
Solutions to Exercises

Chapter 2

2.1 Two-oracle variant of the PAC model

• Assume that C is efficiently PAC-learnable using H in the standard PAC model using
algorithm A. Consider the distribution D = 1

2
(D− + D+). Let h ∈ H be the hypothesis

output by A. Choose δ such that:

P[RD(h) ≤ ε/2] ≥ 1− δ.
From

RD(h) = P
x∼D

[h(x) 6= c(x)]

=
1

2
( P
x∼D−

[h(x) 6= c(x)] + P
x∼D+

[h(x) 6= c(x)])

=
1

2
(RD− (h) +RD+

(h)),

it follows that:

P[RD− (h) ≤ ε] ≥ 1− δ and P[RD+
(h) ≤ ε] ≥ 1− δ.

This implies two-oracle PAC-learning with the same computational complexity.

• Assume now that C is efficiently PAC-learnable in the two-oracle PAC model. Thus, there
exists a learning algorithm A such that for c ∈ C, ε > 0, and δ > 0, there exist m− and m+

polynomial in 1/ε, 1/δ, and size(c), such that if we draw m− negative examples or more
and m+ positive examples or more, with confidence 1 − δ, the hypothesis h output by A
verifies:

P[RD− (h)] ≤ ε and P[RD+
(h)] ≤ ε.

Now, let D be a probability distribution over negative and positive examples. If we could
draw m examples according to D such that m ≥ max{m−,m+}, m polynomial in 1/ε, 1/δ,
and size(c), then two-oracle PAC-learning would imply standard PAC-learning:

P[RD(h)]

≤ P[RD(h)|c(x) = 0]P[c(x) = 0] + P[RD(h)|c(x) = 1]P[c(x) = 1]

≤ ε(P[c(x) = 0] + P[c(x) = 1]) = ε.
If D is not too biased, that is, if the probability of drawing a positive example, or that of
drawing a negative example is more than ε, it is not hard to show, using Chernoff bounds
or just Chebyshev’s inequality, that drawing a polynomial number of examples in 1/ε and
1/δ suffices to guarantee that m ≥ max{m−,m+} with high confidence.

Otherwise, D is biased toward negative (or positive examples), in which case returning
h = h0 (respectively h = h1) guarantees that P[RD(h)] ≤ ε.
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To show the claim about the not-too-biased case, let Sm denote the number of positive
examples obtained when drawing m examples when the probability of a positive example
is ε. By Chernoff bounds,

P[Sm ≤ (1− α)mε] ≤ e−mεα
2/2.

We want to ensure that at least m+ examples are found. With α = 1
2

and m =
2m+

ε
,

P[Sm > m+] ≤ e−m+/4.

Setting the bound to be less than or equal to δ/2, leads to the following condition on m:

m ≥ min{
2m+

ε
,

8

ε
log

2

δ
}

A similar analysis can be done in the case of negative examples. Thus, when D is not too
biased, with confidence 1− δ, we will find at least m− negative and m+ positive examples
if we draw m examples, with

m ≥ min{
2m+

ε
,

2m−

ε
,

8

ε
log

2

δ
}.

In both solutions, our training data is the set T and our learned concept L(T ) is the tightest
circle (with minimal radius) which is consistent with the data.

2.5 Triangles

As in the case of axis-aligned rectangles, consider three regions r1, r2, r3, along the sides of
the target concept as indicated in figure E.6. Note that the triangle formed by the points
A”, B”, C” is similar to ABC (same angles) since A”B” must be parallel to AB, and similarly
for the other sides.

Assume that P[ABC] > ε, otherwise the statement would be trivial. Consider a triangle
A′B′C′ similar to ABC and consistent with the training sample and such that it meets all
three regions r1, r2, r3.

Since it meets r1, the line A′B′ must be below A”B”. Since it meets r2 and r3, A′ must be

in r2 and B′ in r3 (see figure E.6). Now, since the angle Â′B′C′ is equal to ̂A”B”C”, C′

must be necessarily above C”. This implies that triangle A′B′C′ contains A”B”C”, and thus
error(A′B′C′) ≤ ε.

error(A′B′C′) > ε =⇒ ∃i ∈ {1, 2, 3} : A′B′C′ ∩ ri = ∅.
Thus, by the union bound,

P[error(A′B′C′) > ε] ≤
3∑
i=1

P[A′B′C′ ∩ ri = ∅] ≤ 3(1− ε/3)m ≤ 3e−3mε.

