
1 The Interoperability Debate

1.1 Introduction

We live in an interoperable world. Computer hardware and software prod-
ucts manufactured by different vendors can exchange data within local
networks and around the globe via the Internet. Competition enabled by
interoperability has led to innovation and lower prices, and this has placed
extraordinary computing capacity in the hands of ordinary users.

This interoperable world represents a dramatic change from the comput-
ing environment of the 1970s. In those days, once a company purchased a
computer system, the company was essentially “locked in” to that system:
the system was not compatible with the products manufactured by other
companies, and the conversion costs were high. Although “locking in” was
extremely profitable for dominant vendors, such as IBM, competitors and
users suffered from high prices, indifferent service, limited choice, and slow
innovation.

Many factors have contributed to the transition from the locked-in envi-
ronment of the 1970s to today’s interoperable world, including consumer
demand, business strategy, government policy, and the ideology of tech-
nologists. One factor that is often overlooked is the evolution of copyright
law over the past 30 years. Because computer programs are copyrightable,
copyright law determines the rules for competition in the information-
technology industry. For this reason, there has been a 30-year debate con-
cerning the application of copyright to software.

The parties to the debate are the dominant vendors (who want to lock
in users and lock out competitors) and the developers of interoperable soft-
ware products (who want to compete with the dominant vendors). The
debate has occurred in courts in North America, Europe, and the Pacific
Rim; in the U.S. Congress and the European Parliament; and in law schools,
think tanks, and legal publications. It has centered on two related matters:

2 Chapter 1

the scope of copyright protection for program elements necessary for
interoperability and the permissibility of the reverse engineering necessary
to uncover those elements in a competitor’s program. Underlying these two
matters is the central competitive issue confronting the software industry:
Could one firm prevent other firms from developing software products that
interoperated with the products developed by the first firm?

In 1995 we published Interfaces on Trial: Intellectual Property and Interoper-
ability in the Global Software Industry. That 370-page book closely examined
the interoperability debate in the United States, the European Union, and
Japan. Its first chapter provided a general overview of computer technol-
ogy, the structure of the computer industry, and the significance of intel-
lectual-property protection to innovation and competition in the industry.
Its second chapter reviewed the fundamentals of intellectual-property law,
focusing on copyright and on the application of copyright to software. Its
third chapter tackled the first controversy in the interoperability debate:
copyright protection for interface specifications. It explored the early mis-
steps in the 1980s by the U.S. Court of Appeals for the Third Circuit, and
the Second Circuit’s1 1992 landmark decision (rejecting the earlier rulings)
in Computer Associates v. Altai. Its fourth chapter treated the second contro-
versy in the interoperability debate: the permissibility of software reverse
engineering. It reviewed the resolution of this controversy by the Ninth
Circuit in Sega v. Accolade. The book then addressed the development of
the EU Software Directive (in chapter 5) and the interoperability debate in
Japan (in chapter 6).

To our pleasant surprise, Interfaces on Trial ran through three printings;
to our great relief, it received very favorable reviews.2

At the time we published Interfaces on Trial, we thought that the interop-
erability debate was largely over. In the United States, several appellate
courts had followed Computer Associates and Sega, so those decisions’

1. The U.S. federal court system has three levels: the federal district courts (which

conduct trials), the intermediate U.S. Courts of Appeals (which hear appeals from

the district courts), and the U.S. Supreme Court (which hears appeals from the U.S.

Courts of Appeals and from state supreme courts). Most of the judicial decisions

discussed in this book were issued by the U.S. Courts of Appeals. These courts are

organized in eleven regional circuits. In addition, the U.S. Court of Appeals for the

Federal Circuit has exclusive jurisdiction over patent appeals. In this book, “a deci-

sion by the Ninth Circuit,” for example, means a decision by the U.S. Court of

Appeals for the Ninth Circuit.

2. Robbie Downing, book review, 3 International Journal of Law and Information Tech-

nology 198 (1995); book review, 15 Northwestern Journal of International Law and Busi-

The Interoperability Debate 3

holdings seemed well entrenched. In the European Union, the member
states had implemented the EU Software Directive’s reverse-engineering
exceptions with little difficulty.

Although the Software Directive ended the interoperability debate in the
European Union, the debate continued in the United States and elsewhere.
In the U.S., litigation proceeded on both the protectability of interface spec-
ifications and the permissibility of reverse engineering. Outside the Third
Circuit, courts have issued decisions consistent with Computer Associates
and Sega.

However, two new threats to interoperability emerged in the United
States. First, several courts enforced contractual restrictions on reverse engi-
neering, even when the vendors placed the restrictions in “shrinkwrap”
or “click-on” licenses for widely distributed consumer software. Second,
the World Intellectual Property Organization Copyright Treaty, adopted
in December 1996, required signatories to take adequate measures to pre-
vent the circumvention of copy-protection technologies for purposes of
infringement. As Congress was implementing this requirement, developers
of interoperable software recognized that the broad prohibition Congress
was considering would allow dominant firms to frustrate interoperability
by placing “locks” on their software. Accordingly, the developers lobbied
for and secured an interoperability exception in the Digital Millennium
Copyright Act (DMCA).

