
28 Matrix Operations

Operations on matrices are at the heart of scientific computing. Efficient algo-
rithms for working with matrices are therefore of considerable practical interest.
This chapter provides a brief introduction to matrix theoryand matrix operations,
emphasizing the problems of multiplying matrices and solving sets of simultaneous
linear equations.

After Section 28.1 introduces basic matrix concepts and notations, Section 28.2
presents Strassen’s surprising algorithm for multiplyingtwo n × n matrices in
2(nlg7) = O(n2.81) time. Section 28.3 shows how to solve a set of linear equations
using LUP decompositions. Then, Section 28.4 explores the close relationship be-
tween the problem of multiplying matrices and the problem ofinverting a matrix.
Finally, Section 28.5 discusses the important class of symmetric positive-definite
matrices and shows how they can be used to find a least-squaressolution to an
overdetermined set of linear equations.

One important issue that arises in practice isnumerical stability. Due to the
limited precision of floating-point representations in actual computers, round-off
errors in numerical computations may become amplified over the course of a com-
putation, leading to incorrect results; such computationsare numerically unstable.
Although we shall briefly consider numerical stability on occasion, we do not fo-
cus on it in this chapter. We refer the reader to the excellentbook by Golub and
Van Loan [125] for a thorough discussion of stability issues.

28.1 Properties of matrices

In this section, we review some basic concepts of matrix theory and some fun-
damental properties of matrices, focusing on those that will be needed in later
sections.

726 Chapter 28 Matrix Operations

Matrices and vectors

A matrix is a rectangular array of numbers. For example,

A =
(

a11 a12 a13

a21 a22 a23

)

=
(

1 2 3
4 5 6

)
(28.1)

is a 2× 3 matrix A = (ai j), where fori = 1, 2 and j = 1, 2, 3, the element of the
matrix in row i and columnj is ai j . We use uppercase letters to denote matrices
and corresponding subscripted lowercase letters to denotetheir elements. The set
of all m× n matrices with real-valued entries is denotedRm×n. In general, the set
of m× n matrices with entries drawn from a setS is denotedSm×n.

The transposeof a matrix A is the matrixAT obtained by exchanging the rows
and columns ofA. For the matrixA of equation (28.1),

AT =

1 4
2 5
3 6

 .

A vectoris a one-dimensional array of numbers. For example,

x =

2
3
5

 (28.2)

is a vector of size 3. We use lowercase letters to denote vectors, and we denote
the i th element of a size-n vectorx by xi , for i = 1, 2, . . . , n. We take the stan-
dard form of a vector to be as acolumn vectorequivalent to ann × 1 matrix; the
correspondingrow vectoris obtained by taking the transpose:

xT = (2 3 5) .

The unit vector ei is the vector whosei th element is 1 and all of whose other
elements are 0. Usually, the size of a unit vector is clear from the context.

A zero matrix is a matrix whose every entry is 0. Such a matrix is often de-
noted 0, since the ambiguity between the number 0 and a matrixof 0’s is usually
easily resolved from context. If a matrix of 0’s is intended,then the size of the
matrix also needs to be derived from the context.

Squaren× n matrices arise frequently. Several special cases of squarematrices
are of particular interest:

1. A diagonal matrixhasai j = 0 wheneveri 6= j . Because all of the off-diagonal
elements are zero, the matrix can be specified by listing the elements along the
diagonal:

28.1 Properties of matrices 727

diag(a11, a22, . . . , ann) =

a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...

0 0 . . . ann

 .

2. Then× n identity matrix In is a diagonal matrix with 1’s along the diagonal:

In = diag(1, 1, . . . , 1)

=

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 .

When I appears without a subscript, its size can be derived from context. The
i th column of an identity matrix is the unit vectorei .

3. A tridiagonal matrix T is one for whichti j = 0 if |i − j | > 1. Nonzero entries
appear only on the main diagonal, immediately above the maindiagonal (ti,i+1

for i = 1, 2, . . . , n − 1), or immediately below the main diagonal (ti+1,i for
i = 1, 2, . . . , n− 1):

T =

t11 t12 0 0 . . . 0 0 0
t21 t22 t23 0 . . . 0 0 0
0 t32 t33 t34 . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . tn−2,n−2 tn−2,n−1 0
0 0 0 0 . . . tn−1,n−2 tn−1,n−1 tn−1,n

0 0 0 0 . . . 0 tn,n−1 tnn

.

4. An upper-triangular matrix U is one for whichui j = 0 if i > j . All entries
below the diagonal are zero:

U =

u11 u12 . . . u1n

0 u22 . . . u2n
...

...
. . .

...

0 0 . . . unn

 .

An upper-triangular matrix isunit upper-triangular if it has all 1’s along the
diagonal.

728 Chapter 28 Matrix Operations

5. A lower-triangular matrix L is one for whichl i j = 0 if i < j . All entries
above the diagonal are zero:

L =

l11 0 . . . 0
l21 l22 . . . 0
...

...
. . .

...

ln1 ln2 . . . lnn

 .

A lower-triangular matrix isunit lower-triangular if it has all 1’s along the
diagonal.

6. A permutation matrix P has exactly one 1 in each row or column, and 0’s
elsewhere. An example of a permutation matrix is

P =

0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

.

Such a matrix is called a permutation matrix because multiplying a vectorx
by a permutation matrix has the effect of permuting (rearranging) the elements
of x.

7. A symmetric matrixA satisfies the conditionA = AT. For example,

1 2 3
2 6 4
3 4 5

is a symmetric matrix.

Operations on matrices

The elements of a matrix or vector are numbers from a number system, such as
the real numbers, the complex numbers, or integers modulo a prime. The number
system defines how to add and multiply numbers. We can extend these definitions
to encompass addition and multiplication of matrices.

We definematrix addition as follows. If A = (ai j) and B = (bi j) arem× n
matrices, then their matrix sumC = (ci j) = A+ B is them× n matrix defined by

ci j = ai j + bi j

28.1 Properties of matrices 729

for i = 1, 2, . . . , m and j = 1, 2, . . . , n. That is, matrix addition is performed
componentwise. A zero matrix is the identity for matrix addition:

A+ 0 = A

= 0+ A .

If λ is a number andA = (ai j) is a matrix, thenλA = (λai j) is the scalar
multiple of A obtained by multiplying each of its elements byλ. As a special case,
we define thenegativeof a matrix A = (ai j) to be−1 · A = −A, so that thei j th
entry of−A is−ai j . Thus,

A+ (−A) = 0

= (−A) + A .

Given this definition, we can definematrix subtractionas the addition of the neg-
ative of a matrix:A− B = A+ (−B).

We definematrix multiplication as follows. We start with two matricesA andB
that arecompatiblein the sense that the number of columns ofA equals the number
of rows of B. (In general, an expression containing a matrix productAB is always
assumed to imply that matricesA andB are compatible.) IfA = (ai j) is anm× n
matrix andB = (b j k) is ann× p matrix, then their matrix productC = AB is the
m× p matrix C = (cik), where

cik =
n∑

j=1

ai j b j k (28.3)

for i = 1, 2, . . . , m and k = 1, 2, . . . , p. The procedure MATRIX -MULTIPLY

in Section 25.1 implements matrix multiplication in the straightforward manner
based on equation (28.3), assuming that the matrices are square: m = n = p.
To multiply n× n matrices, MATRIX -MULTIPLY performsn3 multiplications and
n2(n− 1) additions, and so its running time is2(n3).

Matrices have many (but not all) of the algebraic propertiestypical of numbers.
Identity matrices are identities for matrix multiplication:

ImA = AIn = A

for anym× n matrix A. Multiplying by a zero matrix gives a zero matrix:

A0 = 0 .

Matrix multiplication is associative:

A(BC) = (AB)C (28.4)

for compatible matricesA, B, andC. Matrix multiplication distributes over addi-
tion:

A(B + C) = AB+ AC ,

(B+ C)D = B D+ C D . (28.5)

730 Chapter 28 Matrix Operations

For n > 1, multiplication ofn × n matrices is not commutative. For example, if

A =
(

0 1
0 0

)
andB =

(
0 0
1 0

)
, then

AB =
(

1 0
0 0

)

and

B A=
(

0 0
0 1

)
.

Matrix-vector products or vector-vector products are defined as if the vector
were the equivalentn × 1 matrix (or a 1× n matrix, in the case of a row vec-
tor). Thus, if A is anm× n matrix andx is a vector of sizen, thenAx is a vector
of sizem. If x andy are vectors of sizen, then

xT y =
n∑

i=1

xi yi

is a number (actually a 1× 1 matrix) called theinner product of x and y. The
matrixxyT is ann×n matrix Z called theouter productof x andy, with zi j = xi y j .
The(euclidean) norm‖x‖ of a vectorx of sizen is defined by

‖x‖ = (x2
1 + x2

2 + · · · + x2
n)

1/2

= (xTx)1/2 .

Thus, the norm ofx is its length inn-dimensional euclidean space.

Matrix inverses, ranks, and determinants

We define theinverseof ann× n matrix A to be then× n matrix, denotedA−1 (if
it exists), such thatAA−1 = In = A−1 A. For example,
(

1 1
1 0

)−1

=
(

0 1
1 −1

)
.

Many nonzeron× n matrices do not have inverses. A matrix without an inverse is
callednoninvertible, or singular. An example of a nonzero singular matrix is
(

1 0
1 0

)
.

If a matrix has an inverse, it is calledinvertible, or nonsingular. Matrix inverses,
when they exist, are unique. (See Exercise 28.1-3.) IfA and B are nonsingular
n× n matrices, then

28.1 Properties of matrices 731

(B A)−1 = A−1B−1 . (28.6)

The inverse operation commutes with the transpose operation:

(A−1)T = (AT)−1 .

