
26 Maximum Flow

Just as we can model a road map as a directed graph in order to find the shortest
path from one point to another, we can also interpret a directed graph as a “flow
network” and use it to answer questions about material flows.Imagine a material
coursing through a system from a source, where the material is produced, to a sink,
where it is consumed. The source produces the material at some steady rate, and the
sink consumes the material at the same rate. The “flow” of the material at any point
in the system is intuitively the rate at which the material moves. Flow networks
can be used to model liquids flowing through pipes, parts through assembly lines,
current through electrical networks, information throughcommunication networks,
and so forth.

Each directed edge in a flow network can be thought of as a conduit for the
material. Each conduit has a stated capacity, given as a maximum rate at which
the material can flow through the conduit, such as 200 gallonsof liquid per hour
through a pipe or 20 amperes of electrical current through a wire. Vertices are
conduit junctions, and other than the source and sink, material flows through the
vertices without collecting in them. In other words, the rate at which material enters
a vertex must equal the rate at which it leaves the vertex. We call this property “flow
conservation,” and it is equivalent to Kirchhoff’s CurrentLaw when the material is
electrical current.

In the maximum-flow problem, we wish to compute the greatest rate at which
material can be shipped from the source to the sink without violating any capacity
constraints. It is one of the simplest problems concerning flow networks and, as
we shall see in this chapter, this problem can be solved by efficient algorithms.
Moreover, the basic techniques used in maximum-flow algorithms can be adapted
to solve other network-flow problems.

This chapter presents two general methods for solving the maximum-flow prob-
lem. Section 26.1 formalizes the notions of flow networks andflows, formally
defining the maximum-flow problem. Section 26.2 describes the classical method
of Ford and Fulkerson for finding maximum flows. An application of this method,
finding a maximum matching in an undirected bipartite graph,is given in Sec-
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tion 26.3. Section 26.4 presents the push-relabel method, which underlies many of
the fastest algorithms for network-flow problems. Section 26.5 covers the “relabel-
to-front” algorithm, a particular implementation of the push-relabel method that
runs in timeO(V3). Although this algorithm is not the fastest algorithm known,
it illustrates some of the techniques used in the asymptotically fastest algorithms,
and it is reasonably efficient in practice.

26.1 Flow networks

In this section, we give a graph-theoretic definition of flow networks, discuss their
properties, and define the maximum-flow problem precisely. We also introduce
some helpful notation.

Flow networks and flows

A flow networkG = (V, E) is a directed graph in which each edge(u, v) ∈ E has
a nonnegativecapacityc(u, v) ≥ 0. If (u, v) 6∈ E, we assume thatc(u, v) = 0.
We distinguish two vertices in a flow network: asources and asink t . For conve-
nience, we assume that every vertex lies on some path from thesource to the sink.
That is, for every vertexv ∈ V , there is a paths ; v ; t . The graph is therefore
connected, and|E| ≥ |V | − 1. Figure 26.1 shows an example of a flow network.

We are now ready to define flows more formally. LetG = (V, E) be a flow
network with a capacity functionc. Let s be the source of the network, and lett be
the sink. Aflow in G is a real-valued functionf : V × V → R that satisfies the
following three properties:

Capacity constraint: For all u, v ∈ V , we require f (u, v) ≤ c(u, v).

Skew symmetry: For all u, v ∈ V , we require f (u, v) = − f (v, u).

Flow conservation: For all u ∈ V − {s, t}, we require
∑

v∈V

f (u, v) = 0 .

The quantity f (u, v), which can be positive, zero, or negative, is called theflow
from vertexu to vertexv . Thevalueof a flow f is defined as

| f | =
∑

v∈V

f (s, v) , (26.1)

that is, the total flow out of the source. (Here, the|·| notation denotes flow value,
not absolute value or cardinality.) In themaximum-flow problem, we are given a
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Figure 26.1 (a)A flow network G = (V, E) for the Lucky Puck Company’s trucking problem.
The Vancouver factory is the sources, and the Winnipeg warehouse is the sinkt . Pucks are shipped
through intermediate cities, but onlyc(u, v) crates per day can go from cityu to city v. Each edge is
labeled with its capacity.(b) A flow f in G with value| f | = 19. Only positive flows are shown. If
f (u, v) > 0, edge(u, v) is labeled byf (u, v)/c(u, v). (The slash notation is used merely to separate
the flow and capacity; it does not indicate division.) Iff (u, v) ≤ 0, edge(u, v) is labeled only by its
capacity.

flow networkG with sources and sinkt , and we wish to find a flow of maximum
value.

Before seeing an example of a network-flow problem, let us briefly explore the
three flow properties. The capacity constraint simply says that the flow from one
vertex to another must not exceed the given capacity. Skew symmetry is a no-
tational convenience that says that the flow from a vertexu to a vertexv is the
negative of the flow in the reverse direction. The flow-conservation property says
that the total flow out of a vertex other than the source or sinkis 0. By skew
symmetry, we can rewrite the flow-conservation property as
∑

u∈V

f (u, v) = 0

for all v ∈ V − {s, t}. That is, the total flow into a vertex is 0.
When neither(u, v) nor (v, u) is in E, there can be no flow betweenu andv , and

f (u, v) = f (v, u) = 0. (Exercise 26.1-1 asks you to prove this property formally.)
Our last observation concerning the flow properties deals with flows that are

positive. Thetotal positive flowentering a vertexv is defined by
∑

u∈V
f (u,v)>0

f (u, v) . (26.2)

The total positive flow leaving a vertex is defined symmetrically. We define the
total net flowat a vertex to be the total positive flow leaving a vertex minusthe
total positive flow entering a vertex. One interpretation ofthe flow-conservation
property is that the total positive flow entering a vertex other than the source or
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sink must equal the total positive flow leaving that vertex. This property, that the
total net flow at a vertex must equal 0, is often informally referred to as “flow in
equals flow out.”

An example of flow

A flow network can model the trucking problem shown in Figure 26.1(a). The
Lucky Puck Company has a factory (sources) in Vancouver that manufactures
hockey pucks, and it has a warehouse (sinkt) in Winnipeg that stocks them. Lucky
Puck leases space on trucks from another firm to ship the pucksfrom the factory
to the warehouse. Because the trucks travel over specified routes (edges) between
cities (vertices) and have a limited capacity, Lucky Puck can ship at mostc(u, v)

crates per day between each pair of citiesu andv in Figure 26.1(a). Lucky Puck
has no control over these routes and capacities and so cannotalter the flow network
shown in Figure 26.1(a). Their goal is to determine the largest numberp of crates
per day that can be shipped and then to produce this amount, since there is no point
in producing more pucks than they can ship to their warehouse. Lucky Puck is not
concerned with how long it takes for a given puck to get from the factory to the
warehouse; they care only thatp crates per day leave the factory andp crates per
day arrive at the warehouse.

On the surface, it seems appropriate to model the “flow” of shipments with a
flow in this network because the number of crates shipped per day from one city
to another is subject to a capacity constraint. Additionally, flow conservation must
be obeyed, for in a steady state, the rate at which pucks enteran intermediate city
must equal the rate at which they leave. Otherwise, crates would accumulate at
intermediate cities.

There is one subtle difference between shipments and flows, however. Lucky
Puck may ship pucks from Edmonton to Calgary, and they may also ship pucks
from Calgary to Edmonton. Suppose that they ship 8 crates perday from Edmonton
(v1 in Figure 26.1) to Calgary (v2) and 3 crates per day from Calgary to Edmonton.
It may seem natural to represent these shipments directly byflows, but we cannot.
The skew-symmetry constraint requires thatf (v1, v2) = − f (v2, v1), but this is
clearly not the case if we considerf (v1, v2) = 8 and f (v2, v1) = 3.

Lucky Puck may realize that it is pointless to ship 8 crates per day from Edmon-
ton to Calgary and 3 crates from Calgary to Edmonton, when they could achieve the
same net effect by shipping 5 crates from Edmonton to Calgaryand 0 crates from
Calgary to Edmonton (and presumably use fewer resources in the process). We rep-
resent this latter scenario with a flow: we havef (v1, v2) = 5 and f (v2, v1) = −5.
In effect, 3 of the 8 crates per day fromv1 to v2 arecanceledby 3 crates per day
from v2 to v1.
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In general, cancellation allows us to represent the shipments between two cities
by a flow that is positive along at most one of the two edges between the corre-
sponding vertices. That is, any situation in which pucks areshipped in both direc-
tions between two cities can be transformed using cancellation into an equivalent
situation in which pucks are shipped in one direction only: the direction of positive
flow.

Given a flow f that arose from, say, physical shipments, we cannot reconstruct
the exact shipments. If we know thatf (u, v) = 5, this flow may be because 5
units were shipped fromu to v , or it may be because 8 units were shipped fromu
to v and 3 units were shipped fromv to u. Typically, we shall not care how the
actual physical shipments are set up; for any pair of vertices, we care only about
the net amount that travels between them. If we do care about the underlying
shipments, then we should be using a different model, one that retains information
about shipments in both directions.

Cancellation will arise implicitly in the algorithms in this chapter. Suppose that
edge(u, v) has a flow value off (u, v). In the course of an algorithm, we may
increase the flow on edge(v, u) by some amountd. Mathematically, this operation
must decreasef (u, v) by d and, conceptually, we can think of thesed units as
cancelingd units of flow that are already on edge(u, v).

Networks with multiple sources and sinks

A maximum-flow problem may have several sources and sinks, rather than just
one of each. The Lucky Puck Company, for example, might actually have a set
of m factories{s1, s2, . . . , sm} and a set ofn warehouses{t1, t2, . . . , tn}, as shown
in Figure 26.2(a). Fortunately, this problem is no harder than ordinary maximum
flow.

We can reduce the problem of determining a maximum flow in a network with
multiple sources and multiple sinks to an ordinary maximum-flow problem. Fig-
ure 26.2(b) shows how the network from (a) can be converted toan ordinary flow
network with only a single source and a single sink. We add asupersources and
add a directed edge(s, si ) with capacityc(s, si ) = ∞ for eachi = 1, 2, . . . , m.
We also create a newsupersink t and add a directed edge(ti , t) with capacity
c(ti , t) = ∞ for eachi = 1, 2, . . . , n. Intuitively, any flow in the network in (a)
corresponds to a flow in the network in (b), and vice versa. Thesingle sources
simply provides as much flow as desired for the multiple sourcessi , and the sin-
gle sink t likewise consumes as much flow as desired for the multiple sinks ti .
Exercise 26.1-3 asks you to prove formally that the two problems are equivalent.
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Figure 26.2 Converting a multiple-source, multiple-sink maximum-flowproblem into a problem
with a single source and a single sink.(a) A flow network with five sourcesS= {s1, s2, s3, s4, s5}
and three sinksT = {t1, t2, t3}. (b) An equivalent single-source, single-sink flow network. We add a
supersources and an edge with infinite capacity froms to each of the multiple sources. We also add
a supersinkt and an edge with infinite capacity from each of the multiple sinks tot .

Working with flows

We shall be dealing with several functions (likef ) that take as arguments two
vertices in a flow network. In this chapter, we shall use animplicit summation
notation in which either argument, or both, may be aset of vertices, with the
interpretation that the value denoted is the sum of all possible ways of replacing
the arguments with their members. For example, ifX andY are sets of vertices,
then

f (X, Y) =
∑

x∈X

∑

y∈Y

f (x, y) .

Thus, the flow-conservation constraint can be expressed as the condition that
f (u, V) = 0 for all u ∈ V − {s, t}. Also, for convenience, we shall typically
omit set braces when they would otherwise be used in the implicit summation no-
tation. For example, in the equationf (s, V − s) = f (s, V), the termV − s means
the setV − {s}.
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The implicit summation notation often simplifies equationsinvolving flows. The
following lemma, whose proof is left as Exercise 26.1-4, captures several of the
most commonly occurring identities that involve flows and the implicit summation
notation.

Lemma 26.1
Let G = (V, E) be a flow network, and letf be a flow inG. Then the following
equalities hold:

1. For all X ⊆ V , we havef (X, X) = 0.

2. For all X, Y ⊆ V , we havef (X, Y) = − f (Y, X).

3. For all X, Y, Z ⊆ V with X ∩ Y = ∅, we have the sumsf (X ∪ Y, Z) =
f (X, Z)+ f (Y, Z) and f (Z, X ∪ Y) = f (Z, X)+ f (Z, Y).

As an example of working with the implicit summation notation, we can prove
that the value of a flow is the total flow into the sink; that is,

| f | = f (V, t) . (26.3)

Intuitively, we expect this property to hold. By flow conservation, all vertices other
than the source and sink have equal amounts of total positiveflow entering and
leaving. The source has, by definition, a total net flow that isgreater than 0; that is,
more positive flow leaves the source than enters it. Symmetrically, the sink is the
only vertex that can have a total net flow that is less than 0; that is, more positive
flow enters the sink than leaves it. Our formal proof goes as follows:

| f | = f (s, V) (by definition)

= f (V, V)− f (V − s, V) (by Lemma 26.1, part (3))

= − f (V − s, V) (by Lemma 26.1, part (1))

= f (V, V − s) (by Lemma 26.1, part (2))

= f (V, t)+ f (V, V − s− t) (by Lemma 26.1, part (3))

= f (V, t) (by flow conservation) .

Later in this chapter, we shall generalize this result (Lemma 26.5).

Exercises

26.1-1
Using the definition of a flow, prove that if(u, v) 6∈ E and (v, u) 6∈ E then
f (u, v) = f (v, u) = 0.

26.1-2
Prove that for any vertexv other than the source or sink, the total positive flow
enteringv must equal the total positive flow leavingv .
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26.1-3
Extend the flow properties and definitions to the multiple-source, multiple-sink
problem. Show that any flow in a multiple-source, multiple-sink flow network
corresponds to a flow of identical value in the single-source, single-sink network
obtained by adding a supersource and a supersink, and vice versa.

