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1 Bayes and Bias

Eyes talked in-
to blindness.
Their—“a
riddle, what is pure-
ly arisen”—, their
memory of
fl oating Hölderlintowers, gull-
enswirled.

The words of the poet serve as the oracle, the omen or portent of things to 
come. The strange formulations create a peculiar anticipatory image that 
colors, biases, or otherwise infl uences the perception of objects and events. 
Here, the words are from the poem “Tübingen, January” by the great German-
language poet Paul Celan (2001, p. 159), whose work was inextricably linked 
with the trauma of the Holocaust and achieved what Theodor Adorno had 
initially thought to be impossible—to make (some kind of) sense after Aus-
chwitz. Of course, it is not easy to explain exactly how the notoriously diffi cult 
poetry of Paul Celan makes sense, but I think I will try to do just that, be it 
obliquely, and not right away.

What Good Is a Mystery?

Noisy or nebulous forms of communication will normally receive little sym-
pathy from scientists and other lucid minds who wish to obtain clear infor-
mation about the world around them. Yet, such clarity must itself be seen 
as a poetic construction, or an object of wishful thinking, given the level 
of complexity and the number of stochastic processes involved in our world. 
Sometimes the best way to approach things in words is simply to start 
speaking, mark the perimeter, and try to systematically move closer. Even 
Ludwig Wittgenstein, in his Tractatus Logico-Philosophicus, appeared to do 
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something of the sort, following his ominous preface with the stern dictum 
(Wittgenstein, 2001, p. 3) about when to speak (only when you can do so 
clearly) and when to be silent (in all other cases, i.e., forever?).

Wittgenstein happily ignored his own dictum with arguably the most mys-
terious, opaque, and poorly understood philosophical treatise of the twentieth 
century. He even admitted in the fi rst sentence of the very same preface (p. 3) 
that “[p]erhaps this book will be understood only by someone who has himself 
already had the thoughts.” The question remains whether anyone has, but that 
does not diminish the beauty and the attraction of the book, much like the 
incomprehensibility of Celan’s poetry does not stand in the way of the pleasure 
of reading.

If it was Wittgenstein’s intention to write the Tractatus in accordance with 
his dictum about speaking clearly, then his concept of clarity might have more 
to do with abundance of light and sharpness of contours than with the amount 
of activity in Wernicke’s area, the brain’s putative center for linguistic com-
prehension. This kind of speech, then, would truly represent objects or trains 
of thought, in a crystallized form, which we can marvel at, preserve, repeat, 
and return to, time and again. Is it only me, or does this sound like a defi nition 
of poetry?

The thing expressed in words would be given a special place, in the spot-
light, clearly visible for anyone to see, like a strange prehistoric artifact in the 
British Museum. The visitor might have no clue what the artifact was used for 
or what it represented for whoever made it, but that bit of mystery is certainly 
compatible with a sense of enjoyment in contemplation. Indeed, associations 
with the abundance of light and the lack of short and easy answers bring us 
to some of the loveliest entries in the dictionary (e.g., “brilliant,” “radiant,” 
“amazing,” and “wonderful”). With Gertrude Stein we can further offer 
the proposition that “if you enjoy it you understand it” (Stein, 2008, p. 10). 
Turning our attention to the scientifi c enterprise, we might point out that 
without an initial mystery there would be no hope for a happy end in the form 
of a correct theoretical model. Without the excitement of weird questions there 
would be no thrilling search for answers.

So I will charge ahead, and insert a few lines from some of my favorite 
poems in a scientifi c discourse, with the double purpose of prickling the senses 
and showing how the mere fact of having the senses prickled shapes the sub-
sequent search. The borrowed elements of poetry might generate curiosity, 
arouse the mind, and heighten the acuity of cognitive processing. The occa-
sional verse would serve as a target or template to guide the conceptual search, 
exerting top–down control over the way in which incoming signals (the actual 
scientifi c data) are selected, integrated, and abstracted. If my plan works, it 
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will serve its purpose as a rhetorical device, echoing the object of study. If it 
does not, the reader will still have read a few lines of poetry, and that will 
never bring sadness in my book.

But what, the verse-phobic scientist might wish to know, is the real purpose 
of your average oracle? In Greek mythology the hero or heroine who seeks 
advice, and instead receives only garbled instructions, invariably fails to 
benefi t from the trip to Delphi. Worse, it often seems as though the very 
content of the oracle leads to the protagonist’s doom, as when Oedipus, aban-
doned at birth, ends up killing a stranger and marrying the widow (his true 
father and mother, respectively). As a narrative technique, though, it works 
beautifully; it determines the architecture of the story, creating an expectation, 
opening up a mental slot that needs to be fi lled. The reader or listener knows 
what is coming and will not consider the story complete until Oedipus realizes 
the full horror of his fate.

Making a giant leap, a wild generalization, the complex structure with a 
prime (an oracle) and a response (the actual fate) looks like a prototypical 
example of the kind of thought process that some of this planet’s most famous 
researchers (Fitch & Hauser, 2004; Hauser, Chomsky, & Fitch, 2002) have 
argued to be characteristically human, involving more than mere concatena-
tion of elements or phrases, but hierarchical relations and long-distance depen-
dency, as in an IF . . . —THEN . . . structure, in which you can keep embedding 
other conditions, in principle ad infi nitum, but in practice only until your hard 
drive crashes or your brain forgets what you were talking about. (If, when 
reading the previous sentence, you get lost, then either I am a bad writer or 
you may not have what it takes to be human.)

In plain English: the oracle sets up an expectation that helps the reader or 
listener to interpret the story. Expectations that guide interpretation are an 
extremely powerful cognitive tool and may be the secret of our species’ 
success. They imply the usage of some, however rudimentary or sophisticated, 
computational model that generates expectations on the basis of prior informa-
tion. The process of interpretation can then provide feedback. With new 
information coming in, expectations are confi rmed or disconfi rmed, proving 
or disproving the validity of the computational model. Now, my language must 
start sounding familiar to readers versed in probabilistic approaches to the 
study of brain function (for excellent introductions to these, see Doya et al., 
2007, and Rao, Olshausen, & Lewicki, 2002).

Expectations that guide interpretation are so basic as to pervade every 
domain of human thought. At the very heart of science there is the idea, 
perhaps most elaborately formulated by Popper (2002a), that there should be 
a kind of logic that underscores discovery, working from theory to hypothesis 
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to prediction, or from general to particular, until we arrive at a well-defi ned 
forecast, a concrete expectation, which can be tested empirically. If the predic-
tion comes out, things remain as they are, and we may be happy, but we don’t 
really learn anything; if the prediction proves to be false, we have to go back 
to the drawing board.

Though this logic for learning is the hallmark of science, similar cognitive 
sequences operate more implicitly in all our daily activities from choosing 
where to have lunch to deciding when would be the best time to wade through 
our e-mail. We constantly juggle beliefs and expectations—about which res-
taurant serves what quality of food and gets exactly how crowded or about 
when we can treat fi fteen minutes as spare time because we can’t really use 
it meaningfully in any other way. We may develop routines, have preferred 
restaurants, and tend to check e-mail when we arrive at the lab in the morning, 
suffering from a brief bout of cognitive inertia after an intense (mostly uphill) 
twenty-two-minute mountain bike ride. And sometimes we update our list of 
preferred restaurants, when, during the last visit to our former top choice, the 
waiter was rude, and the salad, for which we waited a full seventeen minutes, 
had a fruit fl y in it. Or we stop checking e-mail in the morning, as it makes 
the cognitive inertia even worse, and instead we look briefl y at the BBC News 
Web site, which bores us soon enough, so that we can move on to the real 
work in the lab with a properly blank and ready mind.

The principal advantage of using mental models that make predictions about 
the world must somehow resonate with Sir Francis Bacon’s “sciencia potentia 
est”—knowledge equaling power—or, more fully, with aphorism III from 
the fi rst book of The New Organon, fi rst published in 1620 (Bacon, 2000, 
p. 33):

Human knowledge and human power come to the same thing, because ignorance of 
cause frustrates effect. For nature is conquered only by obedience; and that which in 
thought is a cause, is like a rule in practice.

Bacon might have been borrowing from the bible’s Proverbs, particularly 
24 : 5. In the Authorized King James Version, from around the time Bacon was 
writing in Latin, it reads, “A wise man is strong; yea, a man of knowledge 
increaseth strength” (Anonymous, 2005). Biblical or not, there does seem to 
be a deep connection between knowing what will happen when and where, 
and the opportunity, if not the ability, to do something about it. Individuals, 
groups, and companies, and occasionally even the United Nations, benefi t 
from devising strategies and aiming for fast and effective action that yields 
something good or prevents something bad.
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It may be wise to be wise, even if this proposition looks suspiciously circular 
or in danger of infi nite regress, with an endless series of “Why?” questions 
and a relentlessly growing sequence of embedded wisdoms (“Because it is 
wise to be wise to be wise to be . . .”). That it is better to know than not to 
know has generally been taken for granted ever since, or despite, the fall from 
Paradise (in the parlance of an Abrahamic religion). Clear though its benefi ts 
are, the process of knowing itself defi es explanation, as if there rests a taboo 
on understanding our understanding. We may roughly say that it has some-
thing to do with getting access to fundamental laws of nature, but how we 
actually achieve this, and whether (or which of) those laws really exist, 
remains a matter of debate among the brightest minds of our species, and some 
of these are very skeptical about whether we will ever understand our under-
standing (one of the most forceful arguments being that by Penrose, 1989, 
with a wonderful twist on Gödel’s theorem).

One aspect of knowing that has intrigued me personally is how personal 
the act of knowing often seems to be. Knowing feels more like a feeling than 
the rational processing of an undeniable truth. Along with understanding and 
remembering, knowing may have a component of belief in it or an acceptance 
that some mental images are good enough without questioning them any 
further, regardless of how they relate to any kind of actual scene, present or 
past. If I am right, we would tend to be pragmatic and rather minimalist when 
it comes to the amount of computational power we employ for any particular 
act of thinking, knowing, believing, and so forth. I see the human mind as 
a minimalist theorist, or a lazy thinker. By default, the mind would choose 
the theory of least resistance, or the cheapest concept (hence the early emer-
gence of gods in every known human culture, easy theories as they are, per-
fectly to blame for everything). Rethinking and changes to the mental model 
of the world are inspired mainly by adverse runs when things do not go as 
expected. Simple models gradually get replaced by more complex models as 
a function of the amount of stress experienced. The level of accuracy required 
is dictated by the performance of the mental model; if all goes well with a 
simple but inaccurate model (e.g., Newtonian physics), we might as well 
keep relying on it.

The central point of this little excursion is that the use of knowledge is 
subjective, situational, dependent on the actual context in which an individual, 
a group, a company, or occasionally even the United Nations fi nds itself. 
“Cogito ergo sum,” I would like to repeat after Descartes, but with emphasis 
on the subjectivity of being, pointing to the fact that both the phrase “I think” 
and the phrase “I am” have something in the subject slot, even if it is only 
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implied in Latin. With subjectivity comes perspective and limitation in time 
and in place. To deny the inherent subjectivity is to fall prey to the potentially 
damaging effects of distortion and bias. Only in the explicit acknowledgement 
of our own subjectivity, in the willingness to converse with and learn from 
people who have other viewpoints, can we hope to reach a more objective 
stance in which all the various idiosyncrasies in thought and feeling are given 
their due.

The counsel may sound obvious enough, or even slightly naive in its 
unchecked idealism. Yet how come the obviousness does not obviously trans-
late to practical application? “Seeing is believing,” the saying goes, as if the 
simple act of seeing were the best method of knowledge acquisition, in full 
denial of its limited validity as a truth procedure. When do we really perceive 
things, and when do we simply take to be true what fi ts our understanding of 
the way things are supposed to go? The process of apprehension with the mind 
is certainly one in which the quality of data analysis is too often overestimated. 
Here, I would like to turn to the opening words by Paul Celan. “Eyes” are 
“talked into blindness,” he observed in his characteristically sparing use of 
words. It sounds disparaging, like a complaint addressed to those who see, but 
don’t really see, believing the word (the prediction) rather than what is actually 
there to see.

