
1 Introduction

December 1992. Berlin. Aglaopheme becomes one with the electric guitar. Her six artificial
brains just got reset, her floating-point synapses sprayed with fresh Gaussian noise, leaving
her clueless face to her body-environment. An impish childlike spirit, ready to enact her own
world. To explore and exploit the most intimate connections between outputs and inputs.
To become and make become.
The air is chargedwith static. The robotic siren hesitantly plucks the E string as shemoves

the slide in a downward fashion, producing a shrieking, distorted sound. Thus begins a long
and monotonic solo, as Aglaopheme obsessively plays that E tone, over and over and over.
Nicolas Baginsky is standing in front of her, mesmerized. The robot never behaved this

way before. There must be a bug somewhere in the source code, a glitch in one of the rules
governing her behavior. Maybe one of the pieces of hardware, like the pickup or the effects
pedal, is not functioning properly. Yet Baginsky listens, enthralled by the strangeness of
Aglaopheme’s performance as his own brain tries to make sense of the robot’s neurotic
behavior.
Twenty minutes pass that feel like twenty hours. The vibrations of the E string feed

through the guitar pickup and then to a set of distortion devices. The filtered sound waves
are converted into a frequency spectrum that is fed back into the robot’s six artificial neural
networks. Each net emits a digital signal, competing for attention, and for the first time
since her synapses have been reset, Aglaopheme’s A net screams louder than the E net,
and the guitar-bot nonchalantly pinches the corresponding string, as if emerging from her
torpor.
During the rest of Berlin’s Second Electronic Art Syndrome festival—a three-day,

twenty-four-hour event near Alexanderplatz—the robot began producing more complex
sonic improvisations, self-organizing around the physical qualities of the sound spectrum,
developing a style of her own. For the next two decades, Aglaopheme (see figure 1.1) would
practice, rehearse, and perform, constantly adapting to the different sound environments to
which she was exposed. Over these years, other robotic music players joined with her to
form a jazz improvisation band called The Three Sirens. All music was played live, without
any score, the result of the robots’ self-adapting interactions that came by jamming together
in rehearsals and shows. −1
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2 Chapter 1

Figure 1.1
Nicolas Baginsky, Aglaopheme, 1992. Guitar robot. Courtesy of Nicolas Baginsky.

The Three Sirens constitutes an early example of a growing field of practice within
contemporary digital art that engages with a form of artificial intelligence (AI) known
as machine learning. Machine learning proposes to endow machines with intelligence
not by programming them directly with logic rules but rather by allowing them to pro-
gram themselves by learning from their experience. Almost left for dead by the end of
the 1990s, this approach has gained impressive impetus since the mid-2000s thanks to
critical breakthroughs in fundamental research that triggered an unprecedented interest
by the commercial sector and more recently in artistic circles. This has given rise to a
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Introduction 3

loosely defined artistic movement, intimately related to previous computational artistic
practices such as cybernetics art, artificial life art, and evolutionary art that I call machine
learning art.1

Machine learning is a branch of artificial intelligence that allows computers to learn from
experience rather than by being “explicitly programmed” (Samuel, 1959). In the case of The
Three Sirens, the robots learn from the sounds they record live from their environment—
including the sound they themselves produce. This data is processed by a training process,
an algorithm that gradually adjusts a mathematical function mapping inputs (sound waves)
onto outputs (plucking the indicated string).
This work shares many similarities with speech recognition software found on modern

mobile devices such as Alexa or Siri. Most state-of-the-art speech recognition algorithms
used today are also based on machine learning. Like Baginsky’s robots, these systems are
subjected to streams of audio data fromwhich they extract regularities. In the case of speech
recognition applications, the sound information is associated with specific phonemes
that have been previously annotated by humans. The algorithm then tries to predict the
right phonemes given new streams of audio inputs, readjusting itself using the tagged
data.
These two examples share a common technology, but what truly distinguishes them is

how and why they exploit it. Whereas a speech recognition system can be evaluated using
a specific metric that measure its ability to perform well in its given task (i.e., translating
sounds into text), Baginsky is not really interested in understanding how his robots come to
make their decisions, let alone in measuring the accuracy of their musical performances—
he simply decides whether he likes or dislikes what he hears. His interest lies in the
possibilities that the technology offers and in the fact that these robotic performers are
developing a unique, specific style, not by direct, hand-crafted programming but rather by
being exposed to the world and finding their own way through it. Perhaps more profoundly,
Baginsky is interested in what these adaptive entities, and the process of making them, can
teach him about music.
Recent breakthroughs in machine learning have sparked a “4th industrial revolu-

tion” (Schwab, 2016) in which adaptive computational systems are rapidly overtaking
intellectual tasks in a diversity of fields such as medicine, transportation, and finance. As
AI researcher Max Welling has stated, “where steam engines replaced physical labor dur-
ing the industrial revolution, smart algorithms will soon replace mental labor in what some
have dubbed the second machine age” (Welling, 2016). The spearhead of this revolution,
deep learning (LeCun, Bengio, & Hinton, 2015; Goodfellow, Bengio, & Courville, 2016),
involves using several interconnected layers of artificial neurons to represent and interpret
patterns present in huge quantities of data. These highly “disruptive technologies” (Bower
& Christensen, 1995) significantly alter the way business and society operate, in areas as
diverse as self-driving cars, automated medical diagnosis, smart financial trading systems,
autonomous weaponry, data mining, and surveillance. Indeed, economy, labor, justice, and
the environment, are only a few of the many disciplines that are being transformed to their
core by AI.
Deep learning is the last offshoot of a technological lineage that originated in the

late 1940s with the science of cybernetics, and further expanded in the 1980s with
connectionism, an approach in cognitive science and AI that rests on using simplified
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4 Chapter 1