Significantly, the European Union anticipated both of these issues in
its Software Directive, which contains provisions that expressly invalidate
contractual restrictions on reverse engineering and that permit the circum-
vention of technological protection measures for the purpose of perform-
ing lawful reverse engineering.

The interoperability debate also continued in the Pacific Rim after 1995.
Dominant U.S. companies, with the assistance of the U.S. Trade Represen-
tative, vigorously opposed the adoption of reverse-engineering exceptions
based on the EU Software Directive in Australia, Hong Kong, Korea, and the
Philippines.

This book picks up the story where Interfaces on Trial left off. Sections
1.2 and 1.3 of this chapter provide a quick review of the interoperability
debate in the European Union and the United States before 1995. Chapter

ness 707 (1995); Book review, 20 New Matter 35 (1995); Zack Higgens, book review, 9

Harvard Journal of Law and Technology 585 (1996); Robert Brookshire, book review, 7

Law and Policy Book Reviews 206 (1997).

4 Chapter 1

2 discusses the U.S. copyright cases since 1995 addressing the protectability
of interface specifications and the permissibility of reverse engineering, and
closes by noting that the executive and legislative branches have finally
endorsed this pro-interoperability case law. Chapter 3 looks at the legisla-
tive history of the interoperability exception in the DMCA, as well as the
interoperability cases decided under the DMCA. Chapter 4 examines the
enforceability of contractual restrictions on reverse engineering, including
the treatment of this issue in the context of the Uniform Computer Infor-
mation Transactions Act (UCITA). Chapter 5 reviews the interoperability
debate in the Pacific Rim, with stops in Australia, Singapore, Hong Kong,
South Korea, and the Philippines. Chapter 6 briefly considers issues that
may have more impact on interoperability in the future.

In this book, certain terms have the same meanings as in Interfaces on
Trial:

• “Interoperability” is synonymous with “compatibility” and has two
dimensions: interchangeability and connectability. “Interchangeability”
refers to the degree to which one product can substitute for or compete
with another product. “Connectability” refers to the degree to which a
product can participate in a joint activity with another product.
• “Interface” means a functional characteristic of an element’s interaction
with other elements of the computer system, i.e., a permissible input, out-
put, or control. This book focuses on interfaces between software and hard-
ware, or between two software elements. This book does not examine user
interfaces—that is, the interfaces between users and computers.
• “Interface specifications” are the rules of interconnection between two
program elements. An interface specification can have different implemen-
tations—e.g., it can be encoded in different ways. A programming language
or particular commands can be a form of interface specification.
• “Disassembly” and “decompilation” refer to the translation of machine-
readable object code into a higher-level, human-readable format. “Disas-
sembly” is the term usually used in the U.S. legal context; “decompilation”
typically is used outside the United States. Accordingly, we will use “disas-
sembly” when discussing the activity in the context of U.S. legal devel-
opments, and “decompilation” when referring to the activity in the
international policy context.
• “Black-box reverse engineering” means observing the externally visible
characteristics of a program as it operates, without looking into the pro-
gram itself.

These terms, and computer technology generally, are discussed in much
greater detail in Interfaces on Trial.

The Interoperability Debate 5

The present volume is intended to connect to, and not substitute for,
Interfaces on Trial. Thus, it does not repeat the earlier volume’s background
information on computer technology, the structure of the computer
industry, intellectual-property law, and the economics of standardization.
Additionally, since the publication of Interfaces of Trial there has been a pro-
fusion of scholarly writings concerning the complex interaction between
copyright and digital technology.3 This book does not attempt to address
this vast academic literature. Rather, it provides the second volume of the
history of an ongoing legal debate.

Although we attempt to present contentious issues in a balanced man-
ner, the reader should be forewarned that we are hardly objective observ-
ers in this debate. Rather, we have devoted significant time and energy
over the past 20 years to advocating the views of developers of interoper-
able software. We believe that the triumph of interoperability will benefit
both the information-technology industry and computer users around the
world.

1.2 The Interoperability Debate in the European Union before 1995

In 1991, after a vigorous debate (described in detail in Interfaces on Trial), the
European Union adopted its Software Directive.4 During the three-year process
that led up to the promulgation of the directive, dominant firms, developers
of interoperable software, and computer users battled over the protectability
of interface specifications and the permissibility of reverse engineering. The
directive that emerged from this political process reflects a policy judgment
that copyright should not interfere with interoperability. The Software

3. See, e.g., Pamela Samuelson and Suzanne Scotchmer, “The Law and Economics of

Reverse Engineering,” 111 Yale Law Journal 1575 (2002); Peter Menell, “Envisioning

Copyright Law’s Digital Future,” 46 New York Law School Law Review 63 (2002–03);

Douglas Lichtman, “Property Rights in Emerging Platform Technologies,” 29 Journal

of Legal Studies 615 (2000); Peter Menell, “An Epitaph for Traditional Copyright Pro-

tection of Network Features of Computer Software,” 43 Antitrust Bulletin 651 (fall-

winter 1998); Dennis Karjala and Peter Menell, “Applying Fundamental Copyright

Principles in Lotus Development Corp. v. Borland International Inc.,” 10 High Technology

Law Journal 177 (1995); Pamela Samuelson, Randall Davis, Mitchell Kapor, and

Gerald Reichman, “A Manifesto Concerning the Legal Protection of Computer Pro-

grams,” 94 Columbia Law Review 2308 (1994); Andrew Johnson-Laird, “Software

Reverse Engineering in the Real World,” 19 University of Dayton Law Review 843

(1994); Dennis Karjala, “Copyright Protection of Computer Software, Reverse Engi-

neering, and Professor Miller,” 19 University of Dayton Law Review 975 (1994).

