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Preface

This document contains selected solutions to exercisepmantdems inlntroduc-

tion to Algorithms Fourth Edition, by Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. These solutions arstgd publicly on the
MIT Press website.

We have numbered the pages using the for@@tPP, where CC is a chapter
number of the text an@P is the page number within that chapter. TP num-

bers restart from 1 at the beginning of each chapter. We dmiséorm of page
numbering so that if we add or change material, the only padese numbering
is affected are those for that chapter. Moreover, if we adtera for currently

uncovered chapters, the numbers of the existing pagesemin unchanged.

The solutions

As of the third edition, we have publicly posted a few sohgion the book’s web-
site. These solutions also appear here with the notationis®olution is also
posted publicly” after the exercise or problem number. Téiea$ publicly posted
solutions might increase over time, and so we encourage yahdck whether a
particular solution is posted on the website before yougrsain exercise or prob-
lem to your studentsThe index lists all the exercises and problems for the irediud
solutions, along with the number of the page on which eadltisol starts.

Asides appear in a handful of places throughout the solsttigxiso, we are less
reluctant to use shading in figures within solutions, sireEsée figures are more
likely to be reproduced than to be drawn on a board.

Source files

For several reasons, we are unable to publish or transmitediles for this docu-
ment. We apologize for this inconvenience.

You can use the clrscodede package fapA2¢ to typeset pseudocode in the
same way that we do. You can find it at https:/migentent-server.mit.edu/
books/content/sectbyfn/bookses0/11599/clrscodede.sty and its documentation
at

https://mitp-content-server.mit.edu/books/content/sectbyfn/bogkes 0/11599/
clrscodede.pdf. Make sure to use the clrscodede packagehaalrscode or
clrscode3e packages, which are for earlier editions of tuk b
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Preface

Reporting errors and suggestions

Undoubtedly, this document contains errors. Please repais by sending email
to clrs-manual-bugs@mit.edu.

As usual, if you find an error in the text itself, please vethat it has not already
been posted on the errata web page, https://ntitpient-server.mit.edu/books/
content/sectbyfn/bookpres0/11599/e4-bugs.html, before you submit it. You
also can use the MIT Press web site for the text, https:/fiesgpmit.edu/books/
introduction-algorithms=fourth-_edition, to locate the errata web page and to sub-
mit an error report.

We thank you in advance for your assistance in correctingr®in both this docu-
ment and the text.

THOMAS H. CORMEN
Lebanon, New Hampshire
March 2022



Selected Solutions for Chapter 2:
Getting Started

Solution to Exercise 2.2-2

SELECTION-SORT(A, n)
fori =1ton—1
smallest= i
forj =i+ 1ton
if A[j] < A[smalles}
smallest= j
exchanged|[i] with A[smalles}

The algorithm maintains the loop invariant that at the sthgach iteration of the
outerfor loop, the subarray[1:i — 1] consists of theé — 1 smallest elements in
the arrayA[l : n], and this subarray is in sorted order. After the first1 elements,
the subarray[1 : n — 1] contains the smalleat— 1 elements, sorted, and therefore
elementA[n] must be the largest element.

The running time of the algorithm i®(n?) for all cases.

Solution to Exercise 2.2-4

Modify the algorithm so that it first checks the input arraysee whether it is
already sorted, takin@(n) time for ann-element array. If the array is already
sorted, then the algorithm is done. Otherwise, sort theyasausual. The best-
case running time is generally not a good measure of an Higus efficiency.

Solution to Exercise 2.3-6

Procedure BNARY-SEARCH takes a sorted array, a valuex, and a range
[low: high| of the array, in which we search for the value The procedure com-
paresy to the array entry at the midpoint of the range and decidebnurate half
the range from further consideration. We give both iteeaind recursive versions,
each of which returns either an indéxuch thatd[i] = x, or NIL if no entry of
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Allow: high] contains the value. The initial call to either version should have the
parameterst, x, 1,n.

ITERATIVE-BINARY-SEARCH(A, x, low, high)

while low < high
mid = | (low + high)/2]
if x == A[mid]
return mid
elseifx > A[mid]
low = mid+ 1
elsehigh = mid—1
return NIL

RECURSIVEBINARY-SEARCH(A, x, low, high)

if low > high
return NIL
mid = | (low + high)/2]
if x == A[mid]
return mid
elseifx > A[mid]
return RECURSIVEBINARY-SEARCH(A, x, mid + 1, high)
else return RECURSIVEBINARY-SEARCH(A, x, low, mid — 1)

Both procedures terminate the search unsuccessfully wigerange is empty (i.e.,
low > high) and terminate it successfully if the valuehas been found. Based
on the comparison af to the middle element in the searched range, the search
continues with the range halved. The recurrence for theseedures is therefore
T(n) =T(n/2) + O(1), whose solution i°(n) = ©(Ign).

Solution to Problem 2-4

a. Theinversions arél, 5), (2,5), (3,4), (3,5), (4,5). (Remember that inversions

are specified by indices rather than by the values in the @rray

. The array with elements drawn frofd, 2, ..., n} with the most inversions is

(n,n—1,n—2,...,2,1). Foralll <i < j < n,there is an inversio(, j).
The number of such inversions (i) = n(n —1)/2.

. Suppose that the array starts out with an inversiotk,i). Thenk < i and

Alk] > Ali]. At the time that the outefor loop of lines 1-8 setkey = A[i],

the value that started id[k] is still somewhere to the left ofi[i]. That is,
it'sin A[j], wherel < j < i, and so the inversion has becoityei). Some
iteration of thewhile loop of lines 5—7 movesi[;] one position to the right.
Line 8 will eventually dropkeyto the left of this element, thus eliminating
the inversion. Because line 5 moves only elements that aatayrtharkey,

it moves only elements that correspond to inversions. Ierottords, each
iteration of thewhile loop of lines 5-7 corresponds to the elimination of one
inversion.
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d. We follow the hint and modify merge sort to count the numbeneérsions in
O lgn) time.
To start, let us define merge-inversionas a situation within the execution of
merge sort in which the EMRGE procedure, after copyingl[p:¢] to L and
Alg + 1:r]to R, has values: in L andy in R such thatx > y. Consider an
inversion(i, j), and letx = A[i] andy = A[/j], so thati < j andx > y.
We claim that if we were to run merge sort, there would be dxacte merge-
inversion involvingx andy. To see why, observe that the only way in which
array elements change their positions is within theR@E procedure. More-
over, since MERGE keeps elements withih in the same relative order to each
other, and correspondingly faR, the only way in which two elements can
change their ordering relative to each other is for the greate to appear ih
and the lesser one to appearRn Thus, there is at least one merge-inversion
involving x and y. To see that there is exactly one such merge-inversion, ob-
serve that after any call of FRGE that involves bothx and y, they are in the
same sorted subarray and will therefore both appedr an both appear iR
in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-imverdn fact, the
correspondence between inversions and merge-inversamseito-one. Sup-
pose we have a merge-inversion involving valuesnd y, wherex originally
wasA[i] andy was originallyA[j]. Since we have a merge-inversion,> y.
And sincex isin L andy is in R, x must be within a subarray preceding the
subarray containing. Thereforex started out in a position precedingy’s
original position;, and sa(i, j) is an inversion.

Having shown a one-to-one correspondence between inmersind merge-
inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involvingin R. Let z be the smallest value ih
that is greater tham. At some point during the merging procegsand y will

be the “exposed” values ih andR, i.e., we will havez = L[i] andy = R[/]

in line 13 of MERGE At that time, there will be merge-inversions involving
andL[i], L[i +1],L[i +2],...,L[n, — 1], and these; — i merge-inversions
will be the only ones involvingy. Therefore, we need to detect the first time
thatz andy become exposed during theBRGE procedure and add the value
of ny — i at that time to the total count of merge-inversions.

The following pseudocode, modeled on merge sort, works alsawve just de-
scribed. It also sorts the arrajy.
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MERGEINVERSIONS(A4, p,q,r)
ngp=q-p+1
nrR =r—(g
let L[0:n, — 1] andR[0:ng — 1] be new arrays
fori =0ton; —1
Lli] = A[lp+i—1]
for j =0tong—1

R[j] = Alg + j]
i =0
ji=0
k=p

inversions= 0
whilei <ny andj < ng
if L[i] < R[/]
Alk] = L[i]
i =i+1
elseinversions= inversions+ n; — i
Alk] = R[/]
J=7+1
k=k+1
whilei < ny,
Alk] = LJi]
i=i+1
k=k+1
while j < ng
A[k] = R[/]
Jj=Jj+1
k=k+1
return inversions

COUNT-INVERSIONS(A, p,r)

inversions= 0

if p<r
q = |(p+r)/2]
inversions= inversions+ COUNT-INVERSIONS(4, p, q)
inversions= inversions+ COUNT-INVERSIONS(A4,¢q + 1,r)
inversions= inversions+ MERGEINVERSIONS(A4, p,q, 1)

return inversions

The initial call is COUNT-INVERSIONS(A, 1, n).

In MERGEINVERSIONS wheneverR|[/j] is exposed and a value greater than
R[j] becomes exposed in tliearray, we increasmversionsby the number of
remaining elements ii. Then becaus®[; + 1] becomes expose®[;] can
never be exposed again.

Since we have added only a constant amount of additional weodach pro-
cedure call and to each iteration of the lstloop of the merging procedure,
the total running time of the above pseudocode is the samer asdrge sort:
O lgn).
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Characterizing Running Times

Solution to Exercise 3.2-2

Since O-notation provides only an upper bound, and not a tight bpthml state-
ment is saying that the running of time of algorithnis at least a function whose
rate of growth is at most?2.

Solution to Exercise 3.2-3

27t = 0(2"), but2?" #£ O(2").

To show thaR"*! = 0(2"), we must find constants n, > 0 such that
0<2"t <c.2"foralln > nyg .

Since2"*! = 2. 2" for all n, we can satisfy the definition with= 2 andn, = 1.
To show thaR?®" # O(2"), assume there exist constant®, > 0 such that
0<2?"<c-2"foralln > ny .

Then2?" = 2".2" < ¢.2" = 2" < ¢. But no constant is greater than 2il, and
so the assumption leads to a contradiction.

Solution to Exercise 3.3-5

[lgn]!is not polynomially bounded, butglgn]!is.
Proving that a functiory'(n) is polynomially bounded is equivalent to proving that
lg f(n) = O(lgn) for the following reasons.

* If f(n)is polynomially bounded, then there exist positive constayk, andn,
such tha) < f(n) < cn* for all n > n,. Without loss of generality, assume
thatc > 1, since ifc < 1, then f(n) < cn* implies that f(n) < n*. Assume
also thatzy, > 2, so thatn > n, implies that Igz < (Ig¢)(Ign). Then, we have
lg f(n) < Igc+klgn

= (gc+k)lgn,
which, sincec andk are constants, means thatfi¢:) = O(lgn).
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* Now suppose that Ig'(n) = O(lgn). Then there exist positive constants
andn, such that) <Ig f(n) < clgn for all n > ny. Then, we have

0< f(l’l) — 2Igf(n) < 2c|gn — (2Ign)c = n¢

for all n > ng, so thatf(n) is polynomially bounded.
In the following proofs, we will make use of the following twacts:
1. lg(n!) = ®©(nlgn) (by equation (3.28)).
2. [lgn] = ©(Ign), because

* [lgn] >Ign,and

* [lgn] <lgn+1<2lgnforalln > 2.

We have
lg([lgn]!) = O©([lgnllgfign)
= O((lgn)(lglgn))
= w(lgn).
Therefore, Ig[lgn]!) is not O(Ign), and so[lgn1! is not polynomially bounded.
We also have
lg(flglgn]) = ©([lglgn]lg[lglgnT)
= O((glgn)(glglgn))
= o((lglgn)?)
= o(Ig*(lgn))
= o(lgn) .
The last step above follows from the property that any pgstdhmic function

grows more slowly than any positive polynomial functiom. i.that for constants
a,b >0, we have I§n = o(n?). Substitute Ig: for n, 2 for b, and1 for a, giving

Ig>(Ign) = o(lgn).
Therefore, Ig[lglgn]!) = O(lgn), and so[lglgn]! is polynomially bounded.
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Divide-and-Conquer

Solution to Exercise 4.2-3

If you can multiply3 x 3 matrices usinge multiplications, then you can multiply
n x n matrices by recursively multiplying /3 x n/3 matrices, in timel'(n) =
kT(n/3) + O(n?).

Using the master method to solve this recurrence, consluerrdtio of 7'°9%
andn?:

* Iflog, k = 2, case 2 applies anfi(n) = ©(rn?Ign). In this casek = 9 and
T(n) = o(n'97).

* Iflog;k < 2, case 3 applies anfi(n) = ©(n?). In this casek < 9 and
T(n) = o(n'97).

« Iflog;k > 2, case 1 applies an@i(n) = ©(n'°%*). In this casek > 9.
T(n) = o(n'97) when log k < 1g7, i.e., whenk < 397 ~ 21.85. The largest
such integek is 21.

Thus,k = 21 and the running time i®(n'°%%) = O(1n'°%2') = 0(n*>*°) (since
log, 21 ~ 2.77).

Solution to Exercise 4.4-4

T(n)=T(n)+T(1—a)n)+cn

We saw the solution to the recurrentén) = T(n/3) + T (2n/3) 4 cn in the text.
This recurrence can be similarly solved.