26.1-4
Prove Lemma 26.1. You should not need to use flow conservationin your proof.

26.1-5
For the flow networkG = (V, E) and flow f shown in Figure 26.1(b), find a pair
of subsetsX, Y ⊆ V for which f (X, Y) = − f (V − X, Y). Then, find a pair of
subsetsX, Y ⊆ V for which f (X, Y) 6= − f (V − X, Y).

26.1-6
Given a flow networkG = (V, E), let f1 and f2 be functions fromV × V to R.
Theflow sum f1+ f2 is the function fromV × V to R defined by

( f1+ f2)(u, v) = f1(u, v)+ f2(u, v) (26.4)

for all u, v ∈ V . If f1 and f2 are flows inG, which of the three flow properties
must the flow sumf1+ f2 satisfy, and which might it violate?

26.1-7
Let f be a flow in a network, and letα be a real number. Thescalar flow product,
denotedα f , is a function fromV × V to R defined by

(α f )(u, v) = α · f (u, v) .

Prove that the flows in a network form aconvex set. That is, show that iff1 and f2

are flows, then so isα f1+ (1− α) f2 for all α in the range 0≤ α ≤ 1.

26.1-8
State the maximum-flow problem as a linear-programming problem.

26.1-9
Professor Adam has two children who, unfortunately, dislike each other. The prob-
lem is so severe that not only do they refuse to walk to school together, but in
fact each one refuses to walk on any block that the other childhas stepped on that
day. The children have no problem with their paths crossing at a corner. Fortu-
nately both the professor’s house and the school are on corners, but beyond that
he is not sure if it is going to be possible to send both of his children to the same
school. The professor has a map of his town. Show how to formulate the problem
of determining if both his children can go to the same school as a maximum-flow
problem.
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26.2 The Ford-Fulkerson method

This section presents the Ford-Fulkerson method for solving the maximum-flow
problem. We call it a “method” rather than an “algorithm” because it encompasses
several implementations with differing running times. TheFord-Fulkerson method
depends on three important ideas that transcend the method and are relevant to
many flow algorithms and problems: residual networks, augmenting paths, and
cuts. These ideas are essential to the important max-flow min-cut theorem (The-
orem 26.7), which characterizes the value of a maximum flow interms of cuts of
the flow network. We end this section by presenting one specific implementation
of the Ford-Fulkerson method and analyzing its running time.

The Ford-Fulkerson method is iterative. We start withf (u, v) = 0 for all
u, v ∈ V , giving an initial flow of value 0. At each iteration, we increase the flow
value by finding an “augmenting path,” which we can think of simply as a path
from the sources to the sinkt along which we can send more flow, and then aug-
menting the flow along this path. We repeat this process untilno augmenting path
can be found. The max-flow min-cut theorem will show that upontermination, this
process yields a maximum flow.

FORD-FULKERSON-METHOD(G, s, t)

1 initialize flow f to 0
2 while there exists an augmenting pathp
3 do augment flowf along p
4 return f

Residual networks

Intuitively, given a flow network and a flow, the residual network consists of edges
that can admit more flow. More formally, suppose that we have aflow network
G = (V, E) with sources and sinkt . Let f be a flow inG, and consider a pair of
verticesu, v ∈ V . The amount ofadditionalflow we can push fromu to v before
exceeding the capacityc(u, v) is theresidual capacityof (u, v), given by

c f (u, v) = c(u, v)− f (u, v) . (26.5)

For example, ifc(u, v) = 16 and f (u, v) = 11, then we can increasef (u, v)

by c f (u, v) = 5 units before we exceed the capacity constraint on edge(u, v).
When the flow f (u, v) is negative, the residual capacityc f (u, v) is greater than
the capacityc(u, v). For example, ifc(u, v) = 16 and f (u, v) = −4, then the
residual capacityc f (u, v) is 20. We can interpret this situation as follows. There
is a flow of 4 units fromv to u, which we can cancel by pushing a flow of 4 units
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Figure 26.3 (a)The flow networkG and flow f of Figure 26.1(b).(b) The residual networkG f
with augmenting pathp shaded; its residual capacity isc f (p) = c f (v2, v3) = 4. (c) The flow
in G that results from augmenting along pathp by its residual capacity 4.(d) The residual network
induced by the flow in (c).

from u to v . We can then push another 16 units fromu to v before violating the
capacity constraint on edge(u, v). We have thus pushed an additional 20 units of
flow, starting with a flowf (u, v) = −4, before reaching the capacity constraint.

Given a flow networkG = (V, E) and a flow f , the residual networkof G
induced byf is G f = (V, E f ), where

E f = {(u, v) ∈ V × V : c f (u, v) > 0} .

That is, as promised above, each edge of the residual network, or residual edge,
can admit a flow that is greater than 0. Figure 26.3(a) repeatsthe flow networkG
and flow f of Figure 26.1(b), and Figure 26.3(b) shows the corresponding residual
networkG f .

The edges inE f are either edges inE or their reversals. Iff (u, v) < c(u, v)

for an edge(u, v) ∈ E, thenc f (u, v) = c(u, v) − f (u, v) > 0 and(u, v) ∈ E f .
If f (u, v) > 0 for an edge(u, v) ∈ E, then f (v, u) < 0. In this case,c f (v, u) =
c(v, u) − f (v, u) > 0, and so(v, u) ∈ E f . If neither (u, v) nor (v, u) appears
in the original network, thenc(u, v) = c(v, u) = 0, f (u, v) = f (v, u) = 0 (by
Exercise 26.1-1), andc f (u, v) = c f (v, u) = 0. We conclude that an edge(u, v)

can appear in a residual network only if at least one of(u, v) and(v, u) appears in
the original network, and thus

|E f | ≤ 2 |E| .
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Observe that the residual networkG f is itself a flow network with capacities
given byc f . The following lemma shows how a flow in a residual network relates
to a flow in the original flow network.

Lemma 26.2
Let G = (V, E) be a flow network with sources and sinkt , and let f be a flow
in G. Let G f be the residual network ofG induced by f , and let f ′ be a flow
in G f . Then the flow sumf + f ′ defined by equation (26.4) is a flow inG with
value| f + f ′| = | f | + | f ′|.

Proof We must verify that skew symmetry, the capacity constraints, and flow
conservation are obeyed. For skew symmetry, note that for all u, v ∈ V, we have

( f + f ′)(u, v) = f (u, v)+ f ′(u, v)

= − f (v, u)− f ′(v, u)

= −( f (v, u)+ f ′(v, u))

= −( f + f ′)(v, u) .

For the capacity constraints, note thatf ′(u, v) ≤ c f (u, v) for all u, v ∈ V . By
equation (26.5), therefore,

( f + f ′)(u, v) = f (u, v)+ f ′(u, v)

≤ f (u, v)+ (c(u, v)− f (u, v))

= c(u, v) .

For flow conservation, note that for allu ∈ V − {s, t}, we have∑

v∈V

( f + f ′)(u, v) =
∑

v∈V

( f (u, v)+ f ′(u, v))

=
∑

v∈V

f (u, v)+
∑

v∈V

f ′(u, v)

= 0+ 0

= 0 .

Finally, we have

| f + f ′| =
∑

v∈V

( f + f ′)(s, v)

=
∑

v∈V

( f (s, v)+ f ′(s, v))

=
∑

v∈V

f (s, v)+
∑

v∈V

f ′(s, v)

= | f | + | f ′| .
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Augmenting paths

Given a flow networkG = (V, E) and a flow f , anaugmenting pathp is a simple
path froms to t in the residual networkG f . By the definition of the residual
network, each edge(u, v) on an augmenting path admits some additional positive
flow from u to v without violating the capacity constraint on the edge.

The shaded path in Figure 26.3(b) is an augmenting path. Treating the residual
networkG f in the figure as a flow network, we can increase the flow through each
edge of this path by up to 4 units without violating a capacityconstraint, since the
smallest residual capacity on this path isc f (v2, v3) = 4. We call the maximum
amount by which we can increase the flow on each edge in an augmenting pathp
theresidual capacityof p, given by

c f (p) = min {c f (u, v) : (u, v) is on p} .

The following lemma, whose proof is left as Exercise 26.2-7,makes the above
argument more precise.

Lemma 26.3
Let G = (V, E) be a flow network, letf be a flow inG, and letp be an augmenting
path inG f . Define a functionf p : V × V → R by

f p(u, v) =





c f (p) if (u, v) is on p ,

−c f (p) if (v, u) is on p ,

0 otherwise.
(26.6)

Then, f p is a flow inG f with value| f p| = c f (p) > 0.

The following corollary shows that if we addf p to f , we get another flow inG
whose value is closer to the maximum. Figure 26.3(c) shows the result of addingf p

in Figure 26.3(b) tof from Figure 26.3(a).

Corollary 26.4
Let G = (V, E) be a flow network, letf be a flow inG, and let p be an aug-
menting path inG f . Let f p be defined as in equation (26.6). Define a func-
tion f ′ : V × V → R by f ′ = f + f p. Then f ′ is a flow in G with value
| f ′| = | f | + | f p| > | f |.

Proof Immediate from Lemmas 26.2 and 26.3.

Cuts of flow networks

The Ford-Fulkerson method repeatedly augments the flow along augmenting paths
until a maximum flow has been found. The max-flow min-cut theorem, which
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Figure 26.4 A cut (S, T) in the flow network of Figure 26.1(b), whereS = {s, v1, v2} and
T = {v3, v4, t}. The vertices inS are black, and the vertices inT are white. The net flow
across(S, T) is f (S, T) = 19, and the capacity isc(S, T) = 26.

we shall prove shortly, tells us that a flow is maximum if and only if its residual
network contains no augmenting path. To prove this theorem,though, we must first
explore the notion of a cut of a flow network.

A cut (S, T) of flow network G = (V, E) is a partition of V into S and
T = V − S such thats ∈ S and t ∈ T . (This definition is similar to the defi-
nition of “cut” that we used for minimum spanning trees in Chapter 23, except that
here we are cutting a directed graph rather than an undirected graph, and we insist
that s ∈ S and t ∈ T .) If f is a flow, then thenet flow across the cut(S, T) is
defined to bef (S, T). Thecapacityof the cut(S, T) is c(S, T). A minimum cut
of a network is a cut whose capacity is minimum over all cuts ofthe network.

Figure 26.4 shows the cut({s, v1, v2} , {v3, v4, t}) in the flow network of Fig-
ure 26.1(b). The net flow across this cut is

f (v1, v3)+ f (v2, v3)+ f (v2, v4) = 12+ (−4)+ 11

= 19 ,

and its capacity is

c(v1, v3)+ c(v2, v4) = 12+ 14

= 26 .

Observe that the net flow across a cut can include negative flows between vertices,
but that the capacity of a cut is composed entirely of nonnegative values. In other
words, the net flow across a cut(S, T) consists of positive flows in both directions;
positive flow fromS to T is added while positive flow fromT to S is subtracted.
On the other hand, the capacity of a cut(S, T) is computed only from edges go-
ing from S to T . Edges going fromT to S are not included in the computation
of c(S, T).

The following lemma shows that the net flow across any cut is the same, and it
equals the value of the flow.
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Lemma 26.5
Let f be a flow in a flow networkG with sources and sinkt , and let(S, T) be a
cut of G. Then the net flow across(S, T) is f (S, T) = | f |.

Proof Noting that f (S− s, V) = 0 by flow conservation, we have

f (S, T) = f (S, V)− f (S, S) (by Lemma 26.1, part (3))

= f (S, V) (by Lemma 26.1, part (1))

= f (s, V)+ f (S− s, V) (by Lemma 26.1, part (3))

= f (s, V) (since f (S− s, V) = 0)

= | f | .

An immediate corollary to Lemma 26.5 is the result we proved earlier—equa-
tion (26.3)—that the value of a flow is the total flow into the sink.

Another corollary to Lemma 26.5 shows how cut capacities canbe used to bound
the value of a flow.

Corollary 26.6
The value of any flowf in a flow networkG is bounded from above by the capacity
of any cut ofG.

Proof Let (S, T) be any cut ofG and let f be any flow. By Lemma 26.5 and the
capacity constraints,

| f | = f (S, T)

=
∑

u∈S

∑

v∈T

f (u, v)

≤
∑

u∈S

∑

v∈T

c(u, v)

= c(S, T) .

An immediate consequence of Corollary 26.6 is that the maximum flow in a
network is bounded above by the capacity of a minimum cut of the network. The
important max-flow min-cut theorem, which we now state and prove, says that the
value of a maximum flow is in fact equal to the capacity of a minimum cut.
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Theorem 26.7 (Max-flow min-cut theorem)
If f is a flow in a flow networkG = (V, E) with sources and sinkt , then the
following conditions are equivalent:

1. f is a maximum flow inG.

2. The residual networkG f contains no augmenting paths.

3. | f | = c(S, T) for some cut(S, T) of G.

Proof (1) ⇒ (2): Suppose for the sake of contradiction thatf is a maximum
flow in G but thatG f has an augmenting pathp. Then, by Corollary 26.4, the flow
sum f + f p, where f p is given by equation (26.6), is a flow inG with value strictly
greater than| f |, contradicting the assumption thatf is a maximum flow.

(2) ⇒ (3): Suppose thatG f has no augmenting path, that is, thatG f contains
no path froms to t . Define

S= {v ∈ V : there exists a path froms to v in G f }

andT = V−S. The partition(S, T) is a cut: we haves ∈ S trivially and t 6∈ Sbe-
cause there is no path froms to t in G f . For each pair of verticesu andv such that
u ∈ Sandv ∈ T , we havef (u, v) = c(u, v), since otherwise(u, v) ∈ E f , which
would placev in setS. By Lemma 26.5, therefore,| f | = f (S, T) = c(S, T).

(3)⇒ (1): By Corollary 26.6,| f | ≤ c(S, T) for all cuts(S, T). The condition
| f | = c(S, T) thus implies thatf is a maximum flow.

