figure 5: Rolling mean and Euclidean metrics. The rolling mean
metric is computed for different values of the starting time header
h, ranging from 1.25% up to 100% of the total evaluation time.
In dashed line the Euclidean metric is presented considering the
whole evaluation time. The figure illustrates how the monotonicity
of the rolling mean metric is affected by the parameter h, behaving
similar to the Euclidean metric when the whole time window is
considered.

Conclusions
We have investigated the behavior of a distance function that
can be used for comparing candidate simulators by measur-
ing the average fitness of small variations of behavior. Be-
fore drawing conclusions we should remember that in the
presented experiments realitywas also simulated, having the
same physical laws as the candidate simulations, but varying
morphological aspects of the robots. In principle a negative
effect of fitness measurement noise should be reduced with
m given the linear construction of ∆fitness. However, per-
forming several behavioral evaluations in a real environment
is expensive.
Having this into account we can give the following an-
swers to the main questions that motivated this work:

1. Indeed a minimization of ∆fitness necessarily implies a
better identification of aspects of reality. However these
aspects must be related to the execution of behaviors con-
sidered under ∆fitness. Thus the methodology under
analysis allows a robot to generate a self model of the
behavior-relevant components of its interaction with the
world. However the methodology would leave undeter-
mined the value of parameters that are not relevant for the
execution of behavior (like the color of the head!).

2. We have observed that the function allows a perfect match
of those parameters that are relevant for the execution of
behaviors to be achieved.

3. The monotonicity of ∆fitness increases with the number
m of behaviors that are tested in reality.
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4. The monotonicity of∆fitness increases with the diversity
of the controllers and it can be controlled with the para-
meter pm.

We conclude that the latter two factors should be care-
fully considered when designing experiments on a fitness
based identification of robot structures since the monotonic-
ity of the distance function is a critical factor towards in-
creasing the dimensionality and complexity of simulation
search spaces.
Out from these experiments we observe that there is an
advantage of using a sensor based time series metric (such
as the rolling mean metric) when comparing small time
portions of data collected during robot functioning. More-
over, since this apporach involves the collection of a higher
amount of data (sensor time series versus fitness), it appears
as the right move to experiments in reality given the reduc-
tion in hardware trials. However, when time increases, the
sensor time series become highly decorrelated if simulation
is dissimilar to reality. A fitness based comparison such as
∆fitness allows us to assess the quality of candidate robot
simulation over extended evaluation periods.
Simulation should allow us to reproduce real robot opera-
tion over all behavior-relevant time scales. We consider that
comparisons cannot be restricted to the first instants of robot
operation but must be extended until the outcome of beha-
vior is obtained. An account of multi time scale behavioral
comparisons is required.
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Topological properties of evolved robot brains
Christoph Adami1, Nicolas Chaumont1, Jeffrey Edlund2 and Arend Hintze1

1Keck Graduate Institute
2California Institute of Technology

adami@kgi.edu

The topological structure of animal brains is likely to be interesting because the computational power of
brains is thought to be almost entirely due to its wiring pattern and hierarchical organization. At the same
time, this pattern is not at all well understood, and the information about the wiring pattern of the nematode
C. elegans, for example, is unique in the literature. A promising direction for the study of network topology in
the absence of detailed biological data is the Artificial Life approach, where functional networks are evolved
that determine the survival of artificial organisms in an artificial chemistry and genetics. Recently, we used
this approach to understand modularity in evolved artificial metabolic networks and developed new tools to
dissect their topological and functional characteristics. Here, we apply some of these tools to the study of
the brains of robots that have evolved to behave in a simulated world. The robots that are controlled by these
brains are simulated versions of real robots (the ATRV Jr. of the iRobot Corporation) whose properties we
tested in our laboratory. Both the robot and its environment are simulated in a three-dimensional world that
implements realistic rigid body dynamics via the Open Dynamics Engine (ODE). As a consequence, evolved
controllers could in principle be transplanted onto the simulated robots’ real-world counterparts.

Neural computational tissues (“brains”) are grown from genomes that implement neural network develop-
ment and function based on a set of rules (“genes”) that are conditionally executed, that is, regulated, by a set
of simulated proteins produced by the cells in the tissue. This system (“Simnoesis”) is based on the “Norgev”
platform but was completely rewritten in order to be able to evolve complex tissues that process many tempo-
rally varying input signals. We evolve neural tissues on two-dimensional grids (of up to 15x15 neurons) that
control a simulated ATRV Jr with 19 sensors (17 sonars, a compass, and a sensor relaying distance to goal),
controlling two motors driven by two actuators for differential steering. The evolved tissues control complex
robot behavior, such as wall-following, obstacle avoidance, and goal-finding, using a complex network struc-
ture reminiscent of the C. elegans connection graph. The fitness evaluation of a genome consists of growing
the network, and evaluating the behavior of the robot in a 3D environment akin to the fitness evaluation in
the work of Sims). Fitness evaluation and evolution via a Genetic Algorithm is implemented within the EVO
software.

We analyze the properties of evolved neural networks using standard tools (such as edge-distribution,
shortest-path length, and betweenness centrality), as well as new tools that reveal robustness and modularity
via clustering methods and information theory. We find that the topological properties of evolved functional
networks are very different from their randomized counterparts, and characterize the “rarity” of these net-
works with standard statistical tests. Finally, we compare the topological properties of our evolved networks
to the connection graph of C. elegans.
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Evolutionary robotics and the morphological turn: an epistemological
perspective

Fernando Almeida e Costa

Centre for Computational Neuroscience and Robotics, University of Sussex
F.AlmeidaCosta@sussex.ac.uk

What are the philosophical and epistemological implications of work in evolutionary robotics (ER) dealing
with the evolution of morphologies and morphogenesis? So far, its theoretical consequences for cognitive
science have not been fully fleshed out. Also, investigation in morphologically-based ER has not shown its
affiliation in the long tradition of a morphological thought. Understanding theoretical implications and the
phylum of thought of some line of research may be of great importance not only to the historians of science
but to the future development of the research itself. I propose that the shift towards morphodynamics belongs
to an old phylum of cognitive and biological thought, both naturalist and structuralist in nature, and is a com-
ponent of a broader morphological turn. Examples of its manifestations include early investigations in A.I.,
e.g. the studies on morphogenesis and cognitive structures by Alan Turing, the semiophysics firstly proposed
by René Thom, or the morphological, non logico-combinatorial structuralism of Claude Lévi-Strauss in cul-
tural anthropology. More recently, work in ER addressed not only the morphodynamics of an agent’s body
and environment but also the morphological properties of its “perceived world” (Almeida e Costa et al, 2008,
Alife XI, these proceedings). By highlighting what is common to these apparently unrelated lines of research,
light is shed on the entire framework of the morphological turn. Structuralism is normally seen as the conti-
nental current of thought that developed in the 60’s and 70’s and had its major tenets on linguistics or literary
criticism, while being of a logico-combinatorial, algebraic and static nature. But there is another phylum of
structuralist thought: one that that can be traced back to the works of D’Arcy Thompson and even to Goethe.
This other phylum thinks of structures as dynamical forms in development. It is a naturalist and non-formalist
(in the sense of formal logic) approach that considers forms as morphodynamically self-organised wholes.
The concept of “transformation” and its mathematical treatment is central to this perspective. Morphody-
namically inspired robotics exploits all intrinsic and extrinsic physical properties available. This entails the
denial that the “cognitive” properties are to be found at an algorithmic level that dominates the physical prop-
erties. Cognitive activity relies crucially on the agent’s morphodynamics, actually implying the minimization
of control at the algorithmic level. The functionalist principle of the irreducibility of the cognitive level to
the physical medium is put aside. Thus, the morphological turn opens up the possibility of a non reductionist
physics of meaning. The success of modern science, i.e. the physical mechanism that emerged in the XVII
century was only possible due to the abandon of the dynamics of forms: the Aristotelian physics of qualities.
This implied the impossibility of connecting the new “objectivity” with the qualities of the world has it is
perceived. It is often pointed out that the recent embodied approach to cognition refuses the Cartesian mind-
body dualism. It should be noted that it also refuses the divide between physics and qualitative form. On
a supplementary note, this perspective is totally consistent with high-level and low-level cognitive abilities
forming a continuum. The hypothesis of an evolutionary path leading from the emergence of particular hu-
man morphologies (feet and hands), hence the ability to walk, to the emergence of language, put forward by
palaeontologist André Leroi-Gourhan, in the same structuralist vein afore mentioned, is entirely consistent
with this orientation.
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Morphodynamics and perceptual worlds: conceptual approach and an
experiment in evolutionary robotics

Fernando Almeida e Costa1, Ian Macinnes2 and Inman Harvey1
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FromNewA.I. came the deep conceptual insight that cognition is a consequence of the opportunistic exploita-
tion of all morphodynamical properties of an agent’s body and environment, which acts to minimize control at
the algorithmic level. These properties structure the agent’s perceptual world. Here, we aim at those morpho-
logical properties that structure the environment “as perceived” by the agent. Jakob von Uexküll’s functional
circle hypothesis, provides a general framework to understand active perception as morphologically-based.
This framework must be seen within a broader morphological turn; this occurred in the second half of the
20th century across various fields of research, and is morphologically-based, as opposed to information-
theoretic based (Almeida e Costa, 2008, Alife XI, these proceedings). For some authors, developments in
dynamical systems theory opened the possibility of a nonreductionist physics of perception and meaning
(e.g,. Petitot 2000, Physique du Sens, CNRS Éditions). A dynamicist approach regards organisms as be-
ing perturbed by and responding to cues they have been evolutionarily selected to respond to, rather than
mirroring or extracting information from the outside world. The morphological structuring of the perceived
environment is highly constrained by the particular morphologies of its body, and by the dynamics of those
morphologies. To exploit this aspect for engineering and conceptual purposes, a particular method in evolu-
tionary robotics is proposed, based on the functional circle hypothesis by Jakob von Uexküll (Macinnes et
al., 2005 Adaptive Behaviour, Vol:14.2. p. 147). A functional circle is an abstract structure that describes
the functional relationship between an organism, its “perceived world”, and its environment. According to
the functional circle hypothesis, a perceptual sign of an object (say, the smell of a mammal’s butyric acid,
captured by a tick) give rise to a perceptual cue, the subjective experience of that object in the organism’s
(the tick’s) Umwelt: the word Umwelt was used by von Uexküll to describe the biologically evolved world
of perceptions, as perceived by a particular organism/species, which results from the morphodynamical in-
teraction with its environment. This leads to an effector cue which drives the animal to perform some action
(say, fall down from the tree under which the mammal is passing), changing the organism’s relationship to
the object. After the action is performed, the perceptual cue is gone and therefore that functional circle is
extinguished but may lead to another (say, dealing with the fur, finding warm skin, then biting). The proposed
method consists of changing the mutational operators to evolve functional circles instead of directly evolving
sensorimotor loops. The agent’s morphodynamics and perceptual world are co-evolved; evidence suggests
this enables a closer coupling between body, controller, and environment. The evolving functional circle
hypothesis predicts that adding multiple perceptual cues produces robots more adapted to their environment
than they would be otherwise. A comparative analysis of the evolved robots suggests that this is the case.
An explanation is suggested: the specific positions of the sensors using mutable locations together with body
morphology define spatial and temporal relationships with the environment. Co-evolving the agent’s mor-
phology, locations of its sensors, and controllers, evolve these relationships as well which implies that we are
evolving perceptual cues, and therefore evolving perceptual worlds.
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Smart plankton: a new generation of underwater wireless sensor
network

Davide Anguita, Davide Brizzolara, Alessandro Ghio and Giancarlo Parodi

University of Genova
Davide.Anguita@unige.it

The aquatic world, which covers more than the 70% of the earth, has been largely unaffected by the WSN
revolution (ignited by DARPA funded UC Berkeley “Smart Dust” project) due to the difficulty of transferring
most of the knowhow, developed for terrestrial and aerial systems and devices, to their underwater counter-
parts. Nowadays underwater wireless networks are expensive (US$ 10k or more), sparsely deployed (a few
nodes, placed kilometers apart), typically communicating directly to a base-station or sometimes based on
the use of underwater manned or unmanned vehicles. Our research is aimed to develop a new generation
of UWSN (Underwater Wireless Sensor Network), called Smart Plankton, by drawing inspiration from ma-
rine biology and aquatic micro-organism such as zooplankton and phytoplankton. Our target is to develop a
self-organizing network composed by a relatively large number of innovative nodes, equipped with sensors
for monitoring, surveillance, underwater control and many others potential applications. Inspired to the rich
inventory of plankton adaptations our research is oriented to explore innovative solutions in following areas:

1. implementation of the single network node focusing on:
a)the use of reconfigurable architecture, balancing the need of computation (sense, communicate, etc.)

with the survivability constraints (energy foraging and storage), with algorithms recently developed for com-
putational embedded intelligence (e.g. kernel methods for embedded and pervasive systems [D. Anguita, A.
Ghio and S. Pischiutta, Adaptive Hardware and Systems, p.571, 2007]) for acquiring or improving intelligent
behavior;

b)a mobility system based on body thermal expansion of solids and liquids and compression under pres-
sure, such as in sperm whale which uses spermaceti, a semi-liquid, waxy substance for movement and stabil-
ity;

2. communication between nodes because, in comparison with ground-based sensor networks, mobile
UWSNs cannot employ radio frequency (RF). The alternative and more innovative method of optical com-
munication, suggested also by the natural world (e.g. quorum sensing through bioluminescence in plankton
shoals [F.J.Jochem, Marine Biology, Vol. 135, p.721]), can allow the development of a high rate, low power,
long life and low cost communication link among devices. At our Department, we are testing the use of LEDs
and phototransistors for developing an underwater optical communication system (based on 802.11a proto-
col) considering that experimental tests have shown that the better wavelength lies around 420 nm (blue-violet
wavelengths) and that the value changes in presence of turbidity;

3. energy scavenging in order to allow a long life to the network; energy can be generated by using
electrochemically active bacteria [B.E.Logan and J.M.Regan, Environmental Science and Technology, 40, p.
5172] which have been recently discovered and have the property to oxidize organic matter and release the
electron to an electrode. This has some definite advantages over the use of a chemical catalyst, as bacteria
can sustain themselves and recover after inadvertent poisoning;

4. shoal intelligence in order to allow Smart Plankton to perform complex tasks by cooperation of the
individuals; this approach can be considered as an application of Swarm Intelligence model [G. Beni and J.
Wang, Proceed. NATO Advanced Workshop on Robots and Biological Systems, 1989] for dealing with the
peculiarities of the harsh underwater environment.
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Combinatorial optimization and self-disciplined computing by
amoeba-based neurocomputer
Masashi Aono and Masahiko Hara

RIKEN
masashi.aono@riken.jp

Creating a biocomputer with its hardware incorporating biological materials, is it possible to implement
some unique functions that are difficult for conventional digital computers to deal with? A living organism
is a hierarchically-structured system in which a number of self-organization processes run simultaneously on
its multiple levels with their characteristic spatiotemporal scales. Because a self-organization process at each
level involves a certain kind of benefit optimization such as energy minimization and stability maximization,
it would be sound to assume that an organism is a particular kind of concurrent computing system in which a
number of computing processes to solve different benefit optimization problems run concurrently by sharing
common computational resources such as the energy and substances. Despite a lack of predefined decision
program, if these hierarchically-intervened optimization processes are capable of making a self-disciplined
decision, for example, a decision to accept a loss in short-term benefits of its local part for the sake of long-
term gains of its global body, the decision capability may be exploited for discovering some unprogrammed
but reasonable optimization criteria when incorporated in a biocomputer.

With this expectation, we created a computing system incorporating an amoeboid unicellular organism,
a true slime mold Physarum polycephalum, known to exhibit rich spatiotemporal oscillatory behavior and
sophisticated computational capabilities. Introducing an optical feedback according to a recurrent neural
network model, we lead the amoeba’s photosensitive branches to expand or shrink within a network-type
chamber in search of a solution to the traveling salesman problem (TSP).

Here we demonstrate our system’s high optimization capability of solving four-city TSP. Our system
reaches and stabilizes an optimal solution, as the amoeba having photoavoidance changes its shape in search
for the most stable configuration allowing the amoeba to maximize its body area while minimizing the risk
of being illuminated.

Intriguingly, the maintained stabilizing mode of the solution, however, spontaneously switches to the
destabilizing mode without any explicit external perturbation. Contrary to the photoavoidance, the amoeba
starts to destabilize the once-reached solution by spontaneously expanding its branch under illumination,
and restarts the solution-searching process. Consequently, our system finds multiple solutions by repeatedly
switching between the stabilizing and destabilizing modes.

As long as the amoeba maintains the photoavoidance and stabilizes the solution without changing its
shape, the amoeba is stuck in a stalemated situation eliminating any possibility of nutrient acquisition. How-
ever, the amoeba spontaneously takes a risk of being illuminated locally and temporally to restart its shape
change. It may be possible to view this spontaneous behavior as implying biological systems’ capability of
self-disciplined decision to put their resources available at present into risky investments to target resource
acquisitions in the future.

We speculate that the spontaneous destabilization occurs due to the existence of chaotic dynamics capable
of amplifying tiny fluctuations in a microscopic level to affect the unstable shape change in a macroscopic
level. Indeed, applying several nonlinear time series analysis to the amoeba’s oscillatory movements, we
obtained results suggesting that an individual amoeba might be characterized as a set of coupled chaotic
oscillators.

Additionally, we present a new technique that we call “autonomous meta-problem solving.” In this ap-
proach, our system not only can solve a given problem but also can find new problems and then determine
solutions in a self-disciplined manner, by exploiting the amoeba’s unique searching ability and spontaneous
behavior.
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Artificial mental life
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Work in Artificial Life aimed at informing Artificial Intelligence (Steels & Brooks, 1994, Artificial Life
route to Artificial Intelligence, Lawrence Erlbaum) has drawn inspiration from biology mainly at two levels:
i) a bottom-up modelling approach conceiving cognition as the evolutionary complexification of adaptive
behaviour, and ii) appeals to self-organization in the domain of behaviour and neural dynamics in analogy
with self-organized chemical and biological processes. But little attention has been paid to the possibility of
conceiving (and modelling) behaviour in terms of a self-maintaining organized unity in analogy with minimal
forms of proto-cellular (or autopoietic) life. We propose that the behavioural counterpart of a network of
self-sustaining chemical reactions should be a network of interactively maintained sensorimotor dissipative
structures (habits) that emerge from the continuous reciprocal interaction between brain, body and world
(and not, as in previous attempts, between molecular processes and neural processes, conceiving the nervous
system as operationally closedVarela, 1979, Principles of Biological Autonomy, Elsevier).

Despite its popularity among pre-Darwinian biologists (such as Aristotle, Lamarck or Bichat), pragmatists
and phenomenologists alike (Dewey, Merleau-Ponty) and among pre-computationalist psychologists (like
James, Goldstein, Ivo Kohler or Piaget) the notion of habit has received little attention within Artificial Life.
Habits posses key properties that make them extremely attractive for modelling the organization of behaviour:
a) the structure of habits can be traced back to a fully operational-dynamicist framework, b) they do not
presuppose a distinction or a causal priority between perception and action, c) habits are inherently situated
or enactive structures cutting across brain, body and environment, d) habits are plastic and malleable, e) habits
provide a concrete sense of self-maintenance (they are both cause and effect of their occurrence) potentially
implying an intrinsic and a interactive teleology and f) habits can be nested or composed at different scales.
This opens up the possibility for an operational notion of what might be called Mental Life (Barandiaran,
2007, The World, the Mind and the Body, p. 49, Imprint Academic) as the continued formation of a web
of habits through sensorimotor interactions whose cohesive self-maintenance constitutes the identity of a
cognitive (as opposed to barely biological) agent and the world it thereby co-defines.

We use some recent evolutionary robotic models on preference and habit formation (Di Paolo & Iizuka,
2008, Biosystems, 91, p. 409) to illustrate and explore the theoretical and philosophical implications of taking
sensorimotor habits as the building blocks of behavioural organization. This organization takes the form of an
attractor landscape whose stability is homeodynamically maintained through sensorimotor coupling. Mental
Life opens up a new object of modelling in its own right, closer to the Aristotelian notion of psyche (or even
the Heideggerian notion of Dasein) than to the notion of information processing, adaptive problem solving
or weak conceptions of autonomy in robotics. Artificial Mental Life involves a shift from building artificial
systems that satisfy externally imposed norms (engineering or evolutionary) to systems capable of generating
their own norms: those required to sustain their own behavioural organization. In turn, it can become a source
of new research questions to investigate the dynamics of assimilation and accommodation into an existing
organization, its shaping by social interactions and institutions, or mental disorders dealing with stability,
stress, identity, etc.
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Ruggedness and evolvability — an evolution’s-eye view
Lionel Barnett

Centre for Computational Neuroscience and Robotics, University of Sussex
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In both artificial and biological evolution, autocorrelation is commonly cited as a statistic which speaks to the
“ruggedness”— and by implication evolvability— of a fitness landscape. But while the standard definition of
autocorrelation involves uniform sampling of genotypes, it is a truism that evolution most decidedly does not
sample a landscape uniformly. This is of particular significance in difficult artificial evolution problems, or
indeed in natural evolution, where the vast majority of genotypes tend to be of poor or lethal fitness. On such
landscapes uniform sampling is effectively biased towards precisely those (poor quality) genotypes which,
from an evolutionary perspective, are of limited interest. To address this problem we suggest instead to take
an“evolution’s-eye” view of autocorrelation: that is, we let evolution itself do the sampling.

How are we to go about this? We note first of all that autocorrelation may be considered naturally in
terms of mutation. Indeed, the significance of autocorrelation to evolutionary dynamics lies precisely in
the (statistical) relationship between the fitness of parents and their mutant offspring. We thus propose that
a more cogent and useful statistic is just the correlation between parent/mutant fitnesses as sampled over
the ensemble of evolutionary histories. We argue that this alternative autocorrelation is both conceptually
compelling and also practicable, in the sense of being amenable to finite sampling.

We note that our new statistic is no longer “evolutionarily agnostic”; rather, it is tightly bound to the
dynamics of a particular evolutionary scenario. This, however, we regard as a strength. We can imagine,
for example, that the same fitness landscape might “appear smoother” to one evolutionary algorithms than
to another, thus providing insight into the suitability of a particular evolutionary algorithm to a particular
problem in artificial evolution.

We also demonstrate how autocorrelation may be derived from the mutant fitness distribution— a finer-
grained statistic — and we introduce the notion of linear regressive fitness landscapes. We illustrate our ideas
with generalised NK landscapes, which are particularly tractable to analysis.
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A functional account of minimal cellular life
Mark Bedau
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Life seems to be one of the most fundamental categories in nature. But how exactly do material objects that
are living differ from those that are not? Is there any a fundamental difference? And if so, is it a dichotomy
or a matter of degree?

One answer to these questions abstracts away from chemical details and instead concentrates on living
system’s functional properties. In fact, the protocell research community more or less agrees that minimal
cellular life forms are defined by chemically integrating three functionalities (Rasmussen et al., 2008, Proto-
cells, p. 71). First, the system maintains an identity over time by localizing all its components, concentrating
reagents and protecting key chemical reactions from molecular parasites and poisons. Second, it utilizes free
energy from its environment to digest environmental resources in order to maintain and repair itself, to grow,
and ultimately to reproduce. Third, these processes are under the control of inheritable information that can
be modified during reproduction. The three functionalities mutually enable and support each other. They
are collectively autonomous in the sense that they are created and sustained by the operation of the whole
functional triad itself, rather than by any external governing agency.

