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Matrix Operations

Operations on matrices are at the heart of scientific comgutiEfficient algo-
rithms for working with matrices are therefore of consid#eapractical interest.
This chapter provides a brief introduction to matrix theand matrix operations,
emphasizing the problems of multiplying matrices and sw\sets of simultaneous
linear equations.

After Section 28.1 introduces basic matrix concepts andtmts, Section 28.2
presents Strassen’s surprising algorithm for multiplyimgp n x n matrices in
®(n'97) = O(n?8) time. Section 28.3 shows how to solve a set of linear equstion
using LUP decompositions. Then, Section 28.4 exploresltse gelationship be-
tween the problem of multiplying matrices and the problenmgérting a matrix.
Finally, Section 28.5 discusses the important class of sgtmmpositive-definite
matrices and shows how they can be used to find a least-sgs@itgsn to an
overdetermined set of linear equations.

One important issue that arises in practicanisnerical stability Due to the
limited precision of floating-point representations inuedtcomputers, round-off
errors in numerical computations may become amplified dvercburse of a com-
putation, leading to incorrect results; such computat@msnumerically unstable.
Although we shall briefly consider numerical stability orcasion, we do not fo-
cus on it in this chapter. We refer the reader to the excebewnk by Golub and
Van Loan [125] for a thorough discussion of stability issues

28.1 Properties of matrices

In this section, we review some basic concepts of matrixriheand some fun-
damental properties of matrices, focusing on those thdtheilneeded in later
sections.
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Matrices and vectors

A matrix is a rectangular array of numbers. For example,
A — a1 12 A3
A1 A2 Az
1 2 3
(12 8.

isa2x 3 matrix A = (a;j), where fori = 1,2 andj = 1, 2, 3, the element of the
matrix in rowi and columnj is &;. We use uppercase letters to denote matrices
and corresponding subscripted lowercase letters to deheteelements. The set
of all m x n matrices with real-valued entries is deno®®8*". In general, the set
of m x n matrices with entries drawn from a s&is denotedS™".

Thetransposeof a matrix A is the matrix AT obtained by exchanging the rows
and columns ofA. For the matrixA of equation (28.1),

1 4
AT=(2 5
3 6

A vectoris a one-dimensional array of numbers. For example,

2
x=13 (28.2)
5
is a vector of size 3. We use lowercase letters to denote neecod we denote
theith element of a size-vectorx by x;, fori = 1,2,...,n. We take the stan-

dard form of a vector to be asalumn vectorequivalent to am x 1 matrix; the
correspondingow vectoris obtained by taking the transpose:

x'=(2 3 5).

The unit vector g is the vector whoséth element is 1 and all of whose other
elements are 0. Usually, the size of a unit vector is cleanftioe context.

A zero matrixis a matrix whose every entry is 0. Such a matrix is often de-
noted 0, since the ambiguity between the number 0 and a nwdtfils is usually
easily resolved from context. If a matrix of 0's is intendéklen the size of the
matrix also needs to be derived from the context.

Squaren x n matrices arise frequently. Several special cases of seuateces
are of particular interest:

1. Adiagonal matrixhasa; = 0 whenever # j. Because all of the off-diagonal
elements are zero, the matrix can be specified by listingl#ments along the
diagonal:
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a1 0 A 0

. 0 ay ... 0
diag@i1, @, ..., am) = | . S

0O O ... amn

2. Then x nidentity matrix I, is a diagonal matrix with 1's along the diagonal:

I, = diagL,1,...,1)

10 ...0
01 ...0
00 ...1

When| appears without a subscript, its size can be derived fronegtnThe
i th column of an identity matrix is the unit vecter.

3. Atridiagonal matrix T is one for whicht; = 0if [i — j| > 1. Nonzero entries
appear only on the main diagonal, immediately above the ahiagonal § ;1
fori = 1,2,...,n— 1), or immediately below the main diagonal.¢; for
i=212...,n—1):

tiy o O O 0 0 0
thy tr tr3 O 0 0 0
0 t32 t33 t34 0 0 0
T= : : : :
0 O O 0 P tn_2,n_2 tn_2,n_1 0
0 0 0 0o ... tn—l,n—2 tn—l,n—l tn—l,n
0 O O 0 P O tn,n_l tnn

4. Anupper-triangular matrix U is one for whichu;; = 0if i > j. All entries
below the diagonal are zero:

Uj1 U2 ... Ujn
0 uy ... Uy

U= .
0 O ... Upn

An upper-triangular matrix isinit upper-triangular if it has all 1's along the
diagonal.
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5. A lower-triangular matrix L is one for whichl;; = 0if i < j. All entries
above the diagonal are zero:

lyz, O ... O

|21 |22 0
L = .

Inl In2 Inn

A lower-triangular matrix isunit lower-triangular if it has all 1's along the
diagonal.

6. A permutation matrix P has exactly one 1 in each row or column, and 0’s
elsewhere. An example of a permutation matrix is

01000
00010
P=]1 00 0O
0 00 O01
00100

Such a matrix is called a permutation matrix because muitigl a vectorx
by a permutation matrix has the effect of permuting (reagnag) the elements
of x.

7. A symmetric matrixA satisfies the conditiod = AT. For example,

WN -
A ODN
g b~ w

is a symmetric matrix.

Operations on matrices

The elements of a matrix or vector are numbers from a humbs&esy, such as
the real numbers, the complex humbers, or integers moduforeep The number
system defines how to add and multiply numbers. We can exbasz tdefinitions
to encompass addition and multiplication of matrices.

We definematrix addition as follows. If A = (a;) andB = (bj;) arem x n
matrices, then their matrix su@ = (c;j) = A+ B is them x n matrix defined by

Gj = &j + b
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fori =1,2,...,mandj = 1,2,...,n. That is, matrix addition is performed
componentwise. A zero matrix is the identity for matrix aalui:
A+0 = A

O+ A.

If 2 is a number andA = (a&;) is a matrix, theniA = (1a;) is the scalar
multiple of A obtained by multiplying each of its elements byAs a special case,
we define thenegativeof a matrix A = (g;) to be—1- A = —A, so that thdjth
entry of —Ais —g;;. Thus,

A+(-A) = 0
(—A) +A.

Given this definition, we can defimaatrix subtractionas the addition of the neg-
ative of a matrix:A— B = A+ (—B).

We definematrix multiplication as follows. We start with two matrice& and B
that arecompatiblein the sense that the number of columngaéquals the number
of rows of B. (In general, an expression containing a matrix produBtis always
assumed to imply that matricésand B are compatible.) A = (&;) is anm x n
matrix andB = (bjx) is ann x p matrix, then their matrix produc® = AB is the
m x p matrix C = (cix), where

n

Cik = Zaij bk (28.3)
j=1

fori = 1,2,...,mandk = 1,2,..., p. The procedure MTRIX-MULTIPLY

in Section 25.1 implements matrix multiplication in theagghtforward manner
based on equation (28.3), assuming that the matrices asgesqu = n = p.
To multiply n x n matrices, MaTRIX-MULTIPLY performsn® multiplications and
n?(n — 1) additions, and so its running time &(n?).

Matrices have many (but not all) of the algebraic propertygécal of numbers.
Identity matrices are identities for matrix multiplicatio

ImA=Al,=A

for anym x n matrix A. Multiplying by a zero matrix gives a zero matrix:
A0=0.

Matrix multiplication is associative:

A(BC) = (AB)C (28.4)
for compatible matriced\, B, andC. Matrix multiplication distributes over addi-
tion:

AB+C) = AB+ AC,

(B+C)D = BD+CD. (28.5)
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Forn > 1, multiplication ofn x n matrices is not commutative. For example, if

0 1 00
Az(o o)ande(1 o),then

10
AB_(O 0)

and

00
BA_(O 1).

Matrix-vector products or vector-vector products are dadiras if the vector
were the equivalenh x 1 matrix (or a 1x n matrix, in the case of a row vec-
tor). Thus, ifAlis anm x n matrix andx is a vector of sizen, then Ax is a vector
of sizem. If x andy are vectors of size, then

n
XTy =%V
i=1

is a number (actually a ¥ 1 matrix) called thanner product of x andy. The
matrixxy" is annxn matrix Z called theouter productof x andy, with z; = x;y;.
The (euclidean) norm| x| of a vectorx of sizen is defined by
IXI = & +x5+---+xHY?

(x"x)¥2.

Thus, the norm ok is its length inn-dimensional euclidean space.

Matrix inverses, ranks, and determinants

We define thénverseof ann x n matrix A to be then x n matrix, denotedA (if
it exists), such thaA A=t = 1,, = A~1A. For example,

(13-

Many nonzeran x n matrices do not have inverses. A matrix without an inverse is
callednoninvertible or singular. An example of a nonzero singular matrix is

(10)

If a matrix has an inverse, it is calledvertible, or nonsingular. Matrix inverses,
when they exist, are unique. (See Exercise 28.1-3.A #nd B are nonsingular
n x n matrices, then
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(BA1=A1B"1. (28.6)
The inverse operation commutes with the transpose oparatio
(A—l)T — (AT)—l )

The vectorsxy, Xo, ..., X, are linearly dependentif there exist coefficients
C1, Co, ..., Cn, Not all of which are zero, such thetx; + CXo + - - - + CyX, = 0.
For example, the row vectors; = (1 2 3), %X = (2 6 4), andxs =
(4 11 9) are linearly dependent, since2+ 3x, — 2x3 = 0. If vectors are not
linearly dependent, they ali@early independent For example, the columns of an
identity matrix are linearly independent.

