CONTENTS

	Dec	lication	v
	Bes	stowal	vi
	Abo	out the Author	vii
	Acl	cnowledgments	ix
	Pre	face	xi
1	OUR NICHE	IN THE COSMOS	1
	1-1	Introduction 1	
	1-2	Why History? 3	
	1-3	Importance of Mathematics in the Development of Mechanics 3	
	1-4	Our Sources from Antiquity: Getting the Message from There to Here	4
		1-4.1 Invention of Writing 5	
		1-4.2 Hieroglyphics 6	
		1-4.3 Cuneiform 7	
		1-4.4 Ancient Egyptian Papyri 7	
		1-4.5 Mesopotamian Clay Tablets 9	
	1-5	Ancient Egyptian Astronomy and Mathematics 9	
		1-5.1 Ancient Egyptian Astronomy 10	
		1-5.2 Ancient Egyptian Mathematics 11	
	1-6	Mesopotamian Astronomy and Mathematics 14	
		1-6.1 Mesopotamian Astronomy 15	
		1-6.2 Mesopotamian Mathematics 15	
	1-7	Mathematics of the Mayans, Indians, Arabs, and Chinese 16	
	1-8	The First Great Engineering Society 19	
	1-9	Adverse Criticism of Ancient Egyptian and Mesopotamian Mathematics	24
	1-1	0 Evolution through the Hellenic Era 29	
	1-1	1 The Unification of Celestial and Terrestrial Motion 31	
		1-11.1 Celestial Motion 31	
		1-11.2 Terrestrial Motion 44	
		1-11.3 Unification 45	
	1-1	2 Variational Principles in Dynamics 47	
	1-1	3 The Internationalism of Dynamics 52	
	1-1	4 Our Niche in the Cosmos 53	
2	DESIGN, MO	DELING, AND FORMULATION OF EQUATIONS OF MOTION	55
	2-1	Introduction 55	
	2-2	Design and Modeling 56	
		2-2.1 The Design Process 56	

The Modeling Process 57

2-2.2

XX CONTENTS

- 2-2.3 Our More Modest Goals 58
- 2-3 Direct and Indirect Approaches for Formulation of Equations of Motion 59

3 KINEMATICS

- 3-1 Introduction 68
- 3-2 Position, Velocity, and Acceleration 69
- 3-3 Plane Kinematics of Rigid Bodies 75
 - 3-3.1 The General Motion of a Rigid Body 75
 - 3-3.2 Types of Plane Motion of a Rigid Body 76
 - 3-3.3 Angular Displacement, Angular Velocity, and Angular Acceleration 77
 - 3-3.4 A Cautionary Note about Finite Rotations 83
- 3-4 Time Rate of Change of Vector in Rotating Frame 85
- 3-5 Kinematic Analysis Utilizing Intermediate Frames 90
- 3-6 Generalizations of Kinematic Expressions 108 Problems for Chapter 3 111

4 MOMENTUM FORMULATION FOR SYSTEMS OF PARTICLES

4-1	Introduction	135

- 4-2 The Fundamental Physics 136
 - 4-2.1 Newton's Laws of Motion 136
 - 4-2.2 A Particle 137
 - 4-2.3 Linear Momentum and Force 138
 - 4-2.4 Inertial Reference Frames 139
 - 4-2.5 The Universal Law of Gravitation 140
- 4-3 Torque and Angular Momentum for a Particle 141
- 4-4 Formulation of Equations of Motion: Examples 144
 - 4-4.1 Problems of Particle Dynamics of the First Kind 1454-4.2 Problems of Particle Dynamics of the Second Kind 151
 - Problems for Chapter 4 163

5 VARIATIONAL FORMULATION FOR SYSTEMS OF PARTICLES

- 5-1 Introduction 179
- 5-2 Formulation of Equations of Motion 180
- 5-3 Work and State Functions 181
 - 5-3.1 Work 182
 - 5-3.2 Kinetic State Functions 183
 - 5-3.3 Potential State Functions 185
 - 5-3.4 Energy and Coenergy 189
- 5-4 Generalized Variables and Variational Concepts 190
 - 5-4.1 Generalized Coordinates 190
 - 5-4.2 Admissible Variations, Degrees of Freedom, Geometric Constraints, and Holonomicity
 - 5-4.3 Variational Principles in Mechanics 201
 - 5-4.4 Generalized Velocities and Generalized Forces
 - for Holonomic Systems 205