The vectorsx1, x2, . . . , xn are linearly dependentif there exist coefficients
c1, c2, . . . , cn, not all of which are zero, such thatc1x1 + c2x2 + · · · + cnxn = 0.
For example, the row vectorsx1 = (1 2 3), x2 = (2 6 4), and x3 =
(4 11 9) are linearly dependent, since 2x1 + 3x2 − 2x3 = 0. If vectors are not
linearly dependent, they arelinearly independent. For example, the columns of an
identity matrix are linearly independent.

The column rank of a nonzerom × n matrix A is the size of the largest set
of linearly independent columns ofA. Similarly, therow rank of A is the size
of the largest set of linearly independent rows ofA. A fundamental property of
any matrix A is that its row rank always equals its column rank, so that we can
simply refer to therank of A. The rank of anm× n matrix is an integer between 0
and min(m, n), inclusive. (The rank of a zero matrix is 0, and the rank of ann× n
identity matrix isn.) An alternate, but equivalent and often more useful, definition
is that the rank of a nonzerom× n matrix A is the smallest numberr such that
there exist matricesB andC of respective sizesm× r andr × n such that

A = BC .

A squaren × n matrix hasfull rank if its rank is n. An m× n matrix hasfull
column rank if its rank is n. A fundamental property of ranks is given by the
following theorem.

Theorem 28.1
A square matrix has full rank if and only if it is nonsingular.

A null vector for a matrix A is a nonzero vectorx such thatAx = 0. The
following theorem, whose proof is left as Exercise 28.1-9, and its corollary relate
the notions of column rank and singularity to null vectors.

Theorem 28.2
A matrix A has full column rank if and only if it does not have a null vector.

Corollary 28.3
A square matrixA is singular if and only if it has a null vector.

732 Chapter 28 Matrix Operations

Thei j thminor of ann×n matrix A, for n > 1, is the(n−1)×(n−1) matrix A[i j]

obtained by deleting thei th row andj th column ofA. Thedeterminantof ann×n
matrix A can be defined recursively in terms of its minors by

det(A) =

a11 if n = 1 ,
n∑

j=1

(−1)1+ j a1 j det(A[1 j]) if n > 1 .
(28.7)

The term(−1)i+ j det(A[i j]) is known as thecofactorof the elementai j .
The following theorems, whose proofs are omitted here, express fundamental

properties of the determinant.

Theorem 28.4 (Determinant properties)
The determinant of a square matrixA has the following properties:

• If any row or any column ofA is zero, then det(A) = 0.
• The determinant ofA is multiplied byλ if the entries of any one row (or any

one column) ofA are all multiplied byλ.
• The determinant ofA is unchanged if the entries in one row (respectively, col-

umn) are added to those in another row (respectively, column).
• The determinant ofA equals the determinant ofAT.
• The determinant ofA is multiplied by−1 if any two rows (or any two columns)

are exchanged.

Also, for any square matricesA andB, we have det(AB) = det(A) det(B).

Theorem 28.5
An n× n matrix A is singular if and only if det(A) = 0.

Positive-definite matrices

Positive-definite matrices play an important role in many applications. Ann × n
matrix A is positive-definiteif xT Ax > 0 for all size-n vectorsx 6= 0. For
example, the identity matrix is positive-definite, since for any nonzero vector
x = (x1 x2 · · · xn)T,

xT Inx = xTx

=
n∑

i=1

x2
i

> 0 .

28.1 Properties of matrices 733

As we shall see, matrices that arise in applications are often positive-definite due
to the following theorem.

Theorem 28.6
For any matrixA with full column rank, the matrixAT A is positive-definite.

Proof We must show thatxT(AT A)x > 0 for any nonzero vectorx. For any
vectorx,

xT(AT A)x = (Ax)T(Ax) (by Exercise 28.1-2)

= ‖Ax‖2 .

Note that‖Ax‖2 is just the sum of the squares of the elements of the vectorAx.
Therefore,‖Ax‖2 ≥ 0. If ‖Ax‖2 = 0, every element ofAx is 0, which is to say
Ax = 0. SinceA has full column rank,Ax = 0 impliesx = 0, by Theorem 28.2.
Hence,AT A is positive-definite.

Other properties of positive-definite matrices will be explored in Section 28.5.

Exercises

28.1-1
Show that ifA andB are symmetricn× n matrices, then so areA+ B andA− B.

28.1-2
Prove that(AB)T = BT AT and thatAT A is always a symmetric matrix.

28.1-3
Prove that matrix inverses are unique, that is, ifB andC are inverses ofA, then
B = C.

28.1-4
Prove that the product of two lower-triangular matrices is lower-triangular. Prove
that the determinant of a lower-triangular or upper-triangular matrix is equal to
the product of its diagonal elements. Prove that the inverseof a lower-triangular
matrix, if it exists, is lower-triangular.

28.1-5
Prove that ifP is ann× n permutation matrix andA is ann× n matrix, thenP A
can be obtained fromA by permuting its rows, andAP can be obtained fromA
by permuting its columns. Prove that the product of two permutation matrices is a
permutation matrix. Prove that ifP is a permutation matrix, thenP is invertible,
its inverse isPT, andPT is a permutation matrix.

734 Chapter 28 Matrix Operations

28.1-6
Let A and B be n × n matrices such thatAB = I . Prove that ifA′ is obtained
from A by adding row j into row i , then the inverseB′ of A′ can be obtained by
subtracting columni from column j of B.

28.1-7
Let A be a nonsingularn× n matrix with complex entries. Show that every entry
of A−1 is real if and only if every entry ofA is real.

28.1-8
Show that ifA is a nonsingular, symmetric,n× n matrix, thenA−1 is symmetric.
Show that ifB is an arbitrarym× n matrix, then them× m matrix given by the
productB ABT is symmetric.

28.1-9
Prove Theorem 28.2. That is, show that a matrixA has full column rank if and only
if Ax = 0 impliesx = 0. (Hint: Express the linear dependence of one column on
the others as a matrix-vector equation.)

28.1-10
Prove that for any two compatible matricesA andB,

rank(AB) ≤ min(rank(A), rank(B)) ,

where equality holds if eitherA or B is a nonsingular square matrix. (Hint: Use
the alternate definition of the rank of a matrix.)

28.1-11
Given numbersx0, x1, . . . , xn−1, prove that the determinant of theVandermonde
matrix

V(x0, x1, . . . , xn−1) =

1 x0 x2
0 · · · xn−1

0

1 x1 x2
1 · · · xn−1

1
...

...
...

. . .
...

1 xn−1 x2
n−1 · · · xn−1

n−1

is

det(V(x0, x1, . . . , xn−1)) =
∏

0≤ j <k≤n−1

(xk − x j) .

(Hint: Multiply column i by −x0 and add it to columni + 1 for i = n − 1,

n− 2, . . . , 1, and then use induction.)

28.2 Strassen’s algorithm for matrix multiplication 735

28.2 Strassen’s algorithm for matrix multiplication

This section presents Strassen’s remarkable recursive algorithm for multiplying
n× n matrices, which runs in2(nlg 7) = O(n2.81) time. For sufficiently large val-
ues ofn, therefore, it outperforms the naive2(n3) matrix-multiplication algorithm
MATRIX -MULTIPLY from Section 25.1.

An overview of the algorithm

Strassen’s algorithm can be viewed as an application of a familiar design technique:
divide and conquer. Suppose we wish to compute the productC = AB, where each
of A, B, andC aren × n matrices. Assuming thatn is an exact power of 2, we
divide each ofA, B, andC into four n/2× n/2 matrices, rewriting the equation
C = AB as follows:(

r s
t u

)
=
(

a b
c d

)(
e f
g h

)
. (28.8)

(Exercise 28.2-2 deals with the situation in whichn is not an exact power of 2.)
Equation (28.8) corresponds to the four equations

r = ae+ bg , (28.9)

s = a f + bh , (28.10)

t = ce+ dg , (28.11)

u = c f + dh . (28.12)

Each of these four equations specifies two multiplications of n/2× n/2 matrices
and the addition of theirn/2× n/2 products. Using these equations to define a
straightforward divide-and-conquer strategy, we derive the following recurrence
for the timeT(n) to multiply two n× n matrices:

T(n) = 8T(n/2)+2(n2) . (28.13)

Unfortunately, recurrence (28.13) has the solutionT(n) = 2(n3), and thus this
method is no faster than the ordinary one.

Strassen discovered a different recursive approach that requires only 7 recursive
multiplications ofn/2×n/2 matrices and2(n2) scalar additions and subtractions,
yielding the recurrence

T(n) = 7T(n/2)+2(n2) (28.14)

= 2(nlg 7)

= O(n2.81) .

Strassen’s method has four steps:

736 Chapter 28 Matrix Operations

1. Divide the input matricesA and B into n/2 × n/2 submatrices, as in equa-
tion (28.8).

2. Using2(n2) scalar additions and subtractions, compute 14 matricesA1, B1,
A2, B2, . . . , A7, B7, each of which isn/2× n/2.

3. Recursively compute the seven matrix productsPi = Ai Bi for i = 1, 2, . . . , 7.

4. Compute the desired submatricesr, s, t, u of the result matrixC by adding
and/or subtracting various combinations of thePi matrices, using only2(n2)
scalar additions and subtractions.

Such a procedure satisfies the recurrence (28.14). All that we have to do now is fill
in the missing details.

Determining the submatrix products

It is not clear exactly how Strassen discovered the submatrix products that are the
key to making his algorithm work. Here, we reconstruct one plausible discovery
method.

Let us guess that each matrix productPi can be written in the form

Pi = Ai Bi

= (αi1a+ αi2b+ αi3c+ αi4d) · (βi1e+ βi2 f + βi3g+ βi4h) , (28.15)

where the coefficientsαi j , βi j are all drawn from the set{−1, 0, 1}. That is, we
guess that each product is computed by adding or subtractingsome of the subma-
trices ofA, adding or subtracting some of the submatrices ofB, and then multiply-
ing the two results together. While more general strategiesare possible, this simple
one turns out to work.