The basic Ford-Fulkerson algorithm

In each iteration of the Ford-Fulkerson method, we findsomeaugmenting pathp
and increase the flowf on each edge ofp by the residual capacityc f (p). The
following implementation of the method computes the maximum flow in a graph
G = (V, E) by updating the flowf [u, v ] between each pairu, v of vertices that
are connected by an edge.1 If u andv are not connected by an edge in either direc-
tion, we assume implicitly thatf [u, v ] = 0. The capacitiesc(u, v) are assumed
to be given along with the graph, andc(u, v) = 0 if (u, v) 6∈ E. The residual
capacityc f (u, v) is computed in accordance with the formula (26.5). The expres-
sionc f (p) in the code is actually just a temporary variable that storesthe residual
capacity of the pathp.

1We use square brackets when we treat an identifier—such asf —as a mutable field, and we use
parentheses when we treat it as a function.
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FORD-FULKERSON(G, s, t)

1 for each edge(u, v) ∈ E[G]
2 do f [u, v ] ← 0
3 f [v, u] ← 0
4 while there exists a pathp from s to t in the residual networkG f

5 do c f (p)← min {c f (u, v) : (u, v) is in p}
6 for each edge(u, v) in p
7 do f [u, v ] ← f [u, v ] + c f (p)

8 f [v, u] ←− f [u, v ]

The FORD-FULKERSON algorithm simply expands on the FORD-FULKERSON-
METHOD pseudocode given earlier. Figure 26.5 shows the result of each iteration
in a sample run. Lines 1–3 initialize the flowf to 0. Thewhile loop of lines 4–8
repeatedly finds an augmenting pathp in G f and augments flowf along p by
the residual capacityc f (p). When no augmenting paths exist, the flowf is a
maximum flow.

Analysis of Ford-Fulkerson

The running time of FORD-FULKERSON depends on how the augmenting pathp
in line 4 is determined. If it is chosen poorly, the algorithmmight not even termi-
nate: the value of the flow will increase with successive augmentations, but it need
not even converge to the maximum flow value.2 If the augmenting path is chosen
by using a breadth-first search (which we saw in Section 22.2), however, the algo-
rithm runs in polynomial time. Before proving this result, however, we obtain a
simple bound for the case in which the augmenting path is chosen arbitrarily and
all capacities are integers.

Most often in practice, the maximum-flow problem arises withintegral capaci-
ties. If the capacities are rational numbers, an appropriate scaling transformation
can be used to make them all integral. Under this assumption,a straightforward
implementation of FORD-FULKERSON runs in timeO(E | f ∗|), where f ∗ is the
maximum flow found by the algorithm. The analysis is as follows. Lines 1–3 take
time 2(E). Thewhile loop of lines 4–8 is executed at most| f ∗| times, since the
flow value increases by at least one unit in each iteration.

The work done within thewhile loop can be made efficient if we efficiently
manage the data structure used to implement the networkG = (V, E). Let us as-
sume that we keep a data structure corresponding to a directed graphG′ = (V, E′),
whereE′ = {(u, v) : (u, v) ∈ E or (v, u) ∈ E}. Edges in the networkG are also

2The Ford-Fulkerson method might fail to terminate only if edge capacities are irrational numbers.
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Figure 26.5 The execution of the basic Ford-Fulkerson algorithm.(a)–(d)Successive iterations of
thewhile loop. The left side of each part shows the residual networkG f from line 4 with a shaded
augmenting pathp. The right side of each part shows the new flowf that results from addingf p
to f . The residual network in (a) is the input networkG. (e) The residual network at the lastwhile
loop test. It has no augmenting paths, and the flowf shown in (d) is therefore a maximum flow.
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Figure 26.6 (a)A flow network for which FORD-FULKERSONcan take2(E | f ∗|) time, wheref ∗

is a maximum flow, shown here with| f ∗| = 2,000,000. An augmenting path with residual capacity 1
is shown.(b) The resulting residual network. Another augmenting path with residual capacity 1 is
shown.(c) The resulting residual network.

edges inG′, and it is therefore a simple matter to maintain capacities and flows in
this data structure. Given a flowf onG, the edges in the residual networkG f con-
sist of all edges(u, v) of G′ such thatc(u, v)− f [u, v ] 6= 0. The time to find a path
in a residual network is thereforeO(V + E′) = O(E) if we use either depth-first
search or breadth-first search. Each iteration of thewhile loop thus takesO(E)

time, making the total running time of FORD-FULKERSON O(E | f ∗|).
When the capacities are integral and the optimal flow value| f ∗| is small, the

running time of the Ford-Fulkerson algorithm is good. Figure 26.6(a) shows an ex-
ample of what can happen on a simple flow network for which| f ∗| is large. A max-
imum flow in this network has value 2,000,000: 1,000,000 units of flow traverse the
paths→ u→ t , and another 1,000,000 units traverse the paths→ v → t . If the
first augmenting path found by FORD-FULKERSON is s→ u→ v → t , shown in
Figure 26.6(a), the flow has value 1 after the first iteration.The resulting residual
network is shown in Figure 26.6(b). If the second iteration finds the augment-
ing paths→ v → u→ t , as shown in Figure 26.6(b), the flow then has value 2.
Figure 26.6(c) shows the resulting residual network. We cancontinue, choosing
the augmenting paths→ u→ v → t in the odd-numbered iterations and the aug-
menting paths→ v → u→ t in the even-numbered iterations. We would perform
a total of 2,000,000 augmentations, increasing the flow value by only 1 unit in each.

The Edmonds-Karp algorithm

The bound on FORD-FULKERSON can be improved if we implement the compu-
tation of the augmenting pathp in line 4 with a breadth-first search, that is, if
the augmenting path is ashortestpath froms to t in the residual network, where
each edge has unit distance (weight). We call the Ford-Fulkerson method so im-



26.2 The Ford-Fulkerson method 661

plemented theEdmonds-Karp algorithm. We now prove that the Edmonds-Karp
algorithm runs inO(V E2) time.

The analysis depends on the distances to vertices in the residual networkG f .
The following lemma uses the notationδ f (u, v) for the shortest-path distance
from u to v in G f , where each edge has unit distance.

Lemma 26.8
If the Edmonds-Karp algorithm is run on a flow networkG = (V, E) with sources
and sinkt , then for all verticesv ∈ V − {s, t}, the shortest-path distanceδ f (s, v)

in the residual networkG f increases monotonically with each flow augmentation.

Proof We will suppose that for some vertexv ∈ V − {s, t}, there is a flow aug-
mentation that causes the shortest-path distance froms to v to decrease, and then
we will derive a contradiction. Letf be the flow just before the first augmentation
that decreases some shortest-path distance, and letf ′ be the flow just afterward.
Let v be the vertex with the minimumδ f ′(s, v) whose distance was decreased by
the augmentation, so thatδ f ′(s, v) < δ f (s, v). Let p = s ; u→ v be a shortest
path froms to v in G f ′ , so that(u, v) ∈ E f ′ and

δ f ′(s, u) = δ f ′(s, v)− 1 . (26.7)

Because of how we chosev , we know that the distance label of vertexu did not
decrease, i.e.,

δ f ′(s, u) ≥ δ f (s, u) . (26.8)

We claim that(u, v) 6∈ E f . Why? If we had(u, v) ∈ E f , then we would also have

δ f (s, v) ≤ δ f (s, u)+ 1 (by Lemma 24.10, the triangle inequality)

≤ δ f ′(s, u)+ 1 (by inequality (26.8))

= δ f ′(s, v) (by equation (26.7)) ,

which contradicts our assumption thatδ f ′(s, v) < δ f (s, v).
How can we have(u, v) 6∈ E f and (u, v) ∈ E f ′? The augmentation must

have increased the flow fromv to u. The Edmonds-Karp algorithm always aug-
ments flow along shortest paths, and therefore the shortest path froms to u in G f

has(v, u) as its last edge. Therefore,

δ f (s, v) = δ f (s, u)− 1

≤ δ f ′(s, u)− 1 (by inequality (26.8))

= δ f ′(s, v)− 2 (by equation (26.7)) ,

which contradicts our assumption thatδ f ′(s, v) < δ f (s, v). We conclude that our
assumption that such a vertexv exists is incorrect.
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The next theorem bounds the number of iterations of the Edmonds-Karp algo-
rithm.

Theorem 26.9
If the Edmonds-Karp algorithm is run on a flow networkG = (V, E) with sources
and sinkt , then the total number of flow augmentations performed by thealgorithm
is O(V E).

Proof We say that an edge(u, v) in a residual networkG f is critical on an aug-
menting pathp if the residual capacity ofp is the residual capacity of(u, v), that
is, if c f (p) = c f (u, v). After we have augmented flow along an augmenting path,
any critical edge on the path disappears from the residual network. Moreover, at
least one edge on any augmenting path must be critical. We will show that each of
the |E| edges can become critical at most|V | /2 times.

Let u andv be vertices inV that are connected by an edge inE. Since augment-
ing paths are shortest paths, when(u, v) is critical for the first time, we have

δ f (s, v) = δ f (s, u)+ 1 .

Once the flow is augmented, the edge(u, v) disappears from the residual network.
It cannot reappear later on another augmenting path until after the flow fromu to v

is decreased, which occurs only if(v, u) appears on an augmenting path. Iff ′ is
the flow inG when this event occurs, then we have

δ f ′(s, u) = δ f ′(s, v)+ 1 .

Sinceδ f (s, v) ≤ δ f ′(s, v) by Lemma 26.8, we have

δ f ′(s, u) = δ f ′(s, v)+ 1

≥ δ f (s, v)+ 1

= δ f (s, u)+ 2 .

Consequently, from the time(u, v) becomes critical to the time when it next
becomes critical, the distance ofu from the source increases by at least 2. The
distance ofu from the source is initially at least 0. The intermediate vertices on a
shortest path froms to u cannot contains, u, or t (since(u, v) on the critical path
implies thatu 6= t). Therefore, untilu becomes unreachable from the source, if
ever, its distance is at most|V| − 2. Thus, after the first time that(u, v) becomes
critical, it can become critical at most(|V| − 2)/2 = |V | /2− 1 times more, for a
total of at most|V | /2 times. Since there areO(E) pairs of vertices that can have
an edge between them in a residual graph, the total number of critical edges during
the entire execution of the Edmonds-Karp algorithm isO(V E). Each augmenting
path has at least one critical edge, and hence the theorem follows.
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Since each iteration of FORD-FULKERSON can be implemented inO(E) time
when the augmenting path is found by breadth-first search, the total running time
of the Edmonds-Karp algorithm isO(V E2). We shall see that push-relabel algo-
rithms can yield even better bounds. The algorithm of Section 26.4 gives a method
for achieving anO(V2E) running time, which forms the basis for theO(V3)-time
algorithm of Section 26.5.

Exercises

26.2-1
In Figure 26.1(b), what is the flow across the cut({s, v2, v4} , {v1, v3, t})? What is
the capacity of this cut?

26.2-2
Show the execution of the Edmonds-Karp algorithm on the flow network of Fig-
ure 26.1(a).

26.2-3
In the example of Figure 26.5, what is the minimum cut corresponding to the max-
imum flow shown? Of the augmenting paths appearing in the example, which two
cancel flow?

26.2-4
Prove that for any pair of verticesu andv and any capacity and flow functionsc
and f , we havec f (u, v)+ c f (v, u) = c(u, v)+ c(v, u).

26.2-5
Recall that the construction in Section 26.1 that converts amultisource, multisink
flow network into a single-source, single-sink network addsedges with infinite
capacity. Prove that any flow in the resulting network has a finite value if the edges
of the original multisource, multisink network have finite capacity.

26.2-6
Suppose that each sourcesi in a multisource, multisink problem produces ex-
actly pi units of flow, so thatf (si , V) = pi . Suppose also that each sinkt j con-
sumes exactlyq j units, so thatf (V, t j ) = q j , where

∑
i pi =

∑
j q j . Show how

to convert the problem of finding a flowf that obeys these additional constraints
into the problem of finding a maximum flow in a single-source, single-sink flow
network.

26.2-7
Prove Lemma 26.3.
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26.2-8
Show that a maximum flow in a networkG = (V, E) can always be found by a
sequence of at most|E| augmenting paths. (Hint: Determine the pathsafterfinding
the maximum flow.)

26.2-9
Theedge connectivityof an undirected graph is the minimum numberk of edges
that must be removed to disconnect the graph. For example, the edge connectivity
of a tree is 1, and the edge connectivity of a cyclic chain of vertices is 2. Show
how the edge connectivity of an undirected graphG = (V, E) can be determined
by running a maximum-flow algorithm on at most|V | flow networks, each having
O(V) vertices andO(E) edges.

26.2-10
Suppose that a flow networkG = (V, E) has symmetric edges, that is,(u, v) ∈ E
if and only if (v, u) ∈ E. Show that the Edmonds-Karp algorithm terminates after
at most|V | |E| /4 iterations. (Hint: For any edge(u, v), consider how bothδ(s, u)

andδ(v, t) change between times at which(u, v) is critical.)

26.3 Maximum bipartite matching

Some combinatorial problems can easily be cast as maximum-flow problems. The
multiple-source, multiple-sink maximum-flow problem fromSection 26.1 gave us
one example. There are other combinatorial problems that seem on the surface to
have little to do with flow networks, but can in fact be reducedto maximum-flow
problems. This section presents one such problem: finding a maximum matching
in a bipartite graph (see Section B.4). In order to solve thisproblem, we shall take
advantage of an integrality property provided by the Ford-Fulkerson method. We
shall also see that the Ford-Fulkerson method can be made to solve the maximum-
bipartite-matching problem on a graphG = (V, E) in O(V E) time.

