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 The Wernicke – Lichtheim (W-L) information-processing model of language function 

has played a dominant role in understanding aphasic syndromes (Lichtheim 1885) 

and has stood the test of time in defining the topographical relationship between 

the modular domains (acoustic representations, articulatory motor representations, 

and concept representations) underlying spoken language function. Unfortunately, 

the W-L information-processing model does not specify the characteristics of 

the representations within these domains and how they might be stored in the brain. 

It also does not address the means by which these domains might interact. I have 

proposed a PDP model that uses the same general topography as the W-L model 

(Nadeau 2001; Roth et al. 2006) but also specifies how representations are generated 

in the modular domains and how knowledge is represented in the links between 

these domains (see   figure 2.1 ). Though not tested in simulations, this model is 

neurally plausible and provides a cogent explanation for a broad range of psycho-

linguistic phenomena in normal subjects and subjects with aphasia.    
 The PDP modification of the W-L model posits that the acoustic domain (akin 

to Wernicke ’ s area) contains large numbers of units located in auditory association 

cortices that represent acoustic features of phonemes.  1   The articulatory domain 

(analogous to Broca ’ s area) contains units located predominantly in dominant 

frontal operculum that represent discrete articulatory features of speech, as opposed 

to continuously variable motor programs (e.g., phonemic distinctive features). The 

semantic or conceptual domain contains an array of units distributed throughout 

unimodal and polymodal association cortices that represent semantic features of 

concepts. For example, the representation of the concept of  “ house ”  might cor-

respond to activation of units representing features of houses such as visual attri-

butes, construction materials, contents (physical and human), and so on (each 

feature in turn a distributed representation over more primitive features). Each 

unit within a given domain is connected to many, if not most, of the other units 

in that same domain (symbolized by the small looping arrow appended to each 

domain in   figure 2.1 ). Knowledge within each domain is represented as connection 
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strengths between the units. Thus, semantic knowledge is represented as the pattern 

of connection strengths throughout the association cortices supporting this knowl-

edge. Within any domain, a representation corresponds to a specific pattern of 

activity of all the units, hence the term distributed representation (a synonym for 

a population encoded representation). Each unit within each of these domains is 

connected via interposed hidden units to many, if not most, of the units in the 

other domains. During learning of a language, the strengths of the connections 

between the units are gradually adjusted so that a pattern of activity involving the 

units in one domain elicits the correct pattern of activity in the units of another 

domain. The entire set of connections between any two domains forms a pattern 

associator network. Hidden units are units whose activity cannot be directly inter-

preted in behavioral terms. The hidden-unit regions, in conjunction with nonlinear 

unit properties, enable the systematic association of representations in two con-

nected domains that may be arbitrarily related to one another (e.g., word sound 

and word meaning). The model employs left – right position in acoustic and 

 Figure 2.1 
 Proposed parallel distributed processing model of language. (Roth, H. L., S. E. Nadeau, A. L. 
Hollingsworth, A. M. Cimino-Knight, and K. M. Heilman. 2006.  “ Naming Concepts: Evidence of Two 
Routes. ”   Neurocase  12:61 – 70.) Connectivity within the substrate for concept representations defines 
semantic knowledge. Connectivity within the acoustic – articulatory motor pattern associator defines 
phonologic sequence knowledge. Connectivity between the substrate for concept representations and 
the acoustic – articulatory motor pattern associator defines lexical knowledge (see text for details). 
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articulatory motor representations as a surrogate for temporal order in precisely 

the same way as the reading model of Plaut et al. (1996). Thus, acoustic and 

articulatory motor representations would feature positions for each output 

phoneme or distinctive feature, ordered as they are in the phonologic word form. 

The use of left to right sequential order in lieu of temporal order is a device of 

convenience, but there is evidence of this temporal – geographic transform in the 

brain (Cheung et al. 2001). During any type of language processing, initiated by 

input to any domain of the network, there will be almost instantaneous engage-

ment of all domains of the network. Thus, linguistic behavior is best viewed as the 

emergent product of the  entire  network. 

 I will now focus on particular components of the network in order to provide a 

more detailed understanding of how they work and the nature of the knowledge 

they support. 

 Concept Representations 

 As I have noted, the Wernicke – Lichtheim information-processing model provides 

no insight into the nature of the representations in the various domains. The nature 

of concept representations (depicted in   figure 2.1 ) can be best illustrated by a par-

ticularly illuminating model developed by David Rumelhart and his colleagues 

(Rumelhart et al. 1986). This  “ rooms in a house ”  model was comprised of 40  “ feature ”  

units, each corresponding to an article typically found in particular rooms or an 

aspect of particular rooms. Each unit was connected with all the other units in the 

network — an attribute that defines the model as an  auto-associator network.  Auto-

associator networks have the capacity for  “ settling ”  into a particular state that 

defines a representation. Connection strengths were defined by the likelihood that 

any two features might appear in conjunction in a typical house. When one or more 

units was clamped into the  “ on ”  state (as if the network had been shown these 

particular features or articles), activation spread throughout the model and the 

model eventually settled into a steady state that implicitly defined a particular room 

in a house. Thus, clamping  “ oven ”  ultimately resulted in activation of all the items 

one would expect to find in a kitchen and thereby  implicitly  defined, via a  distributed 
or population encoded representation , the concept of a kitchen. No kitchen unit per 

se was turned on. Rather, kitchen was defined by the pattern of feature units that 

were activated. The network contained the knowledge, in the totality of its connec-

tions, that enabled this representation to be generated. The 40-unit model actually 

had the capability of generating distributed representations of a number of different 

rooms in a house (e.g., bathroom, bedroom, living room, study), subcomponents 

of rooms (e.g., easy chair and floor lamp, desk and desk chair, window and drapes) 

and blends of rooms that were not anticipated in the programming of the model 
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(e.g., clamping both bed and sofa led to a distributed representation of a large, 

fancy bedroom replete with a fireplace, television, and sofa). 

