
Selected Solutions for Chapter 2:
Getting Started

Solution to Exercise 2.2-2

SELECTION-SORT.A/

n D A: length
for j D 1 to n � 1

smallest D j

for i D j C 1 to n

if AŒi� < AŒsmallest�
smallest D i

exchangeAŒj � with AŒsmallest�

The algorithm maintains the loop invariant that at the start of each iteration of the
outerfor loop, the subarrayAŒ1 : : j � 1� consists of thej � 1 smallest elements
in the arrayAŒ1 : : n�, and this subarray is in sorted order. After the firstn � 1

elements, the subarrayAŒ1 : : n � 1� contains the smallestn � 1 elements, sorted,
and therefore elementAŒn� must be the largest element.

The running time of the algorithm is‚.n2/ for all cases.

Solution to Exercise 2.2-4

Modify the algorithm so it tests whether the input satisfies some special-case con-
dition and, if it does, output a pre-computed answer. The best-case running time is
generally not a good measure of an algorithm.

Solution to Exercise 2.3-5

Procedure BINARY-SEARCH takes a sorted arrayA, a value�, and a range
Œlow : : high� of the array, in which we search for the value�. The procedure com-
pares� to the array entry at the midpoint of the range and decides to eliminate half
the range from further consideration. We give both iterative and recursive versions,
each of which returns either an indexi such thatAŒi� D �, or NIL if no entry of

2-2 Selected Solutions for Chapter 2: Getting Started

AŒlow : : high� contains the value�. The initial call to either version should have
the parametersA; �; 1; n.

ITERATIVE-BINARY-SEARCH.A; �; low; high/

while low � high
mid D b.low C high/=2c

if � == AŒmid�

return mid
elseif � > AŒmid�

low D mid C 1

else high D mid � 1

return NIL

RECURSIVE-BINARY-SEARCH.A; �; low; high/

if low > high
return NIL

mid D b.low C high/=2c

if � == AŒmid�

return mid
elseif � > AŒmid�

return RECURSIVE-BINARY-SEARCH.A; �; mid C 1; high/

else return RECURSIVE-BINARY-SEARCH.A; �; low; mid � 1/

Both procedures terminate the search unsuccessfully when the range is empty (i.e.,
low > high) and terminate it successfully if the value� has been found. Based
on the comparison of� to the middle element in the searched range, the search
continues with the range halved. The recurrence for these procedures is therefore
T .n/ D T .n=2/ C ‚.1/, whose solution isT .n/ D ‚.lg n/.

Solution to Problem 2-4

a. The inversions are.1; 5/; .2; 5/; .3; 4/; .3; 5/; .4; 5/. (Remember that inversions
are specified by indices rather than by the values in the array.)

b. The array with elements fromf1; 2; : : : ; ng with the most inversions is
hn; n � 1; n � 2; : : : ; 2; 1i. For all1 � i < j � n, there is an inversion.i; j /.
The number of such inversions is

�

n

2

�

D n.n � 1/=2.

c. Suppose that the arrayA starts out with an inversion.k; j /. Thenk < j and
AŒk� > AŒj �. At the time that the outerfor loop of lines 1–8 setskey D AŒj �,
the value that started inAŒk� is still somewhere to the left ofAŒj �. That is,
it’s in AŒi�, where1 � i < j , and so the inversion has become.i; j /. Some
iteration of thewhile loop of lines 5–7 movesAŒi� one position to the right.
Line 8 will eventually dropkey to the left of this element, thus eliminating the
inversion. Because line 5 moves only elements that are less thankey, it moves
only elements that correspond to inversions. In other words, each iteration of
thewhile loop of lines 5–7 corresponds to the elimination of one inversion.

Selected Solutions for Chapter 2: Getting Started 2-3

d. We follow the hint and modify merge sort to count the number of inversions in
‚.n lg n/ time.

To start, let us define amerge-inversion as a situation within the execution of
merge sort in which the MERGE procedure, after copyingAŒp : : q� to L and
AŒq C 1 : : r� to R, has valuesx in L andy in R such thatx > y. Consider
an inversion.i; j /, and letx D AŒi� andy D AŒj �, so thati < j andx > y.
We claim that if we were to run merge sort, there would be exactly one merge-
inversion involvingx andy. To see why, observe that the only way in which
array elements change their positions is within the MERGE procedure. More-
over, since MERGEkeeps elements withinL in the same relative order to each
other, and correspondingly forR, the only way in which two elements can
change their ordering relative to each other is for the greater one to appear inL

and the lesser one to appear inR. Thus, there is at least one merge-inversion
involving x andy. To see that there is exactly one such merge-inversion, ob-
serve that after any call of MERGE that involves bothx andy, they are in the
same sorted subarray and will therefore both appear inL or both appear inR
in any given call thereafter. Thus, we have proven the claim.

We have shown that every inversion implies one merge-inversion. In fact, the
correspondence between inversions and merge-inversions is one-to-one. Sup-
pose we have a merge-inversion involving valuesx andy, wherex originally
wasAŒi� andy was originallyAŒj �. Since we have a merge-inversion,x > y.
And sincex is in L andy is in R, x must be within a subarray preceding the
subarray containingy. Thereforex started out in a positioni precedingy’s
original positionj , and so.i; j / is an inversion.

Having shown a one-to-one correspondence between inversions and merge-
inversions, it suffices for us to count merge-inversions.

Consider a merge-inversion involvingy in R. Let ´ be the smallest value inL
that is greater thany. At some point during the merging process,´ andy will
be the “exposed” values inL andR, i.e., we will havé D LŒi� andy D RŒj �

in line 13 of MERGE. At that time, there will be merge-inversions involvingy

andLŒi�; LŒi C 1�; LŒi C 2�; : : : ; LŒn1�, and thesen1 � i C 1 merge-inversions
will be the only ones involvingy. Therefore, we need to detect the first time
that´ andy become exposed during the MERGE procedure and add the value
of n1 � i C 1 at that time to our total count of merge-inversions.

The following pseudocode, modeled on merge sort, works as we have just de-
scribed. It also sorts the arrayA.

COUNT-INVERSIONS.A; p; r/

in�ersions D 0

if p < r

q D b.p C r/=2c

in�ersions D in�ersions C COUNT-INVERSIONS.A; p; q/

in�ersions D in�ersions C COUNT-INVERSIONS.A; q C 1; r/

in�ersions D in�ersions C MERGE-INVERSIONS.A; p; q; r/

return in�ersions

2-4 Selected Solutions for Chapter 2: Getting Started

MERGE-INVERSIONS.A; p; q; r/

n1 D q � p C 1

n2 D r � q

let LŒ1 : : n1 C 1� andRŒ1 : : n2 C 1� be new arrays
for i D 1 to n1

LŒi� D AŒp C i � 1�

for j D 1 to n2

RŒj � D AŒq C j �

LŒn1 C 1� D 1

RŒn2 C 1� D 1

i D 1

j D 1

in�ersions D 0

counted D FALSE

for k D p to r

if counted == FALSE andRŒj � < LŒi�

in�ersions D in�ersions C n1 � i C 1

counted D TRUE

if LŒi� � RŒj �

AŒk� D LŒi�

i D i C 1

else AŒk� D RŒj �

j D j C 1

counted D FALSE

return in�ersions

The initial call is COUNT-INVERSIONS.A; 1; n/.

In MERGE-INVERSIONS, the boolean variablecounted indicates whether we
have counted the merge-inversions involvingRŒj �. We count them the first time
that bothRŒj � is exposed and a value greater thanRŒj � becomes exposed in
theL array. We setcounted to FALSE upon each time that a new value becomes
exposed inR. We don’t have to worry about merge-inversions involving the
sentinel1 in R, since no value inL will be greater than1.

Since we have added only a constant amount of additional work to each pro-
cedure call and to each iteration of the lastfor loop of the merging procedure,
the total running time of the above pseudocode is the same as for merge sort:
‚.n lg n/.

Selected Solutions for Chapter 3:
Growth of Functions

Solution to Exercise 3.1-2

To show that.n C a/b D ‚.nb/, we want to find constantsc1; c2; n0 > 0 such that
0 � c1nb � .n C a/b � c2nb for all n � n0.

Note that

n C a � n C jaj

� 2n whenjaj � n ,

and

n C a � n � jaj

�
1

2
n whenjaj � 1

2
n .

Thus, whenn � 2 jaj,

0 �
1

2
n � n C a � 2n :

Sinceb > 0, the inequality still holds when all parts are raised to the powerb:

0 �

�

1

2
n

�b

� .n C a/b � .2n/b ;

0 �

�

1

2

�b

nb � .n C a/b � 2bnb :

Thus,c1 D .1=2/b, c2 D 2b, andn0 D 2 jaj satisfy the definition.

Solution to Exercise 3.1-3

Let the running time beT .n/. T .n/ � O.n2/ means thatT .n/ � f .n/ for some
functionf .n/ in the setO.n2/. This statement holds for any running timeT .n/,
since the functiong.n/ D 0 for all n is in O.n2/, and running times are always
nonnegative. Thus, the statement tells us nothing about the running time.

3-2 Selected Solutions for Chapter 3: Growth of Functions

Solution to Exercise 3.1-4

2nC1 D O.2n/, but22n ¤ O.2n/.

To show that2nC1 D O.2n/, we must find constantsc; n0 > 0 such that

0 � 2nC1 � c � 2n for all n � n0 :

Since2nC1 D 2 � 2n for all n, we can satisfy the definition withc D 2 andn0 D 1.

To show that22n 6D O.2n/, assume there exist constantsc; n0 > 0 such that

0 � 22n � c � 2n for all n � n0 :

Then22n D 2n � 2n � c � 2n) 2n � c. But no constant is greater than all2n, and
so the assumption leads to a contradiction.

Solution to Exercise 3.2-4

dlg neŠ is not polynomially bounded, butdlg lg neŠ is.

Proving that a functionf .n/ is polynomially bounded is equivalent to proving that
lg.f .n// D O.lg n/ for the following reasons.

� If f is polynomially bounded, then there exist constantsc, k, n0 such that for
all n � n0, f .n/ � cnk . Hence, lg.f .n// � kc lg n, which, sincec andk are
constants, means that lg.f .n// D O.lg n/.

� Similarly, if lg.f .n// D O.lg n/, thenf is polynomially bounded.

In the following proofs, we will make use of the following two facts:

1. lg.nŠ/ D ‚.n lg n/ (by equation (3.19)).

2. dlg ne D ‚.lg n/, because

� dlg ne � lg n
� dlg ne < lg n C 1 � 2 lg n for all n � 2

lg.dlg neŠ/ D ‚.dlg ne lg dlg ne/

D ‚.lg n lg lg n/

D !.lg n/ :

Therefore, lg.dlg neŠ/ ¤ O.lg n/, and sodlg neŠ is not polynomially bounded.

lg.dlg lg neŠ/ D ‚.dlg lg ne lg dlg lg ne/

D ‚.lg lg n lg lg lg n/

D o..lg lg n/2/

D o.lg2.lg n//

D o.lg n/ :

Selected Solutions for Chapter 3: Growth of Functions 3-3

The last step above follows from the property that any polylogarithmic function
grows more slowly than any positive polynomial function, i.e., that for constants
a; b > 0, we have lgb n D o.na/. Substitute lgn for n, 2 for b, and1 for a, giving
lg2.lg n/ D o.lg n/.

Therefore, lg.dlg lg neŠ/ D O.lg n/, and sodlg lg neŠ is polynomially bounded.

Selected Solutions for Chapter 4:
Divide-and-Conquer

Solution to Exercise 4.2-4

If you can multiply3 � 3 matrices usingk multiplications, then you can multiply
n � n matrices by recursively multiplyingn=3 � n=3 matrices, in timeT .n/ D

kT .n=3/ C ‚.n2/.

Using the master method to solve this recurrence, consider the ratio ofnlog3 k

andn2:

� If log
3

k D 2, case 2 applies andT .n/ D ‚.n2 lg n/. In this case,k D 9 and
T .n/ D o.nlg 7/.

� If log
3

k < 2, case 3 applies andT .n/ D ‚.n2/. In this case,k < 9 and
T .n/ D o.nlg 7/.

� If log
3

k > 2, case 1 applies andT .n/ D ‚.nlog3 k/. In this case,k > 9.
T .n/ D o.nlg 7/ when log

3
k < lg 7, i.e., whenk < 3lg 7 � 21:85. The largest

such integerk is 21.

Thus,k D 21 and the running time is‚.nlog3 k/ D ‚.nlog3 21/ D O.n2:80/ (since
log

3
21 � 2:77).

Solution to Exercise 4.4-6

The shortest path from the root to a leaf in the recursion tree isn ! .1=3/n !

.1=3/2n ! � � � ! 1. Since.1=3/kn D 1 whenk D log
3

n, the height of the part
of the tree in which every node has two children is log

3
n. Since the values at each

of these levels of the tree add up tocn, the solution to the recurrence is at least
cn log

3
n D �.n lg n/.

Solution to Exercise 4.4-9

T .n/ D T .˛n/ C T ..1 � ˛/n/ C cn

We saw the solution to the recurrenceT .n/ D T .n=3/ C T .2n=3/ C cn in the text.
This recurrence can be similarly solved.

Selected Solutions for Chapter 5:
Probabilistic Analysis and Randomized
Algorithms

Solution to Exercise 5.2-1

Since HIRE-ASSISTANTalways hires candidate1, it hires exactly once if and only
if no candidates other than candidate1 are hired. This event occurs when candi-
date1 is the best candidate of then, which occurs with probability1=n.

HIRE-ASSISTANThiresn times if each candidate is better than all those who were
interviewed (and hired) before. This event occurs precisely when the list of ranks
given to the algorithm ish1; 2; : : : ; ni, which occurs with probability1=nŠ.