4. Council Directive 91/250/EEC, 1991 O.J. (L 122).

6 Chapter 1

Directive has been implemented by all 27 member states of the European
Union, and also by Croatia, Norway, Russia, Switzerland, and Turkey.

Article 5(3) of the Software Directive provides a broad exception from
liability for “black-box reverse engineering”—activities such as observing
the behavior of a program as it runs, input/output tests, and line traces.
Article 6 provides a narrower exception for decompilation. Decompilation
or disassembly involves translating machine-readable object code into a
higher-level, human-readable form. Article 6 permits decompilation for
purposes of achieving interoperability when the information has not pre-
viously been made available, when the decompilation is limited to those
parts of the program necessary for interoperability, and when the final
product created by the reverse engineer does not infringe on the copyright
of the original product. There has been extensive debate on exactly what
these provisions mean,5 but to date there has been no copyright litigation
concerning article 6.6

One particularly enigmatic provision is article 6(1)(b), which requires
that “the information necessary to achieve interoperability has not previ-
ously been readily available” to the reverse engineer. One commentator has
stated that “since the information must be ‘readily’ available, third parties
would have no duty to ask for information if it is not contained in generally
available documentation. Nor can it be said that interface information is
‘readily’ available if the rightholder is only willing to disclose it upon pay-
ment of a license fee, since this would undermine the very purpose of lim-
ited, but reliable access to interface information.”7 Others have interpreted
this provision as requiring the reverse engineer to request the interface
information from the developer of the target software before decompila-
tion. The reverse engineer obviously would prefer not to have to make such
a request, because the request would alert the first developer to the reverse
engineer’s business plans and would delay the decompilation.

5. See Jonathan Band and Masanobu Katoh, Interfaces on Trial: Intellectual Property

and Interoperability in the Global Software Market (Westview, 1995), at 246–255. The

governmental bodies of the European Union were lobbied heavily concerning the

Software Directive. The Business Software Alliance attempted to limit the article 5

and 6 exceptions as much as possible. The European Committee for Interoperable

Systems, led by Olivetti, Fujitsu Espana, and Bull, lobbied for broad exceptions. See

id. at 230–241.

6. As will be discussed below, the European Court of First Instance interpreted the

word “interoperability” in the directive during the course of the European Commis-

sion’s competition case against Microsoft.

7. Thomas Drier, “The Council Directive of 14 May 1991, on the Legal Protection of

Computer Programs,” 9 European Intellectual Property Review 319, 324 (1991).

The Interoperability Debate 7

Article 9(1) of the Software Directive provides that any contractual
restriction on the reverse-engineering exceptions in articles 5 and 6 is “null
and void.” Similarly, article 7 contains a reverse-engineering exception to
the directive’s prohibition on the circumvention of technological protec-
tion measures.

Thus, since 1991 there has been a high degree of certainty and predictabil-
ity in Europe concerning the lawfulness of reverse engineering. The reverse
engineer incurs no copyright liability for black-box reverse engineering for
any purpose, nor for decompilation for purposes of achieving interoper-
ability. The reverse engineer can ignore with impunity a contractual term
prohibiting reverse engineering, presumably even in a negotiated contract.
Further, the reverse engineer can circumvent a technological protection
measure for purposes of engaging in other lawful reverse engineering.

The Software Directive does not address with any specificity the ques-
tion of the scope of copyright protection: To what extent could the reverse
engineer use what he learned through his reverse engineering? Rather, arti-
cle 1(2) provides that “[i]deas and principles which underlie any element
of a computer program, including those which underlie its interfaces, are
not protected by copyright.”8 Commentators have interpreted this to mean
that interface information necessary to achieve interoperability must fall
on the idea side of the idea/expression dichotomy; otherwise the detailed
decompilation provision in article 6 would be of little utility. Once again,
there has been no copyright litigation in Europe concerning this.

In sum, the Software Directive settled the copyright issues relating to
interoperability within the European Union in 1991. Indeed, in 2000 the
European Commission issued a report on the implementation and effects
of the Software Directive which concluded that “the objectives of the Direc-
tive have been achieved and the effects on the software industry are sat-
isfactory (demonstrated for example by industry growth and decrease in
software piracy).”9 Accordingly, “there appears to be no need to amend the
Directive.”

Since 1991, the legal battle in the European Union concerning interop-
erability has centered on a competition-law (antitrust, in U.S. terminol-
ogy) complaint brought by the European Commission against Microsoft.

8. The directive’s eleventh “Whereas” clause defines interfaces as “the parts of the

program which provide for . . . interconnection and interaction between elements of

software and hardware.”

9. Report from the Commission to the Council, the European Parliament and the

Economic and Social Committee on the implementation and effects of Directive

91/250/EEC on the legal protection of computer programs, COM(2000) 199 final, at 2.

8 Chapter 1

Though significant, this litigation is beyond the scope of this book because
of its basis in competition law rather than copyright law.