If we form all of our products in this manner, then we can use this method
recursively without assuming commutativity of multiplication, since each product
has all of theA submatrices on the left and all of theB submatrices on the right.
This property is essential for the recursive application ofthis method, since matrix
multiplication is not commutative.

For convenience, we shall use 4× 4 matrices to represent linear combinations
of products of submatrices, where each product combines onesubmatrix ofA with
one submatrix ofB as in equation (28.15). For example, we can rewrite equa-
tion (28.9) as

r = ae+ bg

= (a b c d)

+1 0 0 0
0 0 +1 0
0 0 0 0
0 0 0 0

e
f
g
h

28.2 Strassen’s algorithm for matrix multiplication 737

=

e f g h
a + · · ·
b · · + ·
c · · · ·
d · · · ·

 .

The last expression uses an abbreviated notation in which “+” represents+1, “·”
represents 0, and “-” represents−1. (From here on, we omit the row and column
labels.) Using this notation, we have the following equations for the other subma-
trices of the result matrixC:

s = a f + bh

=

· + · ·
· · · +
· · · ·
· · · ·

 ,

t = ce+ dg

=

· · · ·
· · · ·
+ · · ·
· · + ·

 ,

u = c f + dh

=

· · · ·
· · · ·
· + · ·
· · · +

 .

We begin our search for a faster matrix-multiplication algorithm by observing
that the submatrixs can be computed ass = P1 + P2, whereP1 and P2 are com-
puted using one matrix multiplication each:

P1 = A1B1

= a · (f − h)

= a f − ah

=

· + · -
· · · ·
· · · ·
· · · ·

 ,

738 Chapter 28 Matrix Operations

P2 = A2B2

= (a+ b) · h
= ah+ bh

=

· · · +
· · · +
· · · ·
· · · ·

 .

The matrixt can be computed in a similar manner ast = P3+ P4, where

P3 = A3B3

= (c+ d) · e
= ce+ de

=

· · · ·
· · · ·
+ · · ·
+ · · ·

and

P4 = A4B4

= d · (g− e)

= dg− de

=

· · · ·
· · · ·
· · · ·
- · + ·

 .

Let us define anessential termto be one of the eight terms appearing on the
right-hand side of one of the equations (28.9)–(28.12). We have now used 4 prod-
ucts to compute the two submatricess andt whose essential terms area f , bh, ce,
anddg. Note thatP1 computes the essential terma f , P2 computes the essential
termbh, P3 computes the essential termce, andP4 computes the essential termdg.
Thus, it remains for us to compute the remaining two submatricesr andu, whose
essential terms areae, bg, c f , anddh, without using more than 3 additional prod-
ucts. We now try the innovationP5 in order to compute two essential terms at
once:

P5 = A5B5

= (a+ d) · (e+ h)

= ae+ ah+ de+ dh

28.2 Strassen’s algorithm for matrix multiplication 739

=

+ · · +
· · · ·
· · · ·
+ · · +

 .

In addition to computing both of the essential termsae anddh, P5 computes the
inessential termsah andde, which need to be canceled somehow. We can useP4

andP2 to cancel them, but two other inessential terms then appear:

P5+ P4− P2 = ae+ dh+ dg− bh

=

+ · · ·
· · · -
· · · ·
· · + +

 .

By adding an additional product

P6 = A6B6

= (b− d) · (g+ h)

= bg+ bh− dg− dh

=

· · · ·
· · + +
· · · ·
· · - -

 ,

however, we obtain

r = P5 + P4− P2+ P6

= ae+ bg

=

+ · · ·
· · + ·
· · · ·
· · · ·

 .

We can obtainu in a similar manner fromP5 by usingP1 and P3 to move the
inessential terms ofP5 in a different direction:

P5+ P1− P3 = ae+ a f − ce+ dh

=

+ + · ·
· · · ·
- · · ·
· · · +

 .

By subtracting an additional product

740 Chapter 28 Matrix Operations

P7 = A7B7

= (a− c) · (e+ f)

= ae+ a f − ce− c f

=

+ + · ·
· · · ·
- - · ·
· · · ·

 ,

we now obtain

u = P5+ P1− P3 − P7

= c f + dh

=

· · · ·
· · · ·
· + · ·
· · · +

 .

The 7 submatrix productsP1, P2, . . . , P7 can thus be used to compute the prod-
uct C = AB, which completes the description of Strassen’s method.

Discussion

From a practical point of view, Strassen’s algorithm is often not the method of
choice for matrix multiplication, for four reasons:

1. The constant factor hidden in the running time of Strassen’s algorithm is larger
than the constant factor in the naive2(n3) method.

2. When the matrices are sparse, methods tailored for sparsematrices are faster.

3. Strassen’s algorithm is not quite as numerically stable as the naive method.

4. The submatrices formed at the levels of recursion consumespace.

The latter two reasons were mitigated around 1990. Higham [145] demon-
strated that the difference in numerical stability had beenoveremphasized; al-
though Strassen’s algorithm is too numerically unstable for some applications, it is
within acceptable limits for others. Bailey et al. [30] discuss techniques for reduc-
ing the memory requirements for Strassen’s algorithm.

In practice, fast matrix-multiplication implementationsfor dense matrices use
Strassen’s algorithm for matrix sizes above a “crossover point,” and they switch
to the naive method once the subproblem size reduces to belowthe crossover
point. The exact value of the crossover point is highly system dependent. Analyses
that count operations but ignore effects from caches and pipelining have produced
crossover points as low asn = 8 (by Higham [145]) orn = 12 (by Huss-Lederman

28.2 Strassen’s algorithm for matrix multiplication 741

et al. [163]). Empirical measurements typically yield higher crossover points, with
some as low asn = 20 or so. For any given system, it is usually straightforwardto
determine the crossover point by experimentation.

By using advanced techniques beyond the scope of this text, one can in fact
multiply n× n matrices in better than2(nlg 7) time. The current best upper bound
is approximatelyO(n2.376). The best lower bound known is just the obvious�(n2)

bound (obvious because we have to fill inn2 elements of the product matrix). Thus,
we currently do not know exactly how hard matrix multiplication really is.

Exercises

28.2-1
Use Strassen’s algorithm to compute the matrix product
(

1 3
5 7

)(
8 4
6 2

)
.

Show your work.

28.2-2
How would you modify Strassen’s algorithm to multiplyn×n matrices in whichn
is not an exact power of 2? Show that the resulting algorithm runs in time2(nlg7).

28.2-3
What is the largestk such that if you can multiply 3× 3 matrices usingk multi-
plications (not assuming commutativity of multiplication), then you can multiply
n×n matrices in timeo(nlg 7)? What would the running time of this algorithm be?

28.2-4
V. Pan has discovered a way of multiplying 68× 68 matrices using 132,464 mul-
tiplications, a way of multiplying 70× 70 matrices using 143,640 multiplications,
and a way of multiplying 72× 72 matrices using 155,424 multiplications. Which
method yields the best asymptotic running time when used in adivide-and-conquer
matrix-multiplication algorithm? How does it compare to Strassen’s algorithm?

28.2-5
How quickly can you multiply akn×n matrix by ann×knmatrix, using Strassen’s
algorithm as a subroutine? Answer the same question with theorder of the input
matrices reversed.

28.2-6
Show how to multiply the complex numbersa + bi andc + di using only three
real multiplications. The algorithm should takea, b, c, andd as input and produce
the real componentac− bd and the imaginary componentad+ bc separately.

742 Chapter 28 Matrix Operations

28.3 Solving systems of linear equations

Solving a set of simultaneous linear equations is a fundamental problem that oc-
curs in diverse applications. A linear system can be expressed as a matrix equation
in which each matrix or vector element belongs to a field, typically the real num-
bersR. This section discusses how to solve a system of linear equations using a
method called LUP decomposition.

We start with a set of linear equations inn unknownsx1, x2, . . . , xn:

a11x1 + a12x2 + · · · + a1nxn = b1 ,

a21x1 + a22x2 + · · · + a2nxn = b2 ,

...

an1x1 + an2x2 + · · · + annxn = bn .

(28.16)

A set of values forx1, x2, . . . , xn that satisfy all of the equations (28.16) simulta-
neously is said to be asolution to these equations. In this section, we treat only the
case in which there are exactlyn equations inn unknowns.

We can conveniently rewrite equations (28.16) as the matrix-vector equation

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

x1

x2
...

xn

 =

b1

b2
...

bn

or, equivalently, lettingA = (ai j), x = (xi), andb = (bi), as

Ax = b . (28.17)

If A is nonsingular, it possesses an inverseA−1, and

x = A−1b (28.18)

is the solution vector. We can prove thatx is the unique solution to equation (28.17)
as follows. If there are two solutions,x andx′, thenAx = Ax′ = b and

x = (A−1 A)x

= A−1(Ax)

= A−1(Ax′)

= (A−1 A)x′

= x′ .

In this section, we shall be concerned predominantly with the case in whichA
is nonsingular or, equivalently (by Theorem 28.1), the rankof A is equal to the

28.3 Solving systems of linear equations 743

numbern of unknowns. There are other possibilities, however, whichmerit a brief
discussion. If the number of equations is less than the number n of unknowns—or,
more generally, if the rank ofA is less thann—then the system isunderdeter-
mined. An underdetermined system typically has infinitely many solutions, al-
though it may have no solutions at all if the equations are inconsistent. If the
number of equations exceeds the numbern of unknowns, the system isoverdeter-
mined, and there may not exist any solutions. Finding good approximate solutions
to overdetermined systems of linear equations is an important problem that is ad-
dressed in Section 28.5.

Let us return to our problem of solving the systemAx = b of n equations inn
unknowns. One approach is to computeA−1 and then multiply both sides byA−1,
yielding A−1 Ax = A−1b, or x = A−1b. This approach suffers in practice from
numerical instability. There is, fortunately, another approach—LUP decomposi-
tion—that is numerically stable and has the further advantage of being faster in
practice.

