
 VISUAL BASIC FOR APPLICATIONS (VBA)

 Visual Basic for Applications (VBA) is the programming language attached

to Excel. VBA is very functional and flexible. Because of its ready integration

with Excel worksheets, VBA is widely used in the financial community. VBA

incorporates many features that are part of standard programming languages,

and it is not difficult to master if you have some programming experience.

 You do not need to be proficient in VBA to understand Sections I–VI of

 Financial Modeling . These sections can be understood without anything more

than the very rudimentary VBA principles incorporated in the preface to this

book (or alternatively in the small file called “Adding Getformula to your

Spreadsheet” that is part of the disk that comes with the book).

 The four chapters of this section cover Visual Basic for Applications (VBA)

topics for the reader interested in developing his or her own programs. Chapter

36 shows how to write functions that can be added in to Excel spreadsheets.

 Financial Modeling uses many of these “homemade” functions. Examples are

the two-stage Gordon model (Chapter 3), Black-Scholes pricing of options

(Chapter 17), and derivation of the Nelson-Siegel term structure (Chapter 22).

 Chapter 37 discusses more advanced topics related to variables and arrays

in VBA. We have used this topic in fixing the bugs in Excel ’ s XNPV and

 XIRR functions (Chapter 1). Chapter 38 shows how to build subroutines in

VBA. A subroutine is not a function, but rather an automation of some repeti-

tive action. Financial Modeling uses subroutines in a number of places—for

example, in computing the efficient frontier without short sales (Chapter 12).

 Finally, Chapter 39 discusses objects and add-ins. Among other topics dis-

cussed in this chapter is the creation of user-defined add-ins in Excel.

 VII

 36
 User-Defined Functions with VBA

 36.1 Overview

 Chapters 36–39 discuss the uses of Excel ’ s programming language, Visual

Basic for Applications (VBA). VBA provides a complete programming lan-

guage and environment fully integrated with Excel and all other Microsoft

Office applications. In this chapter we introduce user-defined functions, which

are used in various places in this book.

 The examples and screen shots depict the Excel 2013 working environment

but are fully compatible (unless otherwise noted) with all versions of Excel

using Visual Basic for Applications (Version 5 and above).

 36.2 Using the VBA Editor to Build a User-Defined Function

 Throughout this book we have used VBA to define functions that are not

included in Excel. One example is the function Getformula that is attached

to all the spreadsheets in this book; another example is the function that com-

putes the Black-Scholes option value (Chapter 17). In this section we show

you how to build a user-defined function. A user function is a saved list of

instructions for Excel that produces a value. Once defined, a user function can

be used inside an Excel worksheet like any other function. 1

 1. User-defined functions are usually attached to a specific workbook and are only available if

that workbook is currently open in Excel. If you want a macro to be available whenever you use

Excel on a specific computer save it in the Personal Macro Workbook ; see Chapter 35, section16.

Another way of having access to a VBA function across worksheets is to put it in an add-in; see

Chapter 39 for an introduction to add-ins in Excel.

946 Chapter 36

 In this section we will write our first user-defined function. Before you can

do this, you need to activate the VBA editor. You can do this either by using

the keyboard shortcut [Alt] + F11 or from the Excel ribbon (Developer
Tab|Visual Basic Editor). By default, Excel doesn ’ t display the Developer

tab on the Excel ribbon. To show the Developer tab, go to File|Options|
Customize the Ribbon and indicate Developer :

947 User-Defined Functions with VBA

 The result in both cases is a new window like the following screen shot (your

window may look slightly different, but it will be functionally equivalent).

948 Chapter 36

 We are now ready to write our first function. This function (named “ plus ”)

will add together two numbers.

 A user-defined function in Excel has three obligatory elements:

 1. A header line with the name of the function and a list of parameters.

 2. A closing line (usually inserted by VBA).

 3. Some program lines between the header and the closing line.

 Start writing the first line of the function:

 function plus (parameter1,parameter2)

 A user-defined function needs to be written in a module. To open a new

module, select Insert|Module from the menu in the VBA editor environment.

This will open a new window, as illustrated in the next screen shot:

949 User-Defined Functions with VBA

 As soon as you end the line with a tap on the Enter key, VBA will do a

cleanup job. The color of all the words that VBA recognizes as part of its

programming language (“reserved words”) will change. All reserved words

will be capitalized. A space will be added after the comma separating the first

parameter from the second parameter. The closing line for the function will

be inserted, and the cursor will be in position between the header and the

closing line ready for you to go on typing.

950 Chapter 36

 Function plus(parameter1, parameter2)
 plus = parameter1 + parameter2
 End Function

 We are now ready to type our function line. This is the line that makes our

function do something. 2 Our first function will take two variables and return

their sum:

 2. The indentation of lines in VBA code, which we added manually, is not required by VBA but

makes reading the code much easier.

 You can now use this function in your spreadsheet:

1
2
3
4

A B C

Parameter1 3.25
Parameter2 1.5
Plus 4.75 <-- =plus(B2,B3)

PLUS IN ACTION

951 User-Defined Functions with VBA

 The fastest way to insert a function (assuming you know its name) is to start

typing the name. When the suggested list of names narrows down, select the

appropriate function name from the list:

952 Chapter 36

 You can also use the function in the Excel Function Wizard. Clicking on this

 icon on the toolbar will produce the following screen:

953 User-Defined Functions with VBA

 Selecting User Defined from the pull-down menu will present the following

screen listing all user-defined functions; one of them should be the function

we have just added, plus :

954 Chapter 36

 When you select plus and click OK, you will see that Excel treats this like

any other function, bringing up a dialogue box that asks for the location or

value of parameter1 and parameter2 :

 Notice that at this point there is no explanation or help for the function. The

next section provides part of the remedy.

955 User-Defined Functions with VBA

 36.3 Providing Help for User-Defined Functions in the Function Wizard

 Excel ’ s Function Wizard (shown below) provides a short help line (an explana-

tion of what the function does). Here ’ s how Excel explains its own functions

in the Function Wizard:

956 Chapter 36

 Click in the Macro name box, and type the name of the function (notice

that you don ’ t see the function name in the macro dialogue box above … you

have to type it in):

 To attach a text description to our function, activate the macro selection box.

You can do this either from the Excel ribbon (Developer|Macros) or by using

the keyboard shortcut [Alt] + F8.

957 User-Defined Functions with VBA

 Click on the Options button:

958 Chapter 36

 Type the description in the Description box. Click OK , and close the macro

selection box. Our function now has a help line.

 Excel functions have help lines attached to each of the parameters and a

help file entry. We can supply the same for our function; sadly, the subject is

beyond the scope of this introduction.

 36.4 Saving Excel Workbook with VBA Content

 At some point in the process, you need to save your work. 3 Starting with Excel

2007, an Excel workbook with VBA content has to be saved as a “macro-

enabled file.” When you first try to save a workbook with VBA content, Excel

will present you with the following message:

 3. We suggest soon and often.

959 User-Defined Functions with VBA

 You should choose No and get the Save As dialog to enable you to choose

a new file type.

960 Chapter 36

 Now open the circled selection, select the second option, xlsm , and save the

workbook. If you use VBA often, then you might consider changing the default

Excel file type to xlsm . 4

 36.5 Fixing Mistakes in VBA

 Once you start using VBA, you ’ re sure to make mistakes. In this section we

illustrate several typical mistakes and help you correct them. This list is not

meant to be exhaustive—we have selected mistakes typically made by VBA

beginners.

 Mistake 1: Using the Wrong Syntax

 Suppose that in writing Plus you forget the “ + ” between parameter1 and

 parameter2 (recall that the function is supposed to return parameter1 +
parameter2). Once you hit the Enter key, you get the following error message:

 4. The command is File|Options|Save|Save files in this format .

 Clicking the OK button corrects this problem.

961 User-Defined Functions with VBA

 Mistake 2: Right Syntax with a Typing Error

 It ’ s easy to make typing errors that will only be detected once you try to use

the function. In the example below, we define two functions— function1 and

 function2 . Unfortunately, the program line for function2 mistakenly calls the

function “function1”:

 The VBA editor does not immediately recognize this mistake. The mistake

will pop up when you try to use the function in a worksheet. Excel will notify

you that you ’ ve made a mistake and take you to the VBA editor:

 If you recognize your mistake, you can correct it. You can also try to go to

the VBA help by clicking Help (in many cases this will lead to an incompre-

hensibly complicated explanation).

962 Chapter 36

 Suppose you recognize your mistake. You click OK , and get ready to correct

the error by replacing the word “Function1” with “Function2.” At this point

your screen looks like this:

 Notice:

 A. The word [break] in the title bar.

 B. The offending symbol is selected.

 C. The function line is highlighted and pointed to by an arrow in the margin.

 Because VBA found an error while trying to execute the function, it moved

into a special execution mode called debug-break mode. For now all we need

to do is get out of this special mode so we can get on with our work. We do

this by clicking the icon on the VBA toolbar. Now you can fix the function

and use it.

 We can (and should) have VBA check the module for errors before trying

to use the functions in the module. From the VBA menu we select

 Debug|Compile VBAproject ; this will find the first error in the module and

point it out as before but without going into debug-break mode.

963 User-Defined Functions with VBA

 36.6 Conditional Execution: Using If Statements in VBA Functions

 In this section we explore the If statements available to you in VBA. Not all

things in life are linear, and sometimes decisions have to be made. If state-

ments are one way of doing this in VBA

 The One-Line If Statement

 The one-line If statement is the simplest way to control the execution of a

VBA function: One statement is executed if a condition is true and another is

executed if a condition is not true. The complete condition and its statement

should be on one line. Here ’ s an example:

 Function OneLineIf(Parameter)
 If Parameter > 5 Then OneLineIf = 1

Else OneLineIf = 15
 End Function

 We can now use the function OneLineIf in Excel. When Parameter is >

5, OneLineIf returns 1 and when Parameter is < 5, OneLineIf returns 15.

1
2
3
4

A B C

Parameter
12 1 <-- =OneLineIf(A3)

3 15 <-- =OneLineIf(A4)

ONELINEIF IN ACTION

 The one-line If statement doesn ’ t even need the Else part. The function

below, OneLineIf2 , returns 0 if the condition “Parameter > 5” is not

fulfilled:

 Function OneLineIf2(Parameter)
 If Parameter > 5 Then OneLineIf = 1
 End Function

964 Chapter 36

 Good Programming Practice: Assign a Value to Your Function First

 In the above functions, it would be good programming practice to first assign

a value to the function before introducing the If statement. This way we know

that OneLineIf3 defaults to − 16 if the condition on Parameter is not

fulfilled.

6
7
8
9

A B C

Parameter
12 1 <-- =OneLineIf2(A8)

3 0 <-- =OneLineIf2(A9)

ONELINEIF2 IN ACTION

 Function OneLineIf3(Parameter)
 OneLineIf3 = -16
 If Parameter > 5 Then OneLineIf3 = 1
 End Function

 To see the difference this makes, look at the spreadsheet below:

11
12
13
14

A B C

Parameter
12 1 <-- =OneLineIf3(A13)

3 -16 <-- =OneLineIf3(A14)

ONELINEIF3 IN ACTION

 If … ElseIf Statements

 If more than one statement is to be conditionally executed, the block If…
ElseIf statement can be used. It uses the following syntax:

 If Condition0 Then

 Statements

 ElseIf Condition1 Then

 Statements

965 User-Defined Functions with VBA

 [… More ElseIfs …]

 Else

 Statements

 End If

 The Else and ElseIf clauses are both optional. You may have as many ElseIf
clauses as you want following an If, but none can appear after an Else clause.

 If statements can be contained within one another.

 Here ’ s an example:

 Function BlockIf(Parameter)
 If Parameter < 0 Then
 BlockIf = -1
 ElseIf Parameter = 0 Then
 BlockIf = 0
 Else
 BlockIf = 1
 End If
 End Function

 Here ’ s how this function works in Excel:

23
24
25
26
27

A B C

Parameter
-3 -1 <-- =BlockIf(A25)
0 0 <-- =BlockIf(A26)

13 1 <-- =BlockIf(A27)

BLOCKIF IN ACTION

 Nested If Structures

 As stated in the previous section, If statements can be used as part of the

statements used in another If statement. A program structure that has some If
statements inside others is called a nested If structure. Each If statement in the

structure must be a complete If statement. Either the one-line or the block

version can be used.

966 Chapter 36

 The following function demonstrates the use of the NestedIf structure:

 Function NestedIf(P1, P2)
 If P1 > 10 Then
 If P2 > 5 Then NestedIf = 1 Else NestedIf

 = 2
 ElseIf P1 < -10 Then
 If P2 > 5 Then
 NestedIf = 3
 Else
 NestedIf = 4
 End If
 Else
 If P2 > 5 Then
 If P1 = P2 Then NestedIf = 5 Else

NestedIf = 6
 Else
 NestedIf = 7
 End If
 End If
 End Function

 This is how it looks in Excel:

30
31
32
33
34
35
36
37

A B C D

11 6 1 <-- =NestedIf(A31,B31)
22 3 2 <-- =NestedIf(A32,B32)

-22 6 3 <-- =NestedIf(A33,B33)
-57.3 4 4 <-- =NestedIf(A34,B34)

6 6 5 <-- =NestedIf(A35,B35)
-5 7 6 <-- =NestedIf(A36,B36)
4 3 7 <-- =NestedIf(A37,B37)

NESTEDIF IN ACTION

967 User-Defined Functions with VBA

 36.7 The Boolean and Comparison Operators

 The expressions used as conditions in an If statement are also known

as Boolean expressions. Boolean expressions can have one of two values:

TRUE when the condition holds, and FALSE when the condition is violated.

Usually Boolean expressions are constructed using the Comparison and/or

Boolean operators. The following is a list of the most common Comparison

operators.

Operator Meaning

 < Less than

 < = Less than or equal to

 > Greater than

 > = Greater than or equal to

 = Equal to

 < > Not equal to

 The And Boolean Operator

 The next function uses a Boolean operator to check whether two conditions

hold at the same time.