 This auto-associator model, simple though it is, has the essential attributes of a 

network that might instantiate semantic knowledge and be capable of generating 

the distributed representations corresponding to concepts. The brain ’ s semantic 

auto-associator obviously is comprised of vastly more that 40 features, and enables 

an enormous repertoire of distributed representations corresponding to the vast 

number of concepts we are capable of representing. This particular model network 

is not compartmentalized, but there is nothing inherent in PDP models that pre-

cludes a semantic representation comprised of two or more subnetworks (see, e.g., 

Farah and McCelland 1991). There is good evidence that in the brain, the meaning 

of a given word is distributed over a host of networks, depending in part upon 

the semantic features that are most essential to that meaning, an idea proposed by 

Lissauer over a century ago (Lissauer 1988) and elaborated by Wernicke (as cited 

in Eggert 1977). For example, visual information makes a particularly large contribu-

tion to the meaning of living things, and consequently, subjects with damage to visual 

association cortex due to herpes simplex encephalitis exhibit category-specific 

naming and recognition deficits for living things (Forde and Humphreys 1999; 

Warrington and Shallice 1984). In this conceptualization, the distributed representa-

tion of the concept  “ dog ”  has a major component in visual association cortices 

made available by knowledge of the visual appearance of dogs in general, as well 

as particular dogs; a major component in auditory association cortices correspond-

ing to the sounds that dogs characteristically make; a major component in the limbic 

system corresponding to one ’ s feelings about dogs in general and specific dogs; a 

component in somatosensory cortex corresponding to the feel of dog fur, wet 

tongue, or cold nose; a predicative component involving frontal cortex that corre-

sponds to our knowledge of what dogs do, hence a component of the semantic 

representation of a verb (to be considered in much detail below); a component in 

olfactory cortex, corresponding to the odors of dogs; and components in perisylvian 

language cortex that enable us to translate the semantic representation of dog into 

an articulatory motor representation (so we can say / dawg /) or an acoustic repre-

sentation (so we can understand another person saying / dawg /; see   figure 2.2a ). Not 

all of these subnetworks need to be activated every time, or in exactly the same way 

by everyone. We can speak in terms of  working memory  — in this case a pattern of 

activity in particular subnetworks corresponding to dog, and we can speak in terms 

of  working associations , meaning the elicitation of distributed concept representa-

tions in other connected subnetworks, either automatically or volitionally. Thus, 

nearly everyone would, when hearing / dawg /, develop visual and limbic distributed 

representations, each constituting a working memory, the two together comprising 

an automatic working association. However, the average person might need to 
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a)

b)

c)

 Figure 2.2 
 (a) The multifocal distributed representation of nouns. The predicative component represents our knowl-
edge of what a noun concept can or likely will do. (b) The multifocal distributed representation of verbs. 
The nominative component, by analogy to the predicative component of nouns, represents all the nouns 
that a verb is likely to modify. (c) The linking of multifocal distributed representations of nouns and 
verbs through their mechanisms for mutual engagement. 

volitionally develop the working association that brings in the olfactory component 

of the meaning of  “ dog. ”  Glancing at a calculator may not be sufficient to evoke 

a poke component or pick-up gesture component to its distributed concept repre-

sentation, but looking at a calculator in the context of an action paradigm is 

(Bub, Masson, and Cree 2008).    
 This very old idea of Lissauer and Wernicke, because it is grounded in neuro-

anatomy, has always retained currency among neurologists, cognitive neuropsy-

chologists, and others strongly guided by principles of strict functional – anatomic 

correlation, even as it has been repeatedly questioned by investigators, most notably 

cognitive psychologists, who have worked from models that do not take anatomy 
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into account. In these models, concepts have been posited to be symbolic, amodal 

entities that somehow are mapped to or grounded in the real world. However, with 

the advancement of cognitive science, we are now beginning to see a universal rec-

ognition that neuroanatomic considerations are essential, and the concept of amodal 

processing in the brain is steadily being undermined (see, e.g., Barsalou 2008). The 

old theory of Lissauer and Wernicke has been resurrected as the embodied cogni-

tion framework (Buxbaum and Kal é nine 2010; Fernandino and Iacoboni 2010; 

Spivey 2007). A very influential factor in this renaissance has been the discovery of 

mirror neurons by Rizzolati and colleagues (Rizzolatti and Craighero 2004), neurons 

in frontal cortex that receive projections from parietal cortex such that they respond 

to the perception of goal-directed movement — for example, firing in response to the 

perception of an investigator picking up a morsel of food. Such responses were 

entirely predictable from the landmark neuroanatomic paper of Chavis and Pandya 

(1976), which demonstrated that postcentral cortices hold no secrets from the frontal 

lobes because of a vast and intricately organized system of reciprocal frontal –

 postcentral connections (see, e.g., Evangeliou et al. 2009 and Raos, Evangeliou, 

and Savaki 2007). Indeed, it is this connectivity that provides the basis for the vast 

repertoire of daily activities we pursue more or less automatically (Nadeau and 

Heilman 2007). 

 The Acoustic – Articulatory Motor Pattern Associator Network 

 The knowledge that allows a person to translate heard sound sequences into articu-

latory motor sequences, and thereby mediates repetition of both real words and 

nonwords, is contained in the network that connects the acoustic domain to the 

articulatory motor domain (the acoustic – articulatory motor pattern associator, 

  figure 2.1 , pathway 7 – 3). Because this network has acquired, through experience, 

knowledge of the systematic relationships between acoustic sequences and articula-

tory sequences, it has learned the sound  sequence  regularities of the language: the 

phonemic sequences of joint phonemes, rhymes, syllables, affixes, morphemes, and 

words characteristic of the language (Nadeau 2001). Because the role of sequence 

knowledge will be a major theme of this book, it is important at this stage to have 

a clear understanding of how sequence might be encoded in a distributed neural 

network architecture. The reading model developed by Plaut and colleagues (Plaut 

et al. 1996; Seidenberg and McClelland 1989) provides a particularly clear illustra-

tion. I will therefore describe it in some detail even though reading per se represents 

somewhat of a digression. 

