20

Fibonacci Heaps

In Chapter 19, we saw how binomial heaps suppo@®iig n) worst-case time the
mergeable-heap operationsJERT, MINIMUM , EXTRACT-MIN, and INION, plus
the operations BCREASEKEY and DELETE. In this chapter, we shall examine
Fibonacci heaps, which support the same operations butthavadvantage that
operations that do not involve deleting an element ru®{@d) amortized time.

From a theoretical standpoint, Fibonacci heaps are edlyetésirable when the
number of XTRACT-MIN and DELETE operations is small relative to the number
of other operations performed. This situation arises inyregplications. For ex-
ample, some algorithms for graph problems may calcREASEKEY once per
edge. For dense graphs, which have many edge®tfigamortized time of each
call of DECREASEKEY adds up to a big improvement over t@€lg n) worst-case
time of binary or binomial heaps. Fast algorithms for profdesuch as comput-
ing minimum spanning trees (Chapter 23) and finding singleree shortest paths
(Chapter 24) make essential use of Fibonacci heaps.

From a practical point of view, however, the constant fextamd programming
complexity of Fibonacci heaps make them less desirable dhdinary binary (or
k-ary) heaps for most applications. Thus, Fibonacci heapgpedominantly of
theoretical interest. If a much simpler data structure whith same amortized time
bounds as Fibonacci heaps were developed, it would be diqgahase as well.

Like a binomial heap, a Fibonacci heap is a collection ofsrégébonacci heaps,
in fact, are loosely based on binomial heaps. If neith&mcREASEKEY nor
DELETE is ever invoked on a Fibonacci heap, each tree in the heakesalbi-
nomial tree. Fibonacci heaps have a more relaxed strudbare iinomial heaps,
however, allowing for improved asymptotic time bounds. ¥Wirat maintains the
structure can be delayed until it is convenient to perform.

Like the dynamic tables of Section 17.4, Fibonacci heapsr affgyood example
of a data structure designed with amortized analysis in mifde intuition and
analyses of Fibonacci heap operations in the remaindei€kiapter rely heavily
on the potential method of Section 17.3.

20.1 Structure of Fibonacci heaps 477

The exposition in this chapter assumes that you have reapt€ht on bino-
mial heaps. The specifications for the operations appeaairchapter, as does the
table in Figure 19.1, which summarizes the time bounds feragons on binary
heaps, binomial heaps, and Fibonacci heaps. Our presenti#tthe structure of
Fibonacci heaps relies on that of binomial-heap structang, some of the oper-
ations performed on Fibonacci heaps are similar to thos®mpeed on binomial
heaps.

Like binomial heaps, Fibonacci heaps are not designed efficient support
to the operation SARCH; operations that refer to a given node therefore require
a pointer to that node as part of their input. When we use arkibd heap in an
application, we often store a handle to the correspondipdjcgtion object in each
Fibonacci-heap element, as well as a handle to the corrdsgpfibonacci-heap
element in each application object.

Section 20.1 defines Fibonacci heaps, discusses theirsmpegion, and
presents the potential function used for their amortizedlyais. Section 20.2
shows how to implement the mergeable-heap operations dnevadhe amortized
time bounds shown in Figure 19.1. The remaining two opeamnafi®ECREASE
KEY and DELETE, are presented in Section 20.3. Finally, Section 20.4 fasgiff
a key part of the analysis and also explains the curious ndrie alata structure.

20.1 Structure of Fibonacci heaps

Like a binomial heap, &ibonacci heapis a collection of min-heap-ordered trees.
The trees in a Fibonacci heap are not constrained to be batdraes, however.
Figure 20.1(a) shows an example of a Fibonacci heap.

Unlike trees within binomial heaps, which are ordered, dredthin Fibonacci
heaps are rooted but unordered. As Figure 20.1(b) showh, re@dex contains
a pointerp[x] to its parent and a pointarhild[x] to any one of its children. The
children ofx are linked together in a circular, doubly linked list, whiale call
the child list of x. Each childy in a child list has pointerseft[y] and right[y]
that point toy’s left and right siblings, respectively. If nodgis an only child,
thenleft[y] = right[y] = y. The order in which siblings appear in a child list is
arbitrary.

Circular, doubly linked lists (see Section 10.2) have tweaadages for use in
Fibonacci heaps. First, we can remove a node from a circdtarbly linked list
in O(1) time. Second, given two such lists, we can concatenate tbefisglice”
them together) into one circular, doubly linked list@(1) time. In the descriptions
of Fibonacci heap operations, we shall refer to these apasainformally, letting
the reader fill in the details of their implementations.

478

Chapter 20 Fibonacci Heaps

mirJH]

@
min[H]

(b) 23)¢ (7)< (3)< 17« (24
AN -

06)
a1
N

(00
00
w

:;{L:
o
i
()

Figure 20.1 (a)A Fibonacci heap consisting of five min-heap-ordered trews B4 nodes. The
dashed line indicates the root list. The minimum node of t@phis the node containing the key 3.
The three marked nodes are blackened. The potential ofdahtieplar Fibonacci heap is{®2-3 = 11.
(b) A more complete representation showing pointpr&up arrows),child (down arrows), andeft
andright (sideways arrows). These details are omitted in the remgifigures in this chapter, since
all the information shown here can be determined from whpeays in part (a).