 Function AndDemo(parameter1, parameter2)
 If (parameter1 < 10) And (parameter2 > 15) _

Then
 AndDemo = 3
 Else
 AndDemo = 12
 End If
 End Function

968 Chapter 36

 Here are some illustrations:

1
2
3
4
5
6

A B C D

parameter1 parameter2
9 14 12 <-- =AndDemo(A3,B3)
9 16 3 <-- =AndDemo(A4,B4)

11 14 12 <-- =AndDemo(A5,B5)
11 16 12 <-- =AndDemo(A6,B6)

ANDDEMO IN ACTION

 Notice what AndDemo does: It checks both conditions (parameter1 < 10)

 and (parameter2 > 15). If both conditions hold, then the combined conditions

hold and the function returns a value of 3. Otherwise (i.e., if either one of the

conditions is violated) it returns 12. (Note that both conditions are in

parentheses.)

 The following function and screen shot demonstrate all four possible com-

binations of two conditions and the resulting combined condition:

 Function AndTable(parameter1, parameter2)
 AndDemoTable = parameter1 And parameter2
 End Function

1
2
3
4
5
6

A B C D

parameter1 parameter2
9 14 12 <-- =AndDemo(A3,B3)
9 16 3 <-- =AndDemo(A4,B4)

11 14 12 <-- =AndDemo(A5,B5)
11 16 12 <-- =AndDemo(A6,B6)

ANDDEMO IN ACTION

969 User-Defined Functions with VBA

 The Or Boolean Operator

 The function OrDemo , illustrated below, checks whether at least one of two

conditions holds:

 Function OrDemo(parameter1, parameter2)
 If (parameter1 < 10) Or (parameter2 > 15) _

Then
 OrDemo = 3
 Else
 OrDemo = 12
 End If
 End Function

 Notice what OrDemo does: It checks whether either the first condition

(Parameter1 < 10) or the second condition (Parameter2 > 15) or both

conditions hold. Only if both conditions are violated will the function return

a value of 12. Otherwise (i.e., if either one or both of the conditions hold) it

returns 3. (Note that both conditions are in parentheses.)

 The following function and the screen shot demonstrate all four possible

combinations of two conditions and the resulting combined condition:

18
19
20
21
22
23

A B C D

parameter1 parameter2
9 14 3 <-- =OrDemo(A20,B20)
9 16 3 <-- =OrDemo(A21,B21)

11 14 12 <-- =OrDemo(A22,B22)
11 16 3 <-- =OrDemo(A23,B23)

ORDEMO IN ACTION

 Function OrDemoTable(parameter1, parameter2)
 OrDemoTable = parameter1 Or parameter2
 End Function

970 Chapter 36

 36.8 Loops

 Looping structures are used when you need to do something repeatedly. As

always there is more than one way to achieve the desired effect. In general

there are two major looping constructs:

 • A top-checking loop : The loop condition is checked before anything else

gets done. The something to be done can be left undone if the condition is not

fulfilled on entry to the loop.

 • A bottom-checking loop : The loop condition is checked after the something

to be done is done. The something to be done will always be done at least

once.

 VBA has the two major looping structures covered from all possible angles

by the Do statement and its variations. All the following subsections will use

a version of the factorial function for demonstration purposes. The function

used is defined as:

 f f f f f n n f n() () () () () ()0 1 1 1 2 2 1 2 1= = = ∗ = = ∗ −…

1

2
3
4
5
6

A B C D

parameter1 parameter2
FALSE FALSE FALSE <-- =ORDemoTable(A3,B3)
FALSE TRUE TRUE <-- =ORDemoTable(A4,B4)
TRUE FALSE TRUE <-- =ORDemoTable(A5,B5)
TRUE TRUE TRUE <-- =ORDemoTable(A6,B6)

ORTABLE IN ACTION

971 User-Defined Functions with VBA

 Function DoWhileDemo(N)
 If N < 2 Then
 DoWhileDemo = 1
 Else
 i = 1
 j = 1
 Do While i < = N
 j = j * i
 i = i + 1
 Loop
 DoWhileDemo = j
 End If
 End Function

1
2
3
4

A B C

5 120 <-- =DoWhileDemo(A2)
9 362880 <-- =DoWhileDemo(A3)

13 6227020800 <-- =DoWhileDemo(A4)

DOWHILEDEMO IN ACTION

 The Do While Statement

 The Do While statement is a member of the top-checking loops family. It

makes VBA execute one or more statements zero or more times, while a

condition is true. The following function demonstrates this behavior:

972 Chapter 36

 The Do … Loop While Statement

 The Do … Loop While statement is a member of the bottom-checking loops

family. It makes VBA execute one or more statements one or more times,

while a condition is true. The following function demonstrates this behavior:

 Function DoLoopWhileDemo(N)
 If N < 2 Then
 DoLoopWhileDemo = 1
 Else
 i = 1
 j = 1
 Do
 j = j * i
 i = i + 1
 Loop While i < = N
 DoLoopWhileDemo = j
 End If
 End Function

1
2
3
4

CBA

5 120 <-- =DoLoopWhileDemo(A2)
9 362880 <-- =DoLoopWhileDemo(A3)

13 6227020800 <-- =DoLoopWhileDemo(A4)

DOLOOPWHILEDEMO IN ACTION

973 User-Defined Functions with VBA

 The Do Until Statement

 The Do Until statement is a member of the top-checking loops family. It

makes VBA execute one or more statements zero or more times, until a condi-

tion is met. The following function demonstrates this behavior:

 Function DoUntilDemo(N)
 If N < 2 Then
 DoUntilDemo = 1
 Else
 i = 1
 j = 1
 Do Until i > N
 j = j * i
 i = i + 1
 Loop
 DoUntilDemo = j
 End If
 End Function

1
2
3
4

A B C

5 120 <-- =DoUntilDemo(A2)
9 362880 <-- =DoUntilDemo(A3)

13 6227020800 <-- =DoUntilDemo(A4)

DOUNTILDEMO IN ACTION

974 Chapter 36

 The Do … Loop Until Statement

 The Do … Loop Until statement is a member of the bottom-checking loops

family. It makes VBA execute one or more statements one or more times, until

a condition becomes true. The following function demonstrates this

behavior:

 Function DoLoopUntilDemo(N)
 If N < 2 Then
 DoLoopUntilDemo = 1
 Else
 i = 1
 j = 1
 Do
 j = j * i
 i = i + 1
 Loop Until i > N
 DoLoopUntilDemo = j
 End If
 End Function

1
2
3
4

CBA

5 120 <-- =DoLoopUntilDemo(A2)
9 362880 <-- =DoLoopUntilDemo(A3)

13 6227020800 <-- =DoLoopUntilDemo(A4)

DOLOOPUNTILDEMO IN ACTION

975 User-Defined Functions with VBA

 The For Loop

 One last (for now) variation on the loopy theme, the For loop, is used mainly

for loops where the number of times the action is repeated is known in

advance. The following functions demonstrate its use and variations:

 Function ForDemo1(N)
 If N < = 1 Then
 ForDemo1 = 1
 Else
 j = 1
 For i = 1 To N Step 1
 j = j * i
 Next i
 ForDemo1 = j
 End If
 End Function

 The Step part of the statement can be dropped if (as is in our case) the

increment is 1. For example:

1
2
3
4

A B C

5 120 <-- =ForDemo1(A2)
9 362880 <-- =ForDemo1(A3)

13 6227020800 <-- =ForDemo1(A4)

FORDEMO1 IN ACTION

 For i = 1 To N
 j = j * i
 Next i

976 Chapter 36

 If you want the loop to count down, the Step argument can be negative, as

demonstrated in the next function:

 Function ForDemo2(N)
 If N < = 1 Then
 ForDemo2 = 1
 Else
 j = 1
 For i = N To 1 Step -1
 j = j * i
 Next i
 ForDemo2 = j
 End If
 End Function

 The For loop can be exited early by using the Exit For statement as demon-

strated in the next function (not the factorial function).

1
2
3
4

A B C

5 120 <-- =ForDemo2(A2)
9 362880 <-- =ForDemo2(A3)

13 6227020800 <-- =ForDemo2(A4)

FORDEMO2 IN ACTION

 Function ExitForDemo(Parameter1, Parameter2)
 Sum = 0
 For i = 1 To Parameter1
 Sum = Sum + i
 If Sum > Parameter2 Then Exit For
 Next i
 ExitForDemo = Sum
 End Function

977 User-Defined Functions with VBA

 36.9 Using Excel Functions in VBA

 VBA can use most of Excel ’ s worksheet functions. We illustrate by showing

how to define the binomial distribution (even though this, itself, is an Excel

function). The probability distribution of a binomial random variable is defined

as Binom p n x
n

x
p px n x, ,() = ⎛

⎝⎜
⎞
⎠⎟

−() −1 where p is the probability of success;

 x is the number of successes, and n is the number of trials.
n

x
n

n x x
⎛
⎝⎜

⎞
⎠⎟

=
−()

!
! !

is the binomial coefficient, which gives the number of ways of choosing

 x elements from among n elements. For example, suppose you want to

form a two-person team from eight candidates and you want to know

how many possible teams can be formed. The answer is given by

8

2
8

6 2
8 7 6 5 4 3 2 1
6 5 4 3 2 1 2 1

28
⎛
⎝⎜

⎞
⎠⎟

= = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ∗ ⋅

=!
! !

 . The Excel function Combin (8, 2) does

this calculation.

 We use this Excel function in the following VBA function:

1
2
3
4
5
6

A B C D

Parameter1 Parameter2
5 22 15 <-- =ExitForDemo(A3,B3)
6 22 21 <-- =ExitForDemo(A4,B4)
7 22 28 <-- =ExitForDemo(A5,B5)
8 22 28 <-- =ExitForDemo(A6,B6)

EXITFORDEMO IN ACTION

 Function Binomial(p, n, x)
 Binomial = Application.WorksheetFunction. _

Combin(n, x) * p ∧ x * (1 - p) ∧ (n - x)
 End Function

978 Chapter 36

 As usual, this can be applied inside a spreadsheet:

1
2
3
4
5

CBA

p 0.5
n 10
x 6
Binomial 0.20507813 <-- =Binomial(B2,B3,B4)

 BINOMIAL IN ACTION

 Note that we used Application.WorksheetFunction.Combin(n, x) to

compute
n

x
⎛
⎝⎜

⎞
⎠⎟

 in our function. As you might guess from its name (Application.

WorksheetFunction.Something), this function is the Excel Worksheet func-

tion Combin() . Most, but not all, 5 Excel worksheet functions can be used in

VBA in exactly the same way. For a complete list see the Help file.

 One more thing to notice is the underscore (_) preceded by a space at the

end of line 2. If a line gets too long to deal with, it can be continued on the

next line using this contraption (the second and third lines of Binomial are

one line as far as VBA is concerned). 6

 Suppose we try to use our Binomial function to calculate Binomial
(0.5,10,15) . This won ’ t work:

1
2
3
4
5

CBA

p 0.5
n 10
x 15
Binomial #VALUE! <-- =Binomial(B2,B3,B4)

 BINOMIAL IN ACTION

 5. When an equivalent function is available as a native VBA function, the corresponding

Excel function is not available in VBA. For example, in VBA use rnd() and not Application.
WorksheetFunction.Rand() and sqr() and not Application.WorksheetFunction.Sqrt() .

 6. What ’ s too long? This is a matter of programming taste, but for our purposes any line over

70–80 characters is considered too long

979 User-Defined Functions with VBA

 The reason for the problem is that in the computation
n

x
⎛
⎝⎜

⎞
⎠⎟

 used in

 Binomial , we have to have x < n . In this case, VBA causes Excel to return the

error message #VALUE! . The subject of Excel error values is somewhat

obscure and is discussed in the Appendix to this chapter.

 36.10 Using User-Defined Functions in User-Defined Functions

 User-defined functions can be used in other user-defined functions, just

like Excel functions. The next function is a replacement for the COMBIN

worksheet function. COMBIN is defined as c n x
n

n x x
,

!
! !

() =
−() where !

stands for the factorial function. (Recall that the factorial function n! is defined

for any n > 0: 0! = 1, and for n > 0, n! = n *(n − 1)*(n − 2) … 1.)

 We will now write our VBA version of the two functions: the factorial func-

tion and the COMBIN function.

 1 Function HomeFactorial(n)
 2 If Int(n) < > n Then
 3 HomeFactorial = CVErr(xlErrValue)
 4 ElseIf n < 0 Then
 5 HomeFactorial = CVErr(xlErrNum)
 6 ElseIf n = 0 Then
 7 HomeFactorial = 1
 8 Else
 9 HomeFactorial = HomeFactorial(n - 1) * n
 10 End If
 11 End Function

 Line 2 checks if the input is an integer by comparing the integer part of “n”

to “n.” The function “Int” is a part of VBA. If we have erred, for example, by

980 Chapter 36

asking for HomeFactorial(3.3) , then line 3 of the program will cause Excel

to return #VALUE! . Similarly, lines 4 and 5 check if we have improperly asked

for HomeFactorial of a negative number; if this is the case, then line 5 causes

Excel to return #NUM! . For a fuller explanation of the use of error values, see

the Appendix to this chapter.

 Line 9 introduces a new concept; the function uses itself to calculate the

value it should return. This is called recursion. Here ’ s an illustration of the

function in action:

1
2
3
4
5
6

A B C D E

1 1 <-- 1 1 <-- =HomeFactorial(A2)
2 2 <-- =B2*A3 2 <-- =HomeFactorial(A3)
3 6 <-- =B3*A4 6 <-- =HomeFactorial(A4)
4 24 <-- =B4*A5 24 <-- =HomeFactorial(A5)
5 120 <-- =B5*A6 120 <-- =HomeFactorial(A6)

 RECURSION IN ACTION

 We can now use HomeFactorial to create our VBA version of Combin

(which we will call HomeCombin):

 Function HomeCombin(n, x)
 HomeCombin = HomeFactorial(n) / _
 (HomeFactorial(n - x) * HomeFactorial(x))
 End Function

981 User-Defined Functions with VBA

 Finally, we can use HomeCombin to create a VBA version of the binomial

function:

 Function HomeBinom(p, n, x)
 If n < 0 Then
 HomeBinom = CVErr(xlErrValue) ‘Make the function
 ‘return #VALUE!
 ElseIf x > n Or x < 0 Then
 HomeBinom = CVErr(xlErrNum) ‘Make the function
 ‘return #NUM!
 Else
 HomeBinom = HomeCombin(n, x) _
 * p ∧ x * p ∧ (n - x)
 End If
 End Function

 Putting Comments in VBA Code

 As illustrated above, VBA will ignore anything on a line which follows

an apostrophe (note that each new line of comments has to begin with

an apostrophe.

