
Parameter	
 and	
 Confidence	
 Interval	
 Estimation	
 in	
 Dynamic	
 Models:	

Maximum	
 Likelihood	
 and	
 Bootstrapping	
 Methods	

	

Read	
 Me	
 File	

	

Jeroen	
 Struben,	
 John	
 Sterman,	
 David	
 Keith	

	

This	
 archive	
 contains	
 the	
 R-­‐scripts,	
 as	
 well	
 as	
 the	
 files	
 (models,	
 runs,	
 data,	
 etc.)	
 and	

instructions	
 to	
 replicate	
 the	
 examples	
 and	
 proposed	
 exercises	
 (challenge)	
 of	
 chapter	

1.	
 Details	
 on	
 how	
 to	
 use	
 the	
 utilities	
 are	
 provided	
 in	
 the	
 “MLE	
 APPROACH	
 TO	

SIMULATION	
 –	
 Appendix.pdf”	
 file	
 in	
 this	
 archive	
 as	
 well	
 as	
 in	
 the	
 main	
 text.	
 For	

setup	
 instructions	
 see	
 below	
 (as	
 well	
 as	
 the	
 appendix)	

	

Table	
 A1.	
 Documents,	
 R-­‐scripts,	
 and	
 data	
 included	
 in	
 the	
 online	
 appendix	

	

Document Contents Main R-script Subordinate R-scripts used Data
Main
document

Theory
Application
Challenge

CH1_MLE_BO
OT_
Application.R

CH1_MLE_Functions.R
CH1_BOOT_Functions.R
CH1_LR_Interval_Functions.R

ServiceQuality
Data2.csv

Appendix Further
detailing of
MLE
theory,
using linear
model as
an example

CH1_MLE_BO
OT_ LinEx.R

CH1_LinEx_Functions.R -

Challenge
Solutions

Solutions
to the
challenge
in the main
document

CH1_MLE_BO
OT_CHALLEN
GE.R

CH1_MLE_Functions.R
CH1_BOOT_Functions.R
CH1_LR_Interval_Functions.R
CH1_Challenge_Functions.R

Beer Game
Subject 1.csv

Required folder to save: Scripts Scripts Data
	

All	
 documents	
 except	
 the	
 main	
 document	
 are	
 provided	
 in	
 the	
 electronic	
 supplement	

on	
 the	
 publishers’	
 handbook	
 website.	
 The	
 electronic	
 documents	
 can	
 also	
 be	

requested	
 from	
 one	
 of	
 the	
 authors	
 (jeroen.struben@mcgill.ca).	

	

Start	
 instructions:	
 	

1. Create	
 a	
 work	
 folder	
 for	
 your	
 analysis.	
 (You	
 may	
 use	
 different	
 work	
 folders	
 for	

the	
 application	
 and	
 the	
 challenge).	
 	

2. Within	
 the	
 work	
 folder	
 create	
 three	
 subfolders:	
 “Scripts”,	
 “Data”,	
 and	

“BookChapterOutput”.	
 	

3. Save	
 the	
 provided	
 documents,	
 listed	
 above,	
 in	
 the	
 appropriate	
 subfolders	

(“Scripts”	
 or	
 “Data”).	
 Save	
 any	
 of	
 your	
 R-­‐script	
 files	
 in	
 the	
 “Script”	
 folder.	
 	

Note:	
 Figures	
 will	
 be	
 saved	
 in	
 the	
 folder	
 “BookChapterOutput”.	
 	

Chapter 2 Online Appendix

In the online appendix, full Matlab codes are provided to replicate the

applied example and solve the exercise problem. The codes can be used for a

typical MSM estimator and are based on the log of Matlab programming

language; however, they are written in a way which is understandable for users of

other programming languages as well. Files included in the online appendix are:

‐ MSM_Applied_Example.zip; including full matlab codes and a Vensim

model (Figure 2.2).

‐ MSM_Exercise_Obesity.zip; including full matlab codes, data, a Vensim

model, and a sample solution.

To run the Matlab codes, execute RUN_MSM.m file. Codes are written in

different script files (files with the extension ‘.m’) presented in Table 2.7.

[Table 2.7 near here]

Table 2.7: Matlab script files for the firms example

Script file Action

RUN_MSM.m Follows the MSM steps and saves estimated

parameters, confidence intervals and J-test results

in a ‘.mat’ file.

UserInput_MSM.m Includes the number of simulations, K in equation

(2), and the number of simulations to estimate
*W ,

1L and 2L in equation (4).

UserInput_Model.m* Includes model constants (e.g. the number of firms

and Reference Resources in the firms example). It

also includes the true values of the parameters (see

Table 2.3). These values are only used to generate a

data set out of which actual moments are extracted.

