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Preface

This document contains selected solutions to exercises andproblems inIntroduc-
tion to Algorithms, Fourth Edition, by Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. These solutions are posted publicly on the
MIT Press website.

We have numbered the pages using the formatCC-PP, whereCC is a chapter
number of the text andPP is the page number within that chapter. ThePP num-
bers restart from 1 at the beginning of each chapter. We chosethis form of page
numbering so that if we add or change material, the only pageswhose numbering
is affected are those for that chapter. Moreover, if we add material for currently
uncovered chapters, the numbers of the existing pages will remain unchanged.

The solutions

As of the third edition, we have publicly posted a few solutions on the book’s web-
site. These solutions also appear here with the notation “This solution is also
posted publicly” after the exercise or problem number. The set of publicly posted
solutions might increase over time, and so we encourage you to check whether a
particular solution is posted on the website before you assign an exercise or prob-
lem to your students.The index lists all the exercises and problems for the included
solutions, along with the number of the page on which each solution starts.

Asides appear in a handful of places throughout the solutions. Also, we are less
reluctant to use shading in figures within solutions, since these figures are more
likely to be reproduced than to be drawn on a board.

Source files

For several reasons, we are unable to publish or transmit source files for this docu-
ment. We apologize for this inconvenience.

You can use the clrscode4e package for LATEX 2" to typeset pseudocode in the
same way that we do. You can find it at https://mitp-content-server.mit.edu/
books/content/sectbyfn/bookspres0/11599/clrscode4e.sty and its documentation
at
https://mitp-content-server.mit.edu/books/content/sectbyfn/bookspres0/11599/
clrscode4e.pdf. Make sure to use the clrscode4e package, not the clrscode or
clrscode3e packages, which are for earlier editions of the book.



P-2 Preface

Reporting errors and suggestions

Undoubtedly, this document contains errors. Please reporterrors by sending email
to clrs-manual-bugs@mit.edu.

As usual, if you find an error in the text itself, please verifythat it has not already
been posted on the errata web page, https://mitp-content-server.mit.edu/books/
content/sectbyfn/bookspres0/11599/e4-bugs.html, before you submit it. You
also can use the MIT Press web site for the text, https://mitpress.mit.edu/books/
introduction-algorithms-fourth- edition, to locate the errata web page and to sub-
mit an error report.

We thank you in advance for your assistance in correcting errors in both this docu-
ment and the text.

THOMAS H. CORMEN

Lebanon, New Hampshire
March 2022



Selected Solutions for Chapter 2:
Getting Started

Solution to Exercise 2.2-2

SELECTION-SORT.A; n/

for i D 1 to n � 1

smallestD i

for j D i C 1 to n

if AŒj � < AŒsmallest�
smallestD j

exchangeAŒi� with AŒsmallest�

The algorithm maintains the loop invariant that at the startof each iteration of the
outerfor loop, the subarrayAŒ1 W i � 1� consists of thei � 1 smallest elements in
the arrayAŒ1 W n�, and this subarray is in sorted order. After the firstn�1 elements,
the subarrayAŒ1 W n � 1� contains the smallestn � 1 elements, sorted, and therefore
elementAŒn� must be the largest element.

The running time of the algorithm is‚.n2/ for all cases.

Solution to Exercise 2.2-4

Modify the algorithm so that it first checks the input array tosee whether it is
already sorted, taking‚.n/ time for ann-element array. If the array is already
sorted, then the algorithm is done. Otherwise, sort the array as usual. The best-
case running time is generally not a good measure of an algorithm’s efficiency.

Solution to Exercise 2.3-6

Procedure BINARY-SEARCH takes a sorted arrayA, a value x, and a range
Œlow W high� of the array, in which we search for the valuex. The procedure com-
paresx to the array entry at the midpoint of the range and decides to eliminate half
the range from further consideration. We give both iterative and recursive versions,
each of which returns either an indexi such thatAŒi� D x, or NIL if no entry of
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AŒlow W high� contains the valuex. The initial call to either version should have the
parametersA; x; 1; n.

ITERATIVE-BINARY-SEARCH.A; x; low; high/

while low � high
mid D b.low C high/=2c
if x == AŒmid�

return mid
elseifx > AŒmid�

low D midC 1

elsehigh D mid� 1

return NIL

RECURSIVE-BINARY-SEARCH.A; x; low; high/

if low > high
return NIL

mid D b.low C high/=2c
if x == AŒmid�

return mid
elseifx > AŒmid�

return RECURSIVE-BINARY-SEARCH.A; x; midC 1; high/

else return RECURSIVE-BINARY-SEARCH.A; x; low; mid � 1/

Both procedures terminate the search unsuccessfully when the range is empty (i.e.,
low > high) and terminate it successfully if the valuex has been found. Based
on the comparison ofx to the middle element in the searched range, the search
continues with the range halved. The recurrence for these procedures is therefore
T .n/ D T .n=2/ C ‚.1/, whose solution isT .n/ D ‚.lg n/.

Solution to Problem 2-4

a. The inversions are.1; 5/; .2; 5/; .3; 4/; .3; 5/; .4; 5/. (Remember that inversions
are specified by indices rather than by the values in the array.)

b. The array with elements drawn fromf1; 2; : : : ; ng with the most inversions is
hn; n � 1; n � 2; : : : ; 2; 1i. For all 1 � i < j � n, there is an inversion.i; j /.
The number of such inversions is

�

n

2

�

D n.n � 1/=2.

c. Suppose that the arrayA starts out with an inversion.k; i/. Thenk < i and
AŒk� > AŒi�. At the time that the outerfor loop of lines 1–8 setskey D AŒi�,
the value that started inAŒk� is still somewhere to the left ofAŒi�. That is,
it’s in AŒj �, where1 � j < i , and so the inversion has become.j; i/. Some
iteration of thewhile loop of lines 5–7 movesAŒj � one position to the right.
Line 8 will eventually dropkey to the left of this element, thus eliminating
the inversion. Because line 5 moves only elements that are greater thankey,
it moves only elements that correspond to inversions. In other words, each
iteration of thewhile loop of lines 5–7 corresponds to the elimination of one
inversion.
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d. We follow the hint and modify merge sort to count the number ofinversions in
‚.n lg n/ time.

To start, let us define amerge-inversionas a situation within the execution of
merge sort in which the MERGE procedure, after copyingAŒp W q� to L and
AŒq C 1 W r� to R, has valuesx in L andy in R such thatx > y. Consider an
inversion.i; j /, and letx D AŒi� andy D AŒj �, so thati < j andx > y.
We claim that if we were to run merge sort, there would be exactly one merge-
inversion involvingx andy. To see why, observe that the only way in which
array elements change their positions is within the MERGE procedure. More-
over, since MERGEkeeps elements withinL in the same relative order to each
other, and correspondingly forR, the only way in which two elements can
change their ordering relative to each other is for the greater one to appear inL
and the lesser one to appear inR. Thus, there is at least one merge-inversion
involving x andy. To see that there is exactly one such merge-inversion, ob-
serve that after any call of MERGE that involves bothx andy, they are in the
same sorted subarray and will therefore both appear inL or both appear inR
in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-inversion. In fact, the
correspondence between inversions and merge-inversions is one-to-one. Sup-
pose we have a merge-inversion involving valuesx andy, wherex originally
wasAŒi� andy was originallyAŒj �. Since we have a merge-inversion,x > y.
And sincex is in L andy is in R, x must be within a subarray preceding the
subarray containingy. Thereforex started out in a positioni precedingy’s
original positionj , and so.i; j / is an inversion.

Having shown a one-to-one correspondence between inversions and merge-
inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involvingy in R. Let ´ be the smallest value inL
that is greater thany. At some point during the merging process,´ andy will
be the “exposed” values inL andR, i.e., we will havé D LŒi� andy D RŒj �

in line 13 of MERGE. At that time, there will be merge-inversions involvingy

andLŒi�; LŒi C 1�; LŒi C 2�; : : : ; LŒnL � 1�, and thesenL � i merge-inversions
will be the only ones involvingy. Therefore, we need to detect the first time
that´ andy become exposed during the MERGE procedure and add the value
of nL � i at that time to the total count of merge-inversions.

The following pseudocode, modeled on merge sort, works as wehave just de-
scribed. It also sorts the arrayA.
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MERGE-INVERSIONS.A; p; q; r/

nL D q � p C 1

nR D r � q

let LŒ0 W nL � 1� andRŒ0 W nR � 1� be new arrays
for i D 0 to nL � 1

LŒi� D AŒp C i � 1�

for j D 0 to nR � 1

RŒj � D AŒq C j �

i D 0

j D 0

k D p

inversionsD 0

while i < nL andj < nR

if LŒi� � RŒj �

AŒk� D LŒi�

i D i C 1

elseinversionsD inversionsC nL � i

AŒk� D RŒj �

j D j C 1

k D k C 1

while i < nL

AŒk� D LŒi�

i D i C 1

k D k C 1

while j < nR

AŒk� D RŒj �

j D j C 1

k D k C 1

return inversions

COUNT-INVERSIONS.A; p; r/

inversionsD 0

if p < r

q D b.p C r/=2c
inversionsD inversionsC COUNT-INVERSIONS.A; p; q/

inversionsD inversionsC COUNT-INVERSIONS.A; q C 1; r/

inversionsD inversionsC MERGE-INVERSIONS.A; p; q; r/

return inversions

The initial call is COUNT-INVERSIONS.A; 1; n/.

In MERGE-INVERSIONS, wheneverRŒj � is exposed and a value greater than
RŒj � becomes exposed in theL array, we increaseinversionsby the number of
remaining elements inL. Then becauseRŒj C 1� becomes exposed,RŒj � can
never be exposed again.

Since we have added only a constant amount of additional workto each pro-
cedure call and to each iteration of the lastfor loop of the merging procedure,
the total running time of the above pseudocode is the same as for merge sort:
‚.n lg n/.
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Characterizing Running Times

Solution to Exercise 3.2-2

SinceO-notation provides only an upper bound, and not a tight bound, the state-
ment is saying that the running of time of algorithmA is at least a function whose
rate of growth is at mostn2.

Solution to Exercise 3.2-3

2nC1 D O.2n/, but22n ¤ O.2n/.

To show that2nC1 D O.2n/, we must find constantsc; n0 > 0 such that

0 � 2nC1 � c � 2n for all n � n0 :

Since2nC1 D 2 � 2n for all n, we can satisfy the definition withc D 2 andn0 D 1.

To show that22n 6D O.2n/, assume there exist constantsc; n0 > 0 such that

0 � 22n � c � 2n for all n � n0 :

Then22n D 2n � 2n � c � 2n ) 2n � c. But no constant is greater than all2n, and
so the assumption leads to a contradiction.

Solution to Exercise 3.3-5

dlg neŠ is not polynomially bounded, butdlg lg neŠ is.

Proving that a functionf .n/ is polynomially bounded is equivalent to proving that
lg f .n/ D O.lg n/ for the following reasons.
� If f .n/ is polynomially bounded, then there exist positive constantsc, k, andn0

such that0 � f .n/ � cnk for all n � n0. Without loss of generality, assume
thatc � 1, since ifc < 1, thenf .n/ � cnk implies thatf .n/ � nk . Assume
also thatn0 � 2, so thatn � n0 implies that lgc � .lg c/.lg n/. Then, we have
lg f .n/ � lg c C k lg n

� .lg c C k/ lg n ;

which, sincec andk are constants, means that lgf .n/ D O.lg n/.



3-2 Selected Solutions for Chapter 3: Characterizing Running Times

� Now suppose that lgf .n/ D O.lg n/. Then there exist positive constantsc

andn0 such that0 � lg f .n/ � c lg n for all n � n0. Then, we have

0 � f .n/ D 2lg f .n/ � 2c lg n D .2lg n/c D nc

for all n � n0, so thatf .n/ is polynomially bounded.

In the following proofs, we will make use of the following twofacts:

1. lg.nŠ/ D ‚.n lg n/ (by equation (3.28)).

2. dlg ne D ‚.lg n/, because

� dlg ne � lg n, and
� dlg ne < lg n C 1 � 2 lg n for all n � 2.

We have

lg.dlg neŠ/ D ‚.dlg ne lg dlg ne/

D ‚..lg n/.lg lg n//

D !.lg n/ :

Therefore, lg.dlg neŠ/ is notO.lg n/, and sodlg neŠ is not polynomially bounded.

We also have

lg.dlg lg neŠ/ D ‚.dlg lg ne lg dlg lg ne/

D ‚..lg lg n/.lg lg lg n//

D o..lg lg n/2/

D o.lg2.lg n//

D o.lg n/ :

The last step above follows from the property that any polylogarithmic function
grows more slowly than any positive polynomial function, i.e., that for constants
a; b > 0, we have lgb n D o.na/. Substitute lgn for n, 2 for b, and1 for a, giving
lg2.lg n/ D o.lg n/.

Therefore, lg.dlg lg neŠ/ D O.lg n/, and sodlg lg neŠ is polynomially bounded.
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Divide-and-Conquer

Solution to Exercise 4.2-3

If you can multiply3 � 3 matrices usingk multiplications, then you can multiply
n � n matrices by recursively multiplyingn=3 � n=3 matrices, in timeT .n/ D
kT .n=3/ C ‚.n2/.

Using the master method to solve this recurrence, consider the ratio of nlog3 k

andn2:

� If log3 k D 2, case 2 applies andT .n/ D ‚.n2 lg n/. In this case,k D 9 and
T .n/ D o.nlg 7/.

� If log3 k < 2, case 3 applies andT .n/ D ‚.n2/. In this case,k < 9 and
T .n/ D o.nlg 7/.

� If log3 k > 2, case 1 applies andT .n/ D ‚.nlog3 k/. In this case,k > 9.
T .n/ D o.nlg 7/ when log3 k < lg 7, i.e., whenk < 3lg 7 � 21:85. The largest
such integerk is 21.

Thus,k D 21 and the running time is‚.nlog3 k/ D ‚.nlog3 21/ D O.n2:80/ (since
log3 21 � 2:77).

Solution to Exercise 4.4-4

T .n/ D T .˛n/ C T ..1 � ˛/n/ C cn

We saw the solution to the recurrenceT .n/ D T .n=3/ C T .2n=3/ C cn in the text.
This recurrence can be similarly solved.

Without loss of generality, let̨ � 1�˛, so that0 < 1�˛ � 1=2 and1=2 � ˛ < 1.
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…

…
log1=.1�˛/ n log1=˛ n

cn

cn

cn

cn

Total: O.n lg n/

c˛n c.1 � ˛/n

c˛2n c˛.1 � ˛/nc˛.1 � ˛/n c.1 � ˛/2n

The recursion tree is full for log1=.1�˛/ n levels, each contributingcn, so we guess
�.n log1=.1�˛/ n/ D �.n lg n/. It has log1=˛ n levels, each contributing� cn, so
we guessO.n log1=˛ n/ D O.n lg n/.

