Street-Fighting Mathematics

The Art of Educated Guessing and Opportunistic Problem Solving

Sanjoy Mahajan
Foreword by Carver A. Mead

The MIT Press
Cambridge, Massachusetts
London, England
© 2010 by Sanjoy Mahajan
Foreword © 2010 by Carver A. Mead
Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving by Sanjoy Mahajan (author), Carver A. Mead (foreword), and MIT Press (publisher) is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License.
A copy of the license is available at http://creativecommons.org/licenses/by-nc-sa/3.0/us/

For information about special quantity discounts, please email special_sales@mitpress.mit.edu
 Typeset in Palatino and Euler by the author using $\mathrm{ConT}_{\mathrm{E}} \mathrm{Xt}$ and $\mathrm{PDFT}_{\mathrm{E}} \mathrm{X}$

Library of Congress Cataloging-in-Publication Data

Mahajan, Sanjoy, 1969-
Street-fighting mathematics : the art of educated guessing and opportunistic problem solving / Sanjoy Mahajan ; foreword by Carver A. Mead.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-262-51429-3 (pbk. : alk. paper) 1. Problem solving.
2. Hypothesis. 3. Estimation theory. I. Title.

QA63.M34 2010
510-dc22

Printed and bound in the United States of America
10987654321

Index

An italic page number refers to a problem on that page.
v
see kinematic viscosity
1 or few
see few
\approx (approximately equal) 6
π, computing
arctangent series 64
Brent-Salamin algorithm 65
\propto (proportional to) 6
~ (twiddle) 6,44
ω
see angular frequency
analogy, reasoning by 99-121
dividing space with planes 103-107
generating conjectures
see conjectures: generating
operators 107-113
left shift (L) 108-109
summation (Σ) 109
preserving crucial features 100,118 ,
120
pyramid volume 19
spatial angles 99-103
tangent-root sum 118-121
testing conjectures
see conjectures: testing
to polynomials 118-121
transforming dependent variable 101
angles, spatial 99-103
angular frequency 44
Aristotle xiv
arithmetic-geometric mean 65
arithmetic-mean-geometric-mean inequality 60-66
applications 63-66
computing π 64-66
maxima 63-64
equality condition 62
numerical examples 60
pictorial proof 61-63
symbolic proof 61
arithmetic mean
see also geometric mean picture for 62
asymptotes of $\tan x 114$
atmospheric pressure 34
back-of-the-envelope estimates correcting 78
mental multiplication in 77
minimal accuracy required for 78
powers of 10 in 78
balancing 41
Basel sum ($\Sigma \mathrm{n}^{-2}$) 76,113,116, 121
beta function 98
big part, correcting the see also taking out the big part additive messier than multiplicative corrections 80
using multiplicative corrections see fractional changes
using one or few 78
big part, taking out
see taking out the big part
binomial coefficients 96,107
binomial distribution 98
binomial theorem 90, 97
bisecting a triangle 70-73
bits, CD capacity in 78
blackbody radiation 87
boundary layers 27
brain evolution 57
Buckingham, Edgar 26
calculus, fundamental idea of 31
CD-ROM
see also CD
same format as CD 77
CD/CD-ROM, storage capacity 77-79
characteristic magnitudes (typical magnitudes) 44
characteristic times 44
checking units 78
circle
area from circumference 76
as polygon with many sides 72
comparisons, nonsense with different dimensions 2
cone free-fall distance 35
cone templates 21
conical pendulum 48
conjectures
discarding coincidences 105, 119
explaining 119
generating 100, 103, 104, 105
probabilities of 105