mathematical models of neural networks found in the human brain. Its emergence since
the beginning of the millennium is inseparable from the increased access to raw computing
power—in particular, due to the development of graphical processing units (GPUs) inci-
dentally pushed by the game and cinema industries—and the exponential growth of data,
thanks to the explosive expansion of the internet as a platform for mass social media. AI
has become an industrial science. It also has become more accessible: with the develop-
ment of the internet and mobile devices, AI now lives with us at all time, within reach of
our fingertips.
With deep neural architectures computing billions of software neurons and trillions of

synaptic connections on GPU clusters owned by the largest IT companies, attuned to our
everyday actions in the most unobtrusive, steady, and inexorable fashion, the digital world
we were used to, with its recognizable and explainable decision-making procedures based
on hand-coded heuristics, is already gone. We are moving into a new era, in which perva-
sive, seemingly organic algorithms feeding on statistics are replacing rule-based systems,
adaptively coupling to humanity in all-encompassing, distributed processes of control and
optimization. To understand this new age, we need to extricate ourselves from an outdated
vision of computational systems as formal, rule-based, logical constructs and start seeing
them for the biologically inspired, statistically driven, agent-based, networked entities they
have become.
Our accelerated move into a world populated by these adaptive, autonomous, and

uncanny forms of computation constitutes the realization of a particular form of cybernetic
society that is highly contingent on the interests of big business2 and government powers.
Artist Memo Akten highlights how in the same way that World War II gave rise to digital
computers and the Cold War gave us the internet, today “the mass surveillance related to
the War on Terror and Internet business models are giving us Artificial Intelligence and
Deep Learning” (Akten, 2016b). In critical need of being reappropriated, deconstructed,
torn apart, and democratized, artificial intelligence has thus become a critical space of
engagement in the twenty-first century.

Myths and Misconceptions

Despite the increased use of machine learning in many facets of contemporary industrial
and commercial culture, until recently one area in which it had not made a meaningful
impact was the field of artistic practice. This is certainly not true anymore: in the last
decade, there has been an explosive interest in artificial intelligence and machine learn-
ing from the art world, with exhibitions such as Uncanny Valley: Being Human in the
Age of AI (Young Museum, San Francisco, 2020–2021), AI: More Than Human (Barbi-
can Centre, London, 2019), Deep Feeling: AI and Emotions (Petach Tikva Museum, Tel
Aviv, 2019), D3US EX M4CH1NA (LABoral, Gijón, Spain, 2019), Entangled Realities:
Living with Artificial Intelligence (House of Electronic Arts, Basel, 2019) I Am Here To
Learn: On Machinic Interpretations of the World (Frankfurter Kunstverein, 2018), and
Machines Are Not Alone: A Machinic Trilogy (Chronus Art Center, Shanghai, 2018). The
2019 edition of the Prix Ars Electronica included a new category called Artificial Intelli-
gence & Life Art, a testimony to the established relevance of AI-oriented approaches to
digital arts.
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Introduction 5

This frenzied enthusiasm is accompanied by a number of myths and misconceptions that
complicate the analysis of the situation. Here are some of them.

Myth 1: Artificial intelligence, machine learning, and deep learning are one and the
same. This confusion arises because the term artificial intelligence is employed in at least
three different ways. The first, which is the one used in this book, refers to a broad field
of research that spans many competing approaches. One of these approaches is machine
learning, which focuses on designing computer algorithms that can learn on their own.
Deep learning is a specific approach within machine learning that uses a particular type of
learning system known as artificial neural networks. The second definition of AI reserves
the term to state-of-the-art systems while previous approaches are considered devoid of
intelligence. According to this definition, in our day and age, only deep learning and other
advanced forms of machine learning should be called AI, thus AI is often used as a synonym
for these cutting-edge techniques. Finally, the third meaning of the term, more frequently
used in everyday parlance, concerns artificial agents that may or may not rely on machine
learning, as in the expression “an AI created this masterpiece.”

Myth 2: Machine learning art is new. Machine learning can be traced back to the early
days of cybernetics in the 1940s. The expression machine learning first appeared in the
1950s around the same time as artificial intelligence. Artists have been using adaptive or
learning computational systems since then, through various artistic movements such as
systems art, algorithmic art, robotic art, and evolutionary art. Yet, the presence of such
approaches in artistic works is often hard to trace because they are frequently used more
as metaphors than as actual techniques. For example, the definitions of concepts such as
learning, adaptation, and even artificial intelligence used by artists often differ greatly from
the corresponding scientific definitions.

Myth 3:Machine learning can create art without artists. The idea ofmachines that can
altogether replace artists is far from new. Consider, for example, Jean Tinguely’sMétamat-
ics series of drawing machines from the late 1950s, or Harold Cohen’s painting program
AARON, which he developed from 1973 to his death in 2016. Although some machine
learning systems produce fascinating results, in fact, as we show in this book, machine
learning art still requires a lot of labor. While some of the tasks usually associated with
computer programming are borrowed, other cumbersome and often expensive tasks arise,
such as the building of huge data sets, the fine tuning of training algorithms, and a lot of
preprocessing and postprocessing. More importantly, even when some of the choices are
left to a machine, art always involves a number of decisions that can be made only by the
author of the work.

Myth 4: Machine learning will soon give rise to superhuman intelligence and cre-
ativity. This is a common myth about machine learning and also more generally about
technologies. The appearance of every new technology has triggered a dread of human
obsolescence. For example, in the early twentieth century, the Futurists claimed that
mechanical technologies would soon overtake humanity (Versari, Doak, Evans, Bellow,
& Curtin, 2016). With regard to current-day machine learning, although opinions diverge
on the matter, the scientific community seems to largely agree that current systems are very
limited. Although some systems currently in place are impressive, they are still limited to
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very narrow tasks and require a lot of examples to be trained. They have no common sense
and are unable to apply knowledge outside of the problem on which they have been trained.
A defining trait of creativity is the ability to “think outside the box,” to use one’s intuition
to come up with ideas that rattle the status quo. Machines are still far from being able to do
that—although they may be in a distant future.