Now we show thatT .n/ D ‚.n lg n/ by substitution. To prove the upper bound,
we need to show thatT .n/ � dn lg n for a suitable constantd > 0:

T .n/ D T .˛n/ C T ..1 � ˛/n/ C cn

� d˛n lg.˛n/ C d.1 � ˛/n lg..1 � ˛/n/ C cn

D d˛n lg ˛ C d˛n lg n C d.1 � ˛/n lg.1 � ˛/ C d.1 � ˛/n lg n C cn

D dn lg n C dn.˛ lg ˛ C .1 � ˛/ lg.1 � ˛// C cn

� dn lg n ;

if dn.˛ lg ˛ C .1 � ˛/ lg.1 � ˛// C cn � 0. This condition is equivalent to

d.˛ lg ˛ C .1 � ˛/ lg.1 � ˛// � �c :

Since1=2 � ˛ < 1 and0 < 1�˛ � 1=2, we have that lg̨ < 0 and lg.1�˛/ < 0.
Thus,˛ lg ˛ C .1 � ˛/ lg.1 � ˛/ < 0, so that when we multiply both sides of the
inequality by this factor, we need to reverse the inequality:

d �
�c

˛ lg ˛ C .1 � ˛/ lg.1 � ˛/

or

d �
c

�˛ lg ˛ C �.1 � ˛/ lg.1 � ˛/
:

The fraction on the right-hand side is a positive constant, and so it suffices to pick
any value ofd that is greater than or equal to this fraction.

To prove the lower bound, we need to show thatT .n/ � dn lg n for a suitable
constantd > 0. We can use the same proof as for the upper bound, substituting �
for �, and we get the requirement that

0 < d �
c

�˛ lg ˛ � .1 � ˛/ lg.1 � ˛/
:

Therefore,T .n/ D ‚.n lg n/.
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Probabilistic Analysis and Randomized
Algorithms

Solution to Exercise 5.2-1

Since HIRE-ASSISTANT always hires candidate1, it hires exactly once if and only
if no candidates other than candidate1 are hired. This event occurs when candi-
date1 is the best candidate of then, which occurs with probability1=n.

HIRE-ASSISTANT hiresn times if each candidate is better than all those who were
interviewed (and hired) before. This event occurs precisely when the list of ranks
given to the algorithm ish1; 2; : : : ; ni, which occurs with probability1=nŠ.

Solution to Exercise 5.2-5

Another way to think of the hat-check problem is that we want to determine the
expected number of fixed points in a random permutation. (Afixed point of a
permutation� is a valuei for which �.i/ D i .) We could enumerate allnŠ per-
mutations, count the total number of fixed points, and divideby nŠ to determine
the average number of fixed points per permutation. This would be a painstak-
ing process, and the answer would turn out to be1. We can use indicator random
variables, however, to arrive at the same answer much more easily.

Define a random variableX that equals the number of customers that get back their
own hat, so that we want to compute EŒX�.

For i D 1; 2; : : : ; n, define the indicator random variable

Xi D I fcustomeri gets back his own hatg :

ThenX D X1 C X2 C � � � C Xn.

Since the ordering of hats is random, each customer has a probability of 1=n of get-
ting back their own hat. In other words, PrfXi D 1g D 1=n, which, by Lemma 5.1,
implies that EŒXi � D 1=n.
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Thus,

E ŒX� D E

"

n
X

iD1

Xi

#

D

n
X

iD1

E ŒXi � (linearity of expectation)

D

n
X

iD1

1=n

D 1 ;

and so we expect that exactly1 customer gets back their own hat.

Note that this is a situation in which the indicator random variables arenot inde-
pendent. For example, ifn D 2 andX1 D 1, thenX2 must also equal1. Con-
versely, ifn D 2 andX1 D 0, thenX2 must also equal0. Despite the dependence,
PrfXi D 1g D 1=n for all i , and linearity of expectation holds. Thus, we can use
the technique of indicator random variables even in the presence of dependence.

Solution to Exercise 5.2-6

Let Xij be an indicator random variable for the event where the pairAŒi�; AŒj �

for i < j is inverted, i.e.,AŒi� > AŒj �. More precisely, we defineXij D
I fAŒi� > AŒj �g for 1 � i < j � n. We have PrfXij D 1g D 1=2, because
given two distinct random numbers, the probability that thefirst is bigger than the
second is1=2. By Lemma 5.1, EŒXij � D 1=2.

Let X be the the random variable denoting the total number of inverted pairs in the
array, so that

X D

n�1
X

iD1

n
X

j DiC1

Xij :

We want the expected number of inverted pairs, so we take the expectation of both
sides of the above equation to obtain

E ŒX� D E

"

n�1
X

iD1

n
X

j DiC1

Xij

#

:

We use linearity of expectation to get

E ŒX� D E

"

n�1
X

iD1

n
X

j DiC1

Xij

#

D

n�1
X

iD1

n
X

j DiC1

E ŒXij �

D

n�1
X

iD1

n
X

j DiC1

1=2
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D

 

n

2

!

1

2

D
n.n � 1/

2
�

1

2

D
n.n � 1/

4
:

Thus the expected number of inverted pairs isn.n � 1/=4.

Solution to Exercise 5.3-2

Along with the identity permutation, there are other permutations that PERMUTE-
WITHOUT-IDENTITY fails to produce. For example, consider its operation when
n D 3, when it should be able to produce thenŠ�1 D 5 non-identity permutations.
The for loop iterates fori D 1 and i D 2. Wheni D 1, the call to RANDOM

returns one of two possible values (either2 or 3), and wheni D 2, the call to
RANDOM returns just one value (3). Thus, PERMUTE-WITHOUT-IDENTITY can
produce only2 � 1 D 2 possible permutations, rather than the5 that are required.

Solution to Exercise 5.3-4

PERMUTE-BY-CYCLIC choosesoffset as a random integer in the range1 �
offset � n, and then it performs a cyclic rotation of the array. That is,
BŒ..i C offset� 1/ modn/ C 1� D AŒi� for i D 1; 2; : : : ; n. (The subtraction
and addition of1 in the index calculation is due to the1-origin indexing. If we
had used0-origin indexing instead, the index calculation would havesimplied to
BŒ.i C offset/ modn� D AŒi� for i D 0; 1; : : : ; n � 1.)

Thus, onceoffsetis determined, so is the entire permutation. Since each value of
offsetoccurs with probability1=n, each elementAŒi� has a probability of ending
up in positionBŒj � with probability1=n.

This procedure does not produce a uniform random permutation, however, since
it can produce onlyn different permutations. Thus,n permutations occur with
probability1=n, and the remainingnŠ � n permutations occur with probability0.
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Heapsort

Solution to Exercise 6.1-1

Since a heap is an almost-complete binary tree (complete at all levels except pos-
sibly the lowest), it has at most2hC1 � 1 elements (if it is complete) and at least
2h �1C1 D 2h elements (if the lowest level has just 1 element and the otherlevels
are complete).

Solution to Exercise 6.1-2

Given ann-element heap of heighth, we know from Exercise 6.1-1 that

2h � n � 2hC1 � 1 < 2hC1 :

Thus,h � lg n < h C 1. Sinceh is an integer,h D blg nc (by definition ofb c).

Solution to Exercise 6.2-7

If you put a value at the root that is less than every value in the left and right
subtrees, then MAX -HEAPIFY will be called recursively until a leaf is reached. To
make the recursive calls traverse the longest path to a leaf,choose values that make
MAX -HEAPIFY always recurse on the left child. It follows the left branch when
the left child is greater than or equal to the right child, so putting 0 at the root
and 1 at all the other nodes, for example, will accomplish that. With such values,
MAX -HEAPIFY will be calledh times (whereh is the heap height, which is the
number of edges in the longest path from the root to a leaf), soits running time
will be ‚.h/ (since each call does‚.1/ work), which is‚.lg n/. Since we have
a case in which MAX -HEAPIFY’s running time is‚.lg n/, its worst-case running
time is�.lg n/.
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Solution to Exercise 6.4-1

(b) (c)

(d) (e) (f)

(g) (h) (i)

2 4 5 7 8 13 17 20 25

20

4

2 5

7 8 13 17

25

2

4 5

7 8 13 17

2520

5

4 2

171387

20 25

7

4 5

171382

20 25

13

58

2 7 4 17

2520

8

7 5

171342

20 25

17

13 5

2478

2520

20

13 17

2478

255

A

i
i

i i i

i

i i

(a)

25

13 20

21778

45
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Solution to Exercise 6.5-2

22

22

81 81

8

1 10

i

8

1 -∞

15

13 9

5 12 8 7

4 0 6

(a)

15

13 9

5 12 8 7

4 0 6

(b)

15

13 9

0

12 10 7

4

5

6

(c)

i

15

5

10

0

12 9 7

4

13

6

(d)

i

The running time isO.lg n/ plus the overhead for mapping priority queue objects
to array indices.

Solution to Problem 6-1

a. The procedures BUILD -MAX -HEAP and BUILD -MAX -HEAP0 do not always
create the same heap when run on the same input array. Consider the following
counterexample.

Input arrayA:

1 2 3A

BUILD -MAX -HEAP.A/:

1

32

3

12

3 2 1A

BUILD -MAX -HEAP0.A/:

1

2

2

31

3

21

3 1 2A

3
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b. An upper bound ofO.n lg n/ time follows immediately from there beingn � 1

calls to MAX -HEAP-INSERT, each takingO.lg n/ time. For a lower bound
of �.n lg n/, consider the case in which the input array is given in strictly in-
creasing order. Each call to MAX -HEAP-INSERT causes HEAP-INCREASE-
KEY to go all the way up to the root. Since the depth of nodei is blg ic, the
total time is

n
X

iD1

‚.blg ic/ �

n
X

iDdn=2e

‚.blg dn=2ec/

�

n
X

iDdn=2e

‚.blg.n=2/c/

D

n
X

iDdn=2e

‚.blg n � 1c/

� .n=2/ � ‚.lg n/

D �.n lg n/ :

In the worst case, therefore, BUILD -MAX -HEAP0 requires‚.n lg n/ time to
build ann-element heap.
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Quicksort

Solution to Exercise 7.2-3

Suppose that PARTITION is called on a subarrayAŒp W r� whose elements are dis-
tinct and in decreasing order. PARTITION chooses the smallest element, inAŒr�, as
the pivot. Every test in line 4 comes up false, so that no elements are exchanged
during the execution of thefor loop. Before PARTITION returns, line 6 finds that
i D p � 1, and so it swaps the elements inAŒp� andAŒr�. PARTITION returnsp

as the position of the pivot. The subarray containing elements less than or equal
to the pivot is empty. The subarray containing elements greater than the pivot,
AŒp C 1 W r�, has all but the pivot and is in decreasing order except that the maxi-
mum element of this subarray is inAŒr�.

When QUICKSORT calls PARTITION onAŒp W q � 1�, nothing changes, as this sub-
array is empty. When QUICKSORT calls PARTITION onAŒq C 1 W r�, now the pivot
is the greatest element in the subarray. Although every testin line 4 comes up true,
the indicesi andj are always equal in line 6, so that just as in the case where the
pivot is the smallest element, no elements are exchanged during the execution of
thefor loop. Before PARTITION returns, line 6 finds thati D r �1, so that the swap
in line 6 leaves the pivot inAŒr�. PARTITION returnsr as the position of the pivot.
Now the subarray containing elements less than or equal to the pivot has all but the
pivot and is in decreasing order, and the subarray containing elements greater than
the pivot is empty. The next call to PARTITION, therefore, is on a subarray that is
in decreasing order, so that it goes back to the first case above.

Therefore, each recursive call is on a subarray only one element smaller, giving
a recurrence for the running time ofT .n/ D T .n � 1/ C ‚.n/, whose solution
is ‚.n2/.

Solution to Exercise 7.2-5

The minimum depth follows a path that always takes the smaller part of the par-
tition—i.e., that multiplies the number of elements by˛. One level of recursion
reduces the number of elements fromn to ˛n, andi levels of recursion reduce the
number of elements tǫin. At a leaf, there is just one remaining element, and so
at a minimum-depth leaf of depthm, we havę mn D 1. Thus,˛m D 1=n. Taking
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logarithms, we getm lg ˛ D � lg n, or m D � lg n= lg ˛. (This quantity is positive
because0 < ˛ < 1 implies that lg̨ < 0.)

Similarly, the maximum-depth path corresponds to always taking the larger part of
the partition, i.e., keeping a fractioň of the elements each time. The maximum
depthM is reached when there is one element left, that is, whenˇM n D 1. Thus,
M D � lg n= lg ˇ. (Again, this quantity is positive because0 < ˇ < 1 implies that
lg ˇ < 0.)

All these equations are approximate because we are ignoringfloors and ceilings.



Selected Solutions for Chapter 8:
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Solution to Exercise 8.1-3

If the sort runs in linear time form input permutations, then the heighth of the
portion of the decision tree consisting of them corresponding leaves and their
ancestors is linear.

Use the same argument as in the proof of Theorem 8.1 to show that this is impos-
sible form D nŠ=2, nŠ=n, or nŠ=2n.

We have2h � m, which gives ush � lg m. For all the possible values ofm given
here, lgm D �.n lg n/, henceh D �.n lg n/.

In particular, using equation (3.25):

lg
nŠ

2
D lg nŠ � 1 � n lg n � n lg e � 1 ;

lg
nŠ

n
D lg nŠ � lg n � n lg n � n lg e � lg n ;

lg
nŠ

2n
D lg nŠ � n � n lg n � n lg e � n :

Solution to Exercise 8.2-3

The following solution also answers Exercise 8.2-2.

Notice that the correctness argument in the text does not depend on the order in
which A is processed. The algorithm is correct whetherA is processed front to
back or back to front.

But the modified algorithm is not stable. As before, in the final for loop an element
equal to one taken fromA earlier is placed before the earlier one (i.e., at a lower
index position) in the output arrrayB. The original algorithm was stable because
an element taken fromA later started out with a lower index than one taken earlier.
But in the modified algorithm, an element taken fromA later started out with a
higher index than one taken earlier.

In particular, the algorithm still places the elements withvalue k in positions
C Œk � 1� C 1 throughC Œk�, but in the reverse order of their appearance inA.