135

179

195

- 5-5 Equations of Motion for Holonomic Mechanical Systems via Variational Principles 213
- 5-6 Work–Energy Relation 238
- 5-7 Nature of Lagrangian Dynamics 241 Problems for Chapter 5 243

6 DYNAMICS OF SYSTEMS CONTAINING RIGID BODIES

- 6-1 Introduction 268
- 6-2 Momentum Principles for Rigid Bodies 269
 - 6-2.1 Review of Solids in Equilibrium and Particle Dynamics 270
 - 6-2.2 Models of Rigid Bodies 271
 - 6-2.3 Momentum Principles for Extended Bodies: The Newton-Euler Equations 272
 - 6-2.4 Momentum Principles for Rigid Bodies Modeled as Systems of Particles 273
 - 6-2.5 Momentum Principles for Rigid Bodies Modeled as Continua 275
- 6-3 Dynamic Properties of Rigid Bodies 279
 - 6-3.1 The Inertia Tensor 279
 - 6-3.2 Parallel-Axes Theorem 290
 - 6-3.3 Principal Directions and Principal Moments of Inertia 296
 - 6-3.4 Uses of Mass Symmetry 298
- 6-4 Dynamics of Rigid Bodies via Direct Approach 303
- 6-5 Lagrangian for Rigid Bodies 308
 - 6-5.1 Kinetic Coenergy Function for Rigid Body 308
 - 6-5.2 Potential Energy Function for Rigid Body 310
- 6-6 Equations of Motion for Systems Containing Rigid Bodies in Plane Motion 311 Problems for Chapter 6 334

7 DYNAMICS OF ELECTRICAL AND ELECTROMECHANICAL SYSTEMS 366

- 7-1 Introduction 366
- 7-2 Formulation of Equations of Motion for Electrical Networks 369
- 7-3 Constitutive Relations for Circuit Elements 371
 - 7-3.1 Passive Elements 371
 - 7-3.2 Active Electrical Elements 376
- 7-4 Hamilton's Principle and Lagrange's Equations
 - for Electrical Networks 380
 - 7-4.1 Generalized Charge Variables 380
 - 7-4.2 Generalized Flux Linkage Variables 382
 - 7-4.3 Work Expressions 383
 - 7-4.4 Summary of Lumped-Parameter Offering of Variational Electricity 386

408

- 7-4.5 Examples 386
- 7-5 Constitutive Relations for Transducers 407
 - 7-5.1 Ideal Movable-Plate Capacitor
 - 7-5.2 Electrically Linear Movable-Plate Capacitor 410
 - 7-5.3 Ideal Movable-Core Inductor 412
 - 7-5.4 Magnetically Linear Movable-Core Inductor 413

268

xxii CONTENTS

7-6 Hamilton's Principle and Lagrange's Equations for Electromechanical Systems 415

- 7-6.1 Displacement–Charge Variables Formulation 416
- 7-6.2 Displacement–Flux Linkage Variables Formulation 417
- 7-6.3 Examples 419
- 7-7 Another Look at Lagrangian Dynamics 428 Problems for Chapter 7 429

8 VIBRATION OF LINEAR LUMPED-PARAMETER SYSTEMS

8-1	Introduction	439

- 8-2 Single-Degree-of-Freedom First-Order Systems 440
 - 8-2.1 Free Response 441
 - 8-2.2 Step Response 444
 - 8-2.3 Ramp Response 446
 - 8-2.4 Harmonic Response 449
 - 8-2.5 Summary of Responses for Single-Degree-of-Freedom First-Order Systems 459
- 8-3 Single-Degree-of-Freedom Second-Order Systems 460
 - 8-3.1 Free Response 461
 - 8-3.2 Natural Frequency via Static Deflection 467
 - 8-3.3 Logarithmic Decrement 468
 - 8-3.4 Energy Loss of Free Vibration 471
 - 8-3.5 Harmonic Response 472
 - 8-3.6 Summary of Responses for Single-Degree-of-Freedom Second-Order Systems 498
- 8-4 Two-Degree-of-Freedom Second-Order Systems 500
 - 8-4.1 Natural Modes of Vibration 501
 - 8-4.2 Response to Initial Conditions 514
 - 8-4.3 Harmonic Response 527
- 8-5 Stability of Nonlinear Systems 541 Problems for Chapter 8 557

