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Online Chapter 13 
The Mass Univariate Approach and Permutation Statistics 

 

Overview 

This chapter describes the mass univariate approach to the analysis of ERP data and the related permutation 

approach.  The mass univariate approach is a powerful way of dealing with the problem of multiple 

comparisons.  It was pioneered in neuroimaging research, where the problem of multiple comparisons is so 

obvious that it is always explicit rather than implicit.  In early neuroimaging studies, investigators conducted a t 

test or ANOVA on each voxel separately, asking whether the activity in each voxel differed significantly across 

conditions.  They then performed a Bonferroni correction for multiple comparisons.  For an effect to be 

significant after a Bonferroni correction, the original p value must be less than the alpha value divided by the 

number of comparisons.  For example, if you are testing the effect of some manipulation in 1000 individual 

voxels with a typical alpha of .05, a given voxel would need to have an uncorrected p value of .05/1000 

(.00005) to be considered significant.  To get a significant effect after this draconian correction, the effect must 

be enormous!  This makes it hard to find significant effects even when there are true differences between 

conditions (i.e., the Type II error rate is very high).  Neuroimaging researchers sometimes call this “being 

Bonferronied to death.”  The Bonferroni correction assumes that each of the tests is independent, which is not 

true of imaging data (or EEG/ERP data) because the values at adjacent variables (i.e., voxels) are high 

correlated.  Moreover, it imposes a very strict criterion for significance that is not always sensible.  The result of 

these factors is very low statistical power. 

Three different approaches have been developed that allow neuroimaging researchers to address the 

problem of multiple comparisons with improved statistical power (i.e., to achieve a true Type I error rate of .05 

with a lower Type II error rate).  All three can also be applied to the problem of multiple comparisons in ERP 

research, in which the problem arises from the number of time points and electrode sites rather than from the 

number of voxels.  The first is to use the false discovery rate (FDR) correction instead of the Bonferroni 

correction.  The second is to use permutation statistics, which use the actual structure of the recorded data to 

estimate the likelihood that an effect is reliable.  The third is the cluster-based approach, in which the analysis 

looks for effects that form clusters over space and time (i.e., many consecutive time points and adjacent 

electrode sites that show the same pattern). 

The mass univariate approach to ERP analysis was first popularized by Eric Maris and his colleagues 

(Maris, 2004; Maris & Oostenveld, 2007; Maris, 2012), and they also provided an implementation of it in a 

freely available Matlab toolbox, FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011).  This 

implementation has been widely used, but it is not very user friendly.  These methods are also now implemented 

in EEGLAB.   

David Groppe has written a very accessible review of the mass univariate approach (Groppe, Urbach, & 

Kutas, 2011a), which is on my list of Papers Every New ERP Researcher Should Read (see the end of Chapter 

1).  David has also created a user-friendly implementation called the Mass Univariate Toolbox 

(http://openwetware.org/wiki/Mass_Univariate_ERP_Toolbox), which works in concert with EEGLAB and 

ERPLAB. The Mass Univariate Toolbox implements all three of the new approaches for controlling the Type I 

error rate while optimizing statistical power.  Each has its strengths and weaknesses (which are nicely described 

by Groppe et al., 2011a).  I will provide a relatively brief, nontechnical overview here. 

The Bonferroni Correction 

I will begin by explaining the traditional Bonferroni correction.  If you use the Bonferroni correction, the 

corrected p value is related to the likelihood that any of your effects is bogus.  For example, imagine that we did 

a t test comparing the rare and frequent waveforms at each time point from 0-600 ms at every channel in the 

oddball experiment shown Figure 13.1 (which is the same as Figure 10.5 in Chapter 10).  With a sampling rate 
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of 500 Hz, we would have 300 time points between 0 and 600 ms, and we would do a t test comparing rare and 

frequent at each of these time points at each of the 10 electrode sites, giving us a total of 3000 t tests.  Without 

any correction, we would expect that approximately 150 (5%) of these t values would be significant by chance 

(i.e., if the null hypothesis were correct).  This is why we need to do a correction for multiple comparisons.  If 

we did a Bonferroni correction, a given comparison would be considered significant only if the uncorrected p 

value is less than .000017 (.05 ÷ 3000).  If the null hypothesis were true, there would be only a 5% chance that 

one or more of the 2500 t tests would yield a significant corrected p value (an uncorrected p of < .000017).  This 

is called strong control of the Type I error rate, because we can have confidence in every effect that is classified 

as significant. 

