26

Maximum Flow

Just as we can model a road map as a directed graph in ordedtthéirshortest
path from one point to another, we can also interpret a dicegraph as a “flow
network” and use it to answer questions about material fldwisigine a material
coursing through a system from a source, where the matenqmbduced, to a sink,
where itis consumed. The source produces the material & staady rate, and the
sink consumes the material at the same rate. The “flow” of taeeral at any point
in the system is intuitively the rate at which the materialvem Flow networks
can be used to model liquids flowing through pipes, partsuigfincoassembly lines,
current through electrical networks, information throwggfmmunication networks,
and so forth.

Each directed edge in a flow network can be thought of as a dofaiuthe
material. Each conduit has a stated capacity, given as aimaxirate at which
the material can flow through the conduit, such as 200 galdrisjuid per hour
through a pipe or 20 amperes of electrical current throughira.wWertices are
conduit junctions, and other than the source and sink, maafitwws through the
vertices without collecting in them. In other words, theerat which material enters
a vertex must equal the rate at which it leaves the vertex. alVghis property “flow
conservation,” and it is equivalent to Kirchhoff's Currérsw when the material is
electrical current.

In the maximum-flow problem, we wish to compute the greatat at which
material can be shipped from the source to the sink withaalating any capacity
constraints. It is one of the simplest problems concerniog fietworks and, as
we shall see in this chapter, this problem can be solved bgiaifi algorithms.
Moreover, the basic techniques used in maximum-flow algarit can be adapted
to solve other network-flow problems.

This chapter presents two general methods for solving thérman-flow prob-
lem. Section 26.1 formalizes the notions of flow networks #odis, formally
defining the maximum-flow problem. Section 26.2 describescthssical method
of Ford and Fulkerson for finding maximum flows. An applicatof this method,
finding a maximum matching in an undirected bipartite graghgiven in Sec-

644

Chapter 26 Maximum Flow

tion 26.3. Section 26.4 presents the push-relabel methbidhvinderlies many of
the fastest algorithms for network-flow problems. SectiérbZovers the “relabel-
to-front” algorithm, a particular implementation of thegturelabel method that
runs in timeO(V?). Although this algorithm is not the fastest algorithm known
it illustrates some of the techniques used in the asympibtitastest algorithms,
and it is reasonably efficient in practice.

26.1 Flow networks

In this section, we give a graph-theoretic definition of flostworks, discuss their
properties, and define the maximum-flow problem preciselye al¢o introduce
some helpful notation.

Flow networks and flows

A flow networkG = (V, E) is a directed graph in which each edge») € E has
a nonnegativeeapacityc(u,») > 0. If (u,0) € E, we assume that(u, v) = 0.
We distinguish two vertices in a flow network:saurces and asink t. For conve-
nience, we assume that every vertex lies on some path frosotimee to the sink.
That is, for every vertex € V, there is a patls ~ » ~» t. The graph is therefore
connected, antE| > |V| — 1. Figure 26.1 shows an example of a flow network.

We are now ready to define flows more formally. l&t= (V, E) be a flow
network with a capacity function. Lets be the source of the network, and tdie
the sink. Aflowin G is a real-valued functiorf : V x V — R that satisfies the
following three properties:

Capacity constraint: For allu,» € V, we requiref (u,») < c(u, »).
Skew symmetry: For allu,» € V, we requiref (u,») = —f (v, u).
Flow conservation: Forallu € V — {s, t}, we require

> fu,0)=0.

veV

The quantity f (u,), which can be positive, zero, or negative, is called fthes
from vertexu to vertexo. Thevalueof a flow f is defined as

1f1=>"f(s0), (26.1)
veV

that is, the total flow out of the source. (Here, tHenotation denotes flow value,
not absolute value or cardinality.) In tmeaximum-flow problem we are given a

26.1 Flow networks 645

Edmonton Saskatoon

(a2
Vancouver 1% <0 Winnipeg
iy e
13 I
14 @

Calgary Regina
(a) (b)

Figure 26.1 (a)A flow network G = (V, E) for the Lucky Puck Company’s trucking problem.
The Vancouver factory is the sourseand the Winnipeg warehouse is the sinfucks are shipped
through intermediate cities, but ontyu, ») crates per day can go from cityto city ». Each edge is
labeled with its capacity(b) A flow f in G with value| f| = 19. Only positive flows are shown. If
f(u,v) > 0, edge(u, v) is labeled byf (u, v)/c(u, v). (The slash notation is used merely to separate
the flow and capacity; it does not indicate division.)fu, v) < 0, edge(u, v) is labeled only by its
capacity.

flow network G with sources and sinkt, and we wish to find a flow of maximum
value.

Before seeing an example of a network-flow problem, let usflyriexplore the
three flow properties. The capacity constraint simply sags the flow from one
vertex to another must not exceed the given capacity. Skemmstry is a no-
tational convenience that says that the flow from a veudr a vertexo is the
negative of the flow in the reverse direction. The flow-cowagon property says
that the total flow out of a vertex other than the source or $nk. By skew
symmetry, we can rewrite the flow-conservation property as

> fu,0)=0
ueV
forallo € V — {s, t}. That s, the total flow into a vertex is 0.

When neitheKu, v) nor (v, u) is in E, there can be no flow betweerandv, and
f(u,v) = f(v,u) = 0. (Exercise 26.1-1 asks you to prove this property formpally
Our last observation concerning the flow properties death flows that are

positive. Thetotal positive flonentering a vertex is defined by

> tu). (26.2)
ueV
f(u,0)>0
The total positive flow leaving a vertex is defined symmeltycaWe define the
total net flowat a vertex to be the total positive flow leaving a vertex mithes

total positive flow entering a vertex. One interpretationttod flow-conservation
property is that the total positive flow entering a vertexestthan the source or

646

Chapter 26 Maximum Flow

sink must equal the total positive flow leaving that vertexisiproperty, that the
total net flow at a vertex must equal 0, is often informallyereéd to as “flow in
equals flow out.”

An example of flow

A flow network can model the trucking problem shown in Figu&lZa). The
Lucky Puck Company has a factory (soursein Vancouver that manufactures
hockey pucks, and it has a warehouse ($)ik Winnipeg that stocks them. Lucky
Puck leases space on trucks from another firm to ship the duaksthe factory
to the warehouse. Because the trucks travel over specifidgdsgedges) between
cities (vertices) and have a limited capacity, Lucky Pudk ship at most(u, v)
crates per day between each pair of citieando in Figure 26.1(a). Lucky Puck
has no control over these routes and capacities and so calterthe flow network
shown in Figure 26.1(a). Their goal is to determine the Istrgemberp of crates
per day that can be shipped and then to produce this amonog, thiere is no point
in producing more pucks than they can ship to their warehduseky Puck is not
concerned with how long it takes for a given puck to get from factory to the
warehouse; they care only thatcrates per day leave the factory apdrates per
day arrive at the warehouse.

On the surface, it seems appropriate to model the “flow” opstants with a
flow in this network because the number of crates shipped @gifrdm one city
to another is subject to a capacity constraint. Additigndlbw conservation must
be obeyed, for in a steady state, the rate at which pucks antgtermediate city
must equal the rate at which they leave. Otherwise, crategdneccumulate at
intermediate cities.

There is one subtle difference between shipments and flosvgever. Lucky
Puck may ship pucks from Edmonton to Calgary, and they may stiip pucks
from Calgary to Edmonton. Suppose that they ship 8 cratedapefrom Edmonton
(v1 in Figure 26.1) to Calgaryg) and 3 crates per day from Calgary to Edmonton.
It may seem natural to represent these shipments directiiplyg, but we cannot.
The skew-symmetry constraint requires tHab,, v2) = — f (vy, v1), but this is
clearly not the case if we considéi(v,, v2) = 8 andf (v2, v1) = 3.

Lucky Puck may realize that it is pointless to ship 8 cratasiag from Edmon-
ton to Calgary and 3 crates from Calgary to Edmonton, whendbald achieve the
same net effect by shipping 5 crates from Edmonton to CalgadyO crates from
Calgary to Edmonton (and presumably use fewer resourcég iprocess). We rep-
resent this latter scenario with a flow: we hak@,, v,) = 5 and f (v,, v1) = —5.

In effect, 3 of the 8 crates per day from to v, arecanceledby 3 crates per day
fromov, tovy.

26.1 Flow networks 647

In general, cancellation allows us to represent the shiperiggtween two cities
by a flow that is positive along at most one of the two edges éetwthe corre-
sponding vertices. That is, any situation in which pucksshipped in both direc-
tions between two cities can be transformed using caniwlléto an equivalent
situation in which pucks are shipped in one direction orti direction of positive
flow.

Given a flow f that arose from, say, physical shipments, we cannot recmist
the exact shipments. If we know thé&{u, v) = 5, this flow may be because 5
units were shipped from to v, or it may be because 8 units were shipped from
to » and 3 units were shipped fromto u. Typically, we shall not care how the
actual physical shipments are set up; for any pair of vestieee care only about
the net amount that travels between them. If we do care albeutihderlying
shipments, then we should be using a different model, onedltains information
about shipments in both directions.

Cancellation will arise implicitly in the algorithms in thichapter. Suppose that
edge(u, ») has a flow value off (u, v). In the course of an algorithm, we may
increase the flow on edde, u) by some amound. Mathematically, this operation
must decreasd (u, ») by d and, conceptually, we can think of thedeunits as
cancelingd units of flow that are already on edge, v).

Networks with multiple sources and sinks

A maximum-flow problem may have several sources and sinkberdahan just
one of each. The Lucky Puck Company, for example, might dgthave a set
of m factories{s;, S, ..., Sn} and a set oh warehouse$t;, to, . .., t,}, as shown
in Figure 26.2(a). Fortunately, this problem is no hardantirdinary maximum
flow.

We can reduce the problem of determining a maximum flow in woet with
multiple sources and multiple sinks to an ordinary maximflma+ problem. Fig-
ure 26.2(b) shows how the network from (a) can be convertethtordinary flow
network with only a single source and a single sink. We addersources and
add a directed edges, 5) with capacityc(s,s) = oo foreachi = 1,2,..., m.
We also create a newupersinkt and add a directed eddg, t) with capacity
c(tj,t) = oo for eachi = 1,2,...,n. Intuitively, any flow in the network in (a)
corresponds to a flow in the network in (b), and vice versa. Jihgle sources
simply provides as much flow as desired for the multiple sesisc, and the sin-
gle sinkt likewise consumes as much flow as desired for the multiplissin
Exercise 26.1-3 asks you to prove formally that the two prois are equivalent.

648 Chapter 26 Maximum Flow

=

D
N) @
)
L) RO
20 20
g
1 (4
(=) o) :
2o 2o
7

(@ (b)

Figure 26.2 Converting a multiple-source, multiple-sink maximum-flgnoblem into a problem
with a single source and a single sir(a) A flow network with five source$ = {1, %, S3, S4, S5}
and three sink§ = {t1, to, t3}. (b) An equivalent single-source, single-sink flow network. \tld a
supersourcs and an edge with infinite capacity frosto each of the multiple sources. We also add
a supersink and an edge with infinite capacity from each of the multipfksitot.

Working with flows

We shall be dealing with several functions (likg that take as arguments two
vertices in a flow network. In this chapter, we shall useiraplicit summation
notation in which either argument, or both, may besat of vertices, with the
interpretation that the value denoted is the sum of all fdssivays of replacing
the arguments with their members. For exampleXiandY are sets of vertices,
then

FXY) =D f(x,y).

xeX yeY
Thus, the flow-conservation constraint can be expressedesdndition that
f(uuV)=0forallu € V — {s,t}. Also, for convenience, we shall typically
omit set braces when they would otherwise be used in the éhplimmation no-
tation. For example, in the equatidr(s, V —s) = f (s, V), the termV — smeans
the setV — {s}.

26.1 Flow networks 649

The implicit summation notation often simplifies equatiimslving flows. The
following lemma, whose proof is left as Exercise 26.1-4,taegs several of the
most commonly occurring identities that involve flows and implicit summation
notation.

Lemma 26.1
Let G = (V, E) be a flow network, and lef be a flow inG. Then the following
equalities hold:

1. ForallX C V, we havef (X, X) =0.
2. ForallX,Y C V,we havef (X,Y) = —f(Y, X).

3. ForallX,Y,Z € V with XNY = ¢, we have the sumg(X U Y, Z) =
f(X,2)+ f(Y,2)andf(Z, XUY) = f(Z, X)+ f(Z,Y). n

As an example of working with the implicit summation notatiave can prove
that the value of a flow is the total flow into the sink; that is,

1] = f(V,1). (26.3)

Intuitively, we expect this property to hold. By flow consation, all vertices other
than the source and sink have equal amounts of total pogitweentering and
leaving. The source has, by definition, a total net flow thgtéater than 0; that is,
more positive flow leaves the source than enters it. Symoadyj the sink is the
only vertex that can have a total net flow that is less than &t i) more positive
flow enters the sink than leaves it. Our formal proof goes Hs\vis:

[f| = f(s,V) (by definition)
= f(V,V)—- f(V—-5sV) (by Lemma 26.1, part (3))
= —f(V-5sV) (by Lemma 26.1, part (1))
= f(V,V-5) (by Lemma 26.1, part (2))
= f(V,0)+ f(V,V —s—1t) (byLemma 26.1, part (3))
f(V,1) (by flow conservation) .

Later in this chapter, we shall generalize this result (Let6.5).

Exercises

26.1-1
Using the definition of a flow, prove that {fu,») ¢ E and (v,u) ¢ E then
f(u,v) = f(o,u) =0.

