
20 Fibonacci Heaps

In Chapter 19, we saw how binomial heaps support inO(lg n) worst-case time the
mergeable-heap operations INSERT, M INIMUM , EXTRACT-M IN, and UNION, plus
the operations DECREASE-KEY and DELETE. In this chapter, we shall examine
Fibonacci heaps, which support the same operations but havethe advantage that
operations that do not involve deleting an element run inO(1) amortized time.

From a theoretical standpoint, Fibonacci heaps are especially desirable when the
number of EXTRACT-M IN and DELETE operations is small relative to the number
of other operations performed. This situation arises in many applications. For ex-
ample, some algorithms for graph problems may call DECREASE-KEY once per
edge. For dense graphs, which have many edges, theO(1) amortized time of each
call of DECREASE-KEY adds up to a big improvement over the2(lg n) worst-case
time of binary or binomial heaps. Fast algorithms for problems such as comput-
ing minimum spanning trees (Chapter 23) and finding single-source shortest paths
(Chapter 24) make essential use of Fibonacci heaps.

From a practical point of view, however, the constant factors and programming
complexity of Fibonacci heaps make them less desirable thanordinary binary (or
k-ary) heaps for most applications. Thus, Fibonacci heaps are predominantly of
theoretical interest. If a much simpler data structure withthe same amortized time
bounds as Fibonacci heaps were developed, it would be of practical use as well.

Like a binomial heap, a Fibonacci heap is a collection of trees. Fibonacci heaps,
in fact, are loosely based on binomial heaps. If neither DECREASE-KEY nor
DELETE is ever invoked on a Fibonacci heap, each tree in the heap is like a bi-
nomial tree. Fibonacci heaps have a more relaxed structure than binomial heaps,
however, allowing for improved asymptotic time bounds. Work that maintains the
structure can be delayed until it is convenient to perform.

Like the dynamic tables of Section 17.4, Fibonacci heaps offer a good example
of a data structure designed with amortized analysis in mind. The intuition and
analyses of Fibonacci heap operations in the remainder of this chapter rely heavily
on the potential method of Section 17.3.

20.1 Structure of Fibonacci heaps 477

The exposition in this chapter assumes that you have read Chapter 19 on bino-
mial heaps. The specifications for the operations appear in that chapter, as does the
table in Figure 19.1, which summarizes the time bounds for operations on binary
heaps, binomial heaps, and Fibonacci heaps. Our presentation of the structure of
Fibonacci heaps relies on that of binomial-heap structure,and some of the oper-
ations performed on Fibonacci heaps are similar to those performed on binomial
heaps.

Like binomial heaps, Fibonacci heaps are not designed to give efficient support
to the operation SEARCH; operations that refer to a given node therefore require
a pointer to that node as part of their input. When we use a Fibonacci heap in an
application, we often store a handle to the corresponding application object in each
Fibonacci-heap element, as well as a handle to the corresponding Fibonacci-heap
element in each application object.

Section 20.1 defines Fibonacci heaps, discusses their representation, and
presents the potential function used for their amortized analysis. Section 20.2
shows how to implement the mergeable-heap operations and achieve the amortized
time bounds shown in Figure 19.1. The remaining two operations, DECREASE-
KEY and DELETE, are presented in Section 20.3. Finally, Section 20.4 finishes off
a key part of the analysis and also explains the curious name of the data structure.

20.1 Structure of Fibonacci heaps

Like a binomial heap, aFibonacci heapis a collection of min-heap-ordered trees.
The trees in a Fibonacci heap are not constrained to be binomial trees, however.
Figure 20.1(a) shows an example of a Fibonacci heap.

Unlike trees within binomial heaps, which are ordered, trees within Fibonacci
heaps are rooted but unordered. As Figure 20.1(b) shows, each nodex contains
a pointerp[x] to its parent and a pointerchild[x] to any one of its children. The
children of x are linked together in a circular, doubly linked list, whichwe call
the child list of x. Each childy in a child list has pointersleft[y] and right[y]
that point toy’s left and right siblings, respectively. If nodey is an only child,
then left[y] = right[y] = y. The order in which siblings appear in a child list is
arbitrary.

Circular, doubly linked lists (see Section 10.2) have two advantages for use in
Fibonacci heaps. First, we can remove a node from a circular,doubly linked list
in O(1) time. Second, given two such lists, we can concatenate them (or “splice”
them together) into one circular, doubly linked list inO(1) time. In the descriptions
of Fibonacci heap operations, we shall refer to these operations informally, letting
the reader fill in the details of their implementations.

478 Chapter 20 Fibonacci Heaps

17

30 26 46

35

24

18 52 38

3

39 41

23 7

min[H]

17

30 26 46

35

24

18 52 38

3

39 41

23 7

(a)

(b)

min[H]

Figure 20.1 (a)A Fibonacci heap consisting of five min-heap-ordered trees and 14 nodes. The
dashed line indicates the root list. The minimum node of the heap is the node containing the key 3.
The three marked nodes are blackened. The potential of this particular Fibonacci heap is 5+2·3 = 11.
(b) A more complete representation showing pointersp (up arrows),child (down arrows), andleft
andright (sideways arrows). These details are omitted in the remaining figures in this chapter, since
all the information shown here can be determined from what appears in part (a).

