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1A Primer on Control Engineering

Brian P. Ingalls and Pablo A. Iglesias

The field of control engineering grew out of the need to analyze and design regula-

tory mechanisms. To meet this need, a vast array of mathematical tools has been

developed. Because of the conceptual similarities between engineering and biological

regulatory mechanisms, it is not surprising that these tools are now being used to an-

alyze biochemical and genetic networks. Control Theory and Systems Biology brings

together some examples of this work. This chapter introduces background material

that will be helpful in reading the chapters to follow.

1.1 System Modeling

The current volume addresses the dynamic behavior of biochemical and genetic net-

works. This time-varying behavior is often left implicit in the cartoon models of bio-

logical networks that are standard in the biological literature. Though such models

are static, they typically attempt to describe interactions that evolve over time. For

example, the activation of a transcription factor does not lead to an immediate in-

crease in the target protein, but instead produces this e¤ect through a sequence of

events, each of which unfolds on a particular time scale. Our descriptions of these

interactions indicate how the rate of a process, such as expression, degradation,

phosphorylation, or cleavage, depends on the availability of an a¤ector species, such

as a transcription factor, metabolite, or enzyme.

1.2 Di¤erential Equation Description of Biochemical Reaction Networks

The most successful way to describe quantitatively dynamic processes is with models

based on di¤erential equations. The simplest such models, consisting of ordinary dif-

ferential equations (ODEs), can be applied to biochemical networks only under two

key assumptions, however.



The first assumption, called the continuum hypothesis, allows us to measure species

abundance as a continuously changing concentration rather than a discrete number

of molecules. This is usually considered a valid assumption provided the number of

molecules is not less than about 1,000 (corresponding to a concentration of about 10

nM in a cell of volume of 0.1 picoliter). If the number drops well below 1,000, it is

advisable to use a formalism that allows a discrete measure of the molecule number

and that captures the randomness that is significant on this scale. Such stochastic

methods are the subject of chapter 2.

The second required assumption is that the reactants find one another immediately

and equally, the so-called well-mixed assumption. This is valid provided that the time

scale of the process under investigation is longer than the time scale of di¤usion of its

components. This second assumption can be relaxed through the use of partial di¤er-

ential equations, which are introduced in chapter 3.

Under these assumptions, each of the interactions in a cartoon model such as the

one illustrated in figure 1.1 can be characterized by an appropriate mathematical for-

malism (for example, mass-action or Michaelis-Menten kinetics) and these terms can

be combined into a description of the rate of change of the abundance (that is, con-

centration) of the various species in the model.

In general, given a network with n interacting components, we denote their respec-

tive concentrations by si, for i ¼ 1; . . . ; n. We organize these into a vector:

sðtÞ ¼
s1ðtÞ
..
.

snðtÞ

2
664

3
775:

(In this volume, the shorthand notation s A Rn will sometimes be used to indicate

that s is a vector with n components.) Given a vector-valued function f ¼ ½ f1 . . . fn�T

Figure 1.1
Hypothetical biochemical pathway. Molecules of two interacting species, S1 and S2, are produced with
rates k1 and k2 nMh�1 and are degraded at rates k�1 and k�2 h

�1. Interconversion between the two species
occurs at rates k3 and k�3 nMh�1. Finally, species S1 inhibits the formation of S2 (dashed line).
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whose components describe the rate of change of the concentration of each species

the system dynamics can be described by a di¤erential equation of the form

_ssðtÞ ¼ d

dt
sðtÞ ¼ f ðsðtÞÞ: ð1:1Þ

(Both the Leibniz d
dt

� �
and Newtonian ‘‘overdot’’ ð _ssÞ notation for time derivative will

be used.) The vector sðtÞ of concentrations is referred to as the state of the system

and can be interpreted as the system’s memory: together with the di¤erential equa-

tion (1.1), knowledge of the state at any given time t0 allows us to determine the be-

havior of the system for all future time tb t0.

Example Consider the biochemical system shown in figure 1.1. Denoting the con-

centrations of S1 and S2 by s1 and s2, respectively, the system is described by the fol-

lowing two di¤erential equations:

d

dt
s1ðtÞ ¼ k1 þ k3s2ðtÞ � ðk�1 þ k�3Þs1ðtÞ; ð1:2aÞ

d

dt
s2ðtÞ ¼

k2

1þ k4s
q
1 ðtÞ

þ k�3s1ðtÞ � ðk�2 þ k3Þs2ðtÞ: ð1:2bÞ

We can represent this system with

s ¼ s1

s2

� �
; and f ðsÞ ¼ f1ðs1; s2Þ

f2ðs1; s2Þ

" #
¼

k1 þ k3s2 � ðk�1 þ k�3Þs1
k2

1þ k4s
q
1

þ k�3s1 � ðk�2 þ k3Þs2

2
64

3
75: n

In nearly all cases of interest, the function f does not depend linearly on the state s,

in which case the vector equation (1.1) is known as a set of nonlinear di¤erential

equations. Although, in general, it is not possible to obtain explicit solutions to such

nonlinear equations, the evolution of the system from particular initial states can be

simulated numerically using generic packages such as Matlab or Mathematica, or

programs tailored to biological systems (reviewed by Alves et al. 2006). Alterna-

tively, features of the system behavior can be analyzed directly from the di¤erential

equations, as will be illustrated below.

The points s satisfying

f ðsÞ ¼ 0

are fixed points of the system and are referred to as steady states or (mathematical)

equilibria. Note that the term ‘‘steady state’’ is also used to describe persistent dy-

namic behaviors such as limit cycle oscillations, discussed below.
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1.2.1 Phase-Plane Analysis

Figure 1.2a shows how system behavior is typically visualized by plotting the concen-

trations of the two species (s1 and s2) as functions of time, which is consistent with

an experimental time course. An alternative approach is to plot the time-varying be-

havior on the s1-s2 plane, which is referred to as the phase plane. These plots, called

phase portraits cannot be generated for systems with more than two (or three) spe-

cies. Nevertheless, the enhanced understanding they provide in these cases leads to

valuable insights into more complex networks.