Setting δ to match the right-hand side gives the sample complexity m ≥ 3
ε

log 3
δ

.

Chapter 3

3.3 Growth function of linear combinations

(a) {X+∪{xm+1},X−} and {X+,X−∪{xm+1}} are linearly separable by a hyperplane going
through the origin if and only if there exists w1 ∈ Rd such that

∀x ∈ X+,w1 · x > 0 ∀x ∈ X−,w1 · x < 0, and w1 · xm+1 > 0 (E.35)

and there exists w2 ∈ Rd such that

∀x ∈ X+,w2 · x > 0 ∀x ∈ X−,w2 · x < 0, and w2 · xm+1 < 0. (E.36)

For any w1,w2, the function f : (t 7→ tw1 + (1 − t)w2) · xm+1 is continuous over [0, 1].
(E.44) and (E.45) hold iff f(0) < 0 and f(1) > 0, that is iff there exists w = t0w1 + (1−
t0)w2 linearly separating {X+,X−} and such at w · xm+1 = 0.

(b) Repeating the formula, we obtain C(m, d) =
∑m−1
k=0

(m−1
k

)
C(1, d− k). Since, C(1, n) = 2

if n ≥ 1 and C(1, n) = 0 otherwise, the result follows.
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Figure E.5
Rectangle triangles.

h

A

S

Figure E.6
Illustration of (h∆A) ∩ S = (h ∩ S)∆(A ∩ S) shown in gray.

(c) This is a direct application of the result of the previous question.

3.25 VC-dimension of symmetric difference of concepts

Fix a set S. We can show that the number of classifications of S using H is the same as when
using H∆A. The set of classifications obtained using H can be identified with {S∩h : h ∈ H}
and the set of classifications using H∆A can be identified with {S∩ (h∆A) : h ∈ H}. Observe
that for any h ∈ H,

S ∩ (h∆A) = (S ∩ h)∆(S ∩A). (E.37)
Figure E.7 helps illustrate this equality in a special case. Now, in view of this inequality, if
S ∩ (h∆A) = S ∩ (h′∆A) for h, h′ ∈ H, then

(S ∩ h)∆B = (S ∩ h′)∆B, (E.38)

with B = S ∩ A. Since two sets that have the same symmetric differences with respect to a
set B must be equal, this implies

S ∩ h = S ∩ h′. (E.39)
This shows that φ defined by

φ : S ∩H→ S ∩ (H∆A)

S ∩ h 7→ S ∩ (h∆A)

is a bijection, and thus that the sets S ∩H and S ∩ (H∆A) have the same cardinality.
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Chapter 5

5.3 Importance weighted SVM

The modified primal optimization problem can be written as

minimize 1
2
||w||2 + C

∑m
i=1 ξipi

subject to yi[w · xi + b] ≥ 1− ξi .
The Lagrangian holding for all w, b, αi ≥ 0, βi ≥ 0 is then

L(w, b, α) =
1

2
||w||2 + C

m∑
i=1

ξipi (E.40)

−
m∑
i=1

αi[yi(w · xi + b)− 1 + ξi]−
m∑
i=1

βiξi .

Then ∂L
∂w

and ∂L
∂b

are the same as for the regular non-separable SVM optimization problem.

We also have ∂L
∂ξi

= Cpi−αi−βi. Thus, to satisfy the KKT conditions we have for all i ∈ [m],

w =

m∑
i=1

αiyixi (E.41)

m∑
i=1

αiyi = 0 (E.42)

αi + βi = Cpi (E.43)

αi[yi(w · xi + b)− 1 + ξi] = 0 (E.44)

βiξi = 0 . (E.45)

Plugging equation E.79 into equation E.78, we get

L =
1

2
||
m∑
i=1

αiyixi||2 + C

m∑
i=1

ξipi −
m∑

i,j=1

αiαjyiyj(xi · xj) (E.46)

−
m∑
i=1

αiyib+

m∑
i=1

αi −
∑

αiξi −
m∑
i=1

βiξi .

Using equation E.81, we can simplify:

L =
m∑
i=1

αi −
1

2
||
m∑
i=1

αiyixi||2 ,

meaning that the objective function is the same as in the regular SVM problem. The difference
is in the constraints on the optimization. Recall that our dual form holds for βi ≥ 0. Using
again equation E.81, our optimization problem is to maximize L subject to the constraints:

∀i ∈ [m], 0 ≤ αi ≤ Cpi ∧
m∑
i=1

αiyi = 0.