Understanding Machine Learning Art

As a field of research, new media arts have not often been a sustained topic of study
for art historians, leaving a void that is only starting to be addressed. For the most
part, it is new media artists themselves who have started building some of the theoret-
ical tools for understanding their discipline through analyzing their own practices. By
comparison, machine learning has been an essential part of the AI ecosystem since the
1950s. Although its role has often been peripheral, its presence has been exponentially
growing since the deep learning revolution of the mid-2000s, largely due to machine learn-
ing’s unprecedented success in tackling major AI-related problems. Machine learning is
thus a critical concept whose increasing presence in our world has vast sociotechnical
repercussions.
As these technologies are becoming increasingly popular and readily available, there

currently exist almost no conceptual guidelines or theoretical frameworks for how to make
these works and think about them. There has been some groundwork concerning generative
and artificial life practices and concepts such as self-regulation, evolution, and emer-
gence (Kac, 1997; Tenhaaf, 2000; Whitelaw, 2004), but there has been a smaller amount of
rigorous work on machine learning and adaptive computation by artists.
The renaissance of machine learning that we have been experiencing since the mid-

2000s is occurring in the context of what Simon Penny calls the crystallization of new
media (Penny, 2017) pushed by strong market forces that undervalue the kind of indepen-
dent and experimental artistic practices that existed in the 1980s and 1990s. It has become
crucial to start building aesthetic theories of machine learning systems in order to allow
for a better understanding of artworks that use them, comprehend the processes entailed in
workingwith them artistically, and reposition the role of the artist within this new landscape.
This book seeks to lay the first blocks of such a conceptual framework to comprehend

machine learning within the field of new media art. It attempts to bring some clarity to the
early stages of the emerging industrial revolution through historical, practical, and theoret-
ical examinations of machine learning in the arts. Through this, it aims to offer conceptual
tools, accounts of practice, and historical perspectives to contemporary new media artists,
musicians, composers, writers, curators, and theorists, in order to help them grasp what
machine learning systems are and how they are related to experimental new media art prac-
tice, and to suggest ways that artists can engage with them and learn how to use them. This
book does not set out to teach specific techniques but rather intends to translate basic def-
initions and challenges to nonscientific audiences while it connects them to core issues in
new media art.
In order to do so, we put machine learning systems on the operating table and carefully

dissect them, examining their different dimensions and components through the lens of art−1
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Introduction 7

practice. While pulling them apart, we discuss the aesthetic and artistic affordances and
significance of each of these elements, while showing ways that artists engage with these
elements. The goal of this process is to reveal the inner workings of machine learning and
how it can and does operate within art practice. This process is reflected in the organization
of the core chapters, each of which focuses on one of the three core components of learning
systems: training processes, models, and data.
The book situates machine learning within new media art by studying its relationships

with key concepts in art such as indeterminacy, materiality, representation, and authorship.
Examples of artworks and creative technologies from awide variety of domains and formats
are presented and discussed, with a focus on works produced by independent artists who
are critically engaging with machine learning technologies rather than relying on off-the-
shelf systems. As an artist who works with machine learning, I also, whenever it is relevant,
bring examples from my own research and practice. This approach serves to illustrate the
significance of deep learning technologies for the evolution of new media art in the twenty-
first century and beyond as well as the contribution of artists to the field of machine learning.

Why Machines Should Learn

In the Western world, intelligence is often conflated with rational thinking, mathematics,
and logic. Back in the 1950s, most artificial intelligence experts thought that the Holy Grail
of AI was to perform mathematically oriented tasks such as proving theorems or playing
strategic games such as chess and checkers. However, it turned out that such problems
are relatively easy for computers to solve because they exist in definite domains based on
logical rules and symbols. For example, at any given point in a chess game, there is a finite
set of permissible moves, as certain kinds of actions are forbidden, such as moving a piece
halfway between two squares.
By contrast, most real-world problems requiring intelligence are very different from

playing board games. For example, although specialized work such as translation, finan-
cial trading, teaching, research, and medical diagnosis and treatment must follow sets of
rules and guidelines, those tasks require a great deal of intuition and experience. Moreover,
many tasks that may not seem to require much intelligence because we do them without
thinking—such as moving, talking, recognizing objects, or driving a vehicle—are really
hard for computers to accomplish.
Take the example of walking. How do we walk? At first glance, one might believe that

walking could be expressed with a simple algorithm:

Step 1: Put one foot in front of the other.

Step 2: Repeat.

However, this procedure does not take into account all the dynamics involved in bipedal
motion. It may represent the broad picture ofmost situations, but it does not address possible
conditions that would require additional effort, such as moving across irregular surfaces
or climbing; nor does it address more challenging situations such as being put off balance or
carrying a weight. In fact, bipedal walking in humans is an extremely complex sensorimotor
activity involving the coordinated control of muscles in many parts of the body. −1
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The truth is that we do not really know how we walk.
But we surely know one thing about walking: we were not born walkers. Gradually,

through trial and error and with supervision from our guardians, we learned how to walk,
one baby step after the other.
How can we program computers to do the things that we do and to know the things that

we know when we do not even know how we do or know these things? Machine learning
suggests that we let computers learn from their experience, just like we did for walking on
two feet. Machine learning is hence directly related to the biologically rooted concept of
adaptation, which refers to a “process whereby a structure is progressively modified to give
better performance in its environment” (Holland, 1992, 7). Most machine learning systems
learn iteratively, observing flows of data, incrementally refining their understanding of the
problem they are trying to solve.