Two other fields in each node will be of use. The number of children in the child
list of nodex is stored indegree[x]. The boolean-valued fieldmark[x] indicates
whether nodex has lost a child since the last timex was made the child of another
node. Newly created nodes are unmarked, and a nodex becomes unmarked when-
ever it is made the child of another node. Until we look at the DECREASE-KEY

operation in Section 20.3, we will just set allmarkfields toFALSE.
A given Fibonacci heapH is accessed by a pointermin[H] to the root of a tree

containing a minimum key; this node is called theminimum nodeof the Fibonacci
heap. If a Fibonacci heapH is empty, thenmin[H] = NIL .

The roots of all the trees in a Fibonacci heap are linked together using their
left andright pointers into a circular, doubly linked list called theroot list of the
Fibonacci heap. The pointermin[H] thus points to the node in the root list whose
key is minimum. The order of the trees within a root list is arbitrary.

We rely on one other attribute for a Fibonacci heapH : the number of nodes
currently inH is kept inn[H].

20.2 Mergeable-heap operations 479

Potential function

As mentioned, we shall use the potential method of Section 17.3 to analyze the
performance of Fibonacci heap operations. For a given Fibonacci heapH , we
indicate byt (H) the number of trees in the root list ofH and bym(H) the number
of marked nodes inH . The potential of Fibonacci heapH is then defined by

8(H) = t (H)+ 2m(H) . (20.1)

(We will gain some intuition for this potential function in Section 20.3.) For exam-
ple, the potential of the Fibonacci heap shown in Figure 20.1is 5+2 ·3 = 11. The
potential of a set of Fibonacci heaps is the sum of the potentials of its constituent
Fibonacci heaps. We shall assume that a unit of potential canpay for a constant
amount of work, where the constant is sufficiently large to cover the cost of any of
the specific constant-time pieces of work that we might encounter.

We assume that a Fibonacci heap application begins with no heaps. The initial
potential, therefore, is 0, and by equation (20.1), the potential is nonnegative at all
subsequent times. From equation (17.3), an upper bound on the total amortized
cost is thus an upper bound on the total actual cost for the sequence of operations.

Maximum degree

The amortized analyses we shall perform in the remaining sections of this chapter
assume that there is a known upper boundD(n) on the maximum degree of any
node in ann-node Fibonacci heap. Exercise 20.2-3 shows that when only the
mergeable-heap operations are supported,D(n) ≤ ⌊lg n⌋. In Section 20.3, we
shall show that when we support DECREASE-KEY and DELETE as well,D(n) =
O(lg n).

20.2 Mergeable-heap operations

In this section, we describe and analyze the mergeable-heapoperations as imple-
mented for Fibonacci heaps. If only these operations—MAKE-HEAP, INSERT,
M INIMUM , EXTRACT-M IN, and UNION—are to be supported, each Fibonacci
heap is simply a collection of “unordered” binomial trees. An unordered bino-
mial tree is like a binomial tree, and it, too, is defined recursively. The unordered
binomial treeU0 consists of a single node, and an unordered binomial treeUk con-
sists of two unordered binomial treesUk−1 for which the root of one is made into
anychild of the root of the other. Lemma 19.1, which gives properties of binomial
trees, holds for unordered binomial trees as well, but with the following variation
on property 4 (see Exercise 20.2-2):

480 Chapter 20 Fibonacci Heaps

4′. For the unordered binomial treeUk, the root has degreek, which is greater
than that of any other node. The children of the root are rootsof subtrees
U0, U1, . . . , Uk−1 in some order.

Thus, if ann-node Fibonacci heap is a collection of unordered binomial trees, then
D(n) = ⌊lg n⌋.

The key idea in the mergeable-heap operations on Fibonacci heaps is to delay
work as long as possible. There is a performance trade-off among implementa-
tions of the various operations. If the number of trees in a Fibonacci heap is small,
then during an EXTRACT-M IN operation we can quickly determine which of the
remaining nodes becomes the new minimum node. However, as wesaw with bi-
nomial heaps in Exercise 19.2-10, we pay a price for ensuringthat the number of
trees is small: it can take up to�(lg n) time to insert a node into a binomial heap
or to unite two binomial heaps. As we shall see, we do not attempt to consolidate
trees in a Fibonacci heap when we insert a new node or unite twoheaps. We save
the consolidation for the EXTRACT-M IN operation, which is when we really need
to find the new minimum node.

Creating a new Fibonacci heap

To make an empty Fibonacci heap, the MAKE-FIB-HEAP procedure allocates and
returns the Fibonacci heap objectH , wheren[H] = 0 andmin[H] = NIL ; there
are no trees inH . Becauset (H) = 0 andm(H) = 0, the potential of the empty
Fibonacci heap is8(H) = 0. The amortized cost of MAKE-FIB-HEAP is thus
equal to itsO(1) actual cost.

Inserting a node

The following procedure inserts nodex into Fibonacci heapH , assuming that the
node has already been allocated and thatkey[x] has already been filled in.

FIB-HEAP-INSERT(H, x)

1 degree[x] ← 0
2 p[x] ← NIL

3 child[x] ← NIL

4 left[x] ← x
5 right[x] ← x
6 mark[x] ← FALSE

7 concatenate the root list containingx with root list H
8 if min[H] = NIL or key[x] < key[min[H]]
9 then min[H]← x

10 n[H]← n[H] + 1

20.2 Mergeable-heap operations 481

(a) (b)

min[H]

17

30

2423

26

35

46

7 21

18 52 38

39 41

3

min[H]

17

30

2423

26

35

46

7

18 52 38

39 41

3

Figure 20.2 Inserting a node into a Fibonacci heap.(a) A Fibonacci heapH . (b) Fibonacci heapH
after the node with key 21 has been inserted. The node becomesits own min-heap-ordered tree and
is then added to the root list, becoming the left sibling of the root.