Overview of LUP decomposition

The idea behind LUP decomposition is to find threen × n matricesL, U , and P
such that

P A= LU , (28.19)

where

• L is a unit lower-triangular matrix,
• U is an upper-triangular matrix, and
• P is a permutation matrix.

We call matricesL, U , andP satisfying equation (28.19) anLUP decomposition
of the matrixA. We shall show that every nonsingular matrixA possesses such a
decomposition.

The advantage of computing an LUP decomposition for the matrix A is that
linear systems can be solved more readily when they are triangular, as is the case
for both matricesL andU . Having found an LUP decomposition forA, we can
solve the equation (28.17)Ax = b by solving only triangular linear systems, as
follows. Multiplying both sides ofAx = b by P yields the equivalent equation
P Ax= Pb, which by Exercise 28.1-5 amounts to permuting the equations (28.16).
Using our decomposition (28.19), we obtain

LUx = Pb .

We can now solve this equation by solving two triangular linear systems. Let us
definey = Ux, wherex is the desired solution vector. First, we solve the lower-
triangular system

744 Chapter 28 Matrix Operations

Ly = Pb (28.20)

for the unknown vectory by a method called “forward substitution.” Having solved
for y, we then solve the upper-triangular system

Ux = y (28.21)

for the unknownx by a method called “back substitution.” The vectorx is our
solution toAx = b, since the permutation matrixP is invertible (Exercise 28.1-5):

Ax = P−1LUx

= P−1Ly

= P−1Pb

= b .

Our next step is to show how forward and back substitution work and then attack
the problem of computing the LUP decomposition itself.

Forward and back substitution

Forward substitutioncan solve the lower-triangular system (28.20) in2(n2) time,
given L, P, andb. For convenience, we represent the permutationP compactly
by an arrayπ [1 . . n]. For i = 1, 2, . . . , n, the entryπ [i] indicates thatPi,π [i] = 1
and Pi j = 0 for j 6= π [i]. Thus, P A hasaπ [i], j in row i and columnj , and Pb
hasbπ [i] as itsi th element. SinceL is unit lower-triangular, equation (28.20) can
be rewritten as

y1 = bπ [1] ,

l21y1 + y2 = bπ [2] ,

l31y1 + l32y2 + y3 = bπ [3] ,

...

ln1y1 + ln2y2 + ln3y3 + · · · + yn = bπ [n] .

We can solve fory1 directly, since the first equation tells us thaty1 = bπ [1]. Having
solved fory1, we can substitute it into the second equation, yielding

y2 = bπ [2] − l21y1 .

Now, we can substitute bothy1 andy2 into the third equation, obtaining

y3 = bπ [3] − (l31y1+ l32y2) .

In general, we substitutey1, y2, . . . , yi−1 “forward” into the i th equation to solve
for yi :

28.3 Solving systems of linear equations 745

yi = bπ [i] −
i−1∑

j=1

l i j y j .

Back substitutionis similar to forward substitution. GivenU and y, we solve
thenth equation first and work backward to the first equation. Likeforward substi-
tution, this process runs in2(n2) time. SinceU is upper-triangular, we can rewrite
the system (28.21) as

u11x1 + u12x2 + · · · + u1,n−2xn−2 + u1,n−1xn−1 + u1nxn = y1 ,

u22x2 + · · · + u2,n−2xn−2 + u2,n−1xn−1 + u2nxn = y2 ,

...

un−2,n−2xn−2 + un−2,n−1xn−1 + un−2,nxn = yn−2 ,

un−1,n−1xn−1 + un−1,nxn = yn−1 ,

un,nxn = yn .

Thus, we can solve forxn, xn−1, . . . , x1 successively as follows:

xn = yn/un,n ,

xn−1 = (yn−1− un−1,nxn)/un−1,n−1 ,

xn−2 = (yn−2− (un−2,n−1xn−1 + un−2,nxn))/un−2,n−2 ,

...

or, in general,

xi =
(

yi −
n∑

j=i+1

ui j x j

)
/ui i .

Given P, L, U , andb, the procedure LUP-SOLVE solves forx by combining
forward and back substitution. The pseudocode assumes thatthe dimensionn ap-
pears in the attributerows[L] and that the permutation matrixP is represented by
the arrayπ .

LUP-SOLVE(L , U, π, b)

1 n← rows[L]
2 for i ← 1 to n
3 do yi ← bπ [i] −

∑i−1
j=1 l i j y j

4 for i ← n downto 1
5 do xi ←

(
yi −

∑n
j=i+1 ui j x j

)
/ui i

6 return x

746 Chapter 28 Matrix Operations

Procedure LUP-SOLVE solves fory using forward substitution in lines 2–3, and
then it solves forx using backward substitution in lines 4–5. Since there is an
implicit loop in the summations within each of thefor loops, the running time
is 2(n2).

As an example of these methods, consider the system of linearequations defined
by

1 2 0
3 4 4
5 6 3

 x =

3
7
8

 ,

where

A =

1 2 0
3 4 4
5 6 3

 ,

b =

3
7
8

 ,

and we wish to solve for the unknownx. The LUP decomposition is

L =

1 0 0
0.2 1 0
0.6 0.5 1

 ,

U =

5 6 3
0 0.8 −0.6
0 0 2.5

 ,

P =

0 0 1
1 0 0
0 1 0

 .

(The reader can verify thatP A = LU .) Using forward substitution, we solve
Ly = Pb for y:

1 0 0
0.2 1 0
0.6 0.5 1

y1

y2

y3

 =

8
3
7

 ,

obtaining

y =

8
1.4
1.5

28.3 Solving systems of linear equations 747

by computing firsty1, then y2, and finally y3. Using back substitution, we solve
Ux = y for x:

5 6 3
0 0.8 −0.6
0 0 2.5

x1

x2

x3

 =

8
1.4
1.5

 ,

thereby obtaining the desired answer

x =

−1.4

2.2
0.6

by computing firstx3, thenx2, and finallyx1.

Computing an LU decomposition

We have now shown that if an LUP decomposition can be computedfor a non-
singular matrixA, forward and back substitution can be used to solve the system
Ax = b of linear equations. It remains to show how an LUP decomposition for A
can be found efficiently. We start with the case in whichA is ann× n nonsingular
matrix andP is absent (or, equivalently,P = In). In this case, we must find a
factorizationA = LU . We call the two matricesL andU anLU decomposition
of A.

The process by which we perform LU decomposition is calledGaussian elimi-
nation. We start by subtracting multiples of the first equation fromthe other equa-
tions so that the first variable is removed from those equations. Then, we subtract
multiples of the second equation from the third and subsequent equations so that
now the first and second variables are removed from them. We continue this pro-
cess until the system that is left has an upper-triangular form—in fact, it is the
matrix U . The matrixL is made up of the row multipliers that cause variables to
be eliminated.

Our algorithm to implement this strategy is recursive. We wish to construct an
LU decomposition for ann× n nonsingular matrixA. If n = 1, then we’re done,
since we can chooseL = I1 andU = A. Forn > 1, we breakA into four parts:

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

=
(

a11 wT

v A′

)
,

wherev is a size-(n− 1) column vector,wT is a size-(n− 1) row vector, andA′ is
an (n− 1) × (n − 1) matrix. Then, using matrix algebra (verify the equations by

748 Chapter 28 Matrix Operations

simply multiplying through), we can factorA as

A =
(

a11 wT

v A′

)

=
(

1 0
v/a11 In−1

)(
a11 wT

0 A′ − vwT/a11

)
. (28.22)

The 0’s in the first and second matrices of the factorization are row and column
vectors, respectively, of sizen − 1. The termvwT/a11, formed by taking the
outer product ofv and w and dividing each element of the result bya11, is an
(n− 1)× (n− 1) matrix, which conforms in size to the matrixA′ from which it is
subtracted. The resulting(n− 1)× (n− 1) matrix

A′ − vwT/a11 (28.23)

is called theSchur complementof A with respect toa11.
We claim that if A is nonsingular, then the Schur complement is nonsingular,

too. Why? Suppose that the Schur complement, which is(n − 1) × (n − 1), is
singular. Then by Theorem 28.1, it has row rank strictly lessthann− 1. Because
the bottomn− 1 entries in the first column of the matrix
(

a11 wT

0 A′ − vwT/a11

)

are all 0, the bottomn − 1 rows of this matrix must have row rank strictly less
thann − 1. The row rank of the entire matrix, therefore, is strictly less thann.
Applying Exercise 28.1-10 to equation (28.22),A has rank strictly less thann, and
from Theorem 28.1 we derive the contradiction thatA is singular.

Because the Schur complement is nonsingular, we can now recursively find an
LU decomposition of it. Let us say that

A′ − vwT/a11 = L ′U ′ ,

whereL ′ is unit lower-triangular andU ′ is upper-triangular. Then, using matrix
algebra, we have

A =
(

1 0
v/a11 In−1

)(
a11 wT

0 A′ − vwT/a11

)

=
(

1 0
v/a11 In−1

)(
a11 wT

0 L ′U ′

)

=
(

1 0
v/a11 L ′

)(
a11 wT

0 U ′

)

= LU ,

thereby providing our LU decomposition. (Note that becauseL ′ is unit lower-
triangular, so isL, and becauseU ′ is upper-triangular, so isU .)

28.3 Solving systems of linear equations 749

Of course, ifa11 = 0, this method doesn’t work, because it divides by 0. It also
doesn’t work if the upper leftmost entry of the Schur complement A′ − vwT/a11

is 0, since we divide by it in the next step of the recursion. The elements by which
we divide during LU decomposition are calledpivots, and they occupy the diagonal
elements of the matrixU . The reason we include a permutation matrixP during
LUP decomposition is that it allows us to avoid dividing by zero elements. Using
permutations to avoid division by 0 (or by small numbers) is calledpivoting.

