1 Information Systems: Introduction and Concepts

Information systems have become the backbone of most organizations. Banks could
not process payments, governments could not collect taxes, hospitals could not treat
patients, and supermarkets could not stock their shelves without the support of infor-
mation systems. In almost every sector—education, finance, government, health care,
manufacturing, and businesses large and small—information systems play a prominent
role. Every day work, communication, information gathering, and decision making all
rely on information technology (IT). When we visit a travel agency to book a trip, a
collection of interconnected information systems is used for checking the availability
of flights and hotels and for booking them. When we make an electronic payment, we
interact with the bank’s information system rather than with personnel of the bank.
Modern supermarkets use IT to track the stock based on incoming shipments and the
sales that are recorded at cash registers. Most companies and institutions rely heavily
on their information systems. Organizations such as banks, online travel agencies, tax
authorities, and electronic bookshops can be seen as IT companies given the central
role of their information systems.

This book is about modeling business processes. A business process describes the
flow of work within an organization. It is managed and supported by an information
system. In this chapter, we first introduce information systems (section 1.1) and dis-
cuss different types of information systems and their roles in organizations (section 1.2).
After introducing information systems, we look at the life cycle of these systems and
concentrate on the important role that models play in this life cycle (section 1.3).
Next, we show how to describe information systems in terms of states and state transi-
tions (section 1.4). Although transition systems are not suitable for modeling industrial
information systems and business processes, they illustrate the essence of modeling.
Finally, we discuss the role of modeling and provide an outlook on the next chapters
(section 1.5).

2 Chapter 1

1.1 Information Systems

Organizations offer products to customers to make money. These products can be goods
or services. In most organizations, huge volumes of data accumulate: data of products,
data of customers, data of employees, data of the delivery of products, and data of other
sources. These data therefore play an important role in contemporary organizations and
must be stored, managed, and processed, which is where information systems come into
play. Because there is no unique understanding of what an information system is, we
develop a definition of an information system in this section by considering an example
organization everybody should be familiar with: a family doctor.

Example 1.1 A patient who consults a family doctor usually first tells the doctor about
the symptoms. With this information, the doctor examines the patient and makes a
diagnosis. Afterward, the doctor determines the treatment to heal the patient. For ex-
ample, based on the diagnosis, the doctor may write the patient a prescription for some
medication. Finally, the doctor must document the symptoms, the diagnosis, and the
treatments. Today, most doctors use a software system to record this information.

Before we provide our definition of an information system, we first explain the term
“information,” which can mean any of the following:

1. The communication act of one agent—the term “agent” may refer to any entity rang-
ing from a person or a software component to an organization—informing another
agent (e.g., by exchanging messages);

2. The knowledge or beliefs of agents as a part of their mental state; or

3. (Data) objects that represent knowledge or beliefs.

Example 1.2 In the example of the family doctor, the situation in which a patient
informs the doctor about the symptoms is an example of a communication act. The
patient and the doctor are the agents in this example. The doctor uses her knowledge
and the symptoms described by a patient to examine the patient. The doctor may
have beliefs about possible causes based on earlier interactions with the patient. Based
on the outcomes of the examination and on prior knowledge, the doctor makes a
diagnosis. The documentation of the symptoms, of the diagnosis, and of the treatments
in a software system leads to the creation of data objects. These data objects represent
the new knowledge and may be used for various purposes—for example, for billing the
insurance company of the patient.

There are textbooks in which the authors distinguish between data, information,
and knowledge. In these textbooks, the term “data” refers to the syntax, “information”

Information Systems: Introduction and Concepts 3

refers to the interpretation, and “knowledge” refers to the way information is used.
The data element “29-01-1966,” for example, may be seen as a string; in a particular
context it may, however, be interpreted as the birthdate of a person, and people may
use this information to congratulate this person on the twenty-ninth of January each
year. In this chapter, we use the term “information” in a broader sense, as described
earlier.

Having explained “information,” we can define the term “information system.” The
standard definition is that an information system manages and processes information. This
definition is general and allows different interpretations. For example, it is not clear
whether “information system” refers only to software systems or also to humans, such
as a family doctor who manages and processes information. For this reason, we develop
a more refined definition.

The reason for “information system” having several meanings becomes clear when
we consider Alter’s framework for information systems (Alter 2002) in figure 1.1. It
shows an integrated view of an information system encompassing six entities: cus-
tomers, products (and services), business processes, participants, information, and
technology. Customers are the actors that interact with the information system through
the exchange of products or services. These products are being manufactured or
assembled in business processes that use participants, information, and technology.
Participants are the people who do the work. Information may range from informa-
tion about customers to information about products and business processes. Business
processes use technology, and new technologies may enable new ways of doing work.

Customers and participants are examples of agents. As figure 1.1 shows, business pro-
cesses play a central role in larger information systems. A business process describes the
flow of work within an organization. In this book, we use the following definition of a
business process adapted from work by Weske (2007).

(Customers)
!

(Products and services)

(Business processes)

(Participants) (information) (Technology)

Figure 1.1

An integrated view of an information system.

4 Chapter 1

Definition 1.3 (Business process) A business process consists of a set of activities that
is performed in an organizational and technical environment. These activities are
coordinated to jointly realize a business goal. Each business process is enacted by a
single organization, but it may interact with business processes performed by other
organizations.

According to this definition, a business process consists of coordinated activities. Typ-
ically, these activities must be performed in a particular order. For example, the family
doctor first examines a patient and then makes a diagnosis. Although a business process
is enacted by a single organization, it may interact with other business processes within
and across organizational boundaries. For example, the family doctor may bill the
insurance company of the patient.

Diagrams like the one in figure 1.1 illustrate why it is difficult to provide a standard
definition of an information system. Some researchers and practitioners hold a view
that all six elements constitute an information system; other researchers and practition-
ers argue that only a subset (e.g., just business processes, information, and technology)
constitutes an information system.

Example 1.4 Let us pick up again the example of the family doctor. A patient serves as
a customer, according to figure 1.1, and the product is health care. The business pro-
cess describes the procedure of the medical treatment. It has five activities: a patient
informs the doctor about the symptoms, then the doctor examines the patient, makes
a diagnosis, determines the treatments, and finally the doctor enters the data into the
software system. The doctor is a participant, pieces of information are the symptoms of
the patient and the data added to the software system, and the doctor’s software system
is the technology involved.

Given these considerations, we present the following definition of an information
system, which is adapted from Alter’s definition (Alter 2002).

Definition 1.5 (Information system) An information system is a software system to cap-
ture, transmit, store, retrieve, manipulate, or display information, thereby supporting
people, organizations, or other software systems.

In contrast to other definitions, we consider an information system to be a software
system. A family doctor is, hence, not part of an information system. Furthermore, an
information system may support not only an organization or a person but also other
software systems and, hence, information systems. In addition, our definition of an
information system does not require the existence of a business process; a text editor

Information Systems: Introduction and Concepts 5

is an example of an information system that has no business process. In this book,
however, we concentrate on information systems in which business processes play a
central role.

Example 1.6 In the example of the family doctor, the information system is the soft-
ware system that stores the data of the patient. This information system supports a
person: the doctor.

1.2 Types of Information Systems

In the previous section, we defined “information system.” Many types of information
systems exist on the market. To illustrate this, this section first provides a broad classifi-
cation of information systems. We then narrow our view to enterprise information sys-
tems and present for this class of information systems an overview of existing types
of software systems. Moreover, we provide examples of typical enterprise information
systems in various industries.

1.2.1 Classifying Information Systems

It is ambitious to classify the many types of information systems that have emerged in
practice. Many classifications for information systems exist in the literature; see classi-
fications by Alter (2002), Dumas, Van der Aalst, and Ter Hofstede (2005), and Olivé
(2007), for instance. The problem is that classification is in flux; that is, a classification
developed a few years ago is not necessarily current. As another and main limiting fac-
tor, the categories of a classification are typically not disjointed: one type of information
system belongs to multiple categories. Given these problems, we present a high-level
classification that distinguishes three classes of information systems.

The first class of information systems is personal information systems. Such an infor-
mation system can manage and store information for a private person. Examples are
an address book or address database and an audio CD collection.

Enterprise (or organizational) information systems are the second class of information
systems. An enterprise information system is tailored toward the support of an organi-
zation. We distinguish between generic types and technologies of information systems
and information systems for certain types of organizations. The former class of enter-
prise information systems supports functionality that can be used by a wide range
of organizations. Examples are workflow management systems, enterprise resource
planning systems, data warehouse systems, and geographic information systems. In
contrast, information systems for certain types of organizations offer functionality
that is tailored toward certain industries or organizations. Examples are hospital infor-
mation systems, airline reservation systems, and electronic learning systems.

6 Chapter 1

The third class of information systems is public information systems. Unlike personal
information systems, public information systems can manage and store information
that can be accessed by a community. Public libraries, information systems for muse-
ums, Web-based community information systems, and Web-based stock-portfolio infor-
mation systems are examples of public information systems.

In this book, we concetrate on enterprise information systems. These systems play a
crucial role in a wide variety of organizations and have an enormous economic value.
The complexity and importance of such systems provide serious challenges for IT
professionals ranging from software engineers to management consultants. Business
processes and business process models play a dominant role in enterprise information
systems. This explains why business process modeling is the focus of later chapters.

1.2.2 Types of Enterprise Information Systems
There are many types of enterprise information systems in practice. This section gives
an overview of the most important types.

