Contents

Preface xv
Acknowledgments xxi

I Urban Contexts and Sustainability
1 Introduction
1.1 On the Path to Scenario B
1.2 Objective: Integrate Infrastructure Networks
1.3 Why Cities?
1.4 Civitas
1.5 Book Outline
1.6 Measures and Units
1.7 Missing Topics
1.8 Conclusion
Problem Set
Notes
References

II Sustainability
2 Defining Sustainability
2.1 Formal Definition of Sustainability
2.2 Peak Oil, and Why Fossil Fuels Are Unsustainable
2.2.1 The Rebound Effect
2.2.2 Controlling Interdependencies
2.3 The Triple Bottom Line of Sustainability
2.4 The IPAT Equation and the Kaya Identity
Contents

2.5 Planetary Boundaries and Nonlinearities 42
2.6 Conclusion 46
Problem Set 47
Notes 50
References 51

3 Population 53

3.1 Malthus and an Essay on the Principle of Population 55
3.2 Short-Term Population Predictions 59
 3.2.1 Geometric Growth Phase 60
 3.2.2 Arithmetic Growth Phase 62
 3.2.3 Declining Growth Phase 62
3.3 Long-Term Population Predictions 65
3.4 The Cohort-Survival Method 69
3.5 Conclusion 72
Problem Set 77
Notes 82
References 83

4 Urban Planning 85

4.1 A Brief History of Urban Planning 88
 4.1.1 The Neolithic Era 88
 4.1.2 Ancient Greece and Rome 89
 4.1.3 Medieval Towns and the Renaissance 92
 4.1.4 Baroque Planning, the Expansion of Cities, and the Pedshed 93
 4.1.5 The City Beautiful, the Garden City, and the Radiant City 95
 4.1.6 Greenbelt Towns and the City of Highways 100
4.2 Essentials of Urban Planning 103
 4.2.1 A City Is Not a Tree 103
 4.2.2 The Image of the City 107
 4.2.3 Eyes on the Street 109
4.3 Urban Design and Desirable Traits 111
 4.3.1 Lynch’s Five Dimensions and Two Metacriteria 112
 4.3.2 Jacobs’s Four Conditions for Diversity 115
4.4 Conclusion 117
Problem Set 120
Notes 121
References 122
II Urban Engineering and Infrastructure Systems 125

5 Electricity 127

5.1 Fundamentals of Electricity 129
5.1.1 Basics of Electricity 129
5.1.2 Kirchhoff’s Laws and Load Types 133
5.1.3 Series and Parallel Circuits 135
5.1.4 Alternating Current and Direct Current 138
5.1.5 Three-Phase Power 140
5.1.6 The Power Grid 142
5.2 Electricity Demand 145
5.2.1 Temporal and Spatial Analysis of Electricity Demand in the United States 146
5.2.2 Real-Time Electricity Demand 148
5.2.3 Typical Power Rating of Appliances 151
5.3 Electricity Generation 151
5.3.1 Coal-Fired Power Plants 155
5.3.2 Oil- and Natural Gas–Fired Power Plants 157
5.3.3 Nuclear Power Plants 157
5.3.4 Geothermal Power Plants 158
5.3.5 Biomass Power Plants 159
5.3.6 Solar Thermal Power Plants 159
5.3.7 Hydroelectric Power Plants 161
5.3.8 Wind Farms 162
5.3.9 Wave and Tide Power 164
5.3.10 Solar Photovoltaic Power Plants 166
5.3.11 Greenhouse Gas Emission Factors 169
5.4 Future Grid 171
5.4.1 Electricity Storage 171
5.4.2 Smart Grid and Microgrid 172
5.5 Conclusion 174

