10-year Treasury future prices, 891, 891 fig., 894
10-year Treasury yield, 763 fig., 764
2007 subprime crisis
 conflicts of interest, credit ratings, 1065–1066, 1065n
 global financial crisis, 1062
 liquidity, 1065–1066
 meltdown, 1066–1067
 model misspecification, 1065–1066
 overview, 1062–1064, 1063 fig., 1064 fig.
 sell side, shadow banking system, 1064–1065, 1065n
ABN Amro, 1064n
ABS. See Asset backed securities (ABS)
Absence of frictions, 115
Absolute ambiguity aversion, 486
Absolute risk aversion, 34
Accelerator mechanisms, 11, 443, 508–508, 515–538
Actuarial
 2007 subprime crisis, 1017, 1062
 Arrow-Debreu securities, 83
 credit default swaps, 1013
 default probability, 1017
 moral hazard and securitization, 268
 risk-neutral pricing, macroeconomic risks, 101
 risk premiums, certainty equivalents, 32
 single name swaps, 1013
Adverse selection, 262, 263, 282, 556, 557 fig., 591, 597, 601
Affine
 aggregate equity market, 355
 asset market equilibrium, 577
differential information, information aggregation, 583
exponential affine models, 437, 690, 907, 961–963
exponential affine pricing kernels, 355–357
habit, 433, 434
Hull and White, 911
imperfect information, 567
Knightian uncertainty, 553–554
linearity-generating processes, 431
macro-asset derivative, 432–433
Markov chain, 410
multifactor models, short-term rate, 907
no-arbitrage models, 909
survival probabilities, models of, 1018–1021
term structure, interest rates, 403
Affine and quadratic term structure models, 902–904
Affine jump-diffusion family, 892. See also
 Affine and quadratic term structure models
Affine models, 437, 902–903, 902n, 907, 907n, 1018–1021, 1021 fig.
Agency costs, 293, 531
Aggregate equity market, 355–358, 356n, 357n
Aggregate equity premium, 4–5, 364, 499. See also
 Aggregate fluctuations in equity markets; Macrofinance
Aggregate equity volatility, 350, 372
Aggregate fluctuations in equity markets
 Arrow-Debreu partial differential equations, 420–421
 empirical evidence, 372–380
 estimation, calibration, simulation models, 416–420
Aggregate fluctuations in equity markets (cont.)
habit, 433–435
large price swings, 404–413
learning, 435–437
linearity-generating processes, 431–433
market-to-book ratios, 437
multifactor security model, 420
overview, 371–372
rational market fluctuations, 392–396
retained earnings, market-to-book ratios, 413–416
time-varying risk premiums, 396–404
volatility, business cycle perspective, 380–392
volatility, options, convexity, 421–431
Aggregate order flow, 596, 598–599, 605
Aggregate risk appetite, 472
Aggregate shock, 456, 457–458, 524, 524n
Aggregator, 142n, 444, 445
Alternative investments return, 267
Ambiguity, 486–487, 488, 491. See also
Knightian uncertainty
Ambiguity aversion, 486–487, 490, 491
American call options, 217
American options
American calls, incomplete markets, 217
controlled Brownian motions, 217–220
early exercise premiums, 209–211, 209n, 210
table
irreversible investments, 217–218, 218n
model of determination, exchange rates, 218–220
overview, 209
perpetual calls, 215–217, 216 fig.
perpetual calls with dividends, 215–217
perpetual puts, 213–214
real options theory, 212–213, 213n
risk aversion, 211–212, 211 table
American style option, 209, 835
Amplification, 524–529, 525n
Animal spirits, 123, 410
Annuity probability, 192, 192n, 945, 966
APT in continuous time, 170–173, 170n, 171n, 172n
Arbitrage, equilibrium, and pricing
arbitrage and replication, 84–86
CCAPM versus CAPM, 102
consumption CAPM, 100–104
equivalent martingales and equilibrium, 90–99
financial securities, 77–84
introduction, 69–71
no-arbitrage: theory, 87–90
static general equilibrium, 71–76
Arbitrage and further frictions, limits of
funding and early liquidation constraints, 617–621
liquidity and runs, 625–629
market segmentation, bond supply shocks, 622–625
optimal mispricing, funding constraints, 618–621, 618n, 620n, 620 fig., 621 fig.
overview, 614–615, 614nn
pairs trading, collapse of LTCM, 617–618, 617n
risky arbitrage, model of, 615–617
Arbitrage and replication: examples, 84–87
Arbitrage bounds, 666–667, 666 fig.
Arbitrage CDOs, 1035, 1038–1039, 1038 fig.
Arbitrage forces, 614, 618, 623
Arbitrage pricing theory (APT)
capital asset pricing model, 17–18
continuous time, 170–173
exact APT, 42–43
exponential affine pricing kernels, 357, 357n
Fama and French model, 50
idiosyncratic risk, large number of assets, 47–48
theory, 42–48
multiple likelihoods, 553
option pricing, stochastic volatility, 689
overview, 17–18
recursive evaluation, 784
replication, 689
risk-neutral tilts or FTAP, 44–47, 46n
tree representation, short-term rate, 784
uncertainty and asset evaluation, 47
ARCH and random variance models, 678–679
Arrow-Debreu densities and restrictions on
expected returns
asset volatility and general equilibrium, 203
consumption CAPM, 201–202
markets, options and equilibrium option
prices, 202–203, 202n
martingale restriction, 199–200, 200n
multibeta CAPM, 200–201
Arrow-Debreu partial differential equations, 420–421
Arrow-Debreu prices, 101–102, 102n, 494–495
Arrow-Debreu securities
defined, 69
derivatives, evaluation of, 45
Ellsberg paradox, 481
implied binomial trees, 710–713, 710 fig.
interest rate derivatives, pricing of, 804–807, 804 fig.
markets with multiple agents, 474
overview, 81
pricing, 81–83, 82 fig.
Arrow-Debreu securities, calibration through bond price equation, 824–825
extracting from the yield curve, 822–825
forward equation, 823–824, 823 fig.
Ho-Lee model, 825–826
model without closed-form solution, 826–827, 826n
numerical examples, 827–834, 828 fig., 829 fig., 830 fig.
overview, 821–822
Arrow-Debreu security pricing, 284, 831
Arrow-Debreu state price densities, 186–187, 547–548
Arrow-Debreu state prices
complete markets, single budget constraints, 183
enforced asset prices, 89
firms, 125
incomplete markets, 98
Lucas model, 114–115
risk-neutral pricing, macroeconomic risks, 101–102
Vasicek model, 880
Artificial markets, 207, 209
Asian financial crisis, 618
Ask price, 588, 589, 590, 594
Asset allocation puzzles, 26, 199
Asset-backed commercial paper, 974, 1067
Asset backed securities (ABS), 975 table, 1017, 1032, 1033 fig., 1077
Asset-liability management
barbell and bullet hedges, 777–780, 777n, 778 fig., 779 table
fixed income arbitrage strategies, 780
hedging, 774–775
hedging zeros with zeros, 775–777, 776 fig.
introductory issues, 772–774, 773n
negative convexity and market volatility, 781
Asset market equilibrium, 575–578
Asset price restrictions, 284
Asset prices
dealers markets, 587–595
enforced, 89–90
Feynman–Kac representations, 165–167
fully revealing, 569
government spending and, 492–495
information and market frictions, 563, 565, 568–569, 575
jump-diffusion processes, 223–225
markets with strategic players, 595
overlapping generations models, 130–140
time-varying risk premiums, 396–404
Asset returns
distributional assumptions, 1050
maximum correlation portfolio, 360–362
multiple trees, cross-section of asset returns, 499–508
rational market fluctuations, 392–396
stochastic volatility, 678–696, 748
Asset volatility, 165, 203, 379, 450, 453, 502, 535, 678, 985
Asymmetric information
adverse selection and trading, 265, 266
bid-ask spreads, 589–592
continuous time contracting, model of, 299, 302
costly state verification and business cycles, 529–532
debt and with costly state verification, 291–293
equity, 280–281
incentive-compatible constraint, 269–272, 271 fig.
information and market frictions, 563–564
information transmission, 575–582, 575n, 580 fig
IPO underpricing, 282
liquidity, empirical measures of, 594
noisy rational expectations equilibrium, 574
procyclicality, 516–517
signaling, callable bonds, equity, short-term debt, 273
smooth ambiguity aversion, 486
Asymptotic arbitrage, 79
Asymptotic normality, 328–331
ATM, 684. See also At-the-money (ATM)
ATM calls, 682, 684
ATM implied volatilities, 696, 697, 697 fig., 721
ATM options, 681, 717, 728
At-the-money (ATM)
Black–Scholes, 696–697, 697 fig., 699 fig.
implied binomial trees, 712
implied volatility, smiles and skews, 681, 684
model-free future pricing, 728–30
price of (equity) volatility, 717
stochastic volatility models, 696
variance swaps and VIX index, 721
wasting assets and convexity, 667, 668 fig.
Autarky equilibrium, 131, 626
Autoregressive conditional heteroskedasticity (ARCH) models, 678–680, 685
Auxiliary stochastic differential equation, 166
Average return, 50, 52, 568–569, 920
Average return-to-risk ratios (annualized), 693, 694
Average-to-risk ratio, 693, 694
Aversion to parameter uncertainty, 41, 41n
Backtesting, 1052
Backwardation, 659, 660 fig., 662, 663, 731, 739–740. See also Backwardation and contango
Backwardation and contango convenience yields, 660–661, 660n, 661n definitions, 659
normal backwardation, 659, 863, 863n, 935n overview, 659 risk aversion, 662–663 short-sale constraints, 659–660
Balance-sheet CDOs, 1034
Bank for International Settlements, 741, 759, 1045n, 1048n, 1053n
Banking. See also Markets and interest rate conventions; Shadow banking system 2007 subprime crisis, 1062–1067
Basel III, 1047
credit crunch and QE, 1061–1062, 1074–1077 crises, 515n fractional reserve system, 628–629 fragility of the system, 615 liquidity and runs, 625–629 savings and loan associations, 934
Bank of England, 1046
Bank panics, 625
Bank runs, 124, 625, 628–629. See also Runs
Barbell trade, 777–780, 777n, 778 fig., 779 table
Barbell trading, 778 fig., 816, 818–821, 820 fig., 821 fig.
Barings Bank, 700, 1046n, 1049
Barrier cone, 206
Barrier options, 212, 898
Barriers, 177–179, 206, 218, 220, 989, 1056
Basel Committee on Banking Supervision (BCBS), 1045, 1045n, 1053
Basel I, 1045–1046
Basel II, 1046, 1047, 1048, 1048 table, 1056–1057, 1068
Basel III, 1047–1048, 1048 table, 1068
Basis point volatility, 879, 887–888, 887 fig., 889 fig., 890 fig., 921, 921n
Basis risk, 878
Bayesian learning, 8, 406
Bellman’s equation. See also Nonexpected utility bounded dividend policy, 295 continuous time contracting, 301 continuous time systems, 152–153 diffusion processes, 152–153 interest rates, 203–204 introductory model of learning, 408 Lucas model, 112 markets with nonproductive assets, 196 optimality conditions, 543–544 singular stochastic control, 299 social planner solution, 117 state prices, 546 steady state, 632n testable restrictions, 449 value of the firm, 126
Beta, 17, 29–31. See also Betting-against-beta (BAB) factor; zero-beta CAPM
Betas, 158
Betting-against-beta (BAB) factor, 30
Bid-ask spreads, 18, 589–594
Bid price, 589, 591, 593, 594
Big-Bang protocol, 1017
Binomial trees, 781–807, 808–821, 823 fig., 835–845, 843 fig. See also Implied binomial trees
Black 1976 formula, 746–747
Black-Christie-Nelson leverage effect, 680, 714
Black-Litterman model, 18, 38–40
Black Monday crash (October 19, 1987), 736, 1060
Black–Scholes classical evaluation and properties, 671–674 models of the short-term rate, 877
nonhedgeable claims, 162–164, 163n
original formulation, 746
partial differential equation, 160–161, 161n
replication by issuing debt, 162
self-financed strategies, 159–160
surprising cancellations, 164–165
Black–Scholes ATM implied volatilities, 696–697, 697 fig.
Black–Scholes delta, 226, 674, 698, 700 fig., 704–705, 734
Black–Scholes formula, 158, 161, 189, 249, 670, 673–674, 690, 761, 980, 996–997
Black–Scholes hedging demand, 746
Black–Scholes implied volatility, 681, 703, 705, 706, 707, 749
Black–Scholes market. See also Options and volatility
accumulators in markets with stochastic volatility, 693–695
delta-hedged strategies, variance risk premiums, 703–704
discrete rebalancing, 704–705, 705n
Feynman–Kac solutions, partial differential equations, 166
Pedersen’s model, 1031
replication by issuing debt, 162
VIX derivatives, 733
wasting assets and convexity, 667, 668 fig.
Black–Scholes model
call option, value of, 668 fig.
delta-hedged strategies, variance risk premiums, 702–707
fixed income securities, engineering of, 761
Ho-Lee model, 807–808, 812
implied binomial trees, 710–713
implied volatility, smiles and skews, 680–682
option pricing formula, 159
Pedersen’s model, 1031
price, 166, 681, 683, 705n, 706, 707
put option, value of, 676 fig.
replicating portfolio, 698, 707
smile analytics, 749–750
stocks as options, 428
Black Tuesday crash (October 29, 1929), 736
Bond and credit default swap spreads, 1085–1086
Bond prices, first representation of, 859–861, 860n, 861n
Bond prices, second representation for, 862
Bond prices and arbitrage restrictions, 954–955
Bond prices and interest rates, 859–862
Bond pricing equation, 874–878
Bond pricing formula, 770
Bond returns predictability, 864–865, 865n
Bond spreads, 1003–1006, 1020–1025, 1085–1086
Bond supply shocks and market segmentation, 622–625, 624n, 625nn, 626
Book-to-market (BTM) ratios, 50–52
Borrower-induced channel, 532, 1061
Brady Commission, 738
Broad Index Secured Trust Offering (Bistro), 974–975
Brownian martingales, representation of, 181
Brownian motions
arithmetic Brownian motion, 219, 296, 879
controlled Brownian motions, 217–220
d-dimensional Brownian motion, 420, 902
geometric (see Geometric Brownian motion) reflected Brownian motions, 296–298
regulated Brownian motions, 240, 296, 298
Bubbles
capital accumulation, 137–140, 139 fig.
disagreement and learning, 464
global financial crisis, 1078–1081
models of credit and, 1079–1081
Nasdaq bubble, 413
no-arbitrage in the Lucas tree, 177
overconfidence and, 465–469
resale American options, 468–469
volatility, 413
Business cycle and the yield curve, 865–868, 865n, 866 fig., 867nn, 868n
Butterflies, 696
Butterfly spread, 701, 701 fig.
