Contents

Series Foreword xiii
Acknowledgments xv
Preface xvii

1 Preliminary Material 1

1.1 Introduction 1
 1.1.1 The Cell, the Circuit, and the Brain 1
 1.1.2 Physics of Electrical Circuits 1
 1.1.3 Mathematical Preliminaries 2
 1.1.4 Writing Computer Code 4

1.2 The Neuron, the Circuit, and the Brain 4
 1.2.1 The Cellular Level 4
 1.2.2 The Circuit Level 7
 1.2.3 The Regional Level 8

1.3 Physics of Electrical Circuits 11
 1.3.1 Terms and Properties 11
 1.3.2 Pumps, Reservoirs, and Pipes 12
 1.3.3 Some Peculiarities of the Electrical Properties of Neurons 13

1.4 Mathematical Background 14
 1.4.1 Ordinary Differential Equations 15
 1.4.2 Vectors, Matrices, and Their Basic Operations 24
 1.4.3 Probability and Bayes’ Theorem 28

1.5 Introduction to Computing and MATLAB 36
 1.5.1 Basic Commands 37
 1.5.2 Arrays 38
 1.5.3 Allocation of Memory 40
 1.5.4 Using the Colon (:) Symbol 41
 1.5.5 Saving Your Work 42
 1.5.6 Plotting Graphs 42
3.1.4 Spike-Triggered Average 96
3.1.5 White-Noise Stimuli for Receptive Field Generation 96
3.1.6 Spatiotemporal Receptive Fields 98

3.2 Tutorial 3.1: Generating Receptive Fields with Spike-Triggered Averages 100

3.3 Spike-Train Statistics 104
 3.3.1 Coefficient of Variation (CV) of Interspike Intervals 105
 3.3.2 Fano Factor 107
 3.3.3 The Homogeneous Poisson Process: A Random Point Process for Artificial Spike Trains 108
 3.3.4 Comments on Analyses and Use of Dummy Data 109

3.4 Tutorial 3.2: Statistical Properties of Simulated Spike Trains 110

3.5 Receiver-Operating Characteristic (ROC) 113
 3.5.1 Producing the ROC Curve 113
 3.5.2 Optimal Position of the Threshold 115
 3.5.3 Uncovering the Underlying Distributions from Binary Responses: Recollection versus Familiarity 118

3.6 Tutorial 3.3: Receiver-Operating Characteristic of a Noisy Neuron 121

3.7 Appendix A: The Poisson Process 123
 3.7.1 The Poisson Distribution 123
 3.7.2 Expected Value of the Mean of a Poisson Process 125
 3.7.3 Fano Factor of the Poisson Process 125
 3.7.4 The Coefficient of Variation (CV) of the ISI Distribution of a Poisson Process 126
 3.7.5 Selecting from a Probability Distribution: Generating ISIs for the Poisson Process 127

3.8 Appendix B: Stimulus Discriminability 128
 3.8.1 Optimal Value of Threshold 129
 3.8.2 Calculating the Probability of an Error 130
 3.8.3 Generating a Z-Score from a Probability 130

4 Conductance-Based Models 133
 4.1 Introduction to the Hodgkin-Huxley Model 133
 4.1.1 Positive versus Negative Feedback 134
 4.1.2 Voltage Clamp versus Current Clamp 136
 4.2 Simulation of the Hodgkin-Huxley Model 137
 4.2.1 Two-State Systems 138
 4.2.2 Full Set of Dynamical Equations for the Hodgkin-Huxley Model 139
 4.2.3 Dynamical Behavior of the Hodgkin-Huxley Model: A Type-II Neuron 140
 4.3 Tutorial 4.1: The Hodgkin-Huxley Model as an Oscillator 147
 4.4 The Connor-Stevens Model: A Type-I Model 150
Contents

4.5 Calcium Currents and Bursting 154
 4.5.1 Thalamic Rebound and the T-Type Calcium Channel 155
4.6 Tutorial 4.2: Postinhibitory Rebound 156
4.7 Modeling Multiple Compartments 159
 4.7.1 The Pinsky-Rinzel Model of an Intrinsic Burster 160
 4.7.2 Simulating the Pinsky-Rinzel Model 160
 4.7.3 A Note on Multicompartamental Modeling with Specific Conductances versus Absolute Conductances 163
 4.7.4 Model Complexity 166
4.8 Hyperpolarization-Activated Currents (I_h) and Pacemaker Control 166
4.9 Dendritic Computation 168
4.10 Tutorial 4.3: A Two-Compartment Model of an Intrinsically Bursting Neuron 170

