
 Code/Space

 Software and Everyday Life

 Rob Kitchin and Martin Dodge

 The MIT Press

 Cambridge, Massachusetts

 London, England

 © 2011 Massachusetts Institute of Technology

 All rights reserved. No part of this book may be reproduced in any form by any electronic or

mechanical means (including photocopying, recording, or information storage and retrieval)

without permission in writing from the publisher.

 For information about special quantity discounts, please email special_sales@mitpress.mit.edu

 This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited. Printed

and bound in the United States of America.

 Library of Congress Cataloging-in-Publication Data

 Kitchin, Rob.

 Code/space : software and everyday life / Rob Kitchin and Martin Dodge.

 p. cm. — (Software studies)

 Includes bibliographical references and index.

 ISBN 978-0-262-04248-2 (hardcover : alk. paper)

 1. Computers and civilization. 2. Computer software — Social aspects. I. Dodge, Martin,

1971 – II. Title.

 QA76.9.C66K48 2011

 303.48 ′ 34 — dc22

 2010031954

 10 9 8 7 6 5 4 3 2 1

 1 Introducing Code/Space

 Software is everything. In the history of human technology, nothing has become as essential as

fast as software.

 — Charles Fishman

 Our civilization runs on software.

 — Bjarne Stroustrup

 Over the past thirty years, the practices of everyday life have become increasingly
infused with and mediated by software. Such are the capacities and growing pervasive-
ness of software that it has become the lifeblood of today ’ s emerging information
society, just as steam was at the start of the industrial age. Software, like steam once
did, is shaping our world — from the launch of billion-dollar spacecraft to more
mundane work such as measuring and displaying time, controlling traffi c lights, and
monitoring the washing of clothes. Indeed, whatever the task — domestic chores, paid
work, shopping, traveling, communicating, governing, playing — software increasingly
makes a difference to how social and economic life takes place. In short, software
matters, and this book documents how and why it does. We detail how software
produces new ways of doing things, speeds up and automates existing practices,
reshapes information exchange, transforms social and economic relations and forma-
tions, and creates new horizons for cultural activity. And we do so by explicitly making
software the focus of critical attention rather than the technologies it enables.

 Software

 As we explore in more detail in chapter 2, software consists of lines of code — instruc-
tions and algorithms that, when combined and supplied with appropriate input,
produce routines and programs capable of complex digital functions. Put simply,
software instructs computer hardware — physical, digital circuitry — about what to do
(which in turn can engender action in other machinery, such as switching on electri-

4 Chapter 1

cal power, starting a motor, or closing a connection). Although code in general is
hidden, invisible inside the machine, it produces visible and tangible effects in the
world.

 Software is diverse in nature, varying from abstract machine code and assembly
language to more formal programming languages, applications, user-created macros,
and scripts. One way to consider these forms is as a set of hierarchically organized
entities of increasing complexity that parallel that of organic entities (fi gure 1.1).
Software takes form in the world through multiple means, including hard-coded
applications with no or limited programmability (embedded on chips), specialized
applications (banking software, traffi c management systems), generic user applications
(word processors, Web browsers, video games), and operating systems (Windows, Mac

BusinessEcosys
(ecosystems)

E-business
integration

Platforms
(populations)

Software
(organisms)

Components
(tissues)

Executable
programs

Class
(genes)

Dynamic Link
Libraries

Procedural
API

Method/functions
(organelles)

Block({})
(membranes)

Procedural code
(organelles)

Programming constructs
(amino acids)

Complex datatypes
(molecules)

Primative data types
(atoms)

 Figure 1.1
 A hierarchical conceptualization of different scales of software. The approximate parallels with

biological entities are indicated in parentheses. (Redrawn from Nguyen 2003, 10)

Introducing Code/Space 5

OS, Linux), that run on a variety of hardware platforms (embedded chips, dedicated
units, PCs, workstations) and can generate, distribute, monitor, and process capta
(capta are units that have been selected and harvested from the sum of all potential
data, where data are the total sum of facts in relation to an entity; in other words,
with respect to a person, data is everything that it is possible to know about that
person, capta is what is selectively captured through measurement — see glossary) and
information fl ows across a range of infrastructures (printed circuit boards, coaxial and
fi ber-optic cables, wireless networks, satellite relays) using a variety of forms (electrical,
light, microwave, radio).

