
Chapter 0

Preliminaries

Skip or skim this chapter, returning for background explanations as necessary.

§0.1 CONNECTIONS AND COMBINATIONS

0.11 Relational Connections and Posets

Given n non-empty sets S1, . . . , Sn and a relation R ⊆ S1 × · · · × Sn, we call
the structure (R,S1, . . . , Sn) an n-ary relational connection. When si ∈ Si (for
i = 1, . . . , n) we often write Rs1 . . . sn for 〈s1, . . . , sn〉 ∈ R, using the familiar
‘infix’ notation s1Rs2 for the case of n = 2. We will be especially concerned
in what follows with this case – the case of binary relational connections – and
will then write “S” (for “source”) and “T ” (for “target”) for S1 and S2. A binary
relational connection will be said to have the cross-over property (or to satisfy
the cross-over condition) just in case for all s1, s2 ∈ S, and all t1, t2 ∈ T :

(*) (s1Rt1 & s2Rt2) ⇒ (s1Rt2 or s2Rt1)

The label “cross-over”, for this condition, is explained pictorially. Elements
of S appear on the left, and those of T on the right. An arrow going from one of
the former to one of the latter indicates that the object represented at the tail
of the arrow bears the relation R to that represented at the head of the arrow:

s1 �������	

���
��������������� ���������	 t1

s2 �������	

������������������ ���������	 t2

Figure 0.11a: The Cross-Over Condition

Read the diagram as follows: if objects are related as by the solid arrows, then
they must be related as by at least one of the broken arrows. Thus, given the
horizontally connected (ordered) pairs as belonging to R, we must have at least
one of the crossing-over diagonal pairs also in R. Our main interest in this
condition arises through Theorem 0.14.2 below, which will be appealed to more

1



2 CHAPTER 0. PRELIMINARIES

than once in later chapters (beginning with the proof of 1.14.6, p. 69). In the
meantime, we include several familiarization exercises.

Exercise 0.11.1 Check that if a binary connection (R,S, T ) has the cross-over
property then so does the complementary connection (R,S, T ) where
R = (S×T ) � R, and so also does the converse connection (R−1, T, S)
where R−1 = {〈t, s〉 | 〈s, t〉 ∈ R}.

Exercise 0.11.2 Given R ⊆ S × T , put R(s) = {t ∈ T | sRt}. Show that
(R,S, T ) has the cross-over property iff for all s1, s2 ∈ S: R(s1) ⊆ R(s2)
or R(s2) ⊆ R(s1).

Exercise 0.11.3 (i) For S any set containing more than one element, show
that the relational connection (∈, S, ℘(S)) does not have the cross-over
property. (Here ℘(S) is the power set of S, i.e., the set of all subsets of
S.)
(ii) Where N is the set of natural numbers and � is the usual less-than-
or-equal-to relation, show that the relational connection (�,N,N) has
the cross-over property.

Inspired by 0.11.3(i), we say that (R,S, T ) is extensional on the left if for all
s1, s2 ∈ S, R(s1) = R(s2) implies s1 = s2, and that it is extensional on the
right if for all t1, t2 ∈ T , R−1(t1) = R−1(t2) implies t1 = t2. The ‘Axiom of
Extensionality’ in set theory says that such connections as that exercise mentions
are extensional on the right. (They are also extensional on the left.)
Part (ii) of 0.11.3, on the other hand, serves as a reminder that we do not

exclude the possibility, for an n-ary relational connection (R,S1, . . . , Sn), that
the various Si are equal, in which case we call the relational connection homoge-
neous. A more common convention is to consider in place of (R,S1, . . . , Sn) the
structure (S,R), where S = S1 = · · · = Sn. Such a pair is a special case of the
notion of a relational structure in which there is only one relation involved. (In
general one allows (S,R1, . . . , Rm) where the Ri are relations – not necessarily
of the same arity – on the set S. Here the arity of a relation Ri is that n such
that Ri is n-ary. We speak similarly, below, of the arity of a function or oper-
ation.) Various conditions on binary relational connections which make sense
in the homogeneous case, and so may equivalently be considered as conditions
on relational structures, do not make sense in the general case. Three famous
conditions falling under this heading, for a set S and a relation R ⊆ S × S are:

reflexivity: for all a ∈ S, aRa;
transitivity: for all a, b, c ∈ S, aRb & bRc ⇒ aRc; and
antisymmetry: for all a, b ∈ S, aRb & bRa ⇒ a = b.

If the first two conditions are satisfied, R is said to be a pre-ordering of (or ‘pre-
order on’) S. We will often use the notation “�” for R in this case; S together
with such a pre-ordering is called a pre-ordered set. If all three conditions are
satisfied, R is described as a partial ordering on S, and the relational structure
(S, R) is called a partially ordered set, or poset for short. In this case, we will
use the notation “�” or else “�” for R, on the understanding that when R is
given by either of these symbols, the other stands for the converse of R (i.e.,
R−1, as in 0.11.1). It is worth remarking that if (S,�) is a poset, then so is
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(S,�). The latter is called the dual of (S, �), any two statements about posets
differing by a systematic interchange of reference to � and � (or notation or
vocabulary defined in terms of them are) being described as each other’s duals.
If a statement about lattices is true of all posets, then so is its dual (since if
the dual of a statement is false of some dual, the original statement is false of
the dual of that poset.) Other standard terminology for properties of binary
relations in the same vein as that recalled here (such as for the properties of
irreflexivity, symmetry, and asymmetry) will be assumed to be familiar. Recall
also that a relation which is reflexive, symmetric, and transitive, is said to be
an equivalence relation.