26.1-2
Prove that for any vertex other than the source or sink, the total positive flow
enteringo must equal the total positive flow leaving

650

Chapter 26 Maximum Flow

26.1-3

Extend the flow properties and definitions to the multiplerse, multiple-sink
problem. Show that any flow in a multiple-source, multipieksflow network
corresponds to a flow of identical value in the single-sousiegle-sink network
obtained by adding a supersource and a supersink, and visa. ve

26.1-4
Prove Lemma 26.1. You should not need to use flow conservatigaur proof.

26.1-5

For the flow networkG = (V, E) and flow f shown in Figure 26.1(b), find a pair
of subsetsX,Y C V for which f(X,Y) = —f(V — X,Y). Then, find a pair of
subsetsX, Y C V for which f(X,Y) # —f(V — X, Y).

26.1-6
Given a flow networkG = (V, E), let f; and f, be functions fromV x V to R.
Theflow sum f; + f5 is the function fromV x V to R defined by

(f1+ f2)(u,0) = f1(u,v) + fo(u, v) (26.4)

forallu,o € V. If f; and f, are flows inG, which of the three flow properties
must the flow sunmf, + f; satisfy, and which might it violate?

26.1-7
Let f be a flow in a network, and let be a real number. Thecalar flow product
denotedu f, is a function fromV x V to R defined by

(af)(u,v) =a- f(u,v).

Prove that the flows in a network formcanvex setThat is, show that iff; and f5
are flows, then so igf; + (1 — «) f, for all o in the range < a < 1.

26.1-8
State the maximum-flow problem as a linear-programming lerab

26.1-9

Professor Adam has two children who, unfortunately, desklach other. The prob-
lem is so severe that not only do they refuse to walk to schogéther, but in
fact each one refuses to walk on any block that the other tiifstepped on that
day. The children have no problem with their paths crossing eorner. Fortu-
nately both the professor's house and the school are on rsprbet beyond that
he is not sure if it is going to be possible to send both of hikledn to the same
school. The professor has a map of his town. Show how to fatauhe problem
of determining if both his children can go to the same schea anaximum-flow
problem.

26.2 The Ford-Fulkerson method 651

26.2 The Ford-Fulkerson method

This section presents the Ford-Fulkerson method for sglttie maximum-flow
problem. We call it a “method” rather than an “algorithm” bese it encompasses
several implementations with differing running times. Hwd-Fulkerson method
depends on three important ideas that transcend the metitbdra relevant to
many flow algorithms and problems: residual networks, audgmeg paths, and
cuts. These ideas are essential to the important max-flowcatitheorem (The-
orem 26.7), which characterizes the value of a maximum floteims of cuts of
the flow network. We end this section by presenting one speaifplementation
of the Ford-Fulkerson method and analyzing its running time

The Ford-Fulkerson method is iterative. We start wittu,») = 0 for all
u,v € V, giving an initial flow of value 0. At each iteration, we inase the flow
value by finding an “augmenting path,” which we can think ghgly as a path
from the sources to the sinkt along which we can send more flow, and then aug-
menting the flow along this path. We repeat this process natdugmenting path
can be found. The max-flow min-cut theorem will show that ufgsmination, this
process yields a maximum flow.

FORD-FULKERSON-METHOD(G, s, 1)

initialize flow f to O

2 while there exists an augmenting pgth
3 do augment flowf alongp

4 return f

=

Residual networks

Intuitively, given a flow network and a flow, the residual netlwconsists of edges
that can admit more flow. More formally, suppose that we ha¥leva network
G = (V, E) with sources and sinkt. Let f be a flow inG, and consider a pair of
verticesu, » € V. The amount ofdditional flow we can push fronu to v before
exceeding the capacityu, ») is theresidual capacityof (u, »), given by

ct(u,0) =c(u,v) — f(u,v). (26.5)

For example, ifc(u,») = 16 andf(u,») = 11, then we can increasgé(u, »)

by c¢(u,») =5 units before we exceed the capacity constraint on €dge).
When the flowf (u, v) is negative, the residual capacity(u, ») is greater than
the capacityc(u, 0). For example, ifc(u,v) = 16 andf (u,») = —4, then the
residual capacits (u, v) is 20. We can interpret this situation as follows. There
is a flow of 4 units fronw to u, which we can cancel by pushing a flow of 4 units

652

Chapter 26 Maximum Flow

Figure 26.3 (a)The flow networkG and flow f of Figure 26.1(b).(b) The residual networks ¢
with augmenting pattp shaded; its residual capacity ¢ (p) = ¢ (v2,v3) = 4. (c) The flow
in G that results from augmenting along paitby its residual capacity 4d) The residual network
induced by the flow in (c).

from u to o. We can then push another 16 units fronto v before violating the
capacity constraint on edde, v). We have thus pushed an additional 20 units of
flow, starting with a flowf (u,) = —4, before reaching the capacity constraint.

Given a flow networkG = (V, E) and a flow f, the residual networkof G
induced byf isG; = (V, E¢), where

Er ={(u,v) eV xV:cs(u,o)>0}.

That is, as promised above, each edge of the residual networksidual edge
can admit a flow that is greater than 0. Figure 26.3(a) regbatdow networkG
and flow f of Figure 26.1(b), and Figure 26.3(b) shows the correspundésidual
networkGy+.

The edges irE¢ are either edges i or their reversals. Iff (u,») < c(u,)
for an edgg(u, v) € E, thencs(u,») = c(u,v) — f(u,0) > 0 and(u,v) € E;.
If f(u,0) > 0foranedgdgu,v) € E, thenf(v,u) < 0. In this casect (v, u) =
c(v,u) — f(v,u) > 0, and so(v,u) € E;. If neither (u, ») nor (v, u) appears
in the original network, ther(u,v) = c(v,u) = 0, f(u,») = f(v,u) = 0 (by
Exercise 26.1-1), and; (u,») = c¢ (v, u) = 0. We conclude that an edda, »)
can appear in a residual network only if at least onéugb) and(v, u) appears in
the original network, and thus

IEfl =2 |E|.

26.2 The Ford-Fulkerson method 653

Observe that the residual netwogk; is itself a flow network with capacities
given byc;. The following lemma shows how a flow in a residual networlares
to a flow in the original flow network.

Lemma 26.2

Let G = (V, E) be a flow network with source and sinkt, and letf be a flow
in G. Let G; be the residual network d& induced byf, and letf’ be a flow
in G¢. Then the flow sumf 4 f’ defined by equation (26.4) is a flow & with
value|f + /| = |f|+|f/].

Proof We must verify that skew symmetry, the capacity constraiated flow
conservation are obeyed. For skew symmetry, note that ffor, ale V, we have

(f+ fHu,0) = fu,0)+ f'(u,v)
= —f(,u)— f'(v,u)
= —(f(v,u)+ f'(v,u))
—(f + Y, u).

For the capacity constraints, note thig{u, ») < c¢(u,») for all u,» € V. By
eguation (26.5), therefore,

(f + fH(u,0) = fu,0)+ f'(u,v)
< f@u,o)+(c(u,v)— f(u,v))
= c(u,v).
For flow conservation, note that for alle V — {s, t}, we have

D+ Uy = D (FUo)+ f(u,0)

veV veV
= > fuo)+ > f(uo)
veV veV
0+0
0.

Finally, we have

F+ £ = D(f+ 1))

veV

= Z(f(s, v) + f'(s,0))

veV

= > fsv)+ > f(s0)

veV veV
= |f|+[f]. n

654

Chapter 26 Maximum Flow

Augmenting paths

Given a flow networlG = (V, E) and a flowf, anaugmenting pathp is a simple
path froms to t in the residual networlG;. By the definition of the residual
network, each edgéu, ») on an augmenting path admits some additional positive
flow from u to » without violating the capacity constraint on the edge.

The shaded path in Figure 26.3(b) is an augmenting path tifigethe residual
networkG¢ in the figure as a flow network, we can increase the flow througin e
edge of this path by up to 4 units without violating a capacipstraint, since the
smallest residual capacity on this pathcigv,, v3) = 4. We call the maximum
amount by which we can increase the flow on each edge in an atigig@athp
theresidual capacityof p, given by

ct(p) = min{c¢(u,v) : (u,v)isonp} .
The following lemma, whose proof is left as Exercise 26.2vnakes the above
argument more precise.

Lemma 26.3
LetG = (V, E) be a flow network, leff be a flow inG, and letp be an augmenting
path inG;. Define a functionf, : V x V — R by

ci(p) if (u,v)isonp,

fp(u,0) = ;1 —c¢(p) if (v,u)isonp, (26.6)
0 otherwise
Then, f, is a flow inG¢ with value| fy| = c¢(p) > O. n

The following corollary shows that if we adti, to f, we get another flow il
whose value is closer to the maximum. Figure 26.3(c) shoasgbult of addingf
in Figure 26.3(b) tof from Figure 26.3(a).

Corollary 26.4

Let G = (V, E) be a flow network, letf be a flow inG, and letp be an aug-
menting path inG¢. Let f, be defined as in equation (26.6). Define a func-
tion f":VxV —>Rby f" = f + f,. Then f’is a flow in G with value
[F T =1f1+[fpl > [f].

Proof Immediate from Lemmas 26.2 and 26.3.]

Cuts of flow networks

The Ford-Fulkerson method repeatedly augments the flovgalagmenting paths
until a maximum flow has been found. The max-flow min-cut tkear which

26.2 The Ford-Fulkerson method 655

Figure 26.4 A cut (S, T) in the flow network of Figure 26.1(b), wher® = {s, 01,02} and
T = {v3,v4,t}. The vertices inS are black, and the vertices il are white. The net flow
acrosqS, T)is f(S, T) = 19, and the capacity &S, T) = 26.

we shall prove shortly, tells us that a flow is maximum if andiydhits residual
network contains no augmenting path. To prove this theotieough, we must first
explore the notion of a cut of a flow network.

A cut (S, T) of flow network G = (V, E) is a partition ofV into S and
T =V — Ssuch thats € Sandt € T. (This definition is similar to the defi-
nition of “cut” that we used for minimum spanning trees in @tea 23, except that
here we are cutting a directed graph rather than an undiaregtgph, and we insist
thats € Sandt € T.) If f is a flow, then thenet flow across the cufS, T) is
defined to bef (S, T). Thecapacityof the cut(S, T) isc(S, T). A minimum cut
of a network is a cut whose capacity is minimum over all cutthefnetwork.

Figure 26.4 shows the cuts, v1, v2}, {v3, v4, t}) in the flow network of Fig-
ure 26.1(b). The net flow across this cut is

f(v1,03) + T(02,03) + f(v2,04) = 12+ (-4 +11
= 109,

and its capacity is

C(v1, 03) + C(v2,04) = 12414
26.

Observe that the net flow across a cut can include negative thetween vertices,
but that the capacity of a cut is composed entirely of nontieg&alues. In other
words, the net flow across a o, T) consists of positive flows in both directions;
positive flow fromSto T is added while positive flow fronT to Sis subtracted.
On the other hand, the capacity of a ¢& T) is computed only from edges go-
ing from Sto T. Edges going fron to S are not included in the computation
ofc(S, T).

The following lemma shows that the net flow across any cutésstime, and it
equals the value of the flow.

656

Chapter 26 Maximum Flow

Lemma 26.5
Let f be a flow in a flow networlG with sources and sinkt, and let(S, T) be a
cut of G. Then the net flow acrogs, T) is f(S, T) = | f].

Proof Noting thatf (S—s, V) = 0 by flow conservation, we have

f(ST) = f(SV)- (S 9 (by Lemma 26.1, part (3))
= f(SV) (by Lemma 26.1, part (1))
= f(s,V)+ f(S—s,V) (byLemma 26.1, part (3))
= f(s,V) (sincef(S—s,V)=0)
[f] . |

An immediate corollary to Lemma 26.5 is the result we provadier—equa-
tion (26.3)—that the value of a flow is the total flow into thalsi

Another corollary to Lemma 26.5 shows how cut capacitiesbeansed to bound
the value of a flow.

Corollary 26.6
The value of any flowf in a flow networkG is bounded from above by the capacity
of any cut ofG.

Proof Let (S, T) be any cut ofG and letf be any flow. By Lemma 26.5 and the
capacity constraints,

Il = f(ST)

= ZZf(u,v)

ueS veT

> > cu,v)

ueS veT

= ¢(ST). -

IA

An immediate consequence of Corollary 26.6 is that the mawrinflow in a
network is bounded above by the capacity of a minimum cut efristwork. The
important max-flow min-cut theorem, which we now state ara/ey says that the
value of a maximum flow is in fact equal to the capacity of a mumn cut.

26.2 The Ford-Fulkerson method 657

Theorem 26.7 (Max-flow min-cut theorem)
If fis aflowin a flow networkG = (V, E) with sources and sinkt, then the
following conditions are equivalent:

1. fis amaximum flow inG.
2. The residual networls ¢ contains no augmenting paths.
3. |f] =c(S, T)forsome cut(S, T) of G.

Proof (1) = (2): Suppose for the sake of contradiction tHais a maximum
flow in G but thatG ; has an augmenting path Then, by Corollary 26.4, the flow
sum f + f,, wheref, is given by equation (26.6), is a flow & with value strictly
greater than f |, contradicting the assumption thhtis a maximum flow.

(2) = (3): Suppose thas ¢ has no augmenting path, that is, tiéa contains
no path froms tot. Define

S={v € V : there exists a path fromto v in G}

andT =V — S. The patrtition(S, T) is a cut: we have € Strivially andt ¢ Sbe-
cause there is no path frostot in G¢. For each pair of vertices ando such that
u e Sando € T, we havef (u,») = c(u, »), since otherwisdu,) € E¢, which
would placev in setS. By Lemma 26.5, thereforef| = f(S, T) =c(S, T).