How do we move on from the dilemma? If the acts of the mind are inher-
ently subjective, in the sense that they are shaped by the semantic system of 
an individual, then how can we acknowledge this and work toward a truly 
objective view of things? Clearly, it will not be helpful to exaggerate the role 
of the subject. There is little be gained from a caricature view, be it postmod-
ern, constructionist, or simply absurd, according to which there is no such 
thing as the truth or a knowable actual state of things out there. Somewhere 
in the middle between the denial of subjectivity and the refutation of reality, 
we can walk with Celan’s poem, in which the “eyes talked into blindness” 
desire to resolve the riddle of “what is purely arisen.” The eyes seem to be 
aware of their fallibility, and they wish to separate the wheat from the chaff. 
The peculiarities of our visions, “of fl oating Hölderlintowers, gull-enswirled,” 
are too concrete and too arbitrary to be mere fi gments of the imagination. 
Somehow the mind must have bundled together bits and pieces of reality into 
a proposition about, or image of, some aspect of the world. The task is to 
understand how the subject’s being in time and space restricts and sometimes 
skews the information available for processing.

For Paul Celan, this task was all the more urgent as he struggled with his 
chronic mental illness, a bipolar disorder of a rather malignant nature, with 
several violent outbursts over the years. Did he see things truly, or was he 
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crazy? The question would have haunted his mind. The end, unfortunately, 
was tragic; the poet jumped to his death in the river Seine in April 1970 (he 
had lived most of his adult life as an expat in Paris). Even in the early 1960s, 
when Celan wrote “Tübingen, January,” he must have fully realized what was 
happening to him; his reference to Friedrich Hölderlin can count as exhibit A 
(Hölderlin is the archetypal “mad poet,” who spent half of his sad life as a 
recluse in the attic of a mill, not too far from the center of the idyllic and 
well-preserved town in southern Germany).

The poem only gets starker in the remainder, not quoted here for fear that 
I would get stuck for another ten pages or so. I will simply note that Celan 
talks about drowning, the plunging of words, and how a visionary would only 
babble incomprehensibly “if he spoke of this time” (Celan, 2001, p. 159). It 
seems entirely possible to me that Celan, in a bout of obsessive–compulsive 
ideation, ended up believing in the necessary truth of the poem’s prediction. 
If so, this would make it arguably one of the most miserable poems in recent 
history, as it hung for almost a decade over the patient’s head like the sword 
of Damocles, until Celan fi nally gave in and committed suicide.

The Role of the Prior

A sword above your head, dangling from a single hair, certainly should give 
you a vivid impression of imminent danger, and in the case of Damocles it 
effectively ruined his appetite, as if the sense of disaster in the making (even 
though the hair in question was good, strong horsehair) prevented his gustatory 
system from processing the riches that Dionysius II of Syracuse, a proper 
tyrant, had so generously offered him a taste of. Here, the anticipatory image 
did more than simply guide the interpretation; it fully dominated the experi-
ence and changed the course of action—as soon as Damocles noticed the lethal 
weapon on a virtual course to pierce his skull, he quickly asked his master if 
he could be excused from the table.

The legend can be read as a beautiful little parable of the interdependent 
dynamics of bias, sensitivity, and decision making, or how the fear for one 
thing dampens the perception of another and elicits an adaptive response, an 
instance of operant avoidance behavior. At some point in time, though, we 
would wish to move from parable to paradigm and develop ways to study 
these dynamics systematically in the formal language of science.

As it turns out, history has already shown that the infl uences of expecta-
tions and subjectivity in perception and cognition can indeed be studied to a 
surprisingly detailed degree thanks to computational tools based on probabil-
ity theory. Statistics and the various techniques of likelihood estimation form 
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the perfect platform for the investigation of how we perceive things, think 
about them, and make decisions. Of course, statistics is crucial to most scien-
tifi c endeavors, as it formalizes the processing of empirical data, but for the 
cognitive sciences, from psychology to computational neuroscience, and from 
neurophysiology to artifi cial intelligence, statistics takes an even more central 
position, being a method as well as a metaphor. The myriad acts of mind and 
events in the brain are all about processing data, and it may not be a crazy 
thought to think that what happens inside our skull is itself governed by a 
kind of applied statistics, with data archived in frequency distributions, and 
hypotheses accepted or rejected on the basis of the available evidence.

The point of departure in statistics and probability theory must be, for now 
and forever, the work of Thomas Bayes, and particularly his theorem—or rule, 
if you prefer—about how the likelihood of a particular something is weighted 
by its prior probability. The prior probability, or simply “the prior,” is where 
subjectivity comes in, where knowledge, expectation, and beliefs can play 
their part. Bayes’s theorem puts the role of the prior fi rmly in a formula, and its 
ramifi cations are the core focus of current psychophysical and neural models 
of decision making. However, before I turn to these, I would like to taste a 
sample of the original (Bayes, 1763, p. 4): “If a person has an expectation 
depending on the happening of an event, the probability of the event is to the 
probability of its failure as his loss if it fails to his gain if it happens.” These are 
the posthumous words of an eighteenth-century Presbyterian priest, but they 
sound almost contemporary and are likely to make some kind of sense even to 
readers who are generally predisposed to get tired quickly from all things 
mathematical. Here, Bayes makes the straightforward proposal that the numer-
ical data of microeconomics, in terms of likelihood of gain or loss, directly 
follow the statistics of the real world, in terms of likelihood of events happen-
ing or not. The statement may appear somewhat trivial, achieving nothing 
more than a mere duplication, creating a double, or a new representation of the 
original. On second thought, however, we may recognize the mechanism as 
one that enables the creation of a virtual model, a little “toy model of the uni-
verse,” which would map the physical onto the mathematical, or the ways of 
the world onto circuits of the brain. Suddenly, this duplication project looks 
anything but trivial, rather impossibly diffi cult, a rational ideal. In between the 
lines we might read a task for the scientist, in comparing how an individual’s 
virtual model deviates from the rational ideal. Any systematic deviation could 
reveal something peculiar about what it is like to be human, or what it is like to 
be a particular human at a particular set of coordinates in space-time. Invigo-
rated by the undeniable ambition of this scientifi c project, we may wish to 
sample some more from the original Bayes, fi rst in print in 1763 (p. 5):
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Suppose a person has an expectation of receiving N, depending on an event the prob-
ability of which is P/N. Then (by defi nition 5) the value of his expectation is P, and 
therefore if the event fail, he loses that which in value is P; and if it happens he receives 
N, but his expectation ceases. His gain is therefore N – P. Likewise since the probability 
of the event is P/N, that of its failure (by corollary prop. 1) is (N – P)/N. But (N – P)/N 
is to P/N as P is to N – P, i.e. the probability of the event is to the probability of it’s 
[sic] failure, as his loss if it fails to his gain if it happens.

One thing I know for sure is that my own little virtual model cannot cope with 
this language, and so this is perhaps a good place to admit that I am one of 
those readers who are generally predisposed to get tired quickly from all 
things mathematical. My Great Step, or the Problematic Idea of This Book, 
of necessity will rely only on the most rudimentary type of equations and 
formulas—the type that are easy enough to capture in words or visual sche-
matic representations. Where relevant, I will add references to the “real deal,” 
papers and monographs with hard-core stuff aplenty for the reader with an 
insatiable appetite. In the meantime, I am afraid that diffi cult passages such 
as the one by Bayes above tend to literally drive me to distraction. I get 
derailed by surface features; here, I note the odd spelling, “its failure” and 
“it’s failure,” inconsistent, incorrect, and sloppy, and so why should I trust 
the incomprehensible argument?

Even the true masters of statistics, including such luminaries as Ronald 
Fisher and Karl Pearson, had trouble understanding the ramifi cations of the 
original proposal, suggested Stephen Stigler (1982), and the very same skeptic 
went on to dispute the conventional view that it was really Bayes’s proposal 
in the fi rst place. In a delightful little article for The American Statistician, 
Stigler (1983) upheld his Law of Eponymy, claiming that no discovery or 
invention is named after whoever really did the work; instead the fi rst person 
who fails to give proper due would tend to scoop the honor. The piece reads 
like a true whodunit, with a plausible unsung hero emerging—Nicholas Saun-
derson, the famous and incredibly talented blind professor of mathematics at 
Cambridge. This also obliquely raises the question of who really discovered 
the Law of Eponymy (or who it was that Stigler failed to credit), and to avoid 
similar misconduct on my part, I will quickly admit having fi rst read about 
Stigler’s doubts in Gerd Gigerenzer’s (2002) equally delightful Reckoning 
with Risk.

Back from the past, with our feet fi rmly on the ground, we will do wise to 
concentrate on the common understanding of Bayes’s theorem in our time. 
Intuitively, the theorem simply says that likelihood is weighted by prior prob-
ability. The end result is a posterior probability, something like our best guess, 
given all the evidence. “The evidence,” then, consists of an actual observation, 
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which constrains the likelihood of a particular hypothesis, in combination with 
a constant (or normalizing denominator) and the a priori likelihood of the 
hypothesis. Perhaps a concrete example is in order.

Consider your twelve-year-old daughter (or, if you know of no such instance, 
consider the twelve-year-old daughter of your neighbor, or of your neighbor’s 
neighbor, or . . . ; the recursive process should be continued until you can think 
of a proper instance in your neighborhood). Have she and a boy in her class 
been kissing? Bayes’s theorem can tell you how likely it is that this has 
occurred, given that she blushes (this is the posterior probability), on the basis 
of three sources of information: the generative model, the prior probability, 
and the marginal probability. The generative model says how likely an obser-
vation is (that she blushes), given that a particular hypothesis is true (that she 
and a boy in her class have been kissing). Note that this conditional probabil-
ity, P(Blushing|Kissed), is the exact mirror image of the posterior probability, 
P(Kissed|Blushing). The prior probability gives the base rate of how likely it 
is that the (your) daughter and the boy in her class have been kissing, P(Kissed), 
whereas the marginal probability says generally how likely she is to blush, 
P(Blushing).

Obviously, if the twelve-year-old girl in question tends to blush quite 
often in general, but not necessarily when she has been kissing a boy in her 
class, then blushing tells you much less than if she rarely blushes, yet is sure 
to blush when she has been kissing a boy in her class. Bayes’s theorem 
captures this mutual dependency of different types of probability, stating that 
P(Kissed|Blushing) equals the product of P(Blushing|Kissed) and P(Kissed) 
divided by P(Blushing). Let’s say that that twelve-year-old daughter (of yours) 
generally tends to kiss a boy in her class with a likelihood of about one in 
twenty, [P(Kissed) = 0.05]. Now if she tends to blushes quite often, [P(Blushing) 
= 0.4], but not necessarily when she has been kissing a boy in her class, 
[P(Blushing|Kissed) = 0.7], the posterior probability equals 0.7 times 0.05 (i.e., 
0.035), divided by 0.4, or precisely 0.0875. She happens to be blushing? This 
does not allow you to conclude that she has been kissing a boy in her class. 
The probability that she blushes, given a kiss of that kind, is less than one in 
ten. But if she rarely blushes, [P(Blushing) = 0.1], yet is very likely to blush 
when she has been kissing a boy in her class [P(Blushing|Kissed) = 0.9], the 
posterior probability equals 0.9 times 0.05 (i.e., 0.045), divided by 0.1, or 
precisely 0.45. She happens to be blushing? Chances are close to one in two 
that she has been kissing a boy in her class.

How can we be sure the numbers are correct? Do we simply take the 
theorem for granted, or can we work out some kind of proof in our own math-
phobic way? I was one of the worst performers in math during high school, 
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but I am always willing to try something without too much effort or too many 
fancy tricks. First, looking at the theorem, we see just four terms, two of which 
are each other’s counterparts. On the left of the equation we have the posterior 
probability, P(X|Y), and on the right we have its counterpart, P(Y|X), com-
bined with two other terms, P(X) and P(Y). To phrase it exactly: P(X|Y) equals 
a fraction, which consists of a numerator determined by the product of P(Y|X) 
and P(X), and a denominator given by P(Y). Let us call this proposition 1, the 
theorem of Bayes. As a formula it should not look too ominous; all we need 
to do is multiply one thing by another and then divide the result by something 
else. That twelve-year-old daughter (of yours) can do it, so you can too.