Enterprise Resource Planning Systems An enterprise resource planning (ERP) system is
an information system that supports the main business processes of an organization—
for example, human resource management, sales, marketing, management, financial
accounting, controlling, and logistics. In the past, each business process was encapsu-
lated in a separate information system. As most of these business processes use related
data, much redundant data had to be stored within the respective information systems.
The increasing number and complexity of information systems forced organizations to
spend much effort in synchronizing the data of all information systems.

An ERP system is a solution to overcome these synchronization efforts by integrating
different information systems. It is a software system that is built on a distributed com-
puting platform including one or more database management systems. The computing
platform serves as an infrastructure on which the individual business processes are
implemented. First-generation ERP systems now run the complete back office functions
of the world’s largest corporations.

ERP systems run typically in a three-tier client/server architecture consisting of a user
interface (or presentation) tier, an application server tier, and a database server tier.
ERP systems provide multi-instance database management, configuration manage-
ment, and version (or customization) management for the underlying database schema,
for the user interface, and for the many application programs associated with them.
As ERP systems are typically designed for multinational companies, they have to sup-
port multiple languages, multiple currencies, and country-specific business practices.
The sheer size and the tremendous complexity of these software systems make them
complicated to deploy and maintain.

Information Systems: Introduction and Concepts 7

ERP systems are large and complex software systems that integrate smaller and
more focused applications; for example, most ERP systems include functionality that
is also present in other enterprise information systems, such as procurement systems,
manufacturing systems, sales and marketing systems, delivery systems, finance sys-
tems, and workflow management systems. We introduce these systems in the following
discussion.

The market leader in the ERP market is SAP, with 43,000 customers for its system
SAP ERP (data from 2009). Other important vendors are Oracle, Sage Company, and
Microsoft.

Procurement Systems A procurement system is an information system that helps an
organization automate the purchasing process. The aim of a procurement system is to
acquire what is needed to keep the business processes running at minimal cost. With
the available inventory, the expected arrival of ordered goods, and forecasts based on
sales and production plans, the procurement system determines the requirements and
generates new orders. At the same time, it tracks whether ordered goods arrive. The key
point is to order the right amount of material at the right time from the right source.
If the material arrives too early, money for buying the material and warehouse space
to store the material will be tied up. If, in contrast, the material arrives too late, then
production is disrupted. Hence, the goal is to balance reducing inventory costs with
reducing the risk of out-of-stock situations.

Procurement is an important ingredient of supply chain management (SCM), in which
coordination of the purchasing processes is not limited to two actors. Instead, SCM
aims at closely coordinating an organization with its suppliers so that inefficiencies are
avoided by optimizing the entire purchasing process. For example, by synchronizing
the production process of an organization with its suppliers, all parties may reduce their
inventories. The market leader in the SCM market is SAP with SAP SCM; competitors
are Oracle and JDA Software (data from 2007).

Procurement is related to electronic data interchange (EDI), the electronic exchange of
information based on a standard set of messages. EDI can be used to avoid delays and
errors in the procurement process as a result of rekeying information. In the classical
(pre-EDI) situation, a purchase order is entered into the procurement system of one
organization, it is printed, and the printed purchase order is sent to the order process-
ing department or to another organization. The information on the printed purchase
order is then reentered into the procurement system. By using EDI or technology such
as Web services, organizations can automate these parts of the procurement process.
The purchase order is electronically sent to the processing department or to the other
organization. This automation makes the overall procurement process faster and less
error-prone, thereby reducing the costs for each purchase order.

8 Chapter 1

Manufacturing Systems Manufacturing systems support the production processes in
organizations. Driven by information, such as the bill of materials (BOM), inventory
levels, and available capacity, they plan the production process. With increasing
automation of production processes, manufacturing systems have become more and
more important. For example, most steps in the production line of a car, such as welding
the auto body, are performed by robots. This requires precise scheduling and material
movement and, hence, a manufacturing system that supports these processes.

Material requirements planning (MRP) is an approach to translate requirements (i.e.,
the number of products for each period), inventory status data, and the BOM into
a production plan without considering capacities. Successors, such as manufacturing
resources planning (MRP2), also take capacity information into account. Software based
on MRP and MRP2 has been the starting point for many ERP systems.

Consider an organization that produces different flavors of yogurt (e.g., strawberry,
peach, and pear). The organization has several machines to produce yogurt; each mac-
hine can produce any flavor. Production planning means scheduling each machine for
the flavor of yogurt it must produce. The production plan depends on the demand
for each flavor and on the delivery of ingredients. Furthermore, each machine has
to be cleaned at regular intervals and when the production changes to a new flavor.
Calculating a production plan is a complex optimization problem, often depending on
several thousand constraints. Consequently, the aim is to find a good solution rather
than an optimum solution.

Sales and Marketing Systems Sales and marketing systems need to process customer
orders by taking into account issues such as availability. These systems are driven by
software addressing the four p’s: product, price, place, and promotion. Organizations
undertake promotional activities and offer their products at competitive prices to boost
sales, but a product that is not available or not at the right location cannot be sold.
One prominent example of a promotional activity is a bonus card in supermarkets.
Customers who register for a bonus card get a discount or a voucher. Bonus cards are
an instrument for organizations to obtain personal data about their customers (e.g.,
age, address) and data about the buying behavior of customers (i.e., what they buy and
when they buy it). These data are collected and processed by an information system. The
information extracted from these data can help to improve marketing and to determine
the range of products to offer.

New technologies are increasingly used to support sales over the Internet. Electronic
commerce uses the Internet to inform (potential) customers, to execute the purchase
transaction, and to deliver the product. Again, this functionality is typically embedded
in an ERP system. To manage the contact with their customers, organizations use ded-
icated customer relationship management (CRM) systems. A CRM system has a database
to store all customer-related information, such as contact details and past purchases.

Information Systems: Introduction and Concepts 9

This information helps tailor the marketing efforts to expected customer needs. As an
example, a car dealer does not need to send information about a new expensive sports
car to customers who recently bought a van or a compact car.

Delivery Systems A delivery system is an information system that supports the delivery
of goods to customers. The task of these systems is to plan and schedule when and in
what order customers receive their products. Consider, for example, a transportation
company with hundreds of trucks. The planning of trips, the routing of these trucks,
and reacting to on-the-fly changes require dedicated software. Creating an optimal
schedule is a complex optimization problem. As circumstances—for example, traffic
jams and production problems—may force rescheduling, contemporary delivery sys-
tems aim to find a good solution rather than a theoretical optimum solution. More and
more delivery systems offer tracking-and-tracing functionality; for example, customers
of package delivery companies, such as UPS, can track down the location of a specific
parcel via the Internet.

Finance Systems Among the oldest information systems are finance systems. These sys-
tems support the flow of money within and between organizations. Finance systems
typically provide accounting functionality to maintain a consistent and auditable set
of books for reporting and management support. Another important application of
finance systems is the stock market. At a stock market, dedicated information systems
are essential to process the operations. Again, the functionality of finance systems is
absorbed by ERP systems. The origin of the SAP system, for example, was in finance
rather than production planning.

Product Design Systems Enterprise information systems not only support the produc-
tion of products, they also support the design of products. Examples are computer-aided
design (CAD) systems and product data management (PDM) systems. CAD systems support
the graphical representation and the design of product specifications. PDM systems
support the design process in a broader sense by managing designs and their documen-
tation. Typically, there are many versions of the same design, and designs of different
components need to be integrated. To support such complex concurrent engineering
processes, PDM systems offer versioning functionality.

Workflow Management Systems Many organizations aim to automate their business
processes. To this end, they have to specify in which order the activities of a business
process must be executed and which person has to execute an activity at which time.
A workflow refers to the automation of a business process, in whole or in part. Each
activity of the workflow is implemented as software. The workflow logic specifies the
order of the activities. A workflow management system (WEMS) is an information system

10 Chapter 1

that defines, manages, and executes workflows. The execution order of the workflow’s
activities is driven by a computer representation of the workflow logic. The ultimate
goal of workflow management is to make sure that the proper activities are executed
by the right people at the right time (Aalst and Hee 2004).

Not every business process corresponds to a single workflow. Workflows are case-
based; that is, every piece of work is executed for a specific case. One can think of a case
as a workflow instance, such as a mortgage, an insurance claim, a tax declaration, a
purchase order, or a request for information. Each case is handled individually accord-
ing to the workflow definition (often referred to as the workflow schema). Examples
of business processes that do not correspond to a single workflow are stock-keeping
processes; for example, in make-to-stock and assemble-to-order processes, end products
or materials already exist before the order is placed (i.e., before the case is created,
manufacturing or assembly activities have already occurred). For this reason, only frag-
ments of such business processes (i.e., in-between stocking points) are considered to be
workflows.

Interestingly, WfMSs are embedded in some of the enterprise information systems
already mentioned; for example, most ERP and PDM systems include one or more WiMS
components. Besides enterprise information systems, middleware software (e.g., IBM’s
WebSphere) and development platforms (e.g., the .NET framework) embed work-
flow functionality; see the WebSphere Process Server and the Windows Workflow
Foundation. Examples of stand-alone WfMSs are BPM|one, FileNet, and YAWL.

Data Warehouses A data warehouse is a large database that stores historical and up-
to-date information from a variety of sources. It is optimized for fast query answering.
To allow this, there are three continuous processes: The first process extracts data at
regular intervals from its information sources, loads the data into auxiliary tables, and
then cleans and transforms the loaded data to make it suitable for the data warehouse
schema. Processing queries from users and from data analysis applications is the task of
the second process. The third process archives the information that is no longer needed
by means of tertiary storage technology.

Nowadays, most organizations employ information systems for financial accounting,
purchasing, sales and inventory management, production planning, and management
control. To efficiently use the vast amount of information that these operational sys-
tems have been collecting over the years for planning and decision-making purposes,
the information from all relevant sources must be merged and consolidated in a data
warehouse.