9 DYNAMICS OF CONTINUOUS SYSTEMS

- 9-1 Introduction 576
- 9-2 Equations of Motion 578
 - 9-2.1 Longitudinal Motion of System Containing Rod 579
 - 9-2.2 Twisting Motion of System Containing Shaft 586
 - 9-2.3 Electric Transmission Line 589
 - 9-2.4 Flexural Motion of System Containing Beam 594
 - 9-2.5 Summaries 602
- 9-3 Natural Modes of Vibration 607
 - 9-3.1 Method of Separation of Variables 608
 - 9-3.2 Time Response 610
 - 9-3.3 Eigenfunctions for Second-Order Systems 612
 - 9-3.4 Eigenfunctions for Fourth-Order Systems 620
 - 9-3.5 General Solutions for Free Undamped Vibration 633

576

439

		CONTENTS	XXIII
	9-4	Response to Initial Conditions 636	
		9-4.1 An Example: Release of Compressed Rod 636 9.4.2 An Example: Shaft Stopped after Rotation 647	
		9-4.3 An Example: Shart Stopped alter Rotation 047 9-4.3 An Example: Sliding–Free Beam Initially Bent 650	
	9-5	Response to Harmonic Excitations 660	
		9-5.1 An Example: Specified Harmonic Motion of Boundary 660	
		9-5.2 An Example: Distributed Harmonic Force 662	
	0.0	9-5.3 An Example: Harmonic Force on Boundary 665	
	9-6	Summaries 672 Broblems for Chapter 0 672	
		Problems for Chapter 9 673	
BIBLIOGRAP	HY		684
	1	Historical 694	
	1	Astronomy 686	
	3	Design, Systems, and Modeling 686	
	4	Elementary Dynamics 686	
	5	Intermediate/Advanced Dynamics 686	
	6	Hamilton's Law of Varying Action and Hamilton's Principle 687	
	7	Electrical and Electromechanical Systems 687	
	8	Vibration 687	
APPENDIX A	FINI	TE ROTATION	688
	A-1	Change in Position Vector Due to Finite Rotation 688	
	A-2	Finite Rotations Are Not Vectors 690	
	A-3	Do Rotations Ever Behave as Vectors? 692	
		A-3.1 Infinitesimal Rotations Are Vectors 692	
		A-3.2 Consecutive Finite Rotations about a Common Axis	
		Are Vectors 692	
APPENDIX B	GEN	ERAL KINEMATIC ANALYSIS	694
	B-1	All Angular Velocities Defined with Respect to	
		Fixed Reference Frame (Case 1) 694	
	B-2	Each Angular Velocity Defined with Respect to	
		Immediately Preceding Frame (Case 2) 698	
			705
APPENDIX C	MON	AENTUM PRINCIPLES FOR SYSTEMS OF PARTICLES	705
	C-1	Asserted Momentum Principles 705	
	C-2	Principles for Single Particle 706	
	C-3	Principles for System of Particles 707	
		C-3.1 Asserted System Momentum Principles 708	

- System Momentum Principles Derived from Particle Momentum Principles 709 Conditions on Internal Forces 711 C-3.2
- C-3.3

- C-3.4 Relationships between Momentum Principles and Conditions on Internal Forces 712
- C-3.5 Linear Momentum Principle in Terms of Centroidal Motion 714
- C-3.6 Angular Momentum Principle about Arbitrary Point 715
- C-3.7 System of Particle Model in Continuum Limit 717
- C-4 Angular Momentum Principle in Noninertial Intermediate Frame 719