Exercise 0.11.4 Given a pre-ordered set (S, �), define, for s, t ∈ S: s ≡ t iff
s � t & t � s, and put [s] = {t ∈ T | s ≡ t}. Let [S] be {[s] | s ∈ S}.
Finally, define [s] � [t] to hold iff s � t. Show (1) that this is a good
definition (that it introduces no inconsistency in virtue of the possibility
that [s] = [s′], [t] = [t′], even though s �= s′, t �= t′), and (2) that the
relational structure ([S], �) is a poset.

Exercise 0.11.5 Show that a relation R ⊆ S × S is a pre-ordering of S iff for
all s, t ∈ S: sRt ⇔ R(t) ⊆ R(s).

Posets of a special sort (lattices) will occupy us in 0.13. In the meantime, we
return to the (generally) non-homogeneous setting of relational connections.

0.12 Galois Connections
Given sets S and T , a pair of functions (f, g) with f : ℘(S) −→ ℘(T ) and
g: ℘(T ) −→ ℘(S) is called a Galois connection between S and T if the following
four conditions are fulfilled, for all subsets S0, S1 of S, and T0, T1 of T :

(G1) S0 ⊆ g(f(S0))
(G2) T0 ⊆ f(g(T0))
(G3) S0 ⊆ S1 ⇒ f(S1) ⊆ f(S0)
(G4) T0 ⊆ T1 ⇒ g(T1) ⊆ g(T0)

Note first that the symmetrical treatment of S and f vis-à-vis T with g in these
conditions has the effect that if (f, g) is a Galois connection between S and T
then (g, f) is a Galois connection between T and S, so that we are entitled to
the following ‘duality’ principle: any claim that has been established to hold
for an arbitrary Galois connection (f, g) between sets S and T must continue
to hold when references to f and g are interchanged in the claim, along with
those to S and T . We will call this: Galois duality, to contrast it with poset
duality (from 0.11 above, or lattice duality, introduced in 0.13 below). (A more
explicit notation would have us call (S, T, f, g) a Galois connection between S
and T , but we will rely on the context to make clear what S and T are in any
given case.)
Given a binary relational connection (R,S, T ), if we define, for arbitrary

S0 ⊆ S and T0 ⊆ T :

[Def. fR] fR(S0) = {t ∈ T | sRt for all s ∈ S0},
[Def. gR] gR(T0) = {s ∈ S | sRt for all t ∈ T0},
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then the pair (fR, gR) constitutes a Galois connection between S and T : it is not
hard to check that (G1)–(G4) are satisfied. To give some feel for why these four
conditions are given only as ⊆-requirements, we illustrate with an example that
the converse of (G1) need not hold for (fR, gR). Let S be a set of people and
T a set of cities, and R be the relation of having visited. Then fR(S0) consists
of all the cities (in T ) that everyone in S0—some subset of S—has visited, and
gR(fR(S0)) is the set of people (drawn from S) who have visited all the cities
that everyone in S0 has visited: obviously this includes everyone in S0, but there
may also be other people who have visited all the cities that everyone in S0 has
visited, in which case gR(fR(S0)) will be a proper superset of S0. From now on,
when convenient, we will write “fS ” instead of “f(S)”, etc.

Exercise 0.12.1 Show that (G1)–(G4) above are satisfied if and only if for all
S0 ⊆ S, T0 ⊆ T : T0 ⊆ fS0 ⇔ S0 ⊆ gT0.

Exercise 0.12.2 Prove that if (f, g) is a Galois connection, then fgfS0 = fS0
and gfgT 0 = gT 0, for all S0 ⊆ S, T0 ⊆ T .

Next, we need to consider the way in which the set-theoretic operations of
union and intersection are related in ℘(S) and ℘(T ) when Galois connections
are involved.

Theorem 0.12.3 If (f, g) is a Galois connection between S and T then for all
S0, S1 ⊆ S, and T0, T1 ⊆ T : (i) f(S0 ∪S1) = fS0 ∩ fS1 and (ii) g(T0 ∪T1) =
gT0 ∩ gT1.

Proof. We address part (i); (ii) follows by Galois duality.
First, thatf(S0 ∪ S1) ⊆ fS0 ∩ fS1 : S0 ⊆ S0 ∪ S1, so ‘flipping’ by (G3):
f(S0 ∪ S1) ⊆ fS0; likewise to show f(S0 ∪ S1) ⊆ fS1. The desired result
follows by combining these two.
It remains to be shown that fS0 ∩ fS1 ⊆ f(S0 ∩ S1). First, fS0 ∩ fS1 ⊆ fS0,
so by 0.12.1, S0 ⊆ g(fS0 ∩ fS1). Similarly, S1 ⊆ g(fS0 ∩ fS1). Putting these
together, we get: S0 ∪S1 ⊆ g(fS0 ∩ fS1), from which the desired result follows
by another appeal to 0.12.1. �

Theorem 0.12.3 continues to hold if the binary union and intersection are
replaced by arbitrary union and intersection (of an infinite family of sets). Notice
also that the proof of the first inclusion considered in establishing part (i) here
does not involve the mapping g at all. This reflects the fact that if (f, g) is a
Galois connection, either of f , g, determines the other uniquely :

Exercise 0.12.4 Show that if (f, g) and (f ′, g) are Galois connections between
sets S and T then f = f ′, and that if (f, g) and (f, g′) are Galois
connections between S and T , then g = g′.