 

 

Figure 13.1. Grand average ERP waveforms from an example oddball experiment in which 20% of the stimuli were 

letters and 80% were digits (or vice versa, counterbalanced across trial blocks).  The data are from a subset of 12 of the 

control subjects who participated in a published study comparing schizophrenia patients with control subjects (Luck et 

al., 2009).  These data are referenced to the average of the left and right earlobes and were low-pass filtered offline (half-

amplitude cutoff = 30 Hz, slope = 12 dB/octave).  Note that this is the same as Figure 10.5 in the main body of Chapter 

10. 
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Figure 13.2. Values of the t statistic from a comparison of the rare and frequent trials in the experiment shown in 

Figure 13.1, computed separately at each time point for each electrode site.  The data were downsampled to 125 Hz (one 

sample every 8 ms) before the t values were computed.  The red dashed line shows the uncorrected threshold for 

statistical significance.  The violet dashed line shows the Bonferroni-corrected threshold.  The light blue dashed line 

shows the threshold after correction for the false discovery rate (FDR), using the formula provided by Benjamini and 

Yekutieli (2001) (B&Y).   

Figure 13.2 shows the 3000 t values from the combination of 300 time points and 10 electrode sites in our 

example oddball experiment.  The t values are plotted like ERP waveforms, but each point in a waveform is the 

t value from a comparison of the rare and frequent ERPs from the 12 subjects at a particular combination of 

time and electrode1.  Without any correction for multiple comparisons, we would treat any t value that exceeds 

±2.201 as being significant (because a t value of 2.201 corresponds to a p value of .05 with 11 degrees of 

freedom).  This critical value of t is shown with red dashed lines in Figure 13.2.  You can see that many of the t 

                                                 
1 You should note that the N2 effect looks almost as big as the P3 effect in the t plot, whereas the P3 effect is much larger than the N2 

effect in the voltage plot.  This is because the P3 effect is much more variable than the N2 effect, which counteracts the larger absolute 

size of the effect. 
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values would be significant if we used this uncorrected approach.  This includes effects that are real, such as the 

P3 effect from approximately 400-600 ms at F3/4, C3/4, and P3/4 and the N2 effect from approximately 250-

350 ms at the C3/4 and P3/4 sites (we know these are real because they've been seen in countless previous 

experiments).  However, several bogus effects also exceed this uncorrected threshold for significance, such as 

the negative “blip” in the P3 and P4 electrodes at approximately 50 ms.  Clearly, it would not be legitimate to 

use this threshold for significance. 

To be considered significant with the Bonferroni correction, a t value would have to exceed ±7.24.  Dashed 

lines showing this threshold are also shown in Figure 13.2  With this highly conservative threshold, the only 

significant t values are at the very end of the P3 wave at the C3, C4, and P3 electrode sites.  Most of the time 

period of the P3 effect is not significant, and none of the N2 time points is significant.  If we used this 

correction, we would falsely accept the null hypothesis for these time periods, and many experiments with real 

effects would not have any time points that were considered significant. 

Let’s think about what the Bonferroni correction tells us.  Imagine that you analyzed the data from an 

experiment and found that 100 t values were significant after the Bonferroni correction.  You would have 95% 

confidence that every single one of those 100 differences was real.  In other words, it would be very unlikely 

that even one of those 100 differences was bogus.  For example, if the 100 significant p values occurred from 

400-500 ms at the P3 and P4 electrode sites, you would have great confidence that each and every one of those 

time points differed between the rare and frequent trials.  There would be only a 5% chance that even one of 

those significant time points was bogus.  That’s an extremely stringent standard. 

The False Discovery Rate (FDR) Correction 

The FDR correction—which was originally developed by the statisticians Yoav Benjamini and Yosef 

Hochberg (Benjamini & Hochberg, 1995)—gives us a different standard for significance, one that may be more 

appropriate in some situations.  Instead of controlling for the possibility that any single one of the significant t 

values is bogus, it controls for the total proportion of bogus effects.  In other words, if a set of t values are 

significant after the FDR correction, we would expect that 5% of them are bogus.  In contrast, if a set of t values 

are significant after Bonferroni correction, there would be only a 5% chance that one or more of them are 

bogus2.  For example, if we find 100 significant t values with the FDR correction, we would expect that 5 of 

them would be bogus.  However, if we find 100 significant t values with the Bonferroni correction, we would 

expect that none of them are bogus (because there would be only a 5% chance that even one would be bogus).  

Thus, the FDR correction gives us weak control over the Type I error rate, because it does not control the Type 

I error rate for every individual statistical test. 