Of course, the X and Y are just abstract placeholders, so we could easily 
rephrase proposition 1 by swapping them around, putting an X wherever we 
fi nd a Y, and vice versa. Proposition 2 then reads as follows: P(Y|X) equals 
a fraction, which consists of a numerator determined by the product of P(X|Y) 
and P(Y) and a denominator given by P(X). Now, the funny thing is that we 
can plug proposition 2 into proposition 1, to remove one of the four terms 
and replace it with a new combination of the remaining three, each of which 
is now used twice in the formula left standing. Thus, we do a Bayes on 
Bayes, apply the rule in the rule, or rely a little on our beloved mechanism 
of recursion in the hope of proving the whole.

Having done the deed, we have this: P(X|Y) equals a fraction, which con-
sists of a numerator determined by the product of the right side of the equation 
in proposition 2 and P(X) and a denominator given by P(Y). This actually puts 
a fraction inside a fraction, making the formula look scarier if you use con-
ventional notation than if you say it in words. Anyway, to simplify things, we 
can use the multiplication principle to carry P(X) and P(Y) to the left of the 
equation, leaving only the right side of the equation in proposition 2 on the 
right. As for the left side, P(X) will end up being the denominator, whereas 
P(Y) will join up with P(X|Y) to form the product that defi nes the numerator. 
The multiplication principle and the rules about carrying terms across to the 
other side of the equation were properly etched in my memory. I will take the 
liberty of assuming that a similar kind of etching would have occurred for 
anyone picking up a book like the one before us.

Thus, we have a fraction on either side of the equation. On the left we have 
P(X|Y) times P(Y), to be divided by P(X). And on the right we have the right 
side of the equation in proposition 2, which claimed that P(X|Y) times P(Y) 
should be the numerator, and P(X) the denominator. The left says exactly the 
same as the right, quod erat demonstrandum!

Or not? Did I create nothing more than a tautology, showing that the rule 
is true if the rule is true? What would happen if you swap P(X) and P(Y) in 
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proposition 1 and then apply my recursive trick? Again the tautology works, 
saying that the new rule is true if the new rule is true, which it probably 
is not.

Well, at least we have acquired some practice in playing with the terms, 
and other than that, I would like to draw three conclusions from this little 
exercise: (1) It is fun to think for ourselves, we should do it more often; (2) 
recursion is not the answer to everything; and (3) we had better move on and 
stick with the original motto, saying this is not a book of mathematics. An 
unfl appable skeptic might point out that conclusions 1 and 3 are somewhat 
contradictory, but I guess in this matter the limits of time and the reader’s 
patience should prevail.

The proper proof of Bayes’s theorem is actually quite straightforward, I 
must admit, though I did not manage to come up with it myself (for a more 
serious primer, see Doya & Ishii, 2007). All we need is a little detour via 
the defi nition of conditional probability, or the probability that one thing is 
true given that another is true, P(X|Y), that is, the type of term we are already 
familiar with from Bayes’s theorem. The defi nition of conditional probability 
is based on another, in fact more basic, concept: joint probability, or the 
probability that two things are both true at once, P(X is true and Y is true), 
sometimes notated as P(X�Y).

The defi nition of conditional probability, then, states that the probability of 
X, given Y, equals the joint probability of X and Y divided by the general 
probability of Y. That is, P(X|Y) = P(X�Y)/P(Y). This naturally makes sense 
if you think about it. We might want to follow Gigerenzer’s (2002) advice, 
and reason in natural frequencies for a minute. Take all the cases in which the 
twelve-year-old girl had been kissing a boy in her class; in how many of those 
cases did she also blush? This number, how many times blushing and kissing 
out of how many times kissing in general, basically gives you the desired 
conditional probability.

A good statistician should like to play around with any defi nition. So did 
Bayes, one of the very fi rst of that species of human. If it is true that P(X|Y) 
= P(X�Y)/P(Y), then we can also move P(Y) to the other side of the equation 
to give us P(X�Y) = P(X|Y) P(Y). Defi ning the opposite conditional pro-
bability, P(Y|X), we get P(Y|X) = P(X�Y)/P(X), which we can rewrite as 
P(X�Y) = P(Y|X)P(X). So we are basically rewriting P(X�Y) in two ways:

P(X|Y) P(Y) = P(X�Y) = P(Y|X) P(X).

Now we can get rid of P(X�Y), saying P(X|Y)P(Y) = P(Y|X)P(X). To get 
his theorem, Bayes then only had to move P(Y) to the right of the equation: 
P(X|Y) = P(Y|X)P(X)/P(Y). Quod erat demonstrandum! (For real, this time.)
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By now I have spent much more time talking about, and circling around, 
Bayes’s theorem than would have been needed to simply restate it in textbook 
format. Even if you were not schooled as a neuroscientist, you will know it 
by heart. Hopefully, you will also have developed some intuition about deci-
sion making as an inherently statistical enterprise, even if we shy away from 
numbers and formulas when weighing options and taking things to be true or 
not as we go about our business and do our mundane doings in daily life. 
However, Bayes’s theorem says something more specifi c than that.

The main point to take away from the Bayesian way of looking at the world 
is this: Our beliefs about the world should be updated by combining new evi-
dence with what we believed before, “the prior.” The role of the prior is to color, 
or to help interpret, new information. Does blushing mean that the twelve-
year-old girl has been kissing a boy in her class? Our prior beliefs about her 
kissing behavior and blushing tendencies will help us draw better conclusions 
than we would reach if we were to consider only the current evidence. Decision 
making stands to benefi t from keeping track of how often things happen in the 
real world. Even the most rudimentary records and nonparametric statistics 
(relying only on rank ordering as in “This happens more often than that”) are 
likely to improve perception, categorization, and all the more complex forms of 
cognitive processing to defi ne things as they are. The study of decision making 
translates into the problem of uncovering exactly how an individual, a group, a 
company, or occasionally even the United Nations makes use of different kinds 
of information about the likelihood of things and events. The role of the prior, 
here, determines the potentially idiosyncratic characteristics of how decisions 
might tend to go one way rather than another. The prior determines bias.

I have dropped the Heavy Word. Bias, what does it mean exactly? Accord-
ing to A Dictionary of Statistical Terms by Kendall and Buckland (1957, 
p. 26), it is as follows:

Generally, an effect which deprives a statistical result of representativeness by system-
atically distorting it, as distinct from a random error which may distort on any one 
occasion but balances out on the average.

The statement is a bit terse, as we might expect from an old-school statistical 
dictionary (picked up practically for free at a sale of unwanted books at the 
City Library of Wellington), but the gist is clear. Bias implies something sys-
tematic, nonrandom, which pulls the statistical result, or decision, in a particu-
lar direction, away from the neutral. The loss of neutrality, or the introduction 
of subjectivity, carries a load of negative connotations in daily life as refl ected 
in the lemma for bias in The Pocket Oxford Dictionary of Current English 
(Thompson, 1996, p. 75):
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n. 1 (often foll. by towards, against) predisposition or prejudice. 2 Statistics distortion 
of a statistical result due to a neglected factor. 3 edge cut obliquely across the weave 
of a fabric. 4 Sport a irregular shape given to a bowl. b oblique course this causes 
it to run.—v. (-s- or -ss-) 1 (esp. as biased adj.) infl uence (usu. unfairly); prejudice. 
2 give a bias to.

Except in weaving or bowling, bias is associated with a number of known 
villains: prejudice, distortion, and the adverb for lack of fairness. It is only 
one step shy of racism, sexism, nepotism—a host of—isms that good citizens, 
if not good politicians, would like to stay away from. Whether I am a good 
citizen I will leave for others to judge, though on the topic of The Pocket 
Oxford Dictionary of Current English I should note that the copy inexplicably 
found its way to my personal library (it had belonged to the fi rst author of 
Shimo & Hikosaka, 2001, a rogue reference offered in compensation for the 
excessively long duration of borrowing the pocket dictionary, which, by the 
way, even if I pocketed it, fi ts in no pocket of mine). Good citizen or not, I 
think the word “bias” did not get a fair shake. Obviously, the unfair treatment 
of others represents an ugly disease in human society, one that we should 
prevent and remediate in any way possible, but to simply equate bias with 
something bad may be throwing the baby out with the bathwater.

Bias is part and parcel of Bayesian reasoning, emphasizing the crucial role 
of the prior in the assessment of probabilities, representing beliefs about how 
one thing might be more likely than another. The prior is exactly the term that 
modelers of Bayesian inference in perception employ to characterize observer 
biases (e.g., Mamassian, 2006; Mamassian & Landy, 1998). Such biases are 
perfectly rational if they correspond with the statistical regularities of the 
environment. Perhaps we should dust our vocabulary and heed once more the 
words of our favorite fourteenth-century Buddhist priest from Kyoto (Kenkō, 
2001, p. 13):

The same words and subjects that might still be employed today meant something quite 
different when employed by the poets of ancient times. Their poems are simple and 
unaffected, and the lovely purity of the form creates a powerful impression.

The word “bias” deserves to be exonerated, polished, and used properly. 
Instead of dismissing bias as a form of evil, I propose we should acknowledge 
bias as a fundamental property of human thinking, perceiving, and decision 
making. If we are to eradicate the social crime of prejudice, we should estab-
lish whether and how prejudice derives from bias and whether and how bias 
derives from statistical regularities in the world. The derivation of prejudice 
would represent the real evil, the one we would wish to redress. However, 
perhaps the best way to do so is not by denial but by explicit formulation of 
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bias and the extent to which it is rational. Put differently, we need to learn to 
distinguish “good bias” from “bad bias.” In the meantime, the best way to start 
the enterprise is by considering the basic role of bias in decision making. For 
this we need to wrestle with probability distributions.

Before doing so, I would like to pay one fi nal tribute to the lovely and pure, 
if slightly incomprehensible, ancient words of Thomas Bayes by reciting my 
all-time favorite title for a scientifi c monograph (one that Bayes published 
anonymously in 1736): An Introduction to the Doctrine of Fluxions, and a 
Defence of the Mathematicians Against the Objections of the Author of The 
Analyst. Bayes’s defense was for Newton against Berkeley (the author of The 
Analyst), and though I searched hard for it on the Internet, I found no free 
online version. I can only imagine what Bayes’s argument sounds like, but the 
word “fl uxions” appeals to me, and the defense of mathematics against ana-
lysts somehow rings a bell for me, with contemporary neuroscience, and its 
computational approaches, on the defense against present-day psychoanalysis, 
represented by post-Lacanian thinkers such as Slavoj Žižek—a battle that may 
be outside the fi eld of vision for many neuroscientists but is nowhere near 
dying down in cultural studies, including literary theory, a fi eld that interests 
me for idiosyncratic reasons. So I, too, wish to introduce fl uxions, but then 
fl uxions in the form of movement between computation and metaphorical 
intuition, not to have one pushing the other out of the ring but to get the 
best of both worlds if that is at all possible—hence the poetry as well as the 
wrestling with distributions.

Wrestling with Distributions

One of the fi rst things I learned, to my dismay, when I started collecting real, 
heavy-duty, hard-core scientifi c data was how massively variable they were. 
In my maiden project, a partly tongue-in-cheek exploration of the eye move-
ments of a poetry critic, I was not particularly worried about that, thinking it 
was a crazy project anyway (Lauwereyns & d’Ydewalle, 1996). But when I 
then started collecting data for my PhD thesis in a very classic visual search 
paradigm, I was positively baffl ed by the fact that so simple a task as pressing 
a button when you fi nd a letter Q among distractor letters O on the computer 
screen could lead to such vastly different response times, with some of my 
victims (fi rst-year students in psychology) taking forever to fi nd the target 
(more than a second, occasionally even two) and others fi nding it right away 
(in less than half a second). Even for the same participant, the data often 
looked very messy, with response times all over the place, sometimes 300 
milliseconds, sometimes 800.



16 Chapter 1

Apparently, people were unable to exactly replicate what they did, though 
I asked them to do the same thing for hundreds of trials in a single session of 
less than an hour, keeping all factors constant as best I could: the same par-
ticipant, the same apparatus, the same task, the same events, the same time of 
day . . . It dawned on me, slowly, that concepts such as the variability and the 
standard deviation were crucial to the science I found myself in. My data 
looked messy, but no messier than those from other laboratories—I was 
still able to draw publishable conclusions (Lauwereyns & d’Ydewalle, 1997). 
Investigating the mechanisms of visual perception and decision making 
involved wrestling with distributions; there was no escaping it. I remembered 
a remark made in one of my undergraduate classes about how someone, 
Francis Galton probably, had once said that variability was a blessing in 
statistics, more important even than the mean of a distribution.