There are two equations missing from Thm. 0.12.3, namely those resulting from
(i) and (ii) there on interchanging “∩” and “∪”. While these do not hold gen-
erally, they can be secured in an important special case. A Galois connection
(f, g) between S and T is perfect on the left if for all S0 ⊆ S, gfS0 = S0, and
perfect on the right if for all T0 ⊆ T , fgT 0 = T0. If it is perfect on the left and
perfect on the right, then we call a Galois connection perfect.
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Observation 0.12.5 If (f, g) is a perfect Galois connection between S and T,
then f(S0 ∩ S1) = fS0 ∪ fS1 and g(T0 ∩ T1) = gT0 ∪ gT1, for all S0, S1 ⊆ S
and T0, T1 ⊆ T .

Proof. Assume the antecedent of the Observation; we will show how the first
equation follows:

S0 ∩ S1 = gfS0 ∩ gfS1 = g(fS0 ∪ fS1),

as (f, g) is perfect on the left, by 0.12.3(ii). Applying f to both sides:

f(S0 ∩ S1) = fg(fS0 ∪ fS1)
= fS0 ∪ fS1,

as (f, g) is perfect on the right. �

Example 0.12.6 For a simple example of a perfect Galois connection, consider
the connection (f, g) between a set S and itself in which for S0 ⊆ S,
f(S0) = g(S0) = S � S0 (i.e., {s ∈ S | s /∈ S0}).

Before proceeding, we recall that a function f from S to T is said to map S
onto T if every t ∈ T is f(s) for some s ∈ S. When we have a particular source
and target in mind, we just say that f is ‘onto’ or surjective, though strictly
speaking surjectivity is a property of what we might call the ‘functional con-
nection’ (f, S, T ), by analogy with relational connections above. (Some authors
refer to (f, S, T ) itself as a function, with f as its graph.) Similarly, if f(s) =
f(s′) only when s = s′, the function f is said to be ‘one-one’ or injective. A
function f : S −→ T which is both injective and surjective is described as a
bijection or one-to-one correspondence between S and T.

Observation 0.12.7 Suppose (f, g) is a Galois connection between S and T.
Then the following claims are equivalent:

(i) (f, g) is perfect on the left;
(ii) g is surjective;
(iii) f is injective.

As also are the following three:
(i)′ (f, g) is perfect on the right;
(ii)′ f is surjective;
(iii)′ g is injective.

Proof. We do the proof for the case of (i)–(iii), arguing the cycle of implications
(i) ⇒ (ii) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii): If the given connection is perfect on the left then for any S0 ⊆ S,
gfS0 = S0, so any such S0 is the value of g applied to some T0 ⊆ T ; i.e., g is
surjective.
(ii) ⇒ (iii): Suppose that g is surjective and fS0 = fS1. We must show that
S0 = S1. Since g is a surjection, S0 = gT 0 and S1 = gT 1 for some T0, T1 ⊆ T .
Thus, since fS0 = fS1, fgT 0 = fgT 1; so gfgT 0 = gfgT 1, whence by 0.12.2, gT 0

= gT 1, i.e., S0 = S1.
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(iii) ⇒ (i): Suppose that fS0 = fS1 implies S0 = S1, for all S0, S1 ⊆ S. Now
for any S0 ⊆ S, we have, by 0.12.2, fgfS0 = fS0, so we may conclude that
gfS0 = S0.
Since S0 was arbitrary, the connection is perfect on the left. �

Corollary 0.12.8 If (f, g) is a perfect Galois connection between S and T
then f is a bijection from S to T with g as inverse.

Not only does every binary relational connection give rise to a Galois connection
via [Def. fRgR] above, but every Galois connection can be represented as arising
in this way. We simply state this as 0.12.9 here; a proof may be found by
considering the following way of defining a relation Rfg ⊆ S × T on the basis
of a Galois connection (f, g) between S and T :

[Def. Rfg] For s ∈ S, t ∈ T : sRfgt⇔ t ∈ f({s}).
The rhs of this definition makes no explicit mention of g – cf. 0.12.4.

Theorem 0.12.9 Every Galois connection between sets S and T is of the form
(fR, gR) for some relation R ⊆ S × T .

In fact, starting with a Galois connection, and passing to a relational connec-
tion via [Def. Rfg] and back to a Galois connection via [Def. fRgR], we end up
with the same Galois connection we started with. We can also say that start-
ing with a relational connection from which a Galois connection is extracted
by [Def. fRgR], the relational connection delivered from this by [Def. Rfg] is
the original relational connection itself. There is, then, for any sets S and T
a natural one-to-one correspondence between relations R ⊆ S × T on the one
hand, and Galois connections between S and T on the other.
We need the following result for later discussion (in 6.24, p. 840).

Exercise 0.12.10 Show that for any Galois connection (f, g) and ‘source’ sub-
sets S0, S1, we have: fS0 ∩ fS1 = fg(fS0 ∩ fS1).
(Hint: Use 0.12.2, 0.12.3.)