Two other fields in each node will be of use. The number of ciiidn the child
list of nodex is stored indegreg¢x]. The boolean-valued fieltharx] indicates
whether nodex has lost a child since the last timavas made the child of another
node. Newly created nodes are unmarked, and a rdEomes unmarked when-
ever it is made the child of another node. Until we look at theCREASEKEY
operation in Section 20.3, we will just set allark fields toFALSE.

A given Fibonacci heapl is accessed by a pointerinH] to the root of a tree
containing a minimum key; this node is called thenimum nodeof the Fibonacci
heap. If a Fibonacci heaf is empty, thermin[H] = NIL.

The roots of all the trees in a Fibonacci heap are linked twgetising their
left andright pointers into a circular, doubly linked list called theot list of the
Fibonacci heap. The pointenin[H] thus points to the node in the root list whose
key is minimum. The order of the trees within a root list isitaery.

We rely on one other attribute for a Fibonacci hddp the number of nodes
currently inH is kept inn[H].

20.2 Mergeable-heap operations 479

Potential function

As mentioned, we shall use the potential method of SectioB v analyze the
performance of Fibonacci heap operations. For a given EibcinheapH, we
indicate byt (H) the number of trees in the root list éf and bym(H) the number
of marked nodes ifH. The potential of Fibonacci heap is then defined by

®(H) = t(H) +2m(H) . (20.1)

(We will gain some intuition for this potential function iretion 20.3.) For exam-
ple, the potential of the Fibonacci heap shown in Figure 05+ 2-3 = 11. The
potential of a set of Fibonacci heaps is the sum of the patisntif its constituent
Fibonacci heaps. We shall assume that a unit of potentiapagirfor a constant
amount of work, where the constant is sufficiently large teetdhe cost of any of
the specific constant-time pieces of work that we might entau

We assume that a Fibonacci heap application begins with apsheThe initial
potential, therefore, is 0, and by equation (20.1), the matkis nonnegative at all
subsequent times. From equation (17.3), an upper boundeotothl amortized
cost is thus an upper bound on the total actual cost for theeseg of operations.

Maximum degree

The amortized analyses we shall perform in the remainingsecof this chapter
assume that there is a known upper bouhgh) on the maximum degree of any
node in ann-node Fibonacci heap. Exercise 20.2-3 shows that when bwely t
mergeable-heap operations are supporiedh) < [lgn]. In Section 20.3, we
shall show that when we supporteBREASEKEY and DELETE as well,D(n) =

O(gn).

20.2 Mergeable-heap operations

In this section, we describe and analyze the mergeable-ba@tions as imple-
mented for Fibonacci heaps. If only these operationsaAkEFHEAP, INSERT,
MINIMUM, EXTRACT-MIN, and INION—are to be supported, each Fibonacci
heap is simply a collection of “unordered” binomial treesn #nordered bino-
mial treeis like a binomial tree, and it, too, is defined recursiveljeTunordered
binomial treeU, consists of a single node, and an unordered binomialdgeson-
sists of two unordered binomial treelg_1 for which the root of one is made into
anychild of the root of the other. Lemma 19.1, which gives prdipsrof binomial
trees, holds for unordered binomial trees as well, but withfbllowing variation
on property 4 (see Exercise 20.2-2):

480

Chapter 20 Fibonacci Heaps

4'. For the unordered binomial tredy, the root has degrek, which is greater
than that of any other node. The children of the root are roftsubtrees
Ug, U4, ..., Ux_1 in some order.

Thus, if ann-node Fibonacci heap is a collection of unordered binomégdd, then
D(n) = llgn].

The key idea in the mergeable-heap operations on Fibonaegishis to delay
work as long as possible. There is a performance trade-offngnimplementa-
tions of the various operations. If the number of trees intoRacci heap is small,
then during an ETRACT-MIN operation we can quickly determine which of the
remaining nodes becomes the new minimum node. However, aawavith bi-
nomial heaps in Exercise 19.2-10, we pay a price for ensuhagthe number of
trees is small: it can take up f(Ig n) time to insert a node into a binomial heap
or to unite two binomial heaps. As we shall see, we do not gitemconsolidate
trees in a Fibonacci heap when we insert a new node or unitéhéaps. We save
the consolidation for the ErRACT-MIN operation, which is when we really need
to find the new minimum node.

Creating a new Fibonacci heap

To make an empty Fibonacci heap, thekk-FiB-HEAP procedure allocates and
returns the Fibonacci heap objddt, wheren[H] = 0 andmin[H] = NiL; there
are no trees irH. Becausd (H) = 0 andm(H) = 0, the potential of the empty
Fibonacci heap isp(H) = 0. The amortized cost of MKE-FIB-HEAP is thus
equal to itsO(1) actual cost.

Inserting a node

The following procedure inserts nodeinto Fibonacci heapd, assuming that the
node has already been allocated and kiesftx] has already been filled in.

