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Notation

In this section we provide a short overview of the technical notation used throughout this
book.

Notational Conventions
Throughout this book we discuss the use of machine learning algorithms to train pre-

diction models based on datasets. The following list explains the notation used to refer
to different elements in a dataset. Figure 0.1[vii] illustrates the key notation using a simple
sample dataset.

ID  Name Age Country  Rating 

1 Brian 24 Ireland B 

2 Mary 57 France AA 

3 Sinead 45 Ireland AA 

4 Paul 38 USA A 

5 Donald 62 Canada B 

6 Agnes 35 Sweden C 

7 Tim 32 USA B 

DRating=AA

D

d7

d5[3]

d[1]

t4

Figure 0.1
How the notation used in the book relates to the elements of a dataset.
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Datasets
‚ D denotes a dataset.
‚ A dataset is composed of n instances, pd1, t1q to pdn, tnq, where d is a set of m descriptive

features, and t is a target feature.
‚ A subset of a dataset is denoted by D with a subscript to indicate the definition of the

subset. For example, D f“l represents the subset of instances from the dataset D where
the feature f has the value l.

Vectors of Features
‚ Lowercase boldface letters refer to a vector of features. For example, d denotes a vector

of descriptive features for an instance in a dataset, and q denotes a vector of descriptive
features in a query.

Instances
‚ Subscripts are used to index into a list of instances.
‚ xi refers to the ith instance in a dataset.
‚ di refers to the descriptive features of the ith instance in a dataset.

Individual Features
‚ Lowercase letters represent a single feature (e.g., f , a, b, c . . .).
‚ Square brackets rs are used to index into a vector of features (e.g., d r js denotes the value

of the jth feature in the vector d).
‚ t represents the target feature.

Individual Features in a Particular Instance
‚ di r js denotes the value of the jth descriptive feature of the ith instance in a dataset.
‚ ai refers to the value for feature a of the ith instance in a dataset.
‚ ti refers to the value of the target feature of the ith instance in a dataset

Indexes
‚ Typically, i is used to index instances in a dataset, and j is used to index features in a

vector.

Models
‚ We useM to refer to a model.
‚ Mw refers to a modelM parameterized by a parameter vector w.
‚ Mwpdq refers to the output of a modelM parameterized by parameters w for descriptive

features d.
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Set Size
‚ Vertical bars | | refer to counts of occurrences (e.g., |a “ l| represents the number of

times that a “ l occurs in a dataset).

Feature Names and Feature Values
‚ We use a specific typography when referring to a feature by name in the text (e.g., PO-

SITION, CREDITRATING, and CLAIM AMOUNT).
‚ For categorical features, we use a specific typography to indicate the levels in the domain

of the feature when referring to a feature by name in the text (e.g., center, aa, and soft
tissue).

Notational Conventions for Probabilities
For clarity there are some extra notational conventions used in Chapter 6[243] on probability.

Generic Events
‚ Uppercase letters denote generic events where an unspecified feature (or set of features)

is assigned a value (or set of values). Typically, we use letters from the end of the
alphabet—e.g., X, Y , Z—for this purpose.

‚ We use subscripts on uppercase letters to iterate over events. So,
ř

i PpXiq should be
interpreted as summing over the set of events that are a complete assignment to the
features in X (i.e., all the possible combinations of value assignments to the features in
X).

Named Features
‚ Features explicitly named in the text are denoted by the uppercase initial letters of their

names. For example, a feature named MENINGITIS is denoted by M.

Events Involving Binary Features
‚ Where a named feature is binary, we use the lowercase initial letter of the name of the

feature to denote the event where the feature is true and the lowercase initial letter pre-
ceded by the  symbol to denote the event where it is false. So, m will represent the
event MENINGITIS “ true, and  m will denote MENINGITIS “ false.

Events Involving Non-Binary Features
‚ We use lowercase letters with subscripts to iterate across values in the domain of a fea-

ture.
‚ So

ř

i Ppmiq “ Ppmq ` Pp mq.
‚ In situations where a letter, for example, X, denotes a joint event, then

ř

i PpXiq should
be interpreted as summing over all the possible combinations of value assignments to the
features in X.
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Probability of an Event
‚ The probability that the feature f is equal to the value v is written Pp f “ vq.

Probability Distributions
‚ We use bold notation Ppq to distinguish a probability distribution from a probability mass

function Ppq.
‚ We use the convention that the first element in a probability distribution vector is the

probability for a true value. For example, the probability distribution for a binary feature,
A, with a probability of 0.4 of being true would be written PpAq “ă 0.4, 0.6 ą.

Notational Conventions for Deep Learning
For clarity, some additional notational conventions are used in Chapter 8[381] on deep learn-
ing.

Activations
‚ The activation (or output) of single neuron i is denoted by ai

‚ The vector of activations for a layer of neurons is denoted by apkq where k identifies the
layer.

‚ A matrix of activations for a layer of neurons processing a batch of examples is denoted
by Apkq where k identifies the layer.

Activation Functions
‚ We use the symbol ϕ to generically represent activation functions. In some cases we

use a subscript to indicate the use of a particular activation function. For example, ϕS M

indicates the use of a softmax function activation function, whereas ϕReLU indicates the
use of a rectified linear activation function.

Categorical Targets In the context of handling categorical target features (see Section
8.4.3[463]) using a softmax function, we use the following symbols:

‚ We use the ‹ symbol to indicate the index of the true category in the distribution.
‚ We use P to write the true probability distribution over the categories of the target; P̂ to

write the distribution over the target categories that the model has predicted; and P̂‹ to
indicate the predicted probability for the true category.

‚ We write t to indicate the one-hot encoding vector of a categorical target.
‚ In some of the literature on neural networks, the term logit is used to refer to the result of

a weighted sum calculation in a neuron (i.e., the value we normally denote z). In partic-
ular, this terminology is often used in the explanation of softmax functions; therefore, in
the section on handling categorical features, we switch from our normal z notation, and
instead follow this logit nomenclature, using the notation l to denote a vector of logits
for a layer of neurons, and li to indicate the logit for the ith neuron in the layer.
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Elementwise Product
‚ We use d to denote an elementwise product. This operation is sometimes called the

Hadamard product.

Error Gradients (Deltas) δ
‚ We use the symbol δ to indicate the rate of change of the error of the network with

respect to changes in the weighted sum calculated in a neuron. These δ values are the
error gradients that are backpropagated during the backward pass of the backpropagation
algorithm. We use a subscript to identify the particular neuron that the δ is associated
with; for example, δi is the δ for neuron i and is equivalent to the term BE

Bzi
. In some cases

we wish to refer to the vector of δs for the neurons in a layer l; in these cases we write
δplq

Network Error
‚ We use the symbol E to denote the error of the network at the output layer.

Weights
‚ We use a lowercase w to indicate a single weight on a connection between two neurons.

We use a double subscript to indicate the neurons that are connected, with the convention
that the first subscript is the neuron the connection goes to, and the second subscript is
the neuron the connection is from. For example, wi,k is the weight on the connection
from neuron k to neuron i.

‚ We use ∆wi,k to write the sum of error gradients calculated for the weight wi,k. We sum
errors in this way during batch gradient descent with which we sum over the examples
in the batch; see Equation (8.30)[416] and also in cases in which the weight is shared by a
number of neurons, whether in a convolutional neural network or during backpropagation
through time.

‚ We use a bold capital W to indicate a weight matrix, and we use a superscript in brackets
to indicate the layer of the network the matrix is associated with. For example, Wpkq is
the weight matrix for the neurons in layer k. In an LSTM network we treat the neurons
in the sigmoid and tanh layers within each gate as a separate layer of neurons, and so
we write Wp f q for the weight matrix for the neurons in the forget gate, and so on for
the weight matrices of the other neuron layers in the other gates. However, in a simple
recurrent network we distinguish the weight matrices on the basis of whether the matrix
is on the connections between the input and the hidden layer, the hidden layer and the
output, or the activation memory buffer and the hidden layer. Consequently, for these
matrices it is important to highlight the end of the connections the weights are applied
to; we use a double subscript (similar to the subscript for a single weight), writing Whx

for the weight matrix on the connections between the input (x) and the hidden layer (h).

Weighted Sums and Logits
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‚ We use a lowercase z to represent the result of the weighted sum of the inputs in a neuron.
We indicate the identity of the neuron in which the calculation occurred using a subscript.
For example, zi is the result of the weighted sum calculation carried out in neuron i. Note,
however, that in the section on Handling Categorical Target features, we switch to the
term logit to refer to the output of the weight sum in a neuron and update the notation
to reflect this switch; see the previous notation section on Categorical Targets for more
details.

‚ The vector of weighted sums for a layer of neurons is denoted by zpkq where k identifies
the layer.

‚ A matrix of weighted sums calculations for a layer of neurons processing a batch of
examples is denoted by Zpkq where k identifies the layer.

Notational Conventions for Reinforcement Learning
For clarity there are some extra notational conventions used in Chapter 11[637] on reinforce-
ment learning (this chapter also heavily uses the notation from the probability chapter).

Agents, States, and Actions
‚ In reinforcement learning we often describe an agent at time t taking an action, at, to

move from its current state, st, to the next state, st`1.
‚ An agent’s current state is often modeled as a random variable, S t. We therefore often

describe the probability that an agent is in a specific state, s, at time t as PpS t “ sq.
‚ Often states and actions are explicitly named, in which case we use the following for-

matting: STATE and action.

Transition Probabilities
‚ We use the Ñ notation to represent an agent transitioning from one state to another.

Therefore, the probability of an agent moving from state s1 to state s2 can be written

Pps1 Ñ s2q “ PpS t`1 “ s2 | S t “ s1q

‚ Often we condition the probability of an agent transitioning from one state, s1, to another,
s2, on the agent taking a specific action, a. We write this

Pps1
a
ÝÑ s2q “ PpS t`1 “ s2 | S t “ s1, At “ aq
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‚ The dynamics of an environment in which an agent transitions between states, a Markov
process, can be captured in a transition matrix

P “

»

—

—

—

—

–

Pps1 Ñ s1q Pps1 Ñ s2q . . . Pps1 Ñ snq

Pps2 Ñ s1q Pps2 Ñ s2q . . . Pps2 Ñ snq

...
...

. . .
...

Ppsn Ñ s1q Ppsn Ñ s2q . . . Ppsn Ñ snq

fi

ffi

ffi

ffi

ffi

fl

‚ When agent decisions are allowed, leading to a Markov decision process (MDP), then
the dynamics of an environment can be captured in a set of transition matrices, one for
each action. For example

P a “

»

—

–

Pps1
a
ÝÑ s1q Pps1

a
ÝÑ s2q . . . Pps1

a
ÝÑ snq

Pps2
a
ÝÑ s1q Pps2

a
ÝÑ s2q . . . Pps2

a
ÝÑ snq

.

.

.
.
.
.

. . .
.
.
.

Ppsn
a
ÝÑ s1q Ppsn

a
ÝÑ s2q . . . Ppsn

a
ÝÑ snq

fi

ffi

fl
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1 Machine Learning for Predictive Data Analytics (Exercise Solutions)

1. What is predictive data analytics?

Predictive data analytics is a subfield of data analytics that focuses on build-
ing models that can make predictions based on insights extracted from historical
data. To build these models, we use machine learning algorithms to extract pat-
terns from datasets.

2. What is supervised machine learning?

Supervised machine learning techniques automatically learn the relationship be-
tween a set of descriptive features and a target feature from a set of historical
instances. Supervised machine learning is a subfield of machine learning. Ma-
chine learning is defined as an automated process that extracts patterns from data.
In predictive data analytics applications, we use supervised machine learning
to build models that can make predictions based on patterns extracted from his-
torical data.

3. Machine learning is often referred to as an ill-posed problem. What does this mean?

Machine learning algorithms essentially search through all the possible patterns
that exist between a set of descriptive features and a target feature to find the best
model that is consistent with the training data used. It is possible to find multi-
ple models that are consistent with a given training set (i.e., that agree with all
training instances). For this reason, inductive machine learning is referred to as
an ill-posed problem, as there is typically not enough information in the train-
ing data to choose a single best model. Inductive machine learning algorithms
must somehow choose one of the available models as the best. The images be-
low show an example of this. All the models are somewhat consistent with the
training data, but which one is best?
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4. The following table lists a dataset from the credit scoring domain that we discussed in
the chapter. Underneath the table we list two prediction models consistent with this
dataset, Model 1 and Model 2.

LOAN-SALARY

ID OCCUPATION AGE RATIO OUTCOME

1 industrial 39 3.40 default
2 industrial 22 4.02 default
3 professional 30 2.7 0 repay
4 professional 27 3.32 default
5 professional 40 2.04 repay
6 professional 50 6.95 default
7 industrial 27 3.00 repay
8 industrial 33 2.60 repay
9 industrial 30 4.5 0 default

10 professional 45 2.78 repay

Model 1
if LOAN-SALARY RATIO ą 3.00 then

OUTCOME = default
else

OUTCOME = repay
end if
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Model 2
if AGE“ 50 then

OUTCOME = default
else if AGE“ 39 then

OUTCOME = default
else if AGE“ 30 and OCCUPATION = industrial then

OUTCOME = default
else if AGE“ 27 and OCCUPATION = professional then

OUTCOME = default
else

OUTCOME = repay
end if

(a) Which of these two models do you think will generalize better to instances not
contained in the dataset?

Model 1 is more likely to generalize beyond the training dataset because it is
simpler and appears to be capturing a real pattern in the data.

(b) Propose an inductive bias that would enable a machine learning algorithm to make
the same preference choice that you made in Part (a).

If you are choosing between a number of models that perform equally well
then prefer the simpler model over the more complex models.

(c) Do you think that the model that you rejected in Part (a) of this question is over-
fitting or underfitting the data?

Model 2 is overfitting the data. All of the decision rules in this model that
predict OUTCOME = default are specific to single instances in the dataset.
Basing predictions on single instances is indicative of a model that is overfit-
ting.

˚ 5. What is meant by the term inductive bias?

The inductive bias of a learning algorithm
(a) is a set of assumptions about what the true function we are trying to model

looks like;
(b) defines the set of hypotheses that a learning algorithm considers when it is

learning;
(c) guides the learning algorithm to prefer one hypothesis (i.e., the hypothesis that

best fits with the assumptions) over others;
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(d) is a necessary prerequisite for learning because inductive learning is an ill-
posed problem.

˚ 6. How do machine learning algorithms deal with the fact that machine learning is an
ill-posed problem?

Because machine learning is ill-posed, we have to make some extra assumptions
about what we think the real mapping from the descriptive features to the target
feature should look like in order to find a unique solution with the data we have.
The set of assumptions we make so that learning is possible is called the in-
ductive bias of the learning algorithm—this is the main implication of inductive
machine learning being ill-posed.

˚ 7. What can go wrong when an inappropriate inductive bias is used?

There are two possible negative outcomes:
‚ If the inductive bias of a learning algorithm constrains the search to consider

only simple models, we may exclude any models that successfully capture the
relationship in the data from this search. In other words, the true model is
unrealizable by the algorithm. In this case underfitting occurs.

‚ If the inductive bias of the learning algorithm allows the search to consider
overly complex models, the algorithm may home in on irrelevant factors in the
training set. In other words, the model will overfit the training data.

˚ 8. It is often said that 80% of the work done on predictive data analytics projects is done
in the Business Understanding, Data Understanding, and Data Preparation phases of
CRISP-DM, and just 20% is spent on the Modeling, Evaluation, and Deployment
phases. Why do you think this would be the case?

There is an old adage: “garbage in, garbage out.” No matter what machine
learning algorithms are used or how they are tuned, it is not possible to build
good models from bad data. Because of this, it is crucial that sufficient time be
spent gathering, analyzing, and preparing data before any modeling effort starts.
This work is primarily done in the Data Understanding and Data Preparation
phases of the CRISP-DM process.
The Business Understanding and Data Understanding phases of the CRISP-DM
process also involve a huge amount of communication between the business do-
main experts and the predictive data analytics and machine learning experts in
order to fully define the problem that will be solved. This communication is in-
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evitably time consuming. It is, however, crucial so that the final models delivered
are actually appropriate for the business.

˚ 9. The following table lists a dataset of five individuals described via a set of stroke risk
factors and their probability of suffering a stroke in the next five years. This dataset has
been prepared by an analytics team who are developing a model as a decision support
tool for doctors.1 The goal of the model is to classify individuals into groups on the
basis of their risk of suffering a stroke STROKE RISK. In this dataset there are three
categories of risk: low, medium, and high. All the descriptive features are Boolean,
taking two levels: true or false.

HIGH BLOOD HEART STROKE

ID PRESSURE SMOKER DIABETES DISEASE RISK

1 true false true true high
2 true true true true high
3 true false false true medium
4 false false false false low
5 true true true false high

(a) How many possible models exist for the scenario described by the features in this
dataset?

We begin by calculating the number of combinations of descriptive features.
Their four boolean features and so there are 24 “ 16 possible combinations
of levels. The target feature also takes three levels which gives us a total
number of possible mappings from descriptive feature combinations to target
feature level of: 316 “ 43046721

(b) How many of these potential models would be consistent with this sample of data?

There are 16 ´ 5 “ 11 combinations of descriptive feature values that are
not covered by the dataset. And therefore there are 311 “ 177147 potential
models that are consistent with this dataset.

˚ 10. You are using U.S. census data to build a prediction model. On inspecting the data
you notice that the RACE feature has a higher proportion of the category White than

1. Due to space limitations, this dataset covers only a sample of the risk factors for stroke. There are, for
example, a number of non-modifiable risk factors such as age and gender. There is also an array of modifiable
risk factors, including alcohol and drug use, unhealthy diet, stress and depression, and lack of physical exercise.
Furthermore, this dataset is not based on precise measurements of stroke risk. For more information on stroke
and risk factors related to stroke, please see the National Heart, Lung, and Blood Institute on Stroke: https:
//www.nhlbi.nih.gov/health-topics/stroke.

https://www.nhlbi.nih.gov/health-topics/stroke
https://www.nhlbi.nih.gov/health-topics/stroke
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you expected. Why do you think this might be?

The U.S. census is collected via a postal, consequently the census can suffer
from non-responders that introduce a sample bias . There are a large number of
reasons why an individual may not return their census form. A number of these
are skewed towards education levels, socio-economic background, ethnicity, and
so on. In fact, it is estimated that in the U.S. census in 2000 over 4.5 million
people were missing from the census. Importantly, these missing people were
much more likely to be from low-income Black and Hispanic backgrounds. The
census bureau works hard on removing this sample bias from the census, but it is
always present. And, so care should be taken with respect to sample bias, even
when using large census data, that minority groups are not underrepresented in
the data.

˚ 11. Why might a prediction model that has very high accuracy on a dataset not generalize
well after it is deployed?

There are a range of a factors that can contribute to this happening, but two
important ones that we discuss in the chapter is the model overfitting to noise in
the data, and sampling bias.
It is possible for a model to be very accurate on one sample of data from a domain
and not be be accurate on another sample of data taken from the same domain.
This is because the model may overfit to the sample of data it is trained on. What
this means is that the model has memorised the training data so closely that it has
modelled the noise in the sample of data it was trained on, and so it will likely
make incorrect predictions on examples that are similar to the noisy examples in
the dataset.
Another problem that can lead to poor generalisation is if the data used for train-
ing and testing the model suffers from sample bias. In this case, even if the
model does not overfit the data, the model will not generalize well because it is
trained on data that is not representative of the true distributions in the general
population.



2 Data to Insights to Decisions (Exercise Solutions)

1. An online movie streaming company has a business problem of growing customer
churn—subscription customers canceling their subscriptions to join a competitor.
Create a list of ways in which predictive data analytics could be used to help address
this business problem. For each proposed approach, describe the predictive model that
will be built, how the model will be used by the business, and how using the model
will help address the original business problem.

‚ [Churn prediction] A model could be built that predicts the propensity, or
likelihood, that a customer will cancel their subscription in the next three
months. This model could be run every month to identify the customers to
whom the business should offer some kind of bonus to entice them to stay.
The analytics problem in this case is to build a model that accurately predicts
the likelihood of customers to churn.

‚ [Churn explanation] By building a model that predicts the propensity of cus-
tomers to cancel their subscriptions, the analytics practitioner could identify
the factors that correlate strongly with customers choosing to leave the ser-
vice. The business could then use this information to change its offerings so
as to retain more customers. The analytics problem in this case would be to
identify a small set of features that describe the company’s offerings that are
important in building an accurate model that predicts the likelihood of individ-
ual customers to churn.

‚ [Next-best-offer prediction] The analytics practitioner could build a next-
best-offer model that predicts the likely effectiveness of different bonuses that
could be offered to customers to entice them to stay with the service. The
company could then run this model whenever contacting a customer believed
likely to leave the service and identify the least expensive bonus that is likely
to entice the customer to remain a subscriber to the service. The analytics
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problem in this case would be to build the most accurate next-best-offer model
possible.

‚ [Enjoyment prediction] Presumably, if the company offered a better service
to its customers, fewer customers would churn. The analytics practitioner
could build a model that predicted the likelihood that a customer would en-
joy a particular movie. The company could then put in place a service that
personalized recommendations of new releases for its customers and thus re-
duce churn by enticing customers to stay with the service by offering them a
better product. The analytics problem in this case would be to build a model
that predicted, as accurately as possible, how much a customer would enjoy a
given movie.

2. A national revenue commission performs audits on public companies to find and fine
tax defaulters. To perform an audit, a tax inspector visits a company and spends a
number of days scrutinizing the company’s accounts. Because it takes so long and
relies on experienced, expert tax inspectors, performing an audit is an expensive exer-
cise. The revenue commission currently selects companies for audit at random. When
an audit reveals that a company is complying with all tax requirements, there is a sense
that the time spent performing the audit was wasted, and more important, that another
business who is not tax compliant has been spared an investigation. The revenue com-
missioner would like to solve this problem by targeting audits at companies who are
likely to be in breach of tax regulations, rather than selecting companies for audit at
random. In this way the revenue commission hopes to maximize the yield from the
audits that it performs.

To help with situational fluency for this scenario, here is a brief outline of how com-
panies interact with the revenue commission. When a company is formed, it registers
with the company registrations office. Information provided at registration includes
the type of industry the company is involved in, details of the directors of the com-
pany, and where the company is located. Once a company has been registered, it must
provide a tax return at the end of every financial year. This includes all financial de-
tails of the company’s operations during the year and is the basis of calculating the tax
liability of a company. Public companies also must file public documents every year
that outline how they have been performing, details of any changes in directorship,
and so on.

(a) Propose two ways in which predictive data analytics could be used to help ad-
dress this business problem.1 For each proposed approach, describe the predictive

1. Revenue commissioners around the world use predictive data analytics techniques to keep their processes as
efficient as possible. ? is a good example.
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model that will be built, how the model will be used by the business, and how
using the model will help address the original business problem.

One way in which we could help to address this business problem using pre-
dictive data analytics would be to build a model that would predict the likely
return from auditing a business—that is, how much unpaid tax an audit would
be likely to recoup. The commission could use this model to periodically a
make a prediction about every company on its register. These predictions
could then be ordered from highest to lowest, and the companies with the
highest predicted returns could be selected for audit. By targeting audits
this way, rather than through random selection, the revenue commissioners
should be able to avoid wasting time on audits that lead to no return.
Another, related way in which we could help to address this business prob-
lem using predictive data analytics would be to build a model that would
predict the likelihood that a company is engaged in some kind of tax fraud.
The revenue commission could use this model to periodically a make a pre-
diction about every company on its register. These predictions could then be
ordered from highest to lowest predicted likelihood, and the companies with
the highest predicted propensity could be selected for audit. By targeting au-
dits at companies likely to be engaged in fraud, rather than through random
selection, the revenue commissioners should be able to avoid wasting time
on audits that lead to no return.

(b) For each analytics solution you have proposed for the revenue commission, out-
line the type of data that would be required.

To build a model that predicts the likely yield from performing an audit, the
following data resources would be required:
‚ Basic company details such as industry, age, and location

‚ Historical details of tax returns filed by each company

‚ Historical details of public statements issued by each company

‚ Details of all previous audits carried out, including the outcomes
To build a model that predicts the propensity of a company to commit fraud,
the following data resources would be required:
‚ Basic company details such as industry, age, and location

‚ Historical details of tax returns filed by each company

‚ Historical details of public statements issued by each company
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‚ Details of all previous audits carried out

‚ Details of every company the commission has found to be fraudulent

(c) For each analytics solution you have proposed, outline the capacity that the rev-
enue commission would need in order to utilize the analytics-based insight that
your solution would provide.

Utilizing the predictions of expected audit yield made by a model would be
quite easy. The revenue commission already have a process in place through
which they randomly select companies for audit. This process would simply
be replaced by the new analytics-driven process. Because of this, the com-
mission would require little extra capacity in order to take advantage of this
system.
Similarly, utilizing the predictions of fraud likelihood made by a model would
be quite easy. The revenue commission already have a process in place
through which they randomly select companies for audit. This process would
simply be replaced by the new analytics-driven process. Because of this, the
commission would require little extra capacity in order to take advantage of
this system.

3. The table below shows a sample of a larger dataset containing details of policyholders
at an insurance company. The descriptive features included in the table describe each
policy holders’ ID, occupation, gender, age, the value of their car, the type of insurance
policy they hold, and their preferred contact channel.

MOTOR POLICY PREF

ID OCCUPATION GENDER AGE VALUE TYPE CHANNEL

1 lab tech female 43 42,632 planC sms
2 farmhand female 57 22,096 planA phone
3 biophysicist male 21 27,221 planA phone
4 sheriff female 47 21,460 planB phone
5 painter male 55 13,976 planC phone
6 manager male 19 4,866 planA email
7 geologist male 51 12,759 planC phone
8 messenger male 49 15,672 planB phone
9 nurse female 18 16,399 planC sms

10 fire inspector male 47 14,767 planC email

(a) State whether each descriptive feature contains numeric, interval, ordinal, categor-
ical, binary, or textual data.
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ID Ordinal MOTORVALUE Numeric
OCCUPATION Textual POLICYTYPE Ordinal
GENDER Categorical AGE Numeric
PREFCHANNEL Categorical

(b) How many levels does each categorical, binary, or ordinal feature have?

ID 10 are present in the sample, but there is
likely to be 1 per customer

GENDER 2 (male, female)
POLICYTYPE 3 (planA, planB, planC)
PREFCHANNEL 3 (sms, phone, email)

4. Select one of the predictive analytics models that you proposed in your answer to
Question 2 about the revenue commission for exploration of the design of its analyt-
ics base table (ABT).

For the answers below, the audit yield prediction model is used.

(a) What is the prediction subject for the model that will be trained using this ABT?

For the audit yield prediction model, the prediction subject is a company. We
are assessing the likelihood that an audit performed on a company will yield
a return, so it is the company that we are interested in assessing.

(b) Describe the domain concepts for this ABT.

The key domain concepts for this ABT are
‚ Company Details: The details of the company itself. These could be

broken down into details about the activities of the company, such as
the locations it serves and the type of business activities it performs,
Business Activities, and information provided at the time of registration,
Registration.

‚ Public Filings: There is a wealth of information in the public documents
that companies must file, and this should be included in the data used to
train this model.
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‚ Director Details: Company activities are heavily tied to the activities of
their directors. This domain concept might be further split into details
about the directors themselves, Personal Details, and details about other
companies that the directors have links to, Other Companies.

‚ Audit History: Companies are often audited multiple times, and it is
likely that details from previous audits would be useful in predicting the
likely outcome of future audits.

‚ Yield: It is important not to forget the target feature. This would come
from some measure of the yield of a previous audit.

(c) Draw a domain concept diagram for the ABT.

The following is an example domain concept diagram for the the audit yield
prediction model.

Audit
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Prediction

Public
Filings

Director
Details

Company
Details

Audit
History Yield

Personal
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Other
Companies

Business
Activities Registration

(d) Are there likely to be any legal issues associated with the domain concepts you
have included?

The legal issues associated with a set of domain concepts depend primar-
ily on the data protection law within the jurisdiction within which we are
working. Revenue commissions are usually given special status within data
protection law and allowed access to data that other agencies would not be
given. For the domain concepts given above, the one most likely to cause
trouble is the Director Details concept. It is likely that there would be is-
sues associated with using personal details of a company director to make
decisions about a company.

˚ 5. Although their sales are reasonable, an online fashion retailer is struggling to generate
the volume of sales that they had originally hoped for when launching their site. List
a number of ways in which predictive data analytics could be used to help address this
business problem. For each proposed approach, describe the predictive model that will
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be built, how the model will be used by the business, and how using the model will
help address the original business problem.

‚ [Channel prediction] Personalised marketing is usually a good way to drive
sales. One of the ways in which this can be done is by tailoring the chan-
nel through which a business communicates with customers. Typical channels
might be email, telephone call, SMS message, Twitter direct message or Face-
book message. A predictive model could be built to predict the channel that
a customer would most likely respond to out of a set of potential channels.
Every time the business needs to communicate with a customer they could use
the model to predict which channel the customer would most likely respond to
and use that channel to communicate with the customer.

‚ [Cross-sell prediction] One way to drive an increase in sales would be to
encourage customers who actively buy products from some departments in
the online store to buy products from departments from which they have not
bought a product before. This is referred to as cross-selling, and a cross-
sell model would predict the likelihood that an active customer would buy a
product from a particular department. The business could use this model to
predict the likelihood that each active customer would make a purchase from a
new department and contact those customer who are likely to make a purchase
with an appropriate marketing message. By encouraging customers to make
purchases from other departments the business should be able to increase sales.

‚ [Upsell prediction] Upselling is the practice of offering a customer the oppor-
tunity to buy a more expensive product once they have made the decision to
buy something. The danger with making upsell offers is that they can annoy
customers and so can jeopardise the original sale. An upsell model can predict
the likelihood that a customer will respond positively. The business could use
the output of the upsell model to only make upsell offers to customers that are
likely to respond to them. In this way the business should be able to increase
sales through upselling without risking any loss of sales through inappropriate
upsell offers.

‚ [Reactivation prediction] Lapsed customers are a good prospect for increas-
ing sales. The retail store could build a model that predicts the propensity of
a lapsed customer to reactivate in response to a special offer, thus increasing
sales. The business could use this model to periodically make predictions for
all lapsed customers and actively pursue those that are most likely to reactivate.

˚ 6. An oil exploration company is struggling to cope with the number of exploratory sites
that they need to drill in order to find locations for viable oil wells. There are many po-
tential sites that geologists at the company have identified, but undertaking exploratory
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drilling at these sites is very expensive. If the company could increase the percentage
of sites at which they perform exploratory drilling that actually lead to finding loca-
tions for viable wells, they could save a huge amount of money.

Currently geologists at the company identify potential drilling sites by manually ex-
amining information from a variety of different sources. These include ordinance sur-
vey maps, aerial photographs, characteristics of rock and soil samples taken from po-
tential sites, and measurements from sensitive gravitational and seismic instruments.

(a) Propose two ways in which predictive data analytics could be used to help ad-
dress the problem that the oil exploration company is facing. For each proposed
approach, describe the predictive model that will be built, how the model will be
used by the company, and how using the model will help address the original prob-
lem.

The most obvious way to help this company would be to build a predictive
model that could analyze the characteristics of a potential drilling site and
predict whether that site is likely to be a viable site for an oil well or not. The
company could use such a model to assess each potential drilling site identi-
fied by its geologists. By doing this, the company could, hopefully, filter out
a large number of unviable sites and reduce the number of exploratory drills
they perform.
This simple model could be implemented, and subsequently used, in quite
different ways depending on the data sources used as the basis of descriptive
features. For example, if the features used were based only on ordinance
survey maps and aerial photographs, the model could be deployed over vast
tracts of land to identify potential drilling sites. On the other hand, if descrip-
tive features based on soil or rock samples were used, then these would need
to be manually collected and analyzed before the model could be applied.
As well as predicting the likelihood that a potential site would be viable for
an oil well, predictive models could also be built to make other useful pre-
dictions. For example, it is likely that geologists studying aerial photographs
spend a significant amount of time identifying different types of land in these
images that are indicative of different rock and soil types. A predictive model
could be built to perform this task—identifying the land type of sections of
aerial photographs. A model like this could be used to reduce the amount
of work that the geologists at the company need to do and, hopefully, allow
them to make better assessments of the likely usefulness of different drilling
sites. This would address the original business problem.
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Another approach would be to build a model that would predict the likely
yield of a potential drilling site. Again, the company could use this to assess
each potential site and use the more detailed prediction on yield to make
decisions about which sites were worth pursuing. By using the details of
yield, the company could add costs and likely profits into their decisions
about which sites to drill. Rather than making this a continuous prediction
problem (predicting an actual number of barrels of oil that are likely to be
extracted from a site), it might be more interesting to categorize sites as small,
medium, and large and predict these categories instead. This solution would
again allow the company to target its exploratory drilling at those sites that
are most likely to yield large returns.

(b) For each analytics solution you have proposed, outline the type of data that would
be required.

For the model that would predict the viability of a drilling site, details of
historical potential sites that have been explored would be required. These
details would most likely include ordinance survey maps, aerial photographs,
characteristics of rock and soil samples taken from the potential sites, and
measurements from any instruments used. The outcome of the exploratory
drilling that took place would also be key so that a target feature could be
generated.
There are a couple of things worth mentioning about these data sources.
First, very few raw descriptive features would be available from the types of
sources just listed. For example, aerial photos are not usable as descriptive
features in their raw form, but rather need significant processing to generate
features from them. For a specific area in an aerial photo, we would likely use
the average color values, the mix of color values, and other similar features
that could be extracted from the raw image data. Map data would require
similar processing.
The other key issues worth mentioning are that oil drilling data is likely to
cover a significant time horizon—the company might have details of past
drilling stretching back ten or twenty years. The characteristics of many of
the data sources mentioned above—for example, aerial photos and maps—
are likely to have changed significantly over this time. For example, the
resolution of aerial photos has changed by orders of magnitude over the past
ten years. Approaches would need to be put in place to align data from
different periods.
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For the model that predicts land types, the key data sources required would be
examples of aerial photos and maps with land types marked on them. These
would be neccessary for training the prediction model.
Finally, for the yield prediction model, information on the final yield from
drilling sites would be required as well as the types of data listed above.

(c) For each analytics solution you have proposed, outline the capacity that would be
needed in order to utilize the analytics-based insight that your solution would pro-
vide.

For the models that predict the viability or yield of a potential drilling site,
very little extra capacity would be required within the company. This type
of analysis is already being performed manually in the company, so it would
only need to be extended to include the outputs from models.
The proposed model for categorizing land types would run separately from
the manual assessment the company geologists are already doing, so some
extra capacity to run this model and feed its results into the existing manual
process would be required.

˚ 7. Select one of the predictive analytics models that you proposed in your answer to the
previous question about the oil exploration company for exploration of the design of
its analytics base table.

In the answers below, we use the model proposed for assessing the viability of a
potential drilling site using as much data as possible.

(a) What is the prediction subject for the model that will be trained using this ABT?

The prediction subject for this example is a potential drilling site.

(b) Describe the domain concepts for this ABT.

The key domain concepts for this ABT are
‚ Aerial Photo: It should be possible for features to be extracted from the

aerial photos of the site being considered.

‚ Land Categorization: If the land-type categorization model proposed in
the answer to the previous question were built, then its output could be
used as a source of descriptive features for this model.
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‚ Ordinance Survey Map: Ordinance survey maps provide a wealth of in-
formation, including the elevation of a location and details of any nearby
infrastructure.

‚ Soil and Rock: The analysis of soil and rock samples from a potential
drilling site should provide potential for a large number of descriptive
features to be derived.

‚ Instruments: The output from any analysis of a location using specialized
instruments should almost certainly be included in an ABT. It is likely
that for this application scenario, the output from specialized instruments
could be split into Gravitational and Seismic.

‚ Viability: It is important not to forget the target feature.

(c) Draw a domain concept diagram for the ABT.

The following is an example domain concept diagram for the the drill site
viability prediction model.

Drill Site
Viability

Prediction

Aerial
Photo

Land
 Categorization

Ordinance
Survey

Map

Soil
&

Rock
 Instruments Viability

Gravitational Seismic

(d) Are there likely to be any legal issues associated with the domain concepts you
have included?

It is unlikely that any particular legal issues would arise from the data used
for this scenario.

˚ 8. The following table shows a sample of a larger dataset that has been collected to build
a model to predict whether newly released movies will be a hit or not.2 The dataset
contains details of movies that have already been released, including their title, running
time, rating, genre, year of release, and whether or not the actor Kevin Costner had a
starring role. An indicator of whether they were a success—a hit—or not—a miss—
based on box office returns compared to budget is also included.

2. This dataset has been artificially created for this book, but machine learning has been used for this task, for
example, by ?.
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ID TITLE LENGTH RATING GENRE COSTNER YEAR HIT

1 Jaws 124 PG action false 1975 hit
2 Waterworld 135 PG-13 sci-fi true 1995 miss
3 Hudson Hawk 100 R adventure false 1991 miss
4 Downfall 156 R drama false 2004 hit
5 The Postman 177 R action true 1997 miss
6 Toy Story 81 G children’s false 1995 hit
7 Field of Dreams 107 G drama true 1989 hit
8 Amelie 122 R comedy false 2001 hit

(a) State whether each descriptive feature contains numeric, interval, ordinal, categor-
ical, binary, or textual data.

ID Ordinal GENRE Categorical
TITLE Textual COSTNER Binary
LENGTH Numeric YEAR Interval
RATING Ordinal HIT Binary

(b) How many levels does each categorical, binary, or ordinal feature have?

ID 8 are present in the sample, but there is
likely to be 1 per movie

RATING 4 at least (G, PG, PG-13, R, . . .)
GENRE 5 at least (action, adventure, children’s,

comedy, drama, sci-fi, . . .)
COSTNER 2 (true, false)
HIT 2 (hit, miss)

˚ 9. The management of a large hospital group are concerned about the readmission rate
for patients who are hospitalized with problems relating to diabetes. An analysis of
historical data suggests that the rate of readmission within 30 days of being discharged
for patients who were hospitalized for complications relating to diabetes is approxi-
mately 20%, compared to an overall average for all patients of approximately 11%.
Sometimes patients are readmitted for a recurrence of the same problem for which
they were originally hospitalized, but at other times readmission is for different prob-
lems. Hospital management are concerned that the cause of the high readmittance rate
for diabetes patients might be that they are discharged too early or that their care plans
while in the hospital are not addressing all their needs.
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Hospital management would like to explore the use of predictive analytics to address
this issue.3 They would like to reduce the readmittance rate of diabetes patients, while
at the same time not keeping patients in the hospital longer than they need to be.

(a) Propose two ways in which predictive data analytics could be used to help address
this problem for the hospital group. For each proposed approach, describe the pre-
dictive model that will be built, how the model will be used by the business, and
how using the model will help address the original problem.

One way in which we could help to address this business problem using pre-
dictive data analytics would be to build a predictive model that could be used
when a patient is being considered for discharge to predict the likelihood that
they would be readmitted to the hospital within 30 days of discharge. Clin-
icians could take the outputs of this model into account when making deci-
sions about whether or not to discharge patients and not discharge patients
with high readmittance risk. By reducing the number of patients discharged
too early and the readmittance rate should be reduced. Another way the out-
puts of this model could be used would be to provide increased follow-on
care after discharge to patients predicted to be at high-risk of readmission.
This might help treat problems before they became so severe as to require
hospitalisation.
Another way that predictive analytics could be used to address this problem
would be to perform co-morbidity prediction. A co-morbidity is a medical
condition that co-occurs with another one. For example, cardiovascular dis-
ease, hypertension, and kidney disease commonly co-occur with diabetes.
The situation described above noted that when patients are readmitted it is
often not for the same problem as before, and co-morbidities could be a key
driver of this. Often large hospitals, or hospital groups, have specialised units
that treat specific complications but are not as conscious of other complica-
tions. When the decision to discharge a patient is being made a predictive
models could be used to predict the likelihood that a patient will suffer from
the common co-morbidities associated with diabetes. If any of these pre-
dictions indicated a high likelihood then patient could be kept in hospital,
sent for further screening for the co-morbidity, or directly treated for the co-
morbidity. This could greatly reduce the number of patients re-admitted to
the hospital.

3. There are many applications of predictive analytics in healthcare, and predicting readmittance rates for dia-
betes patients, as well as patients suffering from other issues, is well studied, for example, by ? and ?.
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(b) For each analytics solution you have proposed for the hospital group, outline the
type of data that would be required.

To build a model that predicts the likelihood of a patient being re-admitted
to hospital within 30 days of discharge a large historical dataset of patient
details would be required, probably covering a period of multiple years. The
following data resources would most likely need to be included in this:
‚ Basic patient details such as age, sex, address, occupation, . . .

‚ Basic details of the patient’s current hospital visit such as the reason for
admission, length of stay, the type of room the patient stayed in, . . .

‚ Details of the treatment the patient received during the current visit such
as procedures undertaken, drugs administered, . . .

‚ Details of diagnostics performed during the patient’s current stay such as
blood tests, urine tests, heart rate monitoring, temperature monitoring,
. . .

‚ Typically clinicians write a natural language opinion when a patient is
being discharged, referred to as a discharge report, describing their opin-
ions of the patient’s condition.

‚ Medical history of the patient covering previous hospital visits, signifi-
cant procedures, . . .

‚ Historical admission data covering at least multiple years to allow the 30
day readmission target feature to be created.

To build the a model to predict likely co-morbidities for diabetes patients a
large historical dataset of patient details would be required, probably cov-
ering a period of multiple years. The following data resources would most
likely need to be included in this:
‚ Basic patient details such as age, sex, address, occupation, . . .

‚ Basic details of the patient’s current hospital visit such as the reason for
admission, length of stay, the type of room the patient stayed in, . . .

‚ Details of diagnostics performed during the patient’s current stay such as
blood tests, urine tests, heart rate monitoring, temperature monitoring,
. . .

‚ Typically clinicians write a natural language opinion when a patient is
being discharged, referred to as a discharge report, describing their opin-
ions of the patient’s condition.
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‚ Medical history of the patient covering previous hospital visits, signifi-
cant procedures, . . .

‚ Historical admission data covering at least multiple years to allow the 30
day readmission target feature to be created.

(c) For each analytics solution you have proposed, outline the capacity that the hospi-
tal would need in order to use the analytics-based insight that your solution would
provide.

Utilizing the predictions of the model predicting the likelihood that a patient
would be readmitted could be quite simple. In one scenario when clinicians
are making the decision to discharge, then the output of the model could be
used as an input to this decision. This would be quite straight-forward as,
assuming predictions could be generated in a timely manner, the model pre-
diction would be one more piece of information added to an existing decision
making process. Alternatively, levels of after-care provided to patients could
be decided based on the predicted likelihood of readmission. This would
assume different levels of after-care exist and that they can be deployed to
patients as required.
The co-morbidity prediction model could be triggered after a discharge deci-
sion has been made and, for complications predicted to have a high likelihood
extra care actions could be planned. This would require mobilising multiple
parts of the hospital group which could be a challenge.

˚ 10. Select one of the predictive analytics models that you proposed in your answer to the
previous question about the readmission of diabetes patients for exploration of the de-
sign of its analytics base table.

In the answers below, we use the model proposed for predicting the likelihood of
readmission within 30 days of discharge.

(a) What is the prediction subject for the model that will be trained using this ABT?

The prediction subject for this example is a patient.

(b) Describe the domain concepts for this ABT.

The key domain concepts for this ABT might be
‚ Patient Details: Basic details of a patient including age, sex, . . .
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‚ Patient History: Detailed medical history for the patient including chronic
conditions, previous procedures, previous conditions, . . .

‚ Diagnostics: Patients in hospital typically undergo multiple diagnostic
tests (for example blood tests, urine tests etc).

‚ Monitoring: While in hospital clinicians typically continuously monitor
key indicators about patients, for example heart rate, temperature, blood
pressure, . . . .

‚ Imaging: Many patients undergo extensive imaging while hospitalised
which generate useful data, for exmaple x-rays, CT scans, . . .

‚ Readmission: It is important not to forget the target feature.

(c) Draw a domain concept diagram for the ABT.

The following is an example domain concept diagram for the the drill site
viability prediction model.
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(d) Are there likely to be any legal issues associated with the domain concepts you
have included?

Medical applications of predictive analytics often have associated legal is-
sues. In this case the following might need to be considered:
‚ Almost all medical data is by its nature personal data, and even more

than that personal sensitive data. Therefore it is likely to be securely
stored and access is likely to be protected. Depending on the jurisdiction
in which this work is taking place explicit consent from the patients may
be required in order to use their data for predictive modelling.

‚ If different care is going to be offered to patients based on the predictions
made by the model designed, then anti-discrimination law needs to be
carefully considered. Is it possible that a model would systematically
offer what might be considered better treatment to some patients based
on characteristics like age, ethnicity, or gender? A machine learning
algorithm might select these as especially predictive features within a
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prediction model and lead to potential discrimination. This would need
to be carefully considered.

‚ When using data that covers a long time horizon and that has been col-
lected for purposes other than building machine learning models then the
purpose specification and use limitation principles of data protection law
need to be taken into account. Subjects need to be informed of the pur-
poses for which their data will be used and the data should only be used
for these purposes. Using older data for the purpose of building machine
learning models may not be covered under the uses described to subjects
at the time the data was collected. This might mean that it cannot be used
without obtaining new consent from subjects, which can be an onerous
task.
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1. The table below shows the age of each employee at a cardboard box factory.

ID 1 2 3 4 5 6 7 8 9 10
AGE 51 39 34 27 23 43 41 55 24 25

ID 11 12 13 14 15 16 17 18 19 20
AGE 38 17 21 37 35 38 31 24 35 33

Based on this data, calculate the following summary statistics for the AGE feature:

(a) Minimum, maximum, and range

By simply reading through the values we can tell that the minimum value for
the AGE feature is: 17.

By simply reading through the values we can tell that the maximum value for
the AGE feature is: 55.

The range is simply the difference between the highest and lowest value:

rangepAGEq “ p55´ 17q

“ 38

(b) Mean and median
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We can calculate the mean of the AGE feature as follows:

AGE “
1

20
ˆ p51` 39` 34` 27` 23` 43` 41` 55` 24` 25

` 38` 17` 21` 37` 35` 38` 31` 24` 35` 33q

“
671
20

“ 33.55

To calculate the median of the AGE feature we first have to arrange the AGE

values in ascending order:
17, 21, 23, 24, 24, 25, 27, 31, 33, 34, 35, 35, 37, 38, 38, 39, 41, 43, 51, 55

Because there are an even number of instances in this small dataset we take
the mid-point of the middle two values as the median. These are 34 and 35
and so the median is calculated as:

medianpAGEq “ p34` 35q{2

“ 34.5

(c) Variance and standard deviation

To calculate the variance we first sum the squared differences between each
value for AGE and the mean of AGE. This table illustrates this:

ID AGE
´

AGE´ AGE
¯ ´

AGE´ AGE
¯2

1 51 17.45 304.50
2 39 5.45 29.70
3 34 0.45 0.20
4 27 -6.55 42.90
5 23 -10.55 111.30
6 43 9.45 89.30
7 41 7.45 55.50
8 55 21.45 460.10
9 24 -9.55 91.20
10 25 -8.55 73.10
11 38 4.45 19.80
12 17 -16.55 273.90
13 21 -12.55 157.50
14 37 3.45 11.90
15 35 1.45 2.10
16 38 4.45 19.80
17 31 -2.55 6.50
18 24 -9.55 91.20
19 35 1.45 2.10
20 33 -0.55 0.30

Sum 1,842.95
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Based on the sum of squared differences value of 1, 842.95 we can calculate
the variance as:

varpAGEq “
1,842.95
20´ 1

“ 96.9974

The standard deviation is calculated as the square root of the variance, so:

sdpAGEq “

b

var pAGEq

“ 9.8487

(d) 1st quartile (25th percentile) and 3rd quartile (75th percentile)

To calculate any percentile of the AGE feature we first have to arrange the
AGE values in ascending order:
17, 21, 23, 24, 24, 25, 27, 31, 33, 34, 35, 35, 37, 38, 38, 39, 41, 43, 51, 55

We then calculate the index for the percentile value as:

index “ nˆ
i

100

where n is the number of instances in the dataset and i is the percentile we
would like to calculate. For the 25th percentile:

index “ 20ˆ
25

100
“ 5

Because this is a whole number we can use this directly and so the 25th

percentile is at index 5 in the ordered dataset and is 24.

For the 75th percentile:

index “ 20ˆ
75

100
“ 15

Because this is a whole number we can use this directly and so the 75th

percentile is at index 15 in the ordered dataset and is 38.

(e) Inter-quartile range
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To calculate the inter-quartile range we subtract the lower quartile value from
the upper quartile value:

IQRpAGEq “ p38´ 24q

“ 14

(f) 12th percentile

We can use the ordered list of values above once more. For the 12th per-
centile:

index “ 20ˆ
12

100
“ 2.4

Because index is not a whole number we have to calculate the percentile as
follows:

ithpercentile “ p1´ index f q ˆ aindex w ` index f ˆ aindex w`1

Because index “ 2.4, index w “ 2 and index f “ 0.4. Using index w “ 2
we can look up AGE2 to be 21 AGE2`1 to be 23. Using this we can calculate
the 12th percentile as:

12thpercentile ofAGE “ p1´ 0.4q ˆ AGE2 ` 0.4ˆ AGE2`1

“ 0.6ˆ 21` 0.4ˆ 23

“ 21.8

2. The table below shows the policy type held by customers at a life insurance company.

ID POLICY

1 Silver
2 Platinum
3 Gold
4 Gold
5 Silver
6 Silver
7 Bronze

ID POLICY

8 Silver
9 Platinum
10 Platinum
11 Silver
12 Gold
13 Platinum
14 Silver

ID POLICY

15 Platinum
16 Silver
17 Platinum
18 Platinum
19 Gold
20 Silver

(a) Based on this data, calculate the following summary statistics for the POLICY

feature:
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i. Mode and 2nd mode

To calculate summary statistics for a categorical feature like this we start
by counting the frequencies of each level for the feature. These are shown
in this table:

Level Frequency Proportion
Bronze 1 0.05
Silver 8 0.40
Gold 4 0.20
Platinum 7 0.35

The proportions are calculated as the frequency of each level divided by
the sum of all frequencies.

The mode is the most frequently occurring level and so in this case is
Silver.

The 2nd mode is the second most frequently occurring level and so in this
case is Platinum.

ii. Mode % and 2nd mode %

The mode % is the proportion of occurrence of the mode and in this case
the proportion of occurrence of Silver is 40%.

The mode % of the 2nd mode, Platinum, is 35%.

(b) Draw a bar plot for the POLICY feature.

A bar plot can be drawn from the frequency table given above:

Bronze Silver Gold Platinum
Policies
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We can use proportions rather than frequencies in the plot:
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In order to highlight the mode and 2nd mode we could order the bars in the
plot by height:

Silver Platinum Gold Bronze
Policies
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This, however, is not an especially good idea in this case as the data, although
categorical, has a natural ordering and changing this in a visualisation could
cause confusion.
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3. An analytics consultant at an insurance company has built an ABT that will be used to
train a model to predict the best communications channel to use to contact a potential
customer with an offer of a new insurance product.1 The following table contains an
extract from this ABT—the full ABT contains 5,200 instances.

HEALTH HEALTH

MOTOR MOTOR HEALTH HEALTH DEPS DEPS PREF

ID OCC GENDER AGE LOC INS VALUE INS TYPE ADULTS KIDS CHANNEL

1 Student female 43 urban yes 42,632 yes PlanC 1 2 sms
2 female 57 rural yes 22,096 yes PlanA 1 2 phone
3 Doctor male 21 rural yes 27,221 no phone
4 Sheriff female 47 rural yes 21,460 yes PlanB 1 3 phone
5 Painter male 55 rural yes 13,976 no phone

.

.

.
.
.
.

.

.

.

14 male 19 rural yes 48,66 no email
15 Manager male 51 rural yes 12,759 no phone
16 Farmer male 49 rural no no phone
17 female 18 urban yes 16,399 no sms
18 Analyst male 47 rural yes 14,767 no email

.

.

.
.
.
.

.

.

.

2747 female 48 rural yes 35,974 yes PlanB 1 2 phone
2748 Editor male 50 urban yes 40,087 no phone
2749 female 64 rural yes 156,126 yes PlanC 0 0 phone
2750 Reporter female 48 urban yes 27,912 yes PlanB 1 2 email

.

