
 Introduction: A Guided Tour through the Book 

 This chapter gives an overview of the content of the book. We follow the chapters 
in the sequence in which they appear, summarize key fi ndings and theoretical argu-
ments, and clarify the relationships between the chapters. Along the way, we explain 
some basic issues of overarching importance. 

 The book is divided into two parts:  “ Theory and Experiment ”  and  “ Background 
and Methods. ”  The fi rst part describes recent primary research fi ndings about the 
visual system, along with cutting-edge theory and methodological considerations. 
The second part provides some of the more general neuroscientifi c and mathemati-
cal background needed for understanding the fi rst part. 

 Although each chapter is independent, the fi rst part,  “ Theory and Experiment, ”  
is designed to be read in sequence. The sequence roughly follows the stages of 
ventral-stream visual processing, which forms the focus of the book. Within this 
rough order, we placed closely related chapters together. We purposely interspersed 
theoretical and experimental chapters, and, within the latter, animal electrode 
recording and human fMRI studies. An overview of the chapters is given in   fi gure 
I.1  and   table I.1 .      

 Localist and Distributed Codes 

 In chapter 1, Simon J. Thorpe reviews the debate about localist versus distributed 
neuronal coding in the context of recent experimental evidence. Early fi ndings of 
neuronal selectivity to simple features at low levels of the visual hierarchy and to 
more complex features at higher levels suggested, by extrapolation, that there might 
be neurons that respond selectively to particular objects, such as one ’ s grandmother. 
On a continuum of possible coding schemes from localist to distributed, this  “ grand-
mother cell ”  theory forms the localist pole. A code of grandmother cells could still 
have multiple neurons devoted to each object; the key feature is the high selectivity 
of the neurons. A grandmother-cell code is explicit in that no further processing is 
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required to read out the code and conclude that a particular object is present. At 
the other end of the continuum is a distributed code, in which each neuron will 
respond to many different objects; thus, there is no single neuron that unequivocally 
indicates the presence of a particular object. In a distributed code, the information 
is in the  combination  of active neurons. 

 For a population of  n  neurons, a localist single-neuron code can represent no 
more than  n  distinct objects, one for each neuron — and less if multiple neurons 

 Figure I.1 
 Chapter overview. Along the vertical axis (arrow on the left), the chapters have been arranged roughly 
according to the stage of processing they focus on. Horizontally, chapters with a stronger focus on a 
particular stage of processing are closer to the axis on the left. Where possible, chapters related by other 
criteria are grouped together. For example, chapters 5 and 6 use the method of voxel-receptive-fi eld 
modeling, while chapters 9 and 11 – 14 use the method of representational similarity analysis. Neuron and 
voxel icons label chapters using neuronal recordings and fMRI, respectively. Chapters focusing on theory, 
experiment, or methods have been visually indicated (see legend), with methods chapters marked by a 
gray underlay and experimental chapters with a strong methodological component marked by a partial 
gray underlay. 
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  Table I.1 
 Chapter content overview  

 First Author, 
 Last Author  Content Type  Regions 

 Brain-Activity 
Measurement  Content 

 1  Thorpe  Theory, model, 
exp. 

 Retina-IT  Electrode  Localist vs. distributed 
coding; spike-timing-
dependent coding; plasticity 

 2  Nirenberg  Theory, exp., 
 methods 

 Retina  In vitro 
recording 

 Ruling out retinal codes by 
comparing information 
between code and behavior 

 3  Poort, 
Roelfsema 

 Exp.  V1  Electrode  Decoding stimulus features 
and attentional states from 
V1 neurons 

 4  Kamitani  Exp., 
 methods 

 V1-3, MT  fMRI  Decoding human early 
visual population codes and 
stimulus reconstruction 

 5  Kay  Methods, model, 
exp. 

 V1-4  fMRI  Voxel-receptive-fi eld 
modeling for identifi cation 
of natural images 

 6  Gallant, Wu  Methods, model, 
exp. 

 V1  fMRI  Methodological framework 
for voxel-receptive-fi eld 
modeling 

 7  Pasupathy, 
Brincat 

 Exp.  V4, pIT  Electrode  Shape-contour 
representation by convex/ 
concave curvature-feature 
combinations 

 8  Houghton, 
Victor 

 Theory, 
methods, exp. 

  —   Electrode  Measuring representational 
dissimilarity by spike-train 
edit distances 

 9  Op de Beeck  Exp., theory  IT  fMRI  Category modules vs. 
feature map; infl uences of 
task and learning 

 10  Hung, 
DiCarlo 

 Exp., theory  IT  Electrode  Decoding object category 
and identity at small 
latencies after stimulus 
onset; invariances 

 11  Kriegeskorte, 
Mur 

 Exp., theory, 
model,   methods 

 IT  fMRI, 
 electrode 

 Categoricality of object 
representation, comparing 
human and monkey; 
methods 

 12  Connolly, 
Haxby 

 Exp., theory, 
methods 

 IT  fMRI  Transformation of similarity 
across stages; advantages of 
pattern similarity analyses 

 13  Kravitz, 
Baker 

 Exp., theory  IT  fMRI  Object, body, and scene 
representations; position 
dependence 

 14  Walther, 
 Fei-Fei 

 Exp., theory, 
 methods 

 IT  fMRI  Distributed scene 
representations; decoding 
confusions predict 
behavioral confusions 
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redundantly code for the same object, as is commonly assumed. A distributed code 
can use combinations of neurons and code for a vast number of different objects 
(for binary responses, for example, there are 2  n   distinct activity patterns). If the pat-
terns used for representing objects are randomly chosen among the 2  n   combinations, 
about half of the neurons will respond to any given object. A distributed code can 
also represent the stimuli with some redundancy, making it robust to damage to 
particular neurons. Moreover, it can represent the objects in terms of sensory or 
semantic properties, thus placing the objects in a multidimensional abstract space 
that refl ects their relationships. Such an abstract space might emphasize behavior-
ally relevant similarities and differences in a graded or categorical manner. Although 
the signals indicating the presence of a particular object are distributed, the code 
may still be considered  “ explicit ”  if readout takes just a single step — for example, a 
downstream neuron that computes a linear combination of the neuronal population. 
(Such a downstream neuron would be a localist neuron.) 