 The phenomenal growth in software creation and use stems from its emergent and
executable properties, that is, how it codifi es the world into rules, routines, algorithms,
and captabases (a collection of capta stored as fi elds, typically within a tabular form,
that can easily be accessed, managed, updated, queried, and analyzed; traditionally
named a database, it has been renamed to recognize that it actually holds capta not
data) and then uses these to do work in the world. Although software is not sentient
and conscious, it can exhibit some of the characteristics of being alive. Thrift and
French (2002, 310) describe it as “ somewhere between the artifi cial and a new kind of
natural, the dead and a new kind of living ” having “ presence as ‘ local intelligence. ’ ”
This property of being alive is signifi cant because it means code can make things do
work in the world in an autonomous fashion — that is, it can receive capta and process
information, evaluate situations, make decisions, and, most signifi cant, act without
human oversight or authorization. When software executes itself, it possesses what
Mackenzie (2006) terms secondary agency. However, because software is embedded into
objects and systems in often subtle and opaque ways, it largely forms a technological
unconscious that is noticed only when it performs incorrectly or fails (Thrift 2004b,
Graham and Thrift 2007). As a consequence, software often appears to be “ automagi-
cal ” in nature in that it works in ways that are not clear and visible, and it produces
complex outcomes that are not easily accounted for by people ’ s everyday experience.

 The things that software directs are themselves extremely diverse, varying from
simple household items to complex machines and large systems that can work across
multiple scales, from the local to the global. In some cases, software augments the use
of existing, formerly “ dumb, ” electromechanical technologies such as washing
machines and elevators; in other cases, it enables new technological systems to be
developed, such as offi ce computing, the Internet, video games, cell phones, and
global positioning systems. We see software as embedded in everyday life at four levels
of activity, producing what we term coded objects, coded infrastructures, coded processes ,
and coded assemblages.

 Coded objects are objects that are reliant on software to perform as designed. As we
discuss in chapter 3, such objects can be divided into several different classes. Coded
machine-readable objects might not have any software embedded in them but rely on

6 Chapter 1

external code to function; DVDs and credit cards are examples. Unless they are worked
on by software, they remain inert pieces of plastic, unable to provide entertainment
or conduct fi nancial transactions. Other coded objects are dependent on the software
embedded within them to perform. Here, software enhances the functional capacity
of what were previously dumb objects, such as an electronic scale, or enables objects
to be plugged into distributed networks, such as networked vending machines, or
underpins the invention of entirely new classes of digital objects, some of which have
an awareness of themselves and their relations with the world and record aspects of
those relations for future use (examples are MP3 players and mobile devices) (see
chapters 3 and 8).

 Coded infrastructures are both networks that link coded objects together and infra-
structures that are monitored and regulated, fully or in part, by software. Such coded
infrastructure includes distributed infrastructures, such as computing networks, com-
munication and broadcast entertainment networks (mail, telephone, cell phones,
television, radio, satellite), utility networks (water, electricity, gas, sewer), transport
and logistics networks (air, train, road, container shipping), fi nancial networks (bank
intranets, electronic fund transfer systems, stock markets), security and policing net-
works (criminal identifi cation captabases, surveillance cameras), and relatively small-
scale and closed systems such as localized monitoring (say, fi re and access control
alarms and HVAC performance within one building complex), and small but complex
systems such as an individual automobile. The geographical extent of distributed
infrastructures varies from the global, as with satellite-based global positioning systems
(which literally can be accessed from any point on the planet), to more localized
coverage, such as a network of traffi c lights in a city center.

 Coded processes consist of the transactions and fl ows of digital capta across coded
infrastructure. Here, the traffi c is more than rudimentary instructions to regulate
coded objects within an infrastructure; rather, the fl ows are structured capta and pro-
cessed information. Such fl ows become particularly important when they involve the
accessing, updating, and monitoring of relational captabases that hold individual and
institutional records that change over time. Such captabases can be accessed at a dis-
tance and used to verify, monitor, and regulate user access to a network, update
personal fi les, and sanction a monetary payment, for example. An example of a coded
process is the use of an ATM. Here, capta in terms of transaction events are transferred
across the coded infrastructure of the bank ’ s secure intranet based on access using a
coded object (the customer ’ s bank card), verifying the customer based on a personal
identifi cation number (PIN), determining whether a transaction will take place,
instructing the ATM to complete an action, and updating the user ’ s bank account.
Part of the power of relational captabases is that they hold common fi elds that allow
several captabases to be cross-referenced and compared precisely by software. Other
coded processes center on captabases relating individuals and households to bank

Introducing Code/Space 7

accounts, credit cards, mortgages, taxation, insurance, medical treatments, utility use,
service contracts, and so on, all of which can be accessed across open or, more com-
monly, closed networks. Although coded processes are largely invisible and distant,
they are revealed to individuals through the fi elds on offi cial form letters, statements,
bills, receipts, printouts, licenses, and so on, and through unique personal identifi ca-
tion numbers on the coded objects used to access them (bank and credit cards, library
cards, transportation cards, store loyalty cards) and increasing requirements to use
passwords. Many of these processes relate to everyday consumption practices and are
discussed in chapter 9.