FIB-HEAP-INSERT(H, X)

1 degre¢x] < 0

2 p[x] < NIL

3 child[x] < NIL

4 left[x] < x

5 right[x] < x

6 marl{Xx] < FALSE

7 concatenate the root list containirgvith root list H
8 if minfH] = NIL orkey[x] < key{min[H]]

9 thenminfH] <« x
10 n[H] < n[H]+1

20.2 Mergeable-heap operations 481

min[H] min[H]
v v

@ (@) 3 17 24 @ (1)@ 3 17 24
) (52 (39 D (46) (52 (39 B (46
39 (a1) €5 39 (a1) €5

(@) (b)

Figure 20.2 Inserting a node into a Fibonacci hedp) A Fibonacci heapd. (b) Fibonacci heaj
after the node with key 21 has been inserted. The node bedtsm®@sn min-heap-ordered tree and
is then added to the root list, becoming the left sibling & thot.

After lines 1-6 initialize the structural fields of nodemaking it its own circular,
doubly linked list, line 7 adds to the root list ofH in O(1) actual time. Thus,
nodex becomes a single-node min-heap-ordered tree, and thusoatenad bino-
mial tree, in the Fibonacci heap. It has no children and isanked. Lines 8-9 then
update the pointer to the minimum node of Fibonacci hdapnecessary. Finally,
line 10 increments[H] to reflect the addition of the new node. Figure 20.2 shows
a node with key 21 inserted into the Fibonacci heap of FigQOré&.2

Unlike the BNOMIAL -HEAP-INSERT procedure, BB-HEAP-INSERT makes no
attempt to consolidate the trees within the Fibonacci héfjg.consecutive FB-
HEAP-INSERT operations occur, theksingle-node trees are added to the root list.

To determine the amortized cost ofeBFHEAP-INSERT, let H be the input Fi-
bonacci heap anHl’ be the resulting Fibonacci heap. Thée(kl’) =t(H)+ 1 and
m(H") = m(H), and the increase in potential is

(tH+D+2mH) —tH)+2m(H)) = 1.
Since the actual cost ©(1), the amortized cost i©®(1) + 1 = O(1).

Finding the minimum node

The minimum node of a Fibonacci he&pis given by the pointemin[H], so we
can find the minimum node i@ (1) actual time. Because the potentialléfdoes
not change, the amortized cost of this operation is equa$ 0 (1) actual cost.

Uniting two Fibonacci heaps

The following procedure unites Fibonacci heafysand H,, destroyingH; andH,
in the process. It simply concatenates the root listslpfand H, and then deter-
mines the new minimum node.

482

Chapter 20 Fibonacci Heaps

FiB-HEAP-UNION (Hy, Hy)

H < MAKE-FIB-HEAP()

min[H] < min[H4]

concatenate the root list &f, with the root list ofH

if (min[H1] = NIL) or (minH5] # NIL and keyymin[H,]] < key{min[H4]])
then min[H] < min[Hy]

n[H] < n[Hi] + n[H.]

free the object#d; andH,

return H

coO~NO OIS WN P

Lines 1-3 concatenate the root listsléf and H, into a new root listH. Lines
2, 4, and 5 set the minimum node Hf, and line 6 seta[H] to the total number
of nodes. The Fibonacci heap objetis and H;, are freed in line 7, and line 8
returns the resulting Fibonacci he&p As in the FB-HEAP-INSERT procedure,
no consolidation of trees occurs.

The change in potential is

©(H) — (O (Hy) + ©(H))
= (t(H) +2m(H)) — ((t(H1) + 2m(Hy)) + (t(H2) + 2m(Hy)))
= O’

because(H) = t(H;) +t(H,) andm(H) = m(H;) + m(H,). The amortized cost
of FIB-HEAP-UNION is therefore equal to it® (1) actual cost.

Extracting the minimum node

The process of extracting the minimum node is the most caragld of the oper-
ations presented in this section. It is also where the ddlsw@k of consolidating
trees in the root list finally occurs. The following pseuddecextracts the mini-
mum node. The code assumes for convenience that when a negedsed from
a linked list, pointers remaining in the list are updated,pminters in the extracted
node are left unchanged. It also uses the auxiliary proee@ansSOLIDATE, which
will be presented shortly.

20.2 Mergeable-heap operations 483

FIB-HEAP-EXTRACT-MIN (H)
1 z<« minH]

2 ifz#NIL
3 then for each childx of z
4 do addx to the root list ofH
5 p[X] < NIL
6 removez from the root list ofH
7 if z=right[Z]
8 thenminfH] < NIL
9 else min[H] <« right[Z]
10 CONSOLIDATE(H)
11 n[H] < n[H] -1
12 return z

As shown in Figure 20.3, I B-HEAP-EXTRACT-MIN works by first making a root
out of each of the minimum node’s children and removing theimiim node from
the root list. It then consolidates the root list by linkirapts of equal degree until
at most one root remains of each degree.

We start in line 1 by saving a pointerto the minimum node; this pointer is
returned at the end. I = NiL, then Fibonacci heapl is already empty and
we are done. Otherwise, as in theN®MIAL -HEAP-EXTRACT-MIN procedure,
we delete node from H by making all ofz’s children roots ofH in lines 3-5
(putting them into the root list) and removirggfrom the root list in line 6. If
Z = right[Z] after line 6, thenz was the only node on the root list and it had no
children, so all that remains is to make the Fibonacci hegpteim line 8 before
returning z. Otherwise, we set the pointeniffH] into the root list to point to
a node other thaa (in this caseright[z]), which is not necessarily going to be
the new minimum node whenis~HEAP-EXTRACT-MIN is done. Figure 20.3(b)
shows the Fibonacci heap of Figure 20.3(a) after line 9 has performed.