 This reading model fundamentally recapitulates the acoustic – articulatory motor 

pathway of   figure 2.1 , the major difference (inconsequential to this discussion) 

being that in place of acoustic representations, it incorporated orthographic 
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representations. The model was composed of three layers: (1) an input layer of 

105 grapheme units grouped into clusters, the first cluster including all possibilities 

for the one or more consonants of the onset, the second cluster including all the 

possible vowels in the nucleus, and the third cluster including all possibilities for 

the one or more consonants in the coda; (2) a hidden-unit layer of 100 units; and 

(3) an output layer of 61 phoneme units grouped into clusters including all the 

possibilities for onset, nucleus, and coda, respectively (as for the graphemes). Local 

representations were used for the graphemes and phonemes. There were one-way 

connections from each of the grapheme input units to each of the hidden units, 

and there were two-way connections between each of the hidden units and each 

of the phoneme output units. Every output unit was connected to every other 

output unit, providing the network the auto-associator capability for  “ settling into ”  

the best solution (as opposed to its own approximate solution). The model was 

trained using a mathematical algorithm (backpropagation) that incrementally alters 

the strengths of connections in proportion to their contribution to the error, which 

was computed as the difference between the actual product of the network and 

the desired product of the network.  2   The orthographic representations of 3,000 

English single-syllable words and their corresponding phonologic forms were pre-

sented, one pair at a time, cycling repeatedly through the entire corpus. In this 

way, the model ultimately learned to produce the correct pronunciation of all the 

words it had read. One of the most striking things about the trained model is that 

it also was able to produce correct pronunciations of plausible English nonwords 

(i.e., orthographic sequences it had never encountered before). How was this 

possible? 

 One might have inferred that the model was simply learning the pronunciation 

of all the words by rote. If this had been the case, however, the model would have 

been incapable of applying what it had learned to novel words. In fact, what the 

model learned was the statistical relationships between  sequences  of graphemes 

and  sequences  of phonemes that are characteristic of the English language. To the 

extent that there is a limited repertoire of sequence types, the model was able to 

learn it and then apply that knowledge to novel forms that incorporated some of 

the sequential relationships in this repertoire. Certain sequences, those most com-

monly found in English single-syllable words, were more thoroughly etched in 

network connectivity. Thus, it was very fast with high-frequency words. It was also 

very fast with words with an absolutely consistent orthographic – phonologic 

sequence relationship — for example, words ending in  “ ust, ”  which are always pro-

nounced /  Λ st / (must, bust, trust, lust, crust, etc.). The model encountered difficulty 

(reflected in prolonged reading latency) only with low-frequency words, and only 

to the extent that it had learned different, competing pronunciations of the same 

orthographic sequence. Thus, it was slow to read  “ pint ”  because in every case but 
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 “ pint, ”  the sequence  “ int ”  is pronounced / Int / (e.g., mint, tint, flint, lint). It was also 

slow, though not quite so slow, to read words like  “ shown ”  because there are two 

equally frequent alternatives to the pronunciation of  “ own ”  (gown, down, town vs. 

shown, blown, flown). It was very slow with words that are unique in their ortho-

graphic – phonologic sequence relationship (e.g., aisle, guide, and fugue). These 

behaviors precisely recapitulate the behavior of normal human subjects given 

reading tasks. 

 The knowledge the model acquires reflects competing effects of type frequency 

and token frequency. If a single word is sufficiently common (high token frequency), 

the model acquires enough experience with it that competing orthographic – 

phonologic sequential relationships have a negligible impact on naming latency. 

However, if a word is relatively uncommon (e.g., pint), its naming latency will be 

significantly affected by the knowledge of other words that, though equally uncom-

mon, together belong to a competing type — an  “ enemy ”  (e.g., mint, flint, tint, sprint). 

 The implicit knowledge of various competing regularities captured by the model 

(and the brain) through experience defines  quasi-regular domains . For example, in 

the case of words ending in  “ own, ”  orthographic – phonologic regularity exists but it 

is only quasi-regular because there is not one but two alternatives (shown vs. gown), 

a particular alternative being determined by the onset cluster. Quasi-regular domains 

may be composed of more or less equally competing subdomains, each correspond-

ing to a regularity, as in the case of  “ own ”  words, or a domain that is regular but for 

a single member (e.g., mint, tint, splint, etc. vs. pint). In some cases they may be fully 

regular (e.g., the  “ _ust ”  words). The higher the frequency of a word, the more deeply 

its orthographic – phonologic connectivity becomes etched in neural connectivity, the 

less its production is influenced by similarity to neighbors, and the more it approaches 

a regular domain that has only one member. Whether or not linguistic forms belong 

to particular quasi-regular domains depends upon the particular regularities that 

the network is endowed to capture through experience. The term quasi-regular 

domains will be referred to repeatedly in this book because it succinctly character-

izes patterns of knowledge that are directly related to neural instantiation 

and because aphasia can, to a substantial degree, be viewed as lesion-induced per-

turbation of the competition between regularities in quasi-regular domains in which 

the competitive strength of lower frequency or less typical representations is reduced. 

Grammatic function is driven by competition between regularities within quasi-

regular domains of knowledge no less than the orthographic – phonologic translation 

discussed in this section. Grammatic function differs only in that a considerably 

larger number and variety of quasi-regular domains are in play at any given time. 

When a neural network supporting a quasi-regular domain settles into the wrong 

state, the result is a paraphasic error: phonemic, verbal, or semantic, but also mor-

phologic (paragrammatic) or syntactic. 
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 The capacity of the model of Plaut and colleagues to read nonwords reflects 

its ability to capture patterns in the sequential relationships between orthographic 

and articulatory word forms and to apply this knowledge to novel word forms. 