As an example, figure 1.2b shows precisely the same behavior as in figure 1.2a: the

system starts from initial condition ðs1; s2Þ ¼ ð0; 0Þ and converges to the steady state

ðs1; s2ÞAð5:53; 3:37Þ; the plot emphasizes the time-varying relationship between the

two variables, but de-emphasizes the relationship with the time variable t itself. In-

deed, although each point on the curve corresponds to the value ðs1ðtÞ; s2ðtÞÞ at a

particular time instant t, the only time points that can be easily identified are at

t ¼ 0 (where the curve starts) and the longtime behavior t ! y (where the curve

ends).

In figure 1.3, the time courses (or trajectories) corresponding to a number of di¤er-

ent initial conditions are displayed simultaneously. The trajectories begin at di¤erent

Figure 1.2
Evolution of the system described by equation (1.2). (a) The time-varying nature of the concentrations is
emphasized by plotting each species concentration as a function of time, t. (b) The relationship between the
concentrations of the two species is emphasized by plotting them in the s1-s2 plane. The curve starts at the
initial condition and continues until it reaches an equilibrium. The arrowhead indicates progression with
time. The turning points are instances where the phase plot changes direction. Parameters used are k1 ¼ 1
nM h�1, k�1 ¼ 1 h�1, k2 ¼ 20 nM h�1, k�2 ¼ 1 h�1, k3 ¼ 2 h�1, k�3 ¼ 0:4 h�1, k4 ¼ 0:05 nM�1, and
q ¼ 2.
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initial points in the s1-s2 plane and all end (in this case) at the steady state ðs1; s2Þ. By
capturing the behavior of multiple trajectories simultaneously, this single figure pro-

vides an overall impression of how the system behaves which would be di‰cult to

achieve with a time-series plot.

An alternative to drawing many trajectories is to use short arrows to indicate the

direction of motion at each point. The resulting plot, as shown in figure 1.4, is re-

ferred to as a vector field (or direction field ). The trajectories lie parallel to (i.e.,

tangent to) the vector field at each point, and so can be constructed directly by ‘‘con-

necting the arrows.’’ It is sometime useful to consider the analogy with particles sus-

pended in a flowing fluid. The vector field describes the direction of motion of the

fluid. The trajectories are the paths suspended particles would traverse as they are

carried along with the flow.

The direction field can be derived directly from the di¤erential equations—no ex-

plicit solution is needed. For a generic system involving two species s1 and s2,

Figure 1.3
Phase-plane plot for the system of figure 1.1. Each trajectory begins at a di¤erent initial condition. Note
that the trajectories cannot intersect; they can only come together at equilibria.
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d

dt
s1ðtÞ ¼ f1ðs1ðtÞ; s2ðtÞÞ;

d

dt
s2ðtÞ ¼ f2ðs1ðtÞ; s2ðtÞÞ;

the slope of the ðs1; s2Þ trajectory at any point is

ds2
ds1

¼ ds2=dt

ds1=dt
¼ f2ðs1; s2Þ

f1ðs1; s2Þ
:

An arrow is drawn with this slope at each point. (If the denominator in this quotient

is zero, then the arrow has an infinite slope, meaning that it points straight up or

down.)

A key feature of the phase portrait is the set of points at which the trajectories

‘‘turn around,’’ that is, change their direction with respect to one of the axes. These

Figure 1.4
Vector field for the system defined by equation (1.2). The trajectories lie parallel to the arrows.
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are the points at which one of the two variables s1ðtÞ or s2ðtÞ reaches a maximum or

minimum, as shown in figure 1.2a. In this case, the maximum in s2 occurs at time

tA0:61 h, at which point the concentrations are ðs1; s2ÞAð3:46; 4:75Þ. Similarly, a

maximum occurs in s1 at time tA1:85 h, at which point the concentrations are

ðs1; s2ÞAð5:63; 3:42Þ. These points can be identified on the same trajectory in the

phase plane, as shown in figure 1.2b.

Turning points occur whenever the phase plane trajectory is directed either

1. vertically (vector points up or down): d
dt s1 ¼ 0; or

2. horizontally (vector points left or right): d
dt s2 ¼ 0.

The set of points ðs1; s2Þ where the trajectory is vertical satisfies f1ðs1; s2Þ ¼ 0, which

defines the s1-nullcline of the system. Likewise, the equation f2ðs1; s2Þ ¼ 0 defines the

s2-nullcline. Figure 1.5 shows the nullclines for the system described by equation (1.2)

along with a few trajectories and the vector field.

Figure 1.5
Trajectories for the system change direction as they cross the nullclines (dotted lines). Note also that the
vector field points vertically on the s1-nullcline and horizontally on the s2-nullcline.
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It is clear in figure 1.5 that the end point of the trajectories is marked by the inter-

section of the two nullclines. Note that the points ðs1; s2Þ where the nullclines inter-

sect satisfy f1ðs1; s2Þ ¼ f2ðs1; s2Þ ¼ 0 and thus are the equilibria of the system.

Because the nullclines can be generated without solving the di¤erential equations,

they allow direct insight into the dynamic behavior. This type of shortcut is a recur-

ring theme in the analysis of dynamical systems.

1.3 Linear Systems and Linearization

If the function f in equation (1.1) is linear in s, then the system can be written in the

form

d

dt
sðtÞ ¼ AsðtÞ; ð1:3Þ

where A is an n� n matrix.

The assumption of linearity greatly simplifies the analysis of the system. In partic-

ular, analytic expressions for the solution of the di¤erential equations are now avail-

able. In this case, the solution takes the form

sðtÞ ¼ eAðt�t0Þsðt0Þ;

where eA is the matrix exponential (Rugh, 1996).