OptimizationInitiation.m Includes the optimization tolerance (as a stopping

criterion), the lower and the upper bounds for the

unknown parameters, and the initial points to be

used by the optimization solver. It also includes the

choice of solver (‘GlobalSearch’ or ‘MultiStart’).

See Matlab Help for more information about

optimization solvers.

MomentSelection.m* Selects the moments (e.g. mean of profits) from the

data.

EmpiricalMoments.m* Executes the FirmExample.m and

MomentSelection.m to capture the empirical

moments.

SimulatedMoments.m* Executes the FirmExample.m and

MomentSelection.m to capture the simulated

moments.

FirmExample.m† Executes two functions to run the firms example:

PinkNoise.m and FirmsModel.m.

PinkNoise.m† Generates the pink noise used in the firms example.

FirmsProfits.m† Generates profits of the firms.

W1.m Calculates a weighting matrix with diagonal

elements of 2)(1 iii MW  . This weighting matrix

is used in the first round of optimization.

Optimization.m Runs the optimization solver based on user-

provided information in the

OptimizationInitiation.m. Note that the objective

function for the optimization solver is

MSM_Obj_Fn.m file.

MSM_Obj_Fn.m Estimates simulated moments and then follows

Equation (3) in the first round of optimization—it

follows Equation (5) when
*W is estimated.

Weight.m Estimates the weighting matrix (
*W) based on

estimated parameters in the first round of

optimization.

EstimatedVar.m Estimates the variance-covariance matrix of the

estimated parameters, see Equation (7).

ChangeParameters.m Shifts estimated parameters one epsilon up and

down. The output of this function is used in

Delta.m.

Delta.m Estimates the sensitivity of the simulated moments

to the estimated parameters based on the outputs of

ChangeParameters.m.

ConfInt.m Calculates confidence intervals of the estimates

parameters based on a confidence level (e.g. 95%).

J_test.m Runs the J-test, see Equation (8).

SingularityWarningFlag.m

Checks for singularity and near singularity of the

matrix that is being inverted. If the matrix is

singular or nearly singular, a flag with value 1 is

saved.

NumOfMomWarningFlag.m Checks the number of moments vs the number of

unknown parameters. Note that the number of

moments should not be less than the number of

unknown parameters; otherwise, a flag with value 1

is saved.

* Functions which are customized for the firms example.
† Functions which excusively present the dynamic model of the firms example.

Chapter	3:	Structural	Equation	Modeling	
	
	
This	archive	contains	the	R	code	example	for	the	SEM	package	and	results.	
	
Contents	
	
READ	ME.doc	
	 This	file.	
Chapter	3	Appendix		
	 Code	and	explanation	for	exercise	and	results	
	
R	Code	
Examples.R	
	 Code	for	importing	data	and	estimating	the	models	using	sem package	
Exercise	3.1.R	
	 Actual	R	code	for	the	exercise	
	
Vensim	files	
Simple	regression.mdl	
	 Example	of	simple	regression	model	shown	in	Figure	3.2	
Simple	regression.vdf	
	 Vensim	data	file	from	simulation	of	model	shown	in	Figure	3.2	
Simple	regression.tab	
	 Tab	delimited	file	of	data	from	simulation	of	model	shown	in	Figure	3.2	that	

can	be	imported	into	R.	
	
Latent	SEM	model.mdl	
	 Example	of	simple	regression	model	shown	in	Figure	3.3	
Latent.vdf	
	 Vensim	data	file	from	simulation	of	model	shown	in	Figure	3.3	
Latent.tab	
	 Tab	delimited	file	of	data	from	simulation	of	model	shown	in	Figure	3.3	that	

can	be	imported	into	R.	
	
Latent	SEM	feedback	simultaneous.mdl	
	 Example	of	simple	regression	model	shown	in	Figure	3.4	
Simultaneous.vdf	
	 Vensim	data	file	from	simulation	of	model	shown	in	Figure	3.4	
Simultaneous.tab	
	 Tab	delimited	file	of	data	from	simulation	of	model	shown	in	Figure	3.4	that	

can	be	imported	into	R.	
	
	

Supporting	Materials	for:	Working	with	Data	using	Filtering	and	State	
Resetting	

This archive contains the models and other files necessary to replicate the results in the chapter
on filtering and state resetting. The material herein, with the exception of the ExternalFunction
archive (which has its own license) is released under the following license:

The models contained here are all Vensim models and were developed using Vensim DSS.
They have been saved in a binary format so that it will be possible to open them in the Vensim
Model Reader. Not all of the results can be obtained in this way however as the model reader
does not directly support some of the operations used in creating the results.

Figure	1	
This graph is from a simulation of the model ProductionDistributionAppendixK.vmf in the
ProductionDistribution directory simulated with the constant NOISE SEED set to 0 and 8.