Plaut et al. (1996), as well as Seidenberg and McClelland (1989), in their earlier 

work on this reading model, focused on differences in rhyme components of single-

syllable words because these are the major determinants of whether a word is 

orthographically regular (e.g., mint) or irregular (e.g., pint). However, as Seiden-

berg and McClelland pointed out, the network architecture in these models is 

capable of capturing any kind of regularity in the orthographic and phonologic 

sequences it is exposed to, limited only by the extent of exposure. Such regulari-

ties would include joint phonemes other than rhymes (e.g.,  “ str ”  of stream, street, 

stray, and strum) and, in a multisyllabic version, syllables and morphemes (affixes 

and the root forms of nouns and verbs, as well as free grammatic morphology, 

e.g., articles, auxiliary verbs, conjunctions, and prepositions). The simple architecture 

of the model of Plaut et al. provides adequate support for the orthographic pho-

nologic sequence regularities discussed here to illustrate the basic idea of network 

instantiation of sequence knowledge. However, as we shall see, somewhat more 

complex networks are necessary to adequately support the sequence knowledge 

required of phonologic and grammatic processes (see chapter 3,  “ Sequence: The 

Basis of Syntax ” ). 

 The acoustic – articulatory motor pathway in the model of   figure 2.1  would capture 

analogous patterns in the sequential relationships between acoustic and articulatory 

word forms. These sequential relationship patterns (captured in part by measures 

of biphone frequencies) potentially involve sequences of varying length, from 

phoneme pairs (joint phonemes) and syllables up to and including whole words and 

possibly, multiple word compounds. These patterns represent the repository of 

knowledge about subword (sublexical) entities in general, as well as our knowledge 

of phonotactic constraints (the rules that determine whether or not a given phono-

logic sequence is permissible in a particular language). This repository of sequence 

knowledge is additionally influenced by  “ neighborhood ”  effects (Vitevitch 1997). 

Any given phoneme sequence represented in the acoustic – articulatory motor 

pattern associator comprises part of one or more words. These words define the 

phonologic neighborhood of that sequence. They are engaged through bottom-up/

top-down interactions between the acoustic – articulatory motor pattern associator 

and the domains of concept representations (semantics). Thus, the final production 

of a phoneme sequence is a reflection of the combined effects of input (e.g., acous-

tic), phonotactic effects, neighborhood effects, and noise in the system. Phonotactic 

frequency effects are seen in tendencies to produce near miss errors that are off by 

a small number of phonemic distinctive features (usually one or two) — for example, 

/pat/ in lieu of /bat/. Phonologic neighborhood effects are seen in larger errors that 
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substantially reflect regularities in patterns of semantic – phonologic knowledge, that 

is, lexical effects (e.g., /rat/ in lieu of /cat/). 

 The effect of competing regularities in the acoustic – articulatory motor pattern 

associator network is dramatically illustrated in the production of past tense forms 

of verbs. The rich literature on this subject will be discussed later in this book after 

I have had the opportunity to lay down some additional essential groundwork. 

 Lexicons 

 Understanding the meaning of a word that is heard is achieved through the connec-

tions between the neural domain that contains the sound features of language and 

the neural domain that contains concept features (the acoustic – concepts representa-

tions pattern associator,   figure 2.1 , pathway 6 – 5). This pattern associator network 

corresponds to the cognitive neuropsychological concept of a phonologic input 

lexicon (Ellis and Young 1988). It contains neither knowledge of acoustics nor 

knowledge of semantics — it serves only to translate a representation in the acoustic 

domain into a representation in the concepts – semantics domain (where meaning is 

instantiated). This conceptualization of a lexicon as a vast number of connections 

between two network domains, though well accepted in the connectionist literature, 

is not intuitive and is strongly at odds with traditional conceptualizations of lexicons 

as repositories of abstract local representations of single words. However, all repre-

sentations in the central nervous system are distributed (like the  “ kitchen ”  repre-

sentation), not local, and the knowledge that underlies the capacity to generate a 

representation lies in connection strengths and is not a piece of data at a memory 

location (as in a digital computer).  3   

 The knowledge that enables a person to translate a concept into a spoken word 

(the phonologic output lexicon; Ellis and Young 1988) is contained in two different 

pattern associator networks that connect the concept representations domain to the 

articulatory motor domain (see   figure 2.1 , pathways 1 – 2 and 4 – 3). These two inter-

acting pattern associator networks support different forms of knowledge. The indi-

rect concept representations – articulatory motor pathway (pathway 4 – 3) provides 

a robust basis for knowledge of sequences and sublexical entities because of the 

sequence knowledge stored in the acoustic – articulatory motor pattern associator. 

However, the direct concept representations – articulatory motor pattern associator 

(pathway 1 – 2) does not contain much knowledge of sequences and sublexical enti-

ties because it translates spatially distributed patterns of activity corresponding to 

concepts into temporally distributed sequences of activity corresponding to arti-

culated words. This spatial – temporal translation precludes significant acquisition of 

sequence knowledge and makes this substantially a whole word pathway. The exis-

tence of this direct, whole word naming route finds support in studies of subjects 
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with repetition conduction aphasia: some appear to have lost most phonologic 

sequence knowledge (pathways 3, 4, and 7; resulting in a severe deficit in auditory 

verbal short-term memory) but can speak quite well, producing few if any phono-

logic paraphasic errors, can repeat real words (with evidence of influence by seman-

tic attributes but little influence of word length), and are severely impaired in 

repeating nonwords and functors (Caramazza et al. 1981; Friedrich, Glenn, and 

Marin 1984; Saffran and Marin 1975; Warrington and Shallice 1969). It also finds 

some support in reports of subjects with conduction aphasia who are able to repeat 

words better than nonwords (Caramazza, Miceli, and Villa 1986; Friedrich, Glenn, 

and Marin 1984; McCarthy and Warrington 1984; Saffran and Marin 1975) and who 

are able to repeat words better when they are given in a sentence context than when 

given as a single word (thereby increasing the likelihood of engaging concept rep-

resentations; McCarthy and Warrington 1984). However, a model in which the only 

link from the concept representations domain to the articulatory motor domain is 

the direct one (pathway 1 – 2) cannot account for observations that normal subjects 

exhibit phonologic slips of the tongue, and aphasic subjects produce phonemic para-

phasias in naming and internally generated spoken language quite comparable to 

those produced during repetition. To explain these observations, one must posit 

access from concept representations to phonologic sequence knowledge, as indi-

cated in pathway 4 – 3 of the model. Thus, this PDP model predicts that there should 

be two pathways enabling naming of concepts. 