.

.
.
.
.

.

.

.

4780 Nurse male 49 rural no yes PlanB 2 2 email
4781 female 46 rural yes 18,562 no phone
4782 Courier male 63 urban no yes PlanA 2 0 email
4783 Sales male 21 urban no no sms
4784 Surveyor female 45 rural yes 17,840 no sms

.

.

.
.
.
.

.

.

.

5199 Clerk male 48 rural yes 19,448 yes PlanB 1 3 email
5200 Cook 47 female rural yes 16,393 yes PlanB 1 2 sms

The descriptive features in this dataset are defined as follows:

‚ AGE: The customer’s age

‚ GENDER: The customer’s gender (male or female)

‚ LOC: The customer’s location (rural or urban)

‚ OCC: The customer’s occupation

1. The data used in this question have been artificially generated for this book. Channel propensity modeling is
used widely in industry; for example, see ?.
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‚ MOTORINS: Whether the customer holds a motor insurance policy with the com-
pany (yes or no)

‚ MOTORVALUE: The value of the car on the motor policy

‚ HEALTHINS: Whether the customer holds a health insurance policy with the com-
pany (yes or no)

‚ HEALTHTYPE: The type of the health insurance policy (PlanA, PlanB, or PlanC)

‚ HEALTHDEPSADULTS: How many dependent adults are included on the health
insurance policy

‚ HEALTHDEPSKIDS: How many dependent children are included on the health
insurance policy

‚ PREFCHANNEL: The customer’s preferred contact channel (email, phone, or sms)

The consultant generated the following data quality report from the ABT (visualiza-
tions of binary features have been omitted for space saving).

% 1st 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
AGE 5,200 0 51 18 22 41.59 47 50 80 15.66
MOTORVALUE 5,200 17.25 3,934 4,352 15,089.5 23,479 24,853 32,078 166,993 11,121
HEALTHDEPSADULTS 5,200 39.25 4 0 0 0.84 1 1 2 0.65
HEALTHDEPSKIDS 5,200 39.25 5 0 0 1.77 2 3 3 1.11

2nd 2nd

% Mode Mode 2nd Mode Mode
Feature Count Miss. Card. Mode Freq. % Mode Freq. %
GENDER 5,200 0 2 female 2,626 50.5 male 2,574 49.5
LOC 5,200 0 2 urban 2,948 56.69 rural 2,252 43.30
OCC 5,200 37.71 1,828 Nurse 11 0.34 Sales 9 0.28
MOTORINS 5,200 0 2 yes 4,303 82.75 no 897 17.25
HEALTHINS 5,200 0 2 yes 3,159 60.75 no 2,041 39.25
HEALTHTYPE 5,200 39.25 4 PlanB 1,596 50.52 PlanA 796 25.20
PREFCHANNEL 5,200 0 3 email 2,296 44.15 phone 1,975 37.98
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HEALTHDEPSKIDS HEALTHTYPE PREFCHANNEL

Discuss this data quality report in terms of the following:

(a) Missing values

Looking at the data quality report, we can see continuous and categorical
features that have significant numbers of missing: MOTORVALUE (17.25%),
HEALTHDEPSADULTS (39.25%), HEALTHDEPSKIDS (39.25%), OCC (37.71%),
and HEALTHTYPE (39.25%).
The missing values in the OCC feature look typical of this type of data. A
little over a third of the customers in the dataset appear to have simply not
provided this piece of information. We will discuss this feature more under
cardinality, but given the large percentage of missing values and the high
cardinality of this feature, imputation is probably not a good strategy. Rather
this feature might be a good candidate to form the basis of a derived flag
feature that simply indicates whether an occupation was provided or not.
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Inspecting rows 14 to 18 of the data sample given above, we can easily see the
reason for the missing values in the HEALTHDEPSADULTS, HEALTHDEP-
SKIDS, and HEALTHTYPE. These features always have missing values when
the HEALTHINS feature has a value of no. From a business point of view, this
makes sense—if a customer does not hold a health insurance policy, then the
details of a health insurance policy will not be populated. This also explains
why the missing value percentages are the same for each of these features.
The explanation for the missing values for the MOTORVALUE feature is, in
fact, the same. Looking at rows 4780, 4782, and 4783, we can see that
whenever the MOTORINS feature has a value of no, then the MOTORVALUE

feature has a missing value. Again, this makes sense—if a customer does not
have a motor insurance policy, then none of the details of a policy will be
present.

(b) Irregular cardinality

In terms of cardinality, a few things stand out. First, the AGE feature has a
relatively low cardinality (given that there are 5,200 instances in the dataset).
This, however, is not especially surprising as ages are given in full years, and
there is naturally only a small range possible—in this data, 18– 80.
The HEALTHDEPSADULTS and HEALTHDEPSKIDS features are interesting
in terms of cardinality. Both have very low values, 4 and 5 respectively. It is
worth noting that a missing value counts in the cardinality calculation. For
example, the only values present in the data for HEALTHDEPSADULTS are
0, 1, and 2, so it is the presence of missing values that brings cardinality to
4. We might consider changing these features to categorical features given
the small number of distinct values. This, however, would lose some of the
meaning captured in these features, so it should only be done after careful
experimentation.
The OCC feature is interesting from a cardinality point of view. For a cat-
egorical feature to have 1,830 levels will make it pretty useless for building
models. There are so many distinct values that it will be almost impossible
to extract any patterns. This is further highlighted by the fact that the mode
percentage for this feature is just 0.34%. This is also why no bar plot is
provided for the OCC feature—there are just too many levels. Because of
such high cardinality, we might just decide to remove this feature from the
ABT. Another option would be to attempt to derive a feature that works at a
higher level, for instance, industry, from the OCC feature. So, for example,
occupations of Occupational health nurse, Nurse, Osteopathic doctor, and



37

Optometry doctor would all be transformed to Medical. Creating this new
derived feature, however, would be a non-trivial task and would rely on the
existence of an ontology or similar data resource that mapped job titles to
industries.

(c) Outliers

Only the MOTORVALUE feature really has an issue with outliers. We can
see this in a couple of ways. First, the difference between the median and
the 3rd quartile and the difference between the 3rd quartile and the maximum
values are quite different. This suggests the presence of outliers. Second,
the histogram of the MOTORVALUE feature shows huge skew to the right
hand side. Finally, inspecting the data sample, we can see an instance of a
very large value, 156,126 on row 2749. These outliers should be investigated
with the business to determine whether they are valid or invalid, and based
on this, a strategy should be developed to handle them. If valid, a clamp
transformation is probably a good idea.

(d) Feature distributions

To understand the distributions of the different features, the visualizations
are the most useful part of the data quality report. We’ll look at the con-
tinuous features first. The AGE feature has a slightly odd distribution. We
might expect age in a large population to follow a normal distribution, but
this histogram shows very clear evidence of a multimodal distribution. There
are three very distinct groups evident: One group of customers in their early
twenties, another large group with a mean age of about 48, and a small group
of older customers with a mean age of about 68. For customers of an insur-
ance company, this is not entirely unusual, however. Insurance products tend
to be targeted at specific age groups—for example, tailored motor insurance,
health insurance, and life insurance policies—so it would not be unusual for
a company to have specific cohorts of customers related to those products.
Data with this type of distribution can also arise through merger and ac-
quisition processes at companies. Perhaps this insurance company recently
acquired another company that specialized in the senior travel insurance mar-
ket? From a modeling point of view, we could hope that these three groups
might be good predictors of the target feature, PREFCHANNEL.
It is hard to see much in the distribution of the MOTORVALUE feature be-
cause of the presence of the large outliers, which bunch the majority of the
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data in a small portion of the graph. If we limit the histogram to a range
that excludes these outliers (up to about 60,000), we can more easily see the
distribution of the remaining instances.
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This distribution is not too far away from a unimodal distribution with left
skew.
There is nothing especially remarkable about the distributions for HEALTHDEP-
SADULTS and HEALTHDEPSKIDS. Remembering that these features are
populated only for customers with health insurance, it might be interesting
for the business as a whole to learn that most customers with dependent chil-
dren have more than one dependent child.
For the categorical features, the most interesting thing to learn from the dis-
tributions is that the target feature is slightly imbalanced. Many more cus-
tomers prefer email contacts rather than phone or sms. Imbalanced target
features can cause difficulty during the modeling process, so this should be
marked for later investigation.

4. The following data visualizations are based on the channel prediction dataset given
in Question 3. Each visualization illustrates the relationship between a descriptive
feature and the target feature, PREFCHANNEL. Each visualization is composed of
four plots: one plot of the distribution of the descriptive feature values in the entire
dataset, and three plots illustrating the distribution of the descriptive feature values
for each level of the target. Discuss the strength of the relationships shown in each
visualization.

(a) The visualization below illustrates the relationship between the continuous feature
AGE and the target feature, PREFCHANNEL.
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This visualization suggests a strong relationship between the AGE descrip-
tive feature and the target feature, PREFCHANNEL. Overall we can see that
the individual histograms for each data partition created by the different tar-
get levels are different from the overall histogram. Looking more deeply, we
can see that the customers whose preferred channel is sms are predominantly
younger. This is evident from the high bars in the 18–25 region of the his-
togram and the fact that there are very few instances in the age range above
60. We can see the opposite pattern for those customers whose preferred
channel is phone. There are very few customers below 40 in this group. The
histogram for the email group most closely matches the overall histogram.

(b) The visualization below illustrates the relationship between the categorical feature
GENDER and the target feature PREFCHANNEL.
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Each individual bar plot of GENDER created when we divide the data by the
target feature is almost identical to the overall bar plot, which indicates that
there is no relationship between the GENDER feature and the PREFCHANNEL

feature.
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(c) The visualization below illustrates the relationship between the categorical feature
LOC and the target feature, PREFCHANNEL.

Rural Urban
Loc

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Rural Urban

PrefChannel = SMS

Loc

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Rural Urban

PrefChannel = Phone

Loc

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Rural Urban

PrefChannel = Email

Loc

D
en

si
ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

The fact that the individual bar plots for each data partition are different from
the overall bar plot suggests a relationship between these two features. In
particular, for those customer’s whose preferred channel is phone, the overall
ratio between rural and urban locations is reversed—quite a few more rural
customers prefer this channel. In the other two channel preference groups,
sms and email, there are quite a few more urban dwellers. Together, this
set of visualizations suggests that the LOC is reasonably predictive of the
PREFCHANNEL feature.

5. The table below shows the scores achieved by a group of students on an exam.

ID 1 2 3 4 5 6 7 8 9 10
SCORE 42 47 59 27 84 49 72 43 73 59

ID 11 12 13 14 15 16 17 18 19 20
SCORE 58 82 50 79 89 75 70 59 67 35

Using this data, perform the following tasks on the SCORE feature:



42 Chapter 3 Data Exploration (Exercise Solutions)

(a) A range normalization that generates data in the range p0, 1q

To perform a range normalization, we need the minimum and maximum of
the dataset and the high and low for the target range. From the data we can
see that the minimum is 27 and the maximum is 89. In the question we are
told that the low value of the target range is 0 and that the high value is 1.
Using these values, we normalize an individual value using the following
equation:

a
1

i “
ai ´ minpaq

maxpaq ´ minpaq
ˆ phigh´ lowq ` low

So, the first score in the dataset, 42, would be normalized as follows:

a
1

i “
42´ 27
89´ 27

ˆ p1´ 0q ` 0

“
15
62

“ 0.2419

This is repeated for each instance in the dataset to give the full normalized
data set as

ID 1 2 3 4 5 6 7 8 9 10
SCORE 0.24 0.32 0.52 0.00 0.92 0.35 0.73 0.26 0.74 0.52

ID 11 12 13 14 15 16 17 18 19 20
SCORE 0.50 0.89 0.37 0.84 1.00 0.77 0.69 0.52 0.65 0.13

(b) A range normalization that generates data in the range p´1, 1q

This normalization differs from the previous range normalization only in that
the high and low values are different—in this case, ´1 and 1. So the first
score in the dataset, 42, would be normalized as follows:

a
1

i “
42´ 27
89´ 27

ˆ p1´ p´1qq ` p´1q

“
15
62
ˆ 2´ 1

“ ´0.5161



43

Applying this to each instance in the dataset gives the full normalized dataset
as

ID 1 2 3 4 5 6 7 8 9 10
SCORE -0.52 -0.35 0.03 -1.00 0.84 -0.29 0.45 -0.48 0.48 0.03

ID 11 12 13 14 15 16 17 18 19 20
SCORE 0.00 0.77 -0.26 0.68 1.00 0.55 0.39 0.03 0.29 -0.74

(c) A standardization of the data

To perform a standardization, we use the following formula for each instance
in the dataset:

a
1

i “
ai ´ a
sdpaq

So we need the mean, a, and standard deviation, sdpaq, for the feature to be
standardized. In this case, the mean is calculated from the original dataset as
60.95, and the standard deviation is 17.2519. So the standardized value for
the first instance in the dataset can be calculated as

a
1

i “
42´ 60.95

17.2519
“ ´1.0984

Standardizing in the same way for the rest of the dataset gives us the follow-
ing:

ID 1 2 3 4 5 6 7 8 9 10
SCORE -1.10 -0.81 -0.11 -1.97 1.34 -0.69 0.64 -1.04 0.70 -0.11

ID 11 12 13 14 15 16 17 18 19 20
SCORE -0.17 1.22 -0.63 1.05 1.63 0.81 0.52 -0.11 0.35 -1.50

6. The following table shows the IQs for a group of people who applied to take part in a
television general-knowledge quiz.

ID 1 2 3 4 5 6 7 8 9 10
IQ 92 107 83 101 107 92 99 119 93 106

ID 11 12 13 14 15 16 17 18 19 20
IQ 105 88 106 90 97 118 120 72 100 104

Using this dataset, generate the following binned versions of the IQ feature:
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(a) An equal-width binning using 5 bins.

To perform an equal-width binning, we first calculate the bin size as range
b

where b is the number of bins. In this case, this is calculated as 120´72
5 “ 9.6,

where 72 and 120 are the minimum and maximum values. Using the bin,
size we can calculate the following bin ranges.

Bin Low High
1 72.0 81.6
2 81.6 91.2
3 91.2 100.8
4 100.8 110.4
5 110.4 120.0

Once we have calculated the boundaries, we can use these to determine the
bin to which each result belongs.

ID IQ IQ (BIN)
1 92 Bin-3
2 107 Bin-4
3 83 Bin-2
4 101 Bin-4
5 107 Bin-4
6 92 Bin-3
7 99 Bin-3
8 119 Bin-5
9 93 Bin-3
10 106 Bin-4

ID IQ IQ (BIN)
11 105 Bin-4
12 88 Bin-2
13 106 Bin-4
14 90 Bin-2
15 97 Bin-3
16 118 Bin-5
17 120 Bin-5
18 72 Bin-1
19 100 Bin-3
20 104 Bin-4

It is interesting to graph a histogram of the values in the dataset according to
the bin boundaries as well as a bar plot showing each of the bins created.
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We can see from these graphs that a lot of instances belong to the middle bins
and very few in the high and low bins.
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(b) An equal-frequency binning using 5 bins

To perform an equal-frequency binning, we first determine the number of
instances that will belong to each bin. This is simply the number of instances
in the dataset divided by the number of bins, in this case 20

5 “ 4. Next we
sort the data by the binning feature and assign instances in order to the first
bin until it is full, before moving to the second and so on. The table below
shows how the instances in this dataset, sorted by RESULT, would be added
to the five bins.

ID IQ IQ (BIN)
18 72 Bin-1
3 83 Bin-1
12 88 Bin-1
14 90 Bin-1
1 92 Bin-2
6 92 Bin-2
9 93 Bin-2
15 97 Bin-2
7 99 Bin-3
19 100 Bin-3

ID IQ IQ (BIN)
4 101 Bin-3
20 104 Bin-3
11 105 Bin-4
10 106 Bin-4
13 106 Bin-4
2 107 Bin-4
5 107 Bin-5
16 118 Bin-5
8 119 Bin-5
17 120 Bin-5

It is interesting to graph a histogram of the values in the dataset according to
the bin boundaries as well as a bar plot showing each of the bins created.
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Remember that in the histogram, because the bins are not of equal width,
the bars are different heights. The area of a bar represents the density of the
instances in the range represented by the bar. The key things to note here are
that each bin is equally populated, but that the bins in the middle are much
narrower than those at either end of the range.

˚ 7. Comment on the distributions of the features shown in each of the following his-
tograms.
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(d) (e)

(a) The height of employees in a trucking company.

This data almost perfectly follows a normal distribution. The mean is about
175. Seeing data that follows a normal distribution is almost always encour-
aging in data analytics as it is the most well-behaved sort of data.

(b) The number of prior criminal convictions held by people given prison sentences
in a city district over the course of a full year.

This data follows an exponential distribution. There is a strong central ten-
dency around 0 and ever decreasing probability of seeing higher values. Data
following an exponential distribution can be hard to manage as there tend to
be significant outliers, which can upset modeling algorithms. In this case
there is at least one instance of a person having over 40 prior convictions,
which is very unusual.

(c) The LDL cholesterol values for a large group of patients, including smokers and
non-smokers.
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There is a very evident multimodal, or more specifically bimodal, character to
this data. There appear to be two distinct groups, one with a central tendency
around 110, and another with a central tendency around 160. The first group
is bigger than the second. From the description of the data, these groups
could be smokers (with the higher cholesterol values) and non-smokers (with
the lower cholesterol values). Without further data, however, there is nothing
here to support this conjecture, so more investigation is required—generating
separate histograms for smokers and non-smokers would be an easy way to
further investigate this issue.

(d) The employee ID numbers of the academic staff at a university.

This data is almost perfectly uniformly distributed—any ID number is just as
likely as any other.

(e) The salaries of car insurance policyholders.

This data follows a unimodal distribution with a fairly strong right skew. This
is typical of monetary features such as salaries, rental prices, and purchase
prices. There will be a strong central tendency (in this case around 32,000),
but there will be some very high values. A distribution like this should always
be seen as an indication that the data contains valid outliers that may need to
be dealt with.



48 Chapter 3 Data Exploration (Exercise Solutions)

˚ 8. The table below shows socioeconomic data for a selection of countries for the year
2009,2 using the following features:

‚ COUNTRY: The name of the country

‚ LIFEEXPECTANCY: The average life expectancy (in years)

‚ INFANTMORTALITY: The infant mortality rate (per 1,000 live births)

‚ EDUCATION: Spending per primary student as a percentage of GDP

‚ HEALTH: Health spending as a percentage of GDP

‚ HEALTHUSD: Health spending per person converted into US dollars

LIFE INFANT HEALTH

COUNTRY EXPECTANCY MORTALITY EDUCATION HEALTH USD
Argentina 75.592 13.500 16.841 9.525 734.093
Cameroon 53.288 67.700 7.137 4.915 60.412
Chile 78.936 7.800 17.356 8.400 801.915
Colombia 73.213 16.500 15.589 7.600 391.859
Cuba 78.552 4.800 44.173 12.100 672.204
Ghana 60.375 52.500 11.365 5.000 54.471
Guyana 65.560 31.200 8.220 6.200 166.718
Latvia 71.736 8.500 31.364 6.600 756.401
Malaysia 74.306 7.100 14.621 4.600 316.478
Mali 53.358 85.500 14.979 5.500 33.089
Mongolia 66.564 26.400 15.121 5.700 96.537
Morocco 70.012 29.900 16.930 5.200 151.513
Senegal 62.653 48.700 17.703 5.700 59.658
Serbia 73.532 6.900 61.638 10.500 576.494
Thailand 73.627 12.700 24.351 4.200 160.136

(a) Calculate the correlation between the LIFEEXPECTANCY and INFANTMORTAL-
ITY features.

The first step in calculating correlation is to calculate the variance between
the two features. Recall that to calculate covariance, we use

covpa, bq “
1

n´ 1

n
ÿ

i“1

´

pai ´ aq ˆ
´

bi ´ b
¯¯

The table below shows the workings used to make this calculation.

2. The data listed in this table is real and was amalgamated from a number of reports that were retrieved
from Gapminder (www.gapminder.org). The EDUCATION data is based on a report from the World Bank
(data.worldbank.org/indicator/SE.XPD.PRIM.PC.ZS); the HEALTH and HEALTHUSD data are based on reports
from the World Health Organization (www.who.int); all the other features are based on reports created by Gap-
minder.

www.gapminder.org
data.worldbank.org/indicator/SE.XPD.PRIM.PC.ZS
www.who.int
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LIFE INFANT

EXPECTANCY MORTALITY pl´ lqˆ
ID (l) l´ l (i) i´ i pi´ iq

1 76 6.8 13.5 -14.5 -99.0
2 53 -15.5 67.7 39.7 -614.3
3 79 10.2 7.8 -20.2 -205.5
4 73 4.5 16.5 -11.5 -51.2
5 79 9.8 4.8 -23.2 -227.1
6 60 -8.4 52.5 24.5 -205.4
7 66 -3.2 31.2 3.2 -10.3
8 72 3.0 8.5 -19.5 -58.1
9 74 5.6 7.1 -20.9 -115.9

10 53 -15.4 85.5 57.5 -885.6
11 67 -2.2 26.4 -1.6 3.5
12 70 1.3 29.9 1.9 2.4
13 63 -6.1 48.7 20.7 -126.4
14 74 4.8 6.9 -21.1 -100.7
15 74 4.9 12.7 -15.3 -74.5

Mean 68.75 27.98
Std Dev 8.25 24.95

Sum -2,768.2

Using the sum at the bottom of this table, we can calculate the covariance
between the LIFEEXPECTANCY and INFANTMORTALITY features as

´2,768.2
15´ 1

“ ´197.7

where 15 is the number of instances.

Recall that correlation is calculated as

corrpa, bq “
covpa, bq

sdpaq ˆ sdpbq

So we can calculate the correlation between the LIFEEXPECTANCY and IN-
FANTMORTALITY features as

´197.7
8.25ˆ 24.95

“ ´0.961

where 8.25 and 24.95 are the standard deviations of the two features. This
implies a very strong negative correlation between these two features.

(b) The image below shows a scatter plot matrix of the continuous features from this
dataset (the correlation between LIFEEXPECTANCY and INFANTMORTALITY has
been omitted). Discuss the relationships between the features in the dataset that
this scatter plot highlights.
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The relationships apparent in this plot are as follows:
‚ LIFEEXPECTANCY and INFANTMORTALITY: As calculated previously,

the strong negative correlation between these two features is plainly evi-
dent.

‚ LIFEEXPECTANCY and EDUCATION: There seems to be a slight positive
relationship between these two features.

‚ LIFEEXPECTANCY and HEALTH: There seems to be a slight positive
relationship between these two features.

‚ LIFEEXPECTANCY and HEALTHUSD: There seems to be a slightly stronger
positive relationship between LIFEEXPECTANCY and this version of health
spending. Also this relationship appears to be somewhat non-linear,
which would be worth looking into more.
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‚ INFANTMORTALITY and EDUCATION: There seems to be a slight neg-
ative relationship between these two features—as education spending
goes up, the infant mortality rate seems to reduce.

‚ INFANTMORTALITY and HEALTH: It is a little surprising that the rela-
tionship here is not stronger, but it is still quite evident—as health spend-
ing goes up, infant mortality rates go down.

‚ INFANTMORTALITY and HEALTHUSD: This chart is interesting as it
seems to show a pretty strong non-linear relationship between these two
features. The correlation coefficient used measures only linear relation-
ships, so this is worthy of further investigation.

‚ EDUCATION and HEALTH: There is quite a strong positive relationship
between education and health spending. We can see in the graph, how-
ever, that the dataset only sparsely covers the range of possible values,
so it would be interesting to look at this trend in a larger dataset.

‚ HEALTH and HEALTHUSD: This relationship shows the limitations of
correlation measures. Although these two features measure the same
thing—the amount of health spending in a country—they are not the
most strongly correlated pair in the dataset. The relationship appears
to be non-linear, which makes sense given the fact that it has varying
exchange rates embedded in it.

˚ 9. Tachycardia is a condition that causes the heart to beat faster than normal at rest. The
occurrence of tachycardia can have serious implications including increased risk of
stroke or sudden cardiac arrest. An analytics consultant has been hired by a major
hospital to build a predictive model that predicts the likelihood that a patient at a heart
disease clinic will suffer from tachycardia in the month following a visit to the clinic.
The hospital will use this model to make predictions for each patient when they visit
the clinic and offer increased monitoring for those deemed to be at risk. The analytics
consultant has generated an ABT to be used to train this model.3 The descriptive
features in this dataset are defined as follows:

‚ AGE: The patient’s age

‚ GENDER: The patient’s gender (male or female)

‚ WEIGHT: The patient’s weight

‚ HEIGHT: The patient’s height

3. The data used in this question have been artificially generated for this book. This type of application of
machine learning techniques, however, is common; for example, see ?.
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‚ BMI: The patient’s body mass index (BMI) which is calculated as weight
height2

where
weight is measured in kilograms and height in meters.

‚ SYS. B.P.: The patient’s systolic blood pressure

‚ DIA. B.P.: The patient’s diastolic blood pressure

‚ HEART RATE: The patient’s heart rate

‚ H.R. DIFF.: The difference between the patient’s heart rate at this visit and at their
last visit to the clinic

‚ PREV. TACHY.: Has the patient suffered from tachycardia before?

‚ TACHYCARDIA: Is the patient at high risk of suffering from tachycardia in the next
month?

The following table contains an extract from this ABT—the full ABT contains 2,440
instances.

SYS. DIA. HEART H.R. PREV.
ID AGE GENDER WEIGHT HEIGHT BMI B.P. B.P. RATE DIFF. TACHY. TACHYCARDIA

1 6 male 78 165 28.65 161 97 143 true
2 5 m 117 171 40.01 216 143 162 17 true true

.

.

.
.
.
.

.

.

.

143 5 male 108 1.88 305,568.13 139 99 84 21 false true
144 4 male 107 183 31.95 1,144 90 94 -8 false true

.

.

.
.
.
.

.

.

.

1,158 6 female 92 1.71 314,626.72 111 75 75 -5 false
1,159 3 female 151 1.59 596,495.39 124 91 115 23 true true

.

.

.
.
.
.

.

.

.

1,702 3 male 86 193 23.09 138 81 83 false false
1,703 6 f 73 166 26.49 134 86 84 -4 false

.

.

.
.
.
.

.

.

.

The consultant generated the following data quality report from the ABT.

% 1st 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
AGE 2,440 0.00 7 1.00 3.00 3.88 4.00 5.00 7.00 1.22
WEIGHT 2,440 0.00 174 0.00 81.00 95.70 95.00 107.00 187.20 20.89
HEIGHT 2,440 0.00 109 1.47 162.00 162.21 171.50 179.00 204.00 41.06
BMI 2,440 0.00 1,385 0.00 27.64 18,523.40 32.02 38.57 596,495.39 77,068.75
SYS .B.P. 2,440 0.00 149 62.00 115.00 127.84 124.00 135.00 1,144.00 29.11
DIA. B.P. 2,440 0.00 109 46.00 77.00 86.34 84.00 92.00 173.60 14.25
HEART RATE 2,440 0.00 119 57.00 91.75 103.28 100.00 110.00 190.40 18.21
H.R. DIFF. 2,440 13.03 78 -50.00 -4.00 3.00 1.00 8.00 47.00 12.38
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2nd 2nd

% Mode Mode 2nd Mode Mode
Feature Count Miss. Card. Mode Freq. % Mode Freq. %
GENDER 2,440 0.00 4 male 1,591.00 65.20 female 647.00 26.52
PREV. TACHY. 2,440 44.02 3 false 714.00 52.27 true 652.00 47.73
TACHYCARDIA 2,440 2.01 3 false 1,205.00 50.40 true 1,186.00 49.60
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PREV. TACHY. TACHYCARDIA

Discuss this data quality report in terms of the following:

(a) Missing values

There are three features in the dataset that exhibit missing values: H.R. DIFF.
(13.03%), PREV. TACHY. (44.02%), and TACHYCARDIA (2.01%).
The number of missing values in the H.R. DIFF. feature is not so high that
the feature should be considered for removal from the ABT, but too high to
consider complete case removal. This feature should be noted in the data
quality plan for later handling if required. Mean imputation would probably
work well if these missing values needed to be handled.
The PREV. TACHY. feature is missing values in (44.02%) of the instances in
the dataset. This value is so high that this feature should be removed from the
dataset—any efforts at imputation would simply alter the dataset too much.
The TACHYCARIDA feature is the target feature in this dataset and so it is
slightly alarming that there are missing values for this feature. The instances
that are missing values for this feature should be removed form the dataset
(that is complete case removal should be used). Imputation should never be
attempted for a target feature.

(b) Irregular cardinality

Many of the numeric features in the data set have cardinalities that are much
lower than the number of instances in the dataset (2,440). This is not sur-
prising, however, because most of the features are integer values and have
defined ranges—for example diastolic blood pressure (DIA. B.P.) values
should fall between about 40 and 100. The features that do stand out in terms
of cardinality are AGE and GENDER.
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The AGE feature has a cardinality of 7 which is very low for a numeric fea-
ture. Examining the bar plot for AGE we see that there are only 7 distinct
values, each of which is relatively well represented. This would suggest that
rather than storing actual age values the AGE feature in this dataset repre-
sents is in fact categorical with 7 ordinal categories (this is in fact the case
with this dataset–category 1 represents ages between 10 and 19, category 2
represents ages between 20 and 29 and so on.
The GENDER feature has cardinality of 4 which is a little odd. Examining the
data extract given above and the bar plot for the GENDER feature we can see
that there are actually 4 levels in this dataset—male, female, m, and f. This is
a common data quality issue and representative of either data from different
sources or manually entered data. The m and f values should be recoded to
male and female respectively.

(c) Outliers

An examination of the data quality report (both tables and visualizations)
indicates that three features seem to have problems with outliers: HEIGHT,
BMI, and SYS. B.P..
Looking first at HEIGHT we can see that the difference between the 1st quar-
tile and the median values and the difference between the minimum and 1st

quartile values are quite different and that the histogram of the HEIGHT fea-
ture values shows significant skew to the left hand side. Both of these char-
acteristics are suggestive of outliers. The histogram suggests that the outliers
are in a well defined group with values less than 10. Examining the data
we see that there are a number of height values that are a couple of orders
of magnitude less than the majority of values (for example rows 143, 1,158,
and 1,159). It is possible that these are invalid outliers that arose through
data entry problems, and this should be investigated further (in this example
this is the case as these values were entered in meters rather than centimeters
like the rest of the height values). If the root of the error can be found these
outliers could be corrected (in this example they can easily be corrected by
multiplying them by 100).
The data seems to contain a number of very large values for the BMI feature.
This is evident from the unreasonable maximum value shown in the table
above (BMI values should range from about 15 to about 60), and the massive
skew in the histogram for this feature. In cases like this it is always a good
idea to find the instances in the dataset that actually contain the maximum
value as this often offers clues to the origin of the outliers. The maximum
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BMI value of 596,495.39 occurs on row 1,159. This is a totally unreasonable
value for BMI. It is interesting to note, however, that this value for BMI
occurs beside one of the erroneous values for the HEIGHT feature. Looking
further through the data sample it is evident that the large values for BMI
always occur together with low values for HEIGHT (and this is the case in the
full dataset). As BMI is calculated from WEIGHT and HEIGHT it is likely
that the incorrect values for HEIGHT are causing the incorrect BMI values.
These outliers could be corrected by correcting the incorrect HEIGHT values
and recalculating the values for BMI.
The SYS. B.P. feature has a maximum value that is not reasonable for sys-
tolic blood pressure and that is much further beyond the 3rd quartile than the
3rd quartile is beyond the median. Again, finding this value in the dataset is
a useful first step. It is found on row 144 in the dataset. Further investiga-
tion shows that this is the only value in this range and this is a single invalid
outlier. This value should be changed to a missing value. An entry should be
added to the data quality plan to say that this missing value might be handled
using mean imputation if required.

(d) Feature distributions

Nothing particularly stands out in the distributions of the features. The target
feature levels seem to be evenly distributed which is a positive and should
make modelling easier further down the line. Most of the continuous de-
scriptive features are broadly normally distributed. The H.R. DIFF. feature
seems to be somewhat bi-modal with a peak on the upper end. It would be
interesting to see if there are any relationships between higher values of this
feature and the target feature.

˚ 10. The following data visualizations are based on the tachycardia prediction dataset from
Question 9 (after the instances with missing TACHYCARDIA values have been re-
moved and all outliers have been handled). Each visualization illustrates the rela-
tionship between a descriptive feature and the target feature, TACHYCARDIA and is
composed of three plots: a plot of the distribution of the descriptive feature values in
the full dataset, and plots showing the distribution of the descriptive feature values for
each level of the target. Discuss the relationships shown in each visualizations.

(a) The visualization below illustrates the relationship between the continuous feature
DIA. B.P. and the target feature, TACHYCARDIA.
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The histogram for the different levels of the TACHYCARDIA feature are slightly
differnet sugesting that there is a relationship between the DIA. B.P. and
TACHYCARDIA features. It looks like patients with higher diastolic blood
pressure values are more likely to suffer with tachycardia than those with
lower blood pressure values.
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(b) The visualization below illustrates the relationship between the continuous HEIGHT

feature and the target feature TACHYCARDIA.
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The histograms for the the HEIGHT feature split according to the different
target levels look very similar. This suggests that there is no strong relation-
ship between the HEIGHT feature and the target feature, TACHYCARDIA.

(c) The visualization below illustrates the relationship between the categorical feature
PREV. TACHY. and the target feature, TACHYCARDIA.
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This visualization is interesting as it shows a number of different things.
First, it shows that although there are many missing values for the PREV.
TACHY. feature, they are equally prevalent for both values of the target fea-
ture. This is illustrated by the even split between the target levels in the bar
on the left hand side of the bottom chart. The second things that this vi-
sualization shows is that when a value for PREV. TACHY. is present it is
quite predictive of the target feature–previous occurrences of tachycardia are
predictive of feature occurrences. Although we previously suggested that this
feature should be omitted form the dataset this visualization would encourage
us to return to this decision. While there are just too many missing values to
allow this feature to be used at present the analytics consultant should make
every effort to source values for this feature for this dataset and any future
work in this area.
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˚ 11. Worldwide breast cancer is the most common form of cancer for women, and the
second most common form of cancer overall.4 Reliable, population-wide screening
is one tool that can be used to reduce the impact of breast cancer, and there is an
opportunity for machine learning to be used for this. A large hospital group has col-
lected a cancer screening dataset for possible use with machine learning that contains
features extracted from tissue samples extracted by biopsy from adults presenting for
screening. Features have been extracted from these biopsies by lab technicians who
rate samples across a number of cagegories on a scale of 1 to 10. The samples have
then been manually categorized by clinicians as either benign or malignant.5 The
descriptive features in this dataset are defined as follows:

‚ AGE: The age of the person screened.

‚ SEX: The sex of the person screened, either male or female.

‚ SIZEUNIFORMITY: A measure of the variation in size of cells in the tissue samples,
higher values indicate more uniform sizes (1 to 10).

‚ SHAPEUNIFORMITY: A measure of the variation in shape of cells in the tissue
samples, higher values indicate more uniform shapes (1 to 10).

‚ MARGINALADHESION: A measure of how much cells in the biopsy stick together
(1 to 10).

‚ MITOSES: A measure of how fast cells are growing (1 to 10).

‚ CLUMPTHICKNESS: A measurae of the amount of layering in cells (1 to 10).

‚ BLANDCHROMATIN: A measure of the texture of cell nuclei (1 to 10).

‚ CLASS: The clinician’s assessment of the biopsy sample as either benign or malig-
nant.

4. Based on data from ?.

5. The data in this question have been artificially created but were inspired by the famous Wisconsin breast
cancer dataset first described by ?, and available from the UCI Machine Learning Repository (?).
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The following table contains an extract from this ABT—the full ABT contains 680
instances.

CLUMP SIZE SHAPE MARGINAL BLAND

ID AGE SEX THICKNESS UNIFORMITY UNIFORMITY ADHESION CHROMATIN MITOSES CLASS

1 56 female 3 4 5 3 4 1 benign
2 77 female 2 1 0 1 1 1 benign

.

.

.
.
.
.

.

.

.

48 34 female 5 2 4 1 1 benign
49 46 female 5 3 1 2 2 1 b
50 106 female 2 1 1 1 1 1 benign

.

.

.
.
.
.

.

.

.

303 95 female 1 1 1 1 benign
304 28 male 5 1 1 1 1 benign
305 0 female 3 1 3 1 benign

.

.

.
.
.
.

.

.

.

679 48 female 10 8 7 4 7 1 m
680 43 female 5 4 6 7 1 malignant

The following data quality report has been generated from the ABT.

2nd 2nd

% Mode Mode 2nd Mode Mode
Feature Count Miss. Card. Mode Freq. % Mode Freq. %
SEX 680 0 2 female 630 92.65 male 50 7.35
CLASS 680 0 4 benign 392 57.65 malignant 211 31.03

% 1st 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
AGE 680 0.00 80 0 34 49.13 50 65 106 22.95
CLUMPTHICKNESS 680 0.00 10 1 2 4.45 4 6 10 2.82
SIZEUNIFORMITY 680 9.26 10 1 1 3.14 1 5 10 3.08
SHAPEUNIFORMITY 680 9.26 11 0 1 3.20 1 5 10 3.00
MARGINALADHESION 680 0.00 10 1 1 2.84 1 4 10 2.87
BLANDCHROMATIN 680 22.94 10 1 2 3.38 3 4 10 2.44
MITOSES 680 0.00 9 1 1 1.61 1 1 10 1.74
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Discuss this data quality report in terms of the following:

(a) Missing values

The features SIZEUNIFORMITY, SHAPEUNIFORMITY, and BLANDCHRO-
MATIN all have significant numbers of missing values—9.26%, 9.26%, and
22.94% respectively. These values are all below the upper limit for impu-
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tation described in Section 3.4.1[69] and so imputation should be considered
for these features for modelling algorithms that cannot handle missing val-
ues. Given that the these values are integers in the range 1 to 10 and that
they largely have exponential distributions, mode imputation probably makes
more sense than mean or median imputation.
The fact that the percentage of missing values for both SIZEUNIFORMITY

and SHAPEUNIFORMITY are exactly the same, 9.26%, should raise our cu-
riosity. This suggests that there is a systematic pattern of missing values
across both of these instances. An examination of the dataset supports this
suggestion, for example see rows 303 and 305 in the data sample above.

(b) Irregular cardinality

The most obvious thing to notice is that almost all of the descriptive features
(CLUMPTHICKNESS, SIZEUNIFORMITY, SHAPEUNIFORMITY, MARGINAL-
ADHESION, BLANDCHROMATIN, and MITOSES), which at first glance ap-
pear numeric, each have cardinality of just 10. These descriptive features are
based on manual assessment of the biopsy samples in which lab technicians
rate on scales from 1 to 10. so, this is really ordinal data rather than numeric
data. As the scale is from 1 to 10 it is still probably appropriate to treat this
data as numeric, but some algorithms can perform specific operations on
ordinal data and this opportunity should be explored for those algorithms.
Out of these features MITOSES and SIZEUNIFORMITY further stand out.
MITOSES has a cardinality of only 9 rather than 10. We can just about see
from the histogram for MITOSES that the value 9 never appears in the dataset
which accounts for this. SIZEUNIFORMITY has a cardinality of 11 which is
accounted for by the presence of an outlier, discussed as part of the answer
to the next question.
The target features, CLASS, also has unusual cardinality—a value of 4 rather
than the expected value of 2 for a binary feature. Examining the CLASS bar
plot and the data sample it is obvious that occasionally outcomes have been
record as b and m rather than benign and malignant. This is also clear from
the fact that the 1st and 2nd mode percentages sum to 88.68% rather than
100%. This mislabeling should be corrected.
Purely numeric features should have cardinality close to the number of rows
in the dataset. The AGE feature has cardinality of 80 which is much less than
this. This is appropriate in this case, however, as AGE is an integer feature
and valid ages for adults probably range from about 18 to 100.
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(c) Outliers

The AGE feature has the most obvious issue with outliers. Its minimum
value is 0, which is not an appropriate value for a person’s age and so is
a clear example of an invalid outlier. The histogram for age shows that
there are multiple rows with this value (we can see one on row 305 above),
which suggests that this most likely coding for missing values. A deeper
examination of the dataset (this exact information is not directly available
from the visualsiations and tables shown in this question, but the conclusion
is) shows that 49 rows, or approximately 7% of the data, contains 0 values
for age. These zero values should be repalaced with a missing identifier
to distinguish them from genuine values. This mean that AGE is another
candidate for imputation if required.
AGE also has one unusually high value, 106, we can see this in row 50 above.
It is hard to tell from this value alone whether or not this is an instance of a
valid outlier or an invalid outlier. An age of 106 is unusual, but possible. It
probably makes sense in this case to be conservative, but this outlier should
be recorded for possible handling later.
The SHAPEUNIFORMITY feature also exhibits an outlier, evident from the
fact that the minimum value is 0. The values of this feature should only range
between 1 and 10 so this is an example of an invalid outlier and should
probably be replaced with a 1, regenerated, or perhaps the row should be
completely removed.

(d) Feature distributions

The AGE feature follows a largely normal distribution, with a little left skew,
which is reasonable for age in a population like this. The other numeric fea-
tures largely follow something close to an exponential distribution skewed
heavily towards lower values. In the cases of SIZEUNIFORMITY, SHAPE-
UNIFORMITY, MARGINALADHESION, and MITOSES this is quite extreme
and may be problematic for some modelling algorithms as values of 1 dom-
inate the distribution. It might be interesting to consider recoding these as
binary features with values of 1 or above which could lead to simpler mod-
els.
The SEX feature is heavily skewed towards female, which is not surprising
given that the focus of this dataset is breast cancer screening. In fact at first
it might seem unusual to see males in this dataset at all. Although much less
common than for females, breast cancer does affect males. Less than 1%
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of diagnosed cancers in males are breast cancer, whereas for females breast
cancer accounts for approximately 24% of all diagnosed cancers.a

The target feature CLASS is also imbalanced with approximately 60% of
instances representing benign samples and 40% malignant samples. This is
much higher the the incidence of breast cancer in the population—approximately
13% of women will develop breast cancer in their lifetimes (this is much
lower for men).b This difference in target distribution between a dataset and
a population is not unusual, however, as the data has been generated through
a screening process which is likely to have pre-selectsed people with a higher
risk.

a. Based on data from ?.

b. Based on data from ?.
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˚ 12. The following data visualizations are based on the breast cancer prediction dataset
from Question 11 (after some data quality issues present in the dataset have been
corrected). Each visualization illustrates the relationship between a descriptive feature
and the target feature, CLASS and is composed of three plots: a plot of the distribution
of the descriptive feature values in the full dataset, and plots showing the distribution
of the descriptive feature values for each level of the target. Discuss the relationships
shown in each visualizations.

(a) The visualization below illustrates the relationship between the continuous feature
AGE and the target feature, CLASS.
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The histogram for the different levels of the CLASS feature are slightly dif-
ferent suggesting that there is a relationship between the AGE and CLASS

features. It looks like samples from older people are more likely to be malig-
nant than those from younger people. This though is not a perfect predictor
as there is a good degree of overlap between the ages of the people to whom
benign and malignant samples belong to.

(b) The visualization below illustrates the relationship between the continuous BLAND-
CHROMATIN feature and the target feature CLASS.
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The histograms for the BLANDCHROMATIN feature split according to the
different target levels are quite different suggesting a strong relationship be-
tween this descriptive feature and the target feature. It looks like malignant
samples are likely to have higher values of BLANDCHROMATIN. This though
is not a perfect predictor as there is a good degree of overlap between the val-
ues for benign and malignant samples.
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(c) The visualization below illustrates the relationship between the categorical feature
SEX and the target feature, CLASS.
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This visualisation suggests that there is a strong relationship between the SEX

and CLASS features. The feature suggests that samples from men are much
less likely to be malignant than samples from women.
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4 Information-Based Learning (Exercise Solutions)

1. The image below shows a set of eight Scrabble pieces.

(a) What is the entropy in bits of the letters in this set?

We can calculate the probability of randomly selecting a letter of each type
from this set: PpOq “ 3

8 , PpXq “ 1
8 , PpYq “ 1

8 , PpMq “ 1
8 , PpRq “ 1

8 ,
PpNq “ 1

8 .

Using these probabilities, we can calculate the entropy of the set:

´

ˆ

3
8
ˆ log2

ˆ

3
8

˙

`

ˆ

1
8
ˆ log2

ˆ

1
8

˙˙

ˆ 5
˙

“ 2.4056 bits

Note that the contribution to the entropy for any letter that appears only once
is the same and so has been included 5 times—once for each of X, Y, M, R,
and N.

(b) What would be the reduction in entropy (i.e., the information gain) in bits if we
split these letters into two sets, one containing the vowels and the other containing
the consonants?

Information gain is the reduction in entropy that occurs after we split the
original set. We know that the entropy of the initial set is 2.4056 bits. We cal-
culate the remaining entropy after we split the original set using a weighted
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summation of the entropies for the new sets. The two new sets are vowels
{O,O,O} and consonants {X,Y,M,R,N}.
The entropy of the vowel set is

´

ˆ

3
3
ˆ log2

ˆ

3
3

˙˙

“ 0 bits

The entropy of the consonant set is

´

ˆˆ

1
5
ˆ log2

ˆ

1
5

˙˙

ˆ 5
˙

“ 2.3219 bits

The weightings used in the summation of the set entropies are just the relative
size of each set. So, the weighting of the vowel set entropy is 3

8 , and the
weighting of the consonant set entropy is 5

8 .
This gives the entropy remaining after we split the set of letters into vowels
and consonants as

rem “
3
8
ˆ 0`

5
8
ˆ 2.3219 “ 1.4512 bits

The information gain is the difference between the initial entropy and the
remainder:

IG “ 2.4056´ 1.4512 “ 0.9544 bits

(c) What is the maximum possible entropy in bits for a set of eight Scrabble pieces?

The maximum entropy occurs when there are eight different letters in the set.
The entropy for a set with this distribution of letters is

ˆ

1
8
ˆ log2

ˆ

1
8

˙˙

ˆ 8 “ 3 bits

(d) In general, which is preferable when you are playing Scrabble: a set of letters with
high entropy or a set of letters with low entropy?

In general, sets of letters with high entropy are preferable to lower entropy
sets because the more diverse the letters in the set, the more words you are
likely to be able to make from the set.
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2. A convicted criminal who reoffends after release is known as a recidivist. The follow-
ing table lists a dataset that describes prisoners released on parole and whether they
reoffended within two years of release.1

GOOD DRUG

ID BEHAVIOR AGE ă 30 DEPENDENT RECIDIVIST

1 false true false true
2 false false false false
3 false true false true
4 true false false false
5 true false true true
6 true false false false

This dataset lists six instances in which prisoners were granted parole. Each of these
instances is described in terms of three binary descriptive features (GOOD BEHAV-
IOR, AGE ă 30, DRUG DEPENDENT) and a binary target feature (RECIDIVIST). The
GOOD BEHAVIOR feature has a value of true if the prisoner had not committed any
infringements during incarceration, the AGE ă 30 has a value of true if the prisoner
was under 30 years of age when granted parole, and the DRUG DEPENDENT feature
is true if the prisoner had a drug addiction at the time of parole. The target feature,
RECIDIVIST, has a true value if the prisoner was arrested within two years of being
released; otherwise it has a value of false.

(a) Using this dataset, construct the decision tree that would be generated by the ID3
algorithm, using entropy-based information gain.

The first step in building the decision tree is to figure out which of the three
descriptive features is the best one on which to split the dataset at the root
node (i.e., which descriptive feature has the highest information gain). The
total entropy for this dataset is computed as follows:

H pRECIDIVIST,Dq

“ ´
ÿ

lP
!true,

false

)

PpRECIDIVIST “ lq ˆ log2 pPpRECIDIVIST “ lqq

“ ´
``3{6 ˆ log2p

3{6q
˘

`
`3{6 ˆ log2p

3{6q
˘˘

“ 1.00 bit

1. This example of predicting recidivism is based on a real application of machine learning: parole boards do
rely on machine learning prediction models to help them when they are making their decisions. See ? for a recent
comparison of different machine learning models used for this task. Datasets dealing with prisoner recidivism
are available online, for example, catalog.data.gov/dataset/prisoner-recidivism/. The dataset presented here is not
based on real data.

catalog.data.gov/dataset/prisoner-recidivism/
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The table below illustrates the computation of the information gain for each
of the descriptive features:

Split by Partition Info.
Feature Level Part. Instances Entropy Rem. Gain
GOOD true D1 d4,d5,d6 0.9183

0.9183 0.0817
BEHAVIOR false D2 d1,d2,d3 0.9183

AGE ă 30
true D3 d1,d3 0

0.5409 0.4591
false D4 d2,d4,d5,d6 0.8113

DRUG true D5 d5 0
0.8091 0.1909

DEPENDENT false D6 d1,d2,d3,d4,d6 0.9709

AGE ă 30 has the largest information gain of the three features. Conse-
quently, this feature will be used at the root node of the tree. The figure
below illustrates the state of the tree after we have created the root node and
split the data based on AGE ă 30.

Age <  30

 D3 
  ID    Good Behavior    Drug Dependent    Recidivist  

1 false false true
3 false false true

 true

 D4 

  ID    Good Behavior    Drug Dependent    Recidivist  
2 false false false
4 true false false
5 true true true
6 true false false

 false

In this image we have shown how the data moves down the tree based on the
split on the AGE ă 30 feature. Note that this feature no longer appears in
these datasets because we cannot split on it again.
The dataset on the left branch contains only instances where RECIDIVIST is
true and so does not need to be split any further.
The dataset on the right branch of the tree (D4) is not homogenous, so we
need to grow this branch of the tree. The entropy for this dataset, D4, is
calculated as follows:

H pRECIDIVIST,D4q

“ ´
ÿ

lP
!true,

false

)

PpRECIDIVIST “ lq ˆ log2 pPpRECIDIVIST “ lqq

“ ´
``1{4 ˆ log2p

1{4q
˘

`
`3{4 ˆ log2p

3{4q
˘˘

“ 0.8113 bits

The table below shows the computation of the information gain for the GOOD

BEHAVIOR and DRUG DEPENDENT features in the context of theD4 dataset:
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Split by Partition Info.
Feature Level Part. Instances Entropy Rem. Gain
GOOD true D7 d4,d5,d6 0.918295834

0.4591 0.3522
BEHAVIOR false D8 d2 0

DRUG true D9 d5 0
0 0.8113

DEPENDENT false D10 d2,d4,d6 0

These calculations show that the DRUG DEPENDENT feature has a higher in-
formation gain than GOOD BEHAVIOR: 0.8113 versus 0.3522 and so should
be chosen for the next split.
The image below shows the state of the decision tree after the D4 partition
has been split based on the feature DRUG DEPENDENT.

Age <  30

 D3 
  ID    Good Behavior    Drug Dependent    Recidivist  

1 false false true
3 false false true

 true

Drug Dependent

 false

 D9 
  ID    Good Behavior    Recidivist  

5 true true

 true

 D10 

  ID    Good Behavior    Recidivist  
2 false false
4 true false
6 true false

 false

All the datasets at the leaf nodes are now pure, so the algorithm will stop
growing the tree. The image below shows the tree that will be returned by
the ID3 algorithm:

Age <  30

true

 true

Drug Dependent

 false

true

 true

false

 false

(b) What prediction will the decision tree generated in Part (a) of this question return
for the following query?

GOOD BEHAVIOR = false,AGE ă 30 = false,
DRUG DEPENDENT = true
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RECIDIVIST = true

(c) What prediction will the decision tree generated in Part (a) of this question return
for the following query?

GOOD BEHAVIOR = true,AGE ă 30 = true,
DRUG DEPENDENT = false

RECIDIVIST = true

3. The following table lists a sample of data from a census.2

MARITAL ANNUAL

ID AGE EDUCATION STATUS OCCUPATION INCOME

1 39 bachelors never married transport 25K–50K
2 50 bachelors married professional 25K–50K
3 18 high school never married agriculture ă25K
4 28 bachelors married professional 25K–50K
5 37 high school married agriculture 25K–50K
6 24 high school never married armed forces ă25K
7 52 high school divorced transport 25K–50K
8 40 doctorate married professional ą50K

There are four descriptive features and one target feature in this dataset, as follows:

‚ AGE, a continuous feature listing the age of the individual;

‚ EDUCATION, a categorical feature listing the highest education award achieved by
the individual (high school, bachelors, doctorate);

‚ MARITAL STATUS (never married, married, divorced);

‚ OCCUPATION (transport = works in the transportation industry; professional =
doctor, lawyer, or similar; agriculture = works in the agricultural industry; armed
forces = is a member of the armed forces); and

‚ ANNUAL INCOME, the target feature with 3 levels (ă25K, 25K–50K, ą50K).