The maximum-bipartite-matching problem

Given an undirected graphG = (V, E), a matching is a subset of edgesM ⊆ E
such that for all verticesv ∈ V, at most one edge ofM is incident onv . We say
that a vertexv ∈ V is matchedby matchingM if some edge inM is incident onv ;
otherwise,v is unmatched. A maximum matchingis a matching of maximum car-
dinality, that is, a matchingM such that for any matchingM ′, we have|M| ≥ |M ′|.
In this section, we shall restrict our attention to finding maximum matchings in bi-
partite graphs. We assume that the vertex set can be partitioned intoV = L ∪ R,
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L R

(a) (b)

L R

Figure 26.7 A bipartite graphG = (V, E) with vertex partitionV = L ∪ R. (a) A matching with
cardinality 2.(b) A maximum matching with cardinality 3.

whereL and R are disjoint and all edges inE go betweenL and R. We further
assume that every vertex inV has at least one incident edge. Figure 26.7 illustrates
the notion of a matching.

The problem of finding a maximum matching in a bipartite graphhas many
practical applications. As an example, we might consider matching a setL of ma-
chines with a setR of tasks to be performed simultaneously. We take the presence
of edge(u, v) in E to mean that a particular machineu ∈ L is capable of perform-
ing a particular taskv ∈ R. A maximum matching provides work for as many
machines as possible.

Finding a maximum bipartite matching

We can use the Ford-Fulkerson method to find a maximum matching in an undi-
rected bipartite graphG = (V, E) in time polynomial in|V | and |E|. The trick
is to construct a flow network in which flows correspond to matchings, as shown
in Figure 26.8. We define thecorresponding flow networkG′ = (V ′, E′) for the
bipartite graphG as follows. We let the sources and sinkt be new vertices not
in V , and we letV ′ = V ∪ {s, t}. If the vertex partition ofG is V = L ∪ R, the
directed edges ofG′ are the edges ofE, directed fromL to R, along with|V | new
edges:

E′ = {(s, u) : u ∈ L}
∪ {(u, v) : u ∈ L , v ∈ R, and(u, v) ∈ E}
∪ {(v, t) : v ∈ R} .
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L R L R

s t

(a) (b)

Figure 26.8 The flow network corresponding to a bipartite graph.(a) The bipartite graph
G = (V, E) with vertex partitionV = L ∪ R from Figure 26.7. A maximum matching is shown by
shaded edges.(b) The corresponding flow networkG′ with a maximum flow shown. Each edge has
unit capacity. Shaded edges have a flow of 1, and all other edges carry no flow. The shaded edges
from L to R correspond to those in a maximum matching of the bipartite graph.

To complete the construction, we assign unit capacity to each edge inE′. Since
each vertex inV has at least one incident edge,|E| ≥ |V | /2. Thus,|E| ≤ |E′| =
|E| + |V | ≤ 3 |E|, and so|E′| = 2(E).

The following lemma shows that a matching inG corresponds directly to a flow
in G’s corresponding flow networkG′. We say that a flowf on a flow network
G = (V, E) is integer-valuedif f (u, v) is an integer for all(u, v) ∈ V × V .

Lemma 26.10
Let G = (V, E) be a bipartite graph with vertex partitionV = L ∪ R, and let
G′ = (V ′, E′) be its corresponding flow network. IfM is a matching inG, then
there is an integer-valued flowf in G′ with value | f | = |M|. Conversely, if f
is an integer-valued flow inG′, then there is a matchingM in G with cardinality
|M| = | f |.

Proof We first show that a matchingM in G corresponds to an integer-valued
flow f in G′. Define f as follows. If (u, v) ∈ M, then f (s, u) = f (u, v) =
f (v, t) = 1 and f (u, s) = f (v, u) = f (t, v) = −1. For all other edges
(u, v) ∈ E′, we define f (u, v) = 0. It is simple to verify thatf satisfies skew
symmetry, the capacity constraints, and flow conservation.

Intuitively, each edge(u, v) ∈ M corresponds to 1 unit of flow inG′ that tra-
verses the paths→ u→ v → t . Moreover, the paths induced by edges inM are



26.3 Maximum bipartite matching 667

vertex-disjoint, except fors and t . The net flow across cut(L ∪ {s} , R ∪ {t}) is
equal to|M|; thus, by Lemma 26.5, the value of the flow is| f | = |M|.

To prove the converse, letf be an integer-valued flow inG′, and let

M = {(u, v) : u ∈ L , v ∈ R, and f (u, v) > 0} .

Each vertexu ∈ L has only one entering edge, namely(s, u), and its capacity
is 1. Thus, eachu ∈ L has at most one unit of positive flow entering it, and if
one unit of positive flow does enter, by flow conservation, oneunit of positive flow
must leave. Furthermore, sincef is integer-valued, for eachu ∈ L, the one unit
of flow can enter on at most one edge and can leave on at most one edge. Thus,
one unit of positive flow entersu if and only if there is exactly one vertexv ∈ R
such thatf (u, v) = 1, and at most one edge leaving eachu ∈ L carries positive
flow. A symmetric argument can be made for eachv ∈ R. The setM is therefore
a matching.

To see that|M| = | f |, observe that for every matched vertexu ∈ L, we have
f (s, u) = 1, and for every edge(u, v) ∈ E − M, we have f (u, v) = 0. Conse-
quently,

|M| = f (L , R)

= f (L , V ′)− f (L , L)− f (L , s)− f (L , t) (by Lemma 26.1) .

We can simplify the above expression considerably. Flow conservation implies that
f (L , V ′) = 0; Lemma 26.1 implies thatf (L , L) = 0; skew symmetry implies
that− f (L , s) = f (s, L); and because there are no edges fromL to t , we have
f (L , t) = 0. Thus,

|M| = f (s, L)

= f (s, V ′) (since all edges out ofs go to L)

= | f | (by the definition of| f |) .

Based on Lemma 26.10, we would like to conclude that a maximummatching
in a bipartite graphG corresponds to a maximum flow in its corresponding flow
networkG′, and we can therefore compute a maximum matching inG by running
a maximum-flow algorithm onG′. The only hitch in this reasoning is that the
maximum-flow algorithm might return a flow inG′ for which some f (u, v) is
not an integer, even though the flow value| f | must be an integer. The following
theorem shows that if we use the Ford-Fulkerson method, thisdifficulty cannot
arise.

Theorem 26.11 (Integrality theorem)
If the capacity functionc takes on only integral values, then the maximum flowf
produced by the Ford-Fulkerson method has the property that| f | is integer-valued.
Moreover, for all verticesu andv , the value off (u, v) is an integer.
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Proof The proof is by induction on the number of iterations. We leave it as
Exercise 26.3-2.

We can now prove the following corollary to Lemma 26.10.

Corollary 26.12
The cardinality of a maximum matchingM in a bipartite graphG equals the value
of a maximum flowf in its corresponding flow networkG′.

Proof We use the nomenclature from Lemma 26.10. Suppose thatM is a max-
imum matching inG and that the corresponding flowf in G′ is not maximum.
Then there is a maximum flowf ′ in G′ such that| f ′| > | f |. Since the ca-
pacities inG′ are integer-valued, by Theorem 26.11, we can assume thatf ′ is
integer-valued. Thus,f ′ corresponds to a matchingM ′ in G with cardinality
|M ′| = | f ′| > | f | = |M|, contradicting our assumption thatM is a maximum
matching. In a similar manner, we can show that iff is a maximum flow inG′, its
corresponding matching is a maximum matching onG.

Thus, given a bipartite undirected graphG, we can find a maximum matching by
creating the flow networkG′, running the Ford-Fulkerson method, and directly ob-
taining a maximum matchingM from the integer-valued maximum flowf found.
Since any matching in a bipartite graph has cardinality at most min(L , R) = O(V),
the value of the maximum flow inG′ is O(V). We can therefore find a maximum
matching in a bipartite graph in timeO(V E′) = O(V E), since|E′| = 2(E).

Exercises

26.3-1
Run the Ford-Fulkerson algorithm on the flow network in Figure 26.8(b) and show
the residual network after each flow augmentation. Number the vertices inL top
to bottom from 1 to 5 and inR top to bottom from 6 to 9. For each iteration, pick
the augmenting path that is lexicographically smallest.

26.3-2
Prove Theorem 26.11.

26.3-3
Let G = (V, E) be a bipartite graph with vertex partitionV = L ∪ R, and letG′

be its corresponding flow network. Give a good upper bound on the length of any
augmenting path found inG′ during the execution of FORD-FULKERSON.
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26.3-4 ⋆

A perfect matchingis a matching in which every vertex is matched. LetG =
(V, E) be an undirected bipartite graph with vertex partitionV = L ∪ R, where
|L| = |R|. For anyX ⊆ V , define theneighborhoodof X as

N(X) = {y ∈ V : (x, y) ∈ E for somex ∈ X} ,

that is, the set of vertices adjacent to some member ofX. ProveHall’s theorem:
there exists a perfect matching inG if and only if |A| ≤ |N(A)| for every subset
A ⊆ L.

26.3-5 ⋆

We say that a bipartite graphG = (V, E), whereV = L ∪ R, is d-regular if every
vertexv ∈ V has degree exactlyd. Everyd-regular bipartite graph has|L| = |R|.
Prove that everyd-regular bipartite graph has a matching of cardinality|L| by
arguing that a minimum cut of the corresponding flow network has capacity|L|.

⋆ 26.4 Push-relabel algorithms

In this section, we present the “push-relabel” approach to computing maximum
flows. To date, many of the asymptotically fastest maximum-flow algorithms are
push-relabel algorithms, and the fastest actual implementations of maximum-flow
algorithms are based on the push-relabel method. Other flow problems, such as the
minimum-cost flow problem, can be solved efficiently by push-relabel methods.
This section introduces Goldberg’s “generic” maximum-flowalgorithm, which has
a simple implementation that runs inO(V2E) time, thereby improving upon the
O(V E2) bound of the Edmonds-Karp algorithm. Section 26.5 refines the generic
algorithm to obtain another push-relabel algorithm that runs in O(V3) time.

Push-relabel algorithms work in a more localized manner than the Ford-
Fulkerson method. Rather than examine the entire residual network to find an aug-
menting path, push-relabel algorithms work on one vertex ata time, looking only
at the vertex’s neighbors in the residual network. Furthermore, unlike the Ford-
Fulkerson method, push-relabel algorithms do not maintainthe flow-conservation
property throughout their execution. They do, however, maintain apreflow, which
is a function f : V × V → R that satisfies skew symmetry, capacity constraints,
and the following relaxation of flow conservation:f (V, u) ≥ 0 for all vertices
u ∈ V − {s}. We call this quantity theexcess flowinto vertexu, given by

e(u) = f (V, u) . (26.9)

We say that a vertexu ∈ V − {s, t} is overflowingif e(u) > 0.
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We shall start this section by describing the intuition behind the push-relabel
method. We shall then investigate the two operations employed by the method:
“pushing” preflow and “relabeling” a vertex. Finally, we shall present a generic
push-relabel algorithm and analyze its correctness and running time.

Intuition

The intuition behind the push-relabel method is probably best understood in terms
of fluid flows: we consider a flow networkG = (V, E) to be a system of inter-
connected pipes of given capacities. Applying this analogyto the Ford-Fulkerson
method, we might say that each augmenting path in the networkgives rise to an
additional stream of fluid, with no branch points, flowing from the source to the
sink. The Ford-Fulkerson method iteratively adds more streams of flow until no
more can be added.

The generic push-relabel algorithm has a rather different intuition. As before,
directed edges correspond to pipes. Vertices, which are pipe junctions, have two
interesting properties. First, to accommodate excess flow,each vertex has an out-
flow pipe leading to an arbitrarily large reservoir that can accumulate fluid. Sec-
ond, each vertex, its reservoir, and all its pipe connections are on a platform whose
height increases as the algorithm progresses.

Vertex heights determine how flow is pushed: we only push flow downhill, that
is, from a higher vertex to a lower vertex. The flow from a lowervertex to a higher
vertex may be positive, but operations that push flow only push it downhill. The
height of the source is fixed at|V |, and the height of the sink is fixed at 0. All other
vertex heights start at 0 and increase with time. The algorithm first sends as much
flow as possible downhill from the source toward the sink. Theamount it sends
is exactly enough to fill each outgoing pipe from the source tocapacity; that is, it
sends the capacity of the cut(s, V − s). When flow first enters an intermediate
vertex, it collects in the vertex’s reservoir. From there, it is eventually pushed
downhill.

It may eventually happen that the only pipes that leave a vertex u and are not
already saturated with flow connect to vertices that are on the same level asu or
are uphill fromu. In this case, to rid an overflowing vertexu of its excess flow, we
must increase its height—an operation called “relabeling”vertexu. Its height is
increased to one unit more than the height of the lowest of itsneighbors to which it
has an unsaturated pipe. After a vertex is relabeled, therefore, there is at least one
outgoing pipe through which more flow can be pushed.

Eventually, all the flow that can possibly get through to the sink has arrived there.
No more can arrive, because the pipes obey the capacity constraints; the amount of
flow across any cut is still limited by the capacity of the cut.To make the preflow
a “legal” flow, the algorithm then sends the excess collectedin the reservoirs of
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overflowing vertices back to the source by continuing to relabel vertices to above
the fixed height|V | of the source. As we shall see, once all the reservoirs have
been emptied, the preflow is not only a “legal” flow, it is also amaximum flow.

The basic operations

From the preceding discussion, we see that there are two basic operations per-
formed by a push-relabel algorithm: pushing flow excess froma vertex to one of
its neighbors and relabeling a vertex. The applicability ofthese operations depends
on the heights of vertices, which we now define precisely.

Let G = (V, E) be a flow network with sources and sinkt , and let f be a
preflow inG. A functionh : V → N is aheight function3 if h(s) = |V |, h(t) = 0,
and

h(u) ≤ h(v)+ 1

for every residual edge(u, v) ∈ E f . We immediately obtain the following lemma.

Lemma 26.13
Let G = (V, E) be a flow network, letf be a preflow inG, and leth be a height
function onV . For any two verticesu, v ∈ V, if h(u) > h(v) + 1, then(u, v) is
not an edge in the residual graph.