Butterfly strategy, 780
Buy to hold regime, 975, 1031–1032
Calendars, 696, 700, 705n, 733–734
Calendar spreads, 701–702, 703 fig.
Calibrating probabilities through derivative data
Arrow-Debreu securities, 804–805, 804 fig.
options, 800–803, 800n, 801 fig., 802 fig.
overview, 800
pricing interest rate derivatives, 805–807
Calibration, 436–437, 713–714, 813
Calibration, introduction to
implied binomial trees, 791–795, 792 fig., 793 fig., 794 fig., 795nn
overview, 788
Calibration, through Arrow-Debreu securities
bond price equation, 824–825
extracting from the yield curve, 822–825
forward equation, 823–824, 823 fig.
Calibration, through Arrow-Debreu securities (cont.)
Ho-Lee model, 825–826, 827–830, 828 fig., 829 fig., 830 fig.
models without closed-form solution, 826–827, 826n
numerical examples, 830–834
overview, 821–822
Callable bond and convexity risks
convexity risks, 930, 930n, 931 fig.
evaluation, 927–928
mortgage market, price of fixed income volatility, 931–932, 932n
overview, 926
stochastic duration, 928–930, 929 fig., 931 fig.
Callable bonds
definition of, 279
derivatives as signals, 275–276
extensions, 278, 279 fig.
foundational issues (pricing), 835–836
information problems, 264
modified duration, 771
signaling equilibria, 278
Callable bonds, credit risk: option-adjusted spreads, 838–842, 838n
Call deltas, 700, 700 fig.
Call moneyness, 681, 699
Call option price
Black–Scholes, 672
Black-Scholes model, 680–683
Jamshidian-Vasicek model, 926
limiting behavior and arbitrage bounds, 667
perfectly fitting trees, 790
perpetual calls, 215, 216
Call options, 162, 215, 667, 932
Call price function, 666
Campbell-Shiller approximation, 451, 451n, 452
Canonical pricing problem, 400, 409, 425–426, 431
Capacities, 480, 483
Capital adequacy Directive (CAD III), 1048
Capital asset pricing model (CAPM)
arbitrage pricing theory, 17–18, 42–48
Black-Litterman model, 38–40
consumption CAPM, 201–202
duality, 362
empirical evidence, 48–54
equilibrium and expected utility, 35–38
information problems, 264
introduction, 17–19
Knightian uncertainty, global minimum variance portfolio, 40–42, 41n
low-beta anomaly, 29–30
market portfolio and security market line, 58–60
market portfolios and pricing kernel bounds, 359
money demand and liquidity traps, 64–66
multibeta CAPM, 200–201
overview, 27
parameter uncertainty, 66
portfolio choice, 54–58
portfolio selection, 19–27
risk and risk aversion, 60–64
risk premiums and uncertainty equivalents, 31–35
risk-return trade-offs, 381–382
securities expected return, restrictions on, 27–29, 28 fig., 29n
zero-beta CAPM, 30–31
Capital asset pricing model (CAPM), neoclassical kernels and puzzles
duality, 362
maximum correlation portfolio, 360–362, 361 fig., 361n
overview, 359
Capital market line (CML), 20, 361–362
Capital structure and Modigliani-Miller propositions, 284–287, 286 fig.
Caplets, 804, 806, 938. See also Forward rate agreement (FRA)
CAPM. See Capital asset pricing model (CAPM)
Caps, 761, 918
Caps and floors, 938–939, 943–944, 950
CARA coefficient, 407, 580
Cash-flow CDO, 1034–1035
Cash reserves, 298, 299, 304, 305, 413
Catching up with the Joneses, 398, 442, 453–456, 548–549
Cboe, 654, 656, 684, 717, 726. See also
Chicago Board Options Exchange (Cboe)
Cboe Treasury VIX, 891, 891 fig., 891n, 894
Cboe Volatility Index (Cboe- VIX), 684, 723 fig., 740 fig.
CCAPM versus CAPM, 102
CDO. See Collateralized debt obligations (CDOs)
CDO², 1035
CDOs, types of, 1034–1035
CDS index swaps and swaptions, 1086–1089
CDS indices, 1014–1015, 1028–1030. See also
Credit default swaps (CDS)
CDS premiums, 1014, 1015, 1020, 1022, 1025
CDS underwriting, 1035
CDX index, 1014, 1017
Central limit theorem (CLT), 336, 338–340
Central limit theorem (CLT) for martingale
differences, 338
Certainty equivalent, 33–34
Certainty equivalent continuation utility,
Certainty equivalent utility, 445, 447 fig.
CEV diffusion, 885, 886 fig.
Changes of numéraire, 925, 965–966
Chaos, 137
Chicago Board Options Exchange (Cboe), 654,
656, 686, 717, 726. See also VIX index
Chicago Mercantile Exchange, 759, 926
Chicken-and-egg problem, 609
Circular information network, 602
Clean price, 768–770, 769 fig.
CME Group, 846
CML. See Capital market line (CML)
Collateralized bond obligation (CBO), 1032
Collateralized debt obligations (CDOs)
Ntth to default, 1040–1041
rating agencies, role of, 1034
structured finance, 1031–1034, 1032n, 1033
fig., 1033n, 1034 fig.
styled pricing models, 1035–1039, 1035n,
1038 fig., 1039 fig., 1040 fig.
styled structured products, 1041–1045,
1043n
types of CDOs, 1034–1035
Collateralized loan obligation (CLO), 1032
Committee on the Global Financial System
(2005), 1033
Commodity Futures Trading Commission
(CFTC), 738
Compensated Poisson process, 255
Competitive equilibrium, 72
Complete markets, role of, 86–87
Complete market setting, 98, 184, 459, 783
Conceptual approaches to credit risk: firm
value, or structural, approach
credit quality I: distance to default, survival
probabilities, 982–984, 983n, 984 fig.
credit quality II: loss-given-default, 985
equity and debt volatility, 986, 987 fig.
estimating assets value and volatility, 985
first passage, 989
Merton, 980–982, 980fig., 981 fig., 982n
overview, 977–980, 978n, 979 fig.
Conceptual approaches to evaluation of
defaultable securities
convertible bonds, pricing of, 994–997,
994n, 997 fig.
firm value, or structural, approach, 977–989
ratings, 1006–1011
reduced form approaches, 1001–1006
sovereign risk, 997–1001
strategic defaulting, 989–993, 990nn, 991n,
993 fig., 994 fig.
Conditional capital asset pricing model,
363–364
Conditional entropy, 513, 514
Conditional probabilities of survival, 1086
Conditional variance of the short-term rate,
811, 910
Conduits, 1032, 1064, 1066
Conflicts of interest, 1047, 1065–1066, 1065n
Confluent hypergeometric function of the first
kind, 302, 309
Congressional Budget Office, 622
Constant absolute risk aversion (CARA), 34,
281, 407, 410, 570, 593
Constant elasticity of substitution (CES), 644,
645
Constant elasticity of variance model, 714
Constant relative ambiguity aversion, 486
Constant relative risk aversion (CRRA), 35
asset valuation and convexity, 407–408
coefficient, 362, 411, 460, 472, 476
convexity and learning, 111, 410
counter-cyclical income inequality, 460
cross-section restrictions, 500
duality, 361 fig., 362
eyearly asset pricing tests, 325
dependent risk and market
dysfunctionalities, 742
equilibrium with, 175–176
equity premium and interest rate puzzles,
351
government objectives, 998
markets completed by options, equilibrium
option prices, 202–203
martingale restriction, 188–189
balance sheet capacity, 534
counter-cyclical volatility, 385–386
restricted market participation, 461–464,
462n, 463 fig.
multiple likelihoods, model of, 488
multiple trees, cross-section of asset returns,
499
recursive formulations, 445
single-factor model, 346
social planner’s solution, 628
Constrained portfolio, 206
Consumption-based asset evaluation, 108–115, 109n
Consumption CAPM (CCAPM), 100–102, 202, 450
Consumption claim, 349
Consumption efficient (inefficient) path, 141
Consumption reference. See Catching up with the Joneses formulation
Contango, 659, 660 fig., 663, 731, 739–740. See also Backwardation and contango
Contingent markets, 77
Continuation utility, 299–302, 304, 444, 446, 632
Continuously compounded rates, 772
Continuous time models
affine models of survival probabilities, 1018–1021
contracting, 299–305, 303 fig., 304–305n, 305nn
equilibrium with state variables and representative agent, 193–205
Green’s function, 250–252
inaction, the economics of American options, 209–220
introduction, 157–159
jumps, 220–226, 254–257
martingales and arbitrage I: viability, 179–182s
martingales and arbitrage II: optimization, 183–187
martingales and arbitrage III: distortions and numéraires, 187–193
martingales and numéraires, 193
no-arbitrage and equilibrium, 159–179
nonexpected utility, 542–546
portfolio constraints, 205–209, 252–254
self-financed strategies, 244–246
stochastic calculus for finance, introduction to, 226–243
Convenience yields, 660–661, 662
Convergence arbitrage, 617
Convergence in quadratic mean, 233, 335
Convergence risks, 615
Convergent or stable manifold, 144–145
Convergent or stable subspace, 144
Convertible arbitrage, 995
Convertible bonds, 837, 837n, 842–845, 843 fig.
Convertible bonds, pricing of, 994–997, 994n, 997 fig.
Convertible callable bond, 837
Convexity. See also Risk-shifting asset-liability management, 772–781
bond price revisited, 428–429
bounds on, 427
definition of, 404, 857
overview, 772
stochastic volatility, 896–897, 897 fig.
Convexity, volatility, and options, 421–431
Convexity and two models of learning, 409–413, 411nn, 412 fig., 413nn
Convexity and wasting assets, 667, 668 fig.
Convexity effects
barbell trading, 819, 821
convenience yields, 661
Merton, 981
stochastic volatility, 897, 901
tree representation of the short-term rate, 785, 787
Convexity hedging, 770–781
Convexity property of payoff function, 427
Convexity risks, 926–932, 966–967
Convexity risks in Gaussian markets, 966–967
Convexity trading, 778
Cooke ratio, 1045–1046, 1068
Copulæ, 1089–1090
Costly state verification, 291–293, 516, 529–532
Costs of carry, 661
Countercyclical income inequality, 461
Countercyclical statistics, 398–401
Countercyclical volatility, 363, 375–376, 383–386, 387n, 395. See also Rational market fluctuations; Volatility: a business cycle perspective
Counterparty risk
bootstrapping, 947
definition of, 631
divergence, 948–949
exchanges, 658
fixed coupons, upfront payments, 1016
global financial crisis, 1059, 1075
LIBOR interest rate, 764
over-the-counter markets, 630, 631
Counting process, 1001, 1002 fig.
Coupon-bearing bonds, 767–770, 815, 838, 847–848, 932–934
Cournot-Nash, 598, 600, 603
CoVaR, 1055
Covariance stationary process, 315
Cox, Ingersoll, and Ross (CIR)
continuous-time model, 1019
estimation and trading strategies, 906
interest rates, 204–205
pricing formulae, 692
Index 1103

short-term rate model, 883–884, 898
stochastic duration, 878
volatility, not variance, 732
Cox processes, 223
Cramer-Rao lower bound, 316, 317, 319, 325, 331
Cramer-Wold device, 335, 340
Crash description of structured finance, 1031–1034
Crashophobia, 685–686
Credit bubbles, procyclicality and quantitative easing, 1059–1062, 1061n, 1074–1077, 1075nn, 1076 fig.
Credit crunch, 1075–1076
Credit crunches and quantitative easing, 1074–1077, 1075nn, 1076 fig.
Credit cycles I: propagation
financial constraints, 520–521, 521n
frictionless benchmark economy, 520, 520nn
net worth and aggregate output dynamics, 523–524, 523n, 524n
Credit cycles II: amplification, 524–529, 525nn
Credit default index swap (CDIS), 1015
Credit default swaps (CDS), 1012–1017, 1020–1023, 1085–1086. See also CDS index swaps and swaptions
Credit default swap spreads, 1085–1086
Credit default swaptions, 193, 1015, 1025–1030
Credit derivatives, 973–1092
Credit derivatives and structured products based thereon, 1011–1045
Credit products, pricing of, 1025–1031, 1026n, 1029n
Credit rating inertia, 1007, 1065
Credit rationing, 292, 517–518, 554–558, 557 fig.
Credit risk, 973–976, 1045–1047, 1055–1059
Credit risk, correlation and loss probabilities, 1055–1058, 1057 fig., 1059 fig.
Credit risk and financial innovation, 973–976, 975 table, 976 fig.
Credit spread options (CSO), 1012
Credit Suisse, 740, 974, 1054 table
Cross-equation restrictions, 345, 346, 624, 911
Cross-section of expected returns, 52, 53, 360, 364, 499–503, 544–546
Cross-section restrictions, 500–501, 622
CRRA. See Constant relative risk aversion (CRRA)
Cumulative dividend, 295, 298, 299, 465, 466, 468, 469
Cumulative position, 604
Curvature factor, 868, 871, 871 fig., 899
Curve flattener, 777n
Curve steepener, 777n
Cyclical forces, 18
Cyclical hedging, 737–738, 1060
Cyclically adjusted price-to-earnings ratio (CAPE), 1076 fig., 1078, 1079 fig.
