Content Changes

Chapter 3 Growth of Functions: Renamed “Characterizing Running Times” and added a section giving an overview of asymptotic notation before delving into the formal definitions.

Chapter 4 Divide and Conquer: Substantially changed to improve its mathematical foundation and make it more robust and intuitive.

- Algorithmic recurrence introduced, and topic of ignoring floors and ceilings in recurrences addressed more rigorously.
- Second case of the master theorem incorporates polylogarithmic factors, and a rigorous proof of a “continuous” version of the master theorem now provided.
- Now presents the powerful and general Akra-Bazzi method (without proof).

Chapter 9 Medians and Order Statistics: Deterministic order-statistic algorithm is different, and analyses of randomized and deterministic order-statistic algorithms are revamped.

Chapter 10 Elementary Data Structures: Section 10.1 discusses ways to store arrays and matrices.

Chapter 11 Hash Tables: Includes modern treatment of hash functions and emphasizes linear probing as an efficient method for resolving collisions when the underlying hardware implements caching to favor local searches.

Chapter 15 Greedy Algorithms: Replaced sections on matroids, converted a problem in the third edition about offline caching into a full section.

Chapter 16 Amortized Analysis: Section 16.4 now contains a more intuitive explanation of the potential functions to analyze table doubling and halving.

Chapter 17 Augmenting Data Structures: Relocated from Part III to Part V, reflecting the authors’ view that this technique goes beyond basic material.

NEW Chapter 25 Matchings in Bipartite Graphs: Presents algorithms to find a matching of maximum cardinality, to solve the stable-marriage problem, and to find a maximum-weight matching (known as the “assignment problem”).

NEW Chapter 27 Online Algorithms: Describes several examples of online algorithms, including determining how long to wait for an elevator before taking the stairs, maintaining a linked list via the move-to-front heuristic, and evaluating replacement policies for caches.

NEW Chapter 33 Machine-Learning Algorithms: Introduces several basic methods used in machine learning: clustering to group similar items together, weighted-majority algorithms, and gradient descent to find the minimizer of a function.

NEW Chapter 29 Linear Programming: Section 29.5 adds to the chapter on string matching the simple, yet powerful, structure of suffix arrays.

NEW Chapter 33 Machine-Learning Algorithms: Introduces several basic methods used in machine learning: clustering to group similar items together, weighted-majority algorithms, and gradient descent to find the minimizer of a function.

NEW Chapter 34 NP-Completeness: Section 34.5.6 summarizes strategies for polynomial-time reductions to show that problems are NP-hard.

Organizational Changes

3 New Chapters

- **Chapter 25: Matchings in Bipartite Graphs**
- **Chapter 27: Online Algorithms**
- **Chapter 33: Machine-Learning Algorithms**

Moved Online

- **Chapter 19 Fibonacci Heaps,** Chapter 20 van Emde Boas Trees, and Chapter 33 Computational Geometry.
- Material on the maximum-subarray problem [Section 4.1], implementing pointers and objects [Section 10.3], perfect hashing [Section 11.5], randomly built binary search trees [Section 12.4], matroids [Sections 16.4, 16.5], push-relabel algorithms for maximum flow [Section 26.4, 26.5], the iterative fast Fourier transform method [part of Section 30.0], the details of the simplex algorithm for linear programming [in Section 29.3, 29.5], and integer factorization [Section 31.9].