Rather than remaining petrifi ed in the face of variability, I had to record it, 
chart it, and make it visible in numbers and graphs. How often does a particular 
event happen? How frequent is it? How frequent is it relative to other events? 
Moving from observation to abstraction, I was working with probability dis-
tributions before I knew it. Measuring the response times of my participants, 
I would mindlessly apply the descriptive and inferential statistics that are 
standard procedure in the research fi eld, computing the means and the standard 
deviations and performing fancy analysis of variance—a few clicks and button 
presses and out came a set of results that psychologists of a previous genera-
tion would have labored on for hours, days even. I was able to make perfectly 
sanctioned statements about factors that did or did not have a statistically 
signifi cant effect on response time, without really understanding how I could 
say what I was saying. Things changed only when I had to teach the materials 
to others; I took a good look at the textbooks, practiced a great deal in the 
labs that I was volunteered to be in charge of, and fi nally started seeing some 
light at the end of a dark statistical tunnel.

After a while, you can even develop some kind of aesthetic appreciation for 
the beauty of distributions. Figure 1.1 is, hopefully, a case in point, showing 
two sets of three distributions—continuous probability distributions, to be 
precise, which depict the likelihood of all possible outcomes for a given 
measure, say, response time in my visual search task or weekly ticket sales for 
movies. The horizontal dimension gives the possible outcomes—ticket sales 
from zero to a hundred million dollars. The vertical dimension provides the 
actual probability associated with each outcome, which must be very low indeed 
for a hundred million dollars, just once in a blue moon, that is, the opening 
week of a Batman movie, thriving on the ghostly appearance of an actor who 
had died of an apparent overdose a half year before the movie’s release.
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The horizontal dimension should contain all possible outcomes, whereas the 
sum of all probabilities should be one, if we talk in proportions, or a hundred, 
if we deal in percentages. Let us take a closer look at a few distributions. The 
three examples in the top panel a of fi gure 1.1 are instances of the normal 
distribution, sometimes termed Gaussian in honor of the German mathemati-
cian Carl Friedrich Gauss but perhaps more commonly known as “the bell 
curve.” The normal distribution is determined by a location parameter (the 
mean) and a scale parameter (the variance). The examples in fi gure 1.1a have 
the same mean but a different variance—the higher the variance, the fl atter 
the appearance. Note how all three distributions look symmetrical. Perhaps 
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Figure 1.1
Two different types of probability distribution. (a) Three examples of the normal distribution, 
with the same mean but a different variance. (b) Three examples of the Weibull distribution, with 
different shapes, morphing from exponential to normal.
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they look too neatly symmetrical? We should be able to think of other shapes 
for distributions.

It is in fact possible to quantify shape, as shown with the three examples of 
the Weibull distribution in fi gure 1.1b. This distribution was named after the 
Swedish engineer Wallodi Weibull, who specialized in the study of the strength 
and durability of materials, often facing data that simply could not be fi tted 
into a normal distribution. The Weibull distribution, like the normal, has just 
two parameters: Again, one is for scale, but the second determines shape 
instead of location. This makes the Weibull distribution particularly fl exible. 
Depending on how you set the shape parameter, it morphs into an exponential 
distribution (like the example in fi gure 1.1b that swings down from top left) 
or a normal distribution (like the symmetrical example with the rightmost 
peak), or anything in between (like the asymmetrical example that sits in the 
middle).

Wrestling with distributions, then, comes down to categorizing events and 
deciding whether a particular observation belongs to this or that distribution. 
We can work in two directions. In most cases we will start from a particular 
situation, or experimental manipulation, and then collect data to compare the 
distributions in one case against the other. This is the default approach for a 
scientifi c experiment, comparing an experimental condition against a neutral 
or control condition, which ideally is as similar as possible to the experimen-
tal condition except with respect to one factor or dimension—the factor under 
investigation. For instance, we might be interested in the effects of caffeine 
on visual search performance. We could perform the experiment in several 
ways, working with the same or different participants in the two conditions, 
working with different types of visual search task, caffeine solution, dosage, 
and so on, and we would have to think hard about how to ensure that a host 
of other things (e.g., placebo effects, practice with the task, fatigue, boredom) 
do not contaminate our data, but the bottom line is that we would create an 
experimental condition with caffeine and a control condition without caf-
feine. Then all we have to do is write down our observations of response 
times in two distributions and measure to what extent these overlap. If the 
overlap is complete, we can safely conclude that the caffeine had no effect. If 
the two distributions show some degree of separation, we can start thinking 
that the caffeine managed to do something after all, like increasing the speed 
of visual search performance. Statistics will give us numbers to support deci-
sions about when the data from two conditions show a “signifi cant” differ-
ence. The entire rationale for drawing these conclusions is quite complex 
when spelled out, but the basic idea is simple: We want to avoid mistakes, so 
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we use estimates of how likely we are to make a mistake if we claim that our 
observed distributions prove the two conditions to produce different results. 
(Usually statistical software does this for us in the form of p values.) If the 
likelihood of error is only one in twenty, or even less, common practice says 
we can go ahead and make claims about there being a difference.

Perhaps a slightly counterintuitive approach is to work in the opposite direc-
tion, from observations back to guesses about which distribution they belong 
to. Yet this is probably a good characterization of what must happen in the 
brain when decisions are computed on the basis of the available evidence in 
terms of activity levels of neurons that represent different alternatives. To see 
how this works, let us consider a neurophysiological experiment in which we 
record the electrical impulses of, say, a neuron in secondary (or higher order) 
visual cortex while the subject is presented with visual stimuli. The subject 
will usually be a cat or a monkey, but occasionally a human, undergoing neu-
rosurgery (e.g., Quiroga et al., 2005), and the visual stimuli could be anything 
from former presidents of the United States to random groups of dots moving 
this way or that.

Thus, for example, we pull up Jimmy Carter on the screen and check what 
the neuron does in response. We might notice that the neuron becomes par-
ticularly active, or tends to fi re many spikes, whenever it is Jimmy Carter, but 
not George H. W. Bush. Can we work the other way around?

We could continue running the experiment but now avoid looking at the 
screen. Some stimuli are being presented, but we have no clue who or in what 
order. If we listen only to how often the neuron spikes, can we deduce which 
former president must have been presented on the screen? How many spikes 
must the neuron fi re for us to conclude that it was Jimmy Carter? Metaphori-
cally speaking, these are exactly the types of questions that other neurons in 
the brain would be faced with when weighing the input they get from neurons 
in secondary visual cortex.

The logic unfolded is probably the most powerful approach in contemporary 
neuroscience when one is trying to model the mechanisms and algorithms seen 
in neural circuits for decision making (see Gold & Shadlen, 2001, for a bright 
introduction). The approach was pioneered in the 1960s and 1970s by David 
Green, R. Duncan Luce, and John Swets (e.g., Green, 1964; Luce, 1963; Luce 
& Green, 1972; Swets, 1961) and found its defi nitive formulation in Signal 
Detection Theory and Psychophysics, a book published by Green and Swets 
in 1966, one of the very few unmistakable classics in this area (the reprint in 
my collection dates from 1988). The original concern seemed to be all about 
the purity of signal processing:
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The approach discussed here clearly isolates the inherent detectability of the signal 
from certain attitudinal or motivational variables that infl uence the observer’s criteria 
for judgment. . . . To the stimulus-oriented psychophysicist, this analysis is a method-
ological study, but one that is clearly pertinent since it claims to provide an unbiased 
estimate of what, for the stimulus-oriented psychophysicist, is the major dependent 
variable. (Green & Swets, 1988, p. 31)

Green and Swets were clearly rooting for the ideal observer, though they 
quickly realized that their “Theory of Ideal Observers” (chapter 6) provided 
an excellent opportunity for “Comparison of Ideal and Human Observers” 
(chapter 7). In later work, it seemed that John Swets in particular became 
more and more interested in the broad merits of understanding bias rather 
than developing a bias of his own against the topic of bias (Swets, 1973, 
1992).

Let us borrow the concepts of signal detection theory for a visual schematic 
representation in fi gures 1.2, 1.3, and 1.4. The best place to start is by consid-
ering the simplest possible decision-making task. Going back to our example 
with the neuron in secondary visual cortex, we can envisage a forced-choice 
situation in which the owner of the neuron is simply asked to indicate, in a 
number of trials, whether a target or “signal” is present, “yes” or “no,” just 
two alternatives. We might get our observer to press a button whenever he or 
she sees Jimmy Carter. If there is no target, the observer should refrain from 
pressing the button.

Now we can start recording spikes and button presses and try to relate the 
former to the latter in our search for a neural correlate of perceptual decision 
making. Signal detection theory is an invaluable tool in this enterprise, as it 
allows us to distinguish between two basic ways in which decision making 
can be infl uenced. Without diving too deep into the algorithmic depths of the 
theory, I promise we will be able, a few pages from now, to marvel at its 
principal strength in teasing apart mechanisms of bias (see fi gure 1.3) and of 
sensitivity (see fi gure 1.4). To fully appreciate how these two ways are fun-
damentally different, but not mutually exclusive, we fi rst need to come to 
terms with the basic framework.

As the observer (the owner of the neuron under investigation) makes a 
decision about the presence or absence of Jimmy Carter, there are logically 
four possible outcomes: (1) a correct rejection, which occurs when the observer, 
presented with George H. W. Bush, reports there is no signal; (2) a hit, which 
occurs when the observer correctly reports the presence of a signal; (3) a miss, 
which occurs when the observer fails to detect Jimmy Carter actually present 
among the noise; and (4) a false alarm, which occurs when the observer erro-
neously reports the presence of a signal.
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Green and Swets suggested that these four outcomes could be accounted 
for with a model that incorporates a “noise distribution,” a “signal distribu-
tion,” and a “criterion” (see fi gure 1.2, with indications of the four possible 
outcomes). The two distributions can be thought of as one probability distribu-
tion broken down in two “subdistributions,” one indicating the likelihood of 
observing a particular number of spikes given the presence of a signal (i.e., 
signal distribution) and its complement indicating the likelihood of observing 
a particular number of spikes given the presence of only noise (i.e., noise dis-
tribution). How does our observer decide whether seven spikes should be taken 
as evidence of Jimmy Carter?

The terminology brings Bayes’s theorem back to mind, and indeed, working 
our way inside fi gure 1.2, we can recognize the different components of the 
theorem at play. So let us say that we get a reading of seven spikes during a 
particular trial in our experiment with the observer looking for Jimmy Carter. 
What is the likelihood that the stimulus is indeed Jimmy Carter, given a reading 
of seven spikes? To compute P(Carter|Seven), as we have duly learned by heart, 
we should work out P(Seven|Carter) times P(Carter), divided by P(Seven).

P(Carter) refers to the entire signal distribution and its relation to all possible 
cases. In our two-choice task, there are only two possibilities: Carter (signal) 
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Figure 1.2
An application of signal detection theory. The horizontal dimension represents the number of 
spikes fi red by a neuron. Shown are two hypothetical normal probability distributions, for the 
neural responses in the case of “noise” versus “signal.” The vertical line cutting through the two 
distributions represents a criterion for signal detection, saying “yes” for spike values above crite-
rion and “no” for those below criterion. There are four possible outcomes: 1 represents the “correct 
rejections” (saying “no” when there was in fact no signal), 2 shows the “hits” (saying “yes” when 
there was indeed a signal), 3 points to the area of “misses” (saying “no” although there was actu-
ally a signal), and 4 indicates the area of “false alarms” (saying “yes” even if there was really 
nothing but noise).
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or not-Carter (noise). This implies that P(Carter) equals 1 – P(Noise). Thus, 
we can compare the size of the entire signal distribution to that of the noise 
distribution—in fi gure 1.2 they are the same size, that is, we have just as many 
signal as noise trials in our experiment, or P(Carter) = 0.5. This component 
represents the prior, and it is easy to see that the basic likelihood of the signal, 
or our belief of how likely it is, has a large impact on all computations to 
follow. The numbers would certainly be very different if the experiment had 
only one Jimmy Carter appearing in every hundred trials.

We can fi nd P(Seven|Carter) by considering the signal distribution to be a 
complete probability distribution on its own—or multiplying the signal distri-
bution with a factor that brings the total sum of all its cases to one. If P(Carter) 
= 0.5, we simply need to multiply by two. Now we can trace the curve of the 
signal distribution until we reach the value of seven on the horizontal axis. 
The associated value on the vertical axis, multiplied by the appropriate factor, 
gives us P(Seven|Carter).

