
1 Introduction

Our nature consists in movement;
absolute rest is death.

—Blaise Pascal

Change is all around us. Dynamic strategies seek to both anticipate and
effect such change in a given system so as to accomplish objectives of
an individual, a group of agents, or a social planner. This book offers
an introduction to continuous-time systems and methods for solving
dynamic optimization problems at three different levels: single-person
decision making, games, and mechanism design. The theory is illus-
trated with examples from economics. Figure 1.1 provides an overview
of the book’s hierarchical approach.

The first and lowest level, single-person decision making, concerns
the choices made by an individual decision maker who takes the evo-
lution of a system into account when trying to maximize an objective
functional over feasible dynamic policies. An example would be an eco-
nomic agent who is concerned with choosing a rate of spending for
a given amount of capital, each unit of which can either accumulate
interest over time or be used to buy consumption goods such as food,
clothing, and luxury items.

The second level, games, addresses the question of finding predictions
for the behavior and properties of dynamic systems that are influenced
by a group of decision makers. In this context the decision makers
(players) take each other’s policies into account when choosing their
own actions. The possible outcomes of the game among different play-
ers, say, in terms of the players’ equilibrium payoffs and equilibrium
actions, depend on which precise concept of equilibrium is applied.
Nash (1950) proposed an equilibrium such that players’ policies do not
give any player an incentive to deviate from his own chosen policy, given
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Topics covered in this book.

the other players’ choices are fixed to the equilibrium policies. A clas-
sic example is an economy with a group of firms choosing production
outputs so as to maximize their respective profits.

The third and highest level of analysis considered here is mechanism
design, which is concerned with a designer’s creation of an environment
in which players (including the designer) can interact so as to maximize
the designer’s objective functional. Leading examples are the design of
nonlinear pricing schemes in the presence of asymmetric information,
and the design of markets. Arguably, this level of analysis is isomorphic
to the first level, since the players’ strategic interaction may be folded
into the designer’s optimization problem.

The dynamics of the system in which the optimization takes place are
described in continuous time, using ordinary differential equations. The
theory of ordinary differential equations can therefore be considered the
backbone of the theory developed in this book.
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1.1 Outline

Ordinary Differential Equations (ODEs) Chapter 2 reviews basic
concepts in the theory of ODEs. One-dimensional linear first-order
ODEs can be solved explicitly using the Cauchy formula. The key insight
from the construction of this formula (via variation of an integration
constant) is that the solution to a linear initial value problem of the
form

ẋ + g(t)x = h(t), x(t0) = x0,

for a given tuple of initial data (t0, x0) can be represented as the super-
position of a homogeneous solution (obtained when h = 0) and a
particular solution to the original ODE (but without concern for the
initial condition). Systems of linear first-order ODEs,

ẋ = A(t)x + b(t), (1.1)

with an independent variable of the form x = (x1, . . . , xn) and an initial
condition x(t0) = x0 can be solved if a fundamental matrix�(t, t0) as the
solution of a homogeneous equation is available. Higher-order ODEs
(containing higher-order derivatives) can generally be reduced to first-
order ODEs. This allows limiting the discussion to (nonlinear) first-order
ODEs of the form

ẋ = f (t, x), (1.2)

for t ≥ t0. Equilibrium points, that is, points x̄ at which a system does not
move because f (t, x̄) = 0, are of central importance in understanding a
continuous-time dynamic model. The stability of such points is usually
investigated using the method developed by Lyapunov, which is based
on the principle that if system trajectories x(t) in the neighborhood of an
equilibrium point are such that a certain real-valued function V(t, x(t))
is nonincreasing (along the trajectories) and bounded from below by its
value at the equilibrium point, then the system is stable. If this function
is actually decreasing along system trajectories, then these trajectories
must converge to an equilibrium point. The intuition for this finding is
that the Lyapunov function V can be viewed as energy of the system
that cannot increase over time. This notion of energy, or, in the con-
text of economic problems, of value or welfare, recurs throughout the
book.
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Optimal Control Theory Given a description of a system in the form
of ODEs, and an objective functional J(u) as a function of a dynamic
policy or control u, together with a set of constraints (such as initial
conditions or control constraints), a decision maker may want to solve
an optimal control problem of the form