 Further evidence of two pathways supporting naming of concepts has been 

provided by a subject who, depending upon type of verbal cue provided, could be 

induced to use either the whole word (direct) naming route or the phonologic (indi-

rect) naming route (Roth et al. 2006). This left-handed subject had a Broca ’ s aphasia 

stemming from a massive infarct involving the entire left middle cerebral artery 

(MCA) territory. His language was largely limited to single words, which he pro-

duced quite readily and with good articulation. He tended to pursue a semantic 

 conduite d ’ approche , which however was successful only about 10% of the time. He 

made very rare phonologic paraphasic errors. When he was asked to name an 

object — for example, a faucet — and given either no cue or a semantic cue, a typical 

response would be  “ dishes  …  chairs  …  dishwasher  …  shut  …  water  …  ready to go 

 …  water  …  shut  …  hot  …  cold  …  sink  …  water  …  heavy  …  water  …  heavy  …  

washer  …  tub. ”  However, when given the phonemic cue  “ faus, ”  he replied:  “ fauwash 

 …  fau  …  fau  …  fauswah  …  thafaush  …  fallshine  …  fallsha  …  fallshvine  …  fallswash 

 …  fallsh. ”  These patterns of response to bedside testing suggested that he normally 

used a whole word route to confrontation naming (as well as in internally generated 

language; pathway 1 – 2; see   figure 2.1 ) but that by providing him with a phonemic 

cue, we could induce him to employ a phonologic route — a route that engaged 

sublexical representations implicit in his stores of phonologic sequence knowledge 
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(pathway 4 – 3; see   figure 2.1 ). He actually was able to successfully name objects 30% 

of the time using this pathway, but at the cost of producing large numbers of rela-

tively undesirable nonword errors. The dual-route naming hypothesis was further 

tested and validated with systematic cued naming studies. 

 As discussed, lexical knowledge corresponds to patterns of connectivity between 

the domains of concept representations and the acoustic – articulatory motor pattern 

associator. Because of the critical but counterintuitive nature of this principle, I will 

consistently use the term semantic – phonologic (lexical) to refer to the knowledge 

encoded in this connectivity. 

 The Representation of Knowledge in Auto-Associator and Pattern Associator Networks: 
Attractor Basins, Attractor Trenches, and Quasi-Regular Domains 

 A major theme of later sections in this book will be the robustness or redundancy 

with which certain knowledge is represented in neural connectivity and hence the 

degree to which that knowledge is susceptible to lesion effects. It is therefore impor-

tant to have a clear idea of how robustness of knowledge is instantiated in connec-

tionist networks. Put most succinctly, robustness is instantiated in terms of the 

relative strength of connectivity representing that particular knowledge throughout 

the network. However, it may be worth enlarging on this point. 

 Assuming for the moment that the semantic network is undifferentiated (rather 

than consisting of multiple separate components in various association cortices), 

then the activity pattern of the auto-associator neural network supporting semantic 

knowledge corresponds to a function in N-dimensional feature hyperspace. I will 

refer to a concept representation corresponding to a particular activity pattern in 

this unitary hyperspace as a  “ granular distributed concept representation ”  to signify 

its dependence on the activity of units corresponding to underlying features. Later, 

I will recapture the idea that a concept representation is distributed across multiple 

association cortices by using the term  “ multifocal granular distributed concept 

representation ”  (MFGDCR). 

 By taking a three-dimensional  “ slab ”  of the network activity function, we can 

achieve some insight into the order in the patterns of activity (Garrard et al. 2001; 

Woollams et al. 2008; O’Connor, Cree, and McRae 2009). Let us take a slab corre-

sponding to mammal knowledge (see   figure 2.3 ). Because we are dealing with an 

auto-associator network, network activity tends to settle into attractor basins, one 

corresponding to mammals in general, the central, lowest energy point of which 

corresponds to the  “ centroid ”  of mammal knowledge — the representation of a crea-

ture that best defines our sense of mammalness. Within the mammal basin there are 

innumerable attractor subbasins corresponding to specific mammals. Very close to 

the centroid are subbasins corresponding to mammals likely to be very close to the 
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centroid representation (e.g., dogs, cats, cows, horses, etc.). Distant from this centroid 

are subbasins corresponding to mammals that are quite atypical (e.g., platypuses 

and whales). Distance from the centroid is defined by the degree of atypicality, 

which is defined by feature and feature combination frequency within the semantic 

domain (mammals in this example; Kiran, Ntourou, and Eubank 2007; Patterson 

2007; Woollams et al. 2008). Within any given subbasin, there may be sub-

subbasins — for example, corresponding to types of dogs. Within these sub-subbasins 

may be sub-sub-subbasins corresponding to types within types, or perhaps the 

Labrador that was our pet and generic Labradors. The depth of a basin relative to 

that of its subbasins reflects the degree to which features are shared by the 

subbasins within that basin. For example, the mammal basin is deeper than the tool 

basin because mammals, by and large, share many more features than tools.    
 The topography of the various attractor basins within the semantic field reflects 

regularities in the knowledge of the relationships between concepts. This knowledge, 

instantiated in neural connections strengths, reflects the impact of regularities 

in experience (e.g., the mammal attractor basin of an Australian is likely to be 

somewhat different from that of an American), frequency of exposure, and age of 

acquisition effects. 

 The purpose of this metaphor of basins and subbasins is to provide insight into 

the constraints on the patterns of activity exhibited by all the units in the network. 

All other things being equal, the activity pattern of the network supporting seman-

tics is more likely to  “ settle ”  into deep basins and basins situated near the centroid. 

However, the state of this network is quite dynamic. Its connectivity is susceptible 

to recent learning effects: for example, the behavior the network exhibits in settling 

may be somewhat different if we just spent the afternoon at the zoo. Its state of 

background activity, and to a minor extent, its connectivity, is susceptible to the 

influence of our current situation. For example, the network will likely behave a 

little differently if we are at an aquarium watching killer whales perform. And 

finally, most importantly, the network ’ s settled activity state will be strongly influ-

enced by the specific input features, which in most circumstances will absolutely 

define the subbasin or sub-subbasin into which the network settles (its position in 

state space), all the other factors exerting their major influence either on response 

latencies or the occasional errors. Errors will consist of slips into nearby subbasins. 