The column rank of a nonzerom x n matrix A is the size of the largest set
of linearly independent columns @&. Similarly, therow rank of A is the size
of the largest set of linearly independent rows/f A fundamental property of
any matrix A is that its row rank always equals its column rank, so that & c
simply refer to theank of A. The rank of anm x n matrix is an integer between 0
and minm, n), inclusive. (The rank of a zero matrix is 0, and the rank ohann
identity matrix isn.) An alternate, but equivalent and often more useful, dibimi
is that the rank of a nonzemm x n matrix A is the smallest number such that
there exist matrice8 andC of respective sizes1 x r andr x n such that

A=BC.

A squaren x n matrix hasfull rank if its rank isn. An m x n matrix hasfull
column rank if its rank isn. A fundamental property of ranks is given by the
following theorem.

Theorem 28.1
A square matrix has full rank if and only if it is nonsingular. [

A null vector for a matrix A is a nonzero vectok such thatAx = 0. The
following theorem, whose proof is left as Exercise 28.1+%] #s corollary relate
the notions of column rank and singularity to null vectors.

Theorem 28.2

A matrix A has full column rank if and only if it does not have a null vecto =

Corollary 28.3
A square matrixA is singular if and only if it has a null vector. [
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Theij thminor of annxn matrix A, forn > 1, is the(n—1) x (n—1) matrix Ayj;
obtained by deleting thigh row andjth column ofA. Thedeterminantof ann x n
matrix A can be defined recursively in terms of its minors by

a1 fn=1,

det(A) = > (=DMay; det(Ayy) ifn>1.
j=1

(28.7)

The term(—1)"* det(Ayij;) is known as theofactor of the elemeng; .
The following theorems, whose proofs are omitted here, esgpifundamental
properties of the determinant.

Theorem 28.4 (Determinant properties)
The determinant of a square matrxhas the following properties:

« If any row or any column ofA is zero, then déA) = 0.

«  The determinant ofA is multiplied by A if the entries of any one row (or any
one column) ofA are all multiplied by/.

+ The determinant ofA is unchanged if the entries in one row (respectively, col-
umn) are added to those in another row (respectively, cojumn

+  The determinant oA equals the determinant &f'.

« The determinant oA is multiplied by—1 if any two rows (or any two columns)
are exchanged.

Also, for any square matrice& and B, we have d€tAB) = det(A) det(B). [

Theorem 28.5
An n x n matrix A is singular if and only if dgtA) = 0. [

Positive-definite matrices

Positive-definite matrices play an important role in manpligations. Ann x n
matrix A is positive-definiteif xTAx > 0 for all sizen vectorsx # 0. For
example, the identity matrix is positive-definite, since #my nonzero vector
X=(X1 X2 -+ %),

XTIhx = X

Vv
o
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As we shall see, matrices that arise in applications are isitive-definite due
to the following theorem.

Theorem 28.6
For any matrixA with full column rank, the matrixA” A is positive-definite.

Proof We must show thak"(ATA)x > 0 for any nonzero vectox. For any
vectorx,

xT(ATA)x = (AX)T(Ax) (by Exercise 28.1-2)
IAX]? .

Note that| Ax||? is just the sum of the squares of the elements of the veksor
Therefore,||Ax||2 > 0. If || Ax||?> = 0, every element ofAx is 0, which is to say
Ax = 0. SinceA has full column rankAx = 0 impliesx = 0, by Theorem 28.2.
Hence,AT A is positive-definite. [

Other properties of positive-definite matrices will be expl in Section 28.5.

Exercises

28.1-1
Show that ifA and B are symmetria x n matrices, then so arA+ B and A — B.

28.1-2
Prove that AB)" = BT AT and thatAT A is always a symmetric matrix.

28.1-3
Prove that matrix inverses are unique, that isBindC are inverses ofp, then
B=C.

28.1-4

Prove that the product of two lower-triangular matricesowér-triangular. Prove
that the determinant of a lower-triangular or upper-trialag matrix is equal to
the product of its diagonal elements. Prove that the invefselower-triangular
matrix, if it exists, is lower-triangular.

28.1-5

Prove that ifP is ann x n permutation matrix and\ is ann x n matrix, thenP A
can be obtained fromA by permuting its rows, and\P can be obtained frormi
by permuting its columns. Prove that the product of two peation matrices is a
permutation matrix. Prove that P is a permutation matrix, theR is invertible,
its inverse isPT, andPT is a permutation matrix.
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28.1-6

Let A and B ben x n matrices such thaAB = |. Prove that ifA’ is obtained
from A by adding rowj into rowi, then the inversd8’ of A’ can be obtained by
subtracting columm from columnj of B.

28.1-7
Let A be a nonsingulan x n matrix with complex entries. Show that every entry
of ALis real if and only if every entry o\ is real.

28.1-8

Show that ifA is a nonsingular, symmetric, x n matrix, thenA—! is symmetric.
Show that ifB is an arbitrarym x n matrix, then than x m matrix given by the
productB ABT is symmetric.

28.1-9

Prove Theorem 28.2. That is, show that a ma&ikas full column rank if and only

if AX =0 impliesx = 0. (Hint: Express the linear dependence of one column on
the others as a matrix-vector equation.)

28.1-10
Prove that for any two compatible matricésand B,

rank(AB) < min(rank(A), rank(B)) ,

where equality holds if eitheA or B is a nonsingular square matrixHifit: Use
the alternate definition of the rank of a matrix.)

éi?énlilumber%, X1, ..., Xn_1, prove that the determinant of thé&ndermonde
matrix

1 x x2 xg !
V (X, X1, - - oy Xn_1) = 1ox X% XIlFl

Loty Ky o X
is
det(V (Xo, X1, . .., Xn_1)) = H Xk — Xj) -

0<j<k<n—1

(Hint: Multiply columni by —Xg and add it to column + 1 fori = n — 1,

n—2,...,1, and then use induction.)
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28.2 Strassen’s algorithm for matrix multiplication

This section presents Strassen’s remarkable recursivarithign for multiplying
n x n matrices, which runs i® (n'9”) = O(n%®%) time. For sufficiently large val-
ues ofn, therefore, it outperforms the nai@(n®) matrix-multiplication algorithm
MATRIX-MuULTIPLY from Section 25.1.

An overview of the algorithm

Strassen’s algorithm can be viewed as an application of difamesign technique:

divide and conquer. Suppose we wish to compute the prdgiuetAB, where each

of A, B, andC aren x n matrices. Assuming that is an exact power of 2, we
divide each ofA, B, andC into fourn/2 x n/2 matrices, rewriting the equation
C = AB as follows:

(; 3):(3 3)(3 r]:) (28.8)

(Exercise 28.2-2 deals with the situation in whichs not an exact power of 2.)
Equation (28.8) corresponds to the four equations

r = ae+bg, (28.9)
s = af+bh, (28.10)
t = ce+dg, (28.11)
u = cf+dh. (28.12)

Each of these four equations specifies two multiplicatioha /@ x n/2 matrices
and the addition of thein/2 x n/2 products. Using these equations to define a
straightforward divide-and-conquer strategy, we derive following recurrence
for the timeT (n) to multiply two n x n matrices:

T(n) =8T(n/2) + O(n?). (28.13)

Unfortunately, recurrence (28.13) has the solutiofm) = ©(n°), and thus this
method is no faster than the ordinary one.

Strassen discovered a different recursive approach thatress only 7 recursive
multiplications ofn/2 x n/2 matrices an@® (n?) scalar additions and subtractions,
yielding the recurrence
T(n) = 7T(n/2) + O(n?) (28.14)

= O(n'9")
O(n2.81) )

Strassen’s method has four steps:
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1. Divide the input matriceA and B into n/2 x n/2 submatrices, as in equa-
tion (28.8).

2. Using ®(n?) scalar additions and subtractions, compute 14 matriesS,
Az, By, ..., A7, By, each of which isn/2 x n/2.

3. Recursively compute the seven matrix produgts= AiBj fori =1,2,...,7.

4. Compute the desired submatrices, t, u of the result matrixC by adding
and/or subtracting various combinations of tAematrices, using onlyd (n?)
scalar additions and subtractions.

Such a procedure satisfies the recurrence (28.14). All tedtave to do now is fill
in the missing details.

Determining the submatrix products

It is not clear exactly how Strassen discovered the subrptdducts that are the
key to making his algorithm work. Here, we reconstruct oreupible discovery
method.