J(u) =
∫ T

t0

h(t, x(t), u(t)) dt −→ max
u(·)

, (1.3)

subject to ẋ(t) = f (t, x(t), u(t)), x(t0) = x0, and u ∈ U , for all t ∈ [t0, T].
Chapter 3 introduces the notion of a controllable system, which is a sys-
tem that can be moved using available controls from one state to another.
Then it takes up the construction of solutions (in the form of state-control
trajectories (x∗(t), u∗(t)), t ∈ [t0, T]) to such optimal control problems:
necessary and sufficient optimality conditions are discussed, notably
the Pontryagin maximum principle (PMP) and the Hamilton-Jacobi-
Bellman (HJB) equation. Certain technical difficulties notwithstanding,
it is possible to view the PMP and the HJB equation as two complemen-
tary approaches to obtain an understanding of the solution of optimal
control problems. In fact, the HJB equation relies on the existence of a
continuously differentiable value function V(t, x), which describes the
decision maker’s optimal payoff, with the optimal control problem ini-
tialized at time t and the system in the state x. This function, somewhat
similar to a Lyapunov function in the theory of ODEs, can be inter-
preted in terms of the value of the system for a decision maker. The
necessary conditions in the PMP can be informally derived from the
HJB equation, essentially by restricting attention to a neighborhood of
the optimal trajectory.

Game Theory When more than one individual can make payoff-
relevant decisions, game theory is used to determine predictions about
the outcome of the strategic interactions. To abstract from the complex-
ities of optimal control theory, chapter 4 introduces the fundamental
concepts of game theory for simple discrete-time models, along the
lines of the classical exposition of game theory in economics. Once all
the elements, including the notion of a Nash equilibrium and its var-
ious refinements, for instance, via subgame perfection, are in place,
attention turns to differential games. A critical question that arises in
dynamic games is whether the players can trust each other’s equilib-
rium strategies, in the sense that they are credible even after the game
has started. A player may, after a while, find it best to deviate from a
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Nash equilibrium that relies on a “noncredible threat.” The latter con-
sists of an action which, as a contingency, discourages other players
from deviating but is not actually beneficial should they decide to ignore
the threat. More generally, in a Nash equilibrium that is not subgame-
perfect, players lack the ability to commit to certain threatening actions
(thus, noncredible threats), leading to “time inconsistencies.”

Mechanism Design A simple economic mechanism, discussed in
chapter 5, is a collection of a message space and an allocation function.
The latter is a mapping from possible messages (elements of the message
space) to available allocations. For example, a mechanism could consist
of the (generally nonlinear) pricing schedule for bandwidth delivered by
a network service provider. Amechanism designer, who is often referred
to as the principal, initially announces the mechanism, after which the
agent sends a message to the principal, who determines the outcome
for both participants by evaluating the allocation function. More gen-
eral mechanisms, such as an auction, can include several agents playing
a game that is implied by the mechanism.

Optimal control theory becomes useful in the design of a static mech-
anism because of an information asymmetry between the principal and
the various agents participating in the mechanism. Assuming for sim-
plicity that there is only a single agent, and that this agent possesses
private information that is encapsulated in a one-dimensional type vari-
able θ in a type space � = [θ

¯
, θ̄ ], it is possible to write the principal’s

mechanism design problem as an optimal control problem.

1.2 Prerequisites

The material in this book is reasonably self-contained. It is recom-
mended that the reader have acquired some basic knowledge of
dynamic systems, for example, in a course on linear systems. In addi-
tion, the reader should possess a firm foundation in calculus, since the
language of calculus is used throughout the book without necessarily
specifying all the details or the arguments if they can be considered
standard material in an introductory course on calculus (or analysis).