(a) Calculate the entropy for this dataset.

2. This census dataset is based on the Census Income Dataset (?), which is available from the UCI Machine
Learning Repository (?) at archive.ics.uci.edu/ml/datasets/Census+Income/.

archive.ics.uci.edu/ml/datasets/Census+Income/
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H pANNUAL INCOME,Dq

“ ´
ÿ
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˙˙

`

ˆ

1
8
ˆ log2

ˆ
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8

˙˙˙

“ 1.2988 bits

(b) Calculate the Gini index for this dataset.

Gini pANNUAL INCOME,Dq

“ 1´
ÿ

lP

#

ă25K,
25K–50K,
ą50K

+

PpAN. INC. “ lq2

“ 1´

˜

ˆ

2
8

˙2

`

ˆ

5
8

˙2

`

ˆ

1
8

˙2
¸

“ 0.5313

(c) In building a decision tree, the easiest way to handle a continuous feature is to
define a threshold around which splits will be made. What would be the optimal
threshold to split the continuous AGE feature (use information gain based on en-
tropy as the feature selection measure)?

First sort the instances in the dataset according to the AGE feature, as shown
in the following table.

ID AGE ANNUAL INCOME

3 18 ă25K
6 24 ă25K
4 28 25K–50K
5 37 25K–50K
1 39 25K–50K
8 40 ą50K
2 50 25K–50K
7 52 25K–50K

Based on this ordering, the mid-points in the AGE values of instances that
are adjacent in the new ordering but that have different target levels define
the possible threshold points. These points are 26, 39.5, and 45.
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We calculate the information gain for each of these possible threshold points
using the entropy value we calculated in part (a) of this question (1.2988 bits)
as follows:

Split by Partition Info.
Feature Partition Instances Entropy Rem. Gain

ą26
D1 d3,d6 0

0.4875 0.8113
D2 d1,d2,d4,d5,d7,d8 0.6500

ą39.5
D3 d1,d3,d4,d5,d6 0.9710

0.9456 0.3532
D4 d2,d7,d8 0.9033

ą45
D5 d1,d3,d4,d5,d6,d8 1.4591

1.0944 0.2044
D6 d2,d7 0

The threshold AGE ą 26 has the highest information gain, and consequently,
it is the best threshold to use if we are splitting the dataset using the AGE

feature.

(d) Calculate information gain (based on entropy) for the EDUCATION, MARITAL

STATUS, and OCCUPATION features.

We have already calculated the entropy for the full dataset in part (a) of this
question as 1.2988 bits. The table below lists the rest of the calculations for
the information gain for the EDUCATION, MARITAL STATUS, and OCCUPA-
TION features.

Split by Partition Info.
Feature Level Instances Gini Index Rem. Gain

EDUCATION

high school d3,d5,d6,d7 1.0
0.5 0.7988bachelors d1,d2,d3 0

doctorate d8 0

MARITAL STATUS

never married d1,d3,d6 0.9183
0.75 0.5488married d2,d4,d5,d8 0.8113

divorced d7 0

OCCUPATION

transport d1,d7 0

0.5944 0.7044
professional d2,d4,d8 0.9183
agriculture d3,d5 1.0

armed forces d6 0

(e) Calculate the information gain ratio (based on entropy) for EDUCATION, MAR-
ITAL STATUS, and OCCUPATION features.

In order to calculate the information gain ratio of a feature, we divide the
information gain of the feature by the entropy of the feature itself. We have
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already calculated the information gain of these features in the preceding part
of this question:
‚ IG(EDUCATION,D) = 0.7988

‚ IG(MARITAL STATUS,D) = 0.5488

‚ IG(OCCUPATION,D) = 0.7044
We calculate the entropy of each feature as follows:

H pEDUCATION,Dq
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ÿ
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“ 1.9056 bits

We can now calculate the information gain ratio for each feature as:

‚ GR(EDUCATION,D) “
0.7988
1.4056

“ 0.5683
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‚ GR(MARITAL STATUS,D) “
0.5488
1.4056

“ 0.3904

‚ GR(OCCUPATION,D) “
0.7044
1.9056

“ 0.3696

(f) Calculate information gain using the Gini index for the EDUCATION, MARITAL

STATUS, and OCCUPATION features.

We have already calculated the Gini index for the full dataset in part (b) of
this question as 0.5313. The table below lists the rest of the calculations of
information gain for the EDUCATION, MARITAL STATUS, and OCCUPATION

features.

Split by Partition Info.
Feature Level Instances Gini Index Rem. Gain

EDUCATION

high school d3,d5,d6,d7 0.5
0.25 0.2813bachelors d1,d2,d3 0

doctorate d8 0

MARITAL STATUS

never married d1,d3,d6 0.4444
0.3542 0.1771married d2,d4,d5,d8 0.375

divorced d7 0

OCCUPATION

transport d1,d7 0

0.2917 0.2396
professional d2,d4,d8 0.4444
agriculture d3,d5 0.5

armed forces d6 0

4. The following diagram shows a decision tree for the task of predicting heart disease.3

The descriptive features in this domain describe whether the patient suffers from chest
pain (CHEST PAIN) and the blood pressure of the patient (BLOOD PRESSURE). The
binary target feature is HEART DISEASE. The table beside the diagram lists a pruning
set from this domain.

3. This example is inspired by the research reported in ?.
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  Chest Pain  
   [true]    

  Blood Pressure  
   [false]    

false

true

true

true

high

false

low

CHEST BLOOD HEART

ID PAIN PRESSURE DISEASE

1 false high false
2 true low true
3 false low false
4 true high true
5 false high false

Using the pruning set, apply reduced error pruning to the decision tree. Assume
that the algorithm is applied in a bottom-up, left-to-right fashion. For each iteration of
the algorithm, indicate the subtrees considered as pruning candidates, explain why the
algorithm chooses to prune or leave these subtrees in the tree, and illustrate the tree
that results from each iteration.

The first subtree that will be considered for pruning by the algorithm is the sub-
tree under the blood pressure node. The nodes colored in black in the figure
below illustrate the extent of this subtree. For each node, the value given in
square brackets is the majority target level returned at that node, and the number
in round brackets is the number of errors in the pruning set made as a result of
predictions returned from this node.

  Chest Pain  
   [true]    

  Blood Pressure  
   [false] (0)   

 false

true

 true

true (2)

 high

false (0)

 low
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The root node of this subtree returns false, and this results in 0 errors in the
pruning set. The sum of the errors for the two leaf nodes of this subtree is 2. The
algorithm will prune this subtree because the number of errors resulting from the
leaf nodes is higher than the number of errors resulting from the root node.
The figure below illustrates the structure of the tree after the subtree under the
BLOOD PRESSURE node is pruned. This figure also highlights the extent of the
subtree that is considered for pruning in the second iteration of the algorithm (the
entire tree in this case).

  Chest Pain  
   [true] (3)   

false (0)

 false

true (0)

 true

The root node of this tree returns true as a prediction, and consequently, it results
in 3 errors on the pruning set. By contrast the number of errors made at each of
the leaf nodes of this tree is 0. Because the number of errors at the leaf nodes
is less than the number of errors at the root node, this tree will not be pruned.
At this point all the non-leaf nodes in the tree have been tested, so the pruning
algorithm will stop, and this decision tree is the one that is returned by the pruning
algorithm.

5. The following table4 lists a dataset containing the details of five participants in a heart
disease study, and a target feature RISK, which describes their risk of heart disease.
Each patient is described in terms of four binary descriptive features

‚ EXERCISE, how regularly do they exercise

‚ SMOKER, do they smoke

‚ OBESE, are they overweight

‚ FAMILY, did any of their parents or siblings suffer from heart disease

4. The data in this table has been artificially generated for this question, but is inspired by the results from the
Framingham Heart Study: www.framinghamheartstudy.org.

www.framinghamheartstudy.org
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ID EXERCISE SMOKER OBESE FAMILY RISK

1 daily false false yes low
2 weekly true false yes high
3 daily false false no low
4 rarely true true yes high
5 rarely true true no high

(a) As part of the study, researchers have decided to create a predictive model to
screen participants based on their risk of heart disease. You have been asked to
implement this screening model using a random forest. The three tables below
list three bootstrap samples that have been generated from the above dataset. Us-
ing these bootstrap samples, create the decision trees that will be in the random
forest model (use entropy-based information gain as the feature selection crite-
rion).

ID EXERCISE FAMILY RISK

1 daily yes low
2 weekly yes high
2 weekly yes high
5 rarely no high
5 rarely no high

Bootstrap Sample A

ID SMOKER OBESE RISK

1 false false low
2 true false high
2 true false high
4 true true high
5 true true high

Bootstrap Sample B

ID OBESE FAMILY RISK

1 false yes low
1 false yes low
2 false yes high
4 true yes high
5 true no high

Bootstrap Sample C

The entropy calculation for Bootstrap Sample A is:

H pRISK, BoostrapS ampleAq

“ ´
ÿ

lP
!

low,
high

)

PpRISK “ lq ˆ log2 pPpRISK “ lqq

“ ´
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1
5
ˆ log2

ˆ

1
5

˙˙

`

ˆ

4
5
ˆ log2

ˆ

4
5

˙˙˙

“ 0.7219 bits

The information gain for each of the features in Bootstrap Sample A is as
follows:
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Split by Partition Info.
Feature Level Instances Entropy Rem. Gain

EXERCISE

daily d1 0
0 0.7219weekly d2,d2 0

rarely d5,d5, 0

FAMILY
yes d1,d2,d2 0.9183

0.5510 0.1709
no d5,d5 0

These calculations show that the EXERCISE feature has the highest informa-
tion gain of the descriptive features in Bootstrap Sample A and should be
added as the root node of the decision tree generated from Bootstrap Sample
A. What is more, splitting on EXERCISE generates pure sets. So, the decision
tree does not need to be expanded beyond this initial test and the final tree
generated for Bootstrap Sample A will be as shown below.

  Exercise  

low

daily

high

 weekly

high

rarely

By chance, Bootstrap Sample B has the same distribution of target feature
values as Bootstrap Sample A, so the entropy calculation for Bootstrap Sam-
ple B is the same as the calculation for Bootstrap Sample A:

H pRISK, BoostrapS ampleBq

“ ´
ÿ

lP
!

low,
high

)

PpRISK “ lq ˆ log2 pPpRISK “ lqq

“ ´

ˆˆ

1
5
ˆ log2

ˆ

1
5

˙˙

`

ˆ

4
5
ˆ log2

ˆ

4
5

˙˙˙

“ 0.7219 bits

The information gain for each of the features in Bootstrap Sample B is as
follows:

Split by Partition Info.
Feature Level Instances Entropy Rem. Gain

SMOKER
true d2,d2,d4,d5 0

0 0.7219
false d1 0

OBESE
true d4,d5 0

0.5510 0.1709
false d1,d2,d2 0.9183
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These calculations show that the SMOKER feature has the highest informa-
tion gain of the descriptive features in Bootstrap Sample B and should be
added as the root node of the decision tree generated from Bootstrap Sample
B. What is more, splitting on SMOKER generates pure sets, So the decision
tree does not need to be expanded beyond this initial test. The final tree
generated for Bootstrap Sample B is shown below.

  Smoker  

high

true

low

false

The entropy calculation for Bootstrap Sample C is:

H pRISK, BoostrapS ampleCq

“ ´
ÿ

lP
!

low,
high

)

PpRISK “ lq ˆ log2 pPpRISK “ lqq

“ ´

ˆˆ

2
5
ˆ log2

ˆ

2
5

˙˙

`

ˆ

3
5
ˆ log2

ˆ

3
5

˙˙˙

“ 0.9710 bits

The information gain for each of the features in Bootstrap Sample C is as
follows:

Split by Partition Info.
Feature Level Instances Entropy Rem. Gain

OBESE
true d4,d5 0

0.5510 0.4200
false d1,d1,d2 0.9183

FAMILY
yes d1,d1,d2,d4 1.0

0.8 0.1709
no d5 0

These calculations show that the OBESE feature has the highest informa-
tion gain of the descriptive features in Bootstrap Sample C and should be
added as the root node of the decision tree generated from Bootstrap Sample
C. Splitting Bootstrap Sample C creates one pure partition for OBESE=true
(d4,d5) where all the instances have RISK=high, and an impure partition for
OBESE=false where two instances (d1,d1) have RISK=low and for one in-
stance (d2) RISK=high.
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Normally this would mean that we would continue to split the impure parti-
tion to create pure sets. However, in this instance there is only one feature
that we can still use to split this partition, the FAMILY feature, and all the
instances in this partition have the same level for this feature FAMILY=yes.
Consequently, instead of splitting this partition further we simply create a
leaf node with the majority target level within the partition: RISK=low. So,
the final tree generated for Bootstrap Sample C will be as shown below.

  Obese  

high

true

low

false

(b) Assuming the random forest model you have created uses majority voting, what
prediction will it return for the following query:

EXERCISE=rarely, SMOKER=false, OBESE=true, FAMILY=yes

Each of the trees in the ensemble will vote as follows:
‚ Tree 1: EXERCISE=rarelyÑ RISK=high

‚ Tree 2: SMOKER=falseÑ RISK=low

‚ Tree 3: OBESE=trueÑ RISK=high

So, the majority vote is for RISK=high, and this is the prediction the model
will return for this query.
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˚ 6. The following table lists a dataset containing the details of six patients. Each pa-
tient is described in terms of three binary descriptive features (OBESE, SMOKER, and
DRINKS ALCOHOL) and a target feature (CANCER RISK).5

DRINKS CANCER

ID OBESE SMOKER ALCOHOL RISK

1 true false true low
2 true true true high
3 true false true low
4 false true true high
5 false true false low
6 false true true high

(a) Which of the descriptive features will the ID3 decision tree induction algorithm
choose as the feature for the root node of the decision tree?

The ID3 decision tree induction algorithm selects the descriptive feature with
the highest information gain at the root node of the decision tree. The first
step in calculating information gain is to calculate the entropy for the entire
datasetD with respect to the target feature, CANCER RISK:

H pCANCERRISK,Dq

“ ´
ÿ

lP
!

high,
low

)

PpCANCERRISK “ lq ˆ log2 pPpCANCERRISK “ lqq

“ ´

ˆˆ

3
6
ˆ log2

ˆ

3
6

˙˙

`

ˆ

3
6
ˆ log2

ˆ

3
6

˙˙˙

“ 1.00 bits

The table below shows the calculation of the information gain for each of the
descriptive features in the dataset:

5. The data in this table has been artificially generated for this question. The American Cancer Society does,
however, provide information on the causes of cancer: www.cancer.org/cancer/cancercauses/.

www.cancer.org/cancer/cancercauses/
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Split by Partition Info.
Feature Level Part. Instances Entropy Rem. Gain

OBESE
true DS 1 d1,d2,d3 0.9183

0.9183 0.0817
false DS 2 d4,d5,d6 0.9183

SMOKER
true DS 3 d2,d4,d5,d6 0.8113

0.5409 0.4591
false DS 4 d1,d3 0

ALCOHOL
true DS 5 d1,d2,d3,d4,d6 0.9709

0.8091 0.1909
false DS 6 d5 0

From this table, we can see that the feature SMOKER has the highest infor-
mation gain, and consequently the ID3 algorithm will choose this feature as
the one to be tested at the root node of the tree.

(b) In designing a dataset, it is generally a bad idea if all the descriptive features are
indicators of the target feature taking a particular value. For example, a poten-
tial criticism of the design of the dataset in this question is that all the descriptive
features are indicators of the CANCER RISK target feature taking the same level,
high. Can you think of any descriptive features that could be added to this dataset
that are indicators of the low target level?

Being physically active and having a healthy diet—for example, eating veg-
etables and fruit—have been linked with reducing the risk of cancer. So the
dataset could be extended to include features that capture the activity and diet
of patients.

˚ 7. The following table lists a dataset collected in an electronics shop showing details of
customers and whether they responded to a special offer to buy a new laptop.

ID AGE INCOME STUDENT CREDIT BUYS

1 ă 31 high no bad no
2 ă 31 high no good no
3 31´ 40 high no bad yes
4 ą 40 med no bad yes
5 ą 40 low yes bad yes
6 ą 40 low yes good no
7 31´ 40 low yes good yes
8 ă 31 med no bad no
9 ă 31 low yes good yes

10 ą 40 med yes bad yes
11 ă 31 med yes good yes
12 31´ 40 med no good yes
13 31´ 40 high yes bad yes
14 ą 40 med no good no
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This dataset has been used to build a decision tree to predict which customers will
respond to future special offers. The decision tree, created using the ID3 algorithm, is
the following:

  Age  

  Student  

 < 31

yes

 31—40

  Credit  

 > 40

no

 no

yes

 yes

yes

 bad

no

 good

(a) The information gain (calculated using entropy) of the feature AGE at the root
node of the tree is 0.247. A colleague has suggested that the STUDENT feature
would be better at the root node of the tree. Show that this is not the case.

To answer this question we need to calculate the information gain of the
STUDENT feature at the root node and show that it is less than the information
gain for AGE.
To calculate information gain for the STUDENT feature we first calculate the
entropy of the entire datasetD with respect to the target feature, BUYS

H pBUYS,Dq

“ ´
ÿ

lPtyes,
no u

PpBUYS “ lq ˆ log2 pPpBUYS “ lqq

“ ´

ˆˆ

9
14
ˆ log2

ˆ

9
14

˙˙

`

ˆ

5
14
ˆ log2

ˆ

5
14

˙˙˙

“ 0.9403 bits

Next we calculate the remainder after the dataset is split based on the values
of the STUDENT feature.

Split by Feature Partition
Feature Value Partition Examples Entropy Remainder

STUDENT
yes DS 1 5,6,7,9,10,11,13 0.5917

0.7885
no DS 2 1,2,3,4,8,12,14 0.9852
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Finally, we calculate the information gain as the difference between the orig-
inal entropy and the remainder:

IG “ 0.9403´ 0.7885 “ 0.1518 bits

The information gain for STUDENT is 0.1518 which is less then the 0.247 for
AGE, so STUDENT is not a better feature to use at the root node.

(b) Yet another colleague has suggested that the ID feature would be a very effective
at the root node of the tree. Would you agree with this suggestion?

There is no need to calcualte the information gain for the ID feature as the
result will work out to be 0.9403—the total information required to make
a prediction (and a value calculated in the answer to previous part of the
question). We can know this without performing the calculation, however,
because each instance has a unique value for the ID feature.
Because of this we know that ID would not be a good feature at the root
node of the tree (or in fact anywhere in the tree) because it actually contains
no information, and the resulting decision tree would be massively overfitted
to the training data. Information measures such as the gain ratio are designed
to address this limitation in information gain.

˚ 8. This table lists a dataset of the scores students achieved on an exam described in terms
of whether the student studied for the exam (STUDIED) and the energy level of the
lecturer when grading the student’s exam (ENERGY).

ID STUDIED ENERGY SCORE

1 yes tired 65
2 no alert 20
3 yes alert 90
4 yes tired 70
5 no tired 40
6 yes alert 85
7 no tired 35

Which of the two descriptive features should we use as the testing criterion at the root
node of a decision tree to predict students’ scores?

The target feature in this question (SCORE) is continuous. When a decision tree
is predicting a continuous target, we choose as the descriptive feature to use at
each node in the tree the one that results in the minimum weighted variance
after the dataset has been split based on that feature. The table below shows the
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calculation of the weighted variance for each of the descriptive features in this
domain.

Split by Weighted
Feature Level Part. Instances Ppd “ lq var pt,Dq Variance

STUDIED
yes D1 d1,d3,d4,d6

4
7 141 2

3 127.3810
no D2 d2,d5,d7

3
7 108 1

3

ENERGY
alert D5 d2,d3,d6

3
7 1525

829.7619
tired D6 d1,d4,d5,d7

4
7 308 1

3

From these calculations we can see that splitting the dataset using the STUDIED

feature results in the lowest weighted variance. Consequently, we should use the
STUDIED feature at the root node of the tree.
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˚ 9. Calculate the probability of a model ensemble that uses simple majority voting mak-
ing an incorrect prediction in the following scenarios. (Hint: Understanding how to
use the binomial distribution will be useful in answering this question.)

(a) The ensemble contains 11 independent models, all of which have an error rate of
0.2.

Because majority voting is being used, the ensemble model will make an
incorrect prediction for a query when a majority, in this case 6 or more, of the
individual models make an incorrect prediction. So to calculate the overall
probability of the model making an incorrect prediction, we need to sum the
probabilities of the events where 6, 7, 8, 9, 10, and 11 of the models make
the prediction.
Because each model in the ensemble is independent of the others, the pre-
dictions returned by the individual models can be viewed as a sequence of
independent binary experiments. Consequently, we can calculate the proba-
bility of getting k outcomes, each with a probability of p, in a sequence of n
experiments using the binomial distribution as

ˆ

n
k

˙

ˆ pk ˆ p1´ pqn´k

For example, we can calculate the probability of the event where exactly 6 of
the models makes an incorrect prediction using the binomial distribution as
follows:

ˆ

11
6

˙

ˆ 0.26 ˆ p1´ 0.2q11´6 “

11!
6!ˆ p11´ 6q!

ˆ 0.000064ˆ 0.32768 “

462ˆ 0.000064ˆ 0.32768 “

0.0097

So, the probability of the model returning an incorrect prediction is
11
ÿ

i“6

ˆ

11
i

˙

ˆ 0.2i ˆ p1´ 0.2q11´i “ 0.0117

(b) The ensemble contains 11 independent models, all of which have an error rate of
0.49.
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11
ÿ

i“6

ˆ

11
i

˙

ˆ 0.49i ˆ p1´ 0.49q11´i “ 0.4729

(c) The ensemble contains 21 independent models, all of which have an error rate of
0.49.

21
ÿ

i“11

ˆ

21
i

˙

ˆ 0.49i ˆ p1´ 0.49q21´i “ 0.4630

˚ 10. The following table shows the target feature, OUTCOME, for a set of instances in a
small dataset. An ensemble model is being trained using this dataset using boosting.
The table also shows the instance distribution weights, w4, for this dataset used at
the fifth iteration of the boosting process. The last column of the table shows the
predictions made by the model trained at the fifth iteration of boosting,M4.

ID OUTCOME w4 M4

1 Bad 0.167 Bad
2 Good 0.047 Good
3 Bad 0.167 Bad
4 Good 0.071 Bad
5 Good 0.047 Good
6 Bad 0.047 Bad
7 Bad 0.047 Bad
8 Good 0.047 Good
9 Bad 0.167 Bad

10 Good 0.071 Bad
11 Bad 0.047 Bad
12 Good 0.071 Bad

(a) Calculate the error, ε, associated with the set of predictions made by the modelM4

given in the table above.

The error is calculated by summing the instance distribution weights of the
instances incorrectly classified by the current model. In this case these are
d4, d10, and d12. So ε “ 0.071` 0.071` 0.071 “ 0.213.

(b) Calculate the confidence factor, α, associated withM4.
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The confidence factor, α for a model is calculated following Equation (4.14)[161]

as:

α4 “
1
2
ˆ loge

ˆ

1´ 0.213
0.213

˙

“
1
2
ˆ loge p3.695q

“
1
2
ˆ 1.307

“ 0.653

(c) Calculate the updated instance distribution, wr5s, based on the predictions made
byM4.

For each instances di we update its weight in the instance distribution, w ris,
using Equations (4.12)[161] and (4.13)[161] depending on whether it has been
incorrectly or correctly classified. For example, instance d4 is incorrectly
classified byM4 and so its instane distribution weight is updated as follows:

w r4s Ð w r4s ˆ
ˆ

1
2ˆ ε

˙

Ð 0.071ˆ
ˆ

1
2ˆ 0.213

˙

Ð 0.071ˆ 2.347

Ð 0.167

Similarly, instance d2 has been correctly classified byM4 and so its instance
distribution weight is updated as follows:

w r2s Ð w r2s ˆ
ˆ

1
2ˆ p1´ εq

˙

Ð 0.047ˆ
ˆ

1
2ˆ p1´ 0.213q

˙

Ð 0.047ˆ 0.635

Ð 0.030

These results match the expectation that the weight for an incorrectly clas-
sified instance should be increased slightly, while the weight for a correctly
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classified instanced should be decreased slightly. The complete new distri-
bution is shown below.

ID OUTCOME w4 M4 w5

1 Bad 0.167 Bad 0.106
2 Good 0.047 Good 0.030
3 Bad 0.167 Bad 0.106
4 Good 0.071 Bad 0.167
5 Good 0.047 Good 0.030
6 Bad 0.047 Bad 0.030
7 Bad 0.047 Bad 0.030
8 Good 0.047 Good 0.030
9 Bad 0.167 Bad 0.106

10 Good 0.071 Bad 0.167
11 Bad 0.047 Bad 0.030
12 Good 0.071 Bad 0.167
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˚ 11. The following table shows a set of predictions made by six models in an ensemble and
the ground truth of the target feature in a small test dataset, PROGNOSIS.

ID PROGNOSIS M0 M1 M2 M3 M4 M5

1 Bad Bad Bad Good Bad Bad Good
2 Good Good Good Good Bad Good Bad
3 Good Bad Good Bad Good Good Good
4 Bad Bad Bad Bad Bad Bad Good
5 Bad Good Bad Good Bad Good Good

(a) Assuming that these models are part of an ensemble training using bagging, cal-
culate the overall output of the ensemble for each instance in the test dataset.

Ensembles based on bagging use simple majority voting as their aggregation
mechanism. So for each instance we simply count the number of positive and
negative votes to determine the output of the overall ensemble. The following
table shows the vote counts for each instance in the test dataset and the target
feature level that receives the most votes.

Bad Good
ID PROGNOSIS Votes Votes M

1 Bad 4 2 Bad
2 Good 2 4 Good
3 Good 2 4 Good
4 Bad 5 1 Bad
5 Bad 2 4 Good

(b) Measure the performance of this bagged ensemble using misclassification rate
(misclassification rate is discussed in detail in Section 9.3[535]; it is simply the per-
centage of instances in the test dataset that a model has incorrectly classified).

In the case the ensemble model made the correct prediction for 4 out of 5
instances in the test dataset and only made an incorrect prediction for one.
Therefore the misclassification rate is 1

5 “ 20%.

(c) Assuming that these models are part of an ensemble trained using boosting and
that the confidence factors, α, for the models are as follows:

M0 M1 M2 M3 M4 M5

0.114 0.982 0.653 0.912 0.883 0.233

calculate the overall output of the ensemble for each instance in the test dataset.
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In the boosting case the votes are weighted by the confidence factor associ-
ated with each model. So we calculate a weighted vote for each target feature
level, in this case Bad and Good, by adding together the confidence factors
for the models that predict each target feature level.
For example, for the first instance in the test dataset, d1, the models that
predict the Bad target level are M0, M1, M3, and M4. So the weighted vote
for the Bad target level is 0.114 ` 0.982 ` 0.912 ` 0.883 “ 2.891. The
models that predict the Good target level are M2 and M5. So the weighted
vote for the Good target level is 0.653 ` 0.233 “ 0.886. The votes for Bad
outweigh the votes for Good and so that is the overall model prediction in
this case.
The votes for other test instances are calculated in the same way. The table
below shows these weighted votes.

Bad Good
ID PROGNOSIS Votes Votes M

1 Bad 2.891 0.886 Bad
2 Good 1.145 2.632 Good
3 Good 0.767 3.01 Good
4 Bad 3.544 0.233 Bad
5 Bad 1.894 1.883 Bad

The last instance, d5 is particularly interesting in this case. Although four
of the six models in the ensemble have made a prediction of Good for this
instance, the two models with the highest confidence factors have made a
prediction of Bad and the strength of their votes outweighs the votes of the
mother models.

(d) Measure the performance of this boosted ensemble using misclassification rate.

In the case the ensemble model made the correct prediction for all instances
in the test dataset and so the misclassification rate is 0%.
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1. The table below lists a dataset that was used to create a nearest neighbor model that
predicts whether it will be a good day to go surfing.

ID WAVE SIZE (FT) WAVE PERIOD (SECS) WIND SPEED (MPH) GOOD SURF

1 6 15 5 yes
2 1 6 9 no
3 7 10 4 yes
4 7 12 3 yes
5 2 2 10 no
6 10 2 20 no

Assuming that the model uses Euclidean distance to find the nearest neighbor, what
prediction will the model return for each of the following query instances?

ID WAVE SIZE (FT) WAVE PERIOD (SECS) WIND SPEED (MPH) GOOD SURF

Q1 8 15 2 ?
Q2 8 2 18 ?
Q3 6 11 4 ?

The table below lists the training instances along with the distances between each
training instance and each query. The distance between each query instance and
its nearest training instance is highlighted in bold.

WAVE WAVE WIND GOOD Euc. Dist. Euc. Dist. Euc. Dist.
ID SIZE (FT) PERIOD (SECS) SPEED (MPH) SURF to Q1 to Q2 to Q3
1 6 15 5 yes 3.61 18.49 4.12
2 1 6 9 no 13.38 12.08 8.66
3 7 10 4 yes 5.48 16.16 1.41
4 7 12 3 yes 3.32 18.06 1.73
5 2 2 10 no 16.40 10.00 11.53
6 10 2 20 no 22.29 2.83 18.79
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From this table we can see that
‚ The nearest neighbor to Q1 is training instance d4 which is 3.32 units away

from Q1. This training instance has a target level of GOOD SURF=yes. So the
model will predict GOOD SURF=yes for Q1.

‚ The nearest neighbor to Q2 is training instance d6 which is 2.83 units away
from Q2. This training instance has a target level of GOOD SURF=no. So the
model will predict GOOD SURF=no for Q2.

‚ The nearest neighbor to Q3 is training instance d3 which is 1.41 units away
from Q3. This training instance has a target level of GOOD SURF=yes. So the
model will predict GOOD SURF=yes for Q3.

2. Email spam filtering models often use a bag-of-words representation for emails. In
a bag-of-words representation, the descriptive features that describe a document (in
our case, an email) each represent how many times a particular word occurs in the
document. One descriptive feature is included for each word in a predefined dictio-
nary. The dictionary is typically defined as the complete set of words that occur in the
training dataset. The table below lists the bag-of-words representation for the follow-
ing five emails and a target feature, SPAM, whether they are spam emails or genuine
emails:

‚ “money, money, money”

‚ “free money for free gambling fun”

‚ “gambling for fun”

‚ “machine learning for fun, fun, fun”

‚ “free machine learning”

Bag-of-Words
ID MONEY FREE FOR GAMBLING FUN MACHINE LEARNING SPAM

1 3 0 0 0 0 0 0 true
2 1 2 1 1 1 0 0 true
3 0 0 1 1 1 0 0 true
4 0 0 1 0 3 1 1 false
5 0 1 0 0 0 1 1 false

(a) What target level would a nearest neighbor model using Euclidean distance re-
turn for the following email: “machine learning for free”?

The bag-of-words representation for this query is as follows:
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Bag-of-Words
ID MONEY FREE FOR GAMBLING FUN MACHINE LEARNING SPAM

Query 0 1 1 0 0 1 1 ?

The table below shows the calculation of the Euclidean distance between the
query instance and each of the instances in the training dataset:

pq rir ´ d j rirq2 Euclidean
ID MONEY FREE FOR GAMBLING FUN MACHINE LEARNING Distance
1 9 1 1 0 0 1 1 3.6056
2 1 1 0 1 1 1 1 2.4495
3 0 1 0 1 1 1 1 2.2361
4 0 1 0 0 9 0 0 3.1623
5 0 0 1 0 0 0 0 1

Based on these distance calculations, the nearest neighbor to the query is
instance d5, for which SPAM = false. Consequently, the model will return a
prediction of SPAM = false for this query.

(b) What target level would a k-NN model with k “ 3 and using Euclidean distance
return for the same query?

Based on the distance calculations in part (a) of this question, the three near-
est neighbors to the query are instances d5, d3, and d2. The majority of these
three neighbors have a target value of SPAM = true. Consequently, the 3-NN
model will return a prediction of SPAM = true.

(c) What target level would a weighted k-NN model with k “ 5 and using a weighting
scheme of the reciprocal of the squared Euclidean distance between the neighbor
and the query, return for the query?

The weights for each of the instances in the dataset are

ID Weights

1
1

3.60562 “ 0.0769

2
1

2.44952 “ 0.1667

3
1

2.23612 “ 0.2

4
1

3.16232 “ 0.1

5
1
12 “ 1
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The total weight for the SPAM = true target level is 0.0769` 0.1667` 0.2 “
0.4436. The total weight for the SPAM = false target level is 0.1 ` 1 “ 1.1.
Consequently, the SPAM = false has the maximum weight, and this is the
prediction returned by the model.

(d) What target level would a k-NN model with k “ 3 and using Manhattan distance
return for the same query?

The table below shows the calculation of the Manhattan distance between the
query bag-of-words vector and each instance in the dataset:

abspq rir ´ d j rirq Manhattan
ID MONEY FREE FOR GAMBLING FUN MACHINE LEARNING Distance
1 3 1 1 0 0 1 1 7
2 1 1 0 1 1 1 1 6
3 0 1 0 1 1 1 1 5
4 0 1 0 0 3 0 0 4
5 0 0 1 0 0 0 0 1

Based on these Manhattan distance calculations, the three nearest neighbors
to the query are instances d5, d4, and d3. The majority of these three neigh-
bors have a target value of SPAM = false. Consequently, the 3-NN model
using Manhattan distance will return a prediction of SPAM = false.

(e) There are a lot of zero entries in the spam bag-of-words dataset. This is indicative
of sparse data and is typical for text analytics. Cosine similarity is often a good
choice when dealing with sparse non-binary data. What target level would a 3-NN
model using cosine similarity return for the query?

In order to calculate the cosine similarity between the query and each in-
stance in the dataset, we first need to calculate the vector length of each
instance and the query. The table below illustrates the calculation of these
vector lengths.

Vector
ID d rir2 Sum Length
1 9 0 0 0 0 0 0 9 3
2 1 4 1 1 1 0 0 8 2.8284
3 0 0 1 1 1 0 0 3 1.7321
4 0 0 1 0 9 1 1 12 3.4641
5 0 1 0 0 0 1 1 3 1.7321

Query 0 1 1 0 0 1 1 4 2
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The second component we need to calculate is the dot product between the
query and each instance. The table below illustrates the calculation of these
dot products.

Dot
Pair pq rir ˆ d j rirq Product
pq,d1q 0 0 0 0 0 0 0 0
pq,d2q 0 2 1 0 0 0 0 3
pq,d3q 0 0 1 0 0 0 0 1
pq,d4q 0 0 1 0 0 1 1 3
pq,d5q 0 1 0 0 0 1 1 3

We can now calculate the cosine similarity for each query-instance pair by
dividing the relevant dot product by the product of the respective vector
lengths. These calculations are shown below.

Pair Cosine Similarity

pq,d1q
0

3ˆ 2
“ 0

pq,d2q
3

2.8285ˆ 2
“ 0.5303

pq,d3q
1

1.7321ˆ 2
“ 0.2887

pq,d4q
3

3.4641ˆ 2
“ 0.4330

pq,d5q
3

1.7321ˆ 2
“ 0.8660

When we use a similarity index, such as cosine similarity, the higher the
number, the more similar the instances. Given this, the three most similar
instances in the dataset to the query are instances d5, d2, and d4. The majority
of these three neighbors have a target value of SPAM = false. Consequently,
the 3-NN model will return a prediction of SPAM = false.

3. The predictive task in this question is to predict the level of corruption in a country
based on a range of macroeconomic and social features. The table below lists some
countries described by the following descriptive features:

‚ LIFE EXP., the mean life expectancy at birth

‚ TOP-10 INCOME, the percentage of the annual income of the country that goes to
the top 10% of earners

‚ INFANT MORT., the number of infant deaths per 1,000 births

‚ MIL. SPEND, the percentage of GDP spent on the military

‚ SCHOOL YEARS, the mean number years spent in school by adult females
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The target feature is the Corruption Perception Index (CPI). The CPI measures
the perceived levels of corruption in the public sector of countries and ranges from 0
(highly corrupt) to 100 (very clean).1

COUNTRY LIFE TOP-10 INFANT MIL. SCHOOL

ID EXP. INCOME MORT. SPEND YEARS CPI
Afghanistan 59.61 23.21 74.30 4.44 0.40 1.5171
Haiti 45.00 47.67 73.10 0.09 3.40 1.7999
Nigeria 51.30 38.23 82.60 1.07 4.10 2.4493
Egypt 70.48 26.58 19.60 1.86 5.30 2.8622
Argentina 75.77 32.30 13.30 0.76 10.10 2.9961
China 74.87 29.98 13.70 1.95 6.40 3.6356
Brazil 73.12 42.93 14.50 1.43 7.20 3.7741
Israel 81.30 28.80 3.60 6.77 12.50 5.8069
USA 78.51 29.85 6.30 4.72 13.70 7.1357
Ireland 80.15 27.23 3.50 0.60 11.50 7.5360
UK 80.09 28.49 4.40 2.59 13.00 7.7751
Germany 80.24 22.07 3.50 1.31 12.00 8.0461
Canada 80.99 24.79 4.90 1.42 14.20 8.6725
Australia 82.09 25.40 4.20 1.86 11.50 8.8442
Sweden 81.43 22.18 2.40 1.27 12.80 9.2985
New Zealand 80.67 27.81 4.90 1.13 12.30 9.4627

We will use Russia as our query country for this question. The table below lists the
descriptive features for Russia.

COUNTRY LIFE TOP-10 INFANT MIL. SCHOOL

ID EXP. INCOME MORT. SPEND YEARS CPI
Russia 67.62 31.68 10.00 3.87 12.90 ?

(a) What value would a 3-nearest neighbor prediction model using Euclidean distance
return for the CPI of Russia?

The table below lists the countries in the dataset and their CPI values by
increasing Euclidean distance from Russia (column 2).

1. The data listed in this table is real and is for 2010/11 (or the most recent year prior to 2010/11 when the data
was available). The data for the descriptive features in this table was amalgamated from a number of surveys
retrieved from Gapminder (www.gapminder.org). The Corruption Perception Index is generated annually by
Transparency International (www.transparency.org).

www.gapminder.org
www.transparency.org
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ID Euclideanpq,diq CPI
Argentina 9.7805 2.9961
China 10.7898 3.6356
U.S.A 12.6033 7.1357
Egypt 13.7217 2.8622
Brazil 14.7394 3.7741
U.K. 15.0621 7.7751
Israel 16.0014 5.8069
Ireland 16.0490 7.5360
New Zealand 16.3806 9.4627
Canada 17.2765 8.6725
Australia 18.1472 8.8442
Germany 18.2352 8.0461
Sweden 19.8056 9.2985
Afghanistan 66.5419 1.5171
Haiti 69.6705 1.7999
Nigeria 75.2712 2.4493

The nearest three neighbors to Russia are Argentina, China, and U.S.A. The
CPI value that will be returned by the model is the average CPI score for
these three neighbors, which is

2.9961` 3.6356` 7.1357
3

“ 4.5891

(b) What value would a weighted k-NN prediction model return for the CPI of Rus-
sia? Use k “ 16 (i.e., the full dataset) and a weighting scheme of the reciprocal of
the squared Euclidean distance between the neighbor and the query.

The table below shows the calculations required to answer this question.

ID Euclideanpq,diq CPI Weight WeightˆCPI
Argentina 9.7805 2.9961 0.0105 0.0313
China 10.7898 3.6356 0.0086 0.0312
U.S.A 12.6033 7.1357 0.0063 0.0449
Egypt 13.7217 2.8622 0.0053 0.0152
Brazil 14.7394 3.7741 0.0046 0.0174
U.K. 15.0621 7.7751 0.0044 0.0343
Israel 16.0014 5.8069 0.0039 0.0227
Ireland 16.0490 7.5360 0.0039 0.0293
New Zealand 16.3806 9.4627 0.0037 0.0353
Canada 17.2765 8.6725 0.0034 0.0291
Australia 18.1472 8.8442 0.0030 0.0269
Germany 18.2352 8.0461 0.0030 0.0242
Sweden 19.8056 9.2985 0.0025 0.0237
Afghanistan 66.5419 1.5171 0.0002 0.0003
Haiti 69.6705 1.7999 0.0002 0.0004
Nigeria 75.2712 2.4493 0.0002 0.0004
Sum Weight: 0.0637
Sum Weightˆ CPI: 0.3665
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The value returned by the model is the sum of the instance weights multiplied
by the instance target value divided by the sum of the instance weights:

0.3665
0.0637

“ 5.7507

(c) The descriptive features in this dataset are of different types. For example, some
are percentages, others are measured in years, and others are measured in counts
per 1,000. We should always consider normalizing our data, but it is particularly
important to do this when the descriptive features are measured in different units.
What value would a 3-nearest neighbor prediction model using Euclidean distance
return for the CPI of Russia when the descriptive features have been normalized
using range normalization?

The table below lists the range-normalized descriptive features and the un-
normalized CPI.

COUNTRY LIFE TOP-10 INFANT MIL. SCHOOL

ID EXP. INCOME MORT. SPEND YEARS CPI
Afghanistan 0.3940 0.0445 0.8965 0.6507 0.0000 1.5171
Haiti 0.0000 1.0000 0.8815 0.0000 0.2174 1.7999
Nigeria 0.1698 0.6313 1.0000 0.1384 0.2681 2.4493
Egypt 0.6869 0.1762 0.2145 0.2652 0.3551 2.8622
Argentina 0.8296 0.3996 0.1359 0.0963 0.7029 2.9961
China 0.8053 0.3090 0.1409 0.2786 0.4348 3.6356
Brazil 0.7582 0.8148 0.1509 0.2004 0.4928 3.7741
Israel 0.9785 0.2629 0.0150 1.0000 0.8768 5.8069
U.S.A 0.9034 0.3039 0.0486 0.6922 0.9638 7.1357
Ireland 0.9477 0.2016 0.0137 0.0757 0.8043 7.5360
U.K. 0.9459 0.2508 0.0249 0.3749 0.9130 7.7751
Germany 0.9501 0.0000 0.0137 0.1818 0.8406 8.0461
Canada 0.9702 0.1063 0.0312 0.1996 1.0000 8.6725
Australia 1.0000 0.1301 0.0224 0.2651 0.8043 8.8442
Sweden 0.9821 0.0043 0.0000 0.1760 0.8986 9.2985
New Zealand 0.9617 0.2242 0.0312 0.1547 0.8623 9.4627

We also need to normalize the query in order to generate a prediction, so
we show the normalized version of the descriptive features for Russia in the
table below.

COUNTRY LIFE TOP-10 INFANT MIL. SCHOOL

ID EXP. INCOME MORT. SPEND YEARS CPI
Russia 0.6099 0.3754 0.0948 0.5658 0.9058 ?
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The table below lists the countries in the dataset by increasing Euclidean
distance—calculated using the normalized descriptive features—between Rus-
sia and the country (column 2). Notice that this ordering is different from the
ordering of the countries when we used the unnormalized descriptive fea-
tures.

ID Euclideanpq,diq CPI
Egypt 0.00004 2.8622
Brazil 0.00048 3.7741
China 0.00146 3.6356
Afghanistan 0.00217 1.5171
Argentina 0.00233 2.9961
United States 0.00742 7.1357
United Kingdom 0.01275 7.7751
Ireland 0.01302 7.5360
Germany 0.01339 8.0461
New Zealand 0.01531 9.4627
Canada 0.01685 8.6725
Israel 0.01847 5.8069
Sweden 0.01918 9.2985
Australia 0.02316 8.8442
Nigeria 0.03753 2.4493
Haiti 0.13837 1.7999

In this instance, the three nearest neighbors to Russia are Egypt, Brazil, and
China. The CPI value that will be returned by the model is the average CPI
score for these three neighbors:

2.8622` 3.7741` 3.6356
3

“ 3.4240

(d) What value would a weighted k-NN prediction model—with k “ 16 (i.e., the full
dataset) and using a weighting scheme of the reciprocal of the squared Euclidean
distance between the neighbor and the query—return for the CPI of Russia when
it is applied to the range-normalized data?

The table below shows the calculations required to answer this question.
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ID Euclideanpq,diq CPI Weight WeightˆCPI
Egypt 0.00004 2.8622 809,250,011.4 2,316,224,862.0
Brazil 0.00048 3.7741 4,284,287.3 16,169,371.4
China 0.00146 3.6356 471,369.7 1,713,699.1
Afghanistan 0.00217 1.5171 211,391.8 320,701.1
Argentina 0.00233 2.9961 184,029.5 551,366.0
United States 0.00742 7.1357 18,176.9 129,704.9
United Kingdom 0.01275 7.7751 6,154.1 47,849.0
Ireland 0.01302 7.5360 5,899.5 44,459.1
Germany 0.01339 8.0461 5,575.7 44,863.0
New Zealand 0.01531 9.4627 4,263.8 40,347.0
Canada 0.01685 8.6725 3,520.9 30,535.1
Israel 0.01847 5.8069 2,932.5 17,028.7
Sweden 0.01918 9.2985 2,717.1 25,265.1
Australia 0.02316 8.8442 1,864.8 16,492.9
Nigeria 0.03753 2.4493 710.1 1,739.3
Haiti 0.13837 1.7999 52.2 94.0
Sum Weight: 814,452,958
Sum Weightˆ CPI: 2,335,378,378

The value returned by the model is the sum of the instance weights multiplied
by the instance target value divided by the sum of the instance weights:

2,335,378,378
814,452,958

“ 2.8674

(e) The actual 2011 CPI for Russia was 2.4488. Which of the predictions made was
the most accurate? Why do you think this was?

The most accurate prediction made was the one based on normalized data
using the weighted k-NN model, 2.8674. There are two main reasons for this.
First, this example illustrates the importance of normalizing data. Because
the data ranges in this dataset are so different from each other, normalization
is crucial. The second main reason is the small size of the dataset. Using
three nearest neighbors probably tends to underfit slightly for such a small
dataset. Using weighted distances allows for this.

˚ 4. You have been given the job of building a recommender system for a large online shop
that has a stock of over 100,000 items. In this domain the behavior of customers is
captured in terms of what items they have bought or not bought. For example, the
following table lists the behavior of two customers in this domain for a subset of the
items that at least one of the customers has bought.
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ITEM ITEM ITEM ITEM ITEM

ID 107 498 7256 28063 75328
1 true true true false false
2 true false false true true

(a) The company has decided to use a similarity-based model to implement the rec-
ommender system. Which of the following three similarity indexes do you think
the system should be based on?

Russell-Rao(X,Y) “
CPpX,Yq

P

Sokal-Michener(X,Y) “
CPpX,Yq `CApX,Yq

P

Jaccard(X,Y) “
CPpX,Yq

CPpX,Yq ` PApX,Yq ` APpX,Yq

In a domain where there are hundreds of thousands of items, co-absences
aren’t that meaningful. For example, you may be in a domain where there
are so many items that most people haven’t seen, listened to, bought, or vis-
ited that the majority of features will be co-absences. The technical term
to describe a dataset where most of the features have zero values is sparse
data. In these situations, you should use a metric that ignores co-absences.
For a scenario such as this one, where the features are binary, the Jaccard
similarity index is ideal as it ignores co-absences.

(b) What items will the system recommend to the following customer? Assume that
the recommender system uses the similarity index you chose in the first part of this
question and is trained on the sample dataset listed above. Also assume that the
system generates recommendations for query customers by finding the customer
most similar to them in the dataset and then recommending the items that this
similar customer has bought but that the query customer has not bought.

ITEM ITEM ITEM ITEM ITEM

ID 107 498 7256 28063 75328
Query true false true false false
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Using a similarity metric, the higher the value returned by the metric, the
more similar the two items are.
Assuming you chose the Jaccard similarity index, then the query customer
is more similar to customer d1 than to customer d2:

‚ Jaccardpq,d1q “
2

2` 1
“ 0.6667

‚ Jaccardpq,d2q “
1
4
“ 0.25

There is only 1 item that customer d1 has bought that the query customer has
not bought, item 498. As a result, the system will recommend item 498 to
the query customer.
It turns out that in this instance, no matter which of the three similarity met-
rics we use, customer d1 is more similar to the query customer than customer
d2. The supporting calculations for Russell-Rao and Sokal-Michener are

‚ Russell-Rao(q,d1) “
2
5
“ 0.4

‚ Russell-Rao(q,d2) “
1
5
“ 0.2

‚ Sokal-Michener(q,d1) “
4
5
“ 0.8

‚ Sokal-Michener(q,d2) “
2
5
“ 0.4

So, the system will recommend item 498 regardless of which similarity met-
ric is used.

˚ 5. You are working as an assistant biologist to Charles Darwin on the Beagle voyage.
You are at the Galápagos Islands, and you have just discovered a new animal that
has not yet been classified. Mr. Darwin has asked you to classify the animal using a
nearest neighbor approach, and he has supplied you the following dataset of already
classified animals.
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1 true false true true false false true false mammal
2 false true false false true true false false amphibian
3 true false true true false false true false mammal
4 false true false true false true false true bird
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The descriptive features of the mysterious newly discovered animal are as follows:
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Query false true false false false true false false ?

(a) A good measure of distance between two instances with categorical features is the
overlap metric (also known as the hamming distance), which simply counts the
number of descriptive features that have different values. Using this measure of
distance, compute the distances between the mystery animal and each of the ani-
mals in the animal dataset.

We can calculate the overlap metric between the query instance and each
instance in the dataset by counting the number of feature values that are dif-
ferent.

Overlap
ID CLASS Metric
1 mammal 6
2 amphibian 1
3 mammal 6
4 bird 2

(b) If you used a 1-NN model, what class would be assigned to the mystery animal?

The nearest neighbor to the mystery animal is d2. So the mystery animal
would be classified as an amphibian.

(c) If you used a 4-NN model, what class would be assigned to the mystery animal?
Would this be a good value for k for this dataset?

If you applied a 4-NN model to this dataset, the neighborhood defined around
the query would include all the instances in the dataset irrespective of their
distance from the query. As a result, any query would simply be assigned
the majority class in the dataset, in this case mammal. So, for this dataset, a
4-NN model would massively underfit the dataset.
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˚ 6. You have been asked by a San Francisco property investment company to create a
predictive model that will generate house price estimates for properties they are con-
sidering purchasing as rental properties. The table below lists a sample of properties
that have recently been sold for rental in the city. The descriptive features in this
dataset are SIZE (the property size in square feet) and RENT (the estimated monthly
rental value of the property in dollars). The target feature, PRICE, lists the prices that
these properties were sold for in dollars.

ID SIZE RENT PRICE

1 2,700 9,235 2,000,000
2 1,315 1,800 820,000
3 1,050 1,250 800,000
4 2,200 7,000 1,750,000
5 1,800 3,800 1,450,500
6 1,900 4,000 1,500,500
7 960 800 720,000

(a) Create a k-d tree for this dataset. Assume the following order over the features:
RENT then SIZE.

ID=5
Rent: 3,800

ID=3
Size: 1,050

Rent<3,800

ID=4
Size: 2,200

Rent≥3,800

ID=7

Size<1,050

ID=2

Size≥1,050

ID=6

Size<2,200

ID=1

Size≥2,200

(b) Using the k-d tree that you created in the first part of this question, find the nearest
neighbor to the following query: SIZE = 1,000, RENT = 2,200.

The initial step in retrieving the nearest neighbor is to descend the tree to a
leaf node. For this query, this descent will terminate at the node that stores
instance d7. At this point, the current best variable is set to the instance stored
at this node d7, and the current best-distance variable is set to the Euclidean
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distance between the query and d7:

current best “ d7

current best-distance “ Euclideanpq,d7q “ 1,400.5713

The retrieval algorithm then ascends the tree. The first node the algorithm
will encounter is the node that stores instance d3. The Euclidean distance
between the query and d3 is less than current best-distance. Consequently,
current best and current best-distance are updated to reflect this:

current best “ d3

current best-distance “ Euclideanpq,d3q “ 951.3149

Because the difference between the splitting feature value at this node, SIZE

= 1,050, and the query, SIZE = 1,000, is less than the current best-distance,
the algorithm descends the other branch of the tree from this node. This
descent will terminate at the node d2. The Euclidean distance between the
query and d2 is less than the current best-distance. Consequently, current
best and current best-distance are updated to reflect this:

current best “ d2

current best-distance “ Euclideanpq,d2q “ 509.1414

The algorithm will then ascend the tree; because it has already visited all
the nodes on the path back to the root, it does not need to check for nodes
closer than the current best until it gets back to the root. In this instance,
the Euclidean distance between the query and the instance stored at the root
node, d3, is greater than current best-distance, so neither current best nor
current best-distance are updated when we reach the root node. Further-
more, because the difference between the splitting feature at the root, RENT

= 3,800, and the query feature value, RENT = 2,200 is larger than the current
best-distance, the algorithm can prune the other branch from the k-d tree and
return d2 as the nearest neighbor, which would indicate that the property is
worth approximately $820,000.