Why should we believe that minimal cellular life is a chemically integrated functional triad of container
(C), metabolism (M), and genetic program (P)? The rough consensus in the protocell community lends CMP
view some weight, but not enough to convince skeptics. Other functionalities often associated with life–like
reproduction, autonomous behavior, and sensitivity to the environmentcan be explained by the functional
triad, which lends it further support. Going even further, the CMP view can be explained as a consequence of
a more fundamental view according to which the essence of life is open-ended evolution. Elsewhere I have
defended this view on the grounds that it best explains life’s familiar hallmarks (Bedau, 1996, The Philosophy
of Artificial Life, p. 332, Oxford UP) and puzzles (Bedau, 1998, Art. Life, 4, p. 125).

One puzzle about life concerns whether the distinction between life and non-life is dichotomous or con-
tinuous. The functional triad view implies that there is an array of thousands of different possible kinds of
functional organizations, and they all more or less match the paradigm organization used to define life. In-
stances of some other functional organizations would be pretty clearly alive, and instances of others would
be pretty clearly not alive, and a gray zone of further possible functional organizations separates those two
clear cases.

One could divide the gray zone with any number of bright lines purporting to separate those systems that
are “really alive” from those that are not, but I recommend not doing this. Instead, I think there is no deeper
fact of the matter about the life/nonlife distinction other than the graded array of functional organizations.
Attempting to find a more precise “definition” of life would be to invent a categorical distinction that does
not exist in nature.
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The arrow of complexity hypothesis
Mark Bedau
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The evolution of the biosphere exhibits a trend of increasing complexity of the most complex organisms.
Even though we are uncertain about the proper way to measure complexity, it is hard to deny the trend
that the earliest prokaryotic cells are simpler than the eukaryotic cells that arose from them, and these were
simpler than the multicellular life forms that evolved from them, and so on. But this trend is controversial to
interpret and explain, and even to describe properly. Some think that the trend has for all intents and purposes
already been explained. In contrast, I argue that the trend is not yet adequately explained but instead is a
major remaining challenge in understanding the creativity of evolution.

Progress on this challenge is slowed in part because many people fail to realize that the explanation
of life’s complexity is still a mystery. Some people believe that natural selection given an infinite space
of genetic possibilities will inevitably produce more and more complex adaptations. But soft artificial life
models like Tierra, Avida, and Echo show conclusively that those mechanisms are in general insufficient to
produce a trend of increasing complexity. The proof is simple: The models embody those mechanisms but
they don’t exhibit the requisite behavior. Mechanisms like natural selection in an infinite space of genetic
possibilities might be necessary for explaining the trend, but they are not sufficient.

This implies that we need new concepts, theories, and models if it is to resolve the arrow of complexity
hypothesis. Fortunately, soft artificial life models can be just the right tool for exploring answers to this
question. But these models are not fool-proof. Some models beg the interesting questions, and others fail
to produce the relevant behavior. So, proper use of these models requires care and experience. But in the
right hands, they can provide a public, repeatable, and empirically grounded method for making incremental
progress on the question of the creativity of evolution.
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Artificial life as cancer research: embodied agent modelling of blood
vessel growth in tumours

Katie Bentley, Paul Bates and Holger Gerhardt

Cancer Research UK
katie.bentley@cancer.org.uk

Tumours need to signal the growth of new blood vessels (angiogenesis) in order to obtain an oxygen supply
and continue to grow. Angiogenesis in tumours, as opposed to normal tissue, generates abnormal, tortuous
and leaky vessels. The vessels poor quality keeps oxygen levels low in the tumour, which keeps mutation
rates high, and causes metastases to develop and spread across the body.

Angiogenesis as a process is a fascinating example of adaptive, environment-driven, morphogenesis of
a spatial network; the most suitable and practical approach, and framework for simulation, was artificial
life. Our multidisciplinary research aims to 1) understand the mechanisms of angiogenesis, 2) understand
why the tumour environment causes abnormal vessels and 3) develop novel cancer therapies which could
normalise tumour angiogenesis and thereby prevent metastases through reduction in hypoxia and increased
genetic stability.

We have developed a multiscale agent-based model of a blood vessel interacting with its environment in
order to investigate the effects that different environmental factors have on the initial stages of angiogenesis.
The simulated endothelial cells in the vessel exist across multiple grid sites in a 3D gridded lattice. Each cell
is comprised of many autonomous agents, representing sections of the cell membrane. In the first incarnation
of the model, agents create new agents to change cell morphology. In the current version they move and are
connected by springs, which realistically mimics membrane tension during cell migration.

Each agent communicates with its local environment, including other agents, to decide whether to activate
receptors, release ligands and/or alter the cells local morphology. Overall a cell’s behaviour and morphology
emerge from the low-level interactions of its agents with the environment, which in turn then determines the
vessel network morphology and development.

With this approach we have realistically modelled the initial stages of angiogenesis and made interesting
predictions concerning abnormal endothelial cell fate determination in tumours, which are now being tested
in the laboratory. The model is now being developed further to fully simulate cell migration and fusion of
cells as the network develops.
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Modelling spatial market dynamics with retail agents
Mark Birkin and Alison Heppenstall

University of Leeds
a.j.heppenstall@leeds.ac.uk

The power of agent-based modelling (ABM), when integrated with other AI-based and conventional ap-
proaches, can be greatly enhanced. The resulting hybrid systems offer a flexible modelling environment that
exploits the benefits of the component methods. In particular, the ABM paradigm can be used to explore and
understand systems that are governed by complex, non-linear relationships and self-organisation.

In earlier research, the authors have described an agent-based model of retail behaviour in which customer
transactions are simulated using spatial interaction models (Heppenstall et al., 2005, Trans. in GIS, 9, p.35).
The model has been used to simulate processes such as the diffusion of price changes through a retail network,
and the interdependence of pricing behaviour between competing retail chains (Heppenstall et al., 2006, J.
Artif. Societies & Soc. Simulation, 9).

In the research which is now presented, we draw an insight from an established method which explores
the behaviour of retail provision when customer transactions are simulated by a spatial interaction model, but
in which structural change is driven by a simple equilibrium-seeking mechanism. Established methods have
provided useful insights into retail patterns under equilibrium-seeking behaviour, but have done relatively
little to enrich our understanding of the dynamic processes and decisions from which change arises. Through
the combination of these approaches, it is suggested that a much richer model architecture is possible, in
which interacting retail agents produce a spatially heterogenous distribution of supply. This structure brings
together coevolution in the economic and geographical variables (price and provision) through a dynamic
model of competition amongst agents.

A series of numerical experiments are introduced to demonstrate how the use of agents can introduce
more behaviour. The simulations are embedded in a real local retail environment. We evaluate the extent to
which this work can be considered to present an improved understanding of this system.

Artificial Life XI 2008  752 

mailto:a.j.heppenstall@leeds.ac.uk


Does coexistence solve the prebiotic information problem?
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The information problem in prebiotic evolution arises from constraints on the amount of information that
can be maintained in Darwinian evolution. The error threshold limits the transmissible length of a template
under high mutation load. Existing solutions to the error threshold assume that the primitive genome con-
sisted of multiple coexisting unlinked templates. Such coexistence requires a mechanism of cooperation to
counterweigh competitive exclusion. Although much attention is given to ecological coexistence properties
of cooperation mechanisms, little is known about the information carrying capacity of these systems under
high mutation rates. Template coexistence may escape the error threshold, but it simultaneously raises the
new problem of maintaining cooperation. Cooperation is threatened by the production of parasites through
mutation. This results in an additional constraint on the information content in a template ensemble, which we
call the ’parasite threshold’. If the parasite threshold of cooperative system is lower than the error threshold,
template coexistence does not solve the prebiotic information problem.

We study the information carrying potential in a spatial eco-evolutionary model, based on the metabolic
model (Czárán and Szathmáry, 2000). We define a surface in which each site is either empty or occupied by
a molecule. A genome consists of d different templates of length l=i/d nucleotides, where i is the information
content of the genome. We assume that replication of a template is only possible when all d functional tem-
plate types are present in the local neighborhood. Mutation in a functional template results in a nonfunctional
parasitic copy, with probability m per nucleotide. Growth and decay rates of of functional molecules and
parasites are equal. Every reaction step is followed by diffusion of the molecules over the surface.

Genomes with varying number of fragments (d=1,...,4) are compared under high mutation load (m=0.01).
We observed the parasite numbers and the maximum maintainable genomic information. Our results show
that, surprisingly, the information storage capacity is highest for unfragmented, single replicator, genomes
(d=1), despite their high production of parasite. While the number of parasites decreases with the number of
templates, the vulnerability of fragmented genomes to parasitism sharply increases. Because the latter effect
outweighs the former, the benefit of template coexistence is lost. When the different genomic strategies are
put in direct competition with each other, fragmentation can out-compete the single template genome, but
only in a situation with low mutational rate, and length-dependent growth rate. Close to the error threshold,
however, fragmented genomes are competitively excluded by the single template strategy.

We conclude that template coexistence by itself does not solve the prebiotic information problem, because
cooperative systems are limited by the ’parasite threshold’. We demonstrate that in the metabolic model,
template coexistence does not increase information content and is excluded in direct competition. Although
more realistic conditions concerning catalytic specificity, length-dependent neutrality and growth may refine
these results, it is clear that limitations arising from cooperation must be taken into account in solving the
information problem in prebiotic evolution.
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How might group selection explain the major evolutionary transitions?
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The central idea of group selection is that an individual will reduce its fitness so that the mean fitness of a
group (of possibly non-related individuals) may increase. This is relevant to the major evolutionary transitions
where an individual will cooperate by stopping reproduction on its own and reproduce instead as part of a
group. Explaining the major evolutionary transitions should simply be a case of applying models of group
selection. However, group selection may only work when there is a small difference between the fitness of a
cooperator and a defector (Traulsen et al., 2006, Proc. Nat. Acad. Sci. U.S.A., 103, 10952).

A new approach (Bryden, 2008, PhD thesis, University of Leeds) sheds fresh light on this topic however.
We must carefully look at what we mean by fitness and what we mean by group.

Recent perspectives on fitness (Metz et al., 1992, Trends Ecol. Evol., 7, p.198) argue that fitness should be
calculated over a range of environments. This contrasts with the Hamiltonian perspective of fitness (Hamil-
ton, 1964, J. Theor. Biol., 7, p.1) which is the number of adult offspring. By calculating over a range of
environments, some traits which prosper in some environments decay in other environments. Tools are avail-
able (e.g., Tuljapurkar, 1990, Proc. Nat. Acad. Sci. U.S.A., 87, p.1139; Bryden 2008) for modelling long-run
growth rates over varied environments.

To apply this long-run perspective on fitness to the major evolutionary transitions, resource allocation
strategy modelling has been done by Bryden (2005, ECAL, p.551; 2007, ECAL, p.645;2008). The problem
of the major evolutionary transitions is reformulated as a question as to whether an individual will invest
resources in a higher reproductive process: a process of generating new offspring with two or more indi-
viduals having some genetic stake in, and contributing resources to, the new offspring. When an individual
reproduces clonally, it will grow faster in favourable environments than those that contribute toward a higher
reproductive process. However, reproduction can be risky and leave the fast reproducing lineage dangerously
low on resources during unfavourable environments.

Analytic methods and computer simulations have shown how a strategy of collective reproduction (by
sharing resources between several individuals and one offspring equally) can dominate a strategy of produc-
ing clonal offspring (Bryden 2007). When individuals are selfish and only contribute minimal resources,
increases in the amplitude of environmental resource fluctuations becomes increasingly significant (Bryden
2008). The reason the shared strategy is successful is because the clonal strategy is very weak in harsh
environments.

These results demonstrate that it is plausible that an individual may lower its Hamiltonian fitness (i.e., its
reproductive output) to increase its long-run fitness by contributing to a higher reproductive process (such as
those in the major evolutionary transitions). If I suggest a definition of a group as a lineage that is temporally
spread out across several environmental eras, rather than all being present at the same time, we may then
compare the long-run fitnesses of lineages to determine the most successful. In other words, the group that
has the greatest long-run fitness is selected for. This theory calls for verification through scientific experiments
and expansion through further modelling of the major evolutionary transitions.
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Living systems are embedded within physical space. While this embedding can be viewed as a restrictive
constraint on structure, where the prohibitive costs of establishing or maintaining interactions over long
distances mitigate against certain kinds of potential organisation, it can also be seen as an enabling factor,
bringing about correlations, regularities and symmetries that can be exploited by evolution. Artificial life
research on spatially embedded games, ecologies, networks, evolution, and agents has shown that projecting
a well-mixed system into a low-dimensional medium and constraining interactions to be local can confer
interesting properties (e.g., stability, honesty, robustness to parasites) that are otherwise absent or unstable.
This paper explores the question: what is the contribution of spatial embedding to the dynamical complexity
of networks.

In previous work some of us have developed a general framework for characterising the impact of spatial
constraints on network topology (Barnett et al., Phys. Rev. E 76, 056115, 2007), and some of us have
explored the dynamical complexity of spatially embedded artificial neural networks (Buckley & Bullock,
ECAL 2007). Here we combine these two threads to discover what graph theoretic properties of networks
confer high dynamical complexity, and to explore the extent to which spatial embedding tends to encourage
exactly these topological properties in networks that are random in other respects.

We first return to the original formulation of the dynamical complexity measure due to Tononi, Sporns and
Edelman (PNAS 91, 5033, 1994) and correct an error in a widely used approximation of this measure. This
correction impacts on intuitions about the structural and functional roots of dynamical complexity. However,
we are able to rescue these intuitions by re-deriving the approximation for a continuous-time dynamical
system rather than the discrete dynamical system used in the original formulism. This process emphasises
some key differences between the dynamics of continuous and discrete dynamical systems.

We then go on to derive and extend a graph theoretical interpretation of dynamical complexity for the
corrected discrete measure and the new continuous measure. This allows us to strengthen our understanding
of the relationship between properties of spatially embedded structures and high complexity. In particular,
we are able concretise the notion that the structural contribution of spatial embedding to high dynamical
complexity results from the introduction of cycles of connectivity at many structural scales. Furthermore,
we are to able to address a misconceived equivalence between the small world property and systems of high
“dynamical complexity”. Specifically, we find that while systems of high dynamical complexity may possess
the small world property, neither property is either necessary or sufficient for the other.
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Developmental plasticity and particularly learning enable organisms to cope with new environmental chal-
lenges. But if learning is costly, the same behavior could evolve through Darwinian modifications of devel-
opment that substitute for the role of learning in the acquisition of that behavior, a hypothesis known as the
Baldwin effect. Computer simulations have confirmed that learning accelerates evolutionary adaptation to a
single problem posed by the environment. What has not been shown, however, is the way in which the driving
force of learning can generate ever greater complexity in organization of evolved behavior, the one that has
very small chance to appear in one step in the course of evolution. Here we report such consequences of the
role of learning using a model fitted with sequentially appended adaptive systems.

A central component of our approach is that of a functional system. It asserts that each adaptive behavior
is executed by a distributed system of phenotypic elements that cooperate towards organism’s fitness in this
particular task. Novel challenges lead to generation of new adaptive functional systems that can be added to
the existing ones either by evolution of development or by learning. This allows the establishment of elaborate
behavior patterns and results in increased complexity of organisms at the systems level. Selection assesses
organisms by the adaptiveness of their functional systems and the more functions the individual possesses,
the more competitive we assume it is. The greater complexity in our model implies more extensive repertoire
of behaviors supported by greater amounts of equipment for monitoring and coping with the environment.
From a biological standpoint an organism with the higher functional complexity will be better able to deal
with a variety of challenges from the environment and therefore will be more likely to survive. If considered
from the perspective of a single ecological challenge requiring just one functional system our model is similar
to a classical single-peaked landscape simulation by Hinton & Nowlan. However, the main highlight of the
model is its operation in a complex evolutionary landscape similar to the “Royal Staircase” fitness function
of van Nimwegen & Crutchfield, which allowed us to examine coordinated evolution of multiple functional
systems under the impact of learning and developmental plasticity.

The results of simulations demonstrate that ability to learn dramatically accelerates the evolutionary ac-
cumulation of adaptive systems in model organisms with relatively low rates of mutation. The growth of
complexity is mediated through a process of allelic substitutions that simulate emergence of evolutionary
predispositions for learning of certain behaviors and simultaneously release organisms capacities for acqui-
sition of next tasks. The effect of learning on evolutionary growth of complexity is even greater when the
number of elements required for adaptive system is increased. These results suggest that as the difficulty of
challenges from the environment become greater, so learning exerts an ever more powerful role in meeting
those challenges and in opening up new avenues for subsequent genetic evolution of complex adaptations.
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Participating in an evolutionary arms-race, natural coevolutionary predator-prey and host-parasite systems
often exhibit accelerated evolution. Competitive Coevolutionary Genetic Algorithms (CCGAs) attempt to
harness this evolutionary acceleration by engaging (multiple) evolving populations in competitive self-play.

By evaluating individuals competitively, CCGAs afford the possibility of tackling problems that are ill-
defined, open-ended and lacking in formalism. This offers CCGAs a potential advantage over more traditional
Genetic Algorithms (GAs) when fitness evaluation is difficult to operationally define. Analogously, one
imagines that it is much easier to formally define the rules of the game of tennis than it is to define tennis
playing ability. In practice, however, defining an appropriate game is often non-trivial.

Competitive evaluation leaves CCGAs susceptible to some adverse evolutionary dynamics. One such
hindrance is “disengagement”. This occurs when one coevolving population gets the upper hand and begins
to easily outperform the other. Since it becomes impossible to discriminate between individuals according
to ability, the selection gradient disappears and the coevolving populations begin to stagnate. The result is a
stymied system that is left to flounder aimlessly.

To prevent disengagement, the author has previously introduced the “Reduced Virulence” technique
(Cartlidge & Bullock, 2004, Evol. Comp., 12, p.193). This technique helps avoid disengagement by reigning
in a population that inherits an advantageous bias. Rather than reward individuals that maximally damage a
competitor, Reduced Virulence favors individuals that give opponents a chance. Perhaps counter-intuitively,
Reduced Virulence enables accelerated evolutionary progress by disadvantaging a population’s most success-
ful individuals.

In this work, Reduced Virulence undergoes a rigorous sensitivity analysis in the Counting Ones domain
(introduced by Watson & Pollack, 2001, GECCO, p.702, Morgan Kaufmann); an analytically tractable sub-
strate designed to highlight the dynamics of coevolution. Following intuition, it is shown that for optimal
performance, virulence should be increasingly reduced as the asymmetrical bias (and thus likelihood of dis-
engagement) between coevolving populations increases. Interestingly, even when coevolution is unbiased,
“Maximum Virulence” — equivalent to the canonical fitness evaluation of “reward all victories” — is shown
not to be ideal. Thus, results suggest that (in the Counting Ones domain) when population sizes are small,
it is never the case that the canonical coevolutionary setup should be favored. The generality of this result,
however, is an open question.

Utilizing this information, a novel “Dynamic Virulence” algorithm is introduced. This algorithm adapts
population virulence over time as populations evolve. It is shown that Dynamic Virulence is able to cope with
varying bias better than fixed virulence and allows the discovery of optimal solutions under a much wider
range of conditions than any individual fixed virulence setting.

Finally, it is discussed how analyzing the role of virulence in artificial systems may allow us to better
understand virulence in nature. For instance, perhaps there is potential for a “Reduced Virulence” approach
to tackling infectious diseases. Rather than killing mosquitoes to eradicate malaria, one could alternatively
encourage malaria-resistant strains that are better able to survive.
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The aim of Artificial Life research into Open-Ended Evolution is, initially at least, to develop artificial evolu-
tionary systems in which new adaptive traits continue to evolve and the maximum complexity of organisms,
ecosystems or behaviours continues to increase. The main proponents of this approach have presented sys-
tems that invoke natural or biotic selection, as opposed to artificial or abiotic selection, as the drive for both the
generation of new adaptive traits and (potentially) a sustained increase in complexity. However, within both
Biology and Artificial Life, doubts have been raised as to natural selection’s role as the drive for increasing
complexity (Lynch, 2007, Proc. Natl. Acad. Sci., 104, p.8597; Miconi, 2008, Artif. Life, 14, in press), with
the suggestion put forward that nonadaptive evolutionary forces (such as mutation, recombination and genetic
drift) or mathematical/statistical constraints may be the primary drives, through either a passive increase in
variance of complexity in the presence of a lower bound, or a constraint-driven drive toward complexity. The
question therefore arises, how to determine natural selection’s contribution to increases in complexity?

This work introduces first a measure for the phenotypic complexity of an individual, based on the class
of components previously used in the population-level analysis of an Artificial Life system classified as
exhibiting unbounded evolutionary dynamics (Channon, 2006, Genet. Program. and Evolvable Machines, 7,
p.253): components that are approximately equivalent to the biological notion of a gene or coding DNA; and
second a measure for the contribution made by selection to increases in complexity, based on the mechanism
and methodology used in the development and application of component-normalised activity statistics to
that system. These measures enable us to address the question posed above, about a fundamental aspect
of evolution in general, in a way that would not be possible given the biological world alone. They also
provide a mechanism for detecting increases in phenotypic complexity and attributing them to either adaptive
or nonadaptive forces.

Results from the application of the measures to evolution in runs of the above system suggest that, ac-
cording to these definitions, natural selection initially (but only briefly) opposes the level of increases in com-
plexity (new active/coding DNA) that would be brought about by the nonadaptive forces alone, presumably
because the new active/coding DNA would be nonadaptive; but that as evolution progresses, natural selection
maintains and drives the increase in adaptive complexity with remarkable consistency: natural selection can
(and does, in this system at least) provide a sustained drive toward increasing complexity.
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Here we describe ongoing work that applies adaptive modelling techniques from artificial life to open ques-
tions in Earth system science. Understanding the Earth system in terms of global chemical cycling is of
critical importance for the interpretation of Earth history and the prediction of climate change. Many of the
key chemical reactions that facilitate biogeochemical cycling occur during the metabolism of organisms. The
range of metabolic reactions present in the biota has changed significantly over evolutionary timescales, often
with dramatic effects on the Earth system. Yet models of biogeochemistry have traditionally only included
static representations of the biotic components of the major nutrient cycles. More recently, some models have
begun to include a number of functional types of organism, each with different prescribed biogeochemical
properties. However, none of these models address the dynamic adaptation of the biota over time, which can
change the way in which different species interact and alter their effects on biogeochemical cycling. Here
we present a new adaptive individual-based model of the marine ecosystem in the Archaean period of Earth
history. We use a simplified version of the major physical chemical processes and metabolic functions that
are known to have existed at this time; the marine ecosystem during the Archaean is in any case simpler
than the modern ecosystem, being solely based on microbial life. We specifiy a number of microbial guilds
containing species that have similar metabolic reactions and biogeochemical functions, e.g., photosynthesis-
ers, chemoheterotrophs, etc. Within each guild, multiple species may coexist and compete on the basis of
various physiological traits. Individual microbes each have a genotype that specifies various metabolic traits
and thus determines their growth rate as a function of their environment. We consider each model individual
to represent an aggregation of many genetically similar real world individuals; this assumption allows us to
study phenomena on a global scale. Successful microbes (i.e., those that are well suited to their environment)
grow and reproduce, while unsuccessful microbes starve and die. Mutation can occur during reproduction,
allowing the creation of new species. Competition for nutrients drives ongoing adaptation that dynamically
changes the chemical environment in a coevolutionary loop of interaction. Our model considers a vertical col-
umn separated into three compartments representing the deep and surface ocean layers and the atmosphere.
We find that diverse self-sustaining ecosystems emerge over time without being prescribed, and that the dis-
tribution of nutrients and organisms between the three compartments is qualitatively similar to that believed
of the Archaean. In particular, photosynthesisers tend to dominate the sunlit surface ocean, fixing inorganic
carbon (CO2) into organic forms that support other populations, while the deep ocean ecology is dominated
by methanogens, which are able to survive in the dark and anoxic deep ocean conditions. Adaptation of
nutrient uptake and light sensitivity traits creates species within each guild that are optimally suited to their
environment. Recent work has looked at evolutionary trade-offs and the possibility of a biological trigger for
the Great Oxidation event. This work represents the first step in a greater program of study that will seek to
model evolutionary adaptation in marine biogeochemistry.
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Explaining the relation between structure and dynamic of food webs remains one of the most daunting chal-
lenges in ecological theory. The trophic structure is a fundamental property of ecological communities that
relates their diversity to productivity and stability. Understanding the generic properties of food webs requires
insight in the way these networks are assembled. Although ecological communities are often augmented by
invasion rather than adaptive speciation, the diversity in an ecological network can ultimately only be ex-
plained from an evolutionary perspective. Recently, several aggrerate population models for the evolution of
food webs have been proposed. Here, we present an individual-based model in which we show the evolution-
ary emergence of complex trophic networks from the bottom-up.