5.6 Sparse SVM

(a) Let
x′i = (y1xi · x1, . . . , ymxi · xm) .
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Then the optimization problem becomes

min
α,b,ξ

1

2
||α||2 + C

m∑
i=1

ξi

subject to yi
(
α · x′i + b

)
≥ 1− ξ

ξi, αi ≥ 0, i ∈ [m] ,

which is the standard formulation of the primal SVM optimization problem on samples
x′i, modulo the non-negativity constraints on αi.

(b) The Lagrangian of (1) for all αi ≥ 0, ξi ≥ 0, b, α′i ≥ 0, βi ≥ 0, γi ≥ 0, i ∈ [m] is

L =
1

2
||α||2 + C

m∑
i=1

ξi −
m∑
i=1

α′i(yi(α · x′i + b)− 1 + ξi)−
m∑
i=1

βiξi −
m∑
i=1

γiαi ,

and the KKT conditions are

∇αL = 0 ⇔ α =
m∑
i=1

α′iyix
′
i + γ

∇bL = 0 ⇔
m∑
i=1

α′iyi = 0

∇ξiL = 0 ⇔ α′i + βi = C

and

α′i(yi(α · x′i + b)− 1− ξi) = 0

βiξi = 0

γiαi = 0.

Using the KKT conditions on L we get

L =
1

2

(
m∑
i=1

α′iyix
′
i + γ

)
·

 m∑
j=1

α′jyjx
′
j + γ

+ C

m∑
i=1

ξi

−
m∑
i=1

α′i

yi
 m∑

j=1

α′jyjx
′
j + γ

 · x′i + b

− 1 + ξi


−

�
�

��m∑
i=1

βiξi −

�
�

��m∑
i=1

γiαi

= −
1

2

m∑
i=1

α′iyix
′
i ·

 m∑
j=1

α′jyjx
′
j + γ

+
�
�
�1

2
γ ·α

+
m∑
i=1

Cξi − α′i (yib− 1 + ξi)

=

m∑
i=1

α′i −
1

2

m∑
i,j=1

α′iα
′
jyiyjx

′>
i

(
x′j + γ

)
+

�
���

��m∑
i=1

(C − α′i)ξi −
�
�

��
m∑
i=1

α′iyib.
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Thus the dual optimization problem is

max
α′,γ

m∑
i=1

α′i −
1

2

m∑
i,j=1

α′iα
′
jyiyjx

′
i ·
(
x′j + γ

)
subject to

m∑
i=1

α′iyi = 0

0 ≤ α′i ≤ C, γi ≥ 0, i ∈ [m] .

Chapter 6

6.18 Metrics and kernels

(a) If K is an NDS kernel, then by theorem 6.16 the kernel K′ defined for any x0 ∈ X by:

K′(x, x′) =
1

2
[K(x, x0) +K(x′, x0)−K(x, x′)]

is a PDS kernel (K(x0, x0) = 0). Let H be the reproducing Hilbert space associated to K′.
There exists a mapping Φ(x) from X to H such that ∀x, x′ ∈ X,K′(x, x′) = Φ(x) · Φ(x′).
Then,

||Φ(x)− Φ(x′)||2 = K′(x, x) +K′(x′, x′)− 2K′(x, x′)

=
1

2
[2K(x, x0)−K(x, x)] +

1

2
[2K(x′, x0)−K(x′, x′)]−

[K(x, x0) +K(x′, x0)−K(x, x′)]

= K(x, x′)

It is then straightforward to show that
√
K is a metric.

(b) Suppose that K(x, x′) = exp(−|x − x′|p), x, x′ ∈ R, is positive definite for p > 2. Then,
for any t > 0, {x1, . . . , xn} ⊆ X, {c1, . . . , cn} ⊆ R,

n∑
i,j=1

cicj exp(−t|xj − xk|p) =

n∑
i,j=1

cicj exp(−|t1/pxj − t1/pxk|p) ≥ 0

Thus, by theorem 6.17, K′(x, x′) = |x− x′|p is an NDS kernel. But,
√
K′ is not a metric

for p > 2 since it does not verify the triangle inequality (take x = 1, x′ = 2, x′′ = 3),
which contradicts part (a).