Whereas an operational database is accessed by online transaction processing (OLTP)
applications that update its content, a data warehouse is accessed by ad hoc user queries
and by special data analysis programs, referred to as online analytical processing (OLAP)
applications. In a banking environment, for example, there may be an OLTP application

Information Systems: Introduction and Concepts 11

for controlling the bank’s automated teller machines (ATMs). This application performs
frequent updates to tables storing current account information in a detailed format.
There may also be an OLAP application for analyzing the behavior of bank customers.
A typical query that could be answered by such a system would be to calculate the
average amount that customers of a certain age withdraw from their accounts by using
ATMs in a certain region. To minimize response times for such complex queries, the
bank would maintain a data warehouse into which all relevant information (including
historical account data) from other databases is loaded and suitably aggregated.

Queries in data warehouses typically refer to business events, such as sales transac-
tions or online shop visits that are recorded in event history tables (i.e., fact tables) with
designated columns for storing the time and the location at which the event occurred.
An event record usually has numeric parameters (e.g., an amount, a quantity, or a dura-
tion) and additional parameters (e.g., references to the agents and objects involved
in the event). Whereas the numeric parameters are the basis for forming statistical
queries the time, location, and reference parameters are the dimensions of the requested
statistics. There are multidimensional databases for representing and processing this type
of multidimensional data. The leader in the data warehouse market is Oracle (data from
2009).

Business Intelligence Systems A business intelligence system provides tools to analyze
the performance—that is, the efficiency and the effectiveness—of running business pro-
cesses. These tools extract information on the business processes from the data available
in an organization. Different tools and techniques exist, among them business per-
formance management, business activity monitoring, querying and reporting, data
mining, and process mining.

Business performance management concentrates on improving the performance of busi-
ness processes. The goal is to extract information from the history of running business
processes and to display this information on a management dashboard. For example,
one could monitor a credit approval process to get insight into the length of time
required to make the decision.

In contrast to business performance management, business activity monitoring aims
at providing real-time information on business processes and the activities in these
business processes. The goal is to support decision making at runtime. Such a tool may
monitor inventory levels, response times, or queues and take action whenever needed.

Querying and reporting tools explore data (e.g., stored in a data warehouse) to provide
insight into efficiency and effectiveness of business processes and trends in the envi-
ronment. Typically, statistical analysis is applied to the data to distinguish between
trends and isolated events.

The term data mining refers to a collection of techniques to extract patterns from
examples. Originally, the term “data mining” had a negative connotation (i.e., data

12 Chapter 1

dredging, data snooping, and data fishing), but nowadays data mining is an estab-
lished research domain with a huge impact. Examples of classical data mining tasks are
classification (which arranges the data into predefined groups), clustering (like classifica-
tion, but the groups are not predefined), regression (which attempts to find a function
that models the data with the least error), and association rule learning (which searches
for relationships between variables). Data mining techniques can be applied to any
type of data and do not explicitly consider business processes.

Process mining 1ooks at data from the viewpoint of a particular business process. Infor-
mation systems usually log the occurrences of events—for example, accepting an order,
sending an invoice, or receiving a payment. The availability of such event logs, which
contain footprints of a business process, enables the discovery of models describing
reality. The resulting business process model can be compared with the specification of
the business process and used for simulation and performance analysis. Process mining
is discussed in section 8.5.

Business intelligence is still a young discipline that will receive more acceptance and
attention soon. Most commercial tools support business performance management,
business activity monitoring, and querying and reporting rather than the more sophis-
ticated techniques of data and process mining. Business intelligence is so far restricted to
reporting information on running business processes and offers little support in terms
of how a business process can be improved. The market leader in business intelligence
is SAP (data from 2008) with SAP BusinessObijects; other main vendors are SAS, IBM,
Oracle, and Microsoft. Examples of open-source projects providing data and process
mining software are WEKA (Witten and Frank 2005) and ProM (Aalst, Reijers, et al.
2007).

1.2.3 Enterprise Information Systems in Different Industries
The various types of enterprise information systems have different levels of granularity.
For example, SAP Business Workflow is just one component in the large SAP ERP sys-
tem, but its functionality is comparable to many stand-alone WfMSs. Functionality of
software systems is more and more wrapped into services that can be accessed over the
Internet, which allows software systems to be viewed at different levels of granularity.
Organizations do not develop their enterprise information systems from scratch; they
instead purchase large software suites that must to be customized, or they assemble a
software system from components. Configuration corresponds to specifying informa-
tion about the organization and its business processes and to switching functionality on
or off. Organizations typically use only a small percentage of the functionality provided
by software vendors, such as SAP. Similarly, few hospitals use all of the functionality
provided by software vendors, such as ChipSoft and Siemens.

The abundance of functionality in today’s enterprise information systems can be
explained by looking at the cost of software. Development of enterprise information

Information Systems: Introduction and Concepts 13

systems is extremely expensive, because these systems are—from an engineering point
of view—highly complicated. However, once developed, software can be copied with-
out much effort. This development cycle is completely different from that of physical
products. For this reason, software vendors are tempted to provide an abundance of
functionality that can be adapted to the customer’s specific requirements. As a result,
software vendors shift efforts from software implementation to configuration of
enterprise information systems.

The application of a particular enterprise information system and its configuration
depends on the industry an organization is operating in. For example, a hospital, a
bank, a manufacturer, and a municipality may all use an ERP system, such as SAP, but
the configurations will vary. Although all four organizations may use the financial com-
ponent or the procurement component of SAP, it is likely that only the manufacturer
is using the MRP component for production planning. In addition to standard compo-
nents, these organizations will use industry-specific enterprise information systems. For
example, the hospital may use a dedicated radiology information system and an infor-
mation system to create and maintain electronic patient records. The bank will have
software to make calculations related to interest and mortgages, and the municipality
will have software to access governmental administrations.

The hospital, the bank, the manufacturer, and the municipality in this example
may use the same WEMS (e.g., BPM|one or YAWL), but the workflow schemas that are
used to configure the systems of the four organizations are different. For example, the
municipality will need to specify the business process for registering a newborn. This
business process is irrelevant for the other three organizations.

Given the various types of enterprise information systems and the many ways they
can be configured, this chapter does not target specific industries or specific types
of enterprise information systems. Instead, we concentrate on general principles of
(enterprise) information systems.

1.3 The Life Cycle of an Information System

There are various ways to develop an enterprise information system. Accordingly, the
most important question a designer of such a system has to deal with is: how do I dev-
elop an enterprise information system? To answer this question, we introduce a life
cycle model of enterprise information systems. This life cycle model covers the phases of
the development process of an enterprise information system. Enterprise information
systems are complex software systems that are modified to reflect organizational needs
and changes rather than developed from scratch. For this reason, the life cycle model
includes phases that address change and redesign of existing enterprise information
systems. In this section, we aim at being more generic and consider information systems
rather than enterprise information systems.

14 Chapter 1

1.3.1 Introduction to the Life Cycle Model

According to the integrated view of an information system shown in figure 1.1, an
information system may include each of the six entities. In definition 1.5, we restricted
information systems to software systems, thereby requiring the presence of the technol-
ogy of figure 1.1. When considering the development process of an information system,
however, we interpret the information system in a more narrow sense in which just the
software is taken into account. Information systems typically have two development
processes. In the first development process, a generic information system is imple-
mented; in the second development process, this system is customized. For example,
for an ERP system, software vendors, such as SAP, implement new releases of their ERP
system for other organizations. The implementation of the ERP system is guided by the
development process of the software vendor. After an organization purchases an ERP
system, this ERP system passes through the development process of the organization.
In this second development process, the ERP system needs to be installed, configured,
customized, and introduced in the organization.

There can be mixtures of these two development processes. For example, the infor-
mation system of a bank may be composed of selected components of an ERP system
and of self-developed software components that provide specific functionality. In
this case, the development process for building the information system for the bank
includes a software development process similar to that of software vendors. Because
of their tremendous complexity, existing information systems are usually redesigned
and iteratively improved rather than replaced by a new system. As a consequence, the
development process of an information system contains phases, such as maintenance
and improvement. For example, in the information system of a bank, the ERP system
may be reconfigured or upgraded to a newer version.

Organizations develop and run information systems, which may involve software
components purchased from other organizations. People who are going to use the infor-
mation system are the users or participants. People who design the information system
or the products that are used to assemble the information system are the designers. In
this section, we concentrate on the work of designers.

Many life cycle models are described in the literature and used in practice. Some aim
at the software development process (e.g., within companies), and others aim at the de-
velopment of an information system in an organization (e.g., a bank). Our life cycle
model, depicted in figure 1.2, is a mixture of both. Each rectangle illustrates a phase
in the life cycle, and arcs represent the order of the phases. The main cycle models the
development process of a new information system. It takes into account the develop-
ment process of generic software, the development process of information systems that
are customized from generic software, and a mixture of these development processes.
The two smaller cycles, which contain shaded rectangles, model the development pro-
cess of existing information systems—that is, the maintenance and the improvement

Information Systems: Introduction and Concepts 15

N

Design

‘ (Re)design ’ ‘ analysis

(

Runtime
analysis
Monitoring

> B\

‘ Migration ’ ‘ Execution

Configuration

Implementation

Adjustment

Production

Distribution

Deployment
Figure 1.2

The life cycle model of an enterprise information system.

of running information systems. In the following sections, we discuss the life cycle
model of figure 1.2 in more detail.