We use a spatial individual-based model with a nonlinear mapping between genotype and phenotype.
An individual is specified by a genotype that determines its phenotype in a redundant (“many-to-one”) and
epistatic (“one-to-many”) fashion. All behavioral/ecological properties of the individual (e.g. reproduc-
tion/mortality rate, auto/heterotrophy, prey preference, etc.) are derived from specific aspects of the pheno-
type, such that trade-offs in ecological function are inherently introduced. Autotrophs only consume abiotic
resources, while heterotrophs can consume individuals in their spatial neighborhood. The outcome of the
consumption interactions depends on prey preference and the distance between both phenotypes. Mortality
and (asexual) reproduction are based on energy that decreases linearly, and is increased by consumption.
Mutations occur by substitutions in the genotype with a low probability per locus.

The system is inoculated with a single genotype coding for a random autotroph. After the appearance
of heterotrophs, coevolution between auto- and heterotrophs causes phenotypic diversification. The number
of species (i.e. individuals with same phenotype) varies around 40-60 for the given system size (+/- 75000
individuals), of which approximately half are heterotrophs. The evolved species show a large variation in life
history and consumption patterns, balancing various trade-offs. The structure and composition of the network
can continually change, although evolutionary stability increases over time. We assess the ecological stability
of the evolved food webs by canceling mutation. After a partial collapse, the truncated food web (with
typically 10-15 species) persists over an indefinitely long period, during which it shows chaotic population
dynamics.

We demonstrate the evolutionary emergence of ecological stable food webs in an individual-based model.
The genotype-phenotype mapping provides efficiency and robustness in the exploration of phenotype space,
while spatial interactions stabilizes population dynamics and preserves diversity. By encapsulating the eco-
logical properties and their trade-offs in the phenotypes, rather than defining them as global state variables,
allows for the niche differentiation by which food webs are assembled.
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There is a widespread view in the artificial life community that life is not so much about materiality but about
organization. However, one of the favourite candidate theories that explain what this organization should be
like has an ambivalent position with respect to materiality. This is the theory or autopoiesis (Maturana and
Varela, 1980, Autopoiesis and cognition, D. Reidel). Accordingly, autopoiesis is the self-production of a
unity in the domain of processes of material construction, transformation and destruction. The identity of the
living system, in this view, is sustained in its form in spite (or rather because) of its material flux.

This notion seems to imply an inherent temporal dimension to autopoiesis. It is, intuitively, a dynamical
concept. However, because of its insistence on a set-theoretic focus on conservation of autopoiesis, the theory
says little about the temporality of life (leaving relevant phenomena such as stress, fatigue, pathologies and
development untouched).

Efforts have been made to bring thermodynamic material constraints into the theory of autopoiesis (Ruiz-
Mirazo and Moreno, 2004, Artificial Life, 10, p. 235). The implications are not trivial, nor are they foreseen
in the theory as postulated in the original literature and interpreted purely in formal terms. One immediate
consequence of realising autopoietic organizations in dissipative physical structures far from equilibrium is
that there is an obvious time arrow introduced into the process of life: the arrow of thermodynamics. Bare
autopoiesis, paradoxically, does not present us with a similar time arrow (a time-reversal thought experiment
leads to this conclusion).

But this temporality belongs to the nature of dissipative processes and is in some sense only inherited by
life because such material processes constitute it.

I shall argue that living systems enjoy a different kind of temporality, given by their own interactive and
teleological organization. This temporality is richer and different from that of the background time’s arrow
— it is a consequence of expanding the theory of bare autopoiesis with the notion of adaptivity, (Di Paolo,
2005, Phenomenology and the Cognitive Sciences, 4, p. 429). This temporality is characterized by intentional
direction, minimal granularity, rhythmicity, and the presence of historical transitions (in behaviour and de-
velopment). It belongs to the organization of an adaptive autopoietic system under precarious circumstances.

It is conceivable that this temporality could emerge even if the system were not subject to thermodynam-
ical constraints since it is a consequence of the higher order relations between interactive and constitutive
aspects of self-maintenance. It is also conceivable for aspects of the temporality of life to contradict the
temporality of the thermodynamics time’s arrow, since the temporality of life is inherently related to its in-
tentionality. Even at a minimal level, a living system may retroactively alter the virtual possibilities of the
past through its sense-making activity in the present.
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Complex dynamical reaction networks consisting of many components that interact and produce each other
are difficult to understand, especially, when new components may appear over time. In this talk, I outline
a theory, which has been inspired by artificial chemistry research, to deal with such systems. It has been
sucessully applied to regulated metabolic networks, virus-immunsystem dynamics, chemical information
processing, chemical evolution, and planetary athmosphere photochemistries. I will show how the approach
can be used to predict growth phenotypes and to evaluate the quality of large bio-models. The theory consists
of two parts. The first part introduces the concept of a chemical organization as a closed and self-maintaining
set of components. This concept allows to map a complex (reaction) network to its set of organizations. The
theory provides a new view on the system’s “organizational structure”, which is fundamentally different from
a pathway-oriented view. The second part of the approach connects dynamics with the set of organizations,
providing a link to classical dynamical systems theory, e.g., by mapping a movement of the system in state
space to a movement in the set of organizations. It is shown that every dynamically stable state must be an
instance of an organization.
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The confluence of progress in micro-actuators, power sources, and mixed-signal microelectronics have re-
cently moved swarm robotics and robot communities from simulation to reality. Swarms of 20 to 100 robots
are in use already, implementations with several hundred robots are practicable, and communities exceeding
a thousand robots are certainly conceivable. Such large robotic communities provide platforms for numerous
exciting research directions including collaborative swarms and self-reconfiguring structures.

Maintaining hundreds of robots, however, poses significant practical challenges. The literature on strate-
gies for maintaining software and hardware in large robot communities is sparse, even if applicable concepts
from wireless sensor-networks are included. Crucial for the viability of any such strategy is its impact on cost
per robot.

To provide a realistic setting we introduce a robot platform designed to be fabricated in full on standard
printed circuit board (PCB) assembly lines. In this context we introduce a framework for on-line testing and
calibration based on code pieces, termed plasmids, that migrate among the micro-controllers of the robots.
The proposed approach allows the robots access to a larger library of code then what could be stored locally.

The robot consists of a single PCB that doubles as chassis and contains no custom mechanical compo-
nents. Inexpensive motors (mass produced to vibrate mobile phones) are directly soldered to the circuit board
and used in direct drive. Our prototypes use a 200 mAh rechargeable lithium polymer battery giving the robot
over an hour of autonomy while moving at a speedy 1 m/s. An MSP430F2131 microcontroller controls the
robot and communicates with neighbouring robots via infrared light. The simplicity of the design allows the
entire robot to be assembled with low-cost PCB manufacturing techniques and is well suited for small-scale
mass production of several hundred robots.

While this design significantly reduces the current cost barrier to obtaining a robot swarm, it also shifts
the attention to the practical problem of maintaining hundreds of robots. Recharging batteries, sieving out
robots with worn tyres or accidental damage is one aspect. A second aspect is testing and calibration. It
can not be performed in the PCB assembly process and cost considerations prevent proprioceptive sensor.
Collaboration among robots to verify performance and provide feedback (e.g., drift direction during a run and
return) provide a scalable alternative. A third aspect is the maintenance of software in the robot community.

Our plasmid framework addresses all three aspects with a design that is lightweight enough to run on the
microcontrollers. Pieces of code and associated attributes (version, target number for redistribution, lifetime,
conditions for transmission) are propagated among robots that meet. For example, the code may perform a
test on the robot and require to be forwarded to four other robots that have not encountered this test, before
it is deleted. Such test plasmids traverse the robot community which, in its collective memory,contains and
executes more code than would fit within the program memory of a single device.
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Two decades after the initial steps of ALife another field, Synthetic Biology (SynBio), defends the need
of synthetic methodologies in the life sciences. Both have used similar arguments: the epistemological
principle that to understand how something works, we must know how to build it, and the instrumental
goal of producing useful things. But they come from different traditions and constitute different scientific
communities; probably ALife’s closest ancestor is cybernetics, whereas SynBio’s is molecular biology.

In the case of ALife, the main goal is to study living organization. For Langton (1996 Artificial Life,
MIT Press.), synthesis makes possible to explore life-as-it-could-be in order to understand the necessary and
the contingent of living organization in principle in a materiality different from the carbon-based. For others,
the stress is in characterising life as an autonomous organization. ALife, like SynBio, is very diverse, and
although it has predominantly pursued to create “life-like behaviours within computers and other artificial
media”, occasionally ALife models have been developed in vitro with biochemical components. Also, al-
though the main goal was to construct new forms of life, in practice the field has produced more models (with
scientific purposes) and tools (with instrumental purposes) than real instantiations.

In SynBio, however, the goal is not organisation, but design. The field intends to construct engineered
organisms (biofacts) out of the components of existing life, by changing specific parts. Like ALife, SynBio
is very diverse; O’Malley et al. (2008, BioEssays, 30, p. 57) have distinguished three different approaches:
DNA-based device construction, genome-driven cell engineering, and protocell creation. Because it is diffi-
cult to see what they have in common, we may consider that the first is the most characteristic so far, or at
least we could say that it is the one sharing less with ALife (whereas there is certainly some overlapping in
the case of the third).

This paper intends to analyse some epistemological similarities and differences of both fields, especially
in what concerns their views on living organization and the importance of materiality. In what concerns the
first, in ALife living organization has been considered as an invariant to be found/constructed, whereas in
SynBio, the goal is to engineer or to create life (sometimes close to the field of the origins of life). One idea
has been that “nature is imperfect and should and can be revised and improved” (cited in Morange, 2008,
Unpublished manuscript on Synthetic Biology). In what concerns the second, ALife aims to understand
parts, composition and function as emerging properties, thus avoids fixed parts and aims at construction; in
contrast, SynBio uses existing parts to change the design of life (one major effort is to build an open-access
library of presynthesized biological parts and devices, the Registry of Standard Biological Parts), aiming at
intervention.
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Researchers are increasingly turning to network theory to describe and understand the social nature of animal
populations. To make use of the statistical tools of network theory, ecologists need to gather relational data,
typically by sampling the social relations of a population of animals over a given time-period. Due to effort
constraints and the practical difficulty involved in tracking animals, these sampled relational data are almost
always a subset of the actual network. Measurements of the sample – such as average path length, clustering,
and assortativity – are assumed to be informative as to the structure of the real-world social network. However,
this assumption is problematic. Due to artefacts of the sampling process, the various network measures taken
on the sample may be biased estimators of the true values. For example, just as we would get a biased
estimate of mean human height by selecting for a sample those people who stood out in a crowd, we will get
a biased estimate of a measure like mean connectivity if we sample individuals who are socially prominent.

This problem can only be solved by developing a qualitative theory of network sampling, answering
questions such as what proportion of the whole network needs to be sampled before a given level of accuracy
is achieved, and what sampling procedures are least biased? To develop such a theory, we need to be able
to generate networks from which to sample. Ideally, we need to perform a systematic study of sampling
protocols on different known network structures. But currently available data on animal social networks are
unsuitable as these networks were themselves sampled.

The simulation methods of artificial life provide the way forward. We have developed a computational
tool for generating artificial social networks that have user-defined distributions for network properties (such
as the number of nodes, and the density) and for key the measures of interest to ecologists (such as the average
degree, average path length, clustering, betweenness, and assortativity). This tool allows us to perform the
required systematic analyses of the biases inherent in different sampling regimes (e.g., snowball sampling)
applied to different network structures. We will present details of this system, and show we are using it to
develop robust sampling methods for social network data. We see the system as the first in a series of works
that will allow us to develop a qualitative theory of social network sampling to aid ecologists, and eventually
social scientists, in their social network data collection.
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Gaia theory describes the life-environment system of the Earth as stable and self-regulating. It has remained
at the fringes of mainstream biological science owing to historical definition problems and its apparent in-
compatibility with individual-level natural selection. However, various bodies of ecological and evolutionary
research suggest ways in which the biosphere might tend towards stability and self-regulation. Here we re-
view this research, relate the results to a plausible and informative formulation of ‘Gaia theory’, and ask how
the theory extends the perspectives offered by these disciplines.

We then address the question of how Gaia theory might be tested experimentally. Such tests require the
(reasonable) assumptions that life, where it evolves, will exploit essentially all thermodynamically-feasible
forms of metabolism, and that Gaian regulation should be possible with a purely microbial biosphere. The
biosphere is a closed system driven by solar radiation, and we describe here a laboratory microcosm which
is an appropriate analogue of such a system. We then describe our preliminary experimental results from
characterisation of this system, and discuss how we will use advanced molecular techniques employed by
modern microbial ecology, in conjunction with computer simulations of inter-species interactions, to study the
system and answer questions of relevance to Gaia theory. We also describe how this combined experimental-
simulation approach can be applied to many questions of evolutionary and ecological interest which lie within
the research areas bounded by Gaia.
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In the past decade the market paradigm has been adopted as the prima facie candidate for achieving coordi-
nation between self-interested, autonomous software agents. In this context, the area of mechanism design
has been increasingly applied in order to achieve desired global outcomes based on local interactions, by
developing rules of interaction that align the individual needs with social desiderata. Crucially, most of the
current literature considers these mechanisms or markets in isolation and ignores any competition between
them. In practice, however, we see similar markets competing, including Internet auction sites such as eBay
and Amazon, and stock exchanges from around the world. Similarly, we argue that competition needs to be
considered within multi-agent systems when designing mechanisms for them.

Against this background, we have developed an international market-design competition called CAT
(short for catallactics, the science of exchanges) where each entrant to the competition sets the rules of inter-
action, as well as a fee structure. Each market consists of a double auction exchange where, similar to a stock
exchange, the role of the market is to match buyers with sellers. Our competition framework includes the
set of trading agents who participate in these markets, and who will choose the market which has proven the
most profitable. Given this, the goal of the market designer is to attract profitable traders and make profits by
charging appropriate fees. This can be done by changing the market rules and fees dynamically as a response
to changing market condition. Overall, the objective of the competition is to see whether dynamic markets
outperform static ones, and to study the types of markets that emerge from such complex interactions.

The CAT market design competition is an international competition and is part of the trading-agent com-
petition (TAC). The first competition was successfully held in conjunction with AAAI 2007, and this year’s
competition is going to be held in conjunction with AAAI 2008.
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Many natural and artificial systems form structures which can best be viewed as networks consisting of a set
of nodes and links connecting the nodes. This perspective has been helpful in elucidating the organisation
of a variety of systems ranging from power-grids and the internet to protein interactions, gene regulation and
cell metabolism. Many of these networks exhibit a scale-free degree distribution and therefore deviate from
the classical description of complex networks which predicts a Poisson degree distribution, which for degrees
larger than the average degree scales as an exponential distribution.

We have studied the metabolic gene-function network in yeast and digital organisms from the artificial
life platform Avida. The gene-function network is a bipartite network in which a link exists between a gene
and a function (pathway) if that function depends on that gene, and can also be viewed as a decomposition
of the more traditional functional gene networks, where two genes are linked if they share any function. We
show that the gene-function network exhibits two distinct degree distributions: the gene degree distribution
is scale-free while the pathway distribution is exponential. This is true for both yeast and digital organisms
which suggests that this is a general property of evolving systems. One possible explanation for this structure
is that in the network the genes acquire new links according to preferential attachment while the pathways
receive new links independent of their degree.

This hypothesis was tested in Avida by tracking the evolution of the gene-function network in repeated
simulations and measuring the rate of link attachment. Here the single commands takes the role of genes
and the functions are the evolved boolean functions for which the organisms are rewarded. The results show
indeed that the a gene is more likely to become involved in new functions (i.e. increase its degree) the more
links it already has. The link attachment of the functions on the other hand occurred independent of the de-
gree. In real cells it is known that gene duplication is the main mechanism by which new genes are created. If
the two genes would retain similar functionality then we would expect pathways which involve many genes
to increase their degree. This is contradicted by the exponential degree distribution and the observations
in Avida and suggests that the rate of the gene divergence in yeast must be high. The duplication of path-
ways/functions could on the other hand explain the scale-free distribution of the genes, and this mechanism
has already been observed in Avida. Measuring the overlap between different pathways in terms of the genes
which constitute them, showed that this also is a likely mechanism in yeast evolution. In conclusion we have
presented a new way of analysing the gene-function dependence which sheds new light on the evolution of
genes and functionality, and suggests that function duplication could be an important mechanism in evolution.
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Bacteria are able to sense their environment and move towards sources of attractant and away from sources
of repellent through the process of chemotaxis. The best understood model for chemotaxis comes from
Escherichia coli, where the biochemical pathways have been extensively studied. In E. coli, the bacterium
switches between swimming and tumbling based on the changes in the local concentration of attractant. It is
unclear, however, how similar the behaviour and biochemical mechanisms are for other organisms. Work is
proceeding on evaluating the chemotaxic behaviour of a number of different bacteria, indicating substantial
differences with E. coli. Even in E. coli, the fact that bacteria ‘gutted’ of most of the chemotaxic machinery
still displays effective chemotaxis indicates that there are still unanswered questions even in this organism.
Finally, there are issues about how this particular strategy and implementation have evolved. Was this only
one of a number of possible strategies? How did the strategy depend upon the environment, the properties
of biochemical networks, or on the evolutionary process? Would similar strategies result under different
conditions?

Ideally we would like to take non-chemotaxic bacteria and evolve them to perform chemotaxis under
a variety of different conditions, a daunting and lengthy experiment. In contrast, we can do this easily in
a virtual world. In addition, we can keep complete records of the evolutionary process as it occurs. We
create a population of digital organisms that move in a virtual world of attractant. The organisms contain a
rudimentary set of biochemical elements, that is, sensors of the external attractant concentration, a reversible
motor that can cause the bacteria to tumble or swim, and a set of proteins that can be activated, and while
activated, have the potential to activate or deactivate other proteins. We then allow the biochemical network
to evolve, selecting those digital bacteria that better co-localise with the attractant to reproduce for the next
generation. This allows us to combine molecular-level evolutionary dynamics with phenotype-level selection
of a relevant fitness parameter in an exactly specified environment. We find that these digital organisms
quickly are able to display effective chemotaxis. Interestingly, the dominant mechanism is one that is very
different from that observed in E. coli, but is similar to that observed in other bacteria as well as in gutted E.
coli. The required network can be extremely simple, and can be fulfilled by coupling the bacteria’s metabolic
network to the regulatory network, suggesting an explanation for the behaviour of gutted E. coli as well as
suggesting a possible evolutionary route to how chemotaxis first arose.
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The expansion in distributed computing capabilities has led to a need to deliver services at different locations
in networks, where demand is unpredictable. Giving all nodes in a distributed system the potential to deliver
any service is likely to be a waste of resources, while extreme specialization on the part of individual nodes
is likely to incur large overheads in terms of messaging and service transmission across the network. Other
Computer Science researchers have drawn inspiration from one of real life’s most adaptable distributed sys-
tems, the vertebrate immune system, to attempt to solve problems in a variety of different application areas
(de Castro et al., 2003, Soft Comp., 7, 526). We describe an immune system-inspired method for service
management in a distributed network services scenario. Each node in the network runs our system and the
actions of all these local instances mesh together to provide overall service management.

The self/non-self theory of activation of the vertebrate immune system suggests how it can generate a
response to non-self entities, protecting the organism concerned. Our system uses an analogous activation
sequence system to respond to requests arriving unpredictably at different nodes in a network, and enables the
efficient delivery of responses to the requesting node without requiring complete specialization of capabilities
in each node. In our system we have focused on the network of stimulatory interactions amongst antigens,
antibodies, T-Cells and B-Cells. Requests for services are represented by antigens which interact with ele-
ments (nominally representing T- and B-Cells) in a two stage activation process to produce fully activated
B-Cells. The fully activated B-Cells are monitored by Service Runners to indicate the level of demand in the
system. The activation of B-Cells also releases antibodies which act as adverts for services. We believe that
reproducing the logic of this interaction network, along with biologically plausible parameters for longevity
and diffusion rates of the various cell types, give us an artificial system which can adapt to service demand
patterns in the same way that the immune system adapts to patterns of antigenic challenge. A key issue is the
level of complexity in our system. It aims to be useful, with some of the advantages of the analogous natural
system, without attempting to model it slavishly. Our simulations show that an adequate level of complexity
was chosen, as simpler incarnations lost some desirable properties, whereas more complex implementations
would have led the system more towards modelling the immune system than focusing on service delivery.

In the simple network simulations described here some of the major issues for distributed systems are
successfully counteracted. Unevenly distributed demand (which would otherwise result in excess demand on
particular nodes) is balanced across suitable processing nodes. We see a memory effect whereby nodes can
build up a more rapid response to requests based on their history of responses, allowing nodes to become
specialists at dealing with particular request types. The diffusion of ‘cells’ deals with the issue of locating a
suitable node to satisfy a request, even across several network hops. The large number of cells in the network
originating from many different nodes, provides a level of fault tolerance, directing requests to alternative
nodes in the event of node failure. We look forward to testing the system in larger, and more realistic,
distributed network services scenarios.
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In the longstanding debate in political economy about the feasibility of socialism, the Austrian school of
economists have argued that markets are an indispensable means of evaluating goods, hence a prerequisite
for productive efficiency. From an Austrian perspective, the prices generated by markets neatly encapsulate,
in terms of a single numerical unit, highly complex information about the relative levels of demand and
supply for different goods. Furthermore, it is emphasised that prices enable both consumers and producers to
discover new economic knowledge about more efficient ways of attaining their particular ends. The Austrians
contend that, such is the complexity of economic choices facing producers, no adequate level of economic
efficiency could be achieved in the absence of markets, even on the assumption that a set of production
objectives has been agreed. This problem of productive calculation is referred to as the ‘economic calculation
problem’ for socialism.

Socialist advocates of a non-market economy have yet to provide a satisfactory response to this Austrian
argument for the indispensability of markets. Some have sought to develop computational solutions to the
economic calculation problem using techniques such as linear programming. Yet the computational models
proposed are strongly influenced by the equilibrium model of neoclassical economics. From an Austrian
perspective, these models overlook the essence of the calculation problem by assuming the availability of
knowledge which can only be acquired through the market process itself.

The debate in political economy about the feasibility of a computational solution to the problem of non-
market calculation has not yet considered the recent emergence of agent-based systems and their applications
to resource allocation problems. Agent-based simulations of market exchange offer a promising approach
to fulfilling the dynamic functions of knowledge encapsulation and discovery in a decentralised way, as the
Austrians show to be performed by markets. Further research is needed in order to develop an agent-based
approach to the economic calculation problem. Given that the macro-level objectives of agent-based systems
can be easily engineered, it is suggested that such an approach holds the potential to become a desirable
alternative to the real markets that the Austrians favour.
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The expression level of a gene in future generations can be modified both by genetic mutations and by the
attachment of methyl groups to the DNA. Since the DNA methylation pattern along a genome is inherited,
methylation patterns constitute a significant epigenetic inheritance mechanism that is subject to evolution
by natural selection. The variation rate of methylation patterns is generally higher than that of DNA which
suggests that evolution of methylation patterns might be more rapid than that of genetic evolution. But, com-
mon consequences of methylation, such as reduced expression of methylated genes, could also be produced
by genetic changes and these would have higher heritability. The question we address in this work is how
the evolution of epigenetic methylation-dependent phenotypes might interact with the evolution of genetic
DNA-determined phenotypes.