However, the European Court of First Instance (CFI) did interpret the
meaning of the word “interoperability” in the directive during the course
of the litigation. This interpretation ratified the European Commission’s
long-standing view of the scope of the article 6 decompilation exception.

The case concerned Microsoft’s alleged abuse of its dominant position
by withholding interface information necessary for Sun Microsystems to
make its Solaris operating system fully compatible with technologies based
on Microsoft Windows.10 In 2004, after an investigation, the European
Commission found that Microsoft had abused its dominant position and
ordered it to provide the necessary specifications to Sun and other compa-
nies on reasonable and nondiscriminatory terms. Microsoft appealed the
Commission’s decision to the CFI, arguing inter alia that the Commission’s
order was inconsistent with the legislative policy of the Software Direc-
tive. Specifically, Microsoft asserted that “interoperability” in the directive
meant only the ability of one computer program to connect to another
program. Because Microsoft licensed interface information to developers of
application programs designed to run on Windows, Microsoft claimed that
it satisfied the directive’s objectives and thus did not abuse its dominant
position.

The Commission, on the other hand, interpreted “interoperability” in
the directive more broadly to mean the ability to connect to or substitute
for another program. Because Microsoft refused to license interface infor-
mation to Sun, whose Solaris operating system competed with Windows,
the Commission argued that Microsoft frustrated the directive’s intent and
thereby abused its dominant position.

In 2007, the CFI ruled as follows:

[W]hat is at issue in the present case is a decision adopted in application of Article 82

[of the European Community Treaty], a provision of higher rank than [the Software

Directive]. The question in the present case is not so much whether the concept of

interoperability in the contested decision is consistent with the concept envisaged in

that directive as whether the Commission correctly determined the degree of interop-

erability that should be attainable in the light of the objectives of Article 82 EC.11

Nonetheless, the CFI held that the Commission’s “two-way” interpretation
of “interoperability” as including the ability to connect to and substitute

10. For a more detailed discussion of the case, see Pamela Samuelson, “Are Patents

on Interfaces Impeding Interoperability?” 93 Minnesota Law Review 1943, 1989–1996

(2009).

11. Case T-201/04, Microsoft Corp. v. Comm’n, 2007 E.C.R. II-3601 ¶ 227.

The Interoperability Debate 9

for computer programs “is consistent with that envisaged in” the Software
Directive.12

By interpreting the word “interoperability” in the directive as it did, the
CFI eliminated any possible ambiguity concerning the scope of article 6’s
permitting decompilation “to obtain the information necessary to achieve
the interoperability of an independently created computer program with
other programs.” Without question, article 6 allows the reverse engineer
to decompile an existing computer program for the purpose of developing
his own connecting or competing computer program. The Commission has
consistently understood article 6 in this manner since 1991.13 The CFI deci-
sion thus finally laid to rest the argument that article 6 permits decompila-
tion only for the purpose of developing connecting products.14

The CFI decision also strongly implied that article 1(2) of the directive
excludes copyright protection for interface specifications. As was noted
above, article 1(2) provides that “[i]deas and principles which underlie any
element of a computer program, including those which under lie its inter-
faces, are not protected by copyright.” The CFI stated:

In requiring, by way of remedy, that an undertaking in a dominant position disclose

the interoperability information, the Commission refers to a detailed technical de-

scription of certain rules of interconnection and interaction that can be used within

the work group networks to deliver work group services. That description does not

extend to the way in which the undertaking implements those rules, in particular, to

the internal structure or to the source code of its products.

The degree of interoperability thus required by the Commission enables compet-

ing operating systems to interoperate with the dominant undertaking’s domain ar-

chitecture on an equal footing in order to be able to compete viably with the latter’s

operating systems. It does not entail making competitors’ products work in exactly

the same way as its own and does not enable its competitors to clone or reproduce its

products or certain features of those products.15

12. Id. at ¶ 225.

13. Commission of the European Communities, Twentieth Report on Competition

Policy (1991); Michael Sucker, “The Software Directive—Between the Combat

Against Piracy and the Preservation of Undistorted Competition,” in A Handbook of

European Software Law (Oxford University Press, 1993).

14. During the drafting of the directive, BSA attempted to limit the decompilation

exception to the development of connecting products. See Band and Katoh, Inter-

faces on Trial at 237–240. Similarly, as other countries have considered reverse-engi-

neering exceptions, BSA has argued that article 6 applies only to the development of

connecting products. See chapter 5 below.

15. Case T-201/04, Microsoft Corp. v. Comm’n, 2007 E.C.R. II-3601 Summary of Judg-

ment ¶4.

10 Chapter 1

The distinction the CFI drew between the “detailed technical descrip-
tion of certain rules of interconnection and interaction” and the way in
which a company “implements those rules” in “the internal structure” or
“the source code of its products” parallels the idea/expression dichotomy
embodied by article 1(2).

Although the Software Directive resolved the copyright issues relating to
interoperability within Europe, since 1995 fierce legislative wars have been
waged in several Pacific Rim countries over the adoption of the Software
Directive’s exceptions for reverse engineering. These wars are described in
chapter 5.

1.3 The Interoperability Debate in the United States before 1995

In the United States, the story before and after 1995 is much more com-
plex for both of the central questions of the interoperability debate. This
is because both questions were resolved in the United States in a common-
law, case-by-case manner by the federal courts, rather than by the legisla-
tive process of the Software Directive.