Data mining, 53
Data snooping, 391
Dealers markets
asymmetric information, bid-ask spreads, 589–592, 591n
empirical measures of liquidity, 594–595, 595n
inventory risk, bid-ask spreads, 592–594, 593n
overview, 587–588
symmetric information, 588–589
Debt and adverse selection with costly state verification, 291–293
Debt and moral hazard, 287–291, 307
Debt buyback program, 622
Debt contracts, 274, 288, 289, 291–292, 1016
Debt moratorium (Russia), 618
Decreasing absolute prudence (DAP), 458n, 459
Decreasing absolute risk aversion (DARA), 458, 459
Default, as a real option, 999–1000
Defaultable annuity
credit default swaptions, on single names, 1026
evaluation of exotic payoffs, Pedersen’s model, 1030
fixed coupons and upfront payments, 1016, 1016n
marking to market, 1022
numéraire pricing, 193
single name swaps, 1013
Defaultable bonds, 895–896, 895n, 961, 1035–1040, 1041–1042, 1084
Defaultable securities, 977–1011
Default correlation, 1055–1059, 1063, 1064 fig., 1091–1092
Default frequencies, 272, 985, 1058
Defaulting loans, fraction of, 1057–1058, 1059 fig.
Default probability, 305, 531, 982, 986, 1001, 1017
Default swap, definition of, 1025
Deflation, 134, 515, 516n
De-leveraging, 1071–1074, 1072n, 1073 fig.
Delta-hedged options, 696, 703–704
Delta-hedged straddle strategy, 707
Delta-hedges strategies and variance risk premiums
Black-Scholes market with discrete rebalancing, 704–705, 705nn
overview, 702–704, 702n
perfect hedging, price independence, 707–708, 708nn
stochastic volatility, 705–707
Delta hedging
options and volatility, 654, 707, 715, 733, 734, 737
risky debt and credit derivatives, 1051
Delta-neutral portfolios, 698–702, 698n, 700 fig., 701 fig., 702 fig.
Density process, 955–956
Diamond's model, 137–138
Dichotomy, 443, 513, 567–568
Differential information: information aggregation, 582–585
Dilution factor, 995, 997 fig.
Dirty price, 769, 769 fig.
Disagreement and learning, 464–479
Discontinuities, 159, 220, 230, 768, 889, 890
Discontinuous with respect to fundamental information, 744
Discounted indirect utility, 151
Discrete change, 743, 744, 1084. See also Jumps
Discretionary liquidity trading, 610
Disequilibrium, 18, 263, 568–569
Distance-to-default (D-t-D), 982–983, 983n, 985, 986
Distortion factor, 474, 477
Dividends, random dividends distribution, 414–415
Dividend share, 500–504
DJIA, 987
Dodd-Frank Wall Street Reform and Consumer Protection Act (2010), 976, 1080
Dollar gamma, 705, 705n, 707, 716
Dollar gamma probability, 716
Dow Jones Industrial Average, 736n, 738
Duality, 362
Duration
asset-liability management, 772–773
derivation based on, 875–876
fixed income securities, 770–772
hedging, 774–775, 777
longer-term bonds, 625, 625n
negative convexity and market volatility, 781
stochastic duration, 878–879, 929–930
Duration, convexity hedging, and trading, 770–781, 771 fig., 772n
Duration hedging, 774–777, 776 fig., 868, 870
Duration mismatch, 773, 1062, 1065
Duration trading: barbell and bullet hedges, 777–780, 777n, 778 fig., 779 table
Dynamically complete markets, 86, 181–182.
See also Replication and pricing: role of complete markets
Dynamically inefficient economy, 140
Dynamic efficiency, 140–142, 142n
Dynamic hedging, 932
Early asset pricing tests, 324–325
Economies with heterogeneous agents, 546–552
Edgeworth's box, 74, 74 fig.
Efficient markets, 568
Efficient method of moments (EMM), 327–328, 330
Efficient portfolio frontier, 20–21
Elasticity of intertemporal substitution (EIS)
consumption-based asset evaluation, 110–111
equilibrium with CRRA, 176
equity premium and interest rate puzzles, 351
irrelevance, 512
recursive formulations, 445
restricted market participation, model with, 462, 462n
risk premiums and interest rates, 450, 452
risk-sensitive models, 510, 511
Ellsberg paradox, 480–482
Embedding, 914–915, 964
E-mini futures, 738
Empirical measures of liquidity, 594–595
Endogenous beliefs, 91, 572, 583. See also Rational expectations
Endogenous risk. See also Endogenous risk and market dysfunctionalities; Procyclicality
consumption, 510
market crashes, 738
negative convexity and market volatility, 781
overview, 655
procyclicality, 515, 517, 1067
Endogenous risk and market dysfunctionalities
cyclical hedging, 737–738, 737n
market crashes, 738–746
overview, 735–737, 735–736n
EONIA, 764
Epstein-Zin model, 446
Equilibrium degree of disequilibrium, 18, 263, 569
Equilibrium with transfer payments, 74
Equity debt and volatility, 986, 987 fg.
Equity premium puzzle, 345, 349–350
Equity premium puzzle, equity premium and interest rate puzzles, 349–351, 350 fg., 351 fg., 351n
Equity value
bankruptcy, 498
capital structure, irrelevance of, 284
defaultable securities, evaluation of, 979, 989 fg., 991–993, 993 fg.
global financial crisis, 1070
liquidity management, dynamic security design, 306–307, 306n
procyclicality and financial accelerator doctrine, 535, 536, 538–539
strategic defaulting, 1084
Equity volatility
business cycle perspective, 380–381, 389–390, 392
countercyclical risk premiums, 383 fg.
equity and debt volatility, 986, 987 fg.
equity market volatility, 387–388, 388 fg.
learning, 404
leverage and, 497–498
price of, 717–728
Equity volatility, price of
fear gauge contracts, 719–723
forward volatility trading, 724–725
hedging variance swaps, 723–724
marking to market, 725
overview, 717, 718 fg.
range-based volatility, 718–720, 719 fg.
skewness, a digression on, 726–728
stochastic interest rates, 726
Equivalent martingales and equilibrium complete markets, risk sharing, mutuality, 95–97, 96 fg., 97n
equilibrium, risk sharing, incomplete markets, 94–99
equilibrium with financial markets, definition, 90–91
incomplete markets, 97–99
pricing kernels, 92–94
rational expectations, 91–92
ETF, 53n, 738, 741
Eurex, 759
European options
American, 202
Black–Scholes, original formulation, 746
Black–Scholes formula, 162
bonds, 923–926
calibration, 833, 834
continuous time, 714
equilibrium prices, 210, 688
Heston, 691
implied binomial trees, 711, 792
option pricing formula (for bonds), 909
option pricing formula (with jumps), 225
perfect fit in continuous time, 713, 714
pricing, 815–816, 816 fg.
Rubinstein's formula, 189
skewness, 727
tree pricing, 711, 787, 788 fg.
European options on bonds, 923–926, 924n, 927 fg., 926n
Excess volatility puzzle, 372
Exchanges, 588, 614, 658, 759
Exchange traded funds (ETFs), 53, 53n
Exchange traded products (ETPs), 739, 741
Ex-coupon bond price, 815–816, 816 fg.
Exercise envelope, 212, 213
Exogenous aggregate output and habit formation, 504–506, 504n, 505n
Exotic derivatives, 709, 710
Exotic payoffs, 1030–1031
Expectation hypothesis, 862–864, 865, 866–867, 880, 988
Expectation theory, 963–964
Expected Default Frequencies, 985, 1017
Expected shortfall (ES), 1051, 1053
Exponential (or Erlang) distribution, 222–223
Exponential-affine models, 902, 961–963
Exponential affine pricing kernel (EAPK), 355–357
Exponential Gaussian, 355
Exponential utility, 36–37
Extinction, 470, 471n, 473–479, 523, 551–552
Factor analysis, 957
Factor mimicking portfolios, 52
Factor premiums, 51
Factors and components, 957–958
Fama and French model, 49–52, 51 fg.
Fama-MacBeth two-step regressions, 49
Fear gauge contracts, 719–723, 720n, 721n, 723 fg.
Federal Funds Effective Rate (FFER), 846
Federal funds rate, 763–764. See also LIBOR and the Fed funds rate
Federal Home Loan Mortgage Corporation (Freddie Mac), 1032
Federal National Mortgage association (Fannie Mae), 931, 1032, 1032n
Federal Open Market Committee (FOMC), 846–847
Federal Open Market Committee meetings, 764
Federal Reserve, 763–764, 868, 871, 1060
Federal Reserve Bank of New York, 618, 764
Federal Reserve target, 845, 847
Fed funds, 762-765, 845–847, 846 fig.
Feedback effects, 735–746. See also
Endogenous risk
Feedback loops, 739
Feynman–Kac representation, 689
affine models of survival probabilities, 1019
Arrow-Debreu partial differential equations, 421
asset prices as, 165–167
jumps, 959
macro-asset derivative, 430–431
option pricing formula, 226
pricing formulae, 692
theorem, 157, 167, 431, 692
Filtered state, 695, 907
Filtering (and trading), 907, 907n
Financial accelerator, 515–538, 1061
Financial autarky, 999–1000
Financial constraints, 520–521
Financial intermediaries
balance sheet capacity, 532, 536
costly state verification, business cycles, 529
hedging, 667–668, 674
implied binomial trees, implementing, 795
information problems, financial markets, 264
model of market feedbacks, 741–742
options and volatility, 653
procyclicity, 515
structured finance, description of, 1031–1032
yield curve and the business cycle, 867
Financial intermediation, 515, 529–537, 579, 653
Financial intermediation and business cycles:
additional mechanisms
balance sheet capacity and risk premiums, 532–533, 533n
costly state verification and business cycles, 529–532, 530n, 531n
dynamic model, balance sheet capacity, 533–537, 534n, 535n, 536 fig., 536n, 537 fig.
overview, 529
Financial securities, role in markets with uncertainty
Arrow-Debreu securities, 81–84
commodity markets, 77
financial securities and rational expectations, 77–79
laws of large numbers, 79–81
risk aversion, 79–81
short-run bets, asymptotic arbitrage, 79
slicing of risks, 79–81
St. Petersburg paradox, 79–80
world cup pricing, arbitrage pricing, 80–81, 80 table
Financial Stability Board (FSB), 1053, 1053n, 1054 table
Financial Stability Institute (FSI), 1048, 1048n
Finite investment horizon, 615
Firm value, 977–989
First best, 142, 289, 302
First-loss investors, 1065
First passage models, 989
First welfare theorem, 574
Fisher’s information matrix, 316
Fixed coupon and floating rate bonds, 860–861, 860n
Fixed coupon bonds, options on, 932–934
Fixed coupons, 848, 1015–1017
Fixed-factor model, 869
Fixed income arbitrage strategies, 780
Fixed income markets
Arrow-Debreu securities, 804–807
forward probabilities, 955–957
government bond volatility, 891
interest rates, 857–858
persistence and volatility in, 918–921
relative pricing in, 760–761
unspanned stochastic volatility, 904–905
Fixed income securities, engineering of
bond Sharpe ratios, 852–853
bootstrapping, no-arbitrage restrictions, 847–852
calibration through Arrow-Debreu securities, 821–834
callables, puttables, convertibles with trees, 835–845
convexity, 772
duration, convexity hedging, trading, 770–781
evaluation paradigms, 761
Fed funds target changes, 845–847
Ho-Lee model or representation, 807–821, 853–855
interest rate modeling, 781–807
introduction, 8, 759–762
markets and interest rate conventions, 762–770
no-arbitrage models, 760
overview, 759–760
relative pricing, fixed income markets, 760–761
Fixed premium leg, 1012
Fixed strike, 654, 656, 1015
Flash crash, 718, 738, 739
Flat defaultable annuity, 1016
Flight to quality, 764, 987, 988
Floating protection leg, 1012
Floating rate bonds, 767–768, 860–861
Floors and caps, 938–939
Forward-adjusted expectation hypothesis, 864
Forward contract, 655–656, 657
Forward equation, 711, 823–824, 831
Forward interest rate, 503, 862, 915, 937
Forward loan, 766–767
Forward martingale probabilities, 922–923
Forward price, definition of, 655
Forward probability, 190–191. See also Forward martingale probabilities
Forward probability for maturity, 895, 908
Forward rate agreement (FRA), 7766–767, 861, 936–937, 949
Forward rates, 766–767, 806–807, 861, 943. See also Forward rate agreement (FRA);
Instantaneous forward rate; Simply compounded forward rate
Forwards, 656, 657
Forwards and futures, 655–663
Forward starting credit default index, 1028–1029
Forward starting interest rate swaps, 937–938
Forward swap payer, 938
Forward swap rate, definition of, 192
Forward volatility trading, 724–725, 726
Fractional reserve, 628
Fractional reserve system, 628–629
Fragility, 615, 1061n
Fragmented, 609
Free-boundary problem, 211, 212
Frictionless markets
aggregate fluctuations, 383
arbitrage, equilibrium, and pricing, 77, 87, 89
Arrow-Debreu securities, 822–823
conceptual challenges to, 262–264
continuous time models, 250–251
forwards, 656
forwards, definition and pricing, 656
macrofinance, 470
Frictions, 3, 5, 614–629
Front-end protection, defined, 1029
FTAP. See Fundamental theorem of asset pricing (FTAP)
Full insurance, 287–288
Full price, 769
Fundamental theorem of asset pricing (FTAP)
arbitrage pricing theory, 44–47
caps, 939
density processes, 955
floating rate bonds, 860n
numéraire pricing, 190
swaptions, 940
zeros, 859–860
Funding and early liquidation constraints, 617–621, 617nn, 618n, 620n, 620 fig., 621 fig.