The next step, in which we reduce the number of trees in therfaitci heap, is
consolidatingthe root list ofH; this is performed by the call @NSOLIDATE(H).
Consolidating the root list consists of repeatedly exegutine following steps until
every root in the root list has a distindegreevalue.

1. Find two rootsx andy in the root list with the same degree, whdw@|x] <
keyy].

2. Link y to x: removey from the root list, and makg a child ofx. This oper-
ation is performed by the IB-HEAP-LINK procedure. The fieldlegre¢x] is
incremented, and the mark gnif any, is cleared.

The procedure OGNSOLIDATE uses an auxiliary arrayA[0.. D(n[H])]; if
Ali] = v, theny is currently a root withdegredy] = i.

484 Chapter 20 Fibonacci Heaps

min[H]

v
" 8080880 @

0123

Al /]

" 802008¢

AL/ A?
‘E’W%@@g TTie

Figure 20.3 The action of FB-HEAP-EXTRACT-MIN. (@) A Fibonacci heafH. (b) The situation
after the minimum node is removed from the root list and its children are added torti list.
(c)—(e)The arrayA and the trees after each of the first three iterations ofahéop of lines 3—13 of
the procedure GNSOLIDATE. The root list is processed by starting at the node pointéy tain[H]
and following right pointers. Each part shows the valuesupfand x at the end of an iteration.
(H—(h) The next iteration of thdor loop, with the values ofv and x shown at the end of each
iteration of thewhile loop of lines 6-12. Part (f) shows the situation after the fie through the
while loop. The node with key 23 has been linked to the node with keyhich is now pointed to
by x. In part (g), the node with key 17 has been linked to the nodle kéy 7, which is still pointed
to by x. In part (h), the node with key 24 has been linked to the nodh k8y 7. Since no node
was previously pointed to byA[3], at the end of thdor loop iteration, A[3] is set to point to the
root of the resulting tree(i)—(I) The situation after each of the next four iterations of fimeloop.
(m) Fibonacci heapH after reconstruction of the root list from the arrdyand determination of the
newmin[H] pointer.

20.2 Mergeable-heap operations 485

0123

Al 1/

(h)

@@@ 2
26@@ &2

486

Chapter 20 Fibonacci Heaps

CONSOLIDATE(H)
1 fori < Oto D(n[H])

2 do A[i] < NIL

3 for each nodeyw in the root list ofH

4 dox < w

5 d < degregx]

6 while A[d] # NIL

7 doy « A[d] > Another node with the same degreexas

8 if keyx] > keyy]

9 then exchangex <> y
10 FiB-HEAP-LINK (H, y, X)
11 A[d] < NIL
12 d<«d+1
13 Ald] < X

14 min[H] < NIL
15 fori <— 0to D(n[H])
16 do if Ali] # NIL

17 then add A[i] to the root list ofH
18 if min[H] = NIL orkey A[i]] < keyfmin[H]]
19 thenmin[H] < AJi]

FiB-HEAP-LINK (H, y, X)

1 removey from the root list ofH
2 makey a child ofx, incrementingdegre¢x]
3 mary] < FALSE

In detail, the @NSOLIDATE procedure works as follows. Lines 1-2 initialize
by making each entryiL. Thefor loop of lines 3—13 processes each raoin the
root list. After processing each roat, it ends up in a tree rooted at some node
which may or may not be identical . Of the processed roots, no others will
have the same degree msand so we will set array entnp[degreégx]] to point
to x. When thisfor loop terminates, at most one root of each degree will remain,
and the arrayA will point to each remaining root.

Thewhile loop of lines 6-12 repeatedly links the raotof the tree containing
nodew to another tree whose root has the same degree @il no other root has
the same degree. Thighile loop maintains the following invariant:

At the start of each iteration of thehile loop,d = degreé¢x].
We use this loop invariant as follows:

Initialization: Line 5 ensures that the loop invariant holds the first time nier
the loop.

20.2 Mergeable-heap operations 487

Maintenance: In each iteration of thevhile loop, Ald] points to some rooy.

Becausad = degre¢x] = degredy], we want to linkx andy. Whichever of
x andy has the smaller key becomes the parent of the other as a oéshé
link operation, and so lines 8-9 exchange the pointessdady if necessary.
Next, we linky to x by the call FB-HEAP-LINK (H, y, X) in line 10. This call
incrementsdegreé¢x] but leavesdegred¢y] asd. Because nodg is no longer a
root, the pointer to it in arrayA is removed in line 11. Because the call oBF
HeAP-LINK increments the value afegre¢x], line 12 restores the invariant
thatd = degreéx].

Termination: We repeat thavhile loop until A[d] = NiL, in which case there is
no other root with the same degreexas

After the while loop terminates, we sei[d] to x in line 13 and perform the next
iteration of thefor loop.