This corresponds – in a way that will become clear in the following subsection
– to the fact that the intersection of any two closed sets is closed. The follow-
ing Remark (and Warning) will not be intelligible until after that is read; the
material is included here as it constitutes a commentary on the development
above.

Remark 0.12.11 The definition, by (G1)–(G4), of a Galois connection makes
sense for arbitrary posets S and T , when f : S −→ T , g: T −→ S and
the “⊆” in (G1), the antecedent of (G3) and the consequent of (G4) is
replaced by “�S” (denoting the partial ordering on S), with the “⊆” in
(G2), the consequent of (G3) and the antecedent of (G4) being similarly
replaced by “�T ”. Much of the rest of the development – you may care
to check how much – then goes through if these posets are lattices, in
the sense of the following subsection, when unions and intersections are
replaced by appropriate joins and meets (explained there). To impose
this more general perspective on the formulations above, we should have
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to describe what we have called Galois connections between sets S and
T as being instead between the sets ℘(S) and ℘(T ).

Warning: Particular care is needed over adapting 0.12.5 to the more general
context introduced in the above Remark. If (f, g) is a perfect Galois connection
between posets A1 and A2, then (using ∧ and ∨ for meets and joins – see 0.13 –
in both cases) we can argue, as in the proof of that Observation, for a, b ∈ A1,
that f(a∧ b) = f(a)∨ f(b). And it may happen that the elements of A1 and (in
particular, for the present illustration) A2 are themselves sets, with the partial
ordering being ⊆; it does not, however, follow that f(a) ∨ f(b) is f(a) ∪ f(b).
The latter union may not belong to A2 at all.

0.13 Lattices and Closure Operations
If (S, �) is a poset and S0 ⊆ S then an element b ∈ S is called an upper bound
of S0 if c � b for each c ∈ S0; if in addition it happens that for any a ∈ S
which is an upper bound for S0, we have b � a, then b is called a least upper
bound (“l.u.b.”, for short) of the set S0. Note that if b1 and b2 are both least
upper bounds for the set S0, then b1 = b2 (since b1 � b2 and b2 � b1 and
� is antisymmetric). The concepts of lower bound and greatest lower bound
(g.l.b.) are defined dually. (The duality concerned is poset duality, as in 0.11,
not Galois duality, of course.) A poset in which each pair of elements have
both a least upper bound and a greatest lower bound is called a lattice. By the
above observation concerning uniqueness, we can introduce unambiguously the
notation a ∨ b for the least upper bound of a and b (strictly: of the set {a, b})
and a∧b for their greatest lower bound. Similarly, if there is a least upper bound
(greatest lower bound) for the whole lattice, it can unambiguously be denoted
by 1 (by 0) and will be called the unit (the zero) element of the lattice (or just
top and bottom elements, respectively). Note that while the existence of such
elements follows from, it does not in turn entail, the existence of greatest lower
bounds and least upper bounds for arbitrary sets of lattice elements; lattices
in which such bounds always exist are called complete. In any lattice, however,
any finite set of elements {a1, . . . , an} has both a l.u.b. and a g.l.b., namely:
a1 ∨ a2 ∨ . . . ∨ an and a1 ∧ a2 ∧ . . . ∧ an, respectively.
Having agreed that the operations ∧ and ∨ take elements two at a time,

we should strictly insert parentheses into the terms just written, but they are
omitted since the different bracketings make no difference to what the terms
denote, in view of the third of the conditions listed here, all of which are satisfied
by the operations ∧ and ∨ in any lattice:
a ∧ a = a a ∨ a = a (Idempotence)
a ∧ b = b ∧ a a ∨ b = b ∨ a (Commutativity)
a ∧ (b ∧ c) = (a ∧ b) ∧ c a ∨ (b ∨ c) = (a ∨ b) ∨ c (Associativity)
a ∧ (a ∨ b) = a a ∨ (a ∧ b) = a (Absorption)

Such equations are to be understood ‘universally’, i.e., as claiming that the
equalities concerned hold for all lattice elements a, b, c. With this universal
interpretation, equations are usually called identities – thus in this sense the
identities of an algebra are the equations holding (universally) in that algebra.
Note the need to avoid possible confusion with the use of “identity” to mean
identity element (or neutral element: see 0.21).
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The above equations introduce us to a different perspective on lattices, al-
lowing them to be thought of, not as relational structures, but as algebras. An
algebra in this sense is a non-empty set together with some operations under
which the set is closed. (For more on this concept, see 0.21.) For the moment,
we simply note that given (S,∧,∨) satisfying the eight equations above the re-
lation �, defined by: a � b ⇔ a ∧ b = a, partially orders S, and ∧ and ∨ give
the g.l.b.s and l.u.b.s of the pairs of elements they operate on. We shall usually
think of lattices as algebras in this way, rather than of lattices as (a special
kind of) posets. When so thinking, we refer to a ∧ b as the meet, and to a ∨ b
as the join, of a, b. The dual of (S,∧,∨) is the lattice (S,∨,∧), and the dual
of a lattice-theoretic statement is obtained by interchanging “∨” and “∧” (as
well as “�” and “�”, if present). The reader is left to verify that this definition
of duality for lattices as algebras is consilient with the definition of duality for
(lattices as) posets in 0.11.

Exercise 0.13.1 Show that for any elements a, b, of a lattice (S, ∧, ∨): a∧b = a
iff a∨ b = b. Thus the latter equation could equivalently have been used
instead of the former as the definition of a � b. (Hint : Absorption.)