(3) = (1): By Corollary 26.6,| f| < ¢(S, T) for all cuts(S, T). The condition
| f| =c(S, T) thus implies thatf is a maximum flow. [

The basic Ford-Fulkerson algorithm

In each iteration of the Ford-Fulkerson method, we Sotheaugmenting patip
and increase the flow on each edge op by the residual capacitg; (p). The
following implementation of the method computes the maximflow in a graph

G = (V, E) by updating the flowf [u, v] between each pair, v of vertices that
are connected by an edgéf u andv are not connected by an edge in either direc-
tion, we assume implicitly that[u, »] = 0. The capacities(u, v) are assumed
to be given along with the graph, amgu,v) = 0 if (u,») ¢ E. The residual
capacitycs (u, v) is computed in accordance with the formula (26.5). The es¢pre
sionct (p) in the code is actually just a temporary variable that sttliesesidual
capacity of the patip.

Iwe use square brackets when we treat an identifier—sudh-aas a mutable field, and we use
parentheses when we treat it as a function.

658

Chapter 26 Maximum Flow

FORD-FULKERSON(G, s, 1)

1 for each edgéu, v) € E[G]
do flu,0] < 0O
flo,u] < O
while there exists a patp from stot in the residual networks ¢
docs(p) < min{cs¢(u,») : (u,v) isin p}
for each edgé€u, ») in p
do f[u,v] < f[u,o] +cs(p)
flo,u] < —f[u,v]

coO~NO UL WN

The FORD-FULKERSON algorithm simply expands on theoRD-FULKERSON-

METHOD pseudocode given earlier. Figure 26.5 shows the resultatf garation
in a sample run. Lines 1-3 initialize the flovto 0. Thewhile loop of lines 4-8
repeatedly finds an augmenting pgthin G and augments flowf along p by
the residual capacitgs (p). When no augmenting paths exist, the fldwis a
maximum flow.

Analysis of Ford-Fulkerson

The running time of BRD-FULKERSON depends on how the augmenting path
in line 4 is determined. If it is chosen poorly, the algoritimight not even termi-
nate: the value of the flow will increase with successive agnfations, but it need
not even converge to the maximum flow vafu#.the augmenting path is chosen
by using a breadth-first search (which we saw in Section 2B@yever, the algo-
rithm runs in polynomial time. Before proving this resulpviever, we obtain a
simple bound for the case in which the augmenting path iseshasbitrarily and
all capacities are integers.

Most often in practice, the maximum-flow problem arises viittegral capaci-
ties. If the capacities are rational numbers, an apprapsatling transformation
can be used to make them all integral. Under this assumpi@traightforward
implementation of BRD-FULKERSON runs in timeO(E | f*|), where f* is the
maximum flow found by the algorithm. The analysis is as foBowines 1-3 take
time ® (E). Thewhile loop of lines 4-8 is executed at mddt*| times, since the
flow value increases by at least one unit in each iteration.

The work done within thevhile loop can be made efficient if we efficiently
manage the data structure used to implement the net®osk (V, E). Let us as-
sume that we keep a data structure corresponding to a dirgc@hG’ = (V, E'),
whereE’ = {(u,v) : (u,v) € E or (v, u) € E}. Edges in the networks are also

2The Ford-Fulkerson method might fail to terminate only ifedcapacities are irrational numbers.

26.2 The Ford-Fulkerson method 659

(@)

(b)

(©

(d)

(e)

Figure 26.5 The execution of the basic Ford-Fulkerson algorittia)—(d) Successive iterations of
thewhile loop. The left side of each part shows the residual netvi@¢kfrom line 4 with a shaded
augmenting pattp. The right side of each part shows the new flévthat results from adding
to f. The residual network in (a) is the input netwdek (e) The residual network at the lashile
loop test. It has no augmenting paths, and the ffoshown in (d) is therefore a maximum flow.

660 Chapter 26 Maximum Flow

Figure 26.6 (a)A flow network for which FORD-FULKERSONcan take® (E | f *|) time, wheref *

is a maximum flow, shown here with *| = 2,000,000. An augmenting path with residual capacity 1
is shown. (b) The resulting residual network. Another augmenting patthwesidual capacity 1 is
shown.(c) The resulting residual network.

edges inG’, and it is therefore a simple matter to maintain capacitiesflows in
this data structure. Given a floivon G, the edges in the residual netwda¢ con-
sist of all edgesu, v) of G’ such that(u, ») — f[u, »] # 0. The time to find a path
in a residual network is therefol®(V + E’) = O(E) if we use either depth-first
search or breadth-first search. Each iteration ofuide loop thus takeO(E)
time, making the total running time ofdRD-FULKERSON O(E | f*|).

When the capacities are integral and the optimal flow valug is small, the
running time of the Ford-Fulkerson algorithm is good. Feg@6.6(a) shows an ex-
ample of what can happen on a simple flow network for which is large. A max-
imum flow in this network has value 2,000,000: 1,000,000uwiiflow traverse the
paths — u — t, and another 1,000,000 units traverse the gath v — t. If the
first augmenting path found bydRD-FULKERSONIiSS — U — v — t, shown in
Figure 26.6(a), the flow has value 1 after the first iteratibhe resulting residual
network is shown in Figure 26.6(b). If the second iteratiord$ the augment-
ing paths - v — u — t, as shown in Figure 26.6(b), the flow then has value 2.
Figure 26.6(c) shows the resulting residual network. We aamtinue, choosing
the augmenting path— u — » — t in the odd-numbered iterations and the aug-
menting patls — » — u — t in the even-numbered iterations. We would perform
a total of 2,000,000 augmentations, increasing the flowe/ajuonly 1 unit in each.

The Edmonds-Karp algorithm

The bound on BRD-FULKERSON can be improved if we implement the compu-
tation of the augmenting path in line 4 with a breadth-first search, that is, if
the augmenting path isshortestpath froms to t in the residual network, where
each edge has unit distance (weight). We call the Ford-Fagkemethod so im-

26.2 The Ford-Fulkerson method 661

plemented thé&admonds-Karp algorithm We now prove that the Edmonds-Karp
algorithm runs inO(V E?) time.

The analysis depends on the distances to vertices in thdusdsietworkG.
The following lemma uses the notatiah (u, ») for the shortest-path distance
fromutoo in G, where each edge has unit distance.

Lemma 26.8

If the Edmonds-Karp algorithm is run on a flow netw@k= (V, E) with sources
and sinkt, then for all vertices € V — {s, t}, the shortest-path distande(s, v)

in the residual networks s increases monotonically with each flow augmentation.

Proof We will suppose that for some vertexe V — {s, t}, there is a flow aug-
mentation that causes the shortest-path distance $rtomw to decrease, and then
we will derive a contradiction. Lef be the flow just before the first augmentation
that decreases some shortest-path distance, arfd ke the flow just afterward.
Let v be the vertex with the minimurd. (s, v) whose distance was decreased by
the augmentation, so tha (s,v) < d:(s,v). Letp = s~ u — v be a shortest
path fromstov in G¢/, so that(u, ») € E¢ and

op(S,u) =d¢/(s,0) — 1. (26.7)

Because of how we chose we know that the distance label of vertexdid not
decrease, i.e.,

dr(S,U) > d¢(s,u) . (26.8)
We claim that(u, v) ¢ E;. Why? If we had(u, v) € E, then we would also have

o¢(s,v) Joi(s,u)+1 (by Lemma 24.10, the triangle inequality)

o (s,u) +1 (byinequality (26.8))
= 0J1(S,v) (by equation (26.7)) ,

=
=

which contradicts our assumption thgi(s, v) < J¢ (S, v).

How can we havgu,v) ¢ E; and (u,v) € E¢? The augmentation must
have increased the flow fromto u. The Edmonds-Karp algorithm always aug-
ments flow along shortest paths, and therefore the shoéstfwms to u in Gy
has(v, u) as its last edge. Therefore,

5f (S’ U) = 5f (S, U) -1
< dy(s,u) — 1 (byinequality (26.8))
= J¢(s,v) —2 (by equation (26.7)) ,

which contradicts our assumption that(s, v) < ¢ (s, v). We conclude that our
assumption that such a vertexexists is incorrect. [

662

Chapter 26 Maximum Flow

The next theorem bounds the number of iterations of the Edisyttarp algo-
rithm.

Theorem 26.9

If the Edmonds-Karp algorithm is run on a flow netwdsk= (V, E) with sources
and sinkt, then the total number of flow augmentations performed bytperithm
is O(VE).

Proof We say that an edg@, v) in a residual networlG ¢ is critical on an aug-
menting pathp if the residual capacity op is the residual capacity @t »), that
is, if c¢ (p) = c¢ (U, v). After we have augmented flow along an augmenting path,
any critical edge on the path disappears from the residumlark. Moreover, at
least one edge on any augmenting path must be critical. Weslhalv that each of
the|E| edges can become critical at mpgt /2 times.

Letu ando be vertices irV that are connected by an edgebn Since augment-
ing paths are shortest paths, wheno) is critical for the first time, we have

dt(s,v) =or(s, W)+ 1.

Once the flow is augmented, the edgeo) disappears from the residual network.
It cannot reappear later on another augmenting path utdif tfe flow fromu to »

is decreased, which occurs only(if, u) appears on an augmenting path.flIfis
the flow in G when this event occurs, then we have

dr(s,u) =0 (S,v) +1.
Sinceds (s, v) < d¢/(s,v) by Lemma 26.8, we have

5]”(8’ u) = 51”(8’ U) + 1
> of(s,v)+1
= Ji(s,u)+2.

Consequently, from the timéu, v) becomes critical to the time when it next
becomes critical, the distance offrom the source increases by at least 2. The
distance ou from the source is initially at least 0. The intermediatetizess on a
shortest path frons to u cannot contairs, u, ort (since(u, ») on the critical path
implies thatu # t). Therefore, untilu becomes unreachable from the source, if
ever, its distance is at mop¥ | — 2. Thus, after the first time thdu, ») becomes
critical, it can become critical at moéftV| — 2)/2 = |V| /2 — 1 times more, for a
total of at mostV| /2 times. Since there ai®(E) pairs of vertices that can have
an edge between them in a residual graph, the total numbeitiohtedges during
the entire execution of the Edmonds-Karp algorithn®i®/ E). Each augmenting
path has at least one critical edge, and hence the theoréwsol [

26.2 The Ford-Fulkerson method 663

Since each iteration of GRD-FULKERSON can be implemented i@ (E) time
when the augmenting path is found by breadth-first searehtatial running time
of the Edmonds-Karp algorithm ©(V E?). We shall see that push-relabel algo-
rithms can yield even better bounds. The algorithm of Se@#®.4 gives a method
for achieving anO(V2E) running time, which forms the basis for ti&(V?3)-time
algorithm of Section 26.5.

Exercises

26.2-1
In Figure 26.1(b), what is the flow across the €ig, vo, v4}, {01, 03, t})? What is
the capacity of this cut?

26.2-2
Show the execution of the Edmonds-Karp algorithm on the fletwork of Fig-
ure 26.1(a).

26.2-3

In the example of Figure 26.5, what is the minimum cut coroesiing to the max-
imum flow shown? Of the augmenting paths appearing in the pbarwhich two
cancel flow?

26.2-4
Prove that for any pair of verticas ando and any capacity and flow functiors
and f, we havect (U, v) + ¢t (v, U) = c(u, v) + c(v, U).

26.2-5

Recall that the construction in Section 26.1 that convertsuliisource, multisink
flow network into a single-source, single-sink network aedges with infinite
capacity. Prove that any flow in the resulting network hasigefiralue if the edges
of the original multisource, multisink network have finitepacity.

26.2-6

Suppose that each soursein a multisource, multisink problem produces ex-
actly p; units of flow, so thatf (s, V) = p;. Suppose also that each sihkcon-
sumes exactly; units, so thatf (V,t;) = q;, where>’; pi = >_; g;. Show how
to convert the problem of finding a floW that obeys these additional constraints
into the problem of finding a maximum flow in a single-sourdagke-sink flow
network.

26.2-7
Prove Lemma 26.3.

664

Chapter 26 Maximum Flow

26.2-8

Show that a maximum flow in a netwo® = (V, E) can always be found by a
sequence of at moHE| augmenting pathsHint: Determine the pathafter finding
the maximum flow.)

26.2-9

The edge connectivityf an undirected graph is the minimum numikenf edges

that must be removed to disconnect the graph. For exam@edbe connectivity
of a tree is 1, and the edge connectivity of a cyclic chain afiees is 2. Show
how the edge connectivity of an undirected gr&phk= (V, E) can be determined
by running a maximum-flow algorithm on at magst| flow networks, each having
O(V) vertices andO(E) edges.

26.2-10

Suppose that a flow netwo® = (V, E) has symmetric edges, that {&, v) € E

if and only if (v, u) € E. Show that the Edmonds-Karp algorithm terminates after
at most|V| |E| /4 iterations. Hint: For any edg€u, »), consider how botl(s, u)
andd(v, t) change between times at whi@h v) is critical.)

26.3 Maximum bipartite matching

Some combinatorial problems can easily be cast as maximunpiloblems. The
multiple-source, multiple-sink maximum-flow problem frddection 26.1 gave us
one example. There are other combinatorial problems tleh s the surface to
have little to do with flow networks, but can in fact be redutednaximum-flow
problems. This section presents one such problem: findingpamum matching
in a bipartite graph (see Section B.4). In order to solve pinadlem, we shall take
advantage of an integrality property provided by the Foutkérson method. We
shall also see that the Ford-Fulkerson method can be madé/tthe maximum-
bipartite-matching problem on a gragh= (V, E) in O(V E) time.