There is no biological mechanism known to directly transfer methyl groups into equivalent DNA changes.
However, in principle an indirect mechanism could cause evolved methylation patterns to enable the subse-
quent evolution of equivalent genetic patterns in a manner analogous to the Baldwin effect (Baldwin, Am.
Nat., 30:441-451, 1896; Jablonka et al, TREE, 13:206-210, 1998). The Baldwin effect describes how non-
heritable acquired characteristics can influence the evolution of equivalent genetic characteristics without any
direct Lamarckian inheritance of acquired characters. This occurs because the ability to acquire or learn a
new behaviour changes the selective pressures acting on genetic changes. Specifically, genetic changes that
support this behaviour, e.g. by reducing learning time by making a small part of the behaviour genetically
innate, may be selected for when the learning mechanism is present even though these same genetic changes
may not be selected for when the learning mechanism is absent. Over generations, the modified selection
pressures so produced can cause genetic assimilation of a phenotype that was previously acquired, even to
the extent of making the acquisition mechanism subsequently redundant. Thus a learned behaviour can guide
the evolution of an equivalent innate behaviour (Hinton & Nowlan, Complex Systems, 1: 495-502, 1987).

In the Baldwin effect a rapid mechanism of lifetime adaptation guides the relatively slow genetic evolution
of the same behaviour. By analogy, Jablonka et al have suggested that “genetic adaptations may be guided by
heritable induced or learnt phenotypic adaptations”. Here we hypothesise that “inherited epigenetic variations
may be able to ‘hold’ an adapted state for long enough to allow similar genetic variations to catch up”, as
they put it, even if the epigenetic variations are not induced or learnt but simply evolved by natural selection
on methylation patterns. We assume that an individual may only express one phenotype in its lifetime, but
that a given genome will persist relatively unchanged on a timescale that allows its methylome to adapt by
natural selection. Thus, in contrast to the Baldwin effect, in this case two mechanisms of evolution by natural
selection are coupled — one acting at a different variation rate from the other. We present a simple model
to illustrate how a rapidly evolving methylome can guide a slowly evolving but highly-heritable genome.
This is used to show that methylome evolution can enable genetic evolution to cross fitness valleys that
would otherwise require multiple genetic changes that were each selected against. This finding suggests that
the relatively rapid evolution of methylation patterns can produce novel phenotypes that are subsequently
genetically assimilated in DNA evolution without direct transfer or appeal to induced phenotypes. This can
enable the genetic evolution of new phenotypes that would not be found by genetic evolution alone, even if
methylation is not significant in the ultimate phenotype.
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We have developed a simple chemical system capable of self-movement in order to study the chemical-
molecular origins of movement, perception and cognition. The system consists simply of an oil droplet in an
aqueous environment. The aqueous phase contains a surfactant that modulates the interfacial tension between
the drop of oil and its environment. We embed a chemical reaction in the oil phase that reacts with water
when an oily precursor comes in contact with the water phase at the liquid-liquid interface. This reaction not
only powers the droplet to move in the aqueous phase but also allows for sustained movement. The direction
of the movement is governed by a self-generated pH gradient that surrounds the droplet. In addition this
self-generated gradient can be overridden by an externally imposed pH gradient, and therefore the direction
of droplet motion may be controlled. Also we noticed that convection flow is generated inside the oil droplet
to cause the movement, which was also confirmed by simulating the fluid dynamics integrated with chemical
reactions (Matsuno et al., 2007, ACAL 07, Springer, p.179, Springer). We can observe that the droplet senses
the gradient in the environment (either internally generated or externally imposed) and moves predictably
within the gradient as a form of primitive chemotaxis (Hanczyc, M., et al., 2007, J. Am. Chem. Soc., 129, p.
9386).

By creating a pH gradient and concomitant convection flow, the droplet behaves as if it can perceive the
environment. We believe that the geometry of the interface shape can control sensitivity to the environment
(Ikegami et al., 2008, BioSys., 91, p.388). This geometry-induced fluctuation is the source of fluctuation of
motion, which we think is tightly linked with the idea of biological autonomy. There is empirical evidence
to support the above ideas. Some form of internal bias is necessary for breaking symmetry to cause self-
movement and the bias may be the result of perception of the environment.

Such simple oil droplet systems show autonomy in the sense that the droplets move in response to the
self-generated pH and the environmental gradient. In our modeling, we demonstrated that a computational
autopoietic cell could move by continuously self-repairing the membrane, but in this case failed to show
any gradient-climbing behavior (Suzuki et al., 2008, Artificial Life, in press). This may be due to the fact
that the autopoietic cell can only survive in the narrow range of environments that support a certain substrate
density. Compared with that autopoietic cell model, our oil droplets are more stable and they strive to maintain
their boundary structures. We hypothesize that the pH gradient around the droplet results in an unbalanced
interfacial tension at the interface. The droplet then responds by motion in order to maintain a balanced
interfacial tension. Once the tension forces around the droplet are balanced the droplet would stop moving.
In this way, we contend that a kind of homeostasis is a basis for self-movement. Different from the mere
physical-chemical process, any life system preserves its own identity and consistency with respect to the
environment. This homeostasis, rooted on the sensory motor couplings, will organize minimal cognition (see
also, Ikegami , T. et al., 2008, BioSys., 91, p.388 ]
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Ashby’s Homeostat (Ashby, 1952, Design for a Brain, Chapman and Hall) was a demonstration of how an
extended form of homeostasis, defined by him as ultrastability, could be achieved with a relatively simple
mechanism. Homeostasis refers to the process whereby an organism, or a machine, actively maintains certain
’essential variables’ (EVs) within the critical bounds of viability. The simplest form is negative feedback,
but a higher order of homeostasis can sometimes be observed when an EV, on approaching a critical value,
triggers one or more periods of positive feedback that reorder the dynamics until a new stable equilibrium
(based once again on negative feedback) is found. This ultrastability can be viewed as an interaction between
two coupled dynamical systems (DS): the primary DS comprises the EVs, and their direct, parameterised
interactions; the secondary DS only kicks in temporarily when the EVs of the first are threatened, and then it
alters the parameters of the first DS until some equilibrium is found that no longer threatens the EVs. Hence
this is a form of selection between multiple possible steady states.

In Ashby’s Homeostat, the secondary DS was implemented by the ’Uniselector’. Under normal circum-
stances it maintained a fixed set of parameters for the first DS. When it was triggered, it picked a different
set of parameters (in practice drawn from a lookup table of random numbers), and continued doing so until
the triggering factor ceased. In Evolutionary Robotics one common method for designing an artificial ’ner-
vous system’, coming from the DS perspective on cognition, is to evolve the parameters (weights, biases
and time constants) for a Continuous Time Recurrent Neural Network (CTRNN; Beer, 2006, Neur. Comp.
18(12). p. 3009). One way of implementing an Ashbyan ultrastability mechanism would be to incorporate
the Uniselector as an add-on to the CTRNN. An alternative approach proposed here is to incorporate the
Uniselector-effects within the CTRNN, rather than as a separate add-on.

We require a very large number of different attractors (corresponding to different sets of random numbers
in the Uniselector); and a trigger mechanism that initiates random or chaotic jumps to a new attractor. This
can be done with a core of just 3 interconnected variables, equivalent to 3 nodes of a CTRNN if we extend
the class of transfer functions at each node to include sine waves as well as sigmoids. Drawing on a result of
Thomas (Kaufman et al., 2003, C. R. Biologies 326, p. 205), we show how this can be implemented; we can
switch between chaotic ‘search’ and settling into one amongst many possible attractors. These attractors are
cyclic or strange, but can be used to set parameters for the remaining part of the CTRNN that comprises the
‘primary DS’. There remain practical issues, somewhat glossed over by Ashby, in orchestrating how long is
spent ’evaluating’ each attractor visited before abandoning it for another one.

This approach demonstrates the possibility of composing a Homeostat entirely of such an (extended)
CTRNN, with the Uniselector-substitute as a distinct hand-designed sub-circuit or module. Further evolution
can maintain the desired ultrastable characteristics, whilst relaxing these architectural constraints of modu-
larity.
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Contemporary speech technology struggles with the variation that occurs in natural speech. In order to
explain such variation, researchers frequently refer to processes of energy optimisation that govern speech
production. Although there is plenty of qualitative evidence, quantitative data about speech energetics are
still sparse because it is difficult to acquire them from human subjects. To overcome this problem, an an-
imatronic model of a human tongue and vocal tract (AnTon) was designed. Human anatomy provided the
guideline for its construction; functional considerations were made only when an approximation using avail-
able technology proved impossible or infeasible. Thus, the behaviour of the model derives from, and is
grounded in, its anatomy. The tongue model presented here was developed using these ’biomimetic’ prin-
ciples. The human tongue consists almost completely of interwoven muscle fibres whose topology allows
for complex movements. The incompressibility of muscle tissue is an important prerequisite, a property it
shares with water; such structures are therefore called ’muscular hydrostats’. The soft silicon that forms the
artificial tongue body approximates incompressibility. Muscles are represented by filaments that run along
paths resembling real muscle fibre orientation. Wherever muscle fibres follow a curved path, regularly spaced
glass beads prevent filaments from cutting into the silicon. The filaments connect to meshes that are embed-
ded into the tongue body and serve both as an attachment point and to distribute force evenly. The current
tongue model comprises four of the main tongue muscles, represented by eleven filaments that are attached
to servo motors. It is connected to a movable jaw and a hyoid bone; the latter is a horseshoe-shaped bone
that supports the tongue root and is situated directly above the Adam’s apple. AnTon is able to imitate a
range of oral gestures and will be used for sound production as soon as the anterior part of the vocal tract
is completed. Apart from studying speech energetics, AnTon has the potential to become a general tool
for speech research, education, and speech therapy. A video is available on the AnTon project’s website:
http://www.dcs.shef.ac.uk/ robin/anton/anton.html.
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In the present paper, we simulate the differentiation of sensory- and motor-like interfaces, and their dynamics
in an agent of novel architecture. This paper reconsiders the boundary between an agent and its environment.
In the standard framework, we tend to assume that the physical boundary between the agent and its envi-
ronment exists due to the independent physical devices of its sensory and motor interfaces. The boundary
between agent and environment thus appears as a static and rigid boundary. We contest this view by creat-
ing a simple simulation model in which this boundary can vary dynamically. Thus we argue that an agent’s
perception is an outgrowth of the complex interference between the efferent and afferent copies of its action
patterns.

The agent consists of a body with two straight arms that move freely from -90 to 90 degrees. Those arms
are controlled by a continuous-time neural network. The neurons connected to the arms sometimes receive
body states from the arms (the afferent copy) and then will move the arm in order to explore the environment
(efferent copy). The role of sensory system and motor system are thus switching temporally, and there is no
explicit sensory-motor flow.

There are some neuro-psychological experiments supporting the above dynamic view. For example,
Yamamoto and Kitazawa (2001) demonstrated that with their arm-crossing experiment in which the perceived
temporal ordering of haptic stimuli on a subject’s hands is reversed when successive stimuli are temporally
very close together. This experiment implies that we may be able to explain our perception by something
based on body image rather than just by reactions to sensory input.

The agent in this simulation is trained via a standard genetic algorithm. The agent was intended to learn
to distinguish between fans with differing numbers of wings which the agent can touch and manipulate using
its arms. From this experiment we draw two primary conclusions:

1) The two arms become differentiated into sensor-like and motor-like arms, and the agent can success-
fully distinguish different fans by touching them

2) The agent’s active and passive touching of the fans is driven by the stability of dynamic attractors
associated with those touching behaviours. By placing time delays into the neural connection from the arm
neurons to the body neurons, we notice that motor-like arms appear more fragile than sensor-like arms, and
the attractor associated with active touch is more fragile than that associated with passive touch.

Our simulation demonstrated that the differentiation of sensory and motor functions emerged by mixing
free and constrained armmotion conditions. When there are no obstacles, the arm moves freely and the neural
network activations maintain coherence. This coherence could be taken as a sensation of body image. When
there are obstacles present, however, this coherence is lost, and this interruption is transmitted as sensory
information. By investigating the coherence/decoherence events of these internal neural dynamics, we will
argue that the interference between efferent and afferent sensory copies drives sensation.
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Adaptive fault tolerance in wireless sensor networks
David Irons1, Fabrice Saffre2 and Chris Cannings1
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Systems including wireless sensor networks and amorphous computing involve scattering a large number of
nodes (sensors / processors) over a geographical area and then creating local connections to carry out some
global objective. For example, monitoring, positioning and reporting back on changes in environmental
features; such as heat, light, sound and / or motion. Geographical, cost or size constraints may also imply
that the nodes need to be dispersed semi-randomly, implying a great deal of uncertainty about their relative
positions and the exact size of the area being covered.

Various research challenges exist in these systems, such as creating strategies for self organisation, en-
ergy management, fault tolerance, maintaining security and adapting to cope with geographical features (e.g.
walls, hills, buildings). Moreover, these challenges become increasingly important as technological advances
lead to smaller and smaller nodes, making them (potentially) more error prone and difficult to position ac-
curately. In this study, we introduce a fault tolerance / energy management strategy that allows the system
to robustly self re-organise, when nodes break or run out of power. We then test this strategy on different
geographical landscapes.

In order to model these sensors networks, we use random geometric graphs. Here, n nodes are randomly
placed on a surface and edges can form between nodes if they are within distance R of one another. Addition-
ally, we assume that each node has a randomly assigned lifespan corresponding to time taken for the node to
run out of power / break down.

We then test the following strategy. Suppose each node can take one of two states, ’active’ or ’hibernated’,
with the hibernated state consuming less power. Additionally, suppose any active node is capable of sending
all other nodes within distance r ¡ R into hibernation. Now, beginning with every node in hibernation, the
system evolves by individual hibernated nodes (asynchronously) trying to become active (i.e. turning active
if there are no existing active nodes within radius r). Whenever the lifespan of an active node is exceeded, it
disappears from the system, allowing the opportunity for hibernated nodes to take its place.

In order to score the integrity of the system, we compare the evolution of such networks to an equivalent
system where all nodes are active. In particular, we compare various statistical properties of the network at
regular time intervals; including (1) the proportion of active nodes in the largest component, (2) diameter
and (3) area covered by the largest component. Such performance measures were chosen since these systems
may need to adequately monitor a geographical area (over a period of time), with network connectivity being
essential for communication of data / results. We find that, for a large range of parameters, the new strategy
presented here is more robust, in that the integrity of the system is maintained over a longer period of time. In
particular, robustness increases as the initial number of nodes (n) increases. We believe that as nodes become
cheaper to mass produce, having a large number is a feasible strategy for these systems.

As well as testing our strategy on flat two dimensional surfaces, we also extend our approach to more
complicated three dimensional geographical landscapes with the additional constraint that nodes can only
communicate if they are in line of sight of one another.
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Solving the division of labour problem using stigmergy and evolved
heterogeneity
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Evolving cooperative teams is a research area with applications in the fields of robotics and software agents.
Progress on this problem could also help us to understand the evolution of cooperation in natural systems
such as the social insects. The overarching question is how cooperative teams should be represented in order
to promote efficient evolutionary search. More specifically, what should serve as our basic unit of selection—
the individual or the team? — and how can the division-of-labour problem be solved? In order to answer these
questions we have taken a benchmark problem from the genetic programming (GP) literature, the artificial
ant problem, and extended it so that teams of ants must cooperate to complete the task.

In this model, the ants are centrally placed in a bounded grid with each square containing food. The
goal of the team is to harvest all the food in the environment in as few moves as possible. In the initial
version of the problem, the members of the team are all clones, each having exactly the same GP controller
program. Many solutions will have poor performance as the team members will all behave in the same way,
and will therefore fail to cover the grid efficiently. To perform better, the ants must evolve to take advantage
of stigmergic interactions to break the symmetry of the problem and clear the world of food efficiently. This
division of labour through stigmergy is indeed what is seen to evolve during the simulations.

A further extension is made by assigning each member of the team an identity tag, and adding the ability
to execute different subtrees of the cloned controller based on this tag. When these operations are allowed,
higher fitnesses are achieved than with the purely stigmergic situation above.

During evolution, selection acts at the team level. We can therefore view the members of the team as
being equivalent to cells in a multicellular organism. The identity branching operation is analogous to cell
differentiation within this abstract organism. Using this scheme, the degree of differentiation is not specified
a-priori and is controllable through evolution. This allows the full continuum from purely homogeneous
teams to entirely heterogeneous teams to be expressed. There is also the potential to use this method as a way
of measuring the degree to which a task demands heterogeneous solutions.

The relative importance of stigmergy and innate heterogeneity in achieving the necessary division of
labour were compared with a third experimental manipulation. The ability to influence each other stigmergi-
cally was removed by placing each ant in it’s own world and tallying the pieces of food consumed by the team
as a whole. In this scenario, the most efficient way to tackle the problem is for the team to evolve complete
heterogeneity.

We conclude that the division-of-labour problem in the evolution of cooperative teams can be solved by
both stigmergic communication and innate heterogeneity. Furthermore, the technique of allowing the level
of heterogeneity of the team to be open to selection shows promise for future work.
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Nonconsumable resources facilitate complex evolution
George Kampis, Laszlo Gulyas and Walter de Back
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Open ended evolution (OEE) is a problem closely related to the “arrow of complexity”, that is, the temporal
emergence of complex and complicated structures and organisms in a progressive, never-ending fashion.
A straightforward, and biologically proven means to approach this is to integrate organisms in complex
environments, and to make them parts of an evolving food web where various aspects of complexity may
increase. Our recent work, reported in a series of papers, addresses OEE via the emergence of food webs
and niche differentiation in a simple agent based population that starts from a seed such as a single species of
producers (consuming nonreplicating resources and forming the basic trophic level of an ecosystem).

A notorious problem of such systems (as exeplified by recent work like DOVE, Webworld, etc) is the
questionable ecological stability of the evolving trophic structure. To stabilize even a 3-species system by
parameter tuning is an egregious task, let alone in systems of higher complexity and with the frequent intro-
duction of newer species. A typical problem is that either a newly evolved consumer cannot grow (thus cannot
become part of the system) or depletes the resources until both die out. Consequently, few systems currently
can handle this problem. To breed restraint e.g. by selecting for moderate predators is a slow process which
already presupposes the coexistence of species in a food web. But how do we get there?

Density dependent feedback (such as functional response) could be a viable solution at this point, but that
typically requires complicated agents or an alien hand. An additional mechanism is to consider genotype-
phenotype maps with tradeoffs in consumption, replication, and other items of life history. This is a road we
have reported in another paper submitted to this conference.

Here we introduce and study a different idea, that of nonconsumable resources (NCRs), an idea which
is usually underestimated in the evolutionary modeling of food webs and OEE. NCRs are factors required
for the life history but not destroyed by the agents; NCRs can range from space to nesting ground to other
abiotic factors to sexual partners to environmentally inherited properties to other species entering mutualism
or (mild) parasitism with the given species. In natural systems NCRs are found everywhere and they pose
important, yet little understood feedbacks on otherwise destabilizing dynamics. Using our agent ecosystem
we show that phenotype to phenotype interactions in a consistently agent based (“fully embedded”) system
naturally introduce NCRs dynamically. This, in turn, helps stabilizing the emerging ecosystems and permits
complexification steps otherwise impossible due to kinetic instabilities.

This work is part of our development of the FATINT system and is part of a research project reported in
“Feedback Self-Organization”, Springer, to be published in 2009. This work was supported by the EC grant
QosCosGrid IST FP6 #033883. The authors thank Collegium Budapest for their hospitality. L.G. acknowl-
edges the partial support of the GVOP-3.2.2-2004.07-005/3.0 (ELTE Informatics Cooperative Research and
Education Center) grant of the Hungarian Government.
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Intentional and causal urges: when to ascribe life or mind to artificial
systems?
Fred Keijzer

University of Groningen
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How do we decide whether or when Artificial Intelligence systems are cognitive or Artificial Life models
are alive? Despite the many different ways in which these decisions are made and specific criteria are used,
in both cases the final verdict has a strong intuitive component: The Turing Test is a way to harness the
decision in a particular way; but why would making a specific impression on a human observer be a good
criterion for deciding whether an AI system is cognitive? Similarly, why would a CA model of growth be
considered a possible form of life? In both cases, many of us have tendencies to interpret mind-like or life-
like phenomena as being actual example of mind or life. Still, many of us also have tendencies to question the
step from looking like mind or life to actually being a mind or alive. The result has been a wavering attitude
in which both tendencies coexist, while a more definite view on this issue remains elusive. Research on the
automatic tendency to detect causality and animacy provides a way to make sense of this wavering attitude.
The upshot of this research is that we have an inbuilt intentional urge: a prereflective tendency to categorize
certain objects or displays as alive and even intentional. We also have a causal urge: a prereflective tendency
to interpret events with specific visual features in causal terms. Both urges seem to be mutually exclusive.
These automatic reactions are subsequently elaborated and scrutinized in a more reflective mode, which can
lead to either the acceptance or rejection of the first automatic reaction. This research can have important
and wide-reaching implications for discussions on the status of artificial cases of life and mind. Foremost, it
would explain the wavering attitude when it comes to formulating criteria for making decisions either way.
Strong intuitive judgements and reflection do not necessarily coincide. It seems clear that we should be more
critical of our own intuitive judgements in this area. At the same time, it is less evident how exactly we can
come to a more critical and ultimately sounder judgement on these matters. At present, it seems best just to
start out with trying to sort out the options and issues. For example, a way out would be by differentiating
between design research in which AI and ALife would fall and descriptive and explanatory research where
empirical cognitive science and biology belong. Another important issue would be whether the intuitive
mutual exclusiveness of causal and intentional interpretations is really to be trusted and should be taken to
imply a serious dichotomy in the natural world. In this talk, I will start out with the problem of ascribing life
and mind, introduce the literature on the intentional and causal urges, and focus on the possible implications
for artificial life and mind.
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The effects of local information and trading opportunities in a network
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Work within the field of artificial life has as history of exploring the ways in which locally constrained
interactions between the elements of a system can give rise to organised behaviour at the level of the ensemble.
Here we study the effect of constraining co-operative, competitive and communicative interactions within a
market by embedding it within a network. We are particularly interested in how these different kinds of
interaction are influenced by the structure of the market network. The paper aims to examine the effect of
limited trading opportunities and information availability on the behaviour of individuals and of the market
as a whole. It examines how a trader’s ability to make profit is influenced by their location within a trade
network and how trader strategy must be adapted to cope with this constraint. To this end we employ an agent-
based model of trader interaction in which the actions of each trader are governed by individual behavioural
rules. Traders are situated on the nodes of a network and interact with potential trading partners through the
ties. The networks considered in this work are constructed via preferential attachment schemes resulting in
networks both with and without positive assortedness. The behavioural rules of the traders are optimised for
their respective locations within the networks through the use of a hill-climbing algorithm. It is demonstrated
that a trader’s ability to profit and to identify the equilibrium price is positively correlated with its degree
of connectivity within the market. Better connected traders are able to exploit their market position at the
expense of other market participants. When the effects of constraining trade and information are separated it is
demonstrated that when traders differ in their number of potential trading partners, well-connected traders are
found to benefit from aggressive trading behaviour. A higher number of potential trading partners allows these
traders to demand better terms as there is a higher chance of another trader being willing to trade with them.
Where information propagation is constrained by the topology of the trade network, connectedness affects
the nature of the strategies employed. Better connected traders attempt to learn more quickly, taking in as
much information as possible at the start of the market in order to exploit possible trading opportunities. Less
well connected traders learn more slowly and average over time to avoid being exploited by better connected
individuals. We also demonstrate that traders are unable to exploit second order information and trade effects
connected to the network. We show that it is not possible for traders to modulate their price or the way in
which they weight information based on the connectedness of the potential trading partner/information source
to make higher profits. When this situation is permitted all traders adopt strategies such that none benefit from
the additional abilities.
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Towards mental life as it could be: a robot with imagination
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“Artificial life is the study of man-made systems that exhibit behaviors characteristic of natural living sys-
tems.” So wrote Chris Langton two decades ago, and most people within the discipline still seem happy with
his definition. But from the human perspective, the behaviour of our own living system is only half the story,
because what matters to most of us is not our behaviour, but our experience — our mental life. Perhaps it
is now time for artificial life to embrace the challenge of creating man-made systems that have experiences
’characteristic of natural living systems’ and giving an account of ’mental life as it could be’.