Supervised, Unsupervised, and Reinforcement Learning

Machine learning algorithms are often divided into three subcategories, corresponding
to three different types of tasks. In supervised learning (by far the most commonly used
approach), the system learns from labeled data, that is, data for which the appropriate out-
put has been assigned (usually by a human being). For example, imagine a database of
pictures in which each has been tagged as an image of either a dog or a cat. The goal of the
system is to learn from this information to become good at differentiating cats from dogs in
pictures. In other words, given a not previously encountered image of either a cat or a dog,
the machine learning algorithm must guess accurately which animal that it represents—in
other words, its category or class.
Unsupervised learning is used to make inferences from data sets that do not have such

labels. Different outcomes may be desired, such as extracting a more compact representa-
tion of the data (e.g., dimensionality reduction or representation learning) or separating the
data into different groups. Using the previous example of images of dogs and cats, imagine
that we give a database of images to the learning system, and this time the images are unla-
beled. We ask the system to classify the images into two unspecified categories. Depending
on the database and the configuration of the system, it could decide to differentiate between
dogs and cats, but because the classification has been left to the machine learning sys-
tem, it could instead choose to separate the images into dark and bright, or colored and
gray, depending on the data set, the type of machine learning system, and other system
characteristics.
Finally, reinforcement learning concerns situations in which an artificial agent3 is evolv-

ing into an environment and needs to learn how to behave optimally within it. Good
decisions are reinforced by giving the system positive rewards, and bad actions are given
negative rewards (i.e., punishments). Common uses of reinforcement learning include robot
control, financial trading, delivery management, and adaptive agents for game AI.
For example, imagine a trading software agent that tries to maximize its gains on the

stock market. The program chooses either to buy or to sell some shares, on the basis of
its observation of the market, which can include the prices of other shares and other infor-
mation sources such as date and time, financial news, and so forth. On the basis of these
decisions, the system receives a reward proportional to the money it has won (positive
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reward) or lost (negative reward). Over time, the system should learn how to make more
profitable decisions. Another common example of reinforcement learning concerns a robot
that moves in an environment and tries to collect items while also returning to its recharging
station before its batteries are depleted. In this case, the robot needs to autonomously find
a balance between exploring the space and managing its power.
Although these techniques might seem highly abstract and mathematically distanced

from how we normally understand the processes of learning and growing in biological sys-
tems, supervised, unsupervised, and reinforcement learning each corresponds to a form
of learning found in real life. Hence, supervised learning is about learning with a guide
such as a teacher or a reference document (consider, for example, a children’s book that
shows pictures of animals along with their names). Unsupervised learning is about acquir-
ing knowledge about the world through basic observations, such as how children can learn
the fundamental laws of physics by playing with blocks (or later in life, by playing with
fire). Reinforcement learning covers situations in which agents are rewarded (or punished)
for their actions within the world, such as when a dog is fed a treat after bringing back a
stick or when a young child trips on one of their blocks.
These categories do not exist in isolation. Quite permeable, they often share models

and algorithms, as the research carried out in one domain can often be applied to another.
One famous example of this contributed to the resurrection of interest in neural compu-
tation and machine learning in the mid-2000s, when scientists discovered a method to
train multiple layers of neurons in supervised learning and reinforcement learning systems
by using unsupervised learning to facilitate training the lower-level layers of the neural
architecture (Hinton, Osindero, & Teh, 2006).

Components of a Machine Learning System

Machine learning systems can be further qualified by three constituents that interoperate: a
training process, a model, and data (see figure 1.2). These items represent interdependent

Data Training process Model

Evaluation

function

Figure 1.2
Components of a machine learning system. The training process trains a model over a set of data using an
evaluation function to measure the performance of the model. Drawing by Jean-François Renaud.
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dimensions of a learning system that influence its outcomes—in particular, when applied
to art, its aesthetic potentialities.
Machine learning systems are trained on sets of examples that represent the empirical

knowledge to which they have access. The data made available to the algorithm is one of
the fundamental elements that influence the system’s behavior and performance: the system
cannot acquire knowledge beyond the data that it is fed, unless it comes a priori, encoded in
the data itself or in the system. An example usually consists of a group of numerical values,
each representing a dimension of the learning space. For example, a data set consisting of
10× 10 grayscale images would typically be represented as a series of points, each with
one hundred different values (10× 10).
The knowledge the system has about the world is contained in a structure called the

model. In the same way a scale model of a sailboat both represents the original ship while
scaling it down to a more portable format by removing the irrelevant details, machine learn-
ing models can often be understood as more compact versions of the training data. To work
well, a good model must be sufficiently complex to represent the important characteristics
of the source data. However, it should not be too precise, as it then risks becoming to specific
and unable to generalize to new examples outside of the training set.4

There are many different kinds of such models, each with its own strengths and weak-
nesses. For example, artificial neural networks contain artificial neurons connected by
synaptic weights (i.e., numerical values that represent the strength of the connection
between two neurons). Such models can represent a wide range of mathematical functions
and are usually considered good at recognizing patterns—hence their popularity in com-
puter vision and speech recognition, among other applications. Another kind of model is a
binary genetic code that represents a computer program, such as used in genetic program-
ming (GP): such a model could potentially implement any algorithm, and could therefore
be characterized as a general problem solver.5

The model and the data set are, in essence, inert structures. A third component, the
training process, binds them together by using the data to adjust the model. To guide its
decisions, this procedure uses an evaluation function (also called cost, fitness, or reward
function, depending on the context in which it is used) that measures the performance of
the model over the data points (Alpaydin, 2004, pp. 35–36).
A machine learning system can thus be summarized as follows. Given a certain kind of

task (supervised, unsupervised, or reinforcement learning), a learning algorithm adjusts a
model to improve its performance (measured using an evaluation criterion) over a data set.
While this is roughly true across all fields of applications of machine learning, there exist
many variations within the techniques that are suitable for each of these components.
Machine learning therefore provides a generic framework for problem-solving that chal-

lenges not only traditional AI approaches but computer science in general. Rather than
trying to solve a problem by designing a computer program that directly addresses it, mac-
hine learning suggests putting together different components (data, model, training process,
and evaluation function) and letting the system find the solution autonomously. Although
this approach did not work very well for many decades (due mainly to insufficient data
and computing resources), since the mid-2000s it has moved from the background to the
forefront of AI and has become a catalyst of profound social transformations.−1
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From Cybernetics to Deep Learning