The push operation
The basic operation PUSH(u, v) can be applied ifu is an overflowing vertex,
c f (u, v) > 0, andh(u) = h(v) + 1. The pseudocode below updates the pre-
flow f in an implied networkG = (V, E). It assumes that residual capacities
can also be computed in constant time givenc and f . The excess flow stored at
a vertexu is maintained as the attributee[u], and the height ofu is maintained as
the attributeh[u]. The expressiond f (u, v) is a temporary variable that stores the
amount of flow that can be pushed fromu to v .

3In the literature, a height function is typically called a “distance function,” and the height of a vertex
is called a “distance label.” We use the term “height” because it is more suggestive of the intuition
behind the algorithm. We retain the use of the term “relabel”to refer to the operation that increases
the height of a vertex. The height of a vertex is related to itsdistance from the sinkt , as would be
found in a breadth-first search of the transposeGT.
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PUSH(u, v)

1 � Applies when: u is overflowing,c f (u, v) > 0, andh[u] = h[v ] + 1.
2 � Action: Pushd f (u, v) = min(e[u], c f (u, v)) units of flow fromu to v .
3 d f (u, v)← min(e[u], c f (u, v))

4 f [u, v ] ← f [u, v ] + d f (u, v)

5 f [v, u] ←− f [u, v ]
6 e[u] ← e[u] − d f (u, v)

7 e[v ] ← e[v ] + d f (u, v)

The code for PUSH operates as follows. Vertexu is assumed to have a positive
excesse[u], and the residual capacity of(u, v) is positive. Thus, we can increase
the flow from u to v by d f (u, v) = min(e[u], c f (u, v)) without causinge[u] to
become negative or the capacityc(u, v) to be exceeded. Line 3 computes the
value d f (u, v), and we updatef in lines 4–5 ande in lines 6–7. Thus, iff is
a preflow before PUSH is called, it remains a preflow afterward.

Observe that nothing in the code for PUSH depends on the heights ofu andv ,
yet we prohibit it from being invoked unlessh[u] = h[v ]+ 1. Thus, excess flow is
pushed downhill only by a height differential of 1. By Lemma 26.13, no residual
edges exist between two vertices whose heights differ by more than 1, and thus, as
long as the attributeh is indeed a height function, there is nothing to be gained by
allowing flow to be pushed downhill by a height differential of more than 1.

We call the operation PUSH(u, v) apushfrom u to v . If a push operation applies
to some edge(u, v) leaving a vertexu, we also say that the push operation applies
to u. It is a saturating pushif edge (u, v) becomessaturated(c f (u, v) = 0
afterward); otherwise, it is anonsaturating push. If an edge is saturated, it does
not appear in the residual network. A simple lemma characterizes one result of a
nonsaturating push.

Lemma 26.14
After a nonsaturating push fromu to v , the vertexu is no longer overflowing.

Proof Since the push was nonsaturating, the amount of flowd f (u, v) actually
pushed must equale[u] prior to the push. Sincee[u] is reduced by this amount, it
becomes 0 after the push.

The relabel operation
The basic operation RELABEL(u) applies ifu is overflowing and ifh[u] ≤ h[v ]
for all edges(u, v) ∈ E f . In other words, we can relabel an overflowing vertexu
if for every vertexv for which there is residual capacity fromu to v , flow cannot
be pushed fromu to v becausev is not downhill fromu. (Recall that by definition,
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neither the sources nor the sinkt can be overflowing, so neithers nor t can be
relabeled.)

RELABEL(u)

1 � Applies when: u is overflowing and for allv ∈ V such that(u, v) ∈ E f ,
we haveh[u] ≤ h[v ].

2 � Action: Increase the height ofu.
3 h[u] ← 1+min{h[v ] : (u, v) ∈ E f }

When we call the operation RELABEL(u), we say that vertexu is relabeled. Note
that whenu is relabeled,E f must contain at least one edge that leavesu, so that the
minimization in the code is over a nonempty set. This property follows from the
assumption thatu is overflowing. Sincee[u] > 0, we havee[u] = f (V, u) > 0,
and hence there must be at least one vertexv such thatf [v, u] > 0. But then,

c f (u, v) = c(u, v)− f [u, v ]

= c(u, v)+ f [v, u]

> 0 ,

which implies that(u, v) ∈ E f . The operation RELABEL(u) thus givesu the
greatest height allowed by the constraints on height functions.

The generic algorithm

The generic push-relabel algorithm uses the following subroutine to create an ini-
tial preflow in the flow network.

INITIALIZE -PREFLOW(G, s)

1 for each vertexu ∈ V [G]
2 do h[u] ← 0
3 e[u] ← 0
4 for each edge(u, v) ∈ E[G]
5 do f [u, v ] ← 0
6 f [v, u] ← 0
7 h[s] ← |V [G]|
8 for each vertexu ∈ Adj[s]
9 do f [s, u] ← c(s, u)

10 f [u, s] ←−c(s, u)

11 e[u] ← c(s, u)

12 e[s] ← e[s] − c(s, u)

INITIALIZE -PREFLOW creates an initial preflowf defined by
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f [u, v ] =





c(u, v) if u = s ,

−c(v, u) if v = s ,

0 otherwise.
(26.10)

That is, each edge leaving the sources is filled to capacity, and all other edges carry
no flow. For each vertexv adjacent to the source, we initially havee[v ] = c(s, v),
ande[s] is initialized to the negative of the sum of these capacities. The generic
algorithm also begins with an initial height functionh, given by

h[u] =
{
|V | if u = s ,

0 otherwise.

This is a height function because the only edges(u, v) for which h[u] > h[v ] + 1
are those for whichu = s, and those edges are saturated, which means that they
are not in the residual network.

Initialization, followed by a sequence of push and relabel operations, executed
in no particular order, yields the GENERIC-PUSH-RELABEL algorithm:

GENERIC-PUSH-RELABEL (G)

1 INITIALIZE -PREFLOW(G, s)
2 while there exists an applicable push or relabel operation
3 do select an applicable push or relabel operation and perform it

The following lemma tells us that as long as an overflowing vertex exists, at least
one of the two basic operations applies.

Lemma 26.15 (An overflowing vertex can be either pushed or relabeled)
Let G = (V, E) be a flow network with sources and sinkt , let f be a preflow,
and leth be any height function forf . If u is any overflowing vertex, then either a
push or relabel operation applies to it.

Proof For any residual edge(u, v), we haveh(u) ≤ h(v)+1 becauseh is a height
function. If a push operation does not apply tou, then for all residual edges(u, v),
we must haveh(u) < h(v) + 1, which impliesh(u) ≤ h(v). Thus, a relabel
operation can be applied tou.

Correctness of the push-relabel method

To show that the generic push-relabel algorithm solves the maximum-flow prob-
lem, we shall first prove that if it terminates, the preflowf is a maximum flow.
We shall later prove that it terminates. We start with some observations about the
height functionh.
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Lemma 26.16 (Vertex heights never decrease)
During the execution of GENERIC-PUSH-RELABEL on a flow networkG =
(V, E), for each vertexu ∈ V , the heighth[u] never decreases. Moreover, when-
ever a relabel operation is applied to a vertexu, its heighth[u] increases by at
least 1.

Proof Because vertex heights change only during relabel operations, it suffices
to prove the second statement of the lemma. If vertexu is about to be rela-
beled, then for all verticesv such that(u, v) ∈ E f , we haveh[u] ≤ h[v ]. Thus,
h[u] < 1+min {h[v ] : (u, v) ∈ E f }, and so the operation must increaseh[u].

Lemma 26.17
Let G = (V, E) be a flow network with sources and sinkt . During the execu-
tion of GENERIC-PUSH-RELABEL on G, the attributeh is maintained as a height
function.

Proof The proof is by induction on the number of basic operations performed.
Initially, h is a height function, as we have already observed.

We claim that ifh is a height function, then an operation RELABEL(u) leavesh
a height function. If we look at a residual edge(u, v) ∈ E f that leavesu, then the
operation RELABEL(u) ensures thath[u] ≤ h[v ] + 1 afterward. Now consider a
residual edge(w, u) that entersu. By Lemma 26.16,h[w] ≤ h[u] + 1 before the
operation RELABEL(u) implies h[w] < h[u] + 1 afterward. Thus, the operation
RELABEL(u) leavesh a height function.

Now, consider an operation PUSH(u, v). This operation may add the edge(v, u)

to E f , and it may remove(u, v) from E f . In the former case, we have
h[v ] = h[u] − 1 < h[u] + 1, and soh remains a height function. In the latter case,
the removal of(u, v) from the residual network removes the corresponding con-
straint, andh again remains a height function.

The following lemma gives an important property of height functions.

Lemma 26.18
Let G = (V, E) be a flow network with sources and sinkt , let f be a preflow
in G, and leth be a height function onV . Then there is no path from the sources
to the sinkt in the residual networkG f .

Proof Assume for the sake of contradiction that there is a pathp = 〈v0, v1,

. . . , vk〉 from s to t in G f , wherev0 = s andvk = t . Without loss of generality,p
is a simple path, and sok < |V|. For i = 0, 1, . . . , k − 1, edge(vi , vi+1) ∈ E f .
Becauseh is a height function,h(vi ) ≤ h(vi+1)+ 1 for i = 0, 1, . . . , k− 1. Com-
bining these inequalities over pathp yieldsh(s) ≤ h(t)+k. But becauseh(t) = 0,
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we haveh(s) ≤ k < |V |, which contradicts the requirement thath(s) = |V| in a
height function.

We are now ready to show that if the generic push-relabel algorithm terminates,
the preflow it computes is a maximum flow.

Theorem 26.19 (Correctness of the generic push-relabel algorithm)
If the algorithm GENERIC-PUSH-RELABEL terminates when run on a flow net-
work G = (V, E) with sources and sinkt , then the preflowf it computes is a
maximum flow forG.

Proof We use the following loop invariant:

Each time thewhile loop test in line 2 in GENERIC-PUSH-RELABEL is
executed,f is a preflow.

Initialization: INITIALIZE -PREFLOW makes f a preflow.

Maintenance: The only operations within thewhile loop of lines 2–3 are push
and relabel. Relabel operations affect only height attributes and not the flow
values; hence they do not affect whetherf is a preflow. As argued on page 672,
if f is a preflow prior to a push operation, it remains a preflow afterward.

Termination: At termination, each vertex inV − {s, t} must have an excess of 0,
because by Lemmas 26.15 and 26.17 and the invariant thatf is always a pre-
flow, there are no overflowing vertices. Therefore,f is a flow. Becauseh is
a height function, Lemma 26.18 tells us that there is no path from s to t in
the residual networkG f . By the max-flow min-cut theorem (Theorem 26.7),
therefore, f is a maximum flow.

Analysis of the push-relabel method

To show that the generic push-relabel algorithm indeed terminates, we shall
bound the number of operations it performs. Each of the threetypes of opera-
tions—relabels, saturating pushes, and nonsaturating pushes—is bounded sepa-
rately. With knowledge of these bounds, it is a straightforward problem to construct
an algorithm that runs inO(V2E) time. Before beginning the analysis, however,
we prove an important lemma.

Lemma 26.20
Let G = (V, E) be a flow network with sources and sinkt , and let f be a preflow
in G. Then, for any overflowing vertexu, there is a simple path fromu to s in the
residual networkG f .
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Proof For an overflowing vertexu, letU = {v : there exists a simple path fromu
to v in G f }, and suppose for the sake of contradiction thats 6∈ U . LetU = V −U .

We claim for each pair of verticesw ∈ U and v ∈ U that f (w, v) ≤ 0.
Why? If f (w, v) > 0, then f (v,w) < 0, which in turn implies thatc f (v,w) =
c(v,w)− f (v,w) > 0. Hence, there exists an edge(v,w) ∈ E f , and therefore a
simple path of the formu ; v → w in G f , contradicting our choice ofw.

Thus, we must havef (U , U ) ≤ 0, since every term in this implicit summation
is nonpositive, and hence

e(U ) = f (V, U ) (by equation (26.9))

= f (U , U )+ f (U, U ) (by Lemma 26.1, part (3))

= f (U , U ) (by Lemma 26.1, part (1))

≤ 0 .

(Although Lemma 26.1 applies to flows, Exercise 26.1-4 demonstrates that it does
not rely on flow conservation. Hence, Lemma 26.1 applies to preflows as well.)
Excesses are nonnegative for all vertices inV −{s}; because we have assumed that
U ⊆ V−{s}, we must therefore havee(v) = 0 for all verticesv ∈ U . In particular,
e(u) = 0, which contradicts the assumption thatu is overflowing.

The next lemma bounds the heights of vertices, and its corollary bounds the
number of relabel operations that are performed in total.

Lemma 26.21
Let G = (V, E) be a flow network with sources and sinkt . At any time during
the execution of GENERIC-PUSH-RELABEL on G, we haveh[u] ≤ 2 |V | − 1 for
all verticesu ∈ V .

Proof The heights of the sources and the sinkt never change because these
vertices are by definition not overflowing. Thus, we always have h[s] = |V | and
h[t ] = 0, both of which are no greater than 2|V | − 1.

Now consider any vertexu ∈ V−{s, t}. Initially, h[u] = 0≤ 2 |V |−1. We shall
show that after each relabeling operation, we still haveh[u] ≤ 2 |V |−1. Whenu is
relabeled, it is overflowing, and Lemma 26.20 tells us that there is a simple pathp
from u to s in G f . Let p = 〈v0, v1, . . . , vk〉, wherev0 = u, vk = s, andk ≤ |V |−1
becausep is simple. Fori = 0, 1, . . . , k − 1, we have(vi , vi+1) ∈ E f , and
therefore, by Lemma 26.17,h[vi ] ≤ h[vi+1] + 1. Expanding these inequalities
over pathp yieldsh[u] = h[v0] ≤ h[vk] + k ≤ h[s] + (|V | − 1) = 2 |V | − 1.