(c) If a < 0 or b < 0, a||x||2 + b < 0 for some non-null vectors x. For such values, K(x, x) =
tanh(a||x||2 + b) < 0. The kernel is thus not PDS and the SVM training may not converge
to an optimal value. The equivalent neural network may also converge to a local minimum.

6.19 Sequence kernels

(a) X∗ − I is a regular language and can be represented by a finite automaton. K can thus
be defined by

∀x, y ∈ X∗, K(x, y) = [[T ◦ T−1]](x, y), (E.47)
where T is the weighted transducer shown in figure E.14. Thus, K is a rational kernel and
in view of the theorem 6.21, it is positive definite symmetric.

(b) Let MX∗−I be the minimal automaton representing X∗ − I. The transducer T of fig-
ure E.14 can be constructed using MX∗−I . Then, |T | = |MX∗−I |+ 8. Using composition
of weighted transducers, the running time complexity of the computation of the algorithm
is:

O(|x||y||T ◦ T−1|) = O(|x||y||T |2) = O(|x||y||MX∗−I |2). (E.48)
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0

a:e/1

c:e/1

g:e/1

t:e/1

1/1
X* - I: X* - I/r

a:e/1

c:e/1

g:e/1

t:e/1

Figure E.7
Weighted transducer T . e represents the empty string, and r = ρ. X∗ − I stands for a finite
automaton accepting X∗ − I.

(c) The set of strings Y over the alphabet X of length less than n form a regular language
since they can be described by:

Y =

n−1⋃
i=0

Xi. (E.49)

Thus, Y1 = Y ∩ (X∗− I) and Y2 = (X∗− I)−Y1 are also regular languages. It suffices to
replace in the transducer T of figure E.14 the transition labeled with X∗ − I : X∗ − I/ρ
with two transitions:

• Y1 : Y1/ρ1, and

• Y2 : Y2/ρ2,

with the same origin and destination states and with Y1 and Y2 denoting finite automata
representing them. The kernel is thus still rational and PDS since it is of the form T ′◦T ′−1.

Chapter 7

7.8 Simplified AdaBoost

(a) As in the standard case, we can show that

R̂(h) ≤
T∏
t=1

Zt, (E.50)

and that
Zt = (1− εt)e−α + εte

α. (E.51)
By definition of γ and the fact that eα − e−α > 0 for all α > 0,

Zt = εt(e
α − e−α) + e−α (E.52)

≤ (1− γ)(eα − e−α) + e−α (E.53)

= (
1

2
− γ)eα + (

1

2
+ γ)e−α = u(α). (E.54)

u(α) is minimized for

(
1

2
− γ)eα = (

1

2
+ γ)e−α, (E.55)

that is, for

α =
1

2
log

1
2

+ γ
1
2
− γ

. (E.56)

Tighter bounds on the product of the Zts can lead to better values for α.
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(b) As in the standard case, at round t, the probability mass assigned to correctly classified
points is p+ = (1 − εt)e−α and the probability mass assigned to the misclassified points
is p− = εteα. Thus,

p−

p+
=

εt

1− εt

1
2

+ γ
1
2
− γ
≤

1
2
− γ

1
2

+ γ

1
2

+ γ
1
2
− γ

= 1. (E.57)

This contrasts with AdaBoost’s property.

(c)

Zt ≤ (
1

2
− γ)eα + (

1

2
+ γ)e−α (E.58)

= (
1

2
− γ)

√√√√ 1
2

+ γ
1
2
− γ

+ (
1

2
+ γ)

√√√√ 1
2
− γ

1
2

+ γ
(E.59)

= 2

√
(
1

2
+ γ)(

1

2
− γ). (E.60)

Thus, the empirical error can be bounded as follows:

R̂S(h) ≤
T∏
t=1

Zt (E.61)

≤ [2

√
(
1

2
+ γ)(

1

2
− γ)]T (E.62)

= (1− 4γ2)T/2 (E.63)

≤ e−2γ2T . (E.64)

(d) If R̂S(h) = 1
m

∑m
i=1 1yif(xi)≤0 ≤ 1

m
, then clearly R̂S(h) = 0. Using the bound obtained

in the previous question, if e−2γ2T < 1
m

, the empirical error is zero. This can be rewritten
as

T >
logm

2γ2
. (E.65)

(e) Using the bound for the consistent case,

P[R(h) > ε] ≤ 2ΠC(2m)2−
mε
2 ≤ 2(

2em

d
)d2−

mε
2 . (E.66)

Setting the right-hand side to δ, with probability at least 1− δ, the following bound holds
for that consistent hypothesis:

errorD(H) ≤
2

m

(
d log2

2em

d
+ log2

2

δ

)
, (E.67)

with d = 2(s+ 1)T log2(eT ) and T =
⌊

logm
2γ2

⌋
+ 1.