Let us guess that each matrix prodi:tcan be written in the form

P = AB
= (ai1@+ ai2b + ai3c + aigd) - (Bire+ iz f + Bizg + Bish) , (28.15)

where the coefficients;;, £; are all drawn from the sgt-1, 0, 1}. That is, we
guess that each product is computed by adding or subtrastimg of the subma-
trices of A, adding or subtracting some of the submatriceB ghnd then multiply-
ing the two results together. While more general strategiepossible, this simple
one turns out to work.

If we form all of our products in this manner, then we can use thethod
recursively without assuming commutativity of multiplin, since each product
has all of theA submatrices on the left and all of tli&submatrices on the right.
This property is essential for the recursive applicatiothid method, since matrix
multiplication is not commutative.

For convenience, we shall usexd4 matrices to represent linear combinations
of products of submatrices, where each product combinesuomatrix ofA with
one submatrix ofB as in equation (28.15). For example, we can rewrite equa-
tion (28.9) as

r = ae+bg
+1 0 0 O e
_ 0 0+1 O f
= (a b c d) 00 0 0 g
00 OO h
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o0 T
+

The last expression uses an abbreviated notation in whickepresents+1, “.”
represents 0, and™represents—1. (From here on, we omit the row and column
labels.) Using this notation, we have the following equagifor the other subma-
trices of the result matric:

s = af +bh
+ .
B +
t = ce+dg
= + . N
+
u = cf+dh
= + .
+

We begin our search for a faster matrix-multiplication aition by observing
that the submatrix can be computed as= P; + P,, whereP, and P, are com-
puted using one matrix multiplication each:

PL = AB;
— a-(f—h)
af —ah
+ . -
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P, = AB
= (a+Db)-h
ah + bh
+
+

The matrixt can be computed in a similar mannertas P; + P4, where

P; = AsBs
= (c+d)-e
ce+de

and

Py = A4By4
= d-(g—e
= dg-—de

- .+

Let us define aressential termto be one of the eight terms appearing on the
right-hand side of one of the equations (28.9)—(28.12). Wemow used 4 prod-
ucts to compute the two submatriceandt whose essential terms aad, bh, ce,
anddg. Note thatP; computes the essential termf, P, computes the essential
termbh, P; computes the essential teag and P, computes the essential tedm.
Thus, it remains for us to compute the remaining two submedri andu, whose
essential terms ame, bg, cf, anddh, without using more than 3 additional prod-
ucts. We now try the innovatio®s in order to compute two essential terms at
once:

Ps = AsBs

= (@a+d)-(e+h
ae+ah+de+dh
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+ . .+

In addition to computing both of the essential teragsanddh, Ps computes the
inessential termah andde, which need to be canceled somehow. We canRise
and P, to cancel them, but two other inessential terms then appear:

Ps+Ps— P, = ae+dh+dg—Dbh
+

+ +
By adding an additional product

Ps = AsBe
= (b—d)-(g+h)
— bg+bh—dg—dh

however, we obtain

r = Ps+Pi—P+Ps
ae+ bg
+

We can obtairu in a similar manner fronPs by using P; and P; to move the
inessential terms dPs in a different direction:

Ps+P.—P; = ae+af—ce+dh
+ +

+

By subtracting an additional product
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P, = AsBy
@-c-(e+f)
ae+af —ce—cf

+ +

we now obtain

u = Ps+P—P—F
cf +dh
- +
+
The 7 submatrix productBy, P,, ..., P; can thus be used to compute the prod-

uctC = AB, which completes the description of Strassen’s method.

Discussion

From a practical point of view, Strassen’s algorithm is pfteot the method of
choice for matrix multiplication, for four reasons:

1. The constant factor hidden in the running time of Strassagorithm is larger
than the constant factor in the nai@gn®) method.

2. When the matrices are sparse, methods tailored for spaBees are faster.
3. Strassen'’s algorithm is not quite as numerically stabléha naive method.
4. The submatrices formed at the levels of recursion conspaee.

The latter two reasons were mitigated around 1990. Higha#®][lemon-
strated that the difference in numerical stability had begaremphasized; al-
though Strassen’s algorithm is too numerically unstabtesémne applications, it is
within acceptable limits for others. Bailey et al. [30] diss techniques for reduc-
ing the memory requirements for Strassen’s algorithm.

In practice, fast matrix-multiplication implementatiof dense matrices use
Strassen’s algorithm for matrix sizes above a “crossovémntficand they switch
to the naive method once the subproblem size reduces to kbleverossover
point. The exact value of the crossover point is highly systiependent. Analyses
that count operations but ignore effects from caches arglipipg have produced
crossover points as low &as= 8 (by Higham [145]) on = 12 (by Huss-Lederman
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et al. [163]). Empirical measurements typically yield héglerossover points, with
some as low aB = 20 or so. For any given system, it is usually straightforward
determine the crossover point by experimentation.

By using advanced techniques beyond the scope of this tagt,can in fact
multiply n x n matrices in better tha® (n'9”) time. The current best upper bound
is approximatelyO(n>378). The best lower bound known is just the obvigué?)
bound (obvious because we have to filhfhelements of the product matrix). Thus,
we currently do not know exactly how hard matrix multiplicat really is.

Exercises

28.2-1
Use Strassen’s algorithm to compute the matrix product

13 8 4
5 7 6 2)°
Show your work.

28.2-2
How would you modify Strassen’s algorithm to multiplyx n matrices in whicm
is not an exact power of 2? Show that the resulting algoritbns in time® (n'97).

28.2-3

What is the largesk such that if you can multiply X 3 matrices usind multi-
plications (not assuming commutativity of multiplicatjpthen you can multiply

n x n matrices in timeo(n'9”)? What would the running time of this algorithm be?

28.2-4

V. Pan has discovered a way of multiplying &868 matrices using 132,464 mul-
tiplications, a way of multiplying 70« 70 matrices using 143,640 multiplications,
and a way of multiplying 72 72 matrices using 155,424 multiplications. Which
method yields the best asymptotic running time when usedinide-and-conquer
matrix-multiplication algorithm? How does it compare ta&3sen’s algorithm?

28.2-5

How quickly can you multiply &nx n matrix by ann x kn matrix, using Strassen’s
algorithm as a subroutine? Answer the same question witlorther of the input
matrices reversed.

28.2-6

Show how to multiply the complex numbeas+ bi andc + di using only three
real multiplications. The algorithm should ta&eb, ¢, andd as input and produce
the real componeric — bd and the imaginary componead + bc separately.
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28.3 Solving systems of linear equations

Solving a set of simultaneous linear equations is a fundéah@noblem that oc-

curs in diverse applications. A linear system can be exprkas a matrix equation
in which each matrix or vector element belongs to a field,dglly the real num-

bersR. This section discusses how to solve a system of linear iemgatising a

method called LUP decomposition.

We start with a set of linear equationsnrunknownsxy, Xo, . . ., Xn:
1Xy + aXe + -+ + amXn = by,
aiXy + apXy + -0+ AnXy, = by,

(28.16)

an1X1 + ampXe + -+ + aunXn = by.

A set of values foixy, xo, . . ., X, that satisfy all of the equations (28.16) simulta-
neously is said to be solutionto these equations. In this section, we treat only the
case in which there are exacttyequations im unknowns.

We can conveniently rewrite equations (28.16) as the magotor equation

dj;n Q12 - Qi X1 by
dx1 Q2 - aAn X2 B b,
@1 @2 - an Xn bn
or, equivalently, lettingA = (a; ), X = (i), andb = (b;), as
Ax=Dh. (28.17)

If Ais nonsingular, it possesses an invefse, and

x=A"b (28.18)
is the solution vector. We can prove thait the unigue solution to equation (28.17)
as follows. If there are two solutiong,andx’, thenAx = AxX = b and
x = (A1AX

= A 1(Ax)

= A 1(AX)

= (A 1AX

/

X .

In this section, we shall be concerned predominantly withdhase in whichA
is nonsingular or, equivalently (by Theorem 28.1), the raflA is equal to the
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numbem of unknowns. There are other possibilities, however, wiighit a brief

discussion. If the number of equations is less than the numb&unknowns—aor,

more generally, if the rank oA is less tham—then the system ignderdeter-

mined An underdetermined system typically has infinitely manjusons, al-

though it may have no solutions at all if the equations arenscstent. If the
number of equations exceeds the nunef unknowns, the system ®rerdeter-

mined and there may not exist any solutions. Finding good appraté solutions
to overdetermined systems of linear equations is an impbpeoblem that is ad-
dressed in Section 28.5.

Let us return to our problem of solving the systék® = b of n equations im
unknowns. One approach is to compute! and then multiply both sides b1,
yielding A~1Ax = A~'b, or x = A~!b. This approach suffers in practice from
numerical instability. There is, fortunately, another eggch—LUP decomposi-
tion—that is numerically stable and has the further advgataf being faster in
practice.

Overview of LUP decomposition

The idea behind LUP decomposition is to find three n matricesL, U, and P
such that

PA=LU, (28.19)
where

+ L is a unit lower-triangular matrix,

« U is an upper-triangular matrix, and

+ P is apermutation matrix.

We call matriced_, U, and P satisfying equation (28.19) drdlJP decomposition
of the matrix A. We shall show that every nonsingular matépossesses such a
decomposition.