This talk will describe some of our recent work within the area known as machine consciousness. Several
modern theories of consciousness, notably those of Damasio and Metzinger, stress the importance of em-
bodiment for consciousness, and identify a body-centred self-structure as being a key element in the origin
and support of phenomenal experience. In the CRONOS project, we reasoned that human consciousness —
the only kind of which we have knowledge — must require both a human-like body, and a human-like body
model, and so we set out to construct suitable entities. The physical robot, CRONOS (Holland and Knight
2006), is a new kind of robot: it is anthropomimetic, faithfully copying the human skeleton, and equipped
with appropriately placed elastic muscles and tendons. The body model, SIMNOS (Gamez et al. 2006), is
an accurate physics based simulation that behaves sufficiently similarly to CRONOS to be controlled by the
same control system.

For a self-model to have evolved, it must confer some functional advantage on its host. We are investi-
gating the hypothesis that one useful function might be the ability to support imagination by predicting the
outcomes of possible actions through internal simulation, more or less along the lines suggested by Hesslow
(2002). Simulating the body and its controller is only the first step; it is also necessary to create an internal
representation of the real world that interacts with the body sufficiently accurately to have predictive value.
A physics based internal representation meets this requirement, but the problem of creating such a represen-
tation goes well beyond the traditional AI/computer vision challenge of achieving correct geometry, since the
objects in the modelled world must also have the correct physical properties. We will report on the use of
SLAM techniques and cross-modal integration for dealing with this problem.

In order to obtain functional benefit from imagination, it is not enough merely to have predictively valid
models of the body and of the world; it is also necessary to embed the models within a suitable architecture
to identify when imagination is required, to generate appropriate candidate actions, to evaluate the success,
failure, and costs of the actions, to prevent candidate actions from being acted out by the real robot, to select
the preferred action, and to execute the preferred action. We have developed a task-dependent taxonomy
of these architectures, and have implemented and tested the ones that seem most important (Marques and
Holland 2008). For the first time, this talk will describe and demonstrate an anthropomimetic robot using an
architecture for embodied imagination, including a physics based internal model of itself and the world, to
select and execute an appropriate action; we believe this may be a significant step towards building a robot
with a form of mental life.
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Dimensions of adaptivity
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Artificial Life offers strong tools for making coherent and disciplined our understanding of the relationships
between several fundamental concepts within Cognitive Science more generally such as cognition, value,
function, learning and others. One concept which may act as an anchor for this set of ideas is that of adaptivity,
in its intraorganismic sense of a system being able to change to maintain itself in the face environmental
challenges. A-Life, along with many other areas in Cognitive Science, examines different forms of adaptivity,
though rarely in an explicit fashion. We therefore miss many opportunities to analyse the concept of adaptivity
itself, and what it might tell us about the relationship between life and mind, learning and value, and other
issues within this constellation of notions. The present paper will attempt to outline some of the general
characteristics of adapativity, with the particular aim of identifying what distinguishes different forms of
adaptivity (for example, homeostatic regulation and operant learning) and how such dimensions might be
used to help organise and direct our thinking on the matter in future. Crucial elements include the timescale
over which the adaptive mechanism operates (e.g. achievement of reward in an operant learning task versus
strategic play in chess), the inertia of those mechanisms (e.g. the tolerance parameters of a homeostatic
mechanism) and integrative capacity of the mechanisms (basically, pattern recognition). It may be possible
for these three dimensions to give us a coherent account of adaptivity and how it varies. This in turn would
open new avenues of research into the relationship between cognition and value, and how that relationship
changes through the operation of such adaptive mechanisms. The account proposed differs from the likes of
Dennett’s “Tower of Generate and Test” (1996, Kinds of Minds, Weidenfeld & Nicolson) and similar models
as it is an attempt at an analysis of adaptivity per se, rather than the kinds of mechanism in a given organism
that might produce different forms of competence or adaptive response.

The proposed account might therefore also offer ways in which we could codify the concept of mediacy
in the interaction between an agent and its environment. In this, the framework might fit with other theorising
on the matter such as Hans Jonas’s (1966 The Phenomenon of Life, Greenwood Press ) arguments concerning
the increasing mediacy of the interaction between animals and their environments in evolution, the concept of
the “recession of the stimulus” in Edwin Holt’s (1915 Some Broader Aspects of Freudian Ethics p.134, Holt
Company) description of learning and the variety of forms of cognition identified by Merlin Donald (1991
Origins of the Modern Mind, Harvard University Press) in his account of cognitive evolution.
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An artificial chemistry towards the identification of the transition to
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National University of Colombia
iamendozap@unal.edu.co

A simplified model of a natural system in the form of an Artificial Chemistry is presented in order to explain
the origin of life. It is intended to serve as a tool for modelling certain scenarios where conditions that could
lead to the formation of the compounds, thought to have a major role in the emergence of life, are met. The
“molecules” (first element of an Artificial Chemistry) in this model take the form of two-dimensional atoms
modelled after those most commonly found in living creatures (with a justification for their inclusion). These
atoms have specific shapes (and places for bonds) for metals, nonmetals and metalloids. Their last energy
level valences, electronegativities, radii (based on the Helium radius along with all other distances in the
system) and weights are also included in the model. The rules were designed with two main purposes, to
move the atoms around the reactor and to make and destroy bonds. In this way, molecules are formed, moved
around and eventually they give form to new molecular species too. Atoms are initially placed at random
over a two dimensional space and also given an initial random velocity and acceleration. Their movement is
based then in one of two alternatives, since no forces can be modelled to move the atoms in this level: the first
approach is to give them velocities that change depending on their relationship (bonding potential) with others
in the neighbourhood. The second alternative is to randomly accelerate them but keeping a total constant value
for this acceleration, proportional to the atomic weight. For bonding purposes a novel approach is introduced.
It is based on a combined strategy that involves the electronegativity difference between two atomic species
(when free valences are available) and the “gross affinity”, a magnitude given for two specific atomic species
that was obtained from counting real bonds from a database of bioorganic molecules. This gross affinity
favours the formation of compounds that can be familiar in the context of the origin of life, so the future work
for this model is based on the fine-tuning of initial conditions (quantities, placing and environment division)
and the modification of the affinity to make the model to move towards specific desired results. Also, the
emergence of a prevalence of more complex structures and behaviours could be achieved by tracking down
the processes that eventually led to them, boosting these processes with new rules can be a form of mimicking
natural selection. The preliminary results are optimistic in terms of the production of basic molecules and
substrates and compounds as the ones found in experiments like the ones conducted by Miller and Urey.
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Adaptive units of selection can evolve complexes that are provably
unevolvable under fixed units of selection
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Symbiosis, the collaboration of multiple organisms from different species, is widespread amongst prokary-
otes. As symbiotic associations become more absolute, an inseparable union can result (symbiogenesis).
This union would typically be considered a new unit of selection once a set of symbionts became reproduc-
tively inseparable. However we consider a macroevolutionary model within which new units of selection
are formed gradually from maturing symbiotic relationships, without the need for symbiogenic events to be
complete. We find that these adaptive units of selection can evolve complexes that are provably unevolvable
under fixed units of selection.

We perform experiments in several structured rugged landscapes (including spin glasses) in which there
only few global optima amongst many local optima. Importantly, the number of initial conditions that must
be sampled to find one of these global optima by individual selection is exponentially large (i.e., their basins
of attraction are small).

Selection on individual species only has the ability to evolve to locally optimal configurations. Selecting
on groups at the level of entire ecosystems requires an exponentially large number of ecosystems to be created
to find optima of globally maximal fitness. Since this level of selection cannot utilise gradient information,
global optima are only guaranteed to be found by enumerating all possible ecosystem configurations.

We model an ecosystem, in which species have variable length genotypes. Every species has the potential
to develop a symbiotic association with any other species. Initially all species specify a single gene and have
no associations. The ecosystem is sub-divided into several semi-independent demes, each evolving to local
attractors via individual selection. Symbiotic associations between the entities that are present in the local
attractor discovered by each deme are modified to reflect their frequency of co-occurrence in the attractors
across all of the demes: when entities are repeatedly found to be successful with the same partners, the
symbiotic relationship is strengthened. Strong associations between entities biases the likelihood of their
future co-occurrence. These two phases are repeated, resulting in coalitions of increasing size, stability, and
co-dependence. Selection starts at the level of the individual, when local optima are discovered. However,
the unit of selection adapts as composites gradually develop. Some composites are favoured at the expense of
other composites, leading to the discovery of higher fitness optima. These composites consist of co-adapted
groups that are locally optimal under individual selection, and not random configurations of large sets of
entities. Thus, although the groups can contain many entities, the number of competing complexes is small:
the configuration space is reduced as symbiotic relationships are strengthened.

We demonstrate the adaptive significance of these processes by applying them to provably difficult opti-
misation problems. In general, optimisation problems frequently have some structure that can be exploited,
but only with an appropriate mechanism that can recognise that structure. When locally optimal configura-
tions contain some information that is congruent with globally optimal solutions, such as when local optima
are created from the frustration of a large number of low-order fitness interactions, the process described
above can provide automatic problem decomposition.

When composite entities evolve through the intensification of symbiotic coalitions, the units of selec-
tion adapt causing the configuration space dimensionality to be collapsed. We show that this can result in
complexes that are unevolvable when the units of selection are static.
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Considering the reconfiguration process of subjective temporal order
by using recurrent neural networks
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Starting from the famous conception of B. Libet, how the brain orders successive events has been a matter
of intense debate in neuroscience. S. Yamamoto and S. Kitazawa (S. Yamamoto et al., 2001, Nature Neuro-
science, 4, p.759) revealed that subjective temporal order of successive taps to hands, or to the tips of sticks
held in each hand, are easily reversed just by crossing the arms. What is astonishing is that, especially in the
crossing case, when the tapping interval was less than 0.3 second, the mistake rate grew to 100%. This result
could be taken as general functionality of the real brain’s time-space reconfiguration process. In this session,
we try to explain these phenomena and to characterize the real brain reconfiguration process of subjective
temporal order, from dynamical systems perspectives. To construct the computational model, we adopted
the following settings. We prepared an agent containing two arms and corresponding pairs of input nodes,
consisting of proprioceptive and exteroceptive inputs, and output nodes to make the agent answer which hand
had received the stimuli first. Proprioceptive nodes detect the location of the arms and exteroceptive nodes
detect the stimulus applied to the hand. For the agent’s internal architectures, we adopted discrete time re-
current neural networks with plasticity and trained the network by using a genetic algorithm depending on
the tasks. To prepare the same settings as S. Yamamoto and S. Kitazawa’s experiment, one calculation of
internal networks was defined as 0.01 second, and one experiment takes 3 minutes by iterating 60 cycles of
time period consisting of “a stimulus application interval”, “an agent responding interval” and “a resting in-
terval”. Each interval was defined as 2 seconds, 2 seconds and 1 second, respectively. The agent receives the
stimuli in “a stimulus application interval”, has to respond to the stimuli in “an agent responding interval”,
and rests in “a resting interval”. Other actions are not allowed for the agent. Stimuli are designed to create
alternative time delay between both hands. For the agent’s task, we set two: Task1 involved changing the
locations of both arms for the entire parameterized region, and applying the stimuli to only one hand, after
which the agent had to answer which hand had received the stimuli. Task2 involved changing the locations
of both arms for a limited parameterized region, non-hand-crossing region, and applying the stimuli to both
hands, after which the agent had to answer which hand had received the stimuli. For the experiment, we
crossed the agent’s arms, applied the stimuli to both hands and then analyzed the response and the agent’s
internal dynamics. Finally, determining the result, we discuss the implications of this model to real brain
reconfiguration processes of empirical time and space.
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Emergent intracellular network states and cell fate decision: a
dynamically integrated study of the epidermal growth factor receptor

network with an agent based model
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In biological networks (e.g. protein-protein) component interactions are highly nonlinear. Theoretical models
based on ordinary differential equation (ODE) have dominated the simulation of intracellular networks in the
literature of theoretical cell biology. This approach is parameter driven and therefore motivated by the data
currently available for well studied signalling systems such as the epidermal growth factor receptor (EGFR).
Although these models are incredibly detailed they become unmanageable with the increase of network size
and hence lose their predictive power. Simplified techniques such as discrete time Boolean networks which
strip completely the dynamical system of kinetic parameters and evaluate qualitative network behaviour have
been an alternative option for large networks. The network studied in this work involves the extended EGFR
signalling pathway and its validated nuclear targets [Oda,K., et al.Mol Syst Biol 1:2005.0010] for which only
a small part has been modelled using ODEs.The epidermal growth factor receptor (EGFR) has been impli-
cated in the regulation of cell proliferation, survival and differentiation via activation of signalling pathways.
Overexpression or constitutive activation of EGFR has been associated with in-vitro tumourigenic transfor-
mation and linked for example to non-small cell lung carcinoma (NSCLC), breast and colon cancers. Small
molecule kinase inhibitors of the EGFR have been developed and two of them, Gefitinib and Erolitinib, have
already been licensed for clinical use in NSCLC. These drugs have been found to have positive impact —
reduction in cell proliferation and induction of apoptosis — in patients with mutated EGFR. Nevertheless,
the action of the inhibitors has many non-specific interactions [Fabian, M, et al., (2005), Nat. Biotechnol, 23,
329]. Both pro-cancerous and anti-cancerous kinases, in addition to EGFR, are inhibited exerting therefore
additional effects on the cell. To study the possible consequences of an EGFR signalling network perturba-
tion and devise strategic methods for cell fate decision control, through the administration of drugs, an Agent
Based Modelling (ABM) approach was used. Cell phenotype is identified with particular network emergent
dynamical states. An extension of a class of continuous time Boolean networks was analysed under the ABM
paradigm. Each agent, seen as a control gate, represents a ‘molecular species’ (signalling protein or tran-
scription factor) with a normalized concentration value but with only ON/OFF output states determined by a
threshold value. Its concentration evolution is represented by a piece-wise linear differential equation with
time delays. The time delays stand for diffusion associated effects or other processes that escape the usual
assumption of a well mixed system in cell simulations. Higher autonomy of each node is secured by the
existence of an internal noise term associated with each time delay. Agents representing transcription factor
nodes exhibit higher time delays which stand for the differences in time scale of signal transduction and gene
transcription processes. Node targeting is performed by node removal, by modulation of the internal noise
term or partial inhibition according to the binding assay data [Fabian et al (2005)]. This modelling approach
is the simplest possible one retaining important properties of biological systems such as distributed control,
asynchrony and noise.
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Is the organism really a machine?
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Despite all its successes, modern biological science has done remarkably little to tackle the fundamental
question that lies at the very heart of biology: what is the nature of the living organism? Contemporary
biologists (and philosophers of biology, for that matter) seldom ask this question openly and explicitly. The
reason is simple: they already presuppose the answer. The organism is a machine.

One could conceivably construe the history of biology since the seventeenth century as the story of the
success of the Cartesian notion of the bte-machine. Although the dissatisfaction with this mechanistic con-
ception is almost as old as the idea itself, most of those who found themselves in disagreement were labelled
as vitalists and marginalised from the scientific discussion. Today, the organism-machine analogy is dominant
in virtually every branch of biological science that studies the organism. This conception of life promotes the
view that biology is a subsidiary branch of physical science within which the theories and methods of physics,
chemistry, and engineering can be fruitfully applied. In this way, the organism-machine analogy serves to
not only justify, but also actively encourage, a number of epistemic attitudes, such as strict methodological
reductionism, that have dominated the study of life since the mid-twentieth century.

In this paper I question the conceptual coherence of the organism-machine analogy, and in so doing,
I challenge some of the central presuppositions underlying contemporary biological research. Apart from
promoting a misleading view of what the living organism is and how it behaves, I argue that the Cartesian
notion of the bte-machine has actually more in common with a Creationist/ID theorist’s conception of life than
it does with a well-informed evolutionary-developmental account of the organism. This unhappy marriage of
Cartesian mechanicism on the one hand, and Neo-Darwinism on the other, has led to a number of tensions
which play out both at the theoretical and practical level concerning what the organism is and how it should
be studied.

As a symptom of the pervasiveness of the organism-machine analogy in biological thinking, several re-
search programmes have emerged in recent years which aspire to provide the ultimate vindication of the
organism-machine analogy. Central among them is Synthetic Biology, although a number of lines of research
in A-Life also appear to share this objective. Whilst not denying the legitimacy and usefulness of these
new fields, I argue that the faith that has been bestowed upon these disciplines regarding their potential to
substantially advance our biological understanding of life is likely to be misplaced.

Finally, I draw from the long-standing anti-mechanistic tradition in biology to propose an alternative,
organisation-based conception of the organism that sidesteps the problems of the organism-machine analogy,
eliminates some of the deep-rooted conceptual tensions generated by it, and provides an understanding of the
organism that is more in accordance with its actual nature.

Artificial Life XI 2008  788 

mailto:dan.j.nicholson@gmail.com


Intelligent locomotion of eukaryotic cells
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Eukaryotic cells such as cellular slime molds (Dictyostelium descoideum) and other animal cells are thought
to share unified mechanisms for locomotion. In this work, emergence of “intelligent” behaviors of cells
is discussed by developing a simple computational model of locomotion. The model describes changes in
cell shape on the two-dimensional plane by considering a cell membrane, actin filaments embedded in the
membrane, and an intracellular control factor called “cortical factor”. Actin filaments polymerized on the
membrane push it outward to change the cell shape, whereas cortical factor suppresses polymerization of
actin filaments. Cortical factor is conveyed from the leading edge to the rear of a moving cell by the intracel-
lular flow of cortex and accumulates at the rear of the cell. This flow of cortical factor leads to the spontaneous
locomotion of cells by amplifying the initial fluctuation in cell movement: If a fluctuating cell slightly moves
into a direction, cortical factor begins to accumulate at the rear of the moving cell, which suppresses actin
polymerization there and further promotes cellular locomotion in the initial direction. This positive feed-
back mechanism reproduces the experimentally observed amoeboid-like and keratocyte-like locomotion and
cytokinesis B- and C-like cytofission depending on the kinetic rate and the threshold value for actin poly-
merization in the model, where the amoeboid-like locomotion is a repeat of stop-and-go motion, and the cell
usually changes its moving direction after the stopping phase, while the keratocyte-like locomotion maintains
a moving direction for long duration. Cytokinesis B-like cytofission divides a cell into two parts, and a cell is
torn into several pieces in cytokinesis C-like cytofission. Based on this model of eukaryotic cells, emergence
of intelligent behaviors in locomotion is demonstrated. We assume that the reception of external chemical
signal suppresses the activity of cortical factor, leading to chemotaxis of a cell toward the source of the chem-
ical signal. We consider that there exist obstacles intercepting a cell on its way to the source of signal. When
signal permeates through some obstacles to attract the cell (i.e. traps), the simulated cell falls into a trap at
first but it suddenly escapes from the trap to find a way to get it around. The cell finds this detour because
the distribution pattern of cortical factor is flushed while the cell is trapped and the occasional fluctuation in
cortical factor amplifies locomotion against the gradient of the external signal. In this way, the feedback loop
between cell movement and cortical factor is a key mechanism of the emergent behavior to find a detour. We
also discuss efficient food finding and cells’ hunting moving bacteria. Cognitive locomotion of the model
eukaryotic cells is the result of the fluctuating dynamics in which the interaction with the environment and
the internal chemical reactions are coupled through the feedback between cell movement and cortical factor.
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Artificial life is the simulation and synthesis of living systems, and ALife models show how interactions
between simple entities give rise to complex effects. Ecology is the study of the distribution and abundance
of organisms, and ecological modelling involves fitting a linear model to a large data set and using that model
to identify key causal factors at work in a complex ecosystem. We are interested in whether the individual-
based modelling approach of ALife can be usefully employed in ecology.

ALife models are “opaque thought experiments” (Di Paolo et al., 2000, Proc. ALife VII, p.497). They
show that a phenomenon can arise from a given set of assumptions in cases where the implication is not clear
from intuition alone: e.g., that spatial structure in a population can lead to altruistic behaviour. This type of
modelling can be useful to ecology by showing the plausibility of a novel concept or process, which in turn
suggests new natural experiments and new forms of data to collect. However, we argue that ALife models can
go beyond this “proof of concept” role and serve as a direct account of data in the same way that statistical
models do.

We focus on a typical problem from ecology: the effect of clearing powerline corridors through a forest on
the local wildlife populations (Clarke et al., 2006, Wildlife Research, 33, p.615). The real data set in this case
is complex and, of course, we don’t know the true effects that underlie it. We therefore generated a fictional
data set that reflects aspects of the original problem while allowing complete control over the simulated
environment. The idea is to construct a test case for looking at the relative success of different modelling
approaches. We know the true picture because we generated the data, but which modelling approach will
get closer to the truth? The fitting of generalized linear models as is conventional in ecology, or the use of
individual-based simulations as in ALife?

Statistical models are fitted using some variant of the method of maximum likelihood: given the data,
which of the models in the family we’re considering (e.g., a linear regression) makes the observed data most
plausible? When dealing with simulations, however, it is difficult to establish that one model is a better fit to
data than another. Simulations have many parameters, it may be difficult to determine a level of granularity
at which the simulation output is supposed to “match” the data, and there will be no analytically tractable
likelihood function. These problems are solved by the method of indirect inference (Gouriéroux et al., 1993,
J. Applied Econometrics, 8, p.S85) in which an auxiliary model is fitted to both the real data and to the output
from competing simulation models. The best simulation model is the one producing the closest match to the
data in terms of fitted parameter values in the auxiliary model.

Using indirect inference with our fictional data set we demonstrate that ALife simulation models can be
fitted to realistic ecological data, that they can out-compete standard statistical approaches, and that they can
thus be used in ecology for more than just conceptual exploration.
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Defining a system in distinction from its environment is a fundamental but elusive problem in artificial life as
well as in real-world complex systems. While many notions of closure gives a qualitative and absolute criteria
for the system–environment distinction, the concept of “informational closure” proposed by Bertschinger et
al. (Bertschinger et al., 2006, Proc. GWAL-7, p.9, IOS Press) gives gradual and relative evaluation of closure
(or closedness). There, a system is tentatively defined in distinction to its environment, and the validity of
the definition is judged according to how causally closed the system is, being quantified by information flow
(transfer entropy) from the environment into the system. This quantitative approach for the characterization
of closedness is expected to bring rich description of “relative” systems on a wide range of dynamical models.

In this study we proceed one step further in the direction of relativizing closure: for the evaluation of
closedness we also utilize information-theoretic measures, such as the transfer entropy and difference of
Boltzmann-type and KS-type entropies, but instead of evaluating closedness of a system with its elements
fixed in time, we evaluate the closedness for the system’s specific states which are dissociated from the history
of interaction with the environment. This dissociation excludes from the system–environment correlation
the components which are realized by the system modeling or controlling the environment. Therefore, the
measures evaluate solely how a state can prevent the invasion of uncertainty from the environment. This
setting can be effective in describing partial closures which appear transiently and fluctuate in uniformly
structured degrees of freedom or in a directed flow of information processing, while the original setting of
informational closure would be more efficient when the meanings of a system and its environment are clear,
their boundary is fixed, and advanced notions such as cognition, learning, self-reference, etc. are of immediate
interest.