Unfortunately, except for the simplest of systems, linear models are inappropriate

for describing biochemical or genetic networks. Nevertheless, linear analysis can be

used to understand the behavior of a nonlinear system in regions of the state space

that are near a steady state s, as shown next. We approximate the function f in equa-

tion (1.1) by a linear function that coincides with f at the steady state:

f ðsÞA f ðsÞ þ qf

qs
ðs� sÞ: ð1:4Þ

This approximation represents the first two terms in the Taylor series expansion of f .

The matrix

A ¼ qf

qs

is known as the Jacobian of the system. If s (and hence f ) has n components, then the

Jacobian is an n� n matrix where the i; jth element is the partial derivative of the ith

component of f with respect to the jth element of s, evaluated at the steady state s:

ai; j ¼
qfiðsÞ
qsj

����
s¼s

:
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We introduce an auxiliary variable xðtÞ, which represents the deviation of the spe-

cies concentrations from their steady-state values:

xðtÞ ¼ sðtÞ � s:

Then, because

d

dt
xðtÞ ¼ d

dt
sðtÞ � 0;

and f ðsÞ ¼ 0, the system (1.1) can be rewritten as

d

dt
xðtÞ ¼ d

dt
sðtÞ ¼ f ðsðtÞÞA f ðsÞ þ qf

qs
ðsðtÞ � sÞ ¼ AxðtÞ;

that is,

d

dt
xðtÞ ¼ AxðtÞ: ð1:5Þ

This is referred to as the linearization of equation (1.1).

Figure 1.6
Phase portrait around a stable equilibrium for a nonlinear system (solid lines) and the linearization (dotted
lines).
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The behavior of the linearized system (1.5) can provide considerable information

about the nonlinear model (1.1). In particular, if the matrix A has no eigenvalues

with zero real part and certain other technical conditions hold, then the behavior of

the linear and nonlinear systems agrees whenever the trajectories remain near the

equilibrium (Hartman, 1963; see figure 1.6 for an example).

Thus the linearization describes the qualitative behavior of the system when the

state variables remain ‘‘close’’ to the equilibrium. Although there are results that

give precise bounds on the error made in this approximation, they are generally in-

tractable; we will not pursue them here. Because regulated systems often have the

property that the state remains near the equilibrium, this approximation provides

the central basis for many of the tools of control engineering.

1.4 Stability

The concept of stability is central to the analysis of dynamical systems. Depending

on the particular type of system—for example, whether it is linear or nonlinear,

whether it has inputs or not—there are numerous definitions of what it means for a

system to be stable. In all cases, however, the general idea is that systems are stable if

small perturbations, whether in the initial condition or due to external stimuli, do not

give rise to large sustained changes in the behavior of the system.

Turning to stability in the context of the nonlinear system

d

dt
xðtÞ ¼ f ðxðtÞÞ;

let us suppose that the system has an equilibrium s. We say that the equilibrium is

stable if every initial condition s0 that is near s gives rise to trajectories that stay close

to the equilibrium. A precise definition of what it means to be close involves so-called

d-� arguments (Khalil, 2002), which we will avoid here.

Note that stability does not specifically require that the trajectory tend to the equi-

librium as t ! y, a separate property known as attractivity. When an equilibrium is

both stable and attractive, we say that it is asymptotically stable. Because, in practice,

it is rare for an equilibrium to be stable but not asymptotically stable (the case of

marginal or neutral stability), in the computational biological community the two

terms are often used interchangeably. Where an equilibrium is unstable, nearby tra-

jectories will diverge from the steady state (figure 1.7).

It should be emphasized that stability is not a property of a system but rather of

particular steady states. Nonlinear systems can have multiple equilibria, with varying

stability properties (see chapter 7). In general, all linear systems have a single equilib-
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rium (at the origin) and so the term ‘‘stable system’’ is sometimes used to describe a

linear system for which this equilibrium is stable.

In a standard analogy, stable and unstable states are likened to the valleys and hill

tops of an undulating topography (figure 1.8). The valley bottoms represents stable

equilibria: small perturbations will not let a ball escape and, in the presence of fric-

tion, the ball will return to a resting state at the bottom of the valley. Alternatively,

the peak of a hill represents an unstable equilibrium: any disturbance will make a

ball accelerate away from its rest state. A topography with two valleys would corre-

spond to a bistable system. In this case, we can assign to each stable steady state a

basin of attraction, which is the region in the phase space from which trajectories

approach this point. The dividing line between the two is referred to as a separatrix.

Figure 1.7
Two equilibria, one stable and the other unstable. Trajectories move away from the unstable and toward
the stable equilibrium.

Figure 1.8
Stability and instability of equilibria likened to the behavior of balls on an undulating slope. For balls roll-
ing on the slope depicted here, there are three possible equilibria, corresponding to the valley bottoms (sta-
ble) and the top of the hill (unstable). A ball balanced perfectly on the top of the hill (B) will remain there,
but the slightest perturbation will cause it to roll away. Conversely, a ball in a valley bottom (A or C), if
displaced by a small amount, will return to its resting place.
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1.4.1 Determining Stability for Linear Systems

How can we determine the stability of an equilibrium? For simple systems, we could

draw the vector field and observe the direction of the arrows. For a more generally

applicable method, however, let us first consider the linear case, where n linear di¤er-

ential equations are written in matrix form:

d

dt
xðtÞ ¼ AxðtÞ:

As mentioned earlier, the solution, given an initial state xð0Þ ¼ x0, is

xðtÞ ¼ eAtx0;

which can be expanded in the form

eAtx0 ¼ a1e
l1tv1 þ � � � þ ane

lntvn; ð1:6Þ

where the constants ai depend on the initial condition x0, the li are the eigenvalues of

the matrix A, and the vi are the associated eigenvectors. We have assumed that the

matrix A has n distinct eigenvalues, which is typically the case. The main stability

results stated here hold in the general case (for more detailed discussions, see Rugh,

1996; Khalil, 2002).