Future options, 654, 674–675
Futures, 657–659, 658nn
Gamma, 737–738. See also Convexity
Gamma distribution, 223, 884
Gamma trading, 696, 697–698
Gaussian copula, 1038, 1090, 1091
General equilibrium without frictions, 470–479
Generalized ARCH, 679, 685
Generalized method of moments (GMM), 313–314, 321–325
Generating matrix, 1083
Geometric Brownian motion
backwardation, 659
Black–Scholes, 671, 673
Black–Scholes differential equation, 160
convertible bonds, 995
credit default swaptions, on CDS indices, 1030
heterogeneous agents and catching up with the Joneses, 454
implied volatility, 716
irrational traders, 470
market feedbacks, model of, 746
market models, 941, 941n
martingale restriction, 188–189
model with restricted market participation, 461
no-arbitrage in the Lucas tree, 173–174
real options theory, 213
spanning and cloning, 688
Girsanov theorem, 167–169, 169n
Global financial crisis, 947, 948, 949–950, 1059–1081
Global minimum variance (GMV) portfolio, 21, 56
Global Systemically Important Banks (G-SIBs), 1053, 1054 table
Golden age (of financial theory), 3, 4
Golden Rule of capital accumulation, 119, 119
fig., 140
Gordon's formula, 174, 349
Government bond variance swap, 894–895, 895n
Government bond volatility and expectations of interest rate hikes, 891–895, 891 fig.
Government debt, 492–493
Government National Mortgage Association (GNMA or Ginnie Mae), 1032
Government spending and asset prices, 492–495, 493n
Government-sponsored enterprises (GSE), 1032, 1032n
Granger causality, 388–389, 389n, 391
Gravitational pull problems, 609–611
Great Depression, 515, 515-516n, 931
Great Moderation, 390, 390 table, 459, 1060
Great Recession. See also Global financial crisis
global financial crisis, 1059
government bond volatility, 891
investments and agency costs, 293
macrofinance, 442
nonlinear drifts, 886
prices, quantities, separation hypothesis, 508
procyclicality, 515
self-insurance, persistence of idiosyncratic shocks, 459
state of current research, 537
Green's function, 250–252
Grossman (1976) paradox, 564, 569, 573, 584
Grossman and Stiglitz (1980) paradox, 564, 569, 573
Gross market values, 857n
Group of Ten, 1045, 1045n
Growth stocks, 50
Habit, 433–435, 505–506
Habit formation
catching up with the Joneses, 453–454
external habit, 397–398
linearity-generating processes, 431–433, 433 fig.
stochastic strings, 508
term structure of interest rates, 402, 403, 403 fig.
Hamiltonian, 147–148, 150, 152–153. See also Optimization of continuous time systems
Hamilton-Jacobi-Bellman equation, 194, 607
Hamilton-Jacobi-Bellman variational inequality, 299, 301–302
Hansen-Jagannathan bounds
cup, 352–355, 352n, 353n, 354 fig., 511
irrelevance, 514
log-normal returns, 358
maximum correlation portfolio, 360, 362
neoclassical kernels and puzzles, 352–355, 3555 fig.
risk-sensitive models, 512 fig.
robustness and detection error probabilities, 514
Hazard rates, 1023–1025
Heath-Jarrow-Morton (HJM) framework
dynamics of the short-term rate, 913–914
embedding, 914
framework, 911–912
no-arbitrage restrictions, 913, 941–942
primitives, 913
stochastic string shocks models, 915–918
Hedged calendar, 733–734
Hedging
asset-liability management, 774–775
Black-Scholes market, 668
classical evaluation and properties, 673–674
convexity hedging, 772
cyclical hedging, 737–738
optionality and no-arbitrage bounds, 667–668
perfect hedging, price independence, 707–708, 709 fig.
replication, 689
variance swaps, 723–724
Hedging cost, 164, 686
Hedging demand, 197
Hedging portfolio, 196–197
Hedging variance swaps, 723–724
Hedging with zeros, 775–777, 776 fig.
Hermite expansions, 334
Heston model
approximations, 735 fig., 736 fig.
case study, 693–695, 694 fig.
implied volatility, smiles and skews, 682, 682 fig., 683 fig.
pricing formulae, 690–693
volatility (not variance), 731–732
Heterogeneity in private information, 599–602
Heterogeneous agents and catching up with the Joneses, 453–456, 454n, 455n
Heteroskedastic autoregressive process, 398
Heteroskedasticity in consumption, 453
Hicks-Keynesian normal backwardation hypothesis, 863. See also Normal backwardation
Higher order beliefs and beauty contests, 585–587
High frequency trading (HFT) firms, 738
High minus low (HML) premium, 51–52
High-tenor receiver swap, 936
HJM models (Heath, Jarrow, Morton), 818, 916. See also Heath-Jarrow-Morton (HJM) framework; Heath-Jarrow-Morton Ho-Lee model
continuous time approximations, 816–821, 820 fig., 821 fig.
calibration, 813
calibration through Arrow-Debreu securities, 821–834
closed-form solution, 812–813, 813 fig.
price movements and Martingale restriction, 809–810
recombining condition, interest rate volatility, 810–811
representations, 853–855
solution, 811–812
tree, 808, 808n, 809 fig.
Hull and White
caps and floors, 939
equation, 747–748
extensions, 748–749
interest rates, 962–963
no-arbitrage models, 910–911
perfectly fitting extension, 926, 934
pricing formulae, 690–691
smile analytics, 749–750
Hull and White equation, 747–750
Hull and White model, 962–963
Hybrid CDOs, 1035
Idiosyncratic risk and incomplete markets countercyclical income inequality, 459–461
idiosyncratic shocks, 458–459
model, restricted market participation, 461–464, 463 fig.
overview, 456
self-insurance, persistence of idiosyncratic shocks, 459
static model, idiosyncratic risk, 456–458, 457 table
Idiosyncratic shock, 456–464, 516
Illiquidity premium, 633, 634
Illiquid options, 708, 714
Immediate transfer, 302
Imperfect correlation, pricing CDOs with, 1091–1092
Imperfect information in macroeconomics, 565–568
Implicit contract theory, 287
Implied binomial trees, 710–713, 789–798
Implied variance, 703, 704
Implied volatilities
Black-Scholes formula, 654
calendars, 733
definition of, 654
fixed income volatility, 932
hypothetical term structures, 696n, 697, 697 fig.
local volatility, 716
price of (equity) volatility, 717, 721, 721n
smiles and skews, 680–686
stochastic volatility, 681
vega trading or volatility surface trading, 696
volatility surfaces, 950–951
Inaction: the economics of American options
early exercise premiums, 209–211, 208n, 210 table
overview, 209
perpetual calls, 215–217
perpetual puts, 213–214
real options and controlled Brownian motions, 217–220
real options theory, 212–213, 213n
risk aversion, 211–212, 211 table
Incentive-compatible constraint, 269–272
Income transfers across states, 88
Incomplete markets, 206–207, 208 fig.
Incomplete market setting, 94, 548
Incompressible uncertainty, 405
Indeterminacy, 146
Index default swaption payer, 1029
Index options, 1030, 1031
Indirect inference principle (IIP), 326–327, 327 fig., 329–330
Infinite dimensional parameters, 873, 908, 909
Infinite horizon economies
consumption-based asset evaluation, 108–115
continuous time systems, optimization of, 151–154
dynamic efficiency, 140–142
government spending and asset prices, 492
overlapping generations models, 130–140
production, foundational issues, 115–124
production-based asset pricing, 124–130
Infinitesimal generator
American calls and incomplete markets, 217
Infinitesimal generator (cont.)
asset prices as jump-diffusion processes, 223–224
Black–Scholes partial differential equation, 160
bounded dividend policy, 295
bubbles as resale American options, 469
credit default swaptions, on single names, 1027
equity value as a real option, 1082
monopolistic trader, 608
multiple likelihoods, 553
perpetual calls, 215–216
pricing formulae, 692
pricing kernels, 395
replication, 688
replication by issuing debt, 162
short-term rates as jump-diffusion processes, 892
spanning and cloning, 688
stochastic differential equations, 243
Infinitesimal interventions, 219–220
Inflation volatility, 678, 888
Information, security design, and financial contracting
capital structure and Modigliani-Miller propositions, 284–287
debt and adverse selection with costly state verification, 291–293
debt and moral hazard, 287–291, 307
dynamic problems, 308–310
information problems, three, 265–284
introduction, 261–262
investments and agency costs, 293
liquidity management and dynamic security design, 294–305
Spence-Mirrlees condition, callable bond model, 305–306
Information and other market frictions
aggregation, 574, 575, 582–585
dealers markets, 587–595
efficiency, 568–569
imperfect information, macroeconomics, 565–568
introduction, 563–565
limits of arbitrage, further frictions, 614–629
market segmentation, 641–642
markets with strategic players, 595–613
noisy rational expectations equilibrium, 574–587
over-the-counter markets, 630–635
pricing behavior, macroeconomics, 643–647
projection theorem, 635–636
rational expectations equilibrium, 571–574
residual variance, 606
search, 642–643
Walrasian equilibria, 569–571
Information leakage, 613
Information networks, 598, 602
Information problems
adverse selection and trading, 265–266
continuous time contracting, model of, 299–305
debt and adverse selection with costly state verification, 291–293
debt and moral hazard, 287–291
lemons problem, 265
liquidity management, dynamic security design, 294–305
moral hazard and securitization, 266–273
short-term debt and equity sales, 279–284
signaling, callable bonds, equity, short-term debt, 273–279
trading with noise, 265–266, 266 fig.
Information transmission, 575–582, 575n, 580 fig.
Informed traders
bid-ask spreads, 589, 592
markets with strategic players, 596, 597, 601, 602–603, 612
markets with symmetric information, 588–589
Initial public offering (IPO), 280, 282–284
Initial value problem, 752
Insider trader, 595, 596–597, 603–604, 605, 612, 613
Instantaneous forward rate, 862, 909–910, 913, 941–942, 943, 962–963
Instantaneous forward rate curve, 819
Instantaneous utility of a representative agent, 463. See also Social planner
Instantaneous variance
affine, 902
American calls and incomplete markets, 217
Black–Scholes market with discrete rebalancing, 704
Heston, 691
impact of a variance shock, 730
multibeta CAPM, 200
perfect fit in continuous time, 714
peso problems, 894
two-factor models, 899
VIX squared, 728
Insurance sellers, 662, 663
Intensity models, 982, 1001–1006, 1014
Intercontinental Exchange, 762–763
Interest rate derivatives
Arrow-Debreu securities, pricing of, 804–807
calibration through Arrow-Debreu securities, 822, 825
callable bonds and convexity risks, 926–932
caps and floors, 938–939
Cox, Ingersoll, and Ross, 883
European options on bonds, 922–923
Ho-Lee model, 808, 811
interest rate swaps, 934–940
models versus representations, 873
no-arbitrage models, early formulations, 908
options on fixed coupon bonds, 932–934, 933n
over-the-counter markets, 630, 631
overview, 918
persistence and volatility, fixed income markets, 918–921, 919 fig., 920 fig., 921n
relative pricing, fixed income markets, 760, 761
swap contracts, 192
swaptions, 939–940
Interest rate margins, definition of, 867
Interest rate modeling, foundational issues
calibrating probabilities through derivative data, 800–807
calibration, introduction to, 788–800
overview, 781–782, 782 fig.
tree pricing, 787, 787 fig., 788 fig.
tree representation of the short-term rate, 782–787
Interest rate puzzle, 349–351
Interest rates
bond prices and arbitrage restrictions, 954–955
bond prices and interest rates, 859–862
changes of numéraire, 965–966
consumption-based, 203–204, 204n
expectation theory, 963–964
exponential-affine models, 961–963
factors and components, 957–958
forward probabilities, 955–957
Heath-Jarrow-Morton framework, 911–918
interest rate derivatives, 918–940
introduction, 857–859, 857n, 858 fig.
jumps, 958–961
market models, 940–950
negative interest rates, 760, 885
no-arbitrage models, 908–911
productive activities, 204–205
short-term rate, models of, 872–896
short-term rate, multifactor models of, 896–907
strings, 965
stylized facts, 862–872
volatility surfaces, 950–954
Interest rates, forward probabilities, 955–957
Interest rates, mathematical definitions, 765–767, 766n
Interest rate spreads, 764–765
Interest rate swap (IRS), 630, 937, 940, 944, 949, 950
definition of, 934
forward starting interest rate swaps, 937–938
FRA, 936–937, 936n
marking to market, 938
motivation, 934–936, 935n
overview, 857, 934
Interest rate volatility and the business cycle, 887–890, 887 fig., 889 fig., 890 fig.
Interest rate volatility contract or security, 831
Interest rate volatility puzzle, 350–351
Intermediation, 593, 667, 723, 908
Intermediation margin, 1080, 1081
International Swaps and Derivatives Association (ISDA), 973–974, 1017
Intertemporal substitution of consumption, 110–111, 347
Inventory risk and bid-ask spreads, 592–594
Inversion problem, 713
IPO underpricing, 282–284
Irrational traders, 470–473, 615–616
Itô’s
diffusion process, 238–239
lemma, 237–238, 237 fig.
stochastic integral, 235–236
iTraxx index, 1014
Jamshidian’s (1989) formula, 965–966
Jamshidian-Vasicek model, 925–926, 927 fig.
