Selected Solutionsfor Chapter 2:
Getting Started

Solution to Exercise 2.2-2

SELECTION-SORT(A)

n = A.length
for j = 1ton—1
smallest = j

fori =j+1ton
if A[i] < A[smallest]
smallest = i
exchanged[j] with A[smallest]

The algorithm maintains the loop invariant that at the start of each iteration of the
outerfor loop, the subarrayi[1.. j — 1] consists of theg — 1 smallest elements

in the arrayA[l..n], and this subarray is in sorted order. After the first 1
elements, the subarray{l ..n — 1] contains the smallest — 1 elements, sorted,
and therefore element[n] must be the largest element.

The running time of the algorithm i®(n?) for all cases.

Solution to Exercise 2.2-4

Modify the algorithm so it tests whether the input satisfies some special-case con-
dition and, if it does, output a pre-computed answer. The best-case running time is
generally not a good measure of an algorithm.

Solution to Exercise 2.3-5

Procedure BNARY-SEARCH takes a sorted array, a valuev, and a range
[low. . high] of the array, in which we search for the valueThe procedure com-
paresv to the array entry at the midpoint of the range and decides to eliminate half
the range from further consideration. We give both iterative and recursive versions,
each of which returns either an indéxsuch that4[i] = v, or NIL if no entry of
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Allow. . high] contains the value. The initial call to either version should have
the parameterd, v, 1, n.

ITERATIVE-BINARY-SEARCH(A, v, low, high)

whilelow < high
mid = [(low + high)/2|
if v==A[mid]
return mid
elseif v > A[mid]
low = mid + 1
elsehigh = mid—1
return NIL

RECURSIVEBINARY-SEARCH(A, v, low, high)

if low > high
return NIL
mid = | (low + high)/2]
if v==A[mid]
return mid
elseif v > A[mid]
return RECURSIVEBINARY-SEARCH(A, v, mid + 1, high)
elsereturn RECURSIVEBINARY-SEARCH(A, v, low, mid — 1)

Both procedures terminate the search unsuccessfully when the range is empty (i.e.,
low > high) and terminate it successfully if the valuehas been found. Based

on the comparison of to the middle element in the searched range, the search
continues with the range halved. The recurrence for these procedures is therefore
T(n) = T(n/2) + ©(1), whose solution i§"(n) = ©(Ign).

Solution to Problem 2-4

a. Theinversions arél, 5), (2,5),(3,4),(3,5), (4,5). (Remember that inversions
are specified by indices rather than by the values in the array.)

b. The array with elements fron{l,2,...,n} with the most inversions is
(n,n—1,n—-2,...,2,1). Foralll <i < j < n, there is an inversiof, j).
The number of such inversions(f$) = n(n —1)/2.

c. Suppose that the array starts out with an inversio(k, j). Thenk < j and
Alk] > A[j]. At the time that the outefior loop of lines 1-8 setkey = A[/],
the value that started id[k] is still somewhere to the left ofi[j]. That is,
it'sin A[i], wherel < i < j, and so the inversion has becoffiej). Some
iteration of thewhile loop of lines 5—-7 movesl[i] one position to the right.
Line 8 will eventually drogkey to the left of this element, thus eliminating the
inversion. Because line 5 moves only elements that are leskéah moves
only elements that correspond to inversions. In other words, each iteration of
thewhileloop of lines 5-7 corresponds to the elimination of one inversion.
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d. We follow the hint and modify merge sort to count the number of inversions in
O lgn) time.

To start, let us define merge-inversion as a situation within the execution of
merge sort in which the MRGE procedure, after copyind[p..q] to L and

Alg + 1..r] to R, has values: in L andy in R such thatc > y. Consider

an inversion(i, j), and letx = A[i]andy = A[j], so that < j andx > y.

We claim that if we were to run merge sort, there would be exactly one merge-
inversion involvingx andy. To see why, observe that the only way in which
array elements change their positions is within theRdE procedure. More-
over, since MERGEkeeps elements withih in the same relative order to each
other, and correspondingly fak, the only way in which two elements can
change their ordering relative to each other is for the greater one to apgear in
and the lesser one to appearRn Thus, there is at least one merge-inversion
involving x andy. To see that there is exactly one such merge-inversion, ob-
serve that after any call of ERGEthat involves bothx and y, they are in the
same sorted subarray and will therefore both appedr an both appear iR

in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-inversion. In fact, the
correspondence between inversions and merge-inversions is one-to-one. Sup-
pose we have a merge-inversion involving valuesnd y, wherex originally
wasA[i] andy was originallyA[j]. Since we have a merge-inversion> y.

And sincex isin L andy is in R, x must be within a subarray preceding the
subarray containing. Thereforex started out in a position precedingy’s
original positionj, and so(Z, j) is an inversion.

Having shown a one-to-one correspondence between inversions and merge-
inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involvingin R. Let z be the smallest value ih
that is greater thap. At some point during the merging procegsand y will

be the “exposed” values ih andR, i.e., we will havez = L[i] andy = R[/]

in line 13 of MERGE At that time, there will be merge-inversions involvimng
andL[i],L[i + 1], L[i +2],...,L[n;], and these; —i + 1 merge-inversions
will be the only ones involving’. Therefore, we need to detect the first time
thatz andy become exposed during theB®GE procedure and add the value
of n; —i + 1 at that time to our total count of merge-inversions.

The following pseudocode, modeled on merge sort, works as we have just de-
scribed. It also sorts the array.

COUNT-INVERSIONS(A, p, 1)
inversions = 0
ifp<r
qg=(p+r)/2]
inversions = inversions + COUNT-INVERSIONS A4, p, q)
inversions = inversions + COUNT-INVERSIONS A4,q + 1, 1)
inversions = inversions + MERGEINVERSIONS A4, p,q, 1)
return inversions
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MERGE-INVERSIONS A4, p,q,r)
n=q-p+1
n, =r—¢q
let L[1..n; + 1] andR[1..n, + 1] be new arrays
fori = 1ton;
L[i] = Alp+i—1]
for j = 1ton,
R[j] = Alg + /]
Rn, + 1] = o0
i=1
j=1
inversions = 0
counted = FALSE
fork = ptor
if counted == FALSEandR|[j] < L[i]
inversions = inversions+n; —i + 1
counted = TRUE
if L[i] < R[]
Alk] = L[i]
i=i+1
else Alk] = R[/]
J=J+1
counted = FALSE
return inversions

The initial call is GCOUNT-INVERSIONS 4, 1, n).

In MERGEINVERSIONS the boolean variableounted indicates whether we
have counted the merge-inversions involviRfg']. We count them the first time
that bothR[/] is exposed and a value greater thRfy] becomes exposed in
the L array. We setounted to FALSE upon each time that a new value becomes
exposed ink. We don't have to worry about merge-inversions involving the
sentineloo in R, since no value il will be greater thamo.

Since we have added only a constant amount of additional work to each pro-
cedure call and to each iteration of the l&st loop of the merging procedure,

the total running time of the above pseudocode is the same as for merge sort:
O lgn).
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Solution to Exercise 3.1-2

To show that(n + a)? = ©(n”), we want to find constants, c,, 7, > 0 such that
0<cin? < (n+a) <conbforalln > n,.

Note that
n+a =< n+la
< 2n when|a| <n,
and
n+a > n—|al
> ln when|a| < in.
2 2

Thus, whem > 2 |a|,
1
0§§n§n+a§2n.

Sinceb > 0, the inequality still holds when all parts are raised to the pawer
1 ’ b b

0= 7" <(m+a)’ <(@2n)’,
1 ’ b b b, b

0< 3 n° <(n+a)’° <2°n°.

Thus,c; = (1/2)?, ¢, = 2%, andn, = 2 |a| satisfy the definition.

Solution to Exercise 3.1-3

Let the running time bd (n). T'(n) > O(n?) means thaf (n) > f(n) for some
function f(n) in the setO(n?). This statement holds for any running tiriign),
since the functiorg(n) = 0 for all n is in O(n?), and running times are always
nonnegative. Thus, the statement tells us nothing about the running time.
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Solution to Exercise 3.1-4

2ntl = O(27), but22" #£ 0(2").

To show thaR"*! = 0(2"), we must find constants n, > 0 such that
0<2"l <c¢.2"foralln > ny .

Since2"t! = 2.2" for all n, we can satisfy the definition with= 2 andn, = 1.
To show thaR?” # O(2"), assume there exist constants, > 0 such that
0<2?"<c¢-2"foralln > nyg.

Then2?" = 2".2" < ¢.2" = 2" < ¢. But no constant is greater than 2, and
so the assumption leads to a contradiction.

Solution to Exercise 3.2-4

[lgn]!is not polynomially bounded, biitgIgn 7! is.
Proving that a functiory'(n) is polynomially bounded is equivalent to proving that
lg(f(n)) = O(lgn) for the following reasons.

* If f is polynomially bounded, then there exist constantk, n, such that for
alln > ngy, f(n) < cn*. Hence, Ig f(n)) < kcIgn, which, sincec andk are
constants, means that(l§(rn)) = O(lgn).

* Similarly, if Ig( f(n)) = O(gn), then f is polynomially bounded.
In the following proofs, we will make use of the following two facts:
1. lg(n!) = ®(nlgn) (by equation (3.19)).

2. [lgn] = ©(Ilgn), because

* [lgn] >Ign
* [lgn] <lgn+1<2lgnforalln >2

lg(Tlgn!) = ©([lgnTlg[lgnl)
O(gnlglgn)
= w(gn).
Therefore, Ig[lgn]!) # O(lgn), and so[lgn]! is not polynomially bounded.

lg(flglgn]) = ©([lglgnTlgflglgnl)
O(glgnrliglglgn)

= o((lglgn)®)
o(Ig*(lgn))

o(lgn) .
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The last step above follows from the property that any polylogarithmic function
grows more slowly than any positive polynomial function, i.e., that for constants
a,b >0, we have I n = o(n?). Substitute Ig: for n, 2 for b, and1 for a, giving
lg*>(Ign) = o(lgn).

Therefore, Ig[lglgn]!) = O(lgn), and so[lg lg n]! is polynomially bounded.
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Divide-and-Conquer

Solution to Exercise 4.2-4

If you can multiply3 x 3 matrices using multiplications, then you can multiply
n x n matrices by recursively multiplying /3 x n/3 matrices, in timel' (n) =
kT (n/3) + O(n?).

Using the master method to solve this recurrence, consider the rati§9of

andn?:

* Iflog; k = 2, case 2 applies anfi(n) = @(n?Ign). In this casek = 9 and
T(n) = o(n'97).

* Iflog;k < 2, case 3 applies anfi(n) = ®(n?). In this casek < 9 and
T(n) = o(n'97).

« Iflog;k > 2, case 1 applies anfi(n) = ©(n'°%*). In this casek > 9.
T(n) = o(n'97) when log k < Ig7,i.e., whenk < 397 ~ 21.85. The largest
such integek is 21.

Thus,k = 21 and the running time i®(n'°%%) = ®(1'°%2') = 0(n?*°) (since

log, 21 =~ 2.77).

Solution to Exercise 4.4-6

The shortest path from the root to a leaf in the recursion treeds (1/3)n —
(1/3)>n — --- — 1. Since(1/3)*n = 1 whenk = log, n, the height of the part
of the tree in which every node has two children is,lagSince the values at each
of these levels of the tree add upde, the solution to the recurrence is at least
cnlogyn = Q(nlgn).

Solution to Exercise 4.4-9

T(n)=T(n)+T(1—a)n)+cn
We saw the solution to the recurreriEér) = T'(n/3) + T(2n/3) 4+ cn in the text.
This recurrence can be similarly solved.
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Probabilistic Analysis and Randomized
Algorithms

Solution to Exercise 5.2-1

Since HRE-AssISTANTalways hires candidatk it hires exactly once if and only
if no candidates other than candidatare hired. This event occurs when candi-
datel is the best candidate of tle which occurs with probability /».

HIRE-ASSISTANThiresn times if each candidate is better than all those who were
interviewed (and hired) before. This event occurs precisely when the list of ranks
given to the algorithm i¢l,2, ..., n), which occurs with probability /n!.