Eigenvalues and Singular Values

The n eigenvalues of an n� n square matrix provide a valuable summary of the over-

all matrix structure and are used in a wide array of application areas (Horn and

Johnson, 1985). The eigenvalues of a matrix A are the solutions l of the characteris-

tic equation detðlI � AÞ ¼ 0. In the case of the 2� 2 matrix

A ¼ a11 a12

a21 a22

� �
;

the characteristic equation is quadratic:

l2 � ða11 þ a22Þlþ ða11a22 � a12a21Þ:

Readers may recall that a11 þ a22 and a11a22 � a12a21 are the trace and determinant

of the matrix A, respectively. Thus, in this case, the eigenvalues can be written explic-

itly in terms of these two values:

l1;2 ¼
1

2
traceðAÞG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
traceðAÞ2 � 4 detðAÞ

q� �
:
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For larger matrices, the characteristic equation is less tractable, and iterative numeri-

cal methods are typically employed to find eigenvalues. Closely related to the notion

of eigenvalues are the singular values, which also provide a ‘‘summary’’ of a matrix.

The singular values of an n�m matrix A are defined as the square roots of the eigen-

values of the square matrix ATA. Although, in special cases, the singular values of a

square matrix coincide with its eigenvalues, they generally provide a di¤erent mea-

sure of matrix properties. Singular values will be used to address system robustness

in chapters 9, 10, and 11.

Stability Criteria

The stability of the linear system depends on the behavior of the time-varying terms

eli t that appear in the solution (1.6). In general, eigenvalues are complex numbers;

thus we write

lk ¼ sk þ jok;

where j ¼
ffiffiffiffiffiffiffi
�1

p
. (Note, outside of engineering, the more common notation is

i ¼
ffiffiffiffiffiffiffi
�1

p
.) Recalling Euler’s formula for the exponential of a complex number:

eðsþojÞt ¼ estðcosðotÞ þ j sinðotÞÞ;

we see that the term elktvk will decay to zero asymptotically if and only if the real

part of the eigenvalue ðskÞ is strictly less than zero. If this is true for all eigenvalues

of A, then all solutions tend to zero, and the system is asymptotically stable. In this

case the matrix A is called Hurwitz. Similarly, we say that the polynomial

ln þ an�1l
n�1 þ � � � þ a1lþ a0 ¼ 0

is Hurwitz if all the roots have negative real parts.

Alternatively, if any of the eigenvalues has real part sj greater than zero, then

some trajectories will grow exponentially, thus the origin is unstable. Finally, in the

special case that some of the eigenvalues have real part exactly equal to zero, the

origin cannot be asymptotically stable. It may, however, be (neutrally) stable.

1.4.2 Determining Stability for Nonlinear Systems

We now consider the stability of an equilibrium s of the nonlinear system

d

dt
sðtÞ ¼ f ðsðtÞÞ: ð1:7Þ

In this case, the stability properties of an equilibrium need to be characterized as

local or global. An equilibrium is globally (asymptotically) stable if all trajectories

A Primer on Control Engineering 13



converge to it, no matter what the initial condition (clearly this can only happen if

there is a unique equilibrium), whereas it is locally stable if trajectories must start in

some neighborhood of the equilibrium. In the special case of linear systems, global

stability is implied by local stability.

To determine the local stability properties of an equilibrium, it is enough to con-

sider the stability properties of the system’s linearization. In particular, an equilib-

rium of equation (1.7) is asymptotically stable if all the eigenvalues of the Jacobian,

evaluated at the equilibrium, have negative real part. Conversely, the equilibrium is

unstable if the Jacobian has an eigenvalue with positive real part. If the linearization

is stable but not asymptotically stable (implying that the Jacobian has eigenvalues on

the imaginary axis), then we can draw no conclusion about the stability of the non-

linear system from the linearized analysis.

The characterization of local stability through linearization is known as Lyapu-

nov’s indirect method, named after the nineteenth-century Russian mathematician

Aleksandr Mikhailovich Lyapunov, who developed many of the early concepts of

stability. Lyapunov also provided tests of global stability that can be applied to non-

linear systems. In particular, suppose that a real-valued function VðsÞ exists such that

1: VðsÞb 0 for all s and VðsÞ ¼ 0 if and only if s ¼ 0; and

2:
dVðsðtÞÞ

dt
< 0;

that is, the value of V decreases along trajectories, then the equilibrium is locally

asymptotically stable. If a third condition is also satisfied:

3: VðsÞ ! y as ksk ! y;

then the equilibrium is globally asymptotically stable.

The function V is known as a Lyapunov function. Because energy dissipates

through friction, it can be taken as a Lyapunov function when modeling mechanical

systems. For biological systems, however, there is no obvious way of choosing a suit-

able Lyapunov function.

1.5 Oscillatory Behavior

Thus far, our analysis of long-term (asymptotic) behavior has been restricted to

fixed-point steady states. We now extend our discussion to systems that give rise to

persistent, oscillatory dynamics. Oscillatory systems are commonplace in biology,

and there are numerous treatises dealing with them (see, for example, Goldbeter,

1996, and the references therein). As an example, we consider a simple metabolic

model, illustrated in figure 1.9. This scheme is motivated by the ‘‘turbocharged’’ posi-
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tive feedback aspect of the glycolytic chain in which the ATP output is used to pro-

duce more ATP (Teusink et al., 1998).

The potential for oscillations can be inferred from the model structure: the con-

centration of species S2 builds up, causing further buildup until the pool of S1 is

depleted. The S2 level then crashes until more S1 is available, and so on. Although

this intuitive argument indicates the potential for oscillatory behavior, it cannot pre-

dict the conditions under which oscillations will occur.

