
Supertagging: Using Complex
Lexical Descriptions in Natural

Language Processing

Edited by Srinivas Bangalore and Aravind K. Joshi

A Bradford Book
The MIT Press
Cambridge, Massachusetts
London, England

http://mitpress.mit.edu/0262013878

c© 2010 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

For information about special quantity discounts, please email
special sales@mitpress.mit.edu

This book was set in LaTex by the authors.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Supertagging : using complex lexical descriptions in natural language processing
/ edited by Srinivas Bangalore and Aravind K. Joshi.
p. cm. — (A Bradford Book)
Includes bibliographical references and index.
ISBN 978-0-262-01387-1 (hardcover : alk. paper) 1. Natural language processing
(Computer science) 2. Computational linguistics—Statistical methods. 3.
Semantics. 4. Lexicology. I.
Bangalore, Srinivas, 1969– II. Joshi, Aravind K. (Aravind Krishna), 1929–
QA76.9.N38S86 2010
006.3’5—dc22

2009028194

10 9 8 7 6 5 4 3 2 1

1

Introduction

Srinivas Bangalore and Aravind Joshi

The conventional (mathematical) wisdom in specifying a grammar formalism is
to start with basic primitive structures as simple as possible and then introduce
various operations for constructing more complex structures. These operations can
be simple or complex and the number of operations (although finite) need not be
limited. New operations (simple or complex) can be introduced in order to describe
more complex structures.

An alternate approach is to start with complex (more complicated) primitives,
which capture directly some crucial linguistic properties and then introduce some
general operations for composing these complex structures (primitive or derived).
What is the nature of these complex primitives? In the conventional approach
the primitive structures (or rules) are kept as simple as possible. This has
the consequence that information (e.g., syntactic and semantic) about a lexical
item (word) is distributed over more than one primitive structure. Therefore the
information associated with a lexical item is not captured locally, that is, within
the domain of a primitive structure. We will illustrate this in section 1.1 in terms
of the well-known context-free grammar (CFG) framework.

In contrast, in the alternate approach described in this book, we allow the
primitive structures to be as complex as necessary to capture all the relevant
information about a lexical item in the local domain of a primitive structure. We
refer to the primitive structure as a supertag and is associated with a lexical item.
A supertag needs to localize the following information: (a) a lexical item taken as
a predicate has zero or more arguments, (b) the arguments need to satisfy certain
syntactic and semantic constraints, which are determined by the lexical item, and
(c) the different positions that the arguments will occupy relative to the position
of the lexical item. Hence, in the alternate approach, all the pieces of information
associated with a lexical item have to be represented in the local domains of the
primitive structures of the formal system. Although the primitives are complex and
there may be more than one primitive structure associated with a lexical item, the

2 Srinivas Bangalore and Aravind Joshi

number of primitives is finite. Further the combining operations are kept to the
minimum and they are language independent (that is, universal). In this approach
nonlocal dependencies are pushed to become local, that is, these dependencies
start out in the basic primitive structure (supertag) and hence we characterize this
approach as complicate locally, simplify globally (CLSG). The architecture resulting
from the CLSG approach has important implications for linguistics, computational
linguistics, and psycholinguistics, including generation and acquisition.

There is another dimension in which formal systems can be characterized.
One could start with an unconstrained formal system (Turing machine equivalent,
for example) and then add linguistic constraints, which become in a sense, all
stipulative. Alternatively, one could start with a formal system that is constrained
and just adequate for describing language. The formal constraints then become
universal, in a sense. All other linguistic constraints become stipulative and language
specific. Now it turns out that the CLSG approach leads to constrained formal
systems. This convergence is of interest in its own right which is not discussed in
this book. Our focus will be on the CLSG approach and its implications for the
architecture of the grammars, their processors, and how it has been realized in
different grammar formalisms.

We begin this book by illustrating these ideas in terms of the Lexicalized
Tree-Adjoining grammar (LTAG), a class of grammars that illustrates the CLSG
approach by adopting it in its extreme form in section 1.3. LTAG and some of its
extensions have been investigated both formally and computationally for over twenty
five years (See Joshi et al., 1975; Joshi, 1985; Kroch and Joshi, 1985; Vijay-Shanker,
1987; Weir, 1988; Kroch, 1989; Kroch and Santorini, 1991; Schabes, 1992; Rambow,
1994; Resnik, 1992; Chiang, 2000; Sarkar, 2002; Abeillé, 2002; Prolo, 2003). There
are several formal systems that are clearly related to LTAG. Some examples are
Combinatory Categorial Grammars (CCG) (Steedman, 1996), Stabler’s version of
minimalist grammars (Stabler, 1997), Lexical Functional Grammars (LFG) (Kaplan
and Bresnan, 1983), Head Driven Phrase Structure Grammars (HPSG) (Pollard
and Sag, 1994) (for a constrained version of HPSG, (see Kasper et al., 1995). Linear
Indexed Grammars (LIG) by Gazdar, and Head Grammars (HG) by Pollard. CCG
and LTAG have been shown to be weakly equivalent, that is, in terms of the string
sets they generate but not in terms of the structural descriptions. These relationships
have been discussed extensively in Joshi et al. (1991).

In this chapter, in section 1.1, we will introduce the notions of domain of locality
and lexicalization in the context of the well-known context-free grammars (CFG)
and then show how lexicalized tree-adjoining grammars (LTAG) arise in the process
of lexicalizing CFGs and extending the domain of locality in section 1.2. We will also
show how the architecture of the building blocks of LTAG directly predicts many
complex dependency patterns and then summarize some important properties of
LTAG in section 1.3. In section 1.4, we introduce the perspective of supertagging for
LTAG and discuss its implications for language description and language processing.
In section 1.5, we mention the relevance of supertagging for psycholinguistic models
of sentence processing. In section 1.6, we group the chapters of this book under

Introduction 3

thematic topics and briefly summarize their contributions towards the goal of this
book.

1.1 Domain of Locality of CFGs

In a context-free grammar (CFG) the domain of locality is the one level tree
corresponding to a rule in a CFG (figure 1.1). It is easily seen that the arguments
of a predicate (for example, the two arguments of likes) are not in the same local
domain. The two arguments are distributed over the two rules (two domains of
locality)– S → NP V P and V P → V NP . They can be brought together by
introducing a rule S → NP V NP . However, then the structure provided by the
VP node is lost. We should also note here that not every rule (domain) in the CFG
in (figure 1.1) is lexicalized.

NP
VP ADVVP

passionatelyADV
V likes

DET

the

DET

man

passionatelylikes

car

DET N

G S NP VPCFG

NP

 VP V NP

VP ADV

V ADVVP

 DET the
 N man / car

N NS

VP

V NP N

NP

VP

FIGURE 1.1 Domain of locality of a context-free grammar

The five rules on the right are lexicalized; that is, they have a lexical anchor.
The rules on the left are not lexicalized. The second, the third, and the fourth rule
on the left are almost lexicalized, in the sense that they each have at least one
preterminal category (V in the second rule, ADV in the third rule, and DET and
N in the fourth rule); that is, by replacing V by likes, ADV by passionately, and
either DET by the or N by man, these three rules will become lexicalized. However,
the first rule on the left (S → NP V P) cannot be lexicalized, not certainly by man.

Can a CFG be lexicalized that is, given a CFG, G, can we construct another
CFG, G′, such that every rule in G′ is lexicalized and T (G), the set of (sentential)
trees (that is, the tree language of G) is the same as the tree language T (G′) of G′?
Of course, if we require that only the string languages of G and G′ be the same (that
is, they are weakly equivalent) then any CFG can be lexicalized. This follows from
the fact that any CFG can be put in the Greibach normal form (see Linz, 2001)
where each rule is of the form A→ w B1 B2 ... Bn where w is a lexical item and the
B′s are nonterminals.1 We call this weak lexicalization. The lexicalization we are
interested in requires the tree languages (that is, the set of structural descriptions)
to be the same (that is, strong equivalence). We call this strong lexicalization. It is

4 Srinivas Bangalore and Aravind Joshi

easily seen, even from the example in figure. 1.1, that a nonlexicalized CFG cannot
be necessarily strongly lexicalized by another CFG. Basically this follows from the
fact that the domain of locality of CFG is a one level tree corresponding to a rule
in the grammar (for detail, see Joshi and Schabes, 1997). In section 1.2, we will
consider lexicalization of CFG by larger (extended) domain of locality.