Solution to Exercise 5.2-4

Another way to think of the hat-check problem is that we want to determine the
expected number of fixed points in a random permutation.fiXéd point of a
permutationr is a valuei for which z(i) = i.) We could enumerate all! per-
mutations, count the total number of fixed points, and divide:byo determine

the average number of fixed points per permutation. This would be a painstak-
ing process, and the answer would turn out tol b&V/e can use indicator random
variables, however, to arrive at the same answer much more easily.

Define a random variabl¥ that equals the number of customers that get back their
own hat, so that we want to computg ¥|.

Fori = 1,2,...,n, define the indicator random variable
X; = | {custometi gets back his own hat.

ThenX = X, + Xo +--- + X,.

Since the ordering of hats is random, each customer has a probabilify: abf
getting back his or her own hat. In other words{®r = 1} = 1/n, which, by
Lemma 5.1, implies that &X;] = 1/n.
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Thus,
E[X] = E [Xn: Xl}

= > E[X/] (linearity of expectation)
i=1

n
= Y
i=1
= 1,
and so we expect that exactlycustomer gets back his own hat.

Note that this is a situation in which the indicator random variablesairénde-
pendent. For example, if = 2 andX; = 1, thenX, must also equal. Con-
versely, ifn = 2 andX; = 0, thenX, must also equdl. Despite the dependence,
Pr{X; = 1} = 1/n for all i, and linearity of expectation holds. Thus, we can use
the technique of indicator random variables even in the presence of dependence.

Solution to Exercise 5.2-5

Let X;; be an indicator random variable for the event where the ggi}, A[/]

fori < j is inverted, i.e., A[i]] > A[j]. More precisely, we defin&;, =
[{A[i] > A[j]} for 1 < i < j < n. We have P{X;; =1} = 1/2, because
given two distinct random numbers, the probability that the first is bigger than the
second id/2. By Lemma5.1, BX;;] = 1/2.

Let X be the the random variable denoting the total number of inverted pairs in the
array, so that

n—1 n
X == Z Z Xl‘j .
i=1j=i+1

We want the expected number of inverted pairs, so we take the expectation of both
sides of the above equation to obtain

e[ 5]

i=1j=i+1

We use linearity of expectation to get

E(X] = E[i Z X,-<,-i|

i=1j=i+1
n—1 n
i=1j=i+1
n—1

- >

i=1j=i+1
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_[n)1
— \2)2
nn—1) 1
2 2
nn-—1)

4
Thus the expected number of inverted pairs(is — 1)/4.

Solution to Exercise 5.3-2

Although EERMUTE-WITHOUT-IDENTITY will not produce the identity permuta-
tion, there are other permutations that it fails to produce. For example, consider
its operation whem = 3, when it should be able to produce the— 1 = 5 non-
identity permutations. Théor loop iterates foi = 1 andi = 2. Wheni = 1,

the call to RRNDOM returns one of two possible values (eitl2eor 3), and when

i = 2,the call to RRNDOM returns just one valug). Thus, ERMUTE-WITHOUT-
IDENTITY can produce onlg - 1 = 2 possible permutations, rather than fhihat

are required.

Solution to Exercise 5.3-4

PERMUTE-BY-CycLIC choosesoffset as a random integer in the rande <
offset < n, and then it performs a cyclic rotation of the array. That is,
B[((i + offset — 1) modn) + 1] = A[i] fori = 1,2,...,n. (The subtraction
and addition ofl in the index calculation is due to thHeorigin indexing. If we
had used)-origin indexing instead, the index calculation would have simplied to
B[(i + offset) modn] = AJi]fori =0,1,...,n—1.)

Thus, onceoffset is determined, so is the entire permutation. Since each value of
offset occurs with probabilityl /n, each elemen#[i] has a probability of ending
up in positionB| ;] with probability 1/x.

This procedure does not produce a uniform random permutation, however, since
it can produce only: different permutations. Thug, permutations occur with
probability 1/», and the remaining! — n permutations occur with probability.
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Heapsort

Solution to Exercise 6.1-1

Since a heap is an almost-complete binary tree (complete at all levels except pos-
sibly the lowest), it has at mo&t+! — 1 elements (if it is complete) and at least
2" — 141 = 2" elements (if the lowest level has just 1 element and the other levels

are complete).

Solution to Exercise 6.1-2

Given ann-element heap of height, we know from Exercise 6.1-1 that
2h§n§2h+l_1<2h+l‘

Thus,h <Ign < h + 1. Sinceh is an integerh = |Ign] (by definition of| |).

Solution to Exercise 6.2-6

If you put a value at the root that is less than every value in the left and right
subtrees, then kx-HEAPIFY will be called recursively until a leaf is reached. To
make the recursive calls traverse the longest path to a leaf, choose values that make
MAX-HEAPIFY always recurse on the left child. It follows the left branch when
the left child is greater than or equal to the right child, so putting O at the root
and 1 at all the other nodes, for example, will accomplish that. With such values,
Max-HEAPIFY will be called/ times (whereh is the heap height, which is the
number of edges in the longest path from the root to a leaf), so its running time
will be ®(h) (since each call doe®(1) work), which is®(Igr). Since we have

a case in which Mx-HEAPIFY’s running time is®(lg n), its worst-case running
time isQ(lgn).
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of Q(nlgn), consider the case in which the input array is given in strictly in-
creasing order. Each call to AX-HEAP-INSERT causes HAP-INCREASE
KEY to go all the way up to the root. Since the depth of node |lgi |, the
total time is

n

dTellgi) = Y edlgm/21])
i=1 i=[n/2]

n

> elgn/2)])

i=[n/2]

%

n

= ) O(llgn-1)
i=[n/2]
> n/2-06(gn)
= Q(nlgn).
In the worst case, therefore,UB.D-MAX-HEAF requires®(nlgn) time to
build ann-element heap.
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Quicksort

Solution to Exercise 7.2-3

PARTITION does a “worst-case partitioning” when the elements are in decreasing
order. Itreduces the size of the subarray under consideration by anlyach step,
which we've seen has running tini&n?).

In particular, RRTITION, given a subarray[p ..r] of distinct elements in de-
creasing order, produces an empty partitiomip .. g — 1], puts the pivot (orig-
inally in A[r]) into A[p], and produces a partitiod[p + 1..r] with only one
fewer element tha[p ..r]. The recurrence for QCKSORT becomesl'(n) =
T(n — 1) + ©(n), which has the solutiof’(n) = @(n?).

Solution to Exercise 7.2-5

The minimum depth follows a path that always takes the smaller part of the parti-
tion—i.e., that multiplies the number of elementsdayOne iteration reduces the
number of elements from to «n, andi iterations reduces the number of elements
toa'n. At a leaf, there is just one remaining element, and so at a minimum-depth
leaf of depthm, we havea™n = 1. Thus,a™ = 1/n. Taking logs, we get
mlga = —Ign,orm = —lIgn/lga.

Similarly, maximum depth corresponds to always taking the larger part of the par-
tition, i.e., keeping a fraction — o of the elements each time. The maximum
depthM is reached when there is one element left, that is, whenaa)™n = 1.
Thus,M = —Ign/Ilg(1 — a).

All these equations are approximate because we are ignoring floors and ceilings.
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Sorting in Linear Time

Solution to Exercise 8.1-3

If the sort runs in linear time far input permutations, then the heightof the
portion of the decision tree consisting of the corresponding leaves and their
ancestors is linear.

Use the same argument as in the proof of Theorem 8.1 to show that this is impos-
sible form =n!/2,n!/n, orn!/2".

We have2" > m, which gives ush > Igm. For all the possible:’s given here,
lgm = Q(nlgn), henceh = Qnlgn).

In particular,

n!
Igj = Ign!'—1>nlgn—nlge—1,

n!
lg— = lgn!—Ign >nlgn—nlge—Ign,
n

n!
Igz—n = lgn!—n=>nlgn—nlge—n.

Solution to Exercise 8.2-3

The following solution also answers Exercise 8.2-2.

Notice that the correctness argument in the text does not depend on the order in
which A is processed. The algorithm is correct no matter what order is used!

But the modified algorithm is not stable. As before, in the fioalloop an element
equal to one taken from earlier is placed before the earlier one (i.e., at a lower
index position) in the output arrra®. The original algorithm was stable because
an element taken fror later started out with a lower index than one taken earlier.
But in the modified algorithm, an element taken frotrater started out with a
higher index than one taken earlier.

In particular, the algorithm still places the elements with vatuen positions
Clk — 1] + 1 throughC k], but in the reverse order of their appearancdin
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Solution to Exercise 8.3-3

Basis: If d = 1, there’s only one digit, so sorting on that digit sorts the array.

Inductive step: Assuming that radix sort works fat — 1 digits, we’ll show that it
works ford digits.

Radix sort sorts separately on each digit, starting from digikhus, radix sort of
d digits, which sorts on digit$, . . ., d is equivalent to radix sort of the low-order
d — 1 digits followed by a sort on digi# . By our induction hypothesis, the sort of
the low-orderd — 1 digits works, so just before the sort on digit the elements
are in order according to their low-ordér— 1 digits.

The sort on digitd will order the elements by theifth digit. Consider two ele-
mentsa andb, with dth digitsa,; andb,; respectively.

* If a; < by, the sortwill putaz beforeb, which is correct, since < b regardless
of the low-order digits.

* If ag > by, the sort will puta afterb, which is correct, since > b regardless
of the low-order digits.

* If ay = by, the sort will leavex andb in the same order they were in, because
it is stable. But that order is already correct, since the correct ordeaotlb
is determined by the low-ordetr— 1 digits when their/th digits are equal, and
the elements are already sorted by their low-oetler 1 digits.

If the intermediate sort were not stable, it might rearrange elements wkbse
digits were equal—elements thakre in the right order after the sort on their
lower-order digits.

Solution to Exercise 8.3-4

Treat the numbers &sdigit numbers in radix. Each digit ranges frofdton — 1.
Sort thesa&-digit numbers with radix sort.

There are calls to counting sort, each takitg(n + n) = ®(n) time, so that the
total time iSO (n).

Solution to Problem 8-1

a. For a comparison algorithr to sort, no two input permutations can reach the
same leaf of the decision tree, so there must be att¢dsaves reached ifiy,
one for each possible input permutation. Sidds a deterministic algorithm, it
must always reach the same leaf when given a particular permutation as input,
so at most! leaves are reached (one for each permutation). Therefore exactly
n! leaves are reached, one for each input permutation.
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Thesen! leaves will each have probability/n!, since each of the! possible
permutations is the input with the probabilityn!. Any remaining leaves will
have probability0, since they are not reached for any input.

Without loss of generality, we can assume for the rest of this problem that paths
leading only to0-probability leaves aren’t in the tree, since they cannot affect
the running time of the sort. That is, we can assumeZhabnsists of only the

n! leaves labeled/n! and their ancestors.

b. If kK > 1, then the root off" is not a leaf. This implies that all &f's leaves
are leaves in.T andRT. Since every leaf at depthin LT or RT has depth
h+1inT, D(T) mustbe the sumaD(LT), D(RT), andk, the total number
of leaves. To prove this last assertion, det(x) = depth of nodex in treeT.
Then,

D(T) = > drx

x€leavesT)

= ) drm+ Y, dr(»
x€leave{LT) x€leave§RT)

= Y (drM+D+ Y (drr(x)+1)
x€leave§LT) x€leave§RT)

= Y duwM+ Y, der@)+ Y 1
x€leave§LT) x€leave§RT) x€leavegT)

= D(LT)+ D(RT) + k.
c. To show thatd(k) = min;<;<x—1{d(i) + d(k —i) + k} we will show sepa-
rately that
dk) < l<rirlip_1 {d@)+dk —i)+ k}
and
d(k) > 1<r,~n<i/?_1 {di)+dk—i)+k} .

* Toshowthat/(k) < minj<;<x—1{d(i) + d(k —i) + k}, we need only show
thatd(k) <d(i)+d(k —i) + k,fori =1,2,...,k — 1. For anyi from 1
tok — 1 we can find treeR T with i leaves and.T with k — i leaves such
thatD(RT) = d(i)andD(LT) = d(k —i). Constructl” such thatR T and
LT are the right and left subtrees Bfs root respectively. Then
dk)y < D(T) (by definition ofd as minD(T') value)

= D(RT)+ D(LT)+k (by part (b))
= d(@{)+dk—i)+k  (bychoice ofRT andLT).