 First Author, 
 Last Author  Content Type  Regions 

 Brain-Activity 
Measurement  Content 

 15  Haynes  Theory, methods  LGN-IT  fMRI  Decoding consciousness; 
uni- vs. multivariate neural 
correlates of consciousness 

 16  Friston  Theory, model, 
exp. 

 Retina-IT  fMRI  Visual system as 
hierarchical model for 
recurrent Bayesian 
inference and learning 

 17  Burbank, 
Kreiman 

 Theory tutorial  Retina-IT   —   Essentials of visual 
processing across stages of 
the visual hierarchy; dorsal/
ventral stream 

 18  Singer, 
Kreiman 

 Methods 
tutorial 

  —    —   Introduction to statistical 
learning theory and pattern 
classifi cation 

 19  Meyers, 
Kreiman 

 Methods 
tutorial 

  —   Electrode  Step-by-step tutorial on 
pattern classifi cation for 
neural data 

 20  Mur, 
Kriegeskorte 

 Methods 
tutorial 

  —   fMRI  Step-by-step tutorial on 
pattern classifi cation for 
fMRI data 

 21  Panzeri, Ince  Theory, 
 methods 

  —   Electrode, 
 fMRI 

 Information theoretic 
analysis of neuronal 
population codes 

 22  Berens, 
Tolias 

 Exp., 
 methods 

  —   Electrode, 
 fMRI 

 Relationship between 
spikes, local fi eld potentials, 
and fMRI 

 

Table I.1
(continued)
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 Note that what is called localist and distributed is fundamentally in the eye of the 
beholder, as it depends on the way the researcher thinks of the information to be 
represented. For example, consider the case of two neurons that encode the 
two-dimensional space of different jets of water. One neuron codes the amount of 
water per unit of time; the other the temperature of the water. A researcher 
who thinks of the space in terms of amount per unit of time and temperature will 
conclude that the code is localist. But a researcher who thinks of jets of water in 
terms of the amounts of cold and hot water per unit of time will conclude that the 
code is distributed. In practice, we tend to think of a code as localist if we can 
characterize each neuron ’ s preferences in very simple terms; we think of the 
code as distributed if the description of the preference of a single neuron is complex 
and doesn ’ t correspond to any concepts for describing the content that appear 
natural to us. 

 The  “ grandmother cell ”  theory did not initially have any direct empirical support. 
Findings of  “ grandmother ”  (or similarly highly selective) neurons were elusive. The 
failure to fi nd such neurons, of course, doesn ’ t prove that they don ’ t exist. The idea 
of grandmother cells has also been criticized on theoretical grounds for failing to 
exploit the combinatorics. This led to a preference for more distributed coding 
schemes among many theorists. Indeed, distributed codes and multivariate analysis 
of the information they carry is a central theme of this book. 

 Sparse Distributed Codes 

 Despite the advantages of distributed codes, the appeal of highly selective single 
cells is not merely in the eye of the electrophysiologist who happens to record one 
cell at a time with a single electrode. The reason why more of the page you are 
reading is white than black may be the cost of ink. Similarly, the metabolic cost of 
neuronal activity creates an incentive for a code that is sparser (i.e., fewer cells 
responding to a particular object due to each cell ’ s greater selectivity) than one that 
fully exploits the combinatorics. On the continuum between localist and distributed, 
the concept of a sparse code has emerged as a compromise that may best combine 
the advantages of both schemes. In a sparse code, few neurons respond to any given 
stimulus. And, conversely, few stimuli drive any given neuron. 

 It seems likely that neurophysiological recordings have been biased toward 
describing neurons that fi re more rapidly and less selectively, making them easier 
to fi nd while looking for responses. Consistent with this notion, unbiased neuro-
physiological recordings using electrode arrays tend to report high selectivities, 
suggesting sparse representations, in a variety of systems including the songbird 
vocal center, the mouse auditory cortex, and the human hippocampus. 
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 Thorpe discusses additional arguments in favor of sparse coding. More recent 
evidence from neurophysiological recordings in the human medial temporal lobe 
suggests that there are neurons responding selectively to complex particular objects, 
for example, to Jennifer Aniston. Interestingly, the  “ Jennifer-Aniston cell ”  responded 
not just to one image, but to several images of the actress and even to the visual 
presentation of her name in writing. The cell did not respond to any other stimuli 
that the researchers tried. However, the relatively small number of stimuli and 
neurons that can be examined in such experiments (on the order of hundreds) sug-
gests that neurons of this type might well respond to multiple particular objects. 
The  “ Jennifer-Aniston cell, ”  then, might be more promiscuous than its exclusive 
preference for the actress among the sampled set of stimuli would suggest. Thorpe 
(citing Rafi  Malach) refers to this as the  “ totem-pole cell ”  theory, where a cell has 
multiple distinct preferences like the faces on a totem pole. 

 It is important to note that descriptions like  “ Jennifer-Aniston cell ”  or  “ totem-
pole cell ”  are likely to be caricatures that oversimplify the nature of these neurons. 
The underlying computations are more complex and much less well understood 
than those of early visual neurons. 