Before proceeding, it would be helpful to review certain definitions. The
primitive structures of a formalism (also called elementary structures or elementary
trees, as special cases) provide a local domain for specifying linguistic constraints
(pieces of linguistic theory) in the sense that if the constraints are specifiable by
referring to just the structures that are associated with the elementary structures
then it is specifiable over the domain of these elementary structures. Therefore,
we refer to the domains corresponding to the elementary structures as domains of
locality. Formalism A is said to provide an extended domain of locality as compared
to a formalism B if there is a linguistic constraint that is not specifiable in the local
domains associated with B but which is specifiable in the local domains associated
with A. The goal of the CLSG approach is to look for a formalism that provides
local domains large enough so that, in principle, all linguistic constraints (pieces
of linguistic theory) can be specified over these local domains. In the conventional
approach (e.g., CFG-based) the specification of a constraint is often spread out
over more than one local domain, and thus the specification of a constraint is
intertwined with how the local domains are composed by the grammar; in other
words, specification of a constraint will require specification of recursion, resulting
in an effectively unbounded domain. In contrast, in the CLSG approach we seek a
system with extended (but still finite) domains of locality capable of specifying the
linguistic constraints over these extended domains. Thus, recursion does not enter
into the specification of the constraints. We call this property as factoring recursion
away from the domains of locality.

γ:

β

Xβ:
X

α:

X

FIGURE 1.2 Substitution

1.2 Lexicalization of CFGs by Grammars with Larger
Domains of Locality

Now we can ask the following question. Can we strongly lexicalize a CFG by a
grammar with a larger domain of locality? Figure 1.2 and figure 1.3 show a tree
substitution grammar where the elementary objects (building blocks) are the three
trees in figure 1.3 and the combining operation is the tree substitution operation

Introduction 5

NP

peanuts

V NP

S

VP

likes

CFG G S NP VP
 VP V NP

 NP Harry
 NP peanuts

NP

Harry

 V likes

NP

α2 α3TSG G’ α1

FIGURE 1.3 Tree substitution grammar

shown in figure 1.2. Note that each tree in the tree substitution grammar (TSG), G′

is lexicalized; that is, it has a lexical anchor. It is easily seen that G′ indeed strongly
lexicalizes G. However, TSGs fail to strongly lexicalize CFGs in general. We show
this by an example. Consider the CFG, G, in figure 1.4 and a proposed TSG, G′. It
is easily seen that although G and G′ are weakly equivalent they are not strongly
equivalent. In G′, suppose we start with the tree α1; then by repeated substitutions
of trees in G′ (a node marked with a vertical arrow denotes a substitution site),
we can grow the right side of α1 as much as we want but we cannot grow the left
side. Similarly, for α2 we can grow the left side as much as we want, but not the
right side. However, trees in G can grow on both sides. In order for a tree to grow
on both sides, the distance between the lexical anchor of a tree, a, and the root
of the tree, S, must become arbitrarily large. Substitution makes a tree grow only
at the leaves of the tree and cannot make it grow internally. Hence, the TSG, G′,
cannot strongly lexicalize the CFG, G (Joshi and Schabes, 1997). Thus, even with
the extended domain of locality of TSGs, we cannot strongly lexicalize CFGs as
long as substitution is the only operation for putting trees together.

We now introduce a new operation called adjoining, as shown in figure 1.5.
Adjoining involves splicing (inserting) one tree into another. More specifically, a
tree β is inserted (adjoined) into the tree α at the node X , resulting in the tree γ.
The tree β, called an auxiliary tree, has a special form. The root node is labeled with
a nonterminal, say X , and on the frontier there is also a node labeled X called the
foot node (marked with *). There could be other nodes (terminal or nonterminal) on
the frontier of β, the nonterminal nodes marked as substitution sites (with a vertical
arrow). Thus, if there is another occurrence of X (other than the foot node marked
with *) on the frontier of β, it will be marked with the vertical arrow, and that will
be a substitution site. Given this specification, adjoining β to α at the node X in α
is uniquely defined. Adjoining can also be seen as a pair of substitutions as follows:
The subtree at X in α is detached, β is substituted at X , and the detached subtree is

6 Srinivas Bangalore and Aravind Joshi

α1

S

CFG G

α2TSG G’

S S S
 S

(nonlexical)
(lexical)

S

S S

S

S

α3 S

a

a a

a

FIGURE 1.4 A tree substitution grammar

X

X*

X

X

X

α β γ

β

FIGURE 1.5 Adjoining

Introduction 7

, and
 indicated by an

S

S

aa

a SS

S

S

S*S* a

aa

a

Sα3

S

γ1.

γat the S node, we have

arrow, we have

 γat the S node in
to
α1

α1
then adjoining

α3Adjoining

γ1γ

a a

S

SS

α1

S

α1 SS

 S
S S S

G’TSG α2

GCFG

FIGURE 1.6 Adjoining arises out of lexicalization

8 Srinivas Bangalore and Aravind Joshi

then substituted at the foot node of β. A tree substitution grammar when augmented
with the adjoining operation is called a tree-adjoining grammar (lexicalized tree-
adjoining grammar, because each elementary tree is lexically anchored). In short,
LTAG consists of a finite set of elementary tree, each lexicalized with at least one
lexical anchor. The elementary trees are either initial or auxiliary trees. Auxiliary
trees have been defined already. Initial trees are those for which all nonterminal
nodes on the frontier are substitution nodes. It can be shown that any CFG can
be strongly lexicalized by an LTAG (Joshi and Schabes, 1997).

In figure 1.6, we show a TSG, G′, augmented by the operation of adjoining,
which strongly lexicalizes the CFG, G. Note that the LTAG looks the same as the
TSG considered in figure 1.4. However, now trees α1 and α2 are auxiliary trees
(foot node marked with *) that can participate in adjoining. Since adjoining can
insert a tree in the interior of another tree, it is possible to grow both sides of
the tree α1 and tree α2, which was not possible earlier with substitution alone. In
summary, we have shown that by increasing the domain of locality we have achieved
the following: (1) lexicalized each elementary domain, (2) introduced an operation
of adjoining, which would not be possible without the increased domain of locality
(note that with one level trees as elementary domains, adjoining becomes the same
as substitution, since there are no interior nodes to be operated upon), and (3)
achieved strong lexicalization of CFGs.

transitive

object extraction

S

NP VP

V NP

likes

S

NP(wh) S

NP VP

V NP

likes ε

α1 α2

FIGURE 1.7 LTAG: Elementary trees for likes

1.3 Lexicalized Tree-Adjoining Grammars

Rather than give formal definitions for LTAG and derivations in LTAG, we will give
a simple example to illustrate some key aspects of LTAG.2 We show some elementary
trees of a toy LTAG grammar for English. Figure 1.7 shows two elementary trees
for a verb such as likes. The tree α1 is anchored on likes and encapsulates the
two arguments of the verb. The tree α2 corresponds to the object extraction

Introduction 9

construction. Since we need to encapsulate all the arguments of the verb in each
elementary tree for likes, for the object extraction construction, for example, we
need to make the elementary tree associated with likes large enough so that the
extracted argument is in the same elementary domain. Thus, in α2 the node for
NP (wh) (the extracted argument) has to be in the tree for likes. Further, there is a
dependency between the NP (wh) node and the NP node, which is the complement
of likes (that is, to the right of V dominating likes), and this dependency is local to
α2. The tree α2 shows not only that NP (wh) is an argument of likes but also that
it is large enough to indicate a specific structural position for that argument.

Therefore, in principle, for each“minimal”construction in which likes can appear
(for example, subject extraction, topicalization, subject relative, object relative,
passive, etc.) there will be an elementary tree associated with that construction.
By minimal we mean that all recursion has been factored away. This factoring of
recursion away from the domain over which the dependencies have to be specified is
a crucial aspect of LTAGs as they are used in linguistic descriptions. This factoring
allows all dependencies to be localized in the elementary domains. In this sense,
there will, therefore, be no long-distance dependencies as such. They will all be local
and will become long-distance on account of the composition operations, especially
adjoining. This will become clear as soon as we describe the derivation in figure 1.8.