« Toshowthatd(k) > min,<;<x—; {d(i) + d(k — i) + k}, we need only show
thatd(k) > d(i) + d(k —i) + k, for somei in {1,2,...,k — 1}. Take the
treeT with k leaves such thab(T) = d(k), let RT andLT beT’s right
and left subtree, respecitvely, andidie the number of leaves IRT. Then
k — i is the number of leaves ihT and
dk)y = D(T) (by choice ofT)

= D(RT)+ D(LT) + k (by part (b))
> d(i)+dk—i)+k  (bydefintion ofd as minD(T) value) .
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Netheri nork —i can be0 (and hencd < i < k — 1), since if one of these
were0, eitherRT or LT would contain allk leaves ofT’, and thatk-leaf
subtree would have & equal toD(T') — k (by part (b)), contradicting the
choice ofT" as thek-leaf tree with the minimunD.

d. Let fx(i) =ilgi + (k—i)lg(k —i). To find the value of that minimizesfy,
find thei for which the derivative off; with respect ta is 0:

L d (ilni+ (k—i)In(k—i)
S = E( In2 )
o Ini+1—Intk—i)—1
B In2
_Ini —In(k —i)

In2

isOati = k/2. To verify this is indeed a minimum (not a maximum), check
that the second derivative ¢f, is positive at = k/2:

yod (Ini—In(k —i)
o = (M)

_11+1
 In2\i k—-i)~

1 (2 2
//k2 — - - -
« k/2) In2(k+k)
1 4

In2 &
> 0 sincek > 1 .

Now we use substitution to prow&k) = Q(klgk). The base case of the
induction is satisfied becaugkl) > 0 = ¢ - 1 -1g1 for any constant. For
the inductive step we assume thii) > cilgi for1 <i < k — 1, wherec is
some constant to be determined.

de) = min {d()+d(k —i)+ K}
llrriip_l (e(i1gi + (k —i) gk — i) + k}

= min {cfi) +k}

- <[ (+=4)o(o-4)
- kg (5) ++

c(klgk —k) +k

%

= cklgk + (k —ck)
> cklgk ifc<l,
and sad (k) = Q(klgk).

e. Using the result of part (d) and the fact that (as modified in our solution to
part (a)) has! leaves, we can conclude that

D(Ty) = dn") = Q@!lgn!)) .
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D(T,) is the sum of the decision-tree path lengths for sorting all input per-
mutations, and the path lengths are proportional to the run time. Sineg the
permutations have equal probabilityn!, the expected time to soutrandom
elements [ input permutation) is the total time for all permutations divided
byn!:

M = S(lg(nh) = Q(nlgn) .

f.  We will show how to modify a randomized decision tree (algorithm) to define a

deterministic decision tree (algorithm) that is at least as good as the randomized
one in terms of the average number of comparisons.

At each randomized node, pick the child with the smallest subtree (the subtree
with the smallest average number of comparisons on a path to a leaf). Delete all
the other children of the randomized node and splice out the randomized node
itself.

The deterministic algorithm corresponding to this modified tree still works, be-
cause the randomized algorithm worked no matter which path was taken from
each randomized node.

The average number of comparisons for the modified algorithm is no larger
than the average number for the original randomized tree, since we discarded
the higher-average subtrees in each case. In particular, each time we splice out
a randomized node, we leave the overall average less than or equal to what it
was, because

* the same set of input permutations reaches the modified subtree as before, but
those inputs are handled in less than or equal to average time than before, and

* the rest of the tree is unmodified.

The randomized algorithm thus takes at least as much time on average as the
corresponding deterministic one. (We've shown that the expected running time
for a deterministic comparison sort@(n Ign), hence the expected time for a
randomized comparison sort is al€gn Ig n).)
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Solution to Exercise 9.3-1

For groups of 7, the algorithm still works in linear time. The number of elements
greater than: (and similarly, the number less thaiis at least

1rn 2n
4({5 Eﬂ —2) z27 8
and the recurrence becomes
T(n) <T([n/7]) + T(5nr/7+8)+ O(n),
which can be shown to b@(n) by substitution, as for the groups of 5 case in the

text.

For groups of 3, however, the algorithm no longer works in linear time. The number
of elements greater than and the number of elements less thaiis at least

1rn n
2({5 BH —2) =37
and the recurrence becomes
Tn) <T(n/3])+TR2n/34+4)+ O(n),

which does not have a linear solution.

We can prove that the worst-case time for groups of (s Ign). We do so by
deriving a recurrence for a particular case that takéslg n) time.

In counting up the number of elements greater thagand similarly, the num-
ber less thanx), consider the particular case in which there are ex%%lp%ﬂ
groups with medians= x and in which the “leftover” group does contribute 2
elements greater than Then the number of elements greater thais exactly

2({%(%” — 1) + 1 (the —1 discountsx’s group, as usual, and thel is con-

tributed byx’s group)= 2 [r/6] — 1, and the recursive step for elemertsc has
n—Q2[n/6]l—1)>n—-2n/6+1)—1) =2n/3 — 1 elements. Observe also
that theO(n) term in the recurrence is really(n), since the partitioning in step 4
takes®(n) (not justO(n)) time. Thus, we get the recurrence

Tn)=T(n/3))+T2n/3-1)+0Om) =T[n/3)+T2n/3-1)+6(n),
from which you can show thaf(n) > cnlgn by substitution. You can also see
that T (n) is nonlinear by noticing that each level of the recursion tree sums to
In fact, any odd group size 5 works in linear time.
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Solution to Exercise 9.3-3

A modification to quicksort that allows it to run i@ (n Ig n) time in the worst case
uses the deterministicARTITION algorithm that was modified to take an element
to partition around as an input parameter.

SELECT takes an arrayl, the boundg andr of the subarray iM, and the rank
of an order statistic, and in time linear in the size of the subadfay. . r] it returns
theith smallest elementid[p..r].

BEST-CASE-QUICKSORT(A, p,r)
ifp<r
i=[r—p+1)/2]
X = SELECT(A, p,r,i)
g = PARTITION(x)
BESTCASE-QUICKSORT(A, p,qg — 1)
BEST-CASE-QUICKSORT(A,q + 1,r)

For ann-element array, the largest subarray thasB CASE-QUICKSORT re-
curses on has/2 elements. This situation occurs when= r — p + 1 is even;
then the subarrayi[g + 1..r] hasn/2 elements, and the subarrayp ..q — 1]
hasn/2 — 1 elements.

Because BsTCASE-QUICKSORT always recurses on subarrays that are at most
half the size of the original array, the recurrence for the worst-case running time is
T(n) <2T(n/2) 4+ O(n) = O(nlgn).

Solution to Exercise 9.3-5

We assume that are given a procedure&iviaN that takes as parameters an ar-
ray A and subarray indiceg andr, and returns the value of the median element of
Alp..r]in O(n) time in the worst case.

Given MEDIAN, here is a linear-time algorithmeSecT for finding thei th small-

est element iM[p ..r]. This algorithm uses the deterministia®ITION algo-

rithm that was modified to take an element to partition around as an input parame-
ter.
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SELECT (A, p,r,i)
if p==r
return A[p]
x = MEDIAN(A, p,r)
q = PARTITION(x)

k=g—p+1
ifi ==

return Alq]
esafi <k

return SELECT (A4, p,q — 1,i)
elsereturn SELECT (A,q + 1,r,i — k)

Becausex is the median of4[p..r], each of the subarrayd[p..q — 1] and
Alg + 1..r] has at most half the number of elementsd¢p . . ]. The recurrence
for the worst-case running time oESECT is T'(n) < T'(n/2) + O(n) = O(n).

Solution to Problem 9-1

We assume that the numbers start out in an array.

a. Sortthe numbers using merge sort or heapsort, which@ekeg »n) worst-case
time. (Don't use quicksort or insertion sort, which can ta&ke:?) time.) Put
thei largest elements (directly accessible in the sorted array) into the output
array, taking®(i) time.

Total worst-case running tim&(nlgn + i) = O(nlgn) (becauseé < n).

b. Implement the priority queue as a heap. Build the heap using®-HEAP,
which takes®(n) time, then call HEAP-EXTRACT-MAX i times to get the
largest elements, i®(i Ign) worst-case time, and store them in reverse order
of extraction in the output array. The worst-case extraction time(isig n)
because

* | extractions from a heap wit@(n) elements takes- O(Ign) = O(ilgn)
time, and

* half of thei extractions are from a heap with n/2 elements, so thosg?2
extractions takéi /2)2(Ig(n/2)) = (i Ign) time in the worst case.

Total worst-case running tim@&®(n + i Ign).

c. Use the &LECT algorithm of Section 9.3 to find thieh largest number i® ()
time. Partition around that number @(r) time. Sort the largest numbers in
O( lgi) worst-case time (with merge sort or heapsort).

Total worst-case running tim@&®(n + i Ig 7).

Note that method (c) is always asymptotically at least as good as the other two
methods, and that method (b) is asymptotically at least as good as (a). (Com-
paring (c) to (b) is easy, but it is less obvious how to compare (c) and (b) to (a).
(c) and (b) are asymptotically at least as good as (a) beecaudgi, andi Ign are

all O(nlgn). The sum of two things that ai@(n Ign) is alsoO(n lgn).)
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Solution to Exercise 11.2-1

For each pair of keys, !, wherek # [, define the indicator random variable
X = 1{h(k) = h(l)}. Since we assume simple uniform hashingt By, = 1} =
Pr{h(k) = h(l)} = 1/m, and so BXy;] = 1/m.

Now define the random variablg to be the total number of collisions, so that
Y =} ;. Xu. The expected number of collisions is

E[Y] = E[ZXH}
k+#l

= Z E[Xw] (linearity of expectation)
k#l

. n\1
— \2)m
nn—1)

2
nn—1)

2m

S~

Solution to Exercise 11.2-4

The flag in each slot will indicate whether the slot is free.

* A free slot is in the free list, a doubly linked list of all free slots in the table.
The slot thus contains two pointers.

* Aused slot contains an element and a pointer (possitilyto the next element
that hashes to this slot. (Of course, that pointer points to another slot in the
table.)
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Operations

* |nsertion:

* Ifthe element hashes to a free slot, just remove the slot from the free list and
store the element there (withnaL pointer). The free list must be doubly
linked in order for this deletion to run i®(1) time.

* If the element hashes to a used slottheck whether the elementalready
there “belongs” there (its key also hashes to glot

* If so, add the new element to the chain of elements in this slot. To do
so, allocate a free slot (e.g., take the head of the free list) for the new
element and put this new slot at the head of the list pointed to by the
hashed-to slotf).

* If not, E is part of another slot’s chain. Move it to a new slot by allo-
cating one from the free list, copying the old slotgs) contents (ele-
mentx and pointer) to the new slot, and updating the pointer in the slot
that pointed tgj to point to the new slot. Then insert the new elementin
the now-empty slot as usual.

To update the pointer tp, it is necessary to find it by searching the chain
of elements starting in the slathashes to.

* Deletion: Let j be the slot the elementto be deleted hashes to.

» If x is the only element iy (j doesn't point to any other entries), just free
the slot, returning it to the head of the free list.

* If x isin j but there’s a pointer to a chain of other elements, move the first
pointed-to entry to sloj and free the slot it was in.

* If x is found by following a pointer frony, just freex’s slot and splice it out
of the chain (i.e., update the slot that pointed:ttw point tox’s successor).

* Searching: Check the slot the key hashes to, and if that is not the desired
element, follow the chain of pointers from the slot.

All the operations take expecta@(1) times for the same reason they do with

the version in the book: The expected time to search the chai@slist «)
regardless of where the chains are stored, and the fact that all the elements are
stored in the table means that< 1. If the free list were singly linked, then
operations that involved removing an arbitrary slot from the free list would not
runin O(1) time.