This settling in response to input features instantiates  content-addressable memory . 

Some inputs, rather than leading to settlement into a particular subbasin, may 

serve to define broad subbasins within the mammal basin, corresponding, for 

example, to mammals of North America, mammals of the Kalahari, or mammals 

of particular classes. 

 The effect of lesions (focal or diffuse) will be to produce graceful degradation 

of network performance (Hodges et al. 1992; Shallice 1988; Warrington 1975; 
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Whale
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Platypus

Labrador
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Zebra
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Pekingese

 Figure 2.3 
 The topography of the semantic network activity function in the vicinity of the mammal attractor basin. 
Each point corresponds to an activity level of all features in an N-dimensional feature hyperspace, in 
mathematical terms, a state space. Because all features are connected to all other features (or some 
approximation thereof), the network supports a capacity for settling of the activity function into attractor 
basins, subbasins within basins, and sub-subbasins, as illustrated here. The point of maximal typicality is 
represented by the centroid of a basin. Distance from the centroid reflects degree of atypicality. The value 
of  θ  defines the manner in which atypically is defined. For example, whales and platypuses are both 
atypical, but in very different ways. 



A Parallel Distributed Processing Model of Language 19

Warrington and Shallice 1984). Deep basins will become shallower, and subbasins, 

particularly those that are shallower and more distant from the centroid — corre-

sponding to more atypical exemplars — will disappear (Woollams et al. 2008). The 

deeper and therefore more resilient basins are defined by knowledge that is repre-

sented in neural connectivity with the greatest degree of redundancy, as a result of 

stronger connection strengths, which reflect frequency, age of acquisition, and famil-

iarity effects (Hinton and Shallice 1991; Hodges, Graham, and Patterson 1995; 

Rogers et al. 2004). As subbasins become shallow or disappear, responses will reflect 

the settling of the network into surviving neighbors located nearer the centroid —

 neighbors of higher typicality (yielding coordinate errors, e.g., horse in lieu of 

donkey), the parent basin (yielding superordinate errors, e.g., animal in lieu of 

donkey), or failure to settle at all, yielding omission errors, particularly likely to 

occur with more atypical exemplars that lack near neighbors. This is precisely what 

has been observed in semantic dementia (Woollams et al. 2008). 

 Recent studies contrasting the behavior of subjects with semantic dementia with 

that of subjects with large strokes and global aphasia appear, at least at first, to 

raise some questions about this model. This is a serious matter because the model 

described represents one of the foundations of the theories discussed in this book. 

Expectably, in word – picture matching tests, subjects with semantic dementia are 

most accurate in matching superordinate names to pictures (e.g., animal), somewhat 

less accurate with category names (e.g., dog), and least accurate with subordinate 

names (e.g., Labrador; Crutch and Warrington 2008). This response pattern is 

entirely consistent with the effects of degradation of the substrate for semantic 

representations as discussed above. On the other hand, subjects with large strokes 

and global aphasia tend to respond with the most accuracy with subordinate 

names, with intermediate accuracy with category names, and with the least accuracy 

with superordinate names, notwithstanding that category names are less frequent 

and subordinate names least frequent (Crutch and Warrington 2008). Crutch and 

Warrington (2008) offered a number of potential explanations, but the most straight-

forward one that is fully congruent with the neuroanatomy is that in stroke, damage 

to white matter connectivity between the substrate for concept representations 

and perisylvian cortex supporting phonology makes the major contribution to 

language impairment and, to a varying degree, language is dependent on under-

developed semantic – phonologic connectivity in the right hemisphere. These white 

matter connections reflect the frequency with which a particular person associates 

a particular phonologic word form with a particular concept — something referred 

to as the basic level effect, which reflects the impact of experience (and with it, 

expertise) on our choice of name for a given entity (Rogers and McClelland 

2004). Many people, on seeing a dog, would call it a  “ dog. ”  However, many would 

more often produce the name of the type of dog (e.g.,  “ poodle ”  or  “ German 
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shepherd ” ). Very few would respond  “ animal. ”  Basic level names (e.g.,  “ dog ”  or 

 “ poodle ” ) do not bear a consistent relationship to frequency in word databases. 

This is because they are substantially defined by personal experience and expertise. 

The basic level terms employed by a veterinarian might involve, for example, 

specific types of poodles. Basic level effects are also strongly reflective of age of 

acquisition (see above; Lambon Ralph and Ehsan 2006). Basic level effects interact 

with the properties of the semantic system. Atypical exemplars (e.g., platypus) 

receive weak support from semantic attractor basin effects but might receive stron-

ger support from basic level effects wired into semantic – phonologic (lexical) con-

nectivity in someone whose favorite cuddly toy as a child was a platypus. On the 

other hand, with semantic network damage, superordinate categories (e.g., animals) 

will have an advantage and will be preserved even as semantic subcategories are 

lost, however strong the connectivity instantiating basic level effects. Basic level 

effects also represent, in part, properties of the semantic system. Expertise affects 

not just frequency of use of particular terms but also degree of differentiation in 

semantic networks. 

 In the Crutch and Warrington study (2008), when there was damage to semantic –

 phonologic connectivity, the most redundantly represented connections linking the 

substrate for concepts to the substrate for category or subcategory name representa-

tions (high basic level effect) were more likely to survive than those linking concepts 

to superordinate names (lower basic level effect). Why the stroke subjects per-

formed best when supplied subordinate names is less clear. Normal subjects show 

reliably faster reaction times for category names (e.g., dog) and slower responses to 

subordinate (e.g., Labrador) and superordinate names (e.g., animal; Crutch and 

Warrington 2008). The faster response to category names relative to superordinate 

names is likely to represent patterns instantiated in semantic – phonologic connectiv-

ity (the basis for the basic level effect) whereas the faster response to category 

names relative to subordinate names likely reflects the implicitly hierarchical nature 

of semantic attractor basin representations. Thus, in the word – picture matching 

comprehension test, performance level reflects the interactions of regularities in 

semantic representations, regularities in semantic – phonologic connectivity, and 

lesion geography, and the results pose no threat to the auto-associator attractor basis 

conceptualization of semantics introduced above. 