 In a distributed but sparse code, different objects are represented by largely dis-
joint sets of cells. This may render the code robust to interference between objects. 
Interference of multiple simultaneously present objects (i.e., the superposition of 
their representations) could create ambiguity in a maximally distributed code. Inter-
ference could also erase memories: If each neuron is activated by many different 
objects, then spike-timing-dependent plasticity might wash away a memory that is 
not reactivated over a long time. Highly selective neurons, Thorpe argues, could 
maintain a memory over decades without the need of reactivation. Their high selec-
tivity would protect them from interference. He suggests that the brain might 
contain neuronal  “ dark matter, ”  that is, neurons so selective that they may not fi re 
for years and are virtually impossible to elicit a response from in a neurophysiologi-
cal experiment. 

 Sampling Limitations: Few Stimuli, Few Response Channels 

 With current techniques, our chances are slim to activate neuronal  “ dark matter ”  
or to ever fi nd the other loves of the  “ Jennifer-Aniston cell. ”  This reminds us of a 
basic challenge for our fi eld: our limited ability to sample brain responses to visual 
stimuli. High-resolution imaging and advances in multi-electrode array recording 
have greatly increased the amount of information we can acquire about brain-
activity patterns. However, our measurements will not fully capture the information 
present in neuronal activity patterns in the foreseeable future. The subsample we 
take always consists in a  tiny  proportion of the information that would be required 
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to fully describe the spatiotemporal activity pattern in a given brain region. Elec-
trode recording and fMRI tap into population activity in fundamentally different 
ways (which we discuss further at the end of this overview). fMRI gives us a tem-
porally smoothed and spatially strongly blurred (and locally distorted) depiction of 
activity (i.e., the hemodynamic response), with a single voxel refl ecting the average 
activity across hundreds of thousands of neurons (and possibly other cell types). 
Neuronal recording gives us spatiotemporally precise information, but only for a 
vanishingly small subset of the neurons in the region of interest (and possibly biased 
toward certain neuronal types over others). In terms of information rates, fMRI and 
electrode recording are similarly coarse: An fMRI acquisition might provide us with, 
say, 100,000 channels sampled once per second, and an electrode array can record 
from, say, 100 channels sampled 1,000 times per second. 

 We subsample not only the response space but also the stimulus space. Typical 
studies only present hundreds of stimuli (give or take an order of magnitude). In 
fMRI, the stimuli are often grouped into just a handful of categories; and only 
category-average response patterns are analyzed. However, to characterize the 
high-dimensional continuous space of images, a much larger number of stimuli is 
needed. Consider a digital grayscale image defi ned by 64  ×  64 pixels (4,096 pixels) 
with intensities ranging from 0 to 255 (a pretty small image by today ’ s standards). 
The number of possible such images is huge: 256 4096  (~10 10,000 ). The more relevant 
subset of  “ natural ”  images is much smaller, but this subset is still huge and ill defi ned. 
To complicate matters, the concept of  “ visual object ”  is inherently vague and implies 
the prior theoretical assumption that scenes are somehow parsed into constituent 
objects. 

 Repeated presentations of the same stimulus sample help distinguish signal from 
noise in the responses. Noise inevitably corrupts our data to some degree. The 
number of responses sampled limits the complexity of the models we can fi t to the 
data. A model that is realistically complex, given what we know about the brain, is 
often unrealistic to fi t, given the amount of data we have. To fi t such a model would 
be to pretend that the data provide more information than they do, and generaliza-
tion of our predictions to new data sets would suffer (see discussion in chapters 18 
and 19 about bias versus variance). Both subsampling of the response pattern and 
limited model complexity cause us to underestimate the stimulus information 
present in a brain region ’ s activity patterns. Our estimates are therefore usually 
lower bounds on the information actually present. 

 Retina: Rate Code Ruled Out 

 Sheila Nirenberg describes an interesting exception to the rule of lower bounds on 
activity-pattern information (chapter 2). She describes a study in which an  upper  
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bound could be estimated. Neuronal recordings performed in vitro captured the 
continuous activity of the  entire  retinal population representing the stimulus. Niren-
berg and colleagues then tested different hypothetical codes, each of which was 
based on a different set of features of the spike trains (thus retaining a different 
subset of the total information). Because the recordings arguably captured the full 
population information, any code that retained less information than present in the 
animal ’ s behavior (as assessed in vivo) could be ruled out. Spike-rate and spike-
timing codes did not have all the information refl ected in behavior, whereas a 
temporal-correlation code did the trick. 

 Unfortunately, studies of cortical visual population codes are faced with a more 
complicated situation, where our limited ability to measure the activity pattern (a 
small sample of neurons measured or voxels that blur the pattern) is compounded 
by multiple parallel pathways. For example, current technology does not allow us 
to record from all the neurons in V1 that respond to a particular stimulus. Moreover, 
if a given hypothetical code (e.g., a rate code) suggested the absence in V1 of stimu-
lus information refl ected in behavior, the code could still not be ruled out, because 
the information might enter the cortex by another route, bypassing V1. The other 
studies reviewed in this book, therefore, cannot rule out codes by Nirenberg ’ s rigor-
ous method. When population activity is subsampled, absence of evidence for par-
ticular information is not evidence of absence of this information. The focus, then, 
is on the positive results, that is, the information that can be shown to be present. 