 Coded assemblages occur where several different coded infrastructures converge,
working together — in nested systems or in parallel, some using coded processes
and others not — and become integral to one another over time in producing particular
environments, such as automated warehouses, hospitals, transport systems, and
supermarkets. For example, the combined coded infrastructures and coded processes
of billing, ticketing, check-in, baggage routing, security screening, customs, immigra-
tion, air traffi c control, airplane instruments, and so on work together to create a
coded assemblage that defi nes and produces airports and passenger air travel (see
chapter 7). Similarly, the coded infrastructures of water, electricity, gas, banks and
insurers, commodities, Internet, telephone, mail, television, government captabase
systems, and so on work in complex choreographies to create an assemblage that
produces individual households (see chapter 8). These assemblages are much greater
than the sum of their parts, with their interconnection and interdependence
enabling the creation of highly complex systems with high utility, effi ciency, and
productivity.

 Computation

 That such coded objects, infrastructures, processes, and assemblages exist widely and
do work in the world is itself a function of the rapid advances in hardware and the
exponential growth in digital computation at increasingly reduced costs, along with
the ability to access such computation at a distance through reliable communication
technologies. Although the focus of this book is not computer and communications
technologies per se, it is important to acknowledge the extent to which computing
power has multiplied dramatically in terms of operating speed since the fi rst modern
computers were built during World War II, enabling the widespread distribution of
software-enabled devices. It is estimated that over the past hundred years, there has
been a 1,000,000,000,000,000-fold fall in the cost of computation (Computing
Research Association 2003), most of which has occurred in the past fi fty years. Nord-
haus (2002) calculates that there was approximately a 50 percent increase in compu-
tational power each year between 1940 and 2001. In addition, as new electronic and

8 Chapter 1

solid-state hardware technologies for processing have been developed, the cost per
million units of computation declined steeply during this period (see fi gure 1.2).

 Computer memory and storage have grown signifi cantly, in tandem with the tre-
mendous improvements in processing power. Gilheany (2000), for example, estimated
that since the introduction of the fi rst commercial magnetic disk by IBM in 1956, the
cost of storage per gigabyte has fallen by a factor of 1 million to 1. The growth in storage
density, as measured in bits per inch on magnetic disks, has even outpaced the upward
curve of Moore ’ s law (that the number of transistors on a CPU doubles every two years)
and shows few signs of slowing in the near future. The physical space required for data
storage has also shrunk dramatically as hard drives and fl ash memory have become
smaller and the density of packing has increased. This growth in storage capabilities
enables radically different strategies of information management: deletion of old infor-
mation is becoming unnecessary, continuous recording is a possibility, and individuals
can carry with them enormous amounts of capta in a tiny gadget (see chapter 5).

1850 1870 1890 1910 1930 1950 1970 1990 2010

C
o

st
 p

er
 M

U
C

P
 (

19
96

$)

1.E+05

1.E+04

1.E+03

1.E+02

1.E+01

1.E-00

1.E-01

1.E-02

1.E-03

1.E-04

1.E-05

1.E-06

1.E-07

1.E-08

Manual
Mechanical
Electromechanical
Relay
Vacuum
Transistor
Microprocessor

 Figure 1.2
 Increasing cost effi ciencies of computation with a marked step change from mechanical to elec-

tronic processing technologies. (Redrawn from Nordhaus 2002, 43)

Introducing Code/Space 9

 Communication among computational devices has also become easier, faster, and
more widely available. The capability to network devices facilitates all manner of social
and economic interactions and transactions and has been underpinned by the rapid
development of the Internet over the past two decades. According to George Gilder ’ s
 “ law of telecosm, ” the “ world ’ s total supply of bandwidth will double roughly every
four months — or more than four times faster than the rate of advances in computer
horsepower [Moore ’ s law] ” (Rivlin 2002). In other words, network capacity is growing
faster than demand even with increasingly information-rich applications. Network
bandwidth is also becoming progressively more diffused geographically at much lower
costs (notwithstanding the ongoing concerns over digital divides and the unevenness
of telecommunication pricing and regulation). Many people now expect continuous
network access regardless of where they are.

 Yet it is not just the raw numbers in terms of CPU clock speeds, gigabytes of disk
space, and download speed that matter. Pragmatic issues such as physical design,
interface usability, reliability, and real cost for daily use have undergone signifi cant
improvements that have made computation attractive in terms of widespread con-
sumer confi dence and affordability. As a result, social dispositions toward software-
enabled technologies have become favorable, resulting in hundreds of millions of
computational devices being distributed, embedded into, and carried around environ-
ments; these devices often bear little resemblance to desktop computers, and the work
that many of them do is hidden from view. As we discuss in detail in chapter 10, some
commentators say that we are entering a new age — Greenfi eld (2006) refers to this as
 everyware — in which computing becomes pervasive and ubiquitous. In this new era,
software mediates almost every aspect of everyday life.