APPENDIX D ELEMENTARY RESULTS OF THE CALCULUS OF VARIATIONS 728

- D-1 Introduction 728
- D-2 Summary of Elementary Results 730
- D-3 Euler Equation: Necessary Condition for a Variational Indicator to Vanish 734

APPENDIX E SOME FORMULATIONS OF THE PRINCIPLES OF HAMILTON 737

- E-1 Mechanical Formulations 737
 - E-1.1 Hamilton's Law of Varying Action 740
 - E-1.2 Hamilton's Principle 741
 - E-1.3 Lagrange's Equations 742
 - E-1.4 Discussion 743
- E-2 Hamilton's Principle for Electromechanical Systems Using a Displacement–Charge Formulation 744
- E-3 Hamilton's Principle for Electromechanical Systems Using a Displacement–Flux Linkage Formulation 747
- E-4 Work–Energy Relation Derived from Lagrange's Equations 749

APPENDIX F LAGRANGE'S FORM OF D'ALEMBERT'S PRINCIPLE 754

- F-1 Fundamental Concepts and Derivations 754
- F-2 Examples 757

APPENDIX G A BRIEF REVIEW OF ELECTROMAGNETIC (EM) THEORY AND APPROXIMATIONS

763

- G-1 Maxwell's Equations: Complete Form 763
 - G-1.1 Integral Form 763
 - G-1.2 Differential Form 765
- G-2 Maxwell's Equations: Electrostatics and Magnetostatics 765
- G-3 Maxwell's Equations: Electroquasistatics and Magnetoquasistatics 766
 - G-3.1 Electroquasistatics 766
 - G-3.2 Magnetoquasistatics 768

G-4 Energy Storage in Electroquasistatics and Magnetoquasistatics 770

- G-4.1 Energy Storage in Electroquasistatics 771
- G-4.2 Energy Storage in Magnetoquasistatics 773
- G-5 Kirchhoff's "Laws" 774
 - G-5.1 Kirchhoff's Current "Law" 774

G-5.2 Kirchhoff's Voltage "Law"	77!	5
---------------------------------	-----	---

G-5.3 Summary 776

APPENDIX H	COMPLEX NUMBERS AND SOME USEFUL FORMULAS OF COMPLEX VARIABLES AND TRIGONOMETRY	777
	 H-1 Introduction 777 H-2 Elementary Algebraic Operations of Complex Numbers 780 H-3 Complex Conjugates 781 H-4 A Useful Formula of Complex Variables 782 H-5 Use of Complex Variables in Harmonic Response Analyses 787 H-6 Useful Formulas of Trigonometry 796 	
APPENDIX I	TEMPORAL FUNCTION FOR SYNCHRONOUS MOTION OF TWO-DEGREE-OF-FREEDOM SYSTEMS	800
	 I-1 Free Undamped Equations of Motion 800 I-2 Synchronous Motion 800 I-3 General Temporal Solution 801 I-4 Special (Semidefinite) Temporal Solution 803 I-5 Generalization to Systems Having More Degrees of Freedom 803 	
APPENDIX J	STABILITY ANALYSES OF NONLINEAR SYSTEMS	804
	 J-1 State-Space Stability Formulation 804 J-1.1 State-Space Representation of Equations of Motion 804 J-1.2 Equilibrium States 806 J-1.3 Linearization about Equilibrium States 808 J-1.4 Concept and Types of Stability 809 J-1.5 Stability of Linearized Systems 811 J-1.6 Local Stability of Nonlinear Systems 814 J-1.7 Nonlinear Stability Analyses 815 J-1.8 Summary of State-Space Stability Analysis 815 J-2 Nonlinear Stability Analysis for Conservative Systems 816 	
APPENDIX K	STRAIN ENERGY FUNCTIONS	822
	K-1 Concept 822 K-2 Strain Energy Density Function 822 K-3 Strain Energy Function 824 K-4 Examples 825	
ANSWERS TO) MOST OF THE ODD-NUMBERED PROBLEMS	833
LIST OF TABI	LES	843
KEY DYNAMI	ICAL PRINCIPLES, FORMULAS, & CONVERSION FACTORS	846
INDEX		851