Without loss of generality, let > 1—«,sothald < 1—« < 1/2andl/2 <« < 1.
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J /C”\ [
c(l1=—a)n

109, (1—a) 7 / \ / \ log,

ca(l — oz)n ca(l — oz)n c(l — a)zn +—>  cn

cn

o

~

Total: O(nlgn)

The recursion tree is full for lag,, _,, n levels, each contributingn, so we guess
Q(nlog,)_qn) = Qnlgn). It has log , n levels, each contributing: cn, so
we gues(nlog,, n) = O(nlgn).
Now we show thafl’'(n) = ®(nlgn) by substitution. To prove the upper bound,
we need to show thdf(n) < dnlgn for a suitable constant > 0:
T(n) = T(an) +T((1 —a)n) +cn
< danlg(an) +d(1 —a)nlg((1 —a)n) + cn
= danlga +danlgn +d(1 —a)nlg(l —a) + d(1 —a)nlgn + cn
=dnlgn+dn(alga + (1 —a)lg(l1 —a)) +cn
< dnlgn,
if dn(elga + (1 —a)lg(l —®)) + cn < 0. This condition is equivalent to

dalga + (1 —a)lg(l —a)) < —c.

Sincel/2 <a <land0 < 1—a < 1/2,we havethatlg < 0andIgl—«) < 0.
Thus,alga + (1 — o) lg(1 — ) < 0, so that when we multiply both sides of the
inequality by this factor, we need to reverse the inequality

—C

algoe+ (1 —a)lg(l — @)

or
C

> .

T —alga+ —(1—a)lg(l — @)
The fraction on the right-hand side is a positive constamd, o it suffices to pick
any value ofd that is greater than or equal to this fraction.

To prove the lower bound, we need to show tiidtz) > dnlgn for a suitable
constantd > 0. We can use the same proof as for the upper bound, subsgitutin
for <, and we get the requirement that

Cc
—alga—(1—a)lg(l —a)
Therefore,T'(n) = ©(nlgn).

0<d <
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Probabilistic Analysis and Randomized
Algorithms

Solution to Exercise 5.2-1

Since HRE-ASSISTANT always hires candidatk it hires exactly once if and only
if no candidates other than candiddtare hired. This event occurs when candi-
datel is the best candidate of tle which occurs with probabilityt /7.

HIRE-ASSISTANT hiresn times if each candidate is better than all those who were
interviewed (and hired) before. This event occurs pregigdlen the list of ranks
given to the algorithm ig1,2, ..., n), which occurs with probabilityt /n!.

Solution to Exercise 5.2-5

Another way to think of the hat-check problem is that we wantiétermine the
expected number of fixed points in a random permutation.fiXéd point of a
permutationr is a valuei for which 7 (i) = i.) We could enumerate all! per-
mutations, count the total number of fixed points, and disogie:! to determine
the average number of fixed points per permutation. This dvbel a painstak-
ing process, and the answer would turn out tol b&Ve can use indicator random
variables, however, to arrive at the same answer much meily.ea

Define a random variabl¥ that equals the number of customers that get back their
own hat, so that we want to computg ¥|.

Fori = 1,2,...,n, define the indicator random variable
X; = | {customer gets back his own hat.

ThenX = X; + Xo +--- + X,

Since the ordering of hats is random, each customer has alglippof 1/n of get-
ting back their own hat. In other words, £¢; = 1} = 1/n, which, by Lemma5.1,
implies that HX;] = 1/n.



5-2 Selected Solutions for Chapter 5: Probabilistic Anaysd Randomized Algorithms

Thus,
E[X] = E {Xn: X,}

= Y E[X;] (linearity of expectation)
i=1

n
= i
i=1
=1,
and so we expect that exactlycustomer gets back their own hat.
Note that this is a situation in which the indicator randomalales arenot inde-
pendent. For example, if = 2 andX; = 1, then X, must also equal. Con-
versely, ifn = 2 and X, = 0, thenX, must also equdl. Despite the dependence,

Pr{X; = 1} = 1/n for all i, and linearity of expectation holds. Thus, we can use
the technique of indicator random variables even in thegores of dependence.

Solution to Exercise 5.2-6

Let X;; be an indicator random variable for the event where the @i}, A[/]
for i < j is inverted, i.e., A[i] > A[j]. More precisely, we define(;; =
[{A[i] > A[j]} for 1 < i < j < n. We have P{X;; =1} = 1/2, because
given two distinct random numbers, the probability thatfitest is bigger than the
second isl/2. By Lemma 5.1, BEX;;] = 1/2.

Let X be the the random variable denoting the total number of iedgairs in the
array, so that

n—1 n
X = Z Z Xij .
i=1j=i+1

We want the expected number of inverted pairs, so we takexhectation of both
sides of the above equation to obtain

n—1 n
i=1j=i+1
We use linearity of expectation to get

E[X] = E|:2_l: Z X,-<,-:|

i=1j=i+1
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AR
~\2)2
nn—1) 1
2 2
nn—1)

4
Thus the expected number of inverted pairg(is — 1)/4.

Solution to Exercise 5.3-2

Along with the identity permutation, there are other perations that BRMUTE-
WITHOUT-IDENTITY fails to produce. For example, consider its operation when
n = 3, when it should be able to produce thle- 1 = 5 non-identity permutations.
Thefor loop iterates for = 1 andi = 2. Wheni = 1, the call to RANDOM
returns one of two possible values (eitteor 3), and wheni = 2, the call to
RANDOM returns just one value). Thus, ERMUTE-WITHOUT-IDENTITY can
produce onhy2 - 1 = 2 possible permutations, rather than thihat are required.

Solution to Exercise 5.3-4

PERMUTE-BY-CycCLIC choosesoffsetas a random integer in the rande <
offset < n, and then it performs a cyclic rotation of the array. That is,
B[((i + offset— 1) modn) + 1] = A[i]fori = 1,2,...,n. (The subtraction
and addition ofl in the index calculation is due to theorigin indexing. If we
had used)-origin indexing instead, the index calculation would haimplied to
B[(i + offse) modn] = Ali]fori =0,1,...,n—1.)

Thus, onceoffsetis determined, so is the entire permutation. Since eacleaflu
offsetoccurs with probabilityl /n, each element[i] has a probability of ending
up in positionB[ ;] with probability 1 /7.

This procedure does not produce a uniform random permutdtiowever, since
it can produce only: different permutations. Thug;, permutations occur with
probability 1/x, and the remaining! — n permutations occur with probability.
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Heapsort

Solution to Exercise 6.1-1

Since a heap is an almost-complete binary tree (completiélavels except pos-
sibly the lowest), it has at mo&tt! — 1 elements (if it is complete) and at least
2" — 141 = 2" elements (if the lowest level has just 1 element and the d¢lets

are complete).

Solution to Exercise 6.1-2

Given ann-element heap of heiglit, we know from Exercise 6.1-1 that
2h§n§2h+l_1<2h+l‘

Thus,h <lIgn < h + 1. Sinceh is an integerh = |Ign] (by definition of| |).

Solution to Exercise 6.2-7

If you put a value at the root that is less than every value eléft and right
subtrees, then kx-HEAPIFY will be called recursively until a leaf is reached. To
make the recursive calls traverse the longest path to adeafse values that make
MAX-HEAPIFY always recurse on the left child. It follows the left branchem
the left child is greater than or equal to the right child, sdtipg O at the root
and 1 at all the other nodes, for example, will accomplish. tiéth such values,
Max-HEAPIFY will be called/ times (whereh is the heap height, which is the
number of edges in the longest path from the root to a leafjtssanning time
will be ®(h) (since each call doe®(1) work), which is®(Ign). Since we have
a case in which Mx-HEAPIFY’s running time is®(lgn), its worst-case running
time isQ(lgn).
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Solution to Exercise 6.4-1
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Solution to Exercise 6.5-2

The running time i90(Ig n) plus the overhead for mapping priority queue objects
to array indices.

Solution to Problem 6-1

a. The procedures BILD-MAX-HEAP and BuiLD-MAX-HEAP' do not always
create the same heap when run on the same input array. Cottgdellowing
counterexample.

Input arrayA:
A

BUILD-MAX-HEAP(A):

SRR T

BUILD-MAX-HEAP'(A):

o0 W e T e EE
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b. An upper bound oD (n Ig n) time follows immediately from there being— 1
calls to MAX-HEAP-INSERT, each takingO(lg») time. For a lower bound
of Q(nlgn), consider the case in which the input array is given in $yrict
creasing order. Each call to AX-HEAP-INSERT causes HAP-INCREASE
KEY to go all the way up to the root. Since the depth of node |Igi |, the
total time is

n

Y o(lgi) = Y o(lgfn/21])
i=1 i=[n/2]

n

= >, ollgn/2))
i=[n/2]

= ) O(llgn—1)
i=[n/2]

> (n/2)-O(gn)

= Qnlgn) .

In the worst case, therefore,UB.D-MAX-HEAP' requires®(nlgn) time to
build ann-element heap.
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Quicksort

Solution to Exercise 7.2-3

Suppose thatARTITION is called on a subarray[p : r] whose elements are dis-
tinct and in decreasing orderARTITION chooses the smallest elementAfr], as
the pivot. Every test in line 4 comes up false, so that no etesnare exchanged
during the execution of thior loop. Before RRTITION returns, line 6 finds that
i = p—1,and so it swaps the elementsAfip] and A[r]. PARTITION returnsp
as the position of the pivot. The subarray containing eldémbass than or equal
to the pivot is empty. The subarray containing elementstgraaan the pivot,
A[p + 1:r], has all but the pivot and is in decreasing order except Heatrtaxi-
mum element of this subarray is #ir].

When QUICKSORT calls FARTITION on A[p : ¢ — 1], nothing changes, as this sub-
array is empty. When QICksoRT calls FARTITION on A[g + 1 : r], now the pivot

is the greatest element in the subarray. Although everyrtdisie 4 comes up true,
the indices andj are always equal in line 6, so that just as in the case where the
pivot is the smallest element, no elements are exchangeagdine execution of
thefor loop. Before RRTITION returns, line 6 finds that= r—1, so that the swap
in line 6 leaves the pivot i [r]. PARTITION returnsr as the position of the pivot.
Now the subarray containing elements less than or equaégtpitiot has all but the
pivot and is in decreasing order, and the subarray contaelements greater than
the pivot is empty. The next call toaRTITION, therefore, is on a subarray that is
in decreasing order, so that it goes back to the first casesabov

Therefore, each recursive call is on a subarray only oneasesmaller, giving
a recurrence for the running time @f(n) = T(n — 1) + ®(n), whose solution
is ©(n?).

Solution to Exercise 7.2-5

The minimum depth follows a path that always takes the smpHet of the par-
tition—i.e., that multiplies the number of elements dy One level of recursion
reduces the number of elements frarno «n, andi levels of recursion reduce the
number of elements t@'n. At a leaf, there is just one remaining element, and so
at a minimum-depth leaf of depth, we havex™n = 1. Thus,a™ = 1/n. Taking
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logarithms, we getnlga = —Ign, orm = —Ign/Iga. (This quantity is positive
becaus® < o < 1 implies that lgx < 0.)

Similarly, the maximum-depth path corresponds to alwakmtpthe larger part of
the partition, i.e., keeping a fractigh of the elements each time. The maximum
depthM is reached when there is one element left, that is, wh¥n = 1. Thus,
M = —Ign/Ig B. (Again, this quantity is positive becau@e< < 1 implies that
lgp <0.)

All these equations are approximate because we are ignboimig and ceilings.
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Sorting in Linear Time

Solution to Exercise 8.1-3

If the sort runs in linear time fom input permutations, then the heightof the
portion of the decision tree consisting of the corresponding leaves and their
ancestors is linear.

Use the same argument as in the proof of Theorem 8.1 to shavihtkas impos-
sible form = n!/2,n!/n, orn!/2".

We have2" > m, which gives ug: > Igm. For all the possible values of given
here, Ilgn = Q(nlgn), henceh = Q(nlgn).

In particular, using equation (3.25):

Ig? =Ilgn!'—1>nlgn—nlge—1,
n!

lg— = Ign!—Ign >nlgn —nlge—Ign,
n
n!

Igz—n = Ign!'—n>nlgn—nlge—n.

Solution to Exercise 8.2-3

The following solution also answers Exercise 8.2-2.

Notice that the correctness argument in the text does nandepn the order in
which A is processed. The algorithm is correct whetHeis processed front to
back or back to front.

But the modified algorithm is not stable. As before, in thelffoaloop an element
equal to one taken from earlier is placed before the earlier one (i.e., at a lower
index position) in the output arrra@. The original algorithm was stable because
an element taken from later started out with a lower index than one taken earlier.
But in the modified algorithm, an element taken frotrater started out with a
higher index than one taken earlier.

In particular, the algorithm still places the elements witllue k£ in positions
Clk — 1] + 1 throughC k], but in the reverse order of their appearancd in
Rewrite of GOUNTING-SORT that writes elements with the same value into the
output array in order of increasing index and is stable:
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COUNTING-SORT(4,n, k)
let B[1:n], C[0: k], andL[0: k] be new arrays
fori =0tok
Cli]=0
for j = 1ton
ClA[j]] = C[A[j]] + 1
/I C[i] now contains the number of elements equal.to
L[0] =1
fori =1tok
Lii]=L[i —1]+C[i —1]
/I L[i] now contains the index of the first elementAfvith valuei
for j =1ton
BIL[A[j]]] = A[/]
L[A[j]] = L[A[j]] +1
return B

Solution to Exercise 8.3-3

Basis:If d = 1, there’s only one digit, so sorting on that digit sorts thear
Inductive step: Assuming that radix sort works fat — 1 digits, we’ll show that it
works ford digits.

Radix sort sorts separately on each digit, starting fronit digThus, radix sort of
d digits, which sorts on digit$, . . ., d is equivalent to radix sort of the low-order
d — 1 digits followed by a sort on digi#. By our induction hypothesis, the sort of
the low-orderd — 1 digits works, so just before the sort on digit the elements
are in order according to their low-order— 1 digits.

The sort on digitd will order the elements by thei/th digit. Consider two ele-
ments,a andb, with dth digitsa, andb, respectively.