Solution to Exercise 5.2-4

Another way to think of the hat-check problem is that we want to determine the
expected number of fixed points in a random permutation. (Afixed point of a
permutation� is a valuei for which �.i/ D i .) We could enumerate allnŠ per-
mutations, count the total number of fixed points, and divide bynŠ to determine
the average number of fixed points per permutation. This would be a painstak-
ing process, and the answer would turn out to be1. We can use indicator random
variables, however, to arrive at the same answer much more easily.

Define a random variableX that equals the number of customers that get back their
own hat, so that we want to compute EŒX�.

For i D 1; 2; : : : ; n, define the indicator random variable

Xi D I fcustomeri gets back his own hatg :

ThenX D X1 C X2 C � � � C Xn.

Since the ordering of hats is random, each customer has a probability of1=n of
getting back his or her own hat. In other words, PrfXi D 1g D 1=n, which, by
Lemma 5.1, implies that EŒXi � D 1=n.

5-2 Selected Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms

Thus,

E ŒX� D E

"

n
X

iD1

Xi

#

D

n
X

iD1

E ŒXi � (linearity of expectation)

D

n
X

iD1

1=n

D 1 ;

and so we expect that exactly1 customer gets back his own hat.

Note that this is a situation in which the indicator random variables arenot inde-
pendent. For example, ifn D 2 andX1 D 1, thenX2 must also equal1. Con-
versely, ifn D 2 andX1 D 0, thenX2 must also equal0. Despite the dependence,
PrfXi D 1g D 1=n for all i , and linearity of expectation holds. Thus, we can use
the technique of indicator random variables even in the presence of dependence.

Solution to Exercise 5.2-5

Let Xij be an indicator random variable for the event where the pairAŒi�; AŒj �

for i < j is inverted, i.e.,AŒi� > AŒj �. More precisely, we defineXij D

I fAŒi� > AŒj �g for 1 � i < j � n. We have PrfXij D 1g D 1=2, because
given two distinct random numbers, the probability that the first is bigger than the
second is1=2. By Lemma 5.1, EŒXij � D 1=2.

Let X be the the random variable denoting the total number of inverted pairs in the
array, so that

X D

n�1
X

iD1

n
X

j DiC1

Xij :

We want the expected number of inverted pairs, so we take the expectation of both
sides of the above equation to obtain

E ŒX� D E

"

n�1
X

iD1

n
X

j DiC1

Xij

#

:

We use linearity of expectation to get

E ŒX� D E

"

n�1
X

iD1

n
X

j DiC1

Xij

#

D

n�1
X

iD1

n
X

j DiC1

E ŒXij �

D

n�1
X

iD1

n
X

j DiC1

1=2

Selected Solutions for Chapter 5: Probabilistic Analysis and Randomized Algorithms 5-3

D

n

2

!

1

2

D
n.n � 1/

2
�

1

2

D
n.n � 1/

4
:

Thus the expected number of inverted pairs isn.n � 1/=4.

Solution to Exercise 5.3-2

Al though PERMUTE-WITHOUT-IDENTITY will not produce the identity permuta-
tion, there are other permutations that it fails to produce. For example, consider
its operation whenn D 3, when it should be able to produce thenŠ � 1 D 5 non-
identity permutations. Thefor loop iterates fori D 1 andi D 2. Wheni D 1,
the call to RANDOM returns one of two possible values (either2 or 3), and when
i D 2, the call to RANDOM returns just one value (3). Thus, PERMUTE-WITHOUT-
IDENTITY can produce only2 � 1 D 2 possible permutations, rather than the5 that
are required.

Solution to Exercise 5.3-4

PERMUTE-BY-CYCLIC choosesoffset as a random integer in the range1 �

offset � n, and then it performs a cyclic rotation of the array. That is,
BŒ..i C offset � 1/ modn/ C 1� D AŒi� for i D 1; 2; : : : ; n. (The subtraction
and addition of1 in the index calculation is due to the1-origin indexing. If we
had used0-origin indexing instead, the index calculation would have simplied to
BŒ.i C offset/ modn� D AŒi� for i D 0; 1; : : : ; n � 1.)

Thus, onceoffset is determined, so is the entire permutation. Since each value of
offset occurs with probability1=n, each elementAŒi� has a probability of ending
up in positionBŒj � with probability1=n.

This procedure does not produce a uniform random permutation, however, since
it can produce onlyn different permutations. Thus,n permutations occur with
probability1=n, and the remainingnŠ � n permutations occur with probability0.

Selected Solutions for Chapter 6:
Heapsort

Solution to Exercise 6.1-1

Since a heap is an almost-complete binary tree (complete at all levels except pos-
sibly the lowest), it has at most2hC1 � 1 elements (if it is complete) and at least
2h �1C1 D 2h elements (if the lowest level has just 1 element and the other levels
are complete).

Solution to Exercise 6.1-2

Given ann-element heap of heighth, we know from Exercise 6.1-1 that

2h � n � 2hC1 � 1 < 2hC1 :

Thus,h � lg n < h C 1. Sinceh is an integer,h D blg nc (by definition ofb c).

Solution to Exercise 6.2-6

If you put a value at the root that is less than every value in the left and right
subtrees, then MAX -HEAPIFY will be called recursively until a leaf is reached. To
make the recursive calls traverse the longest path to a leaf, choose values that make
MAX -HEAPIFY always recurse on the left child. It follows the left branch when
the left child is greater than or equal to the right child, so putting 0 at the root
and 1 at all the other nodes, for example, will accomplish that. With such values,
MAX -HEAPIFY will be calledh times (whereh is the heap height, which is the
number of edges in the longest path from the root to a leaf), so its running time
will be ‚.h/ (since each call does‚.1/ work), which is‚.lg n/. Since we have
a case in which MAX -HEAPIFY’s running time is‚.lg n/, its worst-case running
time is�.lg n/.

6-4 Selected Solutions for Chapter 6: Heapsort

of �.n lg n/, consider the case in which the input array is given in strictly in-
creasing order. Each call to MAX -HEAP-INSERT causes HEAP-INCREASE-
KEY to go all the way up to the root. Since the depth of nodei is blg ic, the
total time is

n
X

iD1

‚.blg ic/ �

n
X

iDdn=2e

‚.blg dn=2ec/

�

n
X

iDdn=2e

‚.blg.n=2/c/

D

n
X

iDdn=2e

‚.blg n � 1c/

� n=2 � ‚.lg n/

D �.n lg n/ :

In the worst case, therefore, BUILD -MAX -HEAP0 requires‚.n lg n/ time to
build ann-element heap.

Selected Solutions for Chapter 7:
Quicksort

Solution to Exercise 7.2-3

PARTITION does a “worst-case partitioning” when the elements are in decreasing
order. It reduces the size of the subarray under consideration by only1 at each step,
which we’ve seen has running time‚.n2/.

In particular, PARTITION, given a subarrayAŒp : : r� of distinct elements in de-
creasing order, produces an empty partition inAŒp : : q � 1�, puts the pivot (orig-
inally in AŒr�) into AŒp�, and produces a partitionAŒp C 1 : : r� with only one
fewer element thanAŒp : : r�. The recurrence for QUICKSORT becomesT .n/ D

T .n � 1/ C ‚.n/, which has the solutionT .n/ D ‚.n2/.

Solution to Exercise 7.2-5

The minimum depth follows a path that always takes the smaller part of the parti-
tion—i.e., that multiplies the number of elements by˛. One iteration reduces the
number of elements fromn to ˛n, andi iterations reduces the number of elements
to ˛in. At a leaf, there is just one remaining element, and so at a minimum-depth
leaf of depthm, we have˛mn D 1. Thus, ˛m D 1=n. Taking logs, we get
m lg ˛ D � lg n, or m D � lg n= lg ˛.

Similarly, maximum depth corresponds to always taking the larger part of the par-
tition, i.e., keeping a fraction1 � ˛ of the elements each time. The maximum
depthM is reached when there is one element left, that is, when.1 � ˛/M n D 1.
Thus,M D � lg n= lg.1 � ˛/.

All these equations are approximate because we are ignoring floors and ceilings.

Selected Solutions for Chapter 8:
Sorting in Linear Time

Solution to Exercise 8.1-3

If the sort runs in linear time form input permutations, then the heighth of the
portion of the decision tree consisting of them corresponding leaves and their
ancestors is linear.

Use the same argument as in the proof of Theorem 8.1 to show that this is impos-
sible form D nŠ=2, nŠ=n, or nŠ=2n.

We have2h � m, which gives ush � lg m. For all the possiblem’s given here,
lg m D �.n lg n/, henceh D �.n lg n/.

In particular,

lg
nŠ

2
D lg nŠ � 1 � n lg n � n lg e � 1 ;

lg
nŠ

n
D lg nŠ � lg n � n lg n � n lg e � lg n ;

lg
nŠ

2n
D lg nŠ � n � n lg n � n lg e � n :

Solution to Exercise 8.2-3

The following solution also answers Exercise 8.2-2.

Notice that the correctness argument in the text does not depend on the order in
which A is processed. The algorithm is correct no matter what order is used!

But the modified algorithm is not stable. As before, in the finalfor loop an element
equal to one taken fromA earlier is placed before the earlier one (i.e., at a lower
index position) in the output arrrayB . The original algorithm was stable because
an element taken fromA later started out with a lower index than one taken earlier.
But in the modified algorithm, an element taken fromA later started out with a
higher index than one taken earlier.

In particular, the algorithm still places the elements with valuek in positions
C Œk � 1� C 1 throughC Œk�, but in the reverse order of their appearance inA.

8-2 Selected Solutions for Chapter 8: Sorting in Linear Time

Solution to Exercise 8.3-3

Basis: If d D 1, there’s only one digit, so sorting on that digit sorts the array.

Inductive step: Assuming that radix sort works ford � 1 digits, we’ll show that it
works ford digits.

Radix sort sorts separately on each digit, starting from digit1. Thus, radix sort of
d digits, which sorts on digits1; : : : ; d is equivalent to radix sort of the low-order
d � 1 digits followed by a sort on digitd . By our induction hypothesis, the sort of
the low-orderd � 1 digits works, so just before the sort on digitd , the elements
are in order according to their low-orderd � 1 digits.

The sort on digitd will order the elements by theird th digit. Consider two ele-
ments,a andb, with d th digitsad andbd respectively.

� If ad < bd , the sort will puta beforeb, which is correct, sincea < b regardless
of the low-order digits.

� If ad > bd , the sort will puta afterb, which is correct, sincea > b regardless
of the low-order digits.

� If ad D bd , the sort will leavea andb in the same order they were in, because
it is stable. But that order is already correct, since the correct order ofa andb

is determined by the low-orderd � 1 digits when theird th digits are equal, and
the elements are already sorted by their low-orderd � 1 digits.

If the intermediate sort were not stable, it might rearrange elements whosed th
digits were equal—elements thatwere in the right order after the sort on their
lower-order digits.

Solution to Exercise 8.3-4

Treat the numbers as3-digit numbers in radixn. Each digit ranges from0 to n � 1.
Sort these3-digit numbers with radix sort.

There are3 calls to counting sort, each taking‚.n C n/ D ‚.n/ time, so that the
total time is‚.n/.

Solution to Problem 8-1

a. For a comparison algorithmA to sort, no two input permutations can reach the
same leaf of the decision tree, so there must be at leastnŠ leaves reached inTA,
one for each possible input permutation. SinceA is a deterministic algorithm, it
must always reach the same leaf when given a particular permutation as input,
so at mostnŠ leaves are reached (one for each permutation). Therefore exactly
nŠ leaves are reached, one for each input permutation.

Selected Solutions for Chapter 8: Sorting in Linear Time 8-3

ThesenŠ leaves will each have probability1=nŠ, since each of thenŠ possible
permutations is the input with the probability1=nŠ. Any remaining leaves will
have probability0, since they are not reached for any input.

Without loss of generality, we can assume for the rest of this problem that paths
leading only to0-probability leaves aren’t in the tree, since they cannot affect
the running time of the sort. That is, we can assume thatTA consists of only the
nŠ leaves labeled1=nŠ and their ancestors.

b. If k > 1, then the root ofT is not a leaf. This implies that all ofT ’s leaves
are leaves inLT andRT . Since every leaf at depthh in LT or RT has depth
h C 1 in T , D.T / must be the sum ofD.LT /, D.RT /, andk, the total number
of leaves. To prove this last assertion, letdT .x/ D depth of nodex in treeT .
Then,

D.T / D
X

x2leaves.T /

dT .x/

D
X

x2leaves.LT /

dT .x/ C
X

x2leaves.RT /

dT .x/

D
X

x2leaves.LT /

.dLT .x/ C 1/ C
X

x2leaves.RT /

.dRT .x/ C 1/

D
X

x2leaves.LT /

dLT .x/ C
X

x2leaves.RT /

dRT .x/ C
X

x2leaves.T /

1

D D.LT / C D.RT / C k :

c. To show thatd.k/ D min1�i�k�1 fd.i/ C d.k � i/ C kg we will show sepa-
rately that

d.k/ � min
1�i�k�1

fd.i/ C d.k � i / C kg

and

d.k/ � min
1�i�k�1

fd.i/ C d.k � i / C kg :

� To show thatd.k/ � min1�i�k�1 fd.i/ C d.k � i/ C kg, we need only show
thatd.k/ � d.i/ C d.k � i/ C k, for i D 1; 2; : : : ; k � 1. For anyi from 1

to k � 1 we can find treesRT with i leaves andLT with k � i leaves such
thatD.RT / D d.i/ andD.LT / D d.k � i/. ConstructT such thatRT and
LT are the right and left subtrees ofT ’s root respectively. Then
d.k/ � D.T / (by definition ofd as minD.T / value)

D D.RT / C D.LT / C k (by part (b))

D d.i/ C d.k � i/ C k (by choice ofRT andLT) .
� To show thatd.k/ � min1�i�k�1 fd.i/ C d.k � i/ C kg, we need only show

thatd.k/ � d.i/ C d.k � i/ C k, for somei in f1; 2; : : : ; k � 1g. Take the
treeT with k leaves such thatD.T / D d.k/, let RT andLT beT ’s right
and left subtree, respecitvely, and leti be the number of leaves inRT . Then
k � i is the number of leaves inLT and
d.k/ D D.T / (by choice ofT)

D D.RT / C D.LT / C k (by part (b))

� d.i/ C d.k � i/ C k (by defintion ofd as minD.T / value) .