Rewrite of COUNTING-SORT that writes elements with the same value into the
output array in order of increasing index and is stable:
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COUNTING-SORT.A; n; k/

let BŒ1 W n�, C Œ0 W k�, andLŒ0 W k� be new arrays
for i D 0 to k

C Œi � D 0

for j D 1 to n

C ŒAŒj �� D C ŒAŒj �� C 1

// C Œi� now contains the number of elements equal toi .
LŒ0� D 1

for i D 1 to k

LŒi� D LŒi � 1� C C Œi � 1�

// LŒi� now contains the index of the first element ofA with valuei

for j D 1 to n

BŒLŒAŒj ��� D AŒj �

LŒAŒj �� D LŒAŒj �� C 1

return B

Solution to Exercise 8.3-3

Basis: If d D 1, there’s only one digit, so sorting on that digit sorts the array.
Inductive step: Assuming that radix sort works ford � 1 digits, we’ll show that it
works ford digits.
Radix sort sorts separately on each digit, starting from digit 1. Thus, radix sort of
d digits, which sorts on digits1; : : : ; d is equivalent to radix sort of the low-order
d � 1 digits followed by a sort on digitd . By our induction hypothesis, the sort of
the low-orderd � 1 digits works, so just before the sort on digitd , the elements
are in order according to their low-orderd � 1 digits.
The sort on digitd will order the elements by theird th digit. Consider two ele-
ments,a andb, with d th digitsad andbd respectively.
� If ad < bd , the sort will puta beforeb, which is correct, sincea < b regardless

of the low-order digits.
� If ad > bd , the sort will puta afterb, which is correct, sincea > b regardless

of the low-order digits.
� If ad D bd , the sort will leavea andb in the same order they were in, because

it is stable. But that order is already correct, since the correct order ofa andb

is determined by the low-orderd � 1 digits when theird th digits are equal, and
the elements are already sorted by their low-orderd � 1 digits.

If the intermediate sort were not stable, it might rearrangeelements whosed th
digits were equal—elements thatwere in the right order after the sort on their
lower-order digits.

Solution to Exercise 8.3-5

Treat the numbers as3-digit numbers in radixn. Each digit ranges from0 to n � 1.
Sort these3-digit numbers with radix sort.
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There are3 calls to counting sort, each taking‚.n C n/ D ‚.n/ time, so that the
total time is‚.n/.

Solution to Problem 8-1

a. For a comparison algorithmA to sort, no two input permutations can reach the
same leaf of the decision tree, so that there must be at leastnŠ leaves reached
in TA, one for each possible input permutation. SinceA is a deterministic algo-
rithm, it must always reach the same leaf when given a particular permutation
as input, so at mostnŠ leaves are reached (one for each permutation). Therefore
exactlynŠ leaves are reached, one for each input permutation.

ThesenŠ leaves will each have probability1=nŠ, since each of thenŠ possible
permutations is the input with the probability1=nŠ. Any remaining leaves will
have probability0, since they are not reached for any input.

Without loss of generality, we can assume for the rest of thisproblem that paths
leading only to0-probability leaves aren’t in the tree, since they cannot affect
the running time of the sort. That is, we can assume thatTA consists of only the
nŠ leaves labeled1=nŠ and their ancestors.

b. If k > 1, then the root ofT is not a leaf. All ofT ’s leaves must be leaves in
LT andRT . Since every leaf at depthh in LT or RT has depthh C 1 in T ,
D.T / must be the sum ofD.LT /, D.RT /, andk, the total number of leaves.
To prove this last assertion, letdT .x/ D depth of nodex in treeT . Then,

D.T / D
X

x2 leaves.T /

dT .x/

D
X

x2 leaves.LT /

dT .x/ C
X

x2 leaves.RT /

dT .x/

D
X

x2 leaves.LT /

.dLT .x/ C 1/ C
X

x2 leaves.RT /

.dRT .x/ C 1/

D
X

x2 leaves.LT /

dLT .x/ C
X

x2 leaves.RT /

dRT .x/ C
X

x2 leaves.T /

1

D D.LT / C D.RT / C k :

c. To show thatd.k/ D minfd.i/ C d.k � i/ C k W 1 � i � k � 1g, we will
show separately thatd.k/ � minfd.i/ C d.k � i/ C k W 1 � i � k � 1g and
d.k/ � minfd.i/ C d.k � i/ C k W 1 � i � k � 1g.

� We show thatd.k/ � minfd.i/ C d.k � i/ C k W 1 � i � k � 1g by show-
ing thatd.k/ � d.i/Cd.k�i/Ck for i D 1; 2; : : : ; k�1. By Exercise B.5-4,
there are full binary trees withi leaves for anyi from 1 to k � 1. Therefore,
we can create decision treesLT with i leaves andRT with k � i leaves such
that D.LT / D d.i/ andD.RT / D d.k � i/. ConstructT such thatLT

andRT are the left and right subtrees ofT ’s root, respectively. Then

d.k/

� D.T / (by definition ofd as minimumD.T / value)
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D D.LT / C D.RT / C k (by part (b))

D d.i/ C d.k � i/ C k (by choice ofLT andRT ) .

� We show thatd.k/ � minfd.i/ C d.k � i/ C k W 1 � i � k � 1g by show-
ing thatd.k/ � d.i/ C d.k � i/ C k, for somei in f1; 2; : : : ; k � 1g. Take
the treeT with k leaves such thatD.T / D d.k/, let LT andRT be T ’s
left and right subtree, respectively, and leti be the number of leaves inLT .
Thenk � i is the number of leaves inRT and

d.k/

D D.T / (by choice ofT )

D D.LT / C D.RT / C k (by part (b))

� d.i/ C d.k � i/ C k (by definition ofd as minimumD.T / value) .

Neither i nor k � i can be0 (and hence1 � i � k � 1), since if one of
these were0, eitherLT or RT would contain allk leaves ofT . The root
of T would have only one child, so thatT would not be a full binary tree and
hence not a decision tree.

d. Let fk.i/ D i lg i C .k � i/ lg.k � i/. To find the value ofi that minimizesfk,
find thei for which the derivative offk with respect toi is 0:

f 0
k.i/ D

d

di

�

i ln i C .k � i/ ln.k � i/

ln 2

�

D
ln i C 1 � ln.k � i/ � 1

ln 2

D
ln i � ln.k � i/

ln 2
is 0 at i D k=2. To verify that this is indeed a minimum (not a maximum),
check that the second derivative offk is positive ati D k=2:

f 00
k .i/ D

d

di

�

ln i � ln.k � i/

ln 2

�

D
1

ln 2

�

1

i
C

1

k � i

�

:

f 00
k .k=2/ D

1

ln 2

�

2

k
C

2

k

�

D
1

ln 2
�

4

k
> 0 (sincek > 1) :

Now we use substitution to proved.k/ D �.kb lg k/. The base case of the
induction is satisfied becaused.1/ � 0 D c � 1 � lg 1 for any constantc. For the
inductive step, assume thatd.i/ � ci lg i for 1 � i � k � 1, wherec is some
constant to be determined:

d.k/ D minfd.i/ C d.k � i/ C k W 1 � i � k � 1g

� minfc.i lg i C .k � i/ lg.k � i// C k W 1 � i � k � 1g

D c

�

k

2
lg

k

2
C

�

k �
k

2

�

lg

�

k �
k

2

��

C k
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D ck lg

�

k

2

�

C k

D c.k lg k � k/ C k

D ck lg k C .k � ck/

� ck lg k if c � 1 ;

and sod.k/ D �.k lg k/.

e. Using the result of part (d) and the fact thatTA (as modified in our solution to
part (a)) hasnŠ leaves, we can conclude that

D.TA/ � d.nŠ/ D �.nŠ lg.nŠ// :

D.TA/ is the sum of the decision-tree path lengths for sorting all input per-
mutations, and the path lengths are proportional to the run time. Since thenŠ

permutations have equal probability1=nŠ, the expected time to sortn random
elements (one input permutation) is the total time for all permutations divided
by nŠ:

�.nŠ lg.nŠ//

nŠ
D �.lg.nŠ// D �.n lg n/ :

f. We will show how to modify a randomized decision tree (algorithm) to define a
deterministic decision tree (algorithm) that is at least asgood as the randomized
one in terms of the average number of comparisons.

At each randomized node, pick the child with the smallest subtree (the subtree
with the smallest average number of comparisons on a path to aleaf). Delete all
the other children of the randomized node and splice out the randomized node
itself.

The deterministic algorithm corresponding to this modifiedtree still works, be-
cause the randomized algorithm worked no matter which path was taken from
each randomized node.

The average number of comparisons for the modified algorithmis no larger
than the average number for the original randomized tree, since we discarded
the higher-average subtrees in each case. In particular, each time we splice out
a randomized node, we leave the overall average less than or equal to what it
was, because

� the same set of input permutations reaches the modified subtree as before, but
those inputs are handled in less than or equal to average timethan before, and

� the rest of the tree is unmodified.

The randomized algorithm thus takes at least as much time on average as the
corresponding deterministic one. (We’ve shown that the average-case running
time for a deterministic comparison sort is�.n lg n/, hence the expected time
for a randomized comparison sort is also�.n lg n/.)
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Solution to Exercise 9.3-1

For groups of7, the algorithm still works in linear time. The numberg of groups is
at mostn=7. There are at least4.bg=2c C 1/ � 2g elements greater than or equal
to the pivot, and at least4 dg=2e � 2g elements less than or equal to the pivot.
That leaves at most7g � 2g D 5g � 5n=7 elements in the recursive call. The
recurrence becomesT .n/ � T .n=7/ C T .5n=7/ C O.n/, which you can show by
substitution has the solutionT .n/ D O.n/.

In fact, any odd group size� 5 works in linear time.

Solution to Exercise 9.3-3

A modification to quicksort that allows it to run inO.n lg n/ time in the worst
case uses the deterministic PARTITION-AROUND procedure that takes an element
to partition around as an input parameter.

SELECT takes an arrayA, the boundsp andr of the subarray inA, and the ranki
of an order statistic, and in time linear in the size of the subarrayAŒp W r� it returns
thei th smallest element inAŒp W r�.

BEST-CASE-QUICKSORT.A; p; r/

if p < r

i D b.r � p C 1/=2c
x D SELECT.A; p; r; i/

q D PARTITION-AROUND.A; p; r; x/

BEST-CASE-QUICKSORT.A; p; q � 1/

BEST-CASE-QUICKSORT.A; q C 1; r/

For an n-element array, the largest subarray that BEST-CASE-QUICKSORT re-
curses on hasn=2 elements. This situation occurs whenn D r � p C 1 is even;
then the subarrayAŒq C 1 W r� hasn=2 elements, and the subarrayAŒp W q � 1� has
n=2 � 1 elements.

Because BEST-CASE-QUICKSORT always recurses on subarrays that are at most
half the size of the original array, the recurrence for the worst-case running time is
T .n/ � 2T .n=2/ C ‚.n/ D O.n lg n/.
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Solution to Exercise 9.3-6

Let the procedure MEDIAN take as parameters an arrayA and subarray indicesp
andr and return the value of the median element ofAŒp W r� in O.n/ time in the
worst case.

Given MEDIAN, here is a linear-time algorithm SELECT0 for finding thei th small-
est element inAŒp W r�. This algorithm uses the deterministic PARTITION-AROUND

procedure that takes an element to partition around as an input parameter.

SELECT0.A; p; r; i/

if p == r

return AŒp�

x D MEDIAN.A; p; r/

q D PARTITION-AROUND.A; p; r; x/

k D q � p C 1

if i == k

return AŒq�

elseif i < k

return SELECT0.A; p; q � 1; i/

else returnSELECT0.A; q C 1; r; i � k/

Becausex is the median ofAŒp W r�, each subarrayAŒp W q �1� andAŒq C 1 W r� has
at most half the number of elements ofAŒp W r�. The recurrence for the worst-case
running time of SELECT0 is T .n/ � T .n=2/ C O.n/ D O.n/.

Solution to Problem 9-1

Assume that the numbers start out in an array.

a. Sort the numbers using merge sort or heapsort, which take‚.n lg n/ worst-case
time. (Don’t use quicksort or insertion sort, which can take‚.n2/ time.) Put
the i largest elements (directly accessible in the sorted array)into the output
array, taking‚.i/ time.

Total worst-case running time:‚.n lg n C i/ D ‚.n lg n/ (becausei � n).

b. Implement the priority queue as a heap. Build the heap using BUILD -HEAP,
which takes‚.n/ time, then call HEAP-EXTRACT-MAX i times to get thei
largest elements, in‚.i lg n/ worst-case time, and store them in reverse order
of extraction in the output array. The worst-case extraction time is‚.i lg n/

because

� i extractions from a heap withO.n/ elements takesi � O.lg n/ D O.i lg n/

time, and
� half of thei extractions are from a heap with� n=2 elements, so thosei=2

extractions take.i=2/�.lg.n=2// D �.i lg n/ time in the worst case.
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Total worst-case running time:‚.n C i lg n/.

c. Use the SELECT algorithm of Section 9.3 to find thei th largest number in‚.n/

time. Partition around that number in‚.n/ time. Sort thei largest numbers in
‚.i lg i/ worst-case time (with merge sort or heapsort).

Total worst-case running time:‚.n C i lg i/.

Note that method (c) is always asymptotically at least as good as the other two
methods, and that method (b) is asymptotically at least as good as (a).
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Solution to Exercise 11.2-1

For each pair of keysk; l , wherek ¤ l , define the indicator random variableXkl D
I fh.k/ D h.l/g. Since we assume independent uniform hashing, PrfXkl D 1g D
Prfh.k/ D h.l/g D 1=m, and so EŒXkl � D 1=m.

Now define the random variableY to be the total number of collisions, so that
Y D

P

k¤l Xkl . The expected number of collisions is

E ŒY � D E
�
X

k¤l

Xkl

�

D
X

k¤l

E ŒXkl � (linearity of expectation)

D

 

n

2

!

1

m

D
n.n � 1/

2
�

1

m

D
n.n � 1/

2m
:

Solution to Exercise 11.2-4

The flag in each slot will indicate whether the slot is free.

� A free slot is in the free list, a doubly linked list of all freeslots in the table.
The slot thus contains two pointers.

� A used slot contains an element and a pointer (possiblyNIL ) to the next element
that hashes to this slot. (Of course, that pointer points to another slot in the
table.)

Operations

� Insertion:
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� If the element hashes to a free slot, just remove the slot fromthe free list and
store the element there (with aNIL pointer). The free list must be doubly
linked in order for this deletion to run inO.1/ time.

� If the element hashes to a used slotj , check whether the elementx already
there “belongs” there (its key also hashes to slotj ).

� If so, add the new element to the chain of elements in this slot. To do
so, allocate a free slot (e.g., take the head of the free list)for the new
element and put this new slot at the head of the list pointed toby the
hashed-to slot (j ).

� If not, x is part of another slot’s chain. Move it to a new slot by allocating
one from the free list, copying the old slot’s (j ’s) contents (elementx
and pointer) to the new slot, and updating the pointer in the slot that
pointed toj to point to the new slot. Then insert the new element in the
now-empty slot as usual.
To update the pointer toj , it is necessary to find it by searching the chain
of elements starting in the slotx hashes to.

� Deletion: Let j be the slot the elementx to be deleted hashes to.

� If x is the only element inj (j doesn’t point to any other entries), just free
the slot, returning it to the head of the free list.

� If x is in j but there’s a pointer to a chain of other elements, move the first
pointed-to entry to slotj and free the slot it was in.

� If x is found by following a pointer fromj , just freex’s slot and splice it out
of the chain (i.e., update the slot that pointed tox to point tox’s successor).

� Searching: Check the slot the key hashes to, and if that is not the desired
element, follow the chain of pointers from the slot.