1.3 A Brief History of Optimal Control

Origins The human quest for finding extrema dates back to antiquity.
Around 300 B.C., Euclid of Alexandria found that the minimal distance
between two points A and B in a plane is described by the straight
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line AB, showing in his Elements (Bk I, Prop. 20) that any two sides of
a triangle together are greater than the third side (see, e.g., Byrne 1847,
20). This is notwithstanding the fact that nobody has actually ever seen a
straight line. As Plato wrote in hisAllegory of the Cave1 (Republic, Bk VII,
ca. 360 B.C.), perceived reality is limited by our senses ( Jowett 1881).
Plato’s theory of forms held that ideas (or forms) can be experienced
only as shadows, that is, imperfect images (W. D. Ross 1951). While
Euclid’s insight into the optimality of a straight line may be regarded
merely as a variational inequality, he also addressed the problem of
finding extrema subject to constraints by showing in his Elements (Bk VI,
Prop. 27) that “of all the rectangles contained by the segments of a given
straight line, the greatest is the square which is described on half the
line” (Byrne 1847, 254). This is generally considered the earliest solved
maximization problem in mathematics (Cantor 1907, 266) because

a
2

∈ arg max
x∈R

{x(a − x)},

for any a > 0. Another early maximization problem, closely related to
the development of optimal control, is recounted by Virgil in his Aeneid
(ca. 20 B.C.). It involves queen Dido, the founder of Carthage (located in
modern-day Tunisia), who negotiated to buy as much land as she could
enclose using a bull’s hide. To solve her isoperimetric problem, that is, to
find the largest area with a given perimeter, she cut the hide into a long
strip and laid it out in a circle. Zenodorus, a Greek mathematician, stud-
ied Dido’s problem in his book On Isoperimetric Figures and showed that a
circle is greater than any regular polygon of equal contour (Thomas 1941,
2:387–395). Steiner (1842) provided five different proofs that any figure
of maximal area with a given perimeter in the plane must be a circle. He
omitted to show that there actually exists a solution to the isoperimetric
problem. Such a proof was given later by Weierstrass (1879/1927).2

Remark 1.1 (Existence of Solutions) Demonstrating the existence of a
solution to a variational problem is in many cases both important and
nontrivial. Perron (1913) commented specifically on the gap left by
Steiner in the solution of the isoperimetric problem regarding existence,

1. In the Allegory of the Cave, prisoners in a cave are restricted to a view of the real world
(which exists behind them) solely via shadows on a wall in front of them.
2. Weierstrass’s numerous contributions to the calculus of variations, notably on the exis-
tence of solutions and on sufficient optimality conditions, are summarized in his extensive
lectures on Variationsrechnung, published posthumously based on students’ notes.
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and he provided several examples of variational problems without
solutions (e.g., finding a polygon of given perimeter and maximal sur-
face). Astriking problem without a solution was posed by Kakeya (1917).
He asked for the set of minimal measure that contains a unit line segment
in all directions. One can think of such a Kakeya set (or Besicovitch set) as
the minimal space that an infinitely slim car would need to turn around
in a parking spot. Somewhat surprisingly, Besicovitch (1928) was able
to prove that the measure of the Kakeya set cannot be bounded from
below by a positive constant. �

The isoperimetric constraint appears naturally in economics as a
budget constraint, which was recognized by Frisi in his written-in com-
mentary on Verri’s (1771) notion that a political economy shall be trying
to maximize production subject to the available labor supply (Robert-
son 1949). Such budget-constrained problems are natural in economics.3

For example, Sethi (1977) determined a firm’s optimal intertemporal
advertising policy based on a well-known model by Nerlove and
Arrow (1962), subject to a constraint on overall expenditure over a finite
time horizon.

