Contents

Preface

I Foundations 1

1 Introduction: Fundamental Concepts and the Human Genome 3

Objectives 3

1.1 Introduction 3

Motivation and aim of this book 3

1.2 Overview of topics covered in this book 6

1.3 What are DNA, the genome, a gene, and a chromosome? 8

Mendel's laws, sexual reproduction, and genetic recombination 9

1.4 From genes to protein and the central dogma of molecular biology 15

From genes to protein: Genes, amino acids, nucleotides, and proteins 15

1.5 Homozygous and heterozygous alleles, dominant and recessive traits 20

1.6 Heritability 22

Defining heritability: Broad- and narrow-sense heritability 22

1.7 Conclusion 28

Exercises 28

Further reading and resources 29

References 30

2 A Statistical Primer for Genetic Data Analysis 33

Objectives 33

2.1 Introduction 33

2.2 Basic statistical concepts 34
Table of Contents

2.2.1 Mean, standard deviation, and variance 34
2.2.2 Covariance and the variance-covariance matrix 36
2.3 Statistical models 38
2.3.1 Regression models 38
2.3.2 The null and alternative hypothesis and significance thresholds 39
2.4 Correlation, causation, and multivariate causal models 40
2.4.1 Correlation versus causation 40
2.4.2 Multivariate causal models 42
2.5 Fixed-effects models, random-effects models, and mixed models 47
2.6 Replication of results and overfitting 48
2.7 Conclusion 49

Exercises 50

Further reading 52

Software for mixed-model analyses 52

Appendix 52

References 54

3 A Primer in Human Evolution 55

Objectives 55

3.1 Introduction 55

3.2 Human dispersal out of Africa 56

3.3 Population structure and stratification 58
3.3.1 Population structure, genetic admixture, and Principal Component Analysis (PCA) 58
3.3.2 Common misnomers of population structure: Ancestry is not race 59
3.3.3 Genetic scores cannot be transferred across ancestry groups 59
3.3.4 How genes mirror geography 61

3.4 Human evolution, selection, and adaptation 63
3.4.1 Evolution, fitness, and natural selection 63
3.4.2 Genetic drift 68

3.5 The Hardy–Weinberg equilibrium 69
3.5.1 Assumptions of the HWE 69
3.5.2 Understanding the notation of the HWE 70

3.6 Linkage disequilibrium and haplotype blocks 71

3.7 Conclusion 73

Exercises 73

Further reading and resources 74

References 74

4 Genome-Wide Association Studies 77

Objectives 77

4.1 Introduction and background 77

4.2 GWAS research design and meta-analysis 79
4.2.1 GWAS research design 79
4.2.2 Data analysis plan 81
4.2.3 Meta-analysis 82

References 82
4.3 Statistical inference, methods, and heterogeneity 83
 4.3.1 Nature of the phenotype 83
 4.3.2 P-values and Z-scores 83
 4.3.3 Correcting for multiple testing in a GWAS 84
 4.3.4 Manhattan plots 85
 4.3.5 Evaluating dichotomous versus quantitative traits 87
 4.3.6 Fixed-effects versus random-effects models 88
 4.3.7 Weighting, false discovery rate (FDR), and imputation 89
 4.3.8 Sources of heterogeneity 89
4.4 Quality control (QC) of genetic data 90
4.5 The NHGRI-EBI GWAS Catalog 91
 4.5.1 What is the NHGRI-EBI GWAS Catalog? 91
 4.5.2 A brief history of the GWAS 91
 4.5.3 Lack of diversity in GWASs 93
4.6 Conclusion and future directions 97