The maximume-bipartite-matching problem

Given an undirected grapB = (V, E), amatchingis a subset of edgdel C E
such that for all vertices € V, at most one edge d¥l is incident orw. We say
that a vertex € V is matchedby matchingM if some edge irM is incident orv;
otherwisep is unmatched A maximum matchingis a matching of maximum car-
dinality, that is, a matchingyl such that for any matchinigl’, we havg M| > |M’|.
In this section, we shall restrict our attention to findingxmaum matchings in bi-
partite graphs. We assume that the vertex set can be pagttimtoV = L U R,

26.3 Maximum bipartite matching 665

(@) (b)

Figure 26.7 A bipartite graphG = (V, E) with vertex partitionvV = L U R. (a) A matching with
cardinality 2.(b) A maximum matching with cardinality 3.

whereL and R are disjoint and all edges i& go betweerL and R. We further
assume that every vertex \hhas at least one incident edge. Figure 26.7 illustrates
the notion of a matching.

The problem of finding a maximum matching in a bipartite grdyas many
practical applications. As an example, we might consideichiag a setl. of ma-
chines with a seR of tasks to be performed simultaneously. We take the presenc
of edge(u, ») in E to mean that a particular machines L is capable of perform-
ing a particular taskk € R. A maximum matching provides work for as many
machines as possible.

Finding a maximum bipartite matching

We can use the Ford-Fulkerson method to find a maximum majchian undi-
rected bipartite graps = (V, E) in time polynomial in|V| and|E|. The trick
is to construct a flow network in which flows correspond to rhatgs, as shown
in Figure 26.8. We define theorresponding flow networlG’ = (V’, E’) for the
bipartite graphG as follows. We let the source and sinkt be new vertices not
inV, and we letvV’ = V U {s, t}. If the vertex partition oiG isV = L U R, the
directed edges d&’ are the edges d, directed fromL to R, along with|V| new
edges:

E' = {(s,u):uel}
U{(u,v):uel,»eR, and(u,v) € E}
U{(w,t):v e R} .

666

Chapter 26 Maximum Flow

(@) (b)

Figure 26.8 The flow network corresponding to a bipartite grapia) The bipartite graph
G = (V, E) with vertex partitionvV = L U R from Figure 26.7. A maximum matching is shown by
shaded edgegb) The corresponding flow netwoi®’ with a maximum flow shown. Each edge has
unit capacity. Shaded edges have a flow of 1, and all otherseciyey no flow. The shaded edges
from L to R correspond to those in a maximum matching of the bipartiéelyr

To complete the construction, we assign unit capacity t ealge inE’. Since
each vertex iV has at least one incident edgg| > |V| /2. Thus,|E| < |E/| =
|[E| 4+ |V| < 3|E|,and sQE’'| = ©(E).

The following lemma shows that a matching@ncorresponds directly to a flow
in G’s corresponding flow networks’. We say that a flowf on a flow network
G = (V, E) isinteger-valuedif f(u,) is an integer for allu,») e V x V.

Lemma 26.10

Let G = (V, E) be a bipartite graph with vertex partitioh = L U R, and let
G’ = (V’, E) be its corresponding flow network. N is a matching inG, then
there is an integer-valued flow in G’ with value|f| = |M|. Conversely, iff

is an integer-valued flow iG’, then there is a matchinlyl in G with cardinality
IM| = | f].

Proof We first show that a matchinfyl in G corresponds to an integer-valued
flow f in G’. Define f as follows. If (u,») € M, thenf(s,u) = f(u,0) =
f(o,t) = 1 andf(u,s) = f(o,u) = f(t,0) = —1. For all other edges
(u,v) € E’/, we definef(u,») = 0. It is simple to verify thatf satisfies skew
symmetry, the capacity constraints, and flow conservation.

Intuitively, each edgd€u, v) € M corresponds to 1 unit of flow i&’ that tra-
verses the pata — u — v — t. Moreover, the paths induced by edgesMrare

26.3 Maximum bipartite matching 667

vertex-disjoint, except fos andt. The net flow across culL U {s}, RU {t}) is
equal to|M|; thus, by Lemma 26.5, the value of the flow i§ = |M|.
To prove the converse, ldt be an integer-valued flow i6’, and let

M={(u,v):uel,veR, andf(u,v) > 0} .

Each vertexu € L has only one entering edge, namésy u), and its capacity
is 1. Thus, eaclu € L has at most one unit of positive flow entering it, and if
one unit of positive flow does enter, by flow conservation, oni¢ of positive flow
must leave. Furthermore, sindeis integer-valued, for each € L, the one unit
of flow can enter on at most one edge and can leave on at mostigee &hus,
one unit of positive flow enters if and only if there is exactly one vertaxe R
such thatf (u,») = 1, and at most one edge leaving eack L carries positive
flow. A symmetric argument can be made for each R. The setM is therefore
a matching.

To see thatM| = | f|, observe that for every matched vertexe L, we have
f(s,u) = 1, and for every edgéu,v) € E — M, we havef (u,») = 0. Conse-
quently,

IM| = f(L,R)
f(L,V)— f(L,L)— f(L,s)— f(L,t) (byLemma26.1) .

We can simplify the above expression considerably. Flovseoration implies that
f(L,V’) = 0; Lemma 26.1 implies thaf (L, L) = 0; skew symmetry implies
that—f(L,s) = f(s, L); and because there are no edges fiorto t, we have
f(L,t) =0. Thus,

IM[= f(s,L)
= f(s,V’) (since all edges out agfgotolL)
= |f] (by the definition ofl f|) .]

Based on Lemma 26.10, we would like to conclude that a maximatching
in a bipartite graphG corresponds to a maximum flow in its corresponding flow
networkG’, and we can therefore compute a maximum matchin@ by running
a maximum-flow algorithm orG’. The only hitch in this reasoning is that the
maximum-flow algorithm might return a flow i@’ for which somef (u, ») is
not an integer, even though the flow valug must be an integer. The following
theorem shows that if we use the Ford-Fulkerson method,diffisulty cannot
arise.

Theorem 26.11 (Integrality theorem)

If the capacity functiorc takes on only integral values, then the maximum flbw
produced by the Ford-Fulkerson method has the property that integer-valued.
Moreover, for all verticesi ando, the value off (u, v) is an integer.

668

Chapter 26 Maximum Flow

Proof The proof is by induction on the number of iterations. We &dvas
Exercise 26.3-2. [

We can now prove the following corollary to Lemma 26.10.

Corollary 26.12
The cardinality of a maximum matchirlg in a bipartite graplG equals the value
of a maximum flowf in its corresponding flow networt’.

Proof We use the nomenclature from Lemma 26.10. SupposeMhista max-
imum matching inG and that the corresponding flodvin G’ is not maximum.
Then there is a maximum flow’ in G’ such that|f’| > |f|. Since the ca-
pacities inG’ are integer-valued, by Theorem 26.11, we can assume fthit
integer-valued. Thusf’ corresponds to a matchinigl’ in G with cardinality

M| = |f’| > |f| = |[M|, contradicting our assumption th& is a maximum
matching. In a similar manner, we can show that it a maximum flow inG’, its
corresponding matching is a maximum matching&n [

Thus, given a bipartite undirected graphwe can find a maximum matching by
creating the flow networks’, running the Ford-Fulkerson method, and directly ob-
taining a maximum matchiniyl from the integer-valued maximum flof found.
Since any matching in a bipartite graph has cardinality atmon(L, R) = O(V),
the value of the maximum flow i®" is O(V). We can therefore find a maximum
matching in a bipartite graph in tim@(V E’) = O(V E), since|E’| = O (E).

Exercises

26.3-1

Run the Ford-Fulkerson algorithm on the flow network in Feg26.8(b) and show
the residual network after each flow augmentation. Numbewértices inL top

to bottom from 1 to 5 and iR top to bottom from 6 to 9. For each iteration, pick
the augmenting path that is lexicographically smallest.

26.3-2
Prove Theorem 26.11.

26.3-3

Let G = (V, E) be a bipartite graph with vertex partition = L U R, and letG’
be its corresponding flow network. Give a good upper bouncherigngth of any
augmenting path found i@’ during the execution of BRD-FULKERSON.

26.4 Push-relabel algorithms 669

26.3-4 *

A perfect matchingis a matching in which every vertex is matched. I&t=
(V, E) be an undirected bipartite graph with vertex partitidn= L U R, where
IL| = |R]. ForanyX C V, define theneighborhoodof X as

N(X)={y eV :(x,y) € Eforsomex € X} ,

that is, the set of vertices adjacent to some membet.oProveHall’s theorent
there exists a perfect matching @ if and only if |A] < [N(A)| for every subset
AC L.

26.3-5 *

We say that a bipartite grapgh = (V, E), whereV = L UR, isd-regularif every
vertexo € V has degree exactly. Everyd-regular bipartite graph hg& | = |R|.
Prove that evend-regular bipartite graph has a matching of cardinality by
arguing that a minimum cut of the corresponding flow netwaak bhapacityL |.

* 26.4 Push-relabel algorithms

In this section, we present the “push-relabel” approachommuting maximum
flows. To date, many of the asymptotically fastest maximumfalgorithms are
push-relabel algorithms, and the fastest actual impleatienis of maximum-flow
algorithms are based on the push-relabel method. Other flollgms, such as the
minimum-cost flow problem, can be solved efficiently by puskabel methods.
This section introduces Goldberg’s “generic” maximum-flalgorithm, which has
a simple implementation that runs @(V2E) time, thereby improving upon the
O(V E?) bound of the Edmonds-Karp algorithm. Section 26.5 refineggtimeric
algorithm to obtain another push-relabel algorithm thaisrin O(V?3) time.

Push-relabel algorithms work in a more localized mannem tkize Ford-
Fulkerson method. Rather than examine the entire residaalank to find an aug-
menting path, push-relabel algorithms work on one vertex tane, looking only
at the vertex’s neighbors in the residual network. Furtl@enunlike the Ford-
Fulkerson method, push-relabel algorithms do not mairttznflow-conservation
property throughout their execution. They do, however,ntzan apreflow;, which
is a functionf : V x V — R that satisfies skew symmetry, capacity constraints,
and the following relaxation of flow conservatiorf.(V, u) > 0 for all vertices
u € V — {s}. We call this quantity thexcess flovinto vertexu, given by

e(u) = f(V,u). (26.9)

We say that a verten € V — {s, t} is overflowingif e(u) > 0.

670

Chapter 26 Maximum Flow

We shall start this section by describing the intuition Ipehthe push-relabel
method. We shall then investigate the two operations enepldyy the method:
“pushing” preflow and “relabeling” a vertex. Finally, we $hpresent a generic
push-relabel algorithm and analyze its correctness amuimgrtime.

Intuition

The intuition behind the push-relabel method is probabkst baderstood in terms
of fluid flows: we consider a flow networs = (V, E) to be a system of inter-
connected pipes of given capacities. Applying this anakogihe Ford-Fulkerson
method, we might say that each augmenting path in the netgigds rise to an
additional stream of fluid, with no branch points, flowingrfradhe source to the
sink. The Ford-Fulkerson method iteratively adds moreastie of flow until no
more can be added.

The generic push-relabel algorithm has a rather differetutiion. As before,
directed edges correspond to pipes. Vertices, which are jpipctions, have two
interesting properties. First, to accommodate excess #agh vertex has an out-
flow pipe leading to an arbitrarily large reservoir that cacwamulate fluid. Sec-
ond, each vertex, its reservoir, and all its pipe connestane on a platform whose
height increases as the algorithm progresses.

Vertex heights determine how flow is pushed: we only push flowrthill, that
is, from a higher vertex to a lower vertex. The flow from a lowertex to a higher
vertex may be positive, but operations that push flow onlyhgtuglownhill. The
height of the source is fixed &¥ |, and the height of the sink is fixed at 0. All other
vertex heights start at 0 and increase with time. The algorifirst sends as much
flow as possible downhill from the source toward the sink. @h®unt it sends
is exactly enough to fill each outgoing pipe from the sourcedpacity; that is, it
sends the capacity of the c(#, V — s). When flow first enters an intermediate
vertex, it collects in the vertex’s reservoir. From therejsi eventually pushed
downhill.

It may eventually happen that the only pipes that leave a&xertand are not
already saturated with flow connect to vertices that are ernstime level as or
are uphill fromu. In this case, to rid an overflowing vertexof its excess flow, we
must increase its height—an operation called “relabelingftexu. Its height is
increased to one unit more than the height of the lowest ofitghbors to which it
has an unsaturated pipe. After a vertex is relabeled, therethere is at least one
outgoing pipe through which more flow can be pushed.

Eventually, all the flow that can possibly get through to tiné sias arrived there.
No more can arrive, because the pipes obey the capacityraintst the amount of
flow across any cut is still limited by the capacity of the cib. make the preflow
a “legal” flow, the algorithm then sends the excess colleatetthe reservoirs of

26.4 Push-relabel algorithms 671

overflowing vertices back to the source by continuing tobrelavertices to above
the fixed heightV| of the source. As we shall see, once all the reservoirs have
been emptied, the preflow is not only a “legal” flow, it is alsmaximum flow.

The basic operations

From the preceding discussion, we see that there are two basirations per-
formed by a push-relabel algorithm: pushing flow excess feowertex to one of
its neighbors and relabeling a vertex. The applicabilitthelse operations depends
on the heights of vertices, which we now define precisely.

Let G = (V, E) be a flow network with source and sinkt, and letf be a
preflow inG. Afunctionh : V — Nis aheight function® if h(s) = |V|, h(t) = 0,
and

h(u) < h() + 1

for every residual edg@u, v) € E;. We immediately obtain the following lemma.

Lemma 26.13

Let G = (V, E) be a flow network, letf be a preflow inG, and leth be a height
function onV. For any two verticesi, v € V, if h(u) > h(v) 4+ 1, then(u, v) is
not an edge in the residual graph. [

The push operation

The basic operation UsH(uU, v) can be applied ifu is an overflowing vertex,
ct(u,0) > 0, andh(u) = h() + 1. The pseudocode below updates the pre-
flow f in an implied networkG = (V, E). It assumes that residual capacities
can also be computed in constant time giweand f. The excess flow stored at
a vertexu is maintained as the attribugfu], and the height oti is maintained as
the attributeh[u]. The expressiom; (u, v) is a temporary variable that stores the
amount of flow that can be pushed framo ».