 Early Visual Cortex: Stimulus Decoding and Reconstruction 

 In chapter 3, Jasper Poort, Arezoo Pooresmaeili, and Pieter R. Roelfsema describe 
a study showing that physical stimulus features as well as attentional states can be 
successfully decoded from multiple neurons in monkey V1. They fi nd that stimulus 
features and attentional states are refl ected in separate sets of neurons, demonstrat-
ing that V1 is not just a low-level stimulus-driven representation. The results of Poort 
and colleagues illustrate a simple synergistic effect of multiple neurons that even 
linear decoders can benefi t from: noise cancelation. Neuron A may not respond to 
a particular stimulus feature and carry no information about that feature by itself. 
However, if its noise fl uctuations are correlated with the noise of another neuron 
B which does respond to the feature, then subtracting the activity of A from B (with 
a suitable weight) can reduce the noise in B and allow better decoding. Such noise 
cancelation is automatically achieved with linear decoders, such as the Fisher linear 
discriminant. Although the decoding is based on a linear combination of the neurons, 
the information in the ensemble of neurons does not simply add up across neurons 
and cannot be fully appreciated by considering the neurons one by one. 
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 Like Poort and colleagues, Yukiyasu Kamitani (chapter 4) describes studies 
decoding physical stimulus properties and attentional states from early visual cortex. 
However, Kamitani ’ s studies use fMRI in humans to analyze the information in 
visual areas V1 – 4 and MT+. All these areas allowed signifi cant decoding of motion 
direction. Grating orientation information, by contrast, was strongest in V1 and then 
gradually diminished in V2 – 4; it was not signifi cant in MT+. Beyond stimulus fea-
tures, Kamitani was able to decode which of two superimposed gratings a subject 
is paying attention to. 

 These fi ndings are roughly consistent with results from monkey electrode record-
ings. Their generalization to human fMRI is signifi cant because it was not previously 
thought that fMRI might be sensitive to fi ne-grained neuronal patterns, such as V1 
orientation columns. The decodability of grating orientation from V1 voxel patterns 
is all the more surprising because Kamitani did not use high-resolution fMRI, but 
more standard (3mm) 3  voxels. The chapter discusses a possible explanation for the 
apparent  “ hyperacuity ”  of fMRI: Each voxel may average across neurons preferring 
all orientations, but that does not mean that all orientations are exactly equally 
represented in the sample. If a slight bias in each voxel carries some information, 
then pattern analysis can recover it by combining the evidence across multiple 
voxels. 

 From decoding orientation and motion direction, Kamitani moves on to recon-
struction of arbitrary small pixel shapes from early visual brain activity. This is a 
much harder feat, because of the need to generalize to novel instances from a large 
set of possible stimuli. In retinotopic mapping, we attempt to predict the response 
of each voxel separately as a function of the stimulus pattern. Conversely, we could 
attempt to reconstruct a pixel image by predicting each pixel from the response 
pattern. However, Kamitani predicts the presence of a stimulus feature extended 
over multiple stimulus pixels from multiple local response voxels. The decoded 
stimulus features are then combined to form the stimulus reconstruction. This 
multivariate-to-multivariate approach is key to the success of the reconstruction, 
suggesting that dependencies on both sides, among stimulus pixels and among 
response voxels, matter to the representation. 

 Early Visual Cortex: Encoding and Decoding Models 

 While Kamitani focuses on fMRI  decoding  models, the following two chapters 
describe how fMRI  encoding  models can be used to study visual representations. 
Kendrick N. Kay (chapter 5) gives an introduction to fMRI voxel-receptive-fi eld 
modeling (also known as  “ population-receptive-fi eld modeling ” ). In this technique, 
a separate computational model is fi tted to predict the response of each voxel to 
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novel stimuli. Similar techniques have been applied to neuronal recording data to 
characterize each neuron ’ s response behavior as a function of the visual stimulus. 
Kay argues in favor of voxel-receptive-fi eld modeling by contrasting it against two 
more traditional methods of fMRI analysis: the investigation of response profi les 
across different stimuli (e.g., tuning curves or category-average activations) and 
pattern-classifi cation decoding of population activity. He reviews a recent study, in 
which voxel-receptive-fi eld modeling was used to predict early visual responses to 
natural images. The study confi rms what is known about V1, namely that the repre-
sentation can be modeled as a set of detectors of Gabor-like small visual features 
varying in location, orientation, and spatial frequency. 

 Kay ’ s study is an example of a general fMRI methodology developed in the lab 
of Jack Gallant (the senior author of the study). Jack L. Gallant, Shinji Nishimoto, 
Thomas Naselaris, and Michael C. K. Wu (chapter 6) present this general methodol-
ogy, which combines encoding (i.e., voxel-receptive-fi eld) and decoding models. 
First, each of a number of computational models is fi tted to each voxel on the basis 
of measured responses to as many natural stimuli as possible. Then the performance 
of each model (how much of the non-noise response variance it explains) is assessed 
by comparing measured to predicted responses for novel stimuli not used in fi tting 
the model. The direction in which a model operates (encoding or decoding) is irrel-
evant to the goal of detecting a dependency between stimulus and response pattern 
(a point elaborated upon by Marieke Mur and Nikolaus Kriegeskorte in chapter 
20). However, Gallant ’ s discussion suggests that the direction of the model predic-
tions should match the direction of the information fl ow in the system: If we are 
modeling the relationship between stimulus and brain response, an encoding 
approach allows us to use computational models of brain information processing 
(rather than generic statistical models as are typically used for decoding, which are 
not meant to mimic brain function). The computational models can be evaluated by 
the amount of response variance they explain. Decoding models, on the other hand, 
are well suited for investigating readout of a representation by other brain regions 
and relating population activity to behavioral responses. For example, if the noise 
component of a region ’ s brain activity predicts the noise component of a behavioral 
response (e.g., categorization errors; see chapter 14), this suggests that the region 
may be part of the pathway that computes the behavioral responses. 