* If ay < by, the sort will puta beforeb, which is correct, since < b regardless
of the low-order digits.

s If ag > by, the sort will puta afterb, which is correct, since > b regardless
of the low-order digits.

* If ay = by, the sort will leavex andb in the same order they were in, because
it is stable. But that order is already correct, since theembrorder ofz andb
is determined by the low-order— 1 digits when their/ th digits are equal, and
the elements are already sorted by their low-order 1 digits.

If the intermediate sort were not stable, it might rearraegaments whose'th
digits were equal—elements thatere in the right order after the sort on their
lower-order digits.

Solution to Exercise 8.3-5

Treat the numbers &sdigit numbers in radix. Each digit ranges frofbton — 1.
Sort thesa-digit numbers with radix sort.



Selected Solutions for Chapter 8: Sorting in Linear Time 8-3

There are3 calls to counting sort, each takirtg(n + n) = ©@(n) time, so that the
total time is®(n).

Solution to Problem 8-1

a. For a comparison algorithm to sort, no two input permutations can reach the
same leaf of the decision tree, so that there must be atidédstves reached
in T4, one for each possible input permutation. Sidcis a deterministic algo-
rithm, it must always reach the same leaf when given a péati@ermutation
as input, so at most! leaves are reached (one for each permutation). Therefore
exactlyn! leaves are reached, one for each input permutation.

Thesen! leaves will each have probabilitl/n!, since each of the! possible
permutations is the input with the probability»!. Any remaining leaves will
have probability0, since they are not reached for any input.

Without loss of generality, we can assume for the rest ofgtoblem that paths
leading only to0-probability leaves aren't in the tree, since they cannfecaf
the running time of the sort. That is, we can assumeTha&onsists of only the
n!leaves labeled/n! and their ancestors.

b. If kK > 1, then the root ofl" is not a leaf. All ofT’s leaves must be leaves in
LT andRT. Since every leaf at depthin LT or RT has depthh + 1in T,
D(T) must be the sum oD(LT), D(RT), andk, the total number of leaves.
To prove this last assertion, lé¢(x) = depth of nodex in treeT. Then,

D(T) = ) dr(x)

x€leavesT)

= Y a@+ Y dr
x€leave§LT) x€leave§¢RT)

= Y (dir®+D+ Y (drr(x)+1)
x€leave§LT) x€leave§RT)

= Z drr(x) + Z drr(x) + Z 1
x€leavegLT) x€leave§RT) x € leavegT)

= D(LT)+ D(RT) + k .

c. To show thatd(k) = min{d(i)+dk —i)+k:1<i <k-—1}, we will
show separately that(k) < min{d(i) +d(k —i)+k:1<i <k -1} and
dk)y>min{d(i)+dk —i)+k:1<i<k-—1}

* We show that/(k) < min{d(i) + d(k —i)+k : 1 <i <k — 1} by show-
ingthatd (k) < d(i)+d(k—i)+kfori =1,2,...,k—1. By Exercise B.5-4,
there are full binary trees withleaves for any from 1 to k — 1. Therefore,
we can create decision treg§” with i leaves andRT with k —i leaves such
that D(LT) = d(i) and D(RT) = d(k —i). ConstructT such thatl.T
andRT are the left and right subtrees Bfs root, respectively. Then

d(k)
< D(T) (by definition ofd as minimumD(T') value)
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= D(LT)+ D(RT) +k (by part (b))
=d(i)+dk—i)+k  (bychoice of LT andRT) .

* We show that/(k) > min{d(i) + d(k —i)+k : 1 <i <k — 1} by show-
ing thatd (k) > d(i) + d(k —i) + k, for somei in {1,2,...,k — 1}. Take
the treeT with k leaves such thaD(T) = d(k), let LT andRT beT’s
left and right subtree, respectively, andidie the number of leaves ihT .
Thenk —i is the number of leaves iRT and
d(k)

= D(T) (by choice ofT")

= D(LT)+ D(RT) + k (by part (b))

>d@i)+dk—i)+k (bydefinition ofd as minimumD(T) value) .
Neitheri nork — i can be0 (and hencel < i < k — 1), since if one of
these werd), either LT or RT would contain allk leaves of7". The root
of T would have only one child, so th&twould not be a full binary tree and
hence not a decision tree.

d. Let fx(i) =ilgi + (k—i)lg(k —i). Tofind the value of that minimizesf;,
find thei for which the derivative off; with respect ta is 0:

pon d (ilni 4 (k—i)In(k —i)
fe®) = E( In2
_Ini+1—Intk—i)—1
N In2
_Ini —In(k —1i)
In2
is0ati = k/2. To verify that this is indeed a minimum (not a maximum),

check that the second derivative fif is positive ati = k/2:

L d (Ini—Ink—i)
k(l)_ﬁ( In2 )

1 1+1
CIn2\i  k—i) "

) 1 (2 2

e ®k/2) = 15 (k +k)

1 4

In2 k

>0 (sincek > 1) .

Now we use substitution to prow&(k) = Q(kblgk). The base case of the
induction is satisfied becaugél) > 0 = c - 1 -Ig 1 for any constant. For the
inductive step, assume thati) > cilgi for 1 <i < k — 1, wherec is some
constant to be determined:
dk) = min{d(i)+dk—i)+k:1<i<k-—1}

> min{c(lgi +(k—i)lgtk—i) +k:1<i<k—1}

- (- 2ale )
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k
- cklg(§)+k

= clklgk — k) + k

= cklgk + (k — ck)

> cklgk ife<l1,
and sod (k) = Q(klgk).

e. Using the result of part (d) and the fact that (as modified in our solution to
part (a)) has! leaves, we can conclude that

D(T,) = d(n!") = Qn!lgn')) .

D(T,) is the sum of the decision-tree path lengths for sortingradut per-
mutations, and the path lengths are proportional to theime.tSince the:!
permutations have equal probabilityn!, the expected time to soutrandom
elements (one input permutation) is the total time for athpaations divided
by n!:

M = Q(g(n) = Qnlgn) .

f.  We will show how to modify a randomized decision tree (altjon) to define a
deterministic decision tree (algorithm) that is at leasi@sd as the randomized
one in terms of the average number of comparisons.

At each randomized node, pick the child with the smallestregh(the subtree
with the smallest average number of comparisons on a patle&s)a Delete all
the other children of the randomized node and splice outahdamized node
itself.

The deterministic algorithm corresponding to this modifieg still works, be-
cause the randomized algorithm worked no matter which pathtaken from
each randomized node.

The average number of comparisons for the modified algorithmo larger
than the average number for the original randomized treegsive discarded
the higher-average subtrees in each case. In particuldr,teae we splice out
a randomized node, we leave the overall average less thajual ® what it
was, because

» the same set of input permutations reaches the modifiecesuddrbefore, but
those inputs are handled in less than or equal to average¢htandrefore, and

* the rest of the tree is unmodified.

The randomized algorithm thus takes at least as much timeenage as the
corresponding deterministic one. (We've shown that thesgescase running
time for a deterministic comparison sort$Xn Ign), hence the expected time
for a randomized comparison sort is alR@ Ign).)



Selected Solutions for Chapter 9:
Medians and Order Statistics

Solution to Exercise 9.3-1

For groups of/, the algorithm still works in linear time. The numheof groups is

at mostn /7. There are at leadt(| g/2] + 1) > 2g elements greater than or equal
to the pivot, and at least[g/2] > 2g elements less than or equal to the pivot.
That leaves at mostg — 2¢g = 5g < 5n/7 elements in the recursive call. The
recurrence becomds(n) < T(n/7) + T(5n/7) + O(n), which you can show by
substitution has the solutidh(n) = O(n).

In fact, any odd group size 5 works in linear time.

Solution to Exercise 9.3-3

A modification to quicksort that allows it to run i®(nIgn) time in the worst
case uses the deterministisErITION-AROUND procedure that takes an element
to partition around as an input parameter.

SELECT takes an array, the bounds andr of the subarray iM, and the rank
of an order statistic, and in time linear in the size of theastdy A[p : r] it returns
theith smallest element id[p : r].

BESTCASE-QUICKSORT(A, p,r)
if p<r
i=[(r—p+1)/2]
X = SELECT(A, p,r,i)
q = PARTITION-AROUND(A, p, 1, X)
BESTCASE-QUICKSORT(A, p,g — 1)
BEST-CASE-QUICKSORT(A,q + 1,1)

For ann-element array, the largest subarray thasB CASE-QUICKSORT re-
curses on hag/2 elements. This situation occurs when= r — p + 1 is even;
then the subarrayi[¢ + 1:r] hasr/2 elements, and the subarrayp : ¢ — 1] has
n/2 — 1 elements.

Because BsTCASE-QUICKSORT always recurses on subarrays that are at most
half the size of the original array, the recurrence for thesivoase running time is
T(n) <2T(n/2) + ©(n) = O(nlgn).
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Solution to Exercise 9.3-6

Let the procedure MDIAN take as parameters an arrdayand subarray indiceg
andr and return the value of the median element4¢p : r] in O(n) time in the
worst case.

Given MEDIAN, here is a linear-time algorithmeSecT for finding theith small-
estelementim[p : r]. This algorithm uses the deterministia®riTION-AROUND
procedure that takes an element to partition around as aih papameter.

SELECT (4, p.r.,i)
if p==r
return A[p]
x = MEDIAN(A, p,r)
q = PARTITION-AROUND(A, p,r, x)

k=g—p+1
if i ==

return Alg]
elseifi < k

return SELECT (4, p.q — 1,i)
else return SELECT (A,q + 1,r,i — k)

Becauser is the median ofd[p : r], each subarrayl[p : ¢ — 1] andA[g + 1:7] has
at most half the number of elementsAfip : r]. The recurrence for the worst-case
running time of ELECT isT'(n) < T'(n/2) + O(n) = O(n).

Solution to Problem 9-1

Assume that the numbers start out in an array.

a. Sortthe numbers using merge sort or heapsort, which@ekeg n) worst-case
time. (Don't use quicksort or insertion sort, which can t&ke:?) time.) Put
thei largest elements (directly accessible in the sorted airdag)the output
array, taking®(i) time.

Total worst-case running timé&(nlgn + i) = O(nlgn) (becauseé < n).

b. Implement the priority queue as a heap. Build the heap using.B-HEAP,
which takes®(n) time, then call HHAP-EXTRACT-MAX i times to get the
largest elements, i® (i Ign) worst-case time, and store them in reverse order
of extraction in the output array. The worst-case extractime is®(i Ign)
because

» | extractions from a heap wit®(n) elements takes- O(Ign) = O(ilgn)
time, and

* half of thei extractions are from a heap with n/2 elements, so thosg?2
extractions takei /2)Q2(Ig(n/2)) = (i Ign) time in the worst case.
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Total worst-case running timé&(n + i Ign).

c. Use the &LECT algorithm of Section 9.3 to find thigh largest number i® (1)
time. Partition around that number &(») time. Sort the largest numbers in
O(i lgi) worst-case time (with merge sort or heapsort).

Total worst-case running timé&(n + i Igi).

Note that method (c) is always asymptotically at least asigaothe other two
methods, and that method (b) is asymptotically at least ad ge (a).
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Hash Tables

Solution to Exercise 11.2-1

For each pair of keyk, [, wherek # [, define the indicator random variablg; =
I {h(k) = h(l)}. Since we assume independent uniform hashingXRr= 1} =
Pr{h(k) = h(l)} = 1/m, and so BXy;] = 1/m.

Now define the random variablE to be the total number of collisions, so that
Y =} ;. Xwu. The expected number of collisions is

E[Y] = E[ZXM]
k£l

= Y E[Xu] (linearity of expectation)
k#l

_[n 1
“\2)m
nn-—1)

2
nn—1)

2m

3=

Solution to Exercise 11.2-4

The flag in each slot will indicate whether the slot is free.

* A free slot is in the free list, a doubly linked list of all frestots in the table.
The slot thus contains two pointers.

* Aused slot contains an element and a pointer (possihlyto the next element
that hashes to this slot. (Of course, that pointer pointsntuiteer slot in the
table.)

Operations

* |nsertion:
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* If the element hashes to a free slot, just remove the slot frenfree list and
store the element there (withnaL pointer). The free list must be doubly
linked in order for this deletion to run i@ (1) time.

* If the element hashes to a used sigitheck whether the elementalready
there “belongs” there (its key also hashes to glot

* |If so, add the new element to the chain of elements in this Slotdo
so, allocate a free slot (e.qg., take the head of the freeftistihe new
element and put this new slot at the head of the list pointellytthe
hashed-to sloty).

* Ifnot, x is part of another slot’s chain. Move it to a new slot by alkoog
one from the free list, copying the old slot’'s’¢) contents (element
and pointer) to the new slot, and updating the pointer in tbethat
pointed to; to point to the new slot. Then insert the new element in the
now-empty slot as usual.

To update the pointer tp, it is necessary to find it by searching the chain
of elements starting in the slethashes to.

Deletion: Let j be the slot the elementto be deleted hashes to.

* If x is the only element iy (j doesn’t point to any other entries), just free
the slot, returning it to the head of the free list.

* If x isin j but there’s a pointer to a chain of other elements, move tke fir
pointed-to entry to sloj and free the slot it was in.

* If x is found by following a pointer frony, just freex’s slot and splice it out
of the chain (i.e., update the slot that pointed:ttw point tox’s successor).

Searching: Check the slot the key hashes to, and if that is not the desired
element, follow the chain of pointers from the slot.

All the operations take expecta@d(1) times for the same reason they do with
the version in the book: The expected time to search the shai@(1 + «)
regardless of where the chains are stored, and the factlthla¢ lements are
stored in the table means that< 1. If the free list were singly linked, then
operations that involved removing an arbitrary slot from fiee list would not
run in O(1) time.