3In the literature, a height function is typically called ast@nce function,” and the height of a vertex
is called a “distance label.” We use the term “height” beeaiti$s more suggestive of the intuition
behind the algorithm. We retain the use of the term “relabelfefer to the operation that increases
the height of a vertex. The height of a vertex is related tdistsance from the sink, as would be
found in a breadth-first search of the transpGse

672

Chapter 26 Maximum Flow

PUSH(uU, v)

1 © Applies when u is overflowing,ct (u, ») > 0, andh[u] = h[v] + 1.

2 > Action: Pushd; (u,) = min(e[u], c¢ (u, v)) units of flow fromu too.
3 df(u,) < min(g[u], c¢(u, v))

4 flu,o] <« flu,v] +d;(u, o)

5 flo,u] < —f[u,o]

6 €u] < €u] —d;s(u, o)

7 €v] < €v] +d¢(u,v)

The code for BsH operates as follows. Vertex is assumed to have a positive
exces¥[u], and the residual capacity @i, ») is positive. Thus, we can increase
the flow fromu to » by d; (u,v) = min(e[u], ¢ (u, v)) without causinge[u] to
become negative or the capacityu, v) to be exceeded. Line 3 computes the
value ds (u, »), and we updatef in lines 4-5 ance in lines 6—7. Thus, iff is

a preflow before BsH is called, it remains a preflow afterward.

Observe that nothing in the code fou®H depends on the heights ofando,
yet we prohibit it from being invoked unlesgu] = h[v] + 1. Thus, excess flow is
pushed downhill only by a height differential of 1. By Lemm@. 23, no residual
edges exist between two vertices whose heights differ byerti@n 1, and thus, as
long as the attributé is indeed a height function, there is nothing to be gained by
allowing flow to be pushed downhill by a height differentiélneore than 1.

We call the operation ®sH(u, v) apushfromutoo. If a push operation applies
to some edgéu, v) leaving a vertexu, we also say that the push operation applies
to u. It is a saturating pushif edge (u, v) becomessaturated(c¢(u,v) = 0
afterward); otherwise, it is aonsaturating push If an edge is saturated, it does
not appear in the residual network. A simple lemma charaeterone result of a
nonsaturating push.

Lemma 26.14
After a nonsaturating push fromto v, the vertexu is no longer overflowing.

Proof Since the push was nonsaturating, the amount of fleu, ») actually
pushed must equa{u] prior to the push. Since[u] is reduced by this amount, it
becomes 0 after the push. [

The relabel operation

The basic operation R ABEL (u) applies ifu is overflowing and ith[u] < h[v]
for all edges(u, v) € E¢. In other words, we can relabel an overflowing ventex
if for every vertexo for which there is residual capacity fromto o, flow cannot
be pushed fronu to » because is not downhill fromu. (Recall that by definition,

26.4 Push-relabel algorithms 673

neither the source nor the sinkt can be overflowing, so neitharnort can be
relabeled.)

RELABEL (u)

1 © Applies when: u is overflowing and for alb € V such thatu, ») € Es,
we haveh[u] < h[v].

2 > Action: Increase the height af.

3 h[u] <« 1+ min{h[o]: (u,v) € E¢}

When we call the operationERABEL (U), we say that vertex is relabeled Note
that wheru is relabeled E+ must contain at least one edge that leaveso that the
minimization in the code is over a nonempty set. This propftiows from the
assumption thati is overflowing. Sincee[u] > 0, we haveg[u] = f(V,u) > 0,

and hence there must be at least one varteMch thatf [o, u] > 0. But then,

ci(u,0) = c(u, o) — flu,o]
= c(u,v)+ f[o, U]
> 0,

which implies that(u,») € E;. The operation RLABEL (u) thus givesu the
greatest height allowed by the constraints on height fonsti

The generic algorithm

The generic push-relabel algorithm uses the following sutine to create an ini-
tial preflow in the flow network.

INITIALIZE -PREFLOW(G, S)

for each vertexu € V[G]
doh[u] <0
eu] <0
for each edgéu, v) € E[G]
do f[u,0] < O
flo,u] < O
h[s] < [V[C]|
for each vertexu € Adj[s]
do f[s,u] < c(s,u)
10 flu,s] < —c(s,u)
11 eu] < c(s,u)
12 g[s] < €[s] — c(s, u)

©CoOo~NOOThA, WNPEF

INITIALIZE -PREFLOW creates an initial preflow defined by

674

Chapter 26 Maximum Flow

c(u,) fu=s,

flu,0] = { —c(v,u) ifo=s, (26.10)
0 otherwise

That is, each edge leaving the sousds filled to capacity, and all other edges carry

no flow. For each vertex adjacent to the source, we initially hag] = c(s, v),

ande€[s] is initialized to the negative of the sum of these capagiti€he generic

algorithm also begins with an initial height functibingiven by

_JIV] ifu=s,
hlu] = [O otherwise

This is a height function because the only ed@e) for which h[u] > h[»] + 1
are those for whiclu = s, and those edges are saturated, which means that they
are not in the residual network.
Initialization, followed by a sequence of push and relahmrations, executed
in no particular order, yields the EERIC-PUSH-RELABEL algorithm:

GENERIC-PUSH-RELABEL (G)

1 INITIALIZE -PREFLOW(G, S)
2 while there exists an applicable push or relabel operation
3 do select an applicable push or relabel operation and perform i

The following lemma tells us that as long as an overflowingeseexists, at least
one of the two basic operations applies.

Lemma 26.15 (An overflowing vertex can be either pushed oabsled)

Let G = (V, E) be a flow network with source and sinkt, let f be a preflow,
and leth be any height function fof . If u is any overflowing vertex, then either a
push or relabel operation applies to it.

Proof Forany residual edge!, v), we haveh(u) < h(v)+1 becausé is a height
function. If a push operation does not applyutahen for all residual edgdsl, v),
we must haveh(u) < h(v) + 1, which impliesh(u) < h(»). Thus, a relabel
operation can be applied to |

Correctness of the push-relabel method

To show that the generic push-relabel algorithm solves tagimum-flow prob-
lem, we shall first prove that if it terminates, the prefldwis a maximum flow.
We shall later prove that it terminates. We start with somseolmations about the
height functionh.

26.4 Push-relabel algorithms 675

Lemma 26.16 (Vertex heights never decrease)

During the execution of GNERIC-PUSH-RELABEL on a flow networkG =
(V, E), for each vertexu € V, the heighth[u] never decreases. Moreover, when-
ever a relabel operation is applied to a vertexits heighth[u] increases by at
least 1.

Proof Because vertex heights change only during relabel opestib suffices
to prove the second statement of the lemma. If vedeis about to be rela-
beled, then for all vertices such that(u, v) € E;, we haveh[u] < h[o]. Thus,
h[u] < 1+ min{h[o] : (u,») € E¢}, and so the operation must incredgea]. =

Lemma 26.17

Let G = (V, E) be a flow network with source and sinkt. During the execu-
tion of GENERIC-PUSH-RELABEL on G, the attributeh is maintained as a height
function.

Proof The proof is by induction on the number of basic operationsop@ed.
Initially, h is a height function, as we have already observed.

We claim that ifh is a height function, then an operatiore RABEL (u) leavesh
a height function. If we look at a residual ed@e v) € E; that leavesy, then the
operation RELABEL (u) ensures thalifu] < h[»] + 1 afterward. Now consider a
residual edgéw, u) that enterss. By Lemma 26.16h[w] < h[u] + 1 before the
operation RLABEL (u) impliesh[w] < h[u] 4+ 1 afterward. Thus, the operation
RELABEL (u) leavesh a height function.

Now, consider an operation®H(u, »). This operation may add the ed@e u)
to E¢, and it may remove(u,v) from E¢. In the former case, we have
h[o] = h[u] — 1 < h[u] + 1, and sdh remains a height function. In the latter case,
the removal of(u, ») from the residual network removes the corresponding con-
straint, anch again remains a height function. [

The following lemma gives an important property of heightdtions.

Lemma 26.18

Let G = (V, E) be a flow network with source and sinkt, let f be a preflow
in G, and leth be a height function ol. Then there is no path from the sourse
to the sinkt in the residual networks ¢ .

Proof Assume for the sake of contradiction that there is a path (vg, v1,

...,k fromstot in G, wherevg = s andoy = t. Without loss of generalityp
is a simple path, and do < |V|. Fori =0,1,...,k — 1, edge(v;, vi;1) € Es.
Becauséh is a height functionh(v;) < h(vj 1) +1fori =0,1,...,k—1. Com-
bining these inequalities over pathyieldsh(s) < h(t) +k. But becausé(t) = 0,

676

Chapter 26 Maximum Flow

we haveh(s) < k < |V|, which contradicts the requirement thats) = |V] in a
height function. [

We are now ready to show that if the generic push-relabelritfgn terminates,
the preflow it computes is a maximum flow.

Theorem 26.19 (Correctness of the generic push-relabebaiiipm)

If the algorithm GENERIC-PUSH-RELABEL terminates when run on a flow net-
work G = (V, E) with sources and sinkt, then the preflowf it computes is a
maximum flow forG.

Proof We use the following loop invariant:

Each time thewhile loop test in line 2 in GNERIC-PUSH-RELABEL is
executed,f is a preflow.

Initialization: INITIALIZE -PREFLOW makesf a preflow.

Maintenance: The only operations within thevhile loop of lines 2—3 are push
and relabel. Relabel operations affect only height atteébwand not the flow
values; hence they do not affect whetteis a preflow. As argued on page 672,
if fis a preflow prior to a push operation, it remains a preflowrafted.

Termination: At termination, each vertex i — {s, t} must have an excess of 0,
because by Lemmas 26.15 and 26.17 and the invariantftieglways a pre-
flow, there are no overflowing vertices. Therefoiejs a flow. Becausé is
a height function, Lemma 26.18 tells us that there is no paimfstot in
the residual networks ;. By the max-flow min-cut theorem (Theorem 26.7),
therefore,f is a maximum flow. [

Analysis of the push-relabel method

To show that the generic push-relabel algorithm indeed iteates, we shall
bound the number of operations it performs. Each of the thypes of opera-
tions—relabels, saturating pushes, and nonsaturatingegusis bounded sepa-
rately. With knowledge of these bounds, it is a straightfnsvproblem to construct
an algorithm that runs i©(V2E) time. Before beginning the analysis, however,
we prove an important lemma.

Lemma 26.20

LetG = (V, E) be a flow network with sourceand sinkt, and letf be a preflow
in G. Then, for any overflowing vertey, there is a simple path fromto s in the
residual networkG ;.

26.4 Push-relabel algorithms 677

Proof For an overflowing verteu, letU = { : there exists a simple path from
too in G}, and suppose for the sake of contradiction thatU. LetU =V —U.

We claim for each pair of vertice® € U ando e U that f(w,v) < O.
Why? If f(w,v) > 0, thenf (v, w) < 0, which in turn implies that: (v, w) =
c(v, w) — f(v,w) > 0. Hence, there exists an ed@e w) € E¢, and therefore a
simple path of the fornu ~ » — w in G, contradicting our choice ab.

Thus, we must havé (U, U) < 0, since every term in this implicit summation
is nonpositive, and hence

eU) = f(,U) (by equation (26.9))
= fU,U)+ fU,U) (byLemma 26.1, part (3))
= f(U,U) (by Lemma 26.1, part (1))
< 0.

(Although Lemma 26.1 applies to flows, Exercise 26.1-4 destrates that it does
not rely on flow conservation. Hence, Lemma 26.1 applies &flqws as well.)
Excesses are nonnegative for all vertice¥ir {s}; because we have assumed that
U C V —{s}, we must therefore haw#v) = 0 for all verticesv € U. In particular,
e(u) = 0, which contradicts the assumption thias overflowing. [

The next lemma bounds the heights of vertices, and its @myolbounds the
number of relabel operations that are performed in total.

Lemma 26.21

Let G = (V, E) be a flow network with source and sinkt. At any time during
the execution of GNERIC-PUSH-RELABEL on G, we haveh[u] < 2|V| — 1 for
all verticesu € V.

Proof The heights of the source and the sinkt never change because these
vertices are by definition not overflowing. Thus, we alwaysgefas] = |V| and
h[t] = 0, both of which are no greater tha\2| — 1.

Now consider any verte € V —{s, t}. Initially, h[u] =0 < 2|V|—1. We shall
show that after each relabeling operation, we still Hajwgd < 2|V|—1. Whenu is
relabeled, it is overflowing, and Lemma 26.20 tells us thatedhis a simple patip
fromutosin Gs. Letp = (vg, 01, ...,0k), Whereng = U, vy = S, andk < |V|—1
becausep is simple. Fori = 0,1,...,k — 1, we have(v;,vi;1) € E¢, and
therefore, by Lemma 26.1h[v;] < h[v;,1] + 1. Expanding these inequalities
over pathp yieldsh[u] = h[og] < h[ok] + k < h[s]+ (V| -1 =2|V|—-1. =

Corollary 26.22 (Bound on relabel operations)

Let G = (V, E) be a flow network with source and sinkt. Then, during the
execution of &ENERIC-PUSH-RELABEL on G, the number of relabel operations is
at most 2V| — 1 per vertex and at mos$2 |V| — 1)(|V| — 2) < 2|V|? overall.