*S

S

V

likes

S

VPNP

V

S

V

NP VP

S

does

ε

β2

α5α4α3

β1

NP(wh)

α2

adjoining

substitution

Harry Billwho

*S

think

NP NPNP

NP

FIGURE 1.8 LTAG derivation for who does Bill think Harry likes

Figure 1.9 shows some additional elementary trees; trees α3, α4, and α5 and
trees β1 and β2. The β trees with foot nodes marked with * will enter a derivation
by the operation of adjoining. The α trees enter a derivation by the operation of
substitution.3

10 Srinivas Bangalore and Aravind Joshi

NP

NP

*

*

β1 S

VP

V

think

β2 S

V

does

α3 NP

Harrywho

S

S

α4 α5 NP

Bill

FIGURE 1.9 LTAG: Sample elementary trees

A derivation using the trees α2, α3, α4, α5, β1, and β2 is shown in figure 1.8.
The trees for who and Harry are substituted in the tree for likes at the respective
NP nodes, at node addresses 1 and 2.1 in α2. The tree for Bill is substituted in
the tree for think at the NP node at the node address 1 in β1. The tree for does
is adjoined to the root node (address 0) of the tree for think tree (adjoining at the
root node is a special case of adjoining), and finally the derived auxiliary tree (after
adjoining β2 to β1) is adjoined to the indicated interior S node of the tree α2 at the
address 2 in α2. This derivation results in the derived tree for

Who does Bill think Harry likes

as shown in figure 1.10. Note that the dependency between who and the complement
NP in α2 (local to that tree) has been stretched in the derived tree in figure 1.10.
It has become long distance. However, it started out as a local dependency. A key
property of LTAGs is that all dependencies are local, that is, they are specified in
the elementary trees. They can become long distance as a result of the composition
operations. Figure 1.10 is the conventional tree associated with the sentence.

However, in LTAG there is also a derivation tree, the tree that records the
history of composition of the elementary trees associated with the lexical items in
the sentence. This derivation tree is shown in figure 1.11. The nodes of the tree
are labeled by the tree labels such as α2 together with its lexical anchor likes4. The
number on an edge of a derivation tree refers to the node address in a tree into which
either a substitution or adjoining has been made. Thus, for example, in figure 1.11
the α3(who) tree is substituted at the node with address 1 in the tree α2(likes), the
tree β1(thinks) is adjoined at the address 2 in the tree α2(likes), and so on. Solid
edges denote substitution, and dotted edges denote adjoining.

The derivation tree is the crucial derivation structure for LTAG. It records the
history of composition in terms of the elementary trees (primitive building blocks)

Introduction 11

S

NP

S

VP

S

S

NP VP

NP

V

NP

V

Harry V

ε

Bill

who

does

think

likes

FIGURE 1.10 LTAG derived tree for who does Bill think Harry likes

of LTAG. The derived tree in figure 1.10 does not indicate what the component
elementary trees are for the final derived tree. It should be clear that from the
derivation tree we can always obtain the derived tree by performing the substitutions
and adjoinings indicated in the derivation tree. So in this sense the derived tree is
redundant.

Further, for semantic computation the derivation tree (and not the derived tree)
is the crucial object. Compositional semantics is defined on the derivation tree. The
idea is that for each elementary tree there is a semantic representation associated
with it, and these representations are composed using the derivation tree. Since the
semantic representation for each elementary tree is directly associated with the tree,
there is no need to reproduce necessarily the internal hierarchy in the elementary
tree in the semantic representation (Joshi and Vijay-Shanker, 1999; Kallmeyer and
Joshi, 1999; Joshi et al., 2003). This means that the hierarchical structure internal
to each elementary tree need not be reproduced in the semantic representation. This
leads to the so-called flat semantic representation, that is, the semantic expression
associated with the sentence is essentially a conjunction of semantic expressions
associated with each elementary tree.5 Of course, relevant machinery has to be
provided for scope information (for details, see Kallmeyer and Joshi, 1999). The
semantics need not be compositional at the level of the elementary trees. It is,
however, compositional at the level of the derivation tree, i,e, at the level at which
the elementary trees are assembled. This aspect of the architecture is also helpful
in dealing with some of the noncompositional aspects, as in the case of rigid and
flexible idioms (see Abeillé, 2002, chap. 1; Stone and Doran, 1999).

12 Srinivas Bangalore and Aravind Joshi

1

0 1

2

2.1

α2

(Bill)(does)

(Harry)(who) (think)

(likes)

α5β2

β1 α4α3

FIGURE 1.11 LTAG derivation tree

1.4 Supertagging

The elementary trees associated with a lexical item can be treated as if they are more
informative parts-of-speech (super POS (parts-of-speech) or supertags) in contrast
to the standard POS such as V (verb), N (noun), and so on. Now, it is well known
that local statistical techniques can lead to remarkably successful disambiguation of
standard POS. Can we apply these techniques for disambiguating supertags, which
are very rich descriptions of the lexical items? If we can, then, indeed, this will lead
to almost parsing. This approach is called supertagging (Joshi and Srinivas, 1994b;
Srinivas and Joshi, 1998).

In figure 1.12, two elementary trees associated with the lexical item likes are
shown. These are the same trees we have seen before. However, now we are going to
regard these trees as super part-of-speech (supertags) associated with likes. Given
a corpus parsed by LTAG grammar we can compute the statistics of supertags,
statistics such as unigram, bigram, and trigram frequencies. Interestingly, these
statistics combine not only lexical statistics but the statistics of constructions (as
represented by the elementary trees) in which the items appear, thus combining
lexical statistics with the statistics of the linguistic environments in which the lexical
items appear.

Thus, for example, consider the string

The purchase price includes two ancillary companies

as shown in figure 1.13. The supertags associated with each word appear on top of
that word. Some words have only only one supertag associated with them and others
have more than one. In the current system there are about 15 to 20 supertags per
word on the average, so there is a very high level of local ambiguity. In figure 1.14, the
same supertags are shown for each word; however, for each word one supertag has
been identified (in a box). This is the correct supertag for this word in the sense that
this is the supertag associated with this word in the correct parse of this sentence.
Suppose we are able to find the correct supertag for each word in this sentence by

Introduction 13

S

NP↓ VP

V

likes

NP↓

S

NP i↓ S

NP↓ VP

V

likes

NP

ε i

transitive object extraction

Some other trees for likes: subject extraction, topicalization, subject relative, object
relative, passive, and so on.

FIGURE 1.12 Two supertags for likes

applying local statistical disambiguation techniques; then for all practical purposes
we will have parsed the sentence. It is not a complete parse because we have not
put the supertags together; hence we call it an almost parse.

A supertagging experiment was carried out using trigrams of supertags and
techniques similar to the standard POS disambiguation techniques (Joshi and
Srinivas, 1994a). The corpus used was the Wall Street Journal Corpus (WSJ). With
a training corpus of 1 million words and a test corpus of 47,000 words, the baseline
performance was 75% (that is, 75% of the words received the correct supertag). The
baseline corresponds to the case when the supertag chosen for a word is just the most
frequent supertag for this word. We know from the performance of disambiguators
for the standard POS that the baseline performance is 90% or better. The lower
baseline performance for supertagging is due to the fact that the local ambiguity
is very high (about 15 to 20 on the average) in contrast to the local ambiguity
of standard POS, which is about 1.5 for English. The performance of the trigram
supertagger, on the other hand, is 92%. The improvement from 75% to 92% is indeed
very remarkable. This means that 92% of the words received the correct supertag.
More recent experiments based on other machine learning techniques have pushed
the performance to about 93% (Chen and Vijay-Shanker, 2000; Shen and Joshi,
2003).6

Of course, more can be said about this supertagging approach. There are
techniques to improve the performance and to make the output look more like
a complete parse. We will not discuss these aspects; rather, we will talk about
the abstract nature of supertagging and its relevance to the use of the CLSG
approach. In supertagging we are working with complex (richer) descriptions of
primitives (lexical items in our case). The descriptions of primitives (lexical items
in our case) are complex because we try to associate with each primitive all

14 Srinivas Bangalore and Aravind Joshi

Sr

NP0↓ VP

V

ε

NP1

N

purchase

NP

N

price

Sq

NP↓ Sr

NP0↓ VP

V

includes

NP1
NA

ε

S r

NP 0↓ VP

V

ε

AP1

A

ancillary

NP

N

companies

α1 α2 α3 α4 α5

NP

D

the

NP*

Nr

N

purchase

Nf*

Sq

NP↓ Sr

NP0

ε0

VP

V

ε

NP1

N

price

Sr

NP0
NA

ε

VP

V

includes

NP1↓

DetP r

D

two

DetP f*

Nr

A

ancillary

Nf*

Sq

NP↓ Sr

NP0

ε0

VP

V

ε

NP1

N

companies

β1 β2 α6 α7 β3 β4 α8

NP

N

purchase

Sr

NP0↓ VP

V

ε

NP1

N

price

S

NP0↓ VP

V

includes

NP1↓

Sq

NP↓ Sr

NP0

ε0

VP

V

ε

AP1

A

ancillary

NP

N

companies

α9 α10 α11 α12 α13

...
...

...
...

...

NP

D

the

NP*

Nr

N

purchase

Nf*

NP

N

price

S

NP0↓ VP

V

includes

NP1↓

DetP r

D

two

DetP f*

Nr

A

ancillary

Nf*

NP

N

companies

β1 β2 α2 α11 β3 β4 α13

the purchase price includes two ancillary companies.