The advantage of computing an LUP decomposition for the imaris that
linear systems can be solved more readily when they aregtrlan as is the case
for both matricesL. andU. Having found an LUP decomposition fd, we can
solve the equation (28.17Ax = b by solving only triangular linear systems, as
follows. Multiplying both sides ofAx = b by P yields the equivalent equation
P Ax = Ph, which by Exercise 28.1-5 amounts to permuting the equsi{28.16).
Using our decomposition (28.19), we obtain

LUx = Pb.

We can now solve this equation by solving two triangulardinsystems. Let us
definey = Ux, wherex is the desired solution vector. First, we solve the lower-
triangular system
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Ly = Pb (28.20)

for the unknown vectoy by a method called “forward substitution.” Having solved
for y, we then solve the upper-triangular system

Ux=y (28.21)

for the unknownx by a method called “back substitution.” The vectois our
solution toAx = b, since the permutation matrR is invertible (Exercise 28.1-5):

Ax = P LUX
= PlLy
= P7'Pb
= b.

Our next step is to show how forward and back substitutiorkvamid then attack
the problem of computing the LUP decomposition itself.

Forward and back substitution

Forward substitutioncan solve the lower-triangular system (28.20Bitn?) time,
given L, P, andb. For convenience, we represent the permutaffonompactly
by anarrayr[1..n]. Fori = 1,2,...,n, the entryz[i] indicates thatP, ,j; = 1
andPj = 0for j # x[i]. Thus, P Ahasa,f; in rowi and columnj, andPb
hasb,[; as itsith element. Sincé is unit lower-triangular, equation (28.20) can
be rewritten as

Y1 = by,
layr + Y2 = by,
la1y1 + la2y2 + ¥z

3]

Inlyl + In2y2 + In3)’3 + -+ W = b;r[n]‘

We can solve foy; directly, since the first equation tells us thyat= b,[1;. Having
solved fory;, we can substitute it into the second equation, yielding

Yo = b2 — l21ys -
Now, we can substitute botyy andys, into the third equation, obtaining
Y3 = byp3) — (Is1y1 + 132Y2) -

In general, we substitutey, y», ..., yi_; “forward” into theith equation to solve
fory;:
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i-1
Yi = b — D 1y -
=1

Back substitutionis similar to forward substitution. Gived andy, we solve
thenth equation first and work backward to the first equation. lfdkevard substi-
tution, this process runs i@ (n?) time. Sincel is upper-triangular, we can rewrite
the system (28.21) as
U1Xg 4+ UpoX2 + -+ -+ Upp-2Xp—2 + Ugn-1Xn-1 +  UinXn = Y1,

UoX2 + -+ - 4+ Uzpn-2Xn—2 + Uzpn-1Xn-1+ UznXn = Y2,

Un—2n—2Xn—2 + Un_2n-1Xn-1 + Un_2nXn = Yn-2,

Un—1n-1Xn-1 + Un—1,nXn = Yn-1,

UnnXn = Yn .
Thus, we can solve for,, Xn_1, ..., X; successively as follows:
Xn = yn/un,n )
Xn—1 = (¥n-1 — Un—1,n%n)/Un-1,n-1 >
Xn—2 = (Yn—2 — (Un—2,n—1X%n—1 + Un-2,nXn))/Un—2n—2 ,
or, in general,

Xi =(yi - Z Uinj)/Uii :
j=i+1

Given P, L, U, andb, the procedure LUP-8LVE solves forx by combining
forward and back substitution. The pseudocode assumeththdimensiom ap-
pears in the attributeowq L] and that the permutation matrR is represented by
the arrayz .

LUP-SoLvE(L, U, 7, b)
1 n <« rowqlL]

2 fori < 1ton .
3 doyi < bay — X211y

4 fori < ndowntol

5 do Xi < (y, - Z?=i+l Ujj XJ') /uii
6 return x
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Procedure LUP-8LVE solves fory using forward substitution in lines 2-3, and
then it solves forx using backward substitution in lines 4-5. Since there is an
implicit loop in the summations within each of thier loops, the running time
is @(n?).

As an example of these methods, consider the system of kageations defined

(19-6)

and we wish to solve for the unknown The LUP decomposition is

g1 w

2
4
6

oA N
whr~O

coO~NwW U1WeE

1 00
L = (02 1 0],
06 05 1
5 6 3
U = (0 08 -06],
0 0 25
00 1
P =[100].
010

(The reader can verify thaP A = LU.) Using forward substitution, we solve

Ly = Pbfory:
1 00 Y1 8
02 10 Y2 1=1(3],
06 05 1 Y3 7

obtaining

8
y=| 14
15
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by computing firsty;, thenys,, and finally ys. Using back substitution, we solve
Ux = yfor x:

5 6 3 X1 8
0 08 -06 X2 |=1214],
0 0 25 X3 15
thereby obtaining the desired answer
-14
X = 2.2
0.6

by computing firstxs, thenx,, and finallyx;.

Computing an LU decomposition

We have now shown that if an LUP decomposition can be compiated non-
singular matrixA, forward and back substitution can be used to solve thersyste
Ax = b of linear equations. It remains to show how an LUP decomjousfor A
can be found efficiently. We start with the case in whigls ann x n nonsingular
matrix and P is absent (or, equivalenthy? = 1,). In this case, we must find a
factorizationA = LU. We call the two matricek andU anLU decomposition

of A.

The process by which we perform LU decomposition is caledissian elimi-
nation. We start by subtracting multiples of the first equation fribra other equa-
tions so that the first variable is removed from those equnatid@hen, we subtract
multiples of the second equation from the third and subsstgegquations so that
now the first and second variables are removed from them. \Wence this pro-
cess until the system that is left has an upper-triangulam$ein fact, it is the
matrix U. The matrixL is made up of the row multipliers that cause variables to
be eliminated.

Our algorithm to implement this strategy is recursive. Wshwio construct an
LU decomposition for am x n nonsingular matrixA. If n = 1, then we're done,
since we can choode = I; andU = A. Forn > 1, we breakA into four parts:

aig | Q2 --- Ain

Q1 |2 -+ @
A =

A1 |82 --- ann

_ a1 w T
o v A )

wherev is a sizeén — 1) column vectorw T is a sizeén — 1) row vector, andA’ is
an(n — 1) x (n — 1) matrix. Then, using matrix algebra (verify the equations by
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simply multiplying through), we can factok as
_ a1 w’
- (W)

_ 1 0 a1 w’
B (v/an |n_1)( 0 A/—va/all)' (28.22)

The 0’s in the first and second matrices of the factorizatimmraw and column
vectors, respectively, of siza — 1. The termow'/a;;, formed by taking the
outer product ofv andw and dividing each element of the result by, is an

(n — 1) x (n — 1) matrix, which conforms in size to the matriX from which it is

subtracted. The resultingn — 1) x (n — 1) matrix

A —ow'/a;n (28.23)

is called theSchur complemenbf A with respect taa;.

We claim that if A is nonsingular, then the Schur complement is nonsingular,
too. Why? Suppose that the Schur complement, whidimis 1) x (n — 1), is
singular. Then by Theorem 28.1, it has row rank strictly ligsan — 1. Because
the bottormn — 1 entries in the first column of the matrix

ail w’
0 A - va/all

are all 0, the bottorm — 1 rows of this matrix must have row rank strictly less
thann — 1. The row rank of the entire matrix, therefore, is stricthss tham.
Applying Exercise 28.1-10 to equation (28.22)has rank strictly less tham and
from Theorem 28.1 we derive the contradiction tiats singular.

Because the Schur complement is nonsingular, we can nowsreely find an
LU decomposition of it. Let us say that

A —vw'/ay;=L'U",

whereL’ is unit lower-triangular andl)’ is upper-triangular. Then, using matrix
algebra, we have

A — 1 0 ail w’
— \v/ar Ina 0 A—vw'/ay
_ 1 0 a1 w’
o 1)/&11 ln_1 0 L'U’
_ 1 0 a1 w’
- v/a11 L’ 0 U’

= LU,

thereby providing our LU decomposition. (Note that becalsdés unit lower-
triangular, so id, and becaus®’ is upper-triangular, so ig.)
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Of course, ifa;; = 0, this method doesn't work, because it divides by 0. It also
doesn’t work if the upper leftmost entry of the Schur compdatA’ — vw ' /agy
is 0, since we divide by it in the next step of the recursione €lements by which
we divide during LU decomposition are callpitvots and they occupy the diagonal
elements of the matrik). The reason we include a permutation matiduring
LUP decomposition is that it allows us to avoid dividing by@elements. Using
permutations to avoid division by 0 (or by small numbers)alied pivoting.

An important class of matrices for which LU decompositioways works cor-
rectly is the class of symmetric positive-definite matric&ich matrices require
no pivoting, and thus the recursive strategy outlined almarebe employed with-
out fear of dividing by 0. We shall prove this result, as wellseveral others, in
Section 28.5.