 The Power of Code

 Taken together, coded objects, infrastructures, processes, and assemblages mediate,
supplement, augment, monitor, regulate, facilitate, and ultimately produce collective
life. They actively shape people ’ s daily interactions and transactions, and mediate all
manner of practices in entertainment, communication, and mobilities. As we explore
in chapter 2, software has the power to shape the world in a number of ways. It has
dramatically increased the capacity of both people and institutions to process informa-
tion in terms of volume, speed of processing, and the complexity of operations, and
at a very low cost per transaction. It has enabled forms of automation, the monitoring
and controlling of systems from a distance, the reconfi guring and rejuvenation of
established industries, the development of new forms of labor practices and paid work,
the reorganization and recombination of social and economic formations at different
scales, and it has produced many innovations. And because software can be pro-
grammed to read inputs to a system, and evaluate and react to those assessments, it

10 Chapter 1

has a signifi cant degree of autonomy. Consequently, as we argue in chapter 5, most
people in Western nations are living in a machine-readable and coded world — that is,
a world where information is routinely collected, processed, and acted on by software
without human intervention.

 In many cases, the power of software is signifi cant but banal — a digital alarm clock
that wakes a worker or the ATM that provides her with access to money when
banks are not open for business. Here, if the software crashes, then its consequence
is typically frustration and localized inconvenience. In other cases, software is the
difference between something happening or not, because manual systems have
been entirely replaced by digital systems. And when some software systems crash,
they can create major incidents with serious economic and political effects, and
even life-threatening situations. The crash of the Tokyo Air Traffi c Control Center in
March 2003 meant the cancellation of over 203 fl ights (Risks List 2003), and seemingly
minor failures in routine monitoring software systems at FirstEnergy in Akron,
Ohio, were key contributing factors in the large-scale power outage affecting millions
of people in the U.S. Northeast in 2003 (U.S.-Canada Power System Outage Task
Force 2004). A great deal of resources are expended to keep digital systems that
rely on software in working order; much of this routine maintenance and repair is
hidden labor but is nonetheless vital to the information society (Graham and Thrift
2007).

 Perhaps the best illustration of the contemporary social and economic importance
of software was the widespread concern at the end of 1990s associated with the Y2K
millennium bug, which triggered a wholesale overhaul of software systems in many
nations. The cost to the U.S. federal government alone was estimated at $8.34 billion,
and governments and businesses across the world spent an estimated $200 billion to
$600 billion to address the problem (Bennett and Dodd 2000). Such investment, and
media hype and speculation, would not have been expended if there had not been
genuine worry that services in the public and private sectors would suffer serious
disruption and possible collapse. Indeed, such is the reliance by governments and
businesses on a raft of offi ce applications and larger software systems that it is now
unthinkable to backtrack to a predigital age: the nature of tasks has changed, staff
levels have been reduced and deskilled in many cases, and operational networks and
transactions have become much more complex and interdependent.

 Signifi cantly, software engenders both forces of empowerment and discipline,
opportunities and threats. Software is enabling the realization of many new forms of
creative technology and novel kinds of art, play, and recreation; it makes social and
economic processes more effi cient, effective, and productive; and it creates new oppor-
tunities and markets. At the same time, software has underpinned the development
of a broad range of technologies that more effi ciently and successfully represent,
collate, sort, categorize, match, profi le, and regulate people, processes, and places.

Introducing Code/Space 11

Software is at the heart of new modes of invasive and dynamic surveillance and the
creation of systems that never forget (see chapters 5, 10, and 11).

 Social analysts have a tendency to focus on the active role of software in regulatory
technologies, in processing and analyzing capta about people, and in systems of social
control. From this perspective, it is diffi cult not to become pessimistic about the work
software does in the world — its use to determine, discipline, and potentially discrimi-
nate. And yet the reason that digital technologies are so popular is that they make
societies safer, healthier, and richer overall even as they do the work to regulate societ-
ies. (We acknowledge that the benefi cial outcomes are not necessarily equitably dis-
tributed.) Software development has provided innovations across many fi elds; led to
new job opportunities in cleaner industries; driven fresh rounds of capital investment
in new and old business sectors; provided more and wider entertainment and retail
choices; automated everyday tasks; increased access to credit; opened up new forms
of social communication and driven down their cost; enabled new forms of creativity,
knowledge production, and artistic practice; opened up original ludic possibilities and
ways of recording personal experiences and memories; led to new media for political
organization and oppositional activities; and so on (see chapter 6). In this sense, a key
aspect of the power of software lies in how it seduces. In Althusser ’ s (1971) terms,
software-driven technologies induce a process of interpellation, wherein people will-
ingly and voluntarily subscribe to and desire their logic, trading potential disciplinary
effects against benefi ts gained. And the benefi ts are often substantial and, in a very
quotidian sense, irresistible. Perhaps rather than trying to determine whether the work
software does is good or bad, it is better to see it as productive in the broad sense — it
makes things happen. We need to understand how this production unfolds in differ-
ent social and spatial contexts.