 Midlevel Vision: Curvature Representation in V4 and Posterior IT 

 Moving up the visual hierarchy, Anitha Pasupathy and Scott L. Brincat (chapter 7), 
explore the representation of visual shapes between the initial cortical stage of V1 
and V2 and higher-level object representations in inferior temporal (IT) cortex. At 
this intermediate level, we expect the representational features to be more complex 
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than Gabor fi lters or moving edges, but less complex than the types of features often 
found to drive IT cells. Pasupathy and Brincat review a study that explores the 
representation of object shape by electrode recordings of single-neuron responses 
to sample stimuli from a continuous parameterized space of binary closed shapes. 
Results suggest that a V4 neuron represents the presence of a particular curvature 
at a particular angular position of a closed shape ’ s contour. A posterior IT neuron 
appears to combine multiple V4 responses and represent the presence of a combina-
tion of convex and concave curvatures at particular angular positions. The pattern 
of responses of either region allowed the decoding of the stimulus (as a position 
within the parameterized stimulus space). This study nicely illustrates how we can 
begin to quantitatively and mechanistically understand the transformations that 
take place along the ventral visual stream.  

 What Aspect of Brain Activity Serves to  “ Represent ”  Mental Content? 

 When we analyze information represented in patterns of activity, we usually make 
assumptions about what aspect of the activity patterns serves to represent the infor-
mation in the context of the brain ’ s information processing. A popular assumption 
is that spiking rates of neurons carry the information represented by the pattern. 
While there is a lot of evidence that spike rates are an important part of the picture, 
experiments like those Nirenberg describes in chapter 2 show that we miss function-
ally relevant information if we consider only spike rates. 

 Conor Houghton and Jonathan Victor (chapter 8) consider the general question 
of how we should measure the  “ representational distance ”  between two spatiotem-
poral neuronal activity patterns. In a theoretical chapter at the interface between 
mathematics and neuroscience, they consider metrics of dissimilarity comparing 
activity patterns that consist in multiple neurons ’  spike trains. The aim is to fi nd out 
which metric captures the functionally relevant differences between activity pat-
terns. Houghton and Victor focus on  “ edit distances ”  (including the  “ earth mover ’ s 
distance ” ), which measure the distance between two patterns in terms of the  “ work ”  
(i.e., the total amount of changes) required to transform one pattern into another. 
Jonathan Victor had previously proposed metrics to characterize the distance 
between single-neuron spike trains. Here this work is extended to populations of 
neurons, suggesting a rigorous and systematic approach to understanding neuronal 
coding. 

 Inferior Temporal Cortex: A Map of Complex Object Features 

 Moving farther down the ventral stream, Hans P. Op de Beeck discusses high-level 
object representations in inferior temporal (IT) cortex in the monkey and in the 
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human (chapter 9). This is the fi rst chapter to review the fi ndings of macroscopic 
regions selective for object categories (including faces and places). Face-selective 
neurons had been found in monkey-IT electrode recordings decades earlier. 
However, the clustering of such responses in macroscopic regions found in consis-
tent anatomical locations along the ventral stream was discovered by fMRI, fi rst in 
humans and later in monkeys. It has been suggested that these regions are  “ areas ”  
or  “ modules, ”  terms that imply well-defi ned anatomical and functional boundaries, 
which have yet to be demonstrated. 

 The proposition that the higher-level ventral stream might be composed of cate-
gory-selective (i.e., semantic) modules sparked a new debate about localist versus 
distributed coding within the fMRI community. The new debate in fMRI concerned 
a larger spatial scale (the overall activation of entire brain regions, not single 
neurons) and also a larger representational scale (the regions represented catego-
ries, not particular objects). Nonetheless, the theoretical arguments are analogous 
at both scales. Just like the functional role of highly selective single neurons remains 
contentious, it has yet to be resolved whether the higher ventral stream consists of 
a set of distinct category modules or a continuous map of visual and/or semantic 
object features. 

 Op de Beeck argues that the fi nding of category-selective regions might be 
accommodated under a continuous-feature-map model. He reviews evidence sug-
gesting that the feature map refl ects the perceptual similarity space and subjective 
interpretations of the visual stimuli, and that it can be altered by visual 
experience. 

 Chou Hung and James DiCarlo (chapter 10) describe a study in which they 
repeatedly presented seventy-seven grayscale object images in rapid succession (a 
different image every 200 ms) while sequentially recording from more than three 
hundred locations in monkey anterior IT. The images were from eight categories, 
including monkey and human faces, bodies, and inanimate objects. 

 Single-cell responses to object images have been studied intensely for decades, 
showing that single neurons exhibit only weak object-category selectivity and 
limited tolerance to accidental properties. From a computational perspective, 
however, the more relevant question is what information can be read out from the 
neuronal population activity by downstream neurons. Single-neuron analyses can 
only hint at the answer. Hung and DiCarlo therefore analyzed the response patterns 
across object scales and locations by linear decoding. This approach provides a 
lower-bound estimate (as explained above) on the information available for imme-
diate biologically plausible readout. 

 The category (among 8) and identity (among 77) of an image could be decoded 
with high accuracy (94 percent and 70 percent correct, respectively), far above 
chance level. Once fi tted, a linear decoder generalized reasonably well across sub-
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stantial scale (2 octaves) and small position changes (4 deg visual angle). The 
decoder also generalized to novel category exemplars (i.e., exemplars not used in 
fi tting), and worked well even when based on a 12.5-ms temporal window (capturing 
just 0 – 2 spikes per neuron) at 125-ms latency. Category and identity information 
appeared to be concentrated in the same set of neurons, and both types of informa-
tion appeared at about the same latency (around 100 ms after stimulus onset, as 
revealed by a sliding temporal-window decoding analysis). Hung and DiCarlo found 
only minimal task and training effects at the level of the population. This is in con-
trast to some earlier studies, which focused on changes in particular neurons during 
more attention-demanding tasks. From a methodological perspective, Hung and 
DiCarlo ’ s study is exemplary for addressing a wide range of basic questions, by 
applying a large number of well-motivated pattern-information analyses to popula-
tion response patterns elicited by a set of object stimuli. 