8-4 Selected Solutions for Chapter 8: Sorting in Linear Time

Neither i nork � i can be0 (and hence1 � i � k � 1), since if one of these
were0, eitherRT or LT would contain allk leaves ofT , and thatk-leaf
subtree would have aD equal toD.T / � k (by part (b)), contradicting the
choice ofT as thek-leaf tree with the minimumD.

d. Let fk.i/ D i lg i C .k � i/ lg.k � i/. To find the value ofi that minimizesfk,
find thei for which the derivative offk with respect toi is 0:

f 0

k
.i/ D

d

di

�

i ln i C .k � i/ ln.k � i/

ln 2

�

D
ln i C 1 � ln.k � i/ � 1

ln 2

D
ln i � ln.k � i /

ln 2
is 0 at i D k=2. To verify this is indeed a minimum (not a maximum), check
that the second derivative offk is positive ati D k=2:

f 00

k
.i/ D

d

di

�

ln i � ln.k � i/

ln 2

�

D
1

ln 2

�

1

i
C

1

k � i

�

:

f 00

k
.k=2/ D

1

ln 2

�

2

k
C

2

k

�

D
1

ln 2
�

4

k
> 0 sincek > 1 .

Now we use substitution to proved.k/ D �.k lg k/. The base case of the
induction is satisfied becaused.1/ � 0 D c � 1 � lg 1 for any constantc. For
the inductive step we assume thatd.i/ � ci lg i for 1 � i � k � 1, wherec is
some constant to be determined.

d.k/ D min
1�i�k�1

fd.i/ C d.k � i/ C kg

� min
1�i�k�1

fc.i lg i C .k � i/ lg.k � i// C kg

D min
1�i�k�1

fcfk.i/ C kg

D c

�

k

2
lg

k

2

�

k �
k

2

�

lg

�

k �
k

2

��

C k

D ck lg

�

k

2

�

C k

D c.k lg k � k/ C k

D ck lg k C .k � ck/

� ck lg k if c � 1 ;

and sod.k/ D �.k lg k/.

e. Using the result of part (d) and the fact thatTA (as modified in our solution to
part (a)) hasnŠ leaves, we can conclude that

D.TA/ � d.nŠ/ D �.nŠ lg.nŠ// :

Selected Solutions for Chapter 8: Sorting in Linear Time 8-5

D.TA/ is the sum of the decision-tree path lengths for sorting all input per-
mutations, and the path lengths are proportional to the run time. Since thenŠ

permutations have equal probability1=nŠ, the expected time to sortn random
elements (1 input permutation) is the total time for all permutations divided
by nŠ:

�.nŠ lg.nŠ//

nŠ
D �.lg.nŠ// D �.n lg n/ :

f. We will show how to modify a randomized decision tree (algorithm) to define a
deterministic decision tree (algorithm) that is at least as good as the randomized
one in terms of the average number of comparisons.

At each randomized node, pick the child with the smallest subtree (the subtree
with the smallest average number of comparisons on a path to a leaf). Delete all
the other children of the randomized node and splice out the randomized node
itself.

The deterministic algorithm corresponding to this modified tree still works, be-
cause the randomized algorithm worked no matter which path was taken from
each randomized node.

The average number of comparisons for the modified algorithm is no larger
than the average number for the original randomized tree, since we discarded
the higher-average subtrees in each case. In particular, each time we splice out
a randomized node, we leave the overall average less than or equal to what it
was, because

� the same set of input permutations reaches the modified subtree as before, but
those inputs are handled in less than or equal to average time than before, and

� the rest of the tree is unmodified.

The randomized algorithm thus takes at least as much time on average as the
corresponding deterministic one. (We’ve shown that the expected running time
for a deterministic comparison sort is�.n lg n/, hence the expected time for a
randomized comparison sort is also�.n lg n/.)

Selected Solutions for Chapter 9:
Medians and Order Statistics

Solution to Exercise 9.3-1

For groups of 7, the algorithm still works in linear time. The number of elements
greater thanx (and similarly, the number less thanx) is at least

4

��

1

2

ln

7

m

�

� 2

�

�
2n

7
� 8 ;

and the recurrence becomes

T .n/ � T .dn=7e/ C T .5n=7 C 8/ C O.n/ ;

which can be shown to beO.n/ by substitution, as for the groups of 5 case in the
text.
For groups of 3, however, the algorithm no longer works in linear time. The number
of elements greater thanx, and the number of elements less thanx, is at least

2

��

1

2

ln

3

m

�

� 2

�

�
n

3
� 4 ;

and the recurrence becomes

T .n/ � T .dn=3e/ C T .2n=3 C 4/ C O.n/ ;

which does not have a linear solution.
We can prove that the worst-case time for groups of 3 is�.n lg n/. We do so by
deriving a recurrence for a particular case that takes�.n lg n/ time.
In counting up the number of elements greater thanx (and similarly, the num-

ber less thanx), consider the particular case in which there are exactly
l

1

2

l

n

3

mm

groups with medians� x and in which the “leftover” group does contribute 2
elements greater thanx. Then the number of elements greater thanx is exactly

2
�l

1

2

l

n

3

mm

� 1
�

C 1 (the �1 discountsx’s group, as usual, and theC1 is con-

tributed byx’s group)D 2 dn=6e � 1, and the recursive step for elements� x has
n � .2 dn=6e � 1/ � n � .2.n=6 C 1/ � 1/ D 2n=3 � 1 elements. Observe also
that theO.n/ term in the recurrence is really‚.n/, since the partitioning in step 4
takes‚.n/ (not justO.n/) time. Thus, we get the recurrence

T .n/ � T .dn=3e/ C T .2n=3 � 1/ C ‚.n/ � T .n=3/ C T .2n=3 � 1/ C ‚.n/ ;

from which you can show thatT .n/ � cn lg n by substitution. You can also see
thatT .n/ is nonlinear by noticing that each level of the recursion tree sums ton.
In fact, any odd group size� 5 works in linear time.

9-2 Selected Solutions for Chapter 9: Medians and Order Statistics

Solution to Exercise 9.3-3

A modification to quicksort that allows it to run inO.n lg n/ time in the worst case
uses the deterministic PARTITION algorithm that was modified to take an element
to partition around as an input parameter.

SELECT takes an arrayA, the boundsp andr of the subarray inA, and the ranki
of an order statistic, and in time linear in the size of the subarrayAŒp : : r� it returns
thei th smallest element inAŒp : : r�.

BEST-CASE-QUICKSORT.A; p; r/

if p < r

i D b.r � p C 1/=2c

x D SELECT.A; p; r; i /

q D PARTITION.x/

BEST-CASE-QUICKSORT.A; p; q � 1/

BEST-CASE-QUICKSORT.A; q C 1; r/

For an n-element array, the largest subarray that BEST-CASE-QUICKSORT re-
curses on hasn=2 elements. This situation occurs whenn D r � p C 1 is even;
then the subarrayAŒq C 1 : : r� hasn=2 elements, and the subarrayAŒp : : q � 1�

hasn=2 � 1 elements.

Because BEST-CASE-QUICKSORT always recurses on subarrays that are at most
half the size of the original array, the recurrence for the worst-case running time is
T .n/ � 2T .n=2/ C ‚.n/ D O.n lg n/.

Solution to Exercise 9.3-5

We assume that are given a procedure MEDIAN that takes as parameters an ar-
rayA and subarray indicesp andr , and returns the value of the median element of
AŒp : : r� in O.n/ time in the worst case.

Given MEDIAN, here is a linear-time algorithm SELECT0 for finding thei th small-
est element inAŒp : : r�. This algorithm uses the deterministic PARTITION algo-
rithm that was modified to take an element to partition around as an input parame-
ter.

Selected Solutions for Chapter 9: Medians and Order Statistics 9-3

SELECT0.A; p; r; i/

if p == r

return AŒp�

x D MEDIAN.A; p; r/

q D PARTITION.x/

k D q � p C 1

if i == k

return AŒq�

elseif i < k

return SELECT0.A; p; q � 1; i/

else return SELECT0.A; q C 1; r; i � k/

Becausex is the median ofAŒp : : r�, each of the subarraysAŒp : : q � 1� and
AŒq C 1 : : r� has at most half the number of elements ofAŒp : : r�. The recurrence
for the worst-case running time of SELECT0 is T .n/ � T .n=2/ C O.n/ D O.n/.

Solution to Problem 9-1

Weassume that the numbers start out in an array.

a. Sort the numbers using merge sort or heapsort, which take‚.n lg n/ worst-case
time. (Don’t use quicksort or insertion sort, which can take‚.n2/ time.) Put
the i largest elements (directly accessible in the sorted array) into the output
array, taking‚.i/ time.

Total worst-case running time:‚.n lg n C i/ D ‚.n lg n/ (becausei � n).

b. Implement the priority queue as a heap. Build the heap using BUILD -HEAP,
which takes‚.n/ time, then call HEAP-EXTRACT-MAX i times to get thei
largest elements, in‚.i lg n/ worst-case time, and store them in reverse order
of extraction in the output array. The worst-case extraction time is‚.i lg n/

because

� i extractions from a heap withO.n/ elements takesi � O.lg n/ D O.i lg n/

time, and
� half of thei extractions are from a heap with� n=2 elements, so thosei=2

extractions take.i=2/�.lg.n=2// D �.i lg n/ time in the worst case.

Total worst-case running time:‚.n C i lg n/.

c. Use the SELECT algorithm of Section 9.3 to find thei th largest number in‚.n/

time. Partition around that number in‚.n/ time. Sort thei largest numbers in
‚.i lg i/ worst-case time (with merge sort or heapsort).

Total worst-case running time:‚.n C i lg i/.

Note that method (c) is always asymptotically at least as good as the other two
methods, and that method (b) is asymptotically at least as good as (a). (Com-
paring (c) to (b) is easy, but it is less obvious how to compare (c) and (b) to (a).
(c) and (b) are asymptotically at least as good as (a) becausen, i lg i , andi lg n are
all O.n lg n/. The sum of two things that areO.n lg n/ is alsoO.n lg n/.)

Selected Solutions for Chapter 11:
Hash Tables

Solution to Exercise 11.2-1

For each pair of keysk; l , wherek ¤ l , define the indicator random variable
Xkl D I fh.k/ D h.l/g. Since we assume simple uniform hashing, PrfXkl D 1g D

Prfh.k/ D h.l/g D 1=m, and so EŒXkl � D 1=m.

Now define the random variableY to be the total number of collisions, so that
Y D

P

k¤l
Xkl . The expected number of collisions is

E ŒY � D E
�
X

k¤l

Xkl

�

D
X

k¤l

E ŒXkl � (linearity of expectation)

D

n

2

!

1

m

D
n.n � 1/

2
�

1

m

D
n.n � 1/

2m
:

Solution to Exercise 11.2-4

The flag in each slot will indicate whether the slot is free.

� A free slot is in the free list, a doubly linked list of all free slots in the table.
The slot thus contains two pointers.

� A used slot contains an element and a pointer (possiblyNIL) to the next element
that hashes to this slot. (Of course, that pointer points to another slot in the
table.)

11-2 Selected Solutions for Chapter 11: Hash Tables

Operations

� Insertion:

� If the element hashes to a free slot, just remove the slot from the free list and
store the element there (with aNIL pointer). The free list must be doubly
linked in order for this deletion to run inO.1/ time.

� If the element hashes to a used slotj , check whether the elementx already
there “belongs” there (its key also hashes to slotj).

� If so, add the new element to the chain of elements in this slot. To do
so, allocate a free slot (e.g., take the head of the free list) for the new
element and put this new slot at the head of the list pointed to by the
hashed-to slot (j).

� If not, E is part of another slot’s chain. Move it to a new slot by allo-
cating one from the free list, copying the old slot’s (j ’s) contents (ele-
mentx and pointer) to the new slot, and updating the pointer in the slot
that pointed toj to point to the new slot. Then insert the new element in
the now-empty slot as usual.
To update the pointer toj , it is necessary to find it by searching the chain
of elements starting in the slotx hashes to.

� Deletion: Let j be the slot the elementx to be deleted hashes to.

� If x is the only element inj (j doesn’t point to any other entries), just free
the slot, returning it to the head of the free list.

� If x is in j but there’s a pointer to a chain of other elements, move the first
pointed-to entry to slotj and free the slot it was in.

� If x is found by following a pointer fromj , just freex’s slot and splice it out
of the chain (i.e., update the slot that pointed tox to point tox’s successor).

� Searching: Check the slot the key hashes to, and if that is not the desired
element, follow the chain of pointers from the slot.

All the operations take expectedO.1/ times for the same reason they do with
the version in the book: The expected time to search the chains isO.1 C ˛/

regardless of where the chains are stored, and the fact that all the elements are
stored in the table means that˛ � 1. If the free list were singly linked, then
operations that involved removing an arbitrary slot from the free list would not
run inO.1/ time.