After lines 1–6 initialize the structural fields of nodex, making it its own circular,
doubly linked list, line 7 addsx to the root list ofH in O(1) actual time. Thus,
nodex becomes a single-node min-heap-ordered tree, and thus an unordered bino-
mial tree, in the Fibonacci heap. It has no children and is unmarked. Lines 8–9 then
update the pointer to the minimum node of Fibonacci heapH if necessary. Finally,
line 10 incrementsn[H] to reflect the addition of the new node. Figure 20.2 shows
a node with key 21 inserted into the Fibonacci heap of Figure 20.1.

Unlike the BINOMIAL -HEAP-INSERT procedure, FIB-HEAP-INSERT makes no
attempt to consolidate the trees within the Fibonacci heap.If k consecutive FIB-
HEAP-INSERT operations occur, thenk single-node trees are added to the root list.

To determine the amortized cost of FIB-HEAP-INSERT, let H be the input Fi-
bonacci heap andH ′ be the resulting Fibonacci heap. Then,t (H ′) = t (H)+1 and
m(H ′) = m(H), and the increase in potential is

((t (H)+ 1)+ 2m(H))− (t (H)+ 2m(H)) = 1 .

Since the actual cost isO(1), the amortized cost isO(1)+ 1= O(1).

Finding the minimum node

The minimum node of a Fibonacci heapH is given by the pointermin[H], so we
can find the minimum node inO(1) actual time. Because the potential ofH does
not change, the amortized cost of this operation is equal to its O(1) actual cost.

Uniting two Fibonacci heaps

The following procedure unites Fibonacci heapsH1 andH2, destroyingH1 andH2

in the process. It simply concatenates the root lists ofH1 and H2 and then deter-
mines the new minimum node.

482 Chapter 20 Fibonacci Heaps

FIB-HEAP-UNION(H1, H2)

1 H ← MAKE-FIB-HEAP()

2 min[H]← min[H1]
3 concatenate the root list ofH2 with the root list ofH
4 if (min[H1] = NIL) or (min[H2] 6= NIL and key[min[H2]] < key[min[H1]])
5 then min[H] ← min[H2]
6 n[H]← n[H1] + n[H2]
7 free the objectsH1 andH2

8 return H

Lines 1–3 concatenate the root lists ofH1 and H2 into a new root listH . Lines
2, 4, and 5 set the minimum node ofH , and line 6 setsn[H] to the total number
of nodes. The Fibonacci heap objectsH1 and H2 are freed in line 7, and line 8
returns the resulting Fibonacci heapH . As in the FIB-HEAP-INSERT procedure,
no consolidation of trees occurs.

The change in potential is

8(H)− (8(H1)+8(H2))

= (t (H)+ 2m(H))− ((t (H1)+ 2m(H1))+ (t (H2)+ 2m(H2)))

= 0 ,

becauset (H) = t (H1)+ t (H2) andm(H) = m(H1)+m(H2). The amortized cost
of FIB-HEAP-UNION is therefore equal to itsO(1) actual cost.

Extracting the minimum node

The process of extracting the minimum node is the most complicated of the oper-
ations presented in this section. It is also where the delayed work of consolidating
trees in the root list finally occurs. The following pseudocode extracts the mini-
mum node. The code assumes for convenience that when a node isremoved from
a linked list, pointers remaining in the list are updated, but pointers in the extracted
node are left unchanged. It also uses the auxiliary procedure CONSOLIDATE, which
will be presented shortly.

20.2 Mergeable-heap operations 483

FIB-HEAP-EXTRACT-M IN (H)

1 z← min[H]
2 if z 6= NIL

3 then for each childx of z
4 do addx to the root list ofH
5 p[x] ← NIL

6 removez from the root list ofH
7 if z= right[z]
8 then min[H]← NIL

9 else min[H]← right[z]
10 CONSOLIDATE(H)

11 n[H]← n[H] − 1
12 return z

As shown in Figure 20.3, FIB-HEAP-EXTRACT-M IN works by first making a root
out of each of the minimum node’s children and removing the minimum node from
the root list. It then consolidates the root list by linking roots of equal degree until
at most one root remains of each degree.

We start in line 1 by saving a pointerz to the minimum node; this pointer is
returned at the end. Ifz = NIL , then Fibonacci heapH is already empty and
we are done. Otherwise, as in the BINOMIAL -HEAP-EXTRACT-M IN procedure,
we delete nodez from H by making all ofz’s children roots ofH in lines 3–5
(putting them into the root list) and removingz from the root list in line 6. If
z = right[z] after line 6, thenz was the only node on the root list and it had no
children, so all that remains is to make the Fibonacci heap empty in line 8 before
returning z. Otherwise, we set the pointermin[H] into the root list to point to
a node other thanz (in this case,right[z]), which is not necessarily going to be
the new minimum node when FIB-HEAP-EXTRACT-M IN is done. Figure 20.3(b)
shows the Fibonacci heap of Figure 20.3(a) after line 9 has been performed.

The next step, in which we reduce the number of trees in the Fibonacci heap, is
consolidatingthe root list ofH ; this is performed by the call CONSOLIDATE(H).
Consolidating the root list consists of repeatedly executing the following steps until
every root in the root list has a distinctdegreevalue.