Corollary 26.22 (Bound on relabel operations)
Let G = (V, E) be a flow network with sources and sinkt . Then, during the
execution of GENERIC-PUSH-RELABEL on G, the number of relabel operations is
at most 2|V | − 1 per vertex and at most(2 |V | − 1)(|V| − 2) < 2 |V |2 overall.
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Proof Only the|V |−2 vertices inV−{s, t}may be relabeled. Letu ∈ V−{s, t}.
The operation RELABEL(u) increasesh[u]. The value ofh[u] is initially 0 and by
Lemma 26.21 grows to at most 2|V | − 1. Thus, each vertexu ∈ V − {s, t}
is relabeled at most 2|V | − 1 times, and the total number of relabel operations
performed is at most(2 |V | − 1)(|V | − 2) < 2 |V|2.

Lemma 26.21 also helps us to bound the number of saturating pushes.

Lemma 26.23 (Bound on saturating pushes)
During the execution of GENERIC-PUSH-RELABEL on any flow networkG =
(V, E), the number of saturating pushes is less than 2|V | |E|.

Proof For any pair of verticesu, v ∈ V , we will count the saturating pushes
from u to v and fromv to u together, calling them the saturating pushes betweenu
and v . If there are any such pushes, at least one of(u, v) and (v, u) is actually
an edge inE. Now, suppose that a saturating push fromu to v has occurred.
At that time,h[v ] = h[u] − 1. In order for another push fromu to v to occur
later, the algorithm must first push flow fromv to u, which cannot happen until
h[v ] = h[u] + 1. Sinceh[u] never decreases, in order forh[v ] = h[u] + 1, the
value ofh[v ] must increase by at least 2. Likewise,h[u] must increase by at least 2
between saturating pushes fromv to u. Heights start at 0 and, by Lemma 26.21,
never exceed 2|V |−1, which implies that the number of times any vertex can have
its height increase by 2 is less than|V |. Since at least one ofh[u] andh[v ] must
increase by 2 between any two saturating pushes betweenu andv , there are fewer
than 2|V | saturating pushes betweenu andv . Multiplying by the number of edges
gives a bound of less than 2|V | |E| on the total number of saturating pushes.

The following lemma bounds the number of nonsaturating pushes in the generic
push-relabel algorithm.

Lemma 26.24 (Bound on nonsaturating pushes)
During the execution of GENERIC-PUSH-RELABEL on any flow networkG =
(V, E), the number of nonsaturating pushes is less than 4|V|2 (|V | + |E|).

Proof Define a potential function8 =
∑

v :e(v)>0 h[v ]. Initially, 8 = 0, and the
value of8 may change after each relabeling, saturating push, and nonsaturating
push. We will bound the amount that saturating pushes and relabelings can con-
tribute to the increase of8. Then we will show that each nonsaturating push must
decrease8 by at least 1, and will use these bounds to derive an upper bound on the
number of nonsaturating pushes.

Let us examine the two ways in which8 might increase. First, relabeling a
vertexu increases8 by less than 2|V |, since the set over which the sum is taken is
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the same and the relabeling cannot increaseu’s height by more than its maximum
possible height, which, by Lemma 26.21, is at most 2|V|−1. Second, a saturating
push from a vertexu to a vertexv increases8 by less than 2|V |, since no heights
change and only vertexv , whose height is at most 2|V | − 1, can possibly become
overflowing.

Now we show that a nonsaturating push fromu to v decreases8 by at least 1.
Why? Before the nonsaturating push,u was overflowing, andv may or may not
have been overflowing. By Lemma 26.14,u is no longer overflowing after the
push. In addition, unlessv is the source, it may or may not be overflowing after
the push. Therefore, the potential function8 has decreased by exactlyh[u], and it
has increased by either 0 orh[v ]. Sinceh[u] − h[v ] = 1, the net effect is that the
potential function has decreased by at least 1.

Thus, during the course of the algorithm, the total amount ofincrease
in 8 is due to relabelings and saturated pushes and is constrained by Corol-
lary 26.22 and Lemma 26.23 to be less than(2 |V |)(2 |V |2)+ (2 |V |)(2 |V | |E|) =
4 |V |2 (|V | + |E|). Since8 ≥ 0, the total amount of decrease, and therefore the
total number of nonsaturating pushes, is less than 4|V |2 (|V| + |E|).

Having bounded the number of relabelings, saturating pushes, and nonsatu-
rating push, we have set the stage for the following analysisof the GENERIC-
PUSH-RELABEL procedure, and hence of any algorithm based on the push-relabel
method.

Theorem 26.25
During the execution of GENERIC-PUSH-RELABEL on any flow networkG =
(V, E), the number of basic operations isO(V2E).

Proof Immediate from Corollary 26.22 and Lemmas 26.23 and 26.24.

Thus, the algorithm terminates afterO(V2E) operations. All that remains is
to give an efficient method for implementing each operation and for choosing an
appropriate operation to execute.

Corollary 26.26
There is an implementation of the generic push-relabel algorithm that runs in
O(V2E) time on any flow networkG = (V, E).

Proof Exercise 26.4-1 asks you to show how to implement the genericalgorithm
with an overhead ofO(V) per relabel operation andO(1) per push. It also asks
you to design a data structure that allows you to pick an applicable operation in
O(1) time. The corollary then follows.
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Exercises

26.4-1
Show how to implement the generic push-relabel algorithm using O(V) time per
relabel operation,O(1) time per push, andO(1) time to select an applicable oper-
ation, for a total time ofO(V2E).

26.4-2
Prove that the generic push-relabel algorithm spends a total of only O(V E) time
in performing all theO(V2) relabel operations.

26.4-3
Suppose that a maximum flow has been found in a flow networkG = (V, E) using
a push-relabel algorithm. Give a fast algorithm to find a minimum cut inG.

26.4-4
Give an efficient push-relabel algorithm to find a maximum matching in a bipartite
graph. Analyze your algorithm.

26.4-5
Suppose that all edge capacities in a flow networkG = (V, E) are in the set
{1, 2, . . . , k}. Analyze the running time of the generic push-relabel algorithm in
terms of|V |, |E|, andk. (Hint: How many times can each edge support a nonsatu-
rating push before it becomes saturated?)

26.4-6
Show that line 7 of INITIALIZE -PREFLOW can be changed to

7 h[s] ← |V [G]| − 2

without affecting the correctness or asymptotic performance of the generic push-
relabel algorithm.

26.4-7
Let δ f (u, v) be the distance (number of edges) fromu to v in the resid-
ual network G f . Show that GENERIC-PUSH-RELABEL maintains the proper-
ties that h[u] < |V | implies h[u] ≤ δ f (u, t) and thath[u] ≥ |V | implies
h[u] − |V | ≤ δ f (u, s).

26.4-8 ⋆
As in the previous exercise, letδ f (u, v) be the distance fromu to v in the residual
network G f . Show how the generic push-relabel algorithm can be modifiedto
maintain the property thath[u] < |V | impliesh[u] = δ f (u, t) and thath[u] ≥ |V |
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impliesh[u] − |V | = δ f (u, s). The total time that your implementation dedicates
to maintaining this property should beO(V E).

26.4-9
Show that the number of nonsaturating pushes executed by GENERIC-PUSH-
RELABEL on a flow networkG = (V, E) is at most 4|V |2 |E| for |V | ≥ 4.

⋆ 26.5 The relabel-to-front algorithm

The push-relabel method allows us to apply the basic operations in any order at
all. By choosing the order carefully and managing the network data structure effi-
ciently, however, we can solve the maximum-flow problem faster than theO(V2E)

bound given by Corollary 26.26. We shall now examine the relabel-to-front algo-
rithm, a push-relabel algorithm whose running time isO(V3), which is asymptoti-
cally at least as good asO(V2E), and better for dense networks.

The relabel-to-front algorithm maintains a list of the vertices in the network.
Beginning at the front, the algorithm scans the list, repeatedly selecting an over-
flowing vertexu and then “discharging” it, that is, performing push and relabel
operations untilu no longer has a positive excess. Whenever a vertex is relabeled,
it is moved to the front of the list (hence the name “relabel-to-front”) and the algo-
rithm begins its scan anew.

The correctness and analysis of the relabel-to-front algorithm depend on the
notion of “admissible” edges: those edges in the residual network through which
flow can be pushed. After proving some properties about the network of admissible
edges, we shall investigate the discharge operation and then present and analyze the
relabel-to-front algorithm itself.

Admissible edges and networks

If G = (V, E) is a flow network with sources and sinkt , f is a preflow inG, andh
is a height function, then we say that(u, v) is anadmissible edgeif c f (u, v) > 0
andh(u) = h(v)+ 1. Otherwise,(u, v) is inadmissible. Theadmissible network
is G f,h = (V, E f,h), whereE f,h is the set of admissible edges.

The admissible network consists of those edges through which flow can be
pushed. The following lemma shows that this network is a directed acyclic graph
(dag).

Lemma 26.27 (The admissible network is acyclic)
If G = (V, E) is a flow network, f is a preflow inG, andh is a height function
on G, then the admissible networkG f,h = (V, E f,h) is acyclic.
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Proof The proof is by contradiction. Suppose thatG f,h contains a cyclep =
〈v0, v1, . . . , vk〉, wherev0 = vk andk > 0. Since each edge inp is admissible, we
haveh(vi−1) = h(vi )+ 1 for i = 1, 2, . . . , k. Summing around the cycle gives

k∑

i=1

h(vi−1) =
k∑

i=1

(h(vi )+ 1)

=
k∑

i=1

h(vi )+ k .

Because each vertex in cyclep appears once in each of the summations, we derive
the contradiction that 0= k.

The next two lemmas show how push and relabel operations change the admis-
sible network.

Lemma 26.28
Let G = (V, E) be a flow network, letf be a preflow inG, and suppose that
the attributeh is a height function. If a vertexu is overflowing and(u, v) is an
admissible edge, then PUSH(u, v) applies. The operation does not create any new
admissible edges, but it may cause(u, v) to become inadmissible.

Proof By the definition of an admissible edge, flow can be pushed fromu to v .
Sinceu is overflowing, the operation PUSH(u, v) applies. The only new residual
edge that can be created by pushing flow fromu to v is the edge(v, u). Since
h[v ] = h[u] − 1, edge(v, u) cannot become admissible. If the operation is a
saturating push, thenc f (u, v) = 0 afterward and(u, v) becomes inadmissible.

Lemma 26.29
Let G = (V, E) be a flow network, letf be a preflow inG, and suppose that
the attributeh is a height function. If a vertexu is overflowing and there are no
admissible edges leavingu, then RELABEL(u) applies. After the relabel operation,
there is at least one admissible edge leavingu, but there are no admissible edges
enteringu.

Proof If u is overflowing, then by Lemma 26.15, either a push or a relabelop-
eration applies to it. If there are no admissible edges leaving u, then no flow
can be pushed fromu and so RELABEL(u) applies. After the relabel operation,
h[u] = 1+min{h[v ] : (u, v) ∈ E f }. Thus, ifv is a vertex that realizes the mini-
mum in this set, the edge(u, v) becomes admissible. Hence, after the relabel, there
is at least one admissible edge leavingu.

To show that no admissible edges enteru after a relabel operation, suppose that
there is a vertexv such that(v, u) is admissible. Then,h[v ] = h[u] + 1 after the
relabel, and soh[v ] > h[u] + 1 just before the relabel. But by Lemma 26.13, no
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residual edges exist between vertices whose heights differby more than 1. More-
over, relabeling a vertex does not change the residual network. Thus,(v, u) is not
in the residual network, and hence it cannot be in the admissible network.

Neighbor lists

Edges in the relabel-to-front algorithm are organized into“neighbor lists.” Given
a flow networkG = (V, E), theneighbor list N[u] for a vertexu ∈ V is a singly
linked list of the neighbors ofu in G. Thus, vertexv appears in the listN[u] if
(u, v) ∈ E or (v, u) ∈ E. The neighbor listN[u] contains exactly those ver-
ticesv for which there may be a residual edge(u, v). The first vertex inN[u] is
pointed to byhead[N[u]]. The vertex followingv in a neighbor list is pointed to
by next-neighbor[v ]; this pointer isNIL if v is the last vertex in the neighbor list.

The relabel-to-front algorithm cycles through each neighbor list in an arbitrary
order that is fixed throughout the execution of the algorithm. For each vertexu, the
field current[u] points to the vertex currently under consideration inN[u]. Initially,
current[u] is set tohead[N[u]].

Discharging an overflowing vertex

An overflowing vertexu is dischargedby pushing all of its excess flow through
admissible edges to neighboring vertices, relabelingu as necessary to cause edges
leavingu to become admissible. The pseudocode goes as follows.

DISCHARGE(u)

1 while e[u] > 0
2 do v ← current[u]
3 if v = NIL

4 then RELABEL(u)

5 current[u] ← head[N[u]]
6 elseifc f (u, v) > 0 andh[u] = h[v ] + 1
7 then PUSH(u, v)

8 elsecurrent[u] ← next-neighbor[v ]

Figure 26.9 steps through several iterations of thewhile loop of lines 1–8, which
executes as long as vertexu has positive excess. Each iteration performs exactly
one of three actions, depending on the current vertexv in the neighbor listN[u].

1. If v is NIL , then we have run off the end ofN[u]. Line 4 relabels vertexu,
and then line 5 resets the current neighbor ofu to be the first one inN[u].
(Lemma 26.30 below states that the relabel operation applies in this situation.)