Joint hypothesis problem, 569
J.P. Morgan, 974–975, 1054 table, 1065n
Jumps
arbitrage restrictions, 256–257
asset prices as jump-diffusion processes, 223–225
comparison results, defaultable bonds, 961
continuous time models, 220–226, 254–257
Cox processes, 223
government bond volatility and, 958–961
models, short-term rate, 890–896
option pricing formula, 225–226, 225n

Index 1111
Index

Jumps (cont.)
 overview, 220
 Poisson jumps, 220–221
 properties and related distributions, 222–223
 Radon-Nikodym derivative, 254–255
 rare event interpretation, 221–222
 state price density, 255–256
Jumps, volatility, and default, 890–896, 891 fig., 892nn, 895n
Jump size, 226, 685–686, 810, 959
Just identified, GMM, 322
Keynes beauty contest, 587
Keynesian liquidity trap, 1075–1076. See also Money demand and liquidity traps
Knightian uncertainty
 global minimum variance portfolio, 40–42, 41n
 introduction, 18–19
 macrofinance, 553–554
 model of market feedbacks, 745
 model of multiple likelihoods, 487–491, 487n, 488n, 489nn, 490nn, 491 fig.
 portfolio selection, market participation, 483–487
 uncertainty aversion and Ellsberg paradox, 480–482, 481 table, 482 table
Knockout feature, 670
Kummer's equation, 309
Kyle's baseline model, 596–598, 610
Kyle's lambda, 596, 603
Laissez faire, 74, 141, 574
Lambdas, 158, 171–172, 173, 363
Learning, 435–437
 introductory model of learning, 405–408, 405 table, 407nn, 408n
 large price swings, 406–415, 406n
Left tail risks, 726
Lehman Brothers, 631, 1067
Lemon problem, 5, 265, 591
Level effect, 883, 888. See also Interest rate volatility and the business cycle
Level factor, 868, 870, 871 fig., 902
Leverage effect hypothesis, 495–496
Linearity-generating processes, 431–433, 505
Liquidity, 5, 7, 594–595
Liquidity and runs
 autarky equilibrium, 626–627
 bank runs, 629, 629n
 equilibrium with a financial market, 627
 frictional reserve system, 628–629
 liquidity shocks and investment technologies, 626
 overview, 625
 social planner solution, 627–628
Liquidity-begets-liquidity, 611
Liquidity black hole, 1061, 1067
Liquidity constraints and optimal dividend policy, 294–299
Liquidity crisis, 615
Liquidity management and dynamic security design, 294–299
Liquidity premium, 631, 633, 634, 863
Liquidity spirals, 618, 738, 1061n
Liquidity traders, 591, 596, 605, 609, 610
Liquidity traps, 38, 64–66, 1075
Liquidity traps, 38, 64–66, 1075
Loan losses, managing, 1045–1059, 1046n, 1048 table
Local volatility
 continuous time, perfect fit in, 713–715, 715n
 Ho and Lee, 910
 implied binomial trees, 710–713, 710 fig., 711 fig.
 implied volatility, 715–716
 options and volatility, 654–655, 750–752
 overview, 708–709
Local volatility, options and volatility, 708–716, 710 fig., 711 fig.
London Stock Exchange, 588
Long-horizon predictability, 398
Long maturity swap, 936
Long-run risks, 542
Long-Term Capital Management (LTCM), 617–618, 780
Long-term spreads, 982, 1005–1006
Loss-adjusted forward default swap index, 1029
Loss-given-default (LGD)
 2007 subprime crisis, 1062
 affine models of survival probabilities, 1020
 bond and credit default swap spreads, 1085–1086
 bond spreads, 1085
 CDS index swaps and swaptions, 1088–1089
 credit default index swap, 1015
 credit default swaptions, on CDS indices, 1028–1029
 credit default swaptions, on single names, 1025–1026, 1027
 definition, 985
 disentangling default probability from risk appetite, 1017
Index

loss-given-default, 985
marking to market, 1021–1022
model properties and extensions, 1000
Poisson-driven defaults, 1003
predicted spreads, 1003
reduced form approaches, 1006
single name swaps, 1012–1014
Lucas model, 111–115, 173–179, 201, 349, 495, 503
Lucas pricing kernel curve, 362, 512 fig.
Lucas supply equation, 566, 567
Lucky factors, 53–54

Macaulay duration, 770–772, 771 fig., 772n
Macroeconomic factors, 53
Macroeconomic forces, 49

Macrofinance
credit rationing, 554–558
disagreement and learning, 464–479
economies with heterogeneous agents, 546–552
government spending, asset prices, 492–495
heterogeneous agents, catching up with the Joneses, 453–456
idiosyncratic risk, incomplete markets, 456–464
introduction, 441–443
Knightian uncertainty, 553–554
Knightian uncertainty, coping with, 479–491
leverage and volatility, 495–497
multiple trees, cross-section of asset returns, 499–508
nonexpected utility, 444–453, 538–546
prices, quantities, separation hypothesis, 508–514
procyclicality and financial accelerator doctrine, 515–538
Managing loan losses, 1045–1059
Mandatory disclosure, 611–613, 640
Marginal expected shortfall (MES), 1053–1055
Marginal utility of income, 475, 547
Market break-ups, 1070–1071
Market completeness, 689–690
Market crashes, 737, 738–746, 739n, 740 fig., 743 fig., 745 fig.
Market depth, 596, 610
Market expected return, 170, 200, 416, 517
Market feedbacks, model of, 741–746, 743 fig., 745 fig., 745n
Market fragmentation, 609–610
Market incompleteness
bond pricing equation, interpreting, 876–877
model with restricted market participation, 461
option pricing under stochastic volatility, 686
options and volatility, 653–654
overview, 442
self-insurance, persistence of idiosyncratic shocks, 459
static model of idiosyncratic risk, 456
unspanned stochastic volatility, 905
Market makers’ pricing rule, 595–596
Market microstructure, 5, 372, 565, 588, 631
Market models, 761, 877, 940–950, 941n
Market models, applications to derivatives, 943–947
Market models, multiple curves, 947–950
Market orders, 568, 588
Market portfolio
analytical characterization, 26–27, 27n
asset allocation puzzles, 26
overview, 24, 24n
two-fund separation, 24–26, 25 fig., 25n
Market portfolio and the security market line, 58–59
Market segmentation and bond supply stocks, 622–625, 624n
Markets for interest rates
coupon-bearing bonds, accruals, invoice, clean prices, 768–770
duration, convexity hedging, trading, 770–781
Fed funds rate, 763–764
interest rate spreads, 764–765
LIBOR, 762–763
overview, 762
repurchase agreement rate, 764
Treasury rate, 764
yields to maturity, coupon-bearing bonds, 767–768

Markets and information
multiple traders and dealers, 598–604, 598n, 601n, 608
strategic players, 595–613, 611n
symmetric information, 588–589
uninformed traders, 581, 602
Market-to-book (MB) ratio, 414, 415, 416 fig., 437
Market-value CDO, 1034
Markov chain, 409–410, 488, 491, 522, 1007, 1084
Markov pricing kernels, asset returns, volatility, 394–395, 396
Markov process, 111–112, 159, 191n, 238, 449, 873, 914
Martingale differences, 338–340
Martingale methods, 3, 183, 207, 209
Martingale representation theorem, 181–182, 185, 236
Martingale restrictions, 180, 188–189, 199–200, 809
Martingales and arbitrage I: viability, 179–182, 180n, 181nn, 182n
Martingales and arbitrage II: optimization, 183–187
Martingales and arbitrage III: distortions and numéraires, 187–193, 188n, 191n, 192n
Matching, drift matching condition, 672. See also Value matching condition
Matryoshka doll scheme, 1065, 1066 fig.
Maturity mismatch, 615
Maximum correlation portfolio, 102, 360–362, 361 fig., 367
Maximum likelihood, 337–338
Maximum likelihood (ML) methods, 313–314, 325, 328, 905–906
Maximum likelihood estimation (MLE) asymptotic properties, 317–319
definition, 317, 317n
dependent processes, 338–340
factorizations, 317
generalized method of moments, 321–322
pseudo- or quasi-maximum likelihood, 321
simulated maximum likelihood, 332
spanning scores, 331
Max-min preferences, 480, 484–485
Mean-preserving spreads, 47, 62–63
Mean-reverting process, 465, 492, 499, 685, 730, 879
Mean-variance asset allocation, 18
Mean-variance efficient, 19–27, 200, 346, 361, 366, 368
Mean-variance model, 17, 18, 38, 269
Mean-variance portfolio, 39, 40, 198
Merton-KMV approach, 978
Merton’s (1974) model, 977, 978, 996
Merton’s pricing formula, 159
M-estimator, 313
Metallgesellschaft, 1049
Mezzanine tranches, 1032, 1036, 1037, 1038, 1039, 1043–1045
Microstructure, 372, 365, 588, 631
Migration approach, 1007
Minimum chi-squared criterion, 313
Min-max pricing kernel, 99
Misparging, 614, 616, 618–621, 620 fig., 621 fig.
Misspecification, 321, 513. See also Model misspecification
Mixed strategy, 612
MLRP. See Monotone likelihood ratio property (MLRP)
MOB spreads, 1011
Model-free future pricing, 728–730
Model-free properties, 664–666, 664 fig.
Model jumps, 223–224
Model misspecification
2007 subprime crisis, 1062–1063
global financial crisis, 1065
macrofinance, 488, 513
model of market feedbacks, 746
options and volatility, 746
risky debt and credit derivatives, 1052
specification and identification, 314
Model of the short-term rate, 333–334, 781, 782 fig., 858, 872–896, 912, 918, 921, 923, 927. See also Multifactor models of the short-term rate
Models versus representation, 873–874, 873n
Models with costly state verification, 291
Modified duration, 771, 772n, 878–879
Modigliani-Miller propositions, 284–287, 497
Monetary channels, 866–867
Monetary economies, 134–137, 134n, 136 fig., 137n
Monetary Experiment, 459, 887, 888, 934
Money demand and liquidity traps, 64–66
Money multiplier, 515n, 1074
Moneyness, 681, 699
Monopolistic trader, 605–608
Monotone likelihood ratio property (MLRP), 288, 289, 307
Monte Carlo methods, 166, 1050
Moody’s and Fitch, 987
Moody’s KMVs Expected Default Frequencies methodology, 985, 1017
Moody’s ratings, 1006
Moral hazard
debt and, 287–291, 288n, 289n, 290 fig.
economics of information, 262
incentive-compatible constraint, 269
procyclicality, 516
securitization, 267
Moral hazard and securitization
asymmetric information, 269–272, 270n, 271 fig., 271nn, 272n
full insurance, full securitization, 267–268
overview, 266–267, 267nn
participation constraints and loan rates, 271
symmetric information, 268–269
Mortgage-back (MBSs), 771, 781, 1076 fig.
Mortgage market and price of fixed income volatility, 931–932
Multifactor models of the short-term rate
affine and quadratic term structure models, 902–904, 902n
estimation and trading strategies, 905–907, 906n, 907nn
overview, 896
stochastic volatility, 896–901, 897 fig.
three-factor models, 901–902
unspanned stochastic volatility, 904–905
Multifactor security model, 420
Multilayered structured credit products, 1065–1066, 1066 fig.
Multiple curves, 632, 947–950
Multiple equilibria, 629, 744
Multiple likelihoods, 487–491, 553–554
Multiple priors, 479, 513
Multiple trees and cross-section of asset returns, 499–508, 506n
Multiplier preferences, 513
Multivariate jump-diffusion process, 1020
Mutual fund (or separation) theorem, 23, 23n
Mutuality, 97, 97nn

Narrow banking, 626n
Nasdaq bubble, 413
National Bureau of Economic Research (NBER)
equity markets and business cycle, 373, 374
fig., 374 table, 375 fig., 376–377
interest rate volatility, 889
interest rate volatility and business cycle, 888, 889
macroeconomic implications of stock market volatility, 390
market expected return, estimation of, 417
volatility cycles, 381
Negative convexity, 394, 781, 841, 930, 932
Negative delta or gamma, 737–738
Negative interest rates, 760, 885
Negative premium, 723, 723 fig.
Negative price jump, 854–855
Neoclassical kernels and puzzles
aggregate equity market, 355–358
CAPM, 359–362, 361 fig., 361n
classic capital asset pricing model, 359–362
conditional capital asset pricing model, 363–364
equity premium puzzle, 346–351
Hansen-Jagannathan cup, 352–355
introduction, 313–314
Net present value (NPV), 217–218
bounded dividend policy, 296
continuous time contracting, model of, 302
implementation, 305
irreversible investments, decision to invest, 217–218
liquidity constraints, optimal dividend policy, 294
moral hazard, 288–289, 288n
reflected Brownian motions, 297
Netting ability, 631
Net worth and aggregate output dynamics, 523–524, 523n, 524n
Nikkei index, 700–701
No-arbitrage and equilibrium, introduction to
APT in continuous time, 170–173
asset prices as Feynman–Kac representations, 165–167
Black-Scholes, origins, 159–165
Girsanov theorem, 167–169
no-arbitrage in the Lucas tree, 173–179
No-arbitrage bounds, 663–670, 997 fig.
No-arbitrage models, overview, 760, 782, 873, 874, 904
No-arbitrage models: early formulations, 908–911, 910n
No-arbitrage movements, 781, 792, 807–808, 815
No-arbitrage regressions and the macroeconomy, 903–904
No-arbitrage restrictions, 42–43, 849–852, 907, 1013, 1024 fig., 1051
No-arbitrage: theory, 87–90, 88n, 90 fig.
NOB spread, 1011
No-crossing property of a diffusion, 426, 429–431
Noise. See also Sunspots
asset market equilibrium, 578
bid-ask spreads, 591
heterogeneity in private information, 601
imperfect information, macroeconomics, 568
information and other market frictions, 564–565
information sales, 581
Kyle's baseline model, 596
liquidity, 568
mandatory disclosure, 612
markets with strategic players, 596
model of risky arbitrage, 616
Noise (cont.)
 rational expectations equilibrium, 573–574, 577
 trading with, 265–266
 Walrasian equilibria, 570
Noisy rational expectations equilibrium
 (NREE), 92, 564, 574–587, 582n, 584n
No-mimicking condition, 276
Noncallable bond, 927–928, 929, 929 fig., 931
Noncallable zero coupon bonds, 835
Nonconvertible bond, 996
Nondefaultable zero coupon bonds, 927, 928, 1025, 1029
Nonexpected utility
 Campbell-Shiller approximation, 451
 continuous time, 542–546
 early resolution of uncertainty, 446–451
 long-run risks, 451–453, 542
 optimality, 538–541
 overview, 444
 recursive formulations, 444–446
 risk premiums and interest rates, 449–451
 risks for the long-run, 451–453, 451n
 state prices, 546
 testable restrictions, 448–449
Nonlinear drifts, 885–886, 886 fig.