FIGURE 1.13 A selection of the supertags associated with each word of the sentence: the
purchase price includes two ancillary companies

Introduction 15

α1 α2 α3 α4 α5
β2 α6 α7 β4 α8

β1 α9 α10 α11 β3 α12 α13
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

ancillary companiesthe purchase price includes two

- Select the correct supertag for each word -- shown boxed

- Correct supertag for a word means the supertag that corresponds

 to that word in the correct parse of the sentence

FIGURE 1.14 A sentence with the correct supertag for each word

information relevant to that primitive. Making descriptions more complex has
two consequences: (1) local ambiguity is increased, that is, there are many more
descriptions for each primitive, however, (2) these richer descriptions of primitives
locally constrain each other. There is an analogy here to a jigsaw puzzle—the
richer the description of each piece the better, in the sense that there are stronger
constraints on what other pieces can go together with a given piece. Making the
descriptions of primitives more complex allows us to compute statistics over these
complex descriptions but, more importantly, these statistics are more meaningful
because they capture the relevant dependencies directly (for example, word-to-word
dependencies where each word is the lexical anchor of some supertag, and word-
to-construction dependencies). Local statistical computations over these complex
descriptions lead to robust and efficient processing. Supertagging by itself is not
full parsing. However, parsing a sentence already supertagged is far more efficient
(faster), on the average, as compared to parsing without supertagging. Supertagging
is thus an example of a local computation on complex descriptions. Psycholinguistic
relevance of supertagging is described in section 1.5.

These considerations are directly relevant to other domains, such as AI. We can
illustrate this by pointing out interesting relationships to the well-known algorithm
in Waltz (1975) for interpreting line drawings. What Waltz did was to make the
descriptions of vertices more complex by adding information about the number
and types of edges incident on a vertex. Again, there is an analogy here to a jigsaw
puzzle: the richer the description of a piece the better. By making the descriptions of
vertices more complex, the local ambiguity was increased, for example, an L junction
(a particular kind of junction in the taxonomy of junctions of edges) has about
92 physically possible labelings. However, local computations on these complex
descriptions are adequate to rapidly disambiguate these descriptions, leading to
efficient computation.

16 Srinivas Bangalore and Aravind Joshi

Data Oriented Parsing (DOP) (Bod et al., 2003) is another framework that
uses richer descriptions that extend the domain of locality of constraints. In this
approach, all possible cuts of a parse tree are maintained and analysis of a sentence
proceeds by pasting these structures together and computing the most probable
derivation. The structures, however, need not be lexicalized, and the tree cuts
would typically need not result in a linguistically meaningful structure. Along the
lines of extending the domain of locality of CFG rules, research has been carried
out on using richer (tree-local) features in machine learning techniques applied to
statistical natural language parsing (Magerman and Marcus, 1991; Black et al.,
1993; Magerman, 1995; Collins, 1996; Ratnaparkhi, 1997; Charniak, 2000). These
features might be regarded as a bundle of constraints anchored on a lexical item just
as supertags. Arbitrary feature co-constraints can be computed using tree-kernels
as shown in Collins and Duffy (2002). However, in these approaches recursion is
not factored out from the domain over which the constraints operate. As a result,
feature contexts that only differ due to recursive elements are not identified leading
to a large number of contexts and consequently to sparseness of data and lack of
model portability issues.

1.5 Supertags in Psycholinguistic Models

In this section, we will discuss the implications of the TAG architecture for certain
processing issues. These pertain to using supertags to make fine-grained distinctions
between lexical and structural ambiguities and their relevance to processing.

Recently there has been increasing convergence of perspectives in the fields of
linguistics, computational linguistics, and psycholinguistics, especially with respect
to the representation and processing of lexical and grammatical information. More
specifically, this convergence is due to a shift to lexical and statistical approaches to
sentence parsing. The particular integration of lexical and statistical information
proposed in Kim et al. (2002) is highly relevant from the perspective of the LTAG
architecture. As we saw in section 1.3, LTAG associates with each lexical item
one or more elementary structures, which encapsulate the syntactic and associated
semantic dependencies. The computational results in supertagging as described
earlier in section 1.4 show that much of the computational work of linguistic analysis,
which is traditionally viewed as the result of structure building operations can be
viewed as lexical disambiguation in the sense of supertag disambiguation. If the
supertagging model is integrated in a psycholinguistics framework, then one would
predict that many of the initial processing commitments of syntactic analysis are
made at the lexical level in the sense of supertagging. The model proposed in Kim
et al. (2002) is an integration of the Constraint-Based Lexicalist Theory (CBL)
(MacDonald et al., 1994), where the lexicon is represented as supertags with their
distributions estimated from corpora as in the supertagging experiments described
earlier (section 1.4).

For example, in this model, there is a distinction between the prepositional
phrase attachment ambiguity (PP ambiguity) as in (1) below

Introduction 17

(1) I saw the man with a telescope

and the PP attachment ambiguity as in (2) below

(2) The secretary of the general with red hair

In the first case, the PP either modifies a noun phrase, the man, or a verb phrase
VP, headed by saw. There are two supertags associated with the preposition with, as
in figure 1.15, one with the foot and root nodes being NP (supertag β1) or both being
VP (supertag β2). That is, the ambiguity is resolved if we pick the correct supertag
for with anchored on the preposition with. Thus, this PP attachment ambiguity will
be resolved at the lexical level. However, in the second case in both readings of (2)
the supertag associated with with is the one whose root and foot nodes are both
NP. Thus, in this case, the ambiguity will not be resolved at the lexical level. It can
only be resolved at the level when the attachment is computed.

β1
NP

NP∗ PP

P

with

NP↓

β2
VP

VP∗ PP

P

with

NP↓

FIGURE 1.15 Two supertags for with

The first PP attachment ambiguity is not really an attachment ambiguity. It
should be resolved at an earlier stage of processing. In the second case it will be
resolved at a later stage. Similarly, the ambiguity associated with a verb such as
forgot, because it can take either an NP complement as in (3) below

(3) The student forgot her name

or a VP complement as in (4) below

(4) The student forgot that the homework was due today

is a lexical (supertag) ambiguity and need not be viewed as a structural ambiguity.
Kim et al. (2002) present a neural net based architecture using supertags and
confirm these and other related results.

18 Srinivas Bangalore and Aravind Joshi

1.6 Outline of the Book

As discussed in the preceeding sections, the perspective of viewing the elementary
trees of LTAG as supertags has provided novel and interesting insights into
computational and psycholinguistic approaches to language processing. During this
past decade, this theme has been explored in different grammar formalisms, and
the consequences of such a localization for grammar development as well as natural
language applications have been extensively studied. This book is a collection of
some of the research that investigates this theme. We expect that this book will
be of special interest to computational linguists and researchers in speech and
language processing for its perspective on the representation and its consequences on
computation of linguistic structure. For the machine learning community interested
in language applications, we expect this book to provide an opportunity for exploring
novel machine learning techniques that can exploit the richer feature space provided
by supertag representations. The close coupling of lexical and syntactic information
afforded by the supertag representation and its impact on language processing
would be of interest to researchers of psycholinguistics interested in human sentence
processing.

The book is broadly organized into five parts. The first part highlights issues
related to supertags in LTAGs such as the creation and organization of supertags.
Research concerning the models for supertag disambiguation and their relation to
parsing in the context of LTAG supertags constitute the second part of the book.
The third part presents different instantiations of the notion of supertags in a range
of grammar formalisms. Research work on some of the linguistic and psycholinguistic
issues related to supertags constitute the fourth part. And finally, some of the speech
and language applications that exploit supertags are highlighted in the last part of
the book.

1.6.1 Developing and organizing supertags

The construction of wide-coverage grammars had been a dominant activity in the
natural language processing community during the early nineties. Broad coverage
grammars and parsers were constructed in HPSG (Flickinger et al., 2000),
XTAG (XTAG-Group, 2002), LFG (Butt et al., 2002). These grammar development
projects involved construction of detailed analysis of linguistic phenomena and
encoding them in the concerned formalisms. At the same time, parse-annotated
corpora such as the Penn Treebank (Marcus et al., 1993) and NEGRA (Skut et al.,
1997) were being created. Although the representations used in these treebanks
were relatively shallow compared to the hand-built grammars, they provided a
distributional characterization of the linguistic phenomena as evidenced in the
domain from which the corpus was drawn. The two chapters in this part of the book
discuss different methods for creating and organizing an inventory of supertags that
rely on parsed corpora as well as hand-crafted grammars.