We apply the method to discrete dynamical networks and a cellular automata model which simulates
physico-chemical self-organization (molecular aggregation). The spectrum of closedness is shown to depend
on the dynamical properties of each model. (The investigation of the spectra has some similarity with the
exploration of characteristic structures in the phase spaces of chaotic systems.) We will also discuss how
reversibility of the models and introducing dissipative irreversibility, that is, disregarding information flow
into the environment as a heat-bath, can influence the evaluation of the closedness.
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Differences in personality between individuals are usually attributed to genetic differences, and seldom to
differences in experience. In this study, we investigated to what degree personalities may result from differ-
ences in experience, that are caused by self-organisation of behaviour and chance. We use an individual-based
model to generate such an explanation for the experimental findings on personalities in perch (Magnhagen &
Staffan., 2005, Behav Ecol Sociobiol, 57, p.295). In this study, small groups of individuals could either hide
in vegetation, or visit an open area that contained food, but was near a predator. Individuals were attributed a
personality, based on the time that they spend in the open area, and on how fast they fed there.

In our model, we mirror this experiment, with artificial individuals that are genetically identical. We
test whether personalities arise as a consequence of three mechanisms: habituation, social facilitation, and
competition. To this end, we study three models: a model of only habituation, a second one of habituation
and social facilitation, and a third that includes all three mechanisms.

The first model focuses on habituation. Artificial individuals habituate by increasing their (initially low)
tendency to enter the open area after each successful foraging event. Although this self-reinforcing effect led
to personality differences, these differences disappeared as soon as all individuals were habituated.

In the second model, we added social facilitation. This implied that individuals tended to visit the open
area more, if it was already occupied by group members. Social facilitation led to a to a positive correlation
between personality of an individual and that of its group members. Because of this, groups more often arose,
that consisted of a single personality type. Both observations resemble the empirical data. However, in this
model, personality differences also disappeared because all individuals habituated.

In the last model, we added competition. This was represented by a ‘residence effect’: upon arrival in
the open area individuals captured less prey, if group members had arrived before them. Here, personality
differences appeared to be stable over long periods of time.

In sum, our models show that differences in speed of habituation may give rise to personality differences,
and that these differences are reduced by social facilitation, and maintained by competition. We conclude that
it is valuable to consider learning and social interactions as an explanation for the origination of personality
in animals.

that can reside in either a protected area or an open area with food. However, all individuals are genetically
identical, and start with a low tendency to reside in the open area. Similar to the empirical experiment, they
can reside in either a protected area, or an open area with food.
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Issues of sustainability involve the dynamics and interactions of multiple complex adaptive systems at a vari-
ety of scales: climatic; ecological; economic; technological; political and social. Some of the most pressing
challenges for society are inherently concerned with gaining a better ability to understand and manage the
interacting systems upon which we rely. While there is widespread acknowledgement that the science of
complex adaptive systems can provide key tools to address these challenges, there is little consensus on how
to develop and apply these tools effectively. New approaches are therefore needed before effective policy-
making can be informed by well-founded scientific modelling. Concepts and terminology such as complex-
ity, complex adaptive systems, whole systems thinking, non-linear dynamics, co-evolution, autopoeisis, and
self-organisation enjoy common currency in movements such as resilience thinking, sustainable systems ap-
proaches and permaculture (amongst others), which share a common ancestry with A-Life in systems theory.
The use of such ideas as metaphors to guide thinking is valuable up to a point. For example, the concept of
non-linear response to change, including at the extreme system tipping points, is an important understand-
ing which must certainly guide policy in areas such as climate change. A large array of complex systems
metaphors are also used as sources for design and management heuristics. However, there are presently
enormous methodological leaps to be made before their full potential usefulness can be realised, and the
availability of clear quantitative or qualitative measures and methodologies connecting theory with practice is
extremely limited. A clear opportunity exists for the field of Artificial Life to contribute in this domain at this
key time. In this talk I will give an overview of the current use of complex and dynamical systems concepts
within the sustainability movement and associated challenges. I will detail practical tools being developed
to measure the qualitative or quantitative behaviour (or health) of dynamical systems such as ecosystems,
and discuss how we can move from a metaphorical understanding of such systems as complex, dynamical or
adaptive, towards strategic intervention in or interaction with them with the goal of sustainability in mind.

I will focus on what I consider to be three key areas in which A-Life methodology can contribute: 1) The
use of modelling to predict the gross behaviour of systems, with a particular emphasis on the incorporation of
evolutionary processes, network dynamics, and agent-based modelling into current resilience approaches; 2)
The development of quantitative indicators of systems’ “health” with regard to their ability to self-maintain; 3)
The development of tools for management or steering of complex systems undergoing rapid change, including
the potential for “engineering” or “programming” self-organisation of complex adaptive systems for increased
resilience, robustness and “sustainability”.

The aim of this talk is to initiate dialogue between theoreticians and practitioners towards practical use of
A-Life methodologies in frontline sustainability.
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Major transitions in evolution create the prerequisite features which allow natural selection to occur at a new
level of organisation. Heredity, variation and reproduction must all be produced at a new higher level in
order for a new evolutionary unit to arise. The origin of these features at new levels of organisation has been
problematic for both theoretical biology and in artificial life models — but several partial theories exist. The
necessary features may arise under the action of adaptive processes on existing units, and/or with the potential
support of self-organisation of some kind. Limited mechanisms of heredity, potentially including ecological
inheritance of constructed niches, may play an important role in bootstrapping the early stages of a transition
to higher-level selection on new units. But, in short, theories for the precise routes by which new biological
individuals might arise remain mostly speculative.

Our programme of theoretical modelling work has been focussing on simple individually-adaptable char-
acters that may be involved in initiating higher-level units of selection. It is known that two key determinants
of the efficacy of higher-level selection, between-group variation and heredity of group characters (e.g. the
species composition of a group), are significantly affected by the modification of some simple parameters
such as initial group size in an aggregation and/or the size of dispersal propagules. Our models have demon-
strated that if simple features such as group structure parameters, group size and dispersal modes can be
affected by characters that are under individual adaptive control then conditions that effect significant higher-
level selection can be selected for despite individual self-interests. These features are simple enough that we
can begin an empirical programme to investigate and manipulate the relevant variables.

In this talk we describe an ongoing experimental programme to investigate parameters affecting the lev-
els of selection using bacterial biofilms. The majority of bacteria spend most of their life cycle in single-
or multi-species biofilms, complex collective structures formed when bacteria attach to surfaces, and in this
form they display an extraordinary repertoire of coordinated behaviours and interactions. Bacterial biofilms
have numerous high-impact application areas including bio-engineering, bio-remediation and medicine where
controlling the adaptation and co-adaptation of bacteria is vital. Reproduction in biofilms may be either via
shearing off of groups of cells or by the production of individual motile cells. Despite this, such groups are
also able to disaggregate into individual cells which reproduce in a planktonic phase. Accordingly, these
organisms, in this case Psuedamonous aeruginosa (a common opportunistic pathogen problematic in cystic
fibrosis), provide an excellent model system to address questions concerning the transition to multicellularity.
They are fast-growing and experimentally tractable, allowing us to perform multi-generational evolutionary
experiments over a relatively short timeframe, and they naturally exhibit physical characteristics, such as mi-
crocolony formation, that implement group structure. They possess individual characters, such as siderophore
production, that can be knocked-out to produce clearly identifiable ‘cheats’ and ‘cooperators’. Crucially, there
are easily identifiable individual characters, such as extra-cellular matrix production, that clearly affect the
grouping parameters that are of interest, such as group size and propagule dispersal. We present our ex-
perimental methodology for manipulating these characters and thereby parameters that affect the strength of
group selection; a vital first step in tackling the investigation of evolutionary transitions in real organisms.
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The similarities and differences between adaptive dynamics in biological and cultural evolution is an impor-
tant and controversial open question about evolutionary processes in the real world. One way to address this
issue is by studying empirical data from biological and cultural evolution. Technology is itself an important
part of culture, and one that is rather amenable to empirical investigation, and an excellent window on the
evolution of technology is to study patters in the citations among patent records (Jaffee & Trajtenberg, 2005,
Patents, Citations, and Innovations, MIT Press). Each patent must describe a novel concept and must cite
previous related works and each patent is filed at a distinct point in time. This provides us with a time se-
ries corpus of formally written text that records all patented technological innovations, an ideal platform for
studying the creativity of one form of cultural evolution.

Bedau and Skusa (2002, ALife VIII, p. 431, MIT Press) analyzed the dynamics of adaption in the evo-
lution of technology, by looking at patent citations and measuring evolutionary activity statistics over time
(Bedau & Packard, 1991, ALife II, p. 431, Addison-Wesley; Bedau et al., 1998, ALife VI, p. 233, MIT
Press). We here present a novel, complementary method of analyzing technological evolution using the tex-
tual content of patent records. Our analysis takes linguistic tokens as the unit of cultural adaptation and
measures their occurrence and relations using several linguistic tools. This can reveal latent connections
between conceptual or technological innovations.

We have analyzed a corpus containing thirty years of patents (over 4 million) with the WORDSPACE
model for quantification of word relatedness within a corpus (Widdows, 2004, Geometry and Meaning,
CSLI). This produces a fuzzy set of correlated terms based on concurrence within a text. The change in
relatedness of n-grams over time provides a movie of a part of cultural evolution. We also analyze regres-
sions on time series frequency counts of n-grams and groups of n-grams. (N-grams are linguistic tokens
n words in length which represent technologies or concepts in the corpus.) Patterns in n-gram frequencies
provide another window into the evolution of culture.

These two tools reveal and map the cross-temporal relationships between technologies. One can see
classes of technologies share in significant evolutionary success, and then eventually decline (for example,
the recent technology bubble). The tools can reveal when different technologies have symbiotic relationships
(Marguilis & Fester, 1991, Symbiosis as a Source of Evolutionary Innovation). These results help illuminate
the nature of cultural change and open-evolution, and in particular, whether there is a fundamental difference
in the evolution of cultural and biological systems.
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Models of the evolution of social behaviour are often framed in terms of either multi-level selection or in-
clusive individual fitness theory. Although both of these descriptions correctly predict changes in gene fre-
quency (where group fitness is defined as the average individual fitness of the group members), it is still a
hotly contested issue as to which provides a faithful description of the underlying causal processes at work.
Furthermore, the type of model analysis used reflects the philosophical bias of the author. It is important
for Alife researchers to be aware of this issue when evaluating or presenting models of social evolution, for
many authors simply claim as a matter of fact that their model works via multi-level or (inclusive) individual
selection, without acknowledging the alternative perspective.

In this talk, two particular areas of ongoing contention between multi-level and individual selectionists
will be illustrated, using examples from the Alife literature. The first of these concerns the evolution of
weakly altruistic traits. These are behaviours that provide a whole-group benefit at some cost to the actor.
Crucially, however, the cost to the actor is more than offset by its share of the group benefit, such that the
lifetime number of offspring of the actor is increased. In a recent paper West et al. (2007, J. Evol. Biol., 20,
p.415) have advocated that the evolution of such traits can be adequately explained in terms of direct fitness
benefit, thus avoiding the need to invoke selection at the group level. However, this explanation hides the
fact that weak altruists suffer a relative fitness disadvantage within every group. Indeed, the local attractor
within any one group is the extinction of weak altruists. Therefore, the behaviour cannot spread unless
groups compete and groups with more weak altruists are fitter than those with less. While the individualist
methodology correctly predicts if the behaviour will evolve, it obscures the mechanistic explanation. This
suggests that models couching the evolution of social behaviour in terms of individual benefit should be
analysed to determine whether group structure is playing any causal role in the evolutionary dynamics.

The second issue to be addressed by this talk concerns the evolution of strong altruism, i.e., behaviours
where there is a reduction in the lifetime number of offspring of the actor. For such behaviours to evolve
there must be a correlation in interactions, such that the recipients of an altruist’s help tend to be altruists
themselves. This correlation frequently occurs in nature through the limited dispersal of kin, and is usually
modelled by inclusive fitness equations that contain no notion of group fitness. However, the underlying
mechanism is that kin groups with more altruists outcompete those with less. Once this is realised, it be-
comes apparent that other assortative group formation mechanisms can in principle produce the same effect.
Appealing to kinship is therefore simply invoking one kind of assortative grouping.

This talk will further elaborate on these points, including definitions of a group, and consider claims about
the strength of group selection.
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The differential production of phenotypes, that is, developmental bias, has been presumed to have a strong
influence on the direction of evolutionary modification. In a computational evo-devo system generating neu-
ral connectivity, we demonstrate an orienting role for developmental bias during adaptive evolution. The
differences in phenotypic transitions taken during evolution are, to a large degree, due to phenotypic acces-
sibility being strongly dependent on the interactions of the developmental process as directed by a particular
genotype. We define developmental bias as the differential production of phenotypes given uniform genetic
variation. In our gene-based developmental system, we approximate the range of phenotypic variation pos-
sible by creating random genotypes and determining the phenotypes they produce. The resultant pattern of
phenotypic variation indicates an intrinsic bias (global bias) in the developmental system. We then determine
the accessibility of phenotypes from a given genotype (local bias) by determining the phenotypes generated
through each and every single-base substitution. We find that the local bias patterns vary strongly with the
genotype, even among phenotypically-neutral genotypes. These patterns also differ from the global bias pat-
tern indicating local biases depend more on the dynamics of the developmental process than on the overall
mechanisms of the developmental system.

During evolutionary simulations toward a target phenotype, the local dependency of bias dictates the phe-
notypic transformations that occur. For example, in two simulations at the generation preceding an increase
in the populations’ best fitness (the populations have approximately the same average fitness), the target
phenotype is produced in one population but not in the other. The average of the local bias patterns for all
individuals in the second population (population bias) shows the target phenotype is completely inaccessible
through mutagenesis of the population. Other fitness-increasing phenotypic transitions show a similar result;
the particular phenotype produced is dictated by the phenotypic variants accessible from the population. This
results in multiple phenotypic pathways to the target phenotype across simulations.

Because local bias has such a strong dependency on the dynamics of the developmental process as deter-
mined by the regulatory structure of the genotype, bias patterns often change dramatically during evolution
through the accumulation of mutations (neutral or otherwise). Phenotypic variants that are possible, as in-
dicated by local bias patterns, occasionally are not able to be generated in subsequent generations. More
importantly, phenotypes previously inaccessible often become available after multiple rounds of mutation.
Mutations change the developmental context in which subsequent mutations operate. In one example, a
mutation previously selectively-neutral eventually becomes a beneficial mutation, resulting in a change to a
higher-fitness phenotype.

These results indicate that developmental bias has a strong influence on the direction of evolutionary mod-
ification. More generally, there are features of the genotype-to-phenotype and phenotype-to-fitness mappings
that affect evolvability, the capacity to vary in phenotypic availability over time.
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A recent study by Cunningham et al. (Cunningham et al., 2001, Psychological Science, 12, p. 532) has shown
that human subjects adapt to delayed visual feedback in a visuomotor task both behaviourally and experien-
tially, i.e., the behaviour is altered in such a way that successful performance on the task relies on the presence
of a visual delay (negative after-effect) and that the experience of simultaneity is re-adjusted to incorporate
the visual delay. This adaptation effect is similar to those observed in experiments with visual displacements,
but contrasts with earlier experiments with sensory delays, in which no such adaptation occurred (e.g., Smith
and Smith, 1962, Perception and Motion, Saunders).

This discrepancy (i.e., adaptation in some situations but not in others) suggests that adaptation to sensory
delays does not proceed automatically, on the basis of statistical properties of sensory inputs, but is contin-
gent on the performed behaviour and the associated sensorimotor dynamics. Artificial Life and Evolutionary
Robotics simulation models are proven tools in the study of non-linear sensorimotor dynamics, which are
difficult to understand intuitively. In particular, our earlier work (Di Paolo et al., 2008, New Ideas in Psychol-
ogy, forthcoming; Rohde, 2008, PhD Thesis, University of Sussex; Rohde and Di Paolo, 2007, ECAL 2007,
p. 193, Springer) argues and demonstrates how Evolutionary Robotics simulation models can contribute to
the scientific study of human sensorimotor adaptation.

In a combined experimental and evolutionary robotics modelling study, we have tested the (unconfirmed)
hypothesis put forward by Cunningham et al. (Cunningham et al., 2001, Psychological Science, 12, p. 532)
that adaptation to sensory delays occurs if there is time-pressure on the task (Rohde, 2008, PhD Thesis,
University of Sussex; Rohde and Di Paolo, 2007, ECAL 2007, p. 193, Springer). On the basis of data
analysis of both the artificial model agents’ and the experimental subjects’ sensorimotor recordings we revised
our hypothesis: We now believe that, apart from time pressure, the task needs to feature a systematic link
between present motion and future sensation over a longer time span in order to make the task predictable.

This new hypothesis will be tested using a combined Evolutionary Robotics modelling and experimental
psychophysics approach proposed and applied in (Rohde, 2008, PhD Thesis, University of Sussex) that aims
at formalising and explaining the sensorimotor invariances associated with perceptual experience of time and
simultaneity. We argue that the contingent relation between function and underlying mechanisms inherent in
Evolutionary Robotics simulations helps to identify general dynamical principles and fundamental sensori-
motor invariances across viable solutions. In this aspect, the approach taken is more general and less biased,
even though also less transparent than related approaches like robotic forward model learning (e.g., Tani,
1996, IEEE Trans. SMC (B), 26, p. 421). This novel methodological framework, which is characterised
by a close match between simulation model and minimalist empirical experiment, can be applied to other
problems of perceptual experience and opens up new powerful avenues for interdisciplinary research that
uses Artificial Life methods to study of human perception and cognition in the closed sensorimotor loop.
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Selective attention in artificial organisms
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Behaviour has two levels, which we will call strategic and tactical. At the strategic level the organism has
to choose which particular activity to pursue at any given time (e.g., looking for food, finding a sexual
partner, escaping from dangers, sleeping). At the tactical level it must implement the particular sequence of
actions that makes it possible to achieve the goal of the chosen activity. The strategic level has important
consequences for attention. Since an organism receives many different stimuli at the same time, it has to
selectively attend to the ones that are relevant to the current activity while ignoring those which are not.

A population of organisms lives in an environment with randomly distributed food elements in which a
predator appears from time to time. The organism’s behaviour is controlled by a neural network with input
units encoding the location of the nearest food and other input units encoding the location of the predator
when it is present. Both sets of input units are connected to a single layer of internal units, which in turn are
connected to the output units that control the organism’s movements. The connection weights of the neural
architecture are evolved using a genetic algorithm where the organism’s fitness depends on both the number
of food elements eaten and the organism’s ability to avoid being reached by the predator. We contrast two
populations of organisms, one with the basic neural architecture and the other one with an architecture which
includes an additional set of units which receive connections from the input units encoding the predator’s
location and send connections to the internal layer. Both populations are able to evolve the appropriate
behaviour which consists in looking for food when the predator is absent and flying away from the predator
when it is present, ignoring food. However, the population with the additional units reaches higher levels
of fitness compared with the population with the simpler architecture. Two additional control simulations
show that higher levels of fitness are not obtained if we simply increase the number of internal units or if we
connect the additional units directly to the output layer.

To better understand why the additional units yield a better performance we compared the activation
patterns of the internal units when the locations of both food and predator are encoded in the input units
and when only the latter is encoded and there is no food. This comparison shows that the contribution of
the additional units consists in making the activation patterns more similar in the two conditions, with the
activation patterns becoming even more similar as the predator comes closer to the organism. In other words,
the additional units allow the organism’s nervous system to better filter out the information from food when
the predator is present and, therefore, they might be considered as functionally equivalent to the modulatory
influence of subcortical structures on frontal cortex in real organisms.
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Organizational requirements for ‘open-ended evolution’
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In this contribution we will review different conceptions of open-ended evolution and propose our own (Ruiz-
Mirazo et al., 2008, Biol. & Philos., 23, p.67). Then, we will consider what are the general conditions that
would allow such an evolutionary process to take place, with a specific focus on the type of organization that
the systems involved should have. It will be argued that a strong ‘dynamic decoupling’ is necessary, making
possible the long-term maintenance of those systems, in which the individual (self-constructing) and collec-
tive (ecological and historical) spheres become deeply intertwined. Particular attention in the discussion will
be given to bottleneck cases, like a hypothetical prebiotic ‘RNA-world’, which –according to our account–
would not meet all the requirements. We will also reason why the evolution of a prokaryote world is al-
ready open-ended, even if the transition to higher levels of complexity (eukaryotes, multicellular organisms,
cognitive agents,) would imply further organizational bottlenecks and the fulfilment of additional conditions.
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Self-organizing heterogeneous swarms designed through evolutionary
methods
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Self-propelled particle swarm models are computational models of many particles capable of autonomous ac-
celeration and local kinetic interaction. Their dynamics have been extensively studied in physics, theoretical
biology, and computational science communities because of their useful implications for the understanding
of collective behavior of various autonomous agents (e.g., bacteria, fish, birds, pedestrians) as well as their
potential of application to practical problem solving.

Earlier studies mostly focused on homogeneous swarms, assuming that the same (or quantitatively sim-
ilar) set of kinetic rules uniformly apply to all the particles. Some literature also assumed intra-specific
variations among particles (such as in body size or velocity) but none of them systematically considered
interactions between kinetically distinct types of particles. In real biological/ecological systems, however,
there are cases where multiple distinct types of organisms interact to form nontrivial patterns. In a herd of
animals, for example, males and females, or parents and offspring, occupy different ecological positions and
therefore adopt distinct behavioral rules. A unique formation may arise within the herd from interactions
between those different types of organisms. Such self-organization of heterogeneous swarms could also be
useful for engineering design purposes.

We therefore extend our scope to heterogeneous self-propelled particle swarm systems in which more than
one type of particles can co-exist and interact with each other in the same space. Our model, “Swarm Chem-
istry” (Sayama, ECAL 2007, p.675, Springer), assumes self-propelled particles moving in a two-dimensional
infinite continuous space. Each particle can perceive only the local center of mass and the average veloc-
ity vector of other particles within its local perception range, and change its velocity in discrete time steps
according to kinetic rules similar to those of Reynolds’ Boids (Reynolds, 1987, Computer Graphics, 21(4),
p.25). Each particle is assigned with its own kinetic parameter settings that specify preferred speed, local
perception range, and strength of each kinetic rule. Particles that share the same set of kinetic parameter
settings are considered of the same type.

Using this model, we computationally studied what kind of patterns/motions could emerge out of the
mixtures of multiple types of particles. In the first experiments testing the effects of two-type interactions,
we found that heterogeneous particle swarms usually undergo spontaneous mutual segregation, often lead-
ing to the formation of multilayer structures. Driven by their own endogenous self-propulsion forces, the
aggregates of particles may additionally show more dynamic macroscopic behaviors, including oscillation,
rotation, and linear or even chaotic motion. Moreover, to explore the possibilities of more than two type in-
teractions, we developed an interactive simulation tool with which a human experimenter can select, perturb,
mix, and mutate heterogeneous swarms using an interactive evolutionary method. The second experiments
using this interactive tool and human participants further revealed unexpected possibilities of more complex,
mechanical, and/or even biological-looking structures and behaviors when several different types are mixed
appropriately. Specifications of those patterns were indirectly and implicitly woven into a list of different
kinetic parameter settings and their proportions, which would be hard to obtain through conventional design
methods but can be obtained heuristically through evolutionary design methods. These results suggest a novel
direction of understanding and engineering collective behavior of physical agents, such as distributed robotic
systems.