Solution to Problem 11-2

a. A particular key is hashed to a particular slot with probabilify:. Suppose
we select a specific set #fkeys. The probability that thedekeys are inserted
into the slot in question and that all other keys are inserted elsewhere is

() (-3
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Since there ar@’c) ways to choose our keys, we get

1 k 1 n—k n
=|- 1—-— .
o= (i) (=3) ()
b. Fori =1,2,...,n, let X; be a random variable denoting the number of keys

that hash to slat, and let4; be the event thak; = k, i.e., that exactly keys
hash to sloi. From part (a), we have PA} = Q. Then,

Py = Pr{iM =k}
= Pr{(maxXi) =k>

1<i<n

Pr{there exist$ such thatX; = k and thatX; < kfori =1,2,...,n}

Pr{there exists such thatX; = k}

Pr{A, U A, U---U A,}

Pr{Ad:} + Pr{4d,} +--- + Pr{4,} (by inequality (C.19))

= I’le .

c. We start by showing two facts. Firstt — 1/n < 1, which implies
(1—=1/n)"* < 1. Secondn!/(n—k)! = n-(n—1)-(n—=2)--- (n—k+1) < nk.
Using these facts, along with the simplificatibh> (k/e)* of equation (3.18),
we have

1\* n“*
Qc = (2) (1_2) ki(n —k)!

Al

IA

n! 3
< P ETEaY (1=1/n)"* <1)
< % (n!/(n —k)! < nk)
ek '
< o (k!> (k/e)) .

d. Notice that whem = 2, Iglgn = 0, so to be precise, we need to assume that
n>3.
In part (c), we showed tha@, < e*/k* for anyk; in particular, this inequality
holds fork,. Thus, it suffices to show thai‘O/kokO < 1/n3 or, equivalently,
thatn? < ko /eko.
Taking logarithms of both sides gives an equivalent condition:
3lgn < ko(lgko —lge)
clgn
—— (I Iglgn —Iglglgn — 1 .
Iglgn(gc+ glgn —Iglglgn —lge)
Dividing both sides by lg gives the condition

c
w(lgchlglgn—lglglgn—lge)

o1+ lgc —1Ige B lglglgn .
lglgn lglgn
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Let x be the last expression in parentheses:
e=(14+ lgc—1Ige B lglglgn .
lglgn lglgn
We need to show that there exists a constanst 1 such thaB < cx.

Noting that lim,_,.. x = 1, we see that there exisig such thatc > 1/2 for all
n > ng. Thus, any constamnt > 6 works forn > n,.

We handle smaller values af—in particular,3 < n < ny—as follows. Since
n is constrained to be an integer, there are a finite numberiofthe range
3 < n < ny. We can evaluate the expressiorior each such value of and
determine a value af for which3 < cx for all values ofn. The final value ot
that we use is the larger of

* 6, which works for alln > n,, and

* MaX<s<n, i€ : 3 < cx}, i.e., the largest value af that we chose for the
range3 < n < ny.

Thus, we have shown th&l,, < 1/n3, as desired.

To see thatP;, < 1/n? for k > k,, we observe that by part (bfx < nQy
for all k. Choosingk = ko gives Py, < nQy, < n-(1/n) = 1/n*. For
k > ko, we will show that we can pick the constansuch thatQ, < 1/n3 for
all k > ko, and thus conclude thadt, < 1/»2 for all k > k.

To pickc as required, we lat be large enough thag > 3 > e. Thene/k < 1
for all k > ko, and sa* / k* decreases dsincreases. Thus,

Or < e /k*
< eko/kko
< 1/n
fork > k,.

. The expectation oM is

E[M] = Zn:k-Pr{M =k}

k=0

ko n
= Y k-Pi{M=k}+ > k-Pr{M =k}
k=0

k=ko+1
ko n

< > ko Pr{M =k}+ Y n-Pr{M =k}
k=0 k=ko+1

ko n
< ko) Pr{M =k}+n Y Pr{M =k}
k=0 k=ko+1
= ko-Pr{M <ko} +n-Pr{M > ko} ,
which is what we needed to show, singe= clgn/Iglgn.

To show that EM| = O(lgn/lglgn), note that PEM < ko} < 1 and
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Pr{M >k = Y Pr{M=k}
k=ko+1
= Z Py
k=ko+1

n

< Y yn (by part (d))

k=ko+1
< n-(1/n?
= 1/n.
We conclude that
EM] < ko-1+n-(1/n)
= ko+1
= O(gn/lglgn).
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Binary Search Trees

Solution to Exercise 12.1-2

In a heap, a node’s key is both of its children’s keys. In a binary search tree, a
node’s key is> its left child’s key, but< its right child’s key.

The heap property, unlike the binary-searth-tree property, doesn’t help print the
nodes in sorted order because it doesn't tell which subtree of a node contains the
element to print before that node. In a heap, the largest element smaller than the
node could be in either subtree.

Note that if the heap property could be used to print the keys in sorted order in
O(n) time, we would have am® (n)-time algorithm for sorting, because building
the heap takes onl@(n) time. But we know (Chapter 8) that a comparison sort
must takeQ2(n Ig n) time.

Solution to Exercise 12.2-7

Note that a call to REE-MINIMUM followed byn — 1 calls to TREE-SUCCESSOR
performs exactly the same inorder walk of the tree as does the procethreERr-
TREE-WALK. INORDER-TREE-WALK prints the TREE-MINIMUM first, and by
definition, the TREE-SUCCESSOROof a node is the next node in the sorted order
determined by an inorder tree walk.

This algorithm runs ir®(r) time because:

* Itrequires2(n) time to do the: procedure calls.
* lttraverses each of the— 1 tree edges at most twice, which talk@én) time.

To see that each edge is traversed at most twice (once going down the tree and once
going up), consider the edge between any noded either of its children, node

By starting at the root, we must traverge, v) downward fromu to v, before
traversing it upward fromv to u. The only time the tree is traversed downward is

in code of TREE-MINIMUM , and the only time the tree is traversed upward is in
code of TREE-SuccEssoRwhen we look for the successor of a node that has no
right subtree.

Suppose that is u’s left child.
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* Before printingu, we must print all the nodes in its left subtree, which is rooted
atv, guaranteeing the downward traversal of efige).

» After all nodes inu’s left subtree are printea, must be printed next. Procedure
TREE-SUCCESSORtraverses an upward path#dfrom the maximum element
(which has no right subtree) in the subtree rooted dthis path clearly includes
edge(u, v), and since all nodes in’s left subtree are printed, edde, v) is
never traversed again.

Now suppose that is u’s right child.

» After u is printed, TREE-SUCCESSORu) is called. To get to the minimum
element inu’s right subtree (whose root ig, the edggu, v) must be traversed
downward.

» After all values inu’s right subtree are printed,REE-SUCCESSORSS called on
the maximum element (again, which has no right subtree) in the subtree rooted
at v. TREE-SUCCESSORtraverses a path up the tree to an element after
sinceu was already printed. Edda, v) must be traversed upward on this path,
and since all nodes in’s right subtree have been printed, edgev) is never
traversed again.

Hence, no edge is traversed twice in the same direction.
Therefore, this algorithm runs i@ (n) time.

Solution to Exercise 12.3-3

Here’s the algorithm:

TREE-SORT(A)

let T be an empty binary search tree
fori = 1ton

TREE-INSERT(T, A[i])
INORDER-TREE-WALK (7. root)

Worst case®(n?)—occurs when a linear chain of nodes results from the repeated
TREE-INSERTOperations.

Best case®(n Ign)—occurs when a binary tree of heigh{lg ) results from the
repeated REE-INSERTOperations.

Solution to Problem 12-2

To sort the strings of , we first insert them into a radix tree, and then use a preorder
tree walk to extract them in lexicographically sorted order. The tree walk outputs
strings only for nodes that indicate the existence of a string (i.e., those that are
lightly shaded in Figure 12.5 of the text).
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Correctness

The preorder ordering is the correct order because:

Any node’s string is a prefix of all its descendants’ strings and hence belongs
before them in the sorted order (rule 2).

A node’s left descendants belong before its right descendants because the corre-
sponding strings are identical up to that parent node, and in the next position the
left subtree’s strings have 0 whereas the right subtree’s strings have 1 (rule 1).

Time
On).

Insertion take® (n) time, since the insertion of each string takes time propor-
tional to its length (traversing a path through the tree whose length is the length
of the string), and the sum of all the string lengths.is

The preorder tree walk take3(n) time. It is just like NORDER-TREE-WALK

(it prints the current node and calls itself recursively on the left and right sub-
trees), so it takes time proportional to the number of nodes in the tree. The
number of nodes is at most 1 plus the sum ¢f the lengths of the binary
strings in the tree, because a lengtstring corresponds to a path through the
root andi other nodes, but a single node may be shared among many string
paths.
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Red-Black Trees

Solution to Exercise 13.1-4

After absorbing each red node into its black parent, the degree of each node black
node is

» 2, if both children were already black,
» 3, if one child was black and one was red, or
« 4, if both children were red.

All leaves of the resulting tree have the same depth.

Solution to Exercise 13.1-5

In the longest path, at least every other node is black. In the shortest path, at most
every node is black. Since the two paths contain equal numbers of black nodes, the
length of the longest path is at most twice the length of the shortest path.

We can say this more precisely, as follows:

Since every path contains bh black nodes, even the shortest path freno a
descendant leaf has length at least)h By definition, the longest path from

to a descendant leaf has length hefght Since the longest path has(lsh black

nodes and at least half the nodes on the longest path are black (by property 4),
bh(x) > heightx)/2, so

length of longest patk= heigh(x) < 2 - bh(x) < twice length of shortest path

Solution to Exercise 13.3-3

In Figure 13.5, noded, B, and D have black-height + 1 in all cases, because
each of their subtrees has black-heighand a black root. Nod€ has black-
heightk + 1 on the left (because its red children have black-heighkt 1) and
black-height + 2 on the right (because its black children have black-hdight).
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Because is an ancestor of, we can just say that all ancestorsyofnust be
changed.

In either casey’s children (if any) are unchanged, because we have assumed
that there is no parent attribute.

b. We assume that we can call two procedures:

* MAKE-NEW-NODE(k) creates a new node whokey attribute has valué
and withleft andright attributesniL, and it returns a pointer to the new node.

* CoPY-NODE(x) creates a new node whossy, left, andright attributes have
the same values as those of nogend it returns a pointer to the new node.

Here are two ways to write ERSISTENFTREE-INSERT. The first is a version

of TREE-INSERT, modified to create new nodes along the path to where the
new node will go, and to not use parent attributes. It returns the root of the new
tree.

PERSISTENFTREE-INSERT(T, k)

z = MAKE-NEW-NODE(k)
new-root = CoPY-NODE(T.root)

y = NIL
X = new-root
while x # NIL
y =X
if z.key < x.key
x = COPY-NODE(x.left)
y.left = x
elsex = CoPY-NODE(x.right)
y.right = x
if y==NIL
new-root = z
elseif z.key < y.key
y.left = z
else y.right = z

return new-root

The second is a rather elegant recursive procedure. The initial call should have
T.root as its first argument. It returns the root of the new tree.

PERSISTENFTREE-INSERT(r, k)
if r ==NIL
x = MAKE-NEW-NODE(k)
elsex = CopPY-NODE(r)
if k < r.key
x.left = PERSISTENFTREE-INSERT(r. l€ft, k)
else x.right = PERSISTENFTREE-INSERT(r.right, k)
return x
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Cc. Like TREE-INSERT, PERSISTENFTREE-INSERT does a constant amount of

work at each node along the path from the root to the new node. Since the
length of the path is at most it takesO (h) time.

Since it allocates a new node (a constant amount of space) for each ancestor of
the inserted node, it also nee@h) space.

. If there were parent attributes, then because of the new root, every node of the

tree would have to be copied when a new node is inserted. To see why, observe
that the children of the root would change to point to the new root, then their
children would change to point to them, and so on. Since there moees, this
change would cause insertion to cre@fe:) new nodes and to take(n) time.

. From parts (a) and (c), we know that insertion into a persistent binary search

tree of height:, like insertion into an ordinary binary search tree, takes worst-
case timaD(h). Ared-black tree has = O(Ign), so insertion into an ordinary
red-black tree take®(Ig n) time. We need to show that if the red-black tree is
persistent, insertion can still be donedi(lg ») time. To do this, we will need

to show two things:

* How to still find the parent pointers we needdn(1) time without using a
parent attribute. We cannot use a parent attribute because a persistent tree
with parent attributes usé3(rn) time for insertion (by part (d)).

* That the additional node changes made during red-black tree operations (by
rotation and recoloring) don’t cause more thafig ») additional nodes to
change.