˚ 7. A data analyst building a k-nearest neighbor model for a continuous prediction prob-
lem is considering appropriate values to use for k.

(a) Initially the analyst uses a simple average of the target variables for the k nearest
neighbors in order to make a new prediction. After experimenting with values for
k in the range 0´10, it occurs to the analyst that they might get very good results
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if they set k to the total number of instances in the training set. Do you think that
the analyst is likely to get good results using this value for k?

If the analyst set k to the number of training examples all predictions would
essentially be the average target value across the whole dataset. In other
words, the model would return the average value for the target feature in the
training data no matter what query was input into the model. This means that
the model would be massively underfitting the data.

(b) If the analyst was using a distance weighted averaging function rather than a sim-
ple average for his or her predictions, would this have made the analyst’s idea any
more useful?

Yes, if distance weighted voting is used (particularly if a 1
d2 type distance

weight is used) then examples that are far away from the query will have
very little impact on the result and so the model will adjust the predictions
it returns to the features in the query. It is worth highlighting that when
distance weighted voting is used the value of k in k-NN classifiers is much
less important.

˚ 8. The following table describes a set of individuals in terms of their WEIGHT in kilo-
grams, HEIGHT in meters, and whether or not they have DIABETES:

ID WEIGHT HEIGHT DIABETES

1 68 1.7 true
2 55 1.6 false
3 65 1.6 true
4 100 1.9 true
5 65 1.5 false

(a) A doctor has carried out a regular checkup on a patient and measured the patient’s
WEIGHT to be 65 kilograms and their HEIGHT to be 1.7 meters. The doctor in-
puts these details into a k-NN classifier to check whether the patient is at risk of
DIABETES. Assuming that k “ 1, and that the model uses Euclidean distance as
its similarity metric, will the model return true or false for this patient?

The Euclidean distance, rounded to 2 places of decimal, between the query
patient and each of the individuals in the dataset is as follows:
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ID DISTANCE DIABETES

1 3.00 true
2 10.00 false
3 0.10 true
4 35.00 true
5 0.20 false

The patient is most similar to individual ID=3 for whom DIABETES is true
and so the model will return true for this patient.

(b) Clinicians often use BMI as a combined measure of an individual’s WEIGHT and
HEIGHT. BMI is defined as an individual’s weight in kilograms divided by their
height in meters-squared. Assuming that the profiles of the five individuals in the
system were updated so that the features WEIGHT and HEIGHT were replaced by
a single feature BMI and also that the doctor entered the patient’s BMI into the
system, what prediction would the system return for this patient?

Updating the profiles of the individuals in the dataset to have a feature BMI
results in the following dataset (note we have rounded the BMI scores to two
places of decimal):
ID BMI DIABETES

1 23.53 true
2 21.48 false
3 25.39 true
4 27.70 true
5 28.89 false

The patient’s BMI is: 22.49 and the Euclidean distance between the patient
and each of the individuals in the dataset in BMI space (rounded to 2 places
of decimal) is:
ID DISTANCE DIABETES

1 1.04 true
2 1.01 false
3 2.90 true
4 5.21 true
5 6.40 false

Using this BMI representation the most similar individual in the dataset to
the patient is individual ID=2 for whom DIABETES is false and so the model
will return false for this patient.

˚ 9. A lecturer is about to leave for the airport to go on vacation when they find a script
for a student they forgot to mark. They don’t have time to manually grade the script
before the flight, so they decide to use a k-nearest neighbor model to grade it instead.
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The model is designed to award a grade to a student on the basis of how similar they
are to other students in the module in terms of their grades on other modules. The
following table describes a set of students in terms of their grades out of 100 on two
other modules (MODULE 1 and MODULE 2) and the GRADE they got in the lecturer’s
module: first-class honors, second-class honors, pass, or fail.

ID MODULE 1 MODULE 2 GRADE

1 55 85 first
2 45 30 fail
3 40 20 fail
4 35 35 fail
5 55 75 pass
6 50 95 second

(a) Looking up the results on the other modules of the student whose script hasn’t been
corrected, the lecturer finds that the student got the following marks: MODULE

1=60, and MODULE 2=85. Assuming that the k-nearest neighbor model uses k=1
and Euclidean distance as its similarity metric, what GRADE would the model
assign the student?

The Euclidean distance, rounded to 2 places of decimal, between the student
and the other students in the sample are as follows:
ID DISTANCE GRADE

1 5.00 first
2 57.00 fail
3 68.00 fail
4 55.90 fail
5 11.18 pass
6 14.14 second

The student is most similar to student ID=1 and so the model will return a
GRADE of first.

(b) Reviewing the spread of marks for the other two modules, the lecturer notices that
there is a larger variance across students in the marks for Module 2 than there is for
Module 1. So, the lecturer decides to update the k-nearest neighbor model to use
the Mahalanobis distance instead of Euclidean distance as its similarity measure.
Assuming that the inverse covariance matrix for the Module 1 and Module 2
results is

´1
ÿ

“

«

0.046 ´0.009
´0.009 0.003

ff
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what GRADE would the k-nearest neighbor model assign the student?

The calculations of the Mahalonobis distance between the student and each
of the other students is as follows:

Mahalanobispa,bq “
g

f

f

f

f

f

e

“

a r1s ´ b r1s , . . . , a rms ´ b rms
‰

ˆ
ÿ´1

ˆ

»

—

—

–

a r1s ´ b r1s
...

a rms ´ b rms

fi

ffi

ffi

fl

Mahalanobispq,d1q “
g

f

f

er5, 0s ˆ

«

0.046 ´0.009
´0.009 0.003

ff

ˆ

«

5
1

ff

“ 1.072380529

Mahalanobispq,d2q “
g

f

f

er15, 55s ˆ

«

0.046 ´0.009
´0.009 0.003

ff

ˆ

«

15
55

ff

“ 2.138924964

Mahalanobispq,d3q “
g

f

f

er20, 65s ˆ

«

0.046 ´0.009
´0.009 0.003

ff

ˆ

«

20
65

ff

“ 2.770379035
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Mahalanobispq,d4q “
g

f

f

er25, 50s ˆ

«

0.046 ´0.009
´0.009 0.003

ff

ˆ

«

25
50

ff

“ 3.708099244

Mahalanobispq,d5q “
g

f

f

er5, 10s ˆ

«

0.046 ´0.009
´0.009 0.003

ff

ˆ

«

5
10

ff

“ 0.374165739

Mahalanobispq,d6q “
g

f

f

er10,´10s ˆ

«

0.046 ´0.009
´0.009 0.003

ff

ˆ

«

10
´10

ff

“ 2.588435821

When the model is updated to use Mahalonobis distance the student is most
similar to d5 and so the model returns a GRADE of pass.



6 Probability-Based Learning (Exercise Solutions)

1. (a) Three people flip a fair coin. What is the probability that exactly two of them will
get heads?

There are 8 possible outcomes:

Person1 Person2 Person3
Heads Heads Heads
Heads Heads Tails
Heads Tails Heads
Heads Tails Tails
Tails Heads Heads
Tails Heads Tails
Tails Tails Heads
Tails Tails Tails

In 3 of these outcomes there are 2 Heads. So the probability of exactly two
people getting heads is

3
8
“ 0.375

(b) Twenty people flip a fair coin. What is the probability that exactly eight of them
will get heads?

We could use the same approach as we used in part (a) to answer this ques-
tion: list all possible outcomes and count the number of outcomes that match
our criteria. However, this approach doesn’t scale up to problems where there
are a lot of possible outcomes. For example, in part (a) with 3 people flipping
the coin there were 23 “ 8 possible outcomes. However, now with 20 people
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flipping the coin there are 220 “ 1,048,576 possible outcomes—clearly, too
many outcomes for us to list out. So what should we do?
Because each coin flip is independent of the others, the coin flips can be
viewed as a sequence of independent binary experiments. Consequently, we
can calculate the probability of getting k outcomes, each with a probability
of p, in a sequence of n experiments using the binomial distribution as

ˆ

n
k

˙

ˆ pk ˆ p1´ pqn´k

where n is the number of binary experiments, k is the number of particular
results we are looking for (e.g., the number of heads we are looking for),
and p is the probability of getting the result we are looking for (e.g., the
probability of getting a head).
So, we can calculate the probability of the event where exactly 8 of the coin
flips comes up heads using the binomial distribution as follows
ˆ

20
8

˙

ˆ 0.58 ˆ p1´ 0.5q20´8 “
20!

8!ˆ p20´ 8q!
ˆ 0.58 ˆ 0.512

“ 125970ˆ 0.00390625ˆ 0.000244141

“ 0.120134354

Note: the ! symbol represents the factorial operation, for example

6! “ 6ˆ 5ˆ 4ˆ 3ˆ 2ˆ 1 “ 720

(c) Twenty people flip a fair coin. What is the probability that at least four of them
will get heads?

The probability that at least 4 people will get heads is equal to 1 minus prob-
ability that less then 4 people will get heads.
The probability that less then 4 people will get heads is simply the sum of
the following probabilities:
‚ the probability that exactly 3 people will get heads

‚ the probability that exactly 2 people will get heads

‚ the probability that exactly 1 person will get heads
We can calculate each of these probabilities using the binomial distribution
as follows:
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The probability of exactly 3 people getting heads:
ˆ

20
3

˙

ˆ 0.53 ˆ p1´ 0.5q20´3 “
20!

3!ˆ p20´ 3q!
ˆ 0.53 ˆ 0.517

“ 1140ˆ 0.125ˆ p7.62939ˆ 10´6q

“ 0.001087189

The probability of exactly 2 people getting heads:
ˆ

20
2

˙

ˆ 0.52 ˆ p1´ 0.5q20´2 “
20!

2!ˆ p20´ 2q!
ˆ 0.52 ˆ 0.518

“ 190ˆ 0.25ˆ p3.8147ˆ 10´6q

“ 0.000181198

The probability of exactly 1 person getting heads:
ˆ

20
1

˙

ˆ 0.51 ˆ p1´ 0.5q20´1 “
20!

1!ˆ p20´ 1q!
ˆ 0.51 ˆ 0.519

“ 20ˆ 0.5ˆ p1.90735ˆ 10´6q

“ 0.0000190735

Probability of 3 people or less getting heads is:

0.001087189` 0.000181198` 0.0000190735 “ 0.0012874605

So the probability of at least 4 people getting heads is:

1´ 0.0012874605 “ 0.9987125

2. The table below gives details of symptoms that patients presented and whether they
were suffering from meningitis.

ID HEADACHE FEVER VOMITING MENINGITIS

1 true true false false
2 false true false false
3 true false true false
4 true false true false
5 false true false true
6 true false true false
7 true false true false
8 true false true true
9 false true false false

10 true false true true

Using this dataset, calculate the following probabilities:
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(a) PpVOMITING “ trueq

This can be calculated easily by counting:
PpVOMITING “ trueq “ 6

10 “ 0.6

(b) PpHEADACHE “ falseq

This can be calculated easily by counting:
PpHEADACHE “ falseq “ 3

10 “ 0.3

(c) PpHEADACHE “ true,VOMITING “ falseq

This can be calculated easily by counting:
PpHEADACHE “ true,VOMITING “ falseq “ 1

10 “ 0.1
Or using the product rule:
PpHEADACHE “ true,VOMITING “ falseq “ PpHEADACHE “ true |
VOMITING “ falseq ˆ PpVOMITING “ falseq “ 1

4 ˆ
4
10 “ 0.1

(d) PpVOMITING “ false | HEADACHE “ trueq

This can be calculated easily by counting:
PpVOMITING “ false | HEADACHE “ trueq “ 1

7 “ 0.1429

(e) PpMENINGITIS | FEVER “ true,VOMITING “ falseq

This can be calculated easily by counting. First,
PpMENINGITIS “ true | FEVER “ true,VOMITING “ falseq “ 1

4 “ 0.25.
Then,
PpMENINGITIS “ false | FEVER “ true,VOMITING “ falseq “ 3

4 “ 0.75
So,
PpMENINGITIS | FEVER “ true,VOMITING “ falseq “ 〈0.25, 0.75〉

3. Predictive data analytics models are often used as tools for process quality control and
fault detection. The task in this question is to create a naive Bayes model to monitor
a wastewater treatment plant.1 The table below lists a dataset containing details of
activities at a wastewater treatment plant for 14 days. Each day is described in terms

1. The dataset in this question is inspired by the Waste Water Treatment Dataset that is available from the UCI
Machine Learning repository (?) at archive.ics.uci.edu/ml/machine-learning-databases/water-treatment. The cre-
ators of this dataset reported their work in ?.

archive.ics.uci.edu/ml/machine-learning-databases/water-treatment
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of six descriptive features that are generated from different sensors at the plant. SS-
IN measures the solids coming into the plant per day; SED-IN measures the sediment
coming into the plant per day; COND-IN measures the electrical conductivity of the
water coming into the plant.2 The features SS-OUT, SED-OUT, and COND-OUT are
the corresponding measurements for the water flowing out of the plant. The target
feature, STATUS, reports the current situation at the plant: ok, everything is working
correctly; settler, there is a problem with the plant settler equipment; or solids, there
is a problem with the amount of solids going through the plant.

SS SED COND SS SED COND

ID -IN -IN -IN -OUT -OUT -OUT STATUS

1 168 3 1,814 15 0.001 1,879 ok
2 156 3 1,358 14 0.01 1,425 ok
3 176 3.5 2,200 16 0.005 2,140 ok
4 256 3 2,070 27 0.2 2,700 ok
5 230 5 1,410 131 3.5 1,575 settler
6 116 3 1,238 104 0.06 1,221 settler
7 242 7 1,315 104 0.01 1,434 settler
8 242 4.5 1,183 78 0.02 1,374 settler
9 174 2.5 1,110 73 1.5 1,256 settler

10 1,004 35 1,218 81 1,172 33.3 solids
11 1,228 46 1,889 82.4 1,932 43.1 solids
12 964 17 2,120 20 1,030 1,966 solids
13 2,008 32 1,257 13 1,038 1,289 solids

(a) Create a naive Bayes model that uses probability density functions to model the
descriptive features in this dataset (assume that all the descriptive features are nor-
mally distributed).

The prior probabilities of each of the target feature levels are

PpSTATUS “ okq “
4

13
“ 0.3077

PpSTATUS “ settlerq “
5

13
“ 0.3846

PpSTATUS “ okq “
4

13
“ 0.3077

2. The conductivity of water is affected by inorganic dissolved solids and organic compounds, such as oil.
Consequently, water conductivity is a useful measure of water purity.
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To create the probability density functions required by the model, we simply
need to fit a normal distribution to each feature for each level of the target.
To do this, we calculate the mean and standard deviation for each feature for
the set of instances where the target takes a given value. The table below
lists the normal probability distributions fitted to each descriptive feature and
target level.

PpSS-IN | okq = N
`

x, µ “ 189, σ “ 45.42
˘

PpSED-IN | okq = N
`

x, µ “ 3.125, σ “ 0.25
˘

PpCOND-IN | okq = N
`

x, µ “ 1,860.5, σ “ 371.4
˘

PpSS-OUT | okq = N
`

x, µ “ 18, σ “ 6.06
˘

PpSED-OUT | okq = N
`

x, µ “ 0.054, σ “ 0.10
˘

PpCOND-OUT | okq = N
`

x, µ “ 2,036, σ “ 532.19
˘

PpSS-IN | settlerq = N
`

x, µ “ 200.8, σ “ 55.13
˘

PpSED-IN | settlerq = N
`

x, µ “ 4.4, σ “ 1.78
˘

PpCOND-IN | settlerq = N
`

x, µ “ 1,251.2, σ “ 116.24
˘

PpSS-OUT | settlerq = N
`

x, µ “ 98, σ “ 23.38
˘

PpSED-OUT | settlerq = N
`

x, µ “ 1.018, σ “ 1.53
˘

PpCOND-OUT | settlerq = N
`

x, µ “ 1,372, σ “ 142.58
˘

PpSS-IN | solidsq = N
`

x, µ “ 1,301, σ “ 485.44
˘

PpSED-IN | solidsq = N
`

x, µ “ 32.5, σ “ 11.96
˘

PpCOND-IN | solidsq = N
`

x, µ “ 1,621, σ “ 453.04
˘

PpSS-OUT | solidsq = N
`

x, µ “ 49.1, σ “ 37.76
˘

PpSED-OUT | solidsq = N
`

x, µ “ 1,293, σ “ 430.95
˘

PpCOND-OUT | solidsq = N
`

x, µ “ 832.85, σ “ 958.31
˘

(b) What prediction will the naive Bayes model return for the following query?

SS-IN = 222, SED-IN = 4.5, COND-IN = 1,518, SS-OUT = 74 SED-OUT = 0.25,
COND-OUT = 1,642

The calculation for STATUS = ok:
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Ppokq = 0.3077
PpSS-IN | okq = N

`

222, µ “ 189, σ “ 45.42
˘

= 0.0068
PpSED-IN | okq = N

`

4.5, µ “ 3.125, σ “ 0.25
˘

= 4.3079ˆ 10´7

PpCOND-IN | okq = N
`

1,518, µ “ 1,860.5, σ “ 371.4
˘

= 0.0007
PpSS-OUT | okq = N

`

74, µ “ 18, σ “ 6.06
˘

= 1.7650ˆ 10´20

PpSED-OUT | okq = N
`

0.25, µ “ 0.054, σ “ 0.10
˘

= 0.5408
PpCOND-OUT | okq = N

`

1,642, µ “ 2,036, σ “ 532.19
˘

= 0.0006

˜

m
ź

k“1

Ppq rks | okq

¸

ˆ Ppokq “ 3.41577ˆ 10´36

The calculation for STATUS = settler:

Ppsettlerq = 0.3846
PpSS-IN | settlerq = N

`

222, µ “ 200.8, σ “ 55.13
˘

= 0.0067
PpSED-IN | settlerq = N

`

4.5, µ “ 4.4, σ “ 1.78
˘

= 0.2235
PpCOND-IN | settlerq = N

`

1,518, µ “ 1,251.2, σ “ 116.24
˘

= 0.0002
PpSS-OUT | settlerq = N

`

74, µ “ 98, σ “ 23.38
˘

= 0.0101
PpSED-OUT | settlerq = N

`

0.25, µ “ 1.018, σ “ 1.53
˘

= 0.2303
PpCOND-OUT | settlerq = N

`

1,642, µ “ 1,372, σ “ 142.58
˘

= 0.0005

˜

m
ź

k“1

Ppq rks | settlerq

¸

ˆ Ppsettlerq “ 1.53837ˆ 10´13

The calculation for STATUS = solids:

Ppsolidsq = 0.3077
PpSS-IN | solidsq = N

`

x, µ “ 1,301, σ “ 485.44
˘

= 6.9496ˆ 10´5

PpSED-IN | solidsq = N
`

x, µ “ 32.5, σ “ 11.96
˘

= 0.0022
PpCOND-IN | solidsq = N

`

x, µ “ 1,621, σ “ 453.04
˘

= 0.0009
PpSS-OUT | solidsq = N

`

x, µ “ 49.1, σ “ 37.76
˘

= 0.0085
PpSED-OUT | solidsq = N

`

x, µ “ 1,293, σ “ 430.95
˘

= 1.0291ˆ 10´5

PpCOND-OUT | solidsq = N
`

x, µ “ 832.85, σ “ 958.31
˘

= 0.0003

˜

m
ź

k“1

Ppq rks | solidsq

¸

ˆ Ppsolidsq “ 1.00668ˆ 10´21

Recall that because we are using the heights of the PDFs rather than calculat-
ing the actual probabilities for each feature taking a value, the score of each
target level is a relative ranking and should not be interpreted as a probability.
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That said, the target level with the highest ranking is STATUS = settler. This
indicates that there was a problem with the plant’s settler equipment on the
day of the query.

4. The following is a description of the causal relationship between storms, the behavior
of burglars and cats, and house alarms:

Stormy nights are rare. Burglary is also rare, and if it is a stormy night, burglars are
likely to stay at home (burglars don’t like going out in storms). Cats don’t like storms either,
and if there is a storm, they like to go inside. The alarm on your house is designed to be
triggered if a burglar breaks into your house, but sometimes it can be set off by your cat
coming into the house, and sometimes it might not be triggered even if a burglar breaks in
(it could be faulty or the burglar might be very good).

(a) Define the topology of a Bayesian network that encodes these causal relationships.

The figure below illustrates a Bayesian network that encodes the described
causal relationships. Storms directly affect the behavior of burglars and cats,
and this is reflected by links from the storm node to the burglar and cat
nodes. The behavior of burglars and cats both affect whether the alarm goes
off, and hence there are links from each of these nodes to the alarm node.

Storm

Burglar Cat

Alarm

(b) The table below lists a set of instances from the house alarm domain. Using the
data in this table, create the conditional probability tables (CPTs) for the network
you created in Part (a) of this question.
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ID STORM BURGLAR CAT ALARM

1 false false false false
2 false false false false
3 false false false false
4 false false false false
5 false false false true
6 false false true false
7 false true false false
8 false true false true
9 false true true true
10 true false true true
11 true false true false
12 true false true false
13 true true false true

Storm

Burglar Cat

P(S=T)
0.3077

Alarm

S
T
F

P(B=T|S)
0.25
0.333

S
T
F

P(C=T|S)
0.75
0.2222

B
T
T
F
F

C
T
F
T
F

P(A=T|B,C)
1.0

0.6667
0.25
0.2

(c) What value will the Bayesian network predict for ALARM, given that there is both
a burglar and a cat in the house but there is no storm?

Because both the parent nodes for ALARM are known, the probability dis-
tribution over ALARM is independent of the feature STORM. Consequently,
we can read the relevant probability distribution over ALARM directly from
the conditional probability table for the ALARM node. Examining the condi-
tional probability table, we can see that when BURGLAR = true, and CAT =
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true, then ALARM = true is the MAP prediction. In other words, the network
would predict that the alarm would sound in this situation.

(d) What value will the Bayesian network predict for ALARM, given that there is a
storm but we don’t know if a burglar has broken in or where the cat is?

In this case, the values of the parents of the target feature are unknown. Con-
sequently, we need to sum out both the parents for each value of the target.
The network would calculate the probability of the event ALARM = true as
follows:

Ppa | sq “
Ppa, sq
Ppsq

“

ř

i, j Ppa, Bi,C j, sq

Ppsq
ÿ

i, j

Ppa, Bi,C j, sq “
ÿ

i, j

Ppa | Bi,C jq ˆ PpBi | sq ˆ PpC j | sq ˆ Ppsq

“ pPpa | b, cq ˆ Ppb | sq ˆ Ppc | sq ˆ Ppsqq

` pPpa | b, cq ˆ Ppb | sq ˆ Pp c | sq ˆ Ppsqq

` pPpa |  b, cq ˆ Pp b | sq ˆ Ppc | sq ˆ Ppsqq

` pPpa |  b, cq ˆ Pp b | sq ˆ Pp c | sq ˆ Ppsqq

“ p1.0ˆ 0.25ˆ 0.75ˆ 0.3077q ` p0.6667ˆ 0.25ˆ 0.25ˆ 0.3077q

` p0.25ˆ 0.75ˆ 0.75ˆ 0.3077q ` p0.2ˆ 0.75ˆ 0.25ˆ 0.3077q

“ 0.125324

Ppa | sq “
Ppa, sq
Ppsq

“
0.125324

0.3077
“ 0.4073

This implies that PpALARM “ falseq “ 0.5927, so in this instance, ALARM

= false is the MAP level for the target, and this is the prediction the model
will return.

˚ 5. The table below lists a dataset containing details of policyholders at an insurance com-
pany. The descriptive features included in the table describe each policy holders’ ID,
occupation, gender, age, type of insurance policy, and preferred contact channel. The
preferred contact channel is the target feature in this domain.
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POLICY PREF

ID OCCUPATION GENDER AGE TYPE CHANNEL

1 lab tech female 43 planC email
2 farmhand female 57 planA phone
3 biophysicist male 21 planA email
4 sheriff female 47 planB phone
5 painter male 55 planC phone
6 manager male 19 planA email
7 geologist male 49 planC phone
8 messenger male 51 planB email
9 nurse female 18 planC phone

(a) Using equal-frequency binning, transform the AGE feature into a categorical fea-
ture with three levels: young, middle-aged, mature.

There are 3 bins and 9 instances. So using equal-frequency binning we know
that there will be 3 instances in each bin. In the table below we have ordered
the instances in ascending order by AGE

POLICY PREF

ID OCCUPATION GENDER AGE TYPE CHANNEL

9 nurse female 18 planC phone
6 manager male 19 planA email
3 biophysicist male 21 planA email
1 lab tech female 43 planC email
4 sheriff female 47 planB phone
7 geologist male 49 planC phone
8 messenger male 51 planB email
5 painter male 55 planC phone
2 farmhand female 57 planA phone

If we put the first 3 instances into the young bin, the next 3 instances into the
middle-aged bin, etc. we end up with the dataset in the table below.
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POLICY PREF

ID OCCUPATION GENDER AGE TYPE CHANNEL

9 nurse female young planC phone
6 manager male young planA email
3 biophysicist male young planA email
1 lab tech female middle-aged planC email
4 sheriff female middle-aged planB phone
7 geologist male middle-aged planC phone
8 messenger male mature planB email
5 painter male mature planC phone
2 farmhand female mature planA phone

The thresholds for the different bins are calculated as the mid-point between
the AGE values of the two instances on either side of the boundary. So, the
threshold between the young and middle-aged bins would be the mid point
between d3withAGE “ 21 and d1withAGE “ 43:

21` 43
2

“ 32

Likewise, the threshold between the middleaged and mature bins would be
the mid point between d7withAGE “ 49 and d8withAGE “ 51:

49` 51
2

“ 50

(b) Examine the descriptive features in the dataset and list the features that you would
exclude before you would use the dataset to build a predictive model. For each
feature you decide to exclude, explain why you have made this decision.

As is always the case the ID feature should not be used as a descriptive fea-
ture during training. However, in this example there is another feature that
should be removed from the dataset prior to training. The OCCUPATION fea-
ture has different and unique levels for each instance in the dataset. In other
words, the OCCUPTAITON feature is equivalent to an id for each instance.
Consequently, it should also be removed from the dataset prior to training a
model.

(c) Calculate the probabilities required by a naive Bayes model to represent this do-
main.

To train a naive Bayes model using this data, we need to compute the prior
probabilities of the target feature taking each level in its domain, and the
conditional probability of each feature taking each level in its domain condi-
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tioned for each level that the target feature can take. The table below lists the
probabilities required by a naive Bayes model to represent this domain.

Ppphoneq “ 0.56 Ppemailq “ 0.44
PpGENDER “ female | phoneq “ 0.6 PpGENDER “ female | emailq “ 0.25

PpGENDER “ male | phoneq “ 0.4 PpGENDER “ male | emailq “ 0.75
PpAGE “ young | phoneq “ 0.2 PpAGE “ young | emailq “ 0.5

PpAGE “ middle-aged | phoneq “ 0.4 PpAGE “ middle-aged | emailq “ 0.25
PpAGE “ mature | phoneq “ 0.4 PpAGE “ mature | emailq “ 0.25

PpPOLICY “ planA | phoneq “ 0.2 PpPOLICY “ planA | emailq “ 0.5
PpPOLICY “ planB | phoneq “ 0.2 PpPOLICY “ planB | emailq “ 0.25
PpPOLICY “ planC | phoneq “ 0.6 PpPOLICY “ planC | emailq “ 0.25

(d) What target level will a naive Bayes model predict for the following query:

GENDER = female, AGE = 30, POLICY = planA

The first step in calculating this answer is to bin the AGE feature. We know
from part (a) of this question that the threshold between the young and middle-
aged bins is 32. The value for the AGE feature in the query is less then 32 so
it is mapped to the young bin. This results in the query being defined as

GENDER = female, AGE = young, POLICY = planA

The calculation for PpCHANNEL “ phone | qq is

Ppphoneq “ 0.56
PpGENDER “ female | phoneq “ 0.6

PpAGE “ young | phoneq “ 0.2
PpPOLICY “ planA | phoneq “ 0.2

˜

m
ź

k“1

Ppq rks | phoneq

¸

ˆ Ppphoneq “ 0.01344

The calculation for PpCHANNEL “ email | qq is

Ppemailq “ 0.44
PpGENDER “ female | emailq “ 0.25

PpAGE “ young | emailq “ 0.5
PpPOLICY “ planA | emailq “ 0.5

˜

m
ź

k“1

Ppq rks | emailq

¸

ˆ Ppemailq “ 0.0275
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The target level with the highest ranking is CHANNEL = email, and this is the
prediction returned by the model.

˚ 6. Imagine that you have been given a dataset of 1,000 documents that have been clas-
sified as being about entertainment or education. There are 700 entertainment doc-
uments in the dataset and 300 education documents in the dataset. The tables below
give the number of documents from each topic that a selection of words occurred in.

Word-document counts for the entertainment dataset
fun is machine christmas family learning
415 695 35 0 400 70

Word-document counts for the education dataset
fun is machine christmas family learning
200 295 120 0 10 105

(a) What target level will a naive Bayes model predict for the following query docu-
ment: “machine learning is fun”?

A naive Bayes model will label the query with the target level that has the
highest probability under the assumption of conditional independence be-
tween the evidence features. So to answer this question, we need to calculate
the probability of each target level given the evidence and assuming condi-
tional independence across the evidence.
To carry out these calculations, we need to convert the raw document counts
into conditional probabilities by dividing each count by the total number of
documents occurring in each topic:

wk Count Ppwk | entertainmentq

fun 415
415
700

“ .593

is 695
695
700

“ .99

learning 35
35

700
“ .05

machine 70
70

700
“ .10
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wk Count Ppwk | educationq

fun 200
200
300

“ .667

is 295
295
300

“ .983

learning 120
120
300

“ .40

machine 105
105
300

“ .35

We can now compute the probabilities of each target level:

Ppentertainment | qq “ Ppentertainmentq ˆ Ppmachine | entertainmentq

ˆ Pplearning | entertainmentq

ˆ Ppis | entertainmentq

ˆ pp f un | entertainmentq

“ 0.7ˆ 0.593ˆ 0.99ˆ 0.5ˆ 0.1

“ 0.00205

Ppeducation | qq “ Ppeducationq ˆ Ppmachine | educationq

ˆ Pplearning | educationq

ˆ Ppis | educationq

ˆ pp f un | educationq

“ 0.3ˆ 0.667ˆ 0.983ˆ 0.4ˆ 0.35

“ 0.00275

As Ppeducation | qq ą Ppentertainment | qq, the naive Bayes model will
predict the target level of education.

(b) What target level will a naive Bayes model predict for the following query docu-
ment: “christmas family fun”?

Because the word christmas does not appear in any document of either topic,
both conditional probabilities for this word will be equal to 0:
Ppchristmas | entertainmentq “ 0 and Ppchristmas | educationq “ 0.
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Consequently, the probability for both target levels will be 0, and the model
will not be able to return a prediction.

(c) What target level will a naive Bayes model predict for the query document in Part
(b) of this question, if Laplace smoothing with k “ 10 and a vocabulary size of 6
is used?

The table below illustrates the smoothing of the posterior probabilities for
Ppword | entertainmentq.

Raw Ppchristmas | entertainmentq “ 0

Probabilities Pp f amily | entertainmentq “ 0.5714

Pp f un | entertainmentq “ 0.5929

Smoothing k “ 10

Parameters countpentertainmentq “ 700

countpchristmas | entertainmentq “ 0

countp f amily | entertainmentq “ 400

countp f un | entertainmentq “ 415

|Domainpvocabularyq| “ 6

Smoothed Ppchristmas | entertainmentq “ 0`10
700`p10ˆ6q “ 0.0132

Probabilities Pp f amily | entertainmentq “ 400`10
700`p10ˆ6q “ 0.5395

Pp f un | entertainmentq “ 415`10
700`p10ˆ6q “ 0.5592

The smoothing of the posterior probabilities for Ppword | educationq is car-
ried out in the same way:
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Raw Ppchristmas | educationq “ 0

Probabilities Pp f amily | educationq “ 0.5714

Pp f un | educationq “ 0.5929

Smoothing k “ 10

Parameters countpeducationq “ 300

countpchristmas | educationq “ 0

countp f amily | educationq “ 10

countp f un | educationq “ 200

|Domainpvocabularyq| “ 6

Smoothed Ppchristmas | entertainmentq “ 0`10
300`p10ˆ6q “ 0.0278

Probabilities Pp f amily | entertainmentq “ 10`10
300`p10ˆ6q “ 0.0556

Pp f un | entertainmentq “ 200`10
300`p10ˆ6q “ 0.5833

We can now compute the probabilities of each target level:

Ppentertainment | qq “ Ppentertainmentq

ˆ Ppchristmas | entertainmentq

ˆ Pp f amily | entertainmentq

ˆ Pp f un | entertainmentq

“ 0.7ˆ 0.0132ˆ 0.5395ˆ 0.5592

“ 0.0028

Ppeducation | qq “ Ppeducationq ˆ Ppchristmas | educationq

ˆ Pp f amily | educationq ˆ Pp f un | educationq

“ 0.3ˆ 0.0278ˆ 0.0556ˆ 0.5833

“ 0.0003

As Ppentertainment | qq ą Ppeducation | qq, the model will predict a label
of entertainment for this query.

˚ 7. A naive Bayes model is being used to predict whether patients have a high risk of
stroke in the next five years (STROKE=true) or a low risk of stroke in the next five
years (STROKE=false). This model uses two continuous descriptive features AGE

and WEIGHT (in kilograms). Both of these descriptive features are represented by
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probability density functions, specifically normal distributions. The table below shows
the representation of the domain used by this model.

PpS troke “ trueq “ 0.25 PpS troke “ f alseq “ 0.75
PpAGE “ x | S troke “ trueq PpAGE “ x | S troke “ f alseq

« N

¨

˝

x,
µ “ 65,
σ “ 15

˛

‚ « N

¨

˝

x,
µ “ 20,
σ “ 15

˛

‚

PpWEIGHT “ x | S troke “ trueq PpWEIGHT “ x | S troke “ f alseq

« N

¨

˝

x,
µ “ 88,
σ “ 8

˛

‚ « N

¨

˝

x,
µ “ 76,
σ “ 6

˛

‚

(a) What target level will the naive Bayes model predict for the following query:

AGE = 45, WEIGHT = 80

PpS troke “ trueq “ 0.25 PpS troke “ f alseq “ 0.75
PpAGE “ 45 | S troke “ trueq PpAGE “ 45 | S troke “ f alseq

« N

¨

˝

x “ 45,
µ “ 65,
σ “ 15

˛

‚ « N

¨

˝

x “ 45,
µ “ 20,
σ “ 15

˛

‚

“ 0.0109 “ 0.0066
PpWEIGHT “ 80 | S troke “ trueq PpWEIGHT “ 80 | S troke “ f alseq

« N

¨

˝

x “ 80,
µ “ 88,
σ “ 8

˛

‚ « N

¨

˝

x “ 80,
µ “ 76,
σ “ 6

˛

‚

“ 0.0302 “ 0.0532

PpS troke “ true | AGE “ 45,WEIGHT “ 80q “ 0.25ˆ 0.0109ˆ 0.0302

“ 0.000082295

PpS troke “ f alse | AGE “ 45,WEIDGHT “ 80q “ 0.75ˆ 0.0066ˆ 0.0532

“ 0.000263340

Based on these calculations the model will predict S troke “ f alse for this pa-
tient.

˚ 8. The table below lists a dataset of books and whether or not they were purchased by an
individual (i.e., the feature PURCHASED is the target feature in this domain).
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ID SECONDHAND GENRE COST PURCHASED

1 false romance expensive true
2 false science cheap false
3 true romance cheap true
4 false science cheap true
5 false science expensive false
6 true romance reasonable false
7 true literature cheap false
8 false romance reasonable false
9 frue science cheap false

10 true literature reasonable true

(a) Calculate the probabilities (to four places of decimal) that a naive Bayes classifier
would use to represent this domain.

A naive Bayes classifier would require the prior probability for each level
of the target feature and the conditional probability for each level of each
descriptive feature given each level of the target feature:

PpPurchased “ trueq “ 0.4
Pp2ndHand “ true|Purchased “ trueq “ 0.5
Pp2ndHand “ f alse|Purchased “ trueq “ 0.5
PpGenre “ literature | Purchased “ trueq “ 0.25
PpGenre “ romance | Purchased “ trueq “ 0.5
PpGenre “ science | Purchased “ trueq “ 0.25
PpPrice “ cheap | Purchased “ trueq “ 0.5
PpPrice “ reasonable | Purchased “ trueq “ 0.25
PpPrice “ expensive | Purchased “ trueq “ 0.25
PpPurchased “ f alseq “ 0.6
Pp2ndHand “ true|Purchased “ f alseq “ 0.5
Pp2ndHand “ f alse|Purchased “ f alseq “ 0.5
PpGenre “ literature | Purchased “ f alseq “ 0.1667
PpGenre “ romance | Purchased “ f alseq “ 0.3333
PpGenre “ science | Purchased “ f alseq “ 0.5
PpPrice “ cheap | Purchased “ f alseq “ 0.5
PpPrice “ reasonable | Purchased “ f alseq “ 0.3333
PpPrice “ expensive | Purchased “ f alseq “ 0.1667

(b) Assuming conditional independence between features given the target feature value,
calculate the probability (rounded to four places of decimal) of each outcome
(PURCHASED=true, and PURCHASED=false) for the following book:

SECONDHAND=false, GENRE=literature, COST=expensive
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The initial score for each outcome is calculated as follows:
pPurchased “ trueq “ 0.5ˆ 0.25ˆ 0.25ˆ 0.4 “ 0.0125
pPurchased “ f alseq “ 0.5ˆ 0.1667ˆ 0.1667ˆ 0.6 “ 0.0083
However, these scores are not probabilities. To get real probabilities we must
normalise these scores. The normalisation constant is calculated as follows:
α “ 0.0125` 0.0083 “ 0.0208
The actual probabilities of each outcome is then calculated as:

PpPurchased “ trueq “
0.0125
0.0208

“ p0.600961...q “ 0.6010

PpPurchased “ f alseq “
0.0083
0.0208

“ p0.399038...q “ 0.3990

(c) What prediction would a naive Bayes classifier return for the above book?

A naive Bayes classifier returns outcome with the maximum a posteriori
probability as its prediction. In this instance the outcome PURCHASED=true
is the MAP prediction and will be the outcome returned by a naive Bayes
model.

˚ 9. The following is a description of the causal relationship between storms, the behavior
of burglars and cats, and house alarms:

Jim and Martha always go shopping separately. If Jim does the shopping he buys wine,
but not always. If Martha does the shopping, she buys wine, but not always. If Jim tells
Martha that he has done the shopping, then Martha doesn’t go shopping, but sometimes Jim
forgets to tell Martha, and so sometimes both Jim and Martha go shopping.

(a) Define the topology of a Bayesian network that encodes these causal relationships
between the following Boolean variables: JIM (Jim has done the shopping, true or
false), MARTHA (Martha has done the shopping, true or false), WINE (wine has
been purchased, true or false).

The figure below illustrates a Bayesian network that encodes the described
causal relationships. JIM directly affects the behavior of MARTHA and WINE,
and this is reflected by links from the JIM node to the MARTHA and WINE

nodes. The MARTHA also affects whether WINE was purchased, and hence
there is a link from MARTHA to WINE.
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Jim

Martha

Wine

(b) The table below lists a set of instances from the house alarm domain. Using the
data in this table, create the conditional probability tables (CPTs) for the network
you created in the first part of this question, and round the probabilities to two
places of decimal.

ID JIM MARTHA WINE

1 false false false
2 false false false
3 true false true
4 true false true
5 true false false
6 false true true
7 false true false
8 false true false
9 true true true
10 true true true
11 true true true
12 true true false
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Jim

Martha

Wine

P(J=T)
0.58

J
T
F

P(M=T|J)
0.57
0.60

J
T
T
F
F

M
T
F
T
F

P(W=T|J,M)
0.75
0.67
0.34
0.00

(c) What value will the Bayesian network predict for WINE if:

JIM=true and MARTHA=false

Because both the parent nodes for WINE are known, we can read the relevant
probability distribution over WINE directly from the conditional probability
table for the WINE node. Examining the conditional probability table, we
can see that when JIM = true, and MARTHA = false, then WINE = true is
the MAP prediction (0.75 versus 0.25). In other words, the network would
predict that wine would be purchased in this scenario.

(d) What is the probability that JIM went shopping given that WINE=true?

PpJIM “ true | WINE “ trueq “
PpJIM “ true,WINE “ trueq

PpWINE “ trueq

“

ř

MPtT,Fu PpMARTHA, JIM “ true,WINE “ trueq
ř

M,JPtT,Fu PpMARTHA, JIM,WINE “ trueq

“
0.75` 0.67

0.75` 0.67` 0.34` 0.00

“
1.42
1.76

“ 0.81
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1. A multivariate linear regression model has been built to predict the heating load in a
residential building on the basis of a set of descriptive features describing the charac-
teristics of the building. Heating load is the amount of heat energy required to keep a
building at a specified temperature, usually 65˝ Fahrenheit during the winter regard-
less of outside temperature. The descriptive features used are the overall surface area
of the building, the height of the building, the area of the building’s roof, and the per-
centage of wall area in the building that is glazed. This kind of model would be useful
to architects or engineers when designing a new building.1 The trained model is

HEATING LOAD “´ 26.030` 0.0497ˆ SURFACE AREA

` 4.942ˆ HEIGHT ´ 0.090ˆ ROOF AREA

` 20.523ˆ GLAZING AREA

Use this model to make predictions for each of the query instances shown in the fol-
lowing table.

SURFACE ROOF GLAZING

ID AREA HEIGHT AREA AREA

1 784.0 3.5 220.5 0.25
2 710.5 3.0 210.5 0.10
3 563.5 7.0 122.5 0.40
4 637.0 6.0 147.0 0.60

1. This question is inspired by ?, and although the data used is artificially generated, it is based on the Energy
Efficiency Dataset available from the UCI Machine Learning Repository (?) at archive.ics.uci.edu/ml/datasets/
Energy+efficiency/.

archive.ics.uci.edu/ml/datasets/Energy+efficiency/
archive.ics.uci.edu/ml/datasets/Energy+efficiency/
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Calculating the predictions made by the model simply involves inserting the de-
scriptive features from each query instance into the prediction model.

1: ´26.030` 0.0497ˆ 784.0` 4.942ˆ 3.5´ 0.090ˆ 220.5` 20.523ˆ 0.25
“ 15.5

2: ´26.030` 0.0497ˆ 710.5` 4.942ˆ 3.0´ 0.09ˆ 210.5` 20.523ˆ 0.10
“ 7.2

3: ´26.03` 0.0497ˆ 563.5` 4.942ˆ 7.0´ 0.09ˆ 122.5` 20.523ˆ 0.40
“ 33.8

4: ´26.03` 0.0497ˆ 637.0` 4.942ˆ 6.0´ 0.09ˆ 147.0` 20.523ˆ 0.60
“ 34.4

2. You have been hired by the European Space Agency to build a model that predicts
the amount of oxygen that an astronaut consumes when performing five minutes of
intense physical work. The descriptive features for the model will be the age of the
astronaut and their average heart rate throughout the work. The regression model is

OXYCON “ w r0s ` w r1s ˆ AGE ` w r2s ˆ HEARTRATE

The table that follows shows a historical dataset that has been collected for this task.

HEART

ID OXYCON AGE RATE

1 37.99 41 138
2 47.34 42 153
3 44.38 37 151
4 28.17 46 133
5 27.07 48 126
6 37.85 44 145

HEART

ID OXYCON AGE RATE

7 44.72 43 158
8 36.42 46 143
9 31.21 37 138
10 54.85 38 158
11 39.84 43 143
12 30.83 43 138

(a) Assuming that the current weights in a multivariate linear regression model are
w r0s “ ´59.50, w r1s “ ´0.15, and w r2s “ 0.60, make a prediction for each
training instance using this model.

The following table shows the predictions made using the given model weights.
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ID OXYCON AGE HEART RATE Prediction
1 37.99 41 138 17.15
2 47.34 42 153 26.00
3 44.38 37 151 25.55
4 28.17 46 133 13.40
5 27.07 48 126 8.90
6 37.85 44 145 20.90
7 44.72 43 158 28.85
8 36.42 46 143 19.40
9 31.21 37 138 17.75
10 54.85 38 158 29.60
11 39.84 43 143 19.85
12 30.83 43 138 16.85

(b) Calculate the sum of squared errors for the set of predictions generated in Part (a).

The following table shows the predictions made by the model and sum of
squared error calculation based on these predictions.

Initial Weights
w r0s: -59.50 w r1s: -0.15 w r2s: 0.60

Iteration 1
Squared errorDelta errorDelta errorDelta

ID OXYCON Prediction Error Error pD,w r0sq pD,w r1sq pD,w r2sq
1 37.99 17.15 20.84 434.41 20.84 854.54 2,876.26
2 47.34 26.00 21.34 455.41 21.34 896.29 3,265.05
3 44.38 25.55 18.83 354.60 18.83 696.74 2,843.45
4 28.17 13.40 14.77 218.27 14.77 679.60 1,964.93
5 27.07 8.90 18.17 330.09 18.17 872.08 2,289.20
6 37.85 20.90 16.95 287.35 16.95 745.86 2,457.94
7 44.72 28.85 15.87 251.91 15.87 682.48 2,507.71
8 36.42 19.40 17.02 289.72 17.02 782.98 2,434.04
9 31.21 17.75 13.46 181.26 13.46 498.14 1,857.92
10 54.85 29.60 25.25 637.57 25.25 959.50 3,989.52
11 39.84 19.85 19.99 399.47 19.99 859.44 2,858.12
12 30.83 16.85 13.98 195.52 13.98 601.25 1,929.61

Sum 4,035.56 216.48 9,128.90 3,1273.77
Sum of squared errors (S um{2) 2,017.78

(c) Assuming a learning rate of 0.000002, calculate the weights at the next iteration
of the gradient descent algorithm.

To calculate the updated weight values we apply the weight update rule for
multivariate linear regression with gradient descent for each weight as fol-
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lows (using errorDelta values given in the answer to the previous part):

w r0s Ð w r0s ` αˆ errorDeltapD,w r0sq
Ð ´59.50` 0.000002ˆ 216.48

Ð ´59.4996

w r1s Ð w r1s ` αˆ errorDeltapD,w r1sq
Ð ´0.15` 0.000002ˆ 9128.9

Ð ´0.1317

w r2s Ð w r2s ` αˆ errorDeltapD,w r2sq
Ð 0.60` 0.000002ˆ 31273.77

Ð 0.6625

(d) Calculate the sum of squared errors for a set of predictions generated using the
new set of weights calculated in Part (c).

The new sum of squared errors calculated using these new weights is given by
the following table.

Squared
ID OXYCON Prediction Error Error
1 37.99 26.53 11.46 131.38
2 47.34 36.34 11.00 121.07
3 44.38 35.67 8.71 75.87
4 28.17 22.56 5.61 31.53
5 27.07 17.66 9.41 88.56
6 37.85 30.77 7.08 50.10
7 44.72 39.52 5.20 27.08
8 36.42 29.18 7.24 52.37
9 31.21 27.06 4.16 17.27
10 54.85 40.18 14.67 215.31
11 39.84 29.58 10.26 105.21
12 30.83 26.27 4.57 20.84

Sum 936.57
Sum of squared errors (S um{2) 468.29

3. A multivariate logistic regression model has been built to predict the propensity of
shoppers to perform a repeat purchase of a free gift that they are given. The descrip-
tive features used by the model are the age of the customer, the socioeconomic band
to which the customer belongs (a, b, or c), the average amount of money the customer
spends on each visit to the shop, and the average number of visits the customer makes
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to the shop per week. This model is being used by the marketing department to deter-
mine who should be given the free gift. The weights in the trained model are shown
in the following table.

Feature Weight
Intercept (w r0s) -3.82398
AGE -0.02990
SOCIOECONOMIC BAND B -0.09089
SOCIOECONOMIC BAND C -0.19558
SHOP VALUE 0.02999
SHOP FREQUENCY 0.74572

Use this model to make predictions for each of the following query instances.

SOCIOECONOMIC SHOP SHOP

ID AGE BAND FREQUENCY VALUE

1 56 b 1.60 109.32
2 21 c 4.92 11.28
3 48 b 1.21 161.19
4 37 c 0.72 170.65
5 32 a 1.08 165.39

Calculating the predictions made by the model simply involves inserting the de-
scriptive features from each query instance into the prediction model. The only
extra thing that must be considered in this case is the categorical descriptive fea-
ture SOCIOECONOMIC BAND. We can note from the regression equation that
this one feature has been expanded into two: SOCIOECONOMIC BAND B and
SOCIOECONOMIC BAND C. These are binary features, indicating that the orig-
inal feature was set to the level b or c. It is assumed that when both of these
features are set to 0, then the original feature was set to a (the choice of which
level to leave out is arbitrary). The other pieces of information required are that
the yes level is the positive level, and the classification threshold is 0.5.
With this information, the predictions can be made as follows:

1: Logisticp´3.82398 ` ´0.0299 ˆ 56 ` ´0.09089 ˆ 1 ` ´0.19558 ˆ 0 `
0.74572ˆ 1.6` 0.02999ˆ 109.32q
“ Logisticp´1.12q “ 1

1`e1.12

“ 0.25 ñ no

2: Logisticp´3.82398 ` ´0.0299 ˆ 21 ` ´0.09089 ˆ 0 ` ´0.19558 ˆ 1 `
0.74572ˆ 4.92` 0.02999ˆ 11.28q
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“ Logisticp´0.64q “ 1
1`e0.64

“ 0.35 ñ no

3: Logisticp´3.82398 ` ´0.0299 ˆ 48 ` ´0.09089 ˆ 1 ` ´0.19558 ˆ 0 `
0.74572ˆ 1.21` 0.02999ˆ 161.19q
“ Logisticp0.39q “ 1

1`e´0.39

“ 0.60 ñ yes

4: Logisticp´3.82398 ` ´0.0299 ˆ 37 ` ´0.09089 ˆ 0 ` ´0.19558 ˆ 1 `
0.74572ˆ 0.72` 0.02999ˆ 170.65q
“ Logisticp0.53q “ 1

1`e´0.53

“ 0.63 ñ yes

5: Logisticp´3.82398 ` ´0.0299 ˆ 32 ` ´0.09089 ˆ 0 ` ´0.19558 ˆ 0 `
0.74572ˆ 1.08` 0.02999ˆ 165.39q
“ Logisticp0.98q “ 1

1`e´0.98

“ 0.73 ñ yes

4. The use of the kernel trick is key in writing efficient implementations of the support
vector machine approach to predictive modelling. The kernel trick is based on the fact
that the result of a kernel function applied to a support vector and a query instance is
equivalent to the result of calculating the dot product between the support vector and
the query instance after a specific set of basis functions have been applied to both—in
other words, kernel pd,qq “ φφφ pdq ¨ φφφ pqq.