There is a very important detail that you need to know about the FDR correction.  Specifically, there are 

different formulas for doing the correction, and they reflect different assumptions about the data (see Groppe et 

al., 2011a for details; and see Groppe, Urbach, & Kutas, 2011b for simulations).  The most common version 

(described by Benjamini & Hochberg, 1995) assumes that the various values being tested are either uncorrelated 

or positively correlated, and it is not guaranteed when the values are negatively correlated.  A negative 

correlation will happen if you have both positive-going and negative-going effects, either at different time 

points (e.g., the N2 and P3 in our example oddball experiment) or at different electrode sites (e.g., if some of 

your electrodes are on the opposite side of the dipole).  When I applied this version of the FDR correction to the 

oddball data, it said that the critical value of t was 2.98, meaning that any t values that were less than -2.98 or 

greater than +2.98 should be considered significant.  This included many effects between 0 and 150 ms that 

were clearly bogus.  This might just reflect the 5% of bogus points that would be expected to be exceed the 

                                                 
2 This is an informal way of describing it.  A p of .05 doesn’t exactly mean that there is a 5% chance that the effect is bogus.  Instead, 

it means that we would falsely reject the null hypothesis in 5% of experiment in which we used this criterion.  But describing it that 

way requires about 20 times as many words, and I’m willing to give up a little precision to make the main principle easier to  

understand. 
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threshold for significance.  Alternatively, it may be an indication that this version of the FDR correction 

becomes inaccurate when the data set contains effects that go in opposite directions, creating negative 

correlations.  It is difficult to know from a single simulation like this. 

  Groppe et al. (2011b) did not find an inflation of the Type I error rate with this FDR approach in a set of 

simulations, but their simulations did not include anything like the broad N2-followed-by-P3 pattern of the 

present oddball experiment. More simulation studies are needed to determine the conditions under which the 

different FDR procedures are appropriate.  If you have both positive- and negative-going effects in the same 

waveforms and you want a correction that is guaranteed to work accurately even with negatively correlated 

effects, I would recommend using the FDR correction described by Benjamini and Yekutieli (2001).  However, 

this is a conservative correction, so it may increase your Type II error rate.  It is quite possible that the original 

FDR correction will turn out to be just fine under most realistic conditions. 

Figure 13.2 shows what happened when I used the Mass Univariate Toolbox to apply the Benjamini and 

Yekutieli (2001) FDR procedure to the data from our example oddball experiment.  I did two “tricks” to 

increase the power of the analysis.  First, I downsampled the data from 500 Hz to 125 Hz (one sample every 8 

ms).  This involved applying a simple filter and then taking every fourth data point.  As a result, the procedure 

needed to compute only 75 t values at each electrode site, for a total of 750 t values instead of 3000 t values.  

This won’t change the proportion of bogus effects obtained with an FDR correction, but it reduces the raw 

number (and can be very useful with other correction procedures). Second, instead of testing every point 

between 0 and 600 ms, I tested every point from 200 to 600 ms.  Prior experience tells me that it’s unlikely that 

we will see a significant effect prior to 200 ms in an oddball experiment.  Thus, I can use this a priori 

knowledge to reduce the number of comparisons even further (50 t values per electrode, or 500 total).  Reducing 

the time range in this manner can dramatically increase your statistical power.  The resulting critical value of t 

was 4.41, which is shown in Figure 13.2.  If we used this criterion for significance, we would conclude that the 

P3 effect was significant from approximately 400-600 ms at the parietal electrode sites (with some points also 

being significant at the central electrode sites), along with a portion of the N2 effect at the P4 electrode site.  

This is a big improvement over the Bonferroni correction.  However, our control over the Type I error rate is 

now weaker, because we would expect that 5% of the significant points are actually bogus (as opposed to a 5% 

chance that even one significant point was bogus). 

Sometimes people say that the FDR correction is less conservative than the Bonferroni correction.  

However, that’s not exactly right.  If the null hypothesis is true for all of the comparisons (e.g., if the rare and 

frequent trials were actually identical at all time points for all electrode sites), the probability of finding 1 or 

more significant differences is actually the same for FDR and Bonferroni (i.e., the Type I error rate is .05 for 

both corrections when the null hypothesis is true for all comparisons).  Thus, if you see some significant effects 

with the FDR correction, you can be sure that there really is a difference at some points and at some electrode 

sites (with the usual 5% chance of a false positive), and you can reject the null hypothesis with the same level of 

confidence as you can using the Bonferroni correction.  However, if there is a real effect at a large number of 

time points, you will typically see more significant time points with the FDR correction than with the 

Bonferroni correction, and more of these significant time points are likely to be bogus with the FDR correction.  

Thus, you can’t trust every individual significant time point with the FDR correction, but you can assume that 

only 5% of them are likely to be bogus.  This is just an average, however, and the proportion of bogus 

significant time points will occasionally be quite a bit greater than this (and occasionally quite a bit smaller). 

In many studies, we don’t care about the significance at every time point and in every channel.  We just 

want to know if there is a difference between conditions overall, with some useful information about which time 

points and channels exhibited the effect.  This is where the false discovery rate (FDR) correction becomes 

helpful. 
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The tmax Permutation Approach 

The FDR correction is a straightforward extension of the classic “parametric” approach to statistics, which 

makes a variety of assumptions about the nature of the data to provide computationally simple, analytic 

solutions.  An alternative and increasingly popular class of statistical tests use the properties of the actual data to 

assess statistical significance rather than relying on parametric assumptions.  The particular variant that I will 

describe here is called the permutation approach, because it involves examining random permutations of the 

data to estimate the null distribution (the distribution of t values that would be expected by chance if the null 

hypothesis were true). 