Solution to Problem 11-3

a. A particular key is hashed to a particular slot with probiapil /n. Suppose

we select a specific set #fkeys. The probability that thedekeys are inserted
into the slot in question and that all other keys are insezteewhere is

DN

Since there ar(aZ) ways to choose our keys, we get

o=(3) (=3 ()
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b. Fori = 1,2,...,n, let X; be a random variable denoting the number of keys
that hash to slot, and let4; be the event thak; = k, i.e., that exactlyk keys
hash to sloi. From part (a), we have RA} = Q. Then,

Py =Pr{M =k}

=Pr{max{X; : 1 <i <n} =k}

= Pr{there exists such thatX; = k and thatX; < kfori =1,2,...,n}

< Pr{there exists such thatX; = k}

=Pr{4,UA4,U---UA,}

<Pr{d,} + Pr{d,;} +--- + Pr{4,} (by inequality (C.21))

=nQj .

c. We start by showing two facts. First,— 1/n < 1 andn — k > 0, which

imply that (1 — 1/n)"* < 1. Secondn!/(n —k)! =n-(n—1)-(n —2)
--(n —k + 1) < n*. Using these facts, along with the simplificatiéh >
(k/e)* of equation (3.25), we have

1\* N *
O = (Z) (1_5) ki(n —k)!

n! —
Sm (1—1/n)"* <1)
< % (n!/(n —k)! < nk)

e | 1
< = (k!> (k/e)*) .

d. Notice that whem = 2, Iglgn = 0, so to be precise, we need to assume that
n>3.

In part (c), we showed tha@; < e*/k* for anyk; in particular, this inequality
holds fork,. Thus, it suffices to show thaf‘O/kokO < 1/n3 or, equivalently,
thatn3 < ko /eko.
Taking logarithms of both sides gives an equivalent coodliti
3 Igl’l < ko(lg k() — Ig e)

Igl—(lgc +lglgn —Iglglgn —Ige) .
Dividlng both sides by lg gives the condition

3 < Ig|—(lgc+|g|gn—lglglgn—|ge)

lgc —
_ . lJrgc Ige_lglglgn ‘
lglgn lglgn
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Let x be the last expression in parentheses:
=1+ lgc —Ige B lglglgn .
lglgn lglgn
We need to show that there exists a constant1 such thaB < cx.

Noting that lim,_.., x = 1, we see that there existg such thatc > 1/2 for all
n > ng. Thus, any constant > 6 works forn > n,.

We handle smaller values af—in particular,3 < n < ny—as follows. Since
n is constrained to be an integer, there are a finite numberiofthe range
3 < n < ny. We can evaluate the expressiorfor each such value of and
determine a value af for which3 < cx for all values ofn. The final value ot
that we use is the larger of

* 6, which works for alln > n,, and
* max{c:3 < cxand3 <n < ng}, i.e., the largest value af that we chose

for the range3 < n < ny.
Thus, we have shown th&,, < 1/n?, as desired.

To see thatP, < 1/n? for k > k,, we observe that by part (bfx < nQy
for all k. Choosingk = ko gives Py, < nQx, < n-(1/n*) = 1/n*. For
k > ko, we will show that we can pick the constansuch thatQ, < 1/n? for
all k > ko, and thus conclude tha, < 1/»* for all k > k.

To pickc as required, we lat be large enough that, > 3 > e. Thene/k < 1
for all k > ko, and sae* / k* decreases dsincreases. Thus,

Qk < ek/kk
< eko/kko
= Ok
< 1/n

fork > k.

e. The expectation oM is

E[M] = Xn:k-Pr{M =k}
k=0

ko n
=Y k-Pr{M =k}+ > k-Pr{M =k}

k=0 k=ko+1
ko n
<Y ko-Pr{M =k}+ Y  n-Pr{M =k}
k=0 k=ko+1
ko n
< koY PHM =k}+n Y  Pr{M =k}
k=0 k=ko+1

= ko-Pr{M <ko}+n-Pr{M > ko} ,
which is what we needed to show, singe= clgn/Iglgn.
To show that BEM] = O(lgn/lglgn), note that P{M < kq} <1 and
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Pr{M >ko} = Y Pr{M=k}
k=ko+1
= Z Py
k=ko+1

n

< > yn (by part (d))

k=ko+1
< n-(1/n%
=1/n.
We conclude that
EM] < ko-1+n-(1/n)
=ko+1
= O(lgn/lglgn) .
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Binary Search Trees

Solution to Exercise 12.1-2

In a heap, a node’s key is greater than or equal to both of itldreh’s keys. In a
binary search tree, a node’s key is greater than or equad tefitchild’'s key, but
less than or equal to its right child’s key.

The heap property, unlike the binary-search-tree propeidgsn’t help print the
nodes in sorted order because it doesn't tell which subtr@enode contains the
element to print before that node. In a heap, the largesteziesmaller than the
node could be in either subtree.

Note that if the heap property could be used to print the kaysorted order in
O(n) time, we would have a® (n)-time algorithm for sorting, because building
the heap takes onl® (n) time. But we know from Theorem 8.1 that a comparison
sort must take2(n Ig n) time.

Solution to Exercise 12.2-7

Note that a call to REE-MINIMUM followed byn — 1 calls to TREE-SUCCESSOR
performs exactly the same inorder walk of the tree as dogztieedure NORDER-
TREE-WALK. INORDER TREE-WALK prints the TREE-MINIMUM first, and by
definition, the TREE-SucCESSORof a node is the next node in the sorted order
determined by an inorder tree walk.

This algorithm runs ir®(n) time because:

* It requires2(n) time to do the: procedure calls.
* It traverses each of the— 1 tree edges at most twice, which takegn) time.

To see that each edge is traversed at most twice (once gowgttie tree and once
going up), consider the edge between any noded either of its children, node

By starting at the root, the walk must travelse v) downward fromu to v, before
traversing it upward frony to u. The only time the tree is traversed downward is
in code of TREE-MINIMUM, and the only time the tree is traversed upward is in
code of TREE-SuccESsSsORwhen looking for the successor of a node that has no
right subtree.

Suppose that is u’s left child.
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* Before printingu, the walk must print all the nodes in its left subtree, whigh i
rooted atv, guaranteeing the downward traversal of efige).

* After all nodes inu’s left subtree are printea, must be printed next. Procedure
TREE-SUCCESSORtraverses an upward path#dfrom the maximum element
(which has no right subtree) in the subtree rooted dthis path clearly includes
edge(u, v), and since all nodes in’s left subtree are printed, edde, v) is
never traversed again.

Now suppose that is u’s right child.

» After u is printed, TREE-SUCCESSORu) is called. To get to the minimum
element inu’s right subtree (whose root ig, the edggu, v) must be traversed
downward.

» After all values inu’s right subtree are printed,REE-SUCCESSORIs called on
the maximum element (again, which has no right subtree)drstttree rooted
atv. TREE-SUCCESSORtraverses a path up the tree to an element after
sinceu was already printed. Edda, v) must be traversed upward on this path,
and since all nodes in’s right subtree have been printed, edgev) is never
traversed again.

Hence, no edge is traversed twice in the same direction.
Therefore, this algorithm runs i@ (n) time.

Solution to Exercise 12.3-3

Here’s the algorithm:

TREE-SORT(A)

let T be an empty binary search tree
fori = 1ton

TREEINSERT(T, A[i])
INORDER- TREE-WALK (7.root)

Worst case:®(n?), which occurs when a linear chain of nodes results from the
repeated REE-INSERT operations.

Best case:®(nlgn), which occurs when a binary tree of heigh{lg »n) results
from the repeated REE-INSERT operations.

Compared with REE-INSERT in the text, this version omits assigningza, but

it must maintain thesuccattributes correctly. The new nodebecomes a child
of nodey. If z becomesy’s left child, theny should bez’s successor. The code
also needs to fing’s predecessow and setw’s successor to be. If z becomes
y’'s right child, things are a little easier. We just need tosgetsuccessor ag’s
successor and then mak& successor be.

The TRANSPLANT procedure replaces values of theattribute by the node re-
turned by calling REE-PARENT.
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TRANSPLANT(T, u, v)
z = TREE-PARENT(T, u)

if z==NIL
T.root = v

elseifu == z.left
z.left = v

elsez.right = v

Finally, TREE-DELETE omits references to the attribute and also makes the pre-
decessor of the nodebeing deleted have its successor becaraesuccessor.

TREE-DELETE(T, 2)

x = TREE-PREDECESSORT, 72)
if x # NIL
x.succ= z.succ
if z.left == NIL
TRANSPLANT(T, z, z.right)
elseifz.right == NIL
TRANSPLANT(T, z, z.left)
elsey = TREE-MINIMUM (z.right)
if y # z.right
TRANSPLANT(T, y, y.right)
y.right = z.right
TRANSPLANT(T, z, y)
y.left = z.left

Because each call ofREE-PREDECESSORand TREE-PARENT takesO(h) time,
both TREE-INSERT and TREE-DELETE take O(h) time.

Solution to Problem 12-2

To sort the strings af , first insert them into a radix tree and then use a preorder tre
walk to extract them in lexicographically sorted order. Tiee walk outputs strings
only for nodes that indicate the existence of a string (itese that correspond to
tan nodes in Figure 12.5 of the text).

Correctness

The preorder ordering is the correct order because:

* Any node’s string is a prefix of all its descendants’ stringd &ence belongs
before them in the sorted order (rule 2).

* Anode’s left descendants belong before its right descdadgmtause the corre-
sponding strings are identical up to that parent node, atiteinext position the
left subtree’s strings have 0 whereas the right subtregigsthave 1 (rule 1).
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Time
O(n).

* Insertion take® (n) time, since the insertion of each string takes time propor-
tional to its length (traversing a path through the tree wHeagth is the length
of the string), and the sum of all the string lengths.is

* The preorder tree walk take3(n) time. It prints the current node and calls
itself recursively on the left and right subtrees, so th&tkes time proportional
to the number of nodes in the tree. The number of nodes is dt hpass the
sum () of the lengths of the binary strings in the tree, becausegthe string
corresponds to a path through the root amther nodes, but a single node may
be shared among many string paths.

Here is pseudocode for the preorder tree walk. It assumése#in node has

attributesleft and right, pointing to its children §iL for children that are not

present), and a boolean attribus&ring to indicate whether the node indicates
an actual string (i.e., a tan node in Figure 12.5 of the texthe initial call

is PREORDERRADIX -TREE-WALK (7.roo0t, ), wheree denotes an empty string.
The symbol|| denotes the concatenation of strings.

PREORDERRADIX-TREE-WALK (x, string-so-far)
if x.string==TRUE
print string-so-far
if x.left # NIL
PREORDERRADIX -TREE-WALK (x.left, string-sofar || 0)
if x.right # NIL
PREORDERRADIX -TREE-WALK (x.left, string-sofar || 1)
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Solution to Exercise 13.1-4

After absorbing each red node into its black parent, theetegf each node black
node is

» 2, if both children were already black,
» 3, if one child was black and one was red, or
e 4, if both children were red.

All leaves of the resulting tree have the same depth.

Solution to Exercise 13.1-5

In the longest path, at least every other node is black. Irshiogtest path, at most
every node is black. Since the two paths contain equal nusydidrlack nodes, the
length of the longest path is at most twice the length of tleetelst path.

We can say this more precisely, as follows:

Since every path contains ph black nodes, even the shortest path freno a
descendant leaf has length at leastxhh By definition, the longest path from
to a descendant leaf has length he{ght Since the longest path has(lh black
nodes and at least half the nodes on the longest path are (oggkoperty 4),
bh(x) > heighix)/2, so that

length of longest patk= heighi(x) < 2 - bh(x) < twice length of shortest path

Solution to Exercise 13.3-3

Note: In the figures below, nodes with a heavy outline arelplacd nodes with a
regular outline are red.

In Figure 13.5, noded, B, and D have black-heighk + 1 in all cases, because
each of their subtrees has black-heighand a black root. Nod€ has black-
heightk + 1 on the left (because its red children have black-height 1) and
black-heightt 42 on the right (because its black children have black-heightl).
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In Figure 13.6, noded, B, andC have black-height + 1 in all cases. At left and
in the middle, each off’'s and B’s subtrees has black-heightand a black root,
while C has one such subtree and a red child with black-hdightl. At the right,
each of4’s and C’s subtrees has black-heightand a black root, while3’s red
children each have black-height+ 1.

Case 2 Case 3

Property 5 is preserved by the transformations. We have staivve that the
black-height is well-defined within the subtrees pictursmproperty 5 is preserved
within those subtrees. Property 5 is preserved for the toeéaming the subtrees
pictured, because every path through these subtrees thcateebutesk + 2 black
nodes.

Solution to Problem 13-1

a. When inserting a node, all nodes on the path from the rooteatided node
(a new leaf) must change, since the need for a new child pgintpagates up
from the new node to all of its ancestors.

When deleting node, three possibilities may occur:

* If z has at most one child, thenwill be spliced out, so that all ancestors
of z must be changed. (As with insertion, the need for a new cluldter
propagates up from the removed node.)

* If z has two children and its successpiis z’s right child, then replace
by y, so that all ancestors afmust be changed (i.e., the same aslifas at
most one child).
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* If z has two children and its successois notz’s right child, then replace
by y and replacey by y’s right child x. Sincey andz are ancestors of, all
ancestors of must be changed.

Since there is no parent attribute, no other nodes need thareyed.

b. Here are two ways to write BERSISTENFTREE-INSERT. The first is a version
of TREE-INSERT, modified to create new nodes along the path to where the
new node will go without using parent attributes.