 Software, Society, and Space

 Until recently software was largely ignored by the social sciences and humanities.
Instead, with perhaps the exception of research in computer-mediated communica-
tion and computer-supported cooperative work, scholars and commentators tended
to focus more broadly on the information and communication technologies (ICTs)
that software enables, in particular the Internet, rather than to more specifi cally con-
sider the role of code in relation to those technologies and wider society. This has led
over the past fi fteen years or so to a burgeoning set of studies focusing on what Castells
(1996) has called the network society . The general thesis is that ICTs are transformative
technologies that enable a shift from an industrial to a postindustrial society by
altering the conditions through which social and economic relations take place. ICTs
are reconfi guring the means by which capital is generated by allowing businesses to
reorganize their operations advantageously, change working practices, reduce costs,

12 Chapter 1

increase productivity, and diversify into new products and markets (Castells 1996;
Kitchin 1998). Here, capta generation, processing, and information exchange are key
to developing knowledge and extracting value. Similarly, social relations are speeded
up and altered through new forms of communication media such as e-mail, Web
pages, virtual worlds, chatrooms, and mobile phones that allow experimentation with
identity and novel social networks to be developed (Rheingold 1993; Turkle 1995;
Wellman and Haythornthwaite 2002).

 As analysts such as Foth (2008), Mitchell (1995), Graham and Marvin (1996, 2001),
and Townsend (2003) detail, ICTs are also having material effects on how cities and
regions are confi gured, built, and managed with the development of smart buildings,
the networking of physical infrastructure, the use of traffi c management and other
information and control systems, and so on. This is what Batty (1997, 155) has termed
the computable city, noting that “ planners . . . are accustomed to using computers to
advance our science and art but it would appear that the city itself is turning into a
constellation of computers. ” Such a city is perhaps best illustrated by the proliferation
of windowless, semisecret, and hermetically sealed control rooms, with their banks of
screens showing software-generated real-time inscriptions of urban infrastructures and
fl ows (fi gure 1.3).

 Software studies is a fl edgling fi eld. Although work within this fi eld predates the
new millennium, the fi rst notion of the fi eld itself can be traced to Manovich (2000,
48), who argued that “ to understand the logic of new media we need to turn to com-
puter science. It is there that we may expect to fi nd the new terms, categories and
operations which characterize media which became programmable. From media
studies, we move to something which can be called software studies; from media
theory — to software theory. ” Complementing the work of computer scientists on the
mechanics of software development and human computer interaction, and research
on digital technologies more generally, social theorists, media critics, and artists have
begun to study the social politics of software: how it is written and developed; how
software does work in the world to produce new subjects, practices, mobilities, transac-
tions, and interactions; the nature of the software industry; and the social, economic,
political, and cultural consequences of code on different domains, such as business,
health, education, and entertainment. Manovich (2008, 6) asserts, “ I think that soft-
ware studies has to investigate both the role of software in forming contemporary
culture, and cultural, social, and economic forces that are shaping development of
software itself. ” In conjunction, Fuller (2008, 2) argues that the fi eld “ proposes that
software can be seen as an object of study and an area of practice for the kinds of
thinking and areas of work that have not historically ‘ owned ’ software, or indeed often
had much of use to say about it. ”

 The difference between software studies and those more broadly studying the
digital technologies they enable could be characterized as the difference between

Introducing Code/Space 13

studying the underlying epidemiology of ill health and the effects of ill health on the
world. While one can say a great deal about the relationship between health and
society by studying broadly how ill health affects social relations, one can gain further
insight by considering the specifi cs of different diseases, their etiology (causes, origins,
evolution, and implications), and how these manifest themselves in shaping social
relations.

 Software studies focuses on the etiology of code and how code makes digital tech-
nologies what they are and shapes what they do. It seeks to open the black box of
processors and arcane algorithms to understand how software — its lines and routines
of code — does work in the world by instructing various technologies how to act.
Important formative works include Galloway ’ s Protocol (2004); Fuller ’ s Behind the Blip
(2003), Media Ecologies (2005), and Software Studies: A Lexicon (2008); Lessig ’ s Code and
Other Laws of Cyberspace (1999); Manovich ’ s The Language of New Media (2000) and
 Software Takes Command (2008); Hayles ’ s My Mother Was a Computer (2005); and Mack-
enzie ’ s Cutting Code (2006).