1.3.1 The Unprotectability of Interface Specifications
Between 1983 and 1995, U.S. courts became increasingly sophisticated in
their understanding of the unique characteristics of computer programs.
The courts became more aware that, although the copyright law classifies
programs as literary works, they in fact are functional works operating in
highly constrained environments. Accordingly, by 1995, courts understood
that many program elements should not receive copyright protection, par-
ticularly the information necessary for achieving interoperability.

When courts first looked at the issue of interoperability, they favored
protection of interface information. In 1983, for example, the U.S. Court
of Appeals for the Third Circuit suggested that compatibility was a “com-
mercial and competitive objective which does not enter into the some-
what metaphysical issue of whether particular ideas and expression have
merged.”16 Under this reasoning, copyright could protect interface speci-
fications. Three years later, the Third Circuit reinforced this protectionist
trend in Whelan v. Jaslow.17

16. Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1253 (3d Cir.

1983), cert. dismissed, 464 U.S. 1033 (1984).

17. Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc., 797 F.2d 1222 (3d Cir.

1986), cert. denied, 479 U.S. 1031 (1987).

The Interoperability Debate 11

1.3.1.1 Whelan v. Jaslow (1987)
Jaslow, the owner of a dental laboratory, hired Whelan, a computer pro-
grammer, to develop a computer program to run his business. They agreed
that Whelan would retain the copyright in the program and that Jaslow
would try to market the program to other dental laboratories. Jaslow soon
realized that the Whelan program, written in Event Driven Language (EDL)
for an IBM Series One computer, was not compatible with the computers
many dental laboratories already possessed. Jaslow then developed a dental
lab program in BASIC, which could run on these computers. Whelan sued
for copyright infringement.

At trial, Jaslow’s expert testified that he compared the source and object
code of the two programs, and found “substantive differences in program-
ming style, in programming structure, in algorithms and data structures.”18
Whelan’s expert agreed that the Jaslow program was not a simple transla-
tion of the Whelan program, but stated that the programs were similar in
several respects. The file structures and screen outputs, for example, were
virtually identical. Further, five important subroutines “performed almost
identically within both programs.”19 Even Jaslow’s expert confirmed that
the programs had “overall structural similarities.”20

The district court ruled for Whelan. Jaslow appealed. Jaslow’s primary
argument on appeal was that copyright protected only the literal elements
of a computer program—the actual lines of source or object code—and not
the non-literal elements such as program structure. In a lengthy opinion,
the U.S. Court of Appeals for the Third Circuit rejected Jaslow’s argument
and held that copyright could program the non-literal elements of a com-
puter program, including its “structure, sequence, and organization.” The
reasoning and language used by the Third Circuit, however, went much
farther than necessary to reach this conclusion.

Upon completing a background discussion on the basic principles of
copyright law applicable to the case, the Third Circuit turned to “whether a
program’s copyright protection covers the structure of the program or only
the program’s literal elements, i.e., its source and object codes.”21 The court
observed that “computer programs are classified as literary works for the
purposes of copyright,” and that “[o]ne can violate the copyright of a play
or book by copying its plot or plot devices.” Accordingly, the court reasoned
that copyright protection should extend to a computer program’s structure.

18. Id. at 1228.

19. Id.

20. Id.

21. Id. at 1234.

12 Chapter 1

The court then formulated the following rule for separating idea from
expression in utilitarian works:

[T]he purpose or function of a utilitarian work would be the work’s idea, and every-

thing that is not necessary to the purpose or function would be part of the expression

of the idea. Where there are various means of achieving the desired purpose, then the

particular means chosen is not necessary to the purpose; hence, there is expression

not idea.22

The court defined the idea in the case before it as “the efficient manage-
ment of a dental laboratory.”23 It then went on to say that “[b]ecause that
idea could be accomplished in a number of different ways with a number
of different structures, the structure of the [Whelan] program is part of the
program’s expression, not its idea.”24

The Whelan court’s reasoning contained two related flaws. First, the
Whelan court identified a single, highly abstract idea in the entire computer
program. Second, the court incorrectly reduced the idea/expression dichot-
omy to the merger doctrine. In the court’s view, if several means existed
for performing the program’s basic function (its idea), then the means did
not merge with the function and thus were protected expression. The court
failed to understand that each means of performing the function could in
its own right be unprotected under section 102(b) as a procedure, process,
system, method, or operation. Patents, not copyrights, protect “the means
for carrying the idea out.”25 By protecting the means for performing a func-
tion, the Whelan court in effect used copyright to protect patentable subject
matter.26

The Whelan decision contained two justifications for this extreme result.
First, because Congress classified computer programs as literary works, the
court treated them as traditional literary works, comparable to novels and
plays, without recognizing their utilitarian nature.27 Second, the Whelan
court noted that “the coding process is a comparatively small part of pro-
gramming,”28 whereas “among the more significant costs in computer

22. Id.

23. Id. at n. 28.

24. Id.

25. Kruger v. Whitehead, 153 F.2d 238, 239 (9th Cir. 1946), cert. denied, 332 U.S. 774

(1947).