Calculus of Variations The infinitesimal calculus (or later just calculus)
was developed independently by Newton and Leibniz in the 1670s.
Newton formulated the modern notion of a derivative (which he termed
fluxion) in his De Quadratura Curvarum, published as an appendix to
his treatise on Opticks in 1704 (Cajori 1919, 17–36). In 1684, Leibniz
published his notions of derivative and integral in the Acta Eruditorum,
a journal that he had co-founded several years earlier and that enjoyed
a significant circulation in continental Europe. With the tools of calculus
in place, the time was ripe for the calculus of variations, the birth of
which can be traced to the June 1696 issue of the Acta Eruditorum. There,
Johann Bernoulli challenged his contemporaries to determine the path
from point A to point B in a vertical plane that minimizes the time
for a mass point M to travel under the influence of gravity between A
and B. This problem of finding a brachistochrone (figure 1.2) was posed

3. To be specific, let C(t, x, u) be a nonnegative-valued cost function and B > 0 a given
budget. Then along a trajectory (x(t), u(t)), t ∈ [t0, T], a typical isoperimetric constraint is
of the form

∫ T
t0

C(t, x(t), u(t)) dt ≤ B. It can be rewritten as ẏ(t) = C(t, x(t), u(t)), y(t0) =
0, y(T) ≤ B. The latter formulation falls squarely within the general optimal-control
formalism developed in this book, so isoperimetric constraints do not need special
consideration.
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A

M
B

Figure 1.2
Brachistochrone connecting the points A and B in parametric form: (x(ϕ), y(ϕ)) = (α(ϕ−
sin (ϕ)),α( cos (ϕ) − 1)), where ϕ = ϕ(t) = √

g/α t, and g ≈ 9.81 meters per second squared
is the gravitational constant. The parameter α and the optimal time t = T∗ are determined
by the endpoint condition (x(ϕ(T∗)), y(ϕ(T∗))) = B.

earlier (but not solved) by Galilei (1638).4 In addition to his own solution,
Johann Bernoulli obtained four others, by his brother Jakob Bernoulli,
Leibniz, de l’Hôpital, and Newton (an anonymous entry). The last was
recognized immediately by Johann ex ungue leonem (“one knows the lion
by his claw”).

Euler (1744) investigated the more general problem of finding extrema
of the functional

J =
∫ T

0
L(t, x(t), ẋ(t)) dt, (1.4)

subject to suitable boundary conditions on the function x( · ). He derived
what is now called the Euler equation (see equation (1.5)) as a necessary
optimality condition used to this day to construct solutions to variational
problems. In his 1744 treatise on variational methods, Euler did not
create a name for his complex of methods and referred to variational
calculus simply as the isoperimetric method. This changed with a 1755
letter from Lagrange to Euler informing the latter of his δ-calculus, with
δ denoting variations (Goldstine 1980, 110–114). The name “calculus of
variations” was officially born in 1756, when the minutes of meeting

4. Huygens (1673) discovered that a body which is bound to fall following a cycloid curve
oscillates with a periodicity that is independent of the starting point on the curve, so he
termed this curve tautochrone. The brachistochrone is also a cycloid and thus identical to
the tautochrone, which led Johann Bernoulli to remark that “nature always acts in the
simplest possible way” (Willems 1996).
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no. 441 of the Berlin Academy on September 16 note that Euler read
“Elementa calculi variationum” (Hildebrandt 1989).

Remark 1.2 (Extremal Principles) Heron of Alexandria explained the
equality of angles in the reflection of light by the principle that nature
must take the shortest path, for “[i]f Nature did not wish to lead our
sight in vain, she would incline it so as to make equal angles” (Thomas
1941, 2:497). Olympiodorus the younger, in a commentary (ca. 565) on
Aristotle’s Meteora, wrote, “[T]his would be agreed by all . . .Nature does
nothing in vain nor labours in vain” (Thomas 1941, 2:497).