 Representational Similarity Structure of IT Object Representations 

 Classifi er decoding can address how well a set of  predefi ned  categories can be read 
out, but not whether the representation is inherently organized by those categories. 
Nikolaus Kriegeskorte and Marieke Mur (chapter 11) review a study of the similar-
ity structure of the IT representations of 92 object images in humans, monkeys, and 
computational models. Kriegeskorte and Mur show that the response patterns elic-
ited by the ninety-two objects form clusters corresponding to conventional catego-
ries. The two main clusters correspond to animate and inanimate objects; the 
animates are further subdivided into faces and bodies. The response-pattern dis-
similarity matrices reveal a striking match of the structure of the representation 
between human and monkey. In both species, IT appears to emphasize the same 
basic categorical divisions. Moreover, even within categories the dissimilarity struc-
ture is correlated between human and monkey. IT object similarity was not well 
accounted for by several computational models designed to mimic either low-level 
features (e.g., pixel images, processed versions of the images, features modeling V1 
simple and complex cells) or more complex (e.g., natural image patch) features 
thought to reside in IT. This suggests that the IT features might be optimized to 
emphasize particular behaviorally important category distinctions. 

 In terms of methods, the chapter shows that studying the similarity structure of 
response patterns to a sizable set of visual stimuli ( “ representational similarity 
analysis ” ) can allow us to discover the organization of the representational space 
and to compare it between species, even when different measurement techniques 
are used (here, fMRI in humans and cell recordings in monkeys). Like voxel-
receptive-fi eld modeling (see chapters 5 and 6, discussed earlier), this technique 
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allows us to incorporate computational models of brain information processing into 
the analysis of population response patterns, so as to directly test the models. 

 Andrew C. Connolly, M. Ida Gobbini, and James V. Haxby (chapter 12) discuss 
three virtues of studying object similarity structure: it provides an abstract character-
ization of representational content, can be estimated on the basis of different data 
sources, and can help us understand the transformation of the representational space 
across stages of processing. They describe a human fMRI study of the similarity struc-
ture of category-average response patterns and how it is transformed across stages of 
processing from early visual to ventral temporal cortex. The similarity structure in 
early visual cortex can be accounted for by low-level features. It is then gradually 
transformed from early visual cortex, through the lateral occipital region, to ventral 
temporal cortex. Ventral temporal cortex emphasizes categorical distinctions. 

 Connolly and colleagues also report that the replicability of the similarity struc-
ture of the category-average response patterns increases gradually from early visual 
cortex to ventral temporal cortex. This may refl ect the fact that category-average 
patterns are less distinct in early visual cortex. Similarity structure was found to be 
replicable in all three brain regions, within as well as across subjects. Replicability 
did not strongly depend on the number of voxels included in the region of interest 
(100 – 1,000 voxels, selected by visual responsiveness). 

 The theme of representational similarity analysis continues in the chapter by 
Dwight J. Kravitz, Annie W.-Y. Chan, and Chris I. Baker (chapter 13), who review 
three related human fMRI studies of ventral-stream object representations. The fi rst 
study shows that the object representations in ventral-stream regions are highly 
dependent on the retinal position of the object. Despite the larger receptive fi elds 
found in inferior temporal cortex (compared to early visual regions), these high-
level object representations are not entirely position invariant. The second study 
shows that particular images of body parts are most distinctly represented in body-
selective regions when they are presented in a  “ natural ”  retinal position — assuming 
central fi xation of a body as a whole (e.g., right torso front view in the left visual 
fi eld). This suggests a role for visual experience in shaping position-dependent high-
level object representations. The third study addresses the representation of scenes 
and suggests that the major categorical distinction emphasized by scene-selective 
cortex is that between open (e.g., outdoor) and closed (e.g., indoor) scenes. In terms 
of methods, Kravitz and colleagues emphasize the usefulness of ungrouped-events 
designs (i.e., designs that do not assume a grouping of the stimuli a priori) and they 
describe a straightforward and very powerful, split-half approach to representa-
tional similarity analysis. 

 The representation of scenes in the human brain is explored further in the chapter 
by Dirk B. Walther, Diane M. Beck, and Li Fei-Fei (chapter 14). These authors 
investigate the pattern representations of subcategories of scenes (including moun-
tains, forests, highways, and buildings) with fMRI in humans. They relate the confus-
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ability of the brain response patterns (when linearly decoded) to behavioral 
confusions among the subcategories. This shows that early visual representations, 
though they distinguish scene subcategories, do not refl ect behavioral confusions, 
while representations in higher-level object- and scene-selective regions do. In terms 
of methods, this chapter introduces the attractive method of relating confusions (a 
particular type of error) between behavioral classifi cation tasks and response-
pattern classifi cation analyses, so as to assess to what extent a given region might 
contribute to a perceptual decision process. 

 In chapter 15, John-Dylan Haynes discusses how fMRI studies of consciousness 
can benefi t from pattern-information analyses. A central theme in empirical con-
sciousness research is the search for neural correlates of consciousness (NCCs). 
Classical fMRI studies on NCCs have focused on univariate correlations between 
regional-average activation and some aspect of consciousness. For example, regional-
average activation in area hMT+/V5 has been shown to be related to conscious 
percepts of visual motion. However, fi nding a regional-average-activation NCC, 
does not address whether the specifi c content of the conscious percept (e.g., the 
direction of the motion) is encoded in the brain region in question. Combining the 
idea of an NCC with multivariate population decoding can allow us to relate specifi c 
conscious percepts (e.g., upward visual motion fl ow) to specifi c patterns of brain 
activity (e.g., a particular population pattern in hMT+/V5) in human fMRI. Beyond 
the realm of consciousness, we return to this point at a more general level in chapter 
20, where we consider how classical fMRI studies use regional-average activation 
to infer the  “ involvement ”  of a brain region in some task component, whereas 
pattern-information fMRI studies promise to reveal a region ’ s representational 
content, whether the organism is conscious of that content or not. 