testing 100, 101, 104, 106, 111, 119
getting more data $100,105,106$
constants of proportionality
Stefan-Boltzmann constant 11
constraint propagation 5
contradictions 20
convergence, accelerating 65, 68
convexity 104
copyright raising book prices 82
Corfield, David 105
cosine
integral of high power 94-97
small-angle approximation derived 86
used 95
cube, bisecting 73
d (differential symbol) 10, 43
degeneracies 103
derivative as a ratio 38
derivatives
approximating with nonzero $\Delta x \quad 40$
secant approximation 38
errors in 39
improved starting point 39
large error 38
vertical translation 39
second
dimensions of 38
secant approximation to 38
significant-change approximation
40-41
acceleration 43
Navier-Stokes derivatives 45
scale and translation invariance 40
translation invariance 40
desert-island method 32
differential equations
checking dimensions 42
linearizing 47,51-54
orbital motion 12
pendulum 46
simplifying into algebraic equations 43-46
spring-mass system $\quad 42-45$
exact solution 45
pendulum equation 47
dimensional analysis
see dimensions, method of; dimensionless groups
dimensionless constants
Gaussian integral 10
simple harmonic motion 48
Stefan-Boltzmann law 11
dimensionless groups 24
drag 25
free-fall speed 24
pendulum period 48
spring-mass system 48
dimensionless quantities
depth of well 94
fractional change times exponent 89
have lower entropy 94
having lower entropy 81
dimensions
L for length 5
retaining 5
T for time 5
versus units 2
dimensions, method of 1-12
see also dimensionless groups
advantages 6
checking differential equations 42
choosing unspecified dimensions 7, 8-9
compared with easy cases 15
constraint propagation 5
drag 23-26
guessing integrals 7-11
Kepler's third law 12
pendulum 48-49
related-rates problems 12
robust alternative to solving differen-
tial equations 5
Stefan-Boltzmann law 11
dimensions of
angles 47
d (differential) 10
dx $\quad 10$
exponents 8
integrals 9
integration sign $\int 9$
kinematic viscosity $v 22$
pendulum equation 47
second derivative 38,43
spring constant 43
summation sign $\Sigma 9$
drag 21-29
depth-of-well estimate, effect on 93
high Reynolds number 28
low Reynolds number 30
quantities affecting 23
drag force
see drag
e
in fractional changes 90
earth
surface area 79
surface temperature 87
easy cases 13-30
adding odd numbers 58
beta-function integral 98
bisecting a triangle 70
bond angles 100
checking formulas 13-17
compared with dimensions 15
ellipse area 16-17
ellipse perimeter 65
fewer lines 104
fewer planes 103
guessing integrals 13-16
high dimensionality 103
high Reynolds number 27
large exponents 89
low Reynolds number 30
of infinite sound speed 92,94
pendulum
large amplitude 49-51
small amplitude 47-48
polynomials 118
pyramid volume 19
roots of $\tan x=x \quad 114$
simple functions 108, 112
synthesizing formulas 17
truncated cone 21
truncated pyramid 18-21
ellipse
area 17
perimeter 65
elliptical orbit
eccentricity 87
position of sun 87
energy conservation 50
energy consumption in driving 82-84
effect of longer commuting time 83
entropy of an expression
see low-entropy expressions
entropy of mixing 81
equality, kinds of 6
estimating derivatives
see derivatives, secant approximation;
derivatives, significant-change approximation
Euler 113
see also Basel sum
beta function 98
Euler-MacLaurin summation 112
Evolving Brains 57
exact solution
invites algebra mistakes 4