The two parts of Exercise 0.11.3 suggest some illustrations of these concepts:

Examples 0.13.2(i) If S is any set, then the poset (℘(S), ⊆) is a lattice with
∩ (intersection) as meet and ∪ (union) as join.
(ii) The poset (N,�) is also a lattice, the meet of m and n (m,n ∈ N)
being min({m,n}) and their join being max ({m,n}).

Note that the first example here could equally well have been given with any
collection A of subsets of S, rather than specifically by insisting on taking all
of them, as long as that collection is closed under union and intersection. Con-
sidering the lattice we obtain in this way as an algebra (A,∧,∨) we note that
it will satisfy an equation which, not following from the eight given above to
define the class of lattices, is not satisfied by every lattice, namely the so-called
Distributive Law:

a∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (Distributivity)

The second example features a lattice which is not only distributive, but has
the stronger property that its associated partial ordering is a linear (or ‘total’)
ordering, in the sense that for any elements a, b we have:

a � b or b � a (Connectedness)

Linearly ordered posets are also called chains. Instead of just saying “connected”,
we shall more often speak of a binary relation R on some set as strongly con-
nected when for any elements a, b of that set we have either aRb or bRa; this
makes a clear distinction with what is often called weak connectedness, for which
we require merely that for any distinct elements a, b, either aRb or bRa.

Exercise 0.13.3 (i) Show that all lattices satisfy the condition we get by
putting “�” for “=” in (Distributivity).
(ii)Write down the dual of (Distributivity) and show that this equation
is (universally) satisfied in a lattice iff the original equation is.
(iii) Show that every chain is, when considered as an algebra with ∧
and ∨, a distributive lattice.
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There is another way of making lattices out of collections of sets which is
commonly encountered and which, by contrast with 0.13.2(i), is not guaranteed
to lead to distributive lattices, as we shall see in 0.13.6. The key ingredient is
the idea of a closure operation (or ‘closure operator’) on a set S, by which is
meant a function C: ℘(S) −→ ℘(S) satisfying the following three conditions,
for all X, Y ⊆ S.

(C1) X ⊆ C(X)

(C2) X ⊆ Y ⇒ C(X) ⊆ C(Y )

(C3) C(C(X)) = C(X)

Observe that in view of (C1), (C3) could be replaced by: C(C(X)) ⊆ C(X),
and that the force of all three conditions could be wrapped up succinctly (some-
what in the style of 0.12.1) by the single condition that for all X,Y ⊆ U :

X ⊆ C(Y ) ⇔ C(X) ⊆ C(Y ).

It should also be remarked that the conditions could be written with “�” in
place of “⊆”, the variables “X”, “Y ”, ranging over elements of any poset; if this
poset is a complete lattice, what follows can be taken over to this more general
setting, though we shall continue to concentrate on the case in which the partial
ordering is the inclusion relation, ⊆, on subsets of some given set. (Cf. Remark
0.12.10.) However, it is not necessary to consider all subsets of that set, so we
shall allow the above definition to stand in even when the source and target
of C are not ℘(S) but some proper subset thereof. The origin of the idea of
a closure operation is in topology, where the closure of a set of points is that
set together with its ‘boundary’ points; in this case, certain additional features
are present – in particular that C(X ∪ Y ) = C(X) ∪ C(Y ) and C(∅) = ∅ –
which do not follow from the general definition. These additional features of
topological closure operations are not suitable for the main logical application
of the idea of closure (to consequence operations: see 1.12) – as is explained in
detail in Chapter 1 of Martin and Pollard [1996]. For some practice with the
general concept, we include:

Exercise 0.13.4 (i) Show that if C is a closure operation on S then for any
X, Y ⊆ S: C(X) ∪ C(Y ) ⊆ C(X ∪ Y ); C(C(X)∪ C(Y )) = C(X ∪ Y );
and C(X ∩ Y ) ⊆ C(X) ∩ C(Y ).
(ii) Show that if (f, g) is a Galois connection between S and T then g◦f
is a closure operation on S, where g ◦ f(X) = g(f(X)), and that f ◦ g is
a closure operation on T . (g ◦ f is called the composition of g with f .)
(iii) A subset S0 of a set S is closed under an n-ary relation R on S
(i.e., R ⊆ Sn) if whenever {a1, . . . , an−1} ⊆ S0 and 〈a1, . . . , an〉 ∈ R,
then an ∈ S0. Where R is a collection of relations of various arities on
S, define CR(S0) to be the least superset of S0 to be closed under each
R ∈ R. Verify that CR is indeed a closure operation.
(iv) Show that ifX = C(X), Y = C(Y ), then C(X∩Y ) = C(X)∩C(Y ).

Parts (ii) and (iii) here have been included since they illustrate the two main
ways closure operations enter into discussions of logic; in Chapter 1 it will emerge
that the Galois connection route of (ii) is involved in semantic specifications of
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(what we there call) consequence operations, and the relational route of (iii) is
involved in specifying them proof-theoretically. We further remark, à propos of
(ii) that when we speak of a set’s being closed under an n-ary operation (or
function) f we mean that it is closed under the (n+1)-ary relation R defined
by: Rx 1 . . . xn+1 ⇔ f(x1, . . . , xn) = xn+1.
With a particular closure operation C in mind we call a set X closed (more

explicitly: C-closed) when C(X) = X. From information as to which are the
closed sets, we can recover C as mapping X to the intersection of all the closed
sets ⊇ X, exploiting the fact that the intersection of any family of closed sets
is itself closed. (Part (iv) of the above Exercise gives this for finite families.)