Figures 20.3(c)—(e) show the arrdyand the resulting trees after the first three
iterations of thefor loop of lines 3—13. In the next iteration of tifier loop, three
links occur; their results are shown in Figures 20.3(f)—igures 20.3(i)—(I) show
the result of the next four iterations of tifa loop.

All that remains is to clean up. Once tli@ loop of lines 3-13 completes,
line 14 empties the root list, and lines 15-19 reconstrutbin the arrayA. The
resulting Fibonacci heap is shown in Figure 20.3(m). Afensolidating the root
list, FIB-HEAP-EXTRACT-MIN finishes up by decrementing H] in line 11 and
returning a pointer to the deleted nodn line 12.

Observe that if all trees in the Fibonacci heap are unordeioimial trees be-
fore FB-HEAP-EXTRACT-MIN is executed, then they are all unordered binomial
trees afterward. There are two ways in which trees are cluarfgest, in lines 3-5
of FIB-HEAP-EXTRACT-MIN, each childx of root z becomes a root. By Exer-
cise 20.2-2, each new tree is itself an unordered binoneal. tSecond, trees are
linked by FB-HEAP-LINK only if they have the same degree. Since all trees are
unordered binomial trees before the link occurs, two trekesg roots each hake
children must have the structuredf. The resulting tree therefore has the structure
of Uk+1.

We are now ready to show that the amortized cost of extradtiagminimum
node of am-node Fibonacci heap ®(D(n)). Let H denote the Fibonacci heap
just prior to the FB-HEAP-EXTRACT-MIN operation.

The actual cost of extracting the minimum node can be acedufar as fol-
lows. An O(D(n)) contribution comes from there being at m&s(n) children of
the minimum node that are processed iBfHHEAP-EXTRACT-MIN and from the
work in lines 1-2 and 14-19 of @\NSOLIDATE. It remains to analyze the contri-
bution from thefor loop of lines 3—-13. The size of the root list upon callingIG
SOLIDATE is at mostD (n) + t(H) — 1, since it consists of the origina{H) root-
list nodes, minus the extracted root node, plus the childfehe extracted node,

488 Chapter 20 Fibonacci Heaps

which number at modD (n). Every time through thevhile loop of lines 6-12, one
of the roots is linked to another, and thus the total amountark performed in
thefor loop is at most proportional t® (n) + t(H). Thus, the total actual work in
extracting the minimum node ®(D(n) +t(H)).

The potential before extracting the minimum node (k) + 2m(H), and the
potential afterward is at mo$D (n) + 1) + 2m(H), since at mosD(n) + 1 roots
remain and no nodes become marked during the operation. mbgizaed cost is
thus at most

O(D(n) +t(H)) + ((D(n) + 1) + 2m(H)) — (t(H) + 2m(H))
= O(D(n)) + O(t(H)) —t(H)
= O(D(n),

since we can scale up the units of potential to dominate timstaat hidden in
O(t(H)). Intuitively, the cost of performing each link is paid for tye reduction

in potential due to the link’s reducing the number of rootsdme. We shall see
in Section 20.4 thaD(n) = O(Ign), so that the amortized cost of extracting the
minimum node iO(Ig n).

Exercises

20.2-1
Show the Fibonacci heap that results from calling HHEAP-EXTRACT-MIN oOn
the Fibonacci heap shown in Figure 20.3(m).

20.2-2
Prove that Lemma 19.1 holds for unordered binomial treeswitth property 4 in
place of property 4.

20.2-3
Show that if only the mergeable-heap operations are sugghattie maximum de-
greeD(n) in ann-node Fibonacci heap is at masg n|.

20.2-4

Professor McGee has devised a new data structure based onaEdd heaps.
A McGee heap has the same structure as a Fibonacci heap apdrisuthe

mergeable-heap operations. The implementations of theatipes are the same
as for Fibonacci heaps, except that insertion and unioropartonsolidation as
their last step. What are the worst-case running times ofatipms on McGee
heaps? How novel is the professor’'s data structure?

20.3 Decreasing a key and deleting a node 489

20.2-5

Argue that when the only operations on keys are comparingksys (as is the
case for all the implementations in this chapter), not althef mergeable-heap
operations can run i@ (1) amortized time.

20.3 Decreasing a key and deleting a node

In this section, we show how to decrease the key of a node im@an&tci heap
in O(1) amortized time and how to delete any node froomamode Fibonacci heap
in O(D(n)) amortized time. These operations do not preserve the pxothert all
trees in the Fibonacci heap are unordered binomial treegy @te close enough,
however, that we can bound the maximum dedbde) by O(lgn). Proving this
bound, which we shall do in Section 20.4, will imply thaBFHEAP-EXTRACT-
MiIN and FAB-HEAP-DELETE run in O(Ig n) amortized time.

Decreasing a key

In the following pseudocode for the operatiomFHEAP-DECREASEKEY, we
assume as before that removing a node from a linked list doeshange any of
the structural fields in the removed node.