The Basic Idea 

The most common type of permutation approach used in ERPs begins by computing a t value comparing 

two conditions at each time point for each electrode site, just as in the FDR approach.  However, it uses a 

different approach for figuring out the critical value of t that is used to decide which t values are significant.  

Whereas the FDR approach uses a set of assumptions to reach an analytical solution to this problem, the 

permutation approach applies brute force computer power to determine how big a t value must be to exceed 

what we would expect by chance.  In addition, the FDR approach provides weak control of the Type I error rate 

(i.e., 5% of the points identified as being significant will typically be bogus), whereas the permutation approach 

described here provides strong control just like the Bonferroni correction.  However, the permutation approach 

improves upon Bonferroni correction by taking into account the fact that the individual t tests are not actually 

independent. 

The permutation approach is related to the simulation shown in Figure 10.6 (in Chapter 10), where I took 

the standards from the oddball experiment and randomly divided them into two subsets, called A and B.  Even 

though the two conditions were sampled from the same set of trials, I was able to find some time periods during 

which there were differences that exceeded the usual criterion for statistical significance.  I did this by 

measuring the mean amplitude during a measurement window of 50-150 ms (which I chose by looking at the 

grand average waveforms).  This was a very informal approach.  A more formal approach would be to compute 

a t value comparing conditions A and B at each time point for each electrode site with these data (as in the FDR 

approach).  Because of the large number of comparisons, this approach would also yield many time points with 

large t values.  If we looked at the t values from these randomized data, this would give us a sense of the kinds 

of t values we might expect by chance in the comparison of the targets and standards if the null hypothesis were 

true (i.e., if targets and standards elicited identical ERPs). 

One small change is necessary, however.  In the simulation shown in Figure 10.6, I subdivided the standard 

trials into two subsets, one with 512 trials per subject and one with 128 trials per subject.  However, the actual 

experiment contained 640 standards and 160 targets per subject, so we would need to make averages that have 

this number of trials to provide a fair comparison.  If the null hypothesis were true in the actual experiment, then 

this would mean that the ERPs elicited by the standards and the targets were identical, except for noise.  Thus, 

we can create a simulation by taking these 800 trials and randomly resorting them into one set of 640 trials and 

another set of 160 trials (for each subject). If we averaged the trials from within each set for each subject, we 

would get something that would look much like the simulation shown in Figure 10.6, but it would be based on 

the same trials (and same number of trials) as used in the comparison of the targets and standards in the real 

experiment (as shown in Figure 13.1). 

If the null hypothesis is true (i.e., the ERPs are exactly the same for standards and targets), creating 

averages by randomly assigning stimuli to the “target” and “standard” categories should be no different from 

assigning the true targets to the “target” category and the true standards to the “standard” category (except for 

random noise).  Thus, randomly resorting the event codes in this manner gives us a way of seeing what the t 

values should be like if the null hypothesis is true.  With a few more steps, we can use this to figure out the 
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distribution of t values should be like if the null hypothesis is true.  We can then use this to determine how large 

a t value must be in the analysis of the real data to be considered significant. 

Once the event codes have been randomly permuted and averaged ERP waveforms have been made for the 

fake “target” and “standard” events, the next step is to compute a t value comparing the “target” and “standard” 

trials at each time point for each electrode site.  Because we’ve randomly sorted the data into the “target” and 

“standard” waveforms in this simulation, we know that the null hypothesis is true, and any large t values must 

be bogus.  Imagine, for example, that we looked for the largest t value across all time points and channels 

(which I will call tmax), and we found that this tmax value was 4.2.  This suggests that we might expect to find a t 

value of 4.2 just by chance in a comparison of the real targets and standards, even if the null hypothesis is true.  

Consequently, we shouldn’t take a t value seriously in a comparison of two real conditions unless it is 

substantially greater than 4.2.  However, this is based on a purely random assignment of trials to the “standard” 

and “target” averages, and our random assignment may not have been representative.  For example, if we did 

another simulation with another random sorting (permutation) of the trials, we might find a tmax of 5.1.  

However, if we did enough of these random simulations, we could get an idea of what the tmax is likely to be.  

For example, if we did this simulation 1000 times, with a different random sorting of the trials in each iteration 

of the simulation, we could get a very good estimate of the likelihood of getting a particular tmax value by 

chance.  This is exactly what we do in a permutation analysis.  That is, we try many different random 

permutations so that we can estimate the distribution of tmax for a null effect. 