Our code for LU decomposition of a matriX follows the recursive strategy,
except that an iteration loop replaces the recursion. (frhissformation is a stan-
dard optimization for a “tail-recursive” procedure—one agle last operation is a
recursive call to itself.) It assumes that the dimensioa$ kept in the attribute
rowd A]. Since we know that the output mattix has 0's below the diagonal, and
since LUP-®LVE does not look at these entries, the code does not bother to fill
them in. Likewise, because the output matkixhas 1's on its diagonal and O's
above the diagonal, these entries are not filled in eitheusTthe code computes
only the “significant” entries of. andU.

LU-DECOMPOSITION(A)

1 n < rowqA]
2 fork <« 1ton
3 do ugk < akk
4 fori < k+1ton
5 dolijx « ik /Ukk > lix holdsy;
6 Uk < @ > Uy holdsw,
7 fori < k+1ton
8 dofor j < k+1ton
9 do ajj < aj — Iikukj
10 return L andU

The outerfor loop beginning in line 2 iterates once for each recursivp.st¥ithin
this loop, the pivot is determined to g = axx in line 3. Within thefor loop in
lines 4-6 (which does not execute whee= n), theo andw" vectors are used to
updateL andU. The elements of the vector are determined in line 5, whergis
stored inl;, and the elements of the' vector are determined in line 6, whemér
is stored inuyi. Finally, the elements of the Schur complement are compinted
lines 7-9 and stored back in the matix (We don'’t need to divide bgy in line 9
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2 315 ®3 15 2 315
6 13 5 19 3|4 2 4 314 2 4
2 1910 23 1|16 9 18 1 4|@ 2
4 1011 31 214 9 21 21 7|3
@ (b) (d)
2 3 1 5 1000 2 3165
6 13 5 19| _ [3 10 0 0 4 2 4
2 19 10 23] ~— |1 4 10 0012
4 10 11 31 2171 0003
A L u
(e)

Figure 28.1 The operation of LU-BECOMPOSITION (a) The matrixA. (b) The elemengy = 2
in the black circle is the pivot, the shaded column sy 1, and the shaded row is'. The elements
of U computed thus far are above the horizontal line, and the esiésrofL are to the left of the
vertical line. The Schur complement matm¥ — va/all occupies the lower right(c) We now
operate on the Schur complement matrix produced from parfl{tre elementy, = 4 in the black
circle is the pivot, and the shaded column and rowsa@, andw T (in the partitioning of the Schur
complement), respectively. Lines divide the matrix inte tlements o) computed so far (above),
the elements of computed so far (left), and the new Schur complement (lowgét). (d) The next
step completes the factorization. (The element 3 in the nglwuiScomplement becomes partldf
when the recursion terminate¢e) The factorizationA = LU.

because we already did so when we compliei line 5.) Because line 9 is triply
nested, LU-[ECOMPOSITIONruUns in time® (n%).

Figure 28.1 illustrates the operation of LUEROMPOSITION It shows a stan-
dard optimization of the procedure in which the significdabeents ofl. andU are
stored “in place” in the matriXA. That is, we can set up a correspondence between
each elemendy; and eithed;; (if i > j) oruj; (if i < j)and update the matril
so that it holds botlh. andU when the procedure terminates. The pseudocode for
this optimization is obtained from the above pseudocodeeméry replacing each
reference td or u by a; it is not difficult to verify that this transformation prases
correctness.

Computing an LUP decomposition

Generally, in solving a system of linear equatiols = b, we must pivot on off-
diagonal elements oA to avoid dividing by 0. Not only is division by 0 undesir-
able, so is division by any small value, everfifs nonsingular, because numerical
instabilities can result in the computation. We therefayetd pivot on a large
value.
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The mathematics behind LUP decomposition is similar to ¢tfidtl) decompo-
sition. Recall that we are given anx n nonsingular matrixA and wish to find
a permutation matriXP, a unit lower-triangular matrix., and an upper-triangular
matrix U such thatP A= LU. Before we partition the matrix, as we did for LU
decomposition, we move a nonzero element, &ayfrom somewhere in the first
column to the(1, 1) position of the matrix. (If the first column contains only 0’s
thenAis singular, because its determinant is 0, by Theorems 2&1£28.5.) In or-
der to preserve the set of equations, we exchange row 1 witlk ravhich is equiv-
alent to multiplying A by a permutation matrixQ on the left (Exercise 28.1-5).
Thus, we can writ€) A as

_f & w’
QA_ ( D) A/ ) b
wherev = (@1, 831,...,an1)', except thata;; replacesaq; w' = (ak, as,
..,&n); and A is an(n — 1) x (n — 1) matrix. Sinceay; # 0, we can now

perform much the same linear algebra as for LU decomposibahnow guaran-
teeing that we do not divide by O:

aq w'
r- (3 %)

_ 1 0 ak1 w’
o\ v/aa I 0 A—vw'/ag )"

As we saw for LU decompoasition, i is nonsingular, then the Schur comple-
ment A’ — vw'/a, is nonsingular, too. Therefore, we can inductively find an
LUP decomposition for it, with unit lower-triangular matrlL’, upper-triangular
matrix U’, and permutation matri®’, such that

P'(A —vw'/ay) =L'U".

Define

1 0
P:(O P/)Qa

which is a permutation matrix, since it is the product of twaymutation matrices
(Exercise 28.1-5). We now have

1 0
PA = (O P’)QA

_ 0 k1 w'
N O P/ U/akl In-1 0 A-vw'/ag

a1 w'
Pv/ak P’ 0 A’—va/akl
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. 1 0 a1 w’
B ( Pv/aa |nl) ( 0 P(A- UwT/akl))
(raa 1) (5 ()
P/l)/akl ln_1 0 LU’

_ 1 0 a1 w’
= \pPvaq ')\ 0 W
= LU,

yielding the LUP decomposition. Becaukséis unit lower-triangular, so i&, and
becausd)’ is upper-triangular, so ig.

Notice that in this derivation, unlike the one for LU decomijtion, both the
column vectow /ay; and the Schur compleme& — vw T /a,; must be multiplied
by the permutation matri®’.

Like LU-DecompPoOsSITION our pseudocode for LUP decomposition replaces
the recursion with an iteration loop. As an improvement avelirect implemen-
tation of the recursion, we dynamically maintain the peition matrix P as an
array =, wherez[i] = j means that théth row of P contains a 1 in columrj.

We also implement the code to complt@ndU “in place” in the matrixA. Thus,
when the procedure terminates,

o Iij ifi > j .

=y i<

LUP-DECOMPOSITION(A)

1 n < rowqA]
2 fori < 1ton
3 dox[i] «<i
4 fork < 1ton
5 dop<«20
6 fori < kton
7 doif lak| > p
8 then p < |ai|
9 K < i
10 if p=0
11 then error “singular matrix”
12 exchange [K] < 7 [K']
13 fori < 1ton
14 do exchangey; < ayi
15 fori < k+1ton
16 do ax < ai/aw
17 for j < k+1ton

18 do a&j <« aj — aika
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2 0 2 06 3] @ 5 4 2 3] @ 5 4 2
3 3 4 =2 2l 83 3 4 =2 2| 06| 0 16 -32
@ 5 4 2 1 2 0 2 06 1| 04|-2 04 -2
-1 -2 34 -1 4/ -1 -2 34 -1 4 —02/ -1 42 -06
@ (b) (c)
5 5 4 2 3] 5 5 4 2
06| 0 1.6 -3.2 1| 04(@ 04 02
04|@ 04 -02 2| 060 16 -32
0.2 -1 42 -0.6 4/ 02 -1 42 -06
(d) (e)
3] 3]
1 1
4 4
2 2
10 2 0 2 Q6 1 0 0 O 5 5 4 2
00 3 3 4 -2 04 1 0 O 0 -2 04 -02
01 5 5 4 2 ~ |1-02 05 1 O 0 0 4 -05
00 -1 -2 34 -1 06 0 04 1 0O 0 0 -3
P A L u

@

Figure 28.2 The operation of LUP-BCOMPOSITION (@) The input matrixA with the identity
permutation of the rows on the left. The first step of the dthar determines that the element 5
in the black circle in the third row is the pivot for the firstloon. (b) Rows 1 and 3 are swapped
and the permutation is updated. The shaded column and roesen andwT. (c) The vector

is replaced by /5, and the lower right of the matrix is updated with the Schamplement. Lines
divide the matrix into three regions: elementd.bfabove), elements df (left), and elements of the
Schur complement (lower rightjd)—(f) The second steffg)—(i) The third step. No further changes
occur on the fourth, and final, stef)) The LUP decompositio® A= LU.

Figure 28.2 illustrates how LUP4EComPOSITION factors a matrix. The ar-
ray z is initialized by lines 2—3 to represent the identity peratisn. The outer
for loop beginning in line 4 implements the recursion. Each tihmeugh the outer
loop, lines 5-9 determine the elemext with largest absolute value of those in
the current first column (columky) of the (n — k + 1) x (n — k + 1) matrix whose
LU decomposition must be found. If all elements in the curfast column are
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zero, lines 10-11 report that the matrix is singular. To pivee exchanger [k']
with z[K] in line 12 and exchange thieth andk’th rows of A in lines 13-14,
thereby making the pivot elemengy. (The entire rows are swapped because in
the derivation of the method above, not onlyNs— vw" /a,; multiplied by P’, but
S0 isv/ax.) Finally, the Schur complement is computed by lines 15-Al8uch
the same way as it is computed by lines 4-9 of LBddMPOSITION except that
here the operation is written to work “in place.”