FiB-HEAP-DECREASEKEY (H, X, k)

1 if k > keyx]

2 then error “new key is greater than current key”
3 keyx] <k

4y < plx]

5 if y # NIL andkeyx] < keyy]
6 then CUT(H, X, y)

7 CASCADING-CUT(H, y)
8 if key{x] < keyymin[H]]

9 thenmin[H] < x

Cut(H, x,y)

1 removex from the child list ofy, decrementinglegregy]
2 addx to the root list ofH

3 p[x] < NIL

4 marlfx] < FALSE

490

Chapter 20 Fibonacci Heaps

CASCADING-CUT(H, y)

1 z<ply]

2 ifz#NIL

3 then if marl{y] = FALSE

4 thenmarl{y] < TRUE

5 else Cut(H, vy, 2)

6 CASCADING-CUT(H, 2)

The FB-HEAP-DECREASEKEY procedure works as follows. Lines 1-3 ensure
that the new key is no greater than the current key and then assign the new key
to x. If x is a root or ifkey[x] > keyfy], wherey is x’s parent, then no structural
changes need occur, since min-heap order has not beerediolahes 4-5 test for
this condition.

If min-heap order has been violated, many changes may odfr.start by
cutting x in line 6. The QT procedure “cuts” the link betweenand its pareny,
makingx a root.

We use thamark fields to obtain the desired time bounds. They record a little
piece of the history of each node. Suppose that the followirggts have happened
to nodex:

1. at some timex was a root,
2. thenx was linked to another node,
3. then two children ok were removed by cuts.

As soon as the second child has been lost, wexdubm its parent, making it a
new root. The fieldmarl{x] is TRUE if steps 1 and 2 have occurred and one child
of x has been cut. TheW procedure, therefore, cleamsarl{x] in line 4, since it
performs step 1. (We can now see why line 3 e fHEAP-LINK clearsmarly]:
nodey is being linked to another node, and so step 2 is being peddrmhe next
time a child ofy is cut,marl{ y] will be set toTRUE.)

We are not yet done, becausenight be the second child cut from its pargnt
since the time thay was linked to another node. Therefore, line 7 o FHEAP-
DeECREASEKEY attempts to perform aascading-cutoperation ony. If y is a
root, then the testin line 2 of &CADING-CUT causes the procedure to just return.
If yis unmarked, the procedure marks it in line 4, since its finidchas just been
cut, and returns. ¥ is marked, however, it has just lost its second chyids cut in
line 5, and QSCADING-CuUT calls itself recursively in line 6 og’s parentz. The
CASCADING-CUT procedure recurses its way up the tree until either a roonhor a
unmarked node is found.

Once all the cascading cuts have occurred, lines 8—-98HEAP-DECREASE
KEY finish up by updatingmin[H] if necessary. The only node whose key changed

20.3 Decreasing a key and deleting a node 491

minH] min[H]
(@) i 18 38 (b) 15 i 18 38
DWW & d @ ®
35 39
mirl[H] mirl[H]
© @9 (5) 7 18 ? (d) 15(5) 20 7 18 ?
: @ @ : @ @
D & 0 &2
min[H]

cBEBB O @ e
®
30 ®2

Figure 20.4 Two calls of FiB-HEAP-DECREASEKEY. (@) The initial Fibonacci heap(b) The
node with key 46 has its key decreased to 15. The node becorneg and its parent (with key 24),
which had previously been unmarked, becomes markeg(e) The node with key 35 has its key
decreased to 5. In part (c), the node, now with key 5, become®ta Its parent, with key 26,
is marked, so a cascading cut occurs. The node with key 26tifam its parent and made an
unmarked root in (d). Another cascading cut occurs, sineentide with key 24 is marked as well.
This node is cut from its parent and made an unmarked rootrin(@p The cascading cuts stop at
this point, since the node with key 7 is a root. (Even if thisi@evere not a root, the cascading cuts
would stop, since it is unmarked.) The result of the FHEAP-DECREASEKEY operation is shown
in part (e), withmin[H] pointing to the new minimum node.

was the nod whose key decreased. Thus, the new minimum node is either the
original minimum node or nodg.

Figure 20.4 shows the execution of two calls 0B FHEAP-DECREASEKEY,
starting with the Fibonacci heap shown in Figure 20.4(a)e Tirst call, shown
in Figure 20.4(b), involves no cascading cuts. The secoftid stzown in Fig-
ures 20.4(c)—(e), invokes two cascading cuts.

We shall now show that the amortized cost 0B FHEAP-DECREASEKEY is
only O(1). We start by determining its actual cost. ThHHEAP-DECREASE
KEY procedure take® (1) time, plus the time to perform the cascading cuts. Sup-
pose that @SCADING-CUT is recursively callect times from a given invocation

492 Chapter 20 Fibonacci Heaps

of FIB-HEAP-DECREASEKEY. Each call of @QscADING-CuT takesO(1) time
exclusive of recursive calls. Thus, the actual costi@-HEAP-DECREASEKEY,
including all recursive calls, i©(c).

We next compute the change in potential. ltttdenote the Fibonacci heap
just prior to the FB-HEAP-DECREASEKEY operation. Each recursive call of
CASCADING-CuT, except for the last one, cuts a marked node and clears the mar
bit. Afterward, there aré(H)+-ctrees (the origina(H) trees,c—1 trees produced
by cascading cuts, and the tree rooter)aind at mosin(H) — c+2 marked nodes
(c—1 were unmarked by cascading cuts and the last callkgfdDING-CUT may
have marked a node). The change in potential is thereforest m

(t(H)+c)+2(m(H) —c+2)) — (t(H)+2m(H)) =4 —c.
Thus, the amortized cost ofis~HEAP-DECREASEKEY is at most
OC)+4—-c=001,

since we can scale up the units of potential to dominate thstaat hidden ifO(c).