PERSISTENFTREE-INSERT(T, 2)

create a new persistent binary search ffée
T’.root = CoPY-NODE(T.root)

y = NIL

x = T'.root

while x # NIL
y =x

if z.key< x.key
x = CopPY-NODE(x.left)
y.left = x
elsex = CopY-NODE(x.right)
y.right = x
if y==NIL
newroot = z
elseifz.key < y.key
y.left =z
elsey.right = z
return 7’

The second uses a recursive subroutireRPSTENFSUBTREE-INSERT(7, 2)
that inserts node into the subtree rooted at nodein 7', copying nodes as
needed, and returning either nader the copy in7T’ of noder.

PERSISTENFTREE-INSERT(T, 2)

create a new persistent binary search fée
T’.root = PERSISTENFSUBTREE-INSERT(T.ro0t, 7)
return 7’

PERSISTENFSUBTREE-INSERT(r, 7)
if ¥ ==NIL
X =7z
elsex = CoPY-NODE(r)
if z.key< r.key
x.left = PERSISTENFSUBTREE-INSERT(r.left, z)
elsex.right = PERSISTENFSUBTREE-INSERT(r.right, z)
return x

c. Like TREE-INSERT, PERSISTENFTREE-INSERT does a constant amount of
work at each node along the path from the root to the new nodece She
length of the path is at most it takesO (/) time.
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Since it allocates a new node (a constant amount of spaceabbr ancestor of
the inserted node, it also nee@sh) space.

d. If there were parent attributes, then because of the new egety node of the
tree would have to be copied when a new node is inserted. Twlsgebserve
that the children of the root would change to point to the newt,rthen their
children would change to point to them, and so on. Since e nodes, this
change would cause insertion to cre@f@:) new nodes and to take(n) time.

e. From parts (a) and (c), we know that insertion into a persidbénary search
tree of heightz, like insertion into an ordinary binary search tree, takessiv
case timeO(h). A red-black tree hag = O(lgn), so that insertion into an
ordinary red-black tree takeQ(lgn) time. We need to show that if the red-
black tree is persistent, insertion can still be don®fihg n) time. (We'll look
at deletion a little later.) To do so, we will need to show tlWimgs:

* How to still find the parent pointers that are neededifl) time without
using a parent attribute. We cannot use a parent attribgulse a persistent
tree with parent attributes requir€n) time for insertion (by part (d)).

* That the additional node changes made during red-blacloprestions (by
rotation and recoloring) don’'t cause more th@qg ») additional nodes to
change.

Here is how to find each parent pointer needed during inseitia) (1) time
without having a parent attribute. To insert into a red-klaee, we call RB-
INSERT, which in turn calls RB-NSERFFIXUP. Make the same changes to
RB-INSERT as we made to REE-INSERT for persistence. Additionally, as
RB-INSERT walks down the tree to find the place to insert the new nodeg hav
it build a stack of the nodes it traverses and pass this sta¢kB-INSERTF
Fixup. RB-INSERFFIXUP needs parent pointers to walk back up the same
path, and at any given time it needs parent pointers only tbtfia parent and
grandparent of the node it is working on. As RBSERTFIXUP moves up
the stack of parents, it needs only parent pointers thattdoeoavn locations a
constant distance away in the stack. Thus, the parent iafitsmcan be found

in O(1) time, just as if it were stored in a parent attribute.

Rotation and recoloring change nodes as follows:

* RB-INSERFFIXUP performs at most two rotations, and each rotation up-
dates the child pointers in three nodes (the node beingebttound, that
node’s parent, and one of the children of the node beingawtatound).
Thus, at most six nodes are directly modified by rotationriuRB-INSERT
FiIxXup. In a persistent tree, all ancestors of a changed node aredcEw
that RB-INSERFFIXUP’s rotations takeO(Ign) time to change nodes due
to rotation. (Actually, the changed nodes in this case saaiagleO(Ign)-
length path of ancestors.)

* RB-INSERTFFIXUP recolors some of the inserted node’s ancestors, which
are being changed anyway in persistent insertion, and soitren of an-
cestors (the “uncles” referred to in the algorithm deswipt There are
O(lgn) ancestors, henc@(Ign) color changes of uncles. Recoloring un-
cles doesn’t cause any additional node changes due totperss because
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the ancestors of the uncles are the same nodes (ancestdrs miserted
node) that are being changed anyway due to persistence., fidagoring
does not affect thé&(Ig n) running time, even with persistence.

We could show similarly that deletion in a persistent trese ahkes worst-case
time O(h).

* We already saw in part (a) thét(#) nodes change.

* We could write a persistent RBHDETE procedure that runs i@ (h) time,
analogous to the changes we made for persistence in imseBid to do so
without using parent pointers, the procedure needs to walkndhe tree to
the deepest node being changed, to build up a stack of paeliscussed
above for insertion. This walk relies on keys being distinct

Then the problem of showing that deletion needs an{ig ») time in a persis-
tent red-black tree is the same as for insertion.

* As for insertion, we can show that the parents needed by RBEDE-
Fixup can be found irO(1) time (using the same technique as for insertion).

* Also, RB-DELETE-FIXuP performs at most three rotations, which as dis-
cussed above for insertion requir€glgn) time to change nodes due to
persistence. It also make&g(lgn) color changes, which (as for insertion)
take onlyO(Ign) time to change ancestors due to persistence, because the
number of copied nodes @&(lgn).
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Solution to Exercise 14.2-5

Each time thé-loop executes, theloop executea — I + 1 times. Each time the
i-loop executes, the-loop executeg —i = [ — 1 times, each time referencing
m twice. Thus the total number of times that an entrynofs referenced while
computing other entries i5;_, 2(n — [ + 1)(/ — 1). Thus,

ZZR(i,j) = ZZ(n—l + 1) =1)

i=1 j=i 1=2

n—1
=2Y (n—Dl
=1

n—1 n—1
=2) nl-2>1
=1 1=1

2n(n —D)n 2(11 —Dn@2n—-1)

2 6
_ n3_n2_2n3—3n2+n
3
n®—n

Solution to Exercise 14.3-1

Running RECURSIVEEMATRIX-CHAIN is asymptotically more efficient than enu-
merating all the ways of parenthesizing the product and cimg the number of
multiplications for each.

Consider the treatment of subproblems by the two approaches

* For each possible place to split the matrix chain, the enatioer approach
finds all ways to parenthesize the left half, finds all ways doepthesize the
right half, and looks at all possible combinations of thé Fkeflf with the right
half. The amount of work to look at each combination of leftdaight-half
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subproblem results is thus the product of the number of wage the left half
and the number of ways to do the right half.

* For each possible place to split the matrix chaiBCRRSIVEMATRIX -CHAIN
finds the best way to parenthesize the left half, finds thevoagto parenthesize
the right half, and combines just those two results. Thusitheunt of work to
combine the left- and right-half subproblem result®id ).

Section 14.2 argued that the running time for enumerati€(i& /n>?). We will
show that the running time for REURSIVEMATRIX-CHAIN is O(n3"1).

To get an upper bound on the running time &ARSIVEMATRIX-CHAIN, we'll
use the same approach used in Section 14.2 to get a lower:bdernde a recur-
rence of the forml"(n) < ... and solve it by substitution. For the lower-bound
recurrence, the book assumed that the execution of linesaiddB—7 each take at
least unit time. For the upper-bound recurrence, we'll assthose pairs of lines
each take at most constant timeThus, we have the recurrence

c ifn=1,
n—1

T(n) < c+Z(T(k)+T(”_k)+C) ifn>2.
k=1

This is just like the book’s> recurrence except that it hasnstead of 1, and so we
can be rewrite it as

n—1
T(n)<2) T(i)+cn.

i=1

We will prove thatT'(n) = O(n3" ') using the substitution method. (Note: Any
upper bound o (n) that iso (4" /n*?) will suffice. You might prefer to prove one
that is easier to think up, such @¢n) = 0(3.5").) Specifically, we will show that
T(n) < cn3" ! foralln > 1. The basis is easy, sind&1) < ¢ = c¢-1-3"1,
Inductively, forn > 2 we have
n—1

T(n) <2) T(@)+cn

i=1

n—1
2 Z ci3 ' +cn

i=1

n—1
=C.(2Zi3f—l+n)
i=1
n3n1 1-3"
=c-(2- see below
C( (3—1+(3—1)2)+”) ( )
1-3"
=cn3”_l+c-( 5 —i—n)

= cn3"' + %(211 +1-3")

A

< en3" ! foralle >0,n>1.
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Running RECURSIVEMATRIX-CHAIN takesO(n3"~!) time, and enumerating all
parenthesizations takéx4” /n*?) time, and so RCURSIVEMATRIX-CHAIN is
more efficient than enumeration.

Note: The above substitution uses the following fact:

n—1 1 — x™

n—1
Zix"_1 S A :
— x—1  (x—1)

This equation can be derived from equation (A.6) by takirgydhrivative. Let

f(x):ni:xi:xn_l—l.

x—1
Then
n—1 n—1 n
ol grg . hx I—x
;zx _f(x)_x—l+(x—l)2'

Solution to Exercise 14.4-4

When computing a particular row of thetable, no rows before the previous row
are needed. Thus only two row2#entries—need to be kept in memory at a time.
(Note: Each row ofr actually has: + 1 entries, but we don't need to store the
column of0s—instead we can make the program “know” that those entreg. a
With this idea, we need only- min {m, n} entries if we always call LCS-ENGTH
with the shorter sequence as tieargument.

We can thus do away with thetable as follows:

* Use two arrays of length mifm, n}, previousrow andcurrentrow, to hold the
appropriate rows of .

* Initialize previousrow to all 0 and computeurrentrow from left to right.

*  When currentrow is filled, if there are still more rows to compute, copy
currentrow into previousrow and compute the neaurrentrow.

Actually only a little more than one row’s worth ef entries—min{m,n} + 1
entries—are needed during the computation. The only entieeded in the table
when it is time to compute(i, j] arec[i, k] for k < j — 1 (i.e., earlier entries in
the current row, which will be needed to compute the next ramdic[i — 1, k] for

k > j —1 (i.e., entries in the previous row that are still needed togote the rest

of the current row). This is one entry for eaktirom 1 to min{m,n} except that
there are two entries with = j — 1, hence the additional entry needed besides the
one row’s worth of entries.

We can thus do away with thetable as follows:

* Use an array of length min{m,n} + 1 to hold the appropriate entries of At
the timec|i, j] is to be computed; holds the following entries:

* alk] =cli,k]forl <k < j —1(i.e., earlier entries in the current “row”),
* alk]=c[i —1,k]fork > j —1 (i.e., entries in the previous “row”),
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* al0] = c[i,j — 1] (i.e., the previous entry computed, which couldn’t be put
into the “right” place ina without erasing the still-neededi — 1, j — 1]).

* Initialize a to all 0 and compute the entries from left to right.
* Note that the three values needed to complitej] for j > 1 are ina[0] =
cli,j—1),alj =1 =cli —1,j —1],anda[j] = c[i — 1, J].

* Whencli, j] has been computed, movg0] (c[i, j — 1]) to its “correct”
place,a[j — 1], and putc|i, j] in a[0].

Solution to Problem 14-4

We start by defining some quantities so that we can state tii@gon more uni-
formly. Special cases about the last line and worries abdwether a sequence of
words fits in a line will be handled in these definitions, sd tha can forget about
them when framing our overall strategy.

* Defineextradi, j] =M —j +i — Z,ﬁ:i [ to be the number of extra spaces
at the end of a line containing wordsthrough j. Note thatextrasmay be
negative.

* Now define the cost of including a line containing wordlrough; in the sum
we want to minimize:

00 if extragi, j] < 0 (i.e., words, ..., j don'tfit),
Ic[i,j]=¢0 if j = n andextradi, j] > 0 (last line cost9) ,
(extradi, j])*> otherwise.

By making the line cost infinite when the words don't fit on it wrevent such
an arrangement from being part of a minimum sum, and by makiagost0
for the last line (if the words fit), we prevent the arrangetmathe last line
from influencing the sum being minimized.

We want to minimize the sum &€ over all lines of the paragraph.

Our subproblems are how to optimally arrange wards ., j, where; runs from
1ton.

Consider an optimal arrangement of words. ., j. Suppose we know that the
last line, which ends in word, begins with word . The preceding lines, therefore,
contain wordsl, ...,i — 1. In fact, they must contain an optimal arrangement of
wordsl,...,i — 1. (The usual type of cut-and-paste argument applies.)

Letc[/j] be the cost of an optimal arrangement of wotds. ., j. If we know that
the last line contains words. . ., j, thenc[j] = c[i — 1] +Ic[i, j]. As a base case,
when we’re computing[1], we need:[0]. If we setc[0] = 0, thenc[1] = Ic[1, 1],
which is what we want.

But of course we have to figure out which word begins the last for the sub-
problem of wordsdl, ..., j. So we try all possibilities for word, and we pick the
one that gives the lowest cost. Heir@anges froml to j. Thus, we can defing[ ;]
recursively by
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0 if j =0,

VI mingeli — 11+ 1t 1 1 =i = 3 it 0.

Note that the way we defindd ensures that

» all choices made will fit on the line (since an arrangement Wit= co cannot
be chosen as the minimum), and

* the cost of putting words, . . ., j on the last line cannot b@unless this really
is the last line of the paragraph & ») or wordsi ... j fill the entire line.

We can compute a table ofvalues from left to right, since each value depends
only on earlier values.

To keep track of what words go on what lines, we can keep alphyatable that
points to where each value came from. Whea([j] is computed, ifc[/] is based
on the value ot [k — 1], setp[j] = k. Then afterc[n] is computed, we can trace
the pointers to see where to break the lines. The last limessthwordp[n] and
goes through wora. The previous line starts at worne| p[n]] and goes through
word p[n] — 1, etc.