 Exercises

 1. Write a VBA function for f (x) = x 2 − 3.

1
2
3
4
5
6

A B C

Exercise 1

X
1 -2 <-- =Exercise1(A4)
2 1 <-- =Exercise1(A5)
3 6 <-- =Exercise1(A6)

982 Chapter 36

 2. Write a VBA function for f x x x() = +2 22 . Note that there are two ways to do this: The

first is to use the VBA function Sqr . The second is to use the VBA operator “ ∧ ”. We

suggest you try both.

8

9
10
11
12
13
14

A B C

Exercise 2

X Exercise2
1 3.414213562 <-- =Exercise2(A10)
2 6.828427125 <-- =Exercise2(A10)
1 3.414213562 <-- =Exercise2a(A12)
2 6.828427125 <-- =Exercise2a(A13)

 3. Suppose a share was priced at price P 0 at time 0, and suppose that at time 1 it will be

priced P 1 . Then the continuously compounded return is defined as return
P
P

= ⎛
⎝⎜

⎞
⎠⎟ln 1

0
 .

Implement this function in VBA. There are two ways to do this: You can use

 Worksheetfunction.Ln or the VBA function Log .

18
19
20
21
22
23
24

A B C D

Exercise 3

P0 P1
100 110 0.09531018 <-- =Exercise3(A21,B21)
100 200 0.693147181 <-- =Exercise3(A22,B22)
100 110 0.09531018 <-- =Exercise3a(A23,B23)
100 200 0.693147181 <-- =Exercise3a(A24,B24)

 4. A bank offers different yearly interest rates to its customers based on the size of the deposit

in the following way:

 • For deposits up to 1,000, the interest rate is 5.5%

 • For deposits from 1,000 and up to 10,000, the interest rate is 6.3%

 • For deposits from 10,000 and up to 100,000, the interest rate is 7.3%

 • For all other deposits the interest rate is 7.8%

 Implement the function Interest(Deposit) in VBA. Note that you can use the BlockIf
structure.

983 User-Defined Functions with VBA

 5. Using the function in exercise 4, implement a function NewDFV(Deposit, Years) . The

function will return the future value of a deposit with the bank assuming the deposit and

accrued interest is reinvested for a given number of years. Thus, for example,

 NewDFV(10000,10) will return 10000*(1.063) ∧ 10.

1
2
3
4

5

6

7

8

9

A B C

Deposit
-1 #VALUE! <-- =Interest(A3)

100 5.50% <-- =Interest(A4)

1100 6.30% <-- =Interest(A5)

9999.99 6.30% <-- =Interest(A6)

10000 6.30% <-- =Interest(A7)

10000.001 7.30% <-- =Interest(A8)

100000.001 7.80% <-- =Interest(A9)

Exercise 4

 6. An investment company offers a bond linked to the FT100 index. On redemption the bond

pays the face value plus the largest of A: the face value times the change in the index. Or

B: 5% yearly interest compounded monthly. Thus, for example, 100 invested when the

index was 110 and redeemed a year later when the index was 125 will pay A: 100 +

100*(125 − 110)/110 = 113.636 and not B: 100*(1 + 0.05/12) ∧ 12 = 105.116. Implement

a VBA function Bond(Deposit, Years, FT0, FT1).

1
2

3

4

A B C D

Deposit Years

10000 10 18421.82 <-- =NewDFV(A3,B3)

10000.001 10 20230.06 <-- =NewDFV(A4,B4)

Exercise 5

64
65
66
67
68
69
70
71

A B C D E F

Exercise 6

Deposit Years FT0 FT1
100 1 110 125 113.636 <-- =Bond(A67,B67,C67,D67)
100 1 110 100 105.116 <-- =Bond(A68,B68,C68,D68)
100 12 110 125 1,261.394 <-- =Bond(A69,B69,C69,D69)
100 12 110 1387.53 1,261.394 <-- =Bond(A70,B70,C70,D70)
100 12 110 1387.535 1,261.395 <-- =Bond(A71,B71,C71,D71)

984 Chapter 36

 7. Implement a VBA function ChooseBond(Deposit, Years, FT0, FT1). The function will

return the value 1 if the superior investment is the bank in exercise 5 or the value 2 if it

is the company in exercise 6.

76
77
78
79
80
81
82
83
84
85
86

A B C D E F

Exercise 7

Deposit Years FT0 FT1
100 1 110 125 2 <-- =ChooseBond(A79,B79,C79,D79)
100 1 110 110 1
100 1 110 116.04 1
100 1 110 116.05 2

100000 1 110 125 2 <-- =ChooseBond(A83,B83,C83,D83)
100000 1 110 110 1
100000 1 110 118.02 1
100000 1 110 118.03 2

 8. A bank offers the following saving scheme: Invest a fixed amount on the first of each

month for a set number of years. On the first of the month after your last installment, you

get your money plus the accrued interest. The bank quotes a yearly interest rate but interest

is calculated and compounded on a monthly basis. Eight different interest rates are offered

depending on the monthly deposit and the number of years the program is to run.

 The following table lists the interest rates offered.

For sums

 < = 100 a month

For sums

 > 100 a month

For a period of 2 years 3.5% 3.9%

For a period of 3 years 3.7% 4.5%

For a period of 4 years 4.2% 5.1%

For a period of 5 years 4.6% 5.6%

 Write a two-argument function DFV(Deposit, Years) , returning the future value of such

an investment.

1

2

3

4

5

6

7

A B C D

Deposit Years DFV

10 5 675.7458 <-- =DFV(A3,B3)

10 4 523.5107 <-- =DFV(A4,B4)

10 3 381.2934 <-- =DFV(A5,B5)

10 2 248.9488 <-- =DFV(A6,B6)

10 1 120 <-- =DFV(A7,B7)

Exercise 8

985 User-Defined Functions with VBA

 9. Using the information provided in exercise 8 write a two-argument function DEP(DFV,
Years) that will return the monthly contribution necessary to get a certain sum in the future

(2, 3, 4, or 5 years). Note: This problem is more interesting; remember that the interest

rate depends on the monthly contribution.

1

2

3

4

5

6

7

A B C D

DFV Years DEP

-100 2 -4.01689 <-- =DEP(A3,B3)

100 2 4.01689 <-- =DEP(A4,B4)

1000 4 19.10181 <-- =DEP(A5,B5)

2499 2 99.96106 <-- =DEP(A6,B6)

2500 2 100.0011 <-- =DEP(A7,B7)

Exercise 9

 10. Fibonacci numbers are named after Leonardo Fibonacci (1170–1230), an outstanding

European mathematician of the medieval period. Fibonacci numbers are defined as

follows:

F

F

F F F

F F F

F F F

()

()

()

0 0

1 1

2 0 1 1

3 1 2 2

4 2 3

=
=

() = + () =
() = () + () =
() = () + () == 3

…

 In general F n F n F n() = −() + −()2 1 .

 Write a recursive VBA function that computes the n th number in the Fibonacci series.

1

2

3

4

5

6

7

8

9

10

A B C

n Fibonacci

0 0 <-- =Fibonacci(A3)

1 1 <-- =Fibonacci(A4)

2 1 <-- =Fibonacci(A5)

3 2 <-- =Fibonacci(A6)

4 3 <-- =Fibonacci(A7)

5 5 <-- =Fibonacci(A8)

6 8 <-- =Fibonacci(A9)

7 13 <-- =Fibonacci(A10)

Exercise 10

986 Chapter 36

 11. Write a VBA function that computes the n th number in the Fibonacci series; do not use

recursion.

1

2

3

4

5

6

7

8

9

10

A B C

n LoopFibonacci

0 0 <-- =LoopFibonacci(A3)

1 1 <-- =LoopFibonacci(A4)

2 1 <-- =LoopFibonacci(A5)

3 2 <-- =LoopFibonacci(A6)

4 3 <-- =LoopFibonacci(A7)

5 5 <-- =LoopFibonacci(A8)

6 8 <-- =LoopFibonacci(A9)

7 13 <-- =LoopFibonacci(A10)

Exercise 11

 Appendix: Cell Errors in Excel and VBA

 Excel uses a special kind of value to report errors. The CVErr() function is part of VBA. It

converts a value, supplied by you, to the special kind of value used for errors in Excel. Excel has

a number of error values that a function can return to signal that something went wrong. Here ’ s

an example: The function NewMistake(x,y) returns the result x / y . However, if y = 0, the function

outputs the (cryptic) error message #DIV0!.

 Function NewMistake(x, y)
 If y < > 0 Then NewMistake = x / y Else _
 NewMistake = CVErr(xlErrDiv0)
 End Function

 To Anticipate Future Confusion

 All the VBA error values are written “xlErr … .” Because the typed

alphabet letter “l” also looks like the number one, it would have been

easier had Microsoft used capital letters “XLErr … .” But …

987 User-Defined Functions with VBA

 This is NewMistake in Excel:

1
2
3
4
5
6
7

A B C D

X Y NewMistake
1 2 0.5 <-- =NewMistake(A4,B4)
2 1 2 <-- =NewMistake(A5,B5)
0 1 0 <-- =NewMistake(A6,B6)
1 0 #DIV/0! <-- =NewMistake(A7,B7)

NewMistake In Action

 Error values and their explanation are listed below.

Error Value VBA Name Possible causes

#NULL! XlErrNull The #NULL! error value occurs when you specify an

intersection of two areas that do not intersect.

#DIV/0! XlErrDiv0 The #DIV/0! error value occurs when a formula divides

by 0 (zero).

#VALUE! XlErrValue The #VALUE! error value occurs when the wrong type of

argument is used.

#REF! XlErrRef The #REF! error value occurs when a cell reference is not

valid.

#NAME? XlErrName The #NAME? error value occurs when Microsoft Excel

doesn ’ t recognize text in a formula.

#NUM! XlErrNum The #NUM! error value occurs when a problem occurs

with a number in a formula or function.

#N/A XlErrNA The #N/A error value occurs when a value is not available

to a function or formula.

 37
 Variables and Arrays

 37.1 Overview

 In the first part of this chapter we introduce function variable definitions. The

second part of the chapter introduces arrays. An array is a group of variables

of the same type sharing the same name and referenced individually using an

index. Vectors and matrices are good examples of one- and two-dimensional

arrays. The relationship between arrays and worksheet ranges opens the dis-

cussion, followed by sections describing simple and dynamic arrays (whose

size can be changed at run time). The chapter concludes with sections on the

use of arrays as parameters and a short discussion of typed variables.

 37.2 Defining Function Variables

 Function variables are used to store values. Function variables can be either

parameter or simple variables. Parameters are defined when the function is

defined by listing them within parentheses after the function ’ s name. Up until

now we used simple variables as and when needed, relying on VBA to define

the variable for us when it was first used. In most scenarios encountered in

this book, this practice is good enough, and it has the advantage of being quick.

 The first time we encountered both flavors of function variables was in

the function DoWhileDemo :

 Function DoWhileDemo(N)
 If N < 2 Then
 DoWhileDemo = 1
 Else
 i = 1 ‘ A Loop counter
 j = 1 ‘ An accumulator for the series
 Do While i < = N
 j = j * i
 i = i + 1
 Loop
 DoWhileDemo = j
 End If
 End Function

990 Chapter 37

 The variable N is a parameter that gets its value from the application that

activates the function (either Excel or another function). The variables i, j are

simple variables. Function variables (aka internal or local variables) of both

types are recognized only in the function in which they were defined (implic-

itly or explicitly) and are not recognized by Excel or by other VBA

functions.

 As this is a very short function, there really is no reason to define the vari-

ables explicitly and the addition of comments makes everything clear enough.

Longer functions with more variables might benefit by defining the variables

at the top of the function, as it makes for more maintainable, and clear pro-

gramming. Simple variables are defined using the Dim statement as demon-

strated by the following function:

 Function NewDoWhileDemo(N)
 Dim i ‘ a Loop counter
 Dim j ‘ An accumulator for the series
 If N < 2 Then
 NewDoWhileDemo = 1
 Else
 i = 1
 j = 1
 Do While i < = N
 j = j * i
 i = i + 1
 Loop
 NewDoWhileDemo = j
 End If
 End Function

 The Option Explicit Statement

 We can make VBA alert us if we use an undeclared variable by inserting the

 Option Explicit statement as the first line in the module. With this statement

any use of an undeclared variable will result in an error and not the creation

of a new variable. The Option Explicit statement holds for all the routines in

the module.

991 Variables and Arrays

 Forcing the definition of variables can help prevent errors from creeping

into your functions. Here is an (slightly forced) example: The following func-

tion contains a typing error (“Temp” is spelled “Remp”):

 Function Typo(Parameter)
 Remp = Parameter * 3 + 1
 Typo = Temp
 End Function

 Without the Option Explicit statement, Excel merrily displays the follow-

ing result:

 However, inserting the Option Explicit statement before the VBA code and

recalculating the worksheet results in the following “Run Time Error”:

1

2

A B C

5 0 <-- =Typo(A2)

TYPO IN ACTION

992 Chapter 37

 Once we are alerted to the problem, we can click the OK button, stop VBA

from running, and fix the problem by replacing “Remp” with “Temp.” (Recall

from Chapter 36 that after you fix the mistake in VBA, you have to press the

 button on the VBA editor toolbar.)