 

Figure 13.3. Frequency distribution of t values obtained by permuting the event codes in the experiment shown in 

Figure 13.1.  Each bar represents the number of occurrences of a t value within a particular range over the course of 

1000 iterations of the permutation procedure.   

Figure 13.3 shows the distribution of tmax values I obtained from this kind of random permutation 

procedure.  On each of the 1000 iterations, I shuffled the event codes, made the averages, computed a t value 

comparing the “standard” and “target” waveforms across the 12 subjects for each time point at each electrode 

site, and found the tmax value.  After the 1000 iterations were complete, I counted the number of times I obtained 

various tmax values.  (My computer actually did the shuffling, averaging, and counting, of course.)  For example, 

Figure 13.3 shows that the tmax was between 0.0 and +0.5 on 224 of the 1000 iterations.  The overall distribution 

of values is an estimate of the null distribution for tmax.  This distribution tells us how likely it is to obtain a 
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particular tmax if the null hypothesis is true.  When we look at the t values obtained from the real (non-permuted) 

data, we will call a time point significant if the t value for this time point is more extreme than the 5% of most 

extreme tmax values from the null distribution (±4.48 in this particular example3).  Thus, if we see any t values of 

<-4.48 or >+4.48 in the real data, we will consider the effects at those time points significant.  Note that this is 

exactly how conventional statistics use the t value to determine significance, except that they use assumptions 

about the underlying distribution of values to analytically determine the null distribution of t.  With the 

permutation approach, we instead determine the null distribution from the observed data.  This allows us to 

account for things like the number of t tests being computed, the correlations among different time points, and 

the correlations among different electrode sites. 

 

Figure 13.4. Example of the whole-subject permutation approach, showing a subset of 6 of the 12 subjects in the 

example oddball experiment.  (A) Rare-minus-frequent difference waves from each of the 6 subjects.  (B) Grand average 

of the difference waves from (A).  (C) Permuted version of the data in (A), in which the waveforms from half of the 

subjects were inverted (which is equivalent to reversing the rare and frequent conditions for these waveforms).  (D) 

Grand average of the permuted difference waves from (C). 

Making it Faster 

As you can imagine, it is very time-consuming to do this shuffling and averaging 1000 times.  In most 

cases, you can use a little trick that makes it go much faster.  Rather than randomly shuffling the event codes for 

each subject and then averaging, you can just take a random subset of the original averaged waveforms and 

invert them.  This is like pretending that the targets were the standards and the standards were the targets for 

these subjects.  If the null hypothesis is true, then the averaged waveforms for two conditions will be equivalent 

except for noise, and it shouldn’t matter if we treat the targets as standards and the standards as targets for some 

of the subjects.  I call this a whole-subject permutation approach.  This is what is implemented in the Mass 

Univariate Toolbox.  It’s much faster than the approach I described in the preceding section, because the data do 

not need to be re-averaged for each permutation. 

                                                 
3 The boundaries I’m using (-4.38 and +4.38) give us the bottom and top 2.5% of values.  Together, these top and bottom “tails” of the 

distribution give us the 5% of most extreme t values from the null distribution.  In this experiment, a negative t value would mean that 

the voltage for the target was more negative than the voltage for the standard.  If we had a directional effect (e.g., if we were looking 

only for a larger P3 for the targets than for the standards), it might be justifiable to use the most positive 5% of values from the null 

distribution as our criterion for significance.  This would be a one-tailed test.  However, this would mean that we would ignore any 

points with negative t values, no matter how large they were (including a larger N2 for the targets than for the standards).  One-tailed 

tests are therefore justifiable only rarely. 
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Figure 13.4 shows an example of this whole-subject permutation approach from 6 subjects in our oddball 

experiments (the figure would be too crazy if I included all 12 subjects).  To make things simple, the figure 

shows rare-minus-frequent difference waves (and the statistical question is therefore whether a given voltage is 

significantly different from zero).  Panel A shows the actual difference waves from the 6 subjects, and Panel B 

shows the grand average of these 6 difference waves.  You can see the N2 and P3 effects quite easily in this 

grand average.  Panel C shows the waveforms after the whole-subject permutation, in which the waveforms 

from 3 of the 6 subjects have been inverted (which is equivalent to treating the targets as standards and the 

standards as targets in these subjects).  Panel D shows the grand average of the permuted set of waveforms, 

which does not contain any large deviations from zero.  If the null hypothesis is true, then the deviations from 

zero in the true grand average (Panel B) are just the result of chance.  

In the whole-subject permutation approach, different random subsets of the averaged ERP waveforms are 

inverted on each iteration.  The t values are then calculated at each time point and electrode site from the 

resulting set of averaged ERP waveforms (in which some of the waveforms have been inverted and others 

haven’t).  This is repeated 1000 times (or maybe more), which this gives us the same kind of null distribution 

shown in Figure 13.3. 