The equations describing the system are given by

d

dt
s1ðtÞ ¼ v0 � k1s1ðtÞð1þ k3s

q
2 ðtÞÞ; ð1:8aÞ

d

dt
s2ðtÞ ¼ k1s1ðtÞð1þ k3s

q
2 ðtÞÞ � k2s2ðtÞ: ð1:8bÞ

The system can exhibit stable behavior as shown in figure 1.10: both species concen-

trations converge to steady state. This same behavior can be observed over a wide

range of initial conditions, as shown in the phase portrait, which indicates that there

is a single steady state.

Note that the trajectories seem to be spiraling in as they approach the steady state.

That behavior, apparent in the damped oscillations seen in the time-domain descrip-

tion, indicates that the system is somehow close to oscillatory behavior. Increasing

the nonlinearity in the model leads to the sustained oscillatory behavior seen in figure

1.11a. Considering the accompanying phase portrait in figure 1.11b, we see that the

trajectories are attracted to a cyclic track, called a limit cycle. When we compare this

phase portrait with the one corresponding to the steady state (figure 1.10b), we see

that the nullclines’ structure has not changed significantly. What has changed is the

stability of the single steady state, which is now unstable. For two-dimensional sys-

tems, there is a useful result known as the Poincaré-Bendixson theorem which guar-

antees the existence of a limit cycle in a case like this. With no stable equilibrium

points and all trajectories bounded, the trajectories have to go somewhere, and a limit

Figure 1.9
System involving positive feedback. Examples of such systems are found in catabolic pathways in which
the first step involves coupling of ATP hydrolysis to activation of a substrate. Downstream, conversion of
the substrate into product generates a surplus of ATP, which increases the available activated substrate
(Teusink et al., 1998).
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Figure 1.10
Time-domain (a) and phase-plane (b) plot of the system of figure 1.9, described by equation (1.8). Param-
eter values used are v0 ¼ 8, k1 ¼ 1, k2 ¼ 5, k3 ¼ 1 and q ¼ 2.

Figure 1.11
Time-domain (a) and phase-plane (b) plot of the system of figure 1.9, described by equation (1.8). The
parameter values used are the same as in figure 1.10 except that the feedback strength has been increased
to q ¼ 3. This increase leads to sustained oscillatory behavior. In the phase plane, this can be seen as a
closed curve.
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cycle is the only remaining option (Khalil, 2002). Here we also see that the qualitative

behavior of the system changes as the parameter values shift. The nature of those

changes can be understood through bifurcation analysis.

1.6 Bifurcations

An important question when studying dynamical systems is whether the dynamic be-

havior of the system is retained as the system parameters change. This is of particular

interest in biological systems, where the parameters may represent variables such as

enzyme concentrations that are likely to vary significantly from one cell to another.

When a system’s properties do not undergo significant qualitative changes, we say

that the system is robust or structurally stable. Robustness is the topic of chapters 9,

10, and 11. When qualitative changes do occur—for example, a stable equilibrium

becomes unstable, or the system acquires a new equilibrium point—the system is

said to undergo a bifurcation.

1.6.1 Bifurcation Diagrams

One way of studying bifurcations is by plotting the location and nature of the sys-

tem’s equilibria as a function of a parameter. These plots, which correspond to ex-

perimental dose-response curves, are known as continuation diagrams. Bifurcations

occur at the points on a continuation diagram where a major change takes place.

The specific value of the parameter where the change occurs is the bifurcation point.

In these cases, the continuation diagram is known as a bifurcation diagram.

Figure 1.12 contains a bifurcation diagram showing the steady state of s1 in system

(1.8) as a function of the parameter q. In addition to the position of the equilibrium,

the stability type is indicated by the line style: a stable (attracting) steady state is indi-

cated by the solid line from q ¼ 1 to qA2:86; an unstable (repelling) fixed point, by

the dashed line from that point up until q ¼ 5. The value qA2:86, at which the sta-

bility changes, is the bifurcation point. Recall that stability is dictated by the sign of

the real part of the eigenvalues of the linearization of the system. These eigenvalues

change as the parameter q changes; their real parts cross over from being negative to

being positive at the bifurcation point.

In this particular system, the bifurcation point dictates not only the change in the

stability of the fixed point, but also the appearance of a limit cycle. This particular

type of bifurcation is known as a Hopf bifurcation. For such bifurcations, it is cus-

tomary to denote the limit cycle by the maximum and minimum values reached in

the oscillation (figure 1.13).

Knowledge of the bifurcation structure can be useful in assaying the robustness

of system behavior. If the nominal conditions are near a bifurcation point, it is pos-

sible that environmental perturbations could push the system into a very di¤erent
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Figure 1.12
Bifurcation diagram for system (1.8), showing the steady state of s1 as a function of the parameter q. Al-
though one equilibrium exists for all these values of the parameter, the stability of the equilibrium changes
at qA2:86. For values smaller than this, the equilibrium is stable (solid line); for greater values, it is un-
stable (dashed line).

Figure 1.13
Bifurcation diagram for the system in figure 1.9, showing the steady state s1 as a function of the parameter
q and denoting the location and stability of the equilibrium as well as the maximum and minimum values
achieved by s1 during the steady-state oscillations (dashed-dotted curve).
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behavior. On the other hand, if bifurcations are far away in parameter space, then

the nominal behavior may be highly robust to changes in operating conditions.

1.7 Systems with Inputs and Outputs

Thus far, we have considered systems that evolve autonomously, and we have treated

the whole state vector in our analysis. In control engineering, it is more common to

consider systems that respond to external inputs and provide specific output signals

to their environment.

We first consider systems of the form

d

dt
sðtÞ ¼ f ðsðtÞ; uðtÞÞ: ð1:9Þ

In this equation, the vector

uðtÞ ¼
u1ðtÞ
..
.

umðtÞ

2
664

3
775

represents species or other influences that act as external inputs to the system.