Exercises 98
Further reading 98
References 99

5 Introduction to Polygenic Scores and Genetic Architecture 101

Objectives 101
5.1 Introduction 101
 5.1.1 What is a polygenic score? 105
 5.1.2 The origins of polygenic scores 105
5.2 Construction of polygenic scores 107
 5.2.1 Large sample sizes required in GWAS discovery 108
 5.2.2 Selection of SNPs to include 108
5.3 Validation and prediction of polygenic scores 108
 5.3.1 Independent target sample 109
 5.3.2 Similar ancestry in target sample 110
 5.3.3 Relatedness, population stratification, and differential bias 110
 5.3.4 Variance explained only by common genetic markers missing rare variants 111
 5.3.5 Missing and hidden heritability in prediction of phenotypes from genetic markers (SNPs) 111
 5.3.6 Trade-off between prediction and understanding biological mechanisms 112
5.4 Shared genetic architecture of phenotypes 113
 5.4.1 Predicting other phenotypes 113
 5.4.2 Phenotypic and genetic correlation 114
 5.4.3 Pleiotropy 115
 5.4.4 Multitrait analysis 119
5.5 Causal modeling with polygenic scores 119
 5.5.1 Genetic confounding 119
 5.5.2 Mendelian Randomization 120
 5.5.3 Controlling for confounders 120
 5.5.4 Gene-environment interaction and heterogeneity 122
6 Gene-Environment Interplay 129
Objectives 129
6.1 Introduction: What is gene-environment (G×E) interplay? 129
6.2 Defining the environment in G×E research 130
 6.2.1 Nature and scope of E: Multilevel, multidomain, and multitemporal 131
 6.2.2 Interdependence of environmental risk factors 132
6.3 A brief history of G×E research 133
 6.3.1 Classic approaches 133
 6.3.2 Candidate gene cG×E approaches 134
 6.3.3 Genome-wide polygenic score G×E approaches 135
6.4 Conceptual G×E models 136
 6.4.1 Diathesis-stress, vulnerability, or contextual triggering model 136
 6.4.2 Bioecological or social compensation model 137
 6.4.3 Differential susceptibility model 139
 6.4.4 Social control or social push model 140
 6.4.5 Research designs to study G×E 140
6.5 Gene-environment correlation (rGE) 143
 6.5.1 Passive gene-environment correlation (rGE) 144
 6.5.2 Evocative (or reactive) rGE 145
 6.5.3 Active rGE 145
 6.5.4 Why are models of rGE important? 145
 6.5.5 Research designs to study rGE 146
6.6 Conclusion and future directions 146
 6.6.1 Why haven’t many G×E s been identified? 146
Exercises 147
Further reading 147
References 147

II Working with Genetic Data 151

7 Genetic Data and Analytical Challenges 153
Objectives 153
7.1 Introduction 153
7.2 Genotyping and sequencing array 154
 7.2.1 Genotyping and sequencing technologies 154
 7.2.2 Linkage disequilibrium and imputation 155
 7.2.3 Limitations of genotyping arrays and next-generation sequencing 158
 7.2.4 Drop in costs per genome 159
7.3 Overview of human genetic data for analysis 160
 7.3.1 Prominently used genetic data 161
 7.3.2 Sources that archive and distribute data 163
 7.3.3 Obtaining GWAS summary statistics 164
7.4 Different formats in genomics data 165
 7.4.1 Genomics data is big data 165
 7.4.2 PLINK software and genotype formats 166
 7.4.3 PLINK binary files 170
7.5 Genetic formats for imputed data 171
 7.5.1 PLINK 2.0 171
 7.5.2 Oxford file formats 172
 7.5.3 The variant call format (VCF) 174
7.6 Data used in this book 175
7.7 Data transfer, storage, size, and computing power 176
 7.7.1 Data storage 176
 7.7.2 Data sharing, transfer across borders, and cloud storage 177
 7.7.3 Size of data and computational power 178
7.8 Conclusion 179
Exercises 179
Further reading and resources 179
References 180