26. See Arthur J. Levine, “Comment on Bonito Boats Follow-Up: The Supreme

Court’s Likely Rejection of Nonliteral Software Copyright Protection,” The Computer

Lawyer 29, 30 (July 1989).

27. Whelan, 797 F.2d at 1237 (citations omitted).

28. Id. at 1231.

The Interoperability Debate 13

programming are those attributable to developing the structure and logic
of the program.”29 It observed that “[t]he rule proposed here . . . would
provide the proper incentive for programmers by protecting their most
valuable efforts, while not giving them a stranglehold over the develop-
ment of new computer devices that accomplish the same end.”30 The court
evidently believed that a programmer’s method for solving a program
deserved protection—so long as other methods for solving the program
existed—because the method was the most valuable part of the program.

In other words, Whelan suggested that, in the computer context, the
court need only assess whether alternative methods of accomplishing the
basic ideas exist to determine whether the elements the defendant cop-
ied constitute protected expression. This truncated protected expression
analysis invariably affords programs “thick” copyright protection—indeed,
thicker protection than is accorded traditional literary works such as nov-
els and plays, which undergo a complete protected expression analysis.
Although Whelan did not specifically concern interoperability, its reason-
ing inevitably led to the conclusion that detailed program elements such as
interface specifications received copyright protection.

The Whelan decision was controversial from the moment it was issued.
Just five months later, the Fifth Circuit rejected its reasoning in a case
involving programs with similar design specifications that assisted cotton
farmers in growing and marketing their product (Plains Cotton Co-Op Ass’n
v. Goodpasture Computer Serv., Inc.).31 Nonetheless, lower courts followed
Whelan until 1992, when the Second Circuit revealed its serious flaws in a
case that did involve interoperability: Computer Associates Int’l, Inc. v. Altai,
Inc.32

1.3.1.2 Computer Associates v. Altai (1992)
Computer Associates developed an application program with a component,
ADAPTER, that permitted the application to run on different IBM main-
frame operating systems. Altai developed a similar application designed to
run on a single IBM operating system. Altai then decided to develop a com-
ponent that allowed its program to run on other IBM operating systems.
Computer Associates filed suit, alleging that Altai’s component, OSCAR
3.4, infringed the copyright in ADAPTER. Altai determined that 30 per-
cent of the OSCAR 3.4 code was copied from ADAPTER, and it conceded

29. Id.

30. Id. (footnotes omitted).

31. 807 F.2d 1256 (5th Cir.), cert. denied, 484 U.S. 821 (1987).

32. 982 F.2d 693 (2d Cir. 1992).

14 Chapter 1

liability with respect to OSCAR 3.4. Altai then rewrote its component in a
clean room, without access to ADAPTER. Computer Associates amended
its complaint to allege that the new version, OSCAR 3.5, also infringed its
copyright.

The district court rejected Whelan as simplistic and as leading to exces-
sively broad protection for computer programs. The court then compared
the two programs. Because of the use of the clean room, the code was com-
pletely different. The parameter lists and macros of the programs were simi-
lar, but the court determined that these similarities were dictated by the
IBM operating systems with which the programs were designed to interop-
erate. There was overlap in the list of services, but this too was dictated by
function. Finally, the court found similarity in the programs’ organization
charts, but the charts were “simple and obvious” and of de minimus impor-
tance. Accordingly, the district court concluded that the programs were not
similar in protected expression.

Computer Associates appealed. After reviewing the principles of com-
puter program design and the facts of the case, the U.S. Court of Appeals
for the Second Circuit acknowledged the “essentially utilitarian nature of a
computer program.”33 Identifying the seminal U.S. Supreme Court decision
in Baker v. Selden as the “doctrinal starting point in analyses”34 of the scope
of protection for computer programs, the Second Circuit emphasized that
“compared to aesthetic works, computer programs hover even more closely
to the elusive boundary line described in Section 102(b).”35

The Second Circuit rejected the principles for analyzing computer pro-
grams offered in Whelan, holding that “[t]he crucial flaw in [Whelan’s]
reasoning is that it assumes that only one ‘idea’ in copyright law terms,
underlies any computer program.”36 It also agreed with the district court
that a computer program’s “ultimate function or purpose is the com-
posite result of interacting sub-routines.”37 The Second Circuit wrote:
“[S]ince each sub-routine is itself a program, and thus, may be said to have
its own ‘idea,’ Whelan’s general formulation that a program’s overall pur-
pose equates with the program’s idea is descriptively inadequate.”38 The
Second Circuit further agreed with the district court’s rejection of Whelan’s

33. Computer Associates, 982 F.2d at 704.

34. Id.

35. Id.

36. Id. at 705 (citations omitted).

37. Id.

38. Id.

The Interoperability Debate 15

terms “structure, sequence and organization,” observing that they were
based on a “somewhat outdated appreciation of computer science.”39

Noting that “Whelan’s approach to separating idea from expression in
computer programs relies too heavily on metaphysical distinctions and
does not place enough emphasis on practical considerations,”40 the Sec-
ond Circuit proposed a three-part procedure for determining whether an
allegedly copied program is “substantially similar” to another copyrighted
program:

In ascertaining substantial similarity under this approach, a court would first break

down the allegedly infringed program into its constituent structural parts. Then, by

examining each of these parts for such things as incorporated ideas, expression that

is necessarily incidental to those ideas, and elements that are taken from the public

domain, a court would then be able to sift out all non-protectable material. Left with

a kernel, or perhaps kernels, of creative expression after following this process of

elimination, the court’s last step would be to compare this material with the struc-

ture of an allegedly infringing program.41

The Second Circuit based its first step—abstraction—on Judge Learned
Hand’s famous test in Nichols v. Universal Pictures Corp.42 The court explained:

In a manner that resembles reverse engineering on a theoretical plane, a court should

dissect the allegedly copied program’s structure and isolate each level of abstraction

contained within it. This process begins with the code and ends with an articulation

of the program’s ultimate function.43

The discussion of the second step—filtration—is perhaps the most sig-
nificant part of the opinion. The court adopted the “successive filtering
method” proposed by the well-respected treatise Nimmer on Copyright, which
“entails examining the structural components at each level of abstraction
to determine whether their inclusion at that level was ‘idea’ or was dictated
by considerations of efficiency, so as to be necessarily incidental to that
idea; required by factors external to the program itself; or taken from the
public domain and hence is nonprotectable expression.”44

The “successive filtering method” is a refinement of Judge Hand’s
abstractions test. In its classical formulation, the abstractions test calls for a
court to analyze a work’s levels of abstraction and to then draw a line above

39. Id. at 706.

40. Id.

41. Id.

42. 45 F.2d 119 (2d Cir. 1930), cert. denied, 282 U.S. 902 (1931).

43. Id. at 707.

44. Id.

16 Chapter 1

which everything is idea and below which everything is expression. Here,
the Second Circuit suggested that idea and expression may be present at
each level of abstraction.

The court then provided additional detail on the non-protectability of
elements dictated by efficiency and by external factors. It observed that
“[e]fficiency is an industry-wide goal,”45 and that “[w]hile, hypothetically,
there might be a myriad of ways in which a programmer may effectuate
certain functions within a program—i.e., express the idea embodied in a
given subroutine—efficiency concerns may so narrow the practical range of
choice as to make only one or two forms of expression workable options.”46
Under these circumstances, the expression would merge with the idea and
would not receive copyright protection.

Discussing external factors, the Second Circuit stated that “in many
instances it is virtually impossible to write a program to perform particular
functions in a specific computing environment without employing stan-
dard techniques.”47 The Second Circuit went on to hold that under the
doctrine of scènes à faire copyright protection should not extend to those
program elements in which a programmer’s “freedom of design choice”48 is
“circumscribed by extrinsic considerations such as (1) mechanical specifi-
cations of the computer on which a particular program is intended to run;
(2) compatibility requirements of other programs with which a program is
designed to operate in conjunction; (3) computer manufacturers’ design
standards; (4) demands of the industry being serviced; and (5) widely
accepted programming practices within the computer industry.”49 Apply-
ing these principles to the facts before it, the Second Circuit affirmed the
district court and held that Altai had not copied protected expression.

Thus, relying on the scènes à faire doctrine, the Second Circuit held that
similarities resulting from the need to interoperate with other compo-
nents of a computer system did not constitute copyright infringement.50

45. Id. at 708.

46. Id.

47. Id. at 709 (quotation omitted).

48. Id.

49. Id. at 709–710.

50. Under the scènes à faire doctrine, courts “deny protection to those expressions

that are standard, stock or common to a particular topic or that necessarily follow

from a common theme or setting. Granting copyright protection to the necessary

incidents of an idea would effectively afford a monopoly to the first programmer to

express those ideas.” Gates Rubber Co. v. Bando Chem. Indus., Inc., 9 F.3d 823, 838

(10th Cir. 1993) (citations omitted).

The Interoperability Debate 17

In essence, the Second Circuit ruled that interface specifications were not
protected expression, and that a competitor could conform to the rules
of intercommunications developed by another vendor without infringing
that vendor’s copyright.

The reasoning of the Computer Associates decision was so powerful that
many courts throughout the United States and abroad adopted it rapidly.51
Whelan was thoroughly repudiated, and courts began applying the abstrac-
tion-filtration-comparison methodology in a wide range of copyright cases,
including cases that did not involve computer programs. Additionally,
other courts soon followed Computer Associates’ specific rulings concerning
interoperability.

1.3.1.3 Atari v. Nintendo and Sega v. Accolade (1992)

Just three months after the Second Circuit issued Computer Associates, the

U.S. Court of Appeals for the Federal Circuit relied upon it in Atari Games

Corp. v. Nintendo of America, Inc., stating that “the court must filter out as

unprotectable . . . expression dictated by external factors (like the com-

puter’s mechanical specifications, compatibility with other programs, and

demands of the industry served by the program).”52 In Atari, both the dis-

trict court and the Federal Circuit extended protection to Nintendo pro-

gram elements that currently had no purpose but that Atari argued would

be necessary for Atari to achieve compatibility in the future with Nintendo

products not yet on the market. The Federal Circuit stated that “[t]he dis-

trict court did not abuse its discretion by refusing to allow Atari to rely

on speculative future events to justify inclusion of unnecessary [Nintendo]

program elements in the [Atari] program.”53 The Federal Circuit made it

clear, however, that it would not protect program elements needed to

achieve compatibility at the time of the writing of the compatible program.
A month later, the U.S. Court of Appeals for the Ninth Circuit, also rely-

ing on Computer Associates, expressly recognized, in Sega Enters. Ltd. v. Acco-
lade, Inc., that computer programs “contain many logical, structural, and
visual display elements that are dictated by . . . external factors such as
compatibility requirements and industry demands,” and that “[i]n some

51. To get the full flavor of the Computer Associates tidal wave, see Band and Katoh,

Interfaces on Trial at 131–150.