In a biological context, the inputs could represent any external parameters over

which an experimenter has control or any regulatory signals coming from outside of

the process of interest, for example, genetic control of enzyme abundance in a meta-

bolic model. In these contexts, we might ask to what degree the input can influence

the system dynamics (addressed in section 1.9.1). Alternatively, the input uðtÞ could
be used to incorporate the e¤ect of external disturbances on model behavior. In this

case, the model allows us to analyze the robustness of system behavior in the face of

these perturbations.

Additionally, control engineers consider a set of p observable outputs, denoted by

yðtÞ ¼
y1ðtÞ
..
.

ypðtÞ

2
664

3
775:

The choice of output might be dictated by available experimental assays or by

which components of the system interact with processes external to the network of

interest. An alternative role for the output yðtÞ is to allow the analysis to focus on

a particular aspect of system behavior. That might be the concentration of a particu-

lar component species or some function of overall behavior, for example, the flux

through a metabolic pathway. For the simplest input-output systems, referred to as
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memoryless input-output maps, there is no system state and the output y at time t is

given directly by a function of the input u at time t:

yðtÞ ¼ hðuðtÞÞ:

More generally, the e¤ect of the input is not immediate, and so a dynamic descrip-

tion in which the output is a function of the system states and inputs is required:

yðtÞ ¼ hðsðtÞ; uðtÞÞ: ð1:10Þ

In this case, equations (1.9) and (1.10) represent a dynamic input-output system.

Fixing a specific initial condition (typically at the origin), such systems can be

thought of as maps from input signals uðtÞ to corresponding output signals yðtÞ. In
the specific case that the system has only one input ðm ¼ 1Þ and one output ðp ¼ 1Þ
the system is said to be a single-input, single-output (SISO) system. Otherwise, the sys-

tem is referred to as multiple-input, multiple-output (MIMO). For simplicity, we will

assume that the systems are SISO.

1.7.1 Feedback

Central to control theory is the use of feedback control (figure 1.14). The idea is to

arrange for the input variables to depend on the system response. When the input

depends directly on the state variables:

uðtÞ ¼ ksðsðtÞÞ;

for some suitable function ks, known as a control law, the feedback is referred to as

static state feedback. It is ‘‘state’’ feedback because the controller has access to the full

state vector; and ‘‘static’’ because the feedback is implemented through a memoryless

Figure 1.14
Typical feedback control system, consisting of two dynamical systems. One, referred to as the plant, is the
system to be controlled. The other, known as the controller, acts in a feedback loop and is often designed
to regulate the complete system. It can be a static (left) or a dynamic (right) function of the plant output.
In biological implementations, the distinction between plant and controller is blurred.
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map (i.e., a function). Alternatively, when the control depends only on the system

output:

uðtÞ ¼ kyðyðtÞÞ;

the feedback is known as static output feedback.

In contrast to static feedback, the controller may itself involve an auxiliary dy-

namic system, which allows it to take into account past behavior of the system (as

opposed to only acting on current system values). In this case, the feedback system

is described by a vector of control states rðtÞ. When such a feedback depends on out-

put values, it takes the form

d

dt
rðtÞ ¼ gðyðtÞÞ; ð1:11aÞ

uðtÞ ¼ lðrðtÞ; yðtÞÞ ð1:11bÞ

and is referred to as dynamic output feedback. In this case, the feedback depends on

a history of the output signals: the controller state rðtÞ retains a memory of the out-

put yðtÞ. Incorporating this memory into the control input allows the system to cope

with behavior that a direct (static) feedback cannot.

1.7.2 Linear Input-Output Systems

If the function f in equation (1.9) is linear in s and u, then the system can be written

in the form

d

dt
sðtÞ ¼ AsðtÞ þ BuðtÞ: ð1:12Þ

Moreover, if the output depends linearly on the state and input, then we write

yðtÞ ¼ CsðtÞ þDuðtÞ: ð1:13Þ

The system defined by equations (1.12) and (1.13) is referred to as a linear, time-

invariant (LTI) system (‘‘time-invariant’’ refers to the fact that the matrices do not

change with time). If the system has m inputs, p outputs, and n states, then A, B, C ,

and D are n� n, n�m, p� n, and p�m, matrices, respectively. The solution to this

linear system can be written explicitly in the form

sðtÞ ¼ eAðt�t0Þsðt0Þ þ
ð t

t0

eAðt�tÞBuðtÞ dt:

Linearization of a nonlinear input-output system follows in the manner described in

section 1.3 and is centered at a steady state s corresponding to a constant nominal
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input u. In addition to the state x and Jacobian A, the linearization also includes the

matrix B with i; jth element

bi; j ¼
qfiðs; uÞ
quj

����
s¼s;u¼u

:

In this case, the linearized equation is

d

dt
xðtÞ ¼ AxðtÞ þ BvðtÞ; ð1:14Þ

where vðtÞ ¼ uðtÞ � u.

Example Let us linearize the system described by equation (1.2). To define an input-

output system, we consider the parameter k2 as the input by setting uðtÞ ¼ k2ðtÞ
and the concentration of S2 as output: yðtÞ ¼ s2ðtÞ � s2. We linearize about the

equilibrium with input set to u ¼ 20 nMh�1. The corresponding steady state is

ðs1; s2ÞAð5:53; 3:37Þ.