Figure	2	
This graph was created by running a sensitivity simulation with the constant “noise stream”
varying between 1 and 2,000,000 by 100. This results in 20,001 simulations which is larger than

Copyright (c) 2013 Robert Eberlein

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

needed to see the spread so can be reduced. The .vsc and .lst files for this are also contained in
the directory.

Figure	3	
Using the model DampedPendulum00.vmf in the directory Pendulum this is run with the default
parameters and NOISE SEED changed to 0. The latter run was called NoiseSeed0

Figure	4	(and	parameter	estimates)	
Again using DampedPendulum00.vmf it is calibrated against NoiseSeed0 using the payoff file
DampedPendulum01.vpd and the optimization control file DampedPendulum01.voc. The weight
file PayoffWeights.cin is created by first calibrating without the changes file, then executing the
program in err2weight.exe contained in the ExternalFunction archive. This file requires a .err file
(so that payoff report needs to be checked) and uses the command line

err2weight calibrate_1step.err PayoffWeights.cin

to create the file. All this program does is create a weight equal to 1/standard deviation of error
term (the sample standard deviation). You can also make the same computation other ways.

If you want to use the err2weight program on a Mac you will need to recompile the source code
err2weight.c. After doing this the calibration is repeated using PayoffWeights.cin. The results
are the same (since there is only one variable in the payoff), but the computed confidence
bounds using Payoff Sensitivity of 4 now represent 95% confidence bounds. Note that in this
case, because the fit is so poor, the confidence bounds are not very meaningful. This general
technique can be used elsewhere – for example the regression results are computed using this
(and also a linear regression in R for comparison).

Regression	Results	
There are two ways to compute these. One is with Vensim using the model
DampedPendulumRegression02.vmf in exactly the same way as described in Figure 4 but with
a different payoff definition file (DampedPendulumRegress.vpd). The file PayoffWeights.cin will
need to be constructed again – it uses acceleration and not position for calibration.

To perform a linear regression using R the .Excel file ComputedVelocityAcceleration.xlsx uses
the position measurement to compute velocity and acceleration. A truncated version of this (the
last rows are missing otherwise) ComputedVelocityAcceleration.txt is the used by the R file
Regression.R (you will need to change the directory for the file to load to use this). The R
regression is linear and you will need to transform the resulting coefficients to the drag and
length values (actually drag is just a sign change). You could also run a nonlinear regression but
this is more complicated to set up.

Figure	5	(and	parameter	estimates)	
This time using DampedPendulumResetting05.vmf we repeat the same steps as for figure 4.
Note that this model will not run unless the run NoiseSeed0 exists.

Figure	6	(and	parameter	estimates)	
This run is created by turning on Kalman filtering. To do this you will need to use the file
kalman.prm which contains

:DEBUG 1
Angular Velocity/2.44/1
Angular Position/0/1

The first line causes the file kalman.err to be created which reports (among other things) the
Kalman Gain. The other lines have the state name, driving variance and initial variance. The
driving variance is all against velocity and 2.44 = (50 * 0.03125)^2 where 50 is the standard
deviation of the driving noise and 0.03125 is TIME STEP. There is no driving noise for position.
The initial values of 1 are arbitrary but relatively small. The payoff definition
DampedPendulumKalman01.vpd is used there. The “weight” element of the payoff is the
variance of the error term – since no measurement error was explicitly introduced here a small
number is used.

To run the model with Kalman filtering active check the box for Kalman filtering in the advanced
tab of the simulation control dialog. To do the parameter estimates optimize with the same
settings. Note that the computation of the confidence bounds should have the Payoff Value
sensitivity set to 2, and not 4. Use 4 for non Kalman Filtering calibration.

Figure	7	
This is the model Project08.vmf in the directory Project. A number of elements have been
hidden to make this easier to read. The model with all hidden elements showing appears as:

Nate
Inserted Text
,

Nate
Inserted Text
,

Figure	8	
This is the model Project08.vmf run with “reference work quality” set to 1 and 0.85

Figure	9	and	calibration	
This is a run of Project08.vmf with FINAL TIME set to 30 and NOISE SEED set to 0. Note that
when NOISE SEED is < 0 the model is set to run without any noise terms. Once that run has
been made it us used as the data source.

The simple calibration is done by using that as the data source with the payoff file Project02.vpd
and the optimization control file Project02.voc. Note that you will need to optimize once, create
PayoffWeights.cin and optimize again. This time the optimization results will be different.