 The attractor basin metaphor can also be applied to pattern associator networks 

incorporating auto-associator features, in which case the counterpart of an attractor 

basin is an  attractor trench . For example, consider the pattern associator network of 

Plaut et al. (1996) supporting reading aloud. The network activity functional coun-

terpart of  “ ust ”  words is a very simple trench, in effect a groove, linking  “  … ust ”  

to / …  Λ st/. The attractor trench corresponding to  “  … int ”  words is more complicated 

as it corresponds to a quasi-regular domain and incorporates two rather unequal 
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subtrenches, one corresponding to  “  … int ”  — / … Int/, and the other to  “  … int ”  — / …

 int/. The attractor trench corresponding to  “  … own ”  words includes two nearly equal 

subtrenches, one corresponding to words like grown, shown, and flown, the other to 

words like crown, gown, and down. Within the reading aloud pattern associator 

network activity function, there is a trench that includes subtrenches corresponding 

to tough, rough, and enough; cough and trough; though, dough, and borough; through 

and slough; plough; drought; and ought, fought, thought, bought, brought, sought, 

and wrought. To bring this conceptualization closer to the central themes of this 

book, there exists a complex attractor trench within the acoustic – articulatory pattern 

associator network corresponding to the past tense of English verbs. One subtrench, 

a particularly large one, corresponds to verbs that accept an  “ ed ”  to form the past 

tense (e.g., jump – jumped, groom-groomed, and hate – hated). Others correspond to 

variously  “ irregular ”  verbs — for example, swim – swam, sing – sang, bleed – bled, slide –

 slid, and go – went. The rich terrain of verb past tense formation has been studied 

extensively and will be the topic of a later section in this book (in chapter 4,  “ Dis-

orders of Grammar in Aphasia, ”  see the subsection  “ Verb Past Tense Formation ”  

in the  “ Grammatic Morphology — Special Cases ”  section). Attractor trenches exist 

only to the extent that there are regularities in the pattern associator network 

domain (in pattern associators supporting orthogonal domains, trenches are reduced 

to grooves supporting single relationships, e.g., between word meaning and word 

sound). 

 Attractor basins (e.g., mammals) and trenches (e.g.,  “ int ”  words) constitute the 

neural network counterparts of quasi-regular domains (see   figure 2.4 ). They are 

regular because the exemplars have many features in common. They are only quasi-

regular to the extent that exemplars have features that distinguish them. Subbasins 

and subtrenches correspond to competing regularities within these domains.    
 The general principles diagrammed in   figure 2.4  presumably also characterize all 

the networks supporting grammatic function. Understood in this way, it becomes 

quite clear why the single most important influence on the pattern of language 

performance of an aphasic subject is the terrain of knowledge implicit in the con-

nectivity of these networks that was established in the acquisition of his or her 

particular language. The locus and extent of the lesion have a somewhat more 

modest influence. 

 Semantic – Phonologic (Lexical) and Phonologic Impairment in Aphasias 

 Discussion of insights into the neural architecture of grammar that have been 

gained from studies of subjects with aphasia will generally be limited to chapter 4 

( “ Disorders of Grammar in Aphasia ” ). However, I will make a brief digression 

into aphasia at this point in order to link the model to brain anatomy and to 
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introduce an important subtheme that will appear later in the book: the likely 

importance of the nondominant hemisphere in accounting for much aphasic 

phenomenology. 

 Phonologic Paraphasic Errors 
 Phonologic paraphasic errors are generally thought to reflect damage to dominant-

hemisphere networks supporting phonologic processing. In our model, this would 

correspond to the dominant-hemisphere acoustic – articulatory motor pattern asso-

ciator network (pathway 7 – 3; see   figure 2.1 ) — the repository of phonologic sequence 

knowledge. Nonpropositional spoken language, which may be supported by the 

nondominant hemisphere (Speedie et al. 1993), does reflect sequence knowledge, 

but discrete phrasal, lexical, or sublexical elements of this knowledge cannot be 

selected at will as they can in propositional language processing. The subject 

described in the foregoing (Roth et al. 2006), who could be cued to use one or other 

of the two concept naming routes (pathways 1 – 2 or 4 – 3; see   figure 2.1 ), provides 

new insight into the neural basis of phonologic paraphasic errors. His left hemi-

sphere was nearly completely destroyed. Thus, he must have been speaking with his 

right hemisphere, which was undamaged, and his performance when naming after 

phonemic cueing suggests that he was using discretely accessible phonologic 

Psychological/psycholinguistic pattern

Network activity pattern

Neural connectivity pattern

Quasi-regular domain

Attractor basin/sub-basin
attractor trench/sub-trench 

Coding of statistical
regularities of experience

 Figure 2.4 
 The relationship between neural network connectivity, attractor basins – trenches, and patterns of 
behavior. 
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sequence knowledge represented in his right hemisphere. This suggests, in turn, that 

deficient development of networks instantiating this knowledge (as contrasted to 

damage to fully developed networks) can provide an alternative basis for phono-

logic paraphasic errors. 