Exercise 0.13.5 (i) Verify that whenever we have a closure operation on some
set, the partial ordering ⊆ on the collection C of closed sets C gives rise
to a lattice (as algebra), (C, ∧, ∨) in which ∧ is ∩ and ∨ is the operation
∪̇ defined by: X∪̇Y = C(X ∪Y ). (In fact we get a complete lattice, the
join of arbitrarily many elements being the closure of their union.)
(ii) Define a set C ⊆ ℘(S) to be a closure system on S if the intersection
of arbitrarily many elements of C is an element of C. As remarked in
the text, the set of C-closed subsets of S is a closure system for any
closure operation C on S, and C can be recovered from C by setting
C(X) =

⋂
{Y ∈ C |Y ⊇ X}. (Here “X”, “Y ”, range over subsets

of S.) Verify that similarly if we start with a closure system C and
use the definition just given to define the closure operation C, then
C can be recovered as the set of C-closed sets (i.e., those X ⊆ S with
C(X) = X). Thus there is a natural one-to-one correspondence between
closure operations and closure systems (on a given set).

Example 0.13.6 Out of the eight subsets of the three-element set {1, 2, 3}, de-
clare the following to be closed: {1, 2, 3}, {2}, {1, 3}, {3}, ∅. (Note
that the intersection of any sets listed is also listed, and that to find
the closure of any set from the original eight, take its smallest closed
superset: e.g., the closure of {1} is {1, 3}.) The closed sets make
up a five-element lattice which is not distributive, because, for exam-
ple, {1, 3} ∩ ({2} ∪̇ {3}) = {1, 3} ∩ {1, 2, 3} = {1, 3}, whereas ({1, 3} ∩
{2}) ∪̇ ({1, 3} ∩ {3}) = ∅ ∪̇ {3} = {3}.

Next, we record some properties of distributive lattices; (i) gives a kind of
generalized transitivity for � (thought of as defined in terms of ∧ or of ∨).

Exercise 0.13.7 (i) Show that a lattice (A, ∧, ∨) is distributive iff for all a, b,
c ∈ A we have: a ∧ b � c & a � b ∨ c ⇒ a � c

(ii) Prove that for any a, b, c in a distributive lattice, if a ∧ b = a ∧ c
and a ∨ b = a ∨ c then b = c.

Note that we have used the letter “A” for the set of elements of our lattice here;
the background to this notation will be explained in 0.21. What follow are some
exercises on lattices in general.

Exercise 0.13.8 (i) Show that in any lattice, if a ∧ c = a and b ∧ c = b then
(a ∨ b) ∧ c = a ∨ b. (Hint: rephrase everything in terms of joins, using
0.13.1.)
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(ii) Suppose that (A1, ∧1, ∨1) and (A2, ∧2, ∨2) are lattices with A2 =
A1 and ∧2 = ∧1. Show that ∨2 = ∨1. (Hint: Use (i), rewritten with ∧1
and ∨1 for ∧ and ∨, substituting a ∨2 b for c. This gives:

(a ∨1 b) ∧1 (a ∨2 b) = a ∨1 b.

Similarly, we obtain:

(a ∨2 b) ∧2 (a ∨1 b) = a ∨2 b.

Now use the facts that ∧1 = ∧2 and that this operation is commutative.)
(iii) Show that for lattice elements a, b, if a ∧ b = a ∨ b then a = b.

Exercise 0.13.9 (i) Call an element a ∈ A join-irreducible in a lattice (A,∧,∨)
if for all b, c ∈ A: a = b ∨ c ⇒ a = b or a = c; call a ∈ A join-prime if
for all b, c ∈ A: a � b ∨ c ⇒ a � b or a � c. Show that in any lattice
all join-prime elements are join-irreducible, and that in any distributive
lattice, the converse also holds.
(ii) Similarly, call a ∈ A meet-irreducible if for all b, c ∈ A, a = b ∧ c
implies a = b or a = c. Show that in any lattice, an element a is
meet-irreducible iff for b, c ∈ A, a = b ∧ c implies b � c or c � b.

We close with a sort of converse to 0.13.4(ii); the characteristic function of a
set (a phrase used in the proof) is the function mapping elements of that set to
the truth-value True (or “T” as we shall denote this in subsequent chapters) and
non-elements of the set to the value False (or “F”; in the work of some authors
the numbers 1 and 0 – or even 0 and 1 – are used to play these respective roles):

Observation 0.13.10 If C is a closure operation on a set S then there is a
Galois connection (f, g) between S and some set T such that C = g ◦ f .

Proof. Given C and S, let T comprise the characteristic functions of the closed
subsets of S, and define f and g via [Def.fR gR] from 0.12, where R ⊆ S × T is
given by: sRt ⇔ t(s) = True. Since this is automatically a Galois connection,
it remains only to check that for all X ⊆ S, C(X) = g(f(X)). This is left to
the reader. �

The characteristic functions employed in the above proof will emerge again in
1.12 under the description “valuations consistent with a consequence operation”.