The Kalman Filter optimization uses ProjectKalman.vpd as the payoff file. This file has
variances computed as supplementary variables in the model proper (and hidden in the diagram
for the model). You will also need the file Kalman.prm which contains

Undiscovered Rework/1.7/0.1
Work Force/0/0.1
Work to Do/0/0.1

The driving variance in undiscovered rework 1.7 = (0.2 * 26 * 0.25)^2 where 0.2 is the standard
deviation of the error on quality, 26 is an approximate average for the work completion rate and
0.25 is TIME STEP. There is no other driving variance, and the initial values are again small but
approximations.

Work to Do
work

completion

scheduled
completion date time remaining

target work
force

Work Force
net hire rate

time to adjust
work force

productivity

iniital work force

<Time>

min project
cleanup time

Total Project
Work

Undiscovered
Rework rework

discoverywork completion
with errors

work quality

time to
discover
rework

NOISE SEED

fraction complete

completion
effect

stdev work
quality

reference work
quality

measured work
force

stdev work force
me

measured work
to do

stdev work to
do me

<NOISE SEED>

<NOISE SEED>
weight for measured

work force
weight for measured

work to do

NOISE SEED 2

<Time>

mean adjustment

weight for measured
rework discovery

measured rework
discovery

stdev rework
discovery me

var work force me var rework
discovery me

var work to do me

Figure	10	
These are just values from the two previous calibration runs.

Figure	11	
This sensitivity run is created by setting NOISE SEED to 0 (so that noise is active) and then
varying NOISE SEED 2 which changes the trajectory after time 30. The sensitivity control file for
this is Project06.vsc, but you will need to change NOISE SEED to 0 before launching sensitivity.
The save list is in Project06.lst, but you can add to that.

Figure	12	and	averages	
This uses the model PortfolioValue00.vmf in the directory PortfolioValue. The deterministic run
uses a NOISE SEED of -1, and the noisy run 99999. Note that this particular noise seed ends
up demonstrating visibly volatile behavior toward the end of the simulation and this is why it was
chosen. Repeating the experiments discussed in the paper with other noise seeds will usually
results in estimates that are closer to one another for the different techniques.

Be sure to call the noisy run NoiseRun – this will be needed to run the 07 model.

The arithmetic average can be computed using Vensim’s stats tool, in Excel or by hand. The
geometric mean is simply the 100th root of final/initial.

Figure	13	
This is the model PortfolioValue07.vmf calibrated against the noise seed 99999 run (NoiseRun).
It uses the payoff definition PortfolioValueNoWeight.vpd and the optimization control file
PortfolioValue01.voc. Not that the noweight optimization control file uses 1 for a weight not a
weight based on the error standard deviation. Since we are not going to be computing
confidence intervals, this is all that is necessary.

Figure	14	and	optimization	
Zoomed in on the first 50 years for Figure 13.

The calibration with weights is done using the PortfolioValueWeight.vpd. The resetting
optimizations are done by setting the variable “reset switch” to 1 and then using the weight or
noweight payoff definition files.

Figure	15	
This compares the weighted and unweighted state resetting optimizations as described above
by zooming in on the last 15 years.

Figure	16	&	17	
This work uses the model BasicPopulationPhysics05.vmf in the Population directory. To use this
model you will need to load the external function file cohort_control08.dll that is contained in the
ExternalFunctions archive that is part of this archive. There is documentation in that archive
describing how to do this.

Before you can use the population model you will need to first run the model
DataPrepJapan06.vmf. This model reads data from the Excel spreadsheet
JapanDataOrganized01.xlsx and manipulates into a form useful for the population model. The
resulting dataset should be called JapanOrganizedData.vdf.

The payoff definition file is BasicPopulationPhysics01.vpd and the optimization control file is
BasicPopulationPhysics02.voc. This is again a 2 stage optimization in which the payoff weights
are computed using err2weight after the first stage as described above. The two opzimizations
are run by setting the constant “reset switch” to either 0 or 1.

Once the optimizations have been completed the projection is run by again setting the “reset
switch” to 0 or 1, then setting Final Time to 2050 and including runname.out as a changes file
where runname is the name of the optimization with or without state resetting. The .out file is the
output of the optimization process and this file is configured so that it can also be used directly
as a changes file.

Chapter 5: Combining Markov Chain Monte Carlo Approaches and Dynamic Modeling

The supplemental materials within this folder and its subfolders provide the steps associated with the
example provided in the chapter and with the exercises posed, and supporting mechanisms for the
chapter on using MCMC with Dynamic models. Broadly, these materials include a library bridging
between R and Vensim, R code to ease the application of MCMC with Vensim models, definition of
the example model in that framework, and R scripts for the specific steps undertaken in the chapter.