2. If v is non-NIL and (u, v) is an admissible edge (determined by the test in
line 6), then line 7 pushes some (or possibly all) ofu’s excess to vertexv .
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Figure 26.9 Discharging a vertexy. It takes 15 iterations of thewhile loop of DISCHARGEto push
all the excess flow fromy. Only the neighbors ofy and edges entering or leavingy are shown. In
each part, the number inside each vertex is its excess at the beginning of the first iteration shown
in the part, and each vertex is shown at its height throughoutthe part. To the right is shown the
neighbor listN[y] at the beginning of each iteration, with the iteration number on top. The shaded
neighbor iscurrent[y]. (a) Initially, there are 19 units of excess to push fromy, andcurrent[y] = s.
Iterations 1, 2, and 3 just advancecurrent[y], since there are no admissible edges leavingy. In
iteration 4,current[y] = NIL (shown by the shading being below the neighbor list), and soy is
relabeled andcurrent[y] is reset to the head of the neighbor list.(b) After relabeling, vertexy has
height 1. In iterations 5 and 6, edges(y, s) and(y, x) are found to be inadmissible, but 8 units of
excess flow are pushed fromy to z in iteration 7. Because of the push,current[y] is not advanced
in this iteration. (c) Because the push in iteration 7 saturated edge(y, z), it is found inadmissible
in iteration 8. In iteration 9,current[y] = NIL , and so vertexy is again relabeled andcurrent[y] is
reset. (d) In iteration 10,(y, s) is inadmissible, but 5 units of excess flow are pushed fromy to x
in iteration 11.(e) Becausecurrent[y] was not advanced in iteration 11, iteration 12 finds(y, x) to
be inadmissible. Iteration 13 finds(y, z) inadmissible, and iteration 14 relabels vertexy and resets
current[y]. (f) Iteration 15 pushes 6 units of excess flow fromy to s. (g) Vertexy now has no excess
flow, and DISCHARGE terminates. In this example, DISCHARGE both starts and finishes with the
current pointer at the head of the neighbor list, but in general this need not be the case.
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3. If v is non-NIL but (u, v) is inadmissible, then line 8 advancescurrent[u] one
position further in the neighbor listN[u].

Observe that if DISCHARGE is called on an overflowing vertexu, then the last
action performed by DISCHARGE must be a push fromu. Why? The procedure
terminates only whene[u] becomes zero, and neither the relabel operation nor the
advancing of the pointercurrent[u] affects the value ofe[u].

We must be sure that when PUSH or RELABEL is called by DISCHARGE, the
operation applies. The next lemma proves this fact.

Lemma 26.30
If D ISCHARGEcalls PUSH(u, v) in line 7, then a push operation applies to(u, v).
If D ISCHARGEcalls RELABEL(u) in line 4, then a relabel operation applies tou.

Proof The tests in lines 1 and 6 ensure that a push operation occurs only if the
operation applies, which proves the first statement in the lemma.

To prove the second statement, according to the test in line 1and Lemma 26.29,
we need only show that all edges leavingu are inadmissible. Observe that
as DISCHARGE(u) is repeatedly called, the pointercurrent[u] moves down
the list N[u]. Each “pass” begins at the head ofN[u] and finishes with
current[u] = NIL , at which pointu is relabeled and a new pass begins. For the
current[u] pointer to advance past a vertexv ∈ N[u] during a pass, the edge(u, v)

must be deemed inadmissible by the test in line 6. Thus, by thetime the pass
completes, every edge leavingu has been determined to be inadmissible at some
time during the pass. The key observation is that at the end ofthe pass, every edge
leavingu is still inadmissible. Why? By Lemma 26.28, pushes cannot create any
admissible edges, let alone one leavingu. Thus, any admissible edge must be cre-
ated by a relabel operation. But the vertexu is not relabeled during the pass, and by
Lemma 26.29, any other vertexv that is relabeled during the pass has no entering
admissible edges after relabeling. Thus, at the end of the pass, all edges leavingu
remain inadmissible, and the lemma is proved.

The relabel-to-front algorithm

In the relabel-to-front algorithm, we maintain a linked list L consisting of all ver-
tices inV − {s, t}. A key property is that the vertices inL are topologically sorted
according to the admissible network, as we shall see in the loop invariant below.
(Recall from Lemma 26.27 that the admissible network is a dag.)

The pseudocode for the relabel-to-front algorithm assumesthat the neighbor
lists N[u] have already been created for each vertexu. It also assumes thatnext[u]
points to the vertex that followsu in list L and that, as usual,next[u] = NIL if u is
the last vertex in the list.
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RELABEL-TO-FRONT(G, s, t)

1 INITIALIZE -PREFLOW(G, s)
2 L ← V [G] − {s, t}, in any order
3 for each vertexu ∈ V [G] − {s, t}
4 do current[u] ← head[N[u]]
5 u← head[L]
6 while u 6= NIL

7 do old-height← h[u]
8 DISCHARGE(u)
9 if h[u] > old-height

10 then moveu to the front of listL
11 u← next[u]

The relabel-to-front algorithm works as follows. Line 1 initializes the preflow
and heights to the same values as in the generic push-relabelalgorithm. Line 2
initializes the listL to contain all potentially overflowing vertices, in any order.
Lines 3–4 initialize thecurrent pointer of each vertexu to the first vertex inu’s
neighbor list.

As shown in Figure 26.10, thewhile loop of lines 6–11 runs through the listL,
discharging vertices. Line 5 makes it start with the first vertex in the list. Each
time through the loop, a vertexu is discharged in line 8. Ifu was relabeled by the
DISCHARGEprocedure, line 10 moves it to the front of listL. This determination is
made by savingu’s height in the variableold-heightbefore the discharge operation
(line 7) and comparing this saved height tou’s height afterward (line 9). Line 11
makes the next iteration of thewhile loop use the vertex followingu in list L. If u
was moved to the front of the list, the vertex used in the next iteration is the one
following u in its new position in the list.

To show that RELABEL-TO-FRONT computes a maximum flow, we shall show
that it is an implementation of the generic push-relabel algorithm. First, ob-
serve that it performs push and relabel operation only when they apply, since
Lemma 26.30 guarantees that DISCHARGE only performs them when they apply.
It remains to show that when RELABEL-TO-FRONT terminates, no basic opera-
tions apply. The remainder of the correctness argument relies on the following
loop invariant:

At each test in line 6 of RELABEL-TO-FRONT, list L is a topological sort
of the vertices in the admissible networkG f,h = (V, E f,h), and no vertex
beforeu in the list has excess flow.

Initialization: Immediately after INITIALIZE -PREFLOW has been run,h[s] = |V |
and h[v ] = 0 for all v ∈ V − {s}. Since|V| ≥ 2 (becauseV contains at
leasts andt), no edge can be admissible. Thus,E f,h = ∅, and any ordering of
V − {s, t} is a topological sort ofG f,h.
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Figure 26.10 The action of RELABEL-TO-FRONT. (a) A flow network just before the first iteration
of the while loop. Initially, 26 units of flow leave sources. On the right is shown the initial list
L = 〈x, y, z〉, where initiallyu = x. Under each vertex in listL is its neighbor list, with the current
neighbor shaded. Vertexx is discharged. It is relabeled to height 1, 5 units of excess flow are pushed
to y, and the 7 remaining units of excess are pushed to the sinkt . Becausex is relabeled, it is moved
to the head ofL , which in this case does not change the structure ofL . (b) After x, the next vertex
in L that is discharged isy. Figure 26.9 shows the detailed action of dischargingy in this situation.
Becausey is relabeled, it is moved to the head ofL . (c) Vertexx now followsy in L , and so it is again
discharged, pushing all 5 units of excess flow tot . Because vertexx is not relabeled in this discharge
operation, it remains in place in listL . (d) Since vertexz follows vertexx in L , it is discharged. It
is relabeled to height 1 and all 8 units of excess flow are pushed to t . Becausez is relabeled, it is
moved to the front ofL . (e) Vertex y now follows vertexz in L and is therefore discharged. But
becausey has no excess, DISCHARGEimmediately returns, andy remains in place inL . Vertexx is
then discharged. Because it, too, has no excess, DISCHARGEagain returns, andx remains in place
in L . RELABEL-TO-FRONT has reached the end of listL and terminates. There are no overflowing
vertices, and the preflow is a maximum flow.
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Sinceu is initially the head of the listL, there are no vertices before it and so
there are none before it with excess flow.

Maintenance: To see that the topological sort is maintained by each iteration of
the while loop, we start by observing that the admissible network is changed
only by push and relabel operations. By Lemma 26.28, push operations do not
cause edges to become admissible. Thus, admissible edges can be created only
by relabel operations. After a vertexu is relabeled, however, Lemma 26.29
states that there are no admissible edges enteringu but there may be admissible
edges leavingu. Thus, by movingu to the front ofL, the algorithm ensures
that any admissible edges leavingu satisfy the topological sort ordering.

To see that no vertex precedingu in L has excess flow, we denote the vertex
that will be u in the next iteration byu′. The vertices that will precedeu′

in the next iteration include the currentu (due to line 11) and either no other
vertices (ifu is relabeled) or the same vertices as before (ifu is not relabeled).
Sinceu is discharged, it has no excess flow afterward. Thus, ifu is relabeled
during the discharge, no vertices precedingu′ have excess flow. Ifu is not
relabeled during the discharge, no vertices before it on thelist acquired excess
flow during this discharge, becauseL remained topologically sorted at all times
during the discharge (as pointed out just above, admissibleedges are created
only by relabeling, not pushing), and so each push operationcauses excess flow
to move only to vertices further down the list (or tos or t). Again, no vertices
precedingu′ have excess flow.
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Termination: When the loop terminates,u is just past the end ofL, and so the loop
invariant ensures that the excess of every vertex is 0. Thus,no basic operations
apply.

Analysis

We shall now show that RELABEL-TO-FRONT runs in O(V3) time on any flow
network G = (V, E). Since the algorithm is an implementation of the generic
push-relabel algorithm, we shall take advantage of Corollary 26.22, which pro-
vides anO(V) bound on the number of relabel operations executed per vertex and
anO(V2) bound on the total number of relabel operations overall. In addition, Ex-
ercise 26.4-2 provides anO(V E) bound on the total time spent performing relabel
operations, and Lemma 26.23 provides anO(V E) bound on the total number of
saturating push operations.

Theorem 26.31
The running time of RELABEL-TO-FRONT on any flow networkG = (V, E)

is O(V3).

Proof Let us consider a “phase” of the relabel-to-front algorithmto be the time
between two consecutive relabel operations. There areO(V2) phases, since there
are O(V2) relabel operations. Each phase consists of at most|V | calls to DIS-
CHARGE, which can be seen as follows. If DISCHARGE does not perform a re-
label operation, then the next call to DISCHARGE is further down the listL, and
the length ofL is less than|V |. If D ISCHARGE does perform a relabel, the next
call to DISCHARGE belongs to a different phase. Since each phase contains at
most |V | calls to DISCHARGE and there areO(V2) phases, the number of times
DISCHARGE is called in line 8 of RELABEL-TO-FRONT is O(V3). Thus, the total
work performed by thewhile loop in RELABEL-TO-FRONT, excluding the work
performed within DISCHARGE, is at mostO(V3).

We must now bound the work performed within DISCHARGE during the ex-
ecution of the algorithm. Each iteration of thewhile loop within DISCHARGE

performs one of three actions. We shall analyze the total amount of work involved
in performing each of these actions.

We start with relabel operations (lines 4–5). Exercise 26.4-2 provides anO(V E)

time bound on all theO(V2) relabels that are performed.
Now, suppose that the action updates thecurrent[u] pointer in line 8. This action

occursO(degree(u)) times each time a vertexu is relabeled, andO(V ·degree(u))

times overall for the vertex. For all vertices, therefore, the total amount of work
done in advancing pointers in neighbor lists isO(V E) by the handshaking lemma
(Exercise B.4-1).
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The third type of action performed by DISCHARGE is a push operation (line 7).
We already know that the total number of saturating push operations isO(V E).
Observe that if a nonsaturating push is executed, DISCHARGEimmediately returns,
since the push reduces the excess to 0. Thus, there can be at most one nonsaturating
push per call to DISCHARGE. As we have observed, DISCHARGE is calledO(V3)

times, and thus the total time spent performing nonsaturating pushes isO(V3).
The running time of RELABEL-TO-FRONT is thereforeO(V3 + V E), which

is O(V3).

Exercises

26.5-1
Illustrate the execution of RELABEL-TO-FRONT in the manner of Figure 26.10 for
the flow network in Figure 26.1(a). Assume that the initial ordering of vertices inL
is 〈v1, v2, v3, v4〉 and that the neighbor lists are

N[v1] = 〈s, v2, v3〉 ,
N[v2] = 〈s, v1, v3, v4〉 ,
N[v3] = 〈v1, v2, v4, t〉 ,
N[v4] = 〈v2, v3, t〉 .

26.5-2 ⋆

We would like to implement a push-relabel algorithm in whichwe maintain a first-
in, first-out queue of overflowing vertices. The algorithm repeatedly discharges
the vertex at the head of the queue, and any vertices that werenot overflowing
before the discharge but are overflowing afterward are placed at the end of the
queue. After the vertex at the head of the queue is discharged, it is removed. When
the queue is empty, the algorithm terminates. Show that thisalgorithm can be
implemented to compute a maximum flow inO(V3) time.

26.5-3
Show that the generic algorithm still works if RELABEL updatesh[u] by sim-
ply computingh[u] ← h[u] + 1. How would this change affect the analysis of
RELABEL-TO-FRONT?

26.5-4 ⋆

Show that if we always discharge a highest overflowing vertex, the push-relabel
method can be made to run inO(V3) time.

26.5-5
Suppose that at some point in the execution of a push-relabelalgorithm, there exists
an integer 0< k ≤ |V | − 1 for which no vertex hash[v ] = k. Show that all
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vertices withh[v ] > k are on the source side of a minimum cut. If such ak
exists, thegap heuristicupdates every vertexv ∈ V − s for which h[v ] > k to set
h[v ] ← max(h[v ], |V|+1). Show that the resulting attributeh is a height function.
(The gap heuristic is crucial in making implementations of the push-relabel method
perform well in practice.)

Problems

26-1 Escape problem
An n×n grid is an undirected graph consisting ofn rows andn columns of vertices,
as shown in Figure 26.11. We denote the vertex in thei th row and thej th column
by (i, j ). All vertices in a grid have exactly four neighbors, except for the boundary
vertices, which are the points(i, j ) for which i = 1, i = n, j = 1, or j = n.