Problem Set 175
Notes 180
References 182

6 Water 185

6.1 Fundamentals of Water Resources Engineering 187
6.1.1 Surface Water Hydrology 187
6.1.1.1 Watershed 187
6.1.1.2 Hyetographs and Hydrographs 189
6.1.1.3 Intensity-Duration-Frequency Curves 191
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2</td>
<td>Flow in Closed Conduits</td>
<td>194</td>
</tr>
<tr>
<td>6.1.2.1</td>
<td>Conservation of Energy</td>
<td>196</td>
</tr>
<tr>
<td>6.1.2.2</td>
<td>Friction Losses</td>
<td>198</td>
</tr>
<tr>
<td>6.1.2.3</td>
<td>Pumps</td>
<td>199</td>
</tr>
<tr>
<td>6.1.2.4</td>
<td>Pipe Networks</td>
<td>200</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Flow in Open Channels</td>
<td>203</td>
</tr>
<tr>
<td>6.1.3.1</td>
<td>The Manning Equation</td>
<td>203</td>
</tr>
<tr>
<td>6.1.3.2</td>
<td>Energy, Critical Flow, and the Froude Number</td>
<td>206</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Groundwater Engineering</td>
<td>208</td>
</tr>
<tr>
<td>6.1.4.1</td>
<td>Groundwater Hydrology</td>
<td>209</td>
</tr>
<tr>
<td>6.1.4.2</td>
<td>Darcy's Law</td>
<td>210</td>
</tr>
<tr>
<td>6.1.4.3</td>
<td>Pumps</td>
<td>210</td>
</tr>
<tr>
<td>6.2</td>
<td>Water Demand</td>
<td>213</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Water Consumption Trends</td>
<td>213</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Water Demand by End Use</td>
<td>215</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Water Demand by Household Size</td>
<td>217</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Water Demand by Hour</td>
<td>217</td>
</tr>
<tr>
<td>6.3</td>
<td>Water and Wastewater Treatment</td>
<td>220</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Water Treatment</td>
<td>220</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Wastewater Treatment</td>
<td>221</td>
</tr>
<tr>
<td>6.4</td>
<td>Stormwater Management</td>
<td>223</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Sewer Systems</td>
<td>223</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Green Infrastructure and Low-Impact Development</td>
<td>226</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Runoff Modeling</td>
<td>229</td>
</tr>
<tr>
<td>6.4.3.1</td>
<td>Rational Method</td>
<td>229</td>
</tr>
<tr>
<td>6.4.3.2</td>
<td>Natural Resources Conservation Service Curve Number Model</td>
<td>232</td>
</tr>
<tr>
<td>6.5</td>
<td>Energy Use in Water</td>
<td>237</td>
</tr>
<tr>
<td>6.6</td>
<td>Conclusion</td>
<td>241</td>
</tr>
<tr>
<td>Problem Set</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>251</td>
<td></td>
</tr>
</tbody>
</table>

7 **Transport** | 253

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Fundamentals of Transport</td>
<td>255</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Traffic Flow Theory</td>
<td>256</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Pedestrian Flow</td>
<td>262</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Public Transit Planning</td>
<td>265</td>
</tr>
<tr>
<td>7.2</td>
<td>Travel Demand</td>
<td>275</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Trips</td>
<td>275</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Distance Traveled</td>
<td>277</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Mode Share</td>
<td>281</td>
</tr>
</tbody>
</table>
7.2.4 Greenhouse Gas Emission Factors 284
7.2.5 Origin-Destination Matrix 287
7.3 Transport and Land Use 290
7.4 Transport Modeling and the Four-Step Model 293
 7.4.1 Trip Generation 295
 7.4.2 Trip Distribution 297
 7.4.3 Mode Split 299
 7.4.4 Assignment 301
7.5 Conclusion 306
Problem Set 308
Notes 316
References 318