Contents:
READ ME.pdf

This file.
RVensimInterface

The bridge between R and Vensim, permitting 32-bit R to load, parameterize, run, and
read values from Vensim models under Windows. This library has been verified to work
with Vensim 5.1 and R.2.14 under Microsoft Windows 7 64-bit.
RVensimInterface8.dll

A dynamic link library (DLL) providing the low-level support for the bridge.
RVensimInterface8.c

The source code for the above. To be compiled using the following command
from 32-bit R
C:\Usask\Research\VensimMCMC\VensimRCompatibleDLL>"c:\Program
Files\r\R-2.14.1\bin\R.exe" --arch i386 CMD SHLIB -L./ -lVenDLL32
RVensimInterface6.c

RVensimInterface5.R
The R stubs needed to interface to the C code.

RVensimMCMCUtilities
Provides utility functions to ease the process of using R's MCMC libraries with dynamic
models specified in Vensim. They are designed to simply multiple steps of the process,
including finding the initial parameter vector, performing the chain, and summarizing
and depicting results. Use of such functions can greatly reduce the amount of code
required to perform MCMC in this way for a wide variety of MCMC problems, and
allow for a considerably cleaner specification of such MCMC problems. Such utilities
are used in the example provided
MCMCUtility v3.R

Defines the functions
SEIRExample

Specifes the particular example model used in the chapter, as well as related exercises.
VensimSEIRModel

Defines the Vensim model used for both the example and exercises.
SEIR Model v7.vpm

SEIRProbabilisticModel
Defines the probabilistic model accompanying the example. This defines the
prior, sampling, and posterior distributions, and relates the empirical data to the
SD model output as needed to compute the density of the latter two such
distributions.
Bounded SEIR MCMC v11.R

SEIR Chapter Commands v12 Finalizing
The commands used to actually perform the example and related exercises in the
chapter.

Chapter 6. Pattern Recognition Electronic Supplement
Gönenç Yücel, Yaman Barlas

This archive contains the files and software necessary to conduct pattern-based model
calibration, testing and behavior analysis as discussed in the chapter, as well as the
instructions to setup and use these. Besides, the test model that is used in the chapter
for demonstrative purposes can be found in this electronic supplement.

Contents

READ ME.pdf

This file

Challenge.pdf

Document providing the answer to the pattern-based model testing exercise
and how SIS software can be used for that purpose.

Test Model (folder)

This folder contains the test model in Vensim® format, as well as its detailed
documentation

 TestModel.mdl
 Model file
 TestModel Documentation (folder)

Folder that contains the model documentation prepared using the
SDM-Doc tool.

Testing – SIS (folder)

Folder that contains the SIS software that is used in the pattern-based model
testing section of the chapter.

SIS.zip
 Archive file that contains SIS.exe

Calibration – POPS (folder)

Folder that contains the Matlab® files that constitute the POPS model
calibration system, as well as a manual that describes how to configure and
use POPS

 Manual_POPS.pdf
 Manual that describes how to configure and use POPS

 POPS.zip

Archive file that contains the Matlab® functions (.m files) that are
used by for pattern-oriented model calibration

Behavior Analysis – BPS (folder)

Folder that contains Pyhton files that are used for pattern-oriented behavior
analysis with the BPC algorithm, as well as a manual that describes how to
configure and use the BPC algorithm.

Manual_BPC.pdf
 Manual that describes how to configure and use the BPC algorithm

BPC.zip

Archive that contains the Python code files (.py files) that are used by
the BPC algorithm

Chapter	
 7.	
 Eigenvalue	
 Elasticity	
 Analysis	
 Electronic	
 Supplement	

Rogelio	
 Oliva	

	

This	
 archive	
 contains	
 the	
 Mathematica®	
 packages	
 and	
 utilities	
 to	
 perform	
 Eigenvalue	
 Elasticity	
 Analysis,	
 as	

well	
 as	
 all	
 the	
 files	
 (models,	
 runs,	
 etc.)	
 and	
 instructions	
 to	
 replicate	
 the	
 examples	
 and	
 proposed	
 exercises	
 in	

chapter	
 7.	
 Details	
 on	
 how	
 to	
 install	
 and	
 used	
 the	
 utilities	
 are	
 on	
 the	
 Appendix.pdf	
 file	
 in	
 this	
 archive	
 as	
 well	
 as	

in	
 the	
 main	
 text	
 of	
 the	
 chapter.	

	

Contents	
 	

READ	
 Me.pdf	

This	
 file.	

Appendix.pdf	

Document	
 describing	
 the	
 use	
 of	
 the	
 Mathematica®	
 utilities	
 to	
 perform	
 the	
 EEA	
 analysis	
 as	
 well	
 as	

instructions	
 on	
 how	
 to	
 access	
 the	
 utility	
 to	
 translate	
 Vensim®	
 *.mdl	
 files	
 into	
 documents	
 readable	
 by	

the	
 Mathematica®	
 utilities.	