examples

adding odd numbers 58-60
arithmetic-mean-geometric-mean inequality 60-66
babies, number of $32-33$
bisecting a triangle 70-73
bond angle in methane 99-103
depth of a well 91-94
derivative of $\cos x$, estimating 40-41
dividing space with planes 103-107
drag on falling paper cones 21-29
ellipse area 16-17
energy savings from 55 mph speed limit 82-84
factorial function 36-37
free fall 3-6
Gaussian integral using dimensions 7-11
Gaussian integral using easy cases 13-16
logarithm series 66-70
maximizing garden area 63-64
multiplying 3.15 by 7.21 using fractional changes 79-80 using one or few 79
operators
left shift (L) 108-109
summation (Σ) 109-113
pendulum period $46-54$
power of multinationals $1-3$
rapidly computing $1 / 13 \quad 84-85$
seasonal temperature fluctuations 86-88
spring-mass differential equation 42-45
square root of ten $85-86$
storage capacity of a CD-ROM or CD 77-79
summing ln n ! 73-75
tangent-root sum 113-121
trigonometric integral 94-97
volume of truncated pyramid 17-21
exponential
decaying, integral of 33
outruns any polynomial 36
exponents, dimensions of 8
extreme cases
see easy cases
factorial
integral representation 36
Stirling's formula
Euler-MacLaurin summation 112
lumping 36-37
pictures 74
summation representation 73
summing logarithm of 73-75
few
as geometric mean 78
as invented number 78
for mental multiplication 78
fractional changes
cube roots 86
cubing 83, 84
do not multiply 83
earth-sun distance 87
estimating wind power 84
exponent of $-2 \quad 86$
exponent of $1 / 4 \quad 87$
general exponents $84-90$
increasing accuracy 85,86
introduced 79-80
large exponents 89-90,95
linear approximation 82
multiplying 3.15 by $7.21 \quad 79$
negative and fractional exponents 86-88
no plausible alternative to adding 82
picture 80
small changes add 82
square roots $85-86$
squaring 82-84
tangent-root sum 117
free fall
analysis using dimensions 3-6
depth of well 91-94
differential equation 4
impact speed (exact) 4
with initial velocity 30
fudging 33
fuel efficiency 85
Gaussian integral
closed form, guessing 14, 16
extending limits to ∞ 96
tail area 55
trapezoidal approximation 14
using dimensions 7-11
using easy cases 13-16
using lumping 34, 35
GDP, as monetary flow 1
geometric mean
see also arithmetic mean; arith-
metic-mean-geometric-mean theorem
definition 60
picture for 61
three numbers 63
gestalt understanding 59
globalization 1
graphical argumentssee pictorial proofs
high-entropy expressions
see also low-entropy expressions
from quadratic formula 92
How to Solve It xiii
Huygens 48
induction proof 58
information theory 81
integration
approximating as multiplicationsee lumping
inverse of differentiation 109
numerical 14
operator 109
intensity of solar radiation 86
isoperimetric theorem 73
Jaynes, Edwin Thompson 105
Jeffreys, Harold 26
Kepler's third law 25
kinematic viscosity (v) 21, 27
Landau Institute, daunting trigonomet-ric integral from94
L (dimension of length) 5
Lennard-Jones potential 41
life expectancy 32
little bit (meaning of d) 10, 43
logarithms
analyzing fractional changes 90
integral definition 67
rational-function approximation 69
low-entropy expressions
basis of scientific progress 81
dimensionless quantities are often81
fractional changes are often 81
from successive approximation 93
high-entropy intermediate steps 81
introduced 80-82
reducing mixing entropy 81
roots of $\tan x=x$ 114
lumping 31-55
1/e heuristic 34
atmospheric pressure 34
circumscribed rectangle 67
differential equations 51-54
estimating derivatives 37-41
inscribed rectangle 67
integrals 33-37
pendulum, moderate amplitudes 51
population estimates 32-33
too much 52
Mars Climate Orbiter, crash of 3
Mathematics and Plausible Reasoning xiii
mathematics, power of abstraction 7
maxima and minima 41,70arithmetic-mean-geometric-mean in-equality 63-64
box volume 64
trigonometry 64
mental division 33
mental multiplication
using one or few
see few
method versus trick 69
mixing entropy 81
Navier-Stokes equations