The interactive simulation tool is implemented in Java and available at
http://bingweb.binghamton.edu/ sayama/SwarmChemistry/ . Readers are invited to participate in the
ongoing exploratory efforts of this project.
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The concept of robustness in the context of most work in Alife and complex systems implies that the results of
a given model remain consistent despite unexpected variation. For example, homeostatic coupling between
an animat and the environment is one possible simple form of robustness which we have demonstrated in
simple simulation models (Ikegami et al., 2008, BioSystems, 91, p. 388), in which we defined robustness
as a dynamic that sustains variability. However, these models still were situated in simple virtual environ-
ments. We are currently using this simulation as a basis for developing a real-world robot experiment with
“virtual” sound scape setups. Developing this link between real and simulated methodologies has led us to
an examination of robustness in a broader sense.

We argue that robustness as commonly defined in Alife is no longer adequate for producing real insight
into the functions of biological life. Robustness in one methodology or virtual world does not imply robust-
ness in another, and likewise does not imply that we can develop a robust explanation of the behaviour of
interest.

Robustness analysis as a concept is credited to Richard Levins who was the first to truly address pragmatic
concerns important to biological modellers (1966, Conceptual Issues in Evolutionary Biology, p. 18, MIT
Press). Levins argued that the construction of robust theorems from models involves studying similar but con-
ceptually different models of the same phenomena and attempting to discern the common structures between
them. Levins’ pragmatic concerns about modelling illuminate similar tradeoffs made by modellers in the
Alife community, leading some models to become mired in modelling for its own sake, creating simulations
with little relation to the natural world (Silverman et al., 2008, forthcoming).

With this perspective in mind, a reevaluation of the concept of robustness within Alife is needed. While
Alife can contribute to the search for common structures in biological systems which can drive behaviour,
producing robust theorems about those behaviours also involves confirming that such structures are instan-
tiated in the system of interest (Weisberg, 2005, Phil. Sci., 73, p. 730). A unified framework under which
to search for common structures is central to these concerns. Without a clear common relationship between
conceptually related models, performing Levinsian robustness analysis becomes an impossible task.

Thus, we argue that finding robust theorems in Alife which demonstrate common structures is made dif-
ficult by the lack of common environments between models. A more critical analysis of what constitutes
a useful environment for simulation and robotics is needed, and without such analysis, our concept of ro-
bustness falls short of Levins’ requirements for developing true robust theorems about the natural world. In
essence, crafting a robust explanation of a behaviour using a model requires a robust demonstration of that
behaviour through a suitable combination of modeling and experimentation. We contend that combining sim-
ulation and robotics with an approach using common methodologies and related environments as described
above will allow us to develop a new definition of robustness in Alife.
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Dancing robots: form, environment and context in human-robot
interaction
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Most dancing robots to date have used patterns of preprogrammed motions or hard-coded interaction rules
to produce this behaviour. In a departure from this approach, recently we used a form of embodied chaotic
itinerancy (Ikegami, 2007, J. Consc. Studies, 14, p.111; Kaneko et al., 2003, Chaos, 13(3), p. 926) to generate
motor movements for a robot in real time. We used the robot’s sensors to analyse audio input, processing
it at regular time intervals to find the appropriate tempo, and used this information to send input pulses to
a FitzHugh-Nagumo neural network model (Aucouturier et al., 2007, Proc. of the 14th ICONIP, Springer-
Verlag). The dynamic properties of these neurons allow for interesting chaotic behaviour, as some inputs will
produce entrained periodic states, while others produce chaotic or aperiodic responses.

The output neurons of this network drove the motors of our chosen robotics platform Miuro, a simple
two-wheeled vehicle robot manufactured by ZMP (Tokyo, Japan). Despite the deterministic nature of the
mechanisms driving Miuro, the resultant motions are heavily dependent on the music being played, and
thus the robot displays complex transitions between quasiperiodic states of motion. The robot is able to
demonstrate both synchronization and autonomy in its reactions to the music.

Currently we are organizing a workshop together with art students to invent a new type of environment
for robots. In particular, we are aiming to generate “natural” sound environments in which mobile robots can
generate complex and interesting dancing patterns. The workshop will also investigate the role of physical
form in driving interaction between autonomous robots and human observers. The robot will interact with
human observers in the same method as above, through sound, but our investigation of radical and novel
physical forms for the robot will allow us to investigate new varieties of agent-environment couplings.

Ikegami and colleague Keiichiro Shibuya have started a series of sound installations, each of which
uses ideas of Artificial Life and complex systems science to make unique soundscapes (http://sacral.c.u-
tokyo.ac.jp/index.php?Third%20Term%20Music). Using robots, we can further develop this enlightening
cooperation between science and art, which we think is a promising future avenue of artificial life study.
Our collaboration with people from Art University will also encompass this issue, examining the concept of
open-endedness in artificial life studies and developing new methods for generating sound arts.

In both cases, our future work hinges on developing a new understanding of the robot-environment-
human relationship. Through analysis of our work thus far, and discussion of the multitude of conceptual
issues we have investigated with the artistic community, we will demonstrate new ways in which to examine
these relationships. The interplay between form and function, between observer and performer, and between
context and action will all influence the development of both the robot’s morphology and its control structure.
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The virtual rocky shore — linking A-life with ecological and
pedagogical research
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The design and analysis of manipulative experiments is a key skill for undergraduate ecologists to learn.
Despite this, students rarely conduct a true manipulative experiment with appropriate control treatments in
the field, because of practical constraints such as time. Meaningful ecological experiments typically require
months to obtain results, as well as constant maintenance and attention; and often require the use of large
areas of undisturbed habitat. One solution to this problem is to allow students access to a virtual ecosystem in
which they can conduct a possibly unlimited range of experiments which will quickly provide realistic data
for subsequent statistical analysis and interpretation.

Currently, virtual ecosystems fall into two basic categories: those that are vast oversimplifications of real
ecosystems, displaying simplistic and pre-programmed behaviours; and those that bear little resemblance to
real ecosystems, made entirely of interacting digital organisms. While the latter are of more interest to the
A-Life community, they are not user-friendly to biology students who are generally not computer literate
beyond the basics of word processing, spreadsheets and internet technologies.

“The Virtual Rocky Shore”, is grounded in a variety of A-life techniques, including agent-based mod-
elling, self-organisation, evolutionary algorithms and cellular automata. The present version of The Virtual
Rocky Shore is based on the high intertidal region, a simple consumer / resource ecosystem consisting of
grazing snails and a photosynthetic mat or biofilm of lichens, diatoms and bacteria. Although the system is
simple, research underpinning the system’s models has demonstrated that these intertidal snails show many
similar behavioural rules to those displayed by classic A-Life inspirations such as ants. The intertidal snails,
for example, exhibit self-organisation as a result of trail following. The dynamics of the photosynthetic com-
ponents of the virtual shore are also suitable to being modelled in space and time by use of cellular automata
and computer-based optimisation processes including evolutionary algorithms.

Current development of The Virtual Rocky Shore using a user-friendly interface has already provided
novel insights into the functioning and evolution of intertidal communities; with many of these insights
backed up by empirically derived data from real shores and published in peer reviewed journals.

The first implementation of the Virtual Rocky Shore allows experiments to be designed and analysed in
a matter of minutes, rather than the many months traditionally required, facilitating the active and potentially
deep experiential learning of experimental design by students. The results obtained from the simulation are
also similar, and result in comparable statistical analysis, to those obtained from experiments on real shores.

The full potential of The Virtual Rocky Shore, however, lies in its expansion to cover the mid and lower
shore systems. The complexity found at these shore levels will allow many opportunities for further research
at the interface of ecology and computer science, as well as the development of a wide range of potential
experiments beyond simple grazer / biofilm interactions.
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In this work, we propose a new research direction into minimal assembling agents. Our goal is to use very
simple, inflexible assembling units to form complex and flexible assemblies (or meta-modules), guided by
global environmental signals. Instead of the focus in modular robotics and self-assembly on creating maxi-
mally flexible and programmable assembling units (Yim et al., 2007, IEEE Rob. Aut. Mag., p.43), we suggest
a different, complementary approach in which assembled structures maintain or enhance the range of assem-
bly behaviors atomic agents are capable of. Replacing the idea of complex autonomous modules which are
able to build arbitrary structures, like cells building organisms, we are beginning to simulate robotic platforms
which themselves have rather limited assembly behavior but stochastically form structures or meta-modules
with more complex interactions, like proteins built from interactions of a few amino acids. This is inspired
by stochatic assembly results in the real world at any scale (Krishnan et al., 2007, Proc. ASME IMECE,
ASME.org), (Winfree et al., 1998, Nature, 394, p.539), with an emphasis on understanding how function
develops in these semi-controllable environments.

As a proof-of-concept and to gain intuition into how such units might look, we use a microbial genetic
algorithm (MGA) to evolve the logic placed on simulated assembling agents. The agents are modeled as very
simple units containing male (M) and female (F) assembly ports, as well as an input sensor, each of which
may be in one of two states: enabled or not-enabled. Logic (in the form of Petri Nets) is generated by the
MGA and identical copies placed on each agent, which are then allowed to assemble into chains in a well-
mixed stochastic environment. Limited communication can occur between assembled agents’ M and F ports.
Instead of a traditional fitness function, however, where we might evaluate a logic as highly fit if it performs
a particular assembly task, our fitness function rewards logics that maintain assembly behavior as the units
assemble. In particular, we reward logic that maintains pairing behavior in response to a “start” signal. First,
we enable the input sensor on all the agents, which may then form assembled structures including pairs
which add to the fitness. If there are pairs, we then send a second “start” signal, and pairs may form of the
pair structures themselves, and so on until no more pairing occurs. Higher level pairing was rewarded more
than lower level pairing.

By limiting the complexity of the generated logics, and comparing the maximum fitness given these limits,
there appears to be a lower complexity bound for our particular assembling units to maintain their assembly
behavior as they grow orders of magnitude in size. This demonstrates that our initial proposal of designing
simple assembling units which build functional assemblies themselves is feasible, at least in some cases. The
successful controllers generated are interesting in that they function similarly alone or when linked together
in groups of any number of agents: the behavior scales. In future work, we hope to expand this result and
demonstrate assembly controller designs which generate more complex assembly (and other) behavior as they
grow. Our eventual goal is to discover designs for very simple, inflexible units which create programmable
and controllable meta-modules in response to global environmental signals.
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Evolution of complexity in RNA-like replicator systems
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Background: The evolution of complexity is among the most important questions in biology. The evolution
of complexity is often observed as the increase of genetic information or that of the organizational complex-
ity of a system. It is well recognized that the formation of biological organization—be it of molecules or
ecosystems—is ultimately instructed by the genetic information, whereas it is also true that the genetic infor-
mation is functional only in the context of the organization. Therefore, to obtain a more complete picture of
the evolution of complexity, we must study the evolution of both information and organization.

Results: Here we investigate the evolution of complexity in a simulated RNA-like replicator system.
The simplicity of the system allows us to explicitly model the genotype-phenotype-interaction mapping of
individual replicators, whereby we avoid preconceiving the functionality of genotypes (information) or the
ecological organization of replicators in the model. In particular, the model assumes that interactions among
replicators—to replicate or to be replicated—depend on their secondary structures and base-pair matching.
The results showed that a population of replicators, originally consisting of one genotype, evolves to form
a complex ecosystem of up to four species. During this diversification, the species evolve through acquir-
ing unique genotypes with distinct ecological functionality. The analysis of this diversification reveals that
parasitic replicators, which have been thought to destabilize the replicator’s diversity, actually promote the
evolution of diversity through generating a novel “niche” for catalytic replicators. This also makes the current
replicator system extremely stable upon the evolution of parasites. The results also show that the stability of
the system crucially depends on the spatial pattern formation of replicators. Finally, the evolutionary dynam-
ics is shown to significantly depend on the mutation rate.

Conclusions: The interdependence of information and organization can play an important role for the
evolution of complexity. Namely, the emergent ecosystem supplies a context in which a novel phenotype
gains functionality. Realizing such a phenotype, novel genotypes can evolve, which, in turn , results in the
evolution of more complex ecological organization. Hence, the evolutionary feedback between information
and organization, and thereby the evolution of complexity.

[The original article is published as Takeuchi & Hogeweg, 2008, Biology Direct, 3:11]
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How to know without having been there? — Investigating
communication channels in the nectar collecting system of a honeybee
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Honeybees collect nectar from flowering plants in the environment to accommodate their energetic demands.
In a honeybee colony a temporal caste, “foragers”, is collecting nectar. These foragers bring their harvest into
the colony, where they unload their nectar loads to one or more specialised “storer bees”, another temporal
caste in the colony, responsible for the next step of nectar processing. Natural selection has shaped the
foraging-related processes of honeybees, like the communication between foragers via dances, in a way that
a colony can react to changing environmental conditions in an adaptive way. To investigate this complex
dynamic social system and the information and nectar channels we developed a multi-agent model of the
nectar flow inside and outside of a honeybee colony. This model allows us to investigate the nectar collection
process and nectar processing pathways on the colony level, as well as from the point of view of a single
bee during the foraging trip and during the nectar proceeding inside the colony. The simulation includes
near-natural environmental factors, like scattered nectar sources with variable distances between flowers and
a near-natural model of the honeybee metabolism. The inside of the colony (the so called “dance floor”) was
simulated as two one-dimensional transfer zones for foragers and storers, what enabled us to simulate the
unloading-procedure in a highly abstract and defined manner. Our model predicts that a cohort of foragers,
collecting nectar from a single nectar source, is able to detect changes in quality (e.g., the nectar flow) in other
food sources they have never visited, by analysing side-effects of the nectar processing system of the colony:
We identified two novel pathways of forager-to-forager communication by analysing the results predicted
by our model. Foragers can gain information about changes in the nectar flow in the environment via two
ways: Firstly, foragers can detect changes in their mean waiting time for unloadings, which are performed by
the storer bees. Secondly, the foragers can detect changes in the number of experienced multiple unloadings
after returning from a foraging trip. The amount and quality of information available to the single forager
about the environmental situation is increased, what enables the forager to modulate its individual decisions.
The sum of this modulated forager decisions can lead to an optimisation of the foraging behaviour in an
unsteady environment. This way, two distinct groups of foragers, that forage on different nectar sources and
that never communicated directly, can share information via a third cohort of worker bees. We show that the
communication channels within this noisy social network allow the colony to perform collective information
processing. Simulation runs with fluctuations in the environmental nectar flow revealed, that the honeybee
foraging system is even more adaptive (by exploiting the before mentioned communication channels) than
was previously thought.
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In this paper we present a novel cognitive robotic model to study language acquisition in autonomous robots
through the grounding of words in sensorimotor representations. The aim of this new model is to extend
previous work on language grounding in simulated cognitive agents to the new robotic platform iCub. The
iCub is an emerging open platform for cognitive robotic research that will allow research groups to exploit a
common hardware and software infrastructure in order to advance knowledge of natural and artificial cogni-
tive systems. The language learning model is based on the use of artificial neural networks controllers. The
model is based on a series of interconnected modules to gather and integrate visual and linguistic information
for a language comprehension task. The model comprises of a vision module, a sound perception and feature
extraction module and a language integration and recognition network. The vision acquisition module takes
input from the robot’s cameras and applies approximation techniques for the purpose of detecting shapes,
size and colour features of individual objects. The classification of a spoken word is based on the sequence
of the most activated neurons of a self organizing map (SOM) with a 10 x 10 topological 2D grid. The SOM
model has been trained on 112 English words and 544 syllable utterances both from two different speakers,
for determining the ability of the system to distinguish between all words. The language integration mod-
ule is based on a Recurrent Neural Network with Parametric Biases (RNNPB). This network is particularly
suitable for online learning of behaviour in robots. Two experiments were carried out to test the language
learning model. The first consists in the recognition and classification of the speech signals as an imitation
task without the integration of the vision module. This experiment has been based on the use of 20 words.
Each training patterns (words) consists of a sequence of x/y coordinates of the SOM map. During the in-
teraction phase of RNNPB training, the system learns to imitate the SOM word feature outputs pattern by
predicting their next pattern. The network successfully learns to recognize spoken words with a final mean
square error of the output nodes of 0.082. The second experiment consists of the integration of the vision and
speech modules for learning and grounding of the names of objects. This experiment uses as input stimuli the
combination of the features extracted from the visual module and the SOM output patterns. The output units
predict the SOM sequence for the object name shown in the picture. The final square error of the output nodes
was 0.003 over all the learning results. The model was able to categorize and name two objects which share
some features (e.g. shape) but differ in other dimensions (e.g. colour). This preliminary work demonstrates
the successful integration of a SOM network to classify spoken words with the RNNPB network capable of
on-line learning and naming of visual objects. This model is being extended to include the learning of motor
responses to be associated to the visual input of different objects and the capability to combine groups of
words to describe visual scenes involving multiple objects. Although the current model primarily focuses on
the naming aspects of language, our future plans include work on linguistic and communication capabilities.

Artificial Life XI 2008  808 

mailto:vadim.tikhanoff@plymouth.ac.uk


Complex consumer preferences from rudiments of visual processing
Colin Tosh1, Jens Krause1 and Graeme Ruxton2

1IICB, University of Leeds
2University of Glasgow
c.r.tosh@leeds.ac.uk

Humans and many other consumer animals such as predators tend to select similar salient, pop-out, resource
items from a visual scene. This observation hints at a common, simple mechanism underlying visual attention
and driving the evolution of visual apparatus. Using simple artificial neural networks, we demonstrate that
when information degrades early in a neural apparatus, and this degradation is compensated for in higher
layers, many of the distinctive behaviours of consumer organisms emerge. These include preference for odd-
looking resource items, resources that are spatially isolated, and resources that are on the edge of groups. We
also observe evolution of a primitive visual fovea. While visual attention is structurally and mechanistically
complex in humans, the fundamental mechanisms driving the evolution of visual apparatus across different
animal species may be simpler.
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Synchrony is a pervasive phenomenon: examples of synchronous behaviours can be found in the inanimate
world as well as among living organisms (Strogatz, 2003, Sync, Hyperion Press). The synchronisation be-
haviours observed in Nature can be a powerful source of inspiration for the design of swarm robotic systems,
where emphasis is given to the emergence of coherent group behaviours from simple individual rules. Much
work takes inspiration from the self-organised behaviour of fireflies or similar chorusing behaviours. Here,
we present a study of self-organising synchronisation in a group of robots based on minimal behavioural and
communication strategies. We follow the basic idea that if an individual displays a periodic behaviour, it
can synchronise with other (nearly) identical individuals by temporarily modifying its behaviour in order to
reduce the phase difference with the rest of the group. In other robotic studies, synchronisation is based on
the entrainment of the individual internal dynamics through some form of communication (see for instance
Wishmann et al., Adaptive Behaviour, 14(2), p.113). In this paper, instead, we do not postulate the need of
internal dynamics. Rather, the period and the phase of the individual behaviour are defined by the sensory-
motor coordination of the robot, that is, by the dynamical interactions with the environment that result from
the robot embodiment. We show that such dynamical interactions can be exploited for synchronisation, al-
lowing to keep a minimal complexity of both the behavioural and the communication level. In order to define
a robot controller able to exploit such dynamical agent-environment interactions, we use artificial evolution
(Nolfi and Floreano, 2000, Evolutionary Robotics, MIT Press). The obtained results are analysed under a
self-organising perspective, evaluating their scalability to large groups of robots.

The main contribution of this work consists in the analysis of the evolved behaviours, which is brought
forth exploiting a dynamical systems approach: We introduce a dynamical system model of the robots inter-
acting with the environment and among each other. This model offers us the possibility to deeply understand
the evolved behaviours, both at the individual and collective level, by uncovering the mechanisms that ar-
tificial evolution synthesised to maximise the user-defined utility function. Moreover, we show how the
developed model can be used to predict the ability of the evolved behaviour to efficiently scale with the group
size. We believe that such predictions are of fundamental importance to quickly select or discard obtained
solutions without performing a time-demanding scalability analysis, as well as to engineer swarm robotic
systems that present the desired properties.
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Mammalian decisions
Pete Trimmer, John McNamara, Alasdair Houston, James Marshall, Liz Paul, Rafal

Bogacz and Mike Mendl

University of Bristol
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We study a simple scenario in which optimal decision-making requires a trade-off between speed and accu-
racy. Our analysis is set in the context of a mammal deciding whether to forage or invoke anti-predator action
following an ambiguous cue. We assume that the brain has two systems which can make decisions. Thalamic
decisions are fast but are less accurate than cortical decisions (which take longer).

We idealise the analysis by assuming that: 1) Thalamic decisions are made immediately, based upon
a single piece of information (represented using Signal Detection Theory). 2) Cortical decisions are made
by gathering information continuously until a confidence-threshold is reached (represented by applying a
single-boundary version of the Sequential Probability Ratio Test to Brownian Motion with drift).

Following the analysis of each process in isolation, we examine how such decision systems might best be
combined and used in the brain, discussing results in the context of information flow and the phylogeny of
the mental architecture. We find that in some circumstances, if one system is weakened, the other system can
largely compensate, thereby producing similar overall performance but with a different likelihood of response
and decision timing.

The work may help to open areas of research on several topics, such as selective attention, mental stress
and how learning affects decision-making (and vice-versa).
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Modelling the social coordination of behavior with public symbols
Ulas Türkmen and Radomir Zugic

University of Osnabrück
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In the recent decade, there has been an upsurge in models of language evolution. These models are based on
the idea that multi-agent dynamics coupled with certain simple capabilities can lead to basic linguistic behav-
ior. The general organization of these models, however, betrays an idea common to the cognitivist paradigm,
namely that the linguistic symbols used by humans are labels for inner representations. The experiments in
which these models are tested consist of two separate stages, which are (1) generating labels for sensory data
and (2) using these labels for communication. The models also reflect this division, and consequently con-
tain separate modules (1) for creating representations and (2) for creating and transmitting vocalizations that
correspond to these representations. An alternative to this division between perception/categorization and
symbolic representation is using situated representations. The main idea behind situated representations is
that the symbols human beings use in communication serve not only to carry meaning, but also to coordinate
their embodied interaction. Inherent in this view is the social shaping of embodied activity through linguistic
symbols. Traditionally, human cognition is divided into contrasting classes of high- and low-level processes,
which then share inner representations among them in the mediation of thinking and action. Situated repre-
sentations implicate that the relationship between high- and low-level processes, traditionally posited to be
linear, rather is a dialectic one, where the social being of the agent affects, but is at the same time formed by,
its embodied activity.

In order to model situated representations with multiple agents, the microworlds methodology used in
the early days of artificial intelligence is ideal. In such a setup, it is possible to study in a task environment
the necessary components of symbolic intelligence, namely social situatedness and ecological relevance. In
the case of the model presented here, a robotic approach was chosen in order not to abstract away from
the sensory-motor aspects of intelligence. Our approach to categorization is called “categorization without
categories”, which refers to avoiding internal representations which do not have a linguistic function. In order
to implement it, we have used an exemplar-based mechanism which relied on a simple similarity measure
and the storing of whole sets of sensory data.

The principle idea of our experimental setup is providing the robot with an environment with a number
of choices. In the first part of the experiment, the agents learn picking one of the choices, using solely
the possibilities of the environment as cues. The second part starts with teaching one of the agents making
a certain choice. Afterwards, a language game is played in which this agent instructs the other one. By
developing a mechanism to instruct and to be guided by instructions, one agent can profit from the learning
experience of the other and can directly choose the best out of a number of possible behavioural alternatives
without having to go through the same learning experience again.
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Using the RNA sequence-to-structure map for functional evolution of
ribozyme catalyzed artificial metabolisms
Alexander Ullrich, Christoph Flamm and Lukas Endler

University of Vienna
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We introduce a novel genotype-phenotype mapping based on the relation between RNA sequence and its
secondary structure for the use in evolutionary studies. The inspiration for this particular mapping emerged
from the modeling of RNA enzymes within a simulation framework for the evolution of metabolic reaction
networks. In our simulation we allow individuals, containing a genome and a metabolism, to evolve. The
genome contains a number of RNA genes which then give rise to RNA enzymes acting on metabolites and
thus shaping the metabolic network. Individuals are selected based on measures of this network and new
individuals with mutated genomes are created. The use of our mapping allows not only for a more realistic
study of the evolution of the entire system, but also enables us to observe the behavior of our enzymes itself
and therefore possibly gain some insights about the evolution of catalytic molecules in general.