 37.3 Arrays and Excel Ranges

 A VBA array is a group of variables of the same type sharing the same name

and referenced individually using an index (or indices). VBA has its own

version of arrays and we shall deal with this type of array in the following

sections. For now let us demonstrate the Variant . If we want a function to

accept an Excel range as a parameter we have to leave the parameter type-less,

or declare the parameter as Variant (which amounts to the same thing). From

inside the function the variable looks like an array. To demonstrate, we shall

now write a small function, SumRange , that sums the value in the first four

elements of its parameter.

 Function SumRange(R)
 S = 0
 For i = 1 To 4
 S = R(i) + S
 Next i
 SumRange = S
 End Function

1

2

3

4

5

6

A B

1 <-- 1

2 <-- 2

3 <-- 3

4 <-- 4

10 <-- =SumRange(A2:A5)

SUMRANGE IN ACTION

1

2

3

A B C D

1 2 3 4

10 <-- =SumRange(A2:D2)

SUMRANGE IN ACTION

993 Variables and Arrays

 In both cases the variable R can be treated as an array, with the first element

being R(1) and the last element R(4) . Each of the elements can be treated as

a single variable, that is, R(2) is a variable and so is R(i-3) (assuming that i-3

has an integer value > = 1 and < = 4). Ranges treated as arrays always start with

index 1.

 What happens if the range passed to our function is rectangular? To dem-

onstrate, we introduce a modified version of SumRange , inserting a second

parameter that tells the function how many elements to sum.

 Function SumRange1(R, N)
 S = 0
 For i = 1 To N
 S = R(i) + S
 Next i
 SumRange = S
 End Function

 As we can see, VBA treats the rectangular array as a linear array composed

of the rows of the original range. The second parameter of the function

 SumRange1 indicates how many elements should be summed. Thus,

for example, Sumrange1(A2:C4,5) sums the first row plus two cells in the

second row.

 A Payback Period Function

 A slightly more complex use of ranges can be shown with a simple Payback

Period function. Recall that the payback period in capital budgeting refers to

1

2

3

4

5

6

7

A B C D

3 4 5

6 7 8

9 10 11

18 <-- =SumRange1(A2:C4,4)

25 <-- =SumRange1(A2:C4,5)

33 <-- =SumRange1(A2:C4,6)

SUMRANGE1 IN ACTION

994 Chapter 37

the period of time required for the return on an investment to “repay” the sum

of the original investment. For example, a $1,000 investment which pays cash

flows of $500 per year has a 2-year payback period. To simplify matters, the

function PayBack defined below gives a whole year solution. If the sum of

the cash flows for 5 years is < 0 and for 6 years is > 0, then the function will

return 6. We also assume that the first cash flow is the initial investment (nega-

tive) and that no other cash flows are negative.

 Function PayBack(R, N)
 Temp = 0
 For i = 1 To N
 Temp = Temp + R(i)
 If Temp > = 0 Then Exit For
 Next i
 PayBack = i - 1
 End Function

1

2

3

4

A B C D E F

Period 1 2 3 4 5

Cash-flow -1500 400 600 600 300

PayBack 3 <-- =PayBack(B3:F3,5)

PAYBACK IN ACTION

 There are a few problems with this function as currently defined. One is that

the function returns a wrong answer if the investment does not pay back its

initial outlay, as demonstrated by the next screen shot.

1

2

3

4

A B C D E F

Period 1 2 3 4 5

Cash-flow -4000 400 600 600 300

PayBack 5 <-- =PayBack(B3:F3,5)

PAYBACK IN ACTION

995 Variables and Arrays

 The problem is solved by inserting a check before returning the payback

period.

 Function PayBack1(r, n)
 Temp = 0
 For i = 1 To n
 Temp = Temp + r(i)
 If Temp > = 0 Then Exit For
 Next i
 If Temp > = 0 Then
 PayBack1 = i - 1
 Else
 PayBack1 = “No Payback”
 End If
 End Function

 37.4 Simple VBA Arrays

 There are several ways to declare VBA arrays, all using the Dim statement.

The simplest way to declare an array is simply to tell VBA the largest value

the array index can take. Unless you indicate otherwise, VBA arrays always

start with index 0. In the function below, MyArray has 6 elements numbered

0, 1, 2, … , 5.

1

2

3

4

A B C D E F

Period 1 2 3 4 5

Cash-flow -4000 400 600 600 300

PayBack No Payback <-- =PayBack1(B3:F3,5)

PAYBACK1 IN ACTION

996 Chapter 37

 Function ArrayDemo1()
 Dim MyArray(5)
 For i = 0 To 5
 MyArray(i) = i * i
 Next i
 S = “”
 For i = 0 To 5
 S = S & “ # “ & MyArray(i)
 Next i
 ArrayDemo1 = S
 End Function

 If you use ArrayDemo1 in a spreadsheet, here is the result:

1

2

BA

 # 0 # 1 # 4 # 9 # 16 # 25 <-- =ArrayDemo1()

ARRAYDEMO1 IN ACTION

 Notice:

 • MyArray has six elements (variables), the first being MyArray(0) and the

last MyArray(5) . All VBA arrays start from 0, unless you specify otherwise

(see discussion of Option Base below).

 • An array element is treated just like a variable. MyArray(2) is a variable

and so is MyArray(i-3) (assuming that i-3 has an integer value > = 0 and

 < = 5).

 • The use of the concatenation operator & . This operator concatenates (com-

bines) its two operands to create a string. If an operand to the concatenation

operator is not a string, it is converted to a string, and then the concatenation

takes place.

 If you try and access an array element that is not part of the array, VBA will

return an error value, as demonstrated by the following function:

997 Variables and Arrays

 Function ArrayDemo2(N)
 Dim MyArray(5)
 Dim i As Integer
 For i = 0 To 5
 MyArray(i) = i * i
 Next i
 ArrayDemo2 = MyArray(N)
 End Function

 LBound and UBound

 LBound and UBound are two internal VBA functions that are very useful

when dealing with arrays . These functions return the minimum and maximum

value that an array index can have. The following function demonstrates their

use on a one-dimensional array:

1

2

3

4

5

6

7

8

A B C

0 0 <-- =ArrayDemo2(A2)

1 1 <-- =ArrayDemo2(A3)

2 4 <-- =ArrayDemo2(A4)

3 9 <-- =ArrayDemo2(A5)

4 16 <-- =ArrayDemo2(A6)

5 25 <-- =ArrayDemo2(A7)

6 #VALUE! <-- =ArrayDemo2(A8)

ARRAYDEMO2 IN ACTION

 Function ArrayDemo3(N)
 Dim MyArray(5)
 If N = “LB” Then
 ArrayDemo3 = LBound(MyArray)
 ElseIf N = “UB” Then
 ArrayDemo3 = UBound(MyArray)
 End If
 End Function

998 Chapter 37

 Note that the array MyArray has six elements, the first being MyArray(0)
as indicated by LBound , and the last being MyArray(5) as indicated by

 UBound .

 When used on a multidimensional array, a second parameter should be sup-

plied indicating the dimension in whose bounds we are interested, as the next

function demonstrates.

1

2

3

A B C

)2A(3omeDyarrA= --<0BL

)3A(3omeDyarrA= --<5BU

ARRAYDEMO3 IN ACTION

 Function ArrayDemo4(Dimension, Bound)
 Dim MyArray(2, 3, 4)
 If Bound = “LB” Then
 ArrayDemo4 = LBound(MyArray, Dimension)
 ElseIf Bound = “UB” Then
 ArrayDemo4 = UBound(MyArray, Dimension)
 End If
 End Function

1

2

3

4

5

6

7

A B C D

LB 1 0 <-- =ArrayDemo4(B2,A2)

UB 1 2 <-- =ArrayDemo4(B3,A3)

LB 2 0 <-- =ArrayDemo4(B4,A4)

UB 2 3 <-- =ArrayDemo4(B5,A5)

LB 3 0 <-- =ArrayDemo4(B6,A6)

UB 3 4 <-- =ArrayDemo4(B7,A7)

ARRAYDEMO4 IN ACTION

999 Variables and Arrays

 How to Get the Bound of an Excel Range in a Function

 Sadly the internal functions UBound and LBound do not work for a range

passed to a function. We can make use of the fact that the parameter is actually

a range and use some of its properties to get the result we need. The following

function demonstrates this:

 Function RangeBound(R, What)
 If What = “C” Then
 RangeBound = R.Columns.Count
 ElseIf What = “R” Then
 RangeBound = R.Rows.Count
 End If
 End Function

 Did you notice that the function does not work with lowercase characters?

If we want to be case agnostic, as one usually does, we can use the VBA func-

tion UCase to convert “what” to uppercase.

1

2

3

4

5

A B C

C 2 <-- =rangebound(D1:E5,A2)

R 5 <-- =rangebound(D2:E6,A3)

c 0 <-- =rangebound(D3:E7,A4)

r 0 <-- =rangebound(D4:E8,A5)

RANGEBOUND IN ACTION

 Function RangeBound1(R, What)
 If UCase(What) = “C” Then
 RangeBound1 = R.Columns.Count
 ElseIf UCase(What) = “R” Then
 RangeBound1 = R.Rows.Count
 End If
 End Function

1000 Chapter 37

 Fixing Excel ’ s NPV Function

 Recall from Chapter 1 that

 Excel ’ s language about discounted cash flows differs somewhat from the standard

finance nomenclature. Excel uses the letters NPV to denote the present value (not the

net present value) of a series of cash flows.

 To calculate the finance net present value of a series of cash flows using Excel, we

have to calculate the present value of the future cash flows (using the Excel NPV func-

tion) and subtract from this present value the time-zero cash flow. (This is often the

cost of the asset.)

 Let us try and write a function nNPV that addresses this shortcoming. In

the process we shall learn a few things about Excel Ranges in VBA. In order

to make the function simple, it will only work on a row of cash flows.

1

2

3

4

5

6

A B C

C 2 <-- =rangebound1(D1:E5,A2)

R 5 <-- =rangebound1(D2:E6,A3)

c 2 <-- =rangebound1(D3:E7,A4)

r 5 <-- =rangebound1(D4:E8,A5)

1 0 <-- =rangebound1(D5:E9,A6)

RANGEBOUND1 IN ACTION

 Function nNPV(Rate, R)
 nNPV = R(1) + Application.WorksheetFunction _
 .npv(Rate, R.Range(“B1”, R.End(xlToRight)))
 End Function

 R.Range(CellTopLeft,CellBottomRight) returns a range defined by its

parameters. Note that the cell addresses are relative to R and not the

worksheet.

 R.End(Direction) returns one of the four possible last cells in the R accord-

ing to Direction . Possible values for Direction are xlDown, xlToLeft,

xlToRight, xlUp.

1001 Variables and Arrays

 Assuming R is a row of cells, R.Range(“B1”, R.End(xlToRight)) returns

a range containing all the cells in R excluding the first one.

1

2

3

4

5

6

A B C D E F

Cash Flows ▶ -400 100 100 100 100

Rate ▶ 10%

Excel NPV ▶ -75.4667776 <-- =NPV(B3,B2:F2)

Excel C0+NPV ▶ -83.01345537 <-- =B2+NPV(B3,C2:F2)

 nNPV ▶ -83.01345537 <-- =nNPV(B3,B2:F2)

NNPV IN ACTION

 A New IRR Function

 Another useful function we can write using our newly acquired tools is nIRR .

Recall from Chapter 1 that the internal rate of return (IRR) is defined as the

compound rate of return r that makes the NPV equal to zero:

 CF
CF

r
t

t
t

N

0
0 1

0+
+()

=
=
∑

 We now use a technique called successive refinement to calculate IRR:

 1. If we were given an initial guess for r we use it and if not we use 50% to

calculate NPV.

 2. If the calculated NPV is zero (or sufficiently near) we return the current

guess.

 3. If the calculated NPV is negative we set our guess to r = r + r /2.

 4. If the calculated NPV is positive we set our guess to r = r − r /2.

 5. We shall now recalculate NPV.

 6. Repeat steps 2–5.

 We assume that the first cash flow is negative and that all others are

positive.

1002 Chapter 37

 Here is the function:

 Function nIRR(R, Optional guess = 0.5)
 n = nNPV(guess, R)
 Do While Abs(npv) > 0.0001
 If n < 0 Then
 guess = guess - guess / 2
 Else
 guess = guess + guess / 2
 End If
 n = nNPV(guess, R)
 Loop
 nIRR = guess
 End Function

 Optional Parameters

 Note that the use of Optional guess = 0.5 to declare the last parameter as

optional and give it a default value if the user did not supply one. Once a

parameter is declared as optional, all the following parameters have to be

declared optional as well. For example, this declaration is fine:

 Function WillWork(a, Optional b = 5, Optional c = 4)

1003 Variables and Arrays

 Whereas this will result in an error:

 As noted, this function is very slow so it might take a few seconds to calculate

its results.

1

2

3

4

5

6

7

8

9

A B C D E F

Cash Flows ▶ -375 100 100 100 100

Guess ▶ 5%

IRR ▶ 2.63247% <-- =IRR(B2:F2,B3)

 nIRR ▶ 2.63247% <-- =nIRR(B2:F2,B3)

 nIRR ▶ 2.63248% <-- =nIRR(B2:F2)

 nNPV ▶ 7.708E-11 <-- =nNPV(B4,B2:F2)

 nNPV ▶ 9.795E-06 <-- =nNPV(B5,B2:F2)

 nNPV ▶ -9.55E-05 <-- =nNPV(B6,B2:F2)

NIRR IN ACTION

1004 Chapter 37

 The Option Base Statement

 Excel arrays start at 1, whereas VBA arrays start at 0, unless otherwise defined.

We can use a module option to make all not specifically declared array indices

start at 1. We use ArrayDemo3 to demonstrate. We open a new VBA module

with first line “OptionBase1.” We rename our previous function to reflect this

change.

 Option Base 1
 Function ArrayDemo3OptionBase1(N)
 Dim MyArray(5)
 If N = “LB” Then
 ArrayDemo3OptionBase1 = LBound(MyArray)
 ElseIf N = “UB” Then
 ArrayDemo3OptionBase1 = UBound(MyArray)
 End If
 End Function

 If we insert Option Base 1 as the first line of the module to get (the only

change is in cell B2 where we get 1 and not 0).