We now compute the Jacobian A ¼ a11 a12

a21 a22

� �
:

a11 ¼
qf1

qs1
¼ �ðk�1 þ k�3Þ; a12 ¼

qf1

qs2
¼ k3;

a21 ¼
qf2

qs1
¼ � k4uqs

q�1
1

ð1þ k4s
q
1 Þ

2
þ k�3; a22 ¼

qf2

qs2
¼ �ðk�2 þ k3Þ;

and the input matrix B ¼ b1

b2

� �
:

b1 ¼
qf1

qu
¼ 0; b2 ¼

qf2

qu
¼ 1

ð1þ k4s
q
1 Þ

:

The output equation has C ¼ ½0 1� and D ¼ 0: n

1.8 Frequency-Domain Analysis

The longtime (asymptotic) behavior of linear, time-invariant dynamical systems can

be elegantly analyzed through an approach that makes use of a parallel, frequency-

domain description of input and output signals. There are two features of LTI sys-

tems that are exploited in this analysis. The first is simply the linear nature of their
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input-output behavior that implies an additive property: provided the system starts

with initial condition xð0Þ ¼ 0 (which corresponds to the nominal steady state of the

biochemical network), the output produced by the sum of two inputs is the sum of

the outputs produced independently by the two inputs. That is, if input u1ðtÞ elicits
output y1ðtÞ, and input u2ðtÞ yields output y2ðtÞ, then input u1ðtÞ þ u2ðtÞ leads to out-

put y1ðtÞ þ y2ðtÞ.
The additive property allows a reductionist approach to the analysis of system

response: if a complicated input can be written as a sum of simpler signals, the re-

sponse to each of these simpler inputs can be addressed separately, and the original

response can be found through a straightforward summation. This leads to a satisfac-

tory procedure provided we are able to find a family of ‘‘simple’’ functions with the

following two properties: (1) the family has to be ‘‘complete’’ in the sense that an

arbitrary signal can be decomposed into a sum of functions chosen from this family;

and (2) it must enjoy the property that the asymptotic response of a linear system to

inputs chosen from the family is easily characterized. The family of sinusoids (sines

and cosines) satisfies both of these conditions. The decomposition of a signal yðtÞ
into a combination of sinusoids is the foundation of Fourier analysis (Körner, 1988).

This technique allows the description of a signal yðtÞ in terms of its Fourier transform

Y ðoÞ, which provides a record of the frequency content of yðtÞ and is an alternative

characterization of the original function. In essence, the Fourier transform YðoÞ
indicates the coe‰cients that appear in decomposing the original function yðtÞ into
a ‘‘sum’’ of sinusoids at di¤erent frequencies o. (The sum is really an integral over a

continuum of frequencies.)

In theory, the signal yðtÞ can be recovered from Y ðoÞ by an inverse transform

(which amounts to summing over the sinusoids). In practice, recovery of a signal

from its transform is di‰cult to achieve. Nevertheless, important aspects of the sig-

nal can be gleaned directly from the graph of the transform. In particular, one can

determine what sort of variations dominate the signal (for example, low-frequency

or high-frequency) by comparing the content at various frequencies. Quickly varying

signals have transforms with most of their content at high frequencies, whereas

slowly varying functions show primarily low-frequency content. The second crucial

property of linear, time-invariant systems is that, as mentioned above, their response

to sinusoidal inputs can be easily described. For LTI systems, a sinusoidal input of

frequency o0:

uðtÞ ¼ sinðo0tÞ;

generates an output that is, after an initial transient, a sinusoid of the same

frequency:

yðtÞ ¼ Aðo0Þ sinðo0tþ fðo0ÞÞ:
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This longtime response can be characterized by two frequency-dependent functions:

Aðo0Þ, the amplitude of the oscillatory output, known as the system gain; and fðo0Þ,
the phase of the oscillatory output, referred to as the phase shift. As indicated, these

depend on the particular frequency o0 of the input signal. The particular gain and

phase shift that correspond to each frequency can be conveniently described by

the assignment of a single complex number AðoÞe jfðoÞ to each frequency o. This

complex-valued function is called the frequency response of the system.

1.8.1 The Laplace Transform

Although the Fourier transform provides a valuable description of a signal in terms

of its frequency content, the definition is not a useful starting point for calculations.

A more general tool, the Laplace transform (Körner, 1988), fills that role. The Lap-

lace transform of a signal yðtÞ is denoted YðsÞ, where s ¼ sþ jo is a complex num-

ber with real part s and imaginary part o. The Fourier transform can be thought of

as the special case of the Laplace transform in which s ¼ 0, although, in some cases,

a function may have a Laplace transform but not have a well-defined Fourier trans-

form (Körner, 1988).

The Transfer Function

For a linear, time-invariant system with zero initial conditions, input uðtÞ, and output

yðtÞ, the transfer function is defined in terms of the Laplace transforms of the output

YðsÞ and the input UðsÞ:

YðsÞ ¼ GðsÞUðsÞ:

In the specific case that the system is defined by the linear di¤erential equation (1.12)

with output (1.13), the transfer function is given by

GðsÞ ¼ CðsI � AÞ�1B þD: ð1:15Þ

This function will, in general, be matrix valued, but it is scalar valued when dealing

with SISO systems. The frequency response of the system is the restriction of the

transfer function to arguments of the form s ¼ jo.

The complex-valued frequency response Gð joÞ ¼ AðoÞe jfðoÞ can be plotted in a

number of ways. Perhaps the most useful of these visualizations is the Bode plot, in

which the magnitude and argument of the frequency response are plotted separately

(Bode, 1945). The magnitude AðoÞ, the system gain, is plotted on a log-log scale,

where the gain is measured in decibels (dB) (defined by x dB ¼ 20 log10 x). The argu-

ment fðoÞ, the phase shift, appears on a semilog plot, with log frequency plotted

against phase in degrees. An example is given in figure 1.15. The frequency-filtering

properties of the system can be read directly from the magnitude plot. In this exam-

ple, the higher-frequency content of an input signal will be attenuated (i.e., filtered)
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Figure 1.15
Frequency response of system described by equation (1.2), with u ¼ k2 and y ¼ s2. Using the linearization
about the equilibrium, we computed the system’s Bode magnitude (top) and phase (bottom) plots. From
the magnitude plot, it can be seen that the system behaves as a low-pass filter with a cuto¤ frequency of
approximately 1 rad/h.