To read the general probability of seven, P(Seven), we should not multiply 
the signal or noise distributions but instead simply trace each of the two dis-
tributions until we reach the value of seven on the horizontal axis, read the 
associated probabilities, and compute the sum of both values.

Now we already have all the components that we need for solving the equa-
tion, but in fi gure 1.2 we might as well look up P(Carter|Seven) more directly, 
by locating the value of seven on the horizontal axis, then moving up vertically 
until we hit the curve of the signal distribution, and reading the associated 
probability. Next we do the same for the noise distribution. Effectively, we 
fi nd the same two probabilities that we made use of to compute P(Seven). This 
time we can consider these to make up a total of one, that is, we need to mul-
tiply P(Seven) by a factor that brings it to one. Now we can multiply the 
individual probabilities by the same factor to give us the sought-after number: 
P(Carter|Seven).

One way or another, the visual scheme presented in fi gure 1.2 does incor-
porate the truisms of Bayes’s theorem. However, rather than performing these 
somewhat tedious computations, there is nothing to stop you or me from 
working more intuitively with the logic and leaving the numerical applications, 
proofs, and annotations for another day in another life. One thing glaringly 
absent in Bayes’s theorem is an instruction on how to interpret whatever prob-
ability we do compute. The theorem might help us wrestle with distributions, 
but it does not specify what we are to do with the posterior probability once 
we have computed it. Somehow, we should try to link the posterior probability 
to a decision or an action. We need a decision rule.

Actually, fi nding a good decision rule should not be too diffi cult. A simple 
adagio would be to try to maximize gain and make sure that our decisions on 
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the presence or the absence of a signal, with the four possible outcomes of hit, 
miss, correct rejection, and false alarm, combine to our profi t. Here, signal 
detection theory provides us with its most ingenious addition to Bayesian 
thinking—the concept of a criterion or threshold. In one sense, this is nothing 
new, merely a formal application of a common practice in statistics, where 
categorical decisions are imposed on continuous distributions in the form of 
conventional criteria for “statistical signifi cance.” However, in signal detec-
tion theory, the criterion is introduced as a borderline that cuts across the signal 
and noise distributions, enabling one to clearly visualize how the positioning 
of this borderline determines the likelihood of each of the four possible 
outcomes.

In fi gure 1.2 we see that the criterion is taken as the borderline between 
“yes” and “no” responses. For spike counts higher than criterion, to the right 
of the borderline, our observer would conclude that Jimmy Carter was shown 
on the screen. For spike counts below criterion, the answer would be “no.” 
Any case belonging to the portion of the signal distribution to the right of the 
criterion would then produce a hit (area 2 in the fi gure), but if the observation 
of a spike count above criterion actually belonged to the noise distribution, 
our observer would make a false alarm (area 4 in the fi gure). Conversely, we 
can see how this scheme relates misses (area 3) and correct rejections (1) to 
the positioning of the criterion.

In fi gure 1.2 the criterion is placed right at the crossroads between the two 
distributions, at the point where the spike count is equally likely to refl ect a 
signal or noise. To the left of the criterion, the noise distribution dominates, 
with spike counts that more likely refl ect noise than a signal, whereas the 
signal distribution rules to the right of the criterion. In fact, the criterion 
is quite strategically (rationally!) placed to minimize the likelihood of an 
erroneous decision, be it a miss or a false alarm.

Research on eye movement control in macaque monkeys suggests that this 
kind of categorical threshold idea makes for a plausible neurophysiological 
mechanism. Doug Hanes and Jeff Schall (1996) showed that the activity of 
neurons in the frontal eye fi eld (the prefrontal cortical structure for voluntary 
control of eye movement) consistently peaked at around a hundred spikes per 
second right before the initiation of an eye movement, regardless of how long 
it took for the neural fi ring rate to grow to that peak, and regardless of how 
long it took for the monkey to initiate the eye movement. When the spike rate 
was at 100 spikes per second, the eye movement took off. Data from similar 
experimental paradigms, recorded from neurons in superior colliculus (the 
major subcortical station that drives eye movement initiation), provided addi-
tional support for the existence of an absolute threshold (Krauzlis & Dill, 
2002; Paré & Hanes, 2003).
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Perhaps the threshold idea is not a crazy one. Applying a rule like that is 
certainly not diffi cult and really involves no thinking. All that is needed is 
enough heat from electrical impulses to wake up the next layer of neurons. It 
is at about the right level of simplicity to be useful in mapping decision-
making properties onto neural circuits. But returning to a safer level of abstrac-
tion for the time being, we can explore the effects of positioning the criterion 
somewhere other than strategically in the middle between noise and signal. 
Figure 1.3 reproduces the neutral case of fi gure 1.2 and brings up two other 
cases for comparison: one in which the criterion is shifted to the right, and 
another case with a criterion shift in the opposite direction. It is easy to appre-
ciate that the position of the criterion determines the likelihood of different 
types of errors. With a rightward criterion shift, as in panel b, we avoid false 
alarms but are much more likely to miss actual signals. In contrast, we reduce 
the misses at the expense of false alarms if we shift the criterion to the left as 
in panel c.

When misses and false alarms are equally costly in economical or evaluative 
terms, the most rational strategy will be to place the decision criterion so that 
both types of error are minimized as much as possible. In other situations, it 
may be important to avoid misses—like when we interpret the data from a 
diagnostic test for pancreatic cancer—whereas false alarms carry less weight. 
The decision criterion would then better be shifted to the left, minimizing the 
area of the signal distribution that falls on the wrong side of the criterion, 
at the expense of an increased number of false alarms. In yet other situa-
tions—when we point a rifl e at a cloud of dust, kicked up by, potentially, an 
armed insurgent—it would be crucial to avoid making a false alarm and shoot-
ing an innocent victim. Here, the preferred option should be to shift the crite-
rion to the right.

The shifts of criterion install observer biases, leading to different actions or 
decisions even if the underlying signal and noise distributions retain the same 
outlook. With rightward shifts, our observer applies a conservative criterion, 
requiring more evidence than in the neutral case before agreeing that Jimmy 
Carter is present. On the other hand, more liberally minded observers might 
shift the criterion to the left and be happy to decide, on the basis of relatively 
few spikes, that the signal is there all right. The criterion sets the amount of 
evidence or information required for a decision, and any decision that is pre-
disposed in favor of, or against, accepting a signal can rightfully be called 
“biased,” and yet might still be appropriate, reasonable, or even rational.

I should point out that there are other ways to conceptualize shifts of crite-
rion. My favorite, and a neurophysiologically plausible way, is to shift both 
distributions, while keeping the threshold in place (Lauwereyns et al., 2002a, 
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Figure 1.3
Variations to the tune of bias. (a) Take this to be the neutral case, the same as in fi gure 1.2. (b) 
The criterion is shifted to the right, more “conservative” than the neutral case, requiring a higher 
neural fi ring rate before accepting that there is a signal, and so reducing the likelihood of making 
a false alarm. (c) The criterion is shifted to the left, more “liberal” than the neutral case, already 
happy with a lower neural fi ring rate to say “yes,” which brings down the likelihood of missing 
a signal.
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2002b). In practice, this explanation is perfectly interchangeable with the 
variations to the tune of bias as shown in fi gure 1.3, and I consider the two 
proposals to be equivalent. I will introduce the neurophysiological data in 
detail in chapter 2.

Yet another way to implement bias, defi nitely a theoretical possibility but 
as yet not seen in neurons, is to move the criterion to the left or right so that 
it stays perfectly in the middle between signal and noise. This would be done 
by more literally applying the role of the prior, that is, by enlarging or reducing 
the signal distribution relative to the noise distribution (without changing the 
shapes or the means of either distribution). With an enlarged signal distribu-
tion, for instance, the midway crossover point between the two distributions 
would shift to the left. The enlarged signal distribution could refl ect an actual 
increase in the likelihood of a signal (as when we now present Jimmy Carter 
on two thirds of the trials in the experiment), or it might refl ect an observer’s 
overestimation of the true likelihood—a distorted image of reality. But the 
conjecture that the shapes and means of the distributions remain the same 
makes it hard to translate this possibility into a neurophysiologically plausible 
model of bias in decision making. The real decision making would have to be 
done outside of the model, with different weights of the signal distribution in 
the workings of some mysterious Master of Shadows, a decision maker hidden 
from view. When it comes down to neurons, I would like to see them actually 
do something if they are to contribute to decision making.

Figure 1.4 shows an entirely different mechanism infl uencing decision 
making. Here, the movements and variations occur to the tune of sensitivity. 
Again we start from the neutral case, the one introduced in fi gure 1.2. The 
task of decision making is particularly challenged by the overlap between 
signal and noise distributions. The overlap implies uncertainty and increases 
the likelihood of error. Arguably the ideal way to improve decision making, 
then, would be to try to reduce the overlap, or improve the signal-to-noise 
ratio so that the two distributions are more clearly distinguished. Assuming 
that each of the two distributions has a normal shape, we could heighten the 
sensitivity for a signal by fi ne-tuning so that both distributions have a crisper 
appearance with smaller standard deviations, as shown in fi gure 1.4, panel b. 
Alternatively, the signal-to-noise ratio can be improved by moving the two 
distributions further apart, changing the means but not the standard deviations, 
as shown in panel c. In both cases, we can easily place the criterion at an 
optimal spike level that succeeds nicely in segregating signals from noise.

To effectively improve the Jimmy Carter-to-noise ratio, we might fi nally 
allow our observer to put his or her glasses on. Or we could dim the lights 
in the room so that the screen stands out. Real-life examples of improved 
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Variations to the tune of sensitivity. (a) We start from the same position as in fi gure 1.2 and 1.3a. 
(b) Here, the overlap between the two distributions is reduced, facilitating the extraction of signals 
from noise by decreasing the variance (giving smaller standard deviations). (c) In this case the 
overlap is reduced by changing the location parameter, leaving the scale parameter untouched. 
That is, now the means of the two distributions are further apart, whereas the standard deviations 
remain as they were.
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sensitivity often refl ect some kind of physical change, creating better condi-
tions for signal reception, but the enhanced decision making can sometimes 
also be achieved by internal, cognitive operations like paying attention, think-
ing twice about the data, or double-checking the numbers.

In any case, with whatever degree of bias or sensitivity, the conceptualiza-
tion of decision making with signal detection theory quickly raises many 
questions, about the shapes of the distributions, the nature of the decision rules, 
and so forth, but the framework has the considerable merits of simplicity, 
specifi city, and testability. We will be able to derive predictions from it in 
terms of neural signatures. One limitation of the signal detection theory, 
however, is that the logic with categorical decisions is diffi cult to convert into 
predictions about response time during decision making. Yet, response times 
are just possibly the most powerful behavioral measure of what is going on in 
the brain. They might tell us more than only the accuracy of “yes” or “no,” 
or the trade-off between response speed and decision quality. Time could well 
provide a quantitative measure of the decision process, of how hard it was, 
how much thinking it took, and how many neurons had to have their say. Can 
we work toward some kind of integration of signal detection theory and 
response time measurement?

Time and the Measurement of Mind

The desire for a quantitative approach to the study of brain and behavior has 
surfaced only recently, but perhaps it is fair to say that the wishful thinking 
had been there for centuries, at least since the amazingly modern proposals of 
Doctor Mirabilis, Roger Bacon—possibly, and horribly, better known as the 
thirteenth-century model for Sean Connery in the fi lm version of The Name 
of the Rose (see Cregg, 2003, for a preferable biography). To really make 
progress with numbers, though, and to stimulate the desire further, humans 
fi rst needed to invent reliable clocks that could tick away the seconds, and 
then, toying in the lab, stumble on the brilliant idea that these clocks could be 
useful for the as yet unnamed venture of neuroscience. As it happened, the 
original proposal emerged in my native language, Dutch, exactly a hundred 
years before I was born—good enough reason, I would like to think, for a 
fetishist attachment. Here it is, radically unfi ltered and incomprehensible to 
most (Donders, 1869, p. 119):

Maar is dan ten opzichte der psychische processen iedere quantitatieve behandeling 
uitgesloten? Geenszins! Een gewichtige factor scheen voor meting vatbaar: ik bedoel 
den tijd, die tot eenvoudige psychische processen wordt gevorderd.
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The idea that we could measure the mind in seconds is certainly an out-
landish one, not necessarily understood any better if it is formulated in 
English. W. G. Koster made a complete translation for the second volume 
of Attention and Performance that he edited in the year that I, of course, 
do not associate with any landing on the moon, it being a hundred years 
after a hundred years before I was born (Donders, 1969). Reasoning with 
time is not easy, but Franciscus Cornelis Donders suggested we should try. 
Here is my own translation of the excerpt:

But is then every quantitative approach impossible with respect to mental processes? 
Not at all! An important factor seemed amenable to measurement: I mean the time 
taken up for simple mental processes.