(a) Using the support vector
〈
d r1s ,d r2s

〉
and the query instance

〈
q r1s ,q r2s

〉
as

examples, show that applying a polynomial kernel with p “ 2, kernelpd,qq “
pd ¨ q` 1q2, is equivalent to calculating the dot product of the support vector and
query instance after applying the following set of basis functions:

φ0p
〈
d r1s ,d r2s

〉
q “ d r1s2 φ1p

〈
d r1s ,d r2s

〉
q “ d r2s2

φ2p
〈
d r1s ,d r2s

〉
q “

?
2ˆ d r1s ˆ d r2s φ3p

〈
d r1s ,d r2s

〉
q “

?
2ˆ d r1s

φ4p
〈
d r1s ,d r2s

〉
q “

?
2ˆ d r2s φ5p

〈
d r1s ,d r2s

〉
q “ 1
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To answer this question we should first calculate the result of applying the
polynomial kernel function to the support vector and query instance:

kernelpd,qq “ pd ¨ q` 1q2

“p
〈
d r1s ,d r2s

〉
¨
〈
q r1s ,q r2s

〉
` 1q2

“pd r1s ˆ q r1s ` d r2s ˆ q r2s ` 1q2

“pd r1s ˆ q r1s ` d r2s ˆ q r2s ` 1q ˆ pd r1s ˆ q r1s ` d r2s ˆ q r2s ` 1q

“ pd r1s ˆ q r1sq2 ` pd r1s ˆ q r1s ˆ d r2s ˆ q r2sq ` pd r1s ˆ q r1sq

` pd r2s ˆ q r2s ˆ d r1s ˆ q r1sq ` pd r2s ˆ q r2sq2 ` pd r2s ˆ q r2sq
` pd r1s ˆ q r1sq ` pd r2s ˆ q r2sq ` 1

“pd r1s ˆ q r1sq2 ` pd r2s ˆ q r2sq2 ` 2ˆ pd r1s ˆ q r1s ˆ d r2s ˆ q r2sq
` 2ˆ pd r1s ˆ q r1sq ` 2ˆ pd r2s ˆ q r2sq ` 1

We then apply the set of basis functions to the support vector

φφφ pdq “
〈
φ0 pdq , φ1 pdq , φ2 pdq , φ3 pdq , φ4 pdq , φ5 pdq

〉
“

〈
d r1s2 ,d r2s2 ,

?
2ˆ d r1s ˆ d r2s ,

?
2ˆ d r1s ,

?
2ˆ d r2s , 1

〉
and to the query instance:

φφφ pqq “
〈
φ0 pqq , φ1 pqq , φ2 pqq , φ3 pqq , φ4 pqq , φ5 pqq

〉
“

〈
q r1s2 ,q r2s2 ,

?
2ˆ q r1s ˆ q r2s ,

?
2ˆ q r1s ,

?
2ˆ q r2s , 1

〉
we then calculate the dot product between the transformed support vector
and query instance as:

φφφ pdq ¨ φφφ pqq “
〈
d r1s2 ,d r2s2 ,

?
2ˆ d r1s ˆ d r2s ,

?
2ˆ d r1s ,

?
2ˆ d r2s , 1

〉
¨
〈
q r1s2 ,q r2s2 ,

?
2ˆ q r1s ˆ q r2s ,

?
2ˆ q r1s ,

?
2ˆ q r2s , 1

〉
“d r1s2 ˆ q r1s2 ` d r2s2 ˆ q r2s2 `

?
2ˆ d r1s ˆ d r2s ˆ

?
2ˆ q r1s ˆ q r2s

`
?

2ˆ d r1s ˆ
?

2ˆ q r1s `
?

2ˆ d r2s ˆ
?

2ˆ q r2s ` 1ˆ 1

“pd r1s ˆ q r1sq2 ` pd r2s ˆ q r2sq2 ` 2ˆ pd r1s ˆ q r1s ˆ d r2s ˆ q r2sq
` 2ˆ pd r1s ˆ q r1sq ` 2ˆ pd r2s ˆ q r2sq ` 1

This is equivalent to the the result of applying the polynomial kernel func-
tion calculated above which demonstrates that these two calculations are
equivalent–in other words kernel pd,qq “ φφφ pdq ¨ φφφ pqq.
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(b) A support vector machine model has been trained to distinguish between dosages
of two drugs that cause a dangerous interaction and those that interact safely. This
model uses just two continuous features, DOSE1 and DOSE2, and two target lev-
els, dangerous (the positive level, `1) and safe (the negative level, ´1). The
support vectors in the trained model are shown in the following table.

DOSE1 DOSE2 CLASS

0.2351 0.4016 +1
-0.1764 -0.1916 +1
0.3057 -0.9394 -1
0.5590 0.6353 -1

-0.6600 -0.1175 -1

In the trained model the value of w0 is 0.3074, and the values of the ααα parameters
are 〈7.1655, 6.9060, 2.0033, 6.1144, 5.9538〉.

i. Using the version of the support vector machine prediction model that uses
basis functions (see Equation 7.46) with the basis functions given in Part (a),
calculate the output of the model for a query instance with DOSE1 “ 0.90 and
DOSE2 “ ´0.90.

The first step in this calculation is to transform the support vectors using
the set of basis functions

φφφ p〈0.2351, 0.4016〉q “ 〈0.0553, 0.1613, 0.1335, 0.3325, 0.5679, 1.0〉

φφφ p〈´0.1764,´0.1916〉q “ 〈0.0311, 0.0367, 0.0478,´0.2495,´0.2710, 1.0〉

φφφ p〈0.3057,´0.9394〉q “ 〈0.0935, 0.8825,´0.4061, 0.4323,´1.3285, 1.0〉

φφφ p〈0.5590, 0.6353〉q “ 〈0.3125, 0.4036, 0.5022, 0.7905, 0.8984, 1.0〉

φφφ p〈´0.6600,´0.1175〉q “ 〈0.4356, 0.0138, 0.1097,´0.9334,´0.1662, 1.0〉

The query instance then also needs to be transformed

φφφ p〈0.91,´0.93〉q “ 〈0.8281, 0.8649,´1.1968, 1.2869,´1.3152, 1.0〉
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The output of the support vector machine can then be calculated as:

Mααα,φφφ,0.3074p〈0.91,´0.93〉q

“ p´1ˆ 7.1655ˆ p〈0.0553, 0.1613, 0.1335, 0.3325, 0.5679, 1.0〉

¨ 〈0.8281, 0.8649,´1.1968, 1.2869,´1.3152, 1.0〉q ` 0.3074q

` p1ˆ 6.9060ˆ p〈0.0311, 0.0367, 0.0478,´0.2495,´0.2710, 1.0〉

¨ 〈0.8281, 0.8649,´1.1968, 1.2869,´1.3152, 1.0〉q ` 0.3074q

` p1ˆ 2.0033ˆ p〈0.0935, 0.8825,´0.4061, 0.4323,´1.3285, 1.0〉

¨ 〈0.8281, 0.8649,´1.1968, 1.2869,´1.3152, 1.0〉q ` 0.3074q

` p1ˆ 6.1144ˆ p〈0.3125, 0.4036, 0.5022, 0.7905, 0.8984, 1.0〉

¨ 〈0.8281, 0.8649,´1.1968, 1.2869,´1.3152, 1.0〉q ` 0.3074q

` p1ˆ 5.9538ˆ p〈0.4356, 0.0138, 0.1097,´0.9334,´0.1662, 1.0〉

¨ 〈0.8281, 0.8649,´1.1968, 1.2869,´1.3152, 1.0〉q ` 0.3074q

“5.3689` 7.4596´ 8.9686´ 4.8438´ 1.2331

“´ 2.2170

Because the output of the model is negative the model makes a prediction
of the negative level—safe.

ii. Using the version of the support vector machine prediction model that uses a
kernel function (see Equation 7.47) with the polynomial kernel function, cal-
culate the output of the model for a query instance with DOSE1 “ 0.22 and
DOSE2 “ 0.16.

The output of the model can be calculated as

Mααα,φφφ,0.3074p〈0.22, 0.16〉q

“

´

´1ˆ 7.1655ˆ p〈0.2351, 0.4016〉 ¨ 〈0.22, 0.16〉` 1q2 ` 0.3074
¯

`

´

1ˆ 6.9060ˆ p〈´0.1764,´0.1916〉 ¨ 〈0.22, 0.16〉` 1q2 ` 0.3074
¯

`

´

1ˆ 2.0033ˆ p〈0.3057,´0.9394〉 ¨ 〈0.22, 0.16〉` 1q2 ` 0.3074
¯

`

´

1ˆ 6.1144ˆ p〈0.559, 0.6353〉 ¨ 〈0.22, 0.16〉` 1q2 ` 0.3074
¯

`

´

1ˆ 5.9538ˆ p〈´0.66,´0.1175〉 ¨ 〈0.22, 0.16〉` 1q2 ` 0.3074
¯

“9.2314` 6.2873´ 1.3769´ 8.8624´ 3.8536

“1.4257
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Because the output of the model is positive, the model predicts the positive
level—dangerous.

iii. Verify that the answers calculated in Parts (i) and (ii) of this question would
have been the same if the alternative approach (basis functions or the polyno-
mial kernel function) had been used in each case.

First we will calculate the output of the model for the query instance
〈0.91,´0.93〉 using the polynomial kernel

Mααα,φφφ,0.3074p〈0.91,´0.93〉q

“

´

´1ˆ 7.1655ˆ p〈0.2351, 0.4016〉 ¨ 〈0.91,´0.93〉` 1q2 ` 0.3074
¯

`

´

1ˆ 6.9060ˆ p〈´0.1764,´0.1916〉 ¨ 〈0.91,´0.93〉` 1q2 ` 0.3074
¯

`

´

1ˆ 2.0033ˆ p〈0.3057,´0.9394〉 ¨ 〈0.91,´0.93〉` 1q2 ` 0.3074
¯

`

´

1ˆ 6.1144ˆ p〈0.559, 0.6353〉 ¨ 〈0.91,´0.93〉` 1q2 ` 0.3074
¯

`

´

1ˆ 5.9538ˆ p〈´0.66,´0.1175〉 ¨ 〈0.91,´0.93〉` 1q2 ` 0.3074
¯

“5.3689` 7.4596´ 8.9686´ 4.8438´ 1.2331

“´ 2.2170

This is the same result calculated previously, and would lead to the same
prediction.
Next we will calculate the output of the model for the query instance
〈0.22, 0.16〉 using the set of basis functions. To this, first the query in-
stance needs to be transformed using the basis functions

φφφ p〈0.22, 0.16〉q “ 〈0.0484, 0.0256, 0.0498, 0.3111, 0.2263, 1.0〉
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The output of the support vector machine can then be calculated as:

Mααα,φφφ,0.3074p〈0.22, 0.16〉q

“ p´1ˆ 7.1655ˆ p〈0.0553, 0.1613, 0.1335, 0.3325, 0.5679, 1.0〉

¨ 〈0.0484, 0.0256, 0.0498, 0.3111, 0.2263, 1.0〉q ` 0.3074q

` p1ˆ 6.9060ˆ p〈0.0311, 0.0367, 0.0478,´0.2495,´0.2710, 1.0〉

¨ 〈0.0484, 0.0256, 0.0498, 0.3111, 0.2263, 1.0〉q ` 0.3074q

` p1ˆ 2.0033ˆ p〈0.0935, 0.8825,´0.4061, 0.4323,´1.3285, 1.0〉

¨ 〈0.0484, 0.0256, 0.0498, 0.3111, 0.2263, 1.0〉q ` 0.3074q

` p1ˆ 6.1144ˆ p〈0.3125, 0.4036, 0.5022, 0.7905, 0.8984, 1.0〉

¨ 〈0.0484, 0.0256, 0.0498, 0.3111, 0.2263, 1.0〉q ` 0.3074q

` p1ˆ 5.9538ˆ p〈0.4356, 0.0138, 0.1097,´0.9334,´0.1662, 1.0〉

¨ 〈0.0484, 0.0256, 0.0498, 0.3111, 0.2263, 1.0〉q ` 0.3074q

“9.2314` 6.2873´ 1.3769´ 8.8624´ 3.8536

“1.4257

Again, this output is the same as that calculated previously using the poly-
nomial kernel function.

iv. Compare the amount of computation required to calculate the output of the
support vector machine using the polynomial kernel function with the amount
required to calculate the output of the support vector machine using the basis
functions.

It is clear, even in this small example, that the calculation using the poly-
nomial kernel function is much more efficient than the calculation using
the basis function transformation. Making the transformation using the
basis functions and calculating the dot product in this higher dimensional
space takes much more computational effort than calculating the polyno-
mial kernel function. This is the advantage of the kernel trick.

˚ 5. In building multivariate logistic regression models, it is recommended that all continu-
ous descriptive features be normalized to the range r´1, 1s. The following table shows
a data quality report for the dataset used to train the model described in Question 3.

% 1st 3rd Std.
Feature Count Miss. Card. Min. Qrt. Mean Median Qrt. Max. Dev.
AGE 5,200 6 40 18 22 32.7 32 32 63 12.2
SHOP FREQUENCY 5,200 0 316 0.2 1.0 2.2 1.3 4.3 5.4 1.6
SHOP VALUE 5,200 0 3,730 5 11.8 101.9 100.14 174.6 230.7 72.1
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2nd 2nd

% Mode Mode 2nd Mode Mode
Feature Count Miss. Card. Mode Count % Mode Count %
SOCIOECONOMIC BAND 5,200 8 3 a 2,664 51.2 b 1,315 25.3
REPEAT PURCHASE 5,200 0 2 no 2,791 53.7 yes 2,409 46.3

On the basis of the information in this report, all continuous features were normalized
using range normalization, and any missing values were replaced using mean im-
putation for continuous features and mode imputation for categorical features. After
applying these data preparation operations, a multivariate logistic regression model
was trained to give the weights shown in the following table.

Feature Weight
Intercept (w r0s) 0.6679
AGE -0.5795
SOCIOECONOMIC BAND B -0.1981
SOCIOECONOMIC BAND C -0.2318
SHOP VALUE 3.4091
SHOP FREQUENCY 2.0499

Use this model to make predictions for each of the query instances shown in the fol-
lowing table (question marks refer to missing values).

SOCIOECONOMIC SHOP SHOP

ID AGE BAND FREQUENCY VALUE

1 38 a 1.90 165.39
2 56 b 1.60 109.32
3 18 c 6.00 10.09
4 ? b 1.33 204.62
5 62 ? 0.85 110.50

Before inserting the descriptive feature values into the regression model, the same
data preparation operations performed on the training data (range normalization
and imputation) must be performed on each query instance.
The first step is to handle the missing values. Both the AGE and SOCIOECO-
NOMIC BAND features have small numbers of missing values. In this case we
have decided to use mean imputation for continuous features and mode imputa-
tion for categorical features. The mean for the AGE feature is 32.7, and the mode
for the SOCIOECONOMIC BAND feature is a. So the query instances are changed
to reflect this as shown in the following table.
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SOCIOECONOMIC SHOP SHOP

ID AGE BAND FREQUENCY VALUE

1 38 a 1.90 165.39
2 56 b 1.60 109.32
3 18 c 6.00 10.09
4 32.7 b 1.33 204.62
5 62 a 0.85 110.50

Each continuous descriptive feature value must then be normalized using the
same normalization parameters that were used with the training data. Range
normalization was used in this case, so the required minimum and maximum
parameters can be obtained from the data quality report. As a reminder, the
normalization of the AGE feature for the first instance is calculated as

AGE
1

1 “
AGE1 ´ minpAGEq

maxpAGEq ´ minpAGEq
ˆ phigh´ lowq ` low

“
38´ 18
63´ 18

ˆ p1´ p´1qq ` p´1q

“ ´0.111

These normalized parameters are shown in the following table.

SOCIOECONOMIC SHOP SHOP

ID AGE BAND FREQUENCY VALUE

1 -0.111 a -0.346 0.421
2 0.689 b -0.462 -0.076
3 -1.000 c 1.230 -0.955
4 -0.347 b -0.565 0.769
5 0.956 a -0.750 -0.065

One issue that must be considered in this case is what to do with values that
are outside the range of the training data. In this case the SHOW FREQUENCY

value for query instance 3 is 6, which is higher than anything that was seen in the
training data. When range normalization is applied to this value, it is calculated
as 1.23. This can be handled by the regression equation, but many modelers will
choose to clamp this at a maximum value of 1.0 (similarly, a value below the
minimum seen would be clamped at ´1.0). We choose to clamp at 1.0 in this
case.
With this information, we can calculate the predictions by plugging these values
into the regression equation as follows:

1: Logisticp0.6679´ 0.5795ˆ´0.111´ 0.1981ˆ 0´ 0.2318ˆ 0` 2.0499ˆ
´0.346` 3.4091ˆ 0.421q
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“ Logisticp1.46q “ 1
1`e´1.46

“ 0.811 ñ yes

2: Logisticp0.6679´ 0.5795ˆ 0.6889´ 0.1981ˆ 1´ 0.2318ˆ 0` 2.0499ˆ
´0.4615` 3.4091ˆ´0.0756q
“ Logisticp´1.1332q “ 1

1`e1.1332

“ 0.2436 ñ no

3: Logisticp0.6679´0.5795ˆ´1´0.1981ˆ0´0.2318ˆ1`2.0499ˆ1.2308`
3.4091ˆ´0.9549q
“ Logisticp0.2832q “ 1

1`e´0.2832

“ 0.5703 ñ yes

4: Logisticp0.6679´ 0.5795ˆ´0.3467´ 0.1981ˆ 1´ 0.2318ˆ 0` 2.0499ˆ
´0.5654` 3.4091ˆ 0.7689q
“ Logisticp2.1330q “ 1

1`e´2.1330

“ 0.8940 ñ yes

5: Logisticp0.6679´ 0.5795ˆ 0.9556´ 0.1981ˆ 0´ 0.2318ˆ 0` 2.0499ˆ
´0.7500` 3.4091ˆ´0.0651q
“ Logisticp´1.6453q “ 1

1`e1.6453

“ 0.1617 ñ no

One interesting thing to note about these calculations is that the second query
instance in this question is the same as the first query instance in the previous
question. Note that the resulting answers are almost identical. This is reassuring,
as simple data preparation operations like those applied in this example should
not have a significant impact on the resulting model.

˚ 6. The effects that can occur when different drugs are taken together can be difficult
for doctors to predict. Machine learning models can be built to help predict optimal
dosages of drugs so as to achieve a medical practitioner’s goals.2 In the following
figure, the image on the left shows a scatter plot of a dataset used to train a model to
distinguish between dosages of two drugs that cause a dangerous interaction and those
that cause a safe interaction. There are just two continuous features in this dataset,
DOSE1 and DOSE2 (both normalized to the range p´1, 1q using range normalization),
and two target levels, dangerous and safe. In the scatter plot, DOSE1 is shown on
the horizontal axis, DOSE2 is shown on the vertical axis, and the shapes of the points
represent the target level—crosses represent dangerous interactions and triangles rep-
resent safe interactions.

2. The data used in this question has been artificially generated for this book. ? is, however, a good example of
prediction models used to help doctors select correct drug dosages.
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In the preceding figure, the image on the right shows a simple linear logistic regression
model trained to perform this task. This model is

PpTYPE “ dangerousq “

Logisticp0.6168` 2.7320ˆ DOSE1 ´ 2.4809ˆ DOSE2q

Plainly, this model is not performing well.

(a) Would the similarity-based, information-based, or probability-based predictive
modeling approaches already covered in this book be likely to do a better job
of learning this model than the simple linear regression model?

The problem in this case is that the decision boundary is non-linear, so a
linear logistic regression model is not capable of capturing it accurately. A
similarity-based model would be an obvious candidate for this problem. Be-
cause similarity-based models are local learners, they have no problem learn-
ing the type of decision boundary required to separate these two groups. A
decision tree could also do this, although continuous features such as those
in this problem can lead to very complex decision trees. Similarly, although
a probability-based approach could work, it may be awkward to handle the
continuous descriptive features appropriately.

(b) A simple approach to adapting a logistic regression model to learn this type of
decision boundary is to introduce a set of basis functions that will allow a non-
linear decision boundary to be learned. In this case, a set of basis functions that
generate a cubic decision boundary will work well. An appropriate set of basis
functions is as follows:
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φ0p〈DOSE1,DOSE2〉q “ 1 φ1p〈DOSE1,DOSE2〉q “ DOSE1
φ2p〈DOSE1,DOSE2〉q “ DOSE2 φ3p〈DOSE1,DOSE2〉q “ DOSE12

φ4p〈DOSE1,DOSE2〉q “ DOSE22 φ5p〈DOSE1,DOSE2〉q “ DOSE13

φ6p〈DOSE1,DOSE2〉q “ DOSE23 φ7p〈DOSE1,DOSE2〉q “ DOSE1 ˆ DOSE2

Training a logistic regression model using this set of basis functions leads to the
following model:

PpTYPE “ dangerousq “

Logistic
`

´ 0.848ˆ φ0p〈DOSE1,DOSE2〉q ` 1.545ˆ φ1p〈DOSE1,DOSE2〉q

´ 1.942ˆ φ2p〈DOSE1,DOSE2〉q ` 1.973ˆ φ3p〈DOSE1,DOSE2〉q

` 2.495ˆ φ4p〈DOSE1,DOSE2〉q ` 0.104ˆ φ5p〈DOSE1,DOSE2〉q

` 0.095ˆ φ6p〈DOSE1,DOSE2〉q ` 3.009ˆ φ7p〈DOSE1,DOSE2〉q
˘

Use this model to make predictions for the following query instances:

ID DOSE1 DOSE2
1 0.50 0.75
2 0.10 0.75
3 -0.47 -0.39
4 -0.47 0.18

The image below shows the decision boundary that is learned.
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The first step in making a prediction is to generate the outputs of the basis
functions. This is done for the first query as follows:
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φ0p〈0.50, 0.75〉q “ 1 φ4p〈0.50, 0.75〉q “ 0.5625
φ1p〈0.50, 0.75〉q “ 0.50 φ5p〈0.50, 0.75〉q “ 0.1250
φ2p〈0.50, 0.75〉q “ 0.75 φ6p〈0.50, 0.75〉q “ 0.4219
φ3p〈0.50, 0.75〉q “ 0.25 φ7p〈0.50, 0.75〉q “ 0.3750

We can now use the regression model to make a prediction:

PpTYPE “ dangerousq

“ Logisticp´0.848ˆ 1` 1.545ˆ 0.50´ 1.942ˆ 0.75` 1.973ˆ 0.25

` 2.495ˆ 0.5625` 0.104ˆ 0.1250` 0.095ˆ 0.4219` 3.009ˆ 0.3750q

“ Logisticp1.5457q

“ 0.8243

This means that the probability of the query dosages causing a dangerous in-
teraction is 0.8243, so we would say that the result for this query is dangerous
.
We just repeat this for the next query 〈0.10, 0.75〉:

φ0p〈0.10, 0.75〉q “ 1 φ4p〈0.10, 0.75〉q “ 0.5625
φ1p〈0.10, 0.75〉q “ 0.10 φ5p〈0.10, 0.75〉q “ 0.0010
φ2p〈0.10, 0.75〉q “ 0.75 φ6p〈0.10, 0.75〉q “ 0.4219
φ3p〈0.10, 0.75〉q “ 0.01 φ7p〈0.10, 0.75〉q “ 0.0750

We can now use the regression model to make a prediction:

PpTYPE “ dangerousq

“ Logisticp´0.848ˆ 1` 1.545ˆ 0.10´ 1.942ˆ 0.75` 1.973ˆ 0.01

` 2.495ˆ 0.5625` 0.104ˆ 0.0010` 0.095ˆ 0.4219` 3.009ˆ 0.0750q

“ Logisticp´0.4613q

“ 0.3867

This means that the probability of the query dosages causing dangerous in-
teraction is 0.3867, so we would say that these dosages are safe together.
And for the next query 〈´0.47,´0.5〉:

φ0p〈´0.47,´0.50〉q “ 1 φ4p〈´0.47,´0.50〉q “ 0.2500
φ1p〈´0.47,´0.50〉q “ ´0.47 φ5p〈´0.47,´0.50〉q “ ´0.1038
φ2p〈´0.47,´0.50〉q “ ´0.50 φ6p〈´0.47,´0.50〉q “ ´0.1250
φ3p〈´0.47,´0.50〉q “ 0.2209 φ7p〈´0.47,´0.50〉q “ 0.2350
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We can now use the regression model to make a prediction:

PpTYPE “ dangerousq

“ Logisticp´0.848ˆ 1` 1.545ˆ´0.47´ 1.942ˆ´0.50` 1.973ˆ 0.2209

` 2.495ˆ 0.25` 0.104ˆ´0.1038` 0.095ˆ´0.1250` 3.009ˆ 0.2350q

“ Logisticp1.1404q

“ 0.7577

This means that the probability of the query document causing a dangerous
interaction is 0.7577, so we would return a dangerous prediction.
And for the last query 〈´0.47, 0.18〉:

φ0p〈´0.47, 0.18〉q “ 1 φ4p〈´0.47, 0.18〉q “ 0.0324
φ1p〈´0.47, 0.18〉q “ ´0.47 φ5p〈´0.47, 0.18〉q “ ´0.1038
φ2p〈´0.47, 0.18〉q “ 0.18 φ6p〈´0.47, 0.18〉q “ 0.0058
φ3p〈´0.47, 0.18〉q “ 0.2209 φ7p〈´0.47, 0.18〉q “ ´0.0846

We can now use the regression model to make a prediction:

PpTYPE “ dangerousq

“ Logisticp´0.848ˆ 1` 1.545ˆ´0.47´ 1.942ˆ 0.18` 1.973ˆ 0.2209

` 2.495ˆ 0.0324` 0.104ˆ´0.1038` 0.095ˆ 0.0058` 3.009ˆ´0.0846q

“ Logisticp´1.672106798q

“ 0.1581

This means that the probability of the query dosages causing a dangerous
interaction is 0.1581, so we would say that, instead, this is a safe dosage pair.

˚ 7. The following multinomial logistic regression model predicts the TYPE of a retail
customer (single, family, or business) on the basis of the average amount that they
spend per visit, SPEND, and the average frequency of their visits, FREQ:

Mwsinglepqq “ logisticp0.7993´ 15.9030ˆ SPEND ` 9.5974ˆ FREQq

Mwfamilypqq “ logisticp3.6526`´0.5809ˆ SPEND ´ 17.5886ˆ FREQq

Mwbusinesspqq “ logisticp4.6419` 14.9401ˆ SPEND ´ 6.9457ˆ FREQq

Use this model to make predictions for the following query instances:

ID SPEND FREQ

1 -0.62 0.10
2 -0.43 -0.71
3 0.00 0.00
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The first thing that we need to do is make a prediction for a query instance for
each of the three models. For the query instance 〈0.10,´0.62〉, these are

Mw1 PpTYPE “ singleq “ Logisticp´1.6114´ 3.4857ˆ´0.62` 2.0356ˆ 0.10q

“ Logisticp0.7533q

“ 0.6799

Mw2 PpTYPE “ businessq “ Logisticp´0.6692` 3.6468ˆ´0.62` 1.7487ˆ 0.10q

“ Logisticp´2.7553q

“ 0.0598

Mw3 PpTYPE “ familyq “ Logisticp´0.9070´ 0.1134ˆ´0.62´ 4.2036ˆ 0.10q

“ Logisticp´1.2571q

“ 0.2215

We then combine these results to get a probability for each target level as follows:

Ppt “ leveli | dq “
Mwipdq

ÿ

lPlevelsptq

Mwlpdq

So,

PpTYPE “ singleq “
0.6799

p0.6799` 0.0598` 0.2215q

“ 0.7074

PpTYPE “ businessq “
0.0598

p0.6799` 0.0598` 0.2215q

“ 0.0622

PpTYPE “ businessq “
0.2215

p0.6799` 0.0598` 0.2215q

“ 0.2304

This implies that the most likely target level for this query is single, so we would
predict that this shopper is from a single household.
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We repeat for the next query, 〈´0.43,´0.71〉:

Mw1 PpTYPE “ singleq “ Logisticp´1.6114´ 3.4857ˆ´0.43` 2.0356ˆ´0.71q

“ Logisticp´1.5578q

“ 0.1740

Mw2 PpTYPE “ businessq “ Logisticp´0.6692` 3.6468ˆ´0.43` 1.7487ˆ´0.71q

“ Logisticp´3.4789q

“ 0.0299

Mw3 PpTYPE “ familyq “ Logisticp´0.9070´ 0.1134ˆ´0.43´ 4.2036ˆ´0.71q

“ Logisticp2.126295434q

“ 0.8934

We then combine these results to get a probability for each target level as follows:

PpTYPE “ singleq “
0.1740

p0.1740` 0.0299` 0.8934q

“ 0.1585

PpTYPE “ businessq “
0.0299

p0.1740` 0.0299` 0.8934q

“ 0.0273

PpTYPE “ businessq “
0.8934

p0.1740` 0.0299` 0.8934q

“ 0.8142

This implies that the most likely target level for this query is business, so we
would predict that this shopper is from a business.
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We repeat for the next query, 〈0.0, 0.0〉:

Mw1 PpTYPE “ singleq “ Logisticp´1.6114´ 3.4857ˆ 0.0` 2.0356ˆ 0.0q

“ Logisticp´1.6114q

“ 0.1663

Mw2 PpTYPE “ businessq “ Logisticp´0.6692` 3.6468ˆ 0.0` 1.7487ˆ 0.0q

“ Logisticp´0.6692q

“ 0.3387

Mw3 PpTYPE “ familyq “ Logisticp´0.9070´ 0.1134ˆ 0.0´ 4.2036ˆ 0.0q

“ Logisticp´0.9070q

“ 0.2876

We then combine these results to get a probability for each target level as follows:

PpTYPE “ singleq “
0.1663

p0.1663` 0.3387` 0.2876q

“ 0.2099

PpTYPE “ businessq “
0.3387

p0.1663` 0.3387` 0.2876q

“ 0.4273

PpTYPE “ businessq “
0.2876

p0.1663` 0.3387` 0.2876q

“ 0.3628

This query is interesting as it is right in the middle of the feature space in a
region in which no target level dominates. For this reason, there is not a strong
probability associated with any of the levels, just a slight preference for business.

˚ 8. A support vector machine has been built to predict whether a patient is at risk of
cardiovascular disease. In the dataset used to train the model, there are two target
levels—high risk (the positive level, `1) or low risk (the negative level, ´1)—and
three descriptive features—AGE, BMI, and BLOOD PRESSURE. The support vectors
in the trained model are shown in the table below (all descriptive feature values have
been standardized).
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BLOOD

AGE BMI PRESSURE RISK

-0.4549 0.0095 0.2203 low risk
-0.2843 -0.5253 0.3668 low risk
0.3729 0.0904 -1.0836 high risk

0.558 0.2217 0.2115 high risk

In the model the value of w0 is ´0.0216, and the values of the ααα parameters are
〈1.6811, 0.2384, 0.2055, 1.7139〉. What predictions would this model make for the
following query instances?

BLOOD

ID AGE BMI PRESSURE

1 -0.8945 -0.3459 0.5520
2 0.4571 0.4932 -0.4768
3 -0.3825 -0.6653 0.2855
4 0.7458 0.1253 -0.7986

For the first query instance, 〈´0.8945,´0.3459, 0.552〉, the output of the support
vector machine model is

Mααα,´0.0216p〈´0.8945,´0.3459, 0.552〉q

“ p´1ˆ 1.6811ˆ p〈´0.4549, 0.0095, 0.2203〉 ¨ 〈´0.8945,´0.3459, 0.552〉q ´ 0.0216q

` p´1ˆ 0.2384ˆ p〈´0.2843,´0.5253, 0.3668〉 ¨ 〈´0.8945,´0.3459, 0.552〉q ´ 0.0216q

` p´1ˆ 0.2055ˆ p〈0.3729, 0.0904,´1.0836〉 ¨ 〈´0.8945,´0.3459, 0.552〉q ´ 0.0216q

` p´1ˆ 1.7139ˆ p〈0.558, 0.2217, 0.2115〉 ¨ 〈´0.8945,´0.3459, 0.552〉q ´ 0.0216q

“ ´ 0.9045´ 0.1737´ 0.2195´ 0.8083

“´ 2.1061

Because this output is less than ´1, the model predicts the negative level—low
risk.

For the second query instance, 〈0.4571, 0.4932,´0.4768〉, the output of the sup-
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port vector machine model is

Mααα,´0.0216p〈0.4571, 0.4932,´0.4768〉q

“ p´1ˆ 1.6811ˆ p〈´0.4549, 0.0095, 0.2203〉 ¨ 〈0.4571, 0.4932,´0.4768〉q ´ 0.0216q

` p´1ˆ 0.2384ˆ p〈´0.2843,´0.5253, 0.3668〉 ¨ 〈0.4571, 0.4932,´0.4768〉q ´ 0.0216q

` p´1ˆ 0.2055ˆ p〈0.3729, 0.0904,´1.0836〉 ¨ 〈0.4571, 0.4932,´0.4768〉q ´ 0.0216q

` p´1ˆ 1.7139ˆ p〈0.558, 0.2217, 0.2115〉 ¨ 〈0.4571, 0.4932,´0.4768〉q ´ 0.0216q

“0.4967` 0.1129` 0.1288` 0.4302

“1.1686

Because this output is greater than 1, the model predicts the positive level—high
risk.

For the third query instance, 〈´0.3825,´0.6653, 0.2855〉, the output of the sup-
port vector machine model is

Mααα,´0.0216p〈´0.3825,´0.6653, 0.2855〉q

“ p´1ˆ 1.6811ˆ p〈´0.4549, 0.0095, 0.2203〉 ¨ 〈´0.3825,´0.6653, 0.2855〉q ´ 0.0216q

` p´1ˆ 0.2384ˆ p〈´0.2843,´0.5253, 0.3668〉 ¨ 〈´0.3825,´0.6653, 0.2855〉q ´ 0.0216q

` p´1ˆ 0.2055ˆ p〈0.3729, 0.0904,´1.0836〉 ¨ 〈´0.3825,´0.6653, 0.2855〉q ´ 0.0216q

` p´1ˆ 1.7139ˆ p〈0.558, 0.2217, 0.2115〉 ¨ 〈´0.3825,´0.6653, 0.2855〉q ´ 0.0216q

“ ´ 0.4092`´0.1557`´0.1268`´0.5367

“´ 1.2284

Because this output is less than ´1, the model predicts the negative level—low
risk.

For the final query instance, 〈0.7458, 0.1253,´0.7986〉, the output of the support
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vector machine model is

Mααα,´0.0216p〈0.7458, 0.1253,´0.7986〉q

“ p´1ˆ 1.6811ˆ p〈´0.4549, 0.0095, 0.2203〉 ¨ 〈0.7458, 0.1253,´0.7986〉q ´ 0.0216q

` p´1ˆ 0.2384ˆ p〈´0.2843,´0.5253, 0.3668〉 ¨ 〈0.7458, 0.1253,´0.7986〉q ´ 0.0216q

` p´1ˆ 0.2055ˆ p〈0.3729, 0.0904,´1.0836〉 ¨ 〈0.7458, 0.1253,´0.7986〉q ´ 0.0216q

` p´1ˆ 1.7139ˆ p〈0.558, 0.2217, 0.2115〉 ¨ 〈0.7458, 0.1253,´0.7986〉q ´ 0.0216q

“0.8425` 0.1145` 0.2158` 0.4498

“1.6227

Because this output is greater than 1, the model predicts the positive level—high
risk.

˚ 9. A multivariate logistic regression model has been built to diagnose breast cancer in
patients on the basis of features extracted from tissue samples extracted by biopsy.3

The model uses three descriptive features—MITOSES, a measure of how fast cells
are growing; CLUMPTHICKNESS, a measure of the amount of layering in cells; and
BLANDCHROMATIN, a measure of the texture of cell nuclei—and predicts the status
of a biopsy as either benign or malignant. The weights in the trained model are shown
in the following table.

Feature Weight
Intercept (w r0s) ´13.92
MITOSES 3.09
CLUMPTHICKNESS 0.63
BLANDCHROMATIN 1.11

3. The data in this question has been artificially created but is inspired by the famous Wisconsin breast cancer
dataset first described in ? and is available from the UCI Machine Learning Repository (?).
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(a) Use this model to make predictions for each of the following query instances.

CLUMP BLAND

ID MITOSES THICKNESS CHROMATIN

1 7 4 3
2 3 5 1
3 3 3 3
4 5 3 1
5 7 4 4
6 10 4 1
7 5 2 1

To calculate the predictions made by the model we insert the descriptive fea-
ture values from each query instance into the prediction model. With this
information, the predictions can be made as follows:
1: Logisticp´13.92` 3.09ˆ 3` 0.63ˆ 7` 1.11ˆ 4q

“ Logisticp4.2q “
1

1` e´4.2

“ 0.985 ñ malignant

2: Logisticp´13.92` 3.09ˆ 1` 0.63ˆ 3` 1.11ˆ 5q

“ Logisticp´3.39q “
1

1` e3.39

“ 0.033 ñ benign

3: Logisticp´13.92` 3.09ˆ 3` 0.63ˆ 3` 1.11ˆ 3q

“ Logisticp0.57q “
1

1` e´0.57

“ 0.639 ñ malignant

4: Logisticp´13.92` 3.09ˆ 1` 0.63ˆ 5` 1.11ˆ 3q

“ Logisticp´4.35q “
1

1` e4.35

“ 0.013 ñ benign

5: Logisticp´13.92` 3.09ˆ 4` 0.63ˆ 7` 1.11ˆ 4q

“ Logisticp7.29q “
1

1` e´7.29

“ 0.999 ñ malignant

6: Logisticp´13.92` 3.09ˆ 1` 0.63ˆ 10` 1.11ˆ 4q

“ Logisticp´0.09q “
1

1` e0.09

“ 0.478 ñ benign
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7: Logisticp´13.92` 3.09ˆ 1` 0.63ˆ 5` 1.11ˆ 2q

“ Logisticp´5.46q “
1

1` e5.46

“ 0.004 ñ benign

(b) The following are the ground truth labels for the query instances from Part (a).

d1 d2 d3 d4 d5 d6 d7

benign benign malignant benign malignant malignant benign

i. Using the ground truth labels, calculate the squared error loss for each query
instance (assume that benign “ 0 and malignant “ 1).

Squared error loss is easily calculated as

pti ´Mw pdiqq
2

for each instance. These values are shown below.

CLUMP BLAND NUMERIC Squared
ID MITOSES THICKNESS CHROMATIN CLASS CLASS Mw pdiq Error
1 7 4 3 benign 0 0.985 0.970
2 3 5 1 benign 0 0.033 0.001
3 3 3 3 malignant 1 0.639 0.130
4 5 3 1 benign 0 0.013 0.000
5 7 4 4 malignant 1 0.999 0.000
6 10 4 1 malignant 1 0.478 0.272
7 5 2 1 benign 0 0.004 0.000

ii. Categorical cross entropy is another loss function that is commonly used for
classification models. Categorical cross entropy is defined as

´pti ˆ ln pMw pdiqq ` p1´ tiq ˆ ln p1´Mw pdiqqq

Using the ground truth labels previously given, calculate the categorical cross
entropy for the query set. Compare these values to the squared error loss values
for each instance.

For each instance we can calculate categorical cross as described above.
These values are shown below.
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Categorical
CLUMP BLAND NUMERIC Cross

ID MITOSES THICKNESS CHROMATIN CLASS CLASS Mw pdiq Entropy
1 7 4 3 benign 0 0.985 4.200
2 3 5 1 benign 0 0.033 0.034
3 3 3 3 malignant 1 0.639 0.448
4 5 3 1 benign 0 0.013 0.013
5 7 4 4 malignant 1 0.999 0.001
6 10 4 1 malignant 1 0.478 0.738
7 5 2 1 benign 0 0.004 0.004

The key thing to note about these values is that the categorical cross en-
tropy loss function emphasises predictions that are incorrect and made
with high confidence. In this query set instance d1 is incorrectly predicted
with high confidence, 0.985, and so a very high cross entropy is results,
4.200. An incorrect prediction is also made for instance d6, but this time
with very low confidence, 0.478. The categorical cross entropy is 0.738.
Comparing the squared errors for these two instances calculated in the
previous part, 0.970 and 0.272. to these categorical cross entropy scores
we see the further emphasis on high confidence incorrect predictions.

˚ 10. The following images are handwritten instances of the digits 0 and 1.4 The images are
small, 8 pixels by 8 pixels, and each pixel contains a gray level from the range r0, 7s.

Rather than use individual pixel values, which can lead to very high-dimensional fea-
ture vectors, a simpler way to represent images for use with regression models is to
calculate a histogram for each image and use this as the feature vector instead. In this
case the histograms simply count the frequency of occurrence of each possible gray
level in each image. The table that follows shows the histograms for a small dataset of
16 images split between examples of digits 0 and 1.

4. These images are based on the dataset from the UCI Machine Learning repository ? and originally described
by ?.
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ID GL-0 GL-1 GL-2 GL-3 GL-4 GL-5 GL-6 GL-7 DIGIT

0 31 3 6 2 7 5 6 4 0
1 37 3 1 4 1 3 2 13 1
2 31 3 4 1 8 7 3 7 0
3 38 2 3 0 1 1 5 14 1
4 31 5 3 2 5 2 5 11 0
5 32 6 3 2 1 1 5 14 1
6 31 3 5 2 3 6 2 12 0
7 31 4 3 4 1 5 5 11 0
8 38 4 2 2 2 4 4 8 1
9 38 3 2 3 4 4 1 9 1

A logistic regression model has been trained to classify digits as either 0 or 1. The
weights in this model are as follows:

Intercept GL-0 GL-1 GL-2 GL-3 GL-4 GL-5 GL-6 GL-7
wr0s wr1s wr2s wr3s wr4s wr5s wr6s wr7s wr8s

0.309 0.100 ´0.152 ´0.163 0.191 ´0.631 ´0.716 ´0.478 ´0.171

This model has been used to make predictions for the instances in the training set
above. These predictions, and the related calculations required for calculating error
and errorDelta values are shown in the following table.

Squared errorDeltapD,w r jsq
ID Mwpdiq ti Error Error w r0s w r1s w r2s w r3s w r4s w r5s w r6s w r7s w r8s

0 0.051 0 -0.051 ? -0.0025 -0.0765 -0.0074 -0.0148 -0.0049 -0.0173 -0.0123 -0.0148 -0.0099
1 ? 1 0.003 0.0000 -0.0025 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
2 0.019 0 -0.019 0.0004 -0.0025 -0.0110 -0.0011 -0.0014 -0.0004 -0.0028 -0.0025 -0.0011 ?
3 0.993 1 0.007 0.0000 ? 0.0018 0.0001 0.0001 0.0000 0.0000 0.0000 0.0002 0.0007
4 ? 0 -0.489 0.2391 -0.0025 -3.7879 -0.6110 -0.3666 -0.2444 -0.6110 -0.2444 -0.6110 -1.3441
5 0.945 1 ? 0.0030 -0.0025 0.0915 0.0172 0.0086 0.0057 0.0029 0.0029 0.0143 0.0400
6 ? 0 -0.400 0.1600 -0.0025 -2.9760 -0.2880 -0.4800 -0.1920 -0.2880 -0.5760 -0.1920 -1.1520
7 0.703 0 ? 0.4942 -0.0025 -4.5502 ? -0.4403 -0.5871 -0.1468 -0.7339 -0.7339 -1.6146
8 0.980 1 0.020 ? -0.0025 0.0149 0.0016 0.0008 0.0008 0.0008 0.0016 0.0016 0.0031
9 0.986 1 0.014 0.0002 -0.0025 0.0073 0.0006 0.0004 0.0006 0.0008 0.0008 0.0002 0.0017

(a) Some of the model predictions are missing in the preceding table (marked with a
?). Calculate these.

We can calculate the missing predictions as
1: Logisticp0.309` 0.100ˆ 37`´0.152ˆ 3`´0.163ˆ 1`

0.191ˆ 4`´0.631ˆ 1`´0.716ˆ 3`´0.478ˆ 2`
´0.171ˆ 13q
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“ Logisticp5.720q “
1

1` e´5.720

“ 0.997 ñ 1

4: Logisticp0.309` 0.100ˆ 31`´0.152ˆ 5`´0.163ˆ 3`
0.191ˆ 2`´0.631ˆ 5`´0.716ˆ 2`´0.478ˆ 5`
´0.171ˆ 11q

“ Logisticp´0.046q “
1

1` e0.046

“ 0.489 ñ 0

6: Logisticp0.309` 0.100ˆ 31`´0.152ˆ 3`´0.163ˆ 5`
0.191ˆ 2`´0.631ˆ 3`´0.716ˆ 6`´0.478ˆ 2`
´0.171ˆ 12q

“ Logisticp´0.407q “
1

1` e0.407

“ 0.400 ñ 0

(b) Some of the Error and Squared Error values are missing in the preceding table
(marked with a ?). Calculate these.

Errors as simple calculated as: ti ´Mwpdiq. So we have:
5: 1´ 0.945 “ 0.055

7: 0´ 0.703 “ ´0.703
Squared errors are simply the square of error, so:
0: ´0.0512 “ 0.0026

8: 0.0202 “ 0.0004

(c) Some of the errorDelta values are missing in the preceding table (marked with a
?). Calculate these.

We calculate the errorDelta values using Equation (7.32)[345].

errorDeltapdi,w r jsq “
pti ´Mwpdiqq ˆMwpdiq ˆ p1´Mwpdiqq ˆ di r js

The missing values are calculated as follows (note that because wr0s refers
to the intercept weight associated with a dummy input value indexing into
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features starts at 1):

errorDeltapd2,w r8sq
“ pt2 ´Mwpd2qq ˆMwpd2q ˆ p1´Mwpd2qq ˆ d2 r8s

“ p0´ 0.019q ˆ 0.019ˆ p1´ 0.019q ˆ 7

“ ´0.0025

(This example is for the intercept so we use a dummy input value of 1.)

errorDeltapd3,w r0sq
“ pt3 ´Mwpd3qq ˆMwpd3q ˆ p1´Mwpd3qq ˆ 1

“ p1´ 0.993q ˆ 0.993ˆ p1´ 0.993q ˆ 1

“ ´0.0025

errorDeltapd7,w r2sq
“ pt7 ´Mwpd7qq ˆMwpd7q ˆ p1´Mwpd7qq ˆ d7 r2s

“ p0´ 0.703q ˆ 0.703ˆ p1´ 0.703q ˆ 4

“ ´0.5871

(d) Calculate a new set of weights for this model using a learning rate of 0.01.

The following table summarises the answers from the previous parts and in-
cludes the sums of error and errorDelta values.

Squared errorDeltapD,w r jsq
ID Mwpdiq ti Error Error w r0s w r1s w r2s w r3s w r4s w r5s w r6s w r7s w r8s

0 0.051 0 -0.051 0.0026 -0.0025 -0.0765 -0.0074 -0.0148 -0.0049 -0.0173 -0.0123 -0.0148 -0.0099
1 0.997 1 0.003 0.0000 -0.0025 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
2 0.019 0 -0.019 0.0004 -0.0025 -0.0110 -0.0011 -0.0014 -0.0004 -0.0028 -0.0025 -0.0011 -0.0025
3 0.993 1 0.007 0.0000 -0.0025 0.0018 0.0001 0.0001 0.0000 0.0000 0.0000 0.0002 0.0007
4 0.489 0 -0.489 0.2391 -0.0025 -3.7879 -0.6110 -0.3666 -0.2444 -0.6110 -0.2444 -0.6110 -1.3441
5 0.945 1 0.055 0.0030 -0.0025 0.0915 0.0172 0.0086 0.0057 0.0029 0.0029 0.0143 0.0400
6 0.400 0 -0.400 0.1600 -0.0025 -2.9760 -0.2880 -0.4800 -0.1920 -0.2880 -0.5760 -0.1920 -1.1520
7 0.703 0 -0.703 0.4942 -0.0025 -4.5502 -0.5871 -0.4403 -0.5871 -0.1468 -0.7339 -0.7339 -1.6146
8 0.980 1 0.020 0.0004 -0.0025 0.0149 0.0016 0.0008 0.0008 0.0008 0.0016 0.0016 0.0031
9 0.986 1 0.014 0.0002 -0.0025 0.0073 0.0006 0.0004 0.0006 0.0008 0.0008 0.0002 0.0017

Sum -1.563 0.8999 -0.0250 -11.2858 -1.4751 -1.2932 -1.0217 -1.0614 -1.5638 -1.5365 -4.0775

To calculate the new weight values we again use Equation (7.32)[345]:

w r js Ð w r js ` αˆ errorDeltapD,w r jsq
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So the new weight values are:

w r0s Ð w r0s ` αˆ errorDeltapD,w r0sq
Ð 0.309` 0.01ˆ´0.025

Ð 0.100

w r1s Ð w r1s ` αˆ errorDeltapD,w r1sq
Ð 0.100` 0.01ˆ´11.2858

Ð 0.298

w r2s Ð w r2s ` αˆ errorDeltapD,w r2sq
Ð ´0.152` 0.01ˆ´1.4751

Ð ´0.153

w r3s Ð w r3s ` αˆ errorDeltapD,w r3sq
Ð ´0.163` 0.01ˆ´1.2932

Ð ´0.164

w r4s Ð w r4s ` αˆ errorDeltapD,w r4sq
Ð 0.191` 0.01ˆ´1.0217

Ð 0.190

w r5s Ð w r5s ` αˆ errorDeltapD,w r5sq
Ð ´0.631` 0.01ˆ´1.0614

Ð ´0.632

w r6s Ð w r6s ` αˆ errorDeltapD,w r6sq
Ð ´0.716` 0.01ˆ´1.5638

Ð ´0.718

w r7s Ð w r7s ` αˆ errorDeltapD,w r7sq
Ð ´0.478` 0.01ˆ´1.5365

Ð ´0.480
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w r8s Ð w r8s ` αˆ errorDeltapD,w r8sq
Ð ´0.171` 0.01ˆ´4.0775

Ð ´0.175
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(e) The following table shows handwritten examples of the digits 7 and 8 and their
corresponding histogram values.

GL-0 GL-1 GL-2 GL-3 GL-4 GL-5 GL-6 GL-7

35 1 5 4 5 2 4 8

30 6 2 0 5 4 4 13

i. Calculate the output of the model (using the updated weights calculated in the
previous part) for these two instances.

7: Logisticp0.100` 0.298ˆ 35`´0.153ˆ 1`´0.164ˆ 5`
0.190ˆ 4`´0.632ˆ 5`´0.718ˆ 2`´0.480ˆ 4`
´0.175ˆ 8q

“ Logisticp2.401q “
1

1` e´2.401

“ 0.917 ñ 1
8: Logisticp0.100` 0.298ˆ 30`´0.153ˆ 6`´0.164ˆ 2`

0.190ˆ 0`´0.632ˆ 5`´0.718ˆ 4`´0.480ˆ 4`
´0.175ˆ 13q

“ Logisticp´2.433q “
1

1` e2.433

“ 0.081 ñ 0

ii. Comment on the appropriateness of these outputs.

The model outputs a 1 for the image of a 7 and a 0 for the image of an
8. While this is not entirely unreasonable—a 7 looks more like a 1 than
a 0 and an 8 looks more like a 0 than a 1—it is not ideal behaviour. This
illustrates one drawback of classification models. They are essentially
discriminators and struggle to recognise that an instance is completely
new. In this case we would probably prefer an answer of none of the
above. Building models that can accurately do this is an aopen research
area and relates to model calibration and anomaly detection.





8 Deep Learning (Exercise Solutions)

1. The following image shows an artificial neuron that takes three inputs

Σ ϕ

= 1d0

d1

d2

d3

w0 = 0.20

w
1 = −0.10

w2 = 0.15

w3
=

0.0
5

Mw(d)

(a) Calculate the weighted sum for this neuron for the input vector

d “ r0.2, 0.5, 0.7s

z “ p1ˆ w0q ` p0.2ˆ w1q ` p0.5ˆ w2q ` p0.7ˆ w3q

“ p1ˆ 0.2q ` p0.2ˆ´0.1q ` p0.5ˆ 0.15q ` p0.7ˆ 0.05q

“ 0.2`´0.02` 0.075` 0.035

“ 0.29

(b) What would be the output from this neuron if the activation function ϕ is a thresh-
old activation with θ “ 1?
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Using a threshold activation function the weighted sum z is mapped to an
output as follows:

Mwpdq “

#

1 if z ě θ

0 otherwise

In this instance z “ 0.29 and θ “ 1 and soMwpdq “ 0

(c) What would be the output from this neuron if the activation function ϕ is the lo-
gistic function?

The logistic function is defined as:

logisticpzq “
1

1` e´z

For z “ 0.29 the result of this calculation is: 0.571996133

(d) What would be the output from this neuron if the activation function ϕ is the rec-
tified linear function?

The rectified linear function is defined as:

recti f ierpzq “ maxp0, zq

For z “ 0.29 the output of the rectified linear function is 0.29.