 These studies demonstrate that software is a social-material production with a pro-
found infl uence on everyday life. All too often, however, they focus on the role of
software in social formation, organization, and regulation, as if people and things exist
in time only, with space a mere neutral backdrop. What this produces is historically
nuanced but largely aspatial accounts of the relationship of software, technology, and
society. As geographers and others argue, however, people and things do not operate
independent of space. Space is not simply a container in which things happen; rather,
spaces are subtly evolving layers of context and practices that fold together people
and things and actively shape social relations. Software and the work it does are the
products of people and things in time and space, and it has consequences for people
and things in time and space. Software is thus bound up in, and contributes to,
complex discursive and material practices, relating to both living and nonliving,
which work across geographic scales and times to produce complex spatialities. From
this perspective, society, space, and time are co-constitutive — processes that are at once
social, spatial, and temporal in nature and produce diverse spatialities. Software
matters because it alters the conditions through which society, space, and time, and
thus spatiality, are produced.

 Our principal argument, then, is that an analysis of software requires a thoroughly
spatial approach. To date, however, geographers and spatial theorists, like other social
scientists, have tended to concentrate their analysis on the technologies that software
enables and their effects in the world. This work has examined the effects of ICTs on
time-space convergence (acceleration in the time taken to travel or communicate
between places) and distanciation (control from a distance); the spatial economics of
business and patterns of capital investment and innovations across spatial scales; the
ways in which cities and regions are being reconfi gured and restructured; and notions

(a)

(b)

 Figure 1.3
 Control rooms monitoring the city through code. (a) Electricity supply (Source : courtesy of

Independent Electricity System Operator, Ontario, www.ieso.ca). (b) Road traffi c (Source : courtesy

of Midland Expressway Ltd., www.m6toll.co.uk). (c) Video surveillance and security for a shop-

ping center (Source : courtesy of Arndale, www.manchesterarndale.com). (d) Water resources

(Source : courtesy of Barco, www.barco.com).

(c)

(d)

Figure 1.3
(continued)

16 Chapter 1

of place, identity, and spatially grounded identities (see Daniels et al. 2006; Dodge
and Kitchin 2000; Graham and Marvin 2001; Wheeler, Aoyama, and Warf 2000;
Wilson and Corey 2000; Zook 2005). Although there is much to learn from spatial
accounts of the nature and effects of ICTs on various sociospatial domains and at dif-
ferent scales, it is imperative, we argue, for spatial theorists to think more specifi cally
about how software underpins the nature of ICT and shapes its functioning and
effects, and more broadly about the work software does in the world through the
growing array of technologies used in everyday situations.

 In this book, we seek to detail and theorize the ways in which software creates new
spatialities of everyday life and new modes of governance and creativity (which are
themselves inherently spatial), and we provide a set of conceptual tools for analyzing
its nature and consequences. In so doing, and outlined more fully in chapters 4 and
5, we develop a distinct understanding of spatiality that conceives the world as onto-
genetic in formulation (that is, constantly in a state of becoming) and rethink soft-
ware-based governance as a system of automated management. Our analysis does not
stand alone; it seeks to complement and extend a small but signifi cant line of work
by geographers and allied scholars on the task of describing and explaining the geog-
raphies of software (Adey 2004; Budd and Adey 2009; Crang and Graham 2007;
Graham 2005; Mitchell 2004; McCullough 2004; Thrift and French 2002; Zook and
Graham 2007).

 Software, we argue, alternatively modulates how space comes into being through
a process of transduction (the constant making anew of a domain in reiterative and
transformative practices). Space from this perspective is an event or a doing — a set of
unfolding practices that lack a secure ontology — rather than a container or a plane or
a predetermined social production that is ontologically fi xed. In turn, society consists
of collectives that are hybrid assemblages of humans and many kinds of nonhumans
(Latour 1993), wherein the relationship between people, material technology, time,
and space is contingent, relational, productive, and dynamic. Taking the ideas of
transduction and automated management together, our central argument is that the
spatialities and governance of everyday life unfold in diverse ways through the mutual
constitution of software and sociospatial practices. The nature of this mutual constitu-
tion is captured in our concept of code/space.

 What is Code/Space?

 Code/space occurs when software and the spatiality of everyday life become mutually
constituted, that is, produced through one another. Here, spatiality is the product of
code, and the code exists primarily in order to produce a particular spatiality. In other
words, a dyadic relationship exists between code and spatiality. For example, a check-in

Introducing Code/Space 17

area at an airport can be described as a code/space. The spatiality of the check-in area
is dependent on software. If the software crashes, the area reverts from a space in which
to check in to a fairly chaotic waiting room. There is no other way of checking a person
onto a fl ight because manual procedures have been phased out due to security con-
cerns, so the production of space is dependent on code. Another example is a super-
market checkout. All supermarkets and large stores rely on computerized cash registers
to process purchases. If the computer or the information system behind it crashes,
shoppers cannot purchase goods, and in a functional sense, the space effectively ceases
to be a supermarket instead becoming a temporary warehouse until such time as the
code becomes (re)activated. The facilities to process payments manually have been
discontinued, staff are not trained to process goods manually (they no longer rote-learn
the price of goods), and prices are not usually printed on items. In other words, the
sociospatial production of the supermarket is functionally dependent on code.