All the operations take expectedO.1/ times for the same reason they do with
the version in the book: The expected time to search the chains is O.1 C ˛/

regardless of where the chains are stored, and the fact that all the elements are
stored in the table means that˛ � 1. If the free list were singly linked, then
operations that involved removing an arbitrary slot from the free list would not
run inO.1/ time.

Solution to Problem 11-3

a. A particular key is hashed to a particular slot with probability 1=n. Suppose
we select a specific set ofk keys. The probability that thesek keys are inserted
into the slot in question and that all other keys are insertedelsewhere is
�

1

n

�k �

1 �
1

n

�n�k

:

Since there are
�

n

k

�

ways to choose ourk keys, we get

Qk D

�

1

n

�k �

1 �
1

n

�n�k
 

n

k

!

:
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b. For i D 1; 2; : : : ; n, let Xi be a random variable denoting the number of keys
that hash to sloti , and letAi be the event thatXi D k, i.e., that exactlyk keys
hash to sloti . From part (a), we have PrfAg D Qk . Then,

Pk D PrfM D kg

D PrfmaxfXi W 1 � i � ng D kg

D Prfthere existsi such thatXi D k and thatXi � k for i D 1; 2; : : : ; ng

� Prfthere existsi such thatXi D kg

D PrfA1 [ A2 [ � � � [ Ang

� PrfA1g C PrfA2g C � � � C PrfAng (by inequality (C.21))

D nQk :

c. We start by showing two facts. First,1 � 1=n < 1 and n � k � 0, which
imply that .1 � 1=n/n�k � 1. Second,nŠ=.n � k/Š D n � .n � 1/ � .n � 2/

� � � .n � k C 1/ < nk. Using these facts, along with the simplificationkŠ >

.k=e/k of equation (3.25), we have

Qk D

�

1

n

�k �

1 �
1

n

�n�k
nŠ

kŠ.n � k/Š

�
nŠ

nkkŠ.n � k/Š
(.1 � 1=n/n�k < 1)

<
1

kŠ
(nŠ=.n � k/Š < nk)

<
ek

kk
(kŠ > .k=e/k) .

d. Notice that whenn D 2, lg lg n D 0, so to be precise, we need to assume that
n � 3.

In part (c), we showed thatQk < ek=kk for anyk; in particular, this inequality
holds fork0. Thus, it suffices to show thatek0=k0

k0 < 1=n3 or, equivalently,
thatn3 < k0

k0=ek0 .

Taking logarithms of both sides gives an equivalent condition:

3 lg n < k0.lg k0 � lg e/

D
c lg n

lg lg n
.lg c C lg lg n � lg lg lg n � lg e/ :

Dividing both sides by lgn gives the condition

3 <
c

lg lg n
.lg c C lg lg n � lg lg lg n � lg e/

D c

�

1 C
lg c � lg e

lg lg n
�

lg lg lg n

lg lg n

�

:



11-4 Selected Solutions for Chapter 11: Hash Tables

Let x be the last expression in parentheses:

x D

�

1 C
lg c � lg e

lg lg n
�

lg lg lg n

lg lg n

�

:

We need to show that there exists a constantc > 1 such that3 < cx.

Noting that limn!1 x D 1, we see that there existsn0 such thatx � 1=2 for all
n � n0. Thus, any constantc > 6 works forn � n0.

We handle smaller values ofn—in particular,3 � n < n0—as follows. Since
n is constrained to be an integer, there are a finite number ofn in the range
3 � n < n0. We can evaluate the expressionx for each such value ofn and
determine a value ofc for which3 < cx for all values ofn. The final value ofc
that we use is the larger of

� 6, which works for alln � n0, and
� maxfc W 3 < cx and3 � n < n0g, i.e., the largest value ofc that we chose

for the range3 � n < n0.

Thus, we have shown thatQk0
< 1=n3, as desired.

To see thatPk < 1=n2 for k � k0, we observe that by part (b),Pk � nQk

for all k. Choosingk D k0 givesPk0
� nQk0

< n � .1=n3/ D 1=n2. For
k > k0, we will show that we can pick the constantc such thatQk < 1=n3 for
all k � k0, and thus conclude thatPk < 1=n2 for all k � k0.

To pick c as required, we letc be large enough thatk0 > 3 > e. Thene=k < 1

for all k � k0, and soek=kk decreases ask increases. Thus,

Qk < ek=kk

� ek0=kk0

D Qk0

< 1=n3

for k � k0.

e. The expectation ofM is

E ŒM � D

n
X

kD0

k � PrfM D kg

D

k0
X

kD0

k � PrfM D kg C

n
X

kDk0C1

k � PrfM D kg

�

k0
X

kD0

k0 � PrfM D kg C

n
X

kDk0C1

n � PrfM D kg

� k0

k0
X

kD0

PrfM D kg C n

n
X

kDk0C1

PrfM D kg

D k0 � PrfM � k0g C n � PrfM > k0g ;

which is what we needed to show, sincek0 D c lg n= lg lg n.

To show that EŒM � D O.lg n= lg lg n/, note that PrfM � k0g � 1 and
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PrfM > k0g D

n
X

kDk0C1

PrfM D kg

D

n
X

kDk0C1

Pk

<

n
X

kDk0C1

1=n2 (by part (d))

< n � .1=n2/

D 1=n :

We conclude that

E ŒM � � k0 � 1 C n � .1=n/

D k0 C 1

D O.lg n= lg lg n/ :



Selected Solutions for Chapter 12:
Binary Search Trees

Solution to Exercise 12.1-2

In a heap, a node’s key is greater than or equal to both of its children’s keys. In a
binary search tree, a node’s key is greater than or equal to its left child’s key, but
less than or equal to its right child’s key.

The heap property, unlike the binary-search-tree property, doesn’t help print the
nodes in sorted order because it doesn’t tell which subtree of a node contains the
element to print before that node. In a heap, the largest element smaller than the
node could be in either subtree.

Note that if the heap property could be used to print the keys in sorted order in
O.n/ time, we would have anO.n/-time algorithm for sorting, because building
the heap takes onlyO.n/ time. But we know from Theorem 8.1 that a comparison
sort must take�.n lg n/ time.

Solution to Exercise 12.2-7

Note that a call to TREE-M INIMUM followed byn � 1 calls to TREE-SUCCESSOR

performs exactly the same inorder walk of the tree as does theprocedure INORDER-
TREE-WALK . INORDER-TREE-WALK prints the TREE-M INIMUM first, and by
definition, the TREE-SUCCESSORof a node is the next node in the sorted order
determined by an inorder tree walk.

This algorithm runs in‚.n/ time because:

� It requires�.n/ time to do then procedure calls.
� It traverses each of then � 1 tree edges at most twice, which takesO.n/ time.

To see that each edge is traversed at most twice (once going down the tree and once
going up), consider the edge between any nodeu and either of its children, nodev.
By starting at the root, the walk must traverse.u; v/ downward fromu to v, before
traversing it upward fromv to u. The only time the tree is traversed downward is
in code of TREE-M INIMUM , and the only time the tree is traversed upward is in
code of TREE-SUCCESSORwhen looking for the successor of a node that has no
right subtree.

Suppose thatv is u’s left child.
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� Before printingu, the walk must print all the nodes in its left subtree, which is
rooted atv, guaranteeing the downward traversal of edge.u; v/.

� After all nodes inu’s left subtree are printed,u must be printed next. Procedure
TREE-SUCCESSORtraverses an upward path tou from the maximum element
(which has no right subtree) in the subtree rooted atv. This path clearly includes
edge.u; v/, and since all nodes inu’s left subtree are printed, edge.u; v/ is
never traversed again.

Now suppose thatv is u’s right child.

� After u is printed, TREE-SUCCESSOR.u/ is called. To get to the minimum
element inu’s right subtree (whose root isv), the edge.u; v/ must be traversed
downward.

� After all values inu’s right subtree are printed, TREE-SUCCESSORis called on
the maximum element (again, which has no right subtree) in the subtree rooted
at v. TREE-SUCCESSORtraverses a path up the tree to an element afteru,
sinceu was already printed. Edge.u; v/ must be traversed upward on this path,
and since all nodes inu’s right subtree have been printed, edge.u; v/ is never
traversed again.

Hence, no edge is traversed twice in the same direction.

Therefore, this algorithm runs in‚.n/ time.

Solution to Exercise 12.3-3

Here’s the algorithm:

TREE-SORT.A/

let T be an empty binary search tree
for i D 1 to n

TREE-INSERT.T; AŒi �/

INORDER-TREE-WALK .T:root/

Worst case:‚.n2/, which occurs when a linear chain of nodes results from the
repeated TREE-INSERT operations.

Best case:‚.n lg n/, which occurs when a binary tree of height‚.lg n/ results
from the repeated TREE-INSERT operations.

Compared with TREE-INSERT in the text, this version omits assigning to´:p, but
it must maintain thesuccattributes correctly. The new nodébecomes a child
of nodey. If ´ becomesy’s left child, theny should bé ’s successor. The code
also needs to findy’s predecessorw and setw’s successor to bé. If ´ becomes
y’s right child, things are a little easier. We just need to set´’s successor asy’s
successor and then makey’s successor bé.

The TRANSPLANT procedure replaces values of thep attribute by the node re-
turned by calling TREE-PARENT.
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TRANSPLANT.T; u; v/

´ D TREE-PARENT.T; u/

if ´ == NIL

T:root D v

elseifu == ´: left
´: left D v

else´:right D v

Finally, TREE-DELETE omits references to thep attribute and also makes the pre-
decessor of the nodébeing deleted have its successor become´’s successor.

TREE-DELETE.T; ´/

x D TREE-PREDECESSOR.T; ´/

if x ¤ NIL

x:succD ´:succ
if ´: left == NIL

TRANSPLANT.T; ´; ´:right/
elseif´:right == NIL

TRANSPLANT.T; ´; ´: left/
elsey D TREE-M INIMUM .´:right/

if y ¤ ´:right
TRANSPLANT.T; y; y:right/
y:right D ´:right

TRANSPLANT.T; ´; y/

y: left D ´: left

Because each call of TREE-PREDECESSORand TREE-PARENT takesO.h/ time,
both TREE-INSERT and TREE-DELETE takeO.h/ time.

Solution to Problem 12-2

To sort the strings ofS , first insert them into a radix tree and then use a preorder tree
walk to extract them in lexicographically sorted order. Thetree walk outputs strings
only for nodes that indicate the existence of a string (i.e.,those that correspond to
tan nodes in Figure 12.5 of the text).

Correctness

The preorder ordering is the correct order because:

� Any node’s string is a prefix of all its descendants’ strings and hence belongs
before them in the sorted order (rule 2).

� A node’s left descendants belong before its right descendants because the corre-
sponding strings are identical up to that parent node, and inthe next position the
left subtree’s strings have 0 whereas the right subtree’s strings have 1 (rule 1).
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Time

‚.n/.

� Insertion takes‚.n/ time, since the insertion of each string takes time propor-
tional to its length (traversing a path through the tree whose length is the length
of the string), and the sum of all the string lengths isn.

� The preorder tree walk takesO.n/ time. It prints the current node and calls
itself recursively on the left and right subtrees, so that ittakes time proportional
to the number of nodes in the tree. The number of nodes is at most 1 plus the
sum (n) of the lengths of the binary strings in the tree, because a length-i string
corresponds to a path through the root andi other nodes, but a single node may
be shared among many string paths.

Here is pseudocode for the preorder tree walk. It assumes that each node has
attributes left and right, pointing to its children (NIL for children that are not
present), and a boolean attributestring to indicate whether the node indicates
an actual string (i.e., a tan node in Figure 12.5 of the text).The initial call
is PREORDER-RADIX -TREE-WALK .T:root; "/, where" denotes an empty string.
The symbolk denotes the concatenation of strings.

PREORDER-RADIX -TREE-WALK .x; string-so-far/
if x:string == TRUE

print string-so-far
if x: left ¤ NIL

PREORDER-RADIX -TREE-WALK .x: left; string-so-far k 0/

if x:right ¤ NIL

PREORDER-RADIX -TREE-WALK .x: left; string-so-far k 1/
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Red-Black Trees

Solution to Exercise 13.1-4

After absorbing each red node into its black parent, the degree of each node black
node is
� 2, if both children were already black,
� 3, if one child was black and one was red, or
� 4, if both children were red.

All leaves of the resulting tree have the same depth.

Solution to Exercise 13.1-5

In the longest path, at least every other node is black. In theshortest path, at most
every node is black. Since the two paths contain equal numbers of black nodes, the
length of the longest path is at most twice the length of the shortest path.

We can say this more precisely, as follows:

Since every path contains bh.x/ black nodes, even the shortest path fromx to a
descendant leaf has length at least bh.x/. By definition, the longest path fromx
to a descendant leaf has length height.x/. Since the longest path has bh.x/ black
nodes and at least half the nodes on the longest path are black(by property 4),
bh.x/ � height.x/=2, so that

length of longest pathD height.x/ � 2 � bh.x/ � twice length of shortest path:

Solution to Exercise 13.3-3

Note: In the figures below, nodes with a heavy outline are black, and nodes with a
regular outline are red.

In Figure 13.5, nodesA, B, andD have black-heightk C 1 in all cases, because
each of their subtrees has black-heightk and a black root. NodeC has black-
height k C 1 on the left (because its red children have black-heightk C 1) and
black-heightkC2 on the right (because its black children have black-heightkC1).
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In Figure 13.6, nodesA, B, andC have black-heightk C 1 in all cases. At left and
in the middle, each ofA’s andB ’s subtrees has black-heightk and a black root,
while C has one such subtree and a red child with black-heightk C 1. At the right,
each ofA’s andC ’s subtrees has black-heightk and a black root, whileB ’s red
children each have black-heightk C 1.
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Property 5 is preserved by the transformations. We have shown above that the
black-height is well-defined within the subtrees pictured,so property 5 is preserved
within those subtrees. Property 5 is preserved for the tree containing the subtrees
pictured, because every path through these subtrees to a leaf contributeskC2 black
nodes.

Solution to Problem 13-1

a. When inserting a node, all nodes on the path from the root to the added node
(a new leaf) must change, since the need for a new child pointer propagates up
from the new node to all of its ancestors.

When deleting nodé, three possibilities may occur:

� If ´ has at most one child, theńwill be spliced out, so that all ancestors
of ´ must be changed. (As with insertion, the need for a new child pointer
propagates up from the removed node.)

� If ´ has two children and its successory is ´’s right child, then replacé
by y, so that all ancestors of́must be changed (i.e., the same as if´ has at
most one child).
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� If ´ has two children and its successory is not´’s right child, then replacé
by y and replacey by y’s right child x. Sincey and´ are ancestors ofx, all
ancestors ofy must be changed.

Since there is no parent attribute, no other nodes need to be changed.

b. Here are two ways to write PERSISTENT-TREE-INSERT. The first is a version
of TREE-INSERT, modified to create new nodes along the path to where the
new node will go without using parent attributes.