1

2

3

A B C

LB 1 <-- =ArrayDemo3Optionbase1(A2)

UB 5 <-- =ArrayDemo3Optionbase1(A3)

ARRAYDEMO3OPTIONBASE1 IN ACTION

 The Option Base 1 statement, like all option statements, should be inserted

before all functions and subroutines in a module. Like all option statements,

its effect is limited to all routines in the current module.

1005 Variables and Arrays

 37.5 Multidimensional Arrays

 Arrays can have more than one index. In a two-dimensional array the first

index refers to the rows and the second to the columns. There is no formal

limit to the number of indices you can declare in an array. The syntax for

declaring a multidimensional array is demonstrated in the following

functions:

 Function Matrix1(R, C)
 Dim MyMat(2, 1)
 For i = 0 To 2
 For j = 0 To 1
 MyMat(i, j) = i * j
 Next j
 Next i
 If R > = 0 And R < = 2 And C > = 0 And C < = 1 _
Then
 Matrix1 = MyMat(R, C)
 End If
 End Function

1

2

3

4

5

6

7

8

9

10

A B C D

R C Matrix1(R,C)

0 0 0 <-- =Matrix1(A3,B3)

1 0 0 <-- =Matrix1(A4,B4)

2 0 0 <-- =Matrix1(A5,B5)

0 1 0 <-- =Matrix1(A6,B6)

1 1 1 <-- =Matrix1(A7,B7)

2 1 2 <-- =Matrix1(A8,B8)

3 1 0 <-- =Matrix1(A9,B9)

1 3 0 <-- =Matrix1(A10,B10)

MATRIX1 IN ACTION

1006 Chapter 37

 Note the use of the second argument to LBound and UBound . If used with

only one argument, both functions return the largest index value the first

dimension of the array can have; if the array has more than one dimension (as

in this case), we can use a second argument to the function to specify the

dimension we are interested in.

 Function Matrix2(R, C)
 Dim MyMat(1, 1)
 For i = LBound(MyMat, 1) To UBound(MyMat, 1)
 For j = LBound(MyMat, 2) To _

UBound(MyMat, 2)
 MyMat(i, j) = i * j
 Next j
 Next i
 If R > = LBound(MyMat, 1) And _
 R < = UBound(MyMat, 1) And _
 C > = LBound(MyMat, 2) And _
 C < = UBound(MyMat, 2) Then
 Matrix2 = MyMat(R, C)
 End If
 End Function

1

2

3

4

5

6

7

8

A B C D

R C Matrix2(R,C)

0 0 0 <-- =Matrix2(A3,B3)

1 0 0 <-- =Matrix2(A4,B4)

2 0 0 <-- =Matrix2(A5,B5)

0 1 0 <-- =Matrix2(A6,B6)

1 1 1 <-- =Matrix2(A7,B7)

1 2 0 <-- =Matrix2(A8,B8)

MATRIX2 IN ACTION

 The following function demonstrates the use of LBound and UBound with

multidimensional arrays:

1007 Variables and Arrays

 37.6 Dynamic Arrays and the ReDim Statement

 Every so often it can be handy to have the size of an array set (and reset) when

the program is running. Dynamic arrays are arrays that can have their size

changed at run time. You declare dynamic arrays using the Dim statement but

with nothing in the parentheses, as in:

 Dim SomeName()

 Before you can use the array you need to set its size using the ReDim state-

ment, as in:

 ReDim ArrayName(SomeIntegerExpression)

 For example, you might type

 ReDim Prices(12)

 To set the size of the dynamic array Prices to 12 elements, a more typical

case would involve the use of a variable for the size as in:

 ReDim Prices(I)

 This will set the size of Prices to the value of I.

 The ReDim statement can also be used to change the size of a dynamic

array (or indeed any VBA array). If you change the size of an array, all the

data in the array are lost. Use ReDim Preserve to keep the old data, as in:

1008 Chapter 37

 The following function calculates the present value of a series of future cash

flows. To simplify the function, the interest rate is fixed at 5% per period. The

function illustrates the use of a dynamic array (the variable CF) that derives

its size from the size of the original input (the variable n):

 ReDim Preserve ArrayName(SomeIntegerExpression)

 Function DynPV(r As Range)
 ‘ n is number of periods
 ‘ cf() is dynamic array for cash
 ‘ fl ows
 Dim n
 Dim cf()
 Dim Temp
 Dim i
 ‘Below we distinguish if the data
 ‘is in a column or in a row
 If r.Columns.Count = 1 Then
 n = r.Rows.Count
 ElseIf r.Rows.Count = 1 Then
 n = r.Columns.Count
 Else
 Exit Function
 End If
 ‘ re-dimension the array
 ReDim cf(1 To n)
 For i = 1 To n
 cf(i) = r(i)
 Next i
 Temp = 0
 For i = 1 To n
 Temp = Temp + cf(i) / 1.05 ∧ i
 Next i
 DynPV = Temp
 End Function

1009 Variables and Arrays

 Running the function produces the following:

 Using the ReDim Preserve Statement

 As stated previously the Preserve part of the ReDim statement prevents the

loss of data from the re-dimensioned array. The use of Preserve imposes two

major limitations on the use of ReDim .

 • The inability to change the lower boundary of the index.

 • The inability to change the number of dimensions.

 The main use of the ReDim Preserve is in interactive programs and as such

it will be demonstrated in a later chapter dealing with user interaction.

 37.7 Array Assignment

 Here ’ s an error that ’ s easy to make: In the following example we want to tell

VBA that Array2 is equal to Array1 :

1

2

3

4

5

6

A B C

Cash Flows

100

200

300

DynPV ▶ 535.79527 <-- =DynPV(A3:A5)

DYNPV IN VERTICAL ACTION

1

2

3

A B C D

Cash Flows ▶ 100 200 300

DynPV ▶ 535.79527 <-- =DynPV(B2:D2)

DYNPV IN HORIZONTAL ACTION

1010 Chapter 37

 VBA doesn ’ t allow this, as you can see on the next screen shot.

 Function ArrayAssignError()
 Dim Array1(5)
 Dim Array2(5)
 For i = 0 To 4
 Array1(i) = i * i
 Next i
 Array2 = Array1
 ArrayAssignError = Array2
 End Function

 Obviously one way to assign arrays is to assign each element separately

using a For loop.

 For I = 0 To 4: Array2(I) = Array1(I):
Next I

1011 Variables and Arrays

 The : Operator

 Note the use of the “ : ” operator to signal the end of a statement. This way we

can put two or more short statements on the same line. Another, much shorter,

way of assigning arrays is discussed in the next section.

 37.8 Variants Containing an Array

 A Variant type variable can contain an array. The procedure is somewhat more

complicated than the declaration of a normal array, but the reward in terms of

assignment is sometimes worth the inconvenience. The following function

demonstrates the use of a Variant containing an array:

 01 Function ArrayAssign(r, j)
 02 Dim Array1 ‘This is a variant
 03 Dim Array2 ‘This is a variant
 04 Dim n ‘number of elements

‘in R
 05 Array1 = Array()
 06 If r.Columns.Count = 1 Then ‘data in column
 07 n = r.Rows.Count
 08 ElseIf r.Rows.Count = 1 Then ‘data in row
 09 n = r.Columns.Count
 10 Else ‘invalid data
 11 Exit Function
 12 End If
 13 ReDim Array1(1 To n)
 14 For i = 1 To n
 15 Array1(i) = r(i)
 16 Next i
 17 ‘****************************Watch this spot
 18 Array2 = Array1 ‘Watch this spot
 19 ‘****************************Watch this spot
 20 If j > = 1 And j < = n Then
 21 ArrayAssign = Array2(j)
 22 End If
 23 End Function

1012 Chapter 37

 Function ComputePV(CF())
 Temp = 0
 For i = LBound(CF) To UBound(CF)
 Temp = Temp + CF(i) / 1.05 ∧ i
 Next i
 ComputePV = Temp
 End Function

 The Array() function (on the fifth line) returns a Variant containing an

array. The assignment on the same line makes Array1 into an array (not ini-

tialized at the moment). The ReDim statement on line 15 makes Array1 into

an n element array. The reward for all our trouble is illustrated on line 18.

Here is the function in a worksheet context:

1

2

3

4

5

6

7

8

A B C D E

55 88 77 12 99

1 55 <-- =ArrayAssign(A2:E2,A3)

2 88 <-- =ArrayAssign(A2:E2,A4)

3 77 <-- =ArrayAssign(A2:E2,A5)

4 12 <-- =ArrayAssign(A2:E2,A6)

5 99 <-- =ArrayAssign(A2:E2,A7)

6 0 <-- =ArrayAssign(A2:E2,A8)

ARRAYASSIGN IN HORIZONTAL ACTION

 37.9 Arrays as Parameters to Functions

 Arrays can be used as parameters to functions. The following set of functions

presents an improved version of DynPV discussed in section 37.6. Notice how

much easier it is to read the main function NewDynPV , when all the auxiliary

tasks are relegated to separate functions.

 A function ComputePV(CF()) is used to compute the present value of a

series of cash flows contained in an array of Doubles .

1013 Variables and Arrays

 Note the fact that in ComputePV(CF()) , CF() has to be declared without

index information. Consequently, we use LBound and UBound to get index

information.

 The function GetN(R As Range) returns the number of elements in R:

 Function GetN(R As Range)
 If R.Columns.Count = 1 Then ‘data in column
 GetN = R.Rows.Count
 ElseIf R.Rows.Count = 1 Then ‘data in row
 GetN = R.Columns.Count
 Else
 GetN = 0
 End If
 End Function

 Here is the main function:

 Function NewDynPV(R As Range)
 Dim n As Integer ‘ Number of periods
 Dim CF() As Double ‘ Dynamic array for cash fl ows
 n = GetN(R)
 If (n = 0) Then
 NewDynPV = n
 Exit Function
 End If
 ReDim CF(1 To n) ‘ re-dimension the array
 For i = 1 To n
 CF(i) = R(i)
 Next i
 NewDynPV = ComputePV(CF)
 End Function

1014 Chapter 37

1

2

3

A B C D

Cash Flows ▶ 100 200 300

NewDynPV ▶ 535.79527 <-- =newDynPV(B2:D2)

NEWDYNPV IN ACTION

 Better IRR and NPV Functions

 We can now revisit nIRR and nNPV from section 37.4, and try and make

them faster using internal arrays.

 Function fNPV(Rate, cf)
 Temp = 0
 For i = LBound(cf, 2) + 1 To UBound(cf, 2)
 Temp = Temp + cf(1, i) / (1 + Rate) ∧ _

(i - 1)
 Next i
 fNPV = Temp + cf(1, LBound(cf, 2))
 End Function

 Function fIRR(R, Optional guess = 0.5)
 cf = R.Value
 n = fNPV(guess, cf)
 Do While Abs(npv) > 0.0001
 If n < 0 Then
 guess = guess - guess / 2
 Else
 guess = guess + guess / 2
 End If
 n = fNPV(guess, cf)
 Loop
 fIRR = guess
 End Function

1015 Variables and Arrays

 This works an order of magnitude faster but can be further improved.

 37.10 Using Types

 All values, variables, and functions in VBA are categorized into types, either

by default or explicitly. By default all variables and functions in VBA are of

the type Variant . Variant is a category of values (type) that includes all other

categories. In most cases we can just ignore the type, but sometimes it can be

very useful to give a variable a type other than Variant . Variable types allow

VBA to give us information about the variable as we use it, and this will

become apparent as we start using Excel objects in the following chapters. For

now we will just explain the mechanics of defining a typed variable, and

provide a short demonstration of the help offered by VBA when dealing with

typed variables. A type is given to a variable when it is defined by following

the variables name with the word As followed with a type name. For example,

the statement “Dim x As Integer” defines a variable named x of the type

Integer.

 To demonstrate the usefulness of typed variables recall the function

 RangeBound from section 37.4. Here is a new version with the first parameter

explicitly given the type Range. Although not necessary (it worked without

it), it does make life easier. When you type in the function and a variable has

a type, VBA can give you hints as you try to use properties. In our example,

as soon as you type the period after R, VBA provides a list of possible Proper-

ties or Methods. If the selected property (Rows, in our case) has properties

of its own, then a period following its name will produce a list for you to

choose from.

1

2

3

4

5

6

7

8

9

A B C D E F

Cash Flows ▶ -375 100 100 100 100

Guess ▶ 5%

IRR ▶ 2.63247% <-- =IRR(B2:F2,B3)

fIRR ▶ 2.63247% <-- =fIRR(B2:F2,B3)

fIRR ▶ 2.63248% <-- =fIRR(B2:F2)

 nNPV ▶ 7.70797E-11 <-- =nNPV(B4,B2:F2)

 nNPV ▶ 9.79546E-06 <-- =nNPV(B5,B2:F2)

 nNPV ▶ -9.54928E-05 <-- =nNPV(B6,B2:F2)

FIRR IN ACTION

1016 Chapter 37

 37.11 Summary

 VBA functions use variables to store information. Variables can hold all sorts

of information. Declaring and using variables that can hold only a specific

type of information (Typed Variables) can make your programming task

easier and your programs more readable, and use less computer memory.

1017 Variables and Arrays

 An array is a group of variables of the same type, sharing the same name

and referenced individually using one or more indices. In VBA an array index

is an integer. By default the index of the first element in an array is 0; this can

be changed to 1 for all arrays used in a module by using the Option Base 1
 statement. The size and number of dimensions of an array are set at the time

the array is declared and have to be known when the program is written.

Dynamic arrays are arrays whose size (but not number of dimensions) can be

set at run time.

 Exercises

 1. Write a function NewPV(CF, r) which calculates the present value of a given cash flow

 CF at interest rate r for 5 periods:

NewPV CF r

CF

r

CF

r

CF

r

CF

r

CF

r
(,) =

+()
+

+()
+

+()
+

+()
+

+()1 1 1 1 11 2 3 4 5

 2. Rewrite the function in exercise 2 as BetterNewPV(CF, r, n), so it could deal with n

periods.