	

Challenge.pdf	

Document	
 providing	
 answers	
 to	
 the	
 questions	
 posed	
 in	
 the	
 challenge	
 section	
 of	
 the	
 chapter	
 and	
 how	

the	
 EEA	
 tools	
 could	
 be	
 use	
 to	
 address	
 them.	
 	

	

Mathematica	
 Tools	
 (folder)	

This	
 folder	
 contains	
 the	
 functions	
 and	
 utilities	
 to	
 perform	
 the	
 EEA.	
 The	
 folder	
 contains	
 three	
 files.	

	

FeedbackLoops.m	

Mathematica®	
 package	
 with	
 the	
 core	
 functions	
 called	
 by	
 the	
 LEEA	
 and	
 DDWA	
 notebooks.	
 It	

needs	
 to	
 be	
 installed	
 in	
 a	
 directory	
 that	
 is	
 accessible	
 to	
 Mathematica®.	
 	

LEEA.nb	

Mathematica®	
 notebook	
 to	
 perform	
 the	
 Loop	
 Eigenvalue	
 Elasticity	
 Analysis.	

DDWA.nb	

Mathematica®	
 notebook	
 to	
 perform	
 the	
 Dynamic	
 Decomposition	
 Weight	
 Analysis.	

	

Base	
 model	
 (folder)	

This	
 folder	
 contains	
 the	
 files	
 to	
 replicate	
 (assess)	
 the	
 LEEA	
 of	
 the	
 base	
 model	
 as	
 described	
 in	
 the	

chapter’s	
 main	
 text.	
 The	
 folder	
 contains	
 five	
 files.	

	

NF_model.mdl	
 &	
 nf_model.nb	
 	

Vensim®	
 and	
 Mathematica®	
 readable	
 version	
 of	
 the	
 base	
 model.	

Base.vdf	
 	
 &	
 Base.tab	

Vensim®	
 data	
 file	
 and	
 tab	
 delimited	
 version	
 (readable	
 by	
 Mathematica®)	
 with	
 the	
 values	

for	
 the	
 simulation	
 of	
 the	
 base	
 model.	

nf_base_LEEA.nb	

Mathematica®	
 notebooks	
 with	
 the	
 results	
 of	
 the	
 base	
 model’s	
 LEEA.	

	

Full	
 model	
 (folder)	

This	
 folder	
 contains	
 the	
 files	
 to	
 replicate	
 (assess)	
 the	
 LEEA	
 and	
 DDWA	
 of	
 the	
 full	
 model	
 as	
 described	

in	
 the	
 chapter’s	
 main	
 text.	
 The	
 folder	
 contains	
 eight	
 files.	

	

NF_model_full.mdl	
 &	
 nf_model_full.nb	
 	

Vensim®	
 and	
 Mathematica®	
 readable	
 version	
 of	
 the	
 full	
 model.	

Full.vdf	
 &	
 Full.tab	

Vensim®	
 data	
 file	
 and	
 tab	
 delimited	
 version	
 (readable	
 by	
 Mathematica®)	
 with	
 the	
 values	

for	
 the	
 simulation	
 of	
 the	
 full	
 model.	

	

(cont.	
 next	
 page)	

Policy.vdf	
 	
 &	
 Policy	
 (tai).vdf	

Vensim®	
 data	
 files	
 with	
 the	
 values	
 for	
 the	
 Policy	
 and	
 Policy	
 (tai)	
 simulations	
 of	
 the	
 full	

model.	

nf_full_LEEA.nb	

Mathematica®	
 notebooks	
 with	
 the	
 results	
 of	
 the	
 full	
 model’s	
 LEEA.	

nf_full_DDWA.nb	

Mathematica®	
 notebooks	
 with	
 the	
 results	
 of	
 the	
 full	
 model’s	
 DDWA.	

 1

Chapter 8. An Introduction to Stochastic Optimization

This archive contains the Powersim Studio (PS) and the compiled SOPS files for the

optimization models in the chapter. The archive also contains the Users Manual for