Each parent pointer needed during insertion can be foudt 1n time without
having a parent attribute as follows:

To insert into a red-black tree, we call RBHHERT, which in turn calls RB-
INSERFFIXUP. Make the same changes to RRSERTas we made to REE-
INSERT for persistence. Additionally, as RBv$ERT walks down the tree to

find the place to insert the new node, have it build a stack of the nodes it tra-
verses and pass this stack to RBSERTFIXUP. RB-INSERFFIXUP needs
parent pointers to walk back up the same path, and at any given time it needs
parent pointers only to find the parent and grandparent of the node it is working
on. As RB-NSeERTFIXupP moves up the stack of parents, it needs only parent
pointers that are at known locations a constant distance away in the stack. Thus,
the parent information can be found @(1) time, just as if it were stored in a
parent attribute.

Rotation and recoloring change nodes as follows:

* RB-INSERTFIXUP performs at most 2 rotations, and each rotation changes
the child pointers in 3 nodes (the node around which we rotate, that node’s
parent, and one of the children of the node around which we rotate). Thus, at
most 6 nodes are directly modified by rotation during REBs#RFFIXUP. In
a persistent tree, all ancestors of a changed node are copied, sedkRH
FiIXuP’s rotations takeO(Ign) time to change nodes due to rotation. (Ac-
tually, the changed nodes in this case share a siglg n)-length path of
ancestors.)
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RB-INSERFFIXUP recolors some of the inserted node’s ancestors, which
are being changed anyway in persistent insertion, and some children of an-
cestors (the “uncles” referred to in the algorithm description). There are

at mostO(lgn) ancestors, hence at mo8tlIgn) color changes of uncles.
Recoloring uncles doesn’t cause any additional node changes due to persis-
tence, because the ancestors of the uncles are the same nodes (ancestors of
the inserted node) that are being changed anyway due to persistence. Thus,
recoloring does not affect th@(lg ») running time, even with persistence.

We could show similarly that deletion in a persistent tree also takes worst-case
time O(h).

We already saw in part (a) thét(%) nodes change.

We could write a persistent RBHRETE procedure that runs i@ (h) time,
analogous to the changes we made for persistence in insertion. But to do so
without using parent pointers we need to walk down the tree to the node to be
deleted, to build up a stack of parents as discussed above for insertion. This
is a little tricky if the set’s keys are not distinct, because in order to find the
path to the node to delete—a particular node with a given key—we have to
make some changes to how we store things in the tree, so that duplicate keys
can be distinguished. The easiest way is to have each key take a second part
that is unique, and to use this second part as a tiebreaker when comparing
keys.

Then the problem of showing that deletion needs an{ig ») time in a persis-
tent red-black tree is the same as for insertion.

As for insertion, we can show that the parents needed by RBEDE-
Fixup can be found irO (1) time (using the same technique as for insertion).

Also, RB-DELETE-FIXuP performs at most 3 rotations, which as discussed
above for insertion require@(Ig n) time to change nodes due to persistence.

It also doesD(Ig n) color changes, which (as for insertion) take otlyg n)

time to change ancestors due to persistence, because the number of copied
nodes isO(Ign).
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Solution to Exercise 14.1-7

Let A[1..n] be the array of distinct numbers.

One way to count the inversions is to add up, for each element, the number of larger
elements that precede it in the array:

# of inversions= Y " [Inv(;)] .
j=1
wherelnv(j) = {i : i < j andA[i] > A[j]}.
Note that|Inv(j)| is related toA[j]'s rank in the subarray|[l1.. j] because the
elements innv(j) are the reason that[;] is not positioned according to its rank.

Letr(j) be the rank ofd[j] in A[l..j]. Thenj = r(j) + [Inv(j)|, SO we can
compute

() =7 —r()

by insertingA[1], ..., A[n] into an order-statistic tree and using O 3w to find
the rank of eaci[j] in the tree immediately after it is inserted into the tree. (This
OS-RaNK value isr(j).)

Insertion and OS-BRNK each takeO(lgn) time, and so the total time for ele-
ments isO(n lgn).

Solution to Exercise 14.2-2

Yes, we can maintain black-heights as attributes in the nodes of a red-black tree
without affecting the asymptotic performance of the red-black tree operations. We
appeal to Theorem 14.1, because the black-height of a node can be computed from
the information at the node and its two children. Actually, the black-height can
be computed from just one child’s information: the black-height of a node is the
black-height of a red child, or the black height of a black child plus one. The
second child does not need to be checked because of property 5 of red-black trees.

Within the RB-INSERFFIXuP and RB-DELETE-FIXuP procedures are color
changes, each of which potentially cau@€élg n) black-height changes. Let us
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* NodesA, C, and E keep the same subtrees, so their black-heights don't
change.

* Add these two constant-time assignments in RBEBTE-FIXupP after
line 20:

x.p.bh = x.bh+1
x.p.p.bh = x.p.bh+ 1

* The extra black is taken care of. Loop terminates.

Thus, RB-CELETE-FIXUP maintains its originaD(Ig n) time.

Therefore, we conclude that black-heights of nodes can be maintained as attributes
in red-black trees without affecting the asymptotic performance of red-black tree
operations.

For the second part of the question, no, we cannot maintain node depths without
affecting the asymptotic performance of red-black tree operations. The depth of a
node depends on the depth of its parent. When the depth of a node changes, the
depths of all nodes below it in the tree must be updated. Updating the root node
causes: — 1 other nodes to be updated, which would mean that operations on the
tree that change node depths might not ru@im Ig n) time.

Solution to Exercise 14.3-7

General idea: Move a sweep line from left to right, while maintaining the set of
rectangles currently intersected by the line in an interval tree. The interval tree
will organize all rectangles whose interval includes the current position of the
sweep line, and it will be based on theintervals of the rectangles, so that any
overlappingy intervals in the interval tree correspond to overlapping rectangles.

Details:

1. Sort the rectangles by theircoordinates. (Actually, each rectangle must ap-
pear twice in the sorted list—once for its leficoordinate and once for its right
x-coordinate.)

2. Scan the sorted list (from lowest to highestoordinate).

* When anx-coordinate of a left edge is found, check whether the rectangle’s
y-coordinate interval overlaps an interval in the tree, and insert the rectangle
(keyed on itsy-coordinate interval) into the tree.

* When anx-coordinate of a right edge is found, delete the rectangle from the
interval tree.

The interval tree always contains the set of “open” rectangles intersected by the
sweep line. If an overlap is ever found in the interval tree, there are overlapping
rectangles.

Time: O(nlgn)
* O(nlgn) to sort the rectangles (we can use merge sort or heap sort).
* O(nlgn) for interval-tree operations (insert, delete, and check for overlap).
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Solution to Exercise 15.2-5

Each time thel-loop executes, theloop executeg — I + 1 times. Each time the

i-loop executes, the-loop executeg —i = [ — 1 times, each time referencing
m twice. Thus the total number of times that an entrywofs referenced while

computing other entries {5.,_,(n — [ + 1)(I — 1)2. Thus,

Y3 RGj) = Y (n—l+D(I—-1)2

i=1 j=i 1=2

n—1
= 2> (-0l
=1

n—1 n—1
= 2> nl-2) 1
1=1 I=1

2n(n —Dn (n—1n2n—-1)

= —2
2 6
_ n3_n2_2n3—3n2+n
3
n®—n

Solution to Exercise 15.3-1

Running RECURSIVEMATRIX-CHAIN is asymptotically more efficient than enu-
merating all the ways of parenthesizing the product and computing the number of
multiplications for each.

Consider the treatment of subproblems by the two approaches.

* For each possible place to split the matrix chain, the enumeration approach
finds all ways to parenthesize the left half, finds all ways to parenthesize the
right half, and looks at all possible combinations of the left half with the right
half. The amount of work to look at each combination of left- and right-half
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subproblem results is thus the product of the number of ways to do the left half
and the number of ways to do the right half.

* For each possible place to split the matrix chaiBCRRSIVEMATRIX -CHAIN
finds the best way to parenthesize the left half, finds the best way to parenthesize
the right half, and combines just those two results. Thus the amount of work to
combine the left- and right-half subproblem result®id ).

Section 15.2 argued that the running time for enumerati€(i& /n>2). We will
show that the running time for ®EURSIVEMATRIX-CHAIN is O(n3"1).

To get an upper bound on the running time &#dURSIVEMATRIX-CHAIN, we'll

use the same approach used in Section 15.2 to get a lower bound: Derive a recur-
rence of the forml"(n) < ... and solve it by substitution. For the lower-bound
recurrence, the book assumed that the execution of lines 1-2 and 6—7 each take at
least unit time. For the upper-bound recurrence, we’ll assume those pairs of lines
each take at most constant timeThus, we have the recurrence

c ifn=1,
n—1

T(n) < c+Z(T(k)+T(”_k)+C) ifn=>2.
k=1

This is just like the book’s> recurrence except that it hasnstead of 1, and so we
can be rewrite it as

n—1
T(n)<2) T(i)+cn.

i=1

We shall prove thaf'(n) = O(n3"!) using the substitution method. (Note: Any
upper bound o (n) that iso (4" /n*?) will suffice. You might prefer to prove one
that is easier to think up, such &gn) = 0(3.5").) Specifically, we shall show
that7'(n) < cn3" ! foralln > 1. The basis is easy, sindg1) <c =c-1-3'"1,
Inductively, forn > 2 we have

n—1

T(n) < 2) T@)+cn
i=1
n—1
2Zci3i_l+cn

i=1
n—1
c~(2zz’3"—1+n)
i=1
n3r-1 1-3"
= ¢-[2- see below
c( (3—1+(3—1)2)+") ( )
1-3"
= cn3"_1+c~( 5 +n)

= cn3" '+ %(211 +1-3")

IA

IA

< cn3" foralle >0,n>1.
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Running RECURSIVE-MATRIX -CHAIN takesO(n3"~1) time, and enumerating all
parenthesizations také€y4” /n3/?) time, and so RCURSIVEMATRIX-CHAIN is
more efficient than enumeration.

Note: The above substitution uses the following fact:

n—1 1 —x"

n—1
Zix"_1 i :
po x—1  (x—1)?

This equation can be derived from equation (A.5) by taking the derivative. Let

f(x)=n2_:xi=xn_l—l.

x—1
Then
n—1 n—1 n
sl grp . hX I—x
;zx —f(x)—x_l—i-(x_l)z.

Solution to Exercise 15.4-4

When computing a particular row of thetable, no rows before the previous row
are needed. Thus only two row2—Y.length entries—need to be kept in memory
atatime. (Note: Each row aefactually has’.length+ 1 entries, but we don’t need

to store the column of 0’'s—instead we can make the program “know” that those
entries are 0.) With this idea, we need olymin(m, n) entries if we always call
LCS-LENGTH with the shorter sequence as theargument.

We can thus do away with thetable as follows:

* Use two arrays of length mim, n), previous-row andcurrent-row, to hold the
appropriate rows of.

* Initialize previous-row to all 0 and computeurrent-row from left to right.

*  When current-row is filled, if there are still more rows to compute, copy
current-row into previous-row and compute the neaurrent-row.

Actually only a little more than one row’s worth ofentries—mirim, n) + 1 en-
tries—are needed during the computation. The only entries needed in the table
when it is time to compute(i, j] arecli, k] for k < j — 1 (i.e., earlier entries in

the current row, which will be needed to compute the next row);aind 1, k] for

k > j —1 (i.e., entries in the previous row that are still needed to compute the rest
of the current row). This is one entry for eakHrom 1 to min(m, n) except that
there are two entries with = j — 1, hence the additional entry needed besides the
one row’'s worth of entries.

We can thus do away with thetable as follows:

* Use an array of length minim, n) + 1 to hold the appropriate entries of At
the timec|i, j] is to be computed; will hold the following entries:

* alk] =cli,k]for1 <k < j —1(i.e., earlier entries in the current “row”),
* alk] =c[i —1,k]fork > j — 1 (i.e., entries in the previous “row”),
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* al0] = c[i, j — 1] (i.e., the previous entry computed, which couldn’t be put
into the “right” place ina without erasing the still-neededi — 1, j — 1]).
* Initialize a to all 0 and compute the entries from left to right.
* Note that the 3 values needed to compejte j] for j > 1 are ina[0] =
cli,j—1),a[j —1]=cli —1,j —1],anda[j] = c[i — 1, J].
* Whencli, j] has been computed, mowg0] (c[i, j — 1]) to its “correct”
placea[j — 1], and putc[i, j] in a[0].