1
2
3

4

5

6

A B C D

NEWPV IN ACTION
CF r NewPV

100.0000 10% 379.0787 <-- =NewPV(A3,B3)

50.0000 10% 189.5393 <-- =NewPV(A4,B4)

100.0000 1% 485.3431 <-- =NewPV(A5,B5)

50.0000 1% 242.6716 <-- =NewPV(A6,B6)

1
2
3
4

5

6

EDCBA

BETTERNEWPV IN ACTION
CF r n BetterNewPV

100.0000 5% 5 432.9477 <-- =BetterNewPV(A3,B3,C3)
50.0000 10% 5 189.5393 <-- =BetterNewPV(A4,B4,C4)

100.0000 1% 10 947.1305 <-- =BetterNewPV(A5,B5,C5)

50.0000 1% 10 473.5652 <-- =BetterNewPV(A6,B6,C6)

1018 Chapter 37

 4. A bank offers different interest rates on deposit accounts. The rate is based on the size of

the periodical deposit (CF) and the following table. Write a future value function

 BankFV(CF, r, n) .

For Periodical Deposits The Interest Rate Is

 < = 100.00 r

 < = 500.00 r + 0.5%

 < = 1,000.00 r + 1.1%

 < = 5,000.00 r + 1.7%

 > 5,000.00 r + 2.1%

 3. A bank offers different interest rates on loans. The rate is based on the size of the periodical

repayment (CF) and the following table. Rewrite the function in exercise 2 as BankPV(CF,
r, n) so that it reflects the present value of a loan in the bank.

For Periodical Repayments < = The Interest Rate Is

100.00 r

500.00 r − 0.5%

1,000.00 r − 1.1%

5,000.00 r − 1.7%

1,000,000.00 r − 2.1%

1

2

3

4

5

6

7

8

9

A B C D E

CF r n BankPV

-1 5% 5 E <-- =BankPV(A3,B3,C3)

100.00 5% 5 432.95 <-- =BankPV(A4,B4,C4)

100.01 5% 5 439.04 <-- =BankPV(A5,B5,C5)

1000.00 5% 5 4464.36 <-- =BankPV(A6,B6,C6)

1000.01 5% 5 4540.79 <-- =BankPV(A7,B7,C7)

5000.00 5% 5 22703.71 <-- =BankPV(A8,B8,C8)

5000.01 5% 5 22964.11 <-- =BankPV(A9,B9,C9)

BANKPV IN ACTION

1019 Variables and Arrays

1
2
3
4
5
6
7
8
9

A B C D E

CF r n BankFV

-1 5% 5 E <-- =Bankfv(A3,B3,C3)
100.00 5% 5 580.19 <-- =Bankfv(A4,B4,C4)
100.01 5% 5 588.86 <-- =Bankfv(A5,B5,C5)

1,000.00 5% 5 5992.91 <-- =Bankfv(A6,B6,C6)
1,000.01 5% 5 6099.47 <-- =Bankfv(A7,B7,C7)
5,000.00 5% 5 30497.07 <-- =Bankfv(A8,B8,C8)
5,000.01 5% 5 30856.78 <-- =Bankfv(A9,B9,C9)

BANKFV IN ACTION

 5. Another bank offers 1% increase in interest rate to savings accounts with a balance of

more than 10,000.00. Write a future value function Bank1FV(CF, r, n) that reflects this

policy.

 6. The bank in exercise 5 changed its bonus policy and now offers the interest rate increase

based on the following table. Rewrite Bank1FV(CF, r, n) to reflect this change.

Balance Interest Rate

 < = 1,000.00 r + 0.2%

 < = 5,000.00 r + 0.5%

 < = 10,000.00 r + 1.0%

 > 10,000.00 r + 1.3%

1
2
3
4
5
6
7
8

A B C D E

CF r n Bank1FV

-1 5% 5 E <-- =Bank1FV(A3,B3,C3)
9999.00 5% 5 59620.97 <-- =Bank1FV(A4,B4,C4)

10000.00 5% 5 59626.94 <-- =Bank1FV(A5,B5,C5)
10001.00 5% 5 59759.16 <-- =Bank1FV(A6,B6,C6)

5.96 <-- =D5-D4
132.22 <-- =D6-D5

BANK1FV IN ACTION

1020 Chapter 37

1
2
3
4
5
6

A B C D E

CF r n Bank2FV

-1 5% 5 E <-- =Bank2FV(A3,B3,C3)
9999.00 5% 5 60237.93 <-- =Bank2FV(A4,B4,C4)

10000.00 5% 5 60243.96 <-- =Bank2FV(A5,B5,C5)
10001.00 5% 5 60288.29 <-- =Bank2FV(A6,B6,C6)

BANK2FV IN ACTION

 7. Write a version of the present value function with two interest rates, one for positive cash

flows and another for negative cash flows. The function should be written for use in a

worksheet, and accept both column and row ranges as parameters. The function declaration

line should be:

 Function MyPV(CF As Variant, PositiveR As Double, _
 NegativeR As Double) As Double

1
2
3
4
5

A B C D E F G

PositiveR 5% 100 100 100 272.3248 <-- =MyPV(C2:E2,B2,B3)
NegativeR 10% -100 -100 -100 -248.6852 <-- =MyPV(C3:E3,B2,B3)

-100 100 100 86.17762 <-- =MyPV(C4:E4,B2,B3)
-63 <-- =MyPV(C2:C4,B2,B3)

MYPV IN ACTION

 8. Write a future value version of the function in exercise 7.

 9. A bank offers different interest rates on loans. The rate is based on the size of the periodical

repayment (CF i) and the following table. Write a present value function BankPV(CF, r)
 so that it reflects the present value of a loan in the bank. The function should be useable

as a worksheet function. CF could be either a row range or a column range.

For Periodical Repayments < = The Interest Rate Is

100.00 r

500.00 r − 0.5%

1,000.00 r − 1.1%

5,000.00 r − 1.7%

1,000,000.00 r − 2.1%

1021 Variables and Arrays

 10. A bank offers different interest rates on deposit accounts. The rate is based on the size of

the periodical deposit (CF i) and the following table. Write a future value function

 BankFV(CF, r) . The function should be useable as a worksheet function. CF could be

either a row range or a column range.

For Periodical Deposits The Interest Rate Is

 < = 100.00 r

 < = 500.00 r + 0.5%

 < = 1,000.00 r + 1.1%

 < = 5,000.00 r + 1.7%

 > 5,000.00 r + 2.1%

 11. Another bank offers 1% increase in interest rate to savings accounts with a balance of

more than 10,000.00. Write a future value function Bank1FV(CF, r) that reflects this

policy. The function should be useable as a worksheet function. CF could be either a row

range or a column range.

 38
 Subroutines and User Interaction

 38.1 Overview

 A subroutine is a VBA user routine used to automate routine or repetitive

operations in Excel. Subroutines are sometimes called macros. Modules and

module variables are introduced as the last subject of this chapter.

 38.2 Subroutines

 A subroutine looks like a function, but the word “Sub” replaces the word

 Function in the definition. The parentheses following the subroutine name are

blank (recall that the parentheses following the function name give the func-

tion ’ s parameters). Separating the first and last line are the statements that the

subroutine executes. The following is a very simple subroutine that puts a

message on the screen:

 Sub SayHi()
 MsgBox “Hi”, , “I say Hi”
 End Sub

 The above subroutine introduces a built-in VBA subroutine called MsgBox .

It also introduces the way one subroutine is activated (called) from another.

 MsgBox is named as a command on a line followed by its list of arguments

separated by commas. Notice the syntax:

 MsgBox “Hi”, , “I say Hi”

 The commas separate the three arguments of every MsgBox :

 • “Hi” is the message which will be displayed.

 • The second argument is empty: Notice the space between the commas. This

argument can be used to define buttons for the message box. This topic is

discussed in section 38.3.

 • The third argument is “I say Hi”—this is the message box title.

1024 Chapter 38

 A subroutine can be activated (run) from an Excel worksheet in various

ways. The simplest way of running a subroutine is from the Macros button

on the Developer tab on the Ribbon or by using the keyboard shortcut [Alt]

 + F8. Either way, the macro selection box appears. 1 The box lists all available

subroutines alphabetically. Find our subroutine, click on its name, and click

the Run button.

 And this is what you will see:

 1. If you don ’ t have the Developer tab, go to File|Options|Customize the Ribbon . In the right

side of the resulting screen, mark the Developer box.

1025 Subroutines and User Interaction

 At this point Excel is locked up—you have to click the OK button before

you can proceed.

 Keyboard Shortcut for Subroutines

 Using a keyboard shortcut is a faster way to make a subroutine run. To attach

a shortcut to our subroutine:

 • Select the Options button from the macro selection box.

 • Type a character in the provided space and click OK .

 • Close the macro selection box using the corner X .

 You can now activate the subroutine using the shortcut ([Ctrl] + h, in

our case).

1026 Chapter 38

 Recording a Subroutine

 One easy way to start writing subroutines is to record the sequence of actions

you want in the subroutine, and then edit the resulting subroutine to produce

the final results you need. Something we do a lot in this book is to insert the

function Getformula in a cell to the right of the cell with the interesting

formula. Let ’ s record a subroutine that performs this action (see Figures

 38.1–38.3).

 1. Select the cell to the right of the cell with the formula we are interested in

(B4, in our case)

 2. Select the Developer tab on the ribbon.

 3. In the code group click Use Relative References . This causes Excel to

record relative cell addresses in the subroutine rather than its default, which

is to record the actual cell addresses.

 4. Click Record Macro .

 5. At this point you have the option to name the subroutine as well as all sorts

of other options. Since we are going to change most of these options in the

near future, we ignore all options and finally click OK to start recording.

 6. Type in the formula = Getformula(A4) .

 7. Click Stop Recording (this is the same button that used to be the Record
Macro button).

1027 Subroutines and User Interaction

 Figure 38.1
 Indicating recording with relative references.

 Figure 38.2
 Start recording the subroutine.

 Figure 38.3
 End subroutine recording. Button is in the same place as the Record Macro button.

 RECORDING A SUBROUTINE—SCREENS

1028 Chapter 38

 Running a Subroutine from a Button on the Worksheet

 Instead of running the subroutine from the Developer tab or running it from

a key combination, we can also insert a button on the worksheet to run a

subroutine on that worksheet. To illustrate, we insert a button that runs the

subroutine RecordGetformula :

 1. Select the Developer tab on the ribbon.

 2. In the Controls group, click Insert .

 3. From the Form Controls, select Button .

 Sub RecordGetformula()
 ‘ Puts in Getformula, points to cell
‘ to the left
 If IsEmpty(ActiveCell) Then
 ActiveCell.FormulaR1C1 = _

“ = getformula(RC[-1])”
 End If
 End Sub

 If we now go to the VBA editor we can see that a new module has been

added to the workbook. The module contains Macro1 :

 Sub Macro1()
 ActiveCell.FormulaR1C1 = _

“ = getformula(RC[-1])”
 End Sub

 We can add some bells and whistles to this recorded subroutine. In the

recorded subroutine below, we changed the name and put in a line to prevent

the accidental overwriting of a non-blank cell.

1029 Subroutines and User Interaction

 4. Drag the crosshair on the sheet to draw the button.

 5. Once you release the mouse button, the Assign Macro dialogue will appear.

 6. Select our subroutine and click OK .

1030 Chapter 38

 38.3 User Interaction

 In this section we show how to use subroutines to elicit data from the user of

the spreadsheet. We illustrate with the MsgBox command, which (as discussed

above) displays a message on the screen and returns a value based on the

button clicked. Some of the different options available with this function are

demonstrated in the following subroutines:

 Sub MsgBoxDefault()
 Dim Temp As Integer
 Temp = MsgBox(“Default Message”, , _
 “Default Title”)
 MsgBox _
 “The value returned by MsgBox is: “ _
 & Temp
 End Sub

 7. The button should be selected (control handles all round) and you can now

edit the text that appears on the button. If the button is not selected, right-

clicking on it will open a local menu enabling you to change the text or the

subroutine assigned to the button.

1031 Subroutines and User Interaction

 Note: The default configuration of MsgBox produces one OK button. The

default title is “Microsoft Excel.” Clicking the OK button makes MsgBox

return the value 1.

 Sub MsgBoxOKCancel()
 Dim Temp As Integer
 Temp = MsgBox(“Default Message”, _
 vbOKCancel)
 MsgBox _
 “The value returned by MsgBox is: “ _
 & Temp
 End Sub

 As previously noted, the second argument to MsgBox determines which

buttons are displayed. This incarnation of the demo subroutine uses the con-

stant vbOKCancel to produce the two buttons OK and Cancel . Note that if

the Cancel button is clicked, MsgBox returns the value 2.

1032 Chapter 38

 Sub PVCalculator()
 Dim CF
 CF = InputBox(“Enter the cash fl ow value”, _
 “PV calculator”, “100”)
 MsgBox “The present value of 4” & CF & _
 “At 5% for 10 periods is: “ & _
 Round(Application.PV(0.05, 10, -CF), _
 2), vbInformation, “PV calculator”
 End Sub

 CF = InputBox(“Enter the cash fl ow value”, _
 “PV calculator”, “100”)

 Note the syntax:

 • “Enter … please,” the first argument in InputBox , is the message to display.

 • “PV calculator,” the second argument, is the title for the box.

 • “100,” the third argument, is the default string to place in the box. If you do

not replace this by some other value, this will also be the returned value from

the function.

 • Running the subroutine should result in the following:

 InputBox: Getting Data from the User

 InputBox is an internal VBA function used to get textual information from

the user into a variable in a subroutine. The workings of the function

are demonstrated in the following present value calculator subroutine. The

subroutine PVCalculator calculates
CF

t
t 1 051

10

.()=
∑ , where CF is a number input-

ted by the user:

1033 Subroutines and User Interaction

 At this point you can replace “100” by some other number (in this

example, we ’ ve chosen to leave it). Clicking on the OK button results in the

following box:

 38.4 Using Subroutines to Change the Excel Workbook

 Subroutines can be used to make changes to a spreadsheet. Here ’ s a small

example, very similar to the example presented at the end of Chapter 35. In

this version of the subroutine we change the current region ’ s format to numbers

with comma separators and without decimals.