Solution to Problem 11-2

a. A particular key is hashed to a particular slot with probability1=n. Suppose
we select a specific set ofk keys. The probability that thesek keys are inserted
into the slot in question and that all other keys are inserted elsewhere is
�

1

n

�k �

1 �
1

n

�n�k

:

Selected Solutions for Chapter 11: Hash Tables 11-3

Since there are
�

n

k

�

ways to choose ourk keys, we get

Qk D

�

1

n

�k �

1 �
1

n

�n�k

n

k

!

:

b. For i D 1; 2; : : : ; n, let Xi be a random variable denoting the number of keys
that hash to sloti , and letAi be the event thatXi D k, i.e., that exactlyk keys
hash to sloti . From part (a), we have PrfAg D Qk . Then,

Pk D PrfM D kg

D Pr
n�

max
1�i�n

Xi

�

D k
o

D Prfthere existsi such thatXi D k and thatXi � k for i D 1; 2; : : : ; ng

� Prfthere existsi such thatXi D kg

D PrfA1 [A2 [� � � [Ang

� PrfA1g C PrfA2g C � � � C PrfAng (by inequality (C.19))

D nQk :

c. We start by showing two facts. First,1 � 1=n < 1, which implies
.1 � 1=n/n�k < 1. Second,nŠ=.n�k/Š D n�.n�1/�.n�2/ � � � .n�kC1/ < nk .
Using these facts, along with the simplificationkŠ > .k=e/k of equation (3.18),
we have

Qk D

�

1

n

�k �

1 �
1

n

�n�k
nŠ

kŠ.n � k/Š

<
nŠ

nkkŠ.n � k/Š
(.1 � 1=n/n�k < 1)

<
1

kŠ
(nŠ=.n � k/Š < nk)

<
ek

kk
(kŠ > .k=e/k) .

d. Notice that whenn D 2, lg lg n D 0, so to be precise, we need to assume that
n � 3.

In part (c), we showed thatQk < ek=kk for anyk; in particular, this inequality
holds fork0. Thus, it suffices to show thatek0=k0

k0 < 1=n3 or, equivalently,
thatn3 < k0

k0=ek0 .

Taking logarithms of both sides gives an equivalent condition:

3 lg n < k0.lg k0 � lg e/

D
c lg n

lg lg n
.lg c C lg lgn � lg lg lg n � lg e/ :

Dividing both sides by lgn gives the condition

3 <
c

lg lg n
.lg c C lg lgn � lg lg lg n � lg e/

D c

�

1 C
lg c � lg e

lg lg n
�

lg lg lg n

lg lg n

�

:

11-4 Selected Solutions for Chapter 11: Hash Tables

Let x be the last expression in parentheses:

x D

�

1 C
lg c � lg e

lg lg n
�

lg lg lg n

lg lg n

�

:

Weneed to show that there exists a constantc > 1 such that3 < cx.

Noting that limn!1 x D 1, we see that there existsn0 such thatx � 1=2 for all
n � n0. Thus, any constantc > 6 works forn � n0.

We handle smaller values ofn—in particular,3 � n < n0—as follows. Since
n is constrained to be an integer, there are a finite number ofn in the range
3 � n < n0. We can evaluate the expressionx for each such value ofn and
determine a value ofc for which3 < cx for all values ofn. The final value ofc
that we use is the larger of

� 6, which works for alln � n0, and
� max3�n<n0

fc W 3 < cxg, i.e., the largest value ofc that we chose for the
range3 � n < n0.

Thus, we have shown thatQk0
< 1=n3, as desired.

To see thatPk < 1=n2 for k � k0, we observe that by part (b),Pk � nQk

for all k. Choosingk D k0 givesPk0
� nQk0

< n � .1=n3/ D 1=n2. For
k > k0, we will show that we can pick the constantc such thatQk < 1=n3 for
all k � k0, and thus conclude thatPk < 1=n2 for all k � k0.

To pickc as required, we letc be large enough thatk0 > 3 > e. Thene=k < 1

for all k � k0, and soek=kk decreases ask increases. Thus,

Qk < ek=kk

� ek0=kk0

< 1=n3

for k � k0.

e. The expectation ofM is

E ŒM � D

n
X

kD0

k � PrfM D kg

D

k0
X

kD0

k � PrfM D kg C

n
X

kDk0C1

k � PrfM D kg

�

k0
X

kD0

k0 � PrfM D kg C

n
X

kDk0C1

n � PrfM D kg

� k0

k0
X

kD0

PrfM D kg C n

n
X

kDk0C1

PrfM D kg

D k0 � PrfM � k0g C n � PrfM > k0g ;

which is what we needed to show, sincek0 D c lg n= lg lg n.

To show that EŒM � D O.lg n= lg lg n/, note that PrfM � k0g � 1 and

Selected Solutions for Chapter 11: Hash Tables 11-5

PrfM > k0g D

n
X

kDk0C1

PrfM D kg

D

n
X

kDk0C1

Pk

<

n
X

kDk0C1

1=n2 (by part (d))

< n � .1=n2/

D 1=n :

We conclude that

E ŒM� � k0 � 1 C n � .1=n/

D k0 C 1

D O.lg n= lg lg n/ :

Selected Solutions for Chapter 12:
Binary Search Trees

Solution to Exercise 12.1-2

In a heap, a node’s key is� both of its children’s keys. In a binary search tree, a
node’s key is� its left child’s key, but� its right child’s key.

The heap property, unlike the binary-searth-tree property, doesn’t help print the
nodes in sorted order because it doesn’t tell which subtree of a node contains the
element to print before that node. In a heap, the largest element smaller than the
node could be in either subtree.

Note that if the heap property could be used to print the keys in sorted order in
O.n/ time, we would have anO.n/-time algorithm for sorting, because building
the heap takes onlyO.n/ time. But we know (Chapter 8) that a comparison sort
must take�.n lg n/ time.

Solution to Exercise 12.2-7

Note that a call to TREE-M INIMUM followed byn � 1 calls to TREE-SUCCESSOR

performs exactly the same inorder walk of the tree as does the procedure INORDER-
TREE-WALK . INORDER-TREE-WALK prints the TREE-M INIMUM first, and by
definition, the TREE-SUCCESSORof a node is the next node in the sorted order
determined by an inorder tree walk.

This algorithm runs in‚.n/ time because:

� It requires�.n/ time to do then procedure calls.
� It traverses each of then � 1 tree edges at most twice, which takesO.n/ time.

To see that each edge is traversed at most twice (once going down the tree and once
going up), consider the edge between any nodeu and either of its children, node�.
By starting at the root, we must traverse.u; �/ downward fromu to �, before
traversing it upward from� to u. The only time the tree is traversed downward is
in code of TREE-M INIMUM , and the only time the tree is traversed upward is in
code of TREE-SUCCESSORwhen we look for the successor of a node that has no
right subtree.

Suppose that� is u’s left child.

12-2 Selected Solutions for Chapter 12: Binary Search Trees

� Before printingu, we must print all the nodes in its left subtree, which is rooted
at�, guaranteeing the downward traversal of edge.u; �/.

� After all nodes inu’s left subtree are printed,u must be printed next. Procedure
TREE-SUCCESSORtraverses an upward path tou from the maximum element
(which has no right subtree) in the subtree rooted at�. This path clearly includes
edge.u; �/, and since all nodes inu’s left subtree are printed, edge.u; �/ is
never traversed again.

Now suppose that� is u’s right child.

� After u is printed, TREE-SUCCESSOR.u/ is called. To get to the minimum
element inu’s right subtree (whose root is�), the edge.u; �/ must be traversed
downward.

� After all values inu’s right subtree are printed, TREE-SUCCESSORis called on
the maximum element (again, which has no right subtree) in the subtree rooted
at �. TREE-SUCCESSORtraverses a path up the tree to an element afteru,
sinceu was already printed. Edge.u; �/ must be traversed upward on this path,
and since all nodes inu’s right subtree have been printed, edge.u; �/ is never
traversed again.

Hence, no edge is traversed twice in the same direction.

Therefore, this algorithm runs in‚.n/ time.

Solution to Exercise 12.3-3

Here’s the algorithm:

TREE-SORT.A/

let T be an empty binary search tree
for i D 1 to n

TREE-INSERT.T; AŒi �/

INORDER-TREE-WALK .T:root/

Worst case:‚.n2/—occurs when a linear chain of nodes results from the repeated
TREE-INSERToperations.

Best case:‚.n lg n/—occurs when a binary tree of height‚.lg n/ results from the
repeated TREE-INSERToperations.

Solution to Problem 12-2

Tosort the strings ofS , we first insert them into a radix tree, and then use a preorder
tree walk to extract them in lexicographically sorted order. The tree walk outputs
strings only for nodes that indicate the existence of a string (i.e., those that are
lightly shaded in Figure 12.5 of the text).

Selected Solutions for Chapter 12: Binary Search Trees 12-3

Correctness

The preorder ordering is the correct order because:

� Any node’s string is a prefix of all its descendants’ strings and hence belongs
before them in the sorted order (rule 2).

� A node’s left descendants belong before its right descendants because the corre-
sponding strings are identical up to that parent node, and in the next position the
left subtree’s strings have 0 whereas the right subtree’s strings have 1 (rule 1).

Time

‚.n/.

� Insertion takes‚.n/ time, since the insertion of each string takes time propor-
tional to its length (traversing a path through the tree whose length is the length
of the string), and the sum of all the string lengths isn.

� The preorder tree walk takesO.n/ time. It is just like INORDER-TREE-WALK

(it prints the current node and calls itself recursively on the left and right sub-
trees), so it takes time proportional to the number of nodes in the tree. The
number of nodes is at most 1 plus the sum (n) of the lengths of the binary
strings in the tree, because a length-i string corresponds to a path through the
root andi other nodes, but a single node may be shared among many string
paths.

Selected Solutions for Chapter 13:
Red-Black Trees

Solution to Exercise 13.1-4

Af ter absorbing each red node into its black parent, the degree of each node black
node is

� 2, if both children were already black,
� 3, if one child was black and one was red, or
� 4, if both children were red.

All leaves of the resulting tree have the same depth.

Solution to Exercise 13.1-5

In the longest path, at least every other node is black. In the shortest path, at most
every node is black. Since the two paths contain equal numbers of black nodes, the
length of the longest path is at most twice the length of the shortest path.

We can say this more precisely, as follows:

Since every path contains bh.x/ black nodes, even the shortest path fromx to a
descendant leaf has length at least bh.x/. By definition, the longest path fromx
to a descendant leaf has length height.x/. Since the longest path has bh.x/ black
nodes and at least half the nodes on the longest path are black (by property 4),
bh.x/ � height.x/=2, so

length of longest pathD height.x/ � 2 � bh.x/ � twice length of shortest path:

Solution to Exercise 13.3-3

In Figure 13.5, nodesA, B, andD have black-heightk C 1 in all cases, because
each of their subtrees has black-heightk and a black root. NodeC has black-
heightk C 1 on the left (because its red children have black-heightk C 1) and
black-heightkC2 on the right (because its black children have black-heightkC1).

Selected Solutions for Chapter 13: Red-Black Trees 13-3

Becausé is an ancestor ofy, we can just say that all ancestors ofy must be
changed.

In either case,y’s children (if any) are unchanged, because we have assumed
that there is no parent attribute.

b. We assume that we can call two procedures:

� MAKE-NEW-NODE.k/ creates a new node whosekey attribute has valuek
and withleft andright attributesNIL , and it returns a pointer to the new node.

� COPY-NODE.x/ creates a new node whosekey, left, andright attributes have
the same values as those of nodex, and it returns a pointer to the new node.

Here are two ways to write PERSISTENT-TREE-INSERT. The first is a version
of TREE-INSERT, modified to create new nodes along the path to where the
new node will go, and to not use parent attributes. It returns the root of the new
tree.

PERSISTENT-TREE-INSERT.T; k/

´ D MAKE-NEW-NODE.k/

new-root D COPY-NODE.T:root/
y D NIL

x D new-root
while x ¤ NIL

y D x

if ´:key < x:key
x D COPY-NODE.x: left/
y: left D x

else x D COPY-NODE.x:right/
y:right D x

if y == NIL

new-root D ´

elseif ´:key < y:key
y: left D ´

else y:right D ´

return new-root

The second is a rather elegant recursive procedure. The initial call should have
T:root as its first argument. It returns the root of the new tree.

PERSISTENT-TREE-INSERT.r; k/

if r == NIL

x D MAKE-NEW-NODE.k/

else x D COPY-NODE.r/

if k < r:key
x: left D PERSISTENT-TREE-INSERT.r: left; k/

else x:right D PERSISTENT-TREE-INSERT.r:right; k/

return x

13-4 Selected Solutions for Chapter 13: Red-Black Trees

c. Like TREE-INSERT, PERSISTENT-TREE-INSERT does a constant amount of
work at each node along the path from the root to the new node. Since the
length of the path is at mosth, it takesO.h/ time.

Since it allocates a new node (a constant amount of space) for each ancestor of
the inserted node, it also needsO.h/ space.

d. If there were parent attributes, then because of the new root, every node of the
tree would have to be copied when a new node is inserted. To see why, observe
that the children of the root would change to point to the new root, then their
children would change to point to them, and so on. Since there aren nodes, this
change would cause insertion to create�.n/ new nodes and to take�.n/ time.

e. From parts (a) and (c), we know that insertion into a persistent binary search
tree of heighth, like insertion into an ordinary binary search tree, takes worst-
case timeO.h/. A red-black tree hash D O.lg n/, so insertion into an ordinary
red-black tree takesO.lg n/ time. We need to show that if the red-black tree is
persistent, insertion can still be done inO.lg n/ time. To do this, we will need
to show two things:

� How to still find the parent pointers we need inO.1/ time without using a
parent attribute. We cannot use a parent attribute because a persistent tree
with parent attributes uses�.n/ time for insertion (by part (d)).