In chapter 2, Xia and Palmer describe methods used to transform the parse-
annotated Penn Treebank corpus into a corpus of LTAG derivations and the

Introduction 19

associated set of supertags. Such an LTAG corpus has been used for training
supertagging models as well as statistical LTAG parsers. This chapter also discusses
the issues related to the extraction of an LTAG grammar in contrast to extracting
a CFG; a key difference is the need to distinguish arguments from adjuncts in an
LTAG grammar. The chapter provides coverage statistics of the extracted grammar,
results of supertagging experiments, using the extracted supertag set as well as the
relation of this work to similar grammar extraction methods.

An alternate method to constructing the inventory of supertags is presented
in the LexOrg system discussed in chapter 3. The motivation for this work is to
factor out the structural redundancy present in the set of supertags and instead
to represent supertags as structures created by composition of tree descriptions
each of which are associated with some linguistic aspect such as subcategorization,
head-modifiers, syntactic variations (e.g., passivization, relativization). The tree
descriptions are represented as formulae in a simplified first-order language and
the model that satisfies these formulae results in the desired set of supertags. This
approach not only compacts the grammar but also provides an abstract specification
for the supertags based on linguistic principles. This abstract specification of
supertags directly allows for rapid creation of supertag sets for new languages. This
chapter discusses the creation of supertag sets for Korean and Chinese languages
and compares them to the English supertag set.

1.6.2 Supertagging and parsing

The chapters in this part of the book explore different models for supertagging and
explicate the relationship between supertagging and parsing.

In chapter 4, Satta reviews lexicalized formalisms such as lexicalized CFG and
TAG. The focus of the chapter is a formal presentation of parsing algorithms for
such lexicalizd formalisms. The crucial observation is that using algorithms designed
for parsing unlexicalized grammars to parse such lexicalized formalisms leads to
inefficient parsing algorithms. As a result of increase in the number of nonterminals
due to lexicalization, the complexity of parsing increases by a factor of n2

resulting in O(n5) parsing complexity for binary branching lexicalized context-free
grammars(LCFG). The chapter reviews an algorithm that reduces the complexity
of LCFG parsing to O(n4) and extends this same algorithm to lexicalized TAGs
resulting in a reduction of complexity from O(n8) to O(n7). In all these complexity
results there is an additional constant factor that is cubic in the number of grammar
primitives. This constant factor typically dominates parsing performance in broad-
coverage natural language grammars. The supertagging approach helps in reducing
this constant factor significantly and improves the speed of the parser dramatically.

Sarkar, in chapter 5, presents two interesting research directions concerning
the use of supertagging. First, the chapter provides quantitative results on how a
lexicalized TAG parser’s efficiency is dependent on syntactic lexical ambiguity and
sentence complexity (defined in terms of the number of clauses in a sentence). The
use of supertagging before parsing is shown to dramatically reduce the syntactic

20 Srinivas Bangalore and Aravind Joshi

lexical ambiguity and radically improve parsing efficiency. A second line of research
presented in the chapter concerns with using the co-training paradigm to bootstrap
parse-annotated corpora. In the co-training paradigm for parsing, two statistical
parsers assign probability scores to their input based on (ideally) conditionally
independent features and produce the same parse output. Given unannotated
sentences, the high scoring parses from one parser are used as training data for
the other parser, thus the two parsers mutually benefit from a growing size of parse
annotated corpus. The chapter presents improvement results in parsing accuracy
using a small amount of annotated corpus in conjunction with two parsers – a
supertagger-based parser and a statistical LTAG parser.

In chapter 6, Shen explains the use of discriminatively trained classification
techniques for supertag disambiguation. The approach described in this chapter
relies on building one classifier for each part-of-speech that predicts the supertag
label given local contextual information such as lexical context, the preceeding
supertag predictions, and the part-of-speech tags. This rich conditioning information
is used to build a log-linear classification model. He further combines the supertags
from a left-to-right disambiguation model with a right-to-left disambiguation to
improve the supertagging accuracy results. In the second part of the chapter, he
contrasts supertags to part-of-speech tags and shows that the richer and detailed
information encoded in the supertags is indeed beneficial in improving the accuracy
on the task of chunking nonrecursive noun phrases.

Models for supertagging have typically relied on estimating statistical models
from annotated corpora. In chapter 7, Boullier presents an alternate approach
to supertagging that exploits the structural constraints of the underlying LTAG
grammar and does not rely on a statistical model for disambiguation. A drawback
in statistical models of supertagging, both one-best and n-best variants, is that they
might eliminate supertags that are necessary for parsing a sentence. The approaches
presented in this chapter guarantee that the correct supertag will not be eliminated
from the set of supertags assigned to a word. Boullier presents different supertaggers
that are modeled using context-free and regular approximations of the LTAG
grammar. The chapter details the construction of the supertaggers and evaluates
the different approximations in terms of their precision of supertag assignment on
the Wall Street Journal corpus. The speed versus precision of the supertaggers are
also explored. An interesting approach of combining the nonstatistical supertagger,
which has 100% recall with a statistical supertagger to improve precision is also
suggested.

Nasr and Rambow in chapter 8 present a nonlexicalized chart parser (GDG)
that uses the output of a supertagger and produces a dependency parse output for
a sentence. In contrast to the Lightweight Dependency Analyser(LDA) (Bangalore,
2000) that uses heuristics to compute links between supertags, the GDG parser
uses probabilities estimated from a parsed corpus to compute the dependency
linkage structure. Also, being a full parser, unlike LDA, a globally consistent linkage
structure is produced. The grammar is encoded as an Recursive Transition Network
(RTN), where each finite-state automaton represents a supertag and a transition

Introduction 21

is labeled by all supertags that can substitute into that supertag at a given node.
Given the supertag sequence or the n-best output from the supertagger, the chart
parser uses the RTN to produce a dependency parse forest from which the first-best
dependency parse is retrieved. The parser is evaluated on the Penn Treebank and
different trade-offs in terms of the supertag ambiguity versus the parser efficiency
and accuracies are explored. There is also a detailed discussion in the chapter on
how this research is different from other recent work in dependency parsing.

1.6.3 Supertags in other related formalisms

The adoption of the notion of supertags by researchers working in different grammar
formalisms is the topic of the third part of the book. Although, as one would
expect, the supertags in these different formalisms result in different representations,
the notion of localized structures provides a unifying theme across the different
formalisms. The differences in encodings of linguistic phenomena in these formalisms
could be an object of future study in its own right.

Combinatory Categorial Grammars (CCG) and Lexicalized Tree-Adjoining
Grammars are perhaps the two most closely related lexicalized grammar formalisms
that have been extensively compared from formal, computational and linguistic
perspectives. In chapter 9, Clark and Curran extend this tradition by presenting
an approach to supertagging using CCG categories and tightly integrating the
supertagger with a CCG parser. Clark and Curran present a maximum entropy
model for CCG supertag disambiguation which is extended to produce multiple
CCG supertags per word. The tight coupling with the parser is novel in the sense
that the parser requests the supertagger more supertags if the parser fails to produce
a spanning analysis. Clark and Curran use a CCG grammar extracted from the Penn
Treebank and train and evaluate the supertagger and parser on standard partitions
of the treebank. The performance of the CCG supertagger is better than that
reported for LTAG supertagger partly due to the size of the supertag sets in these
two grammars. CCG supertag sets are usually smaller than the LTAG supertag sets
due to the difference in granularity of localization in the two grammars. They also
crucially rely on supertagging to reduce the search space during the discriminative
training phase of the CCG parser.

Constraint Dependency Grammars introduced by Maruyama (1990) associates
lexical items with governor and need roles that are filled in by role values that
indicate the dependency relations among the words of a sentence. A parse structure
in these grammars is a consistent assignment of role values to the need roles.
A set of constraints operating on the lexial level (fullfillment of need roles) and
at the sentence level (e.g., each word must have a single governor) are used
to specify the consistency of a parse. The search for a parse proceeds as a
consistraint satisfaction program. In chapter 10, Harper and Wang extend this
grammar framework to accomodate for ambiguity in lexical categories (SuperARVs)
and incorporate probabilistic constraints in order to model parse preferences.
The SuperARVs (super abstract role values) are lexicalized representations and

22 Srinivas Bangalore and Aravind Joshi

encode rich morpho-syntactic information. However, unlike supertags, SuperARVs
do not contain constituency information. Broad-coverage statistical parsers using
SuperARVs extracted from the Penn Treebank are presented in this chapter. Parsing
using the two methods of (a) SuperARV disambiguation followed by dependency
linking and (b) tight integration of SuperARV disambiguation as part of dependency
linking are presented and compared using the Wall Street Journal parsing task.
They also present comprehensive results on large vocabulary speech recognition
and demonstrate the use of structural information as encoded in the SuperARV
grammars improve speech recognition accuracy as compared against n-gram based
language models.