52. 975 F.2d 832, 839 (Fed. Cir. 1992).

53. Id. at 845.

18 Chapter 1

circumstances, even the exact set of commands used by the programmer is
deemed functional rather than creative for purposes of copyright.”54

1.3.2 The Permissibility of Reverse Engineering
Following Computer Associates, the Sega court had little trouble concluding
that copyright did not protect program elements necessary for interoper-
ability. A trickier issue for the Sega court was the permissibility of the copy-
ing that occurred while examining a competitor’s product to uncover these
program elements. To be sure, the U.S. Supreme Court has long recognized
that there is nothing inherently wrong with studying a competitor’s prod-
uct to understand how it works and to figure out how to make a better
product. For example, in Kewanee Oil Co. v. Bicron Corp.55 the Supreme Court
stated that “trade secret law . . . does not offer protection against discovery
by fair and honest means, such as . . . by so-called reverse engineering, that
is by starting with a known product and working backward to divine the
process which aided in its development or manufacture.”

The Supreme Court has also recognized the benefits of reverse engineer-
ing: “Reverse engineering . . . often leads to significant advances in tech-
nology.”56 Further, the Supreme Court has noted that “the competitive
reality of reverse engineering may act as a spur to the inventor, creating
an incentive to develop inventions that meet the rigorous requirements of
patentability.”57

Copyright law, however, has the potential of raising obstacles to reverse
engineering of software. Because of the nature of computer technology,
reverse engineering of software almost always requires the making of a
reproduction or derivative work. For example, the reverse-engineering
method of disassembly or decompilation involves “translating” the pub-
licly distributed, computer-readable program into a higher-level, human-
readable form. This act of translation could be considered the preparation of
a derivative work.58 Black-box reverse engineering is less intrusive than dis-
assembly because an engineer observes the program’s behavior and interac-
tion with its environment without looking at the program itself. Although
less intrusive than disassembly, black-box reverse engineering requires that
the program be copied into the computer’s random-access memory (RAM)

54. 977 F.2d 1510, 1524 (9th Cir. 1992) (citations omitted).

55. 416 U.S. 470, 476 (1974).

56. Bonito Boats, Inc., v. Thunder Craft Boats, Inc., 489 U.S. 141, 160 (1989).

57. Id.

58. See 17 U.S.C. §106(2).

The Interoperability Debate 19

as the computer runs the program. Such copying arguably infringes the
reproduction right.59 As was noted above, the European Union, in its 1991
Software Directive, established a statutory copyright exception excusing
the copying that occurs during reverse engineering. In contrast, in the early
1990s U.S. courts employed the doctrine of fair use, codified at 17 U.S.C.
§107, to permit reverse engineering.

The first thorough judicial consideration of software reverse engineer-
ing occurred in 1992 in Sega Enters. v. Accolade Inc.60 Accolade, a developer
of computer games, decompiled software in the Sega video console and in
Sega-compatible games in order to learn the interface specifications that
would enable it to port its games to the Sega console. Sega sued for copy-
right infringement, and the district court issued a preliminary injunction
against Accolade. The U.S. Court of Appeals for the Ninth Circuit reversed,
finding that “where disassembly is the only way to gain access to the ideas
and functional elements embodied in a copyrighted computer program and
where there is a legitimate reason for seeking such access, disassembly is
a fair use of the copyrighted work, as a matter of law.”61 In the Sega case,
the court concluded that achieving interoperability between the Accolade
games and the Sega game console was such a legitimate reason.

Much of the Sega court’s fair-use analysis centered on the second of the
four fair-use factors: the nature of the copyrighted work. The court recog-
nized the unique characteristics of software and understood that if reverse
engineering were not permitted the developer would receive de facto protec-
tion over uncopyrightable ideas. In Atari Games Corp. v. Nintendo of America,
Inc.62 the Federal Circuit reached the same conclusion for the same reason.

In sum, by 1995 courts in the United States had ruled that copyright
did not protect interface specifications and that the copying incidental to
the reverse engineering necessary for interoperability did not infringe copy-
right. But, as we shall see, the interoperability debate was far from over.

59. The Ninth Circuit in MAI Systems Corp. v. Peak Computer, Inc., 991 F.2d 511 (9th

Cir.), cert. denied, 510 U.S. 1033 (1993), found that the loading of a program into a

computer’s RAM constituted a copy for purposes of the Copyright Act. However, as

we discuss below in section 2.5, the Second Circuit’s decision in Cartoon Network LP

v. CSC Holdings, Inc., 536 F.3d 121 (2d Cir. 2008), cert. denied, 129 S. Ct. 2890 (2009),

suggests that not all temporary copies are fixed within the meaning of the Copy-

right Act.

60. 977 F.2d 1510 (9th Cir. 1992).

61. Id. at 1527–1528.

62. 975 F.2d 832 (Fed. Cir. 1992).