When I performed this analysis on the example oddball experiment shown in Figure 13.1, it indicated that 

the critical value of t was 4.49.  In other words, a given t value is considered significant if it is less than -4.49 or 

greater than +4.49.  This is quite similar to the critical t value that I obtained with the FDR approach (4.41), 

which means that the two approaches identified almost exactly the same points as being significant.  However, 

the permutation results provide strong control over the Type I error rate, whereas the FDR results provide only 

weak control.  With the permutation results, we can have high confidence in every single significant point.  The 

FDR and permutation results will not always be this similar.  I haven’t applied the two approaches to a large 

number of different experiments, but I would expect that the FDR approach will typically identify more points 

as being significant when there really is an effect somewhere in the data (but more of these points are likely to 

be bogus). 

You can also apply the permutation approach to between-subjects comparisons.  Imagine, for example, that 

we had rare and frequent stimuli in a patient group and in a control group.  You could make a rare-minus-

frequent difference wave for each subject, and compute a t value comparing the two groups of subjects at each 

time point for each electrode site.  You could then do a series of permutations, in which you randomly 

reassigned subjects to the “patient” and “control” groups, and calculate tmax from each iteration.  This would 

give you the null distribution for tmax, and any t values in the comparison of the true groups that exceeded the 

95% range of this null distribution would be considered significant differences between groups. 

It’s also possible to extend this to comparisons that involve three or more conditions.  This is done by 

simply computing the F value for the relevant comparison instead of a t value.  You can also do this with 

interactions instead of main effects.  It’s very versatile. 

Does This Really Work? 

Yes, it works. It’s valid and robust for the vast majority of ERP experiments.  You might be concerned that 

the variance is greater at late time points than at early time points (or at some electrode sites relative to others).  

However, this doesn’t distort the t values that would be obtained if the null hypothesis is true, so it doesn’t bias 

the results in any way.  

One caveat is that it that the permutation approach may be distorted by differences in variance between the 

populations when you conduct between-group analyses (e.g., if a patient group exhibits more variability than a 

control group).  This can be particularly problematic when the sample sizes also differ across groups.  There are 

ways of dealing with this, but you will need to be careful in this situation (see Groppe et al., 2011b for details).  

For within-subjects designs, however, all the evidence indicates that the permutation works appropriately under 
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a wide range of realistic conditions.  Indeed, permutation statistics should work under a broader range of 

conditions than conventional parametric statistics because they make fewer assumptions. 

Looking for Clusters 

In fMRI experiments, real effects are typically present across many contiguous voxels, and statistical 

power can be gained by finding multiple contiguous voxels in which each voxel is significant at some 

uncorrected alpha level (e.g., p < .01, uncorrected).  Permutation statistics are then used to determine the 

number of contiguous voxels that would be expected by chance (the null distribution), and a cluster is deemed 

significant if the number of voxels is greater than would be expected by chance (greater than 95% of the 

clusters found when the data have been permuted many times).   

The same approach can be used with ERPs, under the assumption that real effects will typically occur over 

multiple consecutive time points and in multiple adjacent electrode sites (Groppe et al., 2011b).  To make this 

easier to understand, let’s consider how I applied this approach to our example oddball experiment.  Figure 13.5 

shows the end result, with yellow bars indicating time points that were significant in a cluster mass analysis.  To 

perform this analysis, I first resampled the data to 125 Hz to reduce the number of points to be tested (as I did in 

the FDR analysis).  I then instructed the Mass Univariate Toolbox to look for clusters of significant differences 

between the rare and frequent trials between 200 and 600 ms.   
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Figure 13.5. Results of the cluster mass analysis of the data shown in Figure 13.1.  As in Figure 13.2, the waveforms 

show the t values from a comparison of the rare and frequent trials, computed separately at each time point for each 

electrode site, and the uncorrected threshold for significance is indicated by the red dashed line.  Each yellow rectangle 

represents a t value that was part of a single significant cluster, which extended over many time points and almost all of 

the electrode sites.  Each blue rectangle represents a t value that was assigned to a single cluster that did not meet the 

threshold for significance (although each point in the cluster exceeded the uncorrected threshold for significance). 

The algorithm began by computing t values at each time point for each electrode site, as in the FDR and 

permutation analyses.  The red line in Figure 13.5 shows the uncorrected threshold for significance (p < .05).  

The algorithm looked for clusters of t values in which each t value in the cluster exceeded this threshold.  A 

point with a significant t value was assigned to a particular cluster if it was temporally adjacent to another point 

with a significant t value at the same electrode site or if it was within a particular spatial distance of another 

significant value at the same time point.  For example, there was a significant t value at 400 ms at the Fp1 
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electrode site, and there was also a significant t value at 408 ms, so these two t values were assigned to the same 

cluster (note that we have a sample every 8 ms given that we resampled the data at 125 Hz, so 400 ms is 

temporally adjacent to 408 ms).  Similarly, there was also a significant t value at 400 ms in the F7 electrode site, 

so this was be assigned to the same cluster (because F7 is close to Fp1).  The clustering process finds all clusters 

of 2 or more temporally or spatially adjacent significant t values (creating clusters that are as large as possible).  