0.14 Modes of Object Combination
We return now to the subject of binary relational connections as in 0.11, to
consider some conditions asserting the existence of objects in the source and
in the target playing special roles. Since we do not want to disallow the (‘ho-
mogeneous’) possibility that source and target are one and the same set, we
will actually speak in terms of left and right instead. These conditions involve
conjunction (“and”) and disjunction (“or”) in their formulation, so we will use an
upward pointing triangle when the characterization is conjunctive (this being
suggestive of “∧”) and a downward pointing triangle when it is disjunctive (to
recall “∨”). The subscripted “L” and “R” are mnemonic for “left” and “right”
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(so, in particular, this use of “R” has nothing to do with the relation R). Four
conditions are to be introduced, in terms of an arbitrary binary connection
(R,S, T ); quantifier shorthand “∀”, “∃” has been used to make the structure of
the conditions more visible:

(�L) ∀s1, s2 ∈ S∃s3 ∈ S such that ∀t ∈ T : s3Rt ⇔ s1Rt& s2Rt.
(�L) ∀s1, s2 ∈ S∃s3 ∈ S such that ∀t ∈ T : s3Rt ⇔ s1Rt or s2Rt.
(�R) ∀t1, t2 ∈ T∃t3 ∈ T such that ∀s ∈ S: sRt3 ⇔ sRt1 & sRt2.
(�R) ∀t1, t2 ∈ T∃t3 ∈ T such that ∀s ∈ S: sRt3 ⇔ sRt1 or sRt2.

When the first (second) of these conditions is satisfied by a relational connection,
we say that this connection has conjunctive (disjunctive) combinations on the
left, and call any s3 with the promised properties a conjunctive (disjunctive)
combination of the given s1 and s2. Similarly with the remaining two conditions
and analogous terminology with right replacing left.
If either of (�L), (�L), is satisfied in a relational connection which is ex-

tensional on the left, then the element (s3 above) whose existence is claimed is
the only one having the property in question, in which case we can call it the
conjunctive or disjunctive combination (on the left) of s1 and s2, and denote it
unambiguously by s1 �L s2 or s1�Ls2 respectively. Likewise on the right. Thus,
supposing (R, S, T ) is an extensional relational connection, we have, using the
R(·) notation of 0.11.2 (p. 2):
(i) R(s1 �L s2) = R(s1) ∩R(s2)
(ii) R(s1�Ls2) = R(s1) ∪ R(s2)
(iii) R−1(t1 �R t2) = R−1(t1) ∩ R−1(t2)
(iv) R−1(t1�Rt2) = R−1(t1)∪ R−1(t2)

In fact, even without extensionality, these claims make sense if we think of
“s1 �L s2” as denoting an arbitrary s3 satisfying the condition imposed on s3
for any given s1, s2 by (�L), regardless of whether that condition is satisfied
for all alternative choices of s1, s2, as (�L) itself requires. And similarly in the
other cases. We note, without proof, the lattice-theoretic implications of our
four existence conditions.

Observation 0.14.1 If (R,S, T ) is extensional on the left and also has con-
junctive and disjunctive combinations on the left, then the structure (S,�L,�L)
is a distributive lattice; likewise with (T,�R,�R) if (R,S, T ) is extensional on
the right and has conjunctive and disjunctive combinations on the right.

What follows the “likewise” is not really a separate fact from what precedes
it, since we simply apply the preceding assertion to the converse connection
(R−1, T, S).
In 0.13 we noted the possibility of generalizing the meet and join operations

to form the g.l.b. or l.u.b. of an arbitrary collection of poset elements. Such
generalizations of conjunctive and disjunctive combinations also make sense; and
in particular we will have need below of the following generalized conjunctive
combination. If (R,S, T ) is a binary relational connection then a conjunctive
combination of any collection S0 ⊆ S, which we may denote by �(S0), or more
explicitly, �L(S0), is an element s ∈ S such that for all t ∈ T , sRt iff for every
s′ ∈ S0, s′Rt. While the property of having conjunctive combination on the left
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(to stick with this example) in this more generalized sense is of special interest in
requiring the existence of such an s for every infinite S0 ⊆ S, it is worth noting
the upshot of this definition for the finite case. In particular, if S0 = {s1, s2}
then any element qualifying as �(S0) qualifies as s1 � s2, and vice versa; if S0
= {s1} then s1 qualifies as �(S0); and finally, that if S0 = ∅, then �(S0) is an
element of S which (since the “for every s′ ∈ S0” quantifier is now vacuous) bears
R to each t ∈ T . Corresponding sense, mutatis mutandis, can of course be made
of talk of the disjunctive combination of an arbitrary collection of objects from
the left or the right of a relational connection. To recall again 0.11.3(i) from
p. 2, for any non-empty set S, the relational connection (∈, S, ℘(S)) not only
has conjunctive and disjunctive combination on the right – with t1�Rt2 being
t1 ∪ t2, and t1 �R t2 being t1 ∩ t2 – it clearly also supports the generalized
versions of these modes of combination (arbitrary union and intersection).
Conspicuously absent in the case of (∈, S, ℘(S)), as long as S contains more

than one element, are conjunctive and disjunctive combinations on the left. A
disjunctive combination of S-elements s1 and s2, for example, would be an
object which belonged to precisely the sets at least one of s1, s2 belonged to.
This object, then, would be a member of {s1}, since s1 is, and of {s2}, since s2 is;
this implies s1 = s = s2, which of course need not be the case if |S| � 2, since we
can choose for s1 and s2 distinct elements. Now Exercise 0.11.3 asked for a proof
that, on the assumption that |S| � 2, the connection (∈, S, ℘(S)) does not have
the cross-over property. And this is no coincidence. The following result implies
that no relational connection with conjunctive and disjunctive combination on
the right can have either conjunctive or disjunctive combination on the left
without also having the cross-over property.