Non-Markovian, 745 fig., 941
Nonmonotonicity, 289, 410, 743, 744, 983, 993
Nonmonotonicity (of total demand), 743, 744
Nonparallel shifts (in the term structure), 779, 779 table
Nonparametric methods, 885–886, 1050
Normal (EAPK) (NEAPK), 356, 357
Normal backwardation, 639, 863, 863n, 935n
Normalized portfolio process, 252
Notional value
 CDS index swaps and swaptions, 1087
 credit default swaps, 976
 credit default swaptions, 1028
 fixed income securities, 759
 interest rate derivative contracts 2019, 858 fig.
 pricing interest rate derivatives, 805
 variance swaps and the VIX index, 720
Nth to default, 1040–1041
NYSE LIFFE, 759

October 1987 crash, 375
OECD countries, 1046
Off-balance sheets entities, 1032
Off-the-run, 617
OIS, 763 fig., 764, 947, 948, 949
OIS discounting, pricing after the global financial crisis, 949–950
One-factor model, 858, 896, 1056, 1062
One-over-N rule, 24
On-the-run, 617
Open market operations, 65, 764, 1074, 1075
Operation risk, defined, 1046n
Optimal circulation size, 581, 582
Optimality, 538–541
Optimal mispricing and funding constraints, 618–621
Optimization of continuous time systems, 151–154
Optionality and no-arbitrage bounds
 accumulators and decumulators, 669–670, 669 fig., 669n
 hedging, 667–668
 limiting behavior and arbitrage bounds, 666–667, 666 fig.
 model-free properties, 664–666, 664 fig., 665 table
 overview, 663–664
 wasting assets and convexity, 667, 667n, 668 fig.
Option pricing formula, 225–226, 225n, 909
Option pricing under stochastic volatility
 assessing accumulators, 693–695, 694 fig.
 estimation of stochastic volatility models, 695–696, 695n
 market completeness, 689–690
 overview, 686–687, 686nn, 687n
 pricing formulae, 690–693
 replication, 688–689
 spanning and cloning, 687–688
Options. See also Optionality and no-arbitrage bounds
 calibrating probabilities, derivative data, 800–803, 800 fig., 800n, 801 fig., 802 fig.
 CDS indices, 1015
 fixed coupon bonds, 932–934, 933n
 overview, 663
 zero coupon bonds, 926
Options and spreads, 1011–1012
Options and volatility
 Black 1976 formula, 746–747
 Black-Scholes, original formulation of, 746
 classical evaluation and properties, 670–678
 endogenous risk, market dysfunctions, 735–746
 estimation of stochastic volatility models, 695–696, 695n
 forwards and futures, 655–663
 Hull and White equation, 747–750
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>introduction</td>
<td>653–655</td>
</tr>
<tr>
<td>local volatility</td>
<td>708–716, 750–752</td>
</tr>
<tr>
<td>optionality and no-arbitrage bounds</td>
<td>663–670</td>
</tr>
<tr>
<td>price of (equity) volatility</td>
<td>717–728</td>
</tr>
<tr>
<td>spanning and variance contracts</td>
<td>752–755</td>
</tr>
<tr>
<td>stochastic volatility models to data</td>
<td>695–696</td>
</tr>
<tr>
<td>trading volatility with options</td>
<td>696–708</td>
</tr>
<tr>
<td>VIX derivatives</td>
<td>728–735</td>
</tr>
<tr>
<td>Options in diffusive models</td>
<td>675–678, 676 fig.</td>
</tr>
<tr>
<td>Orange County</td>
<td>1049</td>
</tr>
<tr>
<td>Ordinary least squares (OLS)</td>
<td>391</td>
</tr>
<tr>
<td>Originate-and-distribute</td>
<td>266, 975–976</td>
</tr>
<tr>
<td>OTC. See Over-the-counter (OTC) markets</td>
<td></td>
</tr>
<tr>
<td>OTM call</td>
<td>683–684, 701, 701 fig.</td>
</tr>
<tr>
<td>OTM options</td>
<td>681, 684, 685, 720, 721, 724, 744</td>
</tr>
<tr>
<td>OTM puts</td>
<td>682, 685, 701, 701 fig., 740</td>
</tr>
<tr>
<td>Output and government objectives</td>
<td>998</td>
</tr>
<tr>
<td>Overidentifying restrictions</td>
<td>322, 324</td>
</tr>
<tr>
<td>Overlapping generations models (OLGs)</td>
<td>130–140</td>
</tr>
<tr>
<td>capital accumulation and bubbles</td>
<td>137–140, 139 fig.</td>
</tr>
<tr>
<td>deterministic model</td>
<td>131–132</td>
</tr>
<tr>
<td>endowment economies</td>
<td>131–134</td>
</tr>
<tr>
<td>monetary economies</td>
<td>134–137, 134n, 135n, 136 fig.</td>
</tr>
<tr>
<td>overview</td>
<td>130</td>
</tr>
<tr>
<td>tree in stochastic economy</td>
<td>132–134</td>
</tr>
<tr>
<td>Overnight Index Swap (OIS)</td>
<td>947. See also OIS</td>
</tr>
<tr>
<td>Overround</td>
<td>81</td>
</tr>
<tr>
<td>Over-the-counter (OTC) markets</td>
<td></td>
</tr>
<tr>
<td>background</td>
<td>630–631, 631n</td>
</tr>
<tr>
<td>futures</td>
<td>657–659</td>
</tr>
<tr>
<td>model with symmetric information</td>
<td>631–635, 632n, 634 fig., 634n</td>
</tr>
<tr>
<td>multiple curves</td>
<td>947</td>
</tr>
<tr>
<td>notational amount outstanding (2019)</td>
<td>759</td>
</tr>
<tr>
<td>search</td>
<td>631</td>
</tr>
<tr>
<td>Overvalued stocks</td>
<td>778–779</td>
</tr>
<tr>
<td>P&Ls</td>
<td>654, 693–694, 702</td>
</tr>
<tr>
<td>Paper tantrum</td>
<td>893–894</td>
</tr>
<tr>
<td>Parallel shift</td>
<td>774, 777, 778, 820, 868, 870</td>
</tr>
<tr>
<td>Parallel shift in the term structure</td>
<td>774, 777</td>
</tr>
<tr>
<td>Pareto distributions</td>
<td>678</td>
</tr>
<tr>
<td>Pareto efficient</td>
<td>461, 546–547</td>
</tr>
<tr>
<td>Pareto optimum</td>
<td>73–76, 77, 574</td>
</tr>
<tr>
<td>Pareto's weights</td>
<td>76, 95, 454, 475</td>
</tr>
<tr>
<td>Par spread</td>
<td>1015–1016, 1016n, 1030</td>
</tr>
<tr>
<td>Par spread quoting model</td>
<td>1016</td>
</tr>
<tr>
<td>Partial revelation</td>
<td>564, 569, 576, 588</td>
</tr>
<tr>
<td>Participation constraints</td>
<td>272–273</td>
</tr>
<tr>
<td>Payer forward agreement</td>
<td>806</td>
</tr>
<tr>
<td>Payer interest rate swap</td>
<td>940</td>
</tr>
<tr>
<td>Payer swaption</td>
<td>940, 944, 945, 1015, 1030</td>
</tr>
<tr>
<td>Pedersen's model</td>
<td>1030–1031</td>
</tr>
<tr>
<td>Pension funds</td>
<td></td>
</tr>
<tr>
<td>asset-liability management</td>
<td>773, 774</td>
</tr>
<tr>
<td>CDO senior tranches</td>
<td>1032</td>
</tr>
<tr>
<td>interest rate swaps</td>
<td>936</td>
</tr>
<tr>
<td>limits of arbitrage, further frictions</td>
<td>614</td>
</tr>
<tr>
<td>market segmentation</td>
<td>622</td>
</tr>
<tr>
<td>over-the-counter markets</td>
<td>630</td>
</tr>
<tr>
<td>yield curve and the business cycle</td>
<td>868</td>
</tr>
<tr>
<td>Perfect fit</td>
<td>709, 711, 713–715, 873, 912</td>
</tr>
<tr>
<td>Perfectly fitting extension</td>
<td>926</td>
</tr>
<tr>
<td>Perfectly fitting models</td>
<td>804, 908, 909, 926, 934</td>
</tr>
<tr>
<td>Perpetual calls</td>
<td>215–217, 216 fig.</td>
</tr>
<tr>
<td>Perpetual puts</td>
<td>213–214</td>
</tr>
<tr>
<td>Persistence, in expected consumption growth</td>
<td>451–452</td>
</tr>
<tr>
<td>Peso problems</td>
<td>894–895</td>
</tr>
<tr>
<td>Phillips curve</td>
<td>568</td>
</tr>
<tr>
<td>Photocopied noise</td>
<td>581</td>
</tr>
<tr>
<td>Pillars, Basel II</td>
<td>1046–1047</td>
</tr>
<tr>
<td>Plowbacks and growth opportunities</td>
<td>414</td>
</tr>
<tr>
<td>Poisson-driven defaults</td>
<td>1001–1003, 1002 fig.</td>
</tr>
<tr>
<td>Poisson jumps</td>
<td>220–221</td>
</tr>
<tr>
<td>Poisson process</td>
<td></td>
</tr>
<tr>
<td>arbitrage restrictions</td>
<td>257</td>
</tr>
<tr>
<td>asset prices, jump-diffusion processes</td>
<td>223</td>
</tr>
<tr>
<td>compensated Poisson process</td>
<td>255, 256</td>
</tr>
<tr>
<td>defaultable bonds</td>
<td>895</td>
</tr>
<tr>
<td>implied volatility, smiles and skews</td>
<td>685</td>
</tr>
<tr>
<td>Poisson-driven defaults</td>
<td>1001–1003</td>
</tr>
<tr>
<td>rare event interpretation</td>
<td>222</td>
</tr>
<tr>
<td>short-term rates, jump-diffusion processes</td>
<td>892</td>
</tr>
<tr>
<td>Polarization</td>
<td>596, 610–611, 1058</td>
</tr>
<tr>
<td>Pooling equilibrium</td>
<td>277n</td>
</tr>
<tr>
<td>Pools of liquidity</td>
<td>625</td>
</tr>
<tr>
<td>Portfolio constraints</td>
<td>205–209, 207 fig., 208 fig., 252–254</td>
</tr>
<tr>
<td>Portfolio optimization</td>
<td>8, 206</td>
</tr>
<tr>
<td>Portfolio selection</td>
<td></td>
</tr>
<tr>
<td>capital market line</td>
<td>20</td>
</tr>
<tr>
<td>efficient portfolio frontier</td>
<td>20–21, 22 fig.</td>
</tr>
<tr>
<td>market portfolio</td>
<td>24–27</td>
</tr>
</tbody>
</table>
Portfolio selection (cont.)
 risk parity, global minimum variance portfolio, 23–24, 23nn
 risk-return trade-offs, two-asset case, 21–23
 wealth constraints, 19–20
Portfolio selection and market participation, 483–487
Positive delta, 737
Positive gamma, 737, 932
Positive price jump, 854
Post conversion value, 995
Precautionary motives, 347
Preference-free, 17, 26, 45, 80, 81, 656, 675, 760–761, 876–877
Preferred-habitat view, 622, 623
Present value of a basis point (PVBP), 950, 1013
Present value of growth opportunities, 414
Price betas, 173
Price dependence, 698, 705, 707–708, 734
Price-dividend-ratio, stochastic growth and convexity of, 436
Price impacts, 263, 592, 619, 620, 620n, 1069
Price informativeness, 569, 578
Price lambdas, 173
Price multiples, 425, 501–502
Price of (equity) volatility, 717–728
 fear gauge contracts, 719–723, 720n, 721n, 723 fig.
 forward volatility trading, 724–725
 hedging variance swaps, 724
 marking to market, 725
 overview, 717, 718 fig.
 range-based volatility, 717–719, 719 fig.
 skewness, 726–728
 stochastic interest rates, 726
Price of volatility, 654–655, 704, 709, 722, 726
Prices, quantities, and separation hypothesis, 508–514, 512 fig.
Price stickiness, 531
Price Value of the Basis Point, 938
Price volatility
 asset price volatility, 50, 348, 402, 413
 bond price volatility, 892, 919 fig., 920, 926, 942, 956
 callable price volatility, 931 fig.
 capital price volatility, 443, 510
 excess price volatility, 4
 fear gauge contracts, 721
 procyclicality, 1067
Pricing behavior in macroeconomics, 643–647
Pricing CDOs with imperfect correlation, 1091–1092
Pricing of credit products, 1025–1031, 1026n, 1029n
Principal component analysis (PCA), 869–870, 871 fig., 957–958
Procyclicality
 de-leveraging, 1071–1074, 1072n, 1073 fig.
 examples, 1060–1061
 global financial crisis, 1059–1062, 1067–1074
 interest rates, 883
 multiple equilibria, market break-ups, 1070–1071, 1071 fig.
 overview, 1067
 predictability, 379
Procyclicality and the financial accelerator
 doctrine, 515–538
 credit cycles I: propagation, 518–524
 credit cycles II: amplification, 524–529
 credit rationing, 517–518
 current research, state of, 537–538
 financial intermediation and business cycles, 529–537
 procyclicality, 515–517, 515–516nn
Production-based asset pricing, 124–130, 125n
Production economies
 decentralized economy, 115–117
 dynamics, 118–120, 119 fig.
 overview, 115
 social planner solution, 117–118
 stochastic economies, 120–124
Production puzzles, 509–510
Productivity shocks
 credit cycles I: propagation, 519, 522–523, 522–523n
 effects of, 527–529
 frictionless benchmark economy, 520n
 indeterminacy and sunspots, 124
 stochastic economies, 120
 term structure of interest rates, 403
Prohibition of short selling, 206
Projection theorem, 635–636
ProShares SVXY, 741
Pseudo-ML estimator, 326, 328
Pseudo- or quasi-maximum likelihood, 321, 321n
Put-call parity
 callable bonds and convexity risks, 928
 caps and floors, 939, 940
 delta-neutral portfolios, 699
government bond markets, 924
implied volatility, smiles and skews, 681
model-free properties, 664 fig., 665, 665
 table
options on fixed coupon bonds, 934
swap space, 945
Put options, 665, 670, 681, 713, 740, 924
Put strike, 669 fig., 669–670, 693
Puttable bonds, 836–837, 928
q-theory, 124, 126–129
Quadratic adjustment costs, 129
Quadratic mean, convergence in, 233, 335
Quadratic term structure models, 903
Quadratic variation, 232
Quantitative Easing (QE)
 credit crunch and QE, 1061–1062,
 1074–1081, 1079 fig.
 definition, 1061–1062, 1076
 global financial crisis, 1059–1062, 1076
 Great Recession, 891–892
 introduction, 976
negative interest rates, 885
nonlinear drifts, 886
peso problems, 894
Quantitative puzzles, 371–372. See also
 Neoclassical kernels and puzzles
Quoted forward rates, 949
Radon-Nikodym derivative, 254–255
Random credit line, 280
Random dividends distribution, 414–415,
 416 fig.