The triumph of machine learning in the twenty-first century builds on more than five
decades of research in computer science. Deep learning, an approach to machine learning
that is inspired by the hierarchical and self-organizing nature of the brain, has enabled giant
leaps in achieving (and sometimes overcoming) human-level performance on challenging
problems such as computer vision and speech recognition, propelling the field of artificial
intelligence into a new industrial era that promises to disrupt the very fabric of society.
Yet, deep learning is merely the latest milestone in artificial intelligence, and more broadly,
in humanity’s long, relentless journey of inquiry into the workings of living systems and
human intelligence.
One can trace the first concepts that led to the emergence ofmachine learning in the 1980s

and then to its re-emergence in the 2000s, to the interdisciplinary science of cybernetics.
Born during the post-war period in the United States and England, cybernetics sought to
understand the workings of the brain and, in this endeavor, to comprehend fundamental
mechanisms governing both organic and computational systems. Cyberneticians designed
adaptive and autonomous machines (Walter, 1950; Ashby, 1954) and laid the foundations
of new theories of control and communication (Wiener, 1961; Shannon, 1948).
Some cyberneticians tried to address the workings of human cognition by looking at

the brain’s most basic units: neurons. Walter Pitts and Warren S. McCulloch showed that
simple interconnected neurons could be used to model logical gates (McCulloch & Pitts,
1943). Grey Walter and Ross Ashby created artificial devices that tried to simulate neuro-
logical mechanisms through feedback loops between interconnected units. At the end of the
1950s, following the work of neuroscientist Donald Hebb, psychologist Frank Rosenblatt
proposed a neural-inspired system that could recognize patterns: the perceptron (Rosen-
blatt, 1957). Around the same time, Oliver Selfridge proposed a structure made up of sets
of layered units of neurons for image recognition, which he called the pandemonium (Self-
ridge, 1959). Plagued by important practical and theoretical issues, the perceptron and the
pandemonium nonetheless embodied core ideas forming the basis of contemporary deep
learning systems: that the key to artificial intelligence lies in the design of autonomous
systems made of stacked layers of self-oganizing units (i.e., neurons), in which each layer
learns an increasingly higher-level degree of representation of what the system observes.
Although cybernetics as a scientific field has more or less vanished, its significance in

the development of computer technologies cannot be ignored, particularly in regard to the
development of artificial intelligence and machine learning. What is less known is its influ-
ence on the society and culture of the 1960s, particularly in the field of contemporary art,
in which cybernetics was closely related to movements such as conceptual art, performance
art, and kinetic art. These revolutionary approaches attempted to move beyond the mate-
riality of the art object, toward artworks conceived as computer programs and artificial
systems (Burnham, 1968).
This paradigm shift from objects to systems also resonates with an important theory of

mind that emerged in the postwar era, which would profoundly impact the conception of
the human subject in the Western world in subsequent decades. This current of thought,
which we refer to as computationalism (also known as cognitivism), is a particular form −1
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of representationalism, a theory of mind that rests on the notion that we do not experi-
ence the world directly but rather through a representation of it. Computationalism posits
that human cognitive capabilities are equivalent to computation—in other words, that intel-
ligence is realized by applying operations over sets of symbols that represent the world.
Computationalist theory claims that the brain is simply the hardware substrate that runs
the software of such mental capacities. Consequently, it holds that a computer program
able to reproduce human cognitive performances should be deemed intelligent even if it
runs on a silicon-based machine (Turing, 1950).6 For computationalists, cognition is purely
functional, hence immaterial. It is not defined by, or limited to, human brains, let alone
subjective experience. Therefore, they argue, it is theoretically possible to design cognitive
processes on computers.
Computationalism was concomitant with the appearance and development of artificial

intelligence in the 1950s, in parallel to cybernetics. Artificial intelligence as a field set as its
core goal the study of how computers could simulate human intelligence. In those years, two
notable approaches were already present, and they would be collaborating and competing
throughout the history of AI. The first approach, symbolic AI,7 attempts to endow comput-
ers with intelligence by directly programming them to be smart. The second approach,
machine learning, argues that rather than trying to explicitly implement intelligence in
machines, we should instead seek to teach them how to learn by themselves. The same way
that rule-based AI is tied to computationalism, machine learning seems intimately related
to connectionism, a theory of mind that posits that cognition happens through multiple
parallel interactions between interconnected units such as neurons.8

In the first stage of AI history, symbolic AI rapidly gained impetus as computer programs
were shown to perform incredibly well on tasks deemed difficult for humans, such as play-
ing strategy games, whereas at the same time, connectionist learning systems such as the
perceptron were shown to have severe theoretic limitations (Minsky& Papert, 1969). Scien-
tists such as Marvin Minsky and Seymour Papert argued in favor of rule-based computing
and heuristics, using the powerful calculation features of computers to solve problems with
brute force. By the end of the 1970s, however, symbolic AI research plateaued and pub-
lic funding came to a halt. AI entered a period of disfavor, later called the first AI Winter.
Although research did not stop completely, interest in cybernetics and systems decreased in
the artistic world as the Western world entered the 1980s, in favor of explorations of other
computer capabilities such as graphics and sound production.
In the mid-1980s, interest in AI surged once again with the revival of neural network

research, tied mainly to new discoveries in training more complex forms of neural nets
directly inspired by perceptrons. In parallel, some rule-based approaches to AI regained
popularity through the development of expert systems, which aim to transfer the know-how
of human experts into a set of logic rules.
In addition to these two concurrent approaches to artificial intelligence, a crucial new