1.3.2 A Software Development-Oriented Life Cycle

The life cycle model in figure 1.2 is based on the observation that information systems
are complex, customized (i.e., made-to-order) software systems whose development
requires many man-years. Developing an information system can be compared to con-
structing a tunnel or manufacturing a car. It is usually organized in the form of a project.
The main cycle in figure 1.2 specifies the development process of a new customized
information system, which is the focus of this section.

We distinguish the following eleven phases for customized information systems:
requirements phase, design phase, design analysis phase, implementation phase, production
phase, distribution phase, deployment phase, configuration phase, execution phase, monitoring
phase, and runtime analysis phase. Not all of these phases are relevant for all informa-
tion systems; for example, production, distribution, and deployment phases are only
relevant in the case of generic (i.e., made-to-stock) information systems, such as ERP
systems, Microsoft Office tools, or database management systems.

16 Chapter 1

Models play an important role in the development process of an information system.
A model describes the information system to be designed in a certain form (e.g., textual
or graphical). Models can be displayed in many ways, but they are always intended to
describe the information system or the business processes supported by it. The way
in which such a description is expressed depends on the point of view from which
we want to look at the information system and is determined by the purpose of the
description. A model abstracts away from aspects that are considered not relevant for
the model. There are countless modeling formalisms. Most of them are grounded in
logic, set theory, algebra, or graph theory.

Example 1.7 A bicycle map is a model of a geographic area and is intended to support
cyclists. Not all aspects of the real landscape are present in the model. The bicycle map
represents only those aspects that are important to the cyclists, that is, an overview of
all bicycling tracks in the designated area. The map may display the bicycling tracks as
blue, even though they have a different color in reality. Only the purpose of the model
is important: cyclists want to see bicycling tracks on the map. A map of the same area
designed for another means of transport (e.g., car or boat) would look different.

Models may serve as an abstract description or as a specification. An abstract description
model describes an already existing information system. This model allows us to analyze
the information system. In contrast, a specification model serves as a specification of
what an information system is supposed to do. Such a model is intended to be used for
constructing a new information system. The modeling of existing information systems
and of information systems to be developed are considered in this book. We investigate
business process-related aspects of information systems and use Petri nets extended
with data, time, and hierarchy as a modeling formalism.

In the following sections, we discuss the eleven phases of the main life cycle in fig-
ure 1.2. The requirements phase and the design phase are of particular interest, because
developing models is an essential part of these two phases. We further concentrate on
the software development process of information systems. The configuration-oriented
life cycle (e.g., configuring a customized information system) is discussed in section
1.3.3.

Requirements Phase The requirements phase is the first phase in the main life cycle
in figure 1.2. It involves collecting the various requirements for the information sys-
tem and assembling a coherent requirements specification. In many cases, there is an
existing information system that does not satisfy all requirements. It is then wise to
analyze thoroughly what the existing information system does for its environment.
The result of this analysis will inform which functionality of the existing information
system should be preserved in the new one. We can also obtain valuable insights by
analyzing the deficiencies of the existing information system and the reasons why a

Information Systems: Introduction and Concepts 17

new information system is being developed. After this analysis, we can formulate the
requirements of the new information system.

Example 1.8 The requirements phase in the development of a new (simplified) ATM
leads to the following requirements. The ATM should allow its clients to query their
current account balances and to withdraw money. If clients want to withdraw money,
then the ATM should offer them several amounts, but it should also allow them to
choose an amount of money. There are several restrictions. For example, the amount
of money clients withdraw should be less than a maximum amount (e.g., 500 euros
for each day), and it should not lower the client’s account balance below a predefined
lower bound. Furthermore, if clients just query their current account balance, then
their account balance should not change.

The requirements refer to the functionality of the new information system and also
to other (nonfunctional) aspects, such as costs, maintenance, and reliability. In the
early requirements phase, requirements are expressed in ordinary language. This is
important, because key users should be able to understand the requirements. Users
typically express requirements in cooperation with designers. In the late requirements
phase, requirements are expressed by specification languages and by models resulting in
a domain model that captures the concepts of the domain under study. The development
of requirements specifications is known as requirements engineering (Hull, Jackson, and
Dick 2004).

Exercise 1.1 Express the main requirements for an information system that advises
travelers about a travel scheme (route and time) when they want to make a holiday
trip.

Design Phase The purpose of the design phase is to develop two models that are suitable
to communicate with the users and the software developers of the information system.
First, designers derive a functional design model from the domain model. The functional
design model is expressed in terms of general software modeling constructs, but it still
abstracts away from specific implementation. Second, designers derive an implementa-
tion model from the functional design model by taking the target programming language
or implementation framework into account.

A functional design model captures the functionality of the information system.
This model typically consists of several diagrams that visualize (static) data models and
(dynamic) business process models. It abstracts away from implementation details.
This is especially important for the communication between users and designers. Users
are laymen and should not be confronted with all details of the information system;
instead, end users must understand relevant parts of the model to investigate whether
the designer has correctly taken their requirements into account.

18 Chapter 1

Designers can construct a functional design model for an information system in the
form of an executable specification providing a formal description and a prototype of the
information system. A prototype is an experimental first version that is used for testing
a design and for gaining more insight into the requirements of the information system
to be built. It does not normally implement the entire functionality of the information
system. For instance, it may lack an ergonomic user interface, it may not provide the
necessary security mechanisms, or it may not provide the required performance. At the
beginning of the design process, the requirements of an information system are often
incompletely and ambiguously specified. By constructing a model and doing experi-
ments with a prototype, ambiguities and hidden requirements may be discovered. This
helps ensure that the final information system satisfies the requirements of its users
and avoids costly and time-consuming revisions at a later stage.

The second model, which designers construct during the design phase, is an imple-
mentation model. It is a detailed work design for the software developers who are going
to implement the information system. There are usually several work designs, each
reflecting a certain aspect or detail of the information system. Because it is essential
that the implementation model conforms to the functional design model, the designer
has to verify that these models match.

Example 1.9 In the example of the ATM, the designer constructs a functional design
model of the ATM on the basis of the previously developed domain model. The func-
tional design model can be an algebraic specification of the static information (e.g.,
querying the current account balance returns an account balance in euros) and a busi-
ness process model describing the order of activities (e.g., clients choose to withdraw
money, next they can choose between a standard amount or a customized amount,
and so on). In addition, the functional design model can contain a prototype showing
the user the possible interactions with the ATM. With this model, the user and designer
can discuss all open issues of the final design of the ATM.

In the next step, the designer develops an implementation model based on the func-
tional design model. This model may contain detailed information about how the
database of the bank must be queried, how the chosen security mechanisms must be
implemented, and how the interplay of the information system with the hardware of
the ATM must be implemented. The implementation model serves as a basis for dis-
cussion between the designer and the software developer to identify the way in which
the ATM should be implemented.

In the ATM example, the mediator role of the designer and the benefit of the two
models becomes clear. The designer uses the functional design model to communicate
with the user and the implementation model to communicate with the software
developers.

Information Systems: Introduction and Concepts 19

In the software development process, usually one person or a group of people plays
the role of the designer and of the software developer. The distinction between the
functional design model and the implementation model may then become blurred.
In these circumstances, often the user cannot understand the model because it is too
detailed, or the model does not sufficiently support the implementation because it is
unclear or incomplete.

Design Analysis Phase The role of the functional design model and the implemen-
tation model is not only to serve as a basis for discussion between the designer and
the user and between the designer and the software developer. Models abstract away
from facts that are considered not relevant for the model, are less complex than the
information system, and can, therefore, be analyzed. Analyzing the functional design
model and the implementation model is the subject of the third phase of the life cycle,
the design analysis phase.

The goal of this phase is to gain insight into the model and, hence, into the infor-
mation system to be implemented. If the model is an abstract description to be used
to analyze an existing information system, the model must first be validated. Valida-
tion checks whether the model correctly reflects the information system. A validated
abstract description model and a specification model can be analyzed. There are several
ways to analyze a model. Verification is an analysis technique to prove that the model
conforms to its specification. A specification can be another more abstract model or a
set of properties that the model must satisfy. Most verification techniques must explore
(parts of) the states of the model and analyze whether the desired properties hold in
every state. As the functional design model and the implementation model of an infor-
mation system typically have many states, verification is often hard to achieve. For
this reason, another analysis technique is used more frequently: simulation. The idea of
simulation is to make the model executable and to run certain experiments (known as
runs or scenarios). A model may allow infinitely many scenarios. Because only a finite
number of scenarios can be executed, simulation does not typically visit all states of
a model. Consequently, unlike verification, simulation can be applied to verify only
the presence of errors but not their absence. Simulation is often applied for performance
analysis. Performance analysis assesses key performance indicators, such as response
time and flow time, to detect possible bottlenecks in the system during the design.

Example 1.10 Using the ATM example, we can specify a scenario of a client who first
queries an account balance and afterward withdraws 100 euros. By using simulation,
we can execute this scenario on the model and check whether this model behaves as
expected. Simulation also allows performance analysis; for example, we could check
whether the database system can retrieve the current account balance within a certain
time interval. It would be important to verify that clients cannot crash the ATM.

20 Chapter 1

An overview of existing analysis techniques is provided in chapter 8.

Implementation Phase The fourth phase in the life cycle model is the implementation
phase. In this phase, the information system is constructed. Because an informa-
tion system is a software system, construction means either programming the entire
functionality from scratch or extending or reimplementing existing functionality.
Nowadays, software projects increasingly develop generated code. Development tools,
such as Eclipse, may generate template code to create a graphical user interface, for
instance. The programmer can later modify and refine this generated code. This
significantly increases a programmer’s productivity.