You can now see why the potential function was defined to dekiterm that is
twice the number of marked nodes. When a marked noidecut by a cascading
cut, its mark bit is cleared, so the potential is reduced b@8&e unit of potential
pays for the cut and the clearing of the mark bit, and the atimércompensates
for the unit increase in potential due to hogleecoming a root.

Deleting a node

It is easy to delete a node from amode Fibonacci heap i@ (D(n)) amortized
time, as is done by the following pseudocode. We assumettbed is no key value
of —oo currently in the Fibonacci heap.

FIB-HEAP-DELETE(H, X)

1 FiB-HEAP-DECREASEKEY (H, X, —00)
2 FIB-HEAP-EXTRACT-MIN (H)

FiB-HEAP-DELETE is analogous to BIOMIAL -HEAP-DELETE. It makesx be-
come the minimum node in the Fibonacci heap by giving it a uely small key
of —oo. Nodex is then removed from the Fibonacci heap by the-HEAP-
EXTRACT-MIN procedure. The amortized time off=HEAP-DELETE is the sum
of the O(1) amortized time of B-HEAP-DECREASEKEY and theO(D(n))
amortized time of BB-HEAP-EXTRACT-MIN. Since we shall see in Section 20.4
that D(n) = O(lgn), the amortized time of B-HEAP-DELETE is O(Ign).

20.4 Bounding the maximum degree 493

Exercises

20.3-1

Suppose that a root in a Fibonacci heap is marked. Explain hewame to be
a marked root. Argue that it doesn’t matter to the analysa xhis marked, even
though it is not a root that was first linked to another node thied lost one child.

20.3-2
Justify theO (1) amortized time of lB-HEAP-DECREASEKEY as an average cost
per operation by using aggregate analysis.

20.4 Bounding the maximum degree

To prove that the amortized time ofil~HEAP-EXTRACT-MIN and RB-HEAP-
DELETE is O(lgn), we must show that the upper boudn) on the degree of
any node of am-node Fibonacci heap ©(Ign). By Exercise 20.2-3, when all
trees in the Fibonacci heap are unordered binomial tileés) = |Ign]. The cuts
that occur in FlB-HEAP-DECREASEKEY, however, may cause trees within the
Fibonacci heap to violate the unordered binomial tree pitagse In this section,
we shall show that because we cut a node from its parent asasoirioses two
children, D(n) is O(lgn). In particular, we shall show thad(n) < [log,n],
whereg = (1+ /5)/2.

The key to the analysis is as follows. For each nrdeithin a Fibonacci heap,
define sizéx) to be the number of nodes, includingitself, in the subtree rooted
at x. (Note thatx need not be in the root list—it can be any node at all.) We
shall show that siz&) is exponential irdegre¢x]. Bear in mind thategre¢x] is
always maintained as an accurate count of the degrge of

Lemma 20.1

Let x be any node in a Fibonacci heap, and supposedbate¢x] = k. Let
V1, Y2, . . ., Yk denote the children of in the order in which they were linked tq
from the earliest to the latest. Thedegredy,] > 0 anddegredy;] > i — 2 for
i=23...,k

Proof Obviously,degregy,] > 0.

Fori > 2, we note that whery, was linked tox, all of y;, yo, ..., yi_1 were
children ofx, so we must have hatkegre¢x] > i — 1. Nodey; is linked tox only
if degre¢x] = degregy;], so we must have also hategreg¢y] > i — 1 at that
time. Since then, nodg has lost at most one child, since it would have been cut
from x if it had lost two children. We conclude thdegregy;] > 1 — 2. [

494

Chapter 20 Fibonacci Heaps

We finally come to the part of the analysis that explains thmaaFibonacci
heaps.” Recall from Section 3.2 that o= 0, 1, 2, . . ., thekth Fibonacci number
is defined by the recurrence

0 ifk=0,
Fr=11 ifk=1,
Feei+ Fep ifk>2.

The following lemma gives another way to expréss

Lemma 20.2
For all integerk > 0,

k

Fa=1+> F .
i=0

Proof The proof is by induction ok. Whenk = 0,

0
14> R = 1+F

= 1+0
=1
= F.
-1

We now assume the inductive hypothesis that; = 1+ Zik=0 Fi, and we have
Feoo = Fe+ Faa

Fk+(1+_kzll=i)

i=0

k

The following lemma and its corollary complete the analygikey use the in-
equality (proved in Exercise 3.2-7)

k
Fk+2 Z ¢ s

where ¢ is the golden ratio, defined in equation (3.22)das= (1 + /5)/2 =
1.61803....

20.4 Bounding the maximum degree 495

Lemma 20.3
Let x be any node in a Fibonacci heap, andKet degregx]. Then, sizéx) >
Fii2 > ¢%, wherep = (14 /5)/2.