 People regularly coproduce code/spaces, even if they are not always aware they are
doing so, and as we demonstrate throughout this book, they are increasingly common
in a range of everyday contexts. Any space that is dependent on software-driven tech-
nologies to function as intended constitutes a code/space: workplaces dependent on
offi ce applications such as word processing, spreadsheets, shared calendars, informa-
tion systems, networked printers, e-mail, and intranets; aspects of the urban environ-
ment reliant on building and infrastructural management systems; many forms of
transport, including nearly all aspects of air travel and substantial portions of road
and rail travel; and large components of the communications, media, fi nance, and
entertainment industries. Many of the rooms that people live in; the offi ces, shops,
and factories they work in; and the vehicles they travel in are code/spaces. It is little
wonder that many commentators are speculating that most people in Western society
are entering an age of “ everyware ” (Greenfi eld 2006, see also chapter 10).

 Given that many of these code/spaces are the product of coded infrastructure, their
production is stretched out across extended network architectures, making them
simultaneously local and global, grounded by spatiality in certain locations, but acces-
sible from anywhere across the network, and linked together into chains that stretch
across space and time to connect start and end nodes into complex webs of interac-
tions and transactions. Any space that has the latent capacity to be transduced by
code constitutes a code/space at the moment of that transduction. So, for example,
spaces that have wireless access to computation and communication are transduced
by a mobile device accessing that network; for example, the laptop computer accessing
a wireless network transduces the caf é , the train station, the park bench, and so on
into a work space for that person. Code/space is thus both territorialized (in the case
of a supermarket) and deterritorialized (in the case of mobile transductions). The
transduction of code/spaces then often lacks singular, easily identifi able points of

18 Chapter 1

control or measurable extents, and they have a complexity much greater than the sum
of their parts.

 Of course, not all social interactions with software transduce code/spaces. Although
much spatiality is dependent on software, software merely augments its transduction
in other cases. We term such cases coded spaces — spaces where software makes a dif-
ference to the transduction of spatiality but the relationship between code and space
is not mutually constituted. For example, a presentation to an audience using Power-
Point slides might be considered a coded space. The digital projection of the slides
makes a difference to the spatiality of the lecture theater, infl uencing the performance
of the speaker and the ability of the audience to understand the talk. However, if the
computer crashes, the speaker can still deliver the rest of the lecture, but perhaps not
as effi ciently or effectively as when the software worked.

 In other words, the distinction between coded space and code/space is not a matter
of the amount of code (in terms of the number of lines of code or the density of
software systems). Rather a code/space is dependent on the dyadic relationship
between code and space. This relationship is so all embracing that if half of the dyad
is put out of action, the intended code/space is not produced: the check-in area at the
airport does not facilitate travel; the store does not operate as a store. Here, “ software
quite literally conditions . . . existence ” (Thrift and French 2002, 312). In coded space,
software matters to the production and functioning of a space, but if the code fails,
the space continues to function as intended, although not necessarily as effi ciently or
cost effi ciently, or safely. Here, the role of code is often one of augmentation, facilita-
tion, monitoring, and so on rather than control and regulation.

 As we detail in depth in chapter 4, it is important to note that the relationship
between software and space is neither deterministic (that is, code determines in abso-
lute, nonnegotiable means the production of space and the sociospatial interactions
that occur within them) nor universal (that such determinations occur in all such
spaces and at all times in a simple cause-and-effect manner). Rather, how code/space
emerges through practice is contingent, relational, and context dependent. Code/
space unfolds in multifarious and imperfect ways, embodied through the performance
and often unpredictable interactions of the people within the space (between people
and between people and code). Code/space is thus inconsistently transduced; it is
never manufactured and experienced in the same way.

 Discursive Regimes Underpinning Code/Space

 The adoption of software and digital technologies, and the systems, networks, and
ways of doing they underpin, have been complemented by a broad set of discursive
regimes that have sought to justify their development and naturalize their use. For
Foucault (1977), a discursive regime is a set of interlocking discourses that sustain and

Introducing Code/Space 19

reproduce, through processes of defi nition and exclusion, intelligibility and legiti-
macy, a particular set of sociospatial conditions. Such a regime provides the rationale
for how sociospatial relations are predominantly produced, legitimating the use of
discursive and material practices that shape their production.