An important class of matrices for which LU decomposition always works cor-
rectly is the class of symmetric positive-definite matrices. Such matrices require
no pivoting, and thus the recursive strategy outlined abovecan be employed with-
out fear of dividing by 0. We shall prove this result, as well as several others, in
Section 28.5.

Our code for LU decomposition of a matrixA follows the recursive strategy,
except that an iteration loop replaces the recursion. (Thistransformation is a stan-
dard optimization for a “tail-recursive” procedure—one whose last operation is a
recursive call to itself.) It assumes that the dimension ofA is kept in the attribute
rows[A]. Since we know that the output matrixU has 0’s below the diagonal, and
since LUP-SOLVE does not look at these entries, the code does not bother to fill
them in. Likewise, because the output matrixL has 1’s on its diagonal and 0’s
above the diagonal, these entries are not filled in either. Thus, the code computes
only the “significant” entries ofL andU .

LU-DECOMPOSITION(A)

1 n← rows[A]
2 for k← 1 to n
3 do ukk← akk

4 for i ← k+ 1 to n
5 do l ik ← aik/ukk � l ik holdsvi

6 uki ← aki � uki holdswT
i

7 for i ← k+ 1 to n
8 do for j ← k+ 1 to n
9 do ai j ← ai j − l ikukj

10 return L andU

The outerfor loop beginning in line 2 iterates once for each recursive step. Within
this loop, the pivot is determined to beukk = akk in line 3. Within thefor loop in
lines 4–6 (which does not execute whenk = n), thev andwT vectors are used to
updateL andU . The elements of thev vector are determined in line 5, wherevi is
stored inl ik , and the elements of thewT vector are determined in line 6, wherewT

i
is stored inuki . Finally, the elements of the Schur complement are computedin
lines 7–9 and stored back in the matrixA. (We don’t need to divide byakk in line 9

750 Chapter 28 Matrix Operations

2 3 1 5

6 13 5 19

2 19 10 23

4 10 11 31

(a)

3 1 5

3 4 2 4

1 16 9 18

2 4 9 21

(b)

2 3 1 5

3 2 4

1 4 1 2

2 1 7 17

(c)

2 3 1 5

3 4 2 4

1 4 2

2 1 7 3

(d)

(e)

2

4

1

2 3 1 5
6 13 5 19
2 19 10 23
4 10 11 31

 =

1 0 0 0
3 1 0 0
1 4 1 0
2 1 7 1

2 3 1 5
0 4 2 4
0 0 1 2
0 0 0 3

A L U

Figure 28.1 The operation of LU-DECOMPOSITION. (a) The matrixA. (b) The elementa11 = 2
in the black circle is the pivot, the shaded column isv/a11, and the shaded row iswT. The elements
of U computed thus far are above the horizontal line, and the elements ofL are to the left of the
vertical line. The Schur complement matrixA′ − vwT/a11 occupies the lower right.(c) We now
operate on the Schur complement matrix produced from part (b). The elementa22 = 4 in the black
circle is the pivot, and the shaded column and row arev/a22 andwT (in the partitioning of the Schur
complement), respectively. Lines divide the matrix into the elements ofU computed so far (above),
the elements ofL computed so far (left), and the new Schur complement (lower right). (d) The next
step completes the factorization. (The element 3 in the new Schur complement becomes part ofU
when the recursion terminates.)(e)The factorizationA = LU .

because we already did so when we computedl ik in line 5.) Because line 9 is triply
nested, LU-DECOMPOSITIONruns in time2(n3).

Figure 28.1 illustrates the operation of LU-DECOMPOSITION. It shows a stan-
dard optimization of the procedure in which the significant elements ofL andU are
stored “in place” in the matrixA. That is, we can set up a correspondence between
each elementai j and eitherl i j (if i > j) or ui j (if i ≤ j) and update the matrixA
so that it holds bothL andU when the procedure terminates. The pseudocode for
this optimization is obtained from the above pseudocode merely by replacing each
reference tol or u by a; it is not difficult to verify that this transformation preserves
correctness.

Computing an LUP decomposition

Generally, in solving a system of linear equationsAx = b, we must pivot on off-
diagonal elements ofA to avoid dividing by 0. Not only is division by 0 undesir-
able, so is division by any small value, even ifA is nonsingular, because numerical
instabilities can result in the computation. We therefore try to pivot on a large
value.

28.3 Solving systems of linear equations 751

The mathematics behind LUP decomposition is similar to thatof LU decompo-
sition. Recall that we are given ann × n nonsingular matrixA and wish to find
a permutation matrixP, a unit lower-triangular matrixL, and an upper-triangular
matrixU such thatP A= LU . Before we partition the matrixA, as we did for LU
decomposition, we move a nonzero element, sayak1, from somewhere in the first
column to the(1, 1) position of the matrix. (If the first column contains only 0’s,
thenA is singular, because its determinant is 0, by Theorems 28.4 and 28.5.) In or-
der to preserve the set of equations, we exchange row 1 with row k, which is equiv-
alent to multiplying A by a permutation matrixQ on the left (Exercise 28.1-5).
Thus, we can writeQ A as

Q A=
(

ak1 wT

v A′

)
,

where v = (a21, a31, . . . , an1)
T, except thata11 replacesak1; wT = (ak2, ak3,

. . . , akn); and A′ is an (n − 1) × (n − 1) matrix. Sinceak1 6= 0, we can now
perform much the same linear algebra as for LU decomposition, but now guaran-
teeing that we do not divide by 0:

Q A =
(

ak1 wT

v A′

)

=
(

1 0
v/ak1 In−1

)(
ak1 wT

0 A′ − vwT/ak1

)
.

As we saw for LU decomposition, ifA is nonsingular, then the Schur comple-
ment A′ − vwT/ak1 is nonsingular, too. Therefore, we can inductively find an
LUP decomposition for it, with unit lower-triangular matrix L ′, upper-triangular
matrix U ′, and permutation matrixP′, such that

P′(A′ − vwT/ak1) = L ′U ′ .

Define

P =
(

1 0
0 P′

)
Q ,

which is a permutation matrix, since it is the product of two permutation matrices
(Exercise 28.1-5). We now have

P A =
(

1 0
0 P′

)
Q A

=
(

1 0
0 P′

)(
1 0

v/ak1 In−1

)(
ak1 wT

0 A′ − vwT/ak1

)

=
(

1 0
P′v/ak1 P′

)(
ak1 wT

0 A′ − vwT/ak1

)

752 Chapter 28 Matrix Operations

=
(

1 0
P′v/ak1 In−1

)(
ak1 wT

0 P′(A′ − vwT/ak1)

)

=
(

1 0
P′v/ak1 In−1

)(
ak1 wT

0 L ′U ′

)

=
(

1 0
P′v/ak1 L ′

)(
ak1 wT

0 U ′

)

= LU ,

yielding the LUP decomposition. BecauseL ′ is unit lower-triangular, so isL, and
becauseU ′ is upper-triangular, so isU .

Notice that in this derivation, unlike the one for LU decomposition, both the
column vectorv/ak1 and the Schur complementA′ − vwT/ak1 must be multiplied
by the permutation matrixP′.

Like LU-DECOMPOSITION, our pseudocode for LUP decomposition replaces
the recursion with an iteration loop. As an improvement overa direct implemen-
tation of the recursion, we dynamically maintain the permutation matrixP as an
arrayπ , whereπ [i] = j means that thei th row of P contains a 1 in columnj .
We also implement the code to computeL andU “in place” in the matrixA. Thus,
when the procedure terminates,

ai j =
{

l i j if i > j ,

ui j if i ≤ j .

LUP-DECOMPOSITION(A)

1 n← rows[A]
2 for i ← 1 to n
3 do π [i]← i
4 for k← 1 to n
5 do p← 0
6 for i ← k to n
7 do if |aik | > p
8 then p← |aik |
9 k′← i

10 if p = 0
11 then error “singular matrix”
12 exchangeπ [k] ↔ π [k′]
13 for i ← 1 to n
14 do exchangeaki ↔ ak′ i

15 for i ← k+ 1 to n
16 do aik ← aik/akk

17 for j ← k+ 1 to n
18 do ai j ← ai j − aikakj

28.3 Solving systems of linear equations 753

2 0 2 0.6

3 3 4 –2

5 5 4 2

–1 –2 3.4 –1

(a)

1

2

3

4

2 0 2 0.6

3 3 4 –2

5 5 4 2

–1 –2 3.4 –1

(b)

3

2

1

4

0.4 –2 0.4 –.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 –1 4.2 –0.6

(c)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 –1 4.2 –0.6

(d)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 –1 4.2 –0.6

(e)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 0.5 4 –0.5

(f)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 0.5 4 –0.5

(g)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 1.6 –3.2

5 5 4 2

–0.2 0.5 4 –0.5

(h)

3

2

1

4

0.4 –2 0.4 –0.2

0.6 0 0.4 –3

5 5 4 2

–0.2 0.5 4 –0.5

(i)

3

2

1

4

(j)

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

2 0 2 0.6
3 3 4 −2
5 5 4 2
−1 −2 3.4 −1

 =

1 0 0 0
0.4 1 0 0
−0.2 0.5 1 0
0.6 0 0.4 1

5 5 4 2
0 −2 0.4 −0.2
0 0 4 −0.5
0 0 0 −3

P A L U

Figure 28.2 The operation of LUP-DECOMPOSITION. (a) The input matrixA with the identity
permutation of the rows on the left. The first step of the algorithm determines that the element 5
in the black circle in the third row is the pivot for the first column. (b) Rows 1 and 3 are swapped
and the permutation is updated. The shaded column and row representv andwT. (c) The vectorv
is replaced byv/5, and the lower right of the matrix is updated with the Schur complement. Lines
divide the matrix into three regions: elements ofU (above), elements ofL (left), and elements of the
Schur complement (lower right).(d)–(f) The second step.(g)–(i) The third step. No further changes
occur on the fourth, and final, step.(j) The LUP decompositionP A= LU .