The trade-off between the amount of information that is packed into supertags
(granularity of supertags), the accuracy of supertagging and its relation to parsing
accuracy is investigated in chapter 11. Foth and colleagues investigate the effect
of incorporating ever richer information into supertags. These supertags are
constructed from dependency trees for German that were extracted from the
NEGRA and TIGER corpora. The obvious effect of incorporating richer information
into supertags is an increase in the supertag vocabulary. However, interestingly, this
increase in supertag vocabulary does not directly correlate with the supertagging
error. They show that supertagging using a supertag set that includes direction of
attachment information in a supertag is harder to dismabiguate than a supertag set
which includes complement information in a supertag. Further, the disambiguated
supertag sequence is encoded as weighted constraints and incorporated into a
rule-based weighted constrained dependency grammar parser. The evaluation of
parser output presented in this chapter illustrates that increasing the complexity
of supertags and using the disambiguated supertags to guide the parser continues
to improve the accuracy of the parser. The information encoded in the supertags
counter balances the drop in accuracy of supertag disambiguation with more
complex supertags.

Moot, in chapter 12, describes type-logical grammars, which trace their lineage
to the Adjukiewicz-Bar-Hillel grammars. The analysis/generation of a sentence in
type-logical grammars is viewed as a proof using rules of natural deduction. In order
to account for linguistic phenomena that require more than context-free generative
capacity, modal operators that allow for structural changes of the proof tree are
introduced in this chapter. Following an introduction to type-logical grammars,
Moot introduces the idea of extracting a type-logical grammar from a dependency
parse treebank. He extracts a grammar from a parsed corpus of spoken Dutch
sentences. The grammar extraction procedure is general enough that it could be
directly applied to other dependency annotated treebanks. The grammar, as in
LTAG, is lexicalized and by varying the information present in the type-logical
supertags, Moot shows that the supertag disambiguation can be improved. Given
the complexities of the spoken corpus – disfluencies and ellipses, the supertag set
is quite large compared to other supertag sets and the supertagging accuracy is
correspondingly lower as well.

Introduction 23

In chapter 13, Neumann and Crysmann discuss results on statistical
parsing using a richly annotated German treebank from the Verbmobil
domain. The treebank is annotated using a Head-driven Phrase Structure
Grammar representation. They discuss the extraction procedure that exploits
the head/argument and argument/adjunct distinctions as defined by the HPSG
grammar. The result of the grammar extraction is a lexicalized tree-insertion
grammar (LTIG) and the lexicalized trees are used as HPSG-supertags in a
probabilistic LTIG parser. They report results on parsing German sentences from
the Verbmobil domain and contrast them to previous results obtained on the
NEGRA corpus.

Supertags from the LTAG, CCG, and other formalisms can be viewed as
localizing different kinds of linguistic information into a single elementary object.
The nature and amount of information that is localized vary depending on the
formalism and the linguistic analysis that is adopted in that formalism. It can be
regarded as extending the domain of locality of CFG rules by operating on objects
richer than single level trees. Matsuzaki, Miyao, and Tsujii present an interesting
variant to the question of how to extend the localization of CFG in chapter 14. In
their approach, a CFG nonterminal is enriched with latent annotations that take on
specified range of values. These latent annotation variables and the values do not
bear any linguistic significance, but are used to losen the independence assumptions
in a context-free grammar (a motivation shared by LTAGs). A special case of this
approach is the use of head-word annotation on CFG nonterminals that has been
successfully exploited in statistical parsing research. The chapter discusses in detail
the methods for estimating the parameters of PCFGs with latent annotations and
presents parsing evaluation results as the number latent variables and the value
ranges are varied.

In chapter 15, Bharathi and Sangal discuss a computational framework for
Indian language processing based on Paninian Grammar. Panini had formulated
a theory for Sanskrit language analysis some two thousand five hundred years
ago which has been since extended and adapted for analysis of other Indian
languages. This chapter discusses the adoption and suitability of Paninian theory
for computational analysis of Indian languages particularly due to their relatively
free word order nature. The use of karaka roles helps in interfacing the syntax and
semantic level of representations. Post-position markers help identify word groups
that satisfy the karaka roles and are central to the grammaticality of a sentence.
Each verb is associated with karaka frames that specify mandatory and optional
karakas. The parsing problem is framed as an integer programming problem and
an efficient solution is computed using the bipartite graph-matching algorithm. The
resulting parse is a dependency tree similar to a derivation tree in LTAG, but with
words as nodes and karaka roles as the labels for the edges of the dependency tree.
The similarities between LTAG and Computational Paninian Grammar is explicated
and the use of supertagging as a means of selecting the appropriate karaka frame is
suggested.

24 Srinivas Bangalore and Aravind Joshi

1.6.4 Linguistic and psycholinguistic issues

As discussed in the introductory sections of this chapter, the effect of localization
of dependencies to be specified in a supertag has interesting linguistic and
psycholinguistic implications. In the fourth part of the book, we include work from
two authors who have novel proposals for syntactic analysis that are motivated by
representational (syntax-prosody interface) and human sentence processing issues.

Frank (1992) first enunciated the principles that have been used as a guide
in the construction of elementary trees for a linguistically motivated grammars
in LTAG. The lexical head of an elementary tree is to assign a role to all the
frontier nonterminal nodes in the tree. This limits the size of the elementary tree and
consequently all the modifiers are factored out from this domain of role assignment.
In chapter 16, Frank restates the principle to assert that all the syntactic relations
of a lexical head are expressed in an elementary tree and questions the need
for construction of a global syntactic structure. In this view, the assignment of
the correct elementary structure to words would be sufficient to infer syntactic
information of each word – much like the motivation underlying supertagging. In
this chapter, Frank explores the consequences of not computing a global syntactic
structure for deriving phonological and semantic representations. He proposes that
the phonological representations are computed locally for each elementary tree and
are combined using a merge operation to form a phonological representation for a
sentence.

The relevance of lexicalized grammars for computational analysis of language
has been explored extensively. Lexicalized grammars have also been studied as
appealing representations in the human sentence processing literature (Trueswell
and Tanenhaus, 1994). The domain of locality provided by supertags combined with
their distributional information derived from corpora has been shown to model the
relevant human sentence processing results related to processing preferences and
difficulties (Kim et al., 2002). In chapter 17, Mazzei, Lombardo and Strut explore
the issue of incremental sentence processing using supertag-based elementary
structures. In order to address the apparent lack of delays in structure computation
as evidenced from experimental literature, they propose a strong connectivity
hypothesis. According to this hypothesis, during left to right sentence processing,
each word is incorporated into the evolving syntactic structure immediately. Such a
proposal requires extending the domain of locality of supertags further in order to
allow for the incorporation of a word into the structure computed for the fragment of
a sentence thus far. Also, they develop a dynamic version of TAG called DVTAG and
introduce direction (left, right) sensitive substitution and adjunction opertation in
order to combine the supertag structures. The chapter also describes the extraction
of these larger supertags from annotated corpora and illustrates the size of such
extracted supertag sets. The use of such supertag sets in a parser is left for further
study.

Introduction 25

1.6.5 Speech and language applications

The level of syntactic representation created by the supertagger has been exploited
in a variety of speech and language applications. The enriched tagset is used
for information filtering (Chandrasekhar and Bangalore, 2002), for language
modeling (Srinivas, 1996), and for coreference resolution (Srinivas and Baldwin,
1996). Other interesting speech and language applications that exploit the supertag
representation for semantic role labeling, spoken language understanding in dialog
and mechanisms for input in devices without keyboard are presented in this final
section of the book.

In chapter 18, Chen presents different methods for semantic role labeling using
deep linguistic features and compares their performances against methods that use
only surface linguistic features. Semantic role labeling is the task of identifying
predicate-argument relations and labeling the arguments of the predicates. These
labels are as defined in the Propbank (Penn Treebank with semantic role labels),
annotation guide and represent deep grammatical roles, in contrast to the surface
grammatical roles of subject, direct and indirect object. The chapter builds on the
previous work of extracting LTAG grammars from the Penn Treebank. With the
availability of Propbank, the extracted grammars would contain the role label as
part of the syntactic constituent label. The extracted LTAG grammars are used to
build supertaggers as well as lightweight dependency analyzers for semantic parsing.
This approach is contrasted against a full statistical semantic parsing approach. The
conclusions of these experiments indicate that supertags capture most of the deep
linguistic information that improve the semantic role labeling task performance.
Also, the use of semantic supertags (semantic roles on argument nodes) improves
the performance over an approach of using a syntactic parser and then recovering
the semantic role labels as a second step.