Proof Let s denote the minimum possible size of any node of degraeany
Fibonacci heap. Triviallysy = 1 ands; = 2. The numbes is at most sizé) and,
because adding children to a node cannot decrease the somig'she value o
increases monotonically witk. Consider some nodg in any Fibonacci heap,
such thatdegre¢z] = k and siz€z) = sc. Becauses, < sizgXx), we compute a
lower bound on siz&) by computing a lower bound og. As in Lemma 20.1,
let y1, Yo, ..., Yk denote the children af in the order in which they were linked
to z. To bounds, we count one for itself and one for the first chilg, (for which
size(y;) > 1), giving

sizex) = s

K
> 2+ Z Sdegrey]
i—2

k
> 24+ > s,
i=2

where the last line follows from Lemma 20.1 (so tdagre¢y;] > i — 2) and the
monotonicity ofs, (S0 thatSyegregy] = S—2)-

We now show by induction ok thats, > Fy,, for all nonnegative integek.
The bases, fok = 0 andk = 1, are trivial. For the inductive step, we assume that
k>2andthas > F,,fori =0,1,...,k— 1. We have

k
S = 24> 55
k
> 2+ZF1
|i2
= 1+ZF1

= Fgo (by Lemma 20.2) .
Thus, we have shown that siz®@ > s > Fi,o > ¢X. n

Corollary 20.4
The maximum degre® (n) of any node in am-node Fibonacci heap ©®(Ig n).

Proof Let x be any node in am-node Fibonacci heap, and let= degreg¢x].
By Lemma 20.3, we hava > sizex) > ¢X. Taking basep logarithms gives
usk < log,n. (In fact, becausé is an integerk < [log,n].) The maximum
degreeD (n) of any node is thu®©(lg n). [

496 Chapter 20 Fibonacci Heaps
Exercises
20.4-1
Professor Pinocchio claims that the height ohamode Fibonacci heap ©(Ig n).
Show that the professor is mistaken by exhibiting, for angitpe integern, a
sequence of Fibonacci-heap operations that creates ade€ibidmeap consisting of
just one tree that is a linear chainmhodes.
20.4-2
Suppose we generalize the cascading-cut rule to cut a nddmm its parent as
soon as it loses itkth child, for some integer constakt (The rule in Section 20.3
usesk = 2.) For what values dfis D(n) = O(lgn)?

Problems

20-1 Alternative implementation of deletion

Professor Pisano has proposed the following variant of ttee HEEAP-DELETE
procedure, claiming that it runs faster when the node beeigteld is not the node
pointed to bymin[H].

PISANO-DELETE(H, X)
1 if x=min[H]

2 then FIB-HEAP-EXTRACT-MIN (H)

3 else y < p[X]

4 if y # NIL

5 then CUT(H, X, y)

6 CASCADING-CUT(H, V)

7 addx’s child list to the root list ofH
8 removex from the root list ofH

a. The professor’s claim that this procedure runs faster igdgsrtly on the as-
sumption that line 7 can be performed@t1) actual time. What is wrong with
this assumption?

b. Give a good upper bound on the actual time ANO-DELETE whenx is not
min[H]. Your bound should be in terms diegre¢x] and the numbec of calls
to the CASCADING-CUT procedure.

c. Suppose that we callBaANO-DELETE(H, X), and letH’ be the Fibonacci heap
that results. Assuming that nodeis not a root, bound the potential &f’ in
terms ofdegre¢x], c, t(H), andm(H).

Notes for Chapter 20 497

d. Conclude that the amortized time fordANO-DELETE is asymptotically no
better than for B-HEAP-DELETE, even wherx # min[H].

20-2 More Fibonacci-heap operations
We wish to augment a Fibonacci hebbto support two new operations without
changing the amortized running time of any other Fibon&eep operations.

a. The operation B-HEAP-CHANGE-KEY (H, X, k) changes the key of node
to the valuek. Give an efficient implementation ofiB~HEAP-CHANGE-KEY,
and analyze the amortized running time of your implemeotafor the cases
in whichk is greater than, less than, or equak&y|x].

b. Give an efficient implementation ofiB-HEAP-PRUNE(H, r), which deletes
min(r, n[H]) nodes fromH. Which nodes are deleted should be arbitrary. An-
alyze the amortized running time of your implementatiddin: You may need
to modify the data structure and potential function.)

Chapter notes

Fibonacci heaps were introduced by Fredman and Tarjan J9&dir paper also de-
scribes the application of Fibonacci heaps to the probleihsingle-source short-
est paths, all-pairs shortest paths, weighted bipartitecmrag, and the minimum-
spanning-tree problem.

Subsequently, Driscoll, Gabow, Shrairman, and Tarjan {EMeloped “relaxed
heaps” as an alternative to Fibonacci heaps. There are tvigtiga of relaxed
heaps. One gives the same amortized time bounds as Fibomeaps. The
other allows ECREASEKEY to run in O(1) worst-case (not amortized) time and
EXTRACT-MIN and DeLETE to run in O(Ig n) worst-case time. Relaxed heaps
also have some advantages over Fibonacci heaps in patgtétiams.

See also the chapter notes for Chapter 6 for other datastescthat support fast
DeECREASEKEY operations when the sequence of values returnedXnrECT-
MIN calls are monotonically increasing over time and the datairtegers in a
specific range.

