Contents

Preface xi

1 First Steps 1
 Why we study movement 4
 The Cybathlon 8
 Tools to study movement 11
 Overview of this book 15
 Language of movement 16

Part I Locomotion

2 Walking 25
 The walking gait cycle 26
 Ground reaction forces 28
 Ballistic walking model 33
 The Froude number 34
 Cost of transport 37
 Dynamic walking model 39
 Arm swing 42
 Skeletal model for gait analysis 44
 Kinematics of walking 46
 Ground reaction forces and walking speed 48
 Atypical gait 49
 Changes in walking under various conditions 52

3 Running 55
 The running gait cycle 56
 Ground reaction forces 57
 Elastic mechanisms in hopping and running 61
 Hopping robots 64
 Tuned track 66
 Elastic mechanisms to improve running shoes 69
 Leg stiffness changes with body mass 70
 Gait transitions 72
 Bipedal mass–spring model 74
 Kinematics of running 75
 Ground reaction forces and running speed 77
Part II

Production of Movement

4 Muscle Biology and Force

- Muscle structure 83
- The cross-bridge cycle 85
- Sarcomere structure 86
- Force–length relationship 88
- Force–velocity relationship 90
- Muscle activation 93
- Rate encoding 95
- Motor unit recruitment 96
- Electromyography 98
- Modeling muscle activation dynamics 100
- Modeling the force–length–velocity–activation relationship 102

5 Muscle Architecture and Dynamics

- Optimal muscle fiber length, l_o^M 107
- Muscle fiber pennation angle at optimal fiber length, ϕ_o 109
- Maximum isometric muscle force, F_o^M 111
- Maximum muscle contraction velocity, v_{max}^M 112
- Tendon slack length, l_s^T 114
- Measuring muscle-specific parameters 117
- Hill-type model of muscle–tendon dynamics 121
- Dimensionless curves 123
- Computing muscle force with a rigid tendon 124
- Computing muscle force with a compliant tendon 126
- Other models of muscle force generation 128

6 Musculoskeletal Geometry

- Muscle mechanical advantage 134
- Definition of a muscle moment arm 137
- Tendon-exursion definition of a moment arm 138
- Muscle moment arms affect muscle lengths and velocities 143
- Moment arms of multi-joint muscles 145
- Measurement and modeling of maximum joint moments 148
- Muscle architecture, moment arms, and tendon transfer surgery 152
- Moment arms of muscles with complex actions 154
- Wrapping up 156

Part III

Analysis of Movement

7 Quantifying Movement

- Measurement techniques 162
- Optical motion capture 166
- Unconstrained inverse kinematics 171
Transformation matrices 174
Calculating joint angles with unconstrained inverse kinematics 181
Constrained inverse kinematics 183
Kinematic model of the shoulder 186
Assessing anterior cruciate ligament injury risk 188

8 Inverse Dynamics 193
Measuring external forces 195
Center of pressure 197
Inverse dynamics algorithms 199
Inverse dynamics with ground reaction forces 201
Inverse dynamics without ground reaction forces 207
Verifying dynamic consistency 208
Joint moments during walking and running 209
Gait retraining to reduce knee loads and pain 212

9 Muscle Force Optimization 217
Biological and numerical optimizers 220
Static optimization problems solved by inspection 223
Local methods to solve static optimization problems 226
Global methods to solve static optimization problems 228
Muscle forces during walking and running 230
Estimating joint loads 238
Dynamic optimization 239
Muscle coordination during a standing long jump 242

Part IV

10 Muscle-Driven Simulation 249
Understanding muscle actions during movement is challenging 251
Creating muscle-driven simulations 254
Stage 1: Modeling musculoskeletal system dynamics 255
Stage 2: Simulating movement 259
Stage 3: Testing the accuracy of dynamic simulations 262
Stage 4: Analyzing muscle-driven simulations 269
Software for creating muscle-driven simulations 270

11 Muscle-Driven Walking 273
Building and testing simulations of walking 275
Muscle contributions to ground reaction forces 275
Muscle actions during the swing phase 280
Muscle actions in stiff-knee gait 282
Muscle actions over a range of walking speeds 287
Muscle actions in crouch gait 292
Heel-walking and toe-walking 297
Device-assisted walking 299

12 **Muscle-Driven Running** 305
Building and testing simulations of running 307
Muscle contributions to ground reaction forces 310
Muscle activity during running 310
Changes with running speed 312
Run-to-sprint transition 314
Muscle actions during the walk-to-run transition 315
Interaction of arm and leg dynamics 317
Swinging the legs in running 317
Foot-strike patterns 318
Device-assisted running 323
Springs to enhance running 326

13 **Moving Forward** 331
Wearable technology 332
Physical rehabilitation everywhere 335
Large-scale experiments 336
Modern statistics and machine learning 338
Modeling neuromuscular control to predict movement 340
Motivating movement 342
Open science 343
Taking the baton 347

Symbols 349
References 353
Image Credits 363
Index 365