Note that the t values within a cluster are required to have the same sign (because a significant negative value 

followed immediately by a significant positive value is unlikely to reflect a single underlying effect). 

The algorithm then sums together all the t values within a given cluster; this sum is the mass of the cluster.  

The idea is that a large cluster mass is likely to happen with a real ERP effect (because ERP effects tend to be 

extended over multiple time points and over multiple electrode sites).  However, a large cluster mass is unlikely 

to happen with noise (although some clustering will happen because noise may also be distributed over adjacent 

time points and nearby scalp sites to some extent).  To determine whether the mass of a given cluster is larger 

than what would be expected from chance, a permutation analysis is conducted.  The conditions are shuffled 

many times (usually using the whole-subject approach), and for each iteration the largest cluster mass is found 

in the permuted data.  The null distribution of cluster masses is then determined from the multiple iterations, 

and the 95% point in this null distribution is determined.  Cluster masses from the analysis of the original data 

are considered significant if they are greater than the 95% point in the null distribution. 

When I applied this approach to the data from the example oddball experiment, the algorithm found 2 

clusters of positive t values and 3 clusters of negative t values.  Only one of these 5 clusters had a mass that was 

beyond the 95% point in the null distribution, so this was the only cluster that was considered significant.  All of 

the values marked as significant with yellow vertical bars in Figure 13.5 belong to this one cluster.  If you look 

carefully, each significant value is temporally and/or spatially adjacent to another significant value.  This is 

basically a P3 effect that is significant over a broad range of time points and a broad range of electrodes.  Note 

that there may be gaps between significant points, both in time (as in the gap between ~325 and 375 ms at F7) 

and in space (as in the gap in the F8 electrode site between the Fp2 and F4 sites).  These are likely to be Type II 

errors, and they do not mean that the effect has truly gone away in the gaps. 

The light blue bars in Figure 13.5 show a nonsignificant negative cluster from approximately 250-350 ms 

at the C3, P3, and P4 electrode sites.  That is, there are several consecutive points within this time period that go 

beyond the uncorrected threshold for significance, and these points are at nearby electrode sites.  This 

corresponds to the N2 component, which really is larger for the rare stimuli than for the frequent stimuli (as we 

know from many prior oddball experiments).  However, it was not significant in this cluster mass analysis.  The 

mass of the cluster formed by this N2 effect was simply not large enough to go beyond what would be expected 

by chance.  Indeed, you can see a bogus cluster of individually significant t values from approximately 50-150 

ms at many of the frontal electrode sites. 

One important detail to note about cluster-based approaches is that electrodes at the edge of the electrode 

array will have neighbors on only one side, so this means that they have fewer neighbors4.  This will tend to 

reduce the statistical power a bit at these electrodes.  Also, cluster-based approaches provide only weak control 

over the Type I error rate (i.e., you can’t have confidence in each and every point that was classified as 

significant). 

Practical Considerations 

There are two important practical considerations that you should keep in mind with the mass univariate 

approach. The first is to decide which approach to take (e.g., individual-point FDR, individual-point 

permutation, cluster-based permutation).  The second is to maximize your statistical power by adding in as 

many a priori constraints as possible. 

                                                 
4 This was explained to me by David Groppe, who in turn heard it from Manish Saggar. 
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Which Approach is Best? 

First, let’s compare FDR-based versus permutation-based methods for controlling the Type I error rate 

when the individual points are being assessed.  If you mainly want to know if the conditions differ at all (i.e., 

whether or not the null hypothesis is true at all time points for all electrode sites), either approach should be 

fine.  As I mentioned previously, the FDR approach is just as conservative as the Bonferroni approach when the 

null hypothesis is actually true.  That is, if you get at least one significant point, you can be confident that there 

is a real effect somewhere in the data.  The permutation approach also guarantees strong control over the Type I 

error rate when the null hypothesis is true for all points.  However, if you have good reason to believe that an 

effect is present, and you are mainly interested in determining the time range and scalp distribution of the effect, 

the FDR and permutation approaches will typically yield different results.  If you are willing to tolerate the idea 

that approximately 5% of the points identified as being significant are actually bogus, the FDR approach is fine.  

However, if you want to have confidence in every single significant point, you should use the permutation 

approach.  For example, if you find that the earliest significant effect is at 158 ms, and you want to draw a 

strong conclusion based on the latency of this effect, you should use the permutation approach (because it 

provides strong confidence in every significant point).  However, if you are just trying to describe the general 

time course of an effect, without emphasizing any particular time point, the FDR approach may give you greater 

power. 