� That the additional node changes made during red-black tree operations (by
rotation and recoloring) don’t cause more thanO.lg n/ additional nodes to
change.

Each parent pointer needed during insertion can be found inO.1/ time without
having a parent attribute as follows:

To insert into a red-black tree, we call RB-INSERT, which in turn calls RB-
INSERT-FIXUP. Make the same changes to RB-INSERTas we made to TREE-
INSERT for persistence. Additionally, as RB-INSERT walks down the tree to
find the place to insert the new node, have it build a stack of the nodes it tra-
verses and pass this stack to RB-INSERT-FIXUP. RB-INSERT-FIXUP needs
parent pointers to walk back up the same path, and at any given time it needs
parent pointers only to find the parent and grandparent of the node it is working
on. As RB-INSERT-FIXUP moves up the stack of parents, it needs only parent
pointers that are at known locations a constant distance away in the stack. Thus,
the parent information can be found inO.1/ time, just as if it were stored in a
parent attribute.

Rotation and recoloring change nodes as follows:

� RB-INSERT-FIXUP performs at most 2 rotations, and each rotation changes
the child pointers in 3 nodes (the node around which we rotate, that node’s
parent, and one of the children of the node around which we rotate). Thus, at
most 6 nodes are directly modified by rotation during RB-INSERT-FIXUP. In
a persistent tree, all ancestors of a changed node are copied, so RB-INSERT-
FIXUP’s rotations takeO.lg n/ time to change nodes due to rotation. (Ac-
tually, the changed nodes in this case share a singleO.lg n/-length path of
ancestors.)

Selected Solutions for Chapter 13: Red-Black Trees 13-5

� RB-INSERT-FIXUP recolors some of the inserted node’s ancestors, which
are being changed anyway in persistent insertion, and some children of an-
cestors (the “uncles” referred to in the algorithm description). There are
at mostO.lg n/ ancestors, hence at mostO.lg n/ color changes of uncles.
Recoloring uncles doesn’t cause any additional node changes due to persis-
tence, because the ancestors of the uncles are the same nodes (ancestors of
the inserted node) that are being changed anyway due to persistence. Thus,
recoloring does not affect theO.lg n/ running time, even with persistence.

We could show similarly that deletion in a persistent tree also takes worst-case
timeO.h/.

� We already saw in part (a) thatO.h/ nodes change.
� We could write a persistent RB-DELETE procedure that runs inO.h/ time,

analogous to the changes we made for persistence in insertion. But to do so
without using parent pointers we need to walk down the tree to the node to be
deleted, to build up a stack of parents as discussed above for insertion. This
is a little tricky if the set’s keys are not distinct, because in order to find the
path to the node to delete—a particular node with a given key—we have to
make some changes to how we store things in the tree, so that duplicate keys
can be distinguished. The easiest way is to have each key take a second part
that is unique, and to use this second part as a tiebreaker when comparing
keys.

Then the problem of showing that deletion needs onlyO.lg n/ time in a persis-
tent red-black tree is the same as for insertion.

� As for insertion, we can show that the parents needed by RB-DELETE-
FIXUP can be found inO.1/ time (using the same technique as for insertion).

� Also, RB-DELETE-FIXUP performs at most 3 rotations, which as discussed
above for insertion requiresO.lg n/ time to change nodes due to persistence.
It also doesO.lg n/ color changes, which (as for insertion) take onlyO.lg n/

time to change ancestors due to persistence, because the number of copied
nodes isO.lg n/.

Selected Solutions for Chapter 14:
Augmenting Data Structures

Solution to Exercise 14.1-7

Let AŒ1 : : n� be the array ofn distinct numbers.

One way to count the inversions is to add up, for each element, the number of larger
elements that precede it in the array:

of inversionsD
n
X

j D1

jIn�.j /j ;

whereIn�.j / D fi W i < j andAŒi� > AŒj �g.

Note thatjIn�.j /j is related toAŒj �’s rank in the subarrayAŒ1 : : j � because the
elements inIn�.j / are the reason thatAŒj � is not positioned according to its rank.
Let r.j / be the rank ofAŒj � in AŒ1 : : j �. Thenj D r.j / C jIn�.j /j, so we can
compute

jIn�.j /j D j � r.j /

by insertingAŒ1�; : : : ; AŒn� into an order-statistic tree and using OS-RANK to find
the rank of eachAŒj � in the tree immediately after it is inserted into the tree. (This
OS-RANK value isr.j /.)

Insertion and OS-RANK each takeO.lg n/ time, and so the total time forn ele-
ments isO.n lg n/.

Solution to Exercise 14.2-2

Yes, we can maintain black-heights as attributes in the nodes of a red-black tree
without affecting the asymptotic performance of the red-black tree operations. We
appeal to Theorem 14.1, because the black-height of a node can be computed from
the information at the node and its two children. Actually, the black-height can
be computed from just one child’s information: the black-height of a node is the
black-height of a red child, or the black height of a black child plus one. The
second child does not need to be checked because of property 5 of red-black trees.

Within the RB-INSERT-FIXUP and RB-DELETE-FIXUP procedures are color
changes, each of which potentially causeO.lg n/ black-height changes. Let us

14-4 Selected Solutions for Chapter 14: Augmenting Data Structures

� NodesA, C , andE keep the same subtrees, so their black-heights don’t
change.

� Add these two constant-time assignments in RB-DELETE-FIXUP after
line 20:

x:p:bh D x:bh C 1

x:p:p:bh D x:p:bh C 1

� The extra black is taken care of. Loop terminates.

Thus, RB-DELETE-FIXUP maintains its originalO.lg n/ time.

Therefore, we conclude that black-heights of nodes can be maintained as attributes
in red-black trees without affecting the asymptotic performance of red-black tree
operations.

For the second part of the question, no, we cannot maintain node depths without
affecting the asymptotic performance of red-black tree operations. The depth of a
node depends on the depth of its parent. When the depth of a node changes, the
depths of all nodes below it in the tree must be updated. Updating the root node
causesn � 1 other nodes to be updated, which would mean that operations on the
tree that change node depths might not run inO.n lg n/ time.

Solution to Exercise 14.3-7

General idea: Move a sweep line from left to right, while maintaining the set of
rectangles currently intersected by the line in an interval tree. The interval tree
will organize all rectangles whosex interval includes the current position of the
sweep line, and it will be based on they intervals of the rectangles, so that any
overlappingy intervals in the interval tree correspond to overlapping rectangles.

Details:

1. Sort the rectangles by theirx-coordinates. (Actually, each rectangle must ap-
pear twice in the sorted list—once for its leftx-coordinate and once for its right
x-coordinate.)

2. Scan the sorted list (from lowest to highestx-coordinate).

� When anx-coordinate of a left edge is found, check whether the rectangle’s
y-coordinate interval overlaps an interval in the tree, and insert the rectangle
(keyed on itsy-coordinate interval) into the tree.

� When anx-coordinate of a right edge is found, delete the rectangle from the
interval tree.

The interval tree always contains the set of “open” rectangles intersected by the
sweep line. If an overlap is ever found in the interval tree, there are overlapping
rectangles.

Time: O.n lg n/

� O.n lg n/ to sort the rectangles (we can use merge sort or heap sort).
� O.n lg n/ for interval-tree operations (insert, delete, and check for overlap).

Selected Solutions for Chapter 15:
Dynamic Programming

Solution to Exercise 15.2-5

Each time thel-loop executes, thei-loop executesn � l C 1 times. Each time the
i-loop executes, thek-loop executesj � i D l � 1 times, each time referencing
m twice. Thus the total number of times that an entry ofm is referenced while
computing other entries is

P

n

lD2
.n � l C 1/.l � 1/2. Thus,

n
X

iD1

n
X

j Di

R.i; j / D

n
X

lD2

.n � l C 1/.l � 1/2

D 2

n�1
X

lD1

.n � l/l

D 2

n�1
X

lD1

nl � 2

n�1
X

lD1

l2

D 2
n.n � 1/n

2
� 2

.n � 1/n.2n � 1/

6

D n3 � n2 �
2n3 � 3n2 C n

3

D
n3 � n

3
:

Solution to Exercise 15.3-1

Running RECURSIVE-MATRIX -CHAIN is asymptotically more efficient than enu-
merating all the ways of parenthesizing the product and computing the number of
multiplications for each.

Consider the treatment of subproblems by the two approaches.

� For each possible place to split the matrix chain, the enumeration approach
finds all ways to parenthesize the left half, finds all ways to parenthesize the
right half, and looks at all possible combinations of the left half with the right
half. The amount of work to look at each combination of left- and right-half

15-2 Selected Solutions for Chapter 15: Dynamic Programming

subproblem results is thus the product of the number of ways to do the left half
and the number of ways to do the right half.

� For each possible place to split the matrix chain, RECURSIVE-MATRIX -CHAIN

finds the best way to parenthesize the left half, finds the best way to parenthesize
the right half, and combines just those two results. Thus the amount of work to
combine the left- and right-half subproblem results isO.1/.

Section 15.2 argued that the running time for enumeration is�.4n=n3=2/. We will
show that the running time for RECURSIVE-MATRIX -CHAIN is O.n3n�1/.

To get an upper bound on the running time of RECURSIVE-MATRIX -CHAIN , we’ll
use the same approach used in Section 15.2 to get a lower bound: Derive a recur-
rence of the formT .n/ � : : : and solve it by substitution. For the lower-bound
recurrence, the book assumed that the execution of lines 1–2 and 6–7 each take at
least unit time. For the upper-bound recurrence, we’ll assume those pairs of lines
each take at most constant timec. Thus, we have the recurrence

T .n/ �

�
c if n D 1 ;

c C

n�1
X

kD1

.T .k/ C T .n � k/ C c/ if n � 2 :

This is just like the book’s� recurrence except that it hasc instead of 1, and so we
can be rewrite it as

T .n/ � 2

n�1
X

iD1

T .i/ C cn :

We shall prove thatT .n/ D O.n3n�1/ using the substitution method. (Note: Any
upper bound onT .n/ that iso.4n=n3=2/ will suffice. You might prefer to prove one
that is easier to think up, such asT .n/ D O.3:5n/.) Specifically, we shall show
thatT .n/ � cn3n�1 for all n � 1. The basis is easy, sinceT .1/ � c D c � 1 � 31�1.
Inductively, forn � 2 we have

T .n/ � 2

n�1
X

iD1

T .i/ C cn

� 2

n�1
X

iD1

ci3i�1 C cn

� c �

2

n�1
X

iD1

i3i�1 C n

!

D c �

�

2 �

�

n3n�1

3 � 1
C

1 � 3n

.3 � 1/2

�

C n

�

(see below)

D cn3n�1 C c �

�

1 � 3n

2
C n

�

D cn3n�1 C
c

2
.2n C 1 � 3n/

� cn3n�1 for all c > 0, n � 1 .

Selected Solutions for Chapter 15: Dynamic Programming 15-3

Running RECURSIVE-MATRIX -CHAIN takesO.n3n�1/ time, and enumerating all
parenthesizations takes�.4n=n3=2/ time, and so RECURSIVE-MATRIX -CHAIN is
more efficient than enumeration.

Note: The above substitution uses the following fact:

n�1
X

iD1

ixi�1 D
nxn�1

x � 1
C

1 � xn

.x � 1/2
:

This equation can be derived from equation (A.5) by taking the derivative. Let

f .x/ D

n�1
X

iD1

xi D
xn � 1

x � 1
� 1 :

Then
n�1
X

iD1

ixi�1 D f 0.x/ D
nxn�1

x � 1
C

1 � xn

.x � 1/2
:

Solution to Exercise 15.4-4

When computing a particular row of thec table, no rows before the previous row
are needed. Thus only two rows—2 � Y: length entries—need to be kept in memory
at a time. (Note: Each row ofc actually hasY: lengthC1 entries, but we don’t need
to store the column of 0’s—instead we can make the program “know” that those
entries are 0.) With this idea, we need only2 � min.m; n/ entries if we always call
LCS-LENGTH with the shorter sequence as theY argument.

We can thus do away with thec table as follows:

� Use two arrays of length min.m; n/, pre�ious-row andcurrent-row, to hold the
appropriate rows ofc.

� Initialize pre�ious-row to all 0 and computecurrent-row from left to right.
� When current-row is filled, if there are still more rows to compute, copy

current-row into pre�ious-row and compute the newcurrent-row.

Actually only a little more than one row’s worth ofc entries—min.m; n/ C 1 en-
tries—are needed during the computation. The only entries needed in the table
when it is time to computecŒi; j � arecŒi; k� for k � j � 1 (i.e., earlier entries in
the current row, which will be needed to compute the next row); andcŒi � 1; k� for
k � j � 1 (i.e., entries in the previous row that are still needed to compute the rest
of the current row). This is one entry for eachk from 1 to min.m; n/ except that
there are two entries withk D j � 1, hence the additional entry needed besides the
one row’s worth of entries.

We can thus do away with thec table as follows:

� Use an arraya of length min.m; n/ C 1 to hold the appropriate entries ofc. At
the timecŒi; j � is to be computed,a will hold the following entries:

� aŒk� D cŒi; k� for 1 � k < j � 1 (i.e., earlier entries in the current “row”),
� aŒk� D cŒi � 1; k� for k � j � 1 (i.e., entries in the previous “row”),

15-4 Selected Solutions for Chapter 15: Dynamic Programming

� aŒ0� D cŒi; j � 1� (i.e., the previous entry computed, which couldn’t be put
into the “right” place ina without erasing the still-neededcŒi � 1; j � 1�).