 Vision as a Hierarchical Model for Inferring Causes by Recurrent Bayesian 
Inference 

 In chapter 16, the fi nal chapter of the  “ Theory and Experiment ”  section, Karl Friston 
outlines a comprehensive mathematical theory of perceptual processing. The chapter 
starts by reviewing the theory of probabilistic population codes. A population code 
is probabilistic if the activity pattern represents not just one particular state of the 
external world, but an entire probability distribution of possible states. On one hand, 
bistable perceptual phenomena (e.g., binocular rivalry) suggest that the visual 
system, when faced with ambiguous input, chooses one possible interpretation (and 
explores alternatives only sequentially in time). On the other hand, there is evidence 
for a probabilistic representation of confi dence. These fi ndings suggest a code that 
is probabilistic but unimodal. Friston argues that the purpose of vision is to infer 
the causes of the visual input (e.g., the objects in the world that cause the light 
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patterns falling on the retina), and that different regions represent causes at differ-
ent levels of abstraction. He interprets the hierarchy of visual regions as a hierarchi-
cal statistical model of the causes of visual input. The model combines top-down 
and bottom-up processing to arrive at an interpretation of the input. The top-down 
component consists in prediction of the sensory input from hypotheses about its 
causes (or prediction of lower-level causes from higher-level causes). The predicted 
information is  “ explained away ”  by subtracting its representation out at each stage, 
so that the remaining bottom-up signals convey the prediction errors, that is the 
component of the input that requires further processing to be accommodated in the 
fi nal interpretation of the input. Friston suggests that perceptual inference and 
learning can proceed by an empirical Bayesian mechanism. The chapter closes by 
reviewing some initial evidence in support of the model. 

 In the second part of the book,  “ Background and Methods, ”  we collect chapters 
that provide essential background knowledge for understanding the fi rst part. These 
chapters describe the neuroscientifi c background, the mathematical methods, and 
the different ways of measuring brain-activity patterns. 

 A Primer on Vision 

 In chapter 17, Kendra Burbank and Gabriel Kreiman give a general introduction 
to the primate visual system, which will be a useful entry point for researchers from 
other fi elds. They describe the cortical visual hierarchy, in which simple local image 
features are detected fi rst, before signals converge for analysis of more complex and 
more global features. In low-level (or  “ early ” ) representations, neurons respond to 
simple generic local stimulus features such as edges and the cortical map is retino-
topically organized, with each neuron responsive to inputs from a small patch of the 
retina (known as the neuron ’ s  “ receptive fi eld ” ). In higher-level regions, neurons 
respond to more complex, larger stimulus features that occur in natural images and 
are less sensitive to the precise retinal position of the features (i.e., larger receptive 
fi elds). The system can be globally divided into a ventral stream and dorsal stream, 
where the ventral  “ what ”  stream (the focus of this book) appears to represent what 
the object is (object recognition) and the dorsal  “ where ”  stream appears to repre-
sent spatial relationships and motion. 

 Tools for Analyzing Population Codes: Statistical Learning and Information 
Theory 

 Jed Singer and Gabriel Kreiman (chapter 18) give a general introduction to statisti-
cal learning and pattern classifi cation. This chapter should provide a useful entry 
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point for neuroscientists. Statistical learning is a fi eld at the interface between sta-
tistics, computer science, artifi cial intelligence, and computational neuroscience, 
which provides important tools for analysis of brain-activity patterns. Moreover, 
some of its algorithms can serve as models of brain information processing (e.g., 
artifi cial neural networks) or are inspired by the brain at some level of abstraction. 
A key technique is pattern classifi cation, where a set of training patterns is used to 
defi ne a model that divides a multivariate space of possible input patterns into 
regions corresponding to different classes. The simplest case is linear classifi cation, 
where a hyperplane is used to divide the space. In pattern classifi cation as in other 
statistical pursuits, more complex models (i.e., models with more parameters to be 
fi tted to the data) can overfi t the data. A model is overfi tted if it represents noise-
dominated fi ne-scale features of the data. 

 Overfi tting has a depressing and important consequence: a complex model can 
perform worse at prediction than a simple model, even when the complex model is 
correct and the simple model is incorrect. The complex correct model will be more 
easily  “ confused ”  by the noise (i.e., overfi tted to the data), while the simple model 
may gain more from its stability than it loses from being somewhat incorrect. This 
can happen even if the complex model subsumes the simple model as a special case. 
The phenomenon is also known as the bias-variance tradeoff: The simple model in 
our example has an incorrect bias, but it performs better because of its lower vari-
ance (i.e., noise dependence). As scientists, we like our models  “ as simple as possible, 
but no simpler, ”  as Albert Einstein said. Real-life prediction from limited data, 
however, favors a healthy dose of oversimplifi cation. 

 In brain science, pattern classifi cation is used to  “ decode ”  population activity 
patterns, that is, to predict stimuli from response patterns. This is the most widely 
used approach to multivariate analysis of population codes. Tutorial introductions 
to this method are given by Ethan Meyers and Gabriel Kreiman for neural data 
(chapter 19) and by Marieke Mur and Nikolaus Kriegeskorte for fMRI data 
(chapter 20). These chapters provide step-by-step guides and discuss the neuro-
scientifi c motivation of particular analysis choices. 