Production Phase The fifth phase is the production phase, in which software of an infor-
mation system in prepared for distribution. Unlike classical manufacturing processes,
it is relatively easy to produce software, because this boils down to copying and down-
loading. For widely used standard products, such as database management systems and
the Microsoft Office tools, however, the production of manuals, CDs, and so forth may
be nontrivial. For product software, licensing issues may also require effort.

Distribution Phase In the case of mass production, there is a sixth phase, the distri-
bution phase. The goal of this phase is to make the information system available to its
future users. The marketing for the information system is also a part of this phase. The
production and distribution phases do not apply to customized information systems.

Deployment Phase In the deployment phase, the information system is installed in its
target environment, and the users of the information system are trained to use it or to
work with it. For example, in the case of a health care system in a hospital, professionals
must be trained. Training is important in other domains as well, because information
systems, such as ERP systems and database management systems, provide a multitude
of functionality. The deployment phase is the seventh phase in the life cycle model.

Configuration Phase Many organizations do not implement their information sys-
tems from scratch but instead buy standard software, which is often referred to as com-
mercial off-the-shelf software or product software. In this case, the information system
needs to be configured and customized to the organization and its business processes.
Even when organizations develop their own software, there is often the need for config-
uration. This is the subject of the eighth phase in the life cycle model, the configuration
phase.

For sectors such as financial accounting, inventory management, or production plan-
ning, there are customizable standard software packages: ERP systems. These packages
have many adjustable parameters, among them the standard currency and the date

Information Systems: Introduction and Concepts 21

display format to be used (e.g., 1-Jan-2001, 01/01/2001, or 20010101). The customiza-
tion of an ERP system can be viewed as a kind of programming in a special language.
The difference from conventional programming is that the entire functionality does
not need to be programmed. Much of the standard functionality provided can be
used instead. Nevertheless, adapting standard business processes to specific organi-
zations may require substantial effort and should not be underestimated. It may even
be the case that the standard functionality provided is inadequate, and parts need to
be reimplemented.

Execution Phase After the deployment and configuration, organizations can finally
run their information systems. In an ideal world, this execution phase—the ninth phase
in the life cycle model—would be the final phase of the development process, with
maintenance consisting of the organization keeping the data up to date and making
backups. Because of its complexity, however, it is unlikely that an information system
meets all requirements and performs in a way it is expected at the start of this phase.
Moreover, the environment of the information system is changing over time. To sim-
plify error detection and to get insight into what functionality is actually used (and also
how it is used), information systems log an enormous number of events. These event
logs provide detailed information about the activities that have been executed. Event
logs play an important role in the successive phases of the life cycle model.

Monitoring Phase In the tenth phase, the monitoring phase, organizations extract real-
time information about how their information systems perform. Monitoring provides
information on the current state of each business process instance and on the per-
formance of the previously executed activities. In a way, the monitoring phase is a
simulation of the running business processes in practice. The extracted information can
be compared with the domain model (i.e., the requirements) and the functional design
model. Unlike the process shown in figure 1.2, the execution phase and the moni-
toring phase typically run in parallel. The monitoring phase is using data from the
execution phase, but it can also influence execution through the adjustment phase
(see section 1.3.4).

Runtime Analysis Phase Monitoring is performed while the information system is
running, but it is not intended to change information systems or redesign business
processes. Monitoring provides relatively simple types of diagnostic information. More
advanced analysis techniques are possible and are performed in the runtime analysis
phase.

In contrast to the design analysis phase in which information system models are
analyzed, the runtime analysis phase analyzes whether the implemented information
system conforms to its specification. Event logs play an important role in this phase.

22 Chapter 1

These event logs can be analyzed—for example, to figure out whether requirements
of the information system are violated—or replayed on the functional design model
and the implementation model. Process mining techniques allow information to be
extracted from the event logs to provide designers with more insights into the running
information system and the supported business processes. Because of the complex-
ity of contemporary information systems and rapidly changing circumstances (e.g.,
new laws and changing regulations), the importance of the runtime analysis phase is
increasing.

1.3.3 A Software Configuration-Oriented Life Cycle

The focus of the previous section was on the development process of information sys-
tems that either are generic software systems or contain at least some self-developed
software components. The life cycle of these information systems includes, among
other phases, an implementation phase and a deployment phase. The production phase
and the distribution phase are, in contrast, relevant only for the development process of
generic software systems. There are many organizations that do not implement an infor-
mation system; instead, they construct it from predefined generic software systems,
such as ERP systems. In this section, we discuss the life cycle of customized information
systems, which consists of seven phases of the main life cycle of figure 1.2: requirements
phase, design phase, design analysis phase, configuration phase, execution phase, monitoring
phase, and runtime analysis phase.

As for generic information systems, the development process of a customized infor-
mation system starts with the requirements phase. The designer expresses the identified
requirements as a domain model. In the subsequent design phase, the designer derives
a functional design model from the domain model and constructs an implementation
model. The models are then analyzed in the design analysis phase. In contrast to the
development process of a generic information system, the designer uses the imple-
mentation model to identify which software components are necessary to create the
information system. The purchase of these software components, including actions
such as tender procedures, is a process that is orthogonal to the phases of the life
cycle. In the life cycle model, we therefore assume that an organization has purchased
all necessary software components to design an information system. In the following
configuration phase, the designer (supported by software developers) configures and
customizes these software components. Recall that configuration refers to choosing
between existing predefined parameters and reimplementing some of the standard
functionality to adapt it to the requirements of the organization.

The subsequent execution, monitor, and runtime analysis phases are as described
section 1.3.2. The monitor and runtime analysis phases are intended to verify that
the configuration yields an information system that conforms to the requirements
and, hence, to the specification, rather than to verify whether the implemented soft-
ware components are correct (although these components may contain bugs, like any

Information Systems: Introduction and Concepts 23

software). Although generic information systems offer functionality that organizations
of different industries can use, configuring an information system such that it perfectly
satisfies the requirements of an organization can be time-consuming.

In figure 1.2, it is assumed that the smaller software configuration—oriented life cycle
does not include a deployment phase. Deployment is typically not needed if existing
information systems are reconfigured; however, if an organization introduces a new
enterprise information system, then it must perform the activities mentioned in the
deployment phase.

1.3.4 A Runtime-Oriented Life Cycle

Ever-changing market conditions, regulations, and further customizations require orga-
nizations to be flexible and to adapt to changing circumstances. As a result, business
processes are subject to change. This requires that we adapt the information systems
that support these business processes to the new requirements. For this reason, the life
cycle model in figure 1.2 includes phases that need to be passed through to change
and redesign existing information systems. Shaded rectangles in figure 1.2 resulting in
two smaller cycles depict these phases. The first cycle consists of four phases: execution
phase, monitor phase, runtime analysis phase, and adjustment phase. It models that new
requirements result in adjusting the information system. The second cycle takes this
idea of adjusting the information system a step further and addresses the replacement of
a (part) of the information system with a newer one. This cycle consists of an execution
phase and a migration phase.

Adjustment Phase Monitoring and analyzing a running information system is a con-
tinuous process. In the adjustment phase, a running information system is adapted to
changing circumstances. For example, there may be a new law that clients of a bank
are not allowed to withdraw money more than three times a day. Other causes for
adjusting an information system are detected errors or performance bottlenecks. In a
customized information system, adaptation may change some adjustable parameters.
The adjustment phase uses predefined runtime configuration possibilities; that is, the
information system is reconfigured but not changed. The cycle in figure 1.2 illustrates
that adjusting an information system is also a continuous process. The information
system is changed and then again monitored and analyzed.

Migration Phase It is not always possible to adapt a running information system by
a reconfiguration at runtime. Changes in the environment may require the replace-
ment of (a part of) an old information system with a new information system. The
new information system is developed according to the main life cycle in figure 1.2, as
described in sections 1.3.2 and 1.3.3. At a certain point in time, the replacement has
to take place. One of the challenges is the migration of data from the old information
system to the new one. An example is the business process of a life insurance company.

24 Chapter 1

A new legal regulation may cause a business process to change, while instances of this
business process have been running for decades. In this case, each running instance
of the old business process has to be migrated to the new business process. This is the
subject of the migration phase.

1.3.5 Reflection

The development of an information system is, in practice, not as straightforward and
well defined as the life cycle model in figure 1.2 may suggest. Typically, we have to
revisit previous phases or start over with analysis; that is, the development process
is iterative. In figure 1.2, this is illustrated by the counterclockwise arcs. In each iter-
ation, the current models are being further refined and extended. As a consequence,
the development process is also incremental. Phases of the life cycle can overlap with
one another. We can construct an implementation model for parts of the information
system, even if other parts have already been implemented. This book focuses on the
analysis and design phases.

1.4 System Models

In the previous section, we presented a life cycle model of information systems. We ex-
plained that, in particular, in the early phases of this life cycle—in the requirements,
design, and design analysis phases—models play an important role for specifying
existing information systems and for implementing new information systems. In this
section, we show that an information system can be viewed as a discrete dynamic
system whose behavior can be modeled as a transition system.

1.4.1 Discrete Dynamic Systems

To clarify the most important system concepts, we look at several systems: a laptop
computer, a washing machine, a railroad network, a car engine, a turning wheel, a
wheel of fortune, a digital alarm clock, and the membership administration of a tennis
club. All of these systems possess a state that is subject to change. We refer to them
as dynamic systems. Dynamic systems can have discrete or continuous state changes, as
described in the following examples.

A laptop computer can switch between four modes: on, hibernate, sleep, and off.
A washing machine is washing at one moment and rinsing the next. At the railroad
network, a signal is red at one moment, and, a little later, it is green. These three
dynamic systems seem to change states in discrete jumps.