678

Chapter 26 Maximum Flow

Proof Onlythe|V|—2 vertices inV —{s, t} may be relabeled. Let e V —{s, t}.
The operation RLABEL (u) increased[u]. The value ofh[u] is initially 0 and by
Lemma 26.21 grows to at most|¥2| — 1. Thus, each vertex € V — {s,t}
is relabeled at most [&/| — 1 times, and the total number of relabel operations
performed is at mos2|V| — 1)(|V| — 2) < 2|V|2. -

Lemma 26.21 also helps us to bound the number of saturatisigggu

Lemma 26.23 (Bound on saturating pushes)
During the execution of GNERIC-PUSH-RELABEL on any flow networkG =
(V, E), the number of saturating pushes is less thivi|2E|.

Proof For any pair of verticesl,» € V, we will count the saturating pushes
from u to v and fromo to u together, calling them the saturating pushes between
ando. If there are any such pushes, at least on€ugb) and (v, u) is actually
an edge inE. Now, suppose that a saturating push fronio » has occurred.
At that time, h[o] = h[u] — 1. In order for another push from to » to occur
later, the algorithm must first push flow fromto u, which cannot happen until
h[o] = h[u] + 1. Sinceh[u] never decreases, in order fbfp] = h[u] + 1, the
value ofh[v] must increase by at least 2. Likewi¢gu] must increase by at least 2
between saturating pushes franto u. Heights start at 0 and, by Lemma 26.21,
never exceed R/ | — 1, which implies that the number of times any vertex can have
its height increase by 2 is less thAn|. Since at least one df[u] and h[o] must
increase by 2 between any two saturating pushes betweedo, there are fewer
than 2|V | saturating pushes betweerando. Multiplying by the number of edges
gives a bound of less than¥| |E| on the total number of saturating pushes.m

The following lemma bounds the number of nonsaturating esigtthe generic
push-relabel algorithm.

Lemma 26.24 (Bound on nonsaturating pushes)
During the execution of GNERIC-PUSH-RELABEL on any flow networkG =
(V, E), the number of nonsaturating pushes is less than (V| + [E]).

Proof Define a potential functio® = 3" .., _oh[v]. Initially, ® = 0, and the
value of ® may change after each relabeling, saturating push, ancahoating
push. We will bound the amount that saturating pushes amadbatthgs can con-
tribute to the increase a@b. Then we will show that each nonsaturating push must
decrease by at least 1, and will use these bounds to derive an upperbauithe
number of nonsaturating pushes.

Let us examine the two ways in which might increase. First, relabeling a
vertexu increasesb by less than 2V|, since the set over which the sum is taken is

26.4 Push-relabel algorithms 679

the same and the relabeling cannot incragiséneight by more than its maximum
possible height, which, by Lemma 26.21, is at mosf P— 1. Second, a saturating
push from a vertexi to a vertexo increasesb by less than 2V|, since no heights
change and only vertex, whose height is at most|¥ | — 1, can possibly become
overflowing.

Now we show that a nonsaturating push frano » decrease® by at least 1.
Why? Before the nonsaturating pushwas overflowing, and may or may not
have been overflowing. By Lemma 26.14,is no longer overflowing after the
push. In addition, unless is the source, it may or may not be overflowing after
the push. Therefore, the potential functidrhas decreased by exactiju], and it
has increased by either 0 bfv]. Sinceh[u] — h[v] = 1, the net effect is that the
potential function has decreased by at least 1.

Thus, during the course of the algorithm, the total amountirmfrease
in @ is due to relabelings and saturated pushes and is constréyneCorol-
lary 26.22 and Lemma 26.23 to be less tiianv) (2 |V|?) + 2|V (2|V| |E|) =
4\V2(|V| + |E]). Since® > 0, the total amount of decrease, and therefore the
total number of nonsaturating pushes, is less than4(|V| + |E|). [

Having bounded the number of relabelings, saturating mjsaed nonsatu-
rating push, we have set the stage for the following analgsithe GENERIC-
PusH-RELABEL procedure, and hence of any algorithm based on the pudbetela
method.

Theorem 26.25
During the execution of GNERIC-PUSH-RELABEL on any flow networkG =
(V, E), the number of basic operations@V2E).

Proof Immediate from Corollary 26.22 and Lemmas 26.23 and 26.24. =

Thus, the algorithm terminates aft€(V2E) operations. All that remains is
to give an efficient method for implementing each operatiod #r choosing an
appropriate operation to execute.

Corollary 26.26
There is an implementation of the generic push-relabel rilgn that runs in
O(VZ2E) time on any flow networlG = (V, E).

Proof Exercise 26.4-1 asks you to show how to implement the genégarithm
with an overhead oD(V) per relabel operation an®(1) per push. It also asks
you to design a data structure that allows you to pick an eable operation in
O(1) time. The corollary then follows. [

680

Chapter 26 Maximum Flow

Exercises

26.4-1

Show how to implement the generic push-relabel algorithimqu® (V) time per
relabel operationQ (1) time per push, an@®(1) time to select an applicable oper-
ation, for a total time ofO(V2E).

26.4-2
Prove that the generic push-relabel algorithm spends adbtanly O(V E) time
in performing all theO(V?) relabel operations.

26.4-3
Suppose that a maximum flow has been found in a flow net@o#k (V, E) using
a push-relabel algorithm. Give a fast algorithm to find a mimm cut inG.

26.4-4
Give an efficient push-relabel algorithm to find a maximumchatg in a bipartite
graph. Analyze your algorithm.

26.4-5
Suppose that all edge capacities in a flow netwGrk= (V, E) are in the set
{1,2,...,k}. Analyze the running time of the generic push-relabel aigor in

terms of|V|, |E|, andk. (Hint: How many times can each edge support a nonsatu-
rating push before it becomes saturated?)

26.4-6
Show that line 7 of NITIALIZE -PREFLOW can be changed to

7 h[s] < [V[G]| -2

without affecting the correctness or asymptotic perforogaaf the generic push-
relabel algorithm.

26.4-7

Let d¢(u,v) be the distance (number of edges) framto » in the resid-
ual networkG;. Show that GNERIC-PUSH-RELABEL maintains the proper-
ties thath[u] < |V| implies h[u] < d¢(u,t) and thath[u] > |V| implies
h[u] — [V] < d¢(u, s).

26.4-8 *

As in the previous exercise, 16t (u, ») be the distance frora to » in the residual
network G;. Show how the generic push-relabel algorithm can be modified
maintain the property thdt[u] < |V|impliesh[u] = d¢ (u, t) and thath[u] > |V|

26.5 The relabel-to-front algorithm 681

impliesh[u] — |[V| = d¢(u,). The total time that your implementation dedicates
to maintaining this property should &(V E).

26.4-9
Show that the number of nonsaturating pushes executed HyERIC-PUSH-
RELABEL on a flow networkG = (V, E) is at most 4V |? |[E| for |V| > 4.

* 26.5 The relabel-to-front algorithm

The push-relabel method allows us to apply the basic opasiin any order at
all. By choosing the order carefully and managing the netvaata structure effi-
ciently, however, we can solve the maximum-flow problemdieitan theD (V2E)
bound given by Corollary 26.26. We shall now examine thebellao-front algo-
rithm, a push-relabel algorithm whose running tim&iéV %), which is asymptoti-
cally at least as good @(V2E), and better for dense networks.

The relabel-to-front algorithm maintains a list of the V@#s in the network.
Beginning at the front, the algorithm scans the list, repéigt selecting an over-
flowing vertexu and then “discharging” it, that is, performing push and bela
operations until no longer has a positive excess. Whenever a vertex is reldpel
it is moved to the front of the list (hence the name “relalzefront”) and the algo-
rithm begins its scan anew.

The correctness and analysis of the relabel-to-front @lgor depend on the
notion of “admissible” edges: those edges in the residuabori through which
flow can be pushed. After proving some properties about theark of admissible
edges, we shall investigate the discharge operation angtiesent and analyze the
relabel-to-front algorithm itself.

Admissible edges and networks

If G = (V, E)is aflow network with source and sinkt, f is a preflow inG, andh
is a height function, then we say that, ») is anadmissible edgé c;(u,v) > 0
andh(u) = h(v) + 1. Otherwise(u, v) is inadmissible Theadmissible network
isGtn = (V, Efn), whereE¢ is the set of admissible edges.

The admissible network consists of those edges throughhatbsv can be
pushed. The following lemma shows that this network is actir@ acyclic graph

(dag).

Lemma 26.27 (The admissible network is acyclic)
If G = (V, E) is aflow network, f is a preflow inG, andh is a height function
on G, then the admissible netwof& , = (V, Et) is acyclic.

682

Chapter 26 Maximum Flow

Proof The proof is by contradiction. Suppose ti@t contains a cyclep =
(vg, 01, ..., vk), Wherevg = v andk > 0. Since each edge imis admissible, we
haveh(vj_1) = h(vj) +1fori = 1,2, ..., k. Summing around the cycle gives

k k
D hwii) = D (hw)+D)
i=1 i=1

k
= Z h(l)i) +k.
i=1
Because each vertex in cygieappears once in each of the summations, we derive
the contradiction that & k. [

The next two lemmas show how push and relabel operationgyjehitie admis-
sible network.

Lemma 26.28

Let G = (V, E) be a flow network, letf be a preflow inG, and suppose that
the attributeh is a height function. If a vertexn is overflowing and(u, ») is an
admissible edge, thenuBH(u, v) applies. The operation does not create any new
admissible edges, but it may causgv) to become inadmissible.

Proof By the definition of an admissible edge, flow can be pushed fndmo.
Sinceu is overflowing, the operation /sH(u, v) applies. The only new residual
edge that can be created by pushing flow frono v is the edge(v, u). Since
h[v] = h[u] — 1, edge(v, u) cannot become admissible. If the operation is a
saturating push, therx (u, v) = 0 afterward andu, ») becomes inadmissible.m

Lemma 26.29

Let G = (V, E) be a flow network, letf be a preflow inG, and suppose that
the attributeh is a height function. If a verten is overflowing and there are no
admissible edges leaving then RELABEL (u) applies. After the relabel operation,
there is at least one admissible edge leavingut there are no admissible edges
enteringu.

Proof If uis overflowing, then by Lemma 26.15, either a push or a relapel
eration applies to it. If there are no admissible edges tepui then no flow
can be pushed fromm and so RELABEL (u) applies. After the relabel operation,
h[u] = 1+ min{h[v]: (u,v) € E¢}. Thus, ifv is a vertex that realizes the mini-
mum in this set, the edge, ») becomes admissible. Hence, after the relabel, there
is at least one admissible edge leaving

To show that no admissible edges enteafter a relabel operation, suppose that
there is a vertex such that(v, u) is admissible. Thej[v] = h[u] + 1 after the
relabel, and sé[o] > h[u] 4 1 just before the relabel. But by Lemma 26.13, no

26.5 The relabel-to-front algorithm 683

residual edges exist between vertices whose heights thiffenore than 1. More-
over, relabeling a vertex does not change the residual metwidwus, (v, u) is not
in the residual network, and hence it cannot be in the adbiéssietwork. [

Neighbor lists

Edges in the relabel-to-front algorithm are organized imgighbor lists.” Given
a flow networkG = (V, E), theneighbor list N[u] for a vertexu € V is a singly
linked list of the neighbors ofi in G. Thus, vertexo appears in the lisN[u] if
(u,v) € E or (n,u) € E. The neighbor listN[u] contains exactly those ver-
ticeso for which there may be a residual ed@e v). The first vertex inN[u] is
pointed to byhead N[u]]. The vertex followingv in a neighbor list is pointed to
by nextneighbof]; this pointer isNiL if o is the last vertex in the neighbor list.

The relabel-to-front algorithm cycles through each nea@hist in an arbitrary
order that is fixed throughout the execution of the algorititior each vertex, the
field currenfu] points to the vertex currently under consideratiorifu]. Initially,
currenfu] is set tohead N[u]].

Discharging an overflowing vertex

An overflowing vertexu is dischargedby pushing all of its excess flow through
admissible edges to neighboring vertices, relabelirmg necessary to cause edges
leavingu to become admissible. The pseudocode goes as follows.

DISCHARGE(U)

1 whileefu] >0
do v <« currenfu]
if v = NIL
then RELABEL (U)
currenfu] < head N[u]]
elseifcs (u, ») > 0 andh[u] = h[o] + 1
then PUSH(u, v)
elsecurrenfu] < nextneighboifv]

O~NOOTA~WN

Figure 26.9 steps through several iterations ofittve loop of lines 1-8, which
executes as long as vertexhas positive excess. Each iteration performs exactly
one of three actions, depending on the current vartexthe neighbor lisiN[u].

1. If v is NIL, then we have run off the end ®f[u]. Line 4 relabels vertexi,
and then line 5 resets the current neighbomuadb be the first one irN[ul].
(Lemma 26.30 below states that the relabel operation applithis situation.)

2. If v is nonNIL and (u, ») is an admissible edge (determined by the test in
line 6), then line 7 pushes some (or possibly alluafexcess to vertex.