In chapter 19, Harbusch and colleagues discuss two other applications for
supertagging. In the first application, the supertagger is used in the understanding
component of a user-initiated dialog system in a call center. They show that the use
of the supertagger enhances the robustness of the spoken language understanding
component in terms of classifying the user’s request as well as extracting the
task parameters more accurately. The second application presented in this chapter
concerns ambiguous keyboards and multitapping on small devices without a
conventional keyboards. These keyboards cluster characters onto single keys and the
user needs to tap multiple times to select the appropriate character. The method
proposed in this chapter involves allowing the user to tap only once on the multitap
keyboard and to resolve the character ambiguity generated by the single tap using
sentence-based language models. The supertagger is used to provide syntactic
constraints for the reordering of the sentence hypotheses and allows the user to
select the appropriate sentence from the ranked suggestion list. The evaluation
results support the use of supertagger in improving the interaction time compared
to the word-based disambiguation methods.

26 Srinivas Bangalore and Aravind Joshi

1.6.6 Ongoing research related to supertags

There are several research directions related to supertags that are not covered by
the topics of the chapters included in this book. We summarize these briefly in this
section.

The research work on discriminative models for supertagging in conjunction with
efficient statistical tree-insertion grammar parsing is available in MICA, a broad-
coverage, fast English parser. The parser can be downloaded freely (Bangalore
et al., 2009).

While most of the supertag disambiguation discussed in this book are for
sentence analysis, there has been work on using them for sentence generation.
Sentence generation is typically viewed as consisting of content planning, sentence
planning and surface realization steps (Reiter and Dale, 2000) which are usually
hand-crafted for a given application. The content planning step decides on what
is to be conveyed and structures the content for the sentence planner. The
sentence planner uses lexical and syntactic resources in order to convey the
content. The result of sentence planning is then used by the surface realizer to
create a well-formed natural language sentence. In recent work (Langkilde and
Knight, 2000; Corston-Oliver et al., 2002; Bangalore and Rambow, 2000) there
has been interest in creating a broad-coverage, data-driven surface realizer that
could be used across different applications. The approach followed to that end
is to regard the surface realizer as transforming an abstract representation (e.g.,
logical form or underspecified dependency trees) into a natural language sentence
and to use statistical models to achieve this transformation. The supertag-based
approach to a surface realizer followed in FERGUS (Bangalore and Rambow,
2000) uses underspecified (unlabeled) dependency trees as input. The nodes of the
dependency tree are then annotated with supertag labels which provide the lexical
ordering information. Assigning supertags to nodes of the dependency tree requires
supertagging, just as in the case of sentence analysis. Generative and discriminative
models for supertagging have been explored for this task (Bangalore and Rambow,
2000, 2005).

Supertags have been used in a variety of different speech and language
tasks as a means of incorporating syntactic information in a inexpensive manner
without incurring the cost of a full parse. Supertags have recently been used to
improve the quality of phrase tables in phrase-based statistical machine translation
research (Hassan et al., 2007). The authors show that assigning supertags to words
of a phrase and exploiting the constraints encoded in supertags helps in improving
the translation quality over a purely lexical phrase-based approach.

For speech prosody prediction, supertags have been incorporated along with
acoustic information in a maximum-entropy framework (Rangarajan et al.,
2007). The supertag labels are shown to provide discriminative information that
improves the prosody label prediction beyond the lexical information of a sentence.
Furthermore, supertags complement the acoustic information of the speech signal
as well and a combination of lexical, syntactic and acoustic information is shown to

Introduction 27

perform the best in this task. A similar result is shown for dialog act labeling, where
each utterance of a dialog turn is assigned a communicative intent label. Here too,
exploiting the supertag label in addition to the lexical and acoustic information
improves labeling accuracy significantly (Bangalore et al., 2006; Rangarajan et al.,
2007).

Finally, LTAG and CCG formalisms continue to be compared on formal,
linguistic, and computational grounds. While the work of viewing CCG categories
as richer lexical description has been explored in chapter 9, there is also work on
extending the notion of CCG categories to be closer to the notion of supertags.
Supertags associated with a predicate encode not only the arguments of a predicate
but also all the different structural positions the arguments may occupy in various
syntactic constructions in which the predicate participates. Categorial grammars
also encode argument positions, but they do not encode (in the representation of
a category label associated with a predicate) the different structural positions that
the arguments can occupy. These emerge during the various types of compositions
and type-raisings in categorial grammars. In this sense, LTAGs are strongly
lexicalized. Hence although the so-called Combinatory Categorial Grammars (CCG)
(Steedman, 1996) are weakly equivalent to LTAGs (both belonging to the class of
the so-called mildly context-sensitive languages (Joshi, 1985), they are not strongly
equivalent. It is possible to construct a version of CCG that is more like LTAG. This
is achieved by starting with the syntactic type assigned to a predicate by a CCG
and then unfolding it and creating partial proof trees, analogous to the supertags in
LTAG, which are then composed by appropriate rules of composition (inference),
for further details see Joshi and Kulick (1997).

Notes

1. The Greibach form of the rule is related to the categories in a categorial
grammar.

2. In the actual LTAG grammar, each node in an elementary tree is decorated
with attribute value structures (feature structures) that encode various linguistic
constraints specified over the domain of an elementary tree. There is no recursion
in these feature structures. We omit these details here in as much as they are not
essential for our immediate purpose.

3. This distinction between the two types of elementary trees is characterized in
LTAG in terms of initial trees (the α trees) and the auxiliary trees (the β trees).

4. The derivation trees of LTAG have a close relationship to dependency trees,
although there are some crucial differences. The semantic dependencies are the
same, however.

28 Srinivas Bangalore and Aravind Joshi

5. The general notion of flat semantics is related to the notion of minimal
recursion semantics (MRS) (Copestake et al., 1999). MRS has been used in the
semantic computation in the HPSG framwork. In the LTAG framework, the notion
of elementary trees and the derivation tree, which specifies the composition in terms
of the elementary trees, directly provides a representation for computing a flat
semantics.

6. There have been several recent experiments using different methods for
extracting supertags from treebanks. Each of these extraction methods results
in different sizes of supertag tagsets and hence the accuracy of the supertag
disambiguation varies depending on the supertag tageset.

References

Abeillé, A. (2002). Une grammaire électronique du français. CNRS Éditions.

Bangalore, S. (2000). A lightweight dependency analyzer for partial parsing. JNLE,
6(2):113–138.

Bangalore, S., Boullier, P., Nasr, A., Rambow, O., and Sagot, B. (2009). MICA: A
probabilistic dependency parser based on tree insertion grammars (application note).
In Proceedings of Human Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, Companion
Volume: Short Papers, pages 185–188.

Bangalore, S., Fabbrizio, G. D., and Stent, A. (2006). Learning the structure of task-driven
human-human dialogs. In Proceedings of COLING/ACL.

Bangalore, S. and Rambow, O. (2000). Exploiting a probabilistic hierarchical model for
Generation. In COLING, Saarbucken, Germany.

Bangalore, S. and Rambow, O. (2005). Classification of structured descriptions. In
Proceedings of ICASSP, Philadelphia.

Black, E., Jelinek, F., Lafferty, J., Magerman, D. M., Mercer, R., and Roukos, S. (1993).
Towards History-based Grammars: Using Richer Models for Probabilistic Parsing. In
Proceedings of the 31st Conference of Association of Computational Linguistics.

Bod, R., Scha, R., and Sima’an, K. (2003). Data-Oriented Parsing. CSLI.

Butt, M., Dyvik, H., Holloway-King, T., Masuichi, H., and Rohrer, C. (2002). The parallel
grammar project. In Proceedings of COLING-2002 Workshop on Grammar Engineering
and Evaluation.

Chandrasekhar, R. and Bangalore, S. (2002). Glean: Using syntactic information in
document filtering. In Encyclopedia of Microcomputers, pages 111–131. Marcel Dekker.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of NAACL.

Chen, J. and Vijay-Shanker, K. (2000). Automated extraction of the tags from the penn
treebank. In Proceedings of the 6th International Workshop on Parsing Technology
(IWPT), pages 65–76.

Chiang, D. (2000). Statistical parsing with an automatically extracted tree adjoining
grammar. In Proceedings of the Association for Computational Linguistics (ACL) 2000
Meeting.

Collins, M. (1996). A New Statistical Parser Based on Bigram Lexical Dependencies.
In Proceedings of the 34th Annual Meeting of the Association for Computational
Linguistics, Santa Cruz.

References 29

Collins, M. and Duffy, N. (2002). New ranking algorithms for parsing and tagging: Kernels
over discrete structures and the voted perceptron. In ACL.

Copestake, A., Flickinger, D., Sag, I. A., and Pollard, C. (1999). Minimal recursion
semantics: An introduction. Technical report, Stanford University.

Corston-Oliver, S., Gamon, M., Ringger, E., and Moore, R. (2002). An overview of
amalgam: A machine-learned generation module. In Proceedings of INLG-02.