SOPS and all Powersim Studio models and compiled SOPS files used in the Users

Manual. Powersim Studio and the SOPS program are available from Powersim

Software: http://powersim.com/main/products-services/sops/

Contents

READ ME.pdf

 This file

Chapter models, folder

 FishContSimple2

 ~si files, to be ignored

 FishContSimple2.sip, PS fishery model

 FishContSimple2, folder

 FishContSimple2.sops, SOPS optimization model

 FishContSimple2.csim, stored settings for optimization

 model.results.txt, to be ignored

 Inverted pendulum

 ~si files, to be ignored

 Inverted pendulum.sip, PS standard pendulum model

 Inverted pendulum, folder

 Inverted pendulum.sops, SOPS optimization model

 Inverted pendulum.csim, stored settings for optimization

 model.results.txt, to be ignored

 Inverted pendulumExtra.sip, PS pendulum model with feedforward

 Inverted pendulumExtra, folder

 Inverted pendulumExtra.sops, SOPS optimization model

 Inverted pendulumExtra.csim, stored settings for optimization

 model.results.txt, to be ignored

 Inverted pendulumOfTime.sip, PS pendulum model with policy over time

 Inverted pendulumOfTime, folder

 Inverted pendulumOfTime.sops, SOPS optimization model

 Inverted pendulumOfTime.csim, stored settings for optimization

 model.results.txt, to be ignored

 2

Users Manual.pdf, gives an introduction to Powersim Studio and SOPS

SOPS Users Manual models, folder

 FishCapacityCont.sip, PS models for continuous fishery model

 FishCapacityCont, folder

 FishCapacityCont.sops, SOPS optimization model

 FishCapacityCont.csim, stored settings for optimization

 FishCapacityCont.xls, Excel file with graphs of results

 model.results.txt, to be ignored

 FishCapacityDisc.sip, PS models for discrete time fishery model

 FishCapacityDisc, folder

 FishCapacityDisc.sops, SOPS optimization model

 FishCapacityDisc.csim, stored settings for optimization

 FishCapacityDisc.xls, Excel file with graphs of results

 model.results.txt, to be ignored

 FishContSimple.sip, PS models for continuous simplified model

 FishContSimple, folder

 FishContSimple.sops, SOPS optimization model

 FishContSimple.csim, stored settings for optimization

 FishContSimple.xls, Excel file with graphs of results

 model.results.txt, to be ignored

Chapter 9: Addressing Dynamic Decision Problems Using Decision Analysis and Simulation

The supplemental materials within this folder and its subfolders provide the java-based tool to integrate
decision trees and Vensim models, the XML file encoding the decision tree presented, and the
associated Vensim model, and output from that model.

Contents:
READ ME.pdf

This file.

WNVModelForDecisionTreeV55.vpm
The application example Vensim model.

DecisionTree-Java1-5PackagedJar.jar
The software to integrate decision trees and Vensim. This software supports defining
decision trees or loading such trees (where already specified), pruning such trees with a
System Dynamics model specified in Vensim, and browsing the results. This software
has been verified to work with Vensim 5.1 under Microsoft Windows 7 64-bit.

Example.xml
Example decision tree for use with the software. This tree can be loaded into the
software, and the tree evaluated.

 1

Chapter 10 Electronic Supplement by Tan and Anderson

This archive contains the files that are used to create the examples in Chapter 10.

Specifically, the contents include system dynamics model and sensitivity files (in

Vensim®), decision tree files (in DPL®), Macro-enabled Excel template files with

embedded VBA programs, and other Excel files (some with embedded @Risk functions)

to calculate the middle steps of the algorithms.

Contents

ReadMe.pdf

This file.

System Dynamics Model Files (folder)

Chapter 10 analyzes two different versions of a renewable energy capital

investment model. This folder contains the Vensim® files for the corresponding

SD models as well as the sensitivity analysis files.

Chapter10-SDModel.mdl

Vensim® model file for the base model analyzed in Section 10.3.

Chapter10-ModifiedSDModel.mdl

Vensim® model file for the modified version analyzed in Section 10.4.

 sens3.vsc

The file that contains the list of uncertain variables and their distributions

for the Monte Carlo simulation of the SD model

 final.lst

 The list of output variables for the Monte Carlo simulation

 2

 newbatchfile.cmd

Vensim script file to run different decision sequences of the project model

automatically. The file contains the changes to be made in the model for

each decision sequence.

Excel Template Files with VBA code (folder)

This folder includes the Macro-enabled Excel template files to calculate the

discrete distribution approximations for the SD-based decision tree algorithm.

There are two templates because the code is different when the decision sequence

starts with “Invest” (in which case, use “templateIEE.xltm”) versus when it starts

with “Delay” (in which case, use “templateDIE.xltm”).

templateIEE.xltm

Macro-enabled Excel template file to calculate the discrete distribution

approximations for the continous cash flow distribution obtained from the

SD model. Used for the decision sequences that start with the decision

“Invest” (see Table 10.3).

 templateDIE.xltm

Macro-enabled Excel template file to calculate the discrete distribution

approximations for the continous cash flow distribution obtained from the

SD model. Used for the decision sequences that start with the decision

“Delay” (see Table 10.3).

Decision Tree Files (folder)

This folder includes the decision tree files created in DPL® for the examples in

Chapter 10.