5 Connections between Neurons 173
 5.1 The Synapse 173
 5.1.1 Electrical Synapses 173
 5.1.2 Chemical Synapses 174
 5.2 Modeling Synaptic Transmission through Chemical Synapses 179
 5.2.1 Spike-Induced Transmission 179
 5.2.2 Graded Release 181
 5.3 Dynamical Synapses 182
 5.3.1 Short-Term Synaptic Depression 183
 5.3.2 Short-Term Synaptic Facilitation 183
 5.3.3 Modeling Dynamical Synapses 184
 5.4 Tutorial 5.1: Synaptic Responses to Changes in Inputs 185
 5.5 The Connectivity Matrix 187
 5.5.1 General Types of Connectivity Matrices 189
 5.5.2 Cortical Connections: Sparseness and Structure 190
 5.5.3 Motifs 191
 5.6 Tutorial 5.2: Detecting Circuit Structure and Nonrandom Features within a Connectivity Matrix 193
 5.7 Oscillations and Multistability in Small Circuits 196
 5.8 Central Pattern Generators 197
 5.8.1 The Half-Center Oscillator 199
 5.8.2 The Triphasic Rhythm 199
 5.8.3 Phase Response Curves 200
 5.9 Tutorial 5.3: Bistability and Oscillations from Two LIF Neurons 203
 5.10 Appendix: Synaptic Input Produced by a Poisson Process 205
 5.10.1 Synaptic Saturation 205
 5.10.2 Synaptic Depression 208
5.10.3 Synaptic Facilitation 209
5.10.4 Notes on Combining Mechanisms 209

6 Firing-Rate Models and Network Dynamics 211
6.1 Firing-Rate Models 211
6.2 Simulating a Firing-Rate Model 213
 6.2.1 Meaning of a Unit and Dale’s Principle 216
6.3 Recurrent Feedback and Bistability 217
 6.3.1 Bistability from Positive Feedback 217
 6.3.2 Limiting the Maximum Firing Rate Reached 221
 6.3.3 Dynamics of Synaptic Response 222
 6.3.4 Dynamics of Synaptic Depression and Facilitation 223
 6.3.5 Integration and Parametric Memory 225
6.4 Tutorial 6.1: Bistability and Oscillations in a Firing-Rate Model with Feedback 227
6.5 Decision-Making Circuits 229
 6.5.1 Decisions by Integration of Evidence 232
 6.5.2 Decision-Making Performance 233
 6.5.3 Decisions as State Transitions 235
 6.5.4 Biasing Decisions 235
6.6 Tutorial 6.2: Dynamics of a Decision-Making Circuit in Two Modes of Operation 236
6.7 Oscillations from Excitatory and Inhibitory Feedback 238
6.8 Tutorial 6.3: Frequency of an Excitatory-Inhibitory Coupled Unit Oscillator and PING 242
6.9 Orientation Selectivity and Contrast Invariance 245
 6.9.1 Ring Models 246
6.10 Ring Attractors for Spatial Memory and Head Direction 250
 6.10.1 Dynamics of the Ring Attractor 252
6.11 Tutorial 6.4: Orientation Selectivity in a Ring Model 254

7 An Introduction to Dynamical Systems 257
7.1 What Is a Dynamical System? 257
7.2 Single Variable Behavior and Fixed Points 258
 7.2.1 Bifurcations 258
 7.2.2 Requirement for Oscillations 260
7.3 Models with Two Variables 261
 7.3.1 Nullclines and Phase-Plane Analysis 262
 7.3.2 The Inhibition-Stabilized Network 264
 7.3.3 How Inhibitory Feedback to Inhibitory Neurons Impacts Stability of States 267
7.4 Tutorial 7.1: The Inhibition-Stabilized Circuit 267
7.5 Attractor State Itinerancy 269
 7.5.1 Bistable Percepts 269
 7.5.2 Noise-Driven Transitions in a Bistable System 270
7.6 Quasistability and Relaxation Oscillators: The FitzHugh-Nagumo Model 271
7.7 Heteroclinic Sequences 275
7.8 Chaos 275
 7.8.1 Chaotic Systems and Lack of Predictability 277
 7.8.2 Examples of Chaotic Neural Circuits 279
7.9 Criticality 282
 7.9.1 Power-Law Distributions 283
 7.9.2 Requirements for Criticality 284
 7.9.3 A Simplified Avalanche Model with a Subset of the Features of Criticality 287
7.10 Tutorial 7.2: Diverse Dynamical Systems from Similar Circuit Architectures 288
7.11 Appendix: Proof of the Scaling Relationship for Avalanche Sizes 290

8 Learning and Synaptic Plasticity 293
8.1 Hebbian Plasticity 293
 8.1.1 Modeling Hebbian Plasticity 296
8.2 Tutorial 8.1: Pattern Completion and Pattern Separation via Hebbian Learning 297
8.3 Spike-Timing Dependent Plasticity (STDP) 300
 8.3.1 Model of STDP 302
 8.3.2 Synaptic Competition via STDP 304
 8.3.3 Sequence Learning via STDP 305
 8.3.4 Triplet STDP 305
 8.3.5 A Note on Spike-Timing Dependent Plasticity 308
 8.3.6 Mechanisms of Spike-Timing Dependent Synaptic Plasticity 309
8.4 More Detailed Empirical Models of Synaptic Plasticity 309
8.5 Tutorial 8.2: Competition via STDP 311
8.6 Homeostasis 313
 8.6.1 Firing-Rate Homeostasis 314
 8.6.2 Homeostasis of Synaptic Inputs 316
 8.6.3 Homeostasis of Intrinsic Properties 317
8.7 Supervised Learning 319
 8.7.1 Conditioning 321
 8.7.2 Reward Prediction Errors and Reinforcement Learning 322
 8.7.3 The Weather-Prediction Task 324
 8.7.4 Calculations Required in the Weather-Prediction Task 325
8.8 Tutorial 8.3: Learning the Weather-Prediction Task in a Neural Circuit 326
8.9 Eyeblink Conditioning 329
8.10 Tutorial 8.4: A Model of Eyeblink Conditioning 331