8 Working with Genetic Data, Part I: Data Management, Descriptive Statistics,
and Quality Control 183
Objectives 183
8.1 Introduction: Working with genetic data 183
8.2 Getting started with PLINK 184
 8.2.1 The command line 184
 8.2.2 Calling PLINK and the PLINK command line 186
 8.2.3 Running scripts in terminal 188
 8.2.4 Opening PLINK files 189
 8.2.5 Recode binary files to create new readable dataset with .ped
 and .map files 189
 8.2.6 Import data from other formats 191
8.3 Data management 193
 8.3.1 Select individuals and markers 193
 8.3.2 Merge different genetic files and attaching a phenotype 196
8.4 Descriptive statistics 199
 8.4.1 Allele frequency 199
 8.4.2 Missing values 200
8.5 Quality control of genetic data 202
 8.5.1 Per-individual QC 203
 8.5.2 Per-marker QC 206
 8.5.3 Genome-wide association meta-analysis QC 209
8.6 Conclusion 211
Exercises 214
Further reading and resources 214
References 214
12 Applying Genome-Wide Association Results 315
Objectives 315
12.1 Introduction 315
12.2 Plotting association results 316
 12.2.1 Manhattan plots 316
 12.1.2 Regional association plots 320
 12.1.3 Quantile-Quantile plots and the \(\lambda \) statistic 320
12.2 Estimating heritability from summary statistics 324
12.3 Estimating genetic correlations from summary statistics 328
12.4 MTAG: Multi-Trait Analysis of Genome-wide association summary statistics 333
12.5 Conclusion 336
Exercises 336
Further reading and resources 336
References 337

13 Mendelian Randomization and Instrumental Variables 339
Objectives 339
13.1 Introduction 339
13.2 Randomized control trials and causality 341
13.3 Mendelian Randomization 341
13.4 Instrumental variables and Mendelian Randomization 343
 13.4.1 The IV model in an MR framework 343
 13.4.2 Violation of statistical assumptions of the IV approach 347
13.5 Extensions of standard MR 349
 13.5.1 Using multiple markers as independent instruments 351
 13.5.2 Using polygenic scores as IVs 351
 13.5.3 Bidirectional MR analyses 352
13.6 Applications of MR 352
 13.6.1 Consequences of alcohol consumption 352
 13.6.2 Body mass index and mortality 353
 13.6.3 Causes of dementia and Alzheimer’s disease 354
13.7 Conclusion 355
Exercises 355
Further reading 356
References 356

14 Ethical Issues in Genomics Research 359
Objectives 359
14.1 Introduction 359
14.2 Genetics is not destiny: Genetic determinism 361
 14.2.1 Variation in traits and ability to use individual PGSs as predictors 361
 14.2.2 Heritability and missing heritability 362
14.3 Clinical use of PGSs 363
 14.3.1 Genetics and family history 363
 14.3.2 Genetic scores for screening, intervention, and life planning 364
14.3.3 Pharmacogenetics 365
14.3.4 Public understanding of genetic information and information risks 366
14.4 Lack of diversity in genomics 367
14.4.1 Lack of diversity in GWASs 367
14.4.2 European ancestry bias related to PGS construction 367
14.5 Privacy, consent, legal issues, insurance, and General Data Protection Regulation 367
14.5.1 Privacy in the age of public genetics: Solving crimes and finding people 367
14.5.2 The changing nature of informed consent in genomic research 368
14.5.3 Insurance and genetics 369
14.5.4 GDPR and genetics 370
14.6 Conclusion and future directions 372
Further reading and resources 373
References 373

15 Conclusions and Future Directions 377
15.1 Summary and reflection 377
15.2 Future directions 377
References 380

Appendix 1: Software Used in This Book 381
A1.1 Introduction 381
A1.2 RStudio and R 381
A1.3 PLINK 382
A1.4 GCTA 382
A1.5 PRSice 382
A1.6 Python 383
A1.6.1 How to switch from Python 3 to Python 2 384
A1.6.2 Installing packages in Python 385
A1.7 Git 385
A1.8 LDpred 386
A1.9 LDSC 386
A1.10 MTAG 387
A1.11 Using Windows for this book 388
References 388

Appendix 2: Data Used in This Book 389
A2.1 Introduction 389
A2.2 Description of simulated data 389
A2.3 Health and Retirement Study 391
A2.4 Data used by chapter 395
References 397

Glossary 399
Notes 405
Index 409