Flickinger, D., Copestake, A., and Sag, I. A. (2000). HPSG analysis of English. In
Wahlster, W., ed., Verbmobil: Foundations of Speech-to-Speech Translation, pages 254–
263. Springer Verlag.

Frank, R. (1992). Syntactic locality and Tree Adjoining Grammar: grammatical, acquisition
and processing perspectives. PhD thesis, University of Pennsylvania, IRCS-92-47.

Hassan, H., Sima’an, K., and Way, A. (2007). Integrating supertagging into phrase-based
statistical machine translation. In Proceedings of ACL 2007, Prague.

Joshi, A. K. (1985). Tree-adjoining grammars: How much context sensitivity is required
to provide reasonable structural descriptions. In D. Dowty, L. K. and Zwicky, A., eds.,
Natural Language Parsing, pages 206–250. Cambridge University Press.

Joshi, A. K., Kallmeyer, L., and Romero, M. (2003). Flexible composition in LTAG:
Quantifier scope and inverse linking. In Proceedings of the International Workshop on
Computational Semantics (IWCS-5), Tilburg.

Joshi, A. K. and Kulick, S. (1997). Partial proof trees as building blocks for a categorial
grammar. Linguistics and Philosophy.

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree adjunct grammars. Journal of
Computer and System Sciences, 10:1:136–163.

Joshi, A. K. and Schabes, Y. (1997). Tree-adjoining grammars. In Rosenberg, G. and
Salomaa, A., eds., Handbook of Formal Languages, pages 69–123. Springer.

Joshi, A. K. and Srinivas, B. (1994a). Disambiguation of Super Parts of Speech (or
Supertags): Almost Parsing. In Proceedings of the 17th International Conference on
Computational Linguistics (COLING ’94), Kyoto, Japan.

Joshi, A. K. and Srinivas, B. (1994b). Disambiguation of super parts of speech (supertags):
Almost parsing. In Proceedings of the 1994 International Conference on Computational
Linguistics (COLING), Kyoto, Japan.

Joshi, A. K. and Vijay-Shanker, K. (1999). Compositional semantics with lexicalized tree-
adjoining grammar (LTAG): How much underspecification is necessary. In Bunt, H. and
Thijsse, E., eds., Proceedings of the Third International Workshop on Computational
Semantics (IWCS-3), pages 131–145.

Joshi, A. K., Vijay-Shanker, K., and Weir, D. J. (1991). The convergence of mildly
context sensitive grammatical formalisms. In Sells, P., Shieber, S., and Wasow, T.,
eds., Foundational Issues in Natural Language Processing. MIT Press.

Kallmeyer, L. and Joshi, A. K. (1999). Factoring predicate argument and scope semantics:
Underspecified semantics with LTAG. In Proceedings of the Twelfth Amsterdam
Colloquium, University of Amsterdam, pages 169–174.

Kaplan, R. and Bresnan, J. (1983). Lexical-functional grammar: A formal system
of grammatical representation. In Bresnan, J., ed., The Mental Representation of
Grammatical Relations. MIT Press.

Kasper, R., Kiefer, B., Netter, K., and Vijay-Shanker, K. (1995). Compilation of HPSG
to TAG. In Proceedings of the Association for Computational Linguistics (ACL), MIT
Press, pages 92–99.

30 Srinivas Bangalore and Aravind Joshi

Kim, A., Srinivas, B., and Trueswell, J. (2002). The convergence of lexicalist perspectives
in psycholinguistic and computational linguistics. In Merlo, P. and Stevenson, S.,
eds., Sentence Processing and the Lexicon: Formal, Computational and Experimental
Perspectives. John Benjamin Publishing.

Kroch, A. (1989). Asymmetries in long distance extraction in a tree-adjoining grammar. In
Baltin, M. and Kroch, A., eds., Alternative conceptions of phrase structure. University
of Chicago Press.

Kroch, A. and Joshi, A. K. (1985). Linguistic relevance of tree-adjoining grammars.
Technical report, Department of Computer and Information Science, University of
Pennsylvania.

Kroch, A. and Santorini, B. (1991). The derived constituent structure of the west germanic
verb raising constructions. In Freiden, R., ed., Principles and parameters in comparative
grammar, pages 269–338. MIT Press.

Langkilde, I. and Knight, K. (2000). Forest-based statistical sentence generation. In
Proceedings of First North American ACL.

Linz, P. (2001). An Introduction to Formal Languages and Automata. Jones and Bartlett.

MacDonald, M., Pearlmutter, N., and Seidenberg, M. (1994). Lexical nature of syntactic
ambiguity resolution. Psychological Review, 101:676–703.

Magerman, D. M. (1995). Statistical Decision-Tree Models for Parsing. In Proceedings of
the 33rd Annual Meeting of the Association for Computational Linguistics.

Magerman, D. M. and Marcus, M. P. (1991). Pearl: A probabilistic chart parser. In
Proceedings of the European Assoc. for Comp. Ling., Berlin.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19.2:313–330.

Maruyama, H. (1990). Constraint Dependency Grammar and its weak generative capacity.
Computer Software.

Pollard, C. and Sag, I. A. (1994). Head-Driven Phrase Structure Grammar. University
Press of Chicago.

Prolo, C. A. (2003). LR parsing for tree-adjoining grammars and its applications to corpus
based natural language parsing. PhD thesis, University of Pennsylvania.

Rambow, O. (1994). Formal and computational aspects of natural language syntax. PhD
thesis, University of Pennsylvania.

Rangarajan, V., Bangalore, S., and Narayanan, S. (2007). Exploiting acoustic and syntactic
features for prosody labeling in a maximum entropy framework. In Proceedings of
NAACL 2007, Rochester.

Ratnaparkhi, A. (1997). A Linear Observed Time Statistical Parser Based on Maximum
Entropy Models. In Proceedings of the Empirical Methods in Natural Language
Processing, New Providence.

Reiter, E. and Dale, R. (2000). Building Natural Language Generation Systems. Cambridge
University Press.

Resnik, P. (1992). Probabilistic tree-adjoining grammars as a framework for statistical
natural language processing. In Proceedings of COLING ’92, Nantes, pages 418–424.

Sarkar, A. (2002). Combining labeled and unlabeled data in statistical natural language
processing. PhD thesis, University of Pennsylvania, Philadelphia.

Schabes, Y. (1992). Stochastic lexicalized grammars. In Proceedings of COLING ’92,
University of Chicago Press, pages 426–432.

References 31

Shen, L. and Joshi, A. K. (2003). A SNoW based supertagger the applications to NP
chunking. In Proceedings of the Association for Computational Linguistics Meeting
(ACL), Sapporo, Japan, pages 89–96.

Skut, W., Krenn, B., Brants, T., and Uszkoreit, H. (1997). An annotation scheme for
free word order languages. In Proceedings of the Fifth Conference on Applied Natural
Language Processing ANLP-97, Washington, DC.

Srinivas, B. (1996). “Almost Parsing” Technique for Language Modeling. In Proceedings
of ICSLP96 Conference, Philadelphia, USA.

Srinivas, B. and Baldwin, B. (1996). Exploiting supertag representation for fast coreference
resolution. In Proceedings of the International Conference on Natural Language
Processing and Industrial Applications (NLP+IA ’96), Moncton, Canada.

Srinivas, B. and Joshi, A. K. (1998). Supertagging: An approach to almost parsing.
Computational Linguistics, 22:1–29.

Stabler, E. P. (1997). Derivational minimalism. In Retore, C., ed., Logical Aspects of
Computational Linguistics, pages 68–95. Springer Verlag.

Steedman, M. J. (1996). Surface Structure and Interpretation. MIT Press.

Stone, M. and Doran, C. (1999). Sentence planning as description using tree-adjoining
grammar. In Procceedings of the Association for Computational Linguistics (ACL)
Meeting, Madrid.

Trueswell, J. and Tanenhaus, M. (1994). Toward a lexicalist framework for constraint-
based syntactic ambiguity resolution. In Clifton, C., Rayner, K., and Frazier, L., eds.,
Perspectives on Sentence Processing. Lawrence Erlbaum Associates.

Vijay-Shanker, K. (1987). A Study of Tree-Adjoining Grammars. PhD thesis, University
of Pennsylvania.

Waltz, D. (1975). Understanding line drawings of scenes with shadows. In Winston, P.,
ed., The Psychology of Computer Vision. McGraw Hill.

Weir, D. J. (1988). Characterizing mildly context-sensitive grammar formalisms. PhD
thesis, University of Pennsylvania.

XTAG-Group (2002). A lexicalized tree-adjoining grammar for English. Technical report,
University of Pennsylvania.