PERSISTENT-TREE-INSERT.T; ´/

create a new persistent binary search treeT 0

T 0:root D COPY-NODE.T:root/
y D NIL

x D T 0:root
while x ¤ NIL

y D x

if ´:key< x:key
x D COPY-NODE.x: left/
y: left D x

elsex D COPY-NODE.x:right/
y:right D x

if y == NIL

new-root D ´

elseif´:key< y:key
y: left D ´

elsey:right D ´

return T 0

The second uses a recursive subroutine, PERSISTENT-SUBTREE-INSERT.r; ´/

that inserts nodé into the subtree rooted at noder in T , copying nodes as
needed, and returning either node´ or the copy inT 0 of noder .

PERSISTENT-TREE-INSERT.T; ´/

create a new persistent binary search treeT 0

T 0:root D PERSISTENT-SUBTREE-INSERT.T:root; ´/

return T 0

PERSISTENT-SUBTREE-INSERT.r; ´/

if r == NIL

x D ´

elsex D COPY-NODE.r/

if ´:key< r:key
x: left D PERSISTENT-SUBTREE-INSERT.r: left; ´/

elsex:right D PERSISTENT-SUBTREE-INSERT.r:right; ´/

return x

c. Like TREE-INSERT, PERSISTENT-TREE-INSERT does a constant amount of
work at each node along the path from the root to the new node. Since the
length of the path is at mosth, it takesO.h/ time.
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Since it allocates a new node (a constant amount of space) foreach ancestor of
the inserted node, it also needsO.h/ space.

d. If there were parent attributes, then because of the new root, every node of the
tree would have to be copied when a new node is inserted. To seewhy, observe
that the children of the root would change to point to the new root, then their
children would change to point to them, and so on. Since therearen nodes, this
change would cause insertion to create�.n/ new nodes and to take�.n/ time.

e. From parts (a) and (c), we know that insertion into a persistent binary search
tree of heighth, like insertion into an ordinary binary search tree, takes worst-
case timeO.h/. A red-black tree hash D O.lg n/, so that insertion into an
ordinary red-black tree takesO.lg n/ time. We need to show that if the red-
black tree is persistent, insertion can still be done inO.lg n/ time. (We’ll look
at deletion a little later.) To do so, we will need to show two things:

� How to still find the parent pointers that are needed inO.1/ time without
using a parent attribute. We cannot use a parent attribute because a persistent
tree with parent attributes requires�.n/ time for insertion (by part (d)).

� That the additional node changes made during red-black treeoperations (by
rotation and recoloring) don’t cause more thanO.lg n/ additional nodes to
change.

Here is how to find each parent pointer needed during insertion in O.1/ time
without having a parent attribute. To insert into a red-black tree, we call RB-
INSERT, which in turn calls RB-INSERT-FIXUP. Make the same changes to
RB-INSERT as we made to TREE-INSERT for persistence. Additionally, as
RB-INSERT walks down the tree to find the place to insert the new node, have
it build a stack of the nodes it traverses and pass this stack to RB-INSERT-
FIXUP. RB-INSERT-FIXUP needs parent pointers to walk back up the same
path, and at any given time it needs parent pointers only to find the parent and
grandparent of the node it is working on. As RB-INSERT-FIXUP moves up
the stack of parents, it needs only parent pointers that are at known locations a
constant distance away in the stack. Thus, the parent information can be found
in O.1/ time, just as if it were stored in a parent attribute.

Rotation and recoloring change nodes as follows:

� RB-INSERT-FIXUP performs at most two rotations, and each rotation up-
dates the child pointers in three nodes (the node being rotated around, that
node’s parent, and one of the children of the node being rotated around).
Thus, at most six nodes are directly modified by rotation during RB-INSERT-
FIXUP. In a persistent tree, all ancestors of a changed node are copied, so
that RB-INSERT-FIXUP’s rotations takeO.lg n/ time to change nodes due
to rotation. (Actually, the changed nodes in this case sharea singleO.lg n/-
length path of ancestors.)

� RB-INSERT-FIXUP recolors some of the inserted node’s ancestors, which
are being changed anyway in persistent insertion, and some children of an-
cestors (the “uncles” referred to in the algorithm description). There are
O.lg n/ ancestors, henceO.lg n/ color changes of uncles. Recoloring un-
cles doesn’t cause any additional node changes due to persistence, because
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the ancestors of the uncles are the same nodes (ancestors of the inserted
node) that are being changed anyway due to persistence. Thus, recoloring
does not affect theO.lg n/ running time, even with persistence.

We could show similarly that deletion in a persistent tree also takes worst-case
time O.h/.

� We already saw in part (a) thatO.h/ nodes change.
� We could write a persistent RB-DELETE procedure that runs inO.h/ time,

analogous to the changes we made for persistence in insertion. But to do so
without using parent pointers, the procedure needs to walk down the tree to
the deepest node being changed, to build up a stack of parentsas discussed
above for insertion. This walk relies on keys being distinct.

Then the problem of showing that deletion needs onlyO.lg n/ time in a persis-
tent red-black tree is the same as for insertion.

� As for insertion, we can show that the parents needed by RB-DELETE-
FIXUP can be found inO.1/ time (using the same technique as for insertion).

� Also, RB-DELETE-FIXUP performs at most three rotations, which as dis-
cussed above for insertion requiresO.lg n/ time to change nodes due to
persistence. It also makesO.lg n/ color changes, which (as for insertion)
take onlyO.lg n/ time to change ancestors due to persistence, because the
number of copied nodes isO.lg n/.
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Solution to Exercise 14.2-5

Each time thel-loop executes, thei-loop executesn � l C 1 times. Each time the
i-loop executes, thek-loop executesj � i D l � 1 times, each time referencing
m twice. Thus the total number of times that an entry ofm is referenced while
computing other entries is

Pn

lD2 2.n � l C 1/.l � 1/. Thus,
n
X

iD1

n
X

j Di

R.i; j / D

n
X

lD2

2.n � l C 1/.l � 1/

D 2

n�1
X

lD1

.n � l/l

D 2

n�1
X

lD1

nl � 2

n�1
X

lD1

l2

D 2
n.n � 1/n

2
� 2

.n � 1/n.2n � 1/

6

D n3 � n2 �
2n3 � 3n2 C n

3

D
n3 � n

3
:

Solution to Exercise 14.3-1

Running RECURSIVE-MATRIX -CHAIN is asymptotically more efficient than enu-
merating all the ways of parenthesizing the product and computing the number of
multiplications for each.

Consider the treatment of subproblems by the two approaches.

� For each possible place to split the matrix chain, the enumeration approach
finds all ways to parenthesize the left half, finds all ways to parenthesize the
right half, and looks at all possible combinations of the left half with the right
half. The amount of work to look at each combination of left- and right-half
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subproblem results is thus the product of the number of ways to do the left half
and the number of ways to do the right half.

� For each possible place to split the matrix chain, RECURSIVE-MATRIX -CHAIN

finds the best way to parenthesize the left half, finds the bestway to parenthesize
the right half, and combines just those two results. Thus theamount of work to
combine the left- and right-half subproblem results isO.1/.

Section 14.2 argued that the running time for enumeration is�.4n=n3=2/. We will
show that the running time for RECURSIVE-MATRIX -CHAIN is O.n3n�1/.

To get an upper bound on the running time of RECURSIVE-MATRIX -CHAIN , we’ll
use the same approach used in Section 14.2 to get a lower bound: derive a recur-
rence of the formT .n/ � : : : and solve it by substitution. For the lower-bound
recurrence, the book assumed that the execution of lines 1–2and 6–7 each take at
least unit time. For the upper-bound recurrence, we’ll assume those pairs of lines
each take at most constant timec. Thus, we have the recurrence

T .n/ �

�
c if n D 1 ;

c C

n�1
X

kD1

.T .k/ C T .n � k/ C c/ if n � 2 :

This is just like the book’s� recurrence except that it hasc instead of 1, and so we
can be rewrite it as

T .n/ � 2

n�1
X

iD1

T .i/ C cn :

We will prove thatT .n/ D O.n3n�1/ using the substitution method. (Note: Any
upper bound onT .n/ that iso.4n=n3=2/ will suffice. You might prefer to prove one
that is easier to think up, such asT .n/ D O.3:5n/.) Specifically, we will show that
T .n/ � cn3n�1 for all n � 1. The basis is easy, sinceT .1/ � c D c � 1 � 31�1.
Inductively, forn � 2 we have

T .n/ � 2

n�1
X

iD1

T .i/ C cn

� 2

n�1
X

iD1

ci3i�1 C cn

D c �

 

2

n�1
X

iD1

i3i�1 C n

!

D c �

�

2 �

�

n3n�1

3 � 1
C

1 � 3n

.3 � 1/2

�

C n

�

(see below)

D cn3n�1 C c �

�

1 � 3n

2
C n

�

D cn3n�1 C
c

2
.2n C 1 � 3n/

� cn3n�1 for all c > 0, n � 1 :
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Running RECURSIVE-MATRIX -CHAIN takesO.n3n�1/ time, and enumerating all
parenthesizations takes�.4n=n3=2/ time, and so RECURSIVE-MATRIX -CHAIN is
more efficient than enumeration.

Note: The above substitution uses the following fact:

n�1
X

iD1

ixi�1 D
nxn�1

x � 1
C

1 � xn

.x � 1/2
:

This equation can be derived from equation (A.6) by taking the derivative. Let

f .x/ D

n�1
X

iD1

xi D
xn � 1

x � 1
� 1 :

Then
n�1
X

iD1

ixi�1 D f 0.x/ D
nxn�1

x � 1
C

1 � xn

.x � 1/2
:

Solution to Exercise 14.4-4

When computing a particular row of thec table, no rows before the previous row
are needed. Thus only two rows—2n entries—need to be kept in memory at a time.
(Note: Each row ofc actually hasn C 1 entries, but we don’t need to store the
column of0s—instead we can make the program “know” that those entries are 0.)
With this idea, we need only2 �min fm; ng entries if we always call LCS-LENGTH

with the shorter sequence as theY argument.

We can thus do away with thec table as follows:

� Use two arrays of length minfm; ng, previous-row andcurrent-row, to hold the
appropriate rows ofc.

� Initialize previous-row to all 0 and computecurrent-row from left to right.
� When current-row is filled, if there are still more rows to compute, copy

current-row into previous-row and compute the newcurrent-row.

Actually only a little more than one row’s worth ofc entries—minfm; ng C 1

entries—are needed during the computation. The only entries needed in the table
when it is time to computecŒi; j � arecŒi; k� for k � j � 1 (i.e., earlier entries in
the current row, which will be needed to compute the next row), andcŒi � 1; k� for
k � j � 1 (i.e., entries in the previous row that are still needed to compute the rest
of the current row). This is one entry for eachk from 1 to minfm; ng except that
there are two entries withk D j � 1, hence the additional entry needed besides the
one row’s worth of entries.

We can thus do away with thec table as follows:

� Use an arraya of length minfm; ng C 1 to hold the appropriate entries ofc. At
the timecŒi; j � is to be computed,a holds the following entries:

� aŒk� D cŒi; k� for 1 � k < j � 1 (i.e., earlier entries in the current “row”),
� aŒk� D cŒi � 1; k� for k � j � 1 (i.e., entries in the previous “row”),
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� aŒ0� D cŒi; j � 1� (i.e., the previous entry computed, which couldn’t be put
into the “right” place ina without erasing the still-neededcŒi � 1; j � 1�).

� Initialize a to all 0 and compute the entries from left to right.

� Note that the three values needed to computecŒi; j � for j > 1 are inaŒ0� D
cŒi; j � 1�, aŒj � 1� D cŒi � 1; j � 1�, andaŒj � D cŒi � 1; j �.

� When cŒi; j � has been computed, moveaŒ0� (cŒi; j � 1�) to its “correct”
place,aŒj � 1�, and putcŒi; j � in aŒ0�.

Solution to Problem 14-4

We start by defining some quantities so that we can state the problem more uni-
formly. Special cases about the last line and worries about whether a sequence of
words fits in a line will be handled in these definitions, so that we can forget about
them when framing our overall strategy.

� DefineextrasŒi; j � D M � j C i �
Pj

kDi lk to be the number of extra spaces
at the end of a line containing wordsi throughj . Note thatextrasmay be
negative.

� Now define the cost of including a line containing wordsi throughj in the sum
we want to minimize:

lcŒi; j � D

�
1 if extrasŒi; j � < 0 (i.e., wordsi; : : : ; j don’t fit) ;

0 if j D n andextrasŒi; j � � 0 (last line costs0) ;

.extrasŒi; j �/3 otherwise:

By making the line cost infinite when the words don’t fit on it, we prevent such
an arrangement from being part of a minimum sum, and by makingthe cost0
for the last line (if the words fit), we prevent the arrangement of the last line
from influencing the sum being minimized.

We want to minimize the sum oflc over all lines of the paragraph.

Our subproblems are how to optimally arrange words1; : : : ; j , wherej runs from
1 to n.

Consider an optimal arrangement of words1; : : : ; j . Suppose we know that the
last line, which ends in wordj , begins with wordi . The preceding lines, therefore,
contain words1; : : : ; i � 1. In fact, they must contain an optimal arrangement of
words1; : : : ; i � 1. (The usual type of cut-and-paste argument applies.)

Let cŒj � be the cost of an optimal arrangement of words1; : : : ; j . If we know that
the last line contains wordsi; : : : ; j , thencŒj � D cŒi �1�C lcŒi; j �. As a base case,
when we’re computingcŒ1�, we needcŒ0�. If we setcŒ0� D 0, thencŒ1� D lcŒ1; 1�,
which is what we want.

But of course we have to figure out which word begins the last line for the sub-
problem of words1; : : : ; j . So we try all possibilities for wordi , and we pick the
one that gives the lowest cost. Here,i ranges from1 to j . Thus, we can definecŒj �

recursively by
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cŒj � D

(

0 if j D 0 ;

minfcŒi � 1� C lcŒi; j � W 1 � i � j g if j > 0 :

Note that the way we definedlc ensures that

� all choices made will fit on the line (since an arrangement with lc D 1 cannot
be chosen as the minimum), and

� the cost of putting wordsi; : : : ; j on the last line cannot be0 unless this really
is the last line of the paragraph (j D n) or wordsi : : : j fill the entire line.

We can compute a table ofc values from left to right, since each value depends
only on earlier values.

To keep track of what words go on what lines, we can keep a parallel p table that
points to where eachc value came from. WhencŒj � is computed, ifcŒj � is based
on the value ofcŒk � 1�, setpŒj � D k. Then aftercŒn� is computed, we can trace
the pointers to see where to break the lines. The last line starts at wordpŒn� and
goes through wordn. The previous line starts at wordpŒpŒn�� and goes through
wordpŒn� � 1, etc.