 As we discuss in chapter 5 and illustrate in subsequent chapters on travel, home,
and consumption, the development and employment of different types of software
and digital technologies are underpinned by their own particular, distinctive discur-
sive regime. That said, they usually consist of an amalgam of a number of common
discourses: safety, security, effi ciency, antifraud, empowerment, productivity, reliabil-
ity, fl exibility, economic rationality, and competitive advantage. In other words, they
argue that the deployment of software will improve the safety of individuals and
society more broadly; make society and travel more secure; make government or busi-
ness more effi cient; make the fi ght against crime more effective; empower people to
be more creative and innovative; and so on. These discourses are often promoted by
government in tandem with business, driven by the interests of capitalism and,
increasingly, the agenda of neoliberalism focused on the delivery of social services for
profi t within a target-driven culture.

 The constituent elements of a discursive regime work to promote and make com-
monsense their message, but also to condition and discipline. Their power is persuad-
ing people to their logic — to believe and act in relation to this logic. As Foucault (1977,
1978) noted, however, a discursive regime does not operate solely from the top down-
ward, but through diffused microcircuits of power, the outcome of processes of regula-
tion, self-regulation, and localized resistance. As such, people are not simply passive
subjects, disciplined and interpellated in linear and unproblematic ways by discursive
regimes. Rather, as with the technologies themselves, such discourses are open to
rupture: subversion, denial, and transgression by fl ourishing software hacking com-
munities, anticorporate web sites, online activist networks, legal challenges to security
and surveillance, and campaigns concerning privacy and confi dentiality, for example.
In this sense, power is not captive, purely in the hands of an unseen elite, although
the discursive regime operates — in conjunction with the operation of code/space — to
try to (re)produce such a hegemonic order. As such, code/spaces and their discursive
regimes work to reinforce and deepen their logic and reproduction, at the same time
as others seek to undermine, resist, and transform their hegemonic status. Software
opens up new spaces as much as it closes existing ones. Accordingly, Amin and Thrift
(2002, 128) argue that because “ the networks of control that snake their way through
cities are necessarily oligoptic, not panoptic: they do not fi t together. They will
produce various spaces and times, but they cannot fi ll out the whole space of the
city — in part because they cannot reach everywhere, in part because they therefore
cannot know all spaces and times, and in part because many new spaces and times
remain to be invented. ”

20 Chapter 1

 Interestingly, given the increasing power and role of software, resistance to digital
technologies has been remarkably mute despite widespread cynicism over the per-
ceived negative effects of computerization. Thrift and French (2002, 313) note, “ Even
though software has infused into the very fabric of everyday life — just like the auto-
mobile — it brings no such level of questioning in its wake. ” There seem to be a number
of reasons for this: the majority of people have been persuaded to its utility and how
it is made rational and natural by discursive regimes; people are empowered and rec-
ognize the benefi ts of software technologies to their everyday lives; people see the
changes that are occurring as simply an extension of previous systems to which they
are already conditioned; how software is incrementally employed is seen as an inher-
ent aspect of how things are now done and are therefore unchallengeable; the employ-
ment of software is seen as largely benign and routine rather than threatening and
invasive; and people are worried by the consequences of protest (e.g., denial of services
or mistreatment) and so refrain from doing so. Whatever the reason, there has been
little scrutiny of the extent to which software has become embedded into everyday
life or of the discourses that underpin, and subtly and explicitly promote, their
adoption.

 The Book

 Code/Space is principally a book about the relationship of software, space, and society.
Its main focus concerns how software, in its many forms, enables the production of
coded objects, infrastructures, processes, and assemblages that do work in the world
and produce the code/spaces and coded spaces that increasingly constitute the spatiali-
ties of everyday life. The goal “ is not therefore to stage some revelation of a supposed
hidden truth of software, to unmask its esoteric reality, but to see what it is and what
it can be coupled with: a rich seam of paradoxical conjunctions in which the speed
and rationality of computation meets its ostensible outside ” (Piet Zwart Institute
2006).

 In the following chapter, we discuss the nature of software and how it is both a
product of the world and a producer of the world. In part II, we theorize how and
why software makes a difference to society, providing a set of conceptual ideas and
tools to think through how code transforms the nature of objects and infrastructures,
transduces space, transforms modes of governmentality and governance, and engen-
ders new forms of creativity and empowerment. In part III, we then employ these
concepts to analyze the diverse ways in which the employment of software shapes the
spatialities of everyday life, focusing on aspects of travel, home, and consumption. In
each of these domains, social activities are now regularly transduced as code/spaces.
In part IV, we examine likely future code/spaces and the drive toward everyware,
explore the ethical dilemmas of such potentialities, and think about how code/spaces

Introducing Code/Space 21

should be researched as the fi eld of software studies develops. Our conclusions offer
a provisional manifesto for critical scholarship into code — a new kind of social science
focused on explaining the social, economic, and spatial contours of software. The
glossary provides succinct defi nitions of key terms, especially technical terms and
neologisms that may not be familiar to some readers.

 Software matters in ways that extend well beyond simple functional or instrumen-
tal utility. Code/Space explains and demonstrates why it matters.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