� Initialize a to all 0 and compute the entries from left to right.

� Note that the 3 values needed to computecŒi; j � for j > 1 are inaŒ0� D

cŒi; j � 1�, aŒj � 1� D cŒi � 1; j � 1�, andaŒj � D cŒi � 1; j �.
� When cŒi; j � has been computed, moveaŒ0� (cŒi; j � 1�) to its “correct”

place,aŒj � 1�, and putcŒi; j � in aŒ0�.

Solution to Problem 15-4

Note: We assume that no word is longer than will fit into a line, i.e.,li � M for
all i .

First, we’ll make some definitions so that we can state the problem more uniformly.
Special cases about the last line and worries about whether a sequence of words fits
in a line will be handled in these definitions, so that we can forget about them when
framing our overall strategy.
� DefineextrasŒi; j � D M � j C i �

P

j

kDi
lk to be the number of extra spaces

at the end of a line containing wordsi throughj . Note thatextras may be
negative.

� Now define the cost of including a line containing wordsi throughj in the sum
we want to minimize:

lcŒi; j � D

�
1 if extrasŒi; j � < 0 (i.e., wordsi; : : : ; j don’t fit) ;

0 if j D n andextrasŒi; j � � 0 (last line costs 0);

.extrasŒi; j �/3 otherwise:

By making the line cost infinite when the words don’t fit on it, we prevent such
an arrangement from being part of a minimal sum, and by making the cost 0 for
the last line (if the words fit), we prevent the arrangement of the last line from
influencing the sum being minimized.

We want to minimize the sum oflc over all lines of the paragraph.

Our subproblems are how to optimally arrange words1; : : : ; j , where j D

1; : : : ; n.

Consider an optimal arrangement of words1; : : : ; j . Suppose we know that the
last line, which ends in wordj , begins with wordi . The preceding lines, therefore,
contain words1; : : : ; i � 1. In fact, they must contain an optimal arrangement of
words1; : : : ; i � 1. (The usual type of cut-and-paste argument applies.)

Let cŒj � be the cost of an optimal arrangement of words1; : : : ; j . If we know that
the last line contains wordsi; : : : ; j , thencŒj � D cŒi �1�C lcŒi; j �. As a base case,
when we’re computingcŒ1�, we needcŒ0�. If we setcŒ0� D 0, thencŒ1� D lcŒ1; 1�,
which is what we want.

But of course we have to figure out which word begins the last line for the sub-
problem of words1; : : : ; j . So we try all possibilities for wordi , and we pick the
one that gives the lowest cost. Here,i ranges from1 to j . Thus, we can definecŒj �

recursively by

Selected Solutions for Chapter 15: Dynamic Programming 15-5

cŒj � D

(

0 if j D 0 ;

min
1�i�j

.cŒi � 1� C lcŒi; j �/ if j > 0 :

Note that the way we definedlc ensures that

� all choices made will fit on the line (since an arrangement withlc D 1 cannot
be chosen as the minimum), and

� the cost of putting wordsi; : : : ; j on the last line will not be 0 unless this really
is the last line of the paragraph (j D n) or wordsi : : : j fill the entire line.

We can compute a table ofc values from left to right, since each value depends
only on earlier values.

To keep track of what words go on what lines, we can keep a parallelp table that
points to where eachc value came from. WhencŒj � is computed, ifcŒj � is based
on the value ofcŒk � 1�, setpŒj � D k. Then aftercŒn� is computed, we can trace
the pointers to see where to break the lines. The last line starts at wordpŒn� and
goes through wordn. The previous line starts at wordpŒpŒn�� and goes through
wordpŒn� � 1, etc.

In pseudocode, here’s how we construct the tables:

PRINT-NEATLY .l; n; M /

let extrasŒ1 : : n; 1 : : n�, lcŒ1 : : n; 1 : : n�, andcŒ0 : : n� be new arrays
// ComputeextrasŒi; j � for 1 � i � j � n.
for i D 1 to n

extrasŒi; i � D M � li

for j D i C 1 to n

extrasŒi; j � D extrasŒi; j � 1� � lj � 1

// ComputelcŒi; j � for 1 � i � j � n.
for i D 1 to n

for j D i to n

if extrasŒi; j � < 0

lcŒi; j � D 1

elseif j == n andextrasŒi; j � � 0

lcŒi; j � D 0

else lcŒi; j � D .extrasŒi; j �/3

// ComputecŒj � andpŒj � for 1 � j � n.
cŒ0� D 0

for j D 1 to n

cŒj � D 1

for i D 1 to j

if cŒi � 1� C lcŒi; j � < cŒj �

cŒj � D cŒi � 1� C lcŒi; j �

pŒj � D i

return c andp

Quite clearly, both the time and space are‚.n2/.

In fact, we can do a bit better: we can get both the time and space down to‚.nM /.
The key observation is that at mostdM=2e words can fit on a line. (Each word is

15-6 Selected Solutions for Chapter 15: Dynamic Programming

at least one character long, and there’s a space between words.) Since a line with
wordsi; : : : ; j containsj � i C 1 words, if j � i C 1 > dM=2e then we know
that lcŒi; j � D 1. We need only compute and storeextrasŒi; j � and lcŒi; j � for
j � i C 1 � dM=2e. And the innerfor loop header in the computation ofcŒj �

andpŒj � can run from max.1; j � dM=2e C 1/ to j .

We can reduce the space even further to‚.n/. We do so by not storing thelc
andextras tables, and instead computing the value oflcŒi; j � as needed in the last
loop. The idea is that we could computelcŒi; j � in O.1/ time if we knew the
value ofextrasŒi; j �. And if we scan for the minimum value indescending order
of i , we can compute that asextrasŒi; j � D extrasŒi C 1; j � � li � 1. (Initially,
extrasŒj; j � D M � lj .) This improvement reduces the space to‚.n/, since now
the only tables we store arec andp.

Here’s how we print which words are on which line. The printed output of
GIVE-L INES.p; j / is a sequence of triples.k; i; j /, indicating that wordsi; : : : ; j

are printed on linek. The return value is the line numberk.

GIVE-L INES.p; j /

i D pŒj �

if i == 1

k D 1

else k D GIVE-L INES.p; i � 1/ C 1

print .k; i; j /

return k

The initial call is GIVE-L INES.p; n/. Since the value ofj decreases in each recur-
sive call, GIVE-L INES takes a total ofO.n/ time.

Selected Solutions for Chapter 16:
Greedy Algorithms

Solution to Exercise 16.1-4

Let S be the set ofn activities.

The “obvious” solution of using GREEDY-ACTIVITY-SELECTOR to find a maxi-
mum-size setS1 of compatible activities fromS for the first lecture hall, then using
it again to find a maximum-size setS2 of compatible activities fromS � S1 for the
second hall, (and so on until all the activities are assigned), requires‚.n2/ time
in the worst case. Moreover, it can produce a result that uses more lecture halls
than necessary. Consider activities with the intervalsfŒ1; 4/; Œ2; 5/; Œ6; 7/; Œ4; 8/g.
GREEDY-ACTIVITY-SELECTOR would choose the activities with intervalsŒ1; 4/

and Œ6; 7/ for the first lecture hall, and then each of the activities with intervals
Œ2; 5/ andŒ4; 8/ would have to go into its own hall, for a total of three halls used.
An optimal solution would put the activities with intervalsŒ1; 4/ andŒ4; 8/ into one
hall and the activities with intervalsŒ2; 5/ andŒ6; 7/ into another hall, for only two
halls used.

There is a correct algorithm, however, whose asymptotic time is just the time
needed to sort the activities by time—O.n lg n/ time for arbitrary times, or pos-
sibly as fast asO.n/ if the times are small integers.

The general idea is to go through the activities in order of start time, assigning
each to any hall that is available at that time. To do this, move through the set
of events consisting of activities starting and activities finishing, in order of event
time. Maintain two lists of lecture halls: Halls that are busy at the current event-
time t (because they have been assigned an activityi that started atsi � t but
won’t finish until fi > t) and halls that are free at timet . (As in the activity-
selection problem in Section 16.1, we are assuming that activity time intervals are
half open—i.e., that ifsi � fj , then activitiesi andj are compatible.) Whent
is the start time of some activity, assign that activity to a free hall and move the
hall from the free list to the busy list. Whent is the finish time of some activity,
move the activity’s hall from the busy list to the free list. (The activity is certainly
in some hall, because the event times are processed in order and the activity must
have started before its finish timet , hence must have been assigned to a hall.)

To avoid using more halls than necessary, always pick a hall that has already had
an activity assigned to it, if possible, before picking a never-used hall. (This can be
done by always working at the front of the free-halls list—putting freed halls onto

16-2 Selected Solutions for Chapter 16: Greedy Algorithms

the front of the list and taking halls from the front of the list—so that a new hall
doesn’t come to the front and get chosen if there are previously-used halls.)

This guarantees that the algorithm uses as few lecture halls as possible: The algo-
rithm will terminate with a schedule requiringm � n lecture halls. Let activityi
be the first activity scheduled in lecture hallm. The reason thati was put in the
mth lecture hall is that the firstm � 1 lecture halls were busy at timesi . So at this
time there arem activities occurring simultaneously. Therefore any schedule must
use at leastm lecture halls, so the schedule returned by the algorithm is optimal.

Run time:

� Sort the2n activity-starts/activity-ends events. (In the sorted order, an activity-
ending event should precede an activity-starting event that is at the same time.)
O.n lg n/ time for arbitrary times, possiblyO.n/ if the times are restricted (e.g.,
to small integers).

� Process the events inO.n/ time: Scan the2n events, doingO.1/ work for each
(moving a hall from one list to the other and possibly associating an activity
with it).

Total: O.n C time to sort/

Solution to Exercise 16.2-2

The solution is based on the optimal-substructure observation in the text: Leti

be the highest-numbered item in an optimal solutionS for W pounds and items
1; : : : ; n. ThenS 0 D S � fig must be an optimal solution forW � wi pounds
and items1; : : : ; i � 1, and the value of the solutionS is �i plus the value of the
subproblem solutionS 0.

We can express this relationship in the following formula: DefinecŒi; w� to be the
value of the solution for items1; : : : ; i and maximum weightw. Then

cŒi; w� D

�
0 if i D 0 or w D 0 ;

cŒi � 1; w� if wi > w ;

max.�i C cŒi � 1; w � wi �; cŒi � 1; w�/ if i > 0 andw � wi :

The last case says that the value of a solution fori items either includes itemi ,
in which case it is�i plus a subproblem solution fori � 1 items and the weight
excludingwi , or doesn’t include itemi , in which case it is a subproblem solution
for i � 1 items and the same weight. That is, if the thief picks itemi , he takes�i

value, and he can choose from items1; : : : ; i � 1 up to the weight limitw � wi ,
and getcŒi � 1; w � wi � additional value. On the other hand, if he decides not to
take itemi , he can choose from items1; : : : ; i �1 up to the weight limitw, and get
cŒi � 1; w� value. The better of these two choices should be made.

The algorithm takes as inputs the maximum weightW , the number of itemsn, and
the two sequences� D h�1; �2; : : : ; �ni andw D hw1; w2; : : : ; wni. It stores the
cŒi; j � values in a tablecŒ0 : : n; 0 : : W � whose entries are computed in row-major
order. (That is, the first row ofc is filled in from left to right, then the second row,

Selected Solutions for Chapter 16: Greedy Algorithms 16-3

and so on.) At the end of the computation,cŒn; W � contains the maximum value
the thief can take.

DYNAMIC -0-1-KNAPSACK.�; w; n; W /

let cŒ0 : : n; 0 : : W � be a new array
for w D 0 to W

cŒ0; w� D 0

for i D 1 to n

cŒi; 0� D 0

for w D 1 to W

if wi � w

if �i C cŒi � 1; w � wi � > cŒi � 1; w�

cŒi; w� D �i C cŒi � 1; w � wi �

else cŒi; w� D cŒi � 1; w�

else cŒi; w� D cŒi � 1; w�

We can use thec table to deduce the set of items to take by starting atcŒn; W � and
tracing where the optimal values came from. IfcŒi; w� D cŒi �1; w�, then itemi is
not part of the solution, and we continue tracing withcŒi � 1; w�. Otherwise itemi

is part of the solution, and we continue tracing withcŒi � 1; w � wi �.

The above algorithm takes‚.nW / time total:

� ‚.nW / to fill in the c table:.nC1/ � .W C1/ entries, each requiring‚.1/ time
to compute.

� O.n/ time to trace the solution (since it starts in rown of the table and moves
up one row at each step).

Solution to Exercise 16.2-7

Sort A andB into monotonically decreasing order.

Here’s a proof that this method yields an optimal solution. Consider any indicesi

andj such thati < j , and consider the termsai
bi andaj

bj . We want to show that
it is no worse to include these terms in the payoff than to includeai

bj andaj
bi , i.e.,

thatai
bi aj

bj � ai
bj aj

bi . SinceA andB are sorted into monotonically decreasing
order andi < j , we haveai � aj andbi � bj . Sinceai andaj are positive
andbi � bj is nonnegative, we haveai

bi �bj � aj
bi �bj . Multiplying both sides by

ai
bj aj

bj yieldsai
bi aj

bj � ai
bj aj

bi .

Since the order of multiplication doesn’t matter, sortingA andB into monotoni-
cally increasing order works as well.

Selected Solutions for Chapter 17:
Amortized Analysis

Solution to Exercise 17.1-3

Let ci D cost ofi th operation.

ci D

(

i if i is an exact power of 2;

1 otherwise:

Operation Cost
1 1
2 2
3 1
4 4
5 1
6 1
7 1
8 8
9 1
10 1
:::

:::

n operations cost

n
X

iD1

ci � n C

lg n
X

j D0

2j D n C .2n � 1/ < 3n :

(Note: Ignoring floor in upper bound of
P

2j .)