Given m ≤ n2 starting points(x1, y1), (x2, y2), . . . , (xm, ym) in the grid, the
escape problemis to determine whether or not there arem vertex-disjoint paths
from the starting points to anym different points on the boundary. For example,
the grid in Figure 26.11(a) has an escape, but the grid in Figure 26.11(b) does not.

a. Consider a flow network in which vertices, as well as edges, have capacities.
That is, the total positive flow entering any given vertex is subject to a capacity
constraint. Show that determining the maximum flow in a network with edge
and vertex capacities can be reduced to an ordinary maximum-flow problem on
a flow network of comparable size.

b. Describe an efficient algorithm to solve the escape problem,and analyze its
running time.

26-2 Minimum path cover
A path coverof a directed graphG = (V, E) is a setP of vertex-disjoint paths
such that every vertex inV is included in exactly one path inP. Paths may start
and end anywhere, and they may be of any length, including 0. Aminimum path
coverof G is a path cover containing the fewest possible paths.

a. Give an efficient algorithm to find a minimum path cover of a directed acyclic
graphG = (V, E). (Hint: Assuming thatV = {1, 2, . . . , n}, construct the
graphG′ = (V ′, E′), where

V ′ = {x0, x1, . . . , xn} ∪ {y0, y1, . . . , yn} ,

E′ = {(x0, xi ) : i ∈ V} ∪ {(yi , y0) : i ∈ V} ∪ {(xi , y j ) : (i, j ) ∈ E} ,

and run a maximum-flow algorithm.)
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(a) (b)

Figure 26.11 Grids for the escape problem. Starting points are black, andother grid vertices are
white. (a) A grid with an escape, shown by shaded paths.(b) A grid with no escape.

b. Does your algorithm work for directed graphs that contain cycles? Explain.

26-3 Space shuttle experiments
Professor Spock is consulting for NASA, which is planning a series of space shut-
tle flights and must decide which commercial experiments to perform and which
instruments to have on board each flight. For each flight, NASAconsiders a set
E = {E1, E2, . . . , Em} of experiments, and the commercial sponsor of experi-
mentE j has agreed to pay NASAp j dollars for the results of the experiment. The
experiments use a setI = {I1, I2, . . . , In} of instruments; each experimentE j re-
quires all the instruments in a subsetRj ⊆ I . The cost of carrying instrumentIk

isck dollars. The professor’s job is to find an efficient algorithmto determine which
experiments to perform and which instruments to carry for a given flight in order to
maximize the net revenue, which is the total income from experiments performed
minus the total cost of all instruments carried.

Consider the following networkG. The network contains a source ver-
tex s, vertices I1, I2, . . . , In, verticesE1, E2, . . . , Em, and a sink vertext . For
k = 1, 2 . . . , n, there is an edge(s, Ik) of capacityck, and for j = 1, 2, . . . , m,
there is an edge(E j , t) of capacityp j . For k = 1, 2, . . . , n and j = 1, 2, . . . , m,
if Ik ∈ Rj , then there is an edge(Ik, E j ) of infinite capacity.

a. Show that ifE j ∈ T for a finite-capacity cut(S, T) of G, then Ik ∈ T for each
Ik ∈ Rj .

b. Show how to determine the maximum net revenue from the capacity of the
minimum cut ofG and the givenp j values.
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c. Give an efficient algorithm to determine which experiments to perform and
which instruments to carry. Analyze the running time of youralgorithm in
terms ofm, n, andr =

∑m
j=1 |Rj |.

26-4 Updating maximum flow
Let G = (V, E) be a flow network with sources, sink t , and integer capacities.
Suppose that we are given a maximum flow inG.

a. Suppose that the capacity of a single edge(u, v) ∈ E is increased by 1. Give
an O(V + E)-time algorithm to update the maximum flow.

b. Suppose that the capacity of a single edge(u, v) ∈ E is decreased by 1. Give
an O(V + E)-time algorithm to update the maximum flow.

26-5 Maximum flow by scaling
Let G = (V, E) be a flow network with sources, sink t , and an integer capac-
ity c(u, v) on each edge(u, v) ∈ E. Let C = max(u,v)∈E c(u, v).

a. Argue that a minimum cut ofG has capacity at mostC |E|.

b. For a given numberK , show that an augmenting path of capacity at leastK can
be found inO(E) time, if such a path exists.

The following modification of FORD-FULKERSON-METHOD can be used to com-
pute a maximum flow inG.

MAX -FLOW-BY-SCALING (G, s, t)

1 C← max(u,v)∈E c(u, v)

2 initialize flow f to 0
3 K ← 2⌊lg C⌋

4 while K ≥ 1
5 do while there exists an augmenting pathp of capacity at leastK
6 do augment flowf along p
7 K ← K/2
8 return f

c. Argue that MAX -FLOW-BY-SCALING returns a maximum flow.

d. Show that the capacity of a minimum cut of the residual graphG f is at most
2K |E| each time line 4 is executed.

e. Argue that the innerwhile loop of lines 5–6 is executedO(E) times for each
value ofK .
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f. Conclude that MAX -FLOW-BY-SCALING can be implemented so that it runs
in O(E2 lg C) time.

26-6 Maximum flow with negative capacities
Suppose that we allow a flow network to have negative (as well as positive) edge
capacities. In such a network, a feasible flow need not exist.

a. Consider an edge(u, v) in a flow networkG = (V, E) with c(u, v) < 0.
Briefly explain what such a negative capacity means in terms of the flow be-
tweenu andv .

Let G = (V, E) be a flow network with negative edge capacities, and lets andt be
the source and sink ofG. Construct the ordinary flow networkG′ = (V ′, E′) with
capacity functionc′, sources′, and sinkt ′, where

V ′ = V ∪ {s′, t ′}

and

E′ = E ∪ {(u, v) : (v, u) ∈ E}
∪ {(s′, v) : v ∈ V}
∪ {(u, t ′) : u ∈ V}
∪ {(s, t), (t, s)} .

We assign capacities to edges as follows. For each edge(u, v) ∈ E, we set

c′(u, v) = c′(v, u) = (c(u, v)+ c(v, u))/2 .

For each vertexu ∈ V , we set

c′(s′, u) = max(0, (c(V, u) − c(u, V))/2)

and

c′(u, t ′) = max(0, (c(u, V)− c(V, u))/2) .

We also setc′(s, t) = c′(t, s) = ∞.

b. Prove that if a feasible flow exists inG, then all capacities inG′ are nonneg-
ative and a maximum flow exists inG′ such that all edges into the sinkt ′ are
saturated.

c. Prove the converse of part (b). Your proof should be constructive, that is, given
a flow in G′ that saturates all the edges intot ′, your proof should show how to
obtain a feasible flow inG.
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d. Describe an algorithm that finds a maximum feasible flow inG. Denote by
MF(|V | , |E|) the worst-case running time of an ordinary maximum flow al-
gorithm on a graph with|V | vertices and|E| edges. Analyze your algorithm
for computing the maximum flow of a flow network with negative capacities in
terms ofMF.

26-7 The Hopcroft-Karp bipartite matching algorithm
In this problem, we describe a faster algorithm, due to Hopcroft and Karp, for
finding a maximum matching in a bipartite graph. The algorithm runs inO(

√
V E)

time. Given an undirected, bipartite graphG = (V, E), whereV = L ∪ R and
all edges have exactly one endpoint inL, let M be a matching inG. We say that
a simple pathP in G is anaugmenting pathwith respect toM if it starts at an
unmatched vertex inL, ends at an unmatched vertex inR, and its edges belong
alternately toM and E − M. (This definition of an augmenting path is related
to, but different from, an augmenting path in a flow network.)In this problem,
we treat a path as a sequence of edges, rather than as a sequence of vertices. A
shortest augmenting path with respect to a matchingM is an augmenting path with
a minimum number of edges.

Given two setsA andB, thesymmetric differenceA⊕B is defined as(A−B)∪
(B − A), that is, the elements that are in exactly one of the two sets.

a. Show that ifM is a matching andP is an augmenting path with respect toM,
then the symmetric differenceM ⊕ P is a matching and|M ⊕ P| = |M| + 1.
Show that ifP1, P2, . . . , Pk are vertex-disjoint augmenting paths with respect
to M, then the symmetric differenceM ⊕ (P1 ∪ P2 ∪ · · · ∪ Pk) is a matching
with cardinality|M| + k.

The general structure of our algorithm is the following:

HOPCROFT-KARP(G)

1 M ← ∅
2 repeat
3 letP ← {P1, P2, . . . , Pk} be a maximal set of vertex-disjoint

shortest augmenting paths with respect toM
4 M ← M ⊕ (P1 ∪ P2 ∪ · · · ∪ Pk)

5 until P = ∅
6 return M

The remainder of this problem asks you to analyze the number of iterations in
the algorithm (that is, the number of iterations in therepeat loop) and to describe
an implementation of line 3.
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b. Given two matchingsM and M∗ in G, show that every vertex in the graph
G′ = (V, M ⊕ M∗) has degree at most 2. Conclude thatG′ is a disjoint union
of simple paths or cycles. Argue that edges in each such simple path or cycle
belong alternately toM or M∗. Prove that if|M| ≤ |M∗|, thenM⊕M∗ contains
at least|M∗| − |M| vertex-disjoint augmenting paths with respect toM.

Let l be the length of a shortest augmenting path with respect to a matchingM, and
let P1, P2, . . . , Pk be a maximal set of vertex-disjoint augmenting paths of length l
with respect toM. Let M ′ = M ⊕ (P1∪ · · · ∪ Pk), and suppose thatP is a shortest
augmenting path with respect toM ′.

c. Show that ifP is vertex-disjoint fromP1, P2, . . . , Pk, thenP has more thanl
edges.

d. Now suppose thatP is not vertex-disjoint fromP1, P2, . . . , Pk. Let A be the
set of edges(M ⊕ M ′)⊕ P. Show thatA = (P1 ∪ P2 ∪ · · · ∪ Pk)⊕ P and that
|A| ≥ (k+ 1)l . Conclude thatP has more thanl edges.

e. Prove that if a shortest augmenting path with respect toM hasl edges, the size
of the maximum matching is at most|M| + |V | /(l + 1).

f. Show that the number ofrepeat loop iterations in the algorithm is at most 2
√

V .
(Hint: By how much canM grow after iteration number

√
V?)

g. Give an algorithm that runs inO(E) time to find a maximal set of vertex-
disjoint shortest augmenting pathsP1, P2, . . . , Pk for a given matchingM.
Conclude that the total running time of HOPCROFT-KARP is O(

√
V E).

Chapter notes

Ahuja, Magnanti, and Orlin [7], Even [87], Lawler [196], Papadimitriou and Stei-
glitz [237], and Tarjan [292] are good references for network flow and related algo-
rithms. Goldberg, Tardos, and Tarjan [119] also provide a nice survey of algorithms
for network-flow problems, and Schrijver [267] has written an interesting review
of historical developments in the field of network flows.

The Ford-Fulkerson method is due to Ford and Fulkerson [93],who originated
the formal study of many of the problems in the area of networkflow, including
the maximum-flow and bipartite-matching problems. Many early implementations
of the Ford-Fulkerson method found augmenting paths using breadth-first search;
Edmonds and Karp [86], and independently Dinic [76], provedthat this strategy
yields a polynomial-time algorithm. A related idea, that ofusing “blocking flows,”
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was also first developed by Dinic [76]. Karzanov [176] first developed the idea of
preflows. The push-relabel method is due to Goldberg [117] and Goldberg and Tar-
jan [121]. Goldberg and Tarjan gave anO(V3)-time algorithm that uses a queue to
maintain the set of overflowing vertices, as well as an algorithm that uses dynamic
trees to achieve a running time ofO(V E lg(V2/E+2)). Several other researchers
have developed push-relabel maximum-flow algorithms. Ahuja and Orlin [9] and
Ahuja, Orlin, and Tarjan [10] gave algorithms that used scaling. Cheriyan and
Maheshwari [55] proposed pushing flow from the overflowing vertex of maximum
height. Cheriyan and Hagerup [54] suggested randomly permuting the neighbor
lists, and several researchers [14, 178, 241] developed clever derandomizations of
this idea, leading to a sequence of faster algorithms. The algorithm of King, Rao,
and Tarjan [178] is the fastest such algorithm and runs inO(V E logE/(V lg V) V)

time.
The asymptotically fastest algorithm to date for the maximum-flow prob-

lem is due to Goldberg and Rao [120] and runs in timeO(min(V2/3, E1/2)

E lg(V2/E + 2) lg C), whereC = max(u,v)∈E c(u, v). This algorithm does not
use the push-relabel method but instead is based on finding blocking flows. All
previous maximum-flow algorithms, including the ones in this chapter, use some
notion of distance (the push-relabel algorithms use the analogous notion of height),
with a length of 1 assigned implicitly to each edge. This new algorithm takes a dif-
ferent approach and assigns a length of 0 to high-capacity edges and a length of 1 to
low-capacity edges. Informally, with respect to these lengths, shortest paths from
the source to the sink tend have high capacity, which means that fewer iterations
need be performed.

In practice, push-relabel algorithms currently dominate augmenting-path or
linear-programming based algorithms for the maximum-flow problem. A study
by Cherkassky and Goldberg [56] underscores the importanceof using two heuris-
tics when implementing a push-relabel algorithm. The first heuristic is to period-
ically perform a breadth-first search of the residual graph in order to obtain more
accurate height values. The second heuristic is the gap heuristic, described in Ex-
ericse 26.5-5. They conclude that the best choice of push-relabel variants is the one
that chooses to discharge the overflowing vertex with the maximum height.

The best algorithm to date for maximum bipartite matching, discovered by
Hopcroft and Karp [152], runs inO(

√
V E) time and is described in Problem 26-7.

The book by Lovász and Plummer [207] is an excellent reference on matching
problems.