The bound is vacuous for γ(m) = O(
√

logm
m

). This could suggest overfitting.

7.11 HingeBoost

(a) Since the hinge loss is convex, its composition with affine function of α is also convex and
F is convex as as sum of convex functions.

For the existence of one-sided directional derivatives, one can use the fact that any convex
function has one-sided directional derivatives or alternatively, that our specific function is
the sum of piecewise affine functions, which are also known to have one-sided directional
derivatives (think of one-dimensional hinge loss).
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(b) Distinguishing different cases depending on the value of yift−1(xi) = 1, it is straightfor-
ward to derive the following expressions for all j ∈ [N ]:

F ′+(αt−1, ej) =

m∑
i=1

−yihj(xi)[1yift−1(xi)<1 + 1(yihj(xi)<0)∧(yift−1(xi)=1)]

F ′−(αt−1, ej) =

m∑
i=1

−yihj(xi)[1yift−1(xi)<1 + 1(yihj(xi)>0)∧(yift−1(xi)=1)].

The key here is that when yift−1(xi) 6= 1, each term in the sum will be either 0 or the
affine function independent of yihj(xi). On the other hand, when yift−1(xi) = 1, the
sign of yihj(xi) determines whether the finite differences will extend into the 0 portion of
the affine portion of the term.

(c)

HingeBoost(S = ((x1, y1), . . . , (xm, ym)))

1 f ← 0

2 for j ← 1 to N do

3 r ←
∑m
i=1−yihj(xi)[1yif(xi)<1 + 1(yihj(xi)<0)∧(yif(xi)=1)]

4 l←
∑m
i=1−yihj(xi)[1yif(xi)<1 + 1(yihj(xi)>0)∧(yif(xi)=1)]

5 if (l ≤ 0) ∧ (r ≥ 0) then

6 d[j]← 0

7 elseif (l ≤ r) then

8 d[j]← r

9 else d[j]← l

10 for t← 1 to T do

11 k ← argmin
j∈[N ]

|d[j]|

12 η ← argminη≥0G(f + ηhk) . line search

13 f ← f + ηhk
14 return f

Chapter 8

8.2 Generalized mistake bound
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The bound is unaffected, as shown by the following, using the same definitions and steps as
in this chapter:

Mρ ≤
v ·
∑
t∈I ytxt

‖v‖

=
v ·
∑
t∈I(wt+1 −wt)/η

‖v‖
(definition of updates)

=
v ·wT+1

η‖v‖
≤ ‖wT+1‖/η (Cauchy-Schwarz ineq.)

= ‖wtm + ηytmxtm‖/η (tm largest t in I)

=
[
‖wtm‖2 + η2‖xtm‖2 + ηytmwtm · xtm︸ ︷︷ ︸

≤0

]
]1/2

/η

≤
[
‖wtm‖2 + η2R2]

]1/2
/η

≤
[
Mη2R2]

]1/2
/η =

√
MR. (applying the same to previous ts in I).

8.10 On-line to batch — non-convex loss

(a) We use the following series of inequalities:

min
i∈[T ]

(R(hi) + 2cδ(T − i+ 1))

≤
1

T

T∑
i=1

(R(hi) + 2cδ(T − i+ 1))

=
1

T

T∑
i=1

R(hi−1) +
2

T

T−1∑
i=0

√
1

2(T − i)
log

T (T + 1)

δ

<
1

T

T∑
i=1

R(hi−1) +
2

T

T−1∑
i=0

√
1

2(T − i)
log
( (T + 1)

δ

)2

=
1

T

T∑
i=1

R(hi−1) +
2

T

T−1∑
i=0

√
1

(T − i)
log

(T + 1)

δ

≤
1

T

T∑
i=1

R(hi−1) + 4

√
1

T
log

T + 1

δ
.

The first inequality follows, since the minimum is always less than or equal to the average
and the final inequality follows from

∑T−1
i=0

√
1/(T − i) =

∑T
i=1

√
1/i ≤ 2

√
T .

(b) Coupling the inequality of part (a) with the high probability statement of lemma 8.14 to
bound 1

T

∑T
i=1 R(hi) shows the desired bound.