Figure 28.2 illustrates how LUP-DECOMPOSITION factors a matrix. The ar-
ray π is initialized by lines 2–3 to represent the identity permutation. The outer
for loop beginning in line 4 implements the recursion. Each timethrough the outer
loop, lines 5–9 determine the elementak′k with largest absolute value of those in
the current first column (columnk) of the(n− k+ 1)× (n− k+ 1) matrix whose
LU decomposition must be found. If all elements in the current first column are

754 Chapter 28 Matrix Operations

zero, lines 10–11 report that the matrix is singular. To pivot, we exchangeπ [k′]
with π [k] in line 12 and exchange thekth andk′th rows of A in lines 13–14,
thereby making the pivot elementakk. (The entire rows are swapped because in
the derivation of the method above, not only isA′− vwT/ak1 multiplied by P′, but
so isv/ak1.) Finally, the Schur complement is computed by lines 15–18 in much
the same way as it is computed by lines 4–9 of LU-DECOMPOSITION, except that
here the operation is written to work “in place.”

Because of its triply nested loop structure, LUP-DECOMPOSITION has a run-
ning time of2(n3), which is the same as that of LU-DECOMPOSITION. Thus,
pivoting costs us at most a constant factor in time.

Exercises

28.3-1
Solve the equation

1 0 0
4 1 0
−6 5 1

x1

x2

x3

 =

3
14
−7

by using forward substitution.

28.3-2
Find an LU decomposition of the matrix

4 −5 6
8 −6 7

12 −7 12

 .

28.3-3
Solve the equation

1 5 4
2 0 3
5 8 2

x1

x2

x3

 =

12
9
5

by using an LUP decomposition.

28.3-4
Describe the LUP decomposition of a diagonal matrix.

28.3-5
Describe the LUP decomposition of a permutation matrixA, and prove that it is
unique.

28.4 Inverting matrices 755

28.3-6
Show that for alln ≥ 1, there exists a singularn × n matrix that has an LU
decomposition.

28.3-7
In LU-DECOMPOSITION, is it necessary to perform the outermostfor loop itera-
tion whenk = n? How about in LUP-DECOMPOSITION?

28.4 Inverting matrices

Although in practice we do not generally use matrix inversesto solve systems of
linear equations, preferring instead to use more numerically stable techniques such
as LUP decomposition, it is sometimes necessary to compute amatrix inverse. In
this section, we show how LUP decomposition can be used to compute a matrix
inverse. We also prove that matrix multiplication and computing the inverse of a
matrix are equivalently hard problems, in that (subject to technical conditions) we
can use an algorithm for one to solve the other in the same asymptotic running time.
Thus, we can use Strassen’s algorithm for matrix multiplication to invert a matrix.
Indeed, Strassen’s original paper was motivated by the problem of showing that a
set of a linear equations could be solved more quickly than bythe usual method.

Computing a matrix inverse from an LUP decomposition

Suppose that we have an LUP decomposition of a matrixA in the form of three
matricesL, U , and P such thatP A = LU . Using LUP-SOLVE, we can solve
an equation of the formAx = b in time 2(n2). Since the LUP decomposition
depends onA but notb, we can run LUP-SOLVE on a second set of equations of
the form Ax = b′ in additional time2(n2). In general, once we have the LUP
decomposition ofA, we can solve, in time2(kn2), k versions of the equation
Ax = b that differ only inb.

The equation

AX = In (28.24)

can be viewed as a set ofn distinct equations of the formAx = b. These equations
define the matrixX as the inverse ofA. To be precise, letXi denote thei th column
of X, and recall that the unit vectorei is thei th column ofIn. Equation (28.24) can
then be solved forX by using the LUP decomposition forA to solve each equation

AXi = ei

756 Chapter 28 Matrix Operations

separately forXi . Each of then columnsXi can be found in time2(n2), and so
the computation ofX from the LUP decomposition ofA takes time2(n3). Since
the LUP decomposition ofA can be computed in time2(n3), the inverseA−1 of a
matrix A can be determined in time2(n3).

Matrix multiplication and matrix inversion

We now show that the theoretical speedups obtained for matrix multiplication
translate to speedups for matrix inversion. In fact, we prove something stronger:
matrix inversion is equivalent to matrix multiplication, in the following sense.
If M(n) denotes the time to multiply twon × n matrices, then there is a way
to invert ann× n matrix in timeO(M(n)). Moreover, if I (n) denotes the time to
invert a nonsingularn×n matrix, then there is a way to multiply twon×n matrices
in time O(I (n)). We prove these results as two separate theorems.

Theorem 28.7 (Multiplication is no harder than inversion)
If we can invert ann × n matrix in time I (n), where I (n) = �(n2) and I (n)

satisfies the regularity conditionI (3n) = O(I (n)), then we can multiply twon×n
matrices in timeO(I (n)).

Proof Let A andB ben× n matrices whose matrix productC we wish to com-
pute. We define the 3n× 3n matrix D by

D =

In A 0
0 In B
0 0 In

 .

The inverse ofD is

D−1 =

In −A AB
0 In −B
0 0 In

 ,

and thus we can compute the productAB by taking the upper rightn×n submatrix
of D−1.

We can construct matrixD in 2(n2) = O(I (n)) time, and we can invertD in
O(I (3n)) = O(I (n)) time, by the regularity condition onI (n). We thus have
M(n) = O(I (n)).

Note thatI (n) satisfies the regularity condition wheneverI (n) = 2(nc lgd n)

for any constantsc > 0 andd ≥ 0.
The proof that matrix inversion is no harder than matrix multiplication relies

on some properties of symmetric positive-definite matricesthat will be proved in
Section 28.5.

28.4 Inverting matrices 757

Theorem 28.8 (Inversion is no harder than multiplication)
Suppose we can multiply twon × n real matrices in timeM(n), whereM(n) =
�(n2) andM(n) satisfies the two regularity conditionsM(n+ k) = O(M(n)) for
anyk in the range 0≤ k ≤ n andM(n/2) ≤ cM(n) for some constantc < 1/2.
Then we can compute the inverse of any real nonsingularn × n matrix in time
O(M(n)).

Proof We can assume thatn is an exact power of 2, since we have
(

A 0
0 Ik

)−1

=
(

A−1 0
0 Ik

)

for any k > 0. Thus, by choosingk such thatn + k is a power of 2, we enlarge
the matrix to a size that is the next power of 2 and obtain the desired answerA−1

from the answer to the enlarged problem. The first regularitycondition onM(n)

ensures that this enlargement does not cause the running time to increase by more
than a constant factor.

For the moment, let us assume that then×n matrix A is symmetric and positive-
definite. We partitionA into four n/2× n/2 submatrices:

A =
(

B CT

C D

)
. (28.25)

Then, if we let

S= D − C B−1CT (28.26)

be the Schur complement ofA with respect toB (we shall see more about this form
of Schur complement in Section 28.5), we have

A−1 =
(

B−1+ B−1CTS−1C B−1 −B−1CTS−1

−S−1C B−1 S−1

)
, (28.27)

since AA−1 = In, as can be verified by performing the matrix multiplication.
The matricesB−1 andS−1 exist if A is symmetric and positive-definite, by Lem-
mas 28.9, 28.10, and 28.11 in Section 28.5, because bothB andS are symmetric
and positive-definite. By Exercise 28.1-2,B−1CT = (C B−1)T and B−1CTS−1 =
(S−1C B−1)T. Equations (28.26) and (28.27) can therefore be used to specify a
recursive algorithm involving four multiplications ofn/2× n/2 matrices:

C · B−1 ,

(C B−1) · CT ,

S−1 · (C B−1) ,

(C B−1)T · (S−1C B−1) .

758 Chapter 28 Matrix Operations

Thus, we can invert ann × n symmetric positive-definite matrix by inverting two
n/2× n/2 matrices (B andS), performing these four multiplications ofn/2× n/2
matrices (which we can do with an algorithm forn×n matrices), plus an additional
cost ofO(n2) for extracting submatrices fromA and performing a constant number
of additions and subtractions on thesen/2× n/2 matrices. We get the recurrence

I (n) ≤ 2I (n/2)+ 4M(n)+ O(n2)

= 2I (n/2)+2(M(n))

= O(M(n)) .

The second line holds becauseM(n) = �(n2), and the third line follows because
the second regularity condition in the statement of the theorem allows us to apply
case 3 of the master theorem (Theorem 4.1).

It remains to prove that the asymptotic running time of matrix multiplication
can be obtained for matrix inversion whenA is invertible but not symmetric and
positive-definite. The basic idea is that for any nonsingular matrix A, the
matrix AT A is symmetric (by Exercise 28.1-2) and positive-definite (byTheo-
rem 28.6). The trick, then, is to reduce the problem of inverting A to the problem
of inverting AT A.

The reduction is based on the observation that whenA is ann × n nonsingular
matrix, we have

A−1 = (AT A)−1 AT ,

since ((AT A)−1 AT)A = (AT A)−1(AT A) = In and a matrix inverse is unique.
Therefore, we can computeA−1 by first multiplying AT by A to obtainAT A, then
inverting the symmetric positive-definite matrixAT A using the above divide-and-
conquer algorithm, and finally multiplying the result byAT. Each of these three
steps takesO(M(n)) time, and thus any nonsingular matrix with real entries can
be inverted inO(M(n)) time.

The proof of Theorem 28.8 suggests a means of solving the equation Ax = b
by using LU decomposition without pivoting, so long asA is nonsingular. We
multiply both sides of the equation byAT, yielding (AT A)x = ATb. This trans-
formation doesn’t affect the solutionx, sinceAT is invertible, and so we can fac-
tor the symmetric positive-definite matrixAT A by computing an LU decomposi-
tion. We then use forward and back substitution to solve forx with the right-hand
side ATb. Although this method is theoretically correct, in practice the procedure
LUP-DECOMPOSITION works much better. LUP decomposition requires fewer
arithmetic operations by a constant factor, and it has somewhat better numerical
properties.