1. Find two rootsx and y in the root list with the same degree, wherekey[x] ≤
key[y].

2. Link y to x: removey from the root list, and makey a child of x. This oper-
ation is performed by the FIB-HEAP-L INK procedure. The fielddegree[x] is
incremented, and the mark ony, if any, is cleared.

The procedure CONSOLIDATE uses an auxiliary arrayA[0 . . D(n[H])]; if
A[i] = y, theny is currently a root withdegree[y] = i .

484 Chapter 20 Fibonacci Heaps

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

(c) (d)

(e)

17

30

2423

26

35

46

7 21

18 52 38

39 41

(a)

min[H]

3 (b)

(f)

17

30

2423

26

35

46

7 21 18 52 38

39 41

min[H]

17

30

2423

26

35

46

7 21 18 52 38

39 41

17

30

2423

26

35

46

7 21 18 52 38

39 41

17

30

2423

26

35

46

7 21 18 52 38

39 41

17

30

24

23 26

35

46

7 21 18 52 38

39 41

w,x w,x

w,x w,x

Figure 20.3 The action of FIB-HEAP-EXTRACT-M IN. (a) A Fibonacci heapH . (b) The situation
after the minimum nodez is removed from the root list and its children are added to theroot list.
(c)–(e)The arrayA and the trees after each of the first three iterations of thefor loop of lines 3–13 of
the procedure CONSOLIDATE. The root list is processed by starting at the node pointed toby min[H]
and following right pointers. Each part shows the values ofw and x at the end of an iteration.
(f)–(h) The next iteration of thefor loop, with the values ofw and x shown at the end of each
iteration of thewhile loop of lines 6–12. Part (f) shows the situation after the first time through the
while loop. The node with key 23 has been linked to the node with key 7, which is now pointed to
by x. In part (g), the node with key 17 has been linked to the node with key 7, which is still pointed
to by x. In part (h), the node with key 24 has been linked to the node with key 7. Since no node
was previously pointed to byA[3], at the end of thefor loop iteration,A[3] is set to point to the
root of the resulting tree.(i)–(l) The situation after each of the next four iterations of thefor loop.
(m) Fibonacci heapH after reconstruction of the root list from the arrayA and determination of the
newmin[H] pointer.

20.2 Mergeable-heap operations 485

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

A
0 1 2 3

17

30

24 23

26

35

46

7

min[H]

(g) 21 18 52 38

39 41

(h)

17

30

24 23

26

35

46

7 21 18 52 38

39 41

(i)

17

30

24 23

26

35

46

7 21 18 52 38

39 41

(j)

17

30

24 23

26

35

46

7 38

41

(k)

21

18

52

39 17

30

24 23

26

35

46

7 38

41

(l)

21

18

52

39

17

30

24 23

26

35

46

7 38

41

(m)

21

18

52

39

17

30

24

23 26

35

46

7 21 18 52 38

39 41

w,x w,x

x w,x

w,x w,x

w

486 Chapter 20 Fibonacci Heaps

CONSOLIDATE(H)

1 for i ← 0 to D(n[H])
2 do A[i] ← NIL

3 for each nodew in the root list ofH
4 do x← w

5 d← degree[x]
6 while A[d] 6= NIL

7 do y← A[d] � Another node with the same degree asx.
8 if key[x] > key[y]
9 then exchangex ↔ y

10 FIB-HEAP-L INK (H, y, x)

11 A[d] ← NIL

12 d← d + 1
13 A[d] ← x
14 min[H] ← NIL

15 for i ← 0 to D(n[H])
16 do if A[i] 6= NIL

17 then addA[i] to the root list ofH
18 if min[H] = NIL or key[A[i]] < key[min[H]]
19 then min[H] ← A[i]

FIB-HEAP-L INK (H, y, x)

1 removey from the root list ofH
2 makey a child ofx, incrementingdegree[x]
3 mark[y] ← FALSE

In detail, the CONSOLIDATE procedure works as follows. Lines 1–2 initializeA
by making each entryNIL . Thefor loop of lines 3–13 processes each rootw in the
root list. After processing each rootw, it ends up in a tree rooted at some nodex,
which may or may not be identical tow. Of the processed roots, no others will
have the same degree asx, and so we will set array entryA[degree[x]] to point
to x. When thisfor loop terminates, at most one root of each degree will remain,
and the arrayA will point to each remaining root.

Thewhile loop of lines 6–12 repeatedly links the rootx of the tree containing
nodew to another tree whose root has the same degree asx, until no other root has
the same degree. Thiswhile loop maintains the following invariant:

At the start of each iteration of thewhile loop,d = degree[x].

We use this loop invariant as follows:

Initialization: Line 5 ensures that the loop invariant holds the first time we enter
the loop.

20.2 Mergeable-heap operations 487

Maintenance: In each iteration of thewhile loop, A[d] points to some rooty.
Becaused = degree[x] = degree[y], we want to linkx and y. Whichever of
x and y has the smaller key becomes the parent of the other as a resultof the
link operation, and so lines 8–9 exchange the pointers tox andy if necessary.
Next, we link y to x by the call FIB-HEAP-L INK (H, y, x) in line 10. This call
incrementsdegree[x] but leavesdegree[y] asd. Because nodey is no longer a
root, the pointer to it in arrayA is removed in line 11. Because the call of FIB-
HEAP-L INK increments the value ofdegree[x], line 12 restores the invariant
thatd = degree[x].

Termination: We repeat thewhile loop until A[d] = NIL , in which case there is
no other root with the same degree asx.

After thewhile loop terminates, we setA[d] to x in line 13 and perform the next
iteration of thefor loop.