 Pattern analyses are needed to detect information interactively encoded by mul-
tiple responses. In addition, they combine the evidence across multiple responses, 
thus boosting statistical power and providing useful summary measures. The 
combination of evidence would be useful even if interactive information were 
absent. These advantages apply to both neuronal and fMRI data, but in different 
ways. Single-neuron studies miss interactively encoded information, and perhaps 
also effects that are weak and widely distributed. However, they can still contribute 
to our understanding of population codes within a brain region. Arguably, most of 
what we know about population codes today has been learned from single-neuron 
studies. 
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 The single-voxel scenario is quite different, as discussed by Mur and Kriegeskorte. 
In addition to the hemodynamic nature of the fMRI signal and its low spatial reso-
lution, single-voxel fMRI analyses have very little power because of the physiologi-
cal and instrumental noise and because of the need to account for multiple testing 
carried out across many voxels. As we make the voxels smaller to pick up more 
fi ne-grained activity patterns within a region, we get (1)  more  and (2)  noisier  voxels. 
The combination of weaker effects and stronger correction for multiple tests leaves 
single-voxel analysis severely underpowered. Pattern-information analysis recovers 
power by combining the evidence across voxels. Classical fMRI studies have used 
regional averaging (or smoothing) to boost power. This approach enables us to 
detect overall regional activations at the cost of missing fi ne-grained pattern infor-
mation. Regional-average activation is taken to indicate the  “ involvement ”  of a 
region in a task component (or in the processing of a stimulus category). However, 
the region remains a black box with respect to its internal processes and representa-
tions. The pattern-information approach promises to enable us to look into each 
region and reveal its representational content, even with fMRI. 

 Whether we use neuronal recordings or fMRI, we wish to reveal the information 
the code carries. If pattern classifi cation provides above-chance decoding of the 
stimuli, then we know that there is mutual information between the stimulus and 
the response pattern. However, pattern classifi cation is limited by the assumptions 
of the classifi cation model. Moreover, the categorical nature of the output (i.e., 
predefi ned classes) leads to a loss of probabilistic information about class member-
ship and does not address the representation of continuous stimulus properties. It 
would be desirable to detect stimulus information in a less biased fashion and to 
quantify its amount in bits.  

 Stefano Panzeri and Robin A. A. Ince (chapter 21) describe a framework for 
information theoretic analysis of population codes. Information theory can help us 
understand the relationships between neurons and how they jointly represent 
behaviorally relevant stimulus properties. If the neurons carry independent infor-
mation, the population information is the sum of the information values for single 
neurons. To the extent that different neurons carry redundant information, the 
population information will be less than that sum. To the extent that the neurons 
synergistically encode information, the population information can be greater than 
the sum. The case of synergistic information was described earlier in the context of 
chapter 3: If neurons A and B share noise, but not signal, A can be used to cancel 
B ’ s noise. Subtracting out the noise improves the signal-to-noise ratio and increases 
the information. Panzeri and Ince place these effects in a general mathematical 
framework, in which the mutual information between the stimulus and the popula-
tion response pattern is decomposed into additive components, which correspond 
to the sum of the information values for single neurons and the synergistic offset 
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(which can be positive or negative and is further decomposed into signal- and noise-
related subcomponents). 

 The abstract beauty of the mathematical concept of information lies in its general-
ity. In empirical neuroscience, the necessarily fi nite amount of data requires us to 
sacrifi ce some of the generality in favor of stable estimates (i.e., to reduce the error 
variance of our estimates by accepting some bias). However, information theory is 
key to the investigation of population coding not only at the level of data analysis, 
but also at the level of neuroscientifi c theory. 

 What We Measure with Electrode Recordings and fMRI 

 The experimental studies described in this book relied on brain-activity data from 
electrode recordings and fMRI. We can analyze the response patterns from these 
measurement techniques with the same mathematical methods, and there is evi-
dence that they suggest a broadly consistent view of brain function (e.g., chapter 
11). However, fMRI and electrode recordings measure fundamentally different 
aspects of brain activity. Moreover, the two kinds of signal have been shown to be 
dissociated in certain situations. The fi nal chapter by Philipp Berens, Nikos K. 
Logothetis, and Andreas S. Tolias (chapter 22) reviews the relationship between 
neuronal spiking, local fi eld potentials, and the blood-oxygen-level-dependent 
(BOLD) fMRI signal, which refl ects the local hemodynamic response thought to 
serve the function of adjusting the energy supply for neuronal activity. 

 Neuronal spikes represent the output signal of neurons. They are sharp and short 
events, and thus refl ected mainly in the high temporal-frequency band of the electri-
cal signal recorded with an invasive extracellular electrode in the brain. The high 
band (e.g.,  > 600 Hz) of electrode recordings refl ects spikes of multiple neurons very 
close to the electrode ’ s tip ( < 200 micrometers away) and is known as the multi-unit 
activity (MUA). 

 The low temporal-frequency band (e.g.,  < 200 Hz) of electrode recordings is 
known as the local fi eld potential (LFP). Compared to the MUA, the LFP is a more 
complex composite of multiple processes. It appears to refl ect the summed excit-
atory and inhibitory synaptic activity in a more extended region around the tip of 
the electrode (approaching the spatial scale of high-resolution-fMRI voxels). The 
LFP is therefore thought to refl ect the input and local processing of a region, 
whereas the MUA is thought to refl ect the spiking output. The LFP is also more 
strongly correlated with the BOLD fMRI signal than the MUA. Berens and col-
leagues describe what is currently known about the highly complex relationships 
among these three very different kinds of brain-activity measurement. 
 

 