field directly related to cybernetics appeared at the end of the 1980s: artificial life (ALife).
Inspired by cybernetics, complexity theory, chaos theory, and artificial intelligence, ALife
seeks to study living systems in their mode of operation, specifically by simulating living
processes with the computer. ALife rests on a bottom-up approach that makes use of the raw
power of the computer to simulate complex interactions between numerous units and then
observes the result. ALife researchers explore how applying simple algorithmic instructions
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to low-level units can generate complex patterns at higher levels that sometimes look like
living processes and organisms.
At the end of the 1980s, both expert systems and neural networks had shown severe

limitations in real-life settings, and interest in AI faded into a second AI winter. In response
to these challenges, combining the successes of both ALife and machine learning, and
downplaying the importance of representation in AI systems, Rodney Brooks suggested
an alternative to AI called New AI. In opposition to both connectionism and symbolic AI,
Brooks argued that intelligence did not need a representation of the world and that cognition
could not be detached from happening in a situated/embodied manner: in other words, that
the body was using the world as its own model. Therefore, he argued that the only way that
AI could make real progress, was to design robots that could interact in their world and to
gradually build them and teach them how to act within that environment.
In the 1990s, both ALife and New AI became important sources of inspiration for new

media artists. One notable example is the influence of ALife and complexity theory on
video games; a number of important simulation games involving complex phenomena were
given wide exposure through popular titles such as SimCity and Civilization. A particularly
apropos example is Will Wright’s 1990 game SimEarth: The Living Planet, which allows
the player to supervise the development of a planet through indirect means such as varying
its volcanic activity, erosion, rainfall, and albedo. The main scenario follows the different
eras of the history of an earth-like planet, from the formation of the crust to the appearance
of the first oceans, and then to the emergence of life and civilizations.
In contemporary art, ALife art became an art form in itself, for example, through the

work of Nell Tenhaaf, Susie Ramsay, and Rafael Lozano-Hemmer, who in 1999 created
the Art and Artificial Life International Awards (VIDA) with the support of Fundación
Telefónica. The prize, which ran for sixteen years, sought to support artistic inquiries in the
field of artificial life. Robotics artists Louis-Philippe Demers, Ken Rinaldo, and Bill Vorn,
who were all directly inspired by Rodney Brooks’s New AI, are among the winners of this
award. Also influenced by Brooks, artist and media theorist Simon Penny came up with the
term aesthetics of behavior to describe the kind of work made by the creation of an artificial
agent that interacts with the real world (Penny, 2000, 2017).
From the mid-1990s to the mid-2000s, the development of the internet produced massive

amounts of data, while at the same time computing power increased, in particular through
the development of graphical processing units (GPUs), developed in response to the grow-
ing entertainment industry (video games and special effects), which specialize in matrix
multiplication—exactly the kind of expansive mathematical operations required to com-
pute extremely large artificial neural networks. These circumstances, together with support
for fundamental research in Canada through the Canadian Institute for Advanced Research
(CIFAR), created the context for a renaissance of neural network-based machine learning—
sometimes referred to as the Canadian AI conspiracy. Although connectionist AI had been
widely abandoned in the early 2000s, on the algorithmic side critical breakthroughs in the
mid-2000s enabled the effective training of neural networks with many hierarchical layers,
making it possible for such systems to reproduce and even exceed human performance on
tasks deemed extremely difficult (such as computer vision, speech recognition, and text
translation) in a truly autonomous fashion, by analyzing raw information without the need
to rely on a priori knowledge or heuristics designed by humans.
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After more than fifty years of research, artificial intelligence technology was finally ripe
for the taking. Giant corporations such as Google and Facebook began aggressively hiring
top researchers of the field, often literally buying their labs, granting them not only out-
standing salaries and funds but perhaps more importantly, access to huge sets of data on
which to carry out their research, in the hope of leading the development of their current
and future products.
Within the scope of only a few years, corporate investment in artificial intelligence has

skyrocketed and seems to grow exponentially, even prompting fear of an economic bub-
ble. But there are strong signs that this is more than just hype. AI-driven technologies that
looked like science fiction a few years ago are now on the market, including self-driving
cars, speech-to-speech translation, and personal assistants such as Alexa and Siri. These,
however, might be just the tip of the iceberg. We are experiencing a technological revolu-
tion at least as important as (and probably much more important than) the one following
the appearance of the internet; the current revolution is already having a profound impact
on society, similarly to previous large-scale industrial transformations. In much the same
way that the industrial revolution of the eighteenth and nineteenth centuries brought soci-
eties into the first machine age, in which machines assisted humans in carrying out physical
tasks, artificial intelligence is the driving force of a second machine age, in which smart
algorithms are replacing cognitive tasks (Brynjolfsson & McAfee, 2014).
Machine learning represents an immense potential for humanity that goes far beyond

marketable applications such as self-driving cars and personalized advertisement. More-
over, these technologies present important socio-political and ethical issues that threaten
democracy itself, such as the proliferation of fake news through AI-supported social
media bubbles. Eminent deep learning experts Yoshua Bengio and Geoffrey Hinton have
emphasized that the technology, which was developed largely through publicly funded fun-
damental research over decades, should not merely profit the private sector but should
expand to public services such as health care and education, as well as other areas.
Art is one alternative territory of exploration for machine learning’s potential. New

media scholars Joline Blais and Jon Ippolito suggest that digital art acts as antibodies
against technological invasions of the cultural and social body. “Science,” they claim,
“has always offered us a future, and sometimes even a promise to repair the dangers it
has unleashed on us in previous generations. But in an age when technology seems increas-
ingly to have a mind of its own, art offers an important check on technology’s relentless
proliferation.” (Blais & Ippolito, 2006, p. 9)9