2. The following image shows an artificial neural network with two sensing neurons
(Neurons 1 and 2) and 3 processing neurons (Neurons 3, 4, and 5)

1 3

5

2 4

w3,1=0.1

w
4,1=

0.2

w3,
2
=
0.
5

w4,2=0.4

w
5,3=0.3

w5,4
=0.7

w3,0=0.6

w4,0=0.8

w5,0=0.9
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(a) Assuming that the processing neurons in this network use a logistic activation
function, what would be the output of Neuron 5 if the network received the input
vector: Neuron 1 = 0.7 and Neuron 2 = 0.3?

The weighted sum calculation for Neuron 3 is:

z3 “ p0.6ˆ 1q ` p0.1ˆ 0.7q ` p0.5ˆ 0.3q

“ p0.6q ` p0.07q ` p0.15q

“ 0.82

The weighted sum calculation for Neuron 4 is:

z4 “ p0.8ˆ 1q ` p0.2ˆ 0.7q ` p0.4ˆ 0.3q

“ p0.8q ` p0.14q ` p0.12q

“ 1.06

Using a logistic activation function the activation for Neuron 3 is:

a3 “ logisticpz3q

“
1

1` e´0.82

“ 0.69423634

Using a logistic activation function the activation for Neuron 4 is:

a4 “ logisticpz4q

“
1

1` e´1.06

“ 0.742690545

The weighted sum calculation for Neuron 5 can now be calculated as:

z5 “ p0.9ˆ 1q ` p0.3ˆ 0.69423634q ` p0.7ˆ 0.742690545q

“ p0.9q ` p0.208270902q ` p0.519883382q

“ 1.628154284

And the final output of the network can now be calculated by passing z5

through the activation function for Neuron 5, which for this question is the
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logistic function:

a5 “ logisticpz5q

“
1

1` e´1.628154284

“ 0.835916637

(b) Assuming that the processing neurons in this network use a ReLU activation func-
tion, what would be the output of Neuron 5 if the network received the input vec-
tor: Neuron 1 = 0.7 and Neuron 2 = 0.3?

From the solutions to part one of this question the weighted sum calculations
for Neurons 3 and 4 are as follows:

z3 “ 0.82

z4 “ 1.06

Both of these values are greater than 0 and so using the rectifier function
(maxp0, zq) as an activation function the activations for each of these neurons
is:

a3 “ 0.82

a4 “ 1.06

The weighted sum calculation for Neuron 5 can now be calculated as:

z5 “ p0.9ˆ 1q ` p0.3ˆ 0.82q ` p0.7ˆ 1.06q

“ p0.9q ` p0.246q ` p0.742q

“ 1.888

z5 is greater than 0 and so passing this value through the recitifier activation
function (maxp0, zq) does not change it, and so the activation for Neuron 5
(and the output of the network) is:

a5 “ 1.888

(c) The following image provides a template diagram for the sequence of matrix op-
erations that our neural network would use to process the input vector Neuron 1 =
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0.7 and Neuron 2 = 0.3. Assuming that the processing neurons in the network use
a ReLU activation function, fill in the diagram with the appropriate weights, bias
terms, weighted sum values, and activations.

0.6 0.1 0.5

0.8 0.2 0.4

Hidden Layer
Weight Matrix

1.0

0.7

0.3

Activations
Input Layer

= 0.82

1.06

z(1)

ϕ
0.82

1.06

Activations
Hidden Layer

0.9 0.3 0.7

Output Layer
Weight Matrix 1.00

0.82

1.06

Activations
Hidden Layer

= 1.888

z(2)

ϕ 1.888

Output

+ d[0]= 1

0.6 0.1 0.5

0.8 0.2 0.4

Hidden Layer
Weight Matrix

1.0

0.7

0.3

Activations
Input Layer

= 0.82

1.06

z(1)

ϕ
0.82

1.06

Activations
Hidden Layer

0.9 0.3 0.7

Output Layer
Weight Matrix 1.00

0.82

1.06

Activations
Hidden Layer

= 1.888

z(2)

ϕ 1.888

Output

+ d[0]= 1

3. The following image shows an artificial network with two layers of linear neurons
(i.e., neurons that have no activation function and whose output is simply the result of
the weighted sum of their inputs). Furthermore, these neurons have no bias terms.
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1 3

5

2 4

w3,1=0.3

w
4,1=

0.1

w3,
2
=
0.
2

w4,2=0.6

w
5,3=0.4

w5,4
=0.8

(a) Calculate the output for Neuron 5 for the input vector: Neuron 1 = 0.9, Neuron 2
= 0.5.

Weighted sum for Neuron 3:

a3 “ pp0.9ˆ 0.3q ` p0.5ˆ 0.2qq

“ 0.37

Weighted sum for Neuron 4:

a4 “ pp0.9ˆ 0.1q ` p0.5ˆ 0.6qq

“ 0.39

Weighted sum, and activation, for Neuron 5:

a4 “ pp0.37ˆ 0.4q ` p0.39ˆ 0.8qq

“ 0.46

(b) Calculate the weight matrix for the single layer network that would implement the
equivalent mapping that this two-layer network implements.

W1 “ W2 ¨W1

“

”

0.4 0.8
ı

¨

«

0.3 0.2
0.1 0.6

ff

“

”

0.2 0.56
ı

(c) Show that the single-layer network using the weight matrix you calculated in Part
2 generates the same output as the network for the input vector: Neuron 1 = 0.9,
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Neuron 2 = 0.5.

activation “
”

0.2 0.56
ı

¨

«

0.9
0.5

ff

“ pp0.2ˆ 0.9q ` p0.56ˆ 0.5qq

“ 0.46

4. The following image illustrates the topology of a simple feedforward neural network
that has a single sensing neuron (Neuron 1), a single hidden processing neuron (Neu-
ron 2), and a single processing output neuron (Neuron 3).

1 2 3
w2,1=0.2 w3,2=0.3

w2,0=0.1 w3,0=0.1

(a) Assuming that the processing neurons use logistic activation functions, that the
input to the network is Neuron 1 = 0.2 and that the desired output for this input is
0.7:

i. Calculate the output generated by the network in response to this input.

z2 “ ppw2,0 ˆ 1q ` pw2,1 ˆ 0.2qq

“ pp0.1ˆ 1q ` p0.2ˆ 0.2qq

“ 0.14

a2 “ logisticp0.14q

“ 0.534942945

z3 “ ppw3,0 ˆ 1q ` pw3,2 ˆ a2qq

“ pp0.1ˆ 1q ` p0.3ˆ 0.534942945qq

“ 0.260482884

a3 “ logisticp0.260482884q

“ 0.564754992
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ii. Calculate the δ values for each of the neurons in the network (i.e., δ3, δ2).

Calculations for δ3:

BE

Ba3
“ ´ptk ´ akq

“ ´ p0.7´ 0.564754992q

“ ´0.135245008

Ba3

Bz3
“ logisticpz3q ˆ p1´ logisticpz3qq

“ 0.564754992ˆ p1´ 0.564754992q

“ 0.245806791

δ3 “
BE

Ba3
ˆ
Ba3

Bz3

“ ´0.135245008ˆ 0.245806791

“ ´0.033244142

Calculations for δ2:

BE

Ba2
“ w3,2 ˆ δ3

“ 0.3ˆ´0.033244142

“ ´0.009973242

Ba2

Bz2
“ logisticpz2q ˆ p1´ logisticpz2qq

“ 0.534942945ˆ p1´ 0.534942945q

“ 0.248778991

δ2 “
BE

Ba2
ˆ
Ba2

Bz2

“ ´0.009973242ˆ 0.248778991

“ ´0.002481133

iii. Using the δ values you calculated above, calculate the sensitivity of the error
of the network to changes in each of the weights of the network (i.e., BE{Bw3,2,



183

BE{Bw3,0, BE{Bw2,1, BE{Bw2,0).

To calculate the sensitivity of the error of the network to changes in a
weight we multiply the δ for the neuron that uses the weight in its weighted
sum by the activation (or input) that the weight was applied to in the cal-
culation of the weight sum. The calculations for each of the weights is
shown below.

BE

Bw3,2
“ δ3 ˆ a2

“ ´0.033244142ˆ 0.534942945

“ ´0.017783719

BE

Bw3,0
“ δ3 ˆ a0

“ ´0.033244142ˆ 1

“ ´0.033244142

BE

Bw2,1
“ δ2 ˆ a1

“ ´0.002481133ˆ 0.2

“ ´0.000496227

BE

Bw2,0
“ δ2 ˆ a0

“ ´0.002481133ˆ 1

“ ´0.002481133

iv. Assuming a learning rate of α “ 0.1, calculate the updated values for each of
the weights in the network (w3,2,w3,0,,w2,1,w2,0,) after the processing of this
single training example.

We update weights as follows:

wt`1
i,k “ wt

i,k ´ αˆ
BE

Bwi,k
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The calculation for each weight update is below:

wt`1
3,2 “ wt

3,2 ´ αˆ
BE

Bw3,2

“ 0.3´ 0.1ˆ´0.017783719

“ 0.301778372

wt`1
3,0 “ wt

3,0 ´ αˆ
BE

Bw3,0

“ 0.1´ 0.1ˆ´0.033244142

“ 0.103324414

wt`1
2,1 “ wt

2,1 ´ αˆ
BE

Bw2,1

“ 0.2´ 0.1ˆ´0.000496227

“ 0.200049623

wt`1
2,0 “ wt

2,0 ´ αˆ
BE

Bw2,0

“ 0.1´ 0.1ˆ´0.002481133

“ 0.100248113

v. Calculate the reduction in the error of the network for this example using the
new weights, compared with using the original weights.

The output for the network using the new weights is:

z2 “ ppw2,0 ˆ 1q ` pw2,1 ˆ 0.2qq

“ pp0.100248113ˆ 1q ` p0.200049623ˆ 0.2qq

“ 0.140258038

a2 “ logisticp0.140258038q

“ 0.535007139
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z3 “ ppw3,0 ˆ 1q ` pw3,2 ˆ a2qq

“ pp0.103324414ˆ 1q ` p0.301778372ˆ 0.535007139qq

“ 0.264777998

a3 “ logisticp0.264777998q

“ 0.565810465

The error with the new weights is:

Error1 “ 0.7´ 0.565810465

0.134189535

Subtracting this new error from the error with the original weights (which
we calculated as part of the calculation for δ3 above) gives us the reduction
in error:

Error Reduction “ 0.135245008´ 0.134189535

“ 0.001055473

(b) Assuming that the processing neurons are ReLUs, that the input to the network is
Neuron 1 = 0.2, and that the desired output for this input is 0.7:

i. Calculate the output generated by the network in response to this input.

z2 “ ppw2,0 ˆ 1q ` pw2,1 ˆ 0.2qq

“ pp0.1ˆ 1q ` p0.2ˆ 0.2qq

“ 0.14

a2 “ recti f ierp0.14q

“ maxp0, 0.14q

“ 0.14

z3 “ ppw3,0 ˆ 1q ` pw3,2 ˆ a2qq

“ pp0.1ˆ 1q ` p0.3ˆ 0.14qq

“ 0.142
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a3 “ recti f ierp0.142q

“ maxp0, 0.142q

“ 0.142

ii. Calculate the δ values for each of the neurons in the network (i.e., δ3, δ2).

Calculations for δ3:

BE

Ba3
“ ´ptk ´ akq

“ ´ p0.7´ 0.142q

“ ´0.558

Ba3

Bz3
“

#

1 if z3 ą 1

0 otherwise

“ 1

δ3 “
BE

Ba3
ˆ
Ba3

Bz3

“ ´0.558ˆ 1

“ ´0.558

Calculations for δ2:

BE

Ba2
“ w3,2 ˆ δ3

“ 0.3ˆ´0.558

“ ´0.1674

Ba2

Bz2
“

#

1 if z2 ą 1

0 otherwise

“ 1

δ2 “
BE

Ba2
ˆ
Ba2

Bz2

“ ´0.1674ˆ 1

“ ´0.1674
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iii. Using the δ values you have calculated in the preceding, calculate the sensitiv-
ity of the error of the network to changes in each of the weights of the network
(i.e., BE{Bw3,2, BE{Bw3,0, BE{Bw2,1, BE{Bw2,0).

To calculate the sensitivity of the error of the network to changes in a
weight we multiply the δ for the neuron that uses the weight in its weighted
sum by the activation (or input) that the weight was applied to in the cal-
culation of the weight sum. The calculations for each of the weights is
shown below.

BE

Bw3,2
“ δ3 ˆ a2

“ ´0.558ˆ 0.14

“ ´0.07812

BE

Bw3,0
“ δ3 ˆ a0

“ ´0.558ˆ 1

“ ´0.558

BE

Bw2,1
“ δ2 ˆ a1

“ ´0.1674ˆ 0.2

“ ´0.03348

BE

Bw2,0
“ δ2 ˆ a0

“ ´0.1674ˆ 1

“ ´0.1674

iv. Assuming a learning rate of α “ 0.1, calculate the updated values for each
of the weights in the network (w3,2,w3,0,,w2,1,w2,0) after the processing of this
single training example.

We update weights as follows:

wt`1
i,k “ wt

i,k ´ αˆ
BE

Bwi,k
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The calculation for each weight update is below:

wt`1
3,2 “ wt

3,2 ´ αˆ
BE

Bw3,2

“ 0.3´ 0.1ˆ´0.07812

“ 0.307812

wt`1
3,0 “ wt

3,0 ´ αˆ
BE

Bw3,0

“ 0.1´ 0.1ˆ´0.558

“ 0.1558

wt`1
2,1 “ wt

2,1 ´ αˆ
BE

Bw2,1

“ 0.2´ 0.1ˆ´0.03348

“ 0.203348

wt`1
2,0 “ wt

2,0 ´ αˆ
BE

Bw2,0

“ 0.1´ 0.1ˆ´0.1674

“ 0.11674

v. Calculate the reduction in the error for this example using the new weights for
the network, compared with using the original weights.

The output for the network using the new weights is:

z2 “ ppw2,0 ˆ 1q ` pw2,1 ˆ 0.2qq

“ pp0.11674ˆ 1q ` p0.203348ˆ 0.2qq

“ 0.1574096

a2 “ recti f ierp0.1574096q

“ maxp0, 0.1574096q

“ 0.1574096
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z3 “ ppw3,0 ˆ 1q ` pw3,2 ˆ a2qq

“ pp0.1558ˆ 1q ` p0.307812ˆ 0.1574096qq

“ 0.204252564

a3 “ recti f ierp0.204252564q

“ maxp0, 0.204252564q

“ 0.204252564

The error with the new weights is:

Error1 “ 0.7´ 0.204252564

0.495747436

Subtracting this new error from the error with the original weights (which
we calculated as part of the calculation for δ3 above) gives us the reduction
in error:

Error Reduction “ 0.558´ 0.495747436

“ 0.062252564

5. The following image illustrates the topology of a simple feedforward neural network
that has a single sensing neuron (Neuron 1), three hidden processing neuron (Neurons
2, 3, and 4), and a single processing output neuron (Neuron 5).

3

1 2 5

4

w2,1=0.3
w3,2

=0.2

w
4,2=0.5

w
5,3=0.4

w5,4
=0.6

w2,0=0.1

w3,0=0.1

w4,0=0.1

w5,0=0.1

(a) Assuming that the processing neurons use logistic activation functions, that the
input to the network is Neuron 1 = 0.5 and that the desired output for this input is
0.9:

i. Calculate the output generated by the network in response to this input.
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z2 “ ppw2,0 ˆ 1q ` pw2,1 ˆ 0.5qq

“ pp0.1ˆ 1q ` p0.3ˆ 0.5qq

“ 0.25

a2 “ logisticp0.25q

“ 0.562176501

z3 “ ppw3,0 ˆ 1q ` pw3,2 ˆ a2qq

“ pp0.1ˆ 1q ` p0.2ˆ 0.562176501qq

“ 0.2124353

a3 “ logisticp0.2124353q

“ 0.552909994

z4 “ ppw4,0 ˆ 1q ` pw4,2 ˆ a2qq

“ pp0.1ˆ 1q ` p0.5ˆ 0.552909994qq

“ 0.38108825

a4 “ logisticp0.38108825q

“ 0.594135549

z5 “ ppw5,0 ˆ 1q ` pw5,3 ˆ a3q ` pw5,4 ˆ a4qq

“ pp0.1ˆ 1q ` p0.4ˆ 0.552909994q ` p0.6ˆ 0.594135549qq

“ 0.677645327

a5 “ logisticp0.677645327q

“ 0.663212956

ii. Calculate the δ values for each of the processing neurons in the network (i.e.,
δ5, δ4, δ3, δ2).
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Calculations for δ5:

BE

Ba5
“ ´ptk ´ akq

“ ´ p0.9´ 0.663212956q

“ ´0.236787044

Ba5

Bz5
“ logisticpz5q ˆ p1´ logisticpz5qq

“ 0.677645327ˆ p1´ 0.677645327q

“ 0.223361531

δ3 “
BE

Ba5
ˆ
Ba5

Bz5

“ ´0.236787044ˆ 0.223361531

“ ´0.052889117

Calculations for δ4:

BE

Ba4
“ w5,4 ˆ δ5

“ 0.6ˆ´0.052889117

“ ´0.03173347

Ba4

Bz4
“ logisticpz4q ˆ p1´ logisticpz4qq

“ 0.594135549ˆ p1´ 0.594135549q

“ 0.241138498

δ4 “
BE

Ba4
ˆ
Ba4

Bz4

“ ´0.03173347ˆ 0.241138498

“ ´0.007652161
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Calculations for δ3:

BE

Ba3
“ w5,3 ˆ δ5

“ 0.4ˆ´0.052889117

“ ´0.021155647

Ba3

Bz3
“ logisticpz3q ˆ p1´ logisticpz3qq

“ 0.552909994ˆ p1´ 0.552909994q

“ 0.247200532

δ3 “
BE

Ba3
ˆ
Ba3

Bz3

“ ´0.021155647ˆ 0.247200532

“ ´0.005229687

Calculations for δ2:

BE

Ba2
“ pw3,2 ˆ δ3q ` pw4,2 ˆ δ4q

“ p0.2ˆ´0.005229687q ` p0.5ˆ´0.007652161q

“ ´0.004872018

Ba2

Bz2
“ logisticpz2q ˆ p1´ logisticpz2qq

“ 0.562176501ˆ p1´ 0.562176501q

“ 0.246134083

δ2 “
BE

Ba2
ˆ
Ba2

Bz2

“ ´0.004872018ˆ 0.246134083

“ ´0.00119917

iii. Using the δ values you have calculated, calculate the sensitivity of the error of
the network to changes in each of the weights of the network (i.e., BE{Bw5,4,

BE{Bw5,3, BE{Bw5,0, BE{Bw4,2, BE{Bw4,0, BE{Bw3,2, BE{Bw3,0, BE{Bw2,1,
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BE{Bw2,0).

To calculate the sensitivity of the error of the network to changes in a
weight we multiply the δ for the neuron that uses the weight in its weighted
sum by the activation (or input) that the weight was applied to in the cal-
culation of the weight sum. The calculations for each of the weights is
shown below.

BE

Bw5,4
“ δ5 ˆ a4

“ ´0.052889117ˆ 0.594135549

“ ´0.031423304

BE

Bw5,3
“ δ5 ˆ a3

“ ´0.052889117ˆ 0.552909994

“ ´0.029242921

BE

Bw5,0
“ δ5 ˆ a0

“ ´0.052889117ˆ 1

“ ´0.052889117

BE

Bw4,2
“ δ4 ˆ a2

“ ´0.007652161ˆ 0.562176501

“ ´0.004301865

BE

Bw4,0
“ δ4 ˆ a0

“ ´0.007652161ˆ 1

“ ´0.007652161

BE

Bw3,2
“ δ3 ˆ a2

“ ´0.005229687ˆ 0.562176501

“ ´0.002940007
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BE

Bw3,0
“ δ3 ˆ a0

“ ´0.005229687ˆ 1

“ ´0.005229687

BE

Bw2,1
“ δ2 ˆ a1

“ ´0.00119917ˆ 0.5

“ ´0.000599585

BE

Bw2,0
“ δ2 ˆ a0

“ ´0.00119917ˆ 1

“ ´0.00119917

iv. Assuming a learning rate of α “ 0.1, calculate the updated values for each of
the weights in the network (w5,4, w5,3, w5,0, w4,2, w4,0, w3,2, w3,0,, w2,1, w2,0,)
after the processing of this single training example.

We update weights as follows:

wt`1
i,k “ wt

i,k ´ αˆ
BE

Bwi,k

The calculation for each weight update is below:

wt`1
5,4 “ wt

5,4 ´ αˆ
BE

Bw5,4

“ 0.6´ p0.1ˆ´0.031423304q

“ 0.60314233

wt`1
5,3 “ wt

5,3 ´ αˆ
BE

Bw5,3

“ 0.4´ p0.1ˆ´0.029242921q

“ 0.402924292
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wt`1
5,0 “ wt

5,0 ´ αˆ
BE

Bw5,0

“ 0.1´ p0.1ˆ´0.052889117q

“ 0.105288912

wt`1
4,2 “ wt

4,2 ´ αˆ
BE

Bw4,2

“ 0.5´ p0.1ˆ´0.004301865q

“ 0.500430187

wt`1
4,0 “ wt

4,0 ´ αˆ
BE

Bw4,0

“ 0.1´ p0.1ˆ´0.007652161q

“ 0.100765216

wt`1
3,2 “ wt

3,2 ´ αˆ
BE

Bw3,2

“ 0.2´ p0.1ˆ´0.002940007q

“ 0.200294001

wt`1
3,0 “ wt

3,0 ´ αˆ
BE

Bw3,0

“ 0.1´ p0.1ˆ´0.005229687q

“ 0.100522969

wt`1
2,1 “ wt

2,1 ´ αˆ
BE

Bw2,1

“ 0.3´ p0.1ˆ´0.000599585q

“ 0.300059958

wt`1
2,0 “ wt

2,0 ´ αˆ
BE

Bw2,0

“ 0.1´ p0.1ˆ´0.00119917q

“ 0.100119917
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v. Calculate the reduction in the error of the network for this example using the
new weights, compared with using the original weights.

The output for the network using the new weights is:

z2 “ ppw2,0 ˆ 1q ` pw2,1 ˆ 0.5qq

“ pp0.100119917ˆ 1q ` p0.300059958ˆ 0.5qq

“ 0.250149896

a2 “ logisticp0.250149896q

“ 0.562213395

z3 “ ppw3,0 ˆ 1q ` pw3,2 ˆ a2qq

“ pp0.100522969ˆ 1q ` p0.200294001ˆ 0.562213395qq

“ 0.213130939

a3 “ logisticp0.213130939q

“ 0.55308195

z4 “ ppw4,0 ˆ 1q ` pw4,2 ˆ a2qq

“ pp0.100765216ˆ 1q ` p0.500430187ˆ 0.562213395qq

“ 0.38211377

a4 “ logisticp0.38211377q

“ 0.594382817

z5 “ ppw5,0 ˆ 1q ` pw5,3 ˆ a3q ` pw5,4 ˆ a4qq

“ pp0.105288912ˆ 1q ` p0.402924292ˆ 0.55308195q ` p0.60314233ˆ 0.594382817qq

“ 0.686636503

a5 “ logisticp0.686636503q

“ 0.665218283
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The error with the new weights is:

Error1 “ 0.9´ 0.665218283

0.234781717

Subtracting this new error from the error with the original weights (which
we calculated as part of the calculation for δ3 above) gives us the reduction
in error:

Error Reduction “ 0.236787044´ 0.234781717

“ 0.002005326

(b) Assuming that the processing neurons are ReLUs, that the input to the network is
Neuron 1 = 0.5 and that the desired output for this input is 0.9

i. Calculate the output generated by the network in response to this input.

z2 “ ppw2,0 ˆ 1q ` pw2,1 ˆ 0.5qq

“ pp0.1ˆ 1q ` p0.3ˆ 0.5qq

“ 0.25

a2 “ recti f ierp0.25q

“ maxp0, 0.25q

“ 0.25

z3 “ ppw3,0 ˆ 1q ` pw3,2 ˆ a2qq

“ pp0.1ˆ 1q ` p0.2ˆ 0.25qq

“ 0.15

a3 “ recti f ierp0.15q

“ maxp0, 0.15q

“ 0.15

z4 “ ppw4,0 ˆ 1q ` pw4,2 ˆ a2qq

“ pp0.1ˆ 1q ` p0.5ˆ 0.25qq

“ 0.225
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a4 “ recti f ierp0.225q

“ maxp0, 0.225q

“ 0.225

z5 “ ppw5,0 ˆ 1q ` pw5,3 ˆ a3q ` pw5,4 ˆ a4qq

“ pp0.1ˆ 1q ` p0.4ˆ 0.15q ` p0.6ˆ 0.225qq

“ 0.295

a5 “ recti f ierp0.295q

“ maxp0, 0.295q

“ 0.295

ii. Calculate the δ values for each of the processing neurons in the network (i.e.,
δ5, δ4, δ3, δ2).

Calculations for δ5:

BE

Ba5
“ ´ptk ´ akq

“ ´ p0.9´ 0.295q

“ ´0.605

Ba5

Bz5
“

#

1 if z5 ą 1

0 otherwise

“ 1

δ5 “
BE

Ba5
ˆ
Ba5

Bz5

“ ´0.605ˆ 1

“ ´0.605
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Calculations for δ4:

BE

Ba4
“ w5,4 ˆ δ5

“ 0.6ˆ´0.605

“ ´0.363

Ba4

Bz4
“

#

1 if z4 ą 1

0 otherwise

“ 1

δ4 “
BE

Ba4
ˆ
Ba4

Bz4

“ ´0.363ˆ 1

“ ´0.363

Calculations for δ3:

BE

Ba3
“ w5,3 ˆ δ5

“ 0.4ˆ´0.605

“ ´0.242

Ba3

Bz3
“

#

1 if z3 ą 1

0 otherwise

“ 1

δ3 “
BE

Ba3
ˆ
Ba3

Bz3

“ ´0.242ˆ 1

“ ´0.242
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Calculations for δ2:

BE

Ba2
“ pw3,2 ˆ δ3q ` pw4,2 ˆ δ4q

“ p0.2ˆ´0.242q ` p0.5ˆ´0.363q

“ ´0.2299

Ba2

Bz2
“

#

1 if z2 ą 1

0 otherwise

“ 1

δ2 “
BE

Ba2
ˆ
Ba2

Bz2

“ ´0.2299ˆ 1

“ ´0.2299

iii. Using the δ values you have calculated, calculate the sensitivity of the error of
the network to changes in each of the weights of the network (i.e., BE{Bw5,4,

BE{Bw5,3, BE{Bw5,0, BE{Bw4,2, BE{Bw4,0, BE{Bw3,2, BE{Bw3,0, BE{Bw2,1, BE{Bw2,0).

To calculate the sensitivity of the error of the network to changes in a
weight we multiply the δ for the neuron that uses the weight in its weighted
sum by the activation (or input) that the weight was applied to in the cal-
culation of the weight sum. The calculations for each of the weights is
shown below.

BE

Bw5,4
“ δ5 ˆ a4

“ ´0.605ˆ 0.225

“ ´0.136125

BE

Bw5,3
“ δ5 ˆ a3

“ ´0.605ˆ 0.15

“ ´0.09075
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BE

Bw5,0
“ δ5 ˆ a0

“ ´0.605ˆ 1

“ ´0.605

BE

Bw4,2
“ δ4 ˆ a2

“ ´0.363ˆ 0.25

“ ´0.09075

BE

Bw4,0
“ δ4 ˆ a0

“ ´0.363ˆ 1

“ ´0.363

BE

Bw3,2
“ δ3 ˆ a2

“ ´0.242ˆ 0.25

“ ´0.0605

BE

Bw3,0
“ δ3 ˆ a0

“ ´0.242ˆ 1

“ ´0.242

BE

Bw2,1
“ δ2 ˆ a1

“ ´0.2299ˆ 0.5

“ ´0.11495

BE

Bw2,0
“ δ2 ˆ a0

“ ´0.2299ˆ 1

“ ´0.2299

iv. Assuming a learning rate of α “ 0.1, calculate the updated values for each of
the weights in the network (w5,4, w5,3, w5,0, w4,2, w4,0, w3,2, w3,0,, w2,1, w2,0,)
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after the processing of this single training example.

We update weights as follows:

wt`1
i,k “ wt

i,k ´ αˆ
BE

Bwi,k

The calculation for each weight update is below:

wt`1
5,4 “ wt

5,4 ´ αˆ
BE

Bw5,4

“ 0.6´ p0.1ˆ´0.136125q

“ 0.6136125

wt`1
5,3 “ wt

5,3 ´ αˆ
BE

Bw5,3

“ 0.4´ p0.1ˆ´0.09075q

“ 0.409075

wt`1
5,0 “ wt

5,0 ´ αˆ
BE

Bw5,0

“ 0.1´ p0.1ˆ´0.605q

“ 0.1605

wt`1
4,2 “ wt

4,2 ´ αˆ
BE

Bw4,2

“ 0.5´ p0.1ˆ´0.09075q

“ 0.509075

wt`1
4,0 “ wt

4,0 ´ αˆ
BE

Bw4,0

“ 0.1´ p0.1ˆ´0.363q

“ 0.1363

wt`1
3,2 “ wt

3,2 ´ αˆ
BE

Bw3,2

“ 0.2´ p0.1ˆ´0.0605q

“ 0.20605
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wt`1
3,0 “ wt

3,0 ´ αˆ
BE

Bw3,0

“ 0.1´ p0.1ˆ´0.242q

“ 0.1242

wt`1
2,1 “ wt

2,1 ´ αˆ
BE

Bw2,1

“ 0.3´ p0.1ˆ´0.11495q

“ 0.311495

wt`1
2,0 “ wt

2,0 ´ αˆ
BE

Bw2,0

“ 0.1´ p0.1ˆ´0.2299q

“ 0.12299

v. Calculate the reduction in the error of the network for this example using the
new weights, compared with using the original weights.

The output for the network using the new weights is:

z2 “ ppw2,0 ˆ 1q ` pw2,1 ˆ 0.5qq

“ pp0.12299ˆ 1q ` p0.311495ˆ 0.5qq

“ 0.2787375

a2 “ recti f ierp0.2787375q

“ maxp0, 0.2787375q

“ 0.2787375

z3 “ ppw3,0 ˆ 1q ` pw3,2 ˆ a2qq

“ pp0.1242ˆ 1q ` p0.20605ˆ 0.2787375qq

“ 0.181633862
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a3 “ recti f ierp0.181633862q

“ maxp0, 0.181633862q

“ 0.181633862

z4 “ ppw4,0 ˆ 1q ` pw4,2 ˆ a2qq

“ pp0.1363ˆ 1q ` p0.509075ˆ 0.2787375qq

“ 0.278198293

a4 “ recti f ierp0.278198293q

“ maxp0, 0.278198293q

“ 0.278198293

z5 “ ppw5,0 ˆ 1q ` pw5,3 ˆ a3q ` pw5,4 ˆ a4qq

“ pp0.1605ˆ 1q ` p0.409075ˆ 0.181633862q ` p0.6136125ˆ 0.278198293qq

“ 0.405507822

a5 “ recti f ierp0.405507822q

“ maxp0, 0.405507822q

“ 0.405507822

The error with the new weights is:

Error1 “ 0.9´ 0.405507822

0.494492178

Subtracting this new error from the error with the original weights (which
we calculated as part of the calculation for δ3 above) gives us the reduction
in error:

Error Reduction “ 0.605´ 0.494492178

“ 0.110507822

6. The following image illustrates the topology of a feedforward neural network that has
two sensing neurons (Neurons 1 and 2), two hidden processing neuron (Neurons 3,
and 4), and two processing output neurons (Neurons 5 and 6).
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1 3 5

2 4 6

w3,1=−0.1
w
4,1=0.2

w3,
2
=−0.2

w4,2=0.3

w5,3=−0.1
w
6,3=0.1

w5,
4
=0.2

w6,4=−0.2

w3,0=0.1

w4,0=0.1

w5,0=0.1

w6,0=0.1

(a) Assuming that the processing neurons use logistic activation functions, that the
input to the network is Neuron 1 = 0.3 and Neuron 2 = 0.6, and that the desired
output for this input is Neuron 5 = 0.7 and Neuron 6 = 0.4:

i. Calculate the output generated by the network in response to this input.

z3 “ ppw3,0 ˆ 1q ` pw3,1 ˆ a1q ` pw3,2 ˆ a2qq

“ pp0.1ˆ 1q ` p´0.1ˆ 0.3q ` p´0.2ˆ 0.6qq

“ ´0.05

a3 “ logisticp´0.05q

“ 0.487502604

z4 “ ppw4,0 ˆ 1q ` pw4,1 ˆ a1q ` pw4,2 ˆ a2qq

“ pp0.1ˆ 1q ` p0.2ˆ 0.3q ` p0.3ˆ 0.6qq

“ 0.34

a4 “ logisticp0.34q

“ 0.584190523

z5 “ ppw5,0 ˆ 1q ` pw5,3 ˆ a3q ` pw5,4 ˆ a4qq

“ pp0.1ˆ 1q ` p´0.1ˆ 0.487502604q ` p0.2ˆ 0.584190523qq

“ 0.168087844
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a5 “ logisticp0.168087844q

“ 0.541923301

z6 “ ppw6,0 ˆ 1q ` pw6,3 ˆ a3q ` pw6,4 ˆ a4qq

“ pp0.1ˆ 1q ` p0.1ˆ 0.487502604q ` p´0.2ˆ 0.584190523qq

“ 0.031912156

a6 “ logisticp0.031912156q

“ 0.507977362

ii. Calculate the sum of squared errors for this network for this example.

S S E “ pt5 ´ a5q
2 ` pt6 ´ a6q

2

“ p0.7´ 0.541923301q2 ` p0.4´ 0.507977362q2

“ p0.158076699q2 ` p´0.107977362q2

“ 0.036647354

iii. Calculate the δ values for each of the processing neurons in the network (i.e.,
δ6, δ5, δ4, δ3).

Calculations for δ6:

BE

Ba6
“ ´pt6 ´ a6q

“ ´ p0.4´ 0.507977362q

“ ´ p´0.107977362q

“ 0.107977362

Ba6

Bz6
“ logisticpz6q ˆ p1´ logisticpz6qq

“ 0.507977362ˆ p1´ 0.507977362q

“ 0.249936362
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δ6 “
BE

Ba6
ˆ
Ba6

Bz6

“ 0.107977362ˆ 0.249936362

“ 0.026987469

Calculations for δ5:

BE

Ba5
“ ´pt5 ´ a5q

“ ´ p0.7´ 0.541923301q

“ ´0.158076699

Ba5

Bz5
“ logisticpz5q ˆ p1´ logisticpz5qq

“ 0.541923301ˆ p1´ 0.541923301q

“ ´0.039241345

δ3 “
BE

Ba5
ˆ
Ba5

Bz5

“ ´0.158076699ˆ 0.248242437

“ ´0.039241345

Calculations for δ4:

BE

Ba4
“ pw5,4 ˆ δ5q ` pw6,4 ˆ δ6q

“ p0.2ˆ´0.039241345q ` p´0.2ˆ 0.026987469q

“ ´0.013245763

Ba4

Bz4
“ logisticpz4q ˆ p1´ logisticpz4qq

“ 0.584190523ˆ p1´ 0.584190523q

“ 0.242911956

δ4 “
BE

Ba4
ˆ
Ba4

Bz4

“ ´0.013245763ˆ 0.242911956

“ ´0.003217554
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Calculations for δ3:

BE

Ba3
“ pw5,3 ˆ δ5q ` pw6,3 ˆ δ6q

“ p´0.1ˆ´0.039241345q ` p0.1ˆ 0.026987469q

“ 0.006622881

Ba3

Bz3
“ logisticpz3q ˆ p1´ logisticpz3qq

“ 0.487502604ˆ p1´ 0.487502604q

“ 0.249843815

δ3 “
BE

Ba3
ˆ
Ba3

Bz3

“ 0.006622881ˆ 0.249843815

“ 0.001654686

iv. Using the δ values you calculated above, calculate the sensitivity of the error
of the network to changes in each of the weights of the network (i.e., BE{Bw6,4,
BE{Bw6,3, BE{Bw6,0, BE{Bw5,4, BE{Bw5,3, BE{Bw5,0, BE{Bw4,2, BE{Bw4,1,
BE{Bw4,0, BE{Bw3,2, BE{Bw3,1, BE{Bw3,0).

To calculate the sensitivity of the error of the network to changes in a
weight we multiply the δ for the neuron that uses the weight in its weighted
sum by the activation (or input) that the weight was applied to in the cal-
culation of the weight sum. The calculations for each of the weights is
shown below.

BE

Bw6,4
“ δ6 ˆ a4

“ 0.026987469ˆ 0.584190523

“ 0.015765824

BE

Bw6,3
“ δ6 ˆ a3

“ 0.026987469ˆ 0.487502604

“ 0.013156461
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BE

Bw5,0
“ δ6 ˆ a0

“ 0.026987469ˆ 1

“ 0.026987469

BE

Bw5,4
“ δ5 ˆ a4

“ ´0.039241345ˆ 0.584190523

“ ´0.022924422

BE

Bw5,3
“ δ5 ˆ a3

“ ´0.039241345ˆ 0.487502604

“ ´0.019130258

BE

Bw5,0
“ δ5 ˆ a0

“ ´0.039241345ˆ 1

“ ´0.039241345

BE

Bw4,2
“ δ4 ˆ a2

“ ´0.003217554ˆ 0.6

“ ´0.001930532

BE

Bw4,1
“ δ4 ˆ a1

“ ´0.003217554ˆ 0.3

“ ´0.000965266

BE

Bw4,0
“ δ4 ˆ a0

“ ´0.003217554ˆ 1

“ ´0.003217554
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BE

Bw3,2
“ δ3 ˆ a2

“ 0.001654686ˆ 0.6

“ 0.000992812

BE

Bw3,1
“ δ3 ˆ a1

“ 0.001654686ˆ 0.3

“ 0.000496406

BE

Bw3,0
“ δ3 ˆ a0

“ 0.001654686ˆ 1

“ 0.001654686

v. Assuming a learning rate of α “ 0.1, calculate the updated values for each of
the weights in the network (w6,4,w6,3,w6,0,w5,4, w5,3, w5,0, w4,2,w4,1,w4,0, w3,2,
w3,1, w3,0,) after the processing of this single training example.

We update weights as follows:

wt`1
i,k “ wt

i,k ´ αˆ
BE

Bwi,k

The calculation for each weight update is below:

wt`1
6,4 “ wt

6,4 ´ αˆ
BE

Bw6,4

“ ´0.2´ p0.1ˆ 0.015765824q

“ ´0.201576582

wt`1
6,3 “ wt

6,3 ´ αˆ
BE

Bw6,3

“ 0.1´ p0.1ˆ 0.013156461q

“ 0.098684354
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wt`1
6,0 “ wt

5,0 ´ αˆ
BE

Bw6,0

“ 0.1´ p0.1ˆ 0.026987469q

“ 0.097301253

wt`1
5,4 “ wt

5,4 ´ αˆ
BE

Bw5,4

“ 0.2´ p0.1ˆ´0.022924422q

“ 0.202292442

wt`1
5,3 “ wt

5,3 ´ αˆ
BE

Bw5,3

“ ´0.1´ p0.1ˆ´0.019130258q

“ ´0.098086974

wt`1
5,0 “ wt

5,0 ´ αˆ
BE

Bw5,0

“ 0.1´ p0.1ˆ´0.039241345q

“ 0.103924135

wt`1
4,2 “ wt

4,2 ´ αˆ
BE

Bw4,2

“ 0.3´ p0.1ˆ´0.001930532q

“ 0.300193053

wt`1
4,1 “ wt

4,1 ´ αˆ
BE

Bw4,1

“ 0.2´ p0.1ˆ´0.000965266q

“ 0.200096527
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wt`1
4,0 “ wt

4,0 ´ αˆ
BE

Bw4,0

“ 0.1´ p0.1ˆ´0.003217554q

“ 0.100321755

wt`1
3,2 “ wt

3,2 ´ αˆ
BE

Bw3,2

“ ´0.2´ p0.1ˆ 0.000992812q

“ ´0.200099281

wt`1
3,1 “ wt

3,1 ´ αˆ
BE

Bw3,1

“ ´0.1´ p0.1ˆ 0.000496406q

“ ´0.100049641

wt`1
3,0 “ wt

3,0 ´ αˆ
BE

Bw3,0

“ 0.1´ p0.1ˆ 0.001654686q

“ 0.099834531

vi. Calculate the reduction in the sum of squared error of the network for this ex-
ample using the new weights, compared with using the original weights.

The output for the network using the new weights is:

z3 “ ppw3,0 ˆ 1q ` pw3,1 ˆ a1q ` pw3,2 ˆ a2qq

“ pp0.099834531ˆ 1q ` p´0.100049641ˆ 0.3q ` p´0.200099281ˆ 0.6qq

“ ´0.050239929

a3 “ logisticp´0.050239929q

“ 0.487442659



213

z4 “ ppw4,0 ˆ 1q ` pw4,1 ˆ a1q ` pw4,2 ˆ a2qq

“ pp0.100321755ˆ 1q ` p0.200096527ˆ 0.3q ` p0.300193053ˆ 0.6qq

“ 0.340466545

a4 “ logisticp0.340466545q

“ 0.584303848

z5 “ ppw5,0 ˆ 1q ` pw5,3 ˆ a3q ` pw5,4 ˆ a4qq

“ pp0.103924135ˆ 1q ` p´0.098086974ˆ 0.487442659q ` p0.202292442ˆ 0.584303848qq

“ 0.174312611

a5 “ logisticp0.174312611q

“ 0.543468144

z6 “ ppw6,0 ˆ 1q ` pw6,3 ˆ a3q ` pw6,4 ˆ a4qq

“ pp0.097301253ˆ 1q ` p0.098684354ˆ 0.487442659q ` p´0.201576582ˆ 0.584303848qq

“ 0.027622244

a6 “ logisticp0.027622244q

“ 0.506905122

If we now calculate the sum of squared errors on this example for this
network using the new weights we get:

S S E “ pt5 ´ a5q
2 ` pt6 ´ a6q

2

“ p0.7´ 0.543468144q2 ` p0.4´ 0.506905122q2

“ p0.156531856q2 ` p´0.106905122q2

“ 0.035930927

Subtracting this new error from the error with the original weights (which
we calculated as part of the calculation for δ3 above) gives us the reduction
in error:

Error Reduction “ 0.036647354´ 0.035930927

“ 0.000716426



214 Chapter 8 Deep Learning (Exercise Solutions)

(b) Assuming that the processing neurons use a rectifier activation functions, that the
input to the network is Neuron 1 = 0.3 and Neuron 2 = 0.6 and that the desired
output for this input is Neuron 5 = 0.7 and Neuron 6 = 0.4:

i. Calculate the output generated by the network in response to this input.

z3 “ ppw3,0 ˆ 1q ` pw3,1 ˆ a1q ` pw3,2 ˆ a2qq

“ pp0.1ˆ 1q ` p´0.1ˆ 0.3q ` p´0.2ˆ 0.6qq

“ ´0.05

a3 “ recti f ierp´0.05q

“ maxp0,´0.05q

“ 0

z4 “ ppw4,0 ˆ 1q ` pw4,1 ˆ a1q ` pw4,2 ˆ a2qq

“ pp0.1ˆ 1q ` p0.2ˆ 0.3q ` p0.3ˆ 0.6qq

“ 0.34

a4 “ recti f ierp0.34q

“ maxp0, 0.34q

“ 0.34

z5 “ ppw5,0 ˆ 1q ` pw5,3 ˆ a3q ` pw5,4 ˆ a4qq

“ pp0.1ˆ 1q ` p´0.1ˆ 0q ` p0.2ˆ 0.34qq

“ 0.168

a5 “ recti f ierp0.168q

“ maxp0, 0.168q

“ 0.168

z6 “ ppw6,0 ˆ 1q ` pw6,3 ˆ a3q ` pw6,4 ˆ a4qq

“ pp0.1ˆ 1q ` p0.1ˆ 0q ` p´0.2ˆ 0.34qq

“ 0.032
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a6 “ recti f ierp0.032q

“ maxp0, 0.032q

“ 0.032

ii. Calculate the sum of squared errors for this network on this example.

S S E “ pt5 ´ a5q
2 ` pt6 ´ a6q

2

“ p0.7´ 0.168q2 ` p0.4´ 0.032q2

“ p0.532q2 ` p0.368q2

“ 0.418448

iii. Calculate the δ values for each of the processing neurons in the network (i.e.,
δ6, δ5, δ4, δ3).

Calculations for δ6:

BE

Ba6
“ ´pt6 ´ a6q

“ ´ p0.4´ 0.032q

“ ´ p0.368q

“ ´0.368

Ba6

Bz6
“

#

1 if z6 ą 1

0 otherwise

“ 1

δ6 “
BE

Ba6
ˆ
Ba6

Bz6

“ ´0.368ˆ 1

“ ´0.368

Calculations for δ5:

BE

Ba5
“ ´pt5 ´ a5q

“ ´ p0.7´ 0.168q

“ ´0.532
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Ba5

Bz5
“

#

1 if z5 ą 1

0 otherwise

“ 1

δ5 “
BE

Ba5
ˆ
Ba5

Bz5

“ ´0.532ˆ 1

“ ´0.532

Calculations for δ4:

BE

Ba4
“ pw5,4 ˆ δ5q ` pw6,4 ˆ δ6q

“ p0.2ˆ´0.532q ` p´0.2ˆ´0.368q

“ ´0.0328

Ba4

Bz4
“

#

1 if z4 ą 1

0 otherwise

“ 1

δ4 “
BE

Ba4
ˆ
Ba4

Bz4

“ ´0.0328ˆ 1

“ ´0.0328

Calculations for δ3:

BE

Ba3
“ pw5,3 ˆ δ5q ` pw6,3 ˆ δ6q

“ p´0.1ˆ´0.532q ` p0.1ˆ´0.368q

“ 0.0164

Ba3

Bz3
“

#

1 if z3 ą 1

0 otherwise

“ 0
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δ3 “
BE

Ba3
ˆ
Ba3

Bz3

“ 0.0164ˆ 0

“ 0

iv. Using the δ values you calculated above, calculate the sensitivity of the error
of the network to changes in each of the weights of the network (i.e., BE{Bw6,4,
BE{Bw6,3, BE{Bw6,0, BE{Bw5,4, BE{Bw5,3, BE{Bw5,0, BE{Bw4,2, BE{Bw4,1,
BE{Bw4,0, BE{Bw3,2, BE{Bw3,1, BE{Bw3,0).

To calculate the sensitivity of the error of the network to changes in a
weight we multiply the δ for the neuron that uses the weight in its weighted
sum by the activation (or input) that the weight was applied to in the cal-
culation of the weight sum. The calculations for each of the weights is
shown below.

BE

Bw6,4
“ δ6 ˆ a4

“ ´0.368ˆ 0.34

“ ´0.12512

BE

Bw6,3
“ δ6 ˆ a3

“ ´0.368ˆ 0

“ 0

BE

Bw5,0
“ δ6 ˆ a0

“ ´0.368ˆ 1

“ ´0.368

BE

Bw5,4
“ δ5 ˆ a4

“ ´0.532ˆ 0.34

“ ´0.18088
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BE

Bw5,3
“ δ5 ˆ a3

“ ´0.532ˆ 0

“ 0

BE

Bw5,0
“ δ5 ˆ a0

“ ´0.532ˆ 1

“ ´0.532

BE

Bw4,2
“ δ4 ˆ a2

“ ´0.0328ˆ 0.6

“ ´0.01968

BE

Bw4,1
“ δ4 ˆ a1

“ ´0.0328ˆ 0.3

“ ´0.00984

BE

Bw4,0
“ δ4 ˆ a0

“ ´0.0328ˆ 1

“ ´0.0328

BE

Bw3,2
“ δ3 ˆ a2

“ 0ˆ 0.6

“ 0

BE

Bw3,1
“ δ3 ˆ a1

“ 0ˆ 0.3

“ 0
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BE

Bw3,0
“ δ3 ˆ a0

“ 0ˆ 1

“ 0

v. Assuming a learning rate of α “ 0.1, calculate the updated values for each of
the weights in the network (w6,4,w6,3,w6,0,w5,4, w5,3, w5,0, w4,2,w4,1,w4,0, w3,2,
w3,1, w3,0,) after the processing of this single training example.

We update weights as follows:

wt`1
i,k “ wt

i,k ´ αˆ
BE

Bwi,k

The calculation for each weight update is below:

wt`1
6,4 “ wt

6,4 ´ αˆ
BE

Bw6,4

“ ´0.2´ p0.1ˆ´0.12512q

“ ´0.187488

wt`1
6,3 “ wt

6,3 ´ αˆ
BE

Bw6,3

“ 0.1´ p0.1ˆ 0q

“ 0.1

wt`1
6,0 “ wt

5,0 ´ αˆ
BE

Bw6,0

“ 0.1´ p0.1ˆ´0.368q

“ 0.1368

wt`1
5,4 “ wt

5,4 ´ αˆ
BE

Bw5,4

“ 0.2´ p0.1ˆ´0.18088q

“ 0.218088
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wt`1
5,3 “ wt

5,3 ´ αˆ
BE

Bw5,3

“ ´0.1´ p0.1ˆ 0q

“ ´0.1

wt`1
5,0 “ wt

5,0 ´ αˆ
BE

Bw5,0

“ 0.1´ p0.1ˆ´0.532q

“ 0.1532

wt`1
4,2 “ wt

4,2 ´ αˆ
BE

Bw4,2

“ 0.3´ p0.1ˆ´0.01968q

“ 0.301968

wt`1
4,1 “ wt

4,1 ´ αˆ
BE

Bw4,1

“ 0.2´ p0.1ˆ´0.00984q

“ 0.200984

wt`1
4,0 “ wt

4,0 ´ αˆ
BE

Bw4,0

“ 0.1´ p0.1ˆ´0.0328q

“ 0.10328

wt`1
3,2 “ wt

3,2 ´ αˆ
BE

Bw3,2

“ ´0.2´ p0.1ˆ 0q

“ ´0.2

wt`1
3,1 “ wt

3,1 ´ αˆ
BE

Bw3,1

“ ´0.1´ p0.1ˆ 0q

“ ´0.1
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wt`1
3,0 “ wt

3,0 ´ αˆ
BE

Bw3,0

“ 0.1´ p0.1ˆ 0q

“ 0.1

vi. Calculate the reduction in the sum of squared error of the network for this ex-
ample using the new weights, compared with using the original weights.

The output for the network using the new weights is:

z3 “ ppw3,0 ˆ 1q ` pw3,1 ˆ a1q ` pw3,2 ˆ a2qq

“ pp0.1ˆ 1q ` p´0.1ˆ 0.3q ` p´0.2ˆ 0.6qq

“ ´0.05

a3 “ recti f ierp´0.05q

“ maxp0,´0.05q

“ 0

z4 “ ppw4,0 ˆ 1q ` pw4,1 ˆ a1q ` pw4,2 ˆ a2qq

“ pp0.10328ˆ 1q ` p0.200984ˆ 0.3q ` p0.301968ˆ 0.6qq

“ 0.344756

a4 “ recti f ierp0.344756q

“ maxp0, 0.344756q

“ 0.344756

z5 “ ppw5,0 ˆ 1q ` pw5,3 ˆ a3q ` pw5,4 ˆ a4qq

“ pp0.1532ˆ 1q ` p´0.1ˆ 0q ` p0.218088ˆ 0.344756qq

“ 0.228387147

a5 “ recti f ierp0.228387147q

“ maxp0, 0.228387147q

“ 0.228387147
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z6 “ ppw6,0 ˆ 1q ` pw6,3 ˆ a3q ` pw6,4 ˆ a4qq

“ pp0.1368ˆ 1q ` p0.1ˆ 0q ` p´0.187488ˆ 0.344756qq

“ 0.072162387

a6 “ recti f ierp0.072162387q

“ maxp0, 0.072162387q

“ 0.072162387

If we now calculate the sum of squared errors on this example for this
network using the new weights we get:

S S E “ pt5 ´ a5q
2 ` pt6 ´ a6q

2

“ p0.7´ 0.228387147q2 ` p0.4´ 0.072162387q2

“ p0.471612853q2 ` p0.327837613q2

“ 0.329896184

Subtracting this new error from the error with the original weights (which
we calculated as part of the calculation for δ3 above) gives us the reduction
in error:

Error Reduction “ 0.418448´ 0.329896184

“ 0.088551816

7. Assuming a fully connected feedforward network where all the neurons uses a linear
activation function (i.e., ai “ zi) and with the following topology:

(a) 100 neurons in the input layer

(b) 5 hidden layers with 2,000 neurons in each layer

(c) 10 neurons in the output layer

If all the inputs to the network have been standardized to have a mean value of 0 and
a standard deviation of 1, and the initial weights for the network are sampled from a
normal distribution with mean 0.0 and standard deviation of σ “ 0.01, then:

(a) Calculate the variance of the z values across for the neurons in the first hidden
layer in the first iteration of training.
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varpZp1q “ np1qin ˆ varpWp1qq ˆ varpdp1q (8.1)

“ 100ˆ 0.0001ˆ 1

“ 0.01

(b) Calculate the variance of the z values across for the neurons in the last hidden layer
in the first iteration of training.

varpZp5q “ pnp2,...,5qin ˆ varpWp2,...,5qq4 ˆ varpdp2q (8.2)

“ p2000ˆ 0.0001q4 ˆ 0.01

“ 0.00016

Assuming that the variance of the δs for the output layer is equal to 1:

(a) Calculate the variance of the δs across for the neurons in the last hidden layer in
the first iteration of training.

varpδp5q “ np5qout ˆ varpWp5qq ˆ varpdp5q (8.3)

“ 10ˆ 0.0001ˆ 1

“ 0.001

(b) Calculate the variance of the δs values across for the neurons in the first hidden
layer in the first iteration of training.

varpδp1q “ pnp1,...,4qout ˆ varpWp1,...,4qq4 ˆ varpdp4q (8.4)

“ p2000ˆ 0.0001q4 ˆ 0.001

“ 0.0000016

(c) Is the training dynamic of this network stable, or is it suffering from vanishing or
exploding gradients?