Figures 20.3(c)–(e) show the arrayA and the resulting trees after the first three
iterations of thefor loop of lines 3–13. In the next iteration of thefor loop, three
links occur; their results are shown in Figures 20.3(f)–(h). Figures 20.3(i)–(l) show
the result of the next four iterations of thefor loop.

All that remains is to clean up. Once thefor loop of lines 3–13 completes,
line 14 empties the root list, and lines 15–19 reconstruct itfrom the arrayA. The
resulting Fibonacci heap is shown in Figure 20.3(m). After consolidating the root
list, FIB-HEAP-EXTRACT-M IN finishes up by decrementingn[H] in line 11 and
returning a pointer to the deleted nodez in line 12.

Observe that if all trees in the Fibonacci heap are unorderedbinomial trees be-
fore FIB-HEAP-EXTRACT-M IN is executed, then they are all unordered binomial
trees afterward. There are two ways in which trees are changed. First, in lines 3–5
of FIB-HEAP-EXTRACT-M IN, each childx of root z becomes a root. By Exer-
cise 20.2-2, each new tree is itself an unordered binomial tree. Second, trees are
linked by FIB-HEAP-L INK only if they have the same degree. Since all trees are
unordered binomial trees before the link occurs, two trees whose roots each havek
children must have the structure ofUk. The resulting tree therefore has the structure
of Uk+1.

We are now ready to show that the amortized cost of extractingthe minimum
node of ann-node Fibonacci heap isO(D(n)). Let H denote the Fibonacci heap
just prior to the FIB-HEAP-EXTRACT-M IN operation.

The actual cost of extracting the minimum node can be accounted for as fol-
lows. An O(D(n)) contribution comes from there being at mostD(n) children of
the minimum node that are processed in FIB-HEAP-EXTRACT-M IN and from the
work in lines 1–2 and 14–19 of CONSOLIDATE. It remains to analyze the contri-
bution from thefor loop of lines 3–13. The size of the root list upon calling CON-
SOLIDATE is at mostD(n)+ t (H)− 1, since it consists of the originalt (H) root-
list nodes, minus the extracted root node, plus the childrenof the extracted node,

488 Chapter 20 Fibonacci Heaps

which number at mostD(n). Every time through thewhile loop of lines 6–12, one
of the roots is linked to another, and thus the total amount ofwork performed in
the for loop is at most proportional toD(n)+ t (H). Thus, the total actual work in
extracting the minimum node isO(D(n)+ t (H)).

The potential before extracting the minimum node ist (H) + 2m(H), and the
potential afterward is at most(D(n)+ 1)+ 2m(H), since at mostD(n)+ 1 roots
remain and no nodes become marked during the operation. The amortized cost is
thus at most

O(D(n)+ t (H))+ ((D(n)+ 1)+ 2m(H))− (t (H)+ 2m(H))

= O(D(n))+ O(t (H))− t (H)

= O(D(n)) ,

since we can scale up the units of potential to dominate the constant hidden in
O(t (H)). Intuitively, the cost of performing each link is paid for bythe reduction
in potential due to the link’s reducing the number of roots byone. We shall see
in Section 20.4 thatD(n) = O(lg n), so that the amortized cost of extracting the
minimum node isO(lg n).

Exercises

20.2-1
Show the Fibonacci heap that results from calling FIB-HEAP-EXTRACT-M IN on
the Fibonacci heap shown in Figure 20.3(m).

20.2-2
Prove that Lemma 19.1 holds for unordered binomial trees, but with property 4′ in
place of property 4.

20.2-3
Show that if only the mergeable-heap operations are supported, the maximum de-
greeD(n) in ann-node Fibonacci heap is at most⌊lg n⌋.

20.2-4
Professor McGee has devised a new data structure based on Fibonacci heaps.
A McGee heap has the same structure as a Fibonacci heap and supports the
mergeable-heap operations. The implementations of the operations are the same
as for Fibonacci heaps, except that insertion and union perform consolidation as
their last step. What are the worst-case running times of operations on McGee
heaps? How novel is the professor’s data structure?

20.3 Decreasing a key and deleting a node 489

20.2-5
Argue that when the only operations on keys are comparing twokeys (as is the
case for all the implementations in this chapter), not all ofthe mergeable-heap
operations can run inO(1) amortized time.

20.3 Decreasing a key and deleting a node

In this section, we show how to decrease the key of a node in a Fibonacci heap
in O(1) amortized time and how to delete any node from ann-node Fibonacci heap
in O(D(n)) amortized time. These operations do not preserve the property that all
trees in the Fibonacci heap are unordered binomial trees. They are close enough,
however, that we can bound the maximum degreeD(n) by O(lg n). Proving this
bound, which we shall do in Section 20.4, will imply that FIB-HEAP-EXTRACT-
M IN and FIB-HEAP-DELETE run in O(lg n) amortized time.

Decreasing a key

In the following pseudocode for the operation FIB-HEAP-DECREASE-KEY, we
assume as before that removing a node from a linked list does not change any of
the structural fields in the removed node.