684

Chapter 26 Maximum Flow

@

N X 0|k
N X 0[N
N X 0w
N X O0n|bh

O R, N WM oo o

(b)

oL N WM OO
N X oo
N X 0|
N X 0|~

©

O R, N WM oo o
N X un|o
N X u|o©

Figure 26.9 Discharging a vertey. It takes 15 iterations of the&hile loop of DISCHARGEt0 push
all the excess flow frony. Only the neighbors of and edges entering or leaviygare shown. In
each part, the number inside each vertex is its excess atetjiarting of the first iteration shown
in the part, and each vertex is shown at its height througlimeipart. To the right is shown the
neighbor listN[y] at the beginning of each iteration, with the iteration n@mbn top. The shaded
neighbor iscurrenfy]. (a) Initially, there are 19 units of excess to push frgmrandcurrenfy] = s.
Iterations 1, 2, and 3 just advancerrenfy], since there are no admissible edges leawngin
iteration 4,currenf{y] = NIL (shown by the shading being below the neighbor list), ang $®
relabeled andurrenfy] is reset to the head of the neighbor ligh) After relabeling, vertexy has
height 1. In iterations 5 and 6, edgég s) and (y, x) are found to be inadmissible, but 8 units of
excess flow are pushed froynto z in iteration 7. Because of the pustyrrenfy] is not advanced
in this iteration. (c) Because the push in iteration 7 saturated edge), it is found inadmissible
in iteration 8. In iteration 9¢currenfy] = NIL, and so vertey is again relabeled ancurrenfy] is
reset. (d) In iteration 10,(y, s) is inadmissible, but 5 units of excess flow are pushed fyota x

in iteration 11.(e) Becausecurrenfy] was not advanced in iteration 11, iteration 12 fifgsx) to
be inadmissible. Iteration 13 findy, z) inadmissible, and iteration 14 relabels verteand resets
currenfy]. (f) Iteration 15 pushes 6 units of excess flow frgrno s. (g) Vertexy now has no excess
flow, and DscHARGEterminates. In this example,IBCHARGE both starts and finishes with the
current pointer at the head of the neighbor list, but in gahiis need not be the case.

26.5 The relabel-to-front algorithm

(d)

(€)

®

(9)

O R, N WM ol O O R, N WM~ ol O O R, N W~ ol O

O R, N WM~ ol O

10 11
X

12 13
X

15

s

X

z

14

685

686

Chapter 26 Maximum Flow

3. If v is nonNIL but (u, v) is inadmissible, then line 8 advancesrrenu] one
position further in the neighbor ligt[ul].

Observe that if ISCHARGE s called on an overflowing vertax, then the last
action performed by BBCHARGE must be a push from. Why? The procedure
terminates only wheg[u] becomes zero, and neither the relabel operation nor the
advancing of the pointerurrenfu] affects the value of[u].

We must be sure that wheruBH or RELABEL is called by DSCHARGE, the
operation applies. The next lemma proves this fact.

Lemma 26.30
If DiIsSCHARGE calls RUSH(u, ») in line 7, then a push operation applies(tg).
If DiscHARGECcalls RELABEL (u) in line 4, then a relabel operation appliesuto

Proof The tests in lines 1 and 6 ensure that a push operation ocolysf dhe
operation applies, which proves the first statement in thera.

To prove the second statement, according to the test in lamell.emma 26.29,
we need only show that all edges leavingare inadmissible. Observe that
as DSCHARGE(U) is repeatedly called, the pointarurrenfu] moves down
the list N[u]. Each “pass” begins at the head of[u] and finishes with
currenfu] = NIL, at which pointu is relabeled and a new pass begins. For the
currenfu] pointer to advance past a vertexe N[u] during a pass, the edde, v)
must be deemed inadmissible by the test in line 6. Thus, byithe the pass
completes, every edge leavighas been determined to be inadmissible at some
time during the pass. The key observation is that at the etliegbass, every edge
leavingu is still inadmissible. Why? By Lemma 26.28, pushes cannedter any
admissible edges, let alone one leavingl hus, any admissible edge must be cre-
ated by a relabel operation. But the verteis not relabeled during the pass, and by
Lemma 26.29, any other vertexthat is relabeled during the pass has no entering
admissible edges after relabeling. Thus, at the end of thg, @dl edges leaving
remain inadmissible, and the lemma is proved. [

The relabel-to-front algorithm

In the relabel-to-front algorithm, we maintain a linked lis consisting of all ver-
ticesinV — {s, t}. A key property is that the vertices In are topologically sorted
according to the admissible network, as we shall see in the lovariant below.
(Recall from Lemma 26.27 that the admissible network is a)dag

The pseudocode for the relabel-to-front algorithm assuthat the neighbor
lists N[u] have already been created for each vereit also assumes thaex{u]
points to the vertex that follows in list L and that, as usuahexfu] = NIL if uis
the last vertex in the list.

26.5 The relabel-to-front algorithm 687

RELABEL-TO-FRONT(G, s, t)

1 INITIALIZE -PREFLOW(G, S)

2 L <« V[G] —{s,t},inany order
3 for each vertexu € V[G] — {s, t}
4 do currenfu] < head N[u]]
5 u <« headl]

6 while u # NIL

7 do old-height < h[u]

8 DISCHARGE(U)

9 if h[u] > old-height

0 then moveu to the front of listL
1 u < nex{u]

The relabel-to-front algorithm works as follows. Line 1tializes the preflow
and heights to the same values as in the generic push-reigmithm. Line 2
initializes the listL to contain all potentially overflowing vertices, in any orde
Lines 3—4 initialize thecurrent pointer of each vertex to the first vertex inu’'s
neighbor list.

As shown in Figure 26.10, thehile loop of lines 6—11 runs through the likt
discharging vertices. Line 5 makes it start with the firstteerin the list. Each
time through the loop, a vertaxis discharged in line 8. Ifi was relabeled by the
DiscHARGEprocedure, line 10 moves it to the front of list This determination is
made by saving’s height in the variabl®ld-heightbefore the discharge operation
(line 7) and comparing this saved heightus height afterward (line 9). Line 11
makes the next iteration of tivehile loop use the vertex following in list L. If u
was moved to the front of the list, the vertex used in the nixation is the one
following u in its new position in the list.

To show that RLABEL-TO-FRONT computes a maximum flow, we shall show
that it is an implementation of the generic push-relabebtigm. First, ob-
serve that it performs push and relabel operation only wiay tapply, since
Lemma 26.30 guarantees thatd@HARGE only performs them when they apply.
It remains to show that whenHRABEL-TO-FRONT terminates, no basic opera-
tions apply. The remainder of the correctness argumergsran the following
loop invariant:

At each test in line 6 of RLABEL-TO-FRONT, list L is a topological sort
of the vertices in the admissible netwo®:, = (V, E¢n), and no vertex
beforeu in the list has excess flow.

Initialization: Immediately afterMiTIALIZE -PREFLOW has been rurh[s] = |V|
andh[p] = Oforallo € V — {s}. Since|V| > 2 (because/ contains at
leasts andt), no edge can be admissible. Th&s,, = ¢, and any ordering of
V —{s, t} is a topological sort 0G ¢ j,.

688 Chapter 26 Maximum Flow

6

5 L. x vy z

4 N: s S X
(a) 3 y X 'y

2 z z t

1 t

0

6

5 L: x vy z

4 N S S X
() 3 y x .y

2 z z t

1 t

0

6

5 L.y x z

4 N s s X
(9 3 X 'y y

2 z z t

1 t

0

Figure 26.10 The action of RLABEL-TO-FRONT. (a) A flow network just before the first iteration
of the while loop. Initially, 26 units of flow leave source On the right is shown the initial list
L = (X, Y, 2), where initiallyu = x. Under each vertex in lidt is its neighbor list, with the current
neighbor shaded. Vertexis discharged. It is relabeled to height 1, 5 units of excess fire pushed
to y, and the 7 remaining units of excess are pushed to thet sBé&cause is relabeled, it is moved
to the head oL, which in this case does not change the structure.ofb) After x, the next vertex
in L that is discharged ig. Figure 26.9 shows the detailed action of discharging this situation.
Becausey is relabeled, itis moved to the headlof(c) Vertexx now followsy in L, and so itis again
discharged, pushing all 5 units of excess flow.tBecause vertex is not relabeled in this discharge
operation, it remains in place in lit. (d) Since vertexz follows vertexx in L, it is discharged. It
is relabeled to height 1 and all 8 units of excess flow are plishé. Because is relabeled, it is
moved to the front olL. (e) Vertexy now follows vertexz in L and is therefore discharged. But
because has no excess, IBCHARGEimmediately returns, ang remains in place .. Vertexx is
then discharged. Because it, too, has no excessCHARGEagain returns, and remains in place
in L. RELABEL-TO-FRONThas reached the end of listand terminates. There are no overflowing
vertices, and the preflow is a maximum flow.

26.5 The relabel-to-front algorithm 689

(d)

(e)

6

5 L.y x z
4 N: s s X
3 Xy Yy
2 z z t
1 t

0

6

5 L.z vy X
4 N: X S S
3 y X 'y
2 t z z
1 t
0

Sinceu is initially the head of the list., there are no vertices before it and so
there are none before it with excess flow.

Maintenance: To see that the topological sort is maintained by each iteraif

the while loop, we start by observing that the admissible network enged
only by push and relabel operations. By Lemma 26.28, pushatipas do not
cause edges to become admissible. Thus, admissible edgbe ceeated only
by relabel operations. After a vertaxis relabeled, however, Lemma 26.29
states that there are no admissible edges entaring there may be admissible
edges leavingl. Thus, by movingu to the front ofL, the algorithm ensures
that any admissible edges leavingatisfy the topological sort ordering.

To see that no vertex precedingin L has excess flow, we denote the vertex
that will be u in the next iteration byw’. The vertices that will precede’

in the next iteration include the current(due to line 11) and either no other
vertices (ifu is relabeled) or the same vertices as before (g not relabeled).
Sinceu is discharged, it has no excess flow afterward. Thus,i# relabeled
during the discharge, no vertices precedinghave excess flow. If is not
relabeled during the discharge, no vertices before it orlish@cquired excess
flow during this discharge, becauseaemained topologically sorted at all times
during the discharge (as pointed out just above, admissitiiges are created
only by relabeling, not pushing), and so each push operatoses excess flow
to move only to vertices further down the list (ordmr t). Again, no vertices
precedingu’ have excess flow.

690 Chapter 26 Maximum Flow

Termination: When the loop terminates,is just past the end df, and so the loop
invariant ensures that the excess of every vertex is 0. Ttaubasic operations

apply.

Analysis

We shall now show that BLABEL-TO-FRONT runs in O(V?) time on any flow
network G = (V, E). Since the algorithm is an implementation of the generic
push-relabel algorithm, we shall take advantage of Canol®6.22, which pro-
vides anO(V) bound on the number of relabel operations executed pemvantg
anO(V?) bound on the total number of relabel operations overall diditéon, Ex-
ercise 26.4-2 provides an(V E) bound on the total time spent performing relabel
operations, and Lemma 26.23 provides@(V E) bound on the total number of
saturating push operations.

Theorem 26.31
The running time of RLABEL-TO-FRONT on any flow networkG = (V, E)
is O(V3).

Proof Let us consider a “phase” of the relabel-to-front algorittorbe the time
between two consecutive relabel operations. ThereDgé?) phases, since there
are O(V?) relabel operations. Each phase consists of at stalls to Dis-
CHARGE, which can be seen as follows. IfiIfCHARGE does not perform a re-
label operation, then the next call ta$ZHARGE is further down the list, and
the length ofL is less thaniV|. If DISCHARGE does perform a relabel, the next
call to DISCHARGE belongs to a different phase. Since each phase contains at
most|V| calls to DSCHARGE and there aré(V?) phases, the number of times
DISCHARGEIs called in line 8 of RLABEL-TO-FRONT is O(V?). Thus, the total
work performed by thavhile loop in RELABEL-TO-FRONT, excluding the work
performed within DSCHARGE, is at mostO(V?).

We must now bound the work performed withindZHARGE during the ex-
ecution of the algorithm. Each iteration of théhile loop within DISCHARGE
performs one of three actions. We shall analyze the totalatnaf work involved
in performing each of these actions.

We start with relabel operations (lines 4-5). Exercise Zoptovides arO(V E)
time bound on all thé(V?) relabels that are performed.

Now, suppose that the action updatesdbeenfu] pointer in line 8. This action
occursO(degre€u)) times each time a vertaxis relabeled, an®(V - degre€u))
times overall for the vertex. For all vertices, therefoitee total amount of work
done in advancing pointers in neighbor listQ$V E) by the handshaking lemma
(Exercise B.4-1).

26.5 The relabel-to-front algorithm 691

The third type of action performed byIBCHARGEIs a push operation (line 7).
We already know that the total number of saturating pushatjmrs isO(V E).
Observe that if a nonsaturating push is executadcBARGEImMmediately returns,
since the push reduces the excess to 0. Thus, there can bstaimaamonsaturating
push per call to DSCHARGE As we have observed, IBCHARGEISs calledO(V?)
times, and thus the total time spent performing nonsahggiiuishes i©(V?).

The running time of RLABEL-TO-FRONT is thereforeO(V3 + V E), which
is O(V3). [

Exercises

26.5-1

lllustrate the execution of R ABEL-TO-FRONT in the manner of Figure 26.10 for
the flow network in Figure 26.1(a). Assume that the initiaenng of vertices irL

is (v1, v2, v3, v4) and that the neighbor lists are

N[oi] = (s,v2,03),
N[vo] = (S,v1,03,04),
N[vs] = (v1,02,04,1),
N[vg] = (v2,03,t).
26.5-2 x

We would like to implement a push-relabel algorithm in whigd maintain a first-
in, first-out queue of overflowing vertices. The algorithnpeatedly discharges
the vertex at the head of the queue, and any vertices that megreverflowing

before the discharge but are overflowing afterward are platethe end of the
queue. After the vertex at the head of the queue is discharigedemoved. When
the queue is empty, the algorithm terminates. Show thatalgerithm can be
implemented to compute a maximum flow@(V?3) time.

26.5-3

Show that the generic algorithm still works ifERABEL updatesh[u] by sim-
ply computingh[u] <« h[u] + 1. How would this change affect the analysis of
RELABEL-TO-FRONT?

26.5-4 x
Show that if we always discharge a highest overflowing verte& push-relabel
method can be made to run @(V?) time.

26.5-5
Suppose that at some point in the execution of a push-redddpadlithm, there exists
an integer O< k < |V| — 1 for which no vertex haf[o] = k. Show that all

692

Chapter 26 Maximum Flow

vertices withh[o] > k are on the source side of a minimum cut. If suck a
exists, thegap heuristicupdates every vertexe V — s for which h[o] > k to set
h[v] < max(h[v], |V|+1). Show that the resulting attribukeis a height function.
(The gap heuristic is crucial in making implementationshef push-relabel method
perform well in practice.)