Now let’s consider whether you should use a point-based approach or a cluster-based approach.  In our 

example oddball experiment, the cluster-based analysis did not identify the same significant points as the point-

based FDR analysis (or the point-based permutation analysis, which was nearly identical to the point-based 

FDR analysis).  Specifically, the P3 effect was significant over a broader range of time points and electrode 

sites in the cluster-based analysis than in the point-based FDR analysis, whereas the N2 effect was significant 

(although barely) at the P4 electrode in the point-based analysis but not in the cluster-based analysis.  Which 

analysis is giving us the correct answer?  The reality is that statistical analyses are not designed to produce an 

absolute “correct” answer.  They are designed to give us a standard for deciding which effects to believe, while 

controlling the probability that we will be incorrect.  In general, our beliefs are (and should be) shaped by both 

the current data and prior knowledge.  If our prior knowledge tells us that an effect is likely to be distributed 

over a broad range of time points and electrode sites, then the cluster-based analysis will give us good power to 

find such an effect if it is present (without biasing us to find an effect of this nature if it is absent).  If we don’t 

want to make this assumption, the FDR-based single-point approach will give us more power to find effects that 

are more tightly focused in time or scalp distribution (such as the N2 effect in our example experiment).  In 

general, I would recommend using the cluster-based approach only when you are interested in broad effects. 

Could you use multiple approaches for a given experiment?  Unfortunately, the answer is almost always 

no.  This would be “double dipping,” and it would inflate your Type I error rate. 

Maximizing Power 

If you test for significance at 500+ time points for 32+ electrode sites with an FDR- or permutation-based 

correction for multiple comparisons, you will have very low power for detecting significant effects.  This is 

because you will be computing an enormous number of t values, which increases the possibility that a large t 

value can arise by chance.  If you can apply prior knowledge to reduce the number of t values being computed, 

you will almost always improve your statistical power.  For example, when I applied the FDR correction to the 

data from the oddball experiment, I downsampled the data to 125 Hz (which reduced the number of t tests by 

75%) and I limited the time range to 200-600 ms (which eliminated the t tests between 0 and 200 ms).  In 

general, I recommend downsampling to the lowest rate that still gives you meaningful temporal resolution 

(approximately 100 Hz is usually reasonable) and limiting the analysis period to the shortest period and smallest 

number of electrodes that can be justified on the basis of prior knowledge.  In addition, moderate low-pass 

filtering can also be helpful (e.g., a half-amplitude cutoff at 30 Hz), because it reduces the subject-to-subject 
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variance at any given time point and thereby reduces the number of high t values that you would obtain by 

chance. 

As an example of using prior knowledge, recall that the N2 effect in the oddball experiment was not 

significant in the cluster-based analysis.  Because previous research tells me that this effect is always between 

200 and 400 ms and has a posterior scalp distribution, it would be justifiable to limit the analysis of the present 

oddball experiment to a 200-400 ms time window and the P3 and P4 electrodes.  When I did this, I found a 

significant cluster at that included both P3 and P4 and extended from approximately 280-360 ms. 

Although this gave me more power to detect the N2 effect, I want to make it clear that a priori knowledge 

can be a double-edged sword.  On one hand, constraining the time points and electrodes can increase your 

power to detect effects in the expected time windows and electrode sites.  On the other hand, if you constrain 

your analyses in this way, and you get a large but unexpected effect in some other time window or electrode 

sites, you are not allowed to change your time window or sites to include this effect.  In an ideal world, you 

would decide on the time window and electrode sites before seeing the data.  If you start making choices about 

time windows and electrode sites after you’ve seen the data, your choices will inevitably end up increasing your 

Type I error rate.  In the real world, however, it is extremely difficult to make all of these decisions before you 

see the data.  Moreover, even if you intended to focus on 300-800 ms at the posterior electrode sites, are you 

really going to ignore a very large and interesting frontal effect at 250 ms? 

This brings us back to the most important principle for assessing statistical significance, which was raised 

in Box 10.1 in Chapter 10: Replication is the best statistic.  If you conduct your statistical analyses using 

minimal a priori assumptions, you will have low power for detecting real effects.  You may therefore add some 

assumptions to increase your power, but these assumptions will probably be biased by the observed effects, 

increasing the probability of a Type I error.  Thus, you won’t have real confidence in your effects until you 

replicate them.   

The bottom line is that you should do whatever you can within reason to minimize inflation of the Type I 

error rate when analyzing a particular study, and then you should replicate your findings before you fully trust 

them.  And if you are evaluating someone else’s research, you should make sure that the analysis approach does 

not inflate the Type I error rate, and you should ask to see replications for effects that are surprising. 
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