(c) The square-root terms in part (b) can be bounded further by 6
√

1
T

log
2(T+1)

δ
.

Now, note that for two events A and B that each occur with probability at least 1− δ,
P[¬A ∪ ¬B] ≤ P[¬A] + P[¬B] ≤ 2δ

⇐⇒ P[A ∧B] ≥ 1− 2δ .

Thus, the probability that both bounds in (b) and (c) hold simultaneously is at least
1− 2δ; substituting δ with δ/2 everywhere completes the bound.
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Chapter 9

9.5 Decision trees. A binary decision tree with n nodes has exactly n+1 leaves. Each node can be
labeled with an integer from {1, . . . , N} indicating which dimension is queried to make a binary
split and each leaf can be labeled with ±1 to indicate the classification made at that leaf. Fix
an ordering of the nodes and leaves and consider all possible labelings of this sequence. There
can be no more than (N + 2)2n+1 distinct binary trees and, thus, the VC-dimension of this
finite set of hypotheses can be no larger than (2n+ 1) log(N + 2) = O(n logN).

Chapter 11

11.1 Pseudo-dimension and monotonic functions

If for some m > 0, there exists (t1, . . . , tm) and a set of points (x1, . . . , xm) that H shatters,
then φ ◦H can also shatter it. To see that, note that if for some h ∈ H,

h(xi) ≥ ti ,
then by the monotonic property of φ,

φ(h(xi)) ≥ φ(ti) .

A similar argument holds for the case h(xi) < ti. Thus, φ ◦H can shatter the set of points
(x1, . . . , xm) with thresholds (φ(t1), . . . , φ(tm)), and this proves that Pdim(φ◦H) ≥ Pdim(H).

Since φ is strictly monotonic, it is invertible, and a similar argument with φ−1 can be used to
show Pdim(H) ≥ Pdim(φ ◦H).

11.8 Optimal kernel matrix

(a) Using the closed-form solution for the inner maximization problem α = (K + λI)−1y,
simplifies the joint optimization to a simpler minimization:

min
K�0

y>(K + λI)−1y , s.t. ‖K‖2 ≤ 1 .

Note that for any invertible matrix A, y>A−1y ≥ ‖y‖2λmin(A−1) = ‖y‖2λmax(A)−1.

Thus, it is easy to see that minK�0 y>(K + λI)−1y ≥ ‖y‖
2

1+λ
since ‖K‖2 = λmax(K) ≤ 1.

We now show K = 1
‖y‖2 yy> achieves this lower bound. First, note that ( 1

‖y‖2 yy> +

λI)y = (1 + λ)y, so y is an eigenvector of the matrix with eigenvalue (1 + λ). Since the
matrix is invertible, it can be shown that y is also an eigenvector of ( 1

‖y‖2 yy> + λI)−1

with eigenvalue 1
1+λ

(for example, consider the eigen decomposition of the matrix).

(b) The kernel matrix alone is not useful for classifying future unseen points x, which requires
computing

∑m
i=1 K(xi, x) and needs access to an underlying kernel function that in con-

sistent with the kernel matrix. Finding such a kernel function may be difficult in general,
and furthermore the choice of function may not be unique.

Chapter 14

14.1 Tighter stability bounds

(a) No, even as β → 0 the generalization bound of theorem 14.2 only guarantees R(hS) −

R̂S(hS) ≤M
√

log 1
δ

2m
= O(1/

√
m).

(b) In this case, M = C/
√
m and M

√
log 1

δ
2m

= O(1/m); thus, it would suffice to have β =

O(1/m3/2) in order to guarantee an O(1/m) generalization bound.
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14.2 Quadratic hinge loss stability

We first show that the loss function is σ-admissible. Consider three cases:

• Both h(x) and h′(x) are correct with margin greater than 1, then

|L(h(x), y)− L(h′(x), y)| = 0.

• Only one hypothesis is correct with large enough margin. Without loss of generality assume
h′(x) is correct, then

|L(h(x), y)− L(h′(x), y)| = (1− h(x)y)2

≤ ((1− h(x)y)− (1− h′(x)y))2 = (h′(x)− h(x))2

≤ 4
√
M |h(x)− h′(x)|.

The first inequality follows from the assumption 1− h′(x)y ≤ 0, and the second inequality
follows from the bounded loss assumption, which implies ∀h ∈ H, |h(x)| ≤

√
M + 1 ≤ 2M .