A Shift in Paradigm

The coming of age of machine learning has triggered a mix of fear and excitement in the
media as well as in academia, which has turned contemporary discourse about AI tech-
nologies into a highly polarized debate. One camp warns against the dire impacts of AI on
the labor market, such as robots and algorithms rapidly replacing humans in fields such as
transportation, logistics, and office support;10 and the emergence of a much dreaded tech-
nological singularity following which AI will supplant humans as the superior intelligent
species, with possibly dire consequences that could lead to the extinction of the human
race (Kurzweil, 2006). On the other side of the debate, techno-optimist choirs chant the
libertarian utopia of a postwork, postdemocratic world in which humanity’s problems will
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be smoothly resolved by benevolent artificial learning systems; more moderate voices point
to the concrete benefits of machine learning in health care and education and believe that
the advantages outweigh the drawbacks.
In the 1950s and 1960s, the cyberneticians dreamed of a society regulated by smart,

self-regulating, adaptive systems similar to those found in the human brain. This loosely
organized group of interdisciplinary researchers suggested a complete change in paradigm
about the way we consider technology and how it operates in the world. They criticized
technologies of the past for their lack of adaptivity and autonomy driven by a human-centric
worldview that sought to control nature (Pickering, 2010), and suggested an alternative
vision of technological development that broke with these outdated principles.
What if technologies were designed to adapt themselves to natural processes and enti-

ties, rather than the other way around? Can we envision technologies that are not meant to
control nature but rather to take part in an ecosystem, trying to survive while allowing other
processes to flow? Can we give artificial agencies the right to make mistakes? Can we allow
them to be gracefully weak, imprecise, and hesitant, just as we are? In the field of AI, what
would happen if we moved beyond the ideal of optimization and control, toward the most
open-ended paradigm of adaptation as a living process?
Although its story is deeply rooted in cybernetics (Goodfellow, Bengio, & Courville,

2016), current-day machine learning has not embraced the cyberneticians’s utopian dream
of self-regulating technologies, relying instead on a relatively traditional engineering cul-
ture that attempts to efficiently solve concrete, measurable problems such as recognizing
patterns or predicting future quantifiable events; in other words, attempting to gain control
over nature.
The potential repercussions of the industrial development of machine learning, for good

and for bad, are immense. On the bright side, consider, for example, how automated
translation technologies facilitate access to information beyond linguistic frontiers; how
self-driving intelligent cars can potentially reduce traffic and accidents; and how image-
based pattern recognition can improve the quality of medical diagnosis and help reduce
suffering. Yet, as many observers have pointed out, the increasing presence of machine
learning since the mid-2000s through rapid industrial deployment by major multinationals
is problematic in many ways. As a source of important debates, many believe these tech-
nologies might in fact lead to increased inequalities and power imbalances, and fragilize
democracies. As examples, think about the jobs lost due to automation in the transportation
industry, the deep ethical implications of autonomous weaponry, the AI-aided fragmenta-
tion of society through the reinforcement of media bubbles and the dissemination of fake
news, and the potentially nefarious implications of using learning technologies for crime
prediction and human profiling.
These discussions are critically needed and require the attention and participation of

all sectors of society. As machine learning is likely to become one of the most important
industrial technologies of the twenty-first century, how can artists engage in the material
and intellectual debates that it brings forward? How can they work creatively and indepen-
dently with a technology that has been aggressively privatized and is increasingly reliant on
an industrial complex based on social media and advertising? Consider for example how
Google’s DeepDream project,11 despite its attempt to make it open to the public as a creative
tool, is inseparable from Google’s access to massive data, computing power, and scientific
expertise.
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With their capacity to work both critically and creatively with material and experien-
tial questions, artists have a unique standpoint for reflecting on the complex issues that
surround machine learning. Art can suggest alternative ways of engaging with machine
learning systems and imagining our relationship with them now and in the future. But how
can artists work with technologies that seem so contingent on access to big databases, big
computers, and big expertise? How can they approach algorithms that are largely meant for
problem-solving and optimizing—both of which that have little to do with the arts? In other
words, how can they relate to a field that has everything to do with engineering, science, and
business and seems utterly disconnected from contemporary forms of artistic expression?
As a way to approach these questions, consider the existence of a rich historical tradition

in new media art of creators working with adaptive and self-organizing technologies such
as machine learning. Since the ascent of modern computers after World War II, artists and
other creative practitioners have been exploring self-organizing systems, artificial intelli-
gence, and adaptive computation as base materials for the creation of aesthetic experiences.
As early as the 1950s, artists were creating adaptive robots and generative works using
cybernetic systems. Important movements such as Jack Burnham’s systems aesthetics, Roy
Ascott’s cybernetics art, and robotic art and artificial life art marked the development of
new media art from the postwar era onward. This tradition goes hand in hand with contem-
porary discourses surrounding the nature of life and cognition, such as autonomy, chaos,
emergence, and the generation of novelty—what artificial life researcher Takashi Ikegami
calls living technology (Ikegami, 2013).
When we compare machine learning art to documented approaches in new media art that

make sure of computational systems such as artifical life art (Langton, 1995; Tenhaaf, 2008;
Penny, 2009) and situated robotic art (Brooks, 1999; Penny, 2013), one of the most impor-
tant differences to keep in mind is that these approaches are bottom-up in nature, relying on
the iterative building of emergence and self-organization by human-based trial and error.
The artist engaged in these practices uses computation to simulate artificial life forms, looks
at the result, tentatively changes a few things, and tries again until satisfied. In other words,
they act as an adaptive device themselves, making choices among indeterminate processes.
Machine learning suggests a different way to deal with self-organization, in which one

assembles different ingredients (data, model, and training process) but lets the emergent
system find its own way to achieve its goals, hence handing more control to the machine.
This results in a different relationship with themachine that is closer to experimental science
or to a form of a collaboration between the artist and themachine. It allows finer control over
outcomes than with a purely emergent procedure. It also gives more options because the
artist can still directly control the goal of the system in real time (as in ALife simulations)
or intervene more indirectly by tweaking data, model, and/or evaluation function.
We are moving into a world with computer technologies that are increasingly adap-