Enzymes typically have an active site where only few amino acids or bases determine its catalytic function
and the remaining structure has mostly stabilization function. Accordingly, we extract structural and sequence
information only from a restricted part of the fold. We decided to focus on the longest loop of the folded
RNA. The idea for mapping the extracted information to a specific chemical reaction was encouraged by
the fact that many enzymes catalyze a reaction by stabilizing its transition state. Recent work on hairpin
ribozymes and other catalytic RNA support that as a common strategy for RNA enzymes. Given the definition
of Fujita’s imaginary transition structures (ITS), we developed a unique index for all possible pericyclic
chemical reactions, describing the constitution of the reaction’s transition state. Every RNA molecule is
assigned such an reaction ID based on the information from its fold. The length of the longest loop specifies
the number of involved atoms and the sequence within the loop determines the atom types. The bond types
are derived from structural characteristics of the loop, such as the length and position of contained stems.
Thus, a mapping from RNA sequence (genotype) to a chemical reaction (phenotype) is produced.

For many years it is known that neutral mutations have a considerable influence on the evolution in
molecular systems. The folding of RNA sequences to secondary structures with its many-to-one property
represents a mapping entailing considerable redundancy. Various extensive studies concerning RNA folding
in the context of neutral theory yielded insights about properties of the structure space and the mapping
itself. We intend to get a better understanding of some of these properties and especially of the evolution of
RNA-molecules as well as their effect on the evolution of the entire molecular system.

Besides using the mapping in several simulation runs which yielded realistic metabolic networks and
connectivities, we performed several statistical tests commonly used in neutral theory, such as the number
of visited phenotypes and the average discovery rate during a random neutral walk. We compared it with
results of approaches using cellular automatons, random boolean networks and other mappings based on
RNA folding. It exceeds all non-RNAmappings in extent and connectivity of the underlying neutral network.
Further, it has a significantly higher evolvability and innovation rate than the rest. Especially interesting is
the highly innovative starting phase in RNA-based mappings.
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Modelling resilience of agro-ecosystems: the co-evolution of regimes
Dirk van Apeldoorn, Kasper Kok, Marthijn Sonneveld and Tom Veldkamp
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Understanding how natural resources co-evolve with management practices is fundamental to all questions
concerning their sustainable management. In the search for new pathways of sustainable development we
seek to understand how comparable initial conditions in agro-ecosystems lead to fundamentally different re-
source conditions. Agro-ecosystems are characterized by a high diversity, path dependence, self organization,
cross-scale interactions and non-linear feedbacks. The resilience perspective claims it offers insight in these
complex systems attributes. For exploring these dynamics we used a summary model approach. A summary
model approach aggregates processes based on detailed knowledge, while allowing for integration of multiple
scales and the identification of thresholds.

We analysed an area characterised by dairy farming in the Netherlands, within which two different farm-
ing systems can be found. One system is characterised by the modernisation paradigm with benefits of scale,
intensification and specialisation, while the other system is characterised by low external input and less in-
tensive farming. For a long time it was thought that the latter, alternative, system represented the laggards of
the adoption rate of innovations. Scientific attention to the development of this region was attracted by the
persistence of the alternative farming system, the increasingly valued effect on the landscape by these farms,
and their mismatch with “modern” environmental regulations.

We developed a summary model that integrates the soil, feed, and animal compartments of the farming
system. The model enables us to simulate the effects of farm management decisions on the key natural
resources soil carbon and nitrogen. When characteristic farm management of both the intensive and the
alternative farming systems are used as model input, the systems evolve to different regimes. I.e., the different
management systems lead to natural resources that respond differently to external drivers.

The two management systems evolved to different natural resource regimes and traverses to the other
regime are slow, highly non-linear and involve large costs. Policies aiming at social-ecological regime change
are currently not aware of these dynamics. We are now discussing with farmers strategies for regime change
employing the non-linear dynamics in their system. With researches in the area we are formulating new
hypothesis on system functioning. Meanwhile at the governance level we show how the environmental regu-
lations, although initially successful, will actually drive the systems to an unwanted regime.
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Diet learning and the evolution of cultural inheritance
Daniel van der Post, Bas Ursem and Paulien Hogeweg

Utrecht University
d.j.vanderpost@uu.nl

Social learning can give rise to cultural inheritance which forms an additional inheritance system next to ge-
netic inheritance. Its evolution can be seen as a major transition in evolution. Using a spatial individual-based
model we study the evolution of social learning and therewith the emergence of culture. We focus on diet
learning in group foragers as a context in which cultural inheritance could have evolved. We model a rich
environment in which foragers learn what to eat and focus on how environmental complexity can structure
behavioural opportunities and lead to self-organizing processes. Our results show that social influences on
learning arise as obligate side-effects of grouping. In patchy environments this can give rise to both tradi-
tional inheritance and cumulative cultural processes. Cultural phenomena therefore arise “for free” as soon as
individuals learn by trial-and-error in groups. This shows the role of self-organizing processes in generating
novelty in evolution. These self-organized processes set the context in which more sophisticated forms of so-
cial learning can evolve. By including copying behaviour in our model, we studied its adaptive influence and
evolution. Results show that copying is not a fixed strategy and its adaptive value depends on resource dis-
tributions in the environment. On the one hand copying leads to collective problem solving within lifetimes.
On the other hand it generates cumulative cultural diet optimization over lifetimes. Preliminary results of
evolutionary simulations show that copying behaviour evolves because it allows for these adaptive processes.
However copying also tends to reduce variation in groups and thus reduces the efficacy of natural selection.
We conclude that self-organization plays a large role in the transition to cultural inheritance by means of
generating obligate social influences on learning as side-effects of grouping. Moreover, this self-organized
baseline affects the evolution of cognitively more sophisticated forms of social learning.
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Reaction-diffusion spots as a model for autopoiesis
Nathaniel Virgo and Inman Harvey

University of Sussex
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We analyse pattern formation in reaction-diffusion systems from an autopoietic point of view, emphasising the
commonalities between living organisms and a certain class of so-called dissipative structures, namely those
(such as spot patterns or hurricanes) in which there are more-or-less clearly defined unities, or individuals,
which arise from the system’s dynamics.

Previous authors have used cellular automata as a basis for studying the emergence of autonomous agent-
like structures, but the continuous nature of reaction-diffusion systems gives them a substantial advantage
over discrete cellular automata as it enables systems to be perturbed by an arbitrarily small amount. Since
reaction-diffusion systems are simulations of physical/chemical systems the resulting model agents must
obey the relevant thermodynamic constraints, an aspect of living systems that has generated a lot of recent
discussion in the autopoietic literature.

The Gray-Scott model is perhaps the simplest reaction-diffusion system that can create complex patterns;
it models a single type of autocatalyst feeding on a ’food’ chemical that is continually added to the system;
both are able to diffuse on a two-dimensional surface. One of the patterns that can be formed consists of
blurred but individuated “spots” of autocatalyst separated by regions in which the autocatalyst is absent. We
take a single spot as the basis for our model agent.

With the autopoietic description in mind we perform three experiments. Firstly, we put these spots into
situations where there is a spatial gradient of the food molecule and find that they tend to move along it,
usually away from areas where the level of food is too low for their survival. The relationship between
constitution and behaviour is fundamental to the autopoietic theory, and this result opens the possibility of
studying the interface between the two empirically.

Secondly we vary the rules of the system, allowing a different set of chemical reactions, which can result
in agents with a more complex anatomy than just a single spot, and even a very limited form of heredity.

Finally we find that individuated spots are very likely to arise when there is a negative feedback between
the whole system’s activity and its overall supply of food. This situation is common in natural systems, and
our result suggests a direction for further research into the conditions under which individuated unities are
likely to occur in general.
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Can we rebuild a cell? Bryopsis — an experimental model!
Alexandru Vladimirescu
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AlexandruVl@yahoo.com

Generally speaking a violent mechanical treatment applied on a living cell or a unicellular organism destroys
its structural and functional integrity and leads to death; any tentative to re-build the destroyed cell from the
remaining cellular fractions turned into failure. There are few exceptions; one of them is the coenocytic sea-
weed Bryopsis. This widespread seaweed has the ability to be restored from its cellular fractions beginning
with the spontaneous aggregation of cytoplasm and organelles (in the presence of seawater) and continuing
with the formation of a temporary polysaccharide membrane surrounding the cytoplasm aggregates, forma-
tion of a lipid-based membrane and restoration of the cell wall; the result is a cell that has the ability to growth
and form a new Bryopsis thallus. In the experimental approach to re-build the coenocytic alga Bryopsis, in
early events after the mechanical destruction, cytoplasm and organelles can be mixed with biological (E. coli
living cells caring the gfp gene for the Green Fluorescent Protein) or inorganic particles (Fe3O4 nanoparti-
cles for Ferrofluids) so that the new particles would be incorporated in the re-constructed Bryopsis protoplast/
cell. The behavior of Bryopsis protoplasm and particles will be presented and discussed using Optical and
Transmission Electron Microscopy investigations. The preliminary experimental data support the belief that
the reconstruction of a designed Bryopsis cell, including artificial or natural foreign elements, will become a
reality in the nearest future.
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Can individual selection favour significant higher-level selection?
Richard Watson, Rob Mills, Alexandra Penn and Simon Powers
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How do new evolutionary units, supporting higher levels of functional organisation, arise from existing evolu-
tionary units? The adaptive transformation of co-adapted species into new units, as in the major evolutionary
transitions, is centrally implicated in the evolution of complexity but has proved very problematic for current
evolutionary theory and understandably elusive in ALife. We investigate the evolution of new evolutionary
units via individual adaptation in a multi-species ecosystem by modelling symbiotic associations that cause
interaction probabilities to deviate from a freely mixed condition. It is well known that assortative grouping
supports group selection in a well-defined sense, thus it is no surprise that enabling such associations will
introduce some group selection effects. However, what form will this take when the control of such grouping
is under individual adaptation? We tackle this by comparing the ecosystem attractors of the initial freely
mixed system to those of the same system given the evolved association probabilities. In general we find
that self-interested adaptation of associations tends to only reinforce species combinations that were already
stable before the associations — which seems rather uninteresting. However, if the species densities of the
ecosystem are occasionally perturbed whilst associations are developing this causes the system to visit differ-
ent attractors and allows multiple, possibly incompatible, associations to be selected for in different contexts.
Under these conditions, even when the attractors of the final system already existed as attractors in the freely-
mixed system, competition between different combinations of species enlarges basins of attraction that lead
to fit combinations at the expense of those that lead to less fit combinations. Thus, after the associations have
evolved, a fit combination of species may be favoured in the niche that is constructed by the action of its
association preferences, even if each species involved would be individually unfit if the system were freely
mixed.

These findings show that evolved higher-level selection can have significant effects even when the new
units result from the self-interest of the constituent sub-units. They also suggest that evolved complexes
observed naturally may appear to be merely the result of individual selection because they are supported
by individual self-interest, but in fact the reason that this complex persists and not some other is due to
competition among species combinations.

Nonetheless, in small systems these mechanisms do not produce higher levels of complexity than those
which occurred without evolved associations because the configurations that result were already visited in the
initial freely-mixed system. However, we find that in large complex ecosystems with many local attractors,
evolved associations naturally generalise over the relatively few attractors that are visited, enlarging attractors
for fit species combinations even before they are visited. An idealisation of these processes has been shown
to be far superior to conventional evolutionary algorithms on a fairly general class of difficult optimisation
problems. This self-modification of ecosystem attractors therefore illustrates a mechanism that produces
high-fitness biological complexes despite the fact that their evolution would seem highly implausible given
the very small size of the basin of attraction that leads to this configuration under selection on the original
units.
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Autopoiesis, enactivism, and the extended mind
Michael Wheeler
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Two strands of recent embodied theorizing about cognition that are commonly held to be in harmony are
actually in tension. This tension arises, in part, from the different ways in which the two positions in question
— the extended mind hypothesis (EMH) and enactivism — conceive of the relationship between life and
mind.

The history of enactivist ideas, plus a recent presentation of the view by one of its architects, Evan
Thompson, suggest that the autopoietic theory of Maturana and Varela is a non-negotiable component of
enactivism. An autopoietic system is a self-organizing autonomous system that, through its own endogenous
activity, produces and maintains a physical boundary that distinguishes that system as a material unity in the
space in which it exists. According to Maturana and Varela: (i) any living system is an autopoietic system;
(ii) any autopoietic system is a living system; (iii) cognition is viability-maintaining activity in a domain of
interactions defined by an autopoietic system’s organization; (iv) enaction is the process by which significance
is brought forth through the viable structural coupling of an autopoietic system with its environment.

Against this background, one striking claim made by autopoiesis theorists is that living is cognition. A
natural way of hearing this claim (one that Maturana and Varela themselves often seem to recommend) is
as asserting that the living system is identical with the cognitive system. If we add to this identity assertion
the independently plausible thought that the living system (the organism) will be bounded by its skin, the
implication is that, for the enactivist, the cognitive system is bounded by the skin. However, according to
EMH it is possible for things and processes located beyond the skin sometimes to count as the proper parts
of a cognitive system, which means that the boundary of the cognitive system may sometimes extend beyond
the skin. So, it seems, the enactivist cannot endorse EMH.

The enactivist might reply that I have painted an impoverished picture of the relationship between life
and cognition, as she understands it. Varela, in later work, depicted cognition as a process of sense-making.
Di Paolo has argued that to explain sense-making, raw autopoiesis (autopoiesis as described above) must be
supplemented with a capacity for adaptivity, itself established on the basis of an autopoietic organization. As
I understand him, Di Paolo holds that being a raw autopoietic system is necessary but not sufficient for being
a cognitive system (for realizing sense-making). However, since being a raw autopoietic system remains
necessary and sufficient for being a living system, being a cognitive system remains sufficient for being a
living system. So if our reconstructed enactivist did try to sanction EMH, she would be claiming (a) that
an extended cognitive system is an autopoietic system, and (b) that an extended cognitive system is itself (it
does not merely contain) a living system. Claim (a) is debatable and claim (b) violates our highly plausible
thought that living systems don’t extend. The enactivist still cannot endorse EMH. Enacted minds are not
extended minds.
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Environmental regulation by higher level selection in a simulated
network of microbial ecosystems
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The Earth possesses a number of regulatory feedback mechanisms involving life. In the absence of a popula-
tion of competing biospheres it has proved hard to find a robust evolutionary mechanism that would generate
environmental regulation. It has been suggested that regulation must require altruistic environmental alter-
ations by organisms and would therefore be evolutionarily unstable. This need not be the case if organisms
alter the environment as a selectively neutral by-product of their metabolism, as in the majority of biogeo-
chemical reactions, but the question then arises: why should the combined by-product effects of the biota have
a stabilising, rather than destabilising, influence on the environment? In certain conditions selection acting
above the level of the individual can be an effective adaptive force. Here we present an evolutionary simula-
tion model in which environmental regulation involving higher level selection robustly emerges in a network
of interconnected microbial ecosystems. The Flask model simulates an evolving microbial community sus-
pended in flasks of liquid with prescribed inputs of nutrients. The system is seeded with a clonal population
of ‘microbes’ that are subject to mutation on genetic loci that determine their nutrient uptake patterns, re-
lease patterns, and their effects on, and response to, other environmental variables. Nutrient recycling loops
robustly emerge from local adaptation, but populations are vulnerable to crashes caused by ‘rebel’ mutants
which push abiotic conditions away from habitability. In previous work we have demonstrated a community-
level response to artificial selection at the level of a single flask. Here we show that spatial structure in a
network of interconnected flasks creates conditions for a limited form of higher level natural selection to
act on the collective environment-altering properties of local communities. Local communities that improve
their environmental conditions achieve larger populations and are better colonisers of available space, while
local communities that degrade their environment shrink and become susceptible to invasion. The spread of
environment-improving communities alters the global environment towards the optimal conditions for growth
and tends to regulate against external perturbations. This work suggests a new mechanism for environmental
regulation that is consistent with evolutionary theory. Interestingly, the system appears to be ultrastable — a
term originally introduced in cybernetics by W. Ross Ashby — in that its stability requires the maintenance
of key variables within bounds. We speculate that the biosphere may also be ultrastable.
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Timing of critical periods in development
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Critical periods are specific periods in the development of a living organism during which there is an increased
sensitivity to external perturbations. Such perturbations result in a developmental trajectory significantly
different from what is considered the norm. This study is concerned with the question of whether the presence
and timing of a critical period can be predicted from the developmental profile without perturbation. We
frame this question in the context of Waddington’s epigenetic landscapes (Waddington, 1943, Am. Midl.
Nat., 30, p. 811) and put forth the hypothesis that bifurcations are more likely to take place when the system
is undergoing rapid developmental changes, i.e., critical periods will occur when the rate of change is greatest.

To test this hypothesis, we developed a simulation of the early stages of embryonic development, specif-
ically, the development of cellular structures and cell differentiation. The model was formed of two compo-
nents, the genetic component and the cellular component. The genetic component simulated gene expression
and genetic regulation where artificial transcription factors and proteins were synthesised that excited and
inhibited genes. The cellular component simulated several cell functions that were controlled by proteins and
that made it possible to grow cellular structures composed of cells of different types. The model existed in
3D space allowing for complex 3D structures to emerge over a fixed time period through the dynamics of
differential gene expression and cellular functions. The amount of energy available to the system was kept
constant so that energy consumption was a limiting factor that stopped the physically impossible scenario
of infinite growth. Artificial evolution was used to create genomes capable of growing into organisms of a
specific structure, and genome size was varied to allow for organisms to develop differently into their final
structure. The presence of critical periods was tested by systematically depriving each developing organism
of varying amounts of an extra-cellular signalling protein at different times between runs and by locating
variations in fitness of the organism after development of more than two standard deviations. All organisms
were found to exhibit critical periods, and the timing of these critical periods was found to correlate strongly
with greatest rates of change in the energy profile of the organism developing without perturbation. Interest-
ingly, these periods of change were linked to discontinuities in the consumption profiles of various signalling
proteins, an observation that is consistent with a recent finding in developmental biology that morphogenetic
variables are not monotonous in time (Cherdantsev et al., 2005, Ontogenez, 36(3), p. 211). The ability to
predict the critical periods of a developing system has broad implications not only in the clinical domain – in
particular, the study of teratogens (Wilson, 1973, Environment and Birth Defects, Academic Press) – but also
in the study of artificial developmental and adaptive systems.
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Time and space in neuronal networks: the effects of spatial
organisation on network behaviour
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Complex networks in nature are often characterised by nontrivial spatial organisation. In such networks, the
topology and spatial organisation are often tightly coupled to the activity on the network. In particular, spatial
topologies frequently influence time delays through the network. In many real world networks, from transport
systems to brains, increased distance (or wiring length) increases time delays in physical or information flow.
Here we investigate this role of space on neural network dynamics.

Time delays are well recognised to influence dynamics in neural networks. It would not be surprising,
therefore, if neural networks exploited spatial organisation to tune their time delays and obtain desired pat-
terns of activity. However when we model such networks, either to study or to apply their properties to
engineering problems, it is important to distinguish between two cases: either the effects of spatial organi-
sation in the network are merely temporal, in which case the complex and computationally expensive spatial
organisation can be succinctly abstracted out, or — more interestingly — spatial organisation may lead to
behaviour that cannot be captured solely by temporal effects.

We investigated this question in biologically constrained spiking neural networks operating close to a
critical bifurcation between stationary behaviour and population-wide oscillatory behaviour. In particular,
we used a network of leaky-integrate-and-fire neurons and conductance based synapses with alpha-function
kernels, operating in the so-called balanced regime, where each neuron receives similar excitatory and in-
hibitory drive. Specifically, we compare the transition from stationary to oscillatory network behaviour as a
function of spatial organisation. The two modes of behaviour are found in biological neuronal networks and
are important for qualitatively different information coding schemes (e.g. rate coding in the stationary regime
and phase or temporal coding in the oscillatory regime).

First, we demonstrate that time delays play an important role in this type of network. We found that the
region of parameter space for which stationary behaviour is found increases with shorter time delays. We
compared this performance to that of an otherwise identical network but with explicit spatial organisation. In
our networks, spatial organisation was implemented by clustering inhibitory cells in the midst of a homoge-
neous population of excitatory cells, in keeping with dendritic length scales of inhibitory cells in some cortical
areas. In addition to introducing a spatial patterning, the central clustering of inhibitory cells also reduces the
mean inhibitory-to-excitatory time delays in the network. Thus, a purely temporal effect of clustering would
yield similar results to shortening the time delays in the system. In fact, with this spatial network model we
found a robust reversal of the network behaviour compared to that of the non-spatial network: the shorter
the time delays, the more oscillatory the network becomes. This counter-intuitive result may suggest that
the gradient in time delays imposed by spatial organisation may dominate the effect of reducing mean time
delays in these networks. In fact, the role of space could be further enhanced (or suppressed) by introducing
spatially graded connection probabilities (e.g. with closer cells more likely to be connected).

In conclusion, we have described a novel spatial effect. While the spatial organisation described is plau-
sible, it and the corresponding effect on network dynamics would be interesting predictions to test in cortical
networks.
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Canalization and environmental engineering
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Canalization is an umbrella term a leading C. H. Waddington introduced in 1960’s. The term describes
the ability of a population to buffer disturbances in phenotypic development. There are two major types of
canalization based on the sources of disturbances: genetic and environmental. Genetic canalization describes
the ability to express the same phenotype from different genotypes, while environmental canalization is to
stabilize development under different environmental conditions.

With a graph of norms of reaction, evolutionary process of canalization is expressed as a squashing
process of the pattern of phenotypic expression across a range of environments. It is also known that learning
(or plasticity, in general) has a similar effect: it would normalize the end state of phenotypic development.
However, it has not been thought of a case of canalization as it also enables a genotype to express two
distinctive phenotypes (as the term “plasticity” implies).

In this work, we will challenge this view, and examine how learning would potentially provide a third
type of canalization. Specifically, this work will show if phenotypic traits are partially inherited via cultural
transmission (i.e., learning), and if the function of the trait is to do with social conformities among individ-
uals in a population, it would possibly stabilize the learning environment itself so as for different genotypes
to be able to express the same phenotype. This effectively narrows the range of trait variation not by (evolu-
tionarily) modifying the reaction norm itself, but by manipulating the variation of environment the majority
of the population would encounter during its learning period. As such, this type of canalization should be
categorized neither genetic nor environmental canalization.

We use a multi-agent model which simulates evolution of language. In the model, the population consists
of 200 agents allocated on a horizontal space. Each agent acquires her linguistic knowledge with inputs
provided from adults’ linguistic activities (i.e., communicative activities). Learnability of given linguistic
knowledge is sensitive to 1. learner’s genetic information, 2. learning ability, and 3. consistency of inputs
across different adults. The fitness of an agent is measured by the number of successful communication with
her neighbor peers.

With the condition that there is no evolution on the learning ability, the result shows that initially, selec-
tion works on genes so that agents’ genetic information conforms with the linguistic knowledge dominating
the population, as this eases the burden of learning —a classic example of the Baldwin effect. However, as
doing so, the population more and more converges into a single linguistic community. This paves the way to
smoothing the learning environment (i.e., the collective state of learning inputs) from which later generations
learn. Consequently, the environment is now confined itself to provide coherent inputs. Under this circum-
stance, the population can tolerate a certain degree of genetic disturbances as they can be absorbed by the
plasticity which created such an environment itself.

As noted above, this type of canalization is primarily not a process of genetic evolution. Instead, it is an
environmental engineering process which modifies the frame of norms of reaction itself.
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