Problems

26-1 Escape problem

An nxngrid is an undirected graph consistingrofows anch columns of vertices,
as shown in Figure 26.11. We denote the vertex intheow and thejth column
by (i, j). All vertices in a grid have exactly four neighbors, exceptthe boundary
vertices, which are the points, j) for whichi =1,i =n,j=1,0rj =n.

Givenm < n? starting points(x1, Y1), (X2, ¥2), - .., (Xm, Ym) in the grid, the
escape problenis to determine whether or not there arevertex-disjoint paths
from the starting points to anm different points on the boundary. For example,
the grid in Figure 26.11(a) has an escape, but the grid inréigé.11(b) does not.

a. Consider a flow network in which vertices, as well as edgese ltapacities.
That is, the total positive flow entering any given vertexubjsct to a capacity
constraint. Show that determining the maximum flow in a nekweith edge
and vertex capacities can be reduced to an ordinary maxiftamnproblem on
a flow network of comparable size.

b. Describe an efficient algorithm to solve the escape probkemad, analyze its
running time.

26-2 Minimum path cover

A path coverof a directed graptc = (V, E) is a setP of vertex-disjoint paths
such that every vertex iN is included in exactly one path iR. Paths may start
and end anywhere, and they may be of any length, including @irdmum path
coverof G is a path cover containing the fewest possible paths.

a. Give an efficient algorithm to find a minimum path cover of sedied acyclic
graphG = (V, E). (Hint: Assuming thatv = {1,2,...,n}, construct the
graphG’ = (V/, E’), where
V/ = {XO,Xla-‘-,Xn}U{yanla---ayn})

E' = {(Xo, %) :i € VIU{(Yi,Yo) 11 € VIU{(xi,y)): (@,]) € E},

and run a maximum-flow algorithm.)

Problems for Chapter 26 693

Figure 26.11 Grids for the escape problem. Starting points are black,adhdr grid vertices are
white. (a) A grid with an escape, shown by shaded patb3 A grid with no escape.

b. Does your algorithm work for directed graphs that contaioles? Explain.

26-3 Space shuttle experiments

Professor Spock is consulting for NASA, which is planningeeies of space shut-
tle flights and must decide which commercial experimentseidopm and which
instruments to have on board each flight. For each flight, NABAsiders a set
E = {E., E,, ..., Ey} of experiments, and the commercial sponsor of experi-
mentE; has agreed to pay NASA; dollars for the results of the experiment. The
experiments use a set= {l, I, ..., I} of instruments; each experimeBf re-
quires all the instruments in a subdet € |. The cost of carrying instrumenf
isck dollars. The professor’s job is to find an efficient algorittordetermine which
experiments to perform and which instruments to carry fovargflight in order to
maximize the net revenue, which is the total income from erpents performed
minus the total cost of all instruments carried.

Consider the following networkG. The network contains a source ver-
tex s, verticesly, I, ..., I, verticesgy, E,, ..., En, and a sink vertex. For
k=12...,n, there is an edgés, ly) of capacityck, and forj = 1,2,..., m,
there is an edgé€E;, t) of capacityp;. Fork =1,2,...,nandj =1,2,...,m,
if Ix € R;, then there is an eddéy, E;) of infinite capacity.

a. Show thatifE; e T for a finite-capacity cutS, T) of G, thenl, € T for each
Ik € Rj.

b. Show how to determine the maximum net revenue from the capatithe
minimum cut of G and the giverp; values.

694

Chapter 26 Maximum Flow

c. Give an efficient algorithm to determine which experimermtsperform and
which instruments to carry. Analyze the running time of yalgorithm in
terms ofm, n, andr = 3T, |R;].

26-4 Updating maximum flow
Let G = (V, E) be a flow network with sourcs, sinkt, and integer capacities.
Suppose that we are given a maximum flon@n

a. Suppose that the capacity of a single efgev) € E is increased by 1. Give
anO(V + E)-time algorithm to update the maximum flow.

b. Suppose that the capacity of a single efge) € E is decreased by 1. Give
anO(V + E)-time algorithm to update the maximum flow.

26-5 Maximum flow by scaling
Let G = (V, E) be a flow network with sourcs, sinkt, and an integer capac-
ity c(u, v) on each edgéu, v) € E. LetC = maxy,)ce C(U,).

a. Argue that a minimum cut o6 has capacity at mot |E|.

b. For agiven numbeK, show that an augmenting path of capacity at l&astn
be found inO(E) time, if such a path exists.

The following modification of BRD-FULKERSON-METHOD can be used to com-
pute a maximum flow irG.

MAX-FLOW-BY-SCALING (G, s, 1)
C < maxy,y)ce (U, v)
initialize flow f to O
K « 2lgC]
while K > 1
do while there exists an augmenting patlof capacity at leasK
do augment flowf alongp
K« K/2
return f

O~NOOT A WN P

o

Argue that Max-FLOW-BY-SCALING returns a maximum flow.

d. Show that the capacity of a minimum cut of the residual gr@phis at most
2K |E| each time line 4 is executed.

e. Argue that the innewhile loop of lines 5-6 is execute®(E) times for each
value ofK.

Problems for Chapter 26 695

f. Conclude that MXx-FLOw-BY-SCALING can be implemented so that it runs
in O(E?Ig C) time.

26-6 Maximum flow with negative capacities
Suppose that we allow a flow network to have negative (as vggiositive) edge
capacities. In such a network, a feasible flow need not exist.

a. Consider an edgéu, ») in a flow networkG = (V, E) with c(u,») < O.
Briefly explain what such a negative capacity means in terfriceoflow be-
tweenu ando.

LetG = (V, E) be a flow network with negative edge capacities, and &tdt be
the source and sink @b. Construct the ordinary flow netwoi®’ = (V’, E’) with
capacity functiorc’, sources’, and sinkt’, where

V' =VuUi{s,t}
and
E'=EU{(,v):(v,u) € E}
U{(s,v):v eV}
U{(u,th):ueV}
U {(s,t), (t,9)} .
We assign capacities to edges as follows. For each @dge < E, we set
c'(u,v) =c(v,u) = (c(u,v) +c(v,u))/2.
For each vertexi € V, we set
c'(s’, u) = maxQO, (c(V, u) —c(u, V))/2)
and
c/(u,t) = max(, (c(u, V) — c(V, u))/2) .
We also set/(s,t) = ¢/(t, s) = oo.

b. Prove that if a feasible flow exists i@, then all capacities i’ are nonneg-
ative and a maximum flow exists B such that all edges into the sitkare
saturated.

c. Prove the converse of part (b). Your proof should be consticthat is, given
a flow in G’ that saturates all the edges inttpyour proof should show how to
obtain a feasible flow iiG.

696

Chapter 26 Maximum Flow

d. Describe an algorithm that finds a maximum feasible flowGin Denote by
MF(V], |E]) the worst-case running time of an ordinary maximum flow al-
gorithm on a graph withV | vertices andE| edges. Analyze your algorithm
for computing the maximum flow of a flow network with negativapacities in
terms ofMF.

26-7 The Hopcroft-Karp bipartite matching algorithm
In this problem, we describe a faster algorithm, due to Hofpand Karp, for
finding a maximum matching in a bipartite graph. The algonituns inO(+/V E)
time. Given an undirected, bipartite gragh= (V, E), whereV = L U R and
all edges have exactly one endpointlLinlet M be a matching irG. We say that
a simple pathP in G is anaugmenting pathwith respect toM if it starts at an
unmatched vertex i, ends at an unmatched vertex iy and its edges belong
alternately toM and E — M. (This definition of an augmenting path is related
to, but different from, an augmenting path in a flow networkn) this problem,
we treat a path as a sequence of edges, rather than as a segfieectices. A
shortest augmenting path with respect to a matcMnig an augmenting path with
a minimum number of edges.

Given two setsA and B, thesymmetric differenceA® B is defined agA— B)U
(B — A), that is, the elements that are in exactly one of the two sets.

a. Show that ifM is a matching andP is an augmenting path with respectiib,
then the symmetric differenckl & P is a matching antM & P| = M| + 1.
Show that if P, P», ..., P are vertex-disjoint augmenting paths with respect
to M, then the symmetric differencel & (P, U P, U --- U P) is a matching
with cardinality |M| + k.

The general structure of our algorithm is the following:

HoPCROFTKARP(G)

1 M<«¢

2 repeat

3 letP < {Py, P, ..., P} be a maximal set of vertex-disjoint
shortest augmenting paths with respeciMo

4 M«—M@&PUPU---UP)
5 until # =0
6 return M

The remainder of this problem asks you to analyze the humbi¢erations in
the algorithm (that is, the number of iterations in tepeat loop) and to describe
an implementation of line 3.

Notes for Chapter 26 697

b. Given two matching?M and M* in G, show that every vertex in the graph
G = (V, M @ M*) has degree at most 2. Conclude t@atis a disjoint union
of simple paths or cycles. Argue that edges in each such sigath or cycle
belong alternately td1 or M*. Prove thatifM| < |M*|, thenM & M* contains
at least M*| — |M| vertex-disjoint augmenting paths with respectMo

Letl be the length of a shortest augmenting path with respect tatehimgM, and
let P, Py, ..., P« be a maximal set of vertex-disjoint augmenting paths oftlehg
with respect taM. LetM’' = M & (P, U - - - U F), and suppose th& is a shortest
augmenting path with respect kd'.

c. Show that ifP is vertex-disjoint fromPy, P, ..., Py, thenP has more thath
edges.

d. Now suppose thaP is not vertex-disjoint fromPy, P», ..., Pc. Let A be the
set of edgesM & M) @ P. Show thatA = (PLUP,U---U P) & P and that
|Al > (k4 1)I. Conclude thaP has more thahedges.

e. Prove that if a shortest augmenting path with respedtitbasl edges, the size
of the maximum matching is at mog¥l| + |V| /(I + 1).

f. Show that the number oépeatloop iterations in the algorithm is at mos{/a/ .
(Hint: By how much carM grow after iteration numbey/V ?)

g. Give an algorithm that runs iI©(E) time to find a maximal set of vertex-
disjoint shortest augmenting path, P., ..., P for a given matchingM.
Conclude that the total running time ofdf®CROFFKARP is O(+/V E).

Chapter notes

Ahuja, Magnanti, and Orlin [7], Even [87], Lawler [196], Radimitriou and Stei-
glitz [237], and Tarjan [292] are good references for netwftow and related algo-
rithms. Goldberg, Tardos, and Tarjan [119] also provideca survey of algorithms
for network-flow problems, and Schrijver [267] has writtem iateresting review
of historical developments in the field of network flows.

The Ford-Fulkerson method is due to Ford and Fulkerson [9B4 originated
the formal study of many of the problems in the area of netwitml, including
the maximum-flow and bipartite-matching problems. Manyyeianplementations
of the Ford-Fulkerson method found augmenting paths usiagdth-first search;
Edmonds and Karp [86], and independently Dinic [76], protieat this strategy
yields a polynomial-time algorithm. A related idea, thatisfng “blocking flows,”

698

Chapter 26 Maximum Flow

was also first developed by Dinic [76]. Karzanov [176] firsteleped the idea of
preflows. The push-relabel method is due to Goldberg [11d]@oidberg and Tar-
jan [121]. Goldberg and Tarjan gave @(V3)-time algorithm that uses a queue to
maintain the set of overflowing vertices, as well as an atgorithat uses dynamic
trees to achieve a running time 6f(V Elg(V2/E + 2)). Several other researchers
have developed push-relabel maximum-flow algorithms. Alaujd Orlin [9] and
Ahuja, Orlin, and Tarjan [10] gave algorithms that used isgal Cheriyan and
Maheshwari [55] proposed pushing flow from the overflowingexe of maximum
height. Cheriyan and Hagerup [54] suggested randomly ptmmthe neighbor
lists, and several researchers [14, 178, 241] developedratierandomizations of
this idea, leading to a sequence of faster algorithms. Tgarithm of King, Rao,
and Tarjan [178] is the fastest such algorithm and run®{v Elogg v, V)
time.

The asymptotically fastest algorithm to date for the maximflow prob-
lem is due to Goldberg and Rao [120] and runs in ti®@¢min(V%/3, EY/?)
Elg(V2/E + 2)IgC), whereC = maxy,,ce c(U,v). This algorithm does not
use the push-relabel method but instead is based on findauliby flows. All
previous maximum-flow algorithms, including the ones irstbhapter, use some
notion of distance (the push-relabel algorithms use théognas notion of height),
with a length of 1 assigned implicitly to each edge. This n&yoedthm takes a dif-
ferent approach and assigns a length of 0 to high-capaditgseaind a length of 1 to
low-capacity edges. Informally, with respect to these thagshortest paths from
the source to the sink tend have high capacity, which meaidatver iterations
need be performed.

In practice, push-relabel algorithms currently dominatgyraenting-path or
linear-programming based algorithms for the maximum-flawbtem. A study
by Cherkassky and Goldberg [56] underscores the importahasing two heuris-
tics when implementing a push-relabel algorithm. The fietristic is to period-
ically perform a breadth-first search of the residual grapbrder to obtain more
accurate height values. The second heuristic is the gajstieudescribed in Ex-
ericse 26.5-5. They conclude that the best choice of puabeakvariants is the one
that chooses to discharge the overflowing vertex with theimapa height.

The best algorithm to date for maximum bipartite matchingcalvered by
Hopcroft and Karp [152], runs i®(+/V E) time and is described in Problem 26-7.
The book by Lovasz and Plummer [207] is an excellent refexepn matching
problems.