In the same spirit, Fermat in 1662 used the principle of least time (now
known as Fermat’s principle) to derive the law of refraction for light
(Goldstine 1980, 1–6). More generally, Maupertuis (1744) formulated the
principle of least action, that in natural phenomena a quantity called action
(denoting energy × time) is to be minimized (cf. also Euler 1744). The
calculus of variations helped formulate more such extremal principles,
for instance, d’Alembert’s principle, which states that along any virtual
displacement the sum of the differences between the forces and the time
derivatives of the moments vanishes. It was this principle that Lagrange
(1788/1811) chose over Maupertuis’s principle in his Mécanique Ana-
lytique to firmly establish the use of differential equations to describe
the evolution of dynamic systems. Hamilton (1834) subsequently estab-
lished that the law of motion on a time interval [t0, T] can be derived
as extremal of the functional in equation (1.4) (principle of stationary
action), where L is the difference between kinetic energy and poten-
tial energy. Euler’s equation in this variational problem is also known
as the Euler-Lagrange equation,

d
dt
∂L(t, x(t), ẋ(t))

∂ ẋ
− ∂L(t, x(t), ẋ(t))

∂x
= 0, (1.5)

for all t ∈ [t0, T]. With the Hamiltonian function H(t, x, ẋ,ψ) = 〈ψ , ẋ〉 −
L(t, x, ẋ), whereψ = ∂L/∂ ẋ is an adjoint variable, one can show that (1.5)
is in fact equivalent to the Hamiltonian system,5

5. To see this, note first that (1.6) holds by definition and that irrespective of the initial
conditions,

0 = dH
dt

− dH
dt

= ∂H
∂t

+
〈
∂H
∂x

, ẋ
〉
+
〈
∂H
∂ψ

, ψ̇
〉
−
(
〈ψ̇ , ẋ〉 + 〈ψ , ẍ〉 − ∂L

∂t
−
〈
∂L
∂x

, ẋ
〉
−
〈
∂L
∂ ẋ

, ẍ
〉)

,

whence, using ψ = ∂L/∂ ẋ and ẋ = ∂H/∂ψ , we obtain

0 = ∂H
∂t

+ ∂L
∂t

+
〈
∂H
∂x

+ ∂L
∂x

, ẋ
〉
+
〈
∂H
∂ψ

, ψ̇
〉
− 〈ψ̇ , ẋ〉 =

〈
∂H
∂x

+ ∂L
∂x

, ẋ
〉

.

Thus, ∂H/∂x = −∂L/∂x, so the Euler-Lagrange equation (1.5) immediately yields (1.7).
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ẋ(t) = ∂H(t, x(t), ẋ(t),ψ(t))
∂ψ

, (1.6)

ψ̇(t) = − ∂H(t, x(t), ẋ(t),ψ(t))
∂x

, (1.7)

for all t ∈ [t0, T]. To integrate the Hamiltonian system, given some ini-
tial data (t0, x0), Jacobi (1884, 143–157) proposed to introduce an action
function,

V(t, x) =
∫ t

t0

L(s, x(s), ẋ(s)) ds,

on an extremal trajectory, which satisfies (1.6)–(1.7) on [t0, t]and connects
the initial point (t0, x0) to the point (t, x). One can now show (see, e.g.,
Arnold 1989, 254–255) that

dV(t, x(t))
dt

= ∂V(t, x(t))
∂t

+ ∂V(t, x(t))
∂x

= 〈ψ(t), ẋ(t)〉 − H(t, x(t), ẋ(t),ψ(t)),

so that H = −∂V/∂t and ψ = ∂V/∂x, and therefore the Hamilton-Jacobi
equation,

−∂V(t, x(t))
∂t

= H(t, x(t), ẋ(t),
∂V(t, x(t))

∂x
), (1.8)

holds along an extremal trajectory. This result is central for the cons-
truction of sufficient as well as necessary conditions for solutions to
optimal control problems (see chapter 3). Extremal principles also play
a role in economics. For example, in a Walrasian exchange economy,
prices and demands will adjust so as to maximize a welfare fun-
ctional. �

Remark 1.3 (Problems with Several Independent Variables) Lagrange (1760)
raised the problem of finding a surface of minimal measure, given an
intersection-free closed curve. The Euler-Lagrange equation for this
problem expresses the fact that the mean curvature of the surface must
vanish everywhere. This problem is generally referred to as Plateau’s
problem, even though Plateau was born almost half a century after
Lagrange had formulated it originally. (Plateau conducted extended
experiments with soap films leading him to discover several laws that
were later proved rigorously by others.) Plateau’s problem was solved
independently by Douglas (1931) and Radó (1930). For historical details
see, for instance, Fomenko (1990) and Struwe (1989). This book considers
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only problems where the independent variable is one-dimensional, so all
systems can be described using ordinary (instead of partial) differential
equations. �

In an article about beauty in problems of science the economist Paul
Samuelson (1970) highlighted several problems in the calculus of varia-
tions, such as the brachistochrone problem, and connected those insights
to important advances in economics. For example, Ramsey (1928) for-
mulated an influential theory of saving in an economy that determines
an optimal growth path using the calculus of variations. The Ramsey
model, which forms the basis of the theory of economic growth, was
further developed by Cass (1965) and Koopmans (1965).6

Feedback Control Before considering the notion of a control system,
one can first define a system as a set of connected elements, where the
connection is an arbitrary relation among them. The complement of this
set is the environment of the system. If an element of the system is not
connected to any other element of the system, then it may be viewed as
part of the environment. When attempting to model a real-world sys-
tem, one faces an age-old trade-off between veracity and usefulness. In
the fourteenth century William of Occam formulated the law of parsi-
mony (also known as Occam’s razor), entia non sunt multiplicanda sine
necessitate, to express the postulate that “entities are not to be multiplied
without necessity” (Russell 1961, 453).7 The trade-off between useful-
ness and veracity of a system model has been rediscovered many times,
for instance, by Leonardo da Vinci (“simplicity it is the ultimate sophisti-
cation”) and by Albert Einstein (“make everything as simple as possible,
but not simpler”).8

A control system is a system with an input (or control) u(t) that can be
influenced by human intervention. If the state x(t) of the system can also
be observed, then the state can be used by a feedback law u(t) = μ(t, x(t))
to adjust the input, which leads to a feedback control system (figure 1.3).

There is a rich history of feedback control systems in technology, dat-
ing back at least to Ktesibios’s float regulator in the third century B.C. for
a water clock, similar to a modern flush toilet (Mayr 1970). Wedges

6. For more details on the modern theory of economic growth, see, e.g., Acemoglu (2009),
Aghion and Howitt (2009), and Weitzman (2003).
7. For a formalization of Occam’s razor, see Pearl (2000, 45–48).
8. Some “anti-razors” warn of oversimplification, e.g., Leibniz’s principle of plenitude
(“everything that can happen will happen”) or Kant’s insight that “[t]he variety of entities
is not to be diminished rashly” (1781, 656).
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StateControl

System

Feedback Law

Figure 1.3
Feedback control system.

were inserted in the water flow to control the speed at which a floating
device would rise to measure the time. In 1788, Watt patented the design
of the centrifugal governor for regulating the speed of a rotary steam
engine, which is one of the most famous early feedback control sys-
tems. Rotating flyballs, flung apart by centrifugal force, would throttle
the engine and regulate its speed. A key difference between the Ktesi-
bios’s and Watt’s machines is that the former does not use feedback to
determine the control input (the number and position of the wedges),
which is therefore referred to as open-loop control. Watt’s flyball mecha-
nism, on the other hand, uses the state of the system (engine rotations)
to determine the throttle position that then influences the engine rota-
tions, which is referred to as closed-loop (or feedback) control. Wiener
(1950, 61) noted that “feedback is a method of controlling a system by
reinserting into it the results of its past performance.” He suggested
the term cybernetics (from the Greek word κυβερνητης—governor) for
the study of control and communication systems (Wiener 1948, 11–12).9

