
Preface

As a programmer working for Logica UK in London in the mid-1980’s,
I became a passionate advocate of formal methods. Extrapolating from
small successes with VDM and JSP, I was sure that widespread use of
formal methods would bring an end to the software crisis.

One approach especially intrigued me. John Guttag and Jim Horning
had developed a language, called Larch, which was amenable to a me-
chanical analysis. In a paper they’d written a few years earlier [23], and
which is still not as widely known as it deserves to be, they showed how
questions about a design might be answered automatically. In other
words, we would have real software “blueprints”—a way to analyze the
essence of the design before committing to code. I went to pursue my
PhD with John at MIT, and have been a researcher ever since.

As a researcher though, I soon discovered that formal methods were not
the silver bullet I’d hoped they would be. Formal models were hard to
construct, and specifying every detail of a system was too hard. Theo-
rem proving, the kind of analysis that Larch relied on, could not be fully
automated. Even now, after 20 more years of research, it still requires
the careful guidance of a mathematical guru. In my doctoral work,
therefore, I took a more conservative route, and worked on automatic
detection of bugs in code. But I kept an interest in the more ambitious
world of formal methods and design analysis, and hoped one day to
return to it.

In 1992, I visited Carnegie Mellon University. By then, I’d become en-
amored, like many in the formal methods community, with the Z lan-
guage. The inventors of Z had dispensed with many of the complexities
of earlier languages, and based their language on the simplest notions of
set theory. And yet Z was even less analyzable than Larch; the only tool
in widespread use was a pretty printer and type checker.

On that visit, Ken McMillan showed me his SMV model checker: a tool
that could check a state machine of a billion states in seconds, without
any aid from the user whatsoever. I was awestruck.

With the invention of model checking, the reputation of formal meth-
ods changed almost overnight. The word “verification” became fashion-
able again, and the adoption of model-checking tools by chip manufac-

xii preface

turers showed that engineers really could write formal models, and, if
the benefit was great enough, would do it of their own accord.

But the languages of model checkers were not suitable for software.
They were designed for handling the complexity that arises when a col-
lection of simple state machines interacts concurrently. In software
design, complexity arises even in a single machine, from the complex
structure of its state. Model checkers can’t handle this structure—not
even the indirection that is the essence of all software design.

So I began to wonder: could the power of model checking be brought
to a language like Z? Here were two cultures, an ocean apart: the gritty
automation of SMV, reflecting the steel mills and smokestacks of Pitts-
burgh, the town of its invention, and the elegance and simplicity of Z,
reflecting the beautiful quads of Oxford.

This book is the result of a 10-year effort to bridge this gap, to develop a
language that captures the essence of software abstractions simply and
succinctly, with an analysis that is fully automatic, and can expose the
subtlest of flaws.

The language, Alloy, is deeply rooted in Z. Like Z, it describes all struc-
tures (in space and time) with a minimal toolkit of mathematical no-
tions, but its toolkit is even smaller and simpler than Z’s. Alloy was
also strongly influenced by object modeling notations (such as those of
OMT and Syntropy). Like them, it makes it easy to classify objects, and
associate properties with objects according to the classification. Alloy
supports “navigation expressions,” which are now a mainstay of object
modeling, with a syntax that is particularly simple and uniform.

The analysis, embodied in the Alloy Analyzer, actually bears little re-
semblance to model checking, its original inspiration. Instead, it relies
on recent advances in SAT (boolean satisfiability) technology. The Al-
loy Analyzer translates constraints to be solved from Alloy into boolean
constraints, which are fed to an off-the-shelf SAT solver. As solvers get
faster, so Alloy’s analysis gets faster and scales to larger problems. Us-
ing the best solvers of today, the analyzer can examine spaces that are
several hundred bits wide (that is, of 1060 cases or more). Hardware ad-
vances must also get some of the credit. Even had this technology been
available 10 years ago, an analysis that takes only seconds on today’s
machines would have taken an hour back then. (Incidentally, Alloy was
by no means the first application of SAT to this kind of problem. SAT
had been used for analyzing railway control systems [68], for checking
hardware [69], and for planning [45, 17]. Since its adoption in Alloy [33],
it has been incorporated into model checkers too [5].)

preface xiii

The experience of exploring a software model with an automatic ana-
lyzer is at once thrilling and humiliating. Most modelers have had the
benefit of review by colleagues; it’s a sure way to find flaws and catch
omissions. Few modelers, however, have had the experience of subject-
ing their models to continual, automatic review. Building a model incre-
mentally with an analyzer, simulating and checking as you go along, is
a very different experience from using pencil and paper alone. The first
reaction tends to be amazement: modeling is much more fun when you
get instant, visual feedback. When you simulate a partial model, you see
examples immediately that suggest new constraints to be added.

Then the sense of humiliation sets in, as you discover that there’s almost
nothing you can do right. What you write down doesn’t mean exactly
what you think it means. And when it does, it doesn’t have the conse-
quences you expected. Automatic analysis tools are far more ruthless
than human reviewers. I now cringe at the thought of all the models
I wrote (and even published) that were never analyzed, as I know how
error-ridden they must be. Slowly but surely the tool teaches you to
make fewer and fewer errors. Your sense of confidence in your model-
ing ability (and in your models!) grows.

You can use analysis to make models not only more correct but also
more succinct and more elegant. When you want to rework a constraint
in the model, you can ask the analyzer to check that the new and old
constraint have the same meaning. This is like using unit tests to check
refactoring in code, except that the analyzer typically checks billions of
cases, and there are no test suites to write.

I sometimes call my approach “lightweight formal methods” [39], be-
cause it tries to obtain the benefits of traditional formal methods at
lower cost, and without requiring a big initial investment. Models are
developed incrementally, driven by the modeler’s perception of which
aspects of the software matter most, and of where the greatest risks lie,
and automated tools are exploited to find flaws as early as possible.

But at the same time as I have argued against some of the assumptions of
traditional formal methods, my experience in the last decade—teaching
software engineering to students at Carnegie Mellon and MIT, building
tools with students, and consulting on industrial developments—has
convinced me of the validity of their central premise. As Tony Hoare
famously put it in his Turing Award lecture [31]:

There are two ways of constructing a software design: One way
is to make it so simple there are obviously no deficiencies and

xiv preface

the other way is to make it so complicated that there are no
obvious deficiencies.

A commitment to simplicity of design means addressing the essence of
design—the abstractions on which software is built—explicitly and up
front. Abstractions are articulated, explained, reviewed and examined
deeply, in isolation from the details of the implementation. This doesn’t
imply a waterfall process, in which all design and specification precedes
all coding. But developers who have experienced the benefits of this
separation of concerns are reluctant to rush to code, because they know
that an hour spent on designing abstractions can save days of refactor-
ing.

In this respect, the Alloy language and its analysis are a Trojan horse: an
attempt to capture the attention of software developers, who are mired
in the tar pit of implementation technologies, and to bring them back to
thinking deeply about underlying concepts.

That is why I have chosen the title Software Abstractions for this book.
The lure of coding, and pressure to deliver elaborate features on short
schedules, often draw programmers away from designing abstractions
to coping with the intricacies of transient technologies, and to invent-
ing clever tricks to overcome their limitations. If we focused instead on
the underlying concepts, and struggled not for small performance gains
or ever more complex features, but for simplicity and clarity, our soft-
ware would be more powerful, more dependable, and more enjoyable
to use. Like the best artifacts of civil and mechanical engineering, the
best software systems would be a marriage of utility and beauty. And as
software designers, we’d have more fun: we’d spend less time working
around basic structural flaws in our software, and our ideas would have
more lasting impact.