The training dynamic of this network is exhibiting vanishing gradients be-
cause the variance of the δs is reducing through each layer that they are
backpropagated through.

˚ 8. Assuming a network architecture that has four neurons in a softmax output layer. If
the one-hot encoding of the target for the current training example is t “ r0, 0, 1, 0s
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and the logits for the four neurons in the softmax output layer for this example are
r0, 0.5, 0.25, 0.75s, then what is the δ value for each of the four neurons?

logits 0 0.5 0.25 0.75
eli 1 1.648721271 1.284025417 2.117000017
ř

i eli 6.049746704
ai 0 0.082648088 0.041324044 0.123972133
t 0 0 1 0
δs 0 0.082648088 0.958675956 0.123972133

˚ 9. Assuming a feedforward neural network that has 4 neurons in hidden layer k and that
we are training this network using inverted dropout with ρ “ 0.5. If the activations
for the neurons in layer k are as follows: r0.2, 0, 4, 0, 3, 0.1s and the DropMask for
layer k is r1, 0, 1, 0s, calculate the activation vector that is actually propagated to layer
k ` 1 after inverted dropout has been applied.

a 0.2 0.4 0.3 0.1
DropMask 1 0 1 0
a1 0.2 0 0.3 0
a2 “ a1 ˆ 1

ρ
0.4 0 0.6 0

˚ 10. The figure below illustrates a layer of a convolutional neural network that is process-
ing a one-dimensional input. For ease of reference each of the neurons in the network
has been labeled: 1, 2, 3, 4, 5, 6, 7. The architecture of the network consists of ReLUs
that share a filter (Neurons 1, 2, 3, 4), followed by a sub-sampling layer containing two
max pooling units (Neurons 5, 6), and then a fully connected layer containing a single
ReLU (Neuron 7). The ReLU in the first layer has a 3-by-1 receptive field, and there is
a stride of 1 used in this layer. The max pooling units have a receptive field of 2-by-1,
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and there is no overlap between the receptive fields of the max pooling units.

1

1

1

0

0

0

Input
Neurons Sharing

Filter

1

2

3

4

w0 = 0.75

w1 =+1

w2 =+1

w3 =−1







Filter

?

?

?

?

Feature Map Max

Pooling

5

6

?

?
7

1 w70 = 0.1

w75 = 0.2

w76 = 0.5
?

(a) What value will this network output?

z1 “ 1.75

z2 “ 2.75

z3 “ 1.75

z4 “ 0.75

a1 “ 1.75

a2 “ 2.75

a3 “ 1.75

a4 “ 0.75

a5 “ 2.75

a6 “ 1.75

z7 “ 1.525

a7 “ 1.525

(b) Assuming the target output for this input is 1, calculate the δ for each neuron in
the network.

Error “ 1´ 1.525 “ ´0.525
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Neuron 7
BE

Ba
“ ´0.525ˆ´1 “ 0.525

Ba
Bz
“ 1ReLU with output ą 1

δ7 “
BE

Ba
ˆ
Ba
Bz
“ 0.525

Neuron 6
BE

Ba
“ δ7 ˆ w76 “ 0.525ˆ 0.5 “ 0.2625

Ba
Bz
“ 1 ReLU with output ą 1

δ6 “
BE

Ba
ˆ
Ba
Bz
“ 0.2625

Neuron 5
BE

Ba
“ δ7 ˆ w75 “ 0.525ˆ 0.2 “ 0.105

Ba
Bz
“ 1 ReLU with output ą 1

δ5 “
BE

Ba
ˆ
Ba
Bz
“ 0.105

Neurons 1 and 2 are in the local receptive field of Neuron 5 (a max pool unit)
and Neurons 3 and 4 are in the local receptive field of neuron 6 (the other
max pool unit).
Neuron 4

δ4 “ 0 Not max output in receptive field of max pool 6
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Neuron 3
BE

Ba
“ δ6 ˆ w63 “ 0.2625ˆ 1 “ 0.2625

Ba
Bz
“ 1 ReLU with output ą 1

δ3 “
BE

Ba
ˆ
Ba
Bz
“ 0.2625

Neuron 2
BE

Ba
“ δ5 ˆ w52 “ 0.105ˆ 1 “ 0.105

Ba
Bz
“ 1 ReLU with output ą 1

δ2 “
BE

Ba
ˆ
Ba
Bz
“ 0.105

Neuron 1

δ1 “ 0 Not max output in receptive field of max pool 5

(c) Calculate the weight update for each weight in the filter: w0,w1,w2,w3.

w0

δ1 ˆ input “0.0000ˆ 1 “0.0000

δ2 ˆ input “0.1050ˆ 1 “0.1050

δ3 ˆ input “0.2626ˆ 1 “0.2626

δ4 ˆ input “0.0000ˆ 1 “0.0000

∆w0 “0.3675
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w1

δ1 ˆ input “0.0000ˆ 1 “0.0000

δ2 ˆ input “0.1050ˆ 1 “0.1050

δ3 ˆ input “0.2626ˆ 1 “0.2626

δ4 ˆ input “0.0000ˆ 0 “0.0000

∆w1 “0.3675

w2

δ1 ˆ input “0.0000ˆ 1 “0.0000

δ2 ˆ input “0.1050ˆ 1 “0.1050

δ3 ˆ input “0.2626ˆ 0 “0.0000

δ4 ˆ input “0.0000ˆ 0 “0.0000

∆w2 “0.1050

w3

δ1 ˆ input “0.0000ˆ 1 “0.0000

δ2 ˆ input “0.1050ˆ 0 “0.0000

δ3 ˆ input “0.2626ˆ 0 “0.0000

δ4 ˆ input “0.0000ˆ 0 “0.0000

∆w3 “ 0.000

˚ 11. Assume a simple recurrent neural network architecture matching the one shown in the
detailed schematic on the left of Figure 8.37[502]. This network has two input neurons,
three ReLUs in the hidden layer, and two ReLUs in the output layer. Also, all the
bias terms in the network are equal to 0.1, and the weight matrices of the network
(excluding bias terms) are listed in Equation (8.5)[228].
»

—

–

´0.07 0.05
´0.04 0.1
´0.05 ´0.05

fi

ffi

fl

looooooooooomooooooooooon

Whx

»

—

–

´0.22 ´0.1 0.05
´0.04 ´0.09 ´0.06
´0.09 0 ´0.08

fi

ffi

fl

looooooooooooooooomooooooooooooooooon

Whh

«

0.06 ´0.01 ´0.18
´0.06 0.13 0.14

ff

looooooooooooooooomooooooooooooooooon

Wyh

(8.5)

(a) If xt “ r1, 0.5s and ht´1 “ r0.05, 0.2, 0.15s, calculate the value of yt.
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Whx ¨ xt “

»

—

–

´0.045
0.01
´0.075

fi

ffi

fl

Whh ¨ ht´1 “

»

—

–

´0.0235
´0.029
´0.0165

fi

ffi

fl

ht “ ϕReLU

¨

˚

˝

»

—

–

´0.045 ` ´0.0235 ` 0.1
0.01 ` ´0.029 ` 0.1
´0.075 ` ´0.0165 ` 0.1

fi

ffi

fl

˛

‹

‚
“

»

—

–

0.0315
0.081

0.0085

fi

ffi

fl

Augment ht with the bias input then:

yt “ ϕReLU pWyh ¨ htq

“

«

0.1 0.06 ´0.01 ´0.18
0.1 ´0.06 0.13 0.14

ff

¨

»

—

—

—

–

1
0.0315
0.081
0.0085

fi

ffi

ffi

ffi

fl

“

«

0.09955
0.10983

ff

(b) Assuming that the target output for time tt “ r0, 1s, calculate the δ value for each
neuron in the network.

Error7 “ 1´ 0.10983 “ 0.89017
BE

Ba7
“ ´0.89017

Ba7

Bz7
“ 1

δ7 “
BE

Ba7
ˆ
Ba7

Bz7
“ ´0.89017
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Error6 “ 0´ 0.09955 “ ´0.09955
BE

Ba6
“ 0.09955

Ba6

Bz6
“ 1

δ6 “
BE

Ba6
ˆ
Ba6

Bz6
“ 0.09955

BE

Ba5
“ pδ7 ˆ w7,5q ` pδ6 ˆ w6,5q

“ p´0.89017ˆ 0.14q ` p0.09955ˆ´0.18q

“ ´0.1425428
Ba5

Bz5
“ 1

δ5 “
BE

Ba4
ˆ
Ba4

Bz4
“ ´0.1425428

BE

Ba4
“ pδ7 ˆ w7,4q ` pδ6 ˆ w6,4q

“ p´0.89017ˆ 0.13q ` p0.09955ˆ´0.01q

“ ´0.1167176
Ba4

Bz4
“ 1

δ4 “
BE

Ba4
ˆ
Ba4

Bz4
“ ´0.1167176

BE

Ba3
“ pδ7 ˆ w7,3q ` pδ6 ˆ w6,3q

“ p´0.89017ˆ´0.06q ` p0.09955ˆ 0.06q

“ 0.0593832
Ba3

Bz3
“ 1

δ3 “
BE

Ba3
ˆ
Ba3

Bz3
“ 0.0593832
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˚ 12. Assuming that the LSTM cell state propagated forward from the last time-step is

ct´1 “

«

`0.5
´0.5

ff

(a) What will be the value of ct if

ft “

«

`1.00
`1.00

ff

i:t “

«

`1.00
`1.00

ff

i;t “

«

´0.25
`0.25

ff

c; “ ct´1 d ft

“

«

`0.5
´0.5

ff

d

«

`1.00
`1.00

ff

“

«

`0.5
´0.5

ff

it “ i:t d i;t

“

«

`1.00
`1.00

ff

d

«

´0.25
`0.25

ff

“

«

´0.25
`0.25

ff

ct “ c; ` it

“

«

`0.5
´0.5

ff

`

«

´0.25
`0.25

ff

“

«

`0.25
´0.25

ff

(b) What will be the value of ct if

ft “

«

`1.00
`1.00

ff

i:t “

«

0.00
0.00

ff

i;t “

«

´0.25
`0.25

ff
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c; “ ct´1 d ft

“

«

`0.5
´0.5

ff

d

«

`1.00
`1.00

ff

“

«

`0.5
´0.5

ff

it “ i:t d i;t

“

«

0.00
0.00

ff

d

«

´0.25
`0.25

ff

“

«

0.00
0.00

ff

ct “ c; ` it

“

«

`0.5
´0.5

ff

`

«

0.00
0.00

ff

“

«

`0.5
´0.5

ff

(c) What will be the value of ct if

ft “

«

0.00
0.00

ff

i:t “

«

`1.00
`1.00

ff

i;t “

«

´0.25
`0.25

ff

c; “ ct´1 d ft

“

«

`0.5
´0.5

ff

d

«

0.00
0.00

ff

“

«

0.00
0.00

ff

it “ i:t d i;t

“

«

`1.00
`1.00

ff

d

«

´0.25
`0.25

ff

“

«

´0.25
`0.25

ff

ct “ c; ` it

“

«

0.00
0.00

ff

`

«

´0.25
`0.25

ff

“

«

´0.25
`0.25

ff

(d) What will be the value of ct if

ft “

«

0.00
0.00

ff

i:t “

«

0.00
0.00

ff

i;t “

«

´0.25
`0.25

ff
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c; “ ct´1 d ft

“

«

`0.5
´0.5

ff

d

«

0.00
0.00

ff

“

«

0.00
0.00

ff

it “ i:t d i;t

“

«

0.00
0.00

ff

d

«

´0.25
`0.25

ff

“

«

0.00
0.00

ff

ct “ c; ` it

“

«

0.00
0.00

ff

`

«

0.00
0.00

ff

“

«

0.00
0.00

ff

˚ 13. Equations (8.132)[519] to (8.138)[520] step through the calculation of the weight update
for Wp f q in the context of the forward pass presented in Figure 8.41[514] and under the
assumption that the following error gradients are already calculated:

BEt`1

Bct
“

«

0.35
0.50

ff

BEt`1

Bht
“

«

0.75
0.25

ff

BEt

Bot
“

«

0.15
0.60

ff

(a) Given this context, calculate Et
Bct´1

.

From Equation (8.125)[518] we know that:

BE

Bct´1
“
BE

Bct
d ft

From Equation (8.135)[519] we know that:

BE

Bct
“

«

0.867455753
0.941532531

ff

From Figure 8.41[514] we know that:

ft “

«

0.535440568
0.517492858

ff
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And so:

BE

Bct´1
“

«

0.867455753
0.941532531

ff

d

«

0.535440568
0.517492858

ff

“

«

0.464470915
0.48723636

ff

(b) Given this context, calculate the vector of error gradients with respect to the input
hxt for the forget gate sigmoid layer.

To do this we multiply the δ values for the neurons in the layer by the weights
the neurons use (see Equation (8.139)[520]):

Wp f qᵀ ¨ δ f “

»

—

—

—

–

0.00 0.00
´0.26 ´0.03
`0.12 `0.08
`0.08 `0.01

fi

ffi

ffi

ffi

fl

¨

«

`0.064732317
`0.141057014

ff

“

»

—

—

—

–

0
´0.172535735
`0.088963342
`0.053196424

fi

ffi

ffi

ffi

fl



9 Evaluation (Exercise Solutions)

1. The table below shows the predictions made for a categorical target feature by a model
for a test dataset. Based on this test set, calculate the evaluation measures listed below.

ID Target Prediction
1 false false
2 false false
3 false false
4 false false
5 true true
6 false false
7 true true

ID Target Prediction
8 true true
9 false false

10 false false
11 false false
12 true true
13 false false
14 true true

ID Target Prediction
15 false false
16 false false
17 true false
18 true true
19 true true
20 true true

(a) A confusion matrix and the misclassification rate

The confusion matrix can be written as

Prediction
true false

Target true 8 1
false 0 11

Misclassification rate can be calculated as

misclassi f ication rate “
pFP` FNq

pT P` T N ` FP` FNq

“
p0` 1q

p8` 11` 0` 1q

“ 0.05

(b) The average class accuracy (harmonic mean)
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First, we calculate the recall for each target level:

recalltrue “
8
9
“ 0.889

recallfalse “
11
11
“ 1.000

Then we can calculate a harmonic mean as

average class accuracyHM “
1

1
|levelsptq|

ÿ

lPlevelsptq

1
recalll

“
1

1
2

ˆ

1
0.889

`
1
1

˙

“ 0.941

(c) The precision, recall, and F1 measure

We can calculate precision and recall as follows (assuming that the true target
level is the positive level):

precision “
T P

pT P` FPq

“
8

p8` 0q

“ 1.000

recall “
T P

pT P` FNq

“
8

p8` 1q

“ 0.889

Using these figures, we can calculate the F1 measure as

F1 measure “ 2ˆ
pprecisionˆ recallq
pprecision` recallq

“ 2ˆ
p1.000ˆ 0.889q
p1.000` 0.889q

“ 0.941
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2. The table below shows the predictions made for a continuous target feature by two
different prediction models for a test dataset.

Model 1 Model 2
ID Target Prediction Prediction
1 2,623 2,664 2,691
2 2,423 2,436 2,367
3 2,423 2,399 2,412
4 2,448 2,447 2,440
5 2,762 2,847 2,693
6 2,435 2,411 2,493
7 2,519 2,516 2,598
8 2,772 2,870 2,814
9 2,601 2,586 2,583

10 2,422 2,414 2,485
11 2,349 2,407 2,472
12 2,515 2,505 2,584
13 2,548 2,581 2,604
14 2,281 2,277 2,309
15 2,295 2,280 2,296

Model 1 Model 2
ID Target Prediction Prediction
16 2,570 2,577 2,612
17 2,528 2,510 2,557
18 2,342 2,381 2,421
19 2,456 2,452 2,393
20 2,451 2,437 2,479
21 2,296 2,307 2,290
22 2,405 2,355 2,490
23 2,389 2,418 2,346
24 2,629 2,582 2,647
25 2,584 2,564 2,546
26 2,658 2,662 2,759
27 2,482 2,492 2,463
28 2,471 2,478 2,403
29 2,605 2,620 2,645
30 2,442 2,445 2,478

(a) Based on these predictions, calculate the evaluation measures listed below for each
model.

i. The sum of squared errors

The sum of squared errors for Model 1 can be calculated as follows.
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Model 1
ID Target Pred. Error Error2 |Error| SST SST2

1 2,623.4 2,664.3 40.9 1,674.2 40.9 173.5 30,089.5
2 2,423.0 2,435.9 12.9 167.4 12.9 -54.9 3,017.9
3 2,423.3 2,398.5 -24.8 615.0 24.8 -92.3 8,528.0
4 2,448.1 2,447.1 -1.1 1.2 1.1 -43.8 1,918.8
5 2,761.7 2,847.3 85.7 7,335.9 85.7 356.4 127,043.9
6 2,434.9 2,411.2 -23.7 560.9 23.7 -79.6 6,341.4
7 2,519.0 2,516.4 -2.6 6.7 2.6 25.5 652.8
8 2,771.6 2,870.2 98.6 9,721.7 98.6 379.4 143,913.2
9 2,601.4 2,585.9 -15.6 242.0 15.6 95.0 9,028.8
10 2,422.3 2,414.2 -8.1 65.0 8.1 -76.7 5,875.6
11 2,348.8 2,406.7 57.9 3,352.0 57.9 -84.1 7,079.6
12 2,514.7 2,505.2 -9.4 89.3 9.4 14.4 206.2
13 2,548.4 2,581.2 32.8 1,075.2 32.8 90.3 8,157.2
14 2,281.4 2,276.9 -4.5 20.4 4.5 -214.0 45,776.8
15 2,295.1 2,279.7 -15.4 238.5 15.4 -211.2 44,597.1
16 2,570.5 2,576.6 6.1 37.2 6.1 85.7 7,346.2
17 2,528.1 2,510.2 -17.9 320.8 17.9 19.4 375.1
18 2,342.2 2,380.9 38.7 1,496.9 38.7 -110.0 12,093.6
19 2,456.0 2,452.1 -3.9 15.1 3.9 -38.8 1,501.8
20 2,451.1 2,436.7 -14.4 208.5 14.4 -54.2 2,934.9
21 2,295.8 2,307.2 11.4 129.8 11.4 -183.7 33,730.7
22 2,405.0 2,354.9 -50.1 2,514.9 50.1 -136.0 18,492.1
23 2,388.9 2,418.1 29.2 853.2 29.2 -72.8 5,297.2
24 2,629.5 2,582.4 -47.1 2,215.7 47.1 91.5 8,380.0
25 2,583.8 2,563.5 -20.3 411.7 20.3 72.7 5,281.6
26 2,658.2 2,662.0 3.9 15.1 3.9 171.2 29,298.7
27 2,482.3 2,491.8 9.4 88.6 9.4 0.9 0.8
28 2,470.8 2,477.7 6.9 47.7 6.9 -13.1 172.6
29 2,604.9 2,619.8 14.9 221.7 14.9 128.9 16,624.4
30 2,441.6 2,444.9 3.3 10.9 3.3 -46.0 2,117.8

Mean 2,490.9 2,497.3 6.5 1,125.1 23.7 6.5 19,529.1
Std Dev 127.0 142.0 33.5 2,204.9 24.1 142.0 34,096.6

sum o f squared errors “
1
2

n
ÿ

i“1

pti ´Mpdiqq
2

“ 16,876.6

The sum of squared errors for Model 2 can be calculated as follows.
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Model 1
ID Target Prediction Error Error2 |Error| SST SST2

1 2,623.4 2,690.6 67.2 4,511.2 67.2 199.7 39,884.8
2 2,423.0 2,367.4 -55.6 3,095.8 55.6 -123.5 15,255.8
3 2,423.3 2,412.2 -11.1 123.5 11.1 -78.7 6,187.8
4 2,448.1 2,439.9 -8.3 68.7 8.3 -51.0 2,602.4
5 2,761.7 2,693.1 -68.6 4,704.4 68.6 202.2 40,882.2
6 2,434.9 2,493.0 58.1 3,374.5 58.1 2.1 4.6
7 2,519.0 2,598.1 79.1 6,253.1 79.1 107.2 11,494.6
8 2,771.6 2,813.8 42.2 1,781.3 42.2 323.0 104,307.2
9 2,601.4 2,582.9 -18.5 343.9 18.5 92.0 8,469.5

10 2,422.3 2,485.1 62.8 3,940.2 62.8 -5.8 33.8
11 2,348.8 2,471.7 122.9 15,104.0 122.9 -19.1 366.3
12 2,514.7 2,583.6 68.9 4,749.9 68.9 92.7 8,598.5
13 2,548.4 2,604.0 55.6 3,091.3 55.6 113.1 12,797.6
14 2,281.4 2,309.4 28.0 783.9 28.0 -181.4 32,919.1
15 2,295.1 2,296.0 0.9 0.8 0.9 -194.8 37,962.7
16 2,570.5 2,611.7 41.2 1,697.4 41.2 120.8 14,595.0
17 2,528.1 2,557.1 29.0 839.9 29.0 66.3 4,390.0
18 2,342.2 2,420.5 78.3 6,135.2 78.3 -70.3 4,946.7
19 2,456.0 2,392.5 -63.5 4,027.2 63.5 -98.3 9,669.3
20 2,451.1 2,478.7 27.6 760.6 27.6 -12.2 147.8
21 2,295.8 2,290.0 -5.8 34.1 5.8 -200.9 40,358.2
22 2,405.0 2,490.4 85.4 7,286.1 85.4 -0.5 0.2
23 2,388.9 2,345.5 -43.3 1,878.7 43.3 -145.3 21,122.7
24 2,629.5 2,646.7 17.2 295.6 17.2 155.8 24,275.8
25 2,583.8 2,546.3 -37.6 1,410.9 37.6 55.4 3,069.4
26 2,658.2 2,759.3 101.1 10,227.4 101.1 268.4 72,047.6
27 2,482.3 2,462.8 -19.5 381.8 19.5 -28.1 787.8
28 2,470.8 2,403.4 -67.4 4,542.6 67.4 -87.4 7,645.6
29 2,604.9 2,644.9 40.0 1,601.7 40.0 154.1 23,736.8
30 2,441.6 2,478.0 36.4 1,327.0 36.4 -12.9 166.2

Mean 2,490.9 2,512.3 21.4 3,145.8 48.0 21.4 18,290.9
Std Dev 127.0 135.8 52.7 3,382.5 29.4 135.8 23,625.8

sum o f squared errors “
1
2

n
ÿ

i“1

pti ´Mpdiqq
2

“ 47,186.3

ii. The R2 measure
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The R2 measure is calculated as

R2 “ 1´
sum o f squared errors
total sum o f squares

The sum of squared error values from the previous part can be used. So,
for Model 1,

total sum o f squares “
1
2

n
ÿ

i“1

`

ti ´ t
˘2

“ 292,937.1

and

R2 “ 1´
16,876.6

292,937.1
“ 0.942

For Model 2,

total sum o f squares “ 274,363.1

and

R2 “ 1´
47,186.3

274,363.1
“ 0.828

(b) Based on the evaluation measures calculated, which model do you think is per-
forming better for this dataset?

Model 1 has a higher R2 value than Model 2, 0.942 compared to 0.828, which
indicates that it is better able to capture the pattern in this dataset. An R2

value this high suggests quite a powerful model.

3. A credit card issuer has built two different credit scoring models that predict the
propensity of customers to default on their loans. The outputs of the first model for a
test dataset are shown in the table below.
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ID Target Score Prediction
1 bad 0.634 bad
2 bad 0.782 bad
3 good 0.464 good
4 bad 0.593 bad
5 bad 0.827 bad
6 bad 0.815 bad
7 bad 0.855 bad
8 good 0.500 good
9 bad 0.600 bad
10 bad 0.803 bad
11 bad 0.976 bad
12 good 0.504 bad
13 good 0.303 good
14 good 0.391 good
15 good 0.238 good

ID Target Score Prediction
16 good 0.072 good
17 bad 0.567 bad
18 bad 0.738 bad
19 bad 0.325 good
20 bad 0.863 bad
21 bad 0.625 bad
22 good 0.119 good
23 bad 0.995 bad
24 bad 0.958 bad
25 bad 0.726 bad
26 good 0.117 good
27 good 0.295 good
28 good 0.064 good
29 good 0.141 good
30 good 0.670 bad

The outputs of the second model for the same test dataset are shown in the table below.

ID Target Score Prediction
1 bad 0.230 bad
2 bad 0.859 good
3 good 0.154 bad
4 bad 0.325 bad
5 bad 0.952 good
6 bad 0.900 good
7 bad 0.501 good
8 good 0.650 good
9 bad 0.940 good
10 bad 0.806 good
11 bad 0.507 good
12 good 0.251 bad
13 good 0.597 good
14 good 0.376 bad
15 good 0.285 bad

ID Target Score Prediction
16 good 0.421 bad
17 bad 0.842 good
18 bad 0.891 good
19 bad 0.480 bad
20 bad 0.340 bad
21 bad 0.962 good
22 good 0.238 bad
23 bad 0.362 bad
24 bad 0.848 good
25 bad 0.915 good
26 good 0.096 bad
27 good 0.319 bad
28 good 0.740 good
29 good 0.211 bad
30 good 0.152 bad

Based on the predictions of these models, perform the following tasks to compare their
performance.

(a) The image below shows an ROC curve for each model. Each curve has a point
missing.
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Calculate the missing point in the ROC curves for Model 1 and Model 2. To gen-
erate the point for Model 1, use a threshold value of 0.51. To generate the point
for Model 2, use a threshold value of 0.43.

To plot an ROC curve, it is easiest to sort the data according to the predic-
tion scores generated. Based on the threshold being used to find a point for
the ROC plot, we can create a new set of predictions from which we will
calculate the true positive rate (TPR) and the false positive rate (FPR) that
are used to plot the ROC curve. The table below shows the prediction scores
for Model 1 in ascending order, the new predictions based on a threshold of
0.51, as well as the outcome of each of these predictions—whether it is a true
positive (TP), false positive (FP), true negative (TN), or false negative (FN).
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ID Target Score Prediction Outcome
28 good 0.064 good TN
16 good 0.072 good TN
26 good 0.117 good TN
22 good 0.119 good TN
29 good 0.141 good TN
15 good 0.238 good TN
27 good 0.295 good TN
13 good 0.303 good TN
19 bad 0.325 good FN
14 good 0.391 good TN
3 good 0.464 good TN
8 good 0.500 good TN
12 good 0.504 good FP
17 bad 0.567 bad TP
4 bad 0.593 bad TP
9 bad 0.600 bad TP
21 bad 0.625 bad TP
1 bad 0.634 bad TP
30 good 0.670 bad FP
25 bad 0.726 bad TP
18 bad 0.738 bad TP
2 bad 0.782 bad TP
10 bad 0.803 bad TP
6 bad 0.815 bad TP
5 bad 0.827 bad TP
7 bad 0.855 bad TP
20 bad 0.863 bad TP
24 bad 0.958 bad TP
11 bad 0.976 bad TP
23 bad 0.995 bad TP

Based on these predictions, we can build a confusion matrix from which we
can calculate the true positive rate and false positive rate that we use to plot
a point in ROC space. The confusion matrix for Model 1 using a threshold
of 0.48 is shown below.

Prediction
bad good

Target bad 16 1
good 1 12
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So we can calculate the TPR and FPR as

T PR “ 16
16`1 “ 0.9412

FPR “ 1
12`1 “ 0.0769

Using these figures, we can plot an extra point on the ROC curve and connect
it to the existing points to complete the curve (other points for other thresh-
olds are required to complete the curve, but they all result in the same TPR
score and so a horizontal line).

The table below shows the prediction scores for Model 2 in ascending order,
the new predictions based on a threshold of 0.43, as well as the outcome of
each of these predictions—whether it is a true positive (TP), false positive
(FP), true negative (TN), or false negative (FN).
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ID Target Score Prediction Outcome
26 good 0.096 good TN
30 good 0.152 good TN
3 good 0.154 good TN
29 good 0.211 good TN
1 bad 0.230 good FN
22 good 0.238 good TN
12 good 0.251 good TN
15 good 0.285 good TN
27 good 0.319 good TN
4 bad 0.325 good FN
20 bad 0.340 good FN
23 bad 0.362 good FN
14 good 0.376 good TN
16 good 0.421 good TN
19 bad 0.480 bad TP
7 bad 0.501 bad TP
11 bad 0.507 bad TP
13 good 0.597 bad FP
8 good 0.650 bad FP
28 good 0.740 bad FP
10 bad 0.806 bad TP
17 bad 0.842 bad TP
24 bad 0.848 bad TP
2 bad 0.859 bad TP
18 bad 0.891 bad TP
6 bad 0.900 bad TP
25 bad 0.915 bad TP
9 bad 0.940 bad TP
5 bad 0.952 bad TP
21 bad 0.962 bad TP

Based on these predictions, we can build a confusion matrix from which we
can calculate the true positive rate and false positive rate that we use to plot
a point in ROC space. The confusion matrix for Model 2 using a threshold
of 0.48 is shown below.

Prediction
bad good

Target bad 13 4
good 3 10
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So we can calculate the TPR and FPR as

T PR “ 13
13`4 “ 0.7647

FPR “ 3
10`3 “ 0.2308

Using these figures, we can plot an extra point on the ROC curve and connect
it to the existing points to complete the curve (other points for other thresh-
olds are required to complete the curve, but they all result in the same TPR
score and so a horizontal line).

For completeness, we show both complete curves together below.
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Model 1 (0.955)
Model 2 (0.851)

(b) The area under the ROC curve (AUC) for Model 1 is 0.955 and for Model 2 is
0.851. Which model is performing best?
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Based on the higher AUC, we can conclude that Model 1 is performing better
at this task. Furthermore, the ROC curve for Model 1 dominates the curve
for Model 2 (i.e., is always higher), which means that there is no operating
point (or threshold value) for which Model 2 is better.

(c) Based on the AUC values for Model 1 and Model 2, calculate the Gini coefficient
for each model.

The Gini coefficient is calculated as

Gini coe f f icient “ p2ˆ ROC indexq ´ 1

So for Model 1, the Gini coefficient is

Gini coe f f icient “ p2ˆ 0.955q ´ 1 “ 0.91

For Model 2, the Gini coefficient is

Gini coe f f icient “ p2ˆ 0.851q ´ 1 “ 0.702

4. A retail supermarket chain has built a prediction model that recognizes the household
that a customer comes from as being one of single, business, or family. After deploy-
ment, the analytics team at the supermarket chain uses the stability index to monitor
the performance of this model. The table below shows the frequencies of predictions
of the three different levels made by the model for the original validation dataset at the
time the model was built, for the month after deployment, and for a monthlong period
six months after deployment.

Original 1st New 2nd New
Target Sample Sample Sample
single 123 252 561

business 157 324 221
family 163 372 827

Bar plots of these three sets of prediction frequencies are shown in the following im-
ages.
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Original Sample 1st New Sample 2nd New Sample
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Calculate the stability index for the two new periods and determine whether the model
should be retrained at either of these points.

The stability index is calculated as

stability index “
ÿ

lPlevels

ˆˆ

|At“l|

|A|
´
|Bt“l|

|B|

˙

ˆ loge

ˆ

|At“l|

|A|
{
|Bt“l|

|B|

˙˙

where l is a target level, |A| refers to the size of the test set on which performance
measures were originally calculated, |At“l| refers to the number of instances in
the original test set for which the model made a prediction of level l for target
t, |B| and |Bt“l| refer to the same measurements on the newly collected dataset.
The following table shows the components of calculating this for the two new
periods.

Original 1st New Sample 2nd New Sample
Target Count % Count % SIt Count % SIt

single 123 0.2777 252 0.2658 0.00052 561 0.3487 0.01617
business 157 0.3544 324 0.3418 0.00046 221 0.1374 0.20574

family 163 0.3679 372 0.3924 0.00157 827 0.5140 0.04881
Sum 443 948 0.003 1,609 0.271

For the first new sample, the stability index is 0.003, which indicates that there
is practically no difference between the distribution of target levels predicted for
the original validation dataset and for the data in the newt period.
For the second sample, the stability index is 0.271, which indicates a massive
difference between the distribution of target levels at this point in time compared
to the distribution predicted for the original validation set. This suggests that
concept drift has occurred and that the model should be retrained.

˚ 5. Explain the problem associated with measuring the performance of a predictive model
using a single accuracy figure.
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A single accuracy figure can hide the real performance of a model. This is partic-
ularly evident when we are dealing with imbalanced test datasets. Consider a test
dataset that contains 1,000 instances overall, 900 of which belong to the positive
target level, and 100 of which belong to the negative target level.
Assuming that the model always predicts the positive level, then its accuracy on
the given test dataset would be 90%, which is not at all an accurate reflection
of the performance of the model. Generating a simple confusion matrix for this
scenario shows how poorly the model is really performing.

Prediction
pos neg

Target pos 900 0
neg 100 0

While measures such as average class accuracy or the F1 measure attempt to
address the issues associated with a simple accuracy measure, no single measure
is perfect. All single measures compress the actual information in a set of results
from a test dataset in some way, so it is always a good idea to use multiple
performance measures as part of an evaluation, even though ultimately we will
use a single figure to choose between alternative models.

˚ 6. A marketing company working for a charity has developed two different models that
predict the likelihood that donors will respond to a mailshot asking them to make a
special extra donation. The prediction scores generated for a test set for these two
models are shown in the table below.

Model 1 Model 2
ID Target Score Score
1 false 0.1026 0.2089
2 false 0.2937 0.0080
3 true 0.5120 0.8378
4 true 0.8645 0.7160
5 false 0.1987 0.1891
6 true 0.7600 0.9398
7 true 0.7519 0.9800
8 true 0.2994 0.8578
9 false 0.0552 0.1560
10 false 0.9231 0.5600
11 true 0.7563 0.9062
12 true 0.5664 0.7301
13 true 0.2872 0.8764
14 true 0.9326 0.9274
15 false 0.0651 0.2992

Model 1 Model 2
ID Target Score Score
16 true 0.7165 0.4569
17 true 0.7677 0.8086
18 false 0.4468 0.1458
19 false 0.2176 0.5809
20 false 0.9800 0.5783
21 true 0.6562 0.7843
22 true 0.9693 0.9521
23 false 0.0275 0.0377
24 true 0.7047 0.4708
25 false 0.3711 0.2846
26 false 0.4440 0.1100
27 true 0.5440 0.3562
28 true 0.5713 0.9200
29 false 0.3757 0.0895
30 true 0.8224 0.8614
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(a) Using a classification threshold of 0.5, and assuming that true is the positive target
level, construct a confusion matrix for each of the models.

The first step to answering this is to apply the threshold to determine whether
predictions are correct or not. For Model 1, the predictions and outcomes are
as follows

Model 1 Model 1 Model 1
ID Target Score Prediction Outcome
1 false 0.1026 false TN
2 false 0.2937 false TN
3 true 0.5120 true TP
4 true 0.8645 true TP
5 false 0.1987 false TN
6 true 0.7600 true TP
7 true 0.7519 true TP
8 true 0.2994 false FN
9 false 0.0552 false TN
10 false 0.9231 true FP
11 true 0.7563 true TP
12 true 0.5664 true TP
13 true 0.2872 false FN
14 true 0.9326 true TP
15 false 0.0651 false TN
16 true 0.7165 true TP
17 true 0.7677 true TP
18 false 0.4468 false TN
19 false 0.2176 false TN
20 false 0.9800 true FP
21 true 0.6562 true TP
22 true 0.9693 true TP
23 false 0.0275 false TN
24 true 0.7047 true TP
25 false 0.3711 false TN
26 false 0.4440 false TN
27 true 0.5440 true TP
28 true 0.5713 true TP
29 false 0.3757 false TN
30 true 0.8224 true TP

Using this, we can build the following confusion matrix for Model 1

Prediction
true false

Target true 15 2
false 2 11
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We then repeat the same process for Model 2.

Model 2 Model 2 Model 2
ID Target Score Prediction Outcome
1 false 0.2089 false TN
2 false 0.0080 false TN
3 true 0.8378 true TP
4 true 0.7160 true TP
5 false 0.1891 false TN
6 true 0.9398 true TP
7 true 0.9800 true TP
8 true 0.8578 true TP
9 false 0.1560 false TN
10 false 0.5600 true FP
11 true 0.9062 true TP
12 true 0.7301 true TP
13 true 0.8764 true TP
14 true 0.9274 true TP
15 false 0.2992 false TN
16 true 0.4569 false FN
17 true 0.8086 true TP
18 false 0.1458 false TN
19 false 0.5809 true FP
20 false 0.5783 true FP
21 true 0.7843 true TP
22 true 0.9521 true TP
23 false 0.0377 false TN
24 true 0.4708 false FN
25 false 0.2846 false TN
26 false 0.1100 false TN
27 true 0.3562 false FN
28 true 0.9200 true TP
29 false 0.0895 false TN
30 true 0.8614 true TP

Using this we can build the following confusion matrix for Model 2.

Prediction
true false

Target true 14 3
false 3 10

(b) Calculate the simple accuracy and average class accuracy (using an arithmetic
mean) for each model.



252 Chapter 9 Evaluation (Exercise Solutions)

We can calculate average class accuracy simply from the confusion matrices.
For Model 1 we calculate the recall for the true target level as

recalltrue “
14

p14` 3q
“ 0.8235

For the false target level, recall is

recallfalse “
12

p12` 1q
“ 0.9231

We can than calculate average class accuracy as

average class accuracyAM “
p0.8235` 0.9231q

2
“ 0.8733

For Model 2 we calculate the recalls for the two target levels as

recalltrue “
14

p14` 3q
“ 0.8235

and
recallfalse “

10
p10` 3q

“ 0.7692

We can than calculate average class accuracy as

average class accuracyAM “
p0.8235` 0.7692q

2
“ 0.7964

(c) Based on the average class accuracy measures, which model appears to perform
best at this task?

Based on average class accuracy, Model 1 appears to be doing a better job
than Model 2. The main difference is in the better ability of Model 1 to
identify instances of the false target level.

(d) Generate a cumulative gain chart for each model.

To generate a cumulative gain chart, we first have to reorder the predictions
in descending order of scores and divide the test instances into deciles. The
table below shows this for Model 1 (because there are 30 instances in the test
set, there are 3 instances per decile).
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Model 1 Model 1 Model 1
Decile ID Target Prediction Score Outcome

1st
20 false 0.9800 true FP
22 true 0.9693 true TP
14 true 0.9326 true TP

2nd
10 false 0.9231 true FP
4 true 0.8645 true TP
30 true 0.8224 true TP

3rd
17 true 0.7677 true TP
6 true 0.7600 true TP
11 true 0.7563 true TP

4th
7 true 0.7519 true TP
16 true 0.7165 true TP
24 true 0.7047 true TP

5th
21 true 0.6562 true TP
28 true 0.5713 true TP
12 true 0.5664 true TP

6th
27 true 0.5440 true TP
3 true 0.5120 true TP
18 false 0.4468 false TN

7th
26 false 0.4440 false TN
29 false 0.3757 false TN
25 false 0.3711 false TN

8th
8 true 0.2994 false FN
2 false 0.2937 false TN
13 true 0.2872 false FN

9th
19 false 0.2176 false TN
5 false 0.1987 false TN
1 false 0.1026 false TN

10th
15 false 0.0651 false TN
9 false 0.0552 false TN
23 false 0.0275 false TN

Based on this table, we can calculate the gain and lift (lift is not required to
answer the question but is included for completeness) for each decile as well
as the cumulative gain and cumulative lift for each decile. Recall that the
definitions for gain, cumulative gain, lift, and cumulative lift always refer to
the actual target levels rather than the predictions and are defined as follows:
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gainpdecq “
num positive test instances in decile dec

num positive test instances

cumulative gainpdecq “
num positive test instances in all deciles up to dec

num positive test instances

li f tpdecq “
% of positive test instances in decile dec

% of positive test instances

cumulative li f tpdecq “
% of positive instances in all deciles up to dec

% of positive test instances

The measures for each decile for Model 1 are shown in the table below.

Positive Negative
(true) (false) Cum. Cum.

Decile Count Count Gain Gain Lift Lift
1st 2 1 0.1176 0.1176 1.1765 1.1765
2nd 2 1 0.1176 0.2353 1.1765 1.1765
3rd 3 0 0.1765 0.4118 1.7647 1.3725
4th 3 0 0.1765 0.5882 1.7647 1.4706
5th 3 0 0.1765 0.7647 1.7647 1.5294
6th 0 3 0.0000 0.7647 0.0000 1.2745
7th 1 2 0.0588 0.8235 0.5882 1.1765
8th 1 2 0.0588 0.8824 0.5882 1.1029
9th 1 2 0.0588 0.9412 0.5882 1.0458

10th 0 3 0.0000 0.9412 0.0000 0.9412

Using this table, we can now draw the required cumulative gain chart as
follows (the cumulative lift chart is also shown).
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We then repeat for Model 2.
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Model 1 Model 1 Model 1
Decile ID Target Prediction Score Outcome

1st
7 true 0.9800 true TP
22 true 0.9521 true TP
6 true 0.9398 true TP

2nd
14 true 0.9274 true TP
28 true 0.9200 true TP
11 true 0.9062 true TP

3rd
13 true 0.8764 true TP
30 true 0.8614 true TP
8 true 0.8578 true TP

4th
3 true 0.8378 true TP
17 true 0.8086 true TP
21 true 0.7843 true TP

5th
12 true 0.7301 true TP
4 true 0.7160 true TP
19 false 0.5809 true FP

6th
20 false 0.5783 true FP
10 false 0.5600 true FP
24 true 0.4708 false FN

7th
16 true 0.4569 false FN
27 true 0.3562 false FN
15 false 0.2992 false TN

8th
25 false 0.2846 false TN
1 false 0.2089 false TN
5 false 0.1891 false TN

9th
9 false 0.1560 false TN
18 false 0.1458 false TN
26 false 0.1100 false TN

10th
29 false 0.0895 false TN
23 false 0.0377 false TN
2 false 0.0080 false TN

We can now calculate gain, cumulative gain, lift, and cumulative lift for each
decile for Model 2.
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Positive Negative
(true) (false) Cum. Cum.

Decile Count Count Gain Gain Lift Lift
1st 3 0 0.1765 0.1765 1.7647 1.7647
2nd 2 1 0.1176 0.2941 1.1765 1.4706
3rd 3 0 0.1765 0.4706 1.7647 1.5686
4th 3 0 0.1765 0.6471 1.7647 1.6176
5th 3 0 0.1765 0.8235 1.7647 1.6471
6th 0 3 0.0000 0.8235 0.0000 1.3725
7th 1 2 0.0588 0.8824 0.5882 1.2605
8th 1 2 0.0588 0.9412 0.5882 1.1765
9th 1 2 0.0588 1.0000 0.5882 1.1111

10th 0 3 0.0000 1.0000 0.0000 1.0000

Using this table, we can now draw the required cumulative gain chart as
follows (the cumulative lift chart is also shown).
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(e) The charity for which the model is being built typically has only enough money
to send a mailshot to the top 20% of its contact list. Based on the cumulative gain
chart generated in the previous part, would you recommend that Model 1 or Model
2 would perform best for the charity?

The cumulative gain charts are repeated here.
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The key thing to notice here is that at the 2nd decile, Model 2 has identified
almost 40% of the positive instances in the dataset, whereas Model 1 has
identified only just over 20%. In a scenario like the one in this question,
the typical approach would be to present every contact in the contact list to
a model and then rank the contacts by the output of the model. Mailshots
would be sent to the top 20% of this list, or whatever percentage the people
sending the mailshot could afford. Because of this, a model that ranks well
should be preferred over one that simply makes correct predictions. So in this
case, even though Model 2 performs worse than Model 1 based on average
class accuracy, Model 2 should be preferred for this task. The issue for Model
1 arises because it gives very high prediction scores to test instances 10 and
20.

˚ 7. A prediction model is going to be built for in-line quality assurance in a factory that
manufactures electronic components for the automotive industry. The system will be
integrated into the factory’s production line and determine whether components are of
an acceptable quality standard based on a set of test results. The prediction subject is
a component, and the descriptive features are a set of characteristics of the component
that can be gathered on the production line. The target feature is binary and labels
components as good or bad.
It is extremely important that the system not in any way slow the production line and

that the possibility of defective components being passed by the system be minimized
as much as possible. Furthermore, when the system makes a mistake, it is desirable
that the system can be retrained immediately using the instance that generated the
mistake. When mistakes are made, it would be useful for the production line operators
to be able to query the model to understand why it made the prediction that led to a
mistake. A large set of historical labeled data is available for training the system.

(a) Discuss the different issues that should be taken into account when evaluating the
suitability of different machine learning approaches for use in this system.
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For this system, classification accuracy will obviously be important. Beyond
simple accuracy, however, there is also the issue of a balance between the
types of errors that the system will make, that is, false positives and false
negatives. For this scenario, if we assume that good is the positive target
level, then we should avoid false positives as much as possible.
Beyond performance of the algorithm, other considerations are important for
this scenario. The first of these is prediction speed. The model will make
predictions as part of a production line, which it cannot in any way slow
down. Depending on the throughput speed of the production line, the model
will likely need to make predictions very quickly.
The next issue that applies in this scenario is the ability to retrain the model.
This ability should be taken into account in evaluating the performance of
models for this task. There are two ways of thinking about this. The first
is the ability to easily modify a model as new data becomes available. The
second is the speed at which a model can be completely rebuilt if it cannot
be easily modified.
Finally, explanation capability is another important factor to consider when
evaluating models. Once the model gives a prediction, how easy is it for
someone to understand this prediction? This is key in this scenario so that
production line operators can understand why mistakes are being made.

(b) For this task, discuss the suitability of the decision tree, k nearest neighbor, naive
Bayes, and logistic regression models. Which one do you think would be most
appropriate?

It is not possible to say anything about the likely performance in terms of pre-
diction accuracy of the three model types for this problem without knowing
much more about the data involved, and probably actually performing exper-
iments. We can, however, comment on the model types in terms of the other
characteristics: prediction speed, capacity for retraining, training speed, and
explanation capability.
For k-NN models, prediction speed is always an issue. Although techniques
such as k-d trees can help in reducing the time that it takes to find the near-
est neighbors for a model, k-NN models will take more time than the other
approaches to make a prediction. This can make them unsuitable for high-
throughput scenarios like the production line. In terms of retraining, k-NN
models excel. To allow the model to take new data into account, we sim-
ply add the new instances to the data used. Similarly, full retraining is almost
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instant—the training dataset used by the model is simply replaced with a new
one—and k-NN models provide some ability to explain the predictions that
they make—the neighbors on which a prediction is based can be provided
for explanation. Taking these characteristics together, a k-NN model is a rea-
sonably good fit for this task. The main advantage is the ease with which a
k-NN model can be retrained. The main disadvantage of using a k-NN model
for this task is that prediction time may be too slow for integration into the
production line.
A decision tree model would be a good candidate for this scenario. A deci-
sion tree can make a predictions very quickly. Decision trees also have ex-
cellent explanation capacity—by tracing the path through the decision tree,
it is very easy to understand how a prediction has been made. The main dis-
advantage of using a decision tree for this problem is its lack of capacity for
retraining. There are techniques that can be used to modify a decision tree
based on some newly available data, but this remains an open research prob-
lem. On the positive side, though, decision tree training is quite fast, so if a
model needs to be completely rebuilt, this does not take as long as it can for
other model types—for example, regression models.
A naive Bayes model can make predictions very quickly—this simply in-
volves evaluating the naive Bayes equation—so prediction speed is not likely
to be an issue. Like decision trees, there are approaches to adapting naive
Bayes models to take into account new data, but there is not a standard,
widely used approach. Training time, however, is not excessive, so retraining
a naive Bayes model is not a significant problem. The explanation capacity
of naive Bayes models is only modest. While the conditional and prior prob-
abilities used to make a prediction can be presented, interpreting these is not
something that people find intuitively easy. For this scenario, having proba-
bilities returned would, however, be an advantage, as it makes it very easy to
tune a model to favor false precision over recall.
Finally, a logistic regression model would have no problems with prediction
speed for this scenario—evaluating the regression equation is not a signifi-
cant computational task. Retraining, however, is a problem. It is not easy
to adapt an existing logistic regression model to take into account new data,
and logistic regression models can take a very long time to train—the longest
time of the four modeling approaches considered here. Logistic regression
models have some explanation capability. By considering model weights to-
gether with descriptive feature values, it is possible to get a good understand-
ing of what has contributed to a particular prediction. In some industries
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score cards are used to aid explanation (? provides a good overview of the
use of score cards for financial credit risk scoring).
Taking the four approaches together, decision trees for the explanation ca-
pability and k-NN models for their capacity for retraining are probably the
most attractive for this problem. Given the importance of prediction speed in
this scenario, decision trees would probably be slightly more suitable.
It is important to reiterate, however, that this discussion has not taken into
account the ability of these different model types to cope with the actual data
in this problem.

˚ 8. The following matrices list the confusions matrices for two models and the profit
matrix for this prediction task. Calculate the overall profit for each model.

M1 “

«

50 10
20 80

ff

M2“

«

35 25
40 60

ff

Pro f it “

«

`100 ´20
´110 `10

ff

Multiplying each element in the confusion matrices by the corresponding element
in the profit matrix give us the following:

M1 “

«

5000 ´200
´2200 800

ff

M2 “

«

3500 ´500
´4400 600

ff

Summing each of these matrices gives us the profit for each model:

M1 “ `3400

M2 “ ´800

˚ 9. The following table lists the scores returned by a prediction model for a test set of 12
examples. The prediction task is a binary classification task, and the instances in the
test set are labeled as belonging to the positive or negative class. For ease of reading,
the instances have been ordered in descending order of the score the model assigned
to each instance.
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ID Target Score
1 positive 0.75
2 positive 0.72
3 positive 0.64
4 negative 0.62
5 negative 0.55
6 positive 0.48
7 negative 0.45
8 negative 0.44
9 negative 0.38
10 negative 0.35
11 negative 0.32
12 negative 0.31

(a) Calculate the ROC index for this model using the trapezoidal method and the
following set of thresholds: 1.0, 0.5, and 0.0.