Maxwell (1868) analyzed the stability of Watt’s centrifugal governor by
linearizing the system equation and showing that it is stable, provided
its eigenvalues have strictly negative real parts. Routh (1877) worked out
a numerical algorithm to determine when a characteristic equation (or
equivalently, a system matrix) has stable roots. Hurwitz (1895) solved
this problem independently, and to this day a stable system matrix A
in equation (1.1) carries his name (see lemma 2.2). The stability of
nonlinear systems of the form (1.2) was advanced by the seminal work of
Lyapunov (1892), which showed that if an energy function V(t, x) could
be found such that it is bounded from below and decreasing along any

9. The term was suggested more than a hundred years earlier for the control of socio-
political systems by Ampère (1843, 140–141).
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system trajectory x(t), t ≥ t0, then the system is (asymptotically) sta-
ble, that is, the system is such that any trajectory that starts close to
an equilibrium state converges to that equilibrium state. In variational
problems the energy function V(t, x) is typically referred to as a value
function and plays an integral role for establishing optimality condi-
tions, such as the Hamilton-Jacobi equation (1.8), or more generally, the
Hamilton-Jacobi-Bellman equation (3.16).

In 1892, Poincaré published the first in a three-volume treatise on
celestial mechanics containing many path-breaking advances in the the-
ory of dynamic systems, such as integral invariants, Poincaré maps, the
recurrence theorem, and the first description of chaotic motion. In pass-
ing, he laid the foundation for a geometric and qualitative analysis of
dynamic systems, carried forward, among others, by Arnold (1988). An
important alternative to system stability in the sense of asymptotic con-
vergence to equilibrium points is the possibility of a limit cycle. Based on
Poincaré’s work between 1881 and 1885,10 Bendixson (1901) established
conditions under which a trajectory of a two-dimensional system con-
stitutes a limit cycle (see proposition 2.13); as a by-product, this result
implies that chaotic system behavior can arise only if the state-space
dimension is at least 3. The theory of stability in feedback control sys-
tems has proved useful for the description of real-world phenomena.
For example, Lotka (1920) and Volterra (1926) proposed a model for the
dynamics of a biological predator-prey system that features limit cycles
(see example 2.8).

In technological applications (e.g., when stabilizing an airplane) it
is often sufficient to linearize the system equation and minimize a
cost that is quadratic in the magnitude of the control and quadratic
in the deviations of the system state from a reference state (or tracking
trajectory)11 in order to produce an effective controller. The popular-
ity of this linear-quadratic approach is due to its simple closed-form
solvability. Kalman and Bucy (1961) showed that the approach can
also be very effective in dealing with (Gaussian) noise incorporating
a state-estimation component, resulting in a continuous-time version
of the Kalman filter, which was first developed by Rudolf Kalman
for discrete-time systems. To deal with control constraints in a noisy

10. The relevant series of articles was published in the Journal de Mathématiques, reprinted
in Poincaré (1928, 3–222); see also Barrow-Green (1997).
11. A linear-quadratic regulator is obtained by solving an optimal control problem of
the form (1.3), with linear system function f (t, x, u) = Ax + Bu and quadratic payoff
function h(t, x, u) = −x′Rx − u′Su (with R, S positive definite matrices); see example 3.3.
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environment, the linear-quadratic approach has been used in receding-
horizon control (or model predictive control), where a system is period-
ically reoptimized over the same fixed-length horizon.12 More recently,
this approach has been applied in financial engineering, for example,
portfolio optimization (Primbs 2007).