 Factors Influencing Phonologic and Lexical Errors in Internally Generated Aphasic Language 
 In the two route naming model I have introduced, three factors may influence 

the pattern of errors observed in internally generated spoken language in perisyl-

vian aphasias, and whether this pattern is marked exclusively by impaired word 

retrieval or, additionally, by phonemic paraphasic errors. First, given the likely 

anatomic representation of the network shown in   figure 2.1 , most dominant peri-

sylvian lesions probably damage both the whole word and the phonologic output 

routes (see   figure 2.5 ), and the pattern of spoken output may reflect the relative 

degree to which these two pattern associator networks are affected. This would 

explain why subjects with Wernicke ’ s or conduction aphasia apparently do not 

have the option of relying entirely on the whole word route. Second, these two 

output pattern associator networks are likely to be differentially represented in 

the two hemispheres, the phonologic pathway being more frequently better devel-

oped in the dominant hemisphere and the whole word pathway more equally 

developed in the two hemispheres. Subjects with dominant-hemisphere perisylvian 

lesions almost invariably demonstrate impaired if not completely absent phonologic 

sequence knowledge but often exhibit partial sparing of semantic – phonologic 

(lexical) knowledge. Studies of subjects with callosal disconnection demonstrate 

that the disconnected right hemisphere has a phonologic input lexicon and con-

ceptual semantic knowledge but impoverished phonologic processing (Zaidel 

et al. 2003). Third, there may be individual variability in the degree to which con-

nectivity is developed in these two output routes, and this individual variability 

may vary as a function of hemisphere. Thus, in order to fully understand language 

production following a left-hemisphere lesion, a bihemispheric language model 

that incorporates both developmental attributes and the impact of the lesion 

must be considered (see   figure 2.6 ). This will be a recurring theme throughout 

this book.       
 As the case of Roth et al. (2006) suggests, in the presence of an extensive left-

hemisphere perisylvian lesion, deficient development of connectivity underlying 

nondominant-hemisphere concept representations may lead to the generation of 

anomia and semantic paraphasic errors, and deficient development of connectivity 

in the nondominant-hemisphere phonologic route may lead to the generation of 

phonemic paraphasic errors. The deficient development of both systems, particularly 

the phonologic one, may be a general characteristic of the right hemisphere, but 

deficient development of the phonologic route might also occur to one degree or 
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 Figure 2.5 
 Illustration depicting the network of   figure 2.1  mapped onto the brain. Shade coding is as in   figure 2.1 . 
Concept representations are assumed to be widely distributed across association cortices throughout the 
brain. In this illustration, only the region of presumed interface between concept representations and the 
remainder of the model is depicted. Given the paucity of information about the anatomic organization 
of the human perisylvian region, the mapping depicted here is, at best, approximate; the goal is primarily 
to demonstrate the feasibility of mapping a connectionist architecture of phonologic processing to corti-
cal anatomy. However, recent magnetic resonance imaging diffusion tensor imaging tractographic studies 
of deep white matter pathways are shedding some light on the anatomic details. Catani, Jones, and Fytche 
(2005) have delineated two dominant perisylvian pathways linking Wernicke ’ s and Broca ’ s areas, a direct 
one, corresponding to the arcuate fasciculus (possibly corresponding to pathway 3 in our model), and an 
indirect one, projecting from Wernicke ’ s area to inferior parietal cortex (Brodmann ’ s areas 39 and 40), 
with apparent relay to Broca ’ s area via what is likely component III of the superior longitudinal fasciculus 
(Makris et al. 2005; possibly corresponding to pathway 1 – 2 in our model). They concluded that the broad 
extent of origin and termination of these pathways and their large cross sections favored a connectionist 
account. (From Roth, H. L., S. E. Nadeau, A. L. Hollingsworth, A. M. Cimino-Knight, and K. M. Heilman. 
2006.  “ Naming Concepts: Evidence of Two Routes. ”   Neurocase  12:61 – 70.) 
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another in the left hemisphere as a result of normal variability in phonologic network 

ontogenesis (Goodglass 1993; Plaut et al. 1996). 

 In summary, with any given left-hemisphere lesion, the actual pattern of internally 

generated spoken language may reflect three factors: effects of the lesion on the 

two output routes (phonologic and whole word), the degree to which one or both 

of these routes is represented in the right hemisphere, and the degree of develop-

ment of connectivity in each of the two routes in each hemisphere. If both naming 

routes are involved and the combined effect of the three factors differentially 

impacts the phonologic routes, the net result will be output marked predominantly 

by word retrieval deficits (with or without semantic paraphasic errors) as whole 

word routes become the predominant means of language production (as in repeti-

tion conduction aphasia). If whole word routes are differentially impacted, the net 

 Figure 2.6 
 Illustration depicting mapping of a bihemispheric model to the brain. This provides the basis for a fuller 
explanation of the results of left-hemisphere lesions on language output in terms of bihemispheric con-
tributions, the effect of the lesion, and the degree to which various networks are developed in each 
hemisphere. Shade coding is as in   figures 2.1 and 2.3 . HU = hidden units. (From Roth, H. L., S. E. Nadeau, 
A. L. Hollingsworth, A. M. Cimino-Knight, and K. M. Heilman. 2006.  “ Naming Concepts: Evidence of 
Two Routes. ”   Neurocase  12:61 – 70.) 
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result will be output marked by word retrieval deficits and a substantial incidence 

of phonemic paraphasic errors as damaged or inadequately developed phonologic 

routes become the predominant means of language production. 

 Subjects with reproduction conduction or Wernicke ’ s aphasia predominantly use 

damaged or inadequately developed phonologic pathways. Wernicke ’ s aphasia may 

reflect more severe impairment, hence greater difficulty with word retrieval and 

more profuse phonemic paraphasic errors than with conduction aphasia. Subjects 

with Wernicke ’ s aphasia may also have damage to acoustic representations or the 

acoustic representations – concept representations pathways that enable verbal com-

prehension. Naming difficulty may arise through mechanisms discussed in the pre-

ceding paragraph or in two additional ways. First, damage to Brodmann ’ s areas 37 

and 39 in the dominant hemisphere may be associated with word retrieval deficits 

(Chertkow et al. 1997; Hart and Gordon 1990; Raymer et al. 1997; Whatmough et 

al. 2002). These areas may constitute the interface between association cortices 

throughout the brain supporting concept representations and the core language 

apparatus (proximal to the point at which the phonologic naming route provides 

differential access to sequence knowledge; Geschwind 1965). Second, dysfunction 

of conceptual (semantic) networks because of left-hemisphere damage and deficient 

development of right-hemisphere networks, as in the subject of Roth et al. (2006), 

would be expected to yield naming difficulty with production of semantic paraphasic 

errors.       