8 Buildings 321

8.1 Fundamentals of Thermal Comfort and Heat Transfer 324
 8.1.1 Principles of Thermal Comfort 325
 8.1.2 Fundamentals of Heat Transfer 326
 8.1.2.1 Conduction 327
 8.1.2.2 Convection 332
 8.1.2.3 Radiation 336
 8.1.2.4 Combining Heat Transfer Processes 341
 8.1.3 Windows and Air Exchange 344
 8.1.3.1 Windows 344
 8.1.3.2 Air Exchange 345
 8.1.4 Heating and Cooling Efficiency 349
8.2 Energy Demand in Buildings 351
 8.2.1 Degree Days 351
 8.2.2 Compactness and Shape Factor 355
 8.2.3 Building Energy Demand Trends 356
8.3 Building Design and Technology Recommendations 359
 8.3.1 Better Designs 359
 8.3.1.1 Size 360
 8.3.1.2 Compactness 360
 8.3.1.3 Orientation 360
 8.3.1.4 Shading 361
 8.3.2 Technologies 363
 8.3.2.1 Turning Off and Down Equipment 364
 8.3.2.2 Sealing Leaks 364
 8.3.2.3 Windows 364
 8.3.2.4 Insulation 364
 8.3.2.5 Reflecting Material/Paint 364
 8.3.2.6 White-Blue-Green Roof 364
8.3.2.7 Solar Water Heating 366
8.3.2.8 Solar Photovoltaic 367
8.3.2.9 Vertical Gardens 367
8.3.2.10 Air-Source and Ground-Source Heat Pumps 367
8.3.2.11 District Heating and Cooling 369
8.3.2.12 Technologies and Internal Rate of Return 369
8.3.2.13 Leadership in Energy & Environmental Design Rating 371

8.4 Conclusion 372
Problem Set 373
Notes 379
References 380

9 Solid Waste 383

9.1 Fundamentals of Solid Waste Management 386
9.1.1 History 387
9.1.2 Definition of Solid Waste and Solid Waste Management 391
9.1.3 Physical, Chemical, and Biological Properties of Solid Waste 401
 9.1.3.1 Physical Properties 401
 9.1.3.2 Chemical Properties 405
 9.1.3.3 Biological Properties 409
9.2 Solid Waste Generation and Composition 411
 9.2.1 Solid Waste Audit 413
 9.2.2 Solid Waste Trends and Composition 417
 9.2.3 Solid Waste Composition by Sector 426
9.3 Solid Waste Disposal 432
 9.3.1 Solid Waste Separation and Processing 434
 9.3.2 Solid Waste Transformation 437
 9.3.2.1 Reuse 437
 9.3.2.2 Recycle 438
 9.3.2.3 Recover 442
 9.3.3 Solid Waste Disposal 442
 9.3.3.1 Incineration 442
 9.3.3.2 Sanitary Landfill 445

9.4 Conclusion 449
Problem Set 451
Notes 457
References 459
III Urban Metabolism and Novel Approaches 461

10 Urban Metabolism and Infrastructure Integration 463

 10.1 Urban Metabolism 465
 10.1.1 Materials 469
 10.1.2 Food 475
 10.1.3 Energy 475
 10.1.4 Water 479
 10.2 Infrastructure Interdependencies 485
 10.2.1 Transport 487
 10.2.2 Water 492
 10.2.3 Utility 494
 10.2.4 Electricity 495
 10.2.5 Telecom 496
 10.2.6 Solid Waste 498
 10.2.7 Buildings 499
 10.3 Integrating and Decentralizing Urban Infrastructure Systems 500
 10.3.1 The Design Patterns of Infrastructure 502
 10.3.2 Integration-Decentralization Matrix 504
 10.4 Conclusion 510
Problem Set 512
Notes 518
References 520

11 Science of Cities and Machine Learning 523

 11.1 The Science of Cities 525
 11.1.1 Complexity Science 525
 11.1.2 Scaling Laws in Cities 528
 11.1.3 Zipf's Law 532
 11.1.4 Simple Population Models 536
 11.1.5 Network Science 540
 11.2 Machine Learning 551
 11.2.1 Basic Concepts of Machine Learning 552
 11.2.2 K-means Clustering 556
 11.2.3 Decision Tree Learning 558
 11.2.4 Neural Networks 564
 11.3 Conclusion 568
Problem Set 572
Notes 579
References 582
12 Conclusion 585

12.1 Three Paradigm-Shifting Changes 587
 12.1.1 Smart Cities 588
 12.1.2 The Rise of New Materials 590
 12.1.3 Organizational Change 594
12.2 Final Thoughts and the Four-Step Urban Infrastructure Design Process 598

Problem Set 600
Notes 601
References 602

Appendix 605
 A. Tables 605
 B. Moody Diagram 611
 C. Level-of-Service Diagram 612
 D. Equation Sheet 614

Index 629