Figure 1.16
Nyquist plot. The frequency response of figure 1.15 can alternatively be represented as a Nyquist plot. The
complex values of Gð joÞ are plotted as the frequency o ranges from �y to y. The curve’s arrowhead
indicates the direction of increasing o. The resulting curve is, in general, symmetric. Moreover, since the
values of Gð joÞ tend to zero for large frequencies (o !Gy), the plot generates a closed curve in the com-
plex plane. The stability of a system under negative feedback can be determined by the number of times
that the open-loop plot encircles the �1 point. In this case, there are no encirclements.
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due to the low gain at frequencies above 1 rad/h. An input that consists solely of

these high-frequency components (e.g., a highly variable noise signal) may be com-

pletely attenuated by the system (i.e., result in near-zero output), whereas other sig-

nals will have such highly variable noise filtered out by the system.

An alternative method for visualizing the frequency response is to plot it as a para-

metrized curve on the complex plane o 7! AðoÞe jfðoÞ. The resulting curve, known

as a Nyquist plot, provides a valuable tool for addressing the stability of the system

when the static output feedback with kyðyÞ ¼ �y (called the unity-feedback closed

loop) is implemented. An example is shown in figure 1.16. The Nyquist stability cri-

terion will be taken up in chapters 9 and 10.

1.9 Controllability and Observability

There are two concepts that, though central to control engineering, are relatively

unknown outside the field. Controllability and its counterpart observability deal, re-

spectively, with the relationship between input and state and between state and out-

put. To o¤er the simplest illustration, we will assume linear systems with one input or

one output.

1.9.1 Controllability

Consider the system

d

dt
xðtÞ ¼ AxðtÞ þ BuðtÞ; xð0Þ ¼ x0; ð1:16Þ

where the state xðtÞ is an n-dimensional vector.

A system is controllable if the control input uðtÞ is able to drive the state xðtÞ from
any nonzero initial condition to the origin. Thus controllability is a measure of our

ability to influence the system’s state through uðtÞ. Specifically, we say that the sys-

tem is ‘‘controllable over an interval ½0; tf �’’ if, for any initial condition x0, there

exists an input uðtÞ, defined over the interval ½0; tf � such that the solution xðtÞ of

equation (1.16) satisfies xðtf Þ ¼ 0.

Though the definition involves the dynamic behavior of the system, there is a sim-

ple algebraic test for controllability of linear, time-invariant systems. It relies only on

the matrices A and B. In particular, the system (1.16) is controllable over ½0; tf � if and
only if the matrix

C ¼ ½B AB � � � An�1B�

is invertible. Alert readers will note that the time interval ½0; tf � does not play a role

in the test. Consequently, if a system is controllable over one time interval, it is con-
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trollable over any time interval, and the time interval can be dropped. (The time in-

terval plays a significant role if there is a bound on the input values.)

One of the more significant consequences of controllability arises when a linear

state-feedback controller is implemented:

uðtÞ ¼ �KxðtÞ: ð1:17Þ

In this case, replacing uðtÞ in equation (1.16) with the control law (1.17) gives rise to

the following closed-loop dynamical system:

d

dt
xðtÞ ¼ A� BKð ÞxðtÞ; xð0Þ ¼ x0: ð1:18Þ

The stability of this system is determined by the eigenvalues of the matrix A� BK .

It is a remarkable fact that, if the system is controllable, the location of these eigen-

values can be assigned arbitrarily by the appropriate choice of K .

1.9.2 Observability

To address observability, we consider systems with a specified output signal, but no

input. In particular:

d

dt
xðtÞ ¼ AxðtÞ; xð0Þ ¼ x0; ð1:19aÞ

yðtÞ ¼ CxðtÞ: ð1:19bÞ

The system is observable if, based on knowledge of the output yðtÞ over some time

interval, we can discern the state x of the system at the beginning of the interval. Re-

call that knowledge of the initial condition allows us to determine the state at sub-

sequent times. Specifically, we say that the system (1.19) is observable over the time

interval ½0; tf � if any initial state x0 is uniquely determined by the ensuing output yðtÞ
for t A ½0; tf �. As with controllability, an algebraic test can be used to determine

observability. In particular, the system (1.19) is observable over ½0; tf � if and only if

the matrix

O ¼

C

CA

..

.

CAn�1

2
66664

3
77775 ð1:20Þ

is invertible. As with controllability, the test is independent of the specific time inter-

val, which implies that, if a system is observable over one time interval, it is observ-

able over any time interval.
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Observability guarantees that one can ‘‘look back’’ along the output signal and

determine the state at a previous time. Typically, it is more useful to have real-time

knowledge of the system’s state. An observer is an auxiliary dynamical system that

provides an asymptotically correct estimate for the current state. Define the system

d

dt
~xxðtÞ ¼ A~xxðtÞ þ LðyðtÞ � C ~xxðtÞÞ;

where the matrix L is yet to be chosen. The state ~xx of the observer serves as an esti-

mate of the state of the system (1.19). Defining the estimation error as

eðtÞ ¼ xðtÞ � ~xxðtÞ;

we see that

d

dt
eðtÞ ¼ ðA� LCÞeðtÞ:

If this system is stable, then eðtÞ tends to zero or, equivalently, ~xx tends to x. This

system will be stable provided that the eigenvalues of A� LC have negative real

parts. The matrix L can be chosen arbitrarily. This is analogous to the problem of

choosing a control gain K so as to make A� BK stable, considered above. As in

that case, if the system is observable, then L can be chosen so that the system is

stable. (In fact, there are no constraints on the placement of the eigenvalues of

A� LC .) When the system equations are subject to stochastic disturbances, the cor-

responding observer is known as a filter. In the specific case that the matrix L mini-

mizes the variance of the estimation error, the observer is known as the Kalman filter

(Kalman, 1960). An application of the Kalman filter to the analysis of the signaling

pathway regulating bacterial chemotaxis can be found in the work of Andrews et al.

(2006).
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