Random intensity rates, evaluation with,
 1018–1025
 affine models of survival probabilities,
 1018–1021, 1021 fig.
 hazard rates, 1023–1025
 marking to market, 1021–1022
 overview, 1018
 probabilities of default, 1025
 survival probabilities, 1018, 1019 fig.
 trading strategy, 1022–1023, 1023 fig.,
 1024 fig.
Random multiplier, 716
Random volatility
 Arrow-Debreu densities and restrictions,
 202
 Arrow-Debreu densities and restrictions on
 expected returns, 203
 implied volatility, smiles and skews, 681,
 682, 682 fig., 683 fig., 685, 686
 market completeness, 690
options and volatility, 654
 perfect hedging, price independence, 708
 two-factor models, 899
Random walk hypothesis, 678
Range-based volatility, 718–719, 719 fig.
Rare events, 221–222, 1001–1006, 1007
Rate curve compression, 1080
Rating mapping system, 1063
Ratings, 1007–1011, 1007 table, 1034
Rational expectations, 78, 91–92, 120, 121,
 160
Rational expectations equilibrium (REE), 78,
 564, 571–574. See also Noisy rational
 expectations equilibrium (NREE)
Rational market fluctuations, 392–396
Rational traders, 615, 616
Rat race, 608
Real business cycle theory. See stochastic
 economies
Realized instantaneous variance, 704, 728
Realized volatility
 calendars, 733
countercyclical, 363
delta-hedged strategies, variance risk
 premiums, 702, 704, 705
equity markets and the business cycle,
 375–376
fear gauge contracts, 719
fixed income markets, persistence and
 volatility, 918
forwards, 656
gamma trading, 696
government bond volatility, 891, 891 fig.,
 892, 895
interest rate derivatives, 918
market-realized, 722
price of (equity) volatility, 717, 719
risk-return trade-offs, 379, 380 fig.
 variance risk premiums, 722, 723
volatility begets volatility, 739
Real options and controlled Brownian motions,
 217–220
Real options theory, 4, 212–213
Reduced form approaches: rare events or
 intensity models
 example, 1006
 overview, 1001
Poisson-driven defaults, 1001–1003, 1002
 fig.
 predicted spreads, 1003–1006, 1004 fig.,
 1005 fig.
Redundancy, Black-Scholes theoretical
 construct, 653
Redundant securities, 84–86, 687
Reflecting barriers, 177–179
Regret-free rule, 589
Regulatory arbitrage, 1046
Regulatory framework, managing loan losses, 1045–1048, 1045n, 1046nn, 1048 table
Relative extinction, 473. See also Extinction
Relative pricing, 760–761
Relative risk aversion
 affine and quadratic term structure models, 904
 constant and relative risk aversion, 34–35
 equity premium, 349–350, 350 fig.
 Hansen-Jagannathan cup, 355
 intertemporal substitution, elasticity of, 111
 linearity-generating processes, 432
 Lucas model, 113
 risk premiums and interest rates, 451
 risk-sensitive models, 511
 risks for the long-run, 452
Relative value strategies, 717
Replication and pricing, 86–87, 164, 688
Repurchase agreement rate (repos), 762, 764
Restricted stock market participation, 386, 550–551
Restrictions on securities expected returns, 27–29
Retained earnings and market-to-book ratios, 413–415, 416 fig.
Return on equity (ROE), 284–286, 286 fig., 414, 415
Return on investment (ROI), 284–285, 414, 415
Ricardian equivalence
 agent's resource constraints, 493–494
 government size and asset prices, 496 fig.
Ricardian proposition, 492, 496
Riccati's equations, 961–962
Risk-adjusted discount rates
 aggregate fluctuations, equity markets, 383, 383 fig., 393–394, 399, 401
 asymmetric behavior, price-dividend ratio, 393
 continuous time models, 172–173, 172n
 macrofinance, 495, 506
Risk appetite, 1017, 1017n, 1060, 1063
Risk-bearing capacity, 578, 594, 615, 622–623
Risk-free rate
 aggregate fluctuations, equity markets, 373, 374 table
 classic capital asset pricing model, 23, 43
 continuous time models, 166, 170
 fixed income securities, 809
information, security design, financial contracting, 272, 273 fig., 285, 291
macrofinance, 450–451, 452, 458, 510, 541
neoclassical kernels and puzzles, 362
Risk management, foundations of
 alternative to VaR, expected shortfall, 1051–1052
 backtesting, 1052, 1052n
 distributional assumptions, 1050
 nonlinearity, 1051
 overview, 1048
 refinements, 1050–1052
 stress testing, 1052–1053
 value at risk (VaR), 1048–1050, 1049 fig.
Risk neutral probabilities
 Arrow-Debreu securities, 804–805, 804 fig., 824
 callable bonds, 839–840, 841
 continuous time models, 181, 182
 equity markets, aggregate fluctuations, 418
 fed funds target changes, 847
 fixed income securities, engineering of, 760, 761, 762, 789, 798, 800
 interest rate modeling, 785
 interest rates, 955
 macroeconomic risks, 101–102
 martingale, 93
 options and volatility, 678, 711–712, 713
 risky debt and credit derivatives, 1009, 1013, 1025, 1035
Risk of coupon payments, 1016
Risk parity
 dynamic model of balance sheet capacity, 534
 global minimum variance portfolio, 23–24
 investment strategy, 24
 Knightian uncertainty, global minimum variance portfolio, 40–42
 market crashes, 739
 overview, 18–19
 practice, 24, 534
 smart beta, or factor investing, 53
 volatility begets volatility, 739, 741
Risk-return trade-offs, 379–380
Risk-sensitive models, 510–511
Risk sharing, 94–95
Risk-shifting, 1078–1079
Risk structure of interest rates, 981
Risk tolerance, 534, 570, 585, 593
Risk arbitrage, model of, 615–617
Risk debt and credit derivatives
 bond and credit default swap spreads, 1085–1086
CDS index swaps and swaptions, 1086–1089
conditional probabilities of survival, 1086
copulae, 1089–1090
credit derivatives and structured products, 1011–1045
credit risk and financial innovation, 973, 975
table, 976, 976 fig.
defaultable securities, evaluation of, 977–1011
global financial crisis, 1059–1081
managing loan losses, 1045–1059
pricing CDOs with imperfect correlation, 1091–1092
stochastic default intensity and bond spreads, 1084–1085
strategic defaulting, 1081–1082
transition probability matrices and pricing, 1083–1084
Robust decisions, 40, 480
Robustness and detection error probabilities, preferences for, 513–514
Royal Dutch/Shell, 614
Rubinstein's formula, 189, 249–250
Run, 446–448, 451–453, 618–620. See also Bank runs
Running spread, 1015. See also Par spread
Runs, 49, 625–629. See also No runs
S&P 500 Index, 656, 717, 723 fig., 738
S&P Composite index, 373
SABR model (Stochastic-αβρ), 715, 951–954, 952 fig.
Saddle path
examples, 143, 144, 145 fig., 146, 149
infinite horizon economies, 119 fig., 120, 121, 123–124, 139, 139 fig.
Savage's axiom P2 (sure thing principle), 482
Savings and Loan associations (S&L), 934, 938–939, 1049
Scenario, 762, 773, 774, 779–780
Score generator, 328
Screening device, 277
Second welfare theorem, 74, 103, 547, 574
Secured Overnight Financing Rate (SOFR), 763, 763 fig.
Securities Exchange Act (SEA), 611
Securitization, 264, 266–273, 974
Security Exchange Commission (SEC), 738
Security market line (SML), 28–29, 58. See also Market portfolio and the security market line
Selling volatility, 663
Sentiment, 477
Separating equilibrium, 277
Separation hypothesis, 5, 508–509
Sequential equilibrium, 596
Shadow banking system, 976, 1059, 1062, 1064–1065, 1066
Sharpe market performance, 20
Sharpe performance, 20, 59, 361, 367
Sharpe ratio. See also Bond Sharpe ratios
aggregate fluctuations, equity markets, 398–399, 400 fig., 418–419, 432
definition of, 43
fixed income securities, 785
information, security design, financial contracting, 272
interest rates, 875, 955
macrofinance, 462, 463 fig., 497, 534
neoclassical kernels and puzzles, 359–360, 361 fig., 362
rational market fluctuations, 396
Short calendar, 733, 734, 735 fig., 736 fig.
Short-sale constraints, 659–660
Short straddle, 700, 701, 701 fig.
Short-term debt and equity sales, 279–284, 279n
Short-term rate
countercyclical statistics, 401
dynamics of, 814, 814 fig., 913–914
models of, 872–896
multifactor models of, 896–907
term structure, interest rates, 402–403
tree representation of, 782–787
Short-term rate, models of
bond pricing equation, 874–878
Cox, Ingersoll, and Ross, 883–884, 884nn
expectations and business cycles, 880–883, 882n
famous models, 879–886
interest rate volatility and the business cycle, 887–890, 887 fig., 889 fig., 890 fig.
jumps, volatility, and default, 890–896
models versus representations, 873–874
negative interest rates, 885
nonlinear drifts, 885–886, 886 fig.
overview, 872
stochastic duration, 878–879, 879n
Vasicek, 879–880, 879n, 881 fig.
Short-term rate, multifactor models of
affine term structure models, 902–903, 902n
estimation and trading strategies, 905–907
filtering (and trading), 907, 907n
general models, 906–907, 906n
no-arbitrage regressions and macroeconomy, 903–904
Short-term rate, multifactor models of (cont.)
 quadratic term structure models, 903
 stochastic volatility, 896–907
 three-factor models, 901–902
 univariate models, 905–906
 unspanned stochastic volatility, 904–905
Short-term spreads, 982, 1001, 1003–1004, 1012
Signaling, 262–263, 273–280
Signaling: callable bonds, equity, short-term debt
 derivatives as signals, 275–276, 275n, 276n
 Spence-Mirrlees condition, 277, 305
 overview, 273, 274 fig.
 project quality uncertainty, 274–275, 274 fig.
 signaling equilibria, 277–278, 278n
Simulated maximum likelihood, 331–333
Simulated method of moments (SMM) estimator, 326, 328–329
Simulation-based estimators
 asymptotic normality, 328–331
 indirect inference principle, 326–327, 327 fig.
 latent factors and identification, 333–334
 overview, 325–326
 simulated maximum likelihood, 331–333
 three simulation-based estimators, 326–328, 327 fig.
Single name swaps, 1012–1014, 1013n
Single-tranche CDO, 1035
SIV-lites, 1032, 1064
Size, of a test, 51
Size premiums, 51
Skewness, 726–728
Skew(s). See also Smiles and skews
 approximations, 734–735
 Black’s skew, 951
 fear gauge contracts, 721
 implied volatility, 716
 implied volatility, smiles and skews, 682 fig.,
 683 fig., 685–686
 interest rates, 859, 951
 local volatilities, SABR models, 951–954,
 952 fig., 953 fig.
 local volatilities and SABR models, 953 fig.
 local volatility, 708, 712, 716
 marking to market, 730
 options and volatility, 655
 overview, 654–655
 replicating variance futures, 733
 VIX derivatives, 729, 730, 733, 734
 volatility skew, 681
Skin in the game, 264, 267, 974
Skorokhod problem, 298
Slutzky’s theorem, 319, 320, 335, 338
Small minus big (SMB) premium, 51
Small worlds phenomenon, 602
Smart beta or factor investing, 53
Smiles and skews, 680–686, 709
Smirk, 681, 685
Smooth ambiguity aversion, 486–487, 553
Smooth pasting condition
 American calls and incomplete markets, 217
 bubbles as resale American options, 469
 exchange rates in target zones, 220
 irreversible investments, decision to invest, 218
 perpetual calls, 215, 216
 perpetual puts, 214
 reflecting barriers, absence of arbitrage, 178
 strategic defaulting, 992, 1082
Social planner
 capital accumulation and bubbles, 138
 catching up with the Joneses, 548, 549
 dynamic efficiency, 140, 141, 142
 liquidity and runs, 625, 626, 627
 model with restricted market participation,
 463–464, 550
 monetary economies, 135
 neoclassic growth, 117–118, 121, 147
 static general equilibrium, 74, 76
Sovereign debt, 977, 988
Sovereign risk, 997–1001, 999nn
Spanning and variance contracts, 752–755
Special purpose vehicle (SPV), 1033, 1064
Spectral decomposition, 142
Speculative enthusiasm, 404, 410, 472
Spillover effects, 503
Splines, 848–849
Spot loan, 766
Spot rate. See also Yield to maturity (YTM)
 bond returns predictability, 864–865
 convexity effects, 785
 default-free bonds, 770
 expectation hypothesis, 863
 forward-adjusted expectation hypothesis, 864
 forward rates, 767
 hedging zeros with zeros, 777
 marginal nature of forward rates, 862
 mathematical definitions, 765
 splines, 849
 yield curves, 765
 yields to maturity, coupon-bearing bonds, 767
Spot rate, continuously compounded, 765
Spot swap rate, 766, 937, 948
Index 1123

Spread, 530, 897, 897 fig.
Spread options (SO), 1011
SPY (ETF that tracks the S&P 500 index), 738
Square-root process, 205, 241, 691, 883, 884, 884n, 906
Standard and Poor's, 987, 988, 1006, 1007, 1007 table
Standardized or internal rating approach, 1046
State prices. See also Arrow-Debreu state prices
Bellman equation, optimality conditions, 544
complete markets, risk sharing, mutuality, 96
density or process, 170, 255, 474
equilibrium state prices, 91, 97
equivalent martingales and equilibrium, 91
nonexpected utility in continuous time, 546
pricing kernels, 92
replication and pricing, 87
risk-neutral pricing, macroeconomic risks, 101
Static general equilibrium
assumption 2.1 (preferences), 71–72
centralization of competitive equilibrium, 76
competitive equilibrium, 72
first welfare theorem, 73–74
numéraire, notion of, 73
optimality, 73
overview, 71
Pareto optima: I, 74–75
Pareto optima: II, 75–76
Pareto optimum, 73
second welfare theorem, 74, 74 fig.