In French, we would have spent thousands of inebriating pages In Search of 
Lost Time, but this is the best of Dutch, fully exhibiting its pragmatic quality. 
Even if the theory was wanting, and the rationale idiosyncratic or simply 
absent, the intuition that it might be useful was all the incentive required to 
commence with experiments. Thus, Donders went on to develop his infamous 
subtraction method, still a standard tool today, comparing the response times 
of his subjects as they performed different tasks, with systematic variation of 
the level of complexity for stimulus processing and response preparation. The 
more complex the mental process, the more time it took to give a correct 
response.

Somehow the differences in response times did, in fact, correspond with the 
complexity of cognitive operations, and one way or another, the fact that 
thinking took time had to be an important observation. For one thing, it sug-
gested that the mechanisms of thought left a material trace, one that was not 
easily reconciled with Cartesian dualism and its profound divide between the 
immaterial world of the mind and the physical reality of the body. However, 
even if the hard-core dualism was easily rejected in principle, most researchers 
remained vulnerable to its lure in more implicit ways, in assumptions of what 
the brain did and where the cognitive operations took place (Bennett & Hacker, 
2003). It might be true that thinking took time and left material traces, but this 
was a long way from explaining exactly what kind of cognitive operations 
took how much time and why.

Around the hundredth birthday of Donders’s famous article, some research-
ers started getting more serious about deriving knowledge of the cognitive 
architecture from distributions of response times. Sternberg (1969a, 1969b) 
explored the use of search times in memory tasks to tease apart parallel versus 
serial processing. He asked his subjects to search their memory for items from 
a set they had learned by heart (or were trying to keep online in their head). 
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Some types of memory search gave fl at response time curves, independent of 
the number of items in memory, whereas other types of search produced a 
steep increase in response time depending on the set size—the more items, the 
slower the response. The fl at slopes suggested parallel processing, Sternberg 
concluded, and steep slopes indicated that the subject had to work one by one, 
serially considering each item in memory.

Treisman and colleagues (Treisman & Gelade, 1980; Treisman & Sato, 
1990; Treisman & Souther, 1985) applied a similar logic to analyze response 
times in visual search tasks, and went one step further in the interpretation 
of the underlying cognitive operations with the feature-integration theory. 
Parallel search, seen in fl at slopes, would occur for “singleton” targets, which 
differed from the distractors in only one visual dimension—like when you 
look for a red item among a set of green distractors. Serial search would be 
required whenever the target was defi ned on the basis of a combination of 
features—like when you look for a red square among blue squares and red 
circles. To combine visual features, you would need something called “atten-
tion” to glue the features together at one location at a time. Searching for a 
combination of features, then, meant that you would have to allocate attention 
to one location, let attention do its gluing there, decide whether the element 
at that location matches the target, and move on to the next location if it does 
not. The search time would literally depend on the number of times you have 
to shift attention to a new location.

The theory suffered badly from a load of incompatible data in dozens of 
new studies from other labs (see Wolfe, 2001, for a succinct review), but as 
a fi rst shot it was not bad at all, and I have always admired its wonderful preci-
sion in translating response times to a fairly precise drawing of the underlying 
cognitive scheme. My own little experiment on visual search, in which I 
learned to wrestle with distributions, would have had no meaning if there were 
no feature-integration theory to shoot down.

Arguably the most forceful plea for response time analysis was put forward 
by R. Duncan Luce (1986), who had helped establish the threshold concept 
and was very familiar with the tenets of signal detection theory. He explained, 
for all who could follow, that it was feasible to exploit the shapes of response 
time distributions in an effort to deduce the covert operation of separable 
parameters relating to actions of the mind. For a long time, I thought this was 
the most esoteric of all things in psychology and statistics, something I would 
like to be able to understand if only I had the brain power for it. But then I 
encountered R. H. S. Carpenter’s LATER model (Carpenter, 1981, 1999, 
2004; Carpenter & Williams, 1995; Reddi & Carpenter, 2000), and I found 
myself actually coming to grips with it, or even liking it to the point that 
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I started working with it myself (Lauwereyns & Wisnewski, 2006). Here was 
a model that looked innocent enough, at least if you consider the schematic 
drawings, and it managed to work with just a handful of parameters, one which 
looked suspiciously like what I thought of as bias and another that just had to 
be sensitivity.

Carpenter wrote the most enjoyable introduction to the LATER model in 
his article for the Journal of Consciousness Studies (1999). The model starts 
from the observation that the eye movements of human observers are curiously 
slow if we consider the underlying anatomy for visual processing and eye 
movement control. Between the retina (when a stimulus excites the photore-
ceptor cells in the back of the eye) and the repositioning of the eyeball (when 
we move our eyes to bring the stimulus in central vision and examine it more 
closely), there should in principle be only a few synaptic steps involved, or a 
sequence of maybe fi ve or six neuron-to-neuron transmissions. This should 
take up a few tens of milliseconds at the most. Instead, the response times 
with eye movements normally clock in at about two hundred milliseconds, 
and often even more. To explain this procrastination, Carpenter suggested, 
there must be a central decision-making mechanism that converts the available 
sensory evidence into an eye movement via a decision process with random 
variability. He even offered a philosophical perspective on the biological 
advantages of this random behavior, from escaping boredom and promoting 
creativity to outwitting our opponents and really willing freely.

Given the central role of random procrastination, the model is aptly named 
LATER. The acronym, however, stands for linear approach to threshold with 
ergodic rate, a rather ominous whole, in which I suspect the E was forced a 
bit for poetic reasons. Nobody really knows what “ergodic” means or whether 
it stems from “a monode with given energy” or “a unique path on the surface 
of constant energy” (Gallavotti, 1995). In practice, “ergodic” must be bor-
rowed from the ergodic hypothesis in thermodynamics, which, brutally simpli-
fi ed, claims that, if you just measure long enough, you will fi nd that a particle 
spends an equal amount of time in all possible states. In statistics, the ergodic 
hypothesis is taken to imply that sampling from one process over a very long 
period of time is equivalent to sampling from many instances of the same 
process at the same time. The process should be stable, no decay, no learning. 
With this caveat, then, the LATER model addresses decision making in a static 
context when the observer performs at full capacity.

The LATER model conceives of decision making as a process represented 
by a continuous, straight line, the “decision line,” that rises to a threshold, or 
cutoff level—when the decision line crosses this threshold, the decision 
becomes effective, the motor execution is initiated, and the response time can 



32 Chapter 1

be recorded (see fi gure 1.5). The model is based on just a few parameters: the 
starting point of the decision process (i.e., the distance between the intercept 
of the decision line and the threshold, assuming that the threshold is fi xed); 
the average steepness, growth rate, or gradient of the decision process (i.e., 
the slope of the decision line—there is no shortage of synonyms); and the 
variance of the gradient.

The primary attraction of the LATER model is that it makes specifi c predic-
tions about how changes to the parameters affect the shapes of response time 
distributions. With fi gures 1.6 and 1.7, I provide an unorthodox explanation 
that deviates substantially from the actual way in which the LATER model 
checks for changes to response time distributions. The true LATER model 
employs the reciprocal (or inverse) of response time—a little trick aimed at 
morphing the typically skewed response time distribution into a nicely sym-
metrical and normal one—and then draws the transformed distribution using 
a so-called “reciprobit plot,” which pictures normal distributions as a straight 
line. The lines then swivel or move in parallel, depending on which parameter 
is changed. It works elegantly and makes for a straightforward statistical 
analysis, but to the untrained eye it can seem a bit confusing because a parallel 
change in the visual scheme of the model (moving the starting point up or 
down) translates into swiveling in the reciprobit plot, and vice versa. The 
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Figure 1.5
A linear model of response time in decision making. The horizontal axis represents time; the thick 
gray line gives the “decision signal” (a putative neural correlate of decision making). A decision 
is reached when the decision signal crosses a fi xed threshold. In this example, the decision 
signal grows linearly from the time of stimulus onset and crosses the threshold in about 250 
milliseconds.
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Effects of sensitivity on response time. (a) The scheme is the same as in fi gures 1.5 and 1.6a, 
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problem is that the double transformation, using the inverse of response time 
and plotting in a funny way, warps the mind beyond our gut instincts (or 
implicit associations).

To satisfy my own intuitive inclinations, I tried to work out a rationale 
without the double transformation. Figure 1.6a shows what happens if we 
move the starting point closer to the threshold—a sure form of bias, or pre-
disposition to reach a particular conclusion. It is easy to see that with the 
shorter distance to cover, response times will decrease considerably. Here, we 
go from 250 milliseconds down to 150. To get an idea of what this implies 
for the shapes of the response time distributions, fi gure 1.6b shows the decision 
line with its variance (the gray region; the thin line in the middle represents 
the mean). As we change only the distance between the starting point and the 
threshold, we might as well picture the situation with one distribution traveling 
up to threshold 1 or 2. Now we can consider how the early half of the response 
time distribution (“dE”) relates to the late half (“dL”). The ratio of the two 
does not change. That is, the shape of the distribution stays the same; it only 
gets magnifi ed if the decision line has to travel a greater distance.

Figure 1.7 applies the same logic for changes to the gradient of the decision 
line. Panel a shows what happens to the decision process if we have a steeper 
growth rate to the threshold, presumably due to more effi cient information 
processing, or a clearer signal reception, that is, heightened sensitivity. With 
respect to the distance between the starting point and the threshold nothing 
has changed, but again we see a clear improvement in response time, from 
250 milliseconds down to 150. Panel b works out the ramifi cations for the 
shapes of the response time distributions. Case 1, with a very steep growth 
rate, shows that the distribution approaches a symmetrical shape, with a ratio 
between the early half (“dE”) and the late half (“dL”) of not much less than 
one. Venturing into the absurd, we can even imagine a straight vertical deci-
sion line with a mean response time of zero, which would have a ratio between 
dE and dL of exactly one, or even more absurd, a line tilting to the left, with 
negative response times that imply a ratio of higher than one. Of course, in 
reality we can only tilt to the right, but the point should be clear: The ratio 
between dE and dL changes with the slope of the decision line. If we look at 
case 2, with a much shallower slope, we see that dL increases relative to dE, 
that is, the ratio of dE/dL dives well below one and the tail of the response 
time distribution gets stretched out.

However strange it sounds, or downright mystical, there must be some truth 
to Luce’s (1986) dictum that we can read cognitive architecture out of response 
time distributions. With the LATER model, I found it was easy to relate mecha-
nisms of bias and sensitivity to specifi c parameters that infl uence the shapes of 



36 Chapter 1

response time distributions. This is not to say that everything is perfect with 
the LATER model. It cannot account for errors in decision making, and the 
idea that the decision process grows linearly must surely be a particularly vul-
nerable abstraction (see Smith & Ratcliff, 2004, and Bogacz et al., 2006, for 
comparisons of the strengths and weaknesses of different models). I would like 
to think of the LATER model as the simplest of all, and therefore the best place 
to start, even if it means tweaking the experimental paradigm so that errors are 
logically impossible (Lauwereyns & Wisnewski, 2006). But sooner or later, it 
may be necessary to extend the LATER model by adding parameters (e.g., 
Nakahara, Nakamura, & Hikosaka, 2006) or to develop nonlinear models that 
can account for error and exhibit a more neurophysiologically plausible growth 
rate—sometimes also called “drift rate” to emphasize that the rate does not 
necessarily grow (Ratcliff, Van Zandt, & McKoon, 1999).