Average cost of operationD Total cost
operations

< 3 .

By aggregate analysis, the amortized cost per operationD O.1/.

Solution to Exercise 17.2-2

Let ci D cost ofi th operation.

17-2 Selected Solutions for Chapter 17: Amortized Analysis

ci D

(

i if i is an exact power of 2;

1 otherwise:

Charge each operation $3 (amortized costyci).

� If i is not an exact power of 2, pay $1, and store $2 as credit.
� If i is an exact power of 2, pay $i , using stored credit.

Operation Cost Actual cost Credit remaining
1 3 1 2
2 3 2 3
3 3 1 5
4 3 4 4
5 3 1 6
6 3 1 8
7 3 1 10
8 3 8 5
9 3 1 7
10 3 1 9
:::

:::
:::

:::

Since the amortized cost is $3 per operation,
n
X

iD1

yci D 3n.

We know from Exercise 17.1-3 that
n
X

iD1

ci < 3n.

Then we have
n
X

iD1

yci �

n
X

iD1

ci) creditD amortized cost� actual cost� 0.

Since the amortized cost of each operation isO.1/, and the amount of credit never
goes negative, the total cost ofn operations isO.n/.

Solution to Exercise 17.2-3

Weintroduce a new fieldA:max to hold the index of the high-order1 in A. Initially,
A:max is set to�1, since the low-order bit ofA is at index 0, and there are initially
no 1’s in A. The value ofA:max is updated as appropriate when the counter is
incremented or reset, and we use this value to limit how much ofA must be looked
at to reset it. By controlling the cost of RESET in this way, we can limit it to an
amount that can be covered by credit from earlier INCREMENTs.

Selected Solutions for Chapter 17: Amortized Analysis 17-3

INCREMENT.A/

i D 0

while i < A: length andAŒi� == 1

AŒi� D 0

i D i C 1

if i < A: length
AŒi� D 1

// Additions to book’s INCREMENT start here.
if i > A:max

A:max D i

else A:max D �1

RESET.A/

for i D 0 to A:max
AŒi� D 0

A:max D �1

As for the counter in the book, we assume that it costs $1 to flip a bit. In addition,
we assume it costs $1 to updateA:max.

Setting and resetting of bits by INCREMENT will work exactly as for the original
counter in the book: $1 will pay to set one bit to 1; $1 will be placed on the bit
that is set to 1 as credit; the credit on each 1 bit will pay to reset the bit during
incrementing.

In addition, we’ll use $1 to pay to updatemax, and ifmax increases, we’ll place an
additional $1 of credit on the new high-order 1. (Ifmax doesn’t increase, we can
just waste that $1—it won’t be needed.) Since RESETmanipulates bits at positions
only up toA:max, and since each bit up to there must have become the high-order 1
at some time before the high-order 1 got up toA:max, every bit seen by RESET

has $1 of credit on it. So the zeroing of bits ofA by RESETcan be completely paid
for by the credit stored on the bits. We just need $1 to pay for resettingmax.

Thus charging $4 for each INCREMENTand $1 for each RESET is sufficient, so the
sequence ofn INCREMENT and RESEToperations takesO.n/ time.

Selected Solutions for Chapter 21:
Data Structures for Disjoint Sets

Solution to Exercise 21.2-3

We want to show that we can assignO.1/ charges to MAKE-SET and FIND-SET

and anO.lg n/ charge to UNION such that the charges for a sequence of these
operations are enough to cover the cost of the sequence—O.mCn lg n/, according
to the theorem. When talking about the charge for each kind of operation, it is
helpful to also be able to talk about the number of each kind of operation.

Consider the usual sequence ofm MAKE-SET, UNION, and FIND-SET operations,
n of which are MAKE-SET operations, and letl < n be the number of UNION

operations. (Recall the discussion in Section 21.1 about there being at mostn � 1

UNION operations.) Then there aren MAKE-SET operations,l UNION operations,
andm � n � l FIND-SET operations.

The theorem didn’t separately name the numberl of UNIONs; rather, it bounded
the number byn. If you go through the proof of the theorem withl UNIONs, you
get the time boundO.m�lCl lg l/ D O.mCl lg l/ for the sequence of operations.
That is, the actual time taken by the sequence of operations is at mostc.mC l lg l/,
for some constantc.

Thus, we want to assign operation charges such that

(MAKE-SET charge) � n

C(FIND-SET charge) � .m � n � l/

C(UNION charge) � l

� c.m C l lg l/ ;

so that the amortized costs give an upper bound on the actual costs.

The following assignments work, wherec 0 is some constant� c:

� MAKE-SET: c0

� FIND-SET: c 0

� UNION: c0.lg n C 1/

Substituting into the above sum, we get

c0n C c 0.m � n � l/ C c0.lg n C 1/l D c 0m C c0l lg n

D c 0.m C l lg n/

> c.m C l lg l/ :

21-2 Selected Solutions for Chapter 21: Data Structures for Disjoint Sets

Solution to Exercise 21.2-6

Let’s call the two listsA andB , and suppose that the representative of the new list
will be the representative ofA. Rather than appendingB to the end ofA, instead
spliceB into A right after the first element ofA. We have to traverseB to update
pointers to the set object anyway, so we can just make the last element ofB point
to the second element ofA.

Selected Solutions for Chapter 22:
Elementary Graph Algorithms

Solution to Exercise 22.1-7

BBT .i; j / D
X

e2E

biebT

ej
D
X

e2E

biebje

� If i D j , thenbiebje D 1 (it is 1 � 1 or .�1/ � .�1/) whenevere enters or leaves
vertexi , and 0 otherwise.

� If i ¤ j , thenbiebje D �1 whene D .i; j / or e D .j; i/, and 0 otherwise.

Thus,

BBT .i; j / D

(

degree ofi D in-degreeC out-degree ifi D j ;

�.# of edges connectingi andj / if i ¤ j :

Solution to Exercise 22.2-5

The correctness proof for the BFS algorithm shows thatu:d D ı.s; u/, and the
algorithm doesn’t assume that the adjacency lists are in any particular order.

In Figure 22.3, ift precedesx in AdjŒw�, we can get the breadth-first tree shown
in the figure. But ifx precedest in AdjŒw� andu precedesy in AdjŒx�, we can get
edge.x; u/ in the breadth-first tree.

Solution to Exercise 22.3-12

The following pseudocode modifies the DFS and DFS-VISIT procedures to assign
values to thecc attributes of vertices.

22-2 Selected Solutions for Chapter 22: Elementary Graph Algorithms

DFS.G/

for each vertexu 2 G:V
u:color D WHITE

u:� D NIL

time D 0

counter D 0

for each vertexu 2 G:V
if u:color == WHITE

counter D counter C 1

DFS-VISIT.G; u; counter/

DFS-VISIT.G; u; counter/

u:cc D counter // label the vertex
time D time C 1

u:d D time
u:color D GRAY

for each� 2 G:AdjŒu�

if �:color == WHITE

�:� D u

DFS-VISIT.G; �; counter/
u:color D BLACK

time D time C 1

u: f D time

This DFS increments a counter each time DFS-VISIT is called to grow a new tree
in the DFS forest. Every vertex visited (and added to the tree) by DFS-VISIT is
labeled with that same counter value. Thusu:cc D �:cc if and only if u and� are
visited in the same call to DFS-VISIT from DFS, and the final value of the counter
is the number of calls that were made to DFS-VISIT by DFS. Also, since every
vertex is visited eventually, every vertex is labeled.

Thus all we need to show is that the vertices visited by each call to DFS-VISIT

from DFS are exactly the vertices in one connected component ofG.

� All vertices in a connected component are visited by one call to DFS-VISIT

from DFS:

Let u be the first vertex in componentC visited by DFS-VISIT. Since a vertex
becomes non-white only when it is visited, all vertices inC are white when
DFS-VISIT is called foru. Thus, by the white-path theorem, all vertices inC

become descendants ofu in the forest, which means that all vertices inC are
visited (by recursive calls to DFS-VISIT) before DFS-VISIT returns to DFS.

� All vertices visited by one call to DFS-VISIT from DFS are in the same con-
nected component:

If two vertices are visited in the same call to DFS-VISIT from DFS, they are in
the same connected component, because vertices are visited only by following
paths inG (by following edges found in adjacency lists, starting from some
vertex).

Selected Solutions for Chapter 22: Elementary Graph Algorithms 22-3

Solution to Exercise 22.4-3

An undirected graph is acyclic (i.e., a forest) if and only if a DFS yields no back
edges.

� If there’s a back edge, there’s a cycle.
� If there’s no back edge, then by Theorem 22.10, there are only tree edges.

Hence, the graph is acyclic.

Thus, we can run DFS: if we find a back edge, there’s a cycle.

� Time: O.V /. (Not O.V C E/!)
If we ever seejV j distinct edges, we must have seen a back edge because (by
Theorem B.2 on p. 1174) in an acyclic (undirected) forest,jEj � jV j � 1.

Solution to Problem 22-1

a. 1. Suppose.u; �/ is a back edge or a forward edge in a BFS of an undirected
graph. Then one ofu and�, sayu, is a proper ancestor of the other (�) in
the breadth-first tree. Since we explore all edges ofu before exploring any
edges of any ofu’s descendants, we must explore the edge.u; �/ at the time
we exploreu. But then.u; �/ must be a tree edge.

2. In BFS, an edge.u; �/ is a tree edge when we set�:� D u. But we only
do so when we set�:d D u:d C 1. Since neitheru:d nor �:d ever changes
thereafter, we have�:d D u:d C 1 when BFS completes.

3. Consider a cross edge.u; �/ where, without loss of generality,u is visited
before�. At the time we visitu, vertex� must already be on the queue, for
otherwise.u; �/ would be a tree edge. Because� is on the queue, we have
�:d � u:d C 1 by Lemma 22.3. By Corollary 22.4, we have�:d � u:d.
Thus, either�:d D u:d or �:d D u:d C 1.

b. 1. Suppose.u; �/ is a forward edge. Then we would have explored it while
visiting u, and it would have been a tree edge.

2. Same as for undirected graphs.
3. For any edge.u; �/, whether or not it’s a cross edge, we cannot have

�:d > u:d C 1, since we visit� at the latest when we explore edge.u; �/.
Thus,�:d � u:d C 1.

4. Clearly,�:d � 0 for all vertices�. For a back edge.u; �/, � is an ancestor
of u in the breadth-first tree, which means that�:d � u:d. (Note that since
self-loops are considered to be back edges, we could haveu D �.)

23-2 Selected Solutions for Chapter 23: Minimum Spanning Trees

Here, the graph is its own minimum spanning tree, and so the minimum spanning
tree is unique. Consider the cut .fxg ; fy; ´g/. Both of the edges .x; y/ and .x; ´/

are light edges crossing the cut, and they are both light edges.

Selected Solutions for Chapter 24:
Single-Source Shortest Paths

Solution to Exercise 24.1-3

If the greatest number of edges on any shortest path from the source ism, then the
path-relaxation property tells us that afterm iterations of BELLMAN -FORD, every
vertex� has achieved its shortest-path weight in�:d. By the upper-bound property,
afterm iterations, nod values will ever change. Therefore, nod values will change
in the.m C 1/st iteration. Because we do not knowm in advance, we cannot make
the algorithm iterate exactlym times and then terminate. But if we just make the
algorithm stop when nothing changes any more, it will stop afterm C 1 iterations.

BELLMAN -FORD-(M+1).G; w; s/

INITIALIZE -SINGLE-SOURCE.G; s/

changes D TRUE

while changes == TRUE

changes D FALSE

for each edge.u; �/ 2 G:E
RELAX -M.u; �; w/

RELAX -M.u; �; w/

if �:d > u:d C w.u; �/

�:d D u:d C w.u; �/

�:� D u

changes D TRUE

The test for a negative-weight cycle (based on there being ad value that would
change if another relaxation step was done) has been removed above, because this
version of the algorithm will never get out of thewhile loop unless alld values
stop changing.

Solution to Exercise 24.3-3

Yes, the algorithm still works. Letu be the leftover vertex that does not
get extracted from the priority queueQ. If u is not reachable froms, then

24-2 Selected Solutions for Chapter 24: Single-Source Shortest Paths

u:d D ı.s; u/ D 1. If u is reachable froms, then there is a shortest path
p D s ; x ! u. When the nodex was extracted,x:d D ı.s; x/ and then the
edge.x; u/ was relaxed; thus,u:d D ı.s; u/.

Solution to Exercise 24.3-6

To find the most reliable path betweens andt , run Dijkstra’s algorithm with edge
weightsw.u; �/ D � lg r.u; �/ to find shortest paths froms in O.ECV lg V / time.
The most reliable path is the shortest path froms to t , and that path’s reliability is
the product of the reliabilities of its edges.

Here’s why this method works. Because the probabilities are independent, the
probability that a path will not fail is the product of the probabilities that its edges
will not fail. We want to find a paths

p

; t such that
Q

.u;�/2p
r.u; �/ is maximized.

This is equivalent to maximizing lg.
Q

.u;�/2p
r.u; �// D

P

.u;�/2p
lg r.u; �/, which

is in turn equivalent to minimizing
P

.u;�/2p
� lg r.u; �/. (Note: r.u; �/ can be 0,

and lg0 is undefined. So in this algorithm, define lg0 D �1.) Thus if we assign
weightsw.u; �/ D � lg r.u; �/, we have a shortest-path problem.

Since lg1 = 0, lgx < 0 for 0 < x < 1, and we have defined lg0 D �1, all the
weightsw are nonnegative, and we can use Dijkstra’s algorithm to find the shortest
paths froms in O.E C V lg V / time.