Walras's law, 72–73
Stationary processes, 314–315
Statistical edge, 722, 723 fig.
Statistical models of changing volatility
ARCH and diffusive models, 679–680, 680n
ARCH and random variance models, 678–679
Steepening of the term structure, 779, 780
Steepness (slope) factor, 868, 870, 871 fig.
Stein's lemma, 356, 365–368
Sterling Overnight Index Average (SONIA), 764
Sticky smiles, 716
Stochastic calculus for finance, 226–243
Stochastic default intensity and bond spreads, 1084–1085
Stochastic differential equation (SDE)
background, 238–239
basic definitions, properties, regularity conditions, 239
Itô's lemma, 242–243
strong solution to, 239
Tanaka's process, 239–241
Stochastic discount factor
Arrow-Debreu partial differential equations, 421
catching up with the Joneses, 549
continuous time models, 169, 170–171
countercyclical income inequality, 460
countercyclical statistics, 398–399
cross-section restrictions, 500
dynamic versions of irrelevance, 286
equilibrium with CRRA, 175–176
expected returns and, 171
exponential affine pricing kernels, 355, 356
government debt, 493
Green's function, 250
habit formation, 505
Hansen-Jagannathan cup, 352–353
infinite horizon economies, 125, 129
log-normal returns, 358
neoclassical kernels and puzzles, 345
pricing kernels, 394, 395
Rubinstein's formula, 189
single-factor model, 348
state prices, 546
stochastic string shocks models, 507, 917
variance risk premiums, 722
Stochastic duration, 878–879, 879n, 929–930, 967
Stochastic integrals
Brownian motions, unboundedness of, 231–232, 231 fig.
definitions, 234
Itô, 232–233
Itô's lemma, introduction, 237–238, 237 fig.
Itô's stochastic integral, 235–236
Itô's stochastic integral, simple processes, 234
motivation, 228
property, 234–235
Riemann integral, 228–229
Riemann-Stieltjes integral, 229–231, 230 fig.
Stochastic opportunity sets
asset allocation puzzles, 198–199
constant investment opportunity sets, 194n
hedging demands, separation theorems, 196–198, 197n, 198n
markets with nonproductive assets, 195–196, 195n, 196n
overview, 194–195
Stochastic Pareto weights, 95
Stochastic programming principle, 151
Stochastic singularity, 503, 916–917
Stochastic social weight, 463–464
Stochastic string models, 506–508, 915–918
Stochastic volatility, 198
 extensions, 748–749
 Hull and White equation, 747–748
 implied volatility, smiles and skews,
 680–686, 681n, 682 fig., 682n, 683 fig.
 option pricing under stochastic volatility,
 686–696
 options and volatility, 705–707, 747–750
 smile analytics, 749–750
 statistical models of changing volatility,
 680–682
Stochastic volatility models, estimation,
 695–696
Stochastic volatility: multifactor models of the
 short-term rate, 896–901, 897 fig., 898nn,
 900n, 901n
Stock market volatility, 374 table, 375 fig., 381,
 382, 386–392
Stock market volatility, information content
 forecasting with the wrong model, 391–392
 macroeconomic constituents, 387–389, 388
 fig., 389 table
 macroeconomic implications, 388 fig.,
 389–390, 390 table
 overview, 386–387
 summary, 392
Stocks, as options, 424–428
Stocks and bonds, 987–988
Stop-loss orders, definition of, 738
St. Petersburg paradox, 79–80
Straddles, 696, 698–701, 698n, 699 fig., 718
Straight bond, 274 fig., 275, 996, 997 fig.
Strangles, 696, 698
Strategic defaulting, 989–994, 1081–1082
Strategic players, 595–613
Stratonovich integral, 233
Stress testing, 1052–1053
Strike dependent, 705
Strikeless, 697
Strings, 503, 506–508, 913, 915–916, 965
Strongly mixing, 315
Strong or pathwise uniqueness, 241
Structural approach, 977–993, 1001
Structured investment vehicle (SIV), 1032,
 1064
Subadditivity property, 1051
Subprime crisis
 amplification, 1060–1061
 brief history, 975–976
 global financial crisis, 1062–1067, 1064 fig.,
 1065n, 1066 fig.
 incentive-compatible constraint, 272
 LIBOR-OIS spread, 764
 stress testing, 1052–1053
Subprime mortgages, 975, 1032, 1063
Subsistence level, 397, 401
Sudden death, 841–842, 1003
Sunspots, 122–124, 146, 348–349, 629, 629n
Support function, 206
Sure thing principle, 482
Survival, conditional probabilities of, 1086
Survival contingent probability, 193, 1027,
 1029, 1030, 1088–1089
Survival probabilities: a heuristic derivation,
 1018, 1019 fig.
Swap payer, 192, 630, 935, 938, 940
Swap rate, 192
Swap receiver, 630, 935
Swap spread arbitrage, 780
Swap tenor, 937
Swaption cube, 947
Swaptions. See also Credit default swaptions
 addressing inconsistencies, 945, 946
 applications to derivatives evaluation,
 944–945
 CDS index swaps, 1086–1089
 definition of, 630
 extensions to index options, 1031
 evaluation paradigms, 761
 implied volatilities, 951
 interest rate derivatives, 939–940
 models and market practice, 940–941
 no-arbitrage restrictions, 942
 OIS discounting, 950
 over-the-counter markets, 630
 put-call parity in the swap space, 945
Synthetic CDOs, 1035
Synthetic default-free bond, 1014
Synthetic short position, 979
Systemic risk, 29
Systemic risk, measures of, 1053–1055, 1053n,
 1054 table
Systemic risk measure (SRISK), 1054–1055
Tail risk, 726, 975–976, 1062, 1063, 1065
Tails
2007 subprime crisis, 1062
barbell and bullet hedges, 777
distributional assumptions, 1050
Heston’s model, 682
implied volatility, smiles and skews, 685
nonlinear drifts, 886
option pricing under stochastic volatility, 694
risk and risk aversion, 63
Tanaka’s equation, 240
Tangent portfolio, 25, 58, 196–197
Technical crashes, 736
Ted spread, 764, 1011
Temporary equilibrium theory, 78
Tenor, 192
Terminal value problem, 752
Term spread, definition of, 866
Term structure of factor loadings, 869
Term structure of interest rates. See also Yield curve
forward equation for Arrow-Debreu security prices, 823
hedging, 774–777
interest rates, 204
Merton, 981
modeling, 782 fig.
models versus representations, 873
multifactor models, short-term rate, 896, 899
pricing formulae, 692
steepness (or slope) factor, 870, 871 fig.
time-varying risk premiums, 402–404, 403 fig.
Vasicek model, 879
yield curves, 765
Term structure of volatility, 826n, 918
Testable restrictions, 448–449
Thick-tailed distributions, 678
Thompson Reuters, 762
Thrifts. See Savings and Loan associations (S&L)
Time-deposit, 948
Time-discount rate, 414
Time-homogeneous diffusion process, 238
Time-varying probabilities and interest rate volatility swaps, 830–834
Time-varying risk premiums
aggregate fluctuations, equity markets, 371–372
ARCH and random variance models, 678
conditional capital asset pricing model, 363–364
countercyclical statistics, 398–401, 399n, 400n, 401n
empirical evidence, 386
equilibrium with CRRA, 175, 176
government debt, 493, 494
single-factor model, 348
Tobin’s q in a deterministic model, 150
Tobin’s q in a stochastic model, 150
Treasury rate, 764
Treasury yields, 741, 894
Tree pricing, 787, 788 fig.
Tree representation of the short-term rate, 782–787, 783 fig., 784n, 786 fig.
Trees. See also Binomial trees
Ho-Lee model, 808, 808n, 809 fig.
implied binomial trees, 791–795, 792 fig., 793 fig., 794 fig., 795n
martingales and arbitrage, 179–180
Trees (cont.)
 multiple trees, cross-section of asset returns, 499–508
 perfectly fitting trees, 789–791, 789 fig., 790 fig.
 recombining tree, 781, 810
 tree pricing, 787
 trinomial trees, extensions to, 807
 two-period two-state tree, 782–785, 782 fig., 784n
Triggering ratio, 216–217, 216 fig.
Trinomial trees, 807
Twin deficits, 998–999
Twin stocks, 614
Twist in the term structure, 779
Two-factor models, 898–899, 898nn
Two-fund separation theorem, 24–26
Two-person equilibrium, 476–479
Type-I and Type II errors, 54
Unboundedness of Brownian motions, 229
Unbounded variation, 227, 228, 231
Uncertainty, 47, 66, 77–84, 446–448, 481. See also Knightian uncertainty; Uncertainty aversion and the Ellsberg paradox
Uncertainty, preferences for early resolution of, 446–448, 447 fig.
Uncertainty aversion, 480–482, 481 table, 482 table, 483, 486, 487
Uncertainty aversion and the Ellsberg paradox, 480–482
Unconditional CAPM, 364
Undervalued stocks, 778–779
Undiscounted indirect utility, 151
Uniformly mixing, 315
Unique decomposition property, 161, 238–239, 687
Unit risk premium, 43, 168, 172
Univariate models, 905–906
Unspanned stochastic volatility (USV), 904–905
Upfront payments, 1015–1017
US Central Bank (the Fed), 867–868
US Treasuries, 866 fig., 932, 987, 988
US yield curve, additional facts about, 868
Value at risk (VaR), 1045, 1048–1050, 1049 fig.
Value at risk (VaR) constraints, 267, 267n, 532–533, 935
Value investors, 534, 534n, 536n
Value matching condition, 179, 214, 215, 216, 218, 1082
Value stocks, 50
Variance futures, replicating, 733–735, 734 fig., 735 fig., 736 fig.
Variance risk premiums, 702–704, 722–723, 723 fig.
Variance swap contract, 663, 740
Variance swaps
 definition of, 654, 720
 delta-hedged strategies, variance risk premiums, 704, 705
 hedging, 724
 local volatility, 709
 overview, 7
 price of (equity) volatility, 717
 variance risk premiums, 722
Vasicek model, 879–880, 879n, 881 fig., 919, 964
Vega notional (VN), 720n
Vega trading or volatility surface trading, 696
VelocityShares XIV (XIV), 740–741
Verification costs, 291–293, 529, 530
Views, 39
VIX, 7, 904
VIX basis, 739, 740 fig.
VIX derivatives, 728–735
VIX formula, crash derivation of, 721–722
VIX future pricing model, 730–732
VIX futures, 717, 735 fig.
VIX index
 definition of, 654
 levels, 709 fig., 718 fig., 728–729, 732, 735, 736 fig.
 market crashes, 739, 741
 price of (equity) volatility, 717
 variance risk premiums, 722, 723 fig.
 variance swaps and, 719–721, 721n
VIX squared, 728–729
Volatility, 386, 387–389, 900–901, 900n, 901n
Volatility, options, convexity
 bond price convexity revisited, 428–429
 bounds on convexity, 427
 canonical pricing problem, 425–426
 increasing risk, 423–424
 macro-asset derivative, 429–431
 maximum principle, 421–423, 422 fig.
 stocks as options, 424–428
Volatility and the business cycle, 380–392
Volatility armageddon (Volmageddon), 739
Volatility measurement, 381, 381n
Volatility of bond returns, 919, 919 fig., 921
Volatility of the short-term rate
 fixed income markets, 918
 fixed income securities, 783, 784
Ho-Lee model, 811, 813
interest rates, 886, 889 fig., 890 fig.
options and volatility, 661
recombining condition, 811
two-factor models, 898
Volatility paradox, 390, 538
Volatility parameter
Black–Scholes, 683 fig.
closed-form solution, 812
convenience yields, 661
credit default swaptions, 1028
Ho-Lee model, 825
local volatilities and SABR models, 953
model without closed-form solution, 826
Pedersen's model, 1031
stochastic volatility, 896, 897
Volatility skew, 681
Volatility surfaces, 950–954, 952 fig., 953 fig.
Volatility surface trading, 696
Volatility trading, 696, 697, 697 fig., 698, 719.
 See also Forward volatility trading;
 Trading volatility with options
Volcker rule, 1080

Waiting game, 609
Walrasian equilibria as informationally
inefficient outcomes, 569–571
Walrasian equilibrium, 565, 571
Walras's law, 72, 130
Warrant, 994n
Wasting assets, 667, 668 fig., 675. See also Call
options
Wasting assets and convexity, 667, 668 fig.
Weighted average cost of capital (WACC),
285
Well-specified, model, 314
Winner's curse, 282
World Cup pricing and arbitrage pricing,
80–81, 80 table
Worst-case scenario, 489, 514
Worst-case scenario interpretation, 484

Yield curve
Arrow-Debreu securities, extracting,
822–825
fitting the yield curve (perfectly), 908–909
forecasting, 872
market segmentation, bond supply shocks,
622
US yield curve, 868
volatility and, 900–901, 900n, 901n
Yield curve, factors affecting, 868–872, 870n,
871 fig.
Zero coupon bond (cont.)
 interest rate swaps, 939
 multifactor models of the short-term rate, 906
 multiperiod implied binomial tree, 789 fig., 790 fig., 791 fig.
 neoclassical kernels and puzzles, 357
 option, pricing on binomial tree, 788 fig.
 options and volatility, 661
 peso problems, 894
 sovereign risk, 998, 1000
 stochastic duration, 878
 term structure implications, 893
 two-factor models, 898, 899
Zero lower bound (ZLB), 888
Zero pricing equation, 824, 825, 850
Zeros
 barbell and bullet hedges, 780
 bond price equation, 824
 bond prices, first representation of, 859–860
 bond prices, interest rates, 859–860
 bond Sharpe ratios, 852, 853
 bootstrapping, 947
 dynamics of the short-term rate, 814
 extracting from bonds, 847–848
 hedging zeros with zeros, 775–777, 776 fig.
 interest rate derivatives, 920
 interest rate modeling, 791
 no-arbitrage restrictions, 849–851
 pricing before the global financial crisis, single curve, 948
 tree pricing, 787
 tree representation, short-term rate, 783, 785