Because of its triply nested loop structure, LUR@®MPOSITION has a run-
ning time of ® (n®), which is the same as that of LUEZOMPOSITION Thus,
pivoting costs us at most a constant factor in time.

Exercises

28.3-1

Solve the equation
1 00 X1 3
4 1 0 X | =1 14
-6 5 1 X3 -7

by using forward substitution.

28.3-2
Find an LU decomposition of the matrix
4 -5 6
8 -6 7
12 -7 12
28.3-3
Solve the equation
1 5 4 X1 12
2 0 3 X2 | = 9
5 8 2 X3 5

by using an LUP decomposition.

28.3-4
Describe the LUP decomposition of a diagonal matrix.

28.3-5
Describe the LUP decomposition of a permutation ma&jxand prove that it is
unique.
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28.3-6
Show that for alln > 1, there exists a singular x n matrix that has an LU
decomposition.

28.3-7
In LU-DECOMPOSITION is it necessary to perform the outerméat loop itera-
tion whenk = n? How about in LUP-[BCOMPOSITION?

28.4 Inverting matrices

Although in practice we do not generally use matrix inversesolve systems of
linear equations, preferring instead to use more numdyistdble techniques such
as LUP decomposition, it is sometimes necessary to compuiatax inverse. In
this section, we show how LUP decomposition can be used t@ut@ra matrix
inverse. We also prove that matrix multiplication and cotmputhe inverse of a
matrix are equivalently hard problems, in that (subjecethhical conditions) we
can use an algorithm for one to solve the other in the same@syicirunning time.
Thus, we can use Strassen’s algorithm for matrix multipiécato invert a matrix.
Indeed, Strassen’s original paper was motivated by thel@molof showing that a
set of a linear equations could be solved more quickly thathbyusual method.

Computing a matrix inverse from an LUP decomposition

Suppose that we have an LUP decomposition of a marir the form of three
matricesL, U, and P such thatP A = LU. Using LUP-®LVE, we can solve
an equation of the formAx = b in time ®(n?). Since the LUP decomposition
depends orA but notb, we can run LUP-8BLVE on a second set of equations of
the form Ax = b’ in additional time® (n?). In general, once we have the LUP
decomposition ofA, we can solve, in time (kn?), k versions of the equation
Ax = b that differ only inb.
The equation

AX = I, (28.24)

can be viewed as a setofistinct equations of the forlAx = b. These equations
define the matrixXX as the inverse of. To be precise, leX; denote théth column

of X, and recall that the unit vecter is theith column ofl,. Equation (28.24) can
then be solved foK by using the LUP decomposition fés to solve each equation

AX =¢g
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separately foiX;. Each of then columnsX; can be found in time® (n?), and so
the computation oX from the LUP decomposition o takes time® (n®). Since
the LUP decomposition of can be computed in tim® (n®), the inverseA~! of a
matrix A can be determined in tim@ (n3).

Matrix multiplication and matrix inversion

We now show that the theoretical speedups obtained for xnatriltiplication
translate to speedups for matrix inversion. In fact, we pre@mething stronger:
matrix inversion is equivalent to matrix multiplicationn the following sense.
If M(n) denotes the time to multiply twa x n matrices, then there is a way
to invert ann x n matrix in time O(M(n)). Moreover, ifl (n) denotes the time to
invert a nonsingulan x n matrix, then there is a way to multiply twox n matrices
in time O(l (n)). We prove these results as two separate theorems.

Theorem 28.7 (Multiplication is no harder than inversion)

If we can invert am x n matrix in time | (n), wherel (n) = Q(n?) and | (n)
satisfies the regularity conditidn(3n) = O(l (n)), then we can multiply twa x n
matrices in timeO(l (n)).

Proof Let A andB ben x n matrices whose matrix produ€t we wish to com-
pute. We define therBx 3n matrix D by

I, A O
D: O In B
0O 0 I,
The inverse oD is
I, —A AB
D=0 I, -B]},
0O O I

and thus we can compute the prodédds by taking the upper right x n submatrix
of D1,

We can construct matriP in ®(n?) = O(I (n)) time, and we can inverD in
O(l1 (3n)) = O(l (n)) time, by the regularity condition oh(n). We thus have
M(n) = O(l (n)). u

Note thatl (n) satisfies the regularity condition whenevgin) = ©(n°Ig® n)
for any constants > 0 andd > 0.

The proof that matrix inversion is no harder than matrix nplittation relies
on some properties of symmetric positive-definite matriteg will be proved in
Section 28.5.



28.4 Inverting matrices 757

Theorem 28.8 (Inversion is no harder than multiplication)

Suppose we can multiply twio x n real matrices in timeM (n), whereM(n) =
Q(n?) and M (n) satisfies the two regularity conditiodd (n + k) = O(M(n)) for
anyk in the range 0< k < nandM(n/2) < cM(n) for some constant < 1/2.
Then we can compute the inverse of any real nonsingularn matrix in time
O(M(n)).

Proof We can assume thatis an exact power of 2, since we have

(5 0)=(%?)

for anyk > 0. Thus, by choosin$f such thain + k is a power of 2, we enlarge
the matrix to a size that is the next power of 2 and obtain thséreid answeA !
from the answer to the enlarged problem. The first regularigdition onM (n)
ensures that this enlargement does not cause the runniegdimcrease by more
than a constant factor.

For the moment, let us assume thatmhen matrix A is symmetric and positive-
definite. We partitionA into fourn/2 x n/2 submatrices:

.
A= ((E:‘ % ) . (28.25)
Then, if we let

S=D-CBICT (28.26)

be the Schur complement éfwith respect tB (we shall see more about this form
of Schur complement in Section 28.5), we have

1 Bl+B!C'sicB! -BIiC'st
A= 1ol 1 , (28.27)
—-S°CB S
since AA = I,, as can be verified by performing the matrix multiplication.

The matricesB~* and S exist if A is symmetric and positive-definite, by Lem-
mas 28.9, 28.10, and 28.11 in Section 28.5, becausebatid S are symmetric
and positive-definite. By Exercise 28.18;C" = (CB)T andB~!C'S! =
(s'cBHT. Equations (28.26) and (28.27) can therefore be used tdfgec
recursive algorithm involving four multiplications of/2 x n/2 matrices:

Cc-B1,

(cB™-CT,
s*.(CB™,
cBhH.(stcBY.
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Thus, we can invert an x n symmetric positive-definite matrix by inverting two
n/2 x n/2 matrices B andS), performing these four multiplications af/2 x n/2
matrices (which we can do with an algorithm fox n matrices), plus an additional
cost of O(n?) for extracting submatrices frorA and performing a constant number
of additions and subtractions on thes x n/2 matrices. We get the recurrence

I(n) < 21(n/2)+4M(n) + O(n?
= 21 (n/2) + 6 (M(n))
= O(M(n)).

The second line holds becaust(n) = Q(n?), and the third line follows because
the second regularity condition in the statement of therdmacallows us to apply
case 3 of the master theorem (Theorem 4.1).

It remains to prove that the asymptotic running time of nxatrultiplication
can be obtained for matrix inversion whenis invertible but not symmetric and
positive-definite. The basic idea is that for any nonsingutetrix A, the
matrix AT A is symmetric (by Exercise 28.1-2) and positive-definite {dyeo-
rem 28.6). The trick, then, is to reduce the problem of inagriA to the problem
of inverting AT A.

The reduction is based on the observation that whAdés ann x n nonsingular
matrix, we have

Afl — (ATA)flAT ,

since (ATA)TAHA = (ATAY(ATA) = |, and a matrix inverse is unique.
Therefore, we can computg? by first multiplying AT by A to obtain AT A, then
inverting the symmetric positive-definite matri’ A using the above divide-and-
conquer algorithm, and finally multiplying the result BY. Each of these three
steps take®O(M(n)) time, and thus any nonsingular matrix with real entries can
be inverted inO(M (n)) time. [

The proof of Theorem 28.8 suggests a means of solving thetiequax = b
by using LU decomposition without pivoting, so long Asis nonsingular. We
multiply both sides of the equation k&', yielding (ATA)x = ATb. This trans-
formation doesn'’t affect the solutiax, since AT is invertible, and so we can fac-
tor the symmetric positive-definite matriX” A by computing an LU decomposi-
tion. We then use forward and back substitution to solvexfaith the right-hand
side ATh. Although this method is theoretically correct, in praetitie procedure
LUP-DecompPosITIONworks much better. LUP decomposition requires fewer
arithmetic operations by a constant factor, and it has sdraewetter numerical
properties.
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Exercises

28.4-1

Let M(n) be the time to multiplyn x n matrices, and le§(n) denote the time re-
quired to square amx n matrix. Show that multiplying and squaring matrices have
essentially the same difficulty: avi (n)-time matrix-multiplication algorithm im-
plies anO(M(n))-time squaring algorithm, and aB(n)-time squaring algorithm
implies anO(S(n))-time matrix-multiplication algorithm.