• Finally, we consider the case where both h(x) and h′(x) incur a loss. Without loss of
generality assume (1− h(x)y) ≥ (1− h′(x)y), then

|L(h(x), y)− L(h′(x), y)| = (1− h(x)y)2 − (1− h′(x)y)2

=
(
(1− h(x)y) + (1− h′(x)y)

)(
(1− h(x)y)− (1− h′(x)y)

)
≤ |2− y(h(x) + h′(x))||y(h(x)− h′(x))| ≤ 6

√
M |h(x)− h′(x)| .

Thus, the quadratic hinge loss is σ-admissible with σ = 6
√
M . By proposition 14.4, SVM with

quadratic hinge loss is stable with β = 36r2M
mλ

, and using theorem 14.2 gives the following
bound:

R(hS) ≤ R̂S(hS) +
36r2M

mλ
+
(72r2M

λ
+M

)√ log 1
δ

m
.

Chapter 15

15.2 Double centering

(a) Observe that ‖xi − xj‖2 = (xi − xj)
>(xi − xj) = x>i xi + x>j xj − 2x>i xj and rearrange

terms.

(b) Noting that X∗ = X− 1
m

X11> and plugging into the equation K∗ = X∗>X∗ yields the
result.

(c) Note that the scalar form of the equation in (b) is

K∗ij = Kij −
1

m

m∑
k=1

Kik −
1

m

m∑
k=1

Kkj +
1

m2

∑
k

∑
l

Kk,l .

Substituting with the equation D2
ij = Kii + Kjj − 2Kij from (a) and simplifying yields

the result.

(d) We first observe that − 1
2
HDH = − 1

2
(D − 1

m
D11> − 1

m
11>D + 1

m2 11>D11>). By
inspection, the matrix expression on the RHS corresponds to the scalar expression with
four terms on the RHS of the equation in (c).

15.4 Nyström method

(a) For the first part of question, note that W is SPSD if x>Wx ≥ 0 for all x ∈ Rl. This
condition is equivalent to y>Ky ≥ 0 for all y ∈ Rm where yi = 0 for l+ 1 ≤ i ≤ m. Since
K is SPSD by assumption, this latter condition holds. For the second part, we write K̃
in block form as

K̃ =

[
W

K21

]
W†

[
W K>21

]
=

[
W K>21

K21 K21W†K>21

]
.
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Comparison with the block form of K then immediately yields the desired result.

(b) Observe that C = X>X′ and W = X′>X′. Thus,

K̃ = CW†C> = X>X′
(
X′>X′

)†
X′
>

X = X>UX′U
>
X′X = X>PUX′X.

(c) Yes. Using the expression for K̃ in (b) and the idempotency of orthogonal projection
matrices, we can write K̃ = X>PUX′X = A>A, where A = PUX′X.

(d) Since K = X>X, rank(K) = rank(X) = r. Similarly, W = X′>X′ implies rank(W) =
rank(X′) = r. The columns of X′ are columns of X, and they thus span the columns of
X. Hence, UX′ is an orthonormal basis for X, i.e., IN − PUX′ ∈ Null(X), and by part

(b) of this exercise we have K− K̃ = X>(IN −PUX′ )X = 0.

(e) Storage of K requires roughly 3200 TB, i.e.,

(20× 106)2 entries× 8 bytes/entry×
1TB

1012 bytes
= 3200 TB.

Storage of C requires roughly 160 GB, i.e.,

(20× 106 × 103) entries× 8 bytes/entry×
1GB

109 bytes
= 160 GB.

Note that the computed numbers do not account for the symmetry of K (doing so would
change the storage requirements by less than a factor of two).

Chapter C

C.1 For any δ > 0, let t = f−1(δ). Plugging this in P[X > t] ≤ f(t) yields P[X > f−1(δ)] ≤ δ,
that is P[X ≤ f−1(δ)] ≥ 1− δ.

C.2 By definition of expectation and using the hint, we can write

E[X] =
∑
n≥0

nP[X = n] =
∑
n≥1

n(P[X ≥ n]− P[X ≥ n+ 1]).

Note that in this sum, for n ≥ 1, P[X ≥ n] is added n times and subtracted n− 1 times, thus
E[X] =

∑
n≥1 P[X ≥ n].