Predictions by Threshold
ID Target Score T“ 1.0 T“ 0.5 T“ 0.0
1 positive 0.75 negative positive positive
2 positive 0.72 negative positive positive
3 positive 0.64 negative positive positive
4 negative 0.62 negative positive positive
5 negative 0.55 negative positive positive
6 positive 0.48 negative negative positive
7 negative 0.45 negative negative positive
8 negative 0.44 negative negative positive
9 negative 0.38 negative negative positive
10 negative 0.35 negative negative positive
11 negative 0.32 negative negative positive
12 negative 0.31 negative negative positive

The true positive rate and false positive rate for threshold 1 (1.0) are:

T PR “
0
4
“ 0

FPR “
0
8
“ 0
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The true positive rate and false positive rate for threshold 2 (0.5) are:

T PR “
3
4
“ 0.75

FPR “
2
8
“ 0.25

The true positive rate and false positive rate for threshold 3 (0.0) are:

T PR “
4
4
“ 1.00

FPR “
8
8
“ 1.00

The ROC index is then calculated as:

ROC index “
p0.25´ 0q ˆ p0.75` 0q

2
`
p1.00´ 0.25q ˆ p1.00` 0.75q

2
“ 0.09375` 0.65625

“ 0.75

(b) The following table lists the scores returned by the same prediction model for a
new test set of 12 examples. Again, the prediction task is a binary classification
task, and the instances in the test set are labeled as belonging to the positive or
negative class. For ease of reading, the instances have been ordered in descending
order of the score the model assigned to each instance. Calculate the ROC index
for this model using the trapezoidal method and the following set of thresholds:
1.0, 0.5, and 0.0.

ID Target Score
1 positive 0.71
2 positive 0.70
3 positive 0.66
4 positive 0.65
5 positive 0.62
6 positive 0.60
7 negative 0.58
8 positive 0.48
9 positive 0.34
10 negative 0.30
11 negative 0.28
12 negative 0.25
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Predictions by Threshold
ID Target Score T“ 1.0 T“ 0.5 T“ 0.0
1 positive 0.71 negative positive positive
2 positive 0.70 negative positive positive
3 positive 0.66 negative positive positive
4 positive 0.65 negative positive positive
5 positive 0.62 negative positive positive
6 positive 0.60 negative positive positive
7 negative 0.58 negative positive positive
8 positive 0.48 negative negative positive
9 positive 0.34 negative negative positive
10 negative 0.30 negative negative positive
11 negative 0.28 negative negative positive
12 negative 0.25 negative negative positive

The true positive rate and false positive rate for threshold 1 (1.0) are:

T PR “
0
8
“ 0

FPR “
0
4
“ 0

The true positive rate and false positive rate for threshold 2 (0.5) are:

T PR “
6
8
“ 0.75

FPR “
1
4
“ 0.25

The true positive rate and false positive rate for threshold 3 (0.0) are:

T PR “
8
8
“ 1.00

FPR “
4
4
“ 1.00
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The ROC index is then calculated as:

ROC index “
p0.25´ 0q ˆ p0.75` 0q

2
`
p1.00´ 0.25q ˆ p1.00` 0.75q

2
“ 0.09375` 0.65625

“ 0.75

(c) The ROC index is insensitive to changes in class distribution within the test set.
This means that if the proportion of positive to negative instances changes in a
test set, the ROC index will remain the same if the performance of the models on
each class is constant. Consequently, the ROC index is robust to class imbalance
or skew in the test set. Why do you think this is the case?1

In a binary confusion matrix the proportion of positive and negative instances
is represented by the ratio between the first row (containing the true positive
and false negatives counts) to the second row (containing the false positives
and true negative counts).
The ROC index is based on the true positive rate (TPR) and the false positive
rate (FPR), and each of these rates is calculated as a ratio within a single
class: calculating TPR involves dividing the number of true positives by the
total number of positive instances in the test set, and calculating FPR in-
volves dividing the number of false positive by the total number of negative
instances in the test set. Consequently, if the performance of the model on
both the positive and negative classes remain constant (in terms of the ratio
of positive examples it get correct to the total number of positive examples,
and the ratio of the negative examples it get wrong to the total number of
negative examples) then the ROC index will remain constant.
We can see this if we compare the ROC indices we calculated in the first
two parts of this question. The ROC indices are the same for this model on
both of these test sets even through in the first test set the ratio of positive
to negative instances was 4:8 and in the second test set the ratio was 8:4.

1. We recommend ? as an excellent introduction and overview to ROC analysis that covers the topic of imbalance
in the test set. Note also that in very highly imbalanced data where there is a very large number of negative
examples, the false positive rate is not very sensitive to changes in the number of false positives (because the
denominator is so large) and in these contexts, if the focus of the model is on detecting the positive class, it is
probably advisable to use precision as the evaluation metric, as it focuses more on the ability to detect the positive
class, rather than on the ability to distinguish between classes (which the ROC index captures).
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This is because the model’s TPR and FPR was constant across both test sets
(TPR=0.75 and FPR=0.25).
This contrasts with other metrics such as accuracy, precision and F-score
which use counts from both classes in their calculation. For example, calcu-
lating precision involves the true positive count (which is a count of a portion
of the set of positive instances in the test set) and the false positive count
(which is a count of the portion of negative instances in the test set). In fact,
if we calculate the F1 for this model on both of these test sets assuming a
threshold of 0.5 we see that the F1 measure for the same model is different
on both these datasets even though its TPR and FPR is consistent across the
test sets. This shows that the F1 is sensitive to class distribution in the test
set. The calculations are as follows:
F1 for test set 1:

F1 “ 2ˆ
3

3`2 ˆ
3

3`1
3

3`2 `
3

3`1

“ 2ˆ
0.6ˆ 0.75
0.6` 0.75

“ 0.6667

F1 for test set 2:

F1 “ 2ˆ
6

6`1 ˆ
6

6`2
3

3`2 `
3

3`1

“ 2ˆ
0.857142857ˆ 0.75
0.857142857` 0.75

“ 0.8

˚ 10. As part of a natural language processing project, a company is creating a dictionary
of idiomatic phrases.2 The company has used an automatic process to extract a set of
50,000 candidate idioms from a large corpus and now are planning to use a machine
learning model to filter this set of candidates before presenting them to a human an-
notator who decides whether a candidate phrase should be added to the dictionary or
not. In order to evaluate which machine learning model to use as the pre-annotator

2. This question is inspired by the work reported in ?.



266 Chapter 9 Evaluation (Exercise Solutions)

filter, the company created a test set of 10 phrases extracted at random from the set of
50,000 candidates.

(a) The following table presents the scoring by two models of the test set of candidate
idioms. Which model would be chosen to filter candidate idioms if the decision
were taken on the basis of the F1 score for each model, assuming both models use
a threshold of ą 0.5 for classifying a candidate as an idiom.

Model Scoring
ID Idiom M1 M2

1 true 0.70 0.80
2 true 0.56 0.80
3 true 0.55 0.70
4 true 0.54 0.45
5 true 0.45 0.44
6 false 0.73 0.55
7 false 0.72 0.54
8 false 0.35 0.40
9 false 0.34 0.38
10 false 0.33 0.30

Applying a threshold of 0.5 to the model scores gives us the following set of
predictions for the models:

Model Scoring
ID Idiom M1 M2

1 true true true
2 true true true
3 true true true
4 true true false
5 true false false
6 false true true
7 false true true
8 false false false
9 false false false
10 false false false
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Based on these predictions the confusion matrix, precision, recall and F1 for
M1 is:

M1 “

«

4 1
2 3

ff

precision “
4

4` 2
“ 0.6667

recall “
4

4` 1
“ 0.8

F1 “ 2ˆ
0.6667ˆ 0.8
0.6667` 0.8

“ 0.727272727

And, the confusion matrix, precision, recall and F1 forM1 is:

M1 “

«

3 2
2 3

ff

precision “
3

3` 2
“ 0.6

recall “
3

3` 2
“ 0.6

F1 “ 2ˆ
0.6ˆ 0.6
0.6` 0.6

“ 0.6

Based on the F1 scoreM1 is the better option.

(b) There is a cost associated with each item presented to the human annotator, and
the company wants to maximize the number of items that end up in the dictionary.
The company estimates that it has an annotation budget that will cover the human
annotation of 20,000 phrases (i.e., 40% of the set of candidate phrases). Calculate
the cumulative gain of each of the models for the 4th decile. Again, assume both
models use a threshold ofą 0.5 for the idiom class. Finally, on the basis of cumu-
lative gain scores, which model would you recommend the company use for the
pre-annotation filtering task?
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M1 M1

ID Idiom Score Prediction Outcome Decile
6 false 0.73 true FP 1st

7 false 0.72 true FP 2nd

1 true 0.70 true TP 3rd

2 true 0.56 true TP 4th

3 true 0.55 true TP 5th

4 true 0.54 true TP 6th

5 true 0.45 false FN 7th

8 false 0.35 false TN 8th

9 false 0.34 false TN 9th

10 false 0.33 false TN 10th

The number of positive instances in the first four deciles forM1 is 2, and the
number of positive instances overall is 5, so the cumulative gain for M1 for
the 4th decile is:

cumulative gainp4thqM1 “
2
5
“ 0.4

M1 M1

ID Idiom Score Prediction Outcome Decile
1 true 0.80 true TP 1st

2 true 0.80 true TP 2nd

3 true 0.70 true TP 3rd

6 false 0.55 true FP 4th

7 false 0.54 true FP 5th

4 true 0.45 false FN 6th

5 true 0.44 false FN 7th

8 false 0.40 false TN 8th

9 false 0.38 false TN 9th

10 false 0.30 false TN 10th

The number of positive instances in the first four deciles forM2 is 3, and the
number of positive instances overall is 5, so the cumulative gain for M3 for
the 4th decile is:

cumulative gainp4thqM2 “
3
5
“ 0.6

Comparing the cumulative gains for the two models under the annotation
budget constraints for the project,M2 is the better model to use as it is likely
to present more true positive instances to the annotator within the first four
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deciles, as sorted by the models scores, and ultimately resulting in more in-
stances in the idiom dictionary.





III BEYOND PREDICTION





10 Beyond Prediction: Unsupervised Learning (Exercise Solutions)

1. The following table shows a small dataset in which each instance describes measure-
ments taken using three sensors when a valve in an oil well was opened. The three
descriptive features, PRESSURE, TEMPERATURE, and VOLUME measure character-
istics of the oil flowing through the valve when it was opened. The k-means clus-
tering approach is to be applied to this dataset with k “ 3 and using Euclidean
distance. The initial cluster centroids for the three clusters C1, C2 , and C3 are
c1 “ 〈´0.929,´1.040,´0.831〉, c2 “ 〈´0.329,´1.099, 0.377〉, and c3 “ 〈´0.672,
´0.505, 0.110〉. The following table also shows the distance to these three cluster
centers for each instance in the dataset.

Cluster Distances Iter. 1
ID PRESSURE TEMPERATURE VOLUME Distpdi, c1q Distpdi, c2q Distpdi, c3q

1 -0.392 -1.258 -0.666 0.603 1.057 1.117
2 -0.251 -1.781 -1.495 1.204 1.994 2.093
3 -0.823 -0.042 1.254 2.314 1.460 1.243
4 0.917 -0.961 0.055 2.049 1.294 1.654
5 -0.736 -1.694 -0.686 0.697 1.284 1.432
6 1.204 -0.605 0.351 2.477 1.611 1.894
7 0.778 -0.436 -0.220 1.911 1.422 1.489
8 1.075 -1.199 -0.141 2.125 1.500 1.896
9 -0.854 -0.654 0.771 1.650 0.793 0.702

10 -1.027 -0.269 0.893 1.891 1.201 0.892
11 -0.288 -2.116 -1.165 1.296 1.848 2.090
12 -0.597 -1.577 -0.618 0.666 1.136 1.298
13 -1.113 -0.271 0.930 1.930 1.267 0.960
14 -0.849 -0.430 0.612 1.569 0.879 0.538
15 1.280 -1.188 0.053 2.384 1.644 2.069

(a) Assign each instance to its nearest cluster to generate the clustering at the first
iteration of k-means on the basis of the initial cluster centroids.
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The clusters to be assigned to each instance are shown below.

Cluster Distances Iter. 1 Iter. 1
ID PRESSURE TEMP. VOLUME Distpdi, c1q Distpdi, c2q Distpdi, c3q Cluster

1 -0.392 -1.258 -0.666 0.603 1.057 1.117 C1

2 -0.251 -1.781 -1.495 1.204 1.994 2.093 C1

3 -0.823 -0.042 1.254 2.314 1.460 1.243 C3

4 0.917 -0.961 0.055 2.049 1.294 1.654 C2

5 -0.736 -1.694 -0.686 0.697 1.284 1.432 C1

6 1.204 -0.605 0.351 2.477 1.611 1.894 C2

7 0.778 -0.436 -0.220 1.911 1.422 1.489 C2

8 1.075 -1.199 -0.141 2.125 1.500 1.896 C2

9 -0.854 -0.654 0.771 1.650 0.793 0.702 C3

10 -1.027 -0.269 0.893 1.891 1.201 0.892 C3

11 -0.288 -2.116 -1.165 1.296 1.848 2.090 C1

12 -0.597 -1.577 -0.618 0.666 1.136 1.298 C1

13 -1.113 -0.271 0.930 1.930 1.267 0.960 C3

14 -0.849 -0.430 0.612 1.569 0.879 0.538 C3

15 1.280 -1.188 0.053 2.384 1.644 2.069 C2

(b) On the basis of the clustering calculated in Part (a), calculate a set of new cluster
centroids.

The instances that have been assigned to the first cluster, C1, are

ID PRESSURE TEMPERATURE VOLUME

1 -0.392 -1.258 -0.666
2 -0.251 -1.781 -1.495
5 -0.736 -1.694 -0.686

11 -0.288 -2.116 -1.165
12 -0.597 -1.577 -0.618

And, so, the new cluster centroid is the average of these values:
c1 “ 〈´0.453,´1.685,´0.926〉.
The instances that have been assigned to the second cluster, C2, are

ID PRESSURE TEMPERATURE VOLUME

4 0.917 -0.961 0.055
6 1.204 -0.605 0.351
7 0.778 -0.436 -0.220
8 1.075 -1.199 -0.141

15 1.280 -1.188 0.053

And, so, the new cluster centroid is the average of these values:
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c2 “ 〈1.051,´0.878, 0.020〉
The instances that have been assigned to the third cluster, C3, are

ID PRESSURE TEMPERATURE VOLUME

3 -0.823 -0.042 1.254
9 -0.854 -0.654 0.771

10 -1.027 -0.269 0.893
13 -1.113 -0.271 0.930
14 -0.849 -0.430 0.612

And, so, the new cluster centroid is the average of these values:
c3 “ 〈´0.933,´0.333, 0.892〉.
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2. The following table shows details of two different clusterings of the dataset from Ques-
tion 1—one with k “ 2 and one with k “ 3—and partial workings to calculate the
silhouette for the clusterings.

k “ 2 clustering
Nearest

ID Cluster Cluster apiq bpiq spiq
d1 C1 C2 ?? 1.898 ??
d2 C1 C2 1.608 2.879 0.442
d3 C2 C1 0.624 2.594 0.76
d4 C1 C2 1.261 2.142 0.411
d5 C1 C2 1.452 2.098 0.308
d6 C1 ?? ?? ?? ??
d7 C1 C2 1.42 2.061 0.311
d8 C1 C2 1.272 2.432 ??
d9 C2 C1 0.496 2.067 0.76
d10 C2 C1 0.344 2.375 ??
d11 C1 C2 1.565 2.802 0.441
d12 C1 C2 1.338 ?? ??
d13 C2 C1 0.379 2.444 0.845
d14 C2 C1 ?? 2.056 ??
d15 C1 C2 1.425 2.53 0.437

k “ 3 clustering
Nearest

ID Cluster Cluster apiq bpiq spiq
d1 C1 C2 0.732 1.681 0.565
d2 C1 ?? ?? ?? ??
d3 C3 C2 0.624 2.422 0.742
d4 C2 C1 0.482 1.884 ??
d5 C1 C3 0.619 2.098 0.705
d6 C2 C3 0.68 2.24 0.697
d7 C2 C1 0.777 1.935 0.598
d8 C2 C1 0.558 1.842 0.697
d9 C3 C1 0.496 2.04 0.757
d10 C3 ?? 0.344 ?? ??
d11 C1 C2 0.769 2.201 0.651
d12 C1 C2 0.592 1.935 0.694
d13 C3 C1 0.379 2.436 0.844
d14 C3 C1 0.459 2.038 ??
d15 C2 C1 0.579 2.101 0.725

(a) A number of values are missing from these workings (indicated by ??). Calculate
the missing values. The distances between each instance in the dataset from Ques-
tion 1 (using Euclidean distance) are shown in the following distance matrix, and
will be useful for this exercise.

»
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—
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—
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—

—

—

—

–

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

d1 0.00
d2 0.99 0.00
d3 2.31 3.30 0.00
d4 1.52 2.11 2.30 0.00
d5 0.56 0.95 2.55 1.95 0.00
d6 2.00 2.63 2.29 0.55 2.46 0.00
d7 1.50 2.12 2.21 0.61 2.02 0.73 0.00
d8 1.56 1.98 2.62 0.35 1.96 0.78 0.82 0.00
d9 1.63 2.60 0.78 1.94 1.79 2.10 1.92 2.20 0.00
d10 1.95 2.93 0.47 2.23 2.15 2.32 2.13 2.52 0.44 0.00
d11 1.00 0.47 3.23 2.07 0.78 2.61 2.20 1.94 2.49 2.86 0.00
d12 0.38 0.96 2.43 1.77 0.19 2.26 1.83 1.78 1.69 2.04 0.83 0.00
d13 2.01 2.98 0.49 2.32 2.19 2.41 2.22 2.61 0.49 0.09 2.91 2.09 0.00
d14 1.59 2.57 0.75 1.93 1.81 2.08 1.83 2.21 0.28 0.37 2.51 1.70 0.44 0.00
d15 1.82 2.26 2.68 0.43 2.21 0.66 0.94 0.28 2.31 2.62 2.19 2.03 2.71 2.33 0.00

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

To illustrate how this exercise is completed the complete workings for cal-
culating the silhouette with for instance d6 will be shown. In this clustering
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d6 is a member of C1. The first step is calculating the silhouette value for d6

is to calculate apiq, the average distance between d6 and the other members
of cluster C1. The members of C1 are td1,d2,d4,d5,d6,d7,d8,d11,d12,d15u.
From the distance matrix provided, the distance from d6 to each other mem-
ber of C1 is:

“

d1 d2 d4 d5 d6 d8 d11 d12 d15

d6 2.00 2.63 0.55 2.46 0.73 0.78 2.61 2.26 0.66
‰

The average distance between d6 and the other members of C1, apiq, is the
average of these values: 1.631.
The next step in the algorithm is to calculate the average distance from d6 to
each member of the other clusters in the clustering. In this case there is just
one, C2. The distances from d6 to the members of C2 are:

“

d3 d9 d10 d13 d14

d6 2.29 2.10 2.32 2.41 2.08
‰

which gives an average of 2.240 which is the value for bpiq as there is only
one other cluster. The silhouette width for d6 is then calculated as

2.240´ 1.631
maxp2.240, 1.631q

“ 0.272

Other values are calculated similarly. The completed table of all values is
shown below.

k “ 2 clustering
Nearest

ID Cluster Cluster apiq bpiq spiq
d1 C1 C2 1.259 1.898 0.337
d2 C1 C2 1.608 2.879 0.442
d3 C2 C1 0.624 2.594 0.76
d4 C1 C2 1.261 2.142 0.411
d5 C1 C2 1.452 2.098 0.308
d6 C1 C2 1.631 2.24 0.272
d7 C1 C2 1.42 2.061 0.311
d8 C1 C2 1.272 2.432 0.477
d9 C2 C1 0.496 2.067 0.76
d10 C2 C1 0.344 2.375 0.855
d11 C1 C2 1.565 2.802 0.441
d12 C1 C2 1.338 1.991 0.328
d13 C2 C1 0.379 2.444 0.845
d14 C2 C1 0.459 2.056 0.776
d15 C1 C2 1.425 2.53 0.437
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k “ 3 clustering
Nearest

ID Cluster Cluster apiq bpiq spiq
d1 C1 C2 0.732 1.681 0.565
d2 C1 C2 0.843 2.219 0.62
d3 C3 C2 0.624 2.422 0.742
d4 C2 C1 0.482 1.884 0.744
d5 C1 C3 0.619 2.098 0.705
d6 C2 C3 0.68 2.24 0.697
d7 C2 C1 0.777 1.935 0.598
d8 C2 C1 0.558 1.842 0.697
d9 C3 C1 0.496 2.04 0.757
d10 C3 C2 0.344 2.363 0.855
d11 C1 C2 0.769 2.201 0.651
d12 C1 C2 0.592 1.935 0.694
d13 C3 C1 0.379 2.436 0.844
d14 C3 C1 0.459 2.038 0.775
d15 C2 C1 0.579 2.101 0.725

(b) On the basis of the completed table, calculate the silhouette for each clustering.

The silhouette for each clustering is simply the average of the silhouette en-
tries. For the clustering with k “ 2 this is 0.517, and for the clustering with
k “ 3 this is 0.711.

(c) On the basis of the silhouette, would you choose 2 or 3 for the value of k for this
dataset?

As it has a higher silhouette there is more evidence that three clusters exist
in this dataset than two. So k “ 3 should be chosen.
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3. A city tax service has performed a clustering of individual taxpayers using k-means
clustering in order to better understand groups that might exist within their taxpayer
base. The clustering has divided the taxpayers into three clusters. Four descriptive
features have been used to describe each taxpayer:

‚ AGE: The age of the taxpayer.

‚ YEARSINCURRENTEMPLOYMENT: The number of years that the taxpayer has
been in their current job.

‚ TOTALINCOME: The taxpayer’s total income for the current tax year.

‚ EFFECTIVETAXRATE: The effective tax rate paid by the taxpayer (this is simply
tax paid divided by total income).

The following table shows summary statistics of the four descriptive features for each
of the three clusters found.

1st 3rd Std.
Feature Cluster Min. Qrt. Mean Median Qrt. Max Dev.

AGE

C1 20 28 34.6 34 40 59 7.8
C2 36 43 45.8 45 48 64 4.5
C3 20 32 34.9 36 39 52 5.8

YEARSIN
CURRENT
EMPLOYMENT

C1 0.50 2.74 7.18 5.11 10.76 27.40 5.56
C2 8.16 14.25 17.81 17.04 20.71 33.89 4.60
C3 0.50 2.44 5.73 4.38 9.32 14.12 3.73

TOTALINCOME

C1 46 247.70 57 355.06 68 843.26 64 977.64 75 967.11 175 000 16 387.77
C2 11 182.46 24 222.04 34 711.67 32 637.42 44 102.08 93 800.98 13 412.08
C3 15 505.02 29 636.07 36 370.00 36 421.53 42 912.04 64 075.62 8 744.26

EFFECTIVE
TAXRATE

C1 0.210 0.256 0.274 0.271 0.291 0.349 0.024
C2 0.167 0.183 0.204 0.192 0.220 0.321 0.030
C3 0.147 0.183 0.199 0.194 0.214 0.252 0.021

The following table shows the information gain calculated when each descriptive fea-
ture is used to predict the membership of a single cluster versus the rest of the popula-
tion.

Information Gain
Feature C1 C2 C3

AGE 0.0599 0.4106 0.1828
YEARSINCURRENTEMPLOYMENT 0.0481 0.5432 0.3073
TOTALINCOME 0.5015 0.0694 0.1830
EFFECTIVETAXRATE 0.5012 0.0542 0.2166

The following images show histograms of the values of the four descriptive features
both for the full dataset and when divided into the three clusters found.
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AGE YEARSINCURRENTEMPLOYMENT TOTALINCOME EFFECTIVETAXRATE
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Using the information provided, write a description of what it means for a taxpayer to
be a member of each of the clusters.
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To perform this task the best place to start is to analyse the information gain
values provided in the final table. These indicate which descriptive features are
likely to be most useful in describing each cluster. For C1 the descriptive features
with the highest information gain values are TOTALINCOME and EFFECTIVE-
TAXRATE; for C2 it is YEARSINCURRENTEMPLOYMENT and AGE; and for C3

it is YEARSINCURRENTEMPLOYMENT and EFFECTIVETAXRATE. The selec-
tion of two descriptive features for each cluster is arbitrary here but seems to be
suggested by the information gain values. We will always use the other descrip-
tive features in our descriptions too.
Using each of these pairs of descriptive features an examination of the summary
statistics in the table provided and the histograms can help understand how to
define each of the clusters found. For example, the first cluster, C1, can be largely
defined as containing taxpayers with relatively large incomes who pay a high
effective tax rate. They can also be seen to be relatively young and not long in
their current positions. It is common in this type of application of clustering to
name clusters so as to easily capture their meaning. We could describe these
taxpayers as high flyers given their youth and high earnings.
Similarly, we can describe the members of the second cluster, C2, as being older
and having stayed in their current potions for a long time. They also tend towards
lower incomes and pay slightly low tax rates, although this distribution has a long
tail. We might describe these as golden years taxpayers.
Finally, members of the the third cluster, C3, are largely defined by not having
been long in their current jobs and paying a fairly low effective tax rate. They also
tend to be in their thirties and have relatively low incomes. We might describe
these taxpayers as being those in the middle.
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˚ 4. The following table shows a customer-item matrix describing items from an online
store that customers have bought.
ID I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 1 1 1 1 0 1 1 1 0 0 0 0 0 0
3 1 1 0 1 0 1 1 1 1 0 0 0 1 0
4 1 0 1 0 1 1 1 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 1 1 1 1 1 1 1
6 0 1 0 0 0 0 0 0 1 1 1 1 1 0
7 0 0 0 1 0 0 1 1 1 1 0 1 0 1
8 0 1 0 0 0 0 0 0 0 1 0 1 1 1

The online store would like to cluster their customers to see if they could define mean-
ingful groups to whom they could target special offers. The table below shows a dis-
tance matrix calculated using the Jaccard similarity measure (see Section 5.4.5[211]).
A number of items have been left out of this matrix (indicated by ??).

»

—

—

—

—

—

—

—

—

—

—

—

–

d1 d2 d3 d4 d5 d6 d7 d8

d1 0.000
d2 ?? 0.000
d3 0.600 ?? 0.000
d4 0.429 0.500 0.700 0.000
d5 1.000 0.923 0.750 1.000 0.000
d6 0.909 ?? 0.727 1.000 0.375 0.000
d7 0.917 0.727 0.636 0.909 0.444 ?? 0.000
d8 0.900 0.909 0.818 1.000 0.500 0.429 0.667 0.000

fi
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ffi

ffi

ffi

ffi
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fl

(a) Using the Jaccard similarity index (reproduced here from Section 5.4.5[211])

distJpq,dq “ 1´
CPpq,dq

CPpq,dq ` PApq,dq ` APpq,dq

calculate these missing distances in the preceding distance matrix (note that be-
cause this is a distance (or dissimilarity) matrix rather than a similarity matrix, the
values shown are 1´ simJpq,dq).

The distances can be calculated as follows:

distJpd1,d2q “1´
CPpd1,d2q

CPpd1,d2q ` PApd1,d2q ` APpd2,d1q

“ 1´
5

5` 1` 2
“ 1´ 0.625 “ 0.375
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distJpd2,d3q “1´
CPpd2,d3q

CPpd2,d3q ` PApd2,d3q ` APpd2,d1q

“ 1´
6

6` 2` 1
“ 1´ 0.67 “ 0.33

distJpd2,d6q “1´
CPpd2,d6q

CPpd2,d6q ` PApd2,d6q ` APpd2,d1q

“ 1´
1

1` 5` 6
“ 1´ 0.08 “ 0.92

distJpd6,d7q “1´
CPpd6,d7q

CPpd6,d7q ` PApd6,d7q ` APpd6,d7q

“ 1´
3

3` 4` 3
“ 1´ 0.30 “ 0.70

The completed table showing missing values is shown below.

1 2 3 4 5 6 7 8
1 0.000
2 0.375 0.000
3 0.600 0.333 0.000
4 0.429 0.500 0.700 0.000
5 1.000 0.923 0.750 1.000 0.000
6 0.909 0.917 0.727 1.000 0.375 0.000
7 0.917 0.727 0.636 0.909 0.444 0.700 0.000
8 0.900 0.909 0.818 1.000 0.500 0.429 0.667 0.000

(b) Agglomerative hierarchical clustering (AHC) can easily be applied to this dis-
tance matrix. If single linkage is used with AHC, which agglomerations will be
made in the first three iterations of the algorithm?

Instances d2 and d3 are closest according to Jaccard similarity index and will
still the first pair of instances combined into a cluster if average linkage were
used. The table below shows the revised distance matrix after this combina-
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tion is made. Note now that distances are updated to be the average distance
between the members of the new cluster C9 and other instances rather than
the minimum as was the case previously.

1 C9 2 3 4 5 6 7 8
1 0.000
C9 0.375 0.000 -

2 - - -
3 - - - -
4 0.429 0.500 - - 0.000
5 1.000 0.750 - - 1.000 0.000
6 0.909 0.727 - - 1.000 0.375 0.000
7 0.917 0.636 - - 0.909 0.444 0.700 0.000
8 0.900 0.818 - - 1.000 0.500 0.429 0.667 0.000

Examining this matrix the next agglomeration to made is a tie between in-
stances d5 and d6 and instance d1 and the newly created cluster C9. When
the Jaccard similarity index is used ties are common. We will break ties by
choosing the items earliest in the dataset (it makes little difference) and so
merge d1 and C9. The table below shows the revised distance matrix after
this combination is made.

C10 1 C9 2 3 4 5 6 7 8
C10 0.000

1 -
C9 - - - -

2 - - - -
3 - - - - -
4 0.429 - - - - 0.000
5 0.750 - - - - 1.000 0.000
6 0.727 - - - - 1.000 0.375 0.000
7 0.636 - - - - 0.909 0.444 0.700 0.000
8 0.818 - - - - 1.000 0.500 0.429 0.667 0.000

The pair from the tie mentioned previously, d5 and d6, are the next agglom-
eration made. The table below shows the revised distance matrix after this
combination is made.
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C10 1 C9 2 3 4 C11 5 6 7 8
C10 0.000

1 -
C9 - - - -

2 - - - -
3 - - - - -
4 0.429 - - - - 0.000
C11 0.727 - - - 1.000 0.000

5 - - - - - - - -
6 - - - - - - - - -
7 0.636 - - - - 0.909 0.444 0.44 0.700 0.000
8 0.82 - - - - 1.000 0.429 0.500 0.429 0.667 0.000

For completeness the dendrogram showing the remaining steps in the algo-
rithm is shown below.
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(c) If average linkage were used with AHC instead of single linkage, which agglom-
erations would be made in the first three iterations of the algorithm?

Instances d2 and d3 are closest according to Jaccard similarity index and will
still be the first pair of instances combined into a cluster. The table below
shows the revised distance matrix after this combination is made. Note that
this is different to the table from this step in the previous example as now
average distance linkage is used. So, when calculating the distance between
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C9 and instances from the dataset we calculate the average distance between
the members of C9 (d2 and d3) and the relevant instances. So, for example
the distance between C9 and d4 is the average of the distances between d2

and d4, 0.500, and d3 and d4, 0.700. This is equal to 0.600 which is the value
shown in the table below.

1 C9 2 3 4 5 6 7 8
1 0.000
C9 0.488 0.000 -

2 - - -
3 - - - -
4 0.429 0.600 - - 0.000
5 1.000 0.837 - - 1.000 0.000
6 0.909 0.822 - - 1.000 0.375 0.000
7 0.917 0.682 - - 0.909 0.444 0.700 0.000
8 0.900 0.864 - - 1.000 0.500 0.429 0.667 0.000

Examining this matrix the next agglomeration to made is clearly between
instances d5 and d6 this time. The distance between d1 and the newly created
cluster C9 is now higher because average linkage is used. The table below
shows the revised distance matrix after this combination is made.

1 C9 2 3 4 C10 5 6 7 8
1 0.000
C9 0.488 0.000 -

2 - - -
3 - - - -
4 0.429 0.600 - - 0.000
C10 0.954 0.829 - - 1.000 0.000

5 - - - - - - -
6 - - - - - - - -
7 0.917 0.682 - - 0.909 0.572 - - 0.000
8 0.900 0.864 - - 1.000 0.464 - - 0.667 0.000

The entry defining the distance between C9 and C10 in this table is interesting.
As average linking is used, this is the average of the distances between all of
the members of these two clusters. C9 “ td2,d3u and C10 “ td5,d6u. The
pairwise distances between instances are:

d2 d3
d5 0.923 0.750
d6 0.917 0.727

So the distance between C9 and C10 is the average of these values, 0.829.
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On the third iteration of the algorithm instances d1 and d4, are closest and
so are the the next agglomeration made. Note her that this is now different
from when single linkage is used. The table below shows the revised distance
matrix after this combination is made.

C11 1 C9 2 3 4 C10 5 6 7 8
C11 0.000 -

1 - -
C9 0.544 0.488 0.000 -

2 - - - -
3 - - - - -
4 - - - - - -
C10 0.977 0.954 0.829 - - - 0.000

5 - - - - - - - -
6 - - - - - - - - -
7 0.913 - 0.682 - - - 0.572 - - 0.000
8 0.950 - 0.864 - - - 0.464 - - 0.667 0.000

For completeness the dendrogram showing the remaining steps in the algo-
rithm is shown below.
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˚ 5. The following table shows a small dataset used for human activity recognition from a
wearable accelerometer sensor.1 Each instance describes the average acceleration in
the X, Y, and Z directions within a short time window. There are no labels, so this
data is being clustered in an attempt to recognize different activity from this simple
data stream. The k-means clustering approach is to be applied to this dataset with
k “ 2 and using Euclidean distance. The initial cluster centroids for the two clusters
C1 and C2 are c1 “ 〈´0.235, 0.253, 0.438〉 and c2 “ 〈0.232, 0.325,´0.159〉. The
following table also shows the distance to these three cluster centers for each instance
in the dataset.

Cluster Distances Iter. 1
ID X Y Z Distpdi, c1q Distpdi, c2q

1 -0.154 0.376 0.099 0.370 0.467
2 -0.103 0.476 -0.027 0.532 0.390
3 0.228 0.036 -0.251 0.858 0.303
4 0.330 0.013 -0.263 0.932 0.343
5 -0.114 0.482 0.014 0.497 0.417
6 0.295 0.084 -0.297 0.922 0.285
7 0.262 0.042 -0.304 0.918 0.319
8 -0.051 0.416 -0.306 0.784 0.332

(a) Assign each instance to its nearest cluster to generate the clustering at the first
iteration of k-means on the basis of the initial cluster centroids.

The clusters to be assigned to each instance are shown below.

Cluster Distances Iter. 1 Iter. 1
ID X Y. Z Distpdi, c1q Distpdi, c2q Cluster

1 -0.154 0.376 0.099 0.370 0.467 C1

2 -0.103 0.476 -0.027 0.532 0.390 C2

3 0.228 0.036 -0.251 0.858 0.303 C2

4 0.330 0.013 -0.263 0.932 0.343 C2

5 -0.114 0.482 0.014 0.497 0.417 C2

6 0.295 0.084 -0.297 0.922 0.285 C2

7 0.262 0.042 -0.304 0.918 0.319 C2

8 -0.051 0.416 -0.306 0.784 0.332 C2

(b) On the basis of the clustering calculated in Part (a), calculate a set of new cluster
centroids.

1. The data in this question has been artificially created but is inspired by the Human Activity Recognition
Using Smartphones Dataset first described by ? and available from the UCI Machine Learning Repository (?).
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The instances that have been assigned to the first cluster, C1, are

ID X Y Z
1 -0.154 0.376 0.099

And, so, the new cluster centroid is just this single value:
c1 “ 〈´0.154, 0.376, 0.099〉.
The instances that have been assigned to the second cluster, C2, are

ID X Y Z
2 -0.103 0.476 -0.027
3 0.228 0.036 -0.251
4 0.330 0.013 -0.263
5 -0.114 0.482 0.014
6 0.295 0.084 -0.297
7 0.262 0.042 -0.304
8 -0.051 0.416 -0.306

And, so, the new cluster centroid is the average of these values:
c2 “ 〈0.121, 0.221,´0.205〉

(c) Calculate the distances of each instance to these new cluster centers and perform
another clustering iteration.

The distances to the two cluster centres, and the resulting clustering are
shown below.

Cluster Distances Iter. 2 Iter. 2
ID X Y Z Distpdi, c1q Distpdi, c2q Cluster

1 -0.154 0.376 0.099 0.370 0.467 C1

1 -0.154 0.376 0.099 0.000 0.438 C1

2 -0.103 0.476 -0.027 0.169 0.383 C1

3 0.228 0.036 -0.251 0.620 0.219 C2

4 0.330 0.013 -0.263 0.705 0.301 C2

5 -0.114 0.482 0.014 0.142 0.414 C1

6 0.295 0.084 -0.297 0.666 0.240 C2

7 0.262 0.042 -0.304 0.669 0.248 C2

8 -0.051 0.416 -0.306 0.420 0.279 C2
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1. An agent in an environment completes an episode and receives the following rewards:

tr0 “ ´33, r1 “ ´11, r2 “ ´12, r3 “ 27, r4 “ 87, r5 “ 156u

(a) Calculate the discounted return at time t “ 0 on the basis of this sequence of re-
wards using a discounting factor of 0.72.

We can apply Equation (11.8)[642] to this sequence of rewards to calculate the
discount rate, as viewed from t “ 0 where γ “ 0.72:

G “
`

0.720 ˆ´33
˘

`
`

0.721 ˆ´11
˘

`
`

0.722 ˆ´12
˘

`
`

0.723 ˆ 27
˘

`
`

0.724 ˆ 87
˘

`
`

0.725 ˆ 156
˘

“ p´33q ` p0.72ˆ´11q ` p0.5184ˆ´12q

` p0.3732ˆ 27q ` p0.2687ˆ 87q ` p0.1935ˆ 156q

“ 16.4985

(b) Calculate the discounted return at time t “ 0 on the basis of this sequence of re-
wards using a discount rate of 0.22.

We can apply Equation (11.8)[642] to this sequence of rewards to calculate the
discounted return, as viewed from t “ 0 where γ “ 0.72:

G “
`

0.220 ˆ´33
˘

`
`

0.221 ˆ´11
˘

`
`

0.222 ˆ´12
˘

`
`

0.223 ˆ 27
˘

`
`

0.224 ˆ 87
˘

`
`

0.225 ˆ 156
˘

“ p´33q ` p0.22ˆ´11q ` p0.0484ˆ´12q

` p0.0106ˆ 27q ` p0.0023ˆ 87q ` p0.0005ˆ 156q

“ ´35.4365

2. To try to better understand the slightly baffling behavior of her new baby, Maria—a
scientifically minded new mother—monitored her baby girl over the course of a day
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recording her activity at 20 minute intervals. The activity stream looked like this (with
time flowing down through the columns):

SLEEPING SLEEPING SLEEPING CRYING SLEEPING SLEEPING

CRYING SLEEPING HAPPY HAPPY CRYING HAPPY

SLEEPING SLEEPING CRYING HAPPY SLEEPING HAPPY

SLEEPING CRYING SLEEPING HAPPY SLEEPING HAPPY

SLEEPING CRYING SLEEPING HAPPY SLEEPING HAPPY

HAPPY SLEEPING HAPPY HAPPY SLEEPING HAPPY

HAPPY SLEEPING HAPPY SLEEPING HAPPY HAPPY

HAPPY HAPPY HAPPY SLEEPING HAPPY SLEEPING

SLEEPING SLEEPING HAPPY SLEEPING HAPPY SLEEPING

SLEEPING HAPPY HAPPY SLEEPING SLEEPING SLEEPING

SLEEPING HAPPY HAPPY SLEEPING HAPPY SLEEPING

SLEEPING CRYING CRYING SLEEPING SLEEPING SLEEPING

Maria noticed that her baby could occupy one of three states—HAPPY, CRYING, or
SLEEPING—and moved quite freely between them.

(a) On the basis of this sequence of states, calculate a transition matrix that gives the
probability of moving between each of the three states.

The first step to building the transition matrix is to count the frequency of
each possible state transition. Working down through the list of states we can
count the number of times we move from one state to the next. For example,
in the first five states tSLEEPING,CRYING, SLEEPING, SLEEPING, SLEEPINGu

there is one transition from SLEEPING Ñ CRYING, one transition from
CRYING Ñ SLEEPING, and two transitions from SLEEPING Ñ SLEEPING.
This would give the following partial transition frequency matrix:

»

–

SLEEPING CRYING HAPPY

SLEEPING 2 1 0
CRYING 1 0 0
HAPPY 0 0 0

fi

fl

The final frequency table is shown in the table below:

»

–

SLEEPING CRYING HAPPY

SLEEPING 24 3 8
CRYING 5 2 1
HAPPY 6 3 19

fi

fl

By normalising each row in the table (dividing each value by the sum of
values in the row) we can calculate the final transition matrix:
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»

–

SLEEPING CRYING HAPPY

SLEEPING 0.686 0.086 0.229
CRYING 0.625 0.250 0.125
HAPPY 0.214 0.107 0.679

fi

fl

(b) Draw a Markov process diagram to capture the behavior of a small baby as de-
scribed.

SLEEPING

CRYINGHAPPY

0.686

0.086

0.229
0.625

0.250

0.125
0.214

0.107

0.679
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3. The following table shows the action-value table for a reinforcement learning agent
learning to play the TwentyTwos game after 20 episodes of training have elapsed.

State Action Value
PL-DL Twist 0.706
PL-DL Stick 0.284
PM-DL Twist ´0.985
PM-DL Stick 0.589
BUST Twist 0.000
BUST Stick 0.000
LOSE Twist 0.000
LOSE Stick 0.000

State Action Value
PH-DL Twist ´0.038
PH-DL Stick 0.164
PL-DH Twist 0.386
PL-DH Stick ´0.832
TIE Twist 0.000
TIE Stick 0.000

State Action Value
PM-DH Twist 0.533
PM-DH Stick ´0.526
PH-DH Twist 0.154
PH-DH Stick 0.103
WIN Twist 0.000
WIN Stick 0.000
TWENTYTWO Twist 0.000
TWENTYTWO Stick 0.000

In the answers to the following questions, assume that after the initial cards have been
dealt to the player and the dealer, the following cards are coming up next in the deck:
10♥, 2♣, 7♣, K ♥, 9♦.

(a) At the beginning of the first episode the player is dealt p2♥,K ♣q, the dealer is
dealt pA♦, 3♦q, and the dealer’s visible card is the A♦. Given these cards, what
state is the TwentyTwos playing agent in?

The value of the player’s hand is 12 and the value of the dealer’s visible card
is 11 so the agent finds itself in the PL-DH state.

(b) Assuming that the next action that the agent will take is selected using a greedy
action selection policy, what action will the agent choose to take (Stick or Twist)?

To answer this question we need to examine the action-value table to find the
expected discounted return for each possible action from this state:
‚ Q pPL-DH,Twistq “ 0.386

‚ Q pPL-DH, Stickq “ ´0.832
As the expected return for the Twist action is higher this is the action that the
agent will select using a greedy action selection policy.

(c) Simulate taking the action that the agent selected in Part (b) and determine the
state that the agent will move to following this action and the reward that they will
receive. (Note: If cards need to be dealt to the player or dealer, use cards from the
list given at the beginning of this question.)

The agent selected the Twist action and the next card in the deck that will be
dealt is the 10♥. So, the cards in the player’s hand will now be p2♥,K ♣, 10♥q
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which have a value of 22. This means that the agent will move to the PH-DH
state. As this is a non-terminal state the agent will receive a reward of 0.

(d) Assuming that Q-learning is being used with α “ 0.2 and γ “ 0.9, update the
entry in the action-value table for the action simulated in Part (c).

To update the Q pPL-DH,Twistq entry in the action-value table we can use
Equation 11.24[658] as follows:

QpPL-DH,Twistq

ÐQ pPL-DH,Twistq`

αˆ
´

R pPL-DH,Twistq ` γ ˆmax
a

QpPH-DH, aq ´ Q pPL-DH,Twistq
¯

To fill in all value in this table we need to determine maxa QpPH-DH, aq,
the action from PH-DH with the highest expected return. The action value
function entries for the two possible actions are:
‚ Q pPH-DH,Twistq “ 0.154

‚ Q pPH-DH, Stickq “ 0.103
At this point in the learning process the Twist has the higher expected return
and so QpPH-DH,Twistq is used in the action-value function entry update
equation:

QpPL-DH,Twistq

ÐQ pPL-DH,Twistq`

αˆ pR pPL-DH,Twistq ` γ ˆ QpPH-DH,Twistq ´ Q pPL-DH,Twistqq

0.386` 0.2ˆ p0` 0.9ˆ 0.154´ 0.386q

0.361

(e) Assuming that a greedy action selection policy is used again and that Q-learning
is still being used with α “ 0.2 and γ “ 0.9, select the next action that the agent
will perform, simulate this action, and update the entry in the action-value table
for the action. (Note: If cards need to be dealt to the player or dealer, continue to
use cards from the list given at the beginning of this question.)

The agent finds itself in the PH-DH state. So, assuming again that a greedy
action selection policy is being used it will choose the action with the highest
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value in the action-value function table. The entries for Twist and Stick from
this state are:
‚ Q pPH-DH,Twistq “ 0.154

‚ Q pPH-DH, Stickq “ 0.103
At this point in the learning process the Twist has the higher expected return
and so QpPH-DH,Twistq will be selected. In this case, unfortunately, this is
not a good idea. The player’s hand has a total value of 22 so any new card
will send them bust. In this instance the card dealt from the deck described
above is the 2♣ which takes the player agent in the the BUST state with a
reward of ´1.
The action-value function table entry for Q pPH-DH,Twistq can be updated
as:

QpPH-DH,Twistq

ÐQ pPH-DH,Twistq`

αˆ
´

R pPH-DH,Twistq ` γ ˆmax
a

QpBUST, aq ´ Q pPH-DH,Twistq
¯

The BUST state is a terminal state so it doesn’t matter which action is selected
next as all return an expected return of 0.0. So the update becomes:

QpPH-DH,Twistq

ÐQ pPH-DH,Twistq`

αˆ pR pPH-DH,Twistq ` γ ˆ QpBUST,Twistq ´ Q pPH-DH,Twistqq

0.154` 0.2ˆ p´1` 0.9ˆ 0´ 0.154q

0.039

(f) On the basis of the changes made to the TwentyTwos playing agent’s action-value
table following the two actions taken in the previous parts of this question, how
has the agent’s target policy changed?

The first action taken didn’t change the overall policy in a noticeable way.
The action-value function table entry for Q pPL-DH,Twistq reduced slightly,
but at 0.36 it is still higher than the value for Q pPL-DH, Stickq and so a
greedy target policy will still select the Twistaction in that state.
The results of the changes resulting from the second action are more im-
pactful. The choice to Twist in the PH-DH state led to the player going bust
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and reduced the action-value function table entry for Q pPH-DH,Twistq from
0.154 to 0.039. This is less than the entry for Q pPH-DH, Stickq, at 0.103,
and so the target policy from that state will not swap from the Twist action to
the Stick action—probably a moire sensible choice.
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˚ 4. As part of a project to develop a self-driving taxi system, the behavior of a taxi driver
has been observed over a work day. During their shift the taxi driver can CRUISE

looking for work, wait for a fare at a taxi RANK, take a FARE and deliver a passenger
to their destination, or take a BREAK. The behavior of the taxi driver over the shift
looked like this (with time flowing down through the columns):

CRUISE RANK RANK FARE CRUISE CRUISE

FARE CRUISE BREAK FARE FARE BREAK

CRUISE CRUISE CRUISE FARE FARE RANK

CRUISE FARE CRUISE FARE FARE RANK

CRUISE FARE CRUISE FARE CRUISE RANK

FARE CRUISE FARE FARE CRUISE FARE

FARE RANK FARE CRUISE FARE FARE

FARE FARE FARE CRUISE FARE CRUISE

CRUISE CRUISE FARE CRUISE FARE CRUISE

CRUISE FARE FARE CRUISE CRUISE CRUISE

CRUISE FARE FARE CRUISE FARE CRUISE

CRUISE RANK FARE CRUISE CRUISE CRUISE

(a) On the basis of this behavior sequence, calculate a transition matrix that gives the
probability of moving between all the four states.

The first step to building the transition matrix is to count the frequency of
each possible state transition. Working down through the list of states we
can count the number of times we move from one state to the next. The
frequency table calculated from this behavior sequence is:

»

—

—

–

CRUISE RANK FARE BREAK

CRUISE 20 2 8 1
RANK 1 3 2 1
FARE 9 1 21 0

BREAK 1 1 0 0

fi

ffi

ffi

fl

By normalising each row in the table (dividing each value by the sum of
values in the row) we can calculate the final transition matrix:

»

—

—

–

CRUISE RANK FARE BREAK

CRUISE 0.645 0.065 0.258 0.032
RANK 0.143 0.429 0.286 0.143
FARE 0.290 0.032 0.677 0.000

BREAK 0.500 0.500 0.000 0.000

fi

ffi

ffi

fl
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(b) Draw a Markov process diagram to capture the behavior of the taxi driver as de-
scribed.

CRUISE

RANKBREAK

FARE

0.645

0.065

0.258

0.032

0.143

0.429

0.286

0.143

0.290

0.032

0.677

0.500

0.500

˚ 5. The following image labeled (a) shows a simple schematic of a system used to train
a self-driving car to drive on a four-lane highway. The car has sensors on the front,
the rear, and the sides that indicate the presence of other cars or lane barriers in the
area immediately surrounding the car. The shaded cells in Image (a) below show the
region that these sensors cover. The region around the car is divided into cells that
can be empty, occupied by another car, or occupied by a barrier. Cars occupy an area
covered by two cells (one above the other as shown in Image (a)). Images (b) and (c)
show the car in other positions where other cars and barriers are sensed by the car, but
other cars and barriers are out of range of the sensors.

(a) (b) (c)
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The car can move at three speeds: stationary, slow, and fast. When moving fast,
the car moves forward two cells per time-step; when moving slowly the car moves
forward one cell per time-step; and when stationary does not move forward at all. The
actions that the car can take are to (1) maintain its current speed, (2) increase its speed
(move up one level in the speed categories stationary, slow, and fast), (3) decrease its
speed (move down one level in the speed categories), (4) move to the left, and (5)
move to the right.
When the car changes speed, the action has an immediate effect on the car’s progress

in the current time-step. If the car is stationary, taking the action to move left or right
has no effect on the car’s position. If the car is moving slowly, then moving left or
right moves the car one cell in that direction at that time-step, but not any distance
forward. If the car is moving fast, then moving left or right moves the car one cell in
that direction at that time-step and one cell forward.
The goal that the agent is being trained to achieve is to learn to drive as far as possible

in the shortest amount of time possible without crashing. The car moves forward along
an infinite highway, and an episode ends if the car crashes into a barrier or another car.

(a) Design a state representation for the car agent in this scenario. How many states
will exist in the representation?

The most straight-forward representation for this agent would be one in which
the cells sensed by the car define a set of states corresponding to whether they
are occupied or empty. Given that the sensors on the car cover 9 cells that
means that there are 29 “ 512 possible configurations as each cell can be ei-
ther occupied or empty. The images labeled (a), (b) and (c) above show three
possible configurations. In (a) all cells are empty, in (b) two of the cells to
the left of the car and the cell directly behind the car are occupied, and in (c)
all cells to the left are occupied as well was one cell in front and one to the
right and behind. As the car can move at three speeds so this would also need
to be taken into account as well and so this would mean 512 ˆ 3 “ 1 536
states.
The number of states in the representation could be reduced by simplifying
the level of data captured - for example just indicating if there was a car
to the left or right or not rather than capturing exactly which cells were oc-
cupied. The representation could also be made more rich, for example by
distinguishing between cells occupied by barriers and cells occupied by cars,
or by taking account of the speed at which other cars are moving. The key
in designing state representations is to find the simplest representation that
captured everything that is important to the goal the agent is trying to achieve.
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(b) Given the state representation that you have defined in Part (a) and the actions
available to the agent, how many entries would the action-value function table for
a tabular reinforcement learning agent trained for this task have?

There are five actions available to the agent and the state representation in
part (a) had 1 536 states. Therefore there would need to be 5ˆ1 536 “ 7 680
entries in an action-value function table.

(c) Design a reward function for this scenario.

The goal in this scenario is to train an agent to cover as much ground as pos-
sible in the shortest time possible without crashing. A simple reward scheme
would be to reward the agent `1 for every time-step for which it doesn’t
crash. This might seem like it would encourage safe driving behavior, but
in fact would result in an agent learning to stay stationary–the only sure way
not to crash (assuming other cars don’t crash into it). A simple and effective
reward function would be to reward the agent according to the number of
cells travelled at each time-step. This would be 0 when stationary, `1 when
moving slow, and`2 when travelling fast. This simple reward scheme would
result in an agent that could learn to drive along the highway.
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