1034 Chapter 38

 ActiveCell.CurrentRegion is the range around the active cell (B5 in the

screen snaps), the same range that would be selected by pressing [Ctrl] + A

in the worksheet (A3:C7 in the screen shots).

 After:

 Sub Format()
 ActiveCell.CurrentRegion.NumberFormat _
 = “#,##0”
 End Sub

1035 Subroutines and User Interaction

 Sub ConvertToThousands()
 s = ActiveCell.CurrentRegion.Cells.Count
 For i = 1 To s
 ActiveCell.CurrentRegion(i).Value = _
 Round(ActiveCell.CurrentRegion(i). _
 Value / 1000, 0)
 Next i
 End Sub

 After:

 The next subroutine changes the actual data in ActiveCell.CurrentRegion

to thousands by dividing each number in the range by 1,000 and rounding it

to the nearest integer.

1036 Chapter 38

 38.5 Modules

 VBA organizes user-defined functions and subroutines in units called modules.

We can (and sometimes should) have more than one module in a VBA project

(i.e., the part of the workbook that has our functions and subroutines). Modules

have names: By default VBA uses the name “Module” followed by a number

to indicate the module ’ s name, but you might find it useful to give them a

somewhat more descriptive name.

 To rename a module (in the VBA Editor), select the module on the Project
Explorer pane:

1037 Subroutines and User Interaction

 If the Project Explorer pane is not visible, select Project Explorer from the

 View menu.

 Once a module is selected, the module ’ s list of properties should appear in

the Properties Pane . If the Properties Pane is not visible, select Properties
Window from the View menu. Click on the module ’ s name (it should be the

only property available) and change it. A module name should start with an

alphabetic character and consist of only alphabetic characters, digits, and the

underscore character (_); no other characters should be used.

 Once you tap the Enter key, the name is changed. Notice the change in the

Project Explorer.

1038 Chapter 38

 Modules must have unique names, and they cannot be named after subrou-

tines and functions. If a module called Tom has a function called Tom in it,

the function Tom will not be available to the workbook. One common practice

is to start module names (and only module names) with M.

 Module Variables

 The Dim statement can be used before any routine in the module to define a

module variable. Module variables are recognized anywhere in the module and

keep their value until the workbook is closed. Module variables can be used

to store information relevant to more than one routine without the need to pass

the information via the parameters. Module variables are more commonly used

in large modules with many interacting routines, so the following demonstra-

tion is, of necessity, somewhat trivial:

 Dim MyStatus
 Sub SetMyStatus()
 MyStatus = InputBox _
 (“Enter value for my status”, , “OK”)
 Calculate
 End Sub
 Function MyStatusIs()
 MyStatusIs = MyStatus
 End Function
 Sub ShowMyStatus()
 MsgBox “MyStatus is: “ & MyStatus
 End Sub
 Function MyStatusIsVolatile()
 Application.Volatile
 MyStatusIsVolatile = MyStatus
 End Function

1039 Subroutines and User Interaction

 When you first open the workbook, here is what you see:

 If you click on you get the Input Box :

 And a click on the OK button will produce the following:

 We now know that the variable MyStatus has the value “OK.” So why is

the function MyStatusIs returning a zero, or for that matter, why is

 MyStatusIsVolatile returning the (correct) value of “OK”?

1040 Chapter 38

 Application.Volatile

 The answer to the question above lies with the Application.Volatile statement

in MyStatusIsVolatile . When Application.Volatile is used as the first state-

ment in a function used in a worksheet, the function gets recalculated when-

ever something gets recalculated on the worksheet. MyStatusIs will only

recalculate if its (nonexisting) parameter changes, in this case only if we edit

the cell and press Enter. So if we if we select cell A3, press F2 (for Edit Cell),

and press Enter we get

OK <-- =MyStatusIs()
OK <-- =MyStatusIsVolatile()

MODULE VARIABLES IN ACTION Set MyStatus

Show MyStatus

 38.6 Summary

 A subroutine is a VBA user routine used to automate routine or repetitive

operations in Excel. VBA provides two important and very flexible functions

for user interaction: MsgBox and InputBox . VBA groups subroutines and

functions into units called modules; keeping related functions and subroutines

grouped is useful when dealing with large projects. All of these topics, explored

in this chapter, will help you with financial programming in Excel.

 Exercises

 1. Write a subroutine that displays the following message box. The message box should be

on top of all other windows, and prevent the user from doing anything in any application,

until one of the buttons is clicked.

 Hint: You need to use some options of MsgBox that were not covered in the text, use the

VBA help system.

1041 Subroutines and User Interaction

 2. Write a present value calculator subroutine similar to the one which appears in section

38.4. However—as illustrated below—your subroutine should ask the user for the cash

flow value, the interest rate, and the number of periods. It should then display the result

in a message box. Sensible default values should be supplied for all arguments. Do not

use the Excel function PV ; write your own present value function and use it. A reminder:

PV CF r n

CF
r i

i

n

(, ,)
()

=
+=

∑ 11

 You can use the PV function provided by Excel, as we did, to verify the correctness of

your subroutine.

1042 Chapter 38

 3. Rewrite the subroutine in the previous exercise so that the user interface is as demonstrated

in the following screen shots. Some of the functions needed to write the subroutine were

not covered in the text. We used the following functions:

 • Val —A function used to convert a string of digits to a number.

 • Left —A function used to return the left part of a string.

 • Right —A function used to return the right part of a string.

 • FormatPercent —A function used to format a number.

 • FormatCurrency —A function used to format a number.

 More information about these functions is available from the VBA Help file. We recom-

mend you use it.

 Not e: Your computer might display a different currency symbol.

 4. Rewrite the subroutine in the previous exercise so it deals properly with the Cancel button.

 • A simple version of the new subroutine will abort the subroutine if Cancel is clicked in

any stage.

 • A more sophisticated version of the new subroutine will allow the user to reenter the

data from scratch.

 • The most sophisticated version of the new subroutine will allow reentering the data using

the old data as a default.

 Note: The last version is a slightly more complicated exercise using loops within loops.

1043 Subroutines and User Interaction

 5. Write a payment schedule calculator subroutine. The subroutine is to ask the user for the

sum of the loan, the number of payments, and the interest rate. Assume payment at the

end of the period. The output should look like the example below.

 Hints:

 • You may want to use the worksheet function PMT .

 • The following subroutine and its output might be of interest:

 Here is an example of the requested subroutine in action:

1044 Chapter 38

 6. Rewrite the payment schedule calculator subroutine so it displays the payments broken

down into interest and capital payments. The input boxes in the example were removed

for compactness.

 7. Write a payment schedule calculator subroutine. The subroutine is to ask the user for the

sum of the loan, the payment, and the interest rate. Assume payment at the end of the

period. The subroutine should display the payments broken down into interest and capital

payments. Obviously, the last payment can be smaller (but not larger) than the payment

supplied by the user. The output should look like the example below (input boxes removed

for compactness):

1045 Subroutines and User Interaction

 8. A somewhat more complicated version of the subroutine in exercise 7 would produce the

following, better-looking results. Write this version of the subroutine. Note : A quick look

at the Help file for the Format function might be advantageous at this point.

 9. A sliding payment schedule involves payment that changes by a fixed percentage over the

life of the loan. Write a sliding payment version of the payment schedule calculator in

exercise 8. In addition to all the inputs described above, the subroutine will get a payment

rate of change (as percentage) from the user. This is what it should look like in action:

 39
 Objects and Add-Ins

 39.1 Overview

 This chapter deals with several more advanced subjects in VBA. Most of these

subjects relate to the Excel Object Model. The bulk of the chapter describes

some useful Excel objects and ways of dealing with them. Names, a way to

make worksheets clearer and more readable, are presented in section 39.6. The

chapter closes with a discussion of Excel Add-Ins, one easy way to make self-

crafted functions automatically available across workbooks.

 39.2 Introduction to Worksheet Objects

 Objects are the basic building blocks of VBA. Although you may not be aware

that you are using objects, most things you do in VBA require the manipulation

of objects. We can think of an object as a sort of a container with variables,

functions, and subroutines inside. All of Excel ’ s components (workbooks,

worksheets, ranges, etc.) are represented by an object in the VBA Object

Hierarchy. The object ’ s data are held in special variables called properties that

can be accessed using the Dot (.) operator. One of the most important object

types in VBA is the Range Object . A worksheet cell and a range of cells are

all objects of the type Range . The following subsection introduces some pre-

defined Range Object variables.

 The Active Cell

 VBA has many variables predefined for our use; one of the more useful is

 ActiveCell . ActiveCell is a predefined Range Object variable that

represents the cell in the worksheet with the cursor box around it. The follow-

ing function replaces the contents of the active cell with a string representation

of the contents. We use the property Formula ; this property holds the text in

the cell as a string and can be changed.

 Sub ToString()
 ActiveCell.Formula = “’” & _
 ActiveCell.Formula
 End Sub

1048 Chapter 39

 The Selection

 Another very useful predefined variable is the Selection . This variable

represents the currently selected item in Excel. Unlike the ActiveCell

variable, Selection is not limited to a range and can be any selection

(range, chart, and many more). We suggest that you check the type using the

 TypeName function. Methods are functions contained within an object.

Methods are used to manipulate the object. Like properties, methods can be

accessed using the Dot (.) operator. The line between methods and properties

is sometimes very fuzzy. The following subroutine demonstrates some methods

of the Range Object , and use of the predefined variable Selection :

 Before

 After

 Sub SelectBlank()
 If UCase(TypeName(Selection)) < > “RANGE” _
 Then Exit Sub
 Selection.SpecialCells(xlCellTypeBlanks). _
 Select
 End Sub

 The first line checks to see if the current selection is a range and stops the

subroutine if it is not; a message would have been appropriate under non-

educational circumstances.

1049 Objects and Add-Ins

 The first part of the second line Selection.SpecialCells
(xlCellTypeBlanks) uses the SpecialCells method of the Range

 Object to return a Range containing all the blank cells in the current

selection.

 The Select method of the returned Range is activated to select it.

 Before

 After

 39.3 The Range Object

 In the previous section we encountered some predefined Range Object vari-

ables. This section demonstrates the use of ranges in VBA and presents more

of the properties and methods of the Range Object .

 A Range as a Parameter to a Function

 In this subsection we build a function that accepts a Range as a parameter.

Our new function, named MeanReturn , accepts a column range of asset

prices as a parameter and computes and returns the mean return of the

assets in the column. Recall that the return of an asset for period t is

 r
Price Price

Price
t

t t

t

= − −

−

1

1

 and the mean return of an asset is r
N

rt
t

N

=
=
∑1

1

 . An

auxiliary function AssetReturn is used to compute r t .

1050 Chapter 39

 Function MeanReturn(Rng)
 NumRows = Rng.Rows.Count
 Prices = Rng.Value
 T = 0
 For i = 2 To NumRows
 T = T + AssetReturn(Prices(i - 1, 1), _
 Prices(i, 1))
 Next i
 MeanReturn = T / (NumRows - 1)
 End Function

 Lines of note:

 • NumRows = Rng.Rows.Count

 In this line the Dot operator is used twice. Rng is our Range object.

 Rows is property of the Range object so Rng.Rows is an object of the

 Collection type that represents all the rows in our range. Count is a

property of Collection type objects that stores the number of members in

the collection, so Rng.Rows.Count is a variable that stores the number of

rows in our range.

 • Prices = Rng.Value

 Value is a property of the Range object containing the values of all the

cells in the range. Value is of the type Variant . If the range is more than

one cell in size Value is a two-dimensional array. The first index of Value

is the row index starting from 1, and the second index is the column index

staring from 1.

1051 Objects and Add-Ins

 The Range Property

 The Range property is one way to access a range on a worksheet. Range is

a property of many Excel objects. When used on its own, as in the next sub-

routine, Range is a short way of writing ActiveSheet.Range .

1
2
3
4
5
6
7
8

A B C

100
110 10.00% <-- =(A3-A2)/A2
121 10.00% <-- =(A4-A3)/A3
145 19.83% <-- =(A5-A4)/A4
174 20.00% <-- =(A6-A5)/A5

14.96% <-- =AVERAGE(B3:B6)
14.96% <-- =MeanReturn(A2:A6)

MEANRETURN IN ACTION

 Sub RangeDemo()
 Range(“A2”).Formula = 23
 End Sub

 As expected, the subroutine will set the formula in cell A2 of the active

worksheet to 23.

 Before

 After

1052 Chapter 39

 The next subroutine sets the formula of each cell in the range A2:C3 of the

active worksheet to 23.

 Sub RangeDemo1()
 Range(“A2:C3”).Formula = 23
 End Sub

 Another way of addressing a range of cells using the Range property is

demonstrated by the next subroutine. The subroutine sets the formula of each

cell in the range A2:C3 of the active worksheet to 23. The first argument to

 Range is the cell in the top left corner of the range, and the second is the cell

in the bottom right corner of the range.

 Sub RangeDemo2()
 Range(“A2”, “C3”).Formula = 23
 End Sub

 Range is also a property of the Range object. The range returned by

 Range when used this way is relative to the Range object. The next subrou-

tine sets the formula of the cell C3 of the active worksheet to 999.

 Sub RangeDemo3()
 Range(“B2”).Range(“B2”).Formula = 999
 End Sub

1053 Objects and Add-Ins

 Note: Range(“B2”) returns the range (or cell) B2 of the active worksheet.

 Range(“B2”).Range(“B2”) returns the cell B2 of the range that has B2

as the top left corner. In worksheet terms, Range(“B2”).Range(“B2”)

returns the cell C3.

 The next subroutine sets the formula of each cell in the range C2:D3

of the active worksheet to 23. The subroutine uses the cell C2 as a starting

point.

 Sub RangeDemo4()
 Range(“C2”).Range(“A1”, “B2”).Formula = 23
 End Sub

 Note: Range(“C2”) is the same as Range(“C2”).Range(“A1”)

and refers to the cell C2 in the worksheet. Range(“C2”).Range(“B2”)

refers to the cell D3 in the worksheet, B2 means one column to the left and

one line down. And so Range(“C2”).Range(“A1”, “B2”) is the same

as Range(“C2”, “D3”) .