In pseudocode, here’s how we construct the tables:

PRINT-NEATLY .l; n; M /

let extrasŒ1 W n; 1 W n�, lcŒ1 W n; 1 W n�, cŒ0 W n�, andpŒ1 W n� be new tables
// ComputeextrasŒi; j � for 1 � i � j � n.
for i D 1 to n

extrasŒi; i � D M � li

for j D i C 1 to n

extrasŒi; j � D extrasŒi; j � 1� � lj � 1

// ComputelcŒi; j � for 1 � i � j � n.
for i D 1 to n

for j D i to n

if extrasŒi; j � < 0

lcŒi; j � D 1
elseifj == n andextrasŒi; j � � 0

lcŒi; j � D 0

elselcŒi; j � D .extrasŒi; j �/3

// ComputecŒj � for 0 � j � n andpŒj � for 1 � j � n.
cŒ0� D 0

for j D 1 to n

cŒj � D 1
for i D 1 to j

if cŒi � 1� C lcŒi; j � < cŒj �

cŒj � D cŒi � 1� C lcŒi; j �

pŒj � D i

return c andp

Quite clearly, both the time and space are‚.n2/.

In fact, we can do a bit better: we can get both the time and space down to‚.nM /.
The key observation is that at mostdM=2e words can fit on a line. (Each word is
at least one character long, and there’s a space between words.) Since a line with
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words i; : : : ; j containsj � i C 1 words, if j � i C 1 > dM=2e then we know
that lcŒi; j � D 1. We need compute and store onlyextrasŒi; j � and lcŒi; j � for
j � i C 1 � dM=2e. And the innerfor loop header in the computation ofcŒj �

andpŒj � can run from maxf1; j � dM=2e C 1g to j .

We can reduce the space even further to‚.n/. We do so by not storing thelc
andextrastables, and instead computing the value oflcŒi; j � as needed in the last
loop. The idea is that we could computelcŒi; j � in O.1/ time if we knew the
value ofextrasŒi; j �. And if we scan for the minimum value indescendingorder
of i , we can compute that asextrasŒi; j � D extrasŒi C 1; j � � li � 1. (Initially,
extrasŒj; j � D M � lj .) This improvement reduces the space to‚.n/, since now
the only tables we store arec andp.

Here’s how we print the output. The call PRINT-L INES.p; j / prints all words from
word 1 through wordj .

PRINT-L INES.p; j /

if j > 0

i D pŒj �

PRINT-L INES.p; i � 1/

print the line containing wordsi throughj ,
with one space between each pair of words

The initial call is PRINT-L INES.p; n/. Since the value ofj decreases in each
recursive call, PRINT-L INES takes a total ofO.n C k/ time to print alln words,
wherek is the total length of all the words. (Note that because each word contains
at least one character, even counting spaces and linefeeds as printed characters, the
total number of characters printed is at most2k.)
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Solution to Exercise 15.1-4

Let S be the set ofn activities.

The “obvious” solution of using GREEDY-ACTIVITY-SELECTOR to find a maxi-
mum-size setS1 of compatible activities fromS for the first lecture hall, then using
it again to find a maximum-size setS2 of compatible activities fromS � S1 for the
second hall, (and so on until all the activities are assigned), requires‚.n2/ time
in the worst case. Moreover, it can produce a result that usesmore lecture halls
than necessary. Consider activities with the intervalsfŒ1; 4/; Œ2; 5/; Œ6; 7/; Œ4; 8/g.
GREEDY-ACTIVITY-SELECTOR would choose the activities with intervalsŒ1; 4/

and Œ6; 7/ for the first lecture hall, and then each of the activities with intervals
Œ2; 5/ andŒ4; 8/ would have to go into its own hall, for a total of three halls used.
An optimal solution would put the activities with intervalsŒ1; 4/ andŒ4; 8/ into one
hall and the activities with intervalsŒ2; 5/ andŒ6; 7/ into another hall, for only two
halls used.

There is a correct algorithm, however, whose asymptotic time is just the time
needed to sort the activities by time—O.n lg n/ time for arbitrary times, or pos-
sibly as fast asO.n/ if the times are small integers.

The general idea is to go through the activities in order of start time, assigning
each to any hall that is available at that time. To do this, move through the set
of events consisting of activities starting and activitiesfinishing, in order of event
time. Maintain two lists of lecture halls: Halls that are busy at the current event-
time t (because they have been assigned an activityi that started atsi � t but
won’t finish until fi > t) and halls that are free at timet . (As in the activity-
selection problem in Section 15.1, we are assuming that activity time intervals are
half open—i.e., that ifsi � fj , then activitiesi andj are compatible.) Whent
is the start time of some activity, assign that activity to a free hall and move the
hall from the free list to the busy list. Whent is the finish time of some activity,
move the activity’s hall from the busy list to the free list. (The activity is certainly
in some hall, because the event times are processed in order and the activity must
have started before its finish timet , hence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick a hall that has already had
an activity assigned to it, if possible, before picking a never-used hall. (This can be
done by always working at the front of the free-halls list—putting freed halls onto
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the front of the list and taking halls from the front of the list—so that a new hall
doesn’t come to the front and get chosen if there are previously-used halls.)

This guarantees that the algorithm uses as few lecture hallsas possible: The algo-
rithm will terminate with a schedule requiringm � n lecture halls. Let activityi
be the first activity scheduled in lecture hallm. The reason thati was put in the
mth lecture hall is that the firstm � 1 lecture halls were busy at timesi . So at this
time there arem activities occurring simultaneously. Therefore any schedule must
use at leastm lecture halls, so the schedule returned by the algorithm is optimal.

Run time:

� Sort the2n activity-starts/activity-ends events. (In the sorted order, an activity-
ending event should precede an activity-starting event that is at the same time.)
O.n lg n/ time for arbitrary times, possiblyO.n/ if the times are restricted (e.g.,
to small integers).

� Process the events inO.n/ time: Scan the2n events, doingO.1/ work for each
(moving a hall from one list to the other and possibly associating an activity
with it).

Total: O.n C time to sort/

Solution to Exercise 15.2-2

The solution is based on the optimal-substructure observation in the text: Leti
be the highest-numbered item in an optimal solutionS for W pounds and items
1; : : : ; n. ThenS 0 D S � fig must be an optimal solution forW � wi pounds
and items1; : : : ; i � 1, and the value of the solutionS is vi plus the value of the
subproblem solutionS 0.

We can express this relationship in the following formula: DefinecŒi; w� to be the
value of the solution for items1; : : : ; i and maximum weightw. Then

cŒi; w� D

�
0 if i D 0 or w D 0 ;

cŒi � 1; w� if wi > w ;

maxfvi C cŒi � 1; w � wi �; cŒi � 1; w�g if i > 0 andw � wi :

The last case says that the value of a solution fori items either includes itemi ,
in which case it isvi plus a subproblem solution fori � 1 items and the weight
excludingwi , or doesn’t include itemi , in which case it is a subproblem solution
for i � 1 items and the same weight. That is, if the thief picks itemi , thenvi value
is added, and the thief can choose from items1; : : : ; i � 1 up to the weight limit
w � wi , gainingcŒi � 1; w � wi � additional value. On the other hand, if the thief
decides not to take itemi , then choices remain from items1; : : : ; i � 1 up to the
weight limit w, giving cŒi � 1; w� value. The better of these two choices should be
made.

The algorithm takes as inputs the maximum weightW , the numbern of items, and
the two sequencesv D hv1; v2; : : : ; vni andw D hw1; w2; : : : ; wni. It stores
thecŒi; j � values in a tablecŒ0 W n; 0 W W � whose entries are computed in row-major
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order. (That is, the first row ofc is filled in from left to right, then the second row,
and so on.) At the end of the computation,cŒn; W � contains the maximum value
the thief can take.

DYNAMIC -0-1-KNAPSACK.v; w; n; W /

let cŒ0 W n; 0 W W � be a new array
for w D 0 to W

cŒ0; w� D 0

for i D 1 to n

cŒi; 0� D 0

for w D 1 to W

if wi � w andvi C cŒi � 1; w � wi � > cŒi � 1; w�

cŒi; w� D vi C cŒi � 1; w � wi �

elsecŒi; w� D cŒi � 1; w�

We can use thec table to deduce the set of items to take by starting atcŒn; W � and
tracing where the optimal values came from. IfcŒi; w� D cŒi � 1; w�, then itemi is
not part of the solution, and we continue tracing withcŒi � 1; w�. Otherwise itemi

is part of the solution, and we continue tracing withcŒi � 1; w � wi �.

The above algorithm takes‚.nW / time total:

� ‚.nW / to fill in the c table:.nC1/ � .W C1/ entries, each requiring‚.1/ time
to compute.

� O.n/ time to trace the solution (since it starts in rown of the table and moves
up one row at each step).

Solution to Exercise 15.2-7

SortA andB into monotonically decreasing order.

Here’s a proof that this method yields an optimal solution. Consider any indicesi
andj such thati < j , and consider the termsai

bi andaj
bj . We want to show that

it is no worse to include these terms in the payoff than to includeai
bj andaj

bi , i.e.,
thatai

bi aj
bj � ai

bj aj
bi . SinceA andB are sorted into monotonically decreasing

order andi < j , we haveai � aj andbi � bj . Sinceai andaj are positive
andbi � bj is nonnegative, we haveai

bi �bj � aj
bi �bj . Multiplying both sides by

ai
bj aj

bj yieldsai
bi aj

bj � ai
bj aj

bi .

Since the order of multiplication doesn’t matter, sortingA andB into monotoni-
cally increasing order works as well.
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Solution to Exercise 16.1-3

Let ci D cost ofi th operation.

ci D

(

i if i is an exact power of 2;

1 otherwise:

Operation Cost
1 1
2 2
3 1
4 4
5 1
6 1
7 1
8 8
9 1
10 1
:::

:::

n operations cost

n
X

iD1

ci � n C

lg n
X

j D0

2j D n C .2n � 1/ < 3n :

(Note: Ignoring floor in upper bound of
P

2j .)

Average cost of operationD Total cost
# operations

< 3 .

By aggregate analysis, the amortized cost per operationD O.1/.

Solution to Exercise 16.2-2

Let ci D cost ofi th operation.
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ci D

(

i if i is an exact power of 2;

1 otherwise:

Charge each operation $3 (amortized costyci ).

� If i is not an exact power of 2, pay $1, and store $2 as credit.
� If i is an exact power of 2, pay $i , using stored credit.

Operation Amortized cost Actual cost Credit remaining
1 3 1 2
2 3 2 3
3 3 1 5
4 3 4 4
5 3 1 6
6 3 1 8
7 3 1 10
8 3 8 5
9 3 1 7
10 3 1 9
:::

:::
:::

:::

Since the amortized cost is $3 per operation,
n
X

iD1

yci D 3n.

We know from Exercise 16.1-3 that
n
X

iD1

ci < 3n.

Then we have
n
X

iD1

yci �

n
X

iD1

ci ) creditD amortized cost� actual cost� 0.

Since the amortized cost of each operation isO.1/, and the amount of credit never
goes negative, the total cost ofn operations isO.n/.

Solution to Exercise 16.2-3

We introduce a new fieldA:maxto hold the index of the high-order1 in A. Initially,
A:maxis set to�1, since the low-order bit ofA is at index0 and there are initially
no 1s in A. The value ofA:max is updated as appropriate when the counter is
incremented or reset, and this value limits how much ofA must be looked at to
reset it. By controlling the cost of RESET in this way, we can limit it to an amount
that can be covered by credit from earlier INCREMENT operations.
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INCREMENT.A; k/

i D 0

while i < k andAŒi� == 1

AŒi� D 0

i D i C 1

if i < k

AŒi� D 1

// Additions to book’s INCREMENT start here.
A:max D maxfA:max; ig

elseA:max D �1

RESET.A/

for i D 0 to A:max
AŒi� D 0

A:max D �1

As for the counter in the book, we assume that it costs $1 to flipa bit. In addition,
we assume it costs $1 to updateA:max.

Setting and resetting of bits by INCREMENT will work exactly as for the original
counter in the book: $1 pays to set one bit to1, $1 is placed on the bit that is set
to 1 as credit, and the credit on each1 bit pays to reset the bit during incrementing.

In addition, $1 pays for updatingmax, and if max increases, place an additional
$1 of credit on the new high-order1. (If maxdoesn’t increase, we can just waste
that $1—it won’t be needed.) Since RESETmanipulates bits at positions only up to
A:max, and since each bit up to there must have become the high-order 1 at some
time before the high-order1 got up toA:max, every bit seen by RESET has $1 of
credit on it. So the zeroing of bits ofA by RESET can be completely paid for by
the credit stored on the bits. We just need $1 to pay for resetting max.

Thus charging $4 for each INCREMENT and $1 for each RESET is sufficient, so
that the sequence ofn INCREMENT and RESET operations takesO.n/ time.
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Solution to Exercise 17.1-7

Let AŒ1 W n� be the array ofn distinct numbers.

One way to count the inversions is to add up, for each element,the number of larger
elements that precede it in the array:

# of inversionsD
n
X

j D1

jInv.j /j ;

whereInv.j / D fi W i < j andAŒi� > AŒj �g.

Note thatjInv.j /j is related toAŒj �’s rank in the subarrayAŒ1 W j � because the
elements inInv.j / are the reason thatAŒj � is not positioned according to its rank.
Let r.j / be the rank ofAŒj � in AŒ1 W j �. Thenj D r.j / C jInv.j /j, so that we can
compute

jInv.j /j D j � r.j /

by insertingAŒ1�; : : : ; AŒn� into an order-statistic tree and using OS-RANK to find
the rank of eachAŒj � in the tree immediately after it is inserted into the tree. (This
OS-RANK value isr.j /.)

Insertion and OS-RANK each takeO.lg n/ time, and so the total time forn ele-
ments isO.n lg n/.

Solution to Exercise 17.2-2

Yes, it is possible to maintain black-heights as attributesin the nodes of a red-black
tree without affecting the asymptotic performance of the red-black tree operations.
We appeal to Theorem 17.1, because the black-height of a nodecan be computed
from the information at the node and its two children. Actually, the black-height
can be computed from just one child’s information: the black-height of a node is
the black-height of a red child, or the black height of a blackchild plus one. The
second child does not need to be checked because of property 5of red-black trees.

The RB-INSERT-FIXUP and RB-DELETE-FIXUP procedures change node colors,
and each color change can potentially causeO.lg n/ black-height changes. We’ll
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show that the color changes of the fixup procedures cause onlylocal black-height
changes and thus are constant-time operations. Assume thatthe black-height of
each nodex is kept in the attributex:bh.

For RB-INSERT-FIXUP, there are three cases to examine.

Case 1: ´’s uncle is red.

C

DA

Bα

β γ

δ ε

(a)

C

DA

Bα

β γ

δ ε

C

DB

δ ε

C

DB

A

α β

γ δ ε

(b)

A

α β

γ

k+1

k+1

k+1

k+1 k+1

k+2

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+2

k+1z

y

z

y

� Before color changes, suppose that all subtrees˛; ˇ; ; ı; � have the same
black-heightk with a black root, so that nodesA, B, C , andD have black-
heights ofk C 1.

� After color changes, the only node whose black-height changed is nodeC .
To fix that, add́ :p:p:bh D ´:p:p:bhC1 after lines 7 and 21 in RB-INSERT-
FIXUP.