A car engine consumes fuel continuously and not in discrete quantities; the engine
is a continuous dynamic system. The rate at which the state changes (e.g., the fuel level)
depends on the way the engine is used. A turning wheel of a car is another example

Information Systems: Introduction and Concepts 25

of a continuous dynamic system: the wheel turns continuously and not in discrete
jumps.

It is a matter of conceptualization whether we consider a system to be continuous
or discrete. We can view continuous systems in a discrete manner and vice versa. For
example, the state changes of a wheel of fortune seem to be continuous, but only
a limited number of states of the wheel matter; namely, those in which the wheel
can stop. We can therefore treat the wheel of fortune as a dynamic system with a
finite number of discrete states. Similarly, a washing machine can be described as a
continuous dynamic system in which the water level is gradually increasing.

We tend to consider the passage of time as a continuous process. Nevertheless, a
digital alarm clock is a system that changes states in discrete jumps. The alarm clock
halts for a minute at 8:20 a.m. and then jumps to 8:21 a.m. For the function of an
alarm clock, it is sufficient to display the time in hours and minutes. In the context
of an alarm clock, we may treat the passage of time as a discrete process. This is also
the case in other situations—for example, when measuring time at a sports event. For
a sports event, we may measure time with higher accuracy (e.g., in milliseconds).

Systems that change states in discrete jumps are discrete systems. In mathematics, “dis-
crete” means “distinct” and “noncontinuous.” Likewise, systems that change states in
continuous jumps are continuous systems. Examples of continuous systems are a river,
a turning wheel, a chemical reaction, and a flying bullet. A continuous system is typi-
cally described using differential calculus. In this book, we do not consider continuous
systems; instead, we conceptualize continuous systems as discrete (as with the wheel of
fortune example). In the remainder of this book, we refer to a discrete dynamic system
as a system.

Example 1.11 The membership administration of a tennis club is a system. At any
moment, 120 members may be registered. When a new member enters the club, there
will be a change in the membership state: the number of members increases to 121.
This is a discrete change, even if the secretary of the club does not immediately import
the data of the new member.

Exercise 1.2 Consider a bank where we are only interested in the balances of all bank
accounts. Explain why this is a system.

There are two important concepts for describing a system: state and state change.
Between two successive instantaneous changes, nothing happens in a system. We say
that the system is in a certain state. A state change is a state transition or transition.

Example 1.12 A fan is a system with two states (off and on) and two transitions. One
transition changes from off to on and the other from on to off.

26 Chapter 1

1.4.2 State and State Space

We now take a closer look at the state concept of a system using an example. The
medicine cabinet of a hospital department contains three kinds of drugs: painkillers,
sleeping pills, and antipyretics. Nurses supply these drugs to patients as needed, so the
stock decreases each time medication is administered. From time to time, the stock is
replenished. Each moment, the medicine cabinet is in a certain state; that is, it contains
a certain amount of each of the three drugs. We can record the actual stock in a table,
such as table 1.1.

Table 1.1 gives a description of the state of the medicine cabinet at a particular
moment. Two things are important for such a state description. First, we only include
information in a state description that is relevant for the system. Second, there can be
several descriptions of a state.

There is information that is not represented in the state description of the medicine
cabinet—for example, the current temperature in the cabinet, the size of the cabinet,
and whether the painkillers are on the first or the second shelf. What is relevant depends
on the purpose of the system and on the needs of the users of the system. For the nurses,
it is not interesting to know where a drug is exactly stored in the medicine cabinet.
Because only three kinds of drugs are stored, it is possible to quickly see where each
drug is. For a hospital pharmacy, which stores thousands of drugs, on the other hand,
drug location would be important.

Depending on the needs of the users, there are several ways to describe the possible
states of a system. Table 1.2 shows an alternative description of the contents of the
medicine cabinet. For each drug, we define a desirable minimum number—that is, its
base stock—and represent the difference of the actual stock from this number. The sum
of these numbers equals the actual stock.

A state description should represent all things that may change and whose change
is relevant for the system. The state description of the medicine cabinet, for instance,
provides the number of drugs in stock. This is the only relevant information for this
system. Other aspects of the medicine cabinet, such as the history of a drug stock, are
not relevant and are abstracted away.

Table 1.1
The Contents of the Medicine Cabinet

Type of drug Actual stock
Painkiller 14
Sleeping pills

Antipyretics 8

Information Systems: Introduction and Concepts 27

Table 1.2
An Alternative Representation of the State of the Medicine Cabinet

Type of drug Base stock Difference
Painkiller 10 4
Sleeping pills 10 -1
Antipyretics 5 3

Exercise 1.3 A hobbyist made a wheel of fortune from the wheel of a bicycle with
36 spokes. A simple but smart mechanism makes sure that the wheel can be stopped
between each two spokes that are next to each other. Describe all possible states of this
wheel.

In the following discussion, we assume that we always deal with state descriptions
that represent states in an adequate way (corresponding to the interests of the users of
the system and at the right abstraction level). We use the term “state” without explicitly
mentioning that a certain description is involved.

A system can be in several states. The set of all possible states is the state space. The
number of possible states of a system can be large. If the maximum stock of the medicine
cabinet were 19 painkillers, 19 sleeping pills, and 19 antipyretics, there would be 20-
20-20 = 8,000 possible states.

To specify a state space, we use the notation of mathematical set theory. The fan in
example 1.12 can be in states off and on. Accordingly, we formally represent the state
space S of the fan as the set:

S = {off, on}.

For the possible states of the medicine cabinet, only the actual stock of the drugs is
relevant. We can represent the actual stock as a triple (i.e., a sequence of three elements).
The state displayed in table 1.1 is then represented as (14,9, 8). The state space is too
large to be easily enumerated, but we can define it as:

S={xy,2)1xy,2€({0,...,19)}.

Recall that, in a set expression, the order of elements does not matter. From the previous
expression of state space S, we can conclude nothing about the order in which the states
occur.

Exercise 1.4 Describe the state space of the wheel of fortune in exercise 1.3. How can
you formally represent the state space?

28 Chapter 1

1.4.3 Transitions and Transition Systems

A system can stay in the same state for a short or a long time, but it normally changes
from one state to another after a certain time. The state change is performed instan-
taneously. For example, when a nurse takes drugs from the medicine cabinet, the
stock decreases. The state of the medicine cabinet changes through such an atomic
(i.e., indivisible) action.

For the time being, we abstract away from the time that is needed for a transition. This
is not a problem for industrial applications. In the case of the medicine cabinet, we are
interested in the changing stock of drugs and not in the time necessary to take out drugs
from the cabinet. In the case of the fan (see example 1.12), we are interested in whether
the fan is on or off and not in the relatively short time it takes to change from one state to
another. If state changes take considerable time (i.e., they are nonatomic), then we can
split the state change into two state changes: one indicating the start of the state change
and the other indicating the completion of the state change. For example, we can split
a transition “repair_car,” indicating a car repair, into transitions “start_repair_car” and
“end_repair_car,” indicating the start and the completion of the car repair.

During a transition, a system changes from one state to another. We are not interested
in what exactly happens during this change. For this reason, we can write a transition
as an ordered pair:

(old_state, new_state).
Assume that the fan is switched on. The ordered state pair
(off, on)

describes exactly what is going on. First, we mention the old state and then the new
state. The pair (on, off) represents the transition when the fan is switched off.

Definition 1.13 (Transition) A transition is an ordered pair (x, y) in which x and y are
elements of the state space S—that is, x,y € §S.

Exercise 1.5 At a certain moment, the medicine cabinet contains three painkillers, five
sleeping pills, and eight antipyretics. Then a nurse takes two sleeping pills and three
antipyretics from the cabinet. Express this transition as an ordered pair of states.

For every system, we can record each transition with an ordered pair of states. If we
consider all possible transitions of a system, then we obtain a set of ordered pairs of
states.

Example 1.14 Consider the model of the ATM that we described in example 1.8. The
state space is represented as:

Information Systems: Introduction and Concepts 29

S = {idle, card, pin, balance, money,
offer, choice, payout, violation, output_card}.

The following set of transitions is possible:

TR = {(idle, card), (card, pin), (pin, balance), (pin, money), (money, offer),
(money, choice), (offer, payout), (offer, violation), (choice, payout),
(choice, violation), (violation, money), (violation, output_card),
(balance, output_card), (payout, output_card), (output_card, idle)}.

The ATM is initially in state idle. A client then inserts a bank card (yielding state card)
and keys a pin (pin). Next, a client can either query an account balance yielding state
balance or withdraw money yielding state money. In state money, a client can either
choose an amount of money (choice) or select an offered amount of money (offer). If
the chosen amount of money is not too high, the money is paid out (payout), and
the ATM returns the card to the client (output_card). Otherwise, the ATM enters state
violation, from which the menu can be reached (state money), or the client asks the
ATM to return the card (output_card). From state output_card, the ATM moves to state
idle from which it can serve the next client.

In mathematics, a set of ordered pairs is a (binary) relation. Accordingly, each system
has a transition relation, which contains all possible transitions of the system. The iden-
tifier TR denotes the transition relation. A transition relation usually does not contain
all ordered pairs of states that can be formed by combining two states, because some
pairs are not possible. In the case of the ATM, for example, state pairs (card, idle) and
(money, balance) do not represent possible transitions.

We obtain the set of all ordered pairs of states of a state space S by forming the
Cartesian product $ x S. For a state space S = {a, b, ¢}, the Cartesian product consists of
3-3 =9 elements. We write:

Sx8={(a,a),(a,Db),(ac)(ba),bDb),b,0c)ca),lcb),cc)}
For the ATM, the Cartesian product of the state space with itself has 10-10 = 100 ele-

ments, but not all of these elements correspond to a possible transition. The transition
relation TR is consequently a subset of the Cartesian product:

TR C §xS.