Alternate answer

You can also work with the original probabilities by running a modified version of
Dijkstra’s algorithm that maximizes the product of reliabilities along a path instead
of minimizing the sum of weights along a path.

In Dijkstra’s algorithm, use the reliabilities as edge weights and substitute

� max (and EXTRACT-MAX) for min (and EXTRACT-M IN) in relaxation and the
queue,

� � for C in relaxation,
� 1 (identity for �) for 0 (identity forC) and�1 (identity for min) for1 (identity

for max).

For example, we would use the following instead of the usual RELAX procedure:

RELAX -RELIABILITY .u; �; r/

if �:d < u:d � r.u; �/

�:d D u:d � r.u; �/

�:� D u

This algorithm is isomorphic to the one above: it performs the same operations
except that it is working with the original probabilities instead of the transformed
ones.

Selected Solutions for Chapter 24: Single-Source Shortest Paths 24-3

Solution to Exercise 24.4-7

Observe that after the first pass, alld values are at most0, and that relaxing
edges.�0; �i / will never again change ad value. Therefore, we can eliminate�0 by
running the Bellman-Ford algorithm on the constraint graph without the�0 node
but initializing all shortest path estimates to0 instead of1.

Solution to Exercise 24.5-4

Whenever RELAX sets� for some vertex, it also reduces the vertex’sd value.
Thus if s:� gets set to a non-NIL value,s:d is reduced from its initial value of0 to
a negative number. Buts:d is the weight of some path froms to s, which is a cycle
includings. Thus, there is a negative-weight cycle.

Solution to Problem 24-3

a. We can use the Bellman-Ford algorithm on a suitable weighted, directed graph
G D .V; E/, which we form as follows. There is one vertex inV for each
currency, and for each pair of currenciesci and cj , there are directed edges
.�i ; �j / and.�j ; �i/. (Thus,jV j D n andjEj D n.n � 1/.)

To determine edge weights, we start by observing that

RŒi1; i2� � RŒi2; i3� � � � RŒik�1; ik� � RŒik; i1� > 1

if and only if

1

RŒi1; i2�
�

1

RŒi2; i3�
� � �

1

RŒik�1; ik�
�

1

RŒik; i1�
< 1 :

Taking logs of both sides of the inequality above, we express this condition as

lg
1

RŒi1; i2�
C lg

1

RŒi2; i3�
C � � � C lg

1

RŒik�1; ik �
C lg

1

RŒik; i1�
< 0 :

Therefore, if we define the weight of edge.�i ; �j / as

w.�i ; �j / D lg
1

RŒi; j �

D � lgRŒi; j � ;

then we want to find whether there exists a negative-weight cycle inG with
these edge weights.

We can determine whether there exists a negative-weight cycle inG by adding
an extra vertex�0 with 0-weight edges.�0; �i / for all �i 2 V , running
BELLMAN -FORD from �0, and using the boolean result of BELLMAN -FORD

(which is TRUE if there are no negative-weight cycles andFALSE if there is a

24-4 Selected Solutions for Chapter 24: Single-Source Shortest Paths

negative-weight cycle) to guide our answer. That is, we invert the boolean result
of BELLMAN -FORD.

This method works because adding the new vertex�0 with 0-weight edges
from �0 to all other vertices cannot introduce any new cycles, yet it ensures
that all negative-weight cycles are reachable from�0.

It takes‚.n2/ time to createG, which has‚.n2/ edges. Then it takesO.n3/

time to run BELLMAN -FORD. Thus, the total time isO.n3/.

Another way to determine whether a negative-weight cycle exists is to createG

and, without adding�0 and its incident edges, run either of the all-pairs shortest-
paths algorithms. If the resulting shortest-path distance matrix has any negative
values on the diagonal, then there is a negative-weight cycle.

b. Assuming that we ran BELLMAN -FORD to solve part (a), we only need to find
the vertices of a negative-weight cycle. We can do so as follows. First, relax
all the edges once more. Since there is a negative-weight cycle, thed value of
some vertexu will change. We just need to repeatedly follow the� values until
we get back tou. In other words, we can use the recursive method given by the
PRINT-PATH procedure of Section 22.2, but stop it when it returns to vertexu.

The running time isO.n3/ to run BELLMAN -FORD, plus O.n/ to print the
vertices of the cycle, for a total ofO.n3/ time.

Selected Solutions for Chapter 25:
All-Pairs Shortest Paths

Solution to Exercise 25.1-3

The matrixL.0/ corresponds to the identity matrix

I D

�
1 0 0 � � � 0

0 1 0 � � � 0

0 0 1 � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � 1

�
of regular matrix multiplication. Substitute0 (the identity forC) for 1 (the iden-
tity for min), and1 (the identity for�) for 0 (the identity forC).

Solution to Exercise 25.1-5

The all-pairs shortest-paths algorithm in Section 25.1 computes

L.n�1/ D W n�1 D L.0/ � W n�1 ;

wherel
.n�1/

ij
D ı.i; j / andL.0/ is the identity matrix. That is, the entry in the

i th row andj th column of the matrix “product” is the shortest-path distance from
vertexi to vertexj , and rowi of the product is the solution to the single-source
shortest-paths problem for vertexi .

Notice that in a matrix “product”C D A � B, thei th row of C is thei th row of A

“multiplied” by B. Since all we want is thei th row ofC , we never need more than
thei th row ofA.

Thus the solution to the single-source shortest-paths from vertexi is L
.0/

i
� W n�1,

whereL
.0/

i
is thei th row of L.0/—a vector whosei th entry is 0 and whose other

entries are1.

Doing the above “multiplications” starting from the left is essentially the same
as the BELLMAN -FORD algorithm. The vector corresponds to thed values in
BELLMAN -FORD—the shortest-path estimates from the source to each vertex.

� The vector is initially 0 for the source and1 for all other vertices, the same as
the values set up ford by INITIALIZE -SINGLE-SOURCE.

25-2 Selected Solutions for Chapter 25: All-Pairs Shortest Paths

� Each “multiplication” of the current vector byW relaxes all edges just as
BELLMAN -FORD does. That is, a distance estimate in the row, say the distance
to �, is updated to a smaller estimate, if any, formed by adding somew.u; �/ to
the current estimate of the distance tou.

� The relaxation/multiplication is donen � 1 times.

Solution to Exercise 25.2-4

With the superscripts, the computation isd
.k/

ij
D min

�

d
.k�1/

ij
; d

.k�1/

ik
C d

.k�1/

kj

�

. If,
having dropped the superscripts, we were to compute and storedik or dkj before
using these values to computedij , we might be computing one of the following:

d
.k/

ij
D min

�

d
.k�1/

ij
; d

.k/

ik
C d

.k�1/

kj

�

;

d
.k/

ij
D min

�

d
.k�1/

ij
; d

.k�1/

ik
C d

.k/

kj

�

;

d
.k/

ij
D min

�

d
.k�1/

ij
; d

.k/

ik
C d

.k/

kj

�

:

In any of these scenarios, we’re computing the weight of a shortest path fromi to j

with all intermediate vertices inf1; 2; : : : ; kg. If we used
.k/

ik
, rather thand .k�1/

ik
,

in the computation, then we’re using a subpath fromi to k with all intermediate
vertices inf1; 2; : : : ; kg. But k cannot be anintermediate vertex on a shortest path
from i to k, since otherwise there would be a cycle on this shortest path. Thus,
d

.k/

ik
D d

.k�1/

ik
. A similar argument applies to show thatd

.k/

kj
D d

.k�1/

kj
. Hence, we

can drop the superscripts in the computation.

Solution to Exercise 25.3-4

It changes shortest paths. Consider the following graph.V D fs; x; y; ´g, and
there are 4 edges:w.s; x/ D 2, w.x; y/ D 2, w.s; y/ D 5, andw.s; ´/ D �10.
So we’d add 10 to every weight to makeyw. With w, the shortest path froms to y

is s ! x ! y, with weight 4. With yw, the shortest path froms to y is s ! y,
with weight 15. (The paths ! x ! y has weight 24.) The problem is that by just
adding the same amount to every edge, you penalize paths with more edges, even
if their weights are low.

Selected Solutions for Chapter 26:
Maximum Flow

Solution to Exercise 26.2-11

For any two verticesu and� in G, we can define a flow networkGu� consisting
of the directed version ofG with s D u, t D �, and all edge capacities set to1.
(The flow networkGu� hasV vertices and2 jEj edges, so that it hasO.V / vertices
andO.E/ edges, as required. We want all capacities to be 1 so that the number of
edges ofG crossing a cut equals the capacity of the cut inGu�.) Let fu� denote a
maximum flow inGu�.

We claim that for anyu 2 V , the edge connectivityk equals min
�2V �fug

fjfu�jg. We’ll

show below that this claim holds. Assuming that it holds, we can findk as follows:

EDGE-CONNECTIVITY.G/

k D 1

select any vertexu 2 G:V
for each vertex� 2 G:V � fug

set up the flow networkGu� as described above
find the maximum flowfu� onGu�

k D min.k; jfu�j/

return k

The claim follows from the max-flow min-cut theorem and how we chose capac-
ities so that the capacity of a cut is the number of edges crossing it. We prove
thatk D min

�2V �fug
fjfu�jg, for anyu 2 V by showing separately thatk is at least this

minimum and thatk is at most this minimum.

� Proof thatk � min
�2V �fug

fjfu�jg:

Let m D min
�2V �fug

fjfu�jg. Suppose we remove onlym � 1 edges fromG. For

any vertex�, by the max-flow min-cut theorem,u and� are still connected.
(The max flow fromu to � is at leastm, hence any cut separatingu from � has
capacity at leastm, which means at leastm edges cross any such cut. Thus at
least one edge is left crossing the cut when we removem�1 edges.) Thus every
node is connected tou, which implies that the graph is still connected. So at
leastm edges must be removed to disconnect the graph—i.e.,k � min

�2V �fug
fjfu�jg.

26-2 Selected Solutions for Chapter 26: Maximum Flow

� Proof thatk � min
�2V �fug

fjfu� jg:

Consider a vertex� with the minimumjfu�j. By the max-flow min-cut the-
orem, there is a cut of capacityjfu�j separatingu and�. Since all edge ca-
pacities are 1, exactlyjfu�j edges cross this cut. If these edges are removed,
there is no path fromu to �, and so our graph becomes disconnected. Hence
k � min

�2V �fug
fjfu�jg.

� Thus, the claim thatk D min
�2V �fug

fjfu�jg, for anyu 2 V is true.

Solution to Exercise 26.3-3

By definition, an augmenting path is a simple paths ; t in the residual net-
work G 0

f
. SinceG has no edges between vertices inL and no edges between

vertices inR, neither does the flow networkG 0 and hence neither doesG0
f

. Also,
the only edges involvings or t connects to L andR to t . Note that although edges
in G0 can go only fromL to R, edges inG0

f
can also go fromR to L.

Thus any augmenting path must go

s ! L ! R ! � � � ! L ! R ! t ;

crossing back and forth betweenL and R at most as many times as it can do
so without using a vertex twice. It containss, t , and equal numbers of dis-
tinct vertices fromL andR—at most2 C 2 � min.jLj ; jRj/ vertices in all. The
length of an augmenting path (i.e., its number of edges) is thus bounded above by
2 � min.jLj ; jRj/ C 1.

Solution to Problem 26-4

a. Just execute one iteration of the Ford-Fulkerson algorithm. The edge.u; �/ in E

with increased capacity ensures that the edge.u; �/ is in the residual network.
So look for an augmenting path and update the flow if a path is found.

Time

O.V C E/ D O.E/ if we find the augmenting path with either depth-first or
breadth-first search.

To see that only one iteration is needed, consider separately the cases in which
.u; �/ is or is not an edge that crosses a minimum cut. If.u; �/ does not cross a
minimum cut, then increasing its capacity does not change the capacity of any
minimum cut, and hence the value of the maximum flow does not change. If
.u; �/ does cross a minimum cut, then increasing its capacity by 1 increases the
capacity of that minimum cut by 1, and hence possibly the value of the maxi-
mum flow by 1. In this case, there is either no augmenting path (in which case
there was some other minimum cut that.u; �/ does not cross), or the augment-
ing path increases flow by 1. No matter what, one iteration of Ford-Fulkerson
suffices.

Selected Solutions for Chapter 26: Maximum Flow 26-3

b. Let f be the maximum flow before reducingc.u; �/.

If f .u; �/ D 0, we don’t need to do anything.

If f .u; �/ > 0, we will need to update the maximum flow. Assume from now
on thatf .u; �/ > 0, which in turn implies thatf .u; �/ � 1.

Definef 0.x; y/ D f .x; y/ for all x; y 2 V , except thatf 0.u; �/ D f .u; �/�1.
Althoughf 0 obeys all capacity contraints, even afterc.u; �/ has been reduced,
it is not a legal flow, as it violates flow conservation atu (unlessu D s) and�

(unless� D t). f 0 has one more unit of flow enteringu than leavingu, and it
has one more unit of flow leaving� than entering�.

The idea is to try to reroute this unit of flow so that it goes out ofu and into�

via some other path. If that is not possible, we must reduce the flow froms to u

and from� to t by one unit.

Look for an augmenting path fromu to � (note:not from s to t).

� If there is such a path, augment the flow along that path.
� If there is no such path, reduce the flow froms to u by augmenting the flow

from u to s. That is, find an augmenting pathu ; s and augment the
flow along that path. (There definitely is such a path, because there is flow
from s to u.) Similarly, reduce the flow from� to t by finding an augmenting
patht ; � and augmenting the flow along that path.

Time

O.V C E/ D O.E/ if we find the paths with either DFS or BFS.