Solution to Problem 15-4

Note: We assume that no word is longer than will fit into a line, e M for

alli.

First, we'll make some definitions so that we can state the problem more uniformly.
Special cases about the last line and worries about whether a sequence of words fits
in a line will be handled in these definitions, so that we can forget about them when
framing our overall strategy.

 Defineextrasi, j] = M — j +i — > ;_, lx to be the number of extra spaces
at the end of a line containing wordsthrough j. Note thatextras may be
negative.

* Now define the cost of including a line containing wordirough; in the sum
we want to minimize:

00 if extras(i, j] < 0 (i.e., words, ..., j don'tfit),
Icli, j]=(0 if j = n andextragi, j] > 0 (last line costs 0)
(extras[i, j])> otherwise.

By making the line cost infinite when the words don't fit on it, we prevent such
an arrangement from being part of a minimal sum, and by making the cost 0O for
the last line (if the words fit), we prevent the arrangement of the last line from
influencing the sum being minimized.

We want to minimize the sum o€ over all lines of the paragraph.

Our subproblems are how to optimally arrange wolds.., j, wherej =
1,...,n.

Consider an optimal arrangement of words. ., j. Suppose we know that the
last line, which ends in word, begins with word . The preceding lines, therefore,
contain wordsl, ...,i — 1. In fact, they must contain an optimal arrangement of
wordsl,...,i — 1. (The usual type of cut-and-paste argument applies.)

Let c[/] be the cost of an optimal arrangement of wolds. ., j. If we know that

the last line contains words. . ., j, thenc[j] = c[i — 1] +Ic[i, j]. As a base case,
when we’re computing[1], we need:[0]. If we setc[0] = 0, thenc[1] = Ic[1, 1],
which is what we want.

But of course we have to figure out which word begins the last line for the sub-
problem of wordsl, ..., j. So we try all possibilities for word, and we pick the
one that gives the lowest cost. Heir@anges froml to j. Thus, we can defing ;]
recursively by
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| if j =0,
UI= min (cli =11 +1cli. /) i/ >0.

1<i=<j

Note that the way we defindd ensures that

» all choices made will fit on the line (since an arrangement Va@ts oo cannot
be chosen as the minimum), and

* the cost of putting words . . ., j on the last line will not be 0 unless this really
is the last line of the paragrapli & n) or wordsi ... j fill the entire line.

We can compute a table ofvalues from left to right, since each value depends
only on earlier values.

To keep track of what words go on what lines, we can keep a payatkghle that
points to where each value came from. Whea[;] is computed, ik[/] is based
on the value ot[k — 1], setp[j] = k. Then afterc[n] is computed, we can trace
the pointers to see where to break the lines. The last line starts atpjiofénd
goes through word. The previous line starts at wone p[n]] and goes through
word p[n] — 1, etc.

In pseudocode, here’s how we construct the tables:

PRINT-NEATLY ([,n, M)

letextras[l..n,1..n],Ic[1..n,1..n],andc[0..n] be new arrays
/I Computeextras|i, j]forl1 <i < j <n.
fori = 1ton
extrasli,i] = M —
forj =i+ 1ton
extras(i, j| = extrasli,j — 1] —1; — 1
/I Computec[i, j]forl <i < j <n.
fori = 1ton
for j =iton
if extragfi, j] <0
Ic[i, j] = oo
elseif j ==n andextras(i, j] > 0
Icli, j] =0
eselcfi, j] = (extras[i, j])*
/I Computec[j]andp[j]forl < j <n.

c[0] =0

for j = 1ton
c[j] = o0
fori = 1toj

if cli —1]+Icli, j] < c[j]
c[j] = cli = 1]+ Ici, j]
plil =i
return c andp

Quite clearly, both the time and space @ré:?).

In fact, we can do a bit better: we can get both the time and space dam i ).
The key observation is that at mds¥//2] words can fit on a line. (Each word is
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atleast one character long, and there’s a space between words.) Since a line with
wordsi, ..., j containsj —i + 1 words, ifj —i + 1 > [M/2] then we know
thatlc[i, j] = oo. We need only compute and stoeetras(i, j] andlc]i, j] for
j—i4+1<[M/2]. And the innerfor loop header in the computation of;]
andp[j] can run frommakl, j — [M/2] +1)toj.

We can reduce the space even furthe®t(). We do so by not storing thie
andextras tables, and instead computing the valudaif, j] as needed in the last
loop. The idea is that we could computi, j] in O(1) time if we knew the
value ofextras]i, j]. And if we scan for the minimum value itescending order
of i, we can compute that astragfi, j| = extrasi + 1, j] — /; — 1. (Initially,
extras(j, j] = M —;.) This improvement reduces the spacéi@), since now
the only tables we store areand p.

Here’'s how we print which words are on which line. The printed output of
GIVE-LINES(p, j) is a sequence of triplg%, i, j), indicating that words, . .., j
are printed on liné&. The return value is the line numbler

GIVE-LINES(p, j)
i = plj]
if i ==
k=1
elsek = GIVE-LINES(p,i — 1)+ 1
print (k,i, j)
return k

The initial call is GVE-LINES(p, n). Since the value of decreases in each recur-
sive call, GvE-LINES takes a total oD (n) time.
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Solution to Exercise 16.1-4

Let S be the set ofi activities.

The “obvious” solution of using @EEDY-ACTIVITY-SELECTORO find a maxi-
mum-size sef; of compatible activities fron$ for the first lecture hall, then using

it again to find a maximum-size s&4 of compatible activities frony — S, for the
second hall, (and so on until all the activities are assigned), req@i(e?) time

in the worst case. Moreover, it can produce a result that uses more lecture halls
than necessary. Consider activities with the interygls4), [2, 5), [6,7), [4, 8)}.
GREEDY-ACTIVITY-SELECTOR Would choose the activities with intervals, 4)

and |6, 7) for the first lecture hall, and then each of the activities with intervals
[2,5) and[4, 8) would have to go into its own hall, for a total of three halls used.
An optimal solution would put the activities with intervdls 4) and[4, 8) into one

hall and the activities with intervalg, 5) and[6, 7) into another hall, for only two
halls used.

There is a correct algorithm, however, whose asymptotic time is just the time
needed to sort the activities by timed4n Igr) time for arbitrary times, or pos-
sibly as fast a®) (n) if the times are small integers.

The general idea is to go through the activities in order of start time, assigning
each to any hall that is available at that time. To do this, move through the set
of events consisting of activities starting and activities finishing, in order of event
time. Maintain two lists of lecture halls: Halls that are busy at the current event-
time ¢ (because they have been assigned an activibat started at; < ¢ but

won't finish until f; > ¢) and halls that are free at time (As in the activity-
selection problem in Section 16.1, we are assuming that activity time intervals are
half open—i.e., that if; > f;, then activities and j are compatible.) When

is the start time of some activity, assign that activity to a free hall and move the
hall from the free list to the busy list. Whernis the finish time of some activity,
move the activity’s hall from the busy list to the free list. (The activity is certainly
in some hall, because the event times are processed in order and the activity must
have started before its finish timghence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick a hall that has already had
an activity assigned to it, if possible, before picking a never-used hall. (This can be
done by always working at the front of the free-halls list—putting freed halls onto
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the front of the list and taking halls from the front of the list—so that a new hall
doesn’t come to the front and get chosen if there are previously-used halls.)

This guarantees that the algorithm uses as few lecture halls as possible: The algo-
rithm will terminate with a schedule requiring < n lecture halls. Let activity

be the first activity scheduled in lecture hall The reason that was put in the

mth lecture hall is that the firgk — 1 lecture halls were busy at time. So at this

time there aren activities occurring simultaneously. Therefore any schedule must
use at least: lecture halls, so the schedule returned by the algorithm is optimal.

Run time:

» Sort the2n activity-starts/activity-ends events. (In the sorted order, an activity-
ending event should precede an activity-starting event that is at the same time.)
O(n lgn) time for arbitrary times, possiblg (») if the times are restricted (e.g.,
to small integers).

* Process the events i(n) time: Scan th@n events, doing) (1) work for each
(moving a hall from one list to the other and possibly associating an activity
with it).

Total: O(n + time to sor}

Solution to Exercise 16.2-2

The solution is based on the optimal-substructure observation in the text: Let
be the highest-numbered item in an optimal solutibfor W pounds and items
1,...,n. ThenS§S” = S — {i} must be an optimal solution fo#/ — w; pounds
and itemsl, ...,i — 1, and the value of the solutia$i is v; plus the value of the
subproblem solutios”.

We can express this relationship in the following formula: Detifiew] to be the

value of the solution for items, . . . ,i and maximum weightv. Then
0 ifi=00rw=0,
cli,w] =< cli —1,w] if w; >w,

max(v; +cli — 1, w —w;],c[i — L,w]) ifi >0andw > w; .

The last case says that the value of a solution fiems either includes item,

in which case it isv; plus a subproblem solution fér— 1 items and the weight
excludingw;, or doesn’t include iten, in which case it is a subproblem solution
for i — 1 items and the same weight. That is, if the thief picks iterhe takes);

value, and he can choose from iteins..,i — 1 up to the weight limitw — w;,
and getc[i — 1, w — w;] additional value. On the other hand, if he decides not to
take itemi, he can choose from itenis. .., i — 1 up to the weight limitw, and get

c[i — 1, w] value. The better of these two choices should be made.

The algorithm takes as inputs the maximum weightthe number of items, and
the two sequences = (vq, va, ..., v,) andw = (wy, wa, ..., wy,). It stores the
cli, j] values in a table[0..n,0.. W] whose entries are computed in row-major
order. (That is, the first row af is filled in from left to right, then the second row,
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and so on.) At the end of the computatieify;, W] contains the maximum value
the thief can take.

DYNAMIC-0-1-KNAPSACK(v, w,n, W)

letc[0..n,0.. W] be anew array
foorw =0toW
c[0,w] =0
fori =1ton
c[i,0] = 0
foorw =1toW
ifw, <w
ifvi4+cli—1Lw—w]>cli—1,w]
cli,w] = v, +cli = 1,w—w;]
deecli,w] = c[i — 1, w]
deecli,w] = c[i — 1, w]

We can use the table to deduce the set of items to take by startingatW] and
tracing where the optimal values came frome[if, w] = ¢[i — 1, w], then itemy is
not part of the solution, and we continue tracing with— 1, w]. Otherwise itemi
is part of the solution, and we continue tracing with— 1, w — w;].

The above algorithm takes(n W) time total:

* OmW)tofillinthec table:(n +1)- (W + 1) entries, each requirin@(1) time
to compute.

* O(n) time to trace the solution (since it starts in ravof the table and moves
up one row at each step).

Solution to Exercise 16.2-7

Sat A and B into monotonically decreasing order.

Here’s a proof that this method yields an optimal solution. Consider any indices
and;j such thai < j, and consider the ternas® anda;% . We want to show that

it is no worse to include these terms in the payoff than to inciyeanda; %, i.e.,
thata;%a;% > a;% a;%. SinceA and B are sorted into monotonically decreasing
order andi < j, we havea; > a; andb; > b;. Sincea; anda; are positive
andb; — b; is nonnegative, we havg? =% > a;%~b; Multiplying both sides by
a,-bfajbf yieldsaibiajbf > aibfa‘,-bf.

Since the order of multiplication doesn’t matter, sortid@gand B into monotoni-
cally increasing order works as well.
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Solution to Exercise 17.1-3

Let ¢; = cost ofith operation.

)i if i is an exact power of 2
)1 otherwise

Ci

Operation Cost

T Boo~NoabhwN R
R PR ORRPRPMRPNRE

n operations cost

n Ign
Zci fn—I—ZZj =n+Q2n—1)<3n.
i=1 j=0

(Note: Ignoring floor in upper bound of 2/.)

Total cost

Average cost of operatios ———
# operations

By aggregate analysis, the amortized cost per operati@n(1).

Solution to Exercise 17.2-2

Let ¢; = cost ofith operation.
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i if i is an exact power of 2
1 otherwise.