By specifying the state space S, the transition relation TR, and an initial state, we can
describe a system. The initial state of a system is the state in which a system starts its
operations.

30 Chapter 1

Definition 1.15 (Transition system) A transition system is a triple (S, TR, sg) where S is
a finite state space, TR C S x § is a transition relation containing all possible state
changes, and sq € S is the initial state.

The notion of a transition system in definition 1.15 is similar to the definition of a
finite automaton (Hopcroft and Ullman 1979). A finite automaton is a transition system
in which every transition is labeled by a symbol from a given alphabet. For simplicity,
we do notlabel transitions, but it is easy to add a labeling function to (S, TR, sg) assigning
a label to all elements in TR.

In definition 1.15, we restricted ourselves to transition systems with a finite set of
states. If this set does not contain too many states, state space and transition relation
can be depicted in a diagram. We draw for each possible state a rectangle with rounded
corners and for each transition an arrow from the old state to the new state. Figure 1.3
shows the transition system of the ATM. Such a diagram is the state-transition dia-
gram of a transition system. An incoming transition without source pointing to state
idle denotes that the ATM is initially in state idle (i.e., so = idle). The notion of a state-
transition diagram is similar to the notion of a state diagram in other notations, such as
the Unified Modeling Language (UML) (Rumbaugh, Jacobson, and Booch 1998; Object
Management Group 2005).

(offer) (choice)
il

violation) (payout)

—| output_card E

Figure 1.3

A state-transition diagram of the ATM.

Information Systems: Introduction and Concepts 31

The general concept for structures, such as state-transition diagrams, is a directed
graph. A directed graph consists of nodes that are connected by directed edges.

Definition 1.16 (State-transition diagram) A state-transition diagram is a directed graph
in which the nodes represent the states of the transition system, and the directed edges
represent the possible transitions.

Exercise 1.6 A simple elevator system serving a building with five floors can be consid-
ered to be a discrete dynamic system. Reason why the elevator can be seen as a discrete
dynamic system, define its transition system, and draw the state-transition diagram.
Assume that the elevator is initially at the ground level.

In the example of the medicine cabinet, for which we must deal with 8,000 possible
states, it is not feasible to depict the transition system as a state-transition diagram. The
diagram would be too large and unmanageable. There are techniques to visualize large
transition systems, but these techniques provide only an impression of the topology of
the state space.

1.4.4 Transition Sequences and the Behavior of a System

Thus far, we have considered single transitions in isolation. To study the behavior of
a system, we must consider possible sequences of transitions and the states visited by
these sequences. It is important to determine which states can be reached from a given
initial state of the system.

Definition 1.17 (Reachable state) A reachable state is a state that the system can reach
from the initial state after zero or more transitions.

Question 1.18 The initial state of the ATM in example 1.14 is state idle. Are all states
reachable?

We can determine reachability by following the arrows in the state-transition dia-
gram in figure 1.3. State idle can be reached after zero transitions. From state idle we
can go to state card, next to state pin, to state balance, to state output_card, and to state
idle again.

A sequence of states reached by following the arrows in figure 1.3 is a transition
sequence. For example,

(idle, card, pin, money, choice, payout, output_card, idle)

is a transition sequence that represents withdrawing money by selecting a specific
amount of money. The transition sequence for querying the account balance is:

(idle, card, pin, balance, output_card, idle).

32 Chapter 1

EDNED
-

Figure 1.4
A self-loop: State loop can change to itself.

Transition sequences give us insight into the dynamics of a system. On the basis of
the transition sequences, we can see how the system behaves. The set of all possible
transition sequences from a given initial state specifies the behavior of the system.

In the behavior of a transition system, two special cases are possible. The first case is
a state in which no further transition is possible. Such a state is a terminal state, often
referred to as deadlock. The state-transition diagram of the ATM in figure 1.3 does
not have a terminal state, but if we remove transition (output_card, idle), then state
output_card becomes a terminal state. A terminal state should not be confused with a
state that can only change to itself, known as a self-loop, as shown in figure 1.4. In the
state-transition diagram in figure 1.3, there is no self-loop.

The second special case is the situation in which, from every state, at most one
transition is possible. This means that, in the state-transition diagram, each node has at
most one outgoing arrow. Such a system is deterministic, whereas a system with multiple
options for a successor state is nondeterministic. The transition system of the fan (see
example 1.12) is an example of a deterministic system. The ATM is a nondeterministic
system, because from state pin a client can choose state balance or state money.

Exercise 1.7 Describe why the medicine cabinet is a nondeterministic system.
1.5 Roles of Models

A model of an enterprise information system can serve different purposes. We iden-
tify two dimensions to characterize models of enterprise information systems. First, a
model may be design oriented or analysis oriented. Second, a model may be information
system oriented or business process oriented. Table 1.3 shows that these two dimensions
are orthogonal, and therefore we have to distinguish four kinds of models.

The role of a design/information-system-oriented model is to create a new enterprise
information system or to adapt an existing one. An example is a specification model
and an implementation model. The purpose of such a model is to specify desired func-
tionality, to document requirements and design decisions, to guide implementation
efforts, or to prescribe a configuration.

An analysis/information-system-oriented model focuses on the analysis of an enterprise
information system. The purpose of such a model is to gain insight into an existing

Information Systems: Introduction and Concepts 33

Table 1.3
The Different Roles That Models Play

Design Analysis
Information system Specification Verification
Requirements Performance analysis
Design decisions
Implementation
Configuration
Business process Business process reengineering Performance analysis
Continuous process improvement Gaming

enterprise information system or into an enterprise information system after it has
been created. For example, we can verify models to discover design flaws in new or
existing enterprise information systems, and simulation can predict performance under
different circumstances.

In contrast to the two previous kinds of models, a design/business-process-oriented model
focuses on the (re)design of business processes supported by an enterprise information
system (and not on the enterprise information system). The goal is to improve the per-
formance of business processes by redesigning them. Business process reengineering
(BPR) (Hammer and Champy 1993) aims at a radical redesign of business processes.
New enterprise information systems may be needed to achieve such a redesign. Con-
sequently, BPR initiatives may trigger enterprise information system development.
Continuous process improvement (CPI) (Harrington 1991) aims at less radical change.
Business processes are continuously reviewed to search for gradual improvements.
Continuous monitoring can, for example, support CPI initiatives.

An analysis/business-process-oriented model focuses on the analysis of business pro-
cesses supported by an enterprise information system. The goal is to evaluate existing
business processes or to judge alternative business process designs obtained through
BPR/CPI initiatives. Simulation is the primary analysis technique used here. It can
evaluate the performance of business processes (e.g., response times, flow times, inven-
tory levels, costs, and service levels). Furthermore, interactive simulation models can
create management games that help users to spot inefficiencies and understand new
ways of working.

In some cases, it may not be clear whether a model is intended to be used for infor-
mation system analysis and design or for business process analysis and design. Later in
this book, we shall see examples of models that are used to analyze the performance
of business processes using simulation but that also serve as a specification or configu-
ration model for an information system. To simulate a system, additional information
about times and probabilities is necessary. For example, we need to know the time a

34 Chapter 1

system stays in each of its states. Without time information, we cannot analyze the per-
formance of the system. If the system is nondeterministic, we need information about
the probability that the system chooses a particular successor state. Such information
can be easily added to a system model or can be extracted from historical data.

Example 1.19 The state-transition diagram in figure 1.3 models the functional design
of an ATM. To simulate this model, we need to add time information and probabilities.
As an example, reading the bank card in state idle may take two seconds, checking the
pin code in state card five seconds, and returning the bank card to the client in state
payout three seconds. In state pin, the client may choose in 70% of the cases withdrawal
of money and in 30% an account balance. After adding probabilities to all transitions,
we can simulate this model and, for example, calculate the probability that the ATM
enters state violation.

Markov models (Marsan et al. 1995; Haas 2002; Haverkort 1998) extend transition
systems with time and probabilities. Like transition systems, Markov models suffer from
the state explosion problem (Valmari 1998); that is, even small industrial systems have
far more states than a computer can handle and therefore cannot be verified. For this
reason, we must use higher-level models and simulation techniques (Buzacott 1996;
Marsan et al. 1995).

Exercise 1.8 A wristwatch is an example of a simple information system. Give an esti-
mation of the number of possible states and transitions of a watch that contains only
information about the present time. A possible state of this watch is, for example,
23:11:55.

It is unrealistic to model enterprise information systems in terms of a transition
system (S, TR, sg). The state space is too large to be enumerated or to be captured in a
simple mathematical set expression. Finding a suitable representation for the transition
relation is even more difficult. Accordingly, we need more powerful notations.

The state space S is typically captured using complex data types or database tables. To
model the structure of the state space, data models are used. Examples are class diagrams
in UML (Rumbaugh, Jacobson, and Booch 1998; Object Management Group 2005),
entity-relationship (ER) models, crow’s foot diagrams, and natural language informa-
tion analysis method/object role modeling (NIAM/ORM). Data modeling is concerned
with the identification of the relevant types of data entities and their relationships.
Beside data modeling, terms such as information modeling and object modeling are in use.

Data models do not capture behavior. We therefore need process models to describe the
transition relation TR. Examples of process modeling techniques are Petri nets, UML

Information Systems: Introduction and Concepts 35

activity diagrams, BPMN, and EPCs. In this book, we concentrate on process modeling
and use Petri nets extended with data, time, and hierarchy as a formalism.

A system model refers to the state space and to the transition relation. Consequently,
data and process modeling are required to create such models.