28.4-2

Let M(n) be the time to multiplyn x n matrices, and leL (n) be the time to com-
pute the LUP decomposition of anx n matrix. Show that multiplying matrices
and computing LUP decompositions of matrices have esdgntiee same diffi-
culty: an M(n)-time matrix-multiplication algorithm implies a® (M (n))-time
LUP-decomposition algorithm, and dn(n)-time LUP-decomposition algorithm
implies anO(L (n))-time matrix-multiplication algorithm.

28.4-3

Let M(n) be the time to multiplyn x n matrices, and leD(n) denote the time
required to find the determinant of anx n matrix. Show that multiplying matri-
ces and computing the determinant have essentially the dificalty: an M(n)-
time matrix-multiplication algorithm implies a®(M (n))-time determinant algo-
rithm, and aD (n)-time determinant algorithm implies a@(D (n))-time matrix-
multiplication algorithm.

28.4-4

Let M(n) be the time to multiplyn x n boolean matrices, and [€t(n) be the time to
find the transitive closure af x n boolean matrices. (See Section 25.2.) Show that
an M(n)-time boolean matrix-multiplication algorithm implies &M (n) Ig n)-
time transitive-closure algorithm, andlign)-time transitive-closure algorithm im-
plies anO(T (n))-time boolean matrix-multiplication algorithm.

28.4-5
Does the matrix-inversion algorithm based on Theorem 2&8&when matrix
elements are drawn from the field of integers modulo 2? ERrplai

28.4-6 *

Generalize the matrix-inversion algorithm of Theorem 2®.8&andle matrices of
complex numbers, and prove that your generalization wookeectly. Hint: In-
stead of the transpose @& use theconjugate transposeA*, which is obtained
from the transpose of\ by replacing every entry with its complex conjugate. In-
stead of symmetric matrices, considéermitian matrices, which are matrice&
such thatA = A*))
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28.5 Symmetric positive-definite matrices and least-squas approximation

Symmetric positive-definite matrices have many intergséind desirable proper-
ties. For example, they are nonsingular, and LU decompositan be performed
on them without our having to worry about dividing by 0. Inghsiection, we shall
prove several other important properties of symmetric fp@sidefinite matrices
and show an interesting application to curve fitting by atlsgsiares approxima-
tion.

The first property we prove is perhaps the most basic.

Lemma 28.9
Any positive-definite matrix is nonsingular.

Proof Suppose that a matri& is singular. Then by Corollary 28.3, there exists a
nonzero vectox such thatAx = 0. Hencex" Ax = 0, andA cannot be positive-
definite. [

The proof that we can perform LU decomposition on a symmaeiasitive-
definite matrix A without dividing by 0 is more involved. We begin by proving
properties about certain submatricesfofDefine thekth leading submatrixof A
to be the matrixA¢ consisting of the intersection of the firktrows and firstk
columns ofA.

Lemma 28.10
If Ais a symmetric positive-definite matrix, then every leadsudpmatrix ofA is
symmetric and positive-definite.

Proof That each leading submatri is symmetric is obvious. To prove thaf
is positive-definite, we assume that it is not and derive dradiction. If Ac is not
positive-definite, then there exists a ske&ectorx, # 0 such tha1><[<r A < 0.
Letting A ben x n, we define the size-vectorx = (XJ 0)T, where there are
n — k O’s following xx. Then we have

XTAXx = (%] 0)(ABk BCT)():)")

oF 0 ()

T
= X AcXg
< 0,

which contradictsA being positive-definite. [
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We now turn to some essential properties of the Schur congiéentetA be a
symmetric positive-definite matrix, and 18 be a leadink x k submatrix ofA.
Partition A as

A:(/;k %T) . (28.28)

We generalize definition (28.23) to define tBehur complemenof A with respect
to A¢ as

S=C-BA'B'. (28.29)

(By Lemma 28.10A is symmetric and positive-definite; therefor, ! exists by
Lemma 28.9, an&is well defined.) Note that our earlier definition (28.23) loét
Schur complement is consistent with definition (28.29),ddingk = 1.

The next lemma shows that the Schur-complement matricegnofnetric pos-
itive-definite matrices are themselves symmetric and pesitefinite. This result
was used in Theorem 28.8, and its corollary is needed to pgreveorrectness of
LU decomposition for symmetric positive-definite matrices

Lemma 28.11 (Schur complement lemma)

If Ais a symmetric positive-definite matrix arfy is a leadingk x k submatrix
of A, then the Schur complement Afwith respect toA is symmetric and positive-
definite.

Proof BecauseA is symmetric, so is the submatrX. By Exercise 28.1-8, the
productBA:1 BT is symmetric, and by Exercise 28.1-8js symmetric.

It remains to show thabis positive-definite. Consider the partition Afgiven in
equation (28.28). For any nonzero veckgmwe havex” Ax > 0 by the assumption
that A is positive-definite. Let us breakinto two subvectory andz compatible
with A, andC, respectively. Because, 1 exists, we have

w - (5 2)()

_ T T Ay + BTz
=y z )( By+Cz)
y'AY+YyY'B'z+2'By+2z'Cz
(y+AB ) A+ A B2 +2'(C— BA BNz,  (28.30)

by matrix magic. (Verify by multiplying through.) This lasguation amounts to
“completing the square” of the quadratic form. (See Exer@i8.5-2.)

Sincex" Ax > 0 holds for any nonzera, let us pick any nonzera and then
choosey = —A;l BTz, which causes the first term in equation (28.30) to vanish,
leaving
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Z'(C-BA'BNHz=17'Sz

as the value of the expression. For any¢ 0, we therefore have' Sz= x"Ax > 0,
and thusSis positive-definite. [

Corollary 28.12
LU decomposition of a symmetric positive-definite matrix@ecauses a division
by 0.

Proof Let A be a symmetric positive-definite matrix. We shall prove sthrimgy
stronger than the statement of the corollary: every pivstristly positive. The first
pivot isa; ;. Lete; be the first unit vector, from which we obtain, = eIAel > 0.
Since the first step of LU decomposition produces the Schorpéement of A
with respect toA; = (a11), Lemma 28.11 implies that all pivots are positive by
induction. [

Least-squares approximation

Fitting curves to given sets of data points is an importapliegtion of symmetric
positive-definite matrices. Suppose that we are given afsatdata points

(Xl’ yl)a (X29 y2)9 ceey (Xma Ym) 5

where they; are known to be subject to measurement errors. We would dike t
determine a functior (x) such that the approximation errors

nm=FX)-VY, (28.31)

are small fori =1, 2, ..., m. The form of the functior- depends on the problem
at hand. Here, we assume that it has the form of a linearly hteigsum,

FOO =D ¢ fi(x),
i=1

where the number of summandsand the specifibasis functionsf; are chosen
based on knowledge of the problem at hand. A common choidge(ie = x/ 1,
which means that

F(X) = €1 + CoX + CaX? + - - - 4+ cpx" 1

is a polynomial of degrea — 1 in x.

By choosingn = m, we can calculate eagh exactlyin equation (28.31). Such
a high-degred- “fits the noise” as well as the data, however, and generallgsyi
poor results when used to predigtfor previously unseen values af It is usu-
ally better to choosa significantly smaller tham and hope that by choosing the
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coefficientsc; well, we can obtain a functiof that finds the significant patterns
in the data points without paying undue attention to theaoiSome theoretical
principles exist for choosing, but they are beyond the scope of this text. In any
case, once is chosen, we end up with an overdetermined set of equatibiosav
solution we wish to approximate. We now show how this can bedo

Let

fix))  fa(xp) ... fa(x)
| i) fax) o fa(X2)
0w ToOm) o Fam)

denote the matrix of values of the basis functions at thengpeints; that is,
a; = f;(x). Letc = (cc) denote the desired sizevector of coefficients. Then,

fix))  fa(xp) ... fa(x1) C1
filxo) fax2) ... fa(x) C
AC = . . .. . .
fom) T oo fale) ] \
F(x1)
3 F(x2)
F (%)

is the sizem vector of “predicted values” foy. Thus,
n=~Ac—y

is the sizem vector ofapproximation errors
To minimize approximation errors, we choose to minimizertben of the error
vectory, which gives us &east-squares solutiorsince

Il = (ij n?)l/z :

Since
m n 2
71 =l Ac— ylI* = Z(Zau cj — yi) :
i=1 \\j=1

we can minimizel|y| by differentiating ||5||? with respect to eacls, and then
setting the result to O:



764 Chapter 28 Matrix Operations

dinl® _<~o(s 0 28.32
doe =Z ajCj — Vi Jak=0. (28.32)
i—1

i=1
The n equations (28.32) fok = 1, 2,...,n are equivalent to the single matrix
equation
(Ac—y)TA=0
or, equivalently (using Exercise 28.1-2), to
AT(Ac-y) =0,
which implies
ATAc= ATy. (28.33)
In statistics, this is called theormal equation The matrix AT A is symmetric
by Exercise 28.1-2, and i has full column rank, then by Theorem 28 A" A
is positive-definite as well. HencéATA)~! exists, and the solution to equa-
tion (28.33) is
c = (ATA'ADy

Aty (28.34)

where the matrixA* = ((ATA)~1AT) is called thepseudoinversef the matrixA.
The pseudoinverse is a natural generalization of the natfanmatrix inverse to
the case in whiclA is nonsquare. (Compare equation (28.34) as the approximate
solution toAc = y with the solutionA~1b as the exact solution tdx = b.)