More generally, by definition of the Lebesgue integral, for any non-negative random variable
X, the following identity holds:

E[X] =

∫ +∞

0
P[X ≥ t] dt.

Chapter D

D.2 Estimating label bias. Let p̂+ be the fraction of positively labeled points in S = (x1, . . . , xm):

p̂+ =
1

m

m∑
i=1

1f(xi)=+1

Since the points are drawn i.i.d.,

E[p̂+] =
1

m

m∑
i=1

E
S∼Dm

[1f(xi)=+1] = E
S∼Dm

[1f(x1)=+1] = E
x∼D

[1f(x)=+1] = p+.

Thus, by Hoeffding’s inequality, for any ε > 0,

P[|p+ − p̂+| > ε] ≤ 2e−2mε2 .

Setting δ to match the right-hand side yields the result.

D.3 Biased coins
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(a) By definition of the error of Oskar’s prediction rule,

error(fo) = P[fo(S) 6= x]

= P[fo(S) = xA ∧ x = xB ] + P[fo(S) = xB ∧ x = xA]

= P
[
N(S) <

m

2

∣∣∣x = xB

]
P[x = xB ]+

P
[
N(S) ≥

m

2

∣∣∣x = xA

]
P[x = xA]

=
1

2
P[N(S) <

m

2

∣∣∣x = xB ] +
1

2
P
[
N(S) ≥

m

2

∣∣∣x = xA

]
≥

1

2
P
[
N(S) ≥

m

2

∣∣∣x = xA

]
.

(b) Note that P[N(S) ≥ m
2
|x = xA] = P[B(m, p) ≥ k], with p = 1/2 − ε/2, k = m

2
, and

mp ≤ k ≤ m(1− p). Thus, by Slud’s inequality (section D.5)

error(fo) ≥
1

2
P

[
N ≥

mε/2√
1/4(1− ε2)m

]
=

1

2
P
[
N ≥

√
mε

√
1− ε2

]
.

Using the second inequality of the appendix, we now obtain

error(fo) ≥
1

4

(
1−

√
1− e−u2

)
,

with u =
√
mε√

1−ε2
, which coincides with (D.29).

(c) If m is odd, since P
[
N(S) ≥ m

2

∣∣∣x = xA

]
≥ P

[
N(S) ≥ m+1

2

∣∣∣x = xA

]
, we can use the

lower bound

error(fo) ≥
1

2
P
[
N(S) ≥

m+ 1

2

∣∣∣x = xA

]
.

Thus, in both cases we can use the lower bound expression with dm/2e instead of m/2.

(d) If error(fo) is at most δ, then 1
4

[
1−

[
1− e−

2dm/2eε2
1−ε2

] 1
2
]
< δ, which gives

e
− 2dm/2eε2

1−ε2 < 1− (1− 4δ)2 = 4δ(2− 4δ) = 8δ(1− 2δ),

and

m > 2

⌈
1− ε2

2ε2
log

1

8δ(1− 2δ)

⌉
.

The lower bound varies as 1
ε2

.

(e) Let f be an arbitrary rule and denote by FA the set of samples for which f(S) = xA and
by FB the complement. Then, by definition of the error,

error(f) =
∑
S∈FA

P[S ∧ xB ] +
∑
S∈FB

P[S ∧ xA]

=
1

2

∑
S∈FA

P[S|xB ] +
1

2

∑
S∈FB

P[S|xA]

=
1

2

∑
S∈FA

N(S)<m/2

P[S|xB ] +
1

2

∑
S∈FA

N(S)≥m/2

P[S|xB ]+

1

2

∑
S∈FB

N(S)<m/2

P[S|xA] +
1

2

∑
S∈FB

N(S)≥m/2

P[S|xA].

Now, if N(S) ≥ m/2, clearly P[S|xB ] ≥ P[S|xA]. Similarly, if N(S) < m/2, clearly
P[S|xA] ≥ P[S|xB ]. In view of these inequalities, error(f) can be lower bounded as
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follows

error(f) ≥
1

2

∑
S∈FA

N(S)<m/2

P[S|xB ] +
1

2

∑
S∈FA

N(S)≥m/2

P[S|xA]+

1

2

∑
S∈FB

N(S)<m/2

P[S|xB ] +
1

2

∑
S∈FB

N(S)≥m/2

P[S|xA]

=
1

2

∑
S : N(S)<m/2

P[S|xB ] +
1

2

∑
S : N(S)≥m/2

P[S|xA]

= error(fo).

Oskar’s rule is known as the maximum likelihood solution.