Despite its limitations, however, the LATER model manages to provide 
an astonishing fi t to response time distributions in some tightly controlled 
situations. In these cases, we can hope to apply the most powerful triangul-
ation, measuring behavioral responses concurrently with neural activity on 
a trial-by-trial basis in one and the same experimental paradigm. Historically 
speaking, triangulation might have evolved as a method to measure the 
distance between shore and ship. Taking readings at two different angles on 
the shore, we should be able to work out where the lines will meet the ship 
in the distance. Applied to neuroscience, we can think of the experimental 
paradigm as the shore, and the behavioral and neural readings as our two 
angles that seek to meet the mind in the distance. No doubt most scientists 
will agree that this is the obvious best way to proceed. It is disappointing, 
however, how rarely it is applied in practice. All too often one of the two 
readings, usually the behavioral, is sketchier than it might have been.

The default approach seems to be to roughly compare one condition with 
another in terms of behavior as well as neural activity. Say we compare the 
ability of our observer to detect Jimmy Carter with glasses on versus off, and 
we measure the activity of a neuron in the observer’s medial temporal lobe in 
the same two conditions. If we do what most researchers do, we will compute 
only four data points: the percentage of correct responses with glasses on 
versus off and the neuron’s average Carter-to-noise ratio with glasses on 
versus off. Our observer makes fewer errors with glasses on and—lo and 
behold—the neuron fi res more for Jimmy Carter than for anyone else . . . We 
have a neural correlate of perception! Or, the neuron fi res less for Jimmy 
Carter than for anyone else . . . We have a neural correlate of perception! 
Whatever the neuron does, we will publish a paper in a very nice journal, but 
did we really compute a correlation?
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We should be able to do better than that. We can record our observer’s 
response times and use the trial-by-trial variability to check whether the gradi-
ent of his or her decision line is steeper with glasses on than with glasses off, 
as we might expect under conditions of heightened sensitivity. At the same 
time, we can check whether trials with shorter response times correlate with 
higher (or lower) fi ring rates for that wonderful neuron in medial temporal 
cortex.

The goal must be to establish the most detailed correlation of neural activity 
and behavioral responses, preferably in conditions that allow us to compute 
separable parameters in the responses. Then, and only then, can we hope to 
present a complete account of how neural circuits weigh the options. The best 
strategy will be to incorporate the LATER model or other tools of behavioral 
analysis in the design of experimental paradigms. As these tools become more 
sophisticated, researchers will be better equipped to examine, among other 
things, the neural signatures of bias and sensitivity in decision making.

Neural Signatures of Bias and Sensitivity

Combining the concepts of signal detection theory with the LATER model, 
there emerge a few solid markers that we can apply in the search for neural 
mechanisms of bias and sensitivity. At the moment, these markers are merely 
hypothetical, speculative, and conjectural, or subject to some of the most 
dreaded adjectives in science—they are the offspring of two very different 
ways of thinking about decision making, and so they may wither with the 
demise of either theoretical parent. Nevertheless, the markers are the proper 
kind of instrument for our search as they are wonderfully precise about what 
we should see in neural activity under the regime of bias versus sensitivity.

Figure 1.8 does the deductive work for the case of bias. In panel a, the data 
from a hypothetical neuron (or neural population) are drawn from a factorial 
design with 2 × 3 conditions: There are three possible types of stimulus (coded, 
similar, and other) and two possible treatments (biased or neutral). The differ-
ent stimuli are needed to get an idea of what the neuron basically responds 
to—what kind of information does it normally “encode”?

The most thorough way to characterize a neuron’s response properties 
would be by drawing a tuning curve in the way Vernon B. Mountcastle 
and colleagues originally conceived it (LaMotte & Mountcastle, 1975; 
Mountcastle, LaMotte, & Carli, 1972; Talbot et al., 1968), by systematically 
charting the changes in neural responses as a function of changes to a stimulus 
parameter. The stimulus that elicits the strongest level of neural activity, or 
the apex of the tuning curve, must be the prototypical stimulus, the one 
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Figure 1.8
The neural signature of bias. (a) The horizontal axis of the main panel marks three different types 
of stimulus as a function of a neuron’s basic tuning (or strength of response, listed from high to 
low): coded, similar, and other. The gray data represent a neutral case; the black data are driven 
by bias and show an additive increase as compared to the neutral case. The two inset fi gures to 
the right are borrowed from fi gure 1.3. (b) Average neural activity levels are shown over time 
(horizontal axis) relative to the onset of the stimulus (vertical line at time zero). The difference 
between the data driven by bias (black line) versus those from the neutral case (gray line) is 
already apparent before stimulus onset, refl ecting anticipatory processing.
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encoded, represented, or otherwise conveyed to the rest of the brain by the 
neuron in question—I call it the “coded” stimulus. (I prefer to avoid the term 
“preferred stimulus” because preferences sound too much like a matter of 
choice and the application of wishes, and that is not only too anthropomorphic 
for a neuron but also confusing with the real wishes in chapter 2.)

From early efforts in drawing tuning curves, it was immediately clear that, 
from the neuron’s perspective, not all noise is equal. Tuning curves tend to 
show a peak that does not suddenly emerge from the fl at but is supported by 
noticeable slopes, often in the shape of a bell. Panel a in fi gure 1.8 takes a 
shortcut, sampling just three positions on the tuning curve: the apex (“coded”), 
somewhere in the middle (“similar”), and the bottom (“other”), where noise 
is really just noise or maybe the perfect “antipreferred” stimulus, the exact 
opposite of what would get a neuron’s juices to fl ow.

As an aside, we should note that, of course, the idea of a tuning curve should 
not be restricted to sensory stimulus coding. In fact, I prefer to think of tuning 
curves as part of the same family as receptive fi elds, mnemonic fi elds, and 
movement vectors, all the different charts and plots that characterize a neu-
ron’s fi ring rate with respect to any physical parameter in the experimental 
paradigm, be it spatial or nonspatial, present or past.

The gray data represent the neutral case. A shift of criterion, we noted, 
would be equivalent with a parallel movement for both the signal and the noise 
distribution in the framework of signal detection theory. Translated to the three 
positions on the tuning curve, this means we should see an additive increase 
when the observer is biased in favor of the “coded” stimulus that takes the 
apex of the neuron’s tuning curve. The black data, driven by bias, seem to 
have undergone a parallel (linear) movement upwards from the neutral case, 
regardless of the actual stimulus, as if the tuning curve simply rides on top of 
an elevated baseline. This is, of course, also compatible with the LATER 
model, which further specifi ed that the change in baseline, or starting point 
for the decision line, would be fully in place at the moment the fi rst sensory 
evidence of the stimulus arrives. From this, we can distill an important second 
marker with respect to the temporal dynamics of bias effects. We should 
expect to fi nd evidence of anticipatory processing, or a way in which the 
neuron effectively manages to change its “starting point” before the stimulus 
is presented. Figure 1.8b depicts a very visible way of elevating the baseline, 
with neural activity ramping up toward the expected arrival of a stimulus, more 
so when biased than when neutral.

Perhaps the most canonical way in which we can open the door for bias to 
infl uence decision making in a given experimental paradigm is to play with 
the probability of events. In doing so, we manipulate the prior probability, to 
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use the terminology of Bayes’s theorem. Carpenter and Williams (1995) had 
human observers make eye movements to peripheral visual stimuli during 
several blocks of trials. In each block, the likelihood that a stimulus would 
appear in any one trial was kept constant, from very likely (95%) to very 
unlikely (5%). The response time data matched nicely with the predictions of 
the LATER model, suggesting that with very likely stimuli, the decision line’s 
journey toward the threshold was much shorter, and so the response much 
faster, than with very unlikely stimuli.

In the late 1990s researchers in several laboratories performed essentially 
the same experiment with monkeys while recording the activity levels of single 
neurons (Basso & Wurtz, 1997; Dorris & Munoz, 1998; Platt & Glimcher, 
1999). In each case, the activity level of neurons was enhanced for stimuli or 
saccades whose prior probability was higher than that of other stimuli or sac-
cades, even before the visual stimulus was presented (Dorris & Munoz, 1998) 
or before the monkey received an instruction about which of two possible 
stimuli was the actual target (Platt & Glimcher, 1999). The study by Platt and 
Glimcher deserves special mention as it showed data from three different 
experiments—not just the probability manipulation—and couched the entire 
data set in a then-unheard-of language, applying concepts from economics to 
the analysis of neural activity (read Glimcher, 2003, for the full introduction 
to the science of “neuroeconomics”).

We will certainly have to return to the paper by Platt and Glimcher, but 
in the meantime, seeing as the Law of Eponymy is out of the window, we 
might as well highlight the massive contribution by Robert H. Wurtz, one of 
the authors of the cited 1997 paper on probability. In addition to mentoring 
a host of important researchers (including Michael E. Goldberg, Okihide 
Hikosaka, Douglas P. Munoz, William T. Newsome, Barry J. Richmond, and 
Marc A. Sommer, to name a nonrandom few), Wurtz compiled an impressive 
set of studies, showing time and again that neurophysiology—more specifi -
cally, the extracellular recording of action potentials from single neurons in 
awake and task-performing animals—can be applied with great effect to 
the study of elusive mechanisms operating somewhere in the big divide 
between sensory processing and motor control. The discoveries included 
“attention” (Goldberg & Wurtz, 1972), “memory” (Hikosaka & Wurtz, 1983), 
and “internal monitoring of movements” (Sommer & Wurtz, 2002).

For anyone who has witnessed or conducted this type of experiment, it is 
hard not to be amazed by the immediacy and precision with which it provides 
a window to the mental events that take place in the infamous black box, or 
the dark recesses beneath the skull. The fi rst time I saw it, I was profoundly 
disoriented, unable to imagine how anyone could begin to invent a paradigm 
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like that. In a brief and very readable story, specked with Nobel prizes, Charles 
Gross (1998) traced the historical origins of the technique back to Adolf Beck 
at the University of Kracow in the 1880s, who worked with rabbits and dogs, 
mapping visually evoked responses with fi eld potentials in occipital cortex. 
It took another few geniuses, including E. D. Adrian and Stephen W. Kuffl er, 
to move from fi eld potentials to measuring things like “the receptive fi elds 
of single neurons in the cat’s striate cortex” (Hubel & Wiesel, 1959; the 
paper is easily and freely accessed in digital form, courtesy of the Journal of 
Physiology). Gross’s (1998) historical account ends at this point, but the 
science went on evolving.

By the 1960s, Edward V. Evarts (1966, 1968) was able to record from 
awake and task-performing monkeys. In September 1969, Wurtz published his 
fi rst article in Journal of Neurophysiology, on the “visual receptive fi elds of 
striate cortex neurons in awake monkeys.” It was the fi rst of 66 in the same 
journal (“The Journal of Wurtz”), spanning four decades of total focus on the 
neurophysiological underpinnings of visual processing and eye movements in 
monkeys. Since the original paper in that special year of 1969 (the paper was 
published after, but submitted before, I was born), there registered no essential 
changes to the experimental paradigm: The monkey sat in front of a screen, 
looked for dots, and made eye movements, while Wurtz and his collaborators 
recorded the activity of single neurons.

Today, the technique remains arguably the most powerful method to study 
information processing in the brain, providing a temporal and spatial resolu-
tion far beyond what can be reached with other methods while subjects are 
making decisions. In principle, the technique allows researchers to compute 
trial-by-trial correlations between behavioral response times and neural activ-
ity, measured on a continuous time scale (down to milliseconds, enough to 
pick up each individual action potential) and at the level of single neurons 
(down to micrometers). Much of what I have learned about neural mechanisms 
of decision making is based on the fi ring rates of individual neurons, and so 
Wurtz-like papers (more commonly called “single-unit studies”) will feature 
heavily among my references. This is not to say all is well with the technique.

A cautious ethical note must be attached. The invasive nature of the tech-
nique drives researchers to work with animals other than humans—a move 
that is not appreciated by everyone in the same way. The present monograph 
is hardly the place to elaborate on the issue, but the minimal stance, implied 
also in the U.S. Animal Welfare Act, should be to look for alternatives wher-
ever possible. Whether other techniques are viable replacements depends on 
the topic under investigation and on the level of precision required. In some 
cases, we can take brain scans to measure the cerebral blood fl ow in humans 



42 Chapter 1

as they perform tasks, via functional magnetic resonance imaging (fMRI) or 
positron emission tomography (PET). Especially, fMRI has come to the fore 
quite vigorously in the past ten years or so. There will be a good portion of 
fMRI studies among my references as well. With fMRI, we trade temporal 
resolution (in seconds) as well spatial resolution (in millimeters) for a major 
improvement in external validity—working with the right species, drawing no 
blood, and applying decision-making tasks that go from anything a fruit fl y 
can do to things that only the smartest of us can do. Though the relation 
between cerebral blood fl ow and neural activity is yet to be determined pre-
cisely, there can be no doubt that the so-called blood-oxygen-level-dependent 
(BOLD) signal in fMRI does in fact provide a reliable parametric estimate of 
the extent of neural processing in a given brain structure (see Logothetis, 2008, 
for the state of the art).