In pseudocode, here’s how we construct the tables:

PRINT-NEATLY (/,n, M)
letextragl:n,1:n],Ic[1:n,1:n], c[0:n], andp[1 : n] be new tables
/I Computeextradi, j]for1 <i < j <n.
fori = 1ton

extradi,i] = M —[;
forj =i+ 1ton
extradi, j] = extradi,j — 1] —/; — 1
/I Computelc[i, j]forl <i < j <n.
fori = 1ton
for j =iton
if extragi, j] <0
Ic[i, j] = o0
elseif j ==n andextragi, j] > 0
Ic[i,j] =0
elselc[i, j] = (extradi, j])*
/I Computec[j]for0 < j <mandp[j]forl <j <n.

c[0] =0

for j = 1ton
c[j] = oo
fori =1toj

if c[i —1]+Ic[i, j] < c[/]
cljl = cli — 1] +Icfi, j]
pljl =i
return ¢ andp

Quite clearly, both the time and space @r@:?).

In fact, we can do a bit better: we can get both the time andespawn to® (n M ).
The key observation is that at mds¥//2] words can fit on a line. (Each word is
at least one character long, and there’s a space betwees.\v&idce a line with
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wordsi, ..., j containsj —i + 1 words, ifj —i + 1 > [M/2] then we know
thatlc[i, j] = oo. We need compute and store omytragi, j|] andlcli, j] for

j—i4+1<[M/2]. And the innerfor loop header in the computation of;]

andp[j] can run frommaxl, j — [M/2] + 1} to .

We can reduce the space even furthe®t@). We do so by not storing thie
andextrastables, and instead computing the valudof, /| as needed in the last
loop. The idea is that we could computdi, j] in O(1) time if we knew the
value ofextragi, j]. And if we scan for the minimum value idescendingorder
of i, we can compute that axtragi, j] = extradi + 1, j] —/; — 1. (Initially,
extragj, j] = M —1;.) This improvement reduces the spacet@), since now
the only tables we store aveand p.

Here’s how we print the output. The calRRNT-LINES(p, j) prints all words from
word 1 through word; .

PRINT-LINES(p, j)
if j >0
i = plj]
PRINT-LINES(p,i — 1)
print the line containing wordsthrough;/,
with one space between each pair of words

The initial call is RRINT-LINES(p,n). Since the value off decreases in each
recursive call, RINT-LINES takes a total oiO(n + k) time to print alln words,
wherek is the total length of all the words. (Note that because eamtfu wontains
at least one character, even counting spaces and linefegulimted characters, the
total number of characters printed is at m@/st)
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Solution to Exercise 15.1-4

Let S be the set ofi activities.

The “obvious” solution of using @EEDY-ACTIVITY-SELECTOR to find a maxi-
mum-size sef, of compatible activities fron$ for the first lecture hall, then using
it again to find a maximume-size s8f of compatible activities frony — S, for the
second hall, (and so on until all the activities are assipnedjuires®(n?) time
in the worst case. Moreover, it can produce a result that os®e lecture halls
than necessary. Consider activities with the intery@ls4), [2,5),[6,7), [4,8)}.
GREEDY-ACTIVITY-SELECTOR would choose the activities with intervals, 4)
and[6, 7) for the first lecture hall, and then each of the activitieshwittervals
[2,5) and[4, 8) would have to go into its own hall, for a total of three halleds
An optimal solution would put the activities with intervdls 4) and[4, 8) into one
hall and the activities with intervalg, 5) and[6, 7) into another hall, for only two
halls used.

There is a correct algorithm, however, whose asymptoti@ timjust the time
needed to sort the activities by time3<: Ig n) time for arbitrary times, or pos-
sibly as fast a®)(n) if the times are small integers.

The general idea is to go through the activities in order aftdime, assigning
each to any hall that is available at that time. To do this, entbwough the set
of events consisting of activities starting and activifiieéshing, in order of event
time. Maintain two lists of lecture halls: Halls that are @& the current event-
time ¢ (because they have been assigned an activityat started at; < ¢ but
won't finish until f; > ¢) and halls that are free at time (As in the activity-
selection problem in Section 15.1, we are assuming thatiigctime intervals are
half open—i.e., that if; > f;, then activitiesi and j are compatible.) When
is the start time of some activity, assign that activity taeefhall and move the
hall from the free list to the busy list. Wheris the finish time of some activity,
move the activity’s hall from the busy list to the free listhg activity is certainly
in some hall, because the event times are processed in ordéhe activity must
have started before its finish timghence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick alnatlhas already had
an activity assigned to it, if possible, before picking aerewsed hall. (This can be
done by always working at the front of the free-halls list-#jmg freed halls onto
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the front of the list and taking halls from the front of thetdisso that a new hall
doesn’t come to the front and get chosen if there are prelyiased halls.)

This guarantees that the algorithm uses as few lecture dml®ssible: The algo-
rithm will terminate with a schedule requiring < n lecture halls. Let activity
be the first activity scheduled in lecture hall The reason that was put in the
mth lecture hall is that the first — 1 lecture halls were busy at timg. So at this
time there aren activities occurring simultaneously. Therefore any scihednust
use at least: lecture halls, so the schedule returned by the algorithrptisnal.

Run time:

* Sort the2n activity-starts/activity-ends events. (In the sortedenr@n activity-
ending event should precede an activity-starting eventshat the same time.)
O(n lgn) time for arbitrary times, possibl@ (n) if the times are restricted (e.qg.,
to small integers).

* Process the events i(n) time: Scan th@n events, doing) (1) work for each
(moving a hall from one list to the other and possibly astowjaan activity
with it).

Total: O(n + time to sor}

Solution to Exercise 15.2-2

The solution is based on the optimal-substructure obdervan the text: Leti
be the highest-numbered item in an optimal solutibfior W pounds and items
I,...,n. ThenS’ = S — {i} must be an optimal solution fo’ — w; pounds
and itemsl, ...,i — 1, and the value of the solutio$i is v; plus the value of the
subproblem solutiory’.

We can express this relationship in the following formula&fiDec[i, w] to be the
value of the solution for items, . .. ,i and maximum weightv. Then

0 ifi=00rw=0,
cli,w] =g cli — 1, w] if w; >w,
max{v; +c[i — L,w —w;],c[i —1,w]} ifi>0andw > w; .

The last case says that the value of a solutioni fitems either includes item,

in which case it isv; plus a subproblem solution fér— 1 items and the weight
excludingw;, or doesn'’t include itenm, in which case it is a subproblem solution
fori — 1 items and the same weight. That is, if the thief picks itettenv; value

is added, and the thief can choose from items .,i — 1 up to the weight limit

w — w;, gaininge[i — 1, w — w;] additional value. On the other hand, if the thief
decides not to take iter then choices remain from items...,i — 1 up to the
weight limit w, giving ¢[i — 1, w] value. The better of these two choices should be
made.

The algorithm takes as inputs the maximum weightthe number: of items, and
the two sequences = (v, Vs, ..., v,) andw = (w;, w,, ..., w,). It stores
thecl(i, j] values in atable[0:n,0: W] whose entries are computed in row-major
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order. (That is, the first row af is filled in from left to right, then the second row,
and so on.) At the end of the computatiatiiz, W] contains the maximum value
the thief can take.

DYNAMIC-0-1-KNAPSACK(v, w,n, W)
letc[0:n,0: W] be a new array
forw =0to W
c[0,w] =0
fori = 1ton
cli,0] =0
forw =1toW
if w; <wandv; +cl[i —L,w—w;]>c[i —1,w]
cli,w] =v; +cli = 1,w — wj]
elsecli,w] = c[i — 1, w]

We can use the table to deduce the set of items to take by startingati¥'] and
tracing where the optimal values came frome|[if, w] = ¢[i — 1, w], then itemy is
not part of the solution, and we continue tracing with— 1, w]. Otherwise iteri
is part of the solution, and we continue tracing wifh — 1, w — w;].

The above algorithm takes(n W) time total:
* OmW)tofillinthe c table: (n + 1) - (W + 1) entries, each requirin@(1) time
to compute.

* O(n) time to trace the solution (since it starts in ravof the table and moves
up one row at each step).

Solution to Exercise 15.2-7

SortA4 and B into monotonically decreasing order.

Here’s a proof that this method yields an optimal solutioon€§lder any indices
and; such that < j, and consider the terms® anda;% . We want to show that
it is no worse to include these terms in the payoff than taidek;® anda;%, i.e.,
thata;%a;% > a;% a;%. SinceA and B are sorted into monotonically decreasing
order andi < j, we havea; > a; andb; > b;. Sincea; anda; are positive
andb; — b; is nonnegative, we havg? =%/ > a;%=b; Multiplying both sides by

a,'b-/ ajbj yieIdSaib"ajbf > a,'b-/ ajb".

Since the order of multiplication doesn’t matter, sortidigand B into monotoni-
cally increasing order works as well.
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Solution to Exercise 16.1-3

Letc¢; = cost ofith operation.

)i if i is an exact power of 2
)1 otherwise.

Ci

Operation Cost

T Boo~NoO~wWN R
R PRPOORRPRANRNR

n operations cost

n lgn
Zci fn—I—ZZj =n+Q2n—1)<3n.
i=1 j=0

(Note: Ignoring floor in upper bound of 2/.)

Total cost

Average cost of operatiosg ———
# operations

By aggregate analysis, the amortized cost per operatia@n(1).

Solution to Exercise 16.2-2

Letc¢; = cost ofith operation.
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i if i is an exact power of 2
1 otherwise.

i =

Charge each operation $3 (amortized @@}t

* If i is not an exact power of 2, pay $1, and store $2 as credit.
» If i is an exact power of 2, pay Jusing stored credit.

Operation Amortized cost Actual cost Credit remaining

©oO~NOUTAWNR
WWWWwowowaowoww
PR ORRPRPMNRLPNPR
oNUBHowohrrowN

=
o

n

Since the amortized cost is $3 per operatidn, ¢; = 3n.

i=1

We know from Exercise 16.1-3 th{ ¢; < 3n.

i=1

Then we haveX:a- > Z ¢; = credit= amortized cost actual cost> 0.

i=1 i=1
Since the amortized cost of each operatio®{d), and the amount of credit never
goes negative, the total costiobperations i (n).

Solution to Exercise 16.2-3

We introduce a new field . maxto hold the index of the high-orderin A. Initially,
A.maxis set to—1, since the low-order bit ofl is at index0 and there are initially

no 1s in A. The value ofA.maxis updated as appropriate when the counter is
incremented or reset, and this value limits how muckahust be looked at to
reset it. By controlling the cost of BSETin this way, we can limit it to an amount
that can be covered by credit from earli@@CIREMENT operations.



Selected Solutions for Chapter 16: Amortized Analysis 16-3

INCREMENT(A, k)

i =0

while i < k andA[i] ==
Ali] =0
i =i+1

ifi <k
Alil =1

/I Additions to book’s NCREMENT start here.
A.max= max{A.maxi}
elsed.max= —1

RESET(A)
fori = 0to A.max
Ali] =0
A.max= —1

As for the counter in the book, we assume that it costs $1 tafhbij. In addition,
we assume it costs $1 to updatemax

Setting and resetting of bits bwCREMENT will work exactly as for the original
counter in the book: $1 pays to set one bitlt$1 is placed on the bit that is set
to 1 as credit, and the credit on eathit pays to reset the bit during incrementing.

In addition, $1 pays for updatingpax and if maxincreases, place an additional
$1 of credit on the new high-orddr. (If maxdoesn't increase, we can just waste
that $1—it won't be needed.) SinceEBRETmanipulates bits at positions only up to
A.max and since each bit up to there must have become the high-batesome
time before the high-order got up toA.max every bit seen by RSET has $1 of
credit on it. So the zeroing of bits of by RESET can be completely paid for by
the credit stored on the bits. We just need $1 to pay for liegattax

Thus charging $4 for eacNEREMENT and $1 for each RSET is sufficient, so
that the sequence afINCREMENT and RESET operations take® (n) time.
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Solution to Exercise 17.1-7

Let A[1:n] be the array of: distinct numbers.

One way to count the inversions is to add up, for each elerttenjumber of larger
elements that precede it in the array:

# of inversions= Y " [Inv(;)| .
j=1
wherelnv(j) = {i : i < j andA[i] > A[j]}.
Note that|Inv(j)| is related toA[j]'s rank in the subarray[1: j] because the
elements ifnv(;j) are the reason that[ ;] is not positioned according to its rank.

Letr(j) be therank ofA[j]in A[l: j]. Thenj = r(j) + |Inv(j)|, so that we can
compute

Inv()=j —r()

by insertingA[1], ..., A[n] into an order-statistic tree and using O 3+K to find
the rank of eact[/] in the tree immediately after it is inserted into the treeni§T
OS-RaNK value isr(j).)

Insertion and OS-RNK each takeO(lg n) time, and so the total time for ele-
ments isO(n Ig n).

Solution to Exercise 17.2-2

Yes, it is possible to maintain black-heights as attribirtebe nodes of a red-black
tree without affecting the asymptotic performance of thelokack tree operations.
We appeal to Theorem 17.1, because the black-height of acaydbe computed
from the information at the node and its two children. Adiahe black-height
can be computed from just one child’s information: the blaeight of a node is
the black-height of a red child, or the black height of a blabkd plus one. The
second child does not need to be checked because of propefrted-black trees.

The RB-INSERFFIXUP and RB-DELETE-FIXUP procedures change node colors,
and each color change can potentially caGgtg n) black-height changes. We'll
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show that the color changes of the fixup procedures causeardi black-height
changes and thus are constant-time operations. Assuméhéhatack-height of
each nodex is kept in the attributer. bh.

For RB-INSERTFIXUP, there are three cases to examine.

Case 1: z's uncle is red.

» Before color changes, suppose that all subteegs, v, §, ¢ have the same
black-heightk with a black root, so that nodes, B, C, and D have black-
heights ofk + 1.

* After color changes, the only node whose black-height cedng nodeC.
Tofix that, add;. p.p.bh = z.p.p.bh+1 after lines 7 and 21 in RBNSERT
FIxup.