FIB-HEAP-DECREASE-KEY(H, x, k)

1 if k > key[x]
2 then error “new key is greater than current key”
3 key[x] ← k
4 y← p[x]
5 if y 6= NIL andkey[x] < key[y]
6 then CUT(H, x, y)

7 CASCADING-CUT(H, y)

8 if key[x] < key[min[H]]
9 then min[H]← x

CUT(H, x, y)

1 removex from the child list ofy, decrementingdegree[y]
2 addx to the root list ofH
3 p[x] ← NIL

4 mark[x] ← FALSE

490 Chapter 20 Fibonacci Heaps

CASCADING-CUT(H, y)

1 z← p[y]
2 if z 6= NIL

3 then if mark[y] = FALSE

4 then mark[y] ← TRUE

5 else CUT(H, y, z)
6 CASCADING-CUT(H, z)

The FIB-HEAP-DECREASE-KEY procedure works as follows. Lines 1–3 ensure
that the new key is no greater than the current key ofx and then assign the new key
to x. If x is a root or ifkey[x] ≥ key[y], wherey is x’s parent, then no structural
changes need occur, since min-heap order has not been violated. Lines 4–5 test for
this condition.

If min-heap order has been violated, many changes may occur.We start by
cutting x in line 6. The CUT procedure “cuts” the link betweenx and its parenty,
makingx a root.

We use themark fields to obtain the desired time bounds. They record a little
piece of the history of each node. Suppose that the followingevents have happened
to nodex:

1. at some time,x was a root,

2. thenx was linked to another node,

3. then two children ofx were removed by cuts.

As soon as the second child has been lost, we cutx from its parent, making it a
new root. The fieldmark[x] is TRUE if steps 1 and 2 have occurred and one child
of x has been cut. The CUT procedure, therefore, clearsmark[x] in line 4, since it
performs step 1. (We can now see why line 3 of FIB-HEAP-L INK clearsmark[y]:
nodey is being linked to another node, and so step 2 is being performed. The next
time a child ofy is cut,mark[y] will be set toTRUE.)

We are not yet done, becausex might be the second child cut from its parenty
since the time thaty was linked to another node. Therefore, line 7 of FIB-HEAP-
DECREASE-KEY attempts to perform acascading-cutoperation ony. If y is a
root, then the test in line 2 of CASCADING-CUT causes the procedure to just return.
If y is unmarked, the procedure marks it in line 4, since its first child has just been
cut, and returns. Ify is marked, however, it has just lost its second child;y is cut in
line 5, and CASCADING-CUT calls itself recursively in line 6 ony’s parentz. The
CASCADING-CUT procedure recurses its way up the tree until either a root or an
unmarked node is found.

Once all the cascading cuts have occurred, lines 8–9 of FIB-HEAP-DECREASE-
KEY finish up by updatingmin[H] if necessary. The only node whose key changed

20.3 Decreasing a key and deleting a node 491

17

30

24 23

26

35

15 7

21

18

52

38

39 41

(b)

min[H]

17

30

24 23

26

515 7

21

18

52

38

39 41

(c)

min[H]

17

30

24 23

26515 7

21

18

52

38

39 41

(d)

min[H]

17

30

24

23

26515 7

21

18

52

38

39 41

(e)

min[H]

17

30

24 23

26

35

46

7

21

18

52

38

39 41

(a)

min[H]

Figure 20.4 Two calls of FIB-HEAP-DECREASE-KEY. (a) The initial Fibonacci heap.(b) The
node with key 46 has its key decreased to 15. The node becomes aroot, and its parent (with key 24),
which had previously been unmarked, becomes marked.(c)–(e)The node with key 35 has its key
decreased to 5. In part (c), the node, now with key 5, becomes aroot. Its parent, with key 26,
is marked, so a cascading cut occurs. The node with key 26 is cut from its parent and made an
unmarked root in (d). Another cascading cut occurs, since the node with key 24 is marked as well.
This node is cut from its parent and made an unmarked root in part (e). The cascading cuts stop at
this point, since the node with key 7 is a root. (Even if this node were not a root, the cascading cuts
would stop, since it is unmarked.) The result of the FIB-HEAP-DECREASE-KEY operation is shown
in part (e), withmin[H] pointing to the new minimum node.

was the nodex whose key decreased. Thus, the new minimum node is either the
original minimum node or nodex.

Figure 20.4 shows the execution of two calls of FIB-HEAP-DECREASE-KEY,
starting with the Fibonacci heap shown in Figure 20.4(a). The first call, shown
in Figure 20.4(b), involves no cascading cuts. The second call, shown in Fig-
ures 20.4(c)–(e), invokes two cascading cuts.

We shall now show that the amortized cost of FIB-HEAP-DECREASE-KEY is
only O(1). We start by determining its actual cost. The FIB-HEAP-DECREASE-
KEY procedure takesO(1) time, plus the time to perform the cascading cuts. Sup-
pose that CASCADING-CUT is recursively calledc times from a given invocation

492 Chapter 20 Fibonacci Heaps

of FIB-HEAP-DECREASE-KEY. Each call of CASCADING-CUT takesO(1) time
exclusive of recursive calls. Thus, the actual cost of FIB-HEAP-DECREASE-KEY,
including all recursive calls, isO(c).

We next compute the change in potential. LetH denote the Fibonacci heap
just prior to the FIB-HEAP-DECREASE-KEY operation. Each recursive call of
CASCADING-CUT, except for the last one, cuts a marked node and clears the mark
bit. Afterward, there aret (H)+c trees (the originalt (H) trees,c−1 trees produced
by cascading cuts, and the tree rooted atx) and at mostm(H)−c+2 marked nodes
(c−1 were unmarked by cascading cuts and the last call of CASCADING-CUT may
have marked a node). The change in potential is therefore at most

((t (H)+ c)+ 2(m(H)− c+ 2))− (t (H)+ 2m(H)) = 4− c .