tive, whereas similar kinds of systems were previously found only in natural phenomena.
These pervasive systems are newly meaningful for artists and cultural theorists because
they suggest new approaches to working with self-organizing systems and open up novel
ways to understand what it means to be alive and human. Machine learning also challenges
the notion that artistic creation is a purely human-centric practice, as the creative agency
becomes diffused between humans and machines that couple with one another. Finally, their
rapid development in the age of big data and massive concentrations of wealth and power
makes them a critical engagement space for the arts.
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There are important challenges for making art with machine learning. First, machine
learning usually requires enormous amounts of data, which are difficult to generate or even
access, because most of the largest databases are privately owned. Second, computer power
is still relatively expensive, although costs have been steadily dropping. Third and perhaps
more importantly, artists often lack the technical skills to work with these technologies in
a meaningful way.
Finally, in most cases, machine learning is an optimization process for problem-solving

that attempts to maximize or minimize an evaluation function over time. For example, in
supervised learning classification applications such as detecting cats and dogs in images,
we usually try to minimize the number and range of errors made by the system. But art
is specifically not about optimization because there is no objective evaluation function to
minimize. There is no such thing as the best painting, just as there is no such thing as the
best joke. Preferences are subjective and not mutually exclusive—for example, it is not
unusual for someone to have many favorite movies.
Fortunately, these difficulties are not insurmountable. Many of these issues can in fact be

circumvented, as artists have needs and goals that differ from those of scientists and engi-
neers. It could be appropriate to use smaller databases and less computer-intensive learning
systems for a large variety of artistic applications. Furthermore, most of the technology is
developed under a very open culture. Even when carried out within the walls of tech giants,
research is for the most part made publicly available, and many big IT companies play an
active role in making tools available to the public under open source licenses. Computa-
tional power is likely to increase fast in coming years, and the new generation of creative
open hardware has multiple cores and GPUs.
On the positive side, machine learning technologies are becoming increasingly easy to

use. For example, neural-based machine learning used to be a sort of dark craft because it
required extensive tuning and massaging of the data. One of the advantages of deep learn-
ing is that algorithms are now able to work with raw data, which is a huge gain for users
and makes working with such systems much easier. There are reams of free software tools
and online tutorials to learn about these techniques, and the democratization of these tech-
nologies through education is likely to become central in the development of societies in
the coming decades.

Chapter Breakdown

This book aims to provide conceptual tools, accounts of practice, and historical perspectives
to understand and address machine learning technologies from an artistic standpoint. The
text is organized in three parts generally following the different components that character-
ize machine learning systems: training process and evaluation functions (part 1); models
and machines (part 2); and data (part 3). By dissecting the scientific description of learn-
ing algorithms and connecting their properties with artistic questions, I aim to establish a
comprehensive framework that artists, musicians, composers, writers, curators, and media
theorists can use to approach machine learning in works of art and within larger cultural
questions. Throughout the book, I thus bring together an overview of the scientific theo-
ries, concepts, and definitions attached to the various components of learning machines,
expressed in an accessible way; an examination, supported by examples, of the oppor-
tunities for artistic exploration and exploitation of machine learning, either through the
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application of off-the-shelf techniques in their intended use or by practices of hacking and
hijacking; and the main limitations, challenges, and constraints of these components of
machine learning algorithms, in the context of artistic creation.
This book attempts to tackle head-on aesthetic and practical issues within the intricate

landscape of machine learning art, maneuvering between questions of art and science,
human and machine, and bodies and processes. Following posthumanist scholar Rosi
Braidotti’s concept of zigzagging (Braidotti, 2013, p. 164), it embraces a nonlinear way
of hobbling through this murky territory, using the materiality of machine learning systems
themselves as a guide. As it builds on my own research-creation work as a transdisci-
plinary artist-researcher, I will also, at times, share examples and perspectives from my
own practice and experience.
The first part of the book delves into questions surrounding the training process. Chapter

2 positions the learning loop as an optimization process, therefore seemingly antithetical
to the arts, which are specifically nonpurposeful and nonoptimizable. Art practices differ
from those of scientists and engineers in being more process driven than goal driven. I thus
argue that research in the field of computational creativity and creative AI that attempts
to reproduce human-level creativity in a given artistic domain can be misleading, because
such research often misunderstands the fundamental principles and values of contemporary
art. In chapter 3, we look specifically at alternative approaches employed by artists to hijack
the training process by playing with evaluation functions. Recalling the origins of machine
learning in cybernetics, where an agent adapts to its environment, in chapter 4, I propose a
framework to understand the aesthetic properties of adaptive behaviors.
The second part examines what constitutes the true outputs of machine learning sys-

tems: models. In chapter 5, we consider how these self-organized black boxes act in ways
that often defy human understanding and why these qualities provide a fertile ground for
new types of practice and art forms. We then examine how different species of machine
learning systems afford different kinds of artistic practices and aesthetic qualities: chapter 6
deals with parametric models and genetic algorithms, chapter 7 with shallow connectionist
learning, and chapter 8 with deep learning.
The third and last part of the book focuses on the role of data in machine learning art.

Chapter 9 shows how artists use data as a raw material to shape machine learning systems
and how it impacts the creative process. Chapter 10 makes the argument that machine learn-
ing allows novel forms of algorithmic remixes through the collection of data and the reuse
of pretrained models. Finally, chapter 11 examines the correspondence between observa-
tion and generation in machine learning systems and how biases operate in these contexts. I
conclude the book in chapter 12 by zooming out of the materiality of machine learning art,
addressing broader issues related to the relationships artists establish with machine learning
systems, the impact of machine learning on the art world and curatorial practices, and the
sociopolitical implications of machine learning art in the twenty-first century.
By organizing the chapters around different perspectives over machine learning and its

connections with new media art, I hope that this book can provide an understanding of the
fundamental design of machine learning algorithmic structures to the layperson, while at
the same time framing such technologies within larger historical and conceptual spaces,
and hence becomes a reference from which to draw knowledge and inspiration long after it
has been read.
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