In other situations, we might wish to measure “brain waves,” or global 
electrical activity, from the scalp, via electroencephalography or its newer 
cousin, magnetoencephalography, with good temporal resolution (down to 
milliseconds) but poor spatial resolution (at the level of entire lobes at best). 
We can also learn a great deal from how the brain responds to drugs or more 
damaging assaults, either induced experimentally in an animal or occurring 
naturally as when one of us suffers a stroke or gets injured in an accident. 
Some kind of convergent approach seems the obvious best solution, working 
from multiple angles and with different methods simultaneously. Neurosci-
ence certainly benefi ts from its wide variety of research tools and paradigms, 
and I will draw on any of them in my attempt to provide a coherent account 
of how neural circuits underscore decision making.

Coming back to the Wurtz-like studies, one recent development that 
certainly has my sympathy is a gradual shift toward a different species—
monkeys still dominate the decision-making scene, but rats are gaining fast 
(e.g., Houweling & Brecht, 2008; Kepecs et al., 2008; Pan et al., 2005; Roesch, 
Calu, & Schoenbaum, 2007). Switching to rats creates a magnifi cent opportu-
nity for a more integrated systems-neuroscience approach, including pharma-
cological, anatomical, genetic, and intracellular electrophysiological techniques 
that are too costly with monkeys, in both ethical and fi nancial terms. Relying 
on single-unit studies with rats versus fMRI studies with humans, it should 
be possible to signifi cantly reduce the future need for monkey research. At 
present, however, we should fully acknowledge the crucial role of monkey 
single-unit studies in the accumulation of our database on the neural mecha-
nisms of decision making.

Thus reinvigorated, we pick up the paper by Basso and Wurtz (1997) again, 
and appreciate its demonstration of how “the role of the prior” is translated 
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into systematic variation of anticipatory processing in individual neurons. The 
monkey was required to make an eye movement to a visual target that could 
appear at one out of a predetermined set of possible locations, indicated by 
placeholders. The set size changed on a trial-by-trial basis, from one to eight 
possible locations. Basso and Wurtz recorded from buildup neurons in the 
superior colliculus (a type of neuron fi rst identifi ed by Munoz & Wurtz, 1995). 
Was it a strategic choice to record from buildup neurons? In hindsight, it defi -
nitely seemed the perfect pick. If we would like to fi nd evidence for bias in 
anticipatory processing of a form like that presented in fi gure 1.8, then it makes 
total sense to focus on neurons that naturally tend to ramp up their activity 
levels in preparation for task events. And, sure enough, the baseline activity 
of a typical buildup neuron, in response to a placeholder in its receptive 
fi eld, increased as target uncertainty decreased, well before the actual target 
appearance.

More recently, similar manipulations of target uncertainty have yielded the 
predicted type of differences in the baseline activity of other neural structures 
not specifi cally associated with buildup activity. A single-unit study in monkeys 
showed the effect in lateral intraparietal cortex during a motion-discrimination 
task (Churchland, Kiani, & Shadlen, 2008), whereas an fMRI study showed 
increased activity in extrastriate and anterior temporal lobe regions when 
human observers needed to compare the orientation of Gabor patches against 
one alternative rather than two (Summerfi eld & Koechlin, 2008). The effects 
of probability, then, do seem to accord with the neural signature of bias as 
pictured in fi gure 1.8. The search is on for other determinants of bias.

As a corollary of the studies on probability, there appears to be a conspicu-
ously systematic, inverse relation between the number of alternatives and the 
ease of decision making. In signal detection theory and the LATER model, 
however, the actual number of alternatives seems to be abstracted away, as 
decision making is translated into a contest between signal and noise—to be 
or not to be, in the parlance of the Prince of Denmark. In defense of the reduc-
tive attitude, we could point to the etymology of the very word “decision,” 
from the Latin decidere, or de + caedere, “to cut off.” It may not be entirely 
clear what the ancient Romans were in the business of cutting off, but I would 
prefer to take the least bloody interpretation, as in putting an end to nothing 
more material than a thinking process, or the internal agonizing over different 
options. Perhaps the threshold theory really is thousands of years old. In any 
case, the general implication seems to be that decision making is all about 
reaching something fi nal or defi nitive, a conclusion, a solution, an outcome, 
a statement, a proposition, a value on the color map, a number from one to a 
hundred, a judgment of character, a sentence with three subordinate clauses, 
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some thing, of which there usually is only one, even if it is a highly convoluted 
one, or something tricky, operating on a metalevel, like the decision that there 
will be no decision, as when a legal court rules that it has no jurisdiction over 
the matter at hand.

The rigorous one-track mind, holding onto the necessary singular of the 
decision, can capture the weighing of multiple alternatives as a parallel com-
petition among different “decision units”—as if we have not one but several 
LATER functions running at the same time, one for each alternative, such that 
what constitutes a “signal” for unit A is actually part of the “noise” for unit 
B. As soon as one of the LATER functions reaches its threshold, it would take 
home the big prize, and be proclaimed the winner—the decision outcome. Or 
maybe we employ another algorithm to identify the solution. Or maybe the 
different decision units interact or infl uence each other. In any case, the notion 
of different decision units, working in parallel or interactively, helps us bend 
the two-choice logic of signal detection theory and the LATER model to suit 
the needs of any decision-making situation. In chapter 6, “Less Is More,” I 
will return to the multiplicity of decision processes at any one point in time, 
no matter how dormant or awake they are.

However, now it is about time we take a look at fi gure 1.9 and learn to rec-
ognize the neural signature of sensitivity. The presentation format is the same 
as that of fi gure 1.8, with a hypothetical neuron in a factorial design. In panel 
a, we have the three types of stimulus (coded, similar, and other), and two 
treatments—this time, increased sensitivity (black data) versus neutral (gray 
data). Increased sensitivity is achieved by reducing the overlap, or widening 
the distance, between the signal and noise distributions according to the pro-
posals of signal detection theory. Applied to the tuning curve, this produces 
an enlarged ratio of the response to the “coded” stimulus relative to any 
“other” stimulus. Put differently, in absolute terms the effect of sensitivity on 
neural fi ring should be larger for the “coded” stimulus than for any “other” 
stimulus. This corresponds to a multiplicative scaling effect, as if the tuning 
curve is multiplied by a constant sensitivity factor greater than one—effects 
of this kind are sometimes tagged as “gain changes,” although the term “gain” 
remains ambiguous with respect to the additive versus multiplicative nature 
of the effect, blurring the difference between bias and sensitivity.

Distinguishing between these two mechanisms, as do the LATER model 
and signal detection theory, is a sine qua non if we wish to unravel how the 
brain provides us with the computational power to make decisions. Distin-
guishing between additive and multiplicative effects on tuning curves should 
be very useful indeed and might surely be practiced more often. Of course, 
the additions and multiplications will rarely work out perfectly in the quirky 
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Figure 1.9
The neural signature of sensitivity. (a) Here, the black data, driven by increased sensitivity, show 
a multiplicative effect as compared to the neutral case. The two inset fi gures to the right are bor-
rowed from fi gure 1.4. (b) The temporal dynamics of the neural response to a “coded” stimulus. 
The difference between the data driven by increased sensitivity (black line) versus those from the 
neutral case (gray line) emerges only after stimulus onset, refl ecting synergistic processing.
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reality of empirical data. For instance, bias might add a smaller absolute 
amount for the “coded” stimulus than for “other” stimuli when the neural fi ring 
rate hits its maximum capacity. The addition is then obscured by a “ceiling 
effect,” leading to a signal-to-noise ratio that would even deteriorate under the 
bias regime as compared to the neutral case. Conversely, sensitivity might 
outdo multiplication and show exponential growth. Nevertheless, such devia-
tions and complications can be formulated precisely in computational terms. 
The main point is that the logic of bias versus sensitivity does translate into 
differential movements on tuning curves. The peculiar fl uxions are there for 
us to check up on in the data and to use strategically as markers and diagnostics 
for the involvement of this or that underlying neural mechanism.

In fi gure 1.9a, then, we note that the black data, driven by increased sensi-
tivity, swivel upwards from the neutral case, with a degree of change that 
depends on the actual stimulus being presented. Here, there must be some kind 
of ad hoc interaction between the signal processing and the mechanism of 
sensitivity. This makes perfect sense, of course—the changed signal-to-noise 
ratio can only become visible when there is, in fact, a signal to be processed 
in the fi rst place. In the LATER model, we can easily appreciate what the 
interaction does for the temporal dynamics of sensitivity effects. The steeper 
gradient can only take effect once there is some sensory information to work 
with, that is, from the moment of stimulus onset. The incoming sensory infor-
mation and the increased sensitivity work together, simultaneously, interac-
tively, synergistically—taking “synergy” in its early sense, derived from the 
Greek sunergos, “working together,” instead of the “rather blowsy word” it is 
“these days, with its implications of corporate merger for profi t-enhancing 
capacity” (dixit the word-cleaning poet, Michael Palmer, 2008, p. 28). Figure 
1.9b shows how the neural response to a “coded” stimulus reaches a much 
higher amplitude with increased sensitivity (black line) as compared to the 
neutral case (gray line). Yet, the difference in the neural response emerges 
only after stimulus onset.

In practice, we can easily examine the neural correlates of increased sensi-
tivity by physically modifying the degree of similarity between signal and 
noise. The most thorough investigation of this kind was, and is, being con-
ducted using a perceptual discrimination task with different levels of motion 
coherence, in which the subject has to report the dominant direction among a 
set of moving dots. The task is easy enough when all dots move in the same 
direction (100% coherence) and obviously is impossible when the dots move 
in random directions (0% coherence). Between these two poles, performance 
improves steadily with higher coherence levels. In terms of response times, 
the improvement should be attributed to changes to the gradient of the decision 
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line in the LATER model, as confi rmed in a study by Reddi, Assress, and 
Carpenter (2003). However, the coherence levels also affect neural activity in 
exactly the way we would expect, with neurons reaching higher fi ring rates 
for easily discriminated stimuli that match the “coded” direction. (In addition 
to the already cited single-unit work by Churchland, Kiani, & Shadlen, 2008, 
in which probability and motion coherence played in concert, the landmark 
studies employing motion coherence were performed by Britten et al., 1992; 
Newsome, Britten, & Movshon, 1989; Roitman & Shadlen, 2002; and Shadlen 
et al., 1996; for an fMRI version, see Heekeren et al., 2006.) The neural 
signature of increased sensitivity bears out perfectly in these data, both the 
multiplicative scaling and the synergistic processing.

Arguably the most thorough analysis of increased sensitivity in neural fi ring 
rates as well as response times was performed by Ratcliff and colleagues 
(2007) on the basis of data from superior colliculus neurons while the monkey 
performed a brightness-discrimination task, in which some levels of brightness 
were easy to discriminate (98% white pixels, very “bright,” or 2% white pixels, 
very “dark”), others hard (45% or 55% white pixels). Response times were 
fast and neural fi ring rates high for easy “coded” stimuli, and again the effects 
in neural processing emerged only after stimulus onset. But more than this, 
the study reached an unprecedented level of detail in modeling the trial-by-trial 
variation of both response times and neural activity—a great achievement, 
exactly the type of triangulation that forms my ideal of neuroscience.

Armed with the analytic tools to distinguish bias versus sensitivity, familiar 
with the Bayesian way of thinking about decision making, no longer afraid of 
signal detection theory and the LATER model, always on the lookout for 
anticipatory versus synergistic processing, and eager to compare additive 
versus multiplicative scaling, we are now ready to investigate how neural cir-
cuits really weigh the options, in what kind of conditions, under what sort of 
circumstances, and to what degree of inevitability. Having duly sniffed at the 
formulas, we can fi nally take a look at how they function.
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