As an example of producing a least-squares fit, suppose thiiame five data
points
X,y = (1,2,
(X2, ¥2) = (L1,
(X3, ¥3) = (2,1,
(X4, Ya) 3,0,
(Xs, ¥5) = (5,3),
shown as black dots in Figure 28.3. We wish to fit these poiritls s&vquadratic
polynomial

F(X) = €1 + CoX + Cax?.

We start with the matrix of basis-function values

1 x5 x¢ 1 -1 1

Xo X5 1 1 1
A=|1x XX |=]1 2 4],

1 x4 X5 1 3 9

1 x5 X2 1 5 25
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F(X) = 1.2 — 0.758 + 0.2142

Figure 28.3 The least-squares fit of a quadratic polynomial to the set \wf flata points
{(-1,2),(1,1),(2,1),@3,0), (5 3)}. The black dots are the data points, and the white dots are
their estimated values predicted by the polynonfigk) = 1.2 — 0.757 + 0.214x2, the quadratic
polynomial that minimizes the sum of the squared errors. &rher for each data point is shown as a
shaded line.

whose pseudoinverse is

0500 Q300 Q200 Q100 -—-0.100
A" =1 -0388 Q093 Q190 Q193 -0.088
0.060 —0.036 —0.048 —0.036 Q060

Multiplying y by A, we obtain the coefficient vector

1.200
c=| -0.757 ] ,
0.214

which corresponds to the quadratic polynomial
F(x) = 1.200— 0.757x + 0.214x?

as the closest-fitting quadratic to the given data, in aleqsares sense.

As a practical matter, we solve the normal equation (28.38hltiplying y
by AT and then finding an LU decomposition & A. If A has full rank, the
matrix AT A is guaranteed to be nonsingular, because it is symmetripasitive-
definite. (See Exercise 28.1-2 and Theorem 28.6.)
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Exercises

28.5-1
Prove that every diagonal element of a symmetric posit@iade matrix is posi-
tive.

28.5-2

Let A = (a b

b c) be a 2x 2 symmetric positive-definite matrix. Prove that its

determinantic — b? is positive by “completing the square” in a manner similar to
that used in the proof of Lemma 28.11.

28.5-3
Prove that the maximum element in a symmetric positive-defimatrix lies on
the diagonal.

28.5-4
Prove that the determinant of each leading submatrix of ansgtmc positive-
definite matrix is positive.

28.5-5

Let A¢ denote théth leading submatrix of a symmetric positive-definite mati
Prove that detAy)/ det( Ac_1) is thekth pivot during LU decomposition, where by
convention degtAg) = 1.

28.5-6
Find the function of the form

F(X) = ¢1 + CoXx Ig X + cz€”
that is the best least-squares fit to the data points

1,1,2,1),(3,3),4,8) .

28.5-7

Show that the pseudoinverge™ satisfies the following four equations:
AATA = A,

ATAAT = AT,

(AANT = AA',

(AFAT = AfA.
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Problems

28-1 Tridiagonal systems of linear equations
Consider the tridiagonal matrix

1 -1 0 0 O

-1 2 -1 0 O

A= 0 -1 2 -1 O
0O 0 -1 2 -1

o 0O 0 -1 2

a. Find an LU decomposition oA.

b. Solve the equatiodx = (1 1 1 1 1)T by using forward and back sub-
stitution.

c. Find the inverse oA.

d. Show that for anyn x n symmetric positive-definite, tridiagonal matr&and
any n-vectorb, the equationAx = b can be solved irfD(n) time by perform-
ing an LU decomposition. Argue that any method based on foyndi—* is
asymptotically more expensive in the worst case.

e. Show that for anyn x n nonsingular, tridiagonal matriA and anyn-vectorb,
the equationAx = b can be solved irD(n) time by performing an LUP de-
composition.

28-2 Splines
A practical method for interpolating a set of points with avauis to usecubic
splines We are given a sdt(x;, yi) :i =0, 1,...,n} of n 4+ 1 point-value pairs,

wherexy < X3 < --- < X,. We wish to fit a piecewise-cubic curve (splingjx)
to the points. That is, the curve(x) is made up oh cubic polynomialsf; (x) =
a +bx+cx?+dx3fori = 0,1,...,n— 1, where ifx falls in the range
Xj < X < Xi;1, then the value of the curve is given byx) = fj(x — x;). The
points x; at which the cubic polynomials are “pasted” together aréeddtnots

For simplicity, we shall assume that=i fori =0,1,...,n.
To ensure continuity of (x), we require that
fx) = fi0 = vy,
fxiyr) = (D) = vin
fori =0,1,...,n— 1. To ensure thaf (x) is sufficiently smooth, we also insist

that there be continuity of the first derivative at each knot:



768

Chapter 28 Matrix Operations

f'(Xiy1) = §'(1) = f/1(0)
fori=0,1,...,n—2.

a.

Suppose that for = 0,1, ..., n, we are given not only the point-value pairs
{(Xi, ¥i)} but also the first derivativeD; = f’(x;) at each knot. Express each
coefficienta;, b;, ¢, andd; in terms of the values;, Vi.1, Di, andD;,;. (Re-
member thak; = i.) How quickly can the A coefficients be computed from
the point-value pairs and first derivatives?

The guestion remains of how to choose the first derivative$ (& at the knots.
One method is to require the second derivatives to be canimat the knots:

f"(xi11) = f' (D) = fi/-/l—l(o)
fori = 0,1,...,n — 2. At the first and last knots, we assume tHéd{(xy) =

fg(0) = 0andf”(x,) = f ,(1) = 0; these assumptions maKe&x) a natural
cubic spline.

b.

Use the continuity constraints on the second derivativehtawsthat fori =
1,2,...,n—-1,

Di—1 +4D; + Dit1 = 3(Yi+1 — Yi-1) - (28.35)

Show that

2Dp+ D1 = 3(y1—Yo), (28.36)
Dn1+2Dn = 3(Yn = Yn-1) - (28-37)

Rewrite equations (28.35)—(28.37) as a matrix equationhivg the vector
D = (Dg, Dy, ..., Dy) of unknowns. What attributes does the matrix in your
equation have?

Argue that a set oh + 1 point-value pairs can be interpolated with a natural
cubic spline inO(n) time (see Problem 28-1).

Show how to determine a natural cubic spline that intergsla set oh + 1
points(x;, y;) satisfyingxy < X1 < --- < X,, even wherx; is not necessarily
equal toi. What matrix equation must be solved, and how quickly does yo
algorithm run?

Chapter notes

There are many excellent texts available that describe ricat@nd scientific com-
putation in much greater detail than we have room for here. féthowing are espe-
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cially readable: George and Liu [113], Golub and Van Loarb]1Press, Flannery,
Teukolsky, and Vetterling [248, 249], and Strang [285, 286]

Golub and Van Loan [125] discuss numerical stability. Thiegve why detA)
is not necessarily a good indicator of the stability of a ixak, proposing instead
to use|| Al | A7l o, Where|| All o, = MaX<i<n Z?zl |a;j |. They also address the
question of how to compute this value without actually cotimmuA—.

The publication of Strassen’s algorithm in 1969 [287] causrich excitement.
Before then, it was hard to imagine that the naive algorittoula be improved
upon. The asymptotic upper bound on the difficulty of matriultiplication has
since been considerably improved. The most asymptotiedfiigient algorithm for
multiplying n x n matrices to date, due to Coppersmith and Winograd [70], has
a running time of0(n?37%). The graphical presentation of Strassen’s algorithm is
due to Paterson [238].

Gaussian elimination, upon which the LU and LUP decompmsstiare based,
was the first systematic method for solving linear systemedfations. It was
also one of the earliest numerical algorithms. Although d@svknown earlier, its
discovery is commonly attributed to C. F. Gauss (1777-18%bhis famous pa-
per [287], Strassen also showed thatram n matrix can be inverted it©(n'97)
time. Winograd [317] originally proved that matrix multiphtion is no harder than
matrix inversion, and the converse is due to Aho, Hopcraitl dllman [5].

Another important matrix decomposition is teagular value decompaositian
or SVD. In the SVD, arm x n matrix A is factored intoA = Q1= QJ, wherex
is anm x n matrix with nonzero values only on the diagon@l; is m x m with
mutually orthonormal columns, an@, is h x n, also with mutually orthonormal
columns. Two vectors arerthonormal if their inner product is 0 and each vector
has a norm of 1. The books by Strang [285, 286] and Golub and_¥an [125]
contain good treatments of the SVD.

Strang [286] has an excellent presentation of symmetrigtipesiefinite matri-
ces and of linear algebra in general.



