p. 14, 3rd bullet in inner product definition:

- $\left.\left(a\left\langle v_{2}\right|+b\left\langle v_{3}\right|\right)\left|v_{1}\right\rangle=a\left\langle v_{2} \mid v_{1}\right\rangle+b\left\langle v_{3} \mid v_{1}\right\rangle\right)$
should be
- $\left.\left\langle v_{1}\right|\left(a\left|v_{2}\right\rangle+b\left|v_{3}\right\rangle\right)=a\left\langle v_{1} \mid v_{2}\right\rangle+b\left\langle v_{1} \mid v_{3}\right\rangle\right)$
p. 22, 3 lines from bottom there is an extra ' s ': "normalizations factor" should be "normalization factor"
p. 23, 3 lines from bottom: \mathbf{C} should be \mathbf{R}^{3}
p. 24, Figure 2.6: The zero at the bottom of the picture should be $|0\rangle$.
p. 25, Section 2.5.3, paragraph 2, line 1: "equation is linear" should be "equation is linear and homogeneous"
p. 25, Section 2.5.3, paragraph 2, line 10: "nothing more ... complex vector spaces" should be "nothing more . . complex vector spaces equipped with inner product"
p. 168 , Figure 8.1 caption: Replace 211 with 11 to obtain $X=x \mid 11^{x} \bmod 21=8$.
p. 281, first full paragraph, sentence containing equation 11.9: Switch "express" and "to."
p. 312, "Lamont" should be "Lomont"
p. 360, "Lamont" should be "Lomont"
p. 45, Ex. 3.10a.: "the inner product of $|v\rangle$ and $|w\rangle$ " should be "the inner product $\langle w \mid v\rangle$ of $|v\rangle$ and $|w\rangle "$
p. 45 , Ex. 3.10a.: the last term $\bar{c}_{2} a_{2}$ should be $\bar{c}_{n} a_{n}$.
p. 46 Exercise 3.14 a . The second term in the basis is missing a $\frac{1}{\sqrt{2}}$: the basis should be $B=\left\{\frac{1}{\sqrt{2}}(|0\rangle+\mathbf{i}|1\rangle), \frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle)\right\}$.
p. 70. Ex. 4.22 : $1 / 2$ should be $\frac{1}{\sqrt{2}}$.