� Since the number of black nodes between´:p:p and ´ remains the same,
nodes abové:p:p are not affected by the color change.

Case 2: ´’s uncley is black, and́ is a right child.

Case 3: ´0’s uncley is black, and́ is a left child.

C

A

Bα

β γ

δ

Case 2

B

A

α β

γ

δ

Case 3

A

B

C

α β γ δ

C

k+1

k+1

k+1 k+1

k+1

k+1

k+1 k+1

k+1

z

y

z

y

� With subtrees̨ ; ˇ; ; ı; � of black-heightk, even with color changes and
rotations, the black-heights of nodesA, B, andC remain the same (k C 1).

Thus, RB-INSERT-FIXUP maintains its originalO.lg n/ time.

For RB-DELETE-FIXUP, there are four cases to examine.

Case 1: x’s sibling w is red.
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A

B

D

C Eα β

γ δ ε ζ

x w

A

B

C

D

E

x new w

α β γ δ

ε ζ

Case 1

� Even though case 1 changes colors of nodes and does a rotation, black-
heights are not changed.

� Case 1 changes the structure of the tree, but waits for cases 2, 3, and 4 to
deal with the “extra black” onx.

Case 2: x’s sibling w is black, and both ofw’s children are black.

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

D

C Eα β

γ δ ε ζ

cnew x
Case 2

� w is colored red, andx’s “extra” black is moved up tox:p.
� Add x:p:bh D x:bhafter lines 10 and 31 in RB-DELETE-FIXUP.
� This is a constant-time update. Then, keep looping to deal with the extra

black onx:p.

Case 3: x’s sibling w is black,w’s left child is red, andw’s right child is black.

A

B

D

C Eα β

γ δ ε ζ

x w

c

A

B

C

Dα β γ

δ

ε ζ

x

c

new w

Case 3

E

� Regardless of the color changes and rotation of this case, the black-heights
don’t change.

� Case 3 just sets up the structure of the tree, so it can fall correctly into case 4.

Case 4: x’s sibling w is black, andw’s right child is red.

A

B

D

C Eα β

γ δ

ε ζ

x w

c c

α β

A

B

C

D

E

new x = T.rootγ δ ε ζ

Case 4

c′ c′



17-4 Selected Solutions for Chapter 17: Augmenting Data Structures

� NodesA, C , andE keep the same subtrees, so their black-heights don’t
change.

� Add these two constant-time assignments in RB-DELETE-FIXUP after lines
21 and 42:

x:p:bh D x:bhC 1

x:p:p:bh D x:p:bhC 1

� The extra black is taken care of, and the loop terminates.

Thus, RB-DELETE-FIXUP maintains its originalO.lg n/ time.

Therefore, we conclude that black-heights of nodes can be maintained as attributes
in red-black trees without affecting the asymptotic performance of red-black tree
operations.

For the second part of the question, no, we cannot maintain node depths without
affecting the asymptotic performance of red-black tree operations. The depth of a
node depends on the depth of its parent. When the depth of a node changes, the
depths of all nodes below it in the tree must be updated. Updating the root node
causesn � 1 other nodes to be updated, which would mean that operations on the
tree that change node depths might not run inO.n lg n/ time.

Solution to Exercise 17.3-6

General idea: Move a sweep line from left to right, while maintaining the set of
rectangles currently intersected by the line in an intervaltree. The interval tree
will organize all rectangles whosex interval includes the current position of the
sweep line, and it will be based on they intervals of the rectangles, so that any
overlappingy intervals in the interval tree correspond to overlapping rectangles.

Details:

1. Sort the rectangles by theirx-coordinates. (Actually, each rectangle must ap-
pear twice in the sorted list—once for its leftx-coordinate and once for its right
x-coordinate.)

2. Scan the sorted list (from lowest to highestx-coordinate).

� When anx-coordinate of a left edge is found, check whether the rectangle’s
y-coordinate interval overlaps an interval in the tree, and insert the rectangle
(keyed on itsy-coordinate interval) into the tree.

� When anx-coordinate of a right edge is found, delete the rectangle from the
interval tree.

The interval tree always contains the set of “open” rectangles intersected by the
sweep line. If an overlap is ever found in the interval tree, there are overlapping
rectangles.

Time: O.n lg n/

� O.n lg n/ to sort the rectangles (use merge sort or heap sort).
� O.n lg n/ for interval-tree operations (insert, delete, and check for overlap).
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Data Structures for Disjoint Sets

Solution to Exercise 19.2-3

We want to show how to assignO.1/ charges to MAKE-SET and FIND-SET and an
O.lg n/ charge to UNION such that the charges for a sequence of these operations
are enough to cover the cost of the sequence—O.m C n lg n/, according to the
theorem. When talking about the charge for each kind of operation, it is helpful to
also be able to talk about the number of each kind of operation.

Consider the usual sequence ofm MAKE-SET, UNION, and FIND-SET operations,
n of which are MAKE-SET operations, and letu < n be the number of UNION

operations. (Recall the discussion in Section 19.1 about there being at mostn � 1

UNION operations.) Then there aren MAKE-SET operations,u UNION operations,
andm � n � u FIND-SET operations.

The theorem didn’t separately name the numberu of UNION operations; rather,
it bounded the number byn. If you go through the proof of the theorem withu
UNION operations, you get the time boundO.m � u C u lg u/ D O.m C u lg u/

for the sequence of operations. That is, the actual time taken by the sequence of
operations is at mostc.m C u lg u/, for some constantc.

Thus, we want to assign operation charges such that

(MAKE-SET charge) � n

C (FIND-SET charge) � .m � n � u/

C (UNION charge) � u

� c.m C u lg u/ ;

so that the amortized costs give an upper bound on the actual costs.

The following assignments work, wherec 0 � c is some constant:

� MAKE-SET: c 0

� FIND-SET: c 0

� UNION: c 0.lg n C 1/

Substituting into the above sum gives

c 0n C c 0.m � n � u/ C c 0.lg n C 1/u D c 0m C c 0u lg n

D c 0.m C u lg n/

> c.m C u lg u/ :
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Solution to Exercise 19.2-6

Let’s call the two listsA andB, and suppose that the representative of the new list
will be the representative ofA. Rather than appendingB to the end ofA, instead
spliceB into A right after the first element ofA. We have to traverseB to update
pointers to the set object anyway, so we can just make the lastelement ofB point
to the second element ofA.
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Elementary Graph Algorithms

Solution to Exercise 20.1-7

BBT.i; j / D
X

e2E

biebT
ej D

X

e2E

biebje :

� If i D j , thenbiebje D 1 (it is 1 � 1 or .�1/ � .�1/) whenevere enters or leaves
vertexi , and0 otherwise.

� If i ¤ j , thenbiebje D �1 whene D .i; j / or e D .j; i/, and 0 otherwise.

Thus,

BBT.i; j / D

(

in-degree ofiC out-degree ofi if i D j ;

�(# of edges connectingi andj ) if i ¤ j :

Solution to Exercise 20.2-5

The correctness proof for the BFS algorithm shows thatu:d D ı.s; u/, and the
algorithm doesn’t assume that the adjacency lists are in anyparticular order.

In Figure 20.3, ift precedesx in AdjŒw�, we can get the breadth-first tree shown
in the figure. But ifx precedest in AdjŒw� andu precedesy in AdjŒx�, we can get
edge.x; u/ in the breadth-first tree.

Solution to Exercise 20.3-12

The following pseudocode modifies the DFS and DFS-VISIT procedures to assign
values to theccattributes of vertices.
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DFS.G/

for each vertexu 2 G:V
u:color D WHITE

u:� D NIL

time D 0

counter D 0

for each vertexu 2 G:V
if u:color == WHITE

counterD counterC 1

DFS-VISIT.G; u; counter/

DFS-VISIT.G; u; counter/
u:cc D counter // label the vertex
time D timeC 1

u:d D time
u:color D GRAY

for each vertexv in G:AdjŒu�

if v:color == WHITE

v:� D u

DFS-VISIT.G; v; counter/
time D timeC 1

u: f D time
u:color D BLACK

This DFS increments a counter each time DFS-VISIT is called to grow a new tree
in the DFS forest. Every vertex visited (and added to the tree) by DFS-VISIT is
labeled with that same counter value. Thusu:cc D v:cc if and only if u andv are
visited in the same call to DFS-VISIT from DFS, and the final value of the counter
is the number of calls that were made to DFS-VISIT by DFS. Also, since every
vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by each call to DFS-VISIT

from DFS are exactly the vertices in one connected componentof G.

� All vertices in a connected component are visited by one callto DFS-VISIT

from DFS:

Let u be the first vertex in componentC visited by DFS-VISIT. Since a vertex
becomes non-white only when it is visited, all vertices inC are white when
DFS-VISIT is called foru. Thus, by the white-path theorem, all vertices inC

become descendants ofu in the forest, which means that all vertices inC are
visited (by recursive calls to DFS-VISIT) before DFS-VISIT returns to DFS.

� All vertices visited by one call to DFS-VISIT from DFS are in the same con-
nected component:

If two vertices are visited in the same call to DFS-VISIT from DFS, they are in
the same connected component, because vertices are visitedonly by following
paths inG (by following edges found in adjacency lists, starting fromsome
vertex).
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Solution to Exercise 20.4-3

An undirected graph is acyclic (i.e., a forest) if and only ifa DFS yields no back
edges.

� If there’s a back edge, there’s a cycle.
� If there’s no back edge, then by Theorem 20.10, there are onlytree edges.

Hence, the graph is acyclic.

Thus, to determine whether an undirected graph contains a cycle, run DFS and
classify the edges: if any edge is a back edge, there’s a cycle.

� Time: O.V /.
Not O.V C E/: OncejV j distinct edges have been seen, at least one of them
must be a back edge because (by Theorem B.2 on page 1169) in an acyclic
(undirected) forest,jEj � jV j � 1.

Solution to Problem 20-1

a. 1. Suppose.u; v/ is a back edge or a forward edge in a BFS of an undirected
graph. Without loss of generality, letu be a proper ancestor ofv in the
breadth-first tree. Since all edges ofu are explored before exploring any
edges of any ofu’s descendants, edge.u; v/ must be explored when explor-
ing from u. But then.u; v/ must be a tree edge.

2. In BFS, an edge.u; v/ is a tree edge when the procedure setsv:� D u.
But that occurs only when the procedure also setsv:d D u:d C 1. Since
neitheru:d nor v:d ever changes thereafter, we havev:d D u:d C 1 when
BFS completes.

3. Consider a cross edge.u; v/ where, without loss of generality,u is visited
beforev. When the edges incident onu are explored, vertexv must already
be on the queue, for otherwise.u; v/ would be a tree edge. Becausev is on
the queue, we havev:d � u:d C 1 by Lemma 20.3. By Corollary 20.4, we
havev:d � u:d. Thus, eitherv:d D u:d or v:d D u:d C 1.

b. 1. Suppose.u; v/ is a forward edge. Then it would have been explored while
exploring fromu, and it would have been a tree edge.

2. Same as for undirected graphs.
3. For any edge.u; v/, regardless of whether it’s a cross edge, we cannot

havev:d > u:d C 1, since the BFS visitsv at the latest when it explores
edge.u; v/. Thus,v:d � u:d C 1.

4. Clearly,v:d � 0 for all verticesv. For a back edge.u; v/, v is an ancestor
of u in the breadth-first tree, which means thatv:d � u:d. (Note that since
self-loops are considered to be back edges, we could haveu D v.)
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Minimum Spanning Trees

Solution to Exercise 21.1-1

Theorem 21.1 shows this.

Let A be the empty set andS be any set containingu but notv.

Solution to Exercise 21.1-4

A triangle whose edge weights are all equal is a graph in whichevery edge is a
light edge crossing some cut. But the triangle is a cycle, so it is not a minimum
spanning tree.

Solution to Exercise 21.1-6

Suppose that for every cut ofG, there is a unique light edge crossing the cut. Let us
consider two distinct minimum spanning trees,T andT 0, of G. BecauseT andT 0

are distinct,T contains some edge.u; v/ that is not inT 0. If .u; v/ is removed
from T , thenT becomes disconnected, resulting in a cut.S; V � S/. The edge
.u; v/ is a light edge crossing the cut.S; V � S/ (by Exercise 21.1-3) and, by our
assumption, it’s the only light edge crossing this cut. Because.u; v/ is the only
light edge crossing.S; V � S/ and.u; v/ is not inT 0, each edge inT 0 that crosses
.S; V � S/ must have weight strictly greater thanw.u; v/. As in the proof of
Theorem 21.1, we can identify the unique edge.x; y/ in T 0 that crosses.S; V �S/

and lies on the cycle that results if we add.u; v/ to T 0. By our assumption, we
know thatw.u; v/ < w.x; y/. Then, we can then remove.x; y/ from T 0 and
replace it by.u; v/, giving a spanning tree with weight strictly less thanw.T 0/.
Thus,T 0 was not a minimum spanning tree, contradicting the assumption that the
graph had two unique minimum spanning trees.

Here’s a counterexample for the converse:
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x

y

z

1

1

Here, the graph is its own minimum spanning tree, and so the minimum spanning
tree is unique. Consider the cut.fxg ; fy; ´g/. Both of the edges.x; y/ and.x; ´/

are light edges crossing the cut, and they are both light edges.
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Single-Source Shortest Paths

Solution to Exercise 22.1-3

If the greatest number of edges on any shortest path from the source ism, then the
path-relaxation property tells us that afterm iterations of BELLMAN -FORD, every
vertexv has achieved its shortest-path weight inv:d. By the upper-bound property,
afterm iterations, nod values will ever change. Therefore, nod values will change
in the.m C 1/st iteration. Because we do not knowm in advance, we cannot make
the algorithm iterate exactlym times and then terminate. But if the algorithm just
stops when nothing changes any more, it will stop afterm C 1 iterations.

BELLMAN -FORD-EARLY-TERMINATION .G; w; s/

INITIALIZE -SINGLE-SOURCE.G; s/

repeat
changesD FALSE

for each edge.u; v/ 2 G:E
if RELAX 0.u; v; w/

changesD TRUE

until changes== FALSE

RELAX 0.u; v; w/

if v:d > u:d C w.u; v/

v:d D u:d C w.u; v/

v:� D u

return TRUE

else return FALSE

Because the exercise specifies thatG has no negative-weight cycles, the test for a
negative-weight cycle (based on there being ad value that would change if another
relaxation step was done) has been removed. If there were a negative-weight cycle,
this version of the algorithm would never get out of therepeat loop because some
d value would change in each iteration.
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Solution to Exercise 22.3-3

Yes, the algorithm still works. Letu be the leftover vertex that does not
get extracted from the priority queueQ. If u is not reachable froms, then
u:d D ı.s; u/ D 1. If u is reachable froms, then there is a shortest path
p D s ; x ! u. When the vertexx was extracted,x:d D ı.s; x/ and then the
edge.x; u/ was relaxed; thus,u:d D ı.s; u/.