1.6 Test Yourself

1.6.1 Solutions to Exercises

1.1 The information system should allow the specification of a journey from one
location (home) to a holiday destination. It should be possible to make the trip by
bicycle, boat, car, train, airplane, or bus (or a combination of these modes of transport).
The traveler should be able to indicate when the journey should start and end. Given the
preferences of the traveler, the information system should propose several alternatives
for the travel scheme, such as the cheapest, the fastest, the shortest, and the easiest
possibilities.

1.2 This system is dynamic, because it is subject to state changes in the form of
changing balances through money transfers. It is discrete, because the changes happen
instantaneously; that is, a money transfer is an instantaneous event.

1.3 The spokes of the wheel could be numbered 1 to 36 in such a way that there is
always one number between two spokes. When the wheel stops between two spokes,
its state can be identified by its number.

1.4 The state space consists of 36 states in which the wheel can stop. These states are
numbered 1 to 36. In addition, there is one more state the wheel can be in: the wheel
could be turning and not in one of the states 1 to 36. Formally, we denote this as:

S = {turning, 1, 2,3,4,...,36}.
We could also represent state turning as a number—for example, as 0.

1.5 We can describe the old and the new state by the triple (3,5,8) and (3,3, 5),
respectively. The pair ((3, 5, 8), (3, 3, 5)) represents the transition.

1.6 The elevator system is dynamic, because it does not stay in one state but jumps
from one floor to the next. The system is discrete, because the elevator goes step-by-
step from one floor to the next. The state space of the elevator system is a set with five
states, one for each floor:

§=1{0,1,2,3,4}.

If we assume that the elevator may go up or down one floor at a time, then the transition
relation TR is as follows:

TR ={(0,1),(1,2),(2,3),(3,4),(43),3,2),(2,1),(1,0)}.

Assuming that the initial state is sy = 0, figure 1.5 depicts the state-transition diagram.

36 Chapter 1

C S Sledlealea)

Figure 1.5

State-transition diagram for the elevator system.

1.7 The medicine cabinet is a nondeterministic system, because it is composed of
states from which more than one transition is possible. Drugs can be removed from the
cabinet or replenished in various numbers and combinations.

1.8 The state 23:11:55 corresponds to the point of time five seconds before twelve
minutes past eleven at night. The number of possible states of the wristwatch is equal
to the number of points of time (counted in seconds) in one day. The number of possible
states is 24 - 60 - 60 = 86,400. Because there is exactly one transition possible from each
state, the number of transitions is also equal to 86,400.

1.6.2 Further Exercises
Exercise 1.9 Explain the terms “business process” and “information system.”

Exercise 1.10 List as many types of enterprise information systems as you can and give
one characteristic feature or an example for each of them.

Exercise 1.11 Explain the life cycle of developing a new information system and the
life cycle of redesigning an existing information system. Use the life cycle model in
figure 1.2.

Exercise 1.12 Draw the state-transition diagram for a washing machine with state space
S = {off, defective, pre-wash, main_wash, rinse, whiz}
with sg = off and transition relation

TR = {(pre-wash, defective), (main_wash, defective), (rinse, defective),
(whiz, defective), (off, pre-wash), (pre-wash, rinse),
(rinse, main_wash), (off, main_wash), (main_wash, rinse),
(rinse, off), (rinse, whiz), (whiz, off)}.

Exercise 1.13 The behavior of the washing machine in exercise 1.12 is not completely
realistic, because transition sequences

(off, pre-wash, rinse, off)

Information Systems: Introduction and Concepts 37

and
(off, main_wash, rinse, main_wash, rinse, main_wash, rinse, . . .)

are possible. Adjust the state space and the transition relation such that these transition
sequences are no longer possible. Draw the improved state-transition diagram.

Exercise 1.14 A Dutch traffic light is an example of a system with three possible states:
R (red), G (green), and O (orange). Model a T-junction with three traffic lights (see fig-
ure 1.6) as a transition system and draw the state-transition diagram. The traffic lights
are programmed in such a way that at least two lights are red at the same time—that is,
for at most one direction of the traffic, the traffic light can be green or orange. (Hint:
Represent each state by a combination of three colors.)

Exercise 1.15 To improve the traffic flow, the traffic light system of exercise 1.14 is
upgraded to a situation with five lights; see figure 1.7. The goal is to program the traffic
light system such that crossing cars coming from different directions cannot have a
green light at the same time. Furthermore, if at any point lights turn orange, they must
first turn red before other lights can change. Model this system as a transition system
and draw the state-transition diagram.

Exercise 1.16 The score in a game of tennis is calculated as follows. The first player
who wins four rallies in total and at least two rallies more than the opponent wins the

3
1
<| | 2|>
|
Figure 1.6

A T-junction with three traffic lights.

Figure 1.7
A T-junction with five traffic lights.

38 Chapter 1

game. If both players have won three rallies (40-40), then the player who wins the next
rally gets the advantage. If this player wins another rally, she wins the game. If she loses
the next rally, she loses the advantage, and the score is equal to the situation in which
both players have won three rallies (40-40). Model this system as a transition system
and draw the state-transition diagram.

Exercise 1.17 Consider the process in a restaurant. After customers enter the restaurant,
a waiter assigns them a table and gives them the menu. The customers then order, and
the waiter writes down this order, takes the menu, and delivers the order to the kitchen.
A cook prepares the order, and the waiter brings it to the customers who then consume
it. If the appetite of the customers is not yet satisfied, they can call the waiter and ask
for the menu again (after which the entire process repeats itself). If the customers are
satisfied, they call the waiter and ask for the check. When that check arrives, they pay
and leave.

1. Give the transition system that models the behavior of a customer and the transition
system that models the behavior of a waiter. Draw both state-transition diagrams.

2. If you want to make one state-transition diagram in which you describe the behaviors
of a customer and a waiter, how many states do you need?

Exercise 1.18 Figure 1.8 depicts a simplified remote control of a TV. It has six buttons
to choose a channel, one button to regulate the volume, one button to mute the sound
(and to turn it on again), and one button to switch the TV on or off. We consider the
remote control and the corresponding TV as a system and assume that the possible
states of this system are controlled by the buttons on the remote control.

1. Is this system a discrete dynamic system?
2. Describe all possible states of this system.

[onlof |

[[2] [=1
[] [=] [e]

(. J

Figure 1.8
The remote control of a TV.

Information Systems: Introduction and Concepts 39

3. The transition relation is too large to be depicted as a state-transition diagram. Give
examples of possible and impossible transitions. Pay attention to switching the TV on
and using the volume button in combination with the mute button.

Exercise 1.19 Consider a transition system with state space
{0,1,2,3,4,5,6,7,8}

and with transition relation
{0,1),(1,2),(2,3),3,4),3,5),(5,0),(54),(4,4),(6,7),(7,6),(7,8) }.

1. Draw the state-transition diagram.

2. Which states are reachable from the initial state 0?
3. List three transition sequences that start in state 0.
4. Does the system have a terminal state?

1.7 Summary

In this chapter, we introduced information systems in general, took a more detailed
look at enterprise information systems, and characterized important types of enterprise
information systems. We described the different phases in the life cycle of developing
and maintaining information systems. We then showed that an information system
is a discrete dynamic system whose behavior can be modeled as a transition system.
Finally, we discussed the four roles that models play.

We also introduced transition systems as the simplest technique to model discrete
dynamic systems and business processes. In the next chapters, we present more ad-
vanced modeling techniques that facilitate the modeling of complex enterprise infor-
mation systems and the business processes they support.

After studying this chapter, you should be able to:

= Explain the terms “information system” and “business process.”

= List the most important types of enterprise information systems and briefly charac-
terize them.

= Describe which life cycle phases are required to develop and to maintain an
information system.

= Explain the terms “discrete dynamic system,” “state,” “state space,” “transition,”
“state-transition diagram,” “transition sequence,” “deterministic system,” and “non-
deterministic system.”

= Describe a system as a transition system and represent it in the form of a state-
transition diagram.

= Determine the transition sequences of a simple transition system.

= Explain the difference between a data model and a process model.

= Explain the four roles that a model of an enterprise information system can play.

” ou ”ou " ou

40 Chapter 1

1.8 Further Reading

There are many books on information systems in the literature. Alter (2002) introduces
information systems, their development, and modeling of information systems from
a business perspective. Weske (2007), in contrast, concentrates on business processes
and business process management. Van Hee (2009) investigates formalization aspects
and the integration between data and process modeling.

In this book, we emphasize the role of process models in the realization of enterprise
information systems. WfMSs are information systems that are directly driven by busi-
ness process models. We therefore reference several books on workflow management
systems—see work by Van der Aalst and Van Hee (2004), Dumas, Van der Aalst, and Ter
Hofstede (2005), Ter Hofstede et al. (2010), Jablonski and Bussler (1996), and Leymann
and Roller (1999)—and elaborate more on this in the next chapter.

There are many life cycle models for devloping an information system. Two classical
life cycle models are the waterfall model and the spiral model. The waterfall model,
presented by Royce (1970), was the first publicly documented life cycle model. The
model was developed to cope with the increasing complexity of aerospace products. The
model’s focal point is on documentation. The spiral model was introduced by Boehm
(1988) to address problems associated with the waterfall model. Alter (2002) introduced
a life cycle model that concentrates more on the management perspective and less on
the software.

The final topics addressed in this chapter are discrete dynamic systems and transition
systems. Hopcroft and Ullman (1979) provide a good overview of this topic. For a deeper
study of data modeling, we refer to ER modeling of Chen (1976) and UML (Rumbaugh,
Jacobson, and Booch 1998; Object Management Group 2005).