 3

SD-basedDecisionTreeApproach.da

The DPL® file for the SD-based decision tree algorithm corresponding to

the base model in Section 10.3.

SD-basedDecisionTreeApproach-ModifiedModel.da

The DPL® file for the SD-based decision tree algorithm corresponding to

the modified model in Section 10.4.

DiffusionApproximationApproach.da

The DPL® file for the diffusion approximation approach corresponding to

the base model.

DiffusionApproximationApproach-ModifiedModel.da

The DPL® file for the diffusion approximation approach corresponding to

the modified model.

Diffusion Approximation Algorithm Files (folder)

This folder includes the files to calculate the middle steps of the diffusion

approximation algorithm.

CalculationForPVandCashFlowPayout.xlsx

This file is used to estimate the present value (PV) of the cash flow, the

remaining project value (for period t as defined in Equation 10.1, and

the cash flow payout rate (as defined in Equation 10.2.

FileToSimulateGBMprocess.xlsx

This file uses the software @Risk to simulate a Geometric Brownian

Motion (GBM) process using the PV, and calculated in the file

CalculationForPVandCashFlowPayout.xlsx. The analyst has to enter a

 4

value for volatility (sigma) to simulate the process. The goal is to simulate

GBM processes for different values of volatility and then finding the

volatility that minimizes the difference between the GBM process and the

cash flow distribution obtained from the SD model.

CalculationForVolatilityEstimation.xlsx

This file includes a template to estimate the volatility of the GBM

approximation. Specifically, for different values of volatility, the file

compares the 10
th
, 50

th
, and 90

th
 percentiles of the GBM approximation

and the cash flow distribution from the SD model. Then, the squared

errors are calculated and summed. The volatility that gives the minimum

total squared error is chosen. Note that this is not an automated process.

The analyst has to obtain the GBM percentiles for each value of volatility

one by one using the “FileToSimulateGBMprocess.xlsx” template and

then paste the data into the corresponding worksheet.

Chapter	
 11.	
 Optimal	
 Control	
 Theory	
 Electronic	
 Supplement	

Edward	
 G.	
 Anderson	
 Jr.,	
 Nitin	
 R.	
 Joglekar	

	

This	
 archive	
 contains	
 the	
 Mathematica®	
 file	
 (termed	
 a	
 notebook)	
 that	
 solves	
 the	
 example	
 problem	
 in	

the	
 exercise	
 at	
 the	
 end	
 of	
 the	
 chapter	
 as	
 well	
 as	
 the	
 instructions	
 on	
 how	
 to	
 use	
 it.	
 	

	

The	
 notebook	
 file	
 is	
 self-­‐documented	
 to	
 guide	
 you	
 through	
 using	
 optimal	
 control	
 theory	
 techniques	

discussed	
 in	
 the	
 chapter	
 to	
 solve	
 the	
 exercise.	
 The	
 notebook	
 was	
 built	
 in	
 Mathematica	
 v.	
 8.0.4.0.	
 If	

you	
 are	
 at	
 an	
 academic	
 institution,	
 you	
 are	
 already	
 likely	
 to	
 have	
 free	
 access	
 to	
 it.	
 However,	
 if	
 not,	

Wolfram	
 (www.Wolfram.com),	
 which	
 publishes	
 Mathematica,	
 also	
 has	
 free	
 software	
 to	
 read	

notebook	
 files,	
 although	
 you	
 cannot	
 change	
 any	
 of	
 the	
 operations.	
 Their	
 current	
 reader	
 is	
 called	
 CDF-­‐
Player	
 and	
 can	
 be	
 found	
 at	
 http://www.wolfram.com/cdf-­‐player/.	
 	

	

Contents	

READMe.pdf	
 	

This	
 file.	

	

Example	
 Ricatti.nb	

	
 This	
 contains	
 the	
 self-­‐documented	
 file	
 on	
 how	
 to	
 use	
 the	
 Ricatti	
 equation	
 to	
 solve	
 the	

example	
 problem	
 in	
 the	
 exercise	
 section.	
 	
 You	
 can	
 adapt	
 this	
 file	
 to	
 solve	
 many	
 other	

problems	
 using	
 optimal	
 control	
 theory	
 as	
 well	
 by	
 changing	
 the	
 system	
 and	
 control	
 matrices.	

Ch 13 Online Appendix Contents

Examples Documentation
Exercise Solutions
Matlab Codes

	Ch 1 READ ME
	Ch 2 Readme-OnlineAppendix
	Ch 3 Readme
	Ch 4 Read Me
	Ch 5READ ME
	Ch 6 READ ME
	Ch 7 READ ME
	Ch 8 READ ME
	Ch 9 READ ME
	Ch 10 ReadMe
	Ch 11 ReadMe 27-Jun-2014
	Ch 13 contents