* Since the number of black nodes betweep.p and z remains the same,
nodes above.p.p are not affected by the color change.

Case 2: z's uncley is black, and; is a right child.
Case 3: z”’s uncley is black, and; is a left child.

Case 2

* With subtreesx, 8, y, 8, € of black-heightk, even with color changes and
rotations, the black-heights of nodds B, andC remain the samek(+ 1).

Thus, RB-NSERTFFIXUP maintains its originalD(lg n) time.
For RB-DELETE-FIXUP, there are four cases to examine.

Case 1: x’s sibling w is red.
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* Even though case 1 changes colors of nodes and does a rptaléak-

heights are not changed.
* Case 1 changes the structure of the tree, but waits for casgsahd 4 to

deal with the “extra black” on
Case 2: x’s sibling w is black, and both ofv’s children are black.

Case 2
> newx B C
* w is colored red, and’s “extra” black is moved up ta.p.
* Add x.p.bh = x.bhafter lines 10 and 31 in RB-BELETE-FIXUP.

* This is a constant-time update. Then, keep looping to detd thie extra
black onx.p.

Case 3: x’s sibling w is black,w’s left child is red, andv’s right child is black.

|
B )c
o o
a B e
y o € 14

* Regardless of the color changes and rotation of this casdyl#itk-heights

don’t change.
* Case 3just sets up the structure of the tree, so it can fakciby into case 4.

Case 3

Case 4: x’s sibling w is black, andw’s right child is red.

"((ﬁ

newx = T.root

Case 4
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* NodesA, C, and E keep the same subtrees, so their black-heights don’t
change.

* Add these two constant-time assignments in RB:BTE-FIXUP after lines
21 and 42:

x.p.bh = x.bh+1
x.p.p.bh = x.p.bh+1

* The extra black is taken care of, and the loop terminates.

Thus, RB-DELETE-FIXUP maintains its originalD(Ig n) time.

Therefore, we conclude that black-heights of nodes can lietaiged as attributes
in red-black trees without affecting the asymptotic parfance of red-black tree
operations.

For the second part of the question, no, we cannot maintade depths without
affecting the asymptotic performance of red-black treerajpens. The depth of a
node depends on the depth of its parent. When the depth ofact@hges, the
depths of all nodes below it in the tree must be updated. Upgldghe root node
causes: — 1 other nodes to be updated, which would mean that operatiotiseo
tree that change node depths might not ru@im Ig n) time.

Solution to Exercise 17.3-6

General idea: Move a sweep line from left to right, while ntaiming the set of
rectangles currently intersected by the line in an intetked. The interval tree
will organize all rectangles whose interval includes the current position of the
sweep line, and it will be based on theintervals of the rectangles, so that any
overlappingy intervals in the interval tree correspond to overlappirgaegles.

Details:
1. Sort the rectangles by theircoordinates. (Actually, each rectangle must ap-

pear twice in the sorted list—once for its leftcoordinate and once for its right
x-coordinate.)

2. Scan the sorted list (from lowest to highe@stoordinate).
* When anx-coordinate of a left edge is found, check whether the rgbté

y-coordinate interval overlaps an interval in the tree, auseit the rectangle
(keyed on itsy-coordinate interval) into the tree.

* When anx-coordinate of a right edge is found, delete the rectangia fihe
interval tree.

The interval tree always contains the set of “open” rectesgitersected by the
sweep line. If an overlap is ever found in the interval trberé are overlapping
rectangles.

Time: O(nlgn)
* O(nlgn) to sort the rectangles (use merge sort or heap sort).
* O(nlgn) for interval-tree operations (insert, delete, and checlkoferlap).
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Solution to Exercise 19.2-3

We want to show how to assigi(1) charges to MKE-SET and AND-SET and an
O(lgn) charge to WioN such that the charges for a sequence of these operations
are enough to cover the cost of the sequenéd#+ + nlgn), according to the
theorem. When talking about the charge for each kind of digexait is helpful to

also be able to talk about the number of each kind of operation

Consider the usual sequenceMAKE-SET, UNION, and RND-SET operations,
n of which are MAKE-SET operations, and let < n be the number of WION
operations. (Recall the discussion in Section 19.1 abauetheing at most — 1
UNION operations.) Then there aweM AKE-SET operationsy UNION operations,
andm —n — u FIND-SET operations.

The theorem didn’t separately name the numbef UNION operations; rather,
it bounded the number hby. If you go through the proof of the theorem wiih
UNION operations, you get the time bouidim —u + ulgu) = O(m + ulgu)
for the sequence of operations. That is, the actual timentalethe sequence of
operations is at most(m + u lgu), for some constant.

Thus, we want to assign operation charges such that

(MAKE-SET charge)- n
+ (FIND-SET charge) - (m —n —u)
+ (UNION charge) - u
> c(m+ulgu),

so that the amortized costs give an upper bound on the adsia. c
The following assignments work, whetré> ¢ is some constant:
* MAKE-SET: ¢’
* FIND-SET: ¢’
* UNION: ¢/(Ign + 1)
Substituting into the above sum gives
cn+cm—-—n—u)y+c'(lgn+u = ¢’'m+c'ulgn
= c¢'(m+ulgn)
> c(m+ulgu).
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Solution to Exercise 19.2-6

Let's call the two lists4 and B, and suppose that the representative of the new list
will be the representative of. Rather than appendinB to the end of4, instead
splice B into A right after the first element of. We have to travers® to update
pointers to the set object anyway, so we can just make thelestent ofB point

to the second element cff.
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Solution to Exercise 20.1-7

BBT(i,j) =) bicbl; =) bichje .

ecE ecE
* Ifi = j, thenb;.bje =1 (itis1-1o0r(—1)-(—1)) whenever enters or leaves
vertexi, and0 otherwise.
* Ifi # j,thend;.b;, = —1 whene = (i, j) ore = (j,i), and O otherwise.

Thus,

in-degree of + out-degree of  ifi = j,

BBT .’ ) — . !
(1) —(# of edges connectingandj) ifi # j .

Solution to Exercise 20.2-5

The correctness proof for the BFS algorithm shows that = &(s,u), and the
algorithm doesn’t assume that the adjacency lists are irparticular order.

In Figure 20.3, ift precedest in Adjw], we can get the breadth-first tree shown
in the figure. But ifx precedes in Adjjw] andu precedes in Adj[x], we can get
edge(x, u) in the breadth-first tree.

Solution to Exercise 20.3-12

The following pseudocode modifies the DFS and DFS+V procedures to assign
values to thecc attributes of vertices.
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DFS(G)
for each vertexx € G.V
u.color = WHITE
u.m = NIL
time= 0
counter= 0
for each vertexx € G.V
if u.color == WHITE
counter= counter+ 1
DFS-VISIT(G, u, counten

DFS-VIsIT(G, u, counten

u.CC = counter /I label the vertex
time = time+ 1
u.d = time

u.color = GRAY
for each vertex in G.Adj[u]
if v.color == WHITE

V. = U

DFS-VISIT(G, v, counten
time = time+ 1
u.f = time
u.color = BLACK

This DFS increments a counter each time DF&1V is called to grow a new tree
in the DFS forest. Every vertex visited (and added to the) togeDFS-MSIT is
labeled with that same counter value. Thwsc = v.ccif and only if u andv are
visited in the same call to DFS481T from DFS, and the final value of the counter
is the number of calls that were made to DF&N by DFS. Also, since every
vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by ealthca®FS-VisIT
from DFS are exactly the vertices in one connected comparfeiit

* All vertices in a connected component are visited by onetcaDFS-MisIT
from DFS:

Letu be the first vertex in component visited by DFS-VSIT. Since a vertex
becomes non-white only when it is visited, all verticesCinare white when
DFS-VisIT is called foru. Thus, by the white-path theorem, all verticeg(in
become descendants wfin the forest, which means that all verticesGnare
visited (by recursive calls to DFS4%1T) before DFS-\sIT returns to DFS.

* All vertices visited by one call to DFS-€IT from DFS are in the same con-
nected component:

If two vertices are visited in the same call to DFSsW from DFS, they are in
the same connected component, because vertices are aslieldy following
paths inG (by following edges found in adjacency lists, starting fregome
vertex).
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Solution to Exercise 20.4-3

An undirected graph is acyclic (i.e., a forest) if and onl@iDFS yields no back
edges.

If there’s a back edge, there’s a cycle.

If there’s no back edge, then by Theorem 20.10, there are ey edges.
Hence, the graph is acyclic.

Thus, to determine whether an undirected graph containgle,aun DFS and
classify the edges: if any edge is a back edge, there’s a.cycle

Time: O(V).

Not O(V + E): Once|V| distinct edges have been seen, at least one of them
must be a back edge because (by Theorem B.2 on page 1169) oyeit a
(undirected) forest,E| < |V|—1.

Solution to Problem 20-1

1. Suppos€u, v) is a back edge or a forward edge in a BFS of an undirected
graph. Without loss of generality, let be a proper ancestor of in the
breadth-first tree. Since all edges wfare explored before exploring any
edges of any ofi’s descendants, edd@e, v) must be explored when explor-
ing fromu. But then(u, v) must be a tree edge.

2. In BFS, an edgé€u, v) is a tree edge when the procedure sets = u.
But that occurs only when the procedure also sets = u.d + 1. Since
neitheru.d nor v.d ever changes thereafter, we havel = u.d + 1 when
BFS completes.

3. Consider a cross edde, v) where, without loss of generality, is visited
beforev. When the edges incident anare explored, vertex must already
be on the queue, for otherwige, v) would be a tree edge. Becausés on
the queue, we haved < u.d + 1 by Lemma 20.3. By Corollary 20.4, we
havev.d > u.d. Thus, eithew.d = u.dorv.d = u.d + 1.

1. Suppos€u, v) is a forward edge. Then it would have been explored while
exploring fromu, and it would have been a tree edge.

2. Same as for undirected graphs.

3. For any edggu, v), regardless of whether it's a cross edge, we cannot
havev.d > u.d + 1, since the BFS visit® at the latest when it explores
edge(u,v). Thus,v.d <u.d + 1.

4. Clearly,v.d > 0 for all verticesv. For a back edgéu, v), v is an ancestor
of u in the breadth-first tree, which means thatl < u.d. (Note that since
self-loops are considered to be back edges, we couldihave.)
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Solution to Exercise 21.1-1

Theorem 21.1 shows this.
Let A be the empty set anfl be any set containing but notv.

Solution to Exercise 21.1-4

A triangle whose edge weights are all equal is a graph in whigry edge is a
light edge crossing some cut. But the triangle is a cyclef gnot a minimum
spanning tree.

Solution to Exercise 21.1-6

Suppose that for every cut 6f, there is a unique light edge crossing the cut. Let us
consider two distinct minimum spanning treésand7’, of G. Becausd” and7"’
are distinct,7 contains some edge:, v) that is not in7’. If (u,v) is removed
from T, thenT becomes disconnected, resulting in a €8tV — S). The edge
(u,v) is a light edge crossing the c(f, V' — ) (by Exercise 21.1-3) and, by our
assumption, it's the only light edge crossing this cut. Beedu, v) is the only
light edge crossingS, V — S) and(u, v) is hotin7’, each edge iff’" that crosses
(S,V — 8) must have weight strictly greater tham(u,v). As in the proof of
Theorem 21.1, we can identify the unique edgey) in 7’ that crossesS, V —.5)
and lies on the cycle that results if we afd v) to 7’. By our assumption, we
know thatw(u,v) < w(x,y). Then, we can then remove, y) from 7’ and
replace it by(u, v), giving a spanning tree with weight strictly less thai7”).
Thus, T’ was not a minimum spanning tree, contradicting the assomjiiat the
graph had two unigue minimum spanning trees.

Here’s a counterexample for the converse:
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Here, the graph is its own minimum spanning tree, and so thémim spanning
tree is unique. Consider the a{tx}, {y,z}). Both of the edgegx, y) and(x, z)
are light edges crossing the cut, and they are both lightedge
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Solution to Exercise 22.1-3

If the greatest number of edges on any shortest path fronotiees ism, then the
path-relaxation property tells us that afteriterations of BELLMAN -FORD, every
vertexv has achieved its shortest-path weightid. By the upper-bound property,
afterm iterations, na/ values will ever change. Therefore, diavalues will change
in the (m + 1)st iteration. Because we do not knewin advance, we cannot make
the algorithm iterate exactly: times and then terminate. But if the algorithm just
stops when nothing changes any more, it will stop after 1 iterations.

BELLMAN -FORD-EARLY-TERMINATION (G, w, )

INITIALIZE -SINGLE-SOURCE(G, s)
repeat
changes= FALSE
for each edgéu,v) € G.E
if RELAX'(u, v, w)
changes= TRUE
until changes-= FALSE

RELAX (1, v, w)
if v.d>u.d+ w(u,v)
v.d = u.d+ w(u,v)
V. = U
return TRUE
else return FALSE

Because the exercise specifies tfahas no negative-weight cycles, the test for a
negative-weight cycle (based on there beirbalue that would change if another
relaxation step was done) has been removed. If there weigativeeweight cycle,
this version of the algorithm would never get out of tepeatloop because some
d value would change in each iteration.
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Solution to Exercise 22.3-3

Yes, the algorithm still works. Leu be the leftover vertex that does not
get extracted from the priority queu@. If u is not reachable fromy, then
u.d=24(s,u) = oco. If u is reachable froms, then there is a shortest path
p = s~ x — u. When the vertexxc was extractedx.d = 4(s, x) and then the
edge(x, u) was relaxed; thuss.d = 6(s, u).

Solution to Exercise 22.3-7

To find the most reliable path betweemnd:, run Dijkstra’s algorithm with edge
weightsw(u, v) = —Igr(u, v) to find shortest paths fromin O(E+V Ig V') time.
The most reliable path is the shortest path froto ¢, and that path’s reliability is
the product of the reliabilities of its edges.