Optimal Control In the 1950s the classical calculus of variations un-
derwent a transformation driven by two major advances. Both advances
were fueled by the desire to find optimal control interventions for given
feedback control systems, in the sense that the optimal control trajec-
tory u∗(t), t ∈ [t0, T], would maximize an objective functional J(u) by
solving a problem of the form (1.3). The first advance, by Richard Bell-
man, was to incorporate a control function into the Hamilton-Jacobi vari-
ational equation, leading to the Hamilton-Jacobi-Bellman equation,13

−Vt(t, x) = max
u∈U

{h(t, x, u) + 〈Vx(t, x), f (t, x, u)〉}, (1.9)

which, when satisfied on the rectangle [t0, T] × X (where the state
space X contains all the states), together with the endpoint condition
V(T, x) ≡ 0, serves as a sufficient condition for optimality. The optimal
feedback law μ(t, x) is obtained as the optimal value for u on the right-
hand side of (1.9), so the optimal state trajectory x∗(t), t ∈ [t0, T], solves
the initial value problem (IVP)

ẋ = f (t, x,μ(t, x)), x(t0) = x0,

which yields the optimal control

u∗(t) = μ(t, x∗(t)),

for all t ∈ [t0, T]. This approach to solving optimal control problems
by trying to construct the value function is referred to as dynamic
programming (Bellman 1957).14 The second advance, by Lev Pontryagin
and his students, is related to the lack of differentiability of the value
function V(t, x) in (1.9), even for the simplest problems (see, e.g., Pon-
tryagin et al. 1962, 23–43, 69–73) together with the difficulties of actually
solving the partial differential equation (1.9) when the value function is

12. Receding-horizon control has also been applied to the control of nonlinear sys-
tems, be they discrete-time (Keerthi and Gilbert 1988) or continuous-time (Mayne and
Michalska 1990).
13. Subscripts denote partial derivatives.
14. The idea of dynamic programming precedes Bellman’s work: for example, von Neu-
mann and Morgenstern (1944, ch. 15) used backward induction to solve sequential decision
problems in perfect-information games.
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differentiable. Pontryagin (1962), together with his students, provided
a rigorous proof for a set of necessary optimality conditions for optimal
control problems of the form (1.3). As shown in section 3.3, the condi-
tions of the Pontryagin maximum principle (in its most basic version)
can be obtained, at least heuristically, from the Hamilton-Jacobi-Bellman
equation. A rigorous proof of the maximum principle usually takes a
different approach, using needle variations introduced by Weierstrass
(1879/1927). As Pontryagin et al. (1962) pointed out,

The method of dynamic programming was developed for the needs of optimal
control processes which are of a much more general character than those which
are describable by systems of differential equations. Therefore, the method of
dynamic programming carries a more universal character than the maximum
principle. However, in contrast to the latter, this method does not have the
rigorous logical basis in all those cases where it may be successfully made use
of as a valuable heuristic tool. (69)

In line with these comments, the Hamilton-Jacobi-Bellman equation is
often used in settings that are more complex than those considered in
this book, for instance for the optimal control of stochastic systems. The
problem with the differentiability of the value function was addressed
by Francis Clarke by extending the notion of derivative, leading to
the concept of nonsmooth analysis (Clarke 1983; Clarke et al. 1998).15

From a practical point of view, that is, to solve actual real-world prob-
lems, nonsmooth analysis is still in need of exploration. In contrast to
this, an abundance of optimal control problems have been solved using
the maximum principle and its various extensions to problems with
state-control constraints, pure state constraints, and infinite time hori-
zons. For example, Arrow (1968) and Arrow and Kurz (1970a) provided
an early overview of optimal control theory in models of economic
growth.

1.4 Notes

An overview of the history and content of mathematics as a discipline
can be found in Aleksandrov et al. (1969) and Campbell and Higgins
(1984). Blåsjö (2005) illuminates the background of the isoperimetric
problem. The historical development of the calculus of variations is
summarized by Goldstine (1980) and Hildebrandt and Tromba (1985).
For a history of technological feedback control systems, see Mayr (1970).

15. Vinter (2000) provided an account of optimal control theory in the setting of
nonsmooth analysis.