Thus, the amortized cost of FIB-HEAP-DECREASE-KEY is at most

O(c)+ 4− c = O(1) ,

since we can scale up the units of potential to dominate the constant hidden inO(c).
You can now see why the potential function was defined to include a term that is

twice the number of marked nodes. When a marked nodey is cut by a cascading
cut, its mark bit is cleared, so the potential is reduced by 2.One unit of potential
pays for the cut and the clearing of the mark bit, and the otherunit compensates
for the unit increase in potential due to nodey becoming a root.

Deleting a node

It is easy to delete a node from ann-node Fibonacci heap inO(D(n)) amortized
time, as is done by the following pseudocode. We assume that there is no key value
of −∞ currently in the Fibonacci heap.

FIB-HEAP-DELETE(H, x)

1 FIB-HEAP-DECREASE-KEY(H, x,−∞)

2 FIB-HEAP-EXTRACT-M IN (H)

FIB-HEAP-DELETE is analogous to BINOMIAL -HEAP-DELETE. It makesx be-
come the minimum node in the Fibonacci heap by giving it a uniquely small key
of −∞. Node x is then removed from the Fibonacci heap by the FIB-HEAP-
EXTRACT-M IN procedure. The amortized time of FIB-HEAP-DELETE is the sum
of the O(1) amortized time of FIB-HEAP-DECREASE-KEY and theO(D(n))
amortized time of FIB-HEAP-EXTRACT-M IN. Since we shall see in Section 20.4
that D(n) = O(lg n), the amortized time of FIB-HEAP-DELETE is O(lg n).

20.4 Bounding the maximum degree 493

Exercises

20.3-1
Suppose that a rootx in a Fibonacci heap is marked. Explain howx came to be
a marked root. Argue that it doesn’t matter to the analysis that x is marked, even
though it is not a root that was first linked to another node andthen lost one child.

20.3-2
Justify theO(1) amortized time of FIB-HEAP-DECREASE-KEY as an average cost
per operation by using aggregate analysis.

20.4 Bounding the maximum degree

To prove that the amortized time of FIB-HEAP-EXTRACT-M IN and FIB-HEAP-
DELETE is O(lg n), we must show that the upper boundD(n) on the degree of
any node of ann-node Fibonacci heap isO(lg n). By Exercise 20.2-3, when all
trees in the Fibonacci heap are unordered binomial trees,D(n) = ⌊lg n⌋. The cuts
that occur in FIB-HEAP-DECREASE-KEY, however, may cause trees within the
Fibonacci heap to violate the unordered binomial tree properties. In this section,
we shall show that because we cut a node from its parent as soonas it loses two
children, D(n) is O(lg n). In particular, we shall show thatD(n) ≤ ⌊logφ n⌋,
whereφ = (1+

√
5)/2.

The key to the analysis is as follows. For each nodex within a Fibonacci heap,
define size(x) to be the number of nodes, includingx itself, in the subtree rooted
at x. (Note thatx need not be in the root list—it can be any node at all.) We
shall show that size(x) is exponential indegree[x]. Bear in mind thatdegree[x] is
always maintained as an accurate count of the degree ofx.

Lemma 20.1
Let x be any node in a Fibonacci heap, and suppose thatdegree[x] = k. Let
y1, y2, . . . , yk denote the children ofx in the order in which they were linked tox,
from the earliest to the latest. Then,degree[y1] ≥ 0 anddegree[yi] ≥ i − 2 for
i = 2, 3, . . . , k.

Proof Obviously,degree[y1] ≥ 0.
For i ≥ 2, we note that whenyi was linked tox, all of y1, y2, . . . , yi−1 were

children ofx, so we must have haddegree[x] ≥ i − 1. Nodeyi is linked tox only
if degree[x] = degree[yi], so we must have also haddegree[yi] ≥ i − 1 at that
time. Since then, nodeyi has lost at most one child, since it would have been cut
from x if it had lost two children. We conclude thatdegree[yi] ≥ i − 2.

494 Chapter 20 Fibonacci Heaps

We finally come to the part of the analysis that explains the name “Fibonacci
heaps.” Recall from Section 3.2 that fork = 0, 1, 2, . . ., thekth Fibonacci number
is defined by the recurrence

Fk =





0 if k = 0 ,

1 if k = 1 ,
Fk−1 + Fk−2 if k ≥ 2 .

The following lemma gives another way to expressFk.

Lemma 20.2
For all integersk ≥ 0,

Fk+2 = 1+
k∑

i=0

Fi .

Proof The proof is by induction onk. Whenk = 0,

1+
0∑

i=0

Fi = 1+ F0

= 1+ 0

= 1

= F2 .

We now assume the inductive hypothesis thatFk+1 = 1+
∑k−1

i=0 Fi , and we have

Fk+2 = Fk + Fk+1

= Fk +
(

1+
k−1∑

i=0

Fi

)

= 1+
k∑

i=0

Fi .

The following lemma and its corollary complete the analysis. They use the in-
equality (proved in Exercise 3.2-7)

Fk+2 ≥ φk ,

whereφ is the golden ratio, defined in equation (3.22) asφ = (1 +
√

5)/2 =
1.61803. . ..

20.4 Bounding the maximum degree 495

Lemma 20.3
Let x be any node in a Fibonacci heap, and letk = degree[x]. Then, size(x) ≥
Fk+2 ≥ φk, whereφ = (1+

√
5)/2.