28.4 Inverting matrices 759

Exercises

28.4-1
Let M(n) be the time to multiplyn× n matrices, and letS(n) denote the time re-
quired to square ann×n matrix. Show that multiplying and squaring matrices have
essentially the same difficulty: anM(n)-time matrix-multiplication algorithm im-
plies anO(M(n))-time squaring algorithm, and anS(n)-time squaring algorithm
implies anO(S(n))-time matrix-multiplication algorithm.

28.4-2
Let M(n) be the time to multiplyn× n matrices, and letL(n) be the time to com-
pute the LUP decomposition of ann × n matrix. Show that multiplying matrices
and computing LUP decompositions of matrices have essentially the same diffi-
culty: an M(n)-time matrix-multiplication algorithm implies anO(M(n))-time
LUP-decomposition algorithm, and anL(n)-time LUP-decomposition algorithm
implies anO(L(n))-time matrix-multiplication algorithm.

28.4-3
Let M(n) be the time to multiplyn × n matrices, and letD(n) denote the time
required to find the determinant of ann × n matrix. Show that multiplying matri-
ces and computing the determinant have essentially the samedifficulty: an M(n)-
time matrix-multiplication algorithm implies anO(M(n))-time determinant algo-
rithm, and aD(n)-time determinant algorithm implies anO(D(n))-time matrix-
multiplication algorithm.

28.4-4
Let M(n) be the time to multiplyn×n boolean matrices, and letT(n) be the time to
find the transitive closure ofn×n boolean matrices. (See Section 25.2.) Show that
an M(n)-time boolean matrix-multiplication algorithm implies anO(M(n) lg n)-
time transitive-closure algorithm, and aT(n)-time transitive-closure algorithm im-
plies anO(T(n))-time boolean matrix-multiplication algorithm.

28.4-5
Does the matrix-inversion algorithm based on Theorem 28.8 work when matrix
elements are drawn from the field of integers modulo 2? Explain.

28.4-6 ⋆

Generalize the matrix-inversion algorithm of Theorem 28.8to handle matrices of
complex numbers, and prove that your generalization works correctly. (Hint: In-
stead of the transpose ofA, use theconjugate transposeA∗, which is obtained
from the transpose ofA by replacing every entry with its complex conjugate. In-
stead of symmetric matrices, considerHermitian matrices, which are matricesA
such thatA = A∗.)

760 Chapter 28 Matrix Operations

28.5 Symmetric positive-definite matrices and least-squares approximation

Symmetric positive-definite matrices have many interesting and desirable proper-
ties. For example, they are nonsingular, and LU decomposition can be performed
on them without our having to worry about dividing by 0. In this section, we shall
prove several other important properties of symmetric positive-definite matrices
and show an interesting application to curve fitting by a least-squares approxima-
tion.

The first property we prove is perhaps the most basic.

Lemma 28.9
Any positive-definite matrix is nonsingular.

Proof Suppose that a matrixA is singular. Then by Corollary 28.3, there exists a
nonzero vectorx such thatAx = 0. Hence,xT Ax = 0, andA cannot be positive-
definite.

The proof that we can perform LU decomposition on a symmetricpositive-
definite matrixA without dividing by 0 is more involved. We begin by proving
properties about certain submatrices ofA. Define thekth leading submatrixof A
to be the matrixAk consisting of the intersection of the firstk rows and firstk
columns ofA.

Lemma 28.10
If A is a symmetric positive-definite matrix, then every leadingsubmatrix ofA is
symmetric and positive-definite.

Proof That each leading submatrixAk is symmetric is obvious. To prove thatAk

is positive-definite, we assume that it is not and derive a contradiction. If Ak is not
positive-definite, then there exists a size-k vectorxk 6= 0 such thatxT

k Akxk ≤ 0.
Letting A ben × n, we define the size-n vectorx = (xT

k 0)T, where there are
n− k 0’s following xk. Then we have

xT Ax = (xT
k 0)

(
Ak BT

B C

)(
xk

0

)

= (xT
k 0)

(
Akxk

Bxk

)

= xT
k Akxk

≤ 0 ,

which contradictsA being positive-definite.

28.5 Symmetric positive-definite matrices and least-squares approximation 761

We now turn to some essential properties of the Schur complement. LetA be a
symmetric positive-definite matrix, and letAk be a leadingk × k submatrix ofA.
Partition A as

A =
(

Ak BT

B C

)
. (28.28)

We generalize definition (28.23) to define theSchur complementof A with respect
to Ak as

S= C − B A−1
k BT . (28.29)

(By Lemma 28.10,Ak is symmetric and positive-definite; therefore,A−1
k exists by

Lemma 28.9, andS is well defined.) Note that our earlier definition (28.23) of the
Schur complement is consistent with definition (28.29), by lettingk = 1.

The next lemma shows that the Schur-complement matrices of symmetric pos-
itive-definite matrices are themselves symmetric and positive-definite. This result
was used in Theorem 28.8, and its corollary is needed to provethe correctness of
LU decomposition for symmetric positive-definite matrices.

Lemma 28.11 (Schur complement lemma)
If A is a symmetric positive-definite matrix andAk is a leadingk × k submatrix
of A, then the Schur complement ofA with respect toAk is symmetric and positive-
definite.

Proof BecauseA is symmetric, so is the submatrixC. By Exercise 28.1-8, the
productB A−1

k BT is symmetric, and by Exercise 28.1-1,S is symmetric.
It remains to show thatS is positive-definite. Consider the partition ofA given in

equation (28.28). For any nonzero vectorx, we havexT Ax > 0 by the assumption
that A is positive-definite. Let us breakx into two subvectorsy andz compatible
with Ak andC, respectively. BecauseA−1

k exists, we have

xT Ax = (yT zT)

(
Ak BT

B C

)(
y
z

)

= (yT zT)

(
Ak y+ BTz
By+ Cz

)

= yT Ak y+ yTBTz+ zTBy+ zTCz

= (y+ A−1
k BTz)T Ak(y+ A−1

k BTz)+ zT(C − B A−1
k BT)z , (28.30)

by matrix magic. (Verify by multiplying through.) This lastequation amounts to
“completing the square” of the quadratic form. (See Exercise 28.5-2.)

SincexT Ax > 0 holds for any nonzerox, let us pick any nonzeroz and then
choosey = −A−1

k BTz, which causes the first term in equation (28.30) to vanish,
leaving

762 Chapter 28 Matrix Operations

zT(C − B A−1
k BT)z= zTSz

as the value of the expression. For anyz 6= 0, we therefore havezTSz= xT Ax > 0,
and thusS is positive-definite.

Corollary 28.12
LU decomposition of a symmetric positive-definite matrix never causes a division
by 0.

Proof Let A be a symmetric positive-definite matrix. We shall prove something
stronger than the statement of the corollary: every pivot isstrictly positive. The first
pivot isa11. Let e1 be the first unit vector, from which we obtaina11 = eT

1 Ae1 > 0.
Since the first step of LU decomposition produces the Schur complement ofA
with respect toA1 = (a11), Lemma 28.11 implies that all pivots are positive by
induction.

Least-squares approximation

Fitting curves to given sets of data points is an important application of symmetric
positive-definite matrices. Suppose that we are given a set of m data points

(x1, y1), (x2, y2), . . . , (xm, ym) ,

where theyi are known to be subject to measurement errors. We would like to
determine a functionF(x) such that the approximation errors

ηi = F(xi)− yi , (28.31)

are small fori = 1, 2, . . . , m. The form of the functionF depends on the problem
at hand. Here, we assume that it has the form of a linearly weighted sum,

F(x) =
n∑

j=1

c j f j (x) ,

where the number of summandsn and the specificbasis functions f j are chosen
based on knowledge of the problem at hand. A common choice isf j (x) = x j−1,
which means that

F(x) = c1+ c2x + c3x2 + · · · + cnxn−1

is a polynomial of degreen− 1 in x.
By choosingn = m, we can calculate eachyi exactlyin equation (28.31). Such

a high-degreeF “fits the noise” as well as the data, however, and generally gives
poor results when used to predicty for previously unseen values ofx. It is usu-
ally better to choosen significantly smaller thanm and hope that by choosing the

28.5 Symmetric positive-definite matrices and least-squares approximation 763

coefficientsc j well, we can obtain a functionF that finds the significant patterns
in the data points without paying undue attention to the noise. Some theoretical
principles exist for choosingn, but they are beyond the scope of this text. In any
case, oncen is chosen, we end up with an overdetermined set of equations whose
solution we wish to approximate. We now show how this can be done.

Let

A =

f1(x1) f2(x1) . . . fn(x1)

f1(x2) f2(x2) . . . fn(x2)
...

...
. . .

...

f1(xm) f2(xm) . . . fn(xm)

denote the matrix of values of the basis functions at the given points; that is,
ai j = f j (xi). Let c = (ck) denote the desired size-n vector of coefficients. Then,

Ac =

f1(x1) f2(x1) . . . fn(x1)

f1(x2) f2(x2) . . . fn(x2)
...

...
. . .

...

f1(xm) f2(xm) . . . fn(xm)

c1

c2
...

cn

=

F(x1)

F(x2)
...

F(xm)

is the size-m vector of “predicted values” fory. Thus,

η = Ac− y

is the size-m vector ofapproximation errors.
To minimize approximation errors, we choose to minimize thenorm of the error

vectorη, which gives us aleast-squares solution, since

‖η‖ =
(

m∑

i=1

η2
i

)1/2

.