difficult to solve 22
inertial term 45
statement of 21
viscous term 46
Newton-Raphson method 76, 117, 118
numerical integration 14
odd numbers, sum of $58-60$
one or few
if not accurate enough 79
operators
derivative (D) 107
exponential of 108
finite difference (Δ) $\quad 110$
integration 109
left shift (L) 108-109
right shift 109
summation (Σ) 109-113
parabola, area without calculus 76
Pascal's triangle 107
patterns, looking for 90
pendulum
differential equation 46
in weaker gravity 52
period of 46-54
perceptual abilities 58
pictorial proofs 57-76
adding odd numbers 58-60
area of circle 76
arithmetic-mean-geometric-mean inequality 60-63,76
bisecting a triangle 70-73
compared to induction proof 58
dividing space with planes 107
factorial 73-75
logarithm series 66-70
Newton-Raphson method 76
roots of $\tan x=x \quad 114$
volume of sphere 76
pictorial reasoning
depth of well 94
plausible alternatives
see low-entropy expressions
Polya, George 105
population, estimating 32
power of multinationals 1-3
powers of ten 78
proportional reasoning 18
pyramid, truncated 17
quadratic formula 91
high entropy 92
versus successive approximation 93
quadratic terms
ignoring $80,82,84$
including 85
range formula 30
rapid mental division 84-85
rational functions 69, 101
Re
see Reynolds number
related-rates problems 12
rewriting-as-a-ratio trick 68, 70, 86
Reynolds number (Re) 27
high 27
low 30
rigor xiii
rigor mortis xiii
rounding
to nearest integer 79
using one or few 78
scale invariance 40
seasonal temperature changes 86-88
seasonal temperature fluctuations
alternative explanation 88
secant approximation
see derivatives, secant approximation
secant line, slope of 38
second derivatives
see derivatives, second
Shannon-Nyquist sampling theorem 78
significant-change approximation
see derivatives, significant-change approximation
similar triangles 61,70
simplifying problems see taking out the big part; lumping; easy cases; analogy
sine, small-angle approximation derived 47
used 86
small-angle approximation
cosine 95
sine 47,66
solar-radiation intensity 86
space, dividing with planes 103-107
spectroscopy 35
sphere, volume from surface area 76
spring-mass system 42-45
spring constant
dimensions of 43
Hooke's law, in 42
statistical mechanics 81
Stefan-Boltzmann constant 11, 87
Stefan-Boltzmann law
derivation 11
requires temperature in Kelvin 88
to compute surface temperature 87
stiffness
see spring constant
Stirling's formula
see factorial: Stirling's formula
successive approximation
see also taking out the big part
depth of well 92-94
low-entropy expressions 93
physical insights 93
robustness 93
versus quadratic formula 93
summation
approximately integration 113, 114
Euler-MacLaurin 112, 113
indefinite 110
integral approximation 74
operator 109-113
represented using differentiation 112
tangent roots 113-121
triangle correction 74, 113, 115
symbolic reasoning
brain evolution 57
seeming like magic 61
symmetry 72
taking out the big part 77-98
depth of well 92-94
polynomial extrapolation 106, 107
tangent-root sum 114, 117-118
trigonometric integral 94-97
Taylor series
factorial integrand 37
general 66
logarithm 66,69 cubic term 68
pendulum period 53
tangent 118, 120
L (dimension of length) 5
tetrahedron, regular 99
The Art and Craft of Problem Solving xiii
thermal expansion 82
Thompson, Silvanus 10
thought experiments 18,50
tools
see dimensions, method of; easy cases;
lumping; pictorial proofs; taking out
the big part; analogy, reasoning by
transformations
logarithmic 36
taking cosine 101
trapezoidal approximation 14
tricks
multiplication by one 85
rewriting as a ratio $68,70,86$
variable transformation 36,101
trick versus method 69
tutorial teaching xiv
under- or overestimate?
approximating depth of well 92,93
computing square roots 86
lumping analysis 54summation approximation 75
tangent-root sum 115
using one or few 79
units
Mars Climate Orbiter, crash of
Mars Climate Orbiter, crash of 3 3
separating from quantities 4
versus dimensions 2
Wertheimer, Max 59