(&

Charge each operation $3 (amortized @@}t

« If i is not an exact power of 2, pay $1, and store $2 as credit.
» If i is an exact power of 2, pay Jusing stored credit.

Operation Cost Actual cost Credit remaining

©OO~NOUNWNR
WWWWwWowowowaoww
RBPFRPORFRRFRPRFRPARPLDNPRE
ONOH oo ~OWN

=
o

n

Since the amortized cost is $3 per operatidn,é; = 3n.

i=1

We know from Exercise 17.1-3 th{ ¢ < 3n.

i=1

Then we havei:a > Z ¢; = credit= amortized cost actual cost> 0.

i=1 i=1
Since the amortized cost of each operatio®{d), and the amount of credit never
goes negative, the total costiobperations i< (n).

Solution to Exercise 17.2-3

Weintroduce a new fieldl. max to hold the index of the high-ordérin A. Initially,
A.max s set to—1, since the low-order bit ofl is at index 0, and there are initially
no 1's in A. The value of4.max is updated as appropriate when the counter is
incremented or reset, and we use this value to limit how muchmust be looked

at to reset it. By controlling the cost ofHRETIn this way, we can limit it to an
amount that can be covered by credit from earlleCREMENTS.
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INCREMENT(A)
i=0
whilei < A.lengthandA[i] ==
Ali] =0
i=i+1
if i < A.length
Alil =1
/I Additions to book’'s NCREMENT start here.
ifi > A.max
A.max =i
gsed.max = —1

RESET(A)

fori = 0to A.max
Ali] =0
A.max = —1

As for the counter in the book, we assume that it costs $1 to flip a bit. In addition,
we assume it costs $1 to updatemax.

Setting and resetting of bits b)wEREMENT will work exactly as for the original
counter in the book: $1 will pay to set one bit to 1; $1 will be placed on the bit
that is set to 1 as credit; the credit on each 1 bit will pay to reset the bit during
incrementing.

In addition, we’'ll use $1 to pay to updateax, and if max increases, we'll place an
additional $1 of credit on the new high-order 1. if#éx doesn't increase, we can
just waste that $1—it won’t be needed.) SincedR Tmanipulates bits at positions
only up toA. max, and since each bit up to there must have become the high-order 1
at some time before the high-order 1 got up4omax, every bit seen by RSET

has $1 of credit on it. So the zeroing of bits4by RESETcan be completely paid

for by the credit stored on the bits. We just need $1 to pay for resatiixg

Thus charging $4 for eacintREMENT and $1 for each RseTis sufficient, so the
sequence of INCREMENT and RESET operations take®(n) time.
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Data Structuresfor Digoint Sets

Solution to Exercise 21.2-3

We want to show that we can assigh(1) charges to MKE-SET and KND-SET

and anO(lgn) charge to WioN such that the charges for a sequence of these
operations are enough to cover the cost of the sequesde++r Ig n), according

to the theorem. When talking about the charge for each kind of operation, it is
helpful to also be able to talk about the number of each kind of operation.

Consider the usual sequenceMAKE-SET, UNION, and RND-SET operations,
n of which are MAKE-SET operations, and let < n be the number of WiON
operations. (Recall the discussion in Section 21.1 about there being at madst
UNION operations.) Then there atdVIAKE-SET operations/ UNION operations,
andm —n — [ FIND-SET operations.

The theorem didn’t separately name the numbef UNIONS; rather, it bounded
the number by:. If you go through the proof of the theorem withUNIONS, you
getthe time boun® (m—I[+11g/) = O(m+11g!) for the sequence of operations.
That is, the actual time taken by the sequence of operations is attmost/ Ig /),
for some constant.

Thus, we want to assign operation charges such that
(MAKE-SET charge) - n

+(FIND-SET charge) - (m —n —1)

+(UNION charge) -1

>c(m+1lgl),

so that the amortized costs give an upper bound on the actual costs.

The following assignments work, whetéis some constarg c:

* MAKE-SET: ¢/

* FIND-SET: ¢’

* UNION: ¢'(Ign + 1)

Substituting into the above sum, we get

cn+cm—-—n—-0)+c(gn+1)] = cm+cllgn
= c¢'(m+1lgn)
> cm+1lgl).
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Solution to Exercise 21.2-6

Let’s call the two lists4A and B, and suppose that the representative of the new list
will be the representative of. Rather than appending to the end of4, instead
splice B into A right after the first element of. We have to travers8 to update
pointers to the set object anyway, so we can just make the last elemBmaht

to the second element dff.
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Elementary Graph Algorithms

Solution to Exercise 22.1-7

BBT (i, ) = Zbiesz = Zbiebje

ecFE ecE
e Ifi =j,thenb;.bj. =1(itis1-1o0r(—1)-(—1)) whenever enters or leaves
vertexi, and 0 otherwise.
* Ifi # j,thend;.bj. = —1 whene = (i, j) ore = (j, i), and O otherwise.

Thus,

degree of = in-degree+ out-degree if = j ,

BBT ., / = - -
(1) —(# of edges connectingand ;) ifi .

Solution to Exercise 22.2-5

The correctness proof for the BFS algorithm shows that = 6(s, u), and the
algorithm doesn’t assume that the adjacency lists are in any particular order.

In Figure 22.3, ift precedese in Adj[w], we can get the breadth-first tree shown
in the figure. But ifx precedes in Adj[w] andu precedey in Adj[x], we can get
edge(x, u) in the breadth-first tree.

Solution to Exercise 22.3-12

The following pseudocode modifies the DFS and DF &4V procedures to assign
values to theec attributes of vertices.
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DFS(G)
for each vertexx € G.V
u.color = WHITE
u.m = NIL
time =0
counter = 0
for each vertexx € G.V
if u.color == WHITE
counter = counter + 1
DFS-VIsIT(G, u, counter)

DFS-VIsIT(G, u, counter)

u.CC = counter /! label the vertex
time = time+ 1
u.d = time

u.color = GRAY
for eachv € G.Adj[u]
if v.color == WHITE

V.T = U

DFS-VisIT(G, v, counter)
u.color = BLACK
time = time+ 1
u.f =time

This DFS increments a counter each time DF &4V is called to grow a new tree
in the DFS forest. Every vertex visited (and added to the tree) by DFESF\s
labeled with that same counter value. Thwsc = v.ccif and only if u andv are
visited in the same call to DFS4¥IT from DFS, and the final value of the counter
is the number of calls that were made to DF&N by DFS. Also, since every
vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by each call to DFESFV
from DFS are exactly the vertices in one connected componeiit of

+ All vertices in a connected component are visited by one call to DFSTV
from DFS:

Letu be the first vertex in componeat visited by DFS-MsIT. Since a vertex
becomes non-white only when it is visited, all verticesCinare white when
DFS-VisIT is called foru. Thus, by the white-path theorem, all vertice<in
become descendants »fin the forest, which means that all verticesGnare
visited (by recursive calls to DFS4¥%1T) before DFS-VSIT returns to DFS.

* All vertices visited by one call to DFS-¢IT from DFS are in the same con-
nected component:

If two vertices are visited in the same call to DFSsWr from DFS, they are in

the same connected component, because vertices are visited only by following
paths inG (by following edges found in adjacency lists, starting from some
vertex).
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Solution to Exercise 22.4-3

An undirected graph is acyclic (i.e., a forest) if and only if a DFS vyields no back

edges.

« Ifthere’s a back edge, there’s a cycle.

* If there’s no back edge, then by Theorem 22.10, there are only tree edges.
Hence, the graph is acyclic.

Thus, we can run DFS: if we find a back edge, there’s a cycle.

* Time: O(V). (NotO(V + E)Y)
If we ever sedV| distinct edges, we must have seen a back edge because (by
Theorem B.2 on p. 1174) in an acyclic (undirected) forgst,< |V| — 1.

Solution to Problem 22-1

a. 1. Suppos€u,v) is a back edge or a forward edge in a BFS of an undirected
graph. Then one af andv, sayu, is a proper ancestor of the other) (n
the breadth-first tree. Since we explore all edges b&fore exploring any
edges of any ofi’'s descendants, we must explore the e@lge) at the time
we explorex. But then(u, v) must be a tree edge.

2. In BFS, an edgéu, v) is a tree edge when we setr = u. But we only
do so when we sat.d = u.d + 1. Since neither.d norv.d ever changes
thereafter, we have.d = u.d + 1 when BFS completes.

3. Consider a cross edde, v) where, without loss of generality, is visited
beforev. At the time we visitu, vertexv must already be on the queue, for
otherwise(u, v) would be a tree edge. Becausés on the queue, we have
v.d < u.d + 1 by Lemma 22.3. By Corollary 22.4, we haved > u.d.
Thus, eithemw.d = u.dorv.d = u.d + 1.

b. 1. Supposdu,v) is a forward edge. Then we would have explored it while
visiting u, and it would have been a tree edge.

2. Same as for undirected graphs.

3. For any edggu,v), whether or not it's a cross edge, we cannot have
v.d > u.d + 1, since we visitv at the latest when we explore ed@e v).
Thus,v.d <u.d + 1.

4. Clearly,v.d > 0 for all verticesv. For a back edgéu, v), v is an ancestor
of u in the breadth-first tree, which means thadl < u.d. (Note that since
self-loops are considered to be back edges, we couldihave.)
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Here, the graph isits own minimum spanning tree, and so the minimum spanning
tree isunique. Consider the cut ({x},{y, z}). Both of the edges (x, y) and (x, z)
are light edges crossing the cut, and they are both light edges.
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Single-Source Shortest Paths

Solution to Exercise 24.1-3

If the greatest number of edges on any shortest path from the sourcéhisn the
path-relaxation property tells us that afterterations of BELLMAN -FORD, every
vertexv has achieved its shortest-path weightid. By the upper-bound property,
afterm iterations, naf values will ever change. Therefore, diovalues will change

in the (m + 1)st iteration. Because we do not knewin advance, we cannot make
the algorithm iterate exactly: times and then terminate. But if we just make the
algorithm stop when nothing changes any more, it will stop after 1 iterations.

BELLMAN-FORD-(M+1)(G, w, s)

INITIALIZE -SINGLE-SOURCHG, s)
changes = TRUE
while changes == TRUE
changes = FALSE
for each edgéu,v) € G.E
RELAX-M(u, v, w)

RELAX-M(u, v, w)

if v.d > wu.d+ w(u,v)
v.d =u.d+ wu,v)
V.IT = U
changes = TRUE

The test for a negative-weight cycle (based on there beidgvalue that would
change if another relaxation step was done) has been removed above, because this
version of the algorithm will never get out of threhile loop unless alkd values

stop changing.

Solution to Exercise 24.3-3

Yes, the algorithm still works. Let: be the leftover vertex that does not
get extracted from the priority queu@. If u is not reachable fronsy, then
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u.d=24(s,u) = oco. If u is reachable froms, then there is a shortest path
p = s~ x — u. When the noder was extractedx.d = §(s, x) and then the
edge(x, u) was relaxed; thuss.d = 6(s, u).

Solution to Exercise 24.3-6

To find the most reliable path betweermnd:, run Dijkstra’s algorithm with edge
weightsw (u, v) = —Igr(u, v) to find shortest paths fromin O(E+V Ig V) time.
The most reliable path is the shortest path froto 7, and that path’s reliability is
the product of the reliabilities of its edges.

Here’s why this method works. Because the probabilities are independent, the
probability that a path will not fail is the product of the probabilities that its edges
will not fail. We want to find a path % ¢ such thaﬂ(u,v)ep r(u,v) is maximized.

This is equivalent to maximizing (@], ,)c, 7 (¥, v)) = >, )¢, 197 (1, v), which

is in turn equivalent to minimizing _, )<, — 197 (u,v). (Note:r(u, v) can be 0,

and Ig0 is undefined. So in this algorithm, definellg= —oc0.) Thus if we assign
weightsw(u, v) = —Igr(u, v), we have a shortest-path problem.

Since lgl =0, Igx < 0 for 0 < x < 1, and we have defined (= —o0, all the
weightsw are nonnegative, and we can use Dijkstra’s algorithm to find the shortest
paths froms in O(E + V' Ig V) time.