Proof Let sk denote the minimum possible size of any node of degreek in any
Fibonacci heap. Trivially,s0 = 1 ands1 = 2. The numbersk is at most size(x) and,
because adding children to a node cannot decrease the node’ssize, the value ofsk

increases monotonically withk. Consider some nodez, in any Fibonacci heap,
such thatdegree[z] = k and size(z) = sk. Becausesk ≤ size(x), we compute a
lower bound on size(x) by computing a lower bound onsk. As in Lemma 20.1,
let y1, y2, . . . , yk denote the children ofz in the order in which they were linked
to z. To boundsk, we count one forz itself and one for the first childy1 (for which
size(y1) ≥ 1), giving

size(x) ≥ sk

≥ 2+
k∑

i=2

sdegree[yi]

≥ 2+
k∑

i=2

si−2 ,

where the last line follows from Lemma 20.1 (so thatdegree[yi] ≥ i − 2) and the
monotonicity ofsk (so thatsdegree[yi] ≥ si−2).

We now show by induction onk that sk ≥ Fk+2 for all nonnegative integerk.
The bases, fork = 0 andk = 1, are trivial. For the inductive step, we assume that
k ≥ 2 and thatsi ≥ Fi+2 for i = 0, 1, . . . , k − 1. We have

sk ≥ 2+
k∑

i=2

si−2

≥ 2+
k∑

i=2

Fi

= 1+
k∑

i=0

Fi

= Fk+2 (by Lemma 20.2) .

Thus, we have shown that size(x) ≥ sk ≥ Fk+2 ≥ φk.

Corollary 20.4
The maximum degreeD(n) of any node in ann-node Fibonacci heap isO(lg n).

Proof Let x be any node in ann-node Fibonacci heap, and letk = degree[x].
By Lemma 20.3, we haven ≥ size(x) ≥ φk. Taking base-φ logarithms gives
us k ≤ logφ n. (In fact, becausek is an integer,k ≤ ⌊logφ n⌋.) The maximum
degreeD(n) of any node is thusO(lg n).

496 Chapter 20 Fibonacci Heaps

Exercises

20.4-1
Professor Pinocchio claims that the height of ann-node Fibonacci heap isO(lg n).
Show that the professor is mistaken by exhibiting, for any positive integern, a
sequence of Fibonacci-heap operations that creates a Fibonacci heap consisting of
just one tree that is a linear chain ofn nodes.

20.4-2
Suppose we generalize the cascading-cut rule to cut a nodex from its parent as
soon as it loses itskth child, for some integer constantk. (The rule in Section 20.3
usesk = 2.) For what values ofk is D(n) = O(lg n)?

Problems

20-1 Alternative implementation of deletion
Professor Pisano has proposed the following variant of the FIB-HEAP-DELETE

procedure, claiming that it runs faster when the node being deleted is not the node
pointed to bymin[H].

PISANO-DELETE(H, x)

1 if x = min[H]
2 then FIB-HEAP-EXTRACT-M IN (H)

3 else y← p[x]
4 if y 6= NIL

5 then CUT(H, x, y)

6 CASCADING-CUT(H, y)

7 addx’s child list to the root list ofH
8 removex from the root list ofH

a. The professor’s claim that this procedure runs faster is based partly on the as-
sumption that line 7 can be performed inO(1) actual time. What is wrong with
this assumption?

b. Give a good upper bound on the actual time of PISANO-DELETE whenx is not
min[H]. Your bound should be in terms ofdegree[x] and the numberc of calls
to the CASCADING-CUT procedure.

c. Suppose that we call PISANO-DELETE(H, x), and letH ′ be the Fibonacci heap
that results. Assuming that nodex is not a root, bound the potential ofH ′ in
terms ofdegree[x], c, t (H), andm(H).

Notes for Chapter 20 497

d. Conclude that the amortized time for PISANO-DELETE is asymptotically no
better than for FIB-HEAP-DELETE, even whenx 6= min[H].

20-2 More Fibonacci-heap operations
We wish to augment a Fibonacci heapH to support two new operations without
changing the amortized running time of any other Fibonacci-heap operations.

a. The operation FIB-HEAP-CHANGE-KEY(H, x, k) changes the key of nodex
to the valuek. Give an efficient implementation of FIB-HEAP-CHANGE-KEY,
and analyze the amortized running time of your implementation for the cases
in which k is greater than, less than, or equal tokey[x].

b. Give an efficient implementation of FIB-HEAP-PRUNE(H, r), which deletes
min(r, n[H]) nodes fromH . Which nodes are deleted should be arbitrary. An-
alyze the amortized running time of your implementation. (Hint: You may need
to modify the data structure and potential function.)

Chapter notes

Fibonacci heaps were introduced by Fredman and Tarjan [98].Their paper also de-
scribes the application of Fibonacci heaps to the problems of single-source short-
est paths, all-pairs shortest paths, weighted bipartite matching, and the minimum-
spanning-tree problem.

Subsequently, Driscoll, Gabow, Shrairman, and Tarjan [81]developed “relaxed
heaps” as an alternative to Fibonacci heaps. There are two varieties of relaxed
heaps. One gives the same amortized time bounds as Fibonacciheaps. The
other allows DECREASE-KEY to run in O(1) worst-case (not amortized) time and
EXTRACT-M IN and DELETE to run in O(lg n) worst-case time. Relaxed heaps
also have some advantages over Fibonacci heaps in parallel algorithms.

See also the chapter notes for Chapter 6 for other data structures that support fast
DECREASE-KEY operations when the sequence of values returned by EXTRACT-
M IN calls are monotonically increasing over time and the data are integers in a
specific range.