Here’s why this method works. Because the probabilitiesirdependent, the
probability that a path will not fail is the product of the pabilities that its edges
will not fail. We want to find a path % ¢ such thaf [, ,)c, (1, v) is maximized.
This is equivalent to maximizing I, e, . 0)) = X e, 97, v),
which is in turn equivalent to minimizing _, ., —197(u,v). (Note: r(u,v)
can be 0, and Ig is undefined. So in this algorithm, definelig= —oc0.) Thus if
we assign weights (v, v) = —Ilg r(u, v), we have a shortest-path problem.
Since lgl =0, Igx < 0 for 0 < x < 1, and we have defined (p= —oo, all the

weightsw are nonnegative, and we can use Dijkstra’s algorithm to fiecshortest
paths froms in O(E + V' Ig V') time.

Alternative solution

You can also work with the original probabilities by runniagnodified version of
Dijkstra’s algorithm that maximizes the product of reliéids along a path instead
of minimizing the sum of weights along a path.

In Dijkstra’s algorithm, use the reliabilities as edge wegand make the following
changes:
* InINITIALIZE -SINGLE-SOURCE, line 2 becomes
v.d = —¢
* RELAX becomes

RELAX (u,v,r)
if v.d <u.d-r(u,v)
v.d =u.d-r(u,v)

V.T = U
* In DIIKSTRA, Q becomes a max-priority queue, line 7 becomes

u = EXTRACT-MAX(Q)
and lines 11-12 become
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if the call of RELAX increased.d
INCREASEKEY(Q, v, v.d)

This algorithm is isomorphic to the one above: it performs same operations
except that it is working with the original probabilitiesstead of the transformed
ones.

Solution to Exercise 22.4-7

Observe that after the first pass, dllvalues are at modd, and that relaxing
edgeqvy, v;) Will never again change@value. Therefore, we can eliminatg by

running the Bellman-Ford algorithm on the constraint grayithout thev, vertex

but initializing all shortest path estimatestd@nstead ofo.

Solution to Exercise 22.5-4

Whenever RLAX setsw for some vertex, it also reduces the vertex'sralue.

Thus ifs. 7 gets set to a nomL value,s.d is reduced from its initial value df to

a negative number. Butd is the weight of some path fromto s, which is a cycle
including s. Thus, there is a negative-weight cycle.

Solution to Problem 22-3

a. We can use the Bellman-Ford algorithm on a suitable weiglitieelcted graph
G = (V, E), which we form as follows. There is one vertex lihfor each
currency, and for each pair of currencigsandc;, there are directed edges
(vi,v;) and(v;,v;). (Thus,|V| =nand|E| =n(n —1).)

We are looking for a cycléi,, i», i3, ..., i, i;) such that
Rli1,i2] - Rliz, i3] -+ Rlix—1, 1] - Rlik,i1] > 1.
Taking logarithms of both sides of this inequality gives
lg R[i1, 2] + 19 R[i2, i3] + -+ + 19 Rlix—1,ix] + 19 R[ik,i1] > 0.
If we negate both sides, we get
(=19 R[i1,i2]) + (=g Rz, i3]) + -

+ (=19 R[ix—1.ix]) + (=19 R[ix.i1]) <0,

and so we want to determine whetlercontains a negative-weight cycle with
these edge weights.

We can determine whether there exists a negative-weighte ay& by adding
an extra vertexv, with 0-weight edges(vy,v;) for all v; € V, running
BELLMAN -FORD from vy, and using the boolean result oEBLMAN -FORD
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(which is TRUE if there are no negative-weight cycles arl Sk if there is a
negative-weight cycle) to guide our answer. That is, werirt® boolean result
of BELLMAN -FORD.

This method works because adding the new vergxvith 0-weight edges
from v, to all other vertices cannot introduce any new cycles, yenh#gures
that all negative-weight cycles are reachable fragm

It takes®(n?) time to createG, which has®(n?) edges. Then it take®(n?)
time to run BELLMAN -FORD. Thus, the total time i€ (n3).

Another way to determine whether a negative-weight cycistgis to creat&;
and, without adding, and its incident edges, run either of the all-pairs shortest
paths algorithms. If the resulting shortest-path distana&ix has any negative
values on the diagonal, then there is a negative-weighecycl

b. Note: The solution to this part also serves as a solution trdise 22.1-7.

Assuming that we ran BLLMAN -FORD to solve part (a), we only need to find
the vertices of a negative-weight cycle. We can do so asasll@o through the
edges once again. Upon finding an edgev) for whichu.d 4+ w(u, v) < v.d,

we know that either vertex is on a negative-weight cycle or is reachable from
one. We can find a vertex on the negative-weight cycle byrigaback ther
values fromv, keeping track of which vertices we've visited until we reac
vertex x that we've visited before. Then we can trace backalues fromx
until we get back toc, and all vertices in between, along withwill constitute

a negative-weight cycle. We can use the recursive methahdiy the RINT-
PATH procedure of Section 20.2, but stop it when it returns toexext

The running time i) (n*) to run BELLMAN -FORD, plus O(m) to check all the
edges and)(n) to print the vertices of the cycle, for a total 6f(n?) time.
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Solution to Exercise 23.1-3

The matrixZ© corresponds to the identity matrix

100 0
010 -« 0
;=001 0
000 - 1

of regular matrix multiplication. Substitute(the identity for+) for oo (the iden-
tity for min), and1 (the identity for-) for 0 (the identity for+).

Solution to Exercise 23.1-5

The all-pairs shortest-paths algorithm in Section 23.1 maies
L(n—l) — Wn—l — L(O) . Wn—l ,

where/""Y = §(i, j) and L© is the identity matrix. That is, the entry in the
ith row and;th column of the matrix “product” is the shortest-path dist@ from
vertexi to vertexj, and rowi of the product is the solution to the single-source
shortest-paths problem for vertéx

Notice that in a matrix “productC = A4 - B, theith row of C is theith row of A
“multiplied” by B. Since all we want is th&h row of C, we never need more than
theith row of A.

Thus the solution to the single-source shortest-paths frentex; is Lfo) Wt
where L is theith row of L(©—a vector whoseth entry is0 and whose other
entries arex.

Doing the above “multiplications” starting from the left éssentially the same

as the BELLMAN-FORD algorithm. The vector corresponds to tlievalues in
BELLMAN -FORD—the shortest-path estimates from the source to each vertex

* The vector is initially0 for the source ando for all other vertices, the same as
the values set up faf by INITIALIZE -SINGLE-SOURCE
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* Each "multiplication” of the current vector by¥ relaxes all edges just as
BELLMAN -FORD does. That s, a distance estimate in the row, say the destanc
to v, is updated to a smaller estimate, if any, formed by addimgeao(u, v) to
the current estimate of the distanceuto

* The relaxation/multiplication is done— 1 times.

Solution to Exercise 23.2-4

With the superscripts, the computationd§” = min{df™", 2% " + 4"}
If, having dropped the superscripts, the procedure weretapate and stord;
or di; before using these values to compdtg it might be computing one of the
following:

k) __ ; (k=1) (k) (k—1)
dj’ = mln{d,.j iy +dy },
®) _ i f =) S (k—1) (k)
dj’ = mln{dij Ldi +dkj} ,
k) __ ; (k=1) (k) (k)
dy’ = min{dy "7 dy’ + di'}

In any of these scenarios, the code computes the weight ajréeshpath from
to j with all intermediate vertices ifil,2,...,k}. If we used’, rather than

d$™V, in the computation, then we're using a subpath fromo k with all in-
termediate vertices i, 2,...,k}. Butk cannot be amntermediatevertex on a

shortest path from to &, since otherwise there would be a cycle on this shortest
path. Thusd ' = d". A similar argument applies to show thaf” = 4.
Hence, we can drop the superscripts in the computation.

Solution to Exercise 23.3-4

It changes shortest paths. Consider the following graph= {s, x, y, z}, and
there are 4 edgesuv(s,x) = 2, w(x,y) = 2, w(s,y) = 5, andw(s,z) = —10.
So we'd add 10 to every weight to make With w, the shortest path fromto y
iss — x — y, with weight 4. Withw, the shortest path fromto y iss — y,
with weight 15. (The path — x — y has weight 24.) The problem is that by just
adding the same amount to every edge, you penalize pathsneith edges, even
if their weights are low.
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Solution to Exercise 24.2-11

For any two verticest andv in G, we can define a flow network,,, consisting

of the directed version off with s = u, t+ = v, and all edge capacities set o
Because a flow network may not have antiparallel edges, tr edge inG, one of

the directed edges ii,,, must be broken into two edges, with a new vertex added.
Therefore,G,, has|V| + | E| vertices an® | E| edges, so that it ha@(V + E)
vertices andD(E) edges, as required. Set all capacitieg;ip to bel so that the
number of edges df crossing a cut equals the capacity of the cufijp. Let f,,
denote a maximum flow i67,,,.

We claim that the edge connectivity equals mif| f,,| : v € V — {u}} for any
vertexu € V. We’'ll show below that this claim holds. Assuming that it ¢l we
can findk as follows:

EDGE-CONNECTIVITY (G)

k = o0

select any vertex € G.V

for each vertew € G.V — {u}
set up the flow networks,,, as described above
find the maximum flowf,,, on G,
k = min{k, | fusl}

return k

The claim follows from the max-flow min-cut theorem and how et@se capaci-
ties so that the capacity of a cut is the number of edges ag#siWe prove that
k = min{| f,,]| : v e V —{u}}, foranyu € V by showing separately thatis at
least this minimum and thétis at most this minimum.

* Proof thatk > min{| f,,,| : v € V —{u}}:

Letm = min{| f,,| : v €V —{u}}. Suppose we remove only — 1 edges
from G. For any vertex, by the max-flow min-cut theorem, andv are still
connected. (The max flow froma to v is at leastn, hence any cut separating
u from v has capacity at least, which means at least edges cross any such
cut. Thus at least one edge is left crossing the cut when wewvem — 1
edges.) Thus every vertex is connected:tawvhich implies that the graph is



24-2

Selected Solutions for Chapter 24: Maximum Flow

still connected. So at least edges must be removed to disconnect the graph—
e,k =>min{|fuu| :veV —{u}}.
* Proof thatk < min{| f,,| : v e V —{u}}:

Consider a vertex with the minimum| £,,,|. By the max-flow min-cut the-
orem, there is a cut of capacity,,| separating: andv. Since all edge ca-
pacities are 1, exactlyf,,| edges cross this cut. If these edges are removed,
there is no path fronw to v, and so our graph becomes disconnected. Hence
k <min{| fyu| : v eV —{u}}.

* Thus, the claim that = min{| f,,| : v € V — {u}}, foranyu € V is true.

Solution to Exercise 24.3-3

By definition, an augmenting path is a simple path- ¢ in the residual net-

work G;. SinceG has no edges between vertices/inand no edges between
vertices inR, neither does the flow netwoi®’ and hence neither do€s;. Also,
the only edges involving or ¢ connects to L andR to z. Note that although edges

in G" can go only fromL to R, edges inG can also go fronk to L.

Thus any augmenting path must go

s—>L—>R—---—>L—>R-—1t,

crossing back and forth betwedn and R at most as many times as it can do
so without using a vertex twice. It contains 7, and equal numbers of dis-
tinct vertices fromL and R—at most2 4+ 2 - min(|L|, |R|) vertices in all. The
length of an augmenting path (i.e., its number of edges)us bounded above by
2-min(|L],|R]|) + 1.

Solution to Problem 24-4

a. Just execute one iteration of the Ford-Fulkerson algorithine edgdu, v) in £
with increased capacity ensures that the edge) is in the residual network.
So look for an augmenting path and update the flow if a pathusdo

Time
O(V + E) = O(E) by finding the augmenting path with either depth-first or
breadth-first search.

To see that only one iteration is needed, consider sepathtekcases in which
(u,v) is or is not an edge that crosses a minimum cuuJfv) does not cross a
minimum cut, then increasing its capacity does not changealpacity of any
minimum cut, and hence the value of the maximum flow does nabgh. If
(u, v) does cross a minimum cut, then increasing its capacityibgreases the
capacity of that minimum cut by, and hence possibly the value of the maxi-
mum flow by 1. In this case, there is either no augmenting path (in whicle ca
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there was some other minimum cut tkiat v) does not cross), or the augment-
ing path increases flow by. No matter what, one iteration of Ford-Fulkerson
suffices.

b. Let f be the maximum flow before reduciagu, v).
If f(u,v) <c(u,v), we don't need to do anything.

If f(u,v) = c(u,v), we need to update the maximum flow. Becatige v) is
an integer that decreases, it must be at léaso thatf (v, v) = c(u,v) > 1.
Define f'(x,y) = f(x,y)forallx,y € V, exceptthatf’(u,v) = f(u,v)—1.
Although f” obeys all capacity contraints, even aftén, v) has been reduced,
itis not a legal flow, as it violates flow conservationigunless: = s) and atv
(unlessv = ¢). f’ has one more unit of flow enteringthan leavingu, and it
has one more unit of flow leavingthan entering.

The idea is to try to reroute this unit of flow so that it goes @iu and intov
via some other path. If that is not possible, we must redue@dv froms to u
and fromv to ¢ by 1 unit.

Look for an augmenting path fromto v (note: notfrom s to ¢).

 If there is such a path, augment the flow along that path.

* If there is no such path, reduce the flow frero u by augmenting the flow
fromu to s. That is, find an augmenting path~+ s in G, and augment
the flow along that path by. (There definitely is such a path, because there
is flow from s to u.) Similarly, reduce the flow fromy to ¢ by finding an
augmenting path ~» v in Gy and augmenting the flow along that pathlby

Time
O(V + E) = O(FE) by finding the paths with either DFS or BFS.
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