Alternate answer

You can also work with the original probabilities by running a modified version of
Dijkstra’s algorithm that maximizes the product of reliabilities along a path instead
of minimizing the sum of weights along a path.

In Dijkstra’s algorithm, use the reliabilities as edge weights and substitute

* max (and KTRACT-MAX) for min (and EXTRACT-MIN) in relaxation and the
gueue,

» . for + in relaxation,

* 1 (identity for-) for O (identity for+) and—oo (identity for min) foroo (identity
for max).

For example, we would use the following instead of the usualAX procedure:

RELAX-RELIABILITY (u,v,r)
ifv.d<u.d-r(u,v)

v.d =u.d-r(u,v)

V.T = U

This algorithm is isomorphic to the one above: it performs the same operations
except that it is working with the original probabilities instead of the transformed
ones.
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Solution to Exercise 24.4-7

Observe that after the first pass, all values are at modd, and that relaxing
edgeqvy, v;) will never again changedvalue. Therefore, we can eliminatgby

running the Bellman-Ford algorithm on the constraint graph withoutgheode
but initializing all shortest path estimatestd@nstead ofo.

Solution to Exercise 24.5-4

Whenever BLAX setsw for some vertex, it also reduces the vertex'sralue.
Thus ifs. 7 gets set to a nomHL value,s.d is reduced from its initial value df to

a negative number. Butd is the weight of some path fromto s, which is a cycle
includings. Thus, there is a negative-weight cycle.

Solution to Problem 24-3

a. We can use the Bellman-Ford algorithm on a suitable weighted, directed graph
G = (V, E), which we form as follows. There is one vertex ihfor each
currency, and for each pair of currencigsandc;, there are directed edges
(vi,v;) and(vj,v;). (Thus,|V| =nand|E| =n(n —1).)

To determine edge weights, we start by observing that
Rliy, i3] - Riz, i3]+ Rlik—1, ix] - Rlix,i1] > 1
if and only if
1 1 1 1
Rli1,ia]  Rliz, i3] Rlig—1,ix] Rlix,11]
Taking logs of both sides of the inequality above, we express this condition as

1 1 1 1
RG] T RG] T T Rl T Rl
Therefore, if we define the weight of edge, v;) as

1
R[i, j]
= —IgR[. /],
then we want to find whether there exists a negative-weight cycle with
these edge weights.

We can determine whether there exists a negative-weight cy€leby adding
an extra vertexv, with 0-weight edges(vy,v;) for all v; € V, running
BELLMAN -FORD from vy, and using the boolean result oEBLMAN -FORD
(which is TRUE if there are no negative-weight cycles arsl Sk if there is a

<0.

w(v;,v;) = g
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negative-weight cycle) to guide our answer. That is, we invert the boolean result
of BELLMAN -FORD.

This method works because adding the new vergxvith 0-weight edges
from v, to all other vertices cannot introduce any new cycles, yet it ensures
that all negative-weight cycles are reachable fagm

It takes®(n?) time to createG, which has®(n?) edges. Then it take®(n?)
time to run BELLMAN -FORD. Thus, the total time i€ (n3).

Another way to determine whether a negative-weight cycle exists is to areate
and, without adding, and its incident edges, run either of the all-pairs shortest-
paths algorithms. If the resulting shortest-path distance matrix has any negative
values on the diagonal, then there is a negative-weight cycle.

b. Assuming that we ran BLLMAN -FORD to solve part (a), we only need to find
the vertices of a negative-weight cycle. We can do so as follows. First, relax
all the edges once more. Since there is a negative-weight cyclé, thkie of
some vertex will change. We just need to repeatedly follow thevalues until
we get back ta:. In other words, we can use the recursive method given by the
PRINT-PATH procedure of Section 22.2, but stop it when it returns to vartex

The running time isO(n3) to run BELLMAN -FORD, plus O(n) to print the
vertices of the cycle, for a total @b (n>) time.
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Solution to Exercise 25.1-3

The matrix L© corresponds to the identity matrix

100 0
;=001 0
000 - 1

of regular matrix multiplication. Substitute(the identity for+) for co (the iden-
tity for min), and1 (the identity for-) for 0 (the identity for+).

Solution to Exercise 25.1-5

The all-pairs shortest-paths algorithm in Section 25.1 computes
L(n—l) — Wn—l — L(O) . Wn—l

wherel/"~Y = §(i, j) and L© is the identity matrix. That is, the entry in the
ith row and;th column of the matrix “product” is the shortest-path distance from
vertexi to vertexj, and rowi of the product is the solution to the single-source
shortest-paths problem for vertéx

Notice that in a matrix “productC = A - B, theith row of C is theith row of A
“multiplied” by B. Since all we want is th&h row of C, we never need more than
theith row of A.

Thus the solution to the single-source shortest-paths from veitek” - w1,
where L is theith row of L(©—a vector whoseth entry is 0 and whose other
entries arex.

Doing the above “multiplications” starting from the left is essentially the same

as the BEELLMAN-FORD algorithm. The vector corresponds to thevalues in
BELLMAN -FORD—the shortest-path estimates from the source to each vertex.

* The vector is initially 0 for the source anx for all other vertices, the same as
the values set up faf by INITIALIZE -SINGLE-SOURCE
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* Each "multiplication” of the current vector by¥ relaxes all edges just as
BELLMAN-FORDdoes. Thatis, a distance estimate in the row, say the distance
tov, is updated to a smaller estimate, if any, formed by adding sotmev) to
the current estimate of the distancesto

* The relaxation/multiplication is done— 1 times.

Solution to Exercise 25.2-4

With the superscripts, the computatiordfé) = min (dff‘“, d,.(,f_l) + d,g;_“). If,
having dropped the superscripts, we were to compute and &to dy; before
using these values to computg, we might be computing one of the following:

&) i (k=1 () (k—1)
dj’ = min(d; . dy +d;; ) .
k) _ ; (k=1) 7(k—1) (k)
i’ = min(d;0 dy +dyg)
&) i (k=1 () (k)
di’ = min(d; . d;y’ + dy; ) -

In any of these scenarios, we're computing the weight of a shortest path fogmn

with all intermediate vertices ifil, 2,.. ., k}. If we used?, rather thand &,

in the computation, then we’re using a subpath froto & with all intermediate
vertices in{1,2, ..., k}. Butk cannot be amntermediate vertex on a shortest path
from i to k, since otherwise there would be a cycle on this shortest path. Thus,
d = di . Asimilar argument applies to show thf = 4. Hence, we

can drop the superscripts in the computation.

Solution to Exercise 25.3-4

It changes shortest paths. Consider the following grabh= {s, x, y, z}, and

there are 4 edgesuv(s,x) = 2, w(x,y) = 2, w(s,y) = 5, andw(s,z) = —10.

So we’d add 10 to every weight to make With w, the shortest path fromto y

iss — x — y, with weight 4. Withw, the shortest path fromto y iss — y,

with weight 15. (The path — x — y has weight 24.) The problem is that by just
adding the same amount to every edge, you penalize paths with more edges, even
if their weights are low.



Selected Solutionsfor Chapter 26:
Maximum Flow

Solution to Exercise 26.2-11

For any two vertices: andv in G, we can define a flow network,, consisting

of the directed version off with s = u, t+ = v, and all edge capacities set to

(The flow networkG,,, hasV vertices an@ | E | edges, so that it ha8(V) vertices
andO(FE) edges, as required. We want all capacities to be 1 so that the number of
edges ofG crossing a cut equals the capacity of the cufijg.) Let f,, denote a
maximum flow inG,,,,.

We claim that for anyt € V, the edge connectivity equals I[ni{n}{|fuv|}. We'll
veEV —u
show below that this claim holds. Assuming that it holds, we caniiad follows:

EDGE-CONNECTIVITY(G)

k = o0

select any vertex € G.V

for each vertew € G.V — {u}
set up the flow network;,,, as described above
find the maximum flowf,,, onG,,,
k = min(k,| fuv|)

return k

The claim follows from the max-flow min-cut theorem and how we chose capac-
ities so that the capacity of a cut is the number of edges crossing it. We prove
thatk = rlr/nr? }{|fw|}, for anyu € V by showing separately thatis at least this

veV —u

minimum and thak is at most this minimum.
* Proof thatt > min {| f,,,|}:
veV—{u}

Letm = r‘T)II’{I }{|fuv|}. Suppose we remove only — 1 edges fromG. For
vevV —u

any vertexv, by the max-flow min-cut theorem, andv are still connected.
(The max flow fromu to v is at leastn, hence any cut separatimgrom v has
capacity at least:, which means at least edges cross any such cut. Thus at
least one edge is left crossing the cut when we removd edges.) Thus every
node is connected te, which implies that the graph is still connected. So at
leastn edges must be removed to disconnect the graph—ki.ﬂg.,rlr)ir? }{|fw [}.

veV —u
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* Proof thatk < min {| f,,,|}:
veV—{u}

Consider a vertex with the minimum| f,,,|. By the max-flow min-cut the-
orem, there is a cut of capacity,,| separating: andv. Since all edge ca-
pacities are 1, exactlyf,,| edges cross this cut. If these edges are removed,
there is no path fromx to v, and so our graph becomes disconnected. Hence
k = min }{Ifuvl}-

veV—{u
* Thus, the claim that = r‘r/1|r{1 }{|fuv|}, foranyu € V is true.
veEV — U

Solution to Exercise 26.3-3

By definition, an augmenting path is a simple path-» ¢ in the residual net-
work G}. SinceG has no edges between vertices/inand no edges between
vertices inR, neither does the flow netwoi®” and hence neither doésj’,. Also,
the only edges involving or ¢ connects to L andR to ¢. Note that although edges
in G" can go only fromL to R, edges inG, can also go fronk to L.

Thus any augmenting path must go
s—>L—>R—---—>L—>R—t,

crossing back and forth betwednand R at most as many times as it can do

so without using a vertex twice. It contains ¢, and equal numbers of dis-
tinct vertices fromL and R—at most2 + 2 - min(|L|, |R|) vertices in all. The
length of an augmenting path (i.e., its number of edges) is thus bounded above by
2-min(|L|,|R]) + 1.

Solution to Problem 26-4

a. Just execute one iteration of the Ford-Fulkerson algorithm. The edge in £
with increased capacity ensures that the edge) is in the residual network.
So look for an augmenting path and update the flow if a path is found.

Time
O(V + E) = O(E) if we find the augmenting path with either depth-first or
breadth-first search.

To see that only one iteration is needed, consider separately the cases in which
(u,v) is or is not an edge that crosses a minimum cuguJfv) does not cross a
minimum cut, then increasing its capacity does not change the capacity of any
minimum cut, and hence the value of the maximum flow does not change. If
(u, v) does cross a minimum cut, then increasing its capacity by 1 increases the
capacity of that minimum cut by 1, and hence possibly the value of the maxi-
mum flow by 1. In this case, there is either no augmenting path (in which case
there was some other minimum cut tiiat v) does not cross), or the augment-

ing path increases flow by 1. No matter what, one iteration of Ford-Fulkerson
suffices.
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b. Let f be the maximum flow before reduciagu, v).
If f(u,v) =0, we don’t need to do anything.

If f(u,v) > 0, we will need to update the maximum flow. Assume from now
onthatf(u,v) > 0, which in turn implies thatf (u, v) > 1.

Define f'(x,y) = f(x,y)forallx,y € V, exceptthatf’(u,v) = f(u,v)—1.
Although f” obeys all capacity contraints, even afté€n, v) has been reduced,
it is not a legal flow, as it violates flow conservationiafunlessu = s) andv
(unlessv = ¢t). f’ has one more unit of flow enteringthan leavingt, and it
has one more unit of flow leavingthan entering.

The idea is to try to reroute this unit of flow so that it goes ou# @nd intov
via some other path. If that is not possible, we must reduce the flowstom
and fromv to ¢ by one unit.

Look for an augmenting path fromto v (note: not from s to ¢).

If there is such a path, augment the flow along that path.

If there is no such path, reduce the flow frerto u by augmenting the flow
from u to s. That is, find an augmenting path ~» s and augment the
flow along that path. (There definitely is such a path, because there is flow
froms tou.) Similarly, reduce the flow from to ¢ by finding an augmenting
patht ~ v and augmenting the flow along that path.

Time
O(V + E) = O(FE) if we find the paths with either DFS or BFS.