Solution to Exercise 22.3-7

To find the most reliable path betweens andt , run Dijkstra’s algorithm with edge
weightsw.u; v/ D � lg r.u; v/ to find shortest paths froms in O.ECV lg V / time.
The most reliable path is the shortest path froms to t , and that path’s reliability is
the product of the reliabilities of its edges.

Here’s why this method works. Because the probabilities areindependent, the
probability that a path will not fail is the product of the probabilities that its edges
will not fail. We want to find a paths

p
; t such that

Q

.u;v/2p r.u; v/ is maximized.
This is equivalent to maximizing lg

�
Q

.u;v/2p r.u; v/
�

D
P

.u;v/2p lg r.u; v/,
which is in turn equivalent to minimizing

P

.u;v/2p � lg r.u; v/. (Note: r.u; v/

can be 0, and lg0 is undefined. So in this algorithm, define lg0 D �1.) Thus if
we assign weightsw.u; v/ D � lg r.u; v/, we have a shortest-path problem.

Since lg1 = 0, lgx < 0 for 0 < x < 1, and we have defined lg0 D �1, all the
weightsw are nonnegative, and we can use Dijkstra’s algorithm to find the shortest
paths froms in O.E C V lg V / time.

Alternative solution

You can also work with the original probabilities by runninga modified version of
Dijkstra’s algorithm that maximizes the product of reliabilities along a path instead
of minimizing the sum of weights along a path.

In Dijkstra’s algorithm, use the reliabilities as edge weights and make the following
changes:

� In INITIALIZE -SINGLE-SOURCE, line 2 becomes
v:d D �1

� RELAX becomes

RELAX .u; v; r/

if v:d < u:d � r.u; v/

v:d D u:d � r.u; v/

v:� D u

� In DIJKSTRA, Q becomes a max-priority queue, line 7 becomes
u D EXTRACT-MAX .Q/

and lines 11–12 become
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if the call of RELAX increasedv:d
INCREASE-KEY.Q; v; v:d/

This algorithm is isomorphic to the one above: it performs the same operations
except that it is working with the original probabilities instead of the transformed
ones.

Solution to Exercise 22.4-7

Observe that after the first pass, alld values are at most0, and that relaxing
edges.v0; vi / will never again change ad value. Therefore, we can eliminatev0 by
running the Bellman-Ford algorithm on the constraint graphwithout thev0 vertex
but initializing all shortest path estimates to0 instead of1.

Solution to Exercise 22.5-4

Whenever RELAX sets� for some vertex, it also reduces the vertex’sd value.
Thus if s:� gets set to a non-NIL value,s:d is reduced from its initial value of0 to
a negative number. Buts:d is the weight of some path froms to s, which is a cycle
includings. Thus, there is a negative-weight cycle.

Solution to Problem 22-3

a. We can use the Bellman-Ford algorithm on a suitable weighted, directed graph
G D .V; E/, which we form as follows. There is one vertex inV for each
currency, and for each pair of currenciesci and cj , there are directed edges
.vi ; vj / and.vj ; vi /. (Thus,jV j D n andjEj D n.n � 1/.)

We are looking for a cyclehi1; i2; i3; : : : ; ik ; i1i such that

RŒi1; i2� � RŒi2; i3� � � � RŒik�1; ik � � RŒik; i1� > 1 :

Taking logarithms of both sides of this inequality gives

lg RŒi1; i2� C lg RŒi2; i3� C � � � C lg RŒik�1; ik � C lg RŒik; i1� > 0 :

If we negate both sides, we get

.� lg RŒi1; i2�/ C .� lg RŒi2; i3�/ C � � �

C .� lg RŒik�1; ik�/ C .� lg RŒik; i1�/ < 0 ;

and so we want to determine whetherG contains a negative-weight cycle with
these edge weights.

We can determine whether there exists a negative-weight cycle in G by adding
an extra vertexv0 with 0-weight edges.v0; vi / for all vi 2 V , running
BELLMAN -FORD from v0, and using the boolean result of BELLMAN -FORD
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(which is TRUE if there are no negative-weight cycles andFALSE if there is a
negative-weight cycle) to guide our answer. That is, we invert the boolean result
of BELLMAN -FORD.

This method works because adding the new vertexv0 with 0-weight edges
from v0 to all other vertices cannot introduce any new cycles, yet itensures
that all negative-weight cycles are reachable fromv0.

It takes‚.n2/ time to createG, which has‚.n2/ edges. Then it takesO.n3/

time to run BELLMAN -FORD. Thus, the total time isO.n3/.

Another way to determine whether a negative-weight cycle exists is to createG
and, without addingv0 and its incident edges, run either of the all-pairs shortest-
paths algorithms. If the resulting shortest-path distancematrix has any negative
values on the diagonal, then there is a negative-weight cycle.

b. Note: The solution to this part also serves as a solution to Exercise 22.1-7.

Assuming that we ran BELLMAN -FORD to solve part (a), we only need to find
the vertices of a negative-weight cycle. We can do so as follows. Go through the
edges once again. Upon finding an edge.u; v/ for whichu:dC w.u; v/ < v:d,
we know that either vertexv is on a negative-weight cycle or is reachable from
one. We can find a vertex on the negative-weight cycle by tracing back the�
values fromv, keeping track of which vertices we’ve visited until we reach a
vertexx that we’ve visited before. Then we can trace back� values fromx

until we get back tox, and all vertices in between, along withx, will constitute
a negative-weight cycle. We can use the recursive method given by the PRINT-
PATH procedure of Section 20.2, but stop it when it returns to vertex x.

The running time isO.n3/ to run BELLMAN -FORD, plusO.m/ to check all the
edges andO.n/ to print the vertices of the cycle, for a total ofO.n3/ time.
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All-Pairs Shortest Paths

Solution to Exercise 23.1-3

The matrixL.0/ corresponds to the identity matrix

I D

�
1 0 0 � � � 0

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � 1

�
of regular matrix multiplication. Substitute0 (the identity forC) for 1 (the iden-
tity for min), and1 (the identity for�) for 0 (the identity forC).

Solution to Exercise 23.1-5

The all-pairs shortest-paths algorithm in Section 23.1 computes

L.n�1/ D W n�1 D L.0/ � W n�1 ;

wherel
.n�1/
ij D ı.i; j / and L.0/ is the identity matrix. That is, the entry in the

i th row andj th column of the matrix “product” is the shortest-path distance from
vertexi to vertexj , and rowi of the product is the solution to the single-source
shortest-paths problem for vertexi .

Notice that in a matrix “product”C D A � B, thei th row of C is thei th row of A

“multiplied” by B. Since all we want is thei th row ofC , we never need more than
thei th row ofA.

Thus the solution to the single-source shortest-paths fromvertexi is L
.0/
i � W n�1,

whereL
.0/
i is thei th row of L.0/—a vector whosei th entry is0 and whose other

entries are1.

Doing the above “multiplications” starting from the left isessentially the same
as the BELLMAN -FORD algorithm. The vector corresponds to thed values in
BELLMAN -FORD—the shortest-path estimates from the source to each vertex.

� The vector is initially0 for the source and1 for all other vertices, the same as
the values set up ford by INITIALIZE -SINGLE-SOURCE.
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� Each “multiplication” of the current vector byW relaxes all edges just as
BELLMAN -FORD does. That is, a distance estimate in the row, say the distance
to v, is updated to a smaller estimate, if any, formed by adding somew.u; v/ to
the current estimate of the distance tou.

� The relaxation/multiplication is donen � 1 times.

Solution to Exercise 23.2-4

With the superscripts, the computation isd
.k/
ij D min

˚

d
.k�1/
ij ; d

.k�1/

ik
C d

.k�1/

kj

	

.
If, having dropped the superscripts, the procedure were to compute and storedik

or dkj before using these values to computedij , it might be computing one of the
following:

d
.k/
ij D min

˚

d
.k�1/
ij ; d

.k/

ik
C d

.k�1/

kj

	

;

d
.k/
ij D min

˚

d
.k�1/
ij ; d

.k�1/

ik
C d

.k/

kj

	

;

d
.k/
ij D min

˚

d
.k�1/
ij ; d

.k/

ik
C d

.k/

kj

	

:

In any of these scenarios, the code computes the weight of a shortest path fromi

to j with all intermediate vertices inf1; 2; : : : ; kg. If we used
.k/

ik
, rather than

d
.k�1/

ik
, in the computation, then we’re using a subpath fromi to k with all in-

termediate vertices inf1; 2; : : : ; kg. But k cannot be anintermediatevertex on a
shortest path fromi to k, since otherwise there would be a cycle on this shortest
path. Thus,d .k/

ik
D d

.k�1/

ik
. A similar argument applies to show thatd

.k/

kj
D d

.k�1/

kj
.

Hence, we can drop the superscripts in the computation.

Solution to Exercise 23.3-4

It changes shortest paths. Consider the following graph.V D fs; x; y; ´g, and
there are 4 edges:w.s; x/ D 2, w.x; y/ D 2, w.s; y/ D 5, andw.s; ´/ D �10.
So we’d add 10 to every weight to makeyw. With w, the shortest path froms to y

is s ! x ! y, with weight 4. With yw, the shortest path froms to y is s ! y,
with weight 15. (The paths ! x ! y has weight 24.) The problem is that by just
adding the same amount to every edge, you penalize paths withmore edges, even
if their weights are low.
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Maximum Flow

Solution to Exercise 24.2-11

For any two verticesu andv in G, we can define a flow networkGuv consisting
of the directed version ofG with s D u, t D v, and all edge capacities set to1.
Because a flow network may not have antiparallel edges, for each edge inG, one of
the directed edges inGuv must be broken into two edges, with a new vertex added.
Therefore,Guv hasjV j C jEj vertices and3 jEj edges, so that it hasO.V C E/

vertices andO.E/ edges, as required. Set all capacities inGuv to be1 so that the
number of edges ofG crossing a cut equals the capacity of the cut inGuv. Let fuv

denote a maximum flow inGuv.

We claim that the edge connectivityk equals minfjfuvj W v 2 V � fugg for any
vertexu 2 V . We’ll show below that this claim holds. Assuming that it holds, we
can findk as follows:

EDGE-CONNECTIVITY .G/

k D 1
select any vertexu 2 G:V
for each vertexv 2 G:V � fug

set up the flow networkGuv as described above
find the maximum flowfuv on Guv

k D minfk; jfuvjg
return k

The claim follows from the max-flow min-cut theorem and how wechose capaci-
ties so that the capacity of a cut is the number of edges crossing it. We prove that
k D minfjfuvj W v 2 V � fugg, for anyu 2 V by showing separately thatk is at
least this minimum and thatk is at most this minimum.

� Proof thatk � minfjfuvj W v 2 V � fugg:

Let m D minfjfuvj W v 2 V � fugg. Suppose we remove onlym � 1 edges
from G. For any vertexv, by the max-flow min-cut theorem,u andv are still
connected. (The max flow fromu to v is at leastm, hence any cut separating
u from v has capacity at leastm, which means at leastm edges cross any such
cut. Thus at least one edge is left crossing the cut when we remove m � 1

edges.) Thus every vertex is connected tou, which implies that the graph is
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still connected. So at leastm edges must be removed to disconnect the graph—
i.e.,k � minfjfuvj W v 2 V � fugg.

� Proof thatk � minfjfuvj W v 2 V � fugg:

Consider a vertexv with the minimumjfuvj. By the max-flow min-cut the-
orem, there is a cut of capacityjfuvj separatingu andv. Since all edge ca-
pacities are 1, exactlyjfuvj edges cross this cut. If these edges are removed,
there is no path fromu to v, and so our graph becomes disconnected. Hence
k � minfjfuvj W v 2 V � fugg.

� Thus, the claim thatk D minfjfuvj W v 2 V � fugg, for anyu 2 V is true.

Solution to Exercise 24.3-3

By definition, an augmenting path is a simple paths ; t in the residual net-
work G0

f
. SinceG has no edges between vertices inL and no edges between

vertices inR, neither does the flow networkG0 and hence neither doesG0
f

. Also,
the only edges involvings or t connects to L andR to t . Note that although edges
in G0 can go only fromL to R, edges inG0

f
can also go fromR to L.

Thus any augmenting path must go

s ! L ! R ! � � � ! L ! R ! t ;

crossing back and forth betweenL and R at most as many times as it can do
so without using a vertex twice. It containss, t , and equal numbers of dis-
tinct vertices fromL andR—at most2 C 2 � min.jLj ; jRj/ vertices in all. The
length of an augmenting path (i.e., its number of edges) is thus bounded above by
2 � min.jLj ; jRj/ C 1.

Solution to Problem 24-4

a. Just execute one iteration of the Ford-Fulkerson algorithm. The edge.u; v/ in E

with increased capacity ensures that the edge.u; v/ is in the residual network.
So look for an augmenting path and update the flow if a path is found.

Time

O.V C E/ D O.E/ by finding the augmenting path with either depth-first or
breadth-first search.

To see that only one iteration is needed, consider separately the cases in which
.u; v/ is or is not an edge that crosses a minimum cut. If.u; v/ does not cross a
minimum cut, then increasing its capacity does not change the capacity of any
minimum cut, and hence the value of the maximum flow does not change. If
.u; v/ does cross a minimum cut, then increasing its capacity by1 increases the
capacity of that minimum cut by1, and hence possibly the value of the maxi-
mum flow by1. In this case, there is either no augmenting path (in which case



Selected Solutions for Chapter 24: Maximum Flow 24-3

there was some other minimum cut that.u; v/ does not cross), or the augment-
ing path increases flow by1. No matter what, one iteration of Ford-Fulkerson
suffices.

b. Let f be the maximum flow before reducingc.u; v/.

If f .u; v/ < c.u; v/, we don’t need to do anything.

If f .u; v/ D c.u; v/, we need to update the maximum flow. Becausec.u; v/ is
an integer that decreases, it must be at least1, so thatf .u; v/ D c.u; v/ � 1.

Definef 0.x; y/ D f .x; y/ for all x; y 2 V , except thatf 0.u; v/ D f .u; v/�1.
Althoughf 0 obeys all capacity contraints, even afterc.u; v/ has been reduced,
it is not a legal flow, as it violates flow conservation atu (unlessu D s) and atv
(unlessv D t). f 0 has one more unit of flow enteringu than leavingu, and it
has one more unit of flow leavingv than enteringv.

The idea is to try to reroute this unit of flow so that it goes outof u and intov

via some other path. If that is not possible, we must reduce the flow froms to u

and fromv to t by 1 unit.

Look for an augmenting path fromu to v (note:not from s to t).

� If there is such a path, augment the flow along that path.
� If there is no such path, reduce the flow froms to u by augmenting the flow

from u to s. That is, find an augmenting pathu ; s in Gf and augment
the flow along that path by1. (There definitely is such a path, because there
is flow from s to u.) Similarly, reduce the flow fromv to t by finding an
augmenting patht ; v in Gf and augmenting the flow along that path by1.

Time

O.V C E/ D O.E/ by finding the paths with either DFS or BFS.
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