 39.4 The With Statement

 The With statement allows you to perform a series of statements on a speci-

fied object without restating the obvious (the object ’ s name and its pedigree,

which can be very long). If you have more than one property to change or

more than one method to use for a single object, use the With statement.

 With statements make your procedures run faster, and help you avoid repeti-

tive typing. The following, somewhat contrived, subroutine sets some proper-

ties of the font of the cell in the top left-hand corner of the current region of

the active cell. The font is set to be Arial, bold, and 15 points in size.

1054 Chapter 39

 And here is the same subroutine using the With statement:

 Sub WithoutDemo()
 ActiveCell.CurrentRegion.Range(“A1”). _
 Font.Bold = True
 ActiveCell.CurrentRegion.Range(“A1”). _
 Font.Name = “Arial”
 ActiveCell.CurrentRegion.Range(“A1”). _
 Font.size = 15
 End Sub

 Sub WithDemo()
 With ActiveCell.CurrentRegion. _
 Range(“A1”).Font
 .Bold = True
 .Name = “Arial”
 .size = 15
 End With
 End Sub

 Notice the Dot (.) operator before the properties in the With statement.

Recall from Chapter 38 that ActiveCell.CurrentRegion is the con-

tiguous range of non-empty cells around the active cell (C3 in the screen

shots), the same range that would be selected by pressing [Ctrl] + A in the

worksheet (A1:D4 in the screen shots).

 Before

1055 Objects and Add-Ins

 39.5 Collections

 A Collection is a set of items that can be referred to as a unit. Members

can be added using the Add method and removed using the Remove method.

Specific members can be referred to using an integer index. The number of

members currently in a Collection is available via the Count method.

Our use of Collections will be restricted to using the (quite numerous)

arsenal of Collections that are part of the Excel Object Model, to name

but a few, Range is a collection of cells, Worksheets is a collection of all the

worksheets in a workbook, and Workbooks is a collection of all the open

workbooks in Excel.

 The For Each Statement in Use with Arrays and Collections

 The For Each statement is a variation of the For loop. This statement comes

in two distinct flavors. The first variation uses the statement to loop over a

VBA array as demonstrated in the following subroutine:

 After

1056 Chapter 39

 Points of note:

 1. The current member of the array is available to the statements within the

loop body through the loop variable (Element in the above function).
 2. The loop variable (Element in the above example) has to be of the type
 Variant irrespective of the array type.
 3. Changes to Element will not be refl ected in the actual array. Notice that
the changes to Element in line 8 are not refl ected in y .
 4. You don ’ t need to know the number of dimensions or the range of indices

to loop over the array.

 Sub ForEachDemo()
 Dim A(4)
 For i = 0 To 4: A(i) = i * i: Next i
 x = “x is: “
 y = “y is: “
 For Each Element In A
 x = x & vbTab & Element
 Element = Element * 2
 Next Element
 For Each Element In A
 y = y & vbTab & Element
 Next Element
 MsgBox x & vbCrLf & y, , “For Each Demo”
 End Sub

1057 Objects and Add-Ins

 The For Each Statement in Use with Collections

 The second version of the For Each statement loops over Collections :

 Sub ZeroRange()
 Set Rng = ActiveCell.CurrentRegion
 For Each Cell In Rng
 Cell.Formula = 0
 Next Cell
 End Sub

 Here is what happens when you run the subroutine:

1058 Chapter 39

 Points of note:

 1. Ranges are collections and so the variable Rng is a collection of all the

cells in the current region of the active cell (C3:D15 in our example).

 2. Cell is a variable used to iterate over all the members of the collection.

 3. Cell has to be one of the following types: Variant , Object , or the

specific type of element the Collection is made of. (Recall that all vari-

ables are of type Variant unless specifically defined.)

 4. Cell refers to the actual member of the Collection , and changes to

 Cell will be reflected in the Collection .

 5. A complete explanation of the use of the Set statement is beyond the scope

of this book. For our purposes, just prefix the reserved word Set to all object

assignments.

 Before

 After

1059 Objects and Add-Ins

 The Workbooks Collection and the Workbook Object

 All the currently open workbooks are represented by a Workbook object in

the Workbooks Collection . The following subroutine lists all open

workbooks:

 Sub ListOpenWorkbooks()
 Temp = “List of open Workbooks” & _
 “ Created on:” & FormatDateTime(Date, _

vbLongDate) _
 & “ At: “ & FormatDateTime(Time, _

vbLongTime)
 For Each Element In Workbooks
 Temp = Temp & vbCrLf & Element.FullName
 Next Element
 MsgBox Temp, vbOKOnly, “List of open _

Workbooks”
 End Sub

1060 Chapter 39

 Lines of note:

 Temp = “List of open Workbooks” & _
 “ Created on:” & _
 FormatDateTime(Date, vbLongDate) _
 & “ At: “ & _
 FormatDateTime(Time, vbLongTime)

 • The Date function returns the current system date.

 • The Time function returns the current system time.

 • The FormatDateTime function formats Date and Time variables for

display.

 For Each Element In Workbooks
 Temp = Temp & vbCrLf & Element.FullName
 Next Element

 The For statement loops over the entire Workbooks Collection .
On each iteration, Element is one of the Workbook objects in the

 Collection . FullName is a property of the Workbook object containing

the full path name of the workbook.

 The Worksheets Collection and the Worksheet Object

 All the worksheets in a workbook are Worksheet objects in the

 Worksheets Collection that is a property of the Workbook object.

We can use the Worksheets Collection without an object as a short

form for ActiveWorkbook.Worksheets .

1061 Objects and Add-Ins

 39.6 Names

 In Excel you can use user-defined names to refer to a cell or a range of cells.

Use easy-to-understand names, such as Products, to refer to hard-to-

understand ranges, such as Sales!C20:C30 . Using names can make for-

mulas easy to read: Compare the formula = sum(‘sheet12’!a10:a10)

to = sum(lastYearSales) . This section deals with the VBA side of

names.

 Naming a Range Using a Subroutine

 The following subroutine gives the name “Jon” to the cells selected.

 Sub NameSelection()
 Names.Add “Jon”, “ = ” & _
 Selection.Address
 End Sub

 Select cells A2:B3 and run the subroutine. The next two screenshots show

the Excel name box before and after we operate the NameSelection

subroutine:

 Before

1062 Chapter 39

 Names is a Collection of all the names in the active workbook. Add

is a method of the Names Collection used to add members to the collec-

tion. We use only the first two parameters of the method. The first parameter

 “Jon” is the name to add to the Names Collection . The second param-

eter is a string containing the address, formula, or value to which the added

name refers, preceded by = .

 Looking for Defined Names

 The name “Jon” has just now been defined, and we can use it in the workbook

as demonstrated in the following screen shot. Notice that whatever capitaliza-

tion you use, Excel reverts to the original “Jon.”

 The name “Jon” is not directly available in VBA as demonstrated by the fol-

lowing function:

 After

1063 Objects and Add-Ins

 Function SumJon()
 SumJon = Application.WorksheetFunction. _
 Sum(Jon)
 End Function

 Referring to a Named Range

 To get to values in a named range we can use the built-in function

 Application.Evaluate , as demonstrated by the next function. Note that

the function is designed to be used as an Array Function and the use of

 Application.Volatile to make sure the value gets updated whenever

a change is made to the workbook.

1
2
3

A B C

10 <-- =SUM(Jon)
0 <-- =SumJon()

SUM(Jon) IN ACTION

 Function JonAsArray()
 Application.Volatile
 JonAsArray = Application.Evaluate(“Jon”)
 End Function

 Referring to the actual range the name refers to is beyond the scope of

this book.

1
2
3

A B C

1 3 <-- {=JonAsArray()}
2 4 <-- {=JonAsArray()}

JonASARRAY IN ACTION

1064 Chapter 39

 39.7 Add-Ins and Integration

 An Excel Add-In is a file that Excel can load when it starts up. The file contains

VBA code that adds additional functionality to Excel, usually in the form of

new functions. Add-Ins provide an excellent way of increasing the power of

Excel and they are the ideal vehicle for distributing your custom functions.

This section shows you how to convert an Excel Workbook containing VBA

functions to an Add-In, and how to load and use Add-Ins in Excel and VBA.

The process is somewhat arcane and the steps below should be followed in

the order in which they are presented.

 Create and Debug Your Base Workbook

 As editing an Add-In once it ’ s created is very difficult, it is important that the

original workbook on which the Add-In is based is kept intact and as a work-

book. For this demonstration we have created a workbook containing one

worksheet and a VBA project containing one module with one function and

one subroutine.

1065 Objects and Add-Ins

 Convert the Base Workbook to an Add-In

 To make the Add-In, save the workbook as an Add-In. Select Save As

from the Excel file menu and change Save as type to “Excel Add-In (*.xlam).”

The Save in location will change to the Add-Ins directory on your computer.

You may want to navigate to a different location (we tend to keep files

together). Now click Save . You may want to use a new name for the Add-In

(we did not).

1066 Chapter 39

 Install and Use an Add-In from an Excel Worksheet

 Installing an Add-In is done on a per computer basis (actually per computer

user basis). So we do not get confused with the chapter we suggest you close

Excel and reopen it with a brand new Excel workbook. Select Developer |

 Add-Ins . The following dialogue should be presented (your names may vary):

1067 Objects and Add-Ins

 Click Browse and navigate to the location of your Add-In. Select it and

click OK .

 Notice that a new Add-In is available and activated. Click OK to close the

Add-Ins dialogue. All the functions in our Add-in are now available to all

workbooks in Excel. To verify insert a formula in a cell (A1), select the cell

next to the cell with the formula (B1), and press [Alt] + F8.

 You should get the Macro dialogue box. Notice that, sadly, annotate is not

on the list, but if you type “annotate” in the Macro name box, then the Run

button will become available and when pressed will produce the expected

results.

1068 Chapter 39

 39.8 Summary

 This chapter discussed two separate topics. We started with a more extensive

discussion of objects, which underlie the VBA programming concept. Objects

allow you to be much more parsimonious in expressing your programming

references. We finished the chapter with a discussion of how to build Add-Ins

in Excel.

 Exercises

 1. Suppose you have a spreadsheet with a series of numbers and formulas:

 Suppose you want to turn this into:

1069 Objects and Add-Ins

 Write a subroutine that does this. Your subroutine should:

 • Put in a set of parentheses and multiply the cell contents by 100.

 • Move down one cell (see ActiveCellDemo1 , section 39.1).

 • Ask if you want to repeat the process (if “yes,” it should do it; if “no,” the subroutine

should exit).

 Note: The parentheses have to come after the “ = .” The Right function might be used for

this operation.

 You may want to refer to section 39.2 for more information on the MsgBox function and

the values it returns.

 2. Rewrite the subroutine in exercise 1 so that it deals correctly with the end of the series.

One possible treatment is not to ask to repeat the process when the last cell in the series

is dealt with.

 Hint: For this subroutine it might be useful to think of the last cell in the series as the cell

that fulfills the criterion Cell.Item(2,1).Formula = ”” (see section 39.2).

 3. Write a subroutine that multiplies all cells in the current region by 2.

 4. Rewrite the subroutine in exercise 3 so that its action is dependent on the cell ’ s

contents.

 • If the cell contents is a formula, it will be replaced by the same formula multiplied

by 2.

 • If the cell contents is a number, it will be replaced by a number equal to the old number

multiplied by 2.

 • On all other cells in the current region, nothing will be done.

 Note: To make life easier, you may assume, for the purposes of this exercise, that a formula

is anything beginning with “ = ” and a number is anything beginning with the characters

“0” to “9.”

 5. Rewrite the subroutine in exercise 4 so that it uses another method (the correct one) to

detect the existence of a formula in a cell. Look at the different properties of the Range

object in the Help file.

 6. The annotations (using Getformula) for worksheet formulas in this book were done with

a subroutine. For example, running the subroutine on this worksheet

1070 Chapter 39

 produces the following:

 Write a subroutine to perform the annotation. If the cell immediately to the right of the

active cell is not empty, the subroutine should overwrite it with Getformula only after

receiving confirmation from the user.

 7. The Selection object represents the current selection in the worksheet. Selection is usually,

and for our purposes always, a Range object. Rewrite the subroutine in exercise 6 so that

it works on a selected range.

 Note the following:

 If the selected range is a single cell, activate the subroutine in exercise 6.

 If the selected range is a column, activate a subroutine repeatedly for all cells in the

column.

 If the selected range is more than one column, the subroutine should abort with an appro-

priate message.

 8. Array functions are functions that return more than one value. For example, the Transpose

worksheet function returns its argument turned by 90 degrees, as the following worksheet

demonstrates:

1

2

3

4

5

A B C D E F

1 2 3 4 1 <-- {=TRANSPOSE(A2:D2)}

2 <-- {=TRANSPOSE(A2:D2)}

3 <-- {=TRANSPOSE(A2:D2)}

4 <-- {=TRANSPOSE(A2:D2)}

TRANSPOSE IN ACTION

 The curly brackets were not typed in but were added by Excel to indicate an array formula.

The following subroutine created the preceding worksheet:

1071 Objects and Add-Ins

 Sub TransposeMe()

 Range(“E3:E6”).FormulaArray = “ = Transpose(A3:D3)”

 End Sub

 The next subroutine is a more complicated version that could deal with any size or place

in the row range:

 Sub TransposeMeToo()

 C = Selection.Columns.Count

 R = Selection.Rows.Count

 If C = 1 Then ‘Its a Column

 MsgBox “I don ’ t do Columns”

 ElseIf R = 1 Then ‘Its a Row

 Selection.Cells(1, C + 1).Range(“A1:A” & C). _

 FormulaArray = “ = Transpose(“ _

 & Selection.AddressLocal(False, False) & “)”

 Else ‘What is it?

 MsgBox “What is it?”

 End If

 End Sub

 Rewrite TransposeMeToo so it could deal with column ranges as well as row ranges.

 9. Rewrite TransposeMeToo of exercise 8 so it could deal with all ranges.