Since

‖η‖2 = ‖Ac− y‖2 =
m∑

i=1

(
n∑

j=1

ai j c j − yi

)2

,

we can minimize‖η‖ by differentiating‖η‖2 with respect to eachck and then
setting the result to 0:

764 Chapter 28 Matrix Operations

d ‖η‖2

dck
=

m∑

i=1

2

(
n∑

j=1

ai j c j − yi

)
aik = 0 . (28.32)

The n equations (28.32) fork = 1, 2, . . . , n are equivalent to the single matrix
equation

(Ac− y)T A = 0

or, equivalently (using Exercise 28.1-2), to

AT(Ac− y) = 0 ,

which implies

AT Ac= AT y . (28.33)

In statistics, this is called thenormal equation. The matrix AT A is symmetric
by Exercise 28.1-2, and ifA has full column rank, then by Theorem 28.6,AT A
is positive-definite as well. Hence,(AT A)−1 exists, and the solution to equa-
tion (28.33) is

c = ((AT A)−1 AT) y

= A+y , (28.34)

where the matrixA+ = ((AT A)−1 AT) is called thepseudoinverseof the matrixA.
The pseudoinverse is a natural generalization of the notionof a matrix inverse to
the case in whichA is nonsquare. (Compare equation (28.34) as the approximate
solution toAc= y with the solutionA−1b as the exact solution toAx = b.)

As an example of producing a least-squares fit, suppose that we have five data
points

(x1, y1) = (−1, 2) ,

(x2, y2) = (1, 1) ,

(x3, y3) = (2, 1) ,

(x4, y4) = (3, 0) ,

(x5, y5) = (5, 3) ,

shown as black dots in Figure 28.3. We wish to fit these points with a quadratic
polynomial

F(x) = c1+ c2x + c3x2 .

We start with the matrix of basis-function values

A =

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

1 x4 x2
4

1 x5 x2
5

=

1 −1 1

1 1 1

1 2 4

1 3 9

1 5 25

,

28.5 Symmetric positive-definite matrices and least-squares approximation 765

0.5

1.0

1.5

2.0

2.5

3.0

0.0
1 2 3 4 50–1–2

x

y

F(x) = 1.2 – 0.757x + 0.214x2

Figure 28.3 The least-squares fit of a quadratic polynomial to the set of five data points
{(−1, 2), (1, 1), (2, 1), (3, 0), (5, 3)}. The black dots are the data points, and the white dots are
their estimated values predicted by the polynomialF(x) = 1.2− 0.757x + 0.214x2, the quadratic
polynomial that minimizes the sum of the squared errors. Theerror for each data point is shown as a
shaded line.

whose pseudoinverse is

A+ =

0.500 0.300 0.200 0.100 −0.100
−0.388 0.093 0.190 0.193 −0.088

0.060 −0.036 −0.048 −0.036 0.060

 .

Multiplying y by A+, we obtain the coefficient vector

c =

1.200
−0.757

0.214

 ,

which corresponds to the quadratic polynomial

F(x) = 1.200− 0.757x + 0.214x2

as the closest-fitting quadratic to the given data, in a least-squares sense.
As a practical matter, we solve the normal equation (28.33) by multiplying y

by AT and then finding an LU decomposition ofAT A. If A has full rank, the
matrix AT A is guaranteed to be nonsingular, because it is symmetric andpositive-
definite. (See Exercise 28.1-2 and Theorem 28.6.)

766 Chapter 28 Matrix Operations

Exercises

28.5-1
Prove that every diagonal element of a symmetric positive-definite matrix is posi-
tive.

28.5-2

Let A =
(

a b
b c

)
be a 2× 2 symmetric positive-definite matrix. Prove that its

determinantac− b2 is positive by “completing the square” in a manner similar to
that used in the proof of Lemma 28.11.

28.5-3
Prove that the maximum element in a symmetric positive-definite matrix lies on
the diagonal.

28.5-4
Prove that the determinant of each leading submatrix of a symmetric positive-
definite matrix is positive.

28.5-5
Let Ak denote thekth leading submatrix of a symmetric positive-definite matrix A.
Prove that det(Ak)/ det(Ak−1) is thekth pivot during LU decomposition, where by
convention det(A0) = 1.

28.5-6
Find the function of the form

F(x) = c1+ c2x lg x + c3ex

that is the best least-squares fit to the data points

(1, 1), (2, 1), (3, 3), (4, 8) .

28.5-7
Show that the pseudoinverseA+ satisfies the following four equations:

AA+A = A ,

A+AA+ = A+ ,

(AA+)T = AA+ ,

(A+A)T = A+A .

Problems for Chapter 28 767

Problems

28-1 Tridiagonal systems of linear equations
Consider the tridiagonal matrix

A =

1 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

.

a. Find an LU decomposition ofA.

b. Solve the equationAx = (1 1 1 1 1)
T

by using forward and back sub-
stitution.

c. Find the inverse ofA.

d. Show that for anyn × n symmetric positive-definite, tridiagonal matrixA and
anyn-vectorb, the equationAx = b can be solved inO(n) time by perform-
ing an LU decomposition. Argue that any method based on forming A−1 is
asymptotically more expensive in the worst case.

e. Show that for anyn× n nonsingular, tridiagonal matrixA and anyn-vectorb,
the equationAx = b can be solved inO(n) time by performing an LUP de-
composition.

28-2 Splines
A practical method for interpolating a set of points with a curve is to usecubic
splines. We are given a set{(xi , yi) : i = 0, 1, . . . , n} of n + 1 point-value pairs,
wherex0 < x1 < · · · < xn. We wish to fit a piecewise-cubic curve (spline)f (x)

to the points. That is, the curvef (x) is made up ofn cubic polynomialsfi (x) =
ai + bi x + ci x2 + di x3 for i = 0, 1, . . . , n − 1, where if x falls in the range
xi ≤ x ≤ xi+1, then the value of the curve is given byf (x) = f i (x − xi). The
points xi at which the cubic polynomials are “pasted” together are called knots.
For simplicity, we shall assume thatxi = i for i = 0, 1, . . . , n.

To ensure continuity off (x), we require that

f (xi) = fi (0) = yi ,

f (xi+1) = fi (1) = yi+1

for i = 0, 1, . . . , n − 1. To ensure thatf (x) is sufficiently smooth, we also insist
that there be continuity of the first derivative at each knot:

768 Chapter 28 Matrix Operations

f ′(xi+1) = f ′i (1) = f ′i+1(0)

for i = 0, 1, . . . , n− 2.

a. Suppose that fori = 0, 1, . . . , n, we are given not only the point-value pairs
{(xi , yi)} but also the first derivativesDi = f ′(xi) at each knot. Express each
coefficientai , bi , ci , anddi in terms of the valuesyi , yi+1, Di , andDi+1. (Re-
member thatxi = i .) How quickly can the 4n coefficients be computed from
the point-value pairs and first derivatives?

The question remains of how to choose the first derivatives off (x) at the knots.
One method is to require the second derivatives to be continuous at the knots:

f ′′(xi+1) = f ′′i (1) = f ′′i+1(0)

for i = 0, 1, . . . , n − 2. At the first and last knots, we assume thatf ′′(x0) =
f ′′0 (0) = 0 and f ′′(xn) = f ′′n−1(1) = 0; these assumptions makef (x) a natural
cubic spline.

b. Use the continuity constraints on the second derivative to show that for i =
1, 2, . . . , n− 1,

Di−1 + 4Di + Di+1 = 3(yi+1 − yi−1) . (28.35)

c. Show that

2D0+ D1 = 3(y1− y0) , (28.36)

Dn−1+ 2Dn = 3(yn − yn−1) . (28.37)

d. Rewrite equations (28.35)–(28.37) as a matrix equation involving the vector
D = 〈D0, D1, . . . , Dn〉 of unknowns. What attributes does the matrix in your
equation have?

e. Argue that a set ofn + 1 point-value pairs can be interpolated with a natural
cubic spline inO(n) time (see Problem 28-1).

f. Show how to determine a natural cubic spline that interpolates a set ofn + 1
points(xi , yi) satisfyingx0 < x1 < · · · < xn, even whenxi is not necessarily
equal toi . What matrix equation must be solved, and how quickly does your
algorithm run?

Chapter notes

There are many excellent texts available that describe numerical and scientific com-
putation in much greater detail than we have room for here. The following are espe-

Notes for Chapter 28 769

cially readable: George and Liu [113], Golub and Van Loan [125], Press, Flannery,
Teukolsky, and Vetterling [248, 249], and Strang [285, 286].

Golub and Van Loan [125] discuss numerical stability. They show why det(A)

is not necessarily a good indicator of the stability of a matrix A, proposing instead
to use‖A‖∞ ‖A−1‖∞, where‖A‖∞ = max1≤i≤n

∑n
j=1 |ai j |. They also address the

question of how to compute this value without actually computing A−1.
The publication of Strassen’s algorithm in 1969 [287] caused much excitement.

Before then, it was hard to imagine that the naive algorithm could be improved
upon. The asymptotic upper bound on the difficulty of matrix multiplication has
since been considerably improved. The most asymptoticallyefficient algorithm for
multiplying n × n matrices to date, due to Coppersmith and Winograd [70], has
a running time ofO(n2.376). The graphical presentation of Strassen’s algorithm is
due to Paterson [238].

Gaussian elimination, upon which the LU and LUP decompositions are based,
was the first systematic method for solving linear systems ofequations. It was
also one of the earliest numerical algorithms. Although it was known earlier, its
discovery is commonly attributed to C. F. Gauss (1777–1855). In his famous pa-
per [287], Strassen also showed that ann × n matrix can be inverted inO(nlg 7)

time. Winograd [317] originally proved that matrix multiplication is no harder than
matrix inversion, and the converse is due to Aho, Hopcroft, and Ullman [5].

Another important matrix decomposition is thesingular value decomposition,
or SVD. In the SVD, anm× n matrix A is factored intoA = Q16QT

2 , where6
is anm× n matrix with nonzero values only on the diagonal,Q1 is m× m with
mutually orthonormal columns, andQ2 is n × n, also with mutually orthonormal
columns. Two vectors areorthonormal if their inner product is 0 and each vector
has a norm of 1. The books by Strang [285, 286] and Golub and VanLoan [125]
contain good treatments of the SVD.

Strang [286] has an excellent presentation of symmetric positive-definite matri-
ces and of linear algebra in general.