Theorem 0.14.2 If a binary connection (R,S, T ) has conjunctive combinations
on the left and disjunctive combinations on the right, then it is has the cross-
over property. The same conclusion follows if such a connection has disjunctive
combinations on the left and conjunctive combinations on the right.

Proof. We prove the first part of the Theorem, since the second will then follow
by consideration of the converse connection. Suppose we have (R,S, T ) with
operations �L and �R as in the antecedent of the claim to be proved, and that
for s1, s2 ∈ S, t1, t2 ∈ T , (1) s1Rt1 and (2) s2Rt2. To demonstrate the cross-
over property, we must show that we then have either s1Rt2 or else s2Rt1. From
(1) and (2), we get s1R(t1�Rt2) and s2R(t1�Rt2), and from these, we infer that
(s1 �L s2)R(t1�Rt2). Therefore either (s1 �L s2)Rt1 or (s1 �L s2)Rt2. From
the first, it would follow that s2Rt1, and from the second, that s1Rt2. �

Three comments on this theorem and its proof are worth making. First,
note that neither left nor right extensionality is needed as a hypothesis of the
theorem. Secondly, as already remarked, this does not illegitimize the use of
the “s1 �L s2” (etc.) notation, for some arbitrarily selected s3 satisfying for the
given s1, s2, our condition (�L). Finally, observe that the proof fully exploits
all these conditions, in that all four of the implications involved in the two
biconditionally stated conditions on the combined elements in (�L) and (�R)
are used; or, to put it differently, all four of the ⊆-statements implicit in the
equations (i) and (iv) above are used. Simple as it is, we shall make considerable
use of 0.14.2 in the sequel. (The basic idea in the above proof may be found on
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pp.6–7 of Strawson [1974]; the origin of 0.14.3 below may similarly be traced to
work of Geach mentioned in Strawson’s discussion.)
We turn our attention now to a singulary (or 1-ary) rather than binary

mode of object combination, based on negation rather than on conjunction or
disjunction. (Many say “unary” for the n = 1 case of “n-ary”, but this is hard
to do for anyone who knows any Latin, and nobody says, for example, “duary”
for the n = 2 case.) Given (R,S, T ) and s1 ∈ S, we call s2 ∈ S a negative object
for s1 (“on the left”) if for all t ∈ T , s2Rt if and only if it is not the case that
s1Rt. If every s ∈ S has such a corresponding negative object, we can say that
(R,S, T ) provides negative objects on the left; as with the conjunctively and
disjunctively combined objects, they are uniquely determined if the connection
is extensional on the left. Right-sided analogues of these pieces of terminology
are to be understood in the obvious way, so that negative object formation on the
right provides for t ∈ T , some element of T to which all and only those elements
of S bear R that do not bear R to t. Rather than attempting to subscript a
symbol reminiscent of complementation or negation (such as ¬) with “L” or “R”
to indicate “left” or “right”, we will use “neg(·)” thus subscripted. Given any
set S, the set-theoretic connection (∈, S, ℘(S)) provides negative objects on the
right, as in the case of conjunctive and disjunctive combinations, the form of (S-
relative) complements. Note that with a binary relational connection (R,S, T )
with negative objects on the left and right for s ∈ S, t ∈ T , respectively – in the
notation just introduced, negL(s) and negR(t) – then sRnegR(t) if and only if
negL(s)Rt. Further (by ‘De Morgan’s Laws’) if a connection has negative objects
on the left then it has conjunctive combination on the left iff it has disjunctive
combination on the left, and similarly with right replacing left throughout.
Finally, assuming extensionality on the left (right), we have negL(negL(s)) = s
and negR(negR(t)) = t.

Observation 0.14.3 (i) If (R,S, T ) has negative objects on the right, then the
relation �L is symmetric, where s1 �L s2 ⇔ R(s1) ⊆ R(s2).
(ii) If (R,S, T ) has negative objects on the left, then the relation �R is symmet-
ric, where t1 �R t2 ⇔ R−1(t1) ⊆ R−1(t2).

Proof. We prove (i). Suppose there are negative objects on the right. We must
show that for s1, s2 ∈ S, s1 �L s2 ⇒ s2 �L s1. So suppose further that not
s2 �L s1, i.e., that for some t ∈ T , s2Rt but not s1Rt. So s1RnegL(t). Thus
if s1 �L s2, we should have s2RnegR(t), which would contradict the fact that
s2Rt. Therefore not s1 �L s2. �

Note that extensionality on the left amounts to the relation �L’s being an-
tisymmetric, and that since any relation which is both symmetric and antisym-
metric is a subrelation of the identity relation, we have:

Corollary 0.14.4 If (R,S, T ) is extensional on the left and has negative ob-
jects on the right, then s1 �L s2 ⇒ s1 = s2.

Exercise 0.14.5 Suppose that (R,S, T ) is a binary relational connection which
has conjunctive combinations on the left and negative objects on the
right. Show that for all s, s